* breakpoint.h (struct breakpoint): New member GDBARCH.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 /* To get entry_point_address. */
43 #include "objfiles.h"
44
45 #include "solib.h" /* Support for shared libraries. */
46 #include "solib-svr4.h"
47 #include "gdb_string.h"
48 #include "dis-asm.h"
49
50 enum cris_num_regs
51 {
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
65 };
66
67 /* Register numbers of various important registers.
68 CRIS_FP_REGNUM Contains address of executing stack frame.
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
80 enum cris_regnums
81 {
82 /* Enums with respect to the general registers, valid for all
83 CRIS versions. The frame pointer is always in R8. */
84 CRIS_FP_REGNUM = 8,
85 /* ABI related registers. */
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
93 /* Registers which happen to be common. */
94 VR_REGNUM = 17,
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
98 /* CRISv10 et. al. specific registers. */
99 P0_REGNUM = 16,
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
105 BAR_REGNUM = 28,
106 DCCR_REGNUM = 29,
107 BRP_REGNUM = 30,
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
143 };
144
145 extern const struct cris_spec_reg cris_spec_regs[];
146
147 /* CRIS version, set via the user command 'set cris-version'. Affects
148 register names and sizes. */
149 static int usr_cmd_cris_version;
150
151 /* Indicates whether to trust the above variable. */
152 static int usr_cmd_cris_version_valid = 0;
153
154 static const char cris_mode_normal[] = "normal";
155 static const char cris_mode_guru[] = "guru";
156 static const char *cris_modes[] = {
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160 };
161
162 /* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164 static const char *usr_cmd_cris_mode = cris_mode_normal;
165
166 /* Whether to make use of Dwarf-2 CFI (default on). */
167 static int usr_cmd_cris_dwarf2_cfi = 1;
168
169 /* CRIS architecture specific information. */
170 struct gdbarch_tdep
171 {
172 int cris_version;
173 const char *cris_mode;
174 int cris_dwarf2_cfi;
175 };
176
177 /* Sigtramp identification code copied from i386-linux-tdep.c. */
178
179 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
180 #define SIGTRAMP_OFFSET0 0
181 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
182 #define SIGTRAMP_OFFSET1 4
183
184 static const unsigned short sigtramp_code[] =
185 {
186 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
187 SIGTRAMP_INSN1 /* break 13 */
188 };
189
190 #define SIGTRAMP_LEN (sizeof sigtramp_code)
191
192 /* Note: same length as normal sigtramp code. */
193
194 static const unsigned short rt_sigtramp_code[] =
195 {
196 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
197 SIGTRAMP_INSN1 /* break 13 */
198 };
199
200 /* If PC is in a sigtramp routine, return the address of the start of
201 the routine. Otherwise, return 0. */
202
203 static CORE_ADDR
204 cris_sigtramp_start (struct frame_info *this_frame)
205 {
206 CORE_ADDR pc = get_frame_pc (this_frame);
207 gdb_byte buf[SIGTRAMP_LEN];
208
209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
210 return 0;
211
212 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
213 {
214 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
215 return 0;
216
217 pc -= SIGTRAMP_OFFSET1;
218 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
219 return 0;
220 }
221
222 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
223 return 0;
224
225 return pc;
226 }
227
228 /* If PC is in a RT sigtramp routine, return the address of the start of
229 the routine. Otherwise, return 0. */
230
231 static CORE_ADDR
232 cris_rt_sigtramp_start (struct frame_info *this_frame)
233 {
234 CORE_ADDR pc = get_frame_pc (this_frame);
235 gdb_byte buf[SIGTRAMP_LEN];
236
237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
238 return 0;
239
240 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
241 {
242 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
243 return 0;
244
245 pc -= SIGTRAMP_OFFSET1;
246 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
247 return 0;
248 }
249
250 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
251 return 0;
252
253 return pc;
254 }
255
256 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
257 return the address of the associated sigcontext structure. */
258
259 static CORE_ADDR
260 cris_sigcontext_addr (struct frame_info *this_frame)
261 {
262 CORE_ADDR pc;
263 CORE_ADDR sp;
264 char buf[4];
265
266 get_frame_register (this_frame,
267 gdbarch_sp_regnum (get_frame_arch (this_frame)), buf);
268 sp = extract_unsigned_integer (buf, 4);
269
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
280 pc = cris_rt_sigtramp_start (this_frame);
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
291 error (_("Couldn't recognize signal trampoline."));
292 return 0;
293 }
294
295 struct cris_unwind_cache
296 {
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
311 CORE_ADDR return_pc;
312 int leaf_function;
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
316 };
317
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
320 void **this_cache)
321 {
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 struct cris_unwind_cache *info;
325 CORE_ADDR pc;
326 CORE_ADDR sp;
327 CORE_ADDR addr;
328 char buf[4];
329 int i;
330
331 if ((*this_cache))
332 return (*this_cache);
333
334 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
335 (*this_cache) = info;
336 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
337
338 /* Zero all fields. */
339 info->prev_sp = 0;
340 info->base = 0;
341 info->size = 0;
342 info->sp_offset = 0;
343 info->r8_offset = 0;
344 info->uses_frame = 0;
345 info->return_pc = 0;
346 info->leaf_function = 0;
347
348 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
349 info->base = extract_unsigned_integer (buf, 4);
350
351 addr = cris_sigcontext_addr (this_frame);
352
353 /* Layout of the sigcontext struct:
354 struct sigcontext {
355 struct pt_regs regs;
356 unsigned long oldmask;
357 unsigned long usp;
358 }; */
359
360 if (tdep->cris_version == 10)
361 {
362 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
363 struct pt_regs. */
364 for (i = 0; i <= 13; i++)
365 info->saved_regs[i].addr = addr + ((15 - i) * 4);
366
367 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
368 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
369 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
370 /* Note: IRP is off by 2 at this point. There's no point in correcting
371 it though since that will mean that the backtrace will show a PC
372 different from what is shown when stopped. */
373 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
374 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
375 = info->saved_regs[IRP_REGNUM];
376 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
377 }
378 else
379 {
380 /* CRISv32. */
381 /* R0 to R13 are stored in order at offset (1 * 4) in
382 struct pt_regs. */
383 for (i = 0; i <= 13; i++)
384 info->saved_regs[i].addr = addr + ((i + 1) * 4);
385
386 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
387 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
388 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
389 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
390 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
391 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
392 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
393 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
394 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
395
396 /* FIXME: If ERP is in a delay slot at this point then the PC will
397 be wrong at this point. This problem manifests itself in the
398 sigaltstack.exp test case, which occasionally generates FAILs when
399 the signal is received while in a delay slot.
400
401 This could be solved by a couple of read_memory_unsigned_integer and a
402 trad_frame_set_value. */
403 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
404 = info->saved_regs[ERP_REGNUM];
405
406 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
407 = addr + (25 * 4);
408 }
409
410 return info;
411 }
412
413 static void
414 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
415 struct frame_id *this_id)
416 {
417 struct cris_unwind_cache *cache =
418 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
419 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
420 }
421
422 /* Forward declaration. */
423
424 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
425 void **this_cache, int regnum);
426 static struct value *
427 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
428 void **this_cache, int regnum)
429 {
430 /* Make sure we've initialized the cache. */
431 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
432 return cris_frame_prev_register (this_frame, this_cache, regnum);
433 }
434
435 static int
436 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
437 struct frame_info *this_frame,
438 void **this_cache)
439 {
440 if (cris_sigtramp_start (this_frame)
441 || cris_rt_sigtramp_start (this_frame))
442 return 1;
443
444 return 0;
445 }
446
447 static const struct frame_unwind cris_sigtramp_frame_unwind =
448 {
449 SIGTRAMP_FRAME,
450 cris_sigtramp_frame_this_id,
451 cris_sigtramp_frame_prev_register,
452 NULL,
453 cris_sigtramp_frame_sniffer
454 };
455
456 static int
457 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
458 struct frame_info *this_frame)
459 {
460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 ULONGEST erp;
462 int ret = 0;
463
464 if (tdep->cris_mode == cris_mode_guru)
465 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
466 else
467 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
468
469 if (erp & 0x1)
470 {
471 /* In delay slot - check if there's a breakpoint at the preceding
472 instruction. */
473 if (breakpoint_here_p (erp & ~0x1))
474 ret = 1;
475 }
476 return ret;
477 }
478
479 /* Hardware watchpoint support. */
480
481 /* We support 6 hardware data watchpoints, but cannot trigger on execute
482 (any combination of read/write is fine). */
483
484 int
485 cris_can_use_hardware_watchpoint (int type, int count, int other)
486 {
487 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
488
489 /* No bookkeeping is done here; it is handled by the remote debug agent. */
490
491 if (tdep->cris_version != 32)
492 return 0;
493 else
494 /* CRISv32: Six data watchpoints, one for instructions. */
495 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
496 || type == bp_hardware_watchpoint) && count <= 6)
497 || (type == bp_hardware_breakpoint && count <= 1));
498 }
499
500 /* The CRISv32 hardware data watchpoints work by specifying ranges,
501 which have no alignment or length restrictions. */
502
503 int
504 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
505 {
506 return 1;
507 }
508
509 /* If the inferior has some watchpoint that triggered, return the
510 address associated with that watchpoint. Otherwise, return
511 zero. */
512
513 CORE_ADDR
514 cris_stopped_data_address (void)
515 {
516 CORE_ADDR eda;
517 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
518 return eda;
519 }
520
521 /* The instruction environment needed to find single-step breakpoints. */
522
523 typedef
524 struct instruction_environment
525 {
526 unsigned long reg[NUM_GENREGS];
527 unsigned long preg[NUM_SPECREGS];
528 unsigned long branch_break_address;
529 unsigned long delay_slot_pc;
530 unsigned long prefix_value;
531 int branch_found;
532 int prefix_found;
533 int invalid;
534 int slot_needed;
535 int delay_slot_pc_active;
536 int xflag_found;
537 int disable_interrupt;
538 } inst_env_type;
539
540 /* Machine-dependencies in CRIS for opcodes. */
541
542 /* Instruction sizes. */
543 enum cris_instruction_sizes
544 {
545 INST_BYTE_SIZE = 0,
546 INST_WORD_SIZE = 1,
547 INST_DWORD_SIZE = 2
548 };
549
550 /* Addressing modes. */
551 enum cris_addressing_modes
552 {
553 REGISTER_MODE = 1,
554 INDIRECT_MODE = 2,
555 AUTOINC_MODE = 3
556 };
557
558 /* Prefix addressing modes. */
559 enum cris_prefix_addressing_modes
560 {
561 PREFIX_INDEX_MODE = 2,
562 PREFIX_ASSIGN_MODE = 3,
563
564 /* Handle immediate byte offset addressing mode prefix format. */
565 PREFIX_OFFSET_MODE = 2
566 };
567
568 /* Masks for opcodes. */
569 enum cris_opcode_masks
570 {
571 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
572 SIGNED_EXTEND_BIT_MASK = 0x2,
573 SIGNED_BYTE_MASK = 0x80,
574 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
575 SIGNED_WORD_MASK = 0x8000,
576 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
577 SIGNED_DWORD_MASK = 0x80000000,
578 SIGNED_QUICK_VALUE_MASK = 0x20,
579 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
580 };
581
582 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
583 Bit 15 - 12 Operand2
584 11 - 10 Mode
585 9 - 6 Opcode
586 5 - 4 Size
587 3 - 0 Operand1 */
588
589 static int
590 cris_get_operand2 (unsigned short insn)
591 {
592 return ((insn & 0xF000) >> 12);
593 }
594
595 static int
596 cris_get_mode (unsigned short insn)
597 {
598 return ((insn & 0x0C00) >> 10);
599 }
600
601 static int
602 cris_get_opcode (unsigned short insn)
603 {
604 return ((insn & 0x03C0) >> 6);
605 }
606
607 static int
608 cris_get_size (unsigned short insn)
609 {
610 return ((insn & 0x0030) >> 4);
611 }
612
613 static int
614 cris_get_operand1 (unsigned short insn)
615 {
616 return (insn & 0x000F);
617 }
618
619 /* Additional functions in order to handle opcodes. */
620
621 static int
622 cris_get_quick_value (unsigned short insn)
623 {
624 return (insn & 0x003F);
625 }
626
627 static int
628 cris_get_bdap_quick_offset (unsigned short insn)
629 {
630 return (insn & 0x00FF);
631 }
632
633 static int
634 cris_get_branch_short_offset (unsigned short insn)
635 {
636 return (insn & 0x00FF);
637 }
638
639 static int
640 cris_get_asr_shift_steps (unsigned long value)
641 {
642 return (value & 0x3F);
643 }
644
645 static int
646 cris_get_clear_size (unsigned short insn)
647 {
648 return ((insn) & 0xC000);
649 }
650
651 static int
652 cris_is_signed_extend_bit_on (unsigned short insn)
653 {
654 return (((insn) & 0x20) == 0x20);
655 }
656
657 static int
658 cris_is_xflag_bit_on (unsigned short insn)
659 {
660 return (((insn) & 0x1000) == 0x1000);
661 }
662
663 static void
664 cris_set_size_to_dword (unsigned short *insn)
665 {
666 *insn &= 0xFFCF;
667 *insn |= 0x20;
668 }
669
670 static signed char
671 cris_get_signed_offset (unsigned short insn)
672 {
673 return ((signed char) (insn & 0x00FF));
674 }
675
676 /* Calls an op function given the op-type, working on the insn and the
677 inst_env. */
678 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
679 inst_env_type *);
680
681 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
682 struct gdbarch_list *);
683
684 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
685
686 static void set_cris_version (char *ignore_args, int from_tty,
687 struct cmd_list_element *c);
688
689 static void set_cris_mode (char *ignore_args, int from_tty,
690 struct cmd_list_element *c);
691
692 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
693 struct cmd_list_element *c);
694
695 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
696 struct frame_info *this_frame,
697 struct cris_unwind_cache *info);
698
699 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
700 struct frame_info *this_frame,
701 struct cris_unwind_cache *info);
702
703 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
704 struct frame_info *next_frame);
705
706 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
707 struct frame_info *next_frame);
708
709 /* When arguments must be pushed onto the stack, they go on in reverse
710 order. The below implements a FILO (stack) to do this.
711 Copied from d10v-tdep.c. */
712
713 struct stack_item
714 {
715 int len;
716 struct stack_item *prev;
717 void *data;
718 };
719
720 static struct stack_item *
721 push_stack_item (struct stack_item *prev, void *contents, int len)
722 {
723 struct stack_item *si;
724 si = xmalloc (sizeof (struct stack_item));
725 si->data = xmalloc (len);
726 si->len = len;
727 si->prev = prev;
728 memcpy (si->data, contents, len);
729 return si;
730 }
731
732 static struct stack_item *
733 pop_stack_item (struct stack_item *si)
734 {
735 struct stack_item *dead = si;
736 si = si->prev;
737 xfree (dead->data);
738 xfree (dead);
739 return si;
740 }
741
742 /* Put here the code to store, into fi->saved_regs, the addresses of
743 the saved registers of frame described by FRAME_INFO. This
744 includes special registers such as pc and fp saved in special ways
745 in the stack frame. sp is even more special: the address we return
746 for it IS the sp for the next frame. */
747
748 static struct cris_unwind_cache *
749 cris_frame_unwind_cache (struct frame_info *this_frame,
750 void **this_prologue_cache)
751 {
752 struct gdbarch *gdbarch = get_frame_arch (this_frame);
753 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
754 CORE_ADDR pc;
755 struct cris_unwind_cache *info;
756 int i;
757
758 if ((*this_prologue_cache))
759 return (*this_prologue_cache);
760
761 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
762 (*this_prologue_cache) = info;
763 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
764
765 /* Zero all fields. */
766 info->prev_sp = 0;
767 info->base = 0;
768 info->size = 0;
769 info->sp_offset = 0;
770 info->r8_offset = 0;
771 info->uses_frame = 0;
772 info->return_pc = 0;
773 info->leaf_function = 0;
774
775 /* Prologue analysis does the rest... */
776 if (tdep->cris_version == 32)
777 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
778 else
779 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
780
781 return info;
782 }
783
784 /* Given a GDB frame, determine the address of the calling function's
785 frame. This will be used to create a new GDB frame struct. */
786
787 static void
788 cris_frame_this_id (struct frame_info *this_frame,
789 void **this_prologue_cache,
790 struct frame_id *this_id)
791 {
792 struct cris_unwind_cache *info
793 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
794 CORE_ADDR base;
795 CORE_ADDR func;
796 struct frame_id id;
797
798 /* The FUNC is easy. */
799 func = get_frame_func (this_frame);
800
801 /* Hopefully the prologue analysis either correctly determined the
802 frame's base (which is the SP from the previous frame), or set
803 that base to "NULL". */
804 base = info->prev_sp;
805 if (base == 0)
806 return;
807
808 id = frame_id_build (base, func);
809
810 (*this_id) = id;
811 }
812
813 static struct value *
814 cris_frame_prev_register (struct frame_info *this_frame,
815 void **this_prologue_cache, int regnum)
816 {
817 struct cris_unwind_cache *info
818 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
819 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
820 }
821
822 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
823 frame. The frame ID's base needs to match the TOS value saved by
824 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
825
826 static struct frame_id
827 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
828 {
829 CORE_ADDR sp;
830 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
831 return frame_id_build (sp, get_frame_pc (this_frame));
832 }
833
834 static CORE_ADDR
835 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
836 {
837 /* Align to the size of an instruction (so that they can safely be
838 pushed onto the stack). */
839 return sp & ~3;
840 }
841
842 static CORE_ADDR
843 cris_push_dummy_code (struct gdbarch *gdbarch,
844 CORE_ADDR sp, CORE_ADDR funaddr,
845 struct value **args, int nargs,
846 struct type *value_type,
847 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
848 struct regcache *regcache)
849 {
850 /* Allocate space sufficient for a breakpoint. */
851 sp = (sp - 4) & ~3;
852 /* Store the address of that breakpoint */
853 *bp_addr = sp;
854 /* CRIS always starts the call at the callee's entry point. */
855 *real_pc = funaddr;
856 return sp;
857 }
858
859 static CORE_ADDR
860 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
861 struct regcache *regcache, CORE_ADDR bp_addr,
862 int nargs, struct value **args, CORE_ADDR sp,
863 int struct_return, CORE_ADDR struct_addr)
864 {
865 int stack_alloc;
866 int stack_offset;
867 int argreg;
868 int argnum;
869
870 CORE_ADDR regval;
871
872 /* The function's arguments and memory allocated by gdb for the arguments to
873 point at reside in separate areas on the stack.
874 Both frame pointers grow toward higher addresses. */
875 CORE_ADDR fp_arg;
876 CORE_ADDR fp_mem;
877
878 struct stack_item *si = NULL;
879
880 /* Push the return address. */
881 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
882
883 /* Are we returning a value using a structure return or a normal value
884 return? struct_addr is the address of the reserved space for the return
885 structure to be written on the stack. */
886 if (struct_return)
887 {
888 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
889 }
890
891 /* Now load as many as possible of the first arguments into registers,
892 and push the rest onto the stack. */
893 argreg = ARG1_REGNUM;
894 stack_offset = 0;
895
896 for (argnum = 0; argnum < nargs; argnum++)
897 {
898 int len;
899 char *val;
900 int reg_demand;
901 int i;
902
903 len = TYPE_LENGTH (value_type (args[argnum]));
904 val = (char *) value_contents (args[argnum]);
905
906 /* How may registers worth of storage do we need for this argument? */
907 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
908
909 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
910 {
911 /* Data passed by value. Fits in available register(s). */
912 for (i = 0; i < reg_demand; i++)
913 {
914 regcache_cooked_write (regcache, argreg, val);
915 argreg++;
916 val += 4;
917 }
918 }
919 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
920 {
921 /* Data passed by value. Does not fit in available register(s).
922 Use the register(s) first, then the stack. */
923 for (i = 0; i < reg_demand; i++)
924 {
925 if (argreg <= ARG4_REGNUM)
926 {
927 regcache_cooked_write (regcache, argreg, val);
928 argreg++;
929 val += 4;
930 }
931 else
932 {
933 /* Push item for later so that pushed arguments
934 come in the right order. */
935 si = push_stack_item (si, val, 4);
936 val += 4;
937 }
938 }
939 }
940 else if (len > (2 * 4))
941 {
942 /* Data passed by reference. Push copy of data onto stack
943 and pass pointer to this copy as argument. */
944 sp = (sp - len) & ~3;
945 write_memory (sp, val, len);
946
947 if (argreg <= ARG4_REGNUM)
948 {
949 regcache_cooked_write_unsigned (regcache, argreg, sp);
950 argreg++;
951 }
952 else
953 {
954 gdb_byte buf[4];
955 store_unsigned_integer (buf, 4, sp);
956 si = push_stack_item (si, buf, 4);
957 }
958 }
959 else
960 {
961 /* Data passed by value. No available registers. Put it on
962 the stack. */
963 si = push_stack_item (si, val, len);
964 }
965 }
966
967 while (si)
968 {
969 /* fp_arg must be word-aligned (i.e., don't += len) to match
970 the function prologue. */
971 sp = (sp - si->len) & ~3;
972 write_memory (sp, si->data, si->len);
973 si = pop_stack_item (si);
974 }
975
976 /* Finally, update the SP register. */
977 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
978
979 return sp;
980 }
981
982 static const struct frame_unwind cris_frame_unwind =
983 {
984 NORMAL_FRAME,
985 cris_frame_this_id,
986 cris_frame_prev_register,
987 NULL,
988 default_frame_sniffer
989 };
990
991 static CORE_ADDR
992 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
993 {
994 struct cris_unwind_cache *info
995 = cris_frame_unwind_cache (this_frame, this_cache);
996 return info->base;
997 }
998
999 static const struct frame_base cris_frame_base =
1000 {
1001 &cris_frame_unwind,
1002 cris_frame_base_address,
1003 cris_frame_base_address,
1004 cris_frame_base_address
1005 };
1006
1007 /* Frames information. The definition of the struct frame_info is
1008
1009 CORE_ADDR frame
1010 CORE_ADDR pc
1011 enum frame_type type;
1012 CORE_ADDR return_pc
1013 int leaf_function
1014
1015 If the compilation option -fno-omit-frame-pointer is present the
1016 variable frame will be set to the content of R8 which is the frame
1017 pointer register.
1018
1019 The variable pc contains the address where execution is performed
1020 in the present frame. The innermost frame contains the current content
1021 of the register PC. All other frames contain the content of the
1022 register PC in the next frame.
1023
1024 The variable `type' indicates the frame's type: normal, SIGTRAMP
1025 (associated with a signal handler), dummy (associated with a dummy
1026 frame).
1027
1028 The variable return_pc contains the address where execution should be
1029 resumed when the present frame has finished, the return address.
1030
1031 The variable leaf_function is 1 if the return address is in the register
1032 SRP, and 0 if it is on the stack.
1033
1034 Prologue instructions C-code.
1035 The prologue may consist of (-fno-omit-frame-pointer)
1036 1) 2)
1037 push srp
1038 push r8 push r8
1039 move.d sp,r8 move.d sp,r8
1040 subq X,sp subq X,sp
1041 movem rY,[sp] movem rY,[sp]
1042 move.S rZ,[r8-U] move.S rZ,[r8-U]
1043
1044 where 1 is a non-terminal function, and 2 is a leaf-function.
1045
1046 Note that this assumption is extremely brittle, and will break at the
1047 slightest change in GCC's prologue.
1048
1049 If local variables are declared or register contents are saved on stack
1050 the subq-instruction will be present with X as the number of bytes
1051 needed for storage. The reshuffle with respect to r8 may be performed
1052 with any size S (b, w, d) and any of the general registers Z={0..13}.
1053 The offset U should be representable by a signed 8-bit value in all cases.
1054 Thus, the prefix word is assumed to be immediate byte offset mode followed
1055 by another word containing the instruction.
1056
1057 Degenerate cases:
1058 3)
1059 push r8
1060 move.d sp,r8
1061 move.d r8,sp
1062 pop r8
1063
1064 Prologue instructions C++-code.
1065 Case 1) and 2) in the C-code may be followed by
1066
1067 move.d r10,rS ; this
1068 move.d r11,rT ; P1
1069 move.d r12,rU ; P2
1070 move.d r13,rV ; P3
1071 move.S [r8+U],rZ ; P4
1072
1073 if any of the call parameters are stored. The host expects these
1074 instructions to be executed in order to get the call parameters right. */
1075
1076 /* Examine the prologue of a function. The variable ip is the address of
1077 the first instruction of the prologue. The variable limit is the address
1078 of the first instruction after the prologue. The variable fi contains the
1079 information in struct frame_info. The variable frameless_p controls whether
1080 the entire prologue is examined (0) or just enough instructions to
1081 determine that it is a prologue (1). */
1082
1083 static CORE_ADDR
1084 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1085 struct cris_unwind_cache *info)
1086 {
1087 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1088 /* Present instruction. */
1089 unsigned short insn;
1090
1091 /* Next instruction, lookahead. */
1092 unsigned short insn_next;
1093 int regno;
1094
1095 /* Is there a push fp? */
1096 int have_fp;
1097
1098 /* Number of byte on stack used for local variables and movem. */
1099 int val;
1100
1101 /* Highest register number in a movem. */
1102 int regsave;
1103
1104 /* move.d r<source_register>,rS */
1105 short source_register;
1106
1107 /* Scan limit. */
1108 int limit;
1109
1110 /* This frame is with respect to a leaf until a push srp is found. */
1111 if (info)
1112 {
1113 info->leaf_function = 1;
1114 }
1115
1116 /* Assume nothing on stack. */
1117 val = 0;
1118 regsave = -1;
1119
1120 /* If we were called without a this_frame, that means we were called
1121 from cris_skip_prologue which already tried to find the end of the
1122 prologue through the symbol information. 64 instructions past current
1123 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1124 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1125
1126 /* Find the prologue instructions. */
1127 while (pc > 0 && pc < limit)
1128 {
1129 insn = read_memory_unsigned_integer (pc, 2);
1130 pc += 2;
1131 if (insn == 0xE1FC)
1132 {
1133 /* push <reg> 32 bit instruction */
1134 insn_next = read_memory_unsigned_integer (pc, 2);
1135 pc += 2;
1136 regno = cris_get_operand2 (insn_next);
1137 if (info)
1138 {
1139 info->sp_offset += 4;
1140 }
1141 /* This check, meant to recognize srp, used to be regno ==
1142 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1143 if (insn_next == 0xBE7E)
1144 {
1145 if (info)
1146 {
1147 info->leaf_function = 0;
1148 }
1149 }
1150 else if (insn_next == 0x8FEE)
1151 {
1152 /* push $r8 */
1153 if (info)
1154 {
1155 info->r8_offset = info->sp_offset;
1156 }
1157 }
1158 }
1159 else if (insn == 0x866E)
1160 {
1161 /* move.d sp,r8 */
1162 if (info)
1163 {
1164 info->uses_frame = 1;
1165 }
1166 continue;
1167 }
1168 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1169 && cris_get_mode (insn) == 0x0000
1170 && cris_get_opcode (insn) == 0x000A)
1171 {
1172 /* subq <val>,sp */
1173 if (info)
1174 {
1175 info->sp_offset += cris_get_quick_value (insn);
1176 }
1177 }
1178 else if (cris_get_mode (insn) == 0x0002
1179 && cris_get_opcode (insn) == 0x000F
1180 && cris_get_size (insn) == 0x0003
1181 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1182 {
1183 /* movem r<regsave>,[sp] */
1184 regsave = cris_get_operand2 (insn);
1185 }
1186 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1187 && ((insn & 0x0F00) >> 8) == 0x0001
1188 && (cris_get_signed_offset (insn) < 0))
1189 {
1190 /* Immediate byte offset addressing prefix word with sp as base
1191 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1192 is between 64 and 128.
1193 movem r<regsave>,[sp=sp-<val>] */
1194 if (info)
1195 {
1196 info->sp_offset += -cris_get_signed_offset (insn);
1197 }
1198 insn_next = read_memory_unsigned_integer (pc, 2);
1199 pc += 2;
1200 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1201 && cris_get_opcode (insn_next) == 0x000F
1202 && cris_get_size (insn_next) == 0x0003
1203 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1204 (gdbarch))
1205 {
1206 regsave = cris_get_operand2 (insn_next);
1207 }
1208 else
1209 {
1210 /* The prologue ended before the limit was reached. */
1211 pc -= 4;
1212 break;
1213 }
1214 }
1215 else if (cris_get_mode (insn) == 0x0001
1216 && cris_get_opcode (insn) == 0x0009
1217 && cris_get_size (insn) == 0x0002)
1218 {
1219 /* move.d r<10..13>,r<0..15> */
1220 source_register = cris_get_operand1 (insn);
1221
1222 /* FIXME? In the glibc solibs, the prologue might contain something
1223 like (this example taken from relocate_doit):
1224 move.d $pc,$r0
1225 sub.d 0xfffef426,$r0
1226 which isn't covered by the source_register check below. Question
1227 is whether to add a check for this combo, or make better use of
1228 the limit variable instead. */
1229 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1230 {
1231 /* The prologue ended before the limit was reached. */
1232 pc -= 2;
1233 break;
1234 }
1235 }
1236 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1237 /* The size is a fixed-size. */
1238 && ((insn & 0x0F00) >> 8) == 0x0001
1239 /* A negative offset. */
1240 && (cris_get_signed_offset (insn) < 0))
1241 {
1242 /* move.S rZ,[r8-U] (?) */
1243 insn_next = read_memory_unsigned_integer (pc, 2);
1244 pc += 2;
1245 regno = cris_get_operand2 (insn_next);
1246 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1247 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1248 && cris_get_opcode (insn_next) == 0x000F)
1249 {
1250 /* move.S rZ,[r8-U] */
1251 continue;
1252 }
1253 else
1254 {
1255 /* The prologue ended before the limit was reached. */
1256 pc -= 4;
1257 break;
1258 }
1259 }
1260 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1261 /* The size is a fixed-size. */
1262 && ((insn & 0x0F00) >> 8) == 0x0001
1263 /* A positive offset. */
1264 && (cris_get_signed_offset (insn) > 0))
1265 {
1266 /* move.S [r8+U],rZ (?) */
1267 insn_next = read_memory_unsigned_integer (pc, 2);
1268 pc += 2;
1269 regno = cris_get_operand2 (insn_next);
1270 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1271 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1272 && cris_get_opcode (insn_next) == 0x0009
1273 && cris_get_operand1 (insn_next) == regno)
1274 {
1275 /* move.S [r8+U],rZ */
1276 continue;
1277 }
1278 else
1279 {
1280 /* The prologue ended before the limit was reached. */
1281 pc -= 4;
1282 break;
1283 }
1284 }
1285 else
1286 {
1287 /* The prologue ended before the limit was reached. */
1288 pc -= 2;
1289 break;
1290 }
1291 }
1292
1293 /* We only want to know the end of the prologue when this_frame and info
1294 are NULL (called from cris_skip_prologue i.e.). */
1295 if (this_frame == NULL && info == NULL)
1296 {
1297 return pc;
1298 }
1299
1300 info->size = info->sp_offset;
1301
1302 /* Compute the previous frame's stack pointer (which is also the
1303 frame's ID's stack address), and this frame's base pointer. */
1304 if (info->uses_frame)
1305 {
1306 ULONGEST this_base;
1307 /* The SP was moved to the FP. This indicates that a new frame
1308 was created. Get THIS frame's FP value by unwinding it from
1309 the next frame. */
1310 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1311 info->base = this_base;
1312 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1313
1314 /* The FP points at the last saved register. Adjust the FP back
1315 to before the first saved register giving the SP. */
1316 info->prev_sp = info->base + info->r8_offset;
1317 }
1318 else
1319 {
1320 ULONGEST this_base;
1321 /* Assume that the FP is this frame's SP but with that pushed
1322 stack space added back. */
1323 this_base = get_frame_register_unsigned (this_frame,
1324 gdbarch_sp_regnum (gdbarch));
1325 info->base = this_base;
1326 info->prev_sp = info->base + info->size;
1327 }
1328
1329 /* Calculate the addresses for the saved registers on the stack. */
1330 /* FIXME: The address calculation should really be done on the fly while
1331 we're analyzing the prologue (we only hold one regsave value as it is
1332 now). */
1333 val = info->sp_offset;
1334
1335 for (regno = regsave; regno >= 0; regno--)
1336 {
1337 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1338 val -= 4;
1339 }
1340
1341 /* The previous frame's SP needed to be computed. Save the computed
1342 value. */
1343 trad_frame_set_value (info->saved_regs,
1344 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1345
1346 if (!info->leaf_function)
1347 {
1348 /* SRP saved on the stack. But where? */
1349 if (info->r8_offset == 0)
1350 {
1351 /* R8 not pushed yet. */
1352 info->saved_regs[SRP_REGNUM].addr = info->base;
1353 }
1354 else
1355 {
1356 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1358 }
1359 }
1360
1361 /* The PC is found in SRP (the actual register or located on the stack). */
1362 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1363 = info->saved_regs[SRP_REGNUM];
1364
1365 return pc;
1366 }
1367
1368 static CORE_ADDR
1369 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1370 struct cris_unwind_cache *info)
1371 {
1372 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1373 ULONGEST this_base;
1374
1375 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1376 meant to be a full-fledged prologue scanner. It is only needed for
1377 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1378
1379 * PLT stubs (library calls)
1380 * call dummys
1381 * signal trampolines
1382
1383 For those cases, it is assumed that there is no actual prologue; that
1384 the stack pointer is not adjusted, and (as a consequence) the return
1385 address is not pushed onto the stack. */
1386
1387 /* We only want to know the end of the prologue when this_frame and info
1388 are NULL (called from cris_skip_prologue i.e.). */
1389 if (this_frame == NULL && info == NULL)
1390 {
1391 return pc;
1392 }
1393
1394 /* The SP is assumed to be unaltered. */
1395 this_base = get_frame_register_unsigned (this_frame,
1396 gdbarch_sp_regnum (gdbarch));
1397 info->base = this_base;
1398 info->prev_sp = this_base;
1399
1400 /* The PC is assumed to be found in SRP. */
1401 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1402 = info->saved_regs[SRP_REGNUM];
1403
1404 return pc;
1405 }
1406
1407 /* Advance pc beyond any function entry prologue instructions at pc
1408 to reach some "real" code. */
1409
1410 /* Given a PC value corresponding to the start of a function, return the PC
1411 of the first instruction after the function prologue. */
1412
1413 static CORE_ADDR
1414 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1415 {
1416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1417 CORE_ADDR func_addr, func_end;
1418 struct symtab_and_line sal;
1419 CORE_ADDR pc_after_prologue;
1420
1421 /* If we have line debugging information, then the end of the prologue
1422 should the first assembly instruction of the first source line. */
1423 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1424 {
1425 sal = find_pc_line (func_addr, 0);
1426 if (sal.end > 0 && sal.end < func_end)
1427 return sal.end;
1428 }
1429
1430 if (tdep->cris_version == 32)
1431 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1432 else
1433 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1434
1435 return pc_after_prologue;
1436 }
1437
1438 static CORE_ADDR
1439 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1440 {
1441 ULONGEST pc;
1442 pc = frame_unwind_register_unsigned (next_frame,
1443 gdbarch_pc_regnum (gdbarch));
1444 return pc;
1445 }
1446
1447 static CORE_ADDR
1448 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449 {
1450 ULONGEST sp;
1451 sp = frame_unwind_register_unsigned (next_frame,
1452 gdbarch_sp_regnum (gdbarch));
1453 return sp;
1454 }
1455
1456 /* Use the program counter to determine the contents and size of a breakpoint
1457 instruction. It returns a pointer to a string of bytes that encode a
1458 breakpoint instruction, stores the length of the string to *lenptr, and
1459 adjusts pcptr (if necessary) to point to the actual memory location where
1460 the breakpoint should be inserted. */
1461
1462 static const unsigned char *
1463 cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
1464 {
1465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1466 static unsigned char break8_insn[] = {0x38, 0xe9};
1467 static unsigned char break15_insn[] = {0x3f, 0xe9};
1468 *lenptr = 2;
1469
1470 if (tdep->cris_mode == cris_mode_guru)
1471 return break15_insn;
1472 else
1473 return break8_insn;
1474 }
1475
1476 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1477 0 otherwise. */
1478
1479 static int
1480 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1481 struct cris_spec_reg spec_reg)
1482 {
1483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1484 int version = tdep->cris_version;
1485
1486 switch (spec_reg.applicable_version)
1487 {
1488 case cris_ver_version_all:
1489 return 1;
1490 case cris_ver_warning:
1491 /* Indeterminate/obsolete. */
1492 return 0;
1493 case cris_ver_v0_3:
1494 return (version >= 0 && version <= 3);
1495 case cris_ver_v3p:
1496 return (version >= 3);
1497 case cris_ver_v8:
1498 return (version == 8 || version == 9);
1499 case cris_ver_v8p:
1500 return (version >= 8);
1501 case cris_ver_v0_10:
1502 return (version >= 0 && version <= 10);
1503 case cris_ver_v3_10:
1504 return (version >= 3 && version <= 10);
1505 case cris_ver_v8_10:
1506 return (version >= 8 && version <= 10);
1507 case cris_ver_v10:
1508 return (version == 10);
1509 case cris_ver_v10p:
1510 return (version >= 10);
1511 case cris_ver_v32p:
1512 return (version >= 32);
1513 default:
1514 /* Invalid cris version. */
1515 return 0;
1516 }
1517 }
1518
1519 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1520 register, -1 for an invalid register. */
1521
1522 static int
1523 cris_register_size (struct gdbarch *gdbarch, int regno)
1524 {
1525 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1526 int i;
1527 int spec_regno;
1528
1529 if (regno >= 0 && regno < NUM_GENREGS)
1530 {
1531 /* General registers (R0 - R15) are 32 bits. */
1532 return 4;
1533 }
1534 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1535 {
1536 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1537 Adjust regno accordingly. */
1538 spec_regno = regno - NUM_GENREGS;
1539
1540 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1541 {
1542 if (cris_spec_regs[i].number == spec_regno
1543 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1544 /* Go with the first applicable register. */
1545 return cris_spec_regs[i].reg_size;
1546 }
1547 /* Special register not applicable to this CRIS version. */
1548 return 0;
1549 }
1550 else if (regno >= gdbarch_pc_regnum (gdbarch)
1551 && regno < gdbarch_num_regs (gdbarch))
1552 {
1553 /* This will apply to CRISv32 only where there are additional registers
1554 after the special registers (pseudo PC and support registers). */
1555 return 4;
1556 }
1557
1558
1559 return -1;
1560 }
1561
1562 /* Nonzero if regno should not be fetched from the target. This is the case
1563 for unimplemented (size 0) and non-existant registers. */
1564
1565 static int
1566 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1567 {
1568 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1569 || (cris_register_size (gdbarch, regno) == 0));
1570 }
1571
1572 /* Nonzero if regno should not be written to the target, for various
1573 reasons. */
1574
1575 static int
1576 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1577 {
1578 /* There are three kinds of registers we refuse to write to.
1579 1. Those that not implemented.
1580 2. Those that are read-only (depends on the processor mode).
1581 3. Those registers to which a write has no effect.
1582 */
1583
1584 if (regno < 0
1585 || regno >= gdbarch_num_regs (gdbarch)
1586 || cris_register_size (gdbarch, regno) == 0)
1587 /* Not implemented. */
1588 return 1;
1589
1590 else if (regno == VR_REGNUM)
1591 /* Read-only. */
1592 return 1;
1593
1594 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1595 /* Writing has no effect. */
1596 return 1;
1597
1598 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1599 agent decide whether they are writable. */
1600
1601 return 0;
1602 }
1603
1604 /* Nonzero if regno should not be fetched from the target. This is the case
1605 for unimplemented (size 0) and non-existant registers. */
1606
1607 static int
1608 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1609 {
1610 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1611 || (cris_register_size (gdbarch, regno) == 0));
1612 }
1613
1614 /* Nonzero if regno should not be written to the target, for various
1615 reasons. */
1616
1617 static int
1618 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1619 {
1620 /* There are three kinds of registers we refuse to write to.
1621 1. Those that not implemented.
1622 2. Those that are read-only (depends on the processor mode).
1623 3. Those registers to which a write has no effect.
1624 */
1625
1626 if (regno < 0
1627 || regno >= gdbarch_num_regs (gdbarch)
1628 || cris_register_size (gdbarch, regno) == 0)
1629 /* Not implemented. */
1630 return 1;
1631
1632 else if (regno == VR_REGNUM)
1633 /* Read-only. */
1634 return 1;
1635
1636 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1637 /* Writing has no effect. */
1638 return 1;
1639
1640 /* Many special registers are read-only in user mode. Let the debug
1641 agent decide whether they are writable. */
1642
1643 return 0;
1644 }
1645
1646 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1647 of data in register regno. */
1648
1649 static struct type *
1650 cris_register_type (struct gdbarch *gdbarch, int regno)
1651 {
1652 if (regno == gdbarch_pc_regnum (gdbarch))
1653 return builtin_type (gdbarch)->builtin_func_ptr;
1654 else if (regno == gdbarch_sp_regnum (gdbarch)
1655 || regno == CRIS_FP_REGNUM)
1656 return builtin_type (gdbarch)->builtin_data_ptr;
1657 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1658 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1659 /* Note: R8 taken care of previous clause. */
1660 return builtin_type (gdbarch)->builtin_uint32;
1661 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1662 return builtin_type (gdbarch)->builtin_uint16;
1663 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1664 return builtin_type (gdbarch)->builtin_uint8;
1665 else
1666 /* Invalid (unimplemented) register. */
1667 return builtin_type (gdbarch)->builtin_int0;
1668 }
1669
1670 static struct type *
1671 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1672 {
1673 if (regno == gdbarch_pc_regnum (gdbarch))
1674 return builtin_type (gdbarch)->builtin_func_ptr;
1675 else if (regno == gdbarch_sp_regnum (gdbarch)
1676 || regno == CRIS_FP_REGNUM)
1677 return builtin_type (gdbarch)->builtin_data_ptr;
1678 else if ((regno >= 0 && regno <= ACR_REGNUM)
1679 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1680 || (regno == PID_REGNUM)
1681 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1682 /* Note: R8 and SP taken care of by previous clause. */
1683 return builtin_type (gdbarch)->builtin_uint32;
1684 else if (regno == WZ_REGNUM)
1685 return builtin_type (gdbarch)->builtin_uint16;
1686 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1687 return builtin_type (gdbarch)->builtin_uint8;
1688 else
1689 {
1690 /* Invalid (unimplemented) register. Should not happen as there are
1691 no unimplemented CRISv32 registers. */
1692 warning (_("crisv32_register_type: unknown regno %d"), regno);
1693 return builtin_type (gdbarch)->builtin_int0;
1694 }
1695 }
1696
1697 /* Stores a function return value of type type, where valbuf is the address
1698 of the value to be stored. */
1699
1700 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1701
1702 static void
1703 cris_store_return_value (struct type *type, struct regcache *regcache,
1704 const void *valbuf)
1705 {
1706 ULONGEST val;
1707 int len = TYPE_LENGTH (type);
1708
1709 if (len <= 4)
1710 {
1711 /* Put the return value in R10. */
1712 val = extract_unsigned_integer (valbuf, len);
1713 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1714 }
1715 else if (len <= 8)
1716 {
1717 /* Put the return value in R10 and R11. */
1718 val = extract_unsigned_integer (valbuf, 4);
1719 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1720 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1721 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1722 }
1723 else
1724 error (_("cris_store_return_value: type length too large."));
1725 }
1726
1727 /* Return the name of register regno as a string. Return NULL for an invalid or
1728 unimplemented register. */
1729
1730 static const char *
1731 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1732 {
1733 int spec_regno;
1734 int i;
1735
1736 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1737 Adjust regno accordingly. */
1738 spec_regno = regno - NUM_GENREGS;
1739
1740 /* Assume nothing about the layout of the cris_spec_regs struct
1741 when searching. */
1742 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1743 {
1744 if (cris_spec_regs[i].number == spec_regno
1745 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1746 /* Go with the first applicable register. */
1747 return cris_spec_regs[i].name;
1748 }
1749 /* Special register not applicable to this CRIS version. */
1750 return NULL;
1751 }
1752
1753 static const char *
1754 cris_register_name (struct gdbarch *gdbarch, int regno)
1755 {
1756 static char *cris_genreg_names[] =
1757 { "r0", "r1", "r2", "r3", \
1758 "r4", "r5", "r6", "r7", \
1759 "r8", "r9", "r10", "r11", \
1760 "r12", "r13", "sp", "pc" };
1761
1762 if (regno >= 0 && regno < NUM_GENREGS)
1763 {
1764 /* General register. */
1765 return cris_genreg_names[regno];
1766 }
1767 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1768 {
1769 return cris_special_register_name (gdbarch, regno);
1770 }
1771 else
1772 {
1773 /* Invalid register. */
1774 return NULL;
1775 }
1776 }
1777
1778 static const char *
1779 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1780 {
1781 static char *crisv32_genreg_names[] =
1782 { "r0", "r1", "r2", "r3", \
1783 "r4", "r5", "r6", "r7", \
1784 "r8", "r9", "r10", "r11", \
1785 "r12", "r13", "sp", "acr"
1786 };
1787
1788 static char *crisv32_sreg_names[] =
1789 { "s0", "s1", "s2", "s3", \
1790 "s4", "s5", "s6", "s7", \
1791 "s8", "s9", "s10", "s11", \
1792 "s12", "s13", "s14", "s15"
1793 };
1794
1795 if (regno >= 0 && regno < NUM_GENREGS)
1796 {
1797 /* General register. */
1798 return crisv32_genreg_names[regno];
1799 }
1800 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1801 {
1802 return cris_special_register_name (gdbarch, regno);
1803 }
1804 else if (regno == gdbarch_pc_regnum (gdbarch))
1805 {
1806 return "pc";
1807 }
1808 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1809 {
1810 return crisv32_sreg_names[regno - S0_REGNUM];
1811 }
1812 else
1813 {
1814 /* Invalid register. */
1815 return NULL;
1816 }
1817 }
1818
1819 /* Convert DWARF register number REG to the appropriate register
1820 number used by GDB. */
1821
1822 static int
1823 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1824 {
1825 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1826 numbering, MOF is 18).
1827 Adapted from gcc/config/cris/cris.h. */
1828 static int cris_dwarf_regmap[] = {
1829 0, 1, 2, 3,
1830 4, 5, 6, 7,
1831 8, 9, 10, 11,
1832 12, 13, 14, 15,
1833 27, -1, -1, -1,
1834 -1, -1, -1, 23,
1835 -1, -1, -1, 27,
1836 -1, -1, -1, -1
1837 };
1838 int regnum = -1;
1839
1840 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1841 regnum = cris_dwarf_regmap[reg];
1842
1843 if (regnum == -1)
1844 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1845
1846 return regnum;
1847 }
1848
1849 /* DWARF-2 frame support. */
1850
1851 static void
1852 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1853 struct dwarf2_frame_state_reg *reg,
1854 struct frame_info *this_frame)
1855 {
1856 /* The return address column. */
1857 if (regnum == gdbarch_pc_regnum (gdbarch))
1858 reg->how = DWARF2_FRAME_REG_RA;
1859
1860 /* The call frame address. */
1861 else if (regnum == gdbarch_sp_regnum (gdbarch))
1862 reg->how = DWARF2_FRAME_REG_CFA;
1863 }
1864
1865 /* Extract from an array regbuf containing the raw register state a function
1866 return value of type type, and copy that, in virtual format, into
1867 valbuf. */
1868
1869 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1870
1871 static void
1872 cris_extract_return_value (struct type *type, struct regcache *regcache,
1873 void *valbuf)
1874 {
1875 ULONGEST val;
1876 int len = TYPE_LENGTH (type);
1877
1878 if (len <= 4)
1879 {
1880 /* Get the return value from R10. */
1881 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1882 store_unsigned_integer (valbuf, len, val);
1883 }
1884 else if (len <= 8)
1885 {
1886 /* Get the return value from R10 and R11. */
1887 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1888 store_unsigned_integer (valbuf, 4, val);
1889 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1890 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1891 }
1892 else
1893 error (_("cris_extract_return_value: type length too large"));
1894 }
1895
1896 /* Handle the CRIS return value convention. */
1897
1898 static enum return_value_convention
1899 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1900 struct type *type, struct regcache *regcache,
1901 gdb_byte *readbuf, const gdb_byte *writebuf)
1902 {
1903 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1904 || TYPE_CODE (type) == TYPE_CODE_UNION
1905 || TYPE_LENGTH (type) > 8)
1906 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1907 goes on the stack. */
1908 return RETURN_VALUE_STRUCT_CONVENTION;
1909
1910 if (readbuf)
1911 cris_extract_return_value (type, regcache, readbuf);
1912 if (writebuf)
1913 cris_store_return_value (type, regcache, writebuf);
1914
1915 return RETURN_VALUE_REGISTER_CONVENTION;
1916 }
1917
1918 /* Calculates a value that measures how good inst_args constraints an
1919 instruction. It stems from cris_constraint, found in cris-dis.c. */
1920
1921 static int
1922 constraint (unsigned int insn, const signed char *inst_args,
1923 inst_env_type *inst_env)
1924 {
1925 int retval = 0;
1926 int tmp, i;
1927
1928 const char *s = inst_args;
1929
1930 for (; *s; s++)
1931 switch (*s)
1932 {
1933 case 'm':
1934 if ((insn & 0x30) == 0x30)
1935 return -1;
1936 break;
1937
1938 case 'S':
1939 /* A prefix operand. */
1940 if (inst_env->prefix_found)
1941 break;
1942 else
1943 return -1;
1944
1945 case 'B':
1946 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1947 valid "push" size. In case of special register, it may be != 4. */
1948 if (inst_env->prefix_found)
1949 break;
1950 else
1951 return -1;
1952
1953 case 'D':
1954 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1955 if (!retval)
1956 return -1;
1957 else
1958 retval += 4;
1959 break;
1960
1961 case 'P':
1962 tmp = (insn >> 0xC) & 0xF;
1963
1964 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1965 {
1966 /* Since we match four bits, we will give a value of
1967 4 - 1 = 3 in a match. If there is a corresponding
1968 exact match of a special register in another pattern, it
1969 will get a value of 4, which will be higher. This should
1970 be correct in that an exact pattern would match better that
1971 a general pattern.
1972 Note that there is a reason for not returning zero; the
1973 pattern for "clear" is partly matched in the bit-pattern
1974 (the two lower bits must be zero), while the bit-pattern
1975 for a move from a special register is matched in the
1976 register constraint.
1977 This also means we will will have a race condition if
1978 there is a partly match in three bits in the bit pattern. */
1979 if (tmp == cris_spec_regs[i].number)
1980 {
1981 retval += 3;
1982 break;
1983 }
1984 }
1985
1986 if (cris_spec_regs[i].name == NULL)
1987 return -1;
1988 break;
1989 }
1990 return retval;
1991 }
1992
1993 /* Returns the number of bits set in the variable value. */
1994
1995 static int
1996 number_of_bits (unsigned int value)
1997 {
1998 int number_of_bits = 0;
1999
2000 while (value != 0)
2001 {
2002 number_of_bits += 1;
2003 value &= (value - 1);
2004 }
2005 return number_of_bits;
2006 }
2007
2008 /* Finds the address that should contain the single step breakpoint(s).
2009 It stems from code in cris-dis.c. */
2010
2011 static int
2012 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2013 {
2014 int i;
2015 int max_level_of_match = -1;
2016 int max_matched = -1;
2017 int level_of_match;
2018
2019 for (i = 0; cris_opcodes[i].name != NULL; i++)
2020 {
2021 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2022 && ((cris_opcodes[i].lose & insn) == 0)
2023 /* Only CRISv10 instructions, please. */
2024 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2025 {
2026 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2027 if (level_of_match >= 0)
2028 {
2029 level_of_match +=
2030 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2031 if (level_of_match > max_level_of_match)
2032 {
2033 max_matched = i;
2034 max_level_of_match = level_of_match;
2035 if (level_of_match == 16)
2036 {
2037 /* All bits matched, cannot find better. */
2038 break;
2039 }
2040 }
2041 }
2042 }
2043 }
2044 return max_matched;
2045 }
2046
2047 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2048 actually an internal error. */
2049
2050 static int
2051 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2052 {
2053 int i;
2054 int offset;
2055 unsigned short insn;
2056 struct gdbarch *gdbarch = get_frame_arch (frame);
2057
2058 /* Create a local register image and set the initial state. */
2059 for (i = 0; i < NUM_GENREGS; i++)
2060 {
2061 inst_env->reg[i] =
2062 (unsigned long) get_frame_register_unsigned (frame, i);
2063 }
2064 offset = NUM_GENREGS;
2065 for (i = 0; i < NUM_SPECREGS; i++)
2066 {
2067 inst_env->preg[i] =
2068 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2069 }
2070 inst_env->branch_found = 0;
2071 inst_env->slot_needed = 0;
2072 inst_env->delay_slot_pc_active = 0;
2073 inst_env->prefix_found = 0;
2074 inst_env->invalid = 0;
2075 inst_env->xflag_found = 0;
2076 inst_env->disable_interrupt = 0;
2077
2078 /* Look for a step target. */
2079 do
2080 {
2081 /* Read an instruction from the client. */
2082 insn = read_memory_unsigned_integer
2083 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2);
2084
2085 /* If the instruction is not in a delay slot the new content of the
2086 PC is [PC] + 2. If the instruction is in a delay slot it is not
2087 that simple. Since a instruction in a delay slot cannot change
2088 the content of the PC, it does not matter what value PC will have.
2089 Just make sure it is a valid instruction. */
2090 if (!inst_env->delay_slot_pc_active)
2091 {
2092 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2093 }
2094 else
2095 {
2096 inst_env->delay_slot_pc_active = 0;
2097 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2098 = inst_env->delay_slot_pc;
2099 }
2100 /* Analyse the present instruction. */
2101 i = find_cris_op (insn, inst_env);
2102 if (i == -1)
2103 {
2104 inst_env->invalid = 1;
2105 }
2106 else
2107 {
2108 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2109 }
2110 } while (!inst_env->invalid
2111 && (inst_env->prefix_found || inst_env->xflag_found
2112 || inst_env->slot_needed));
2113 return i;
2114 }
2115
2116 /* There is no hardware single-step support. The function find_step_target
2117 digs through the opcodes in order to find all possible targets.
2118 Either one ordinary target or two targets for branches may be found. */
2119
2120 static int
2121 cris_software_single_step (struct frame_info *frame)
2122 {
2123 struct gdbarch *gdbarch = get_frame_arch (frame);
2124 inst_env_type inst_env;
2125
2126 /* Analyse the present instruction environment and insert
2127 breakpoints. */
2128 int status = find_step_target (frame, &inst_env);
2129 if (status == -1)
2130 {
2131 /* Could not find a target. Things are likely to go downhill
2132 from here. */
2133 warning (_("CRIS software single step could not find a step target."));
2134 }
2135 else
2136 {
2137 /* Insert at most two breakpoints. One for the next PC content
2138 and possibly another one for a branch, jump, etc. */
2139 CORE_ADDR next_pc
2140 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2141 insert_single_step_breakpoint (gdbarch, next_pc);
2142 if (inst_env.branch_found
2143 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2144 {
2145 CORE_ADDR branch_target_address
2146 = (CORE_ADDR) inst_env.branch_break_address;
2147 insert_single_step_breakpoint (gdbarch, branch_target_address);
2148 }
2149 }
2150
2151 return 1;
2152 }
2153
2154 /* Calculates the prefix value for quick offset addressing mode. */
2155
2156 static void
2157 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2158 {
2159 /* It's invalid to be in a delay slot. You can't have a prefix to this
2160 instruction (not 100% sure). */
2161 if (inst_env->slot_needed || inst_env->prefix_found)
2162 {
2163 inst_env->invalid = 1;
2164 return;
2165 }
2166
2167 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2168 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2169
2170 /* A prefix doesn't change the xflag_found. But the rest of the flags
2171 need updating. */
2172 inst_env->slot_needed = 0;
2173 inst_env->prefix_found = 1;
2174 }
2175
2176 /* Updates the autoincrement register. The size of the increment is derived
2177 from the size of the operation. The PC is always kept aligned on even
2178 word addresses. */
2179
2180 static void
2181 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2182 {
2183 if (size == INST_BYTE_SIZE)
2184 {
2185 inst_env->reg[cris_get_operand1 (inst)] += 1;
2186
2187 /* The PC must be word aligned, so increase the PC with one
2188 word even if the size is byte. */
2189 if (cris_get_operand1 (inst) == REG_PC)
2190 {
2191 inst_env->reg[REG_PC] += 1;
2192 }
2193 }
2194 else if (size == INST_WORD_SIZE)
2195 {
2196 inst_env->reg[cris_get_operand1 (inst)] += 2;
2197 }
2198 else if (size == INST_DWORD_SIZE)
2199 {
2200 inst_env->reg[cris_get_operand1 (inst)] += 4;
2201 }
2202 else
2203 {
2204 /* Invalid size. */
2205 inst_env->invalid = 1;
2206 }
2207 }
2208
2209 /* Just a forward declaration. */
2210
2211 static unsigned long get_data_from_address (unsigned short *inst,
2212 CORE_ADDR address);
2213
2214 /* Calculates the prefix value for the general case of offset addressing
2215 mode. */
2216
2217 static void
2218 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2219 {
2220
2221 long offset;
2222
2223 /* It's invalid to be in a delay slot. */
2224 if (inst_env->slot_needed || inst_env->prefix_found)
2225 {
2226 inst_env->invalid = 1;
2227 return;
2228 }
2229
2230 /* The calculation of prefix_value used to be after process_autoincrement,
2231 but that fails for an instruction such as jsr [$r0+12] which is encoded
2232 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2233 mustn't be incremented until we have read it and what it points at. */
2234 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2235
2236 /* The offset is an indirection of the contents of the operand1 register. */
2237 inst_env->prefix_value +=
2238 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2239
2240 if (cris_get_mode (inst) == AUTOINC_MODE)
2241 {
2242 process_autoincrement (cris_get_size (inst), inst, inst_env);
2243 }
2244
2245 /* A prefix doesn't change the xflag_found. But the rest of the flags
2246 need updating. */
2247 inst_env->slot_needed = 0;
2248 inst_env->prefix_found = 1;
2249 }
2250
2251 /* Calculates the prefix value for the index addressing mode. */
2252
2253 static void
2254 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2255 {
2256 /* It's invalid to be in a delay slot. I can't see that it's possible to
2257 have a prefix to this instruction. So I will treat this as invalid. */
2258 if (inst_env->slot_needed || inst_env->prefix_found)
2259 {
2260 inst_env->invalid = 1;
2261 return;
2262 }
2263
2264 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2265
2266 /* The offset is the operand2 value shifted the size of the instruction
2267 to the left. */
2268 inst_env->prefix_value +=
2269 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2270
2271 /* If the PC is operand1 (base) the address used is the address after
2272 the main instruction, i.e. address + 2 (the PC is already compensated
2273 for the prefix operation). */
2274 if (cris_get_operand1 (inst) == REG_PC)
2275 {
2276 inst_env->prefix_value += 2;
2277 }
2278
2279 /* A prefix doesn't change the xflag_found. But the rest of the flags
2280 need updating. */
2281 inst_env->slot_needed = 0;
2282 inst_env->xflag_found = 0;
2283 inst_env->prefix_found = 1;
2284 }
2285
2286 /* Calculates the prefix value for the double indirect addressing mode. */
2287
2288 static void
2289 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2290 {
2291
2292 CORE_ADDR address;
2293
2294 /* It's invalid to be in a delay slot. */
2295 if (inst_env->slot_needed || inst_env->prefix_found)
2296 {
2297 inst_env->invalid = 1;
2298 return;
2299 }
2300
2301 /* The prefix value is one dereference of the contents of the operand1
2302 register. */
2303 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2304 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2305
2306 /* Check if the mode is autoincrement. */
2307 if (cris_get_mode (inst) == AUTOINC_MODE)
2308 {
2309 inst_env->reg[cris_get_operand1 (inst)] += 4;
2310 }
2311
2312 /* A prefix doesn't change the xflag_found. But the rest of the flags
2313 need updating. */
2314 inst_env->slot_needed = 0;
2315 inst_env->xflag_found = 0;
2316 inst_env->prefix_found = 1;
2317 }
2318
2319 /* Finds the destination for a branch with 8-bits offset. */
2320
2321 static void
2322 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2323 {
2324
2325 short offset;
2326
2327 /* If we have a prefix or are in a delay slot it's bad. */
2328 if (inst_env->slot_needed || inst_env->prefix_found)
2329 {
2330 inst_env->invalid = 1;
2331 return;
2332 }
2333
2334 /* We have a branch, find out where the branch will land. */
2335 offset = cris_get_branch_short_offset (inst);
2336
2337 /* Check if the offset is signed. */
2338 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2339 {
2340 offset |= 0xFF00;
2341 }
2342
2343 /* The offset ends with the sign bit, set it to zero. The address
2344 should always be word aligned. */
2345 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2346
2347 inst_env->branch_found = 1;
2348 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2349
2350 inst_env->slot_needed = 1;
2351 inst_env->prefix_found = 0;
2352 inst_env->xflag_found = 0;
2353 inst_env->disable_interrupt = 1;
2354 }
2355
2356 /* Finds the destination for a branch with 16-bits offset. */
2357
2358 static void
2359 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2360 {
2361 short offset;
2362
2363 /* If we have a prefix or is in a delay slot it's bad. */
2364 if (inst_env->slot_needed || inst_env->prefix_found)
2365 {
2366 inst_env->invalid = 1;
2367 return;
2368 }
2369
2370 /* We have a branch, find out the offset for the branch. */
2371 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2372
2373 /* The instruction is one word longer than normal, so add one word
2374 to the PC. */
2375 inst_env->reg[REG_PC] += 2;
2376
2377 inst_env->branch_found = 1;
2378 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2379
2380
2381 inst_env->slot_needed = 1;
2382 inst_env->prefix_found = 0;
2383 inst_env->xflag_found = 0;
2384 inst_env->disable_interrupt = 1;
2385 }
2386
2387 /* Handles the ABS instruction. */
2388
2389 static void
2390 abs_op (unsigned short inst, inst_env_type *inst_env)
2391 {
2392
2393 long value;
2394
2395 /* ABS can't have a prefix, so it's bad if it does. */
2396 if (inst_env->prefix_found)
2397 {
2398 inst_env->invalid = 1;
2399 return;
2400 }
2401
2402 /* Check if the operation affects the PC. */
2403 if (cris_get_operand2 (inst) == REG_PC)
2404 {
2405
2406 /* It's invalid to change to the PC if we are in a delay slot. */
2407 if (inst_env->slot_needed)
2408 {
2409 inst_env->invalid = 1;
2410 return;
2411 }
2412
2413 value = (long) inst_env->reg[REG_PC];
2414
2415 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2416 if (value != SIGNED_DWORD_MASK)
2417 {
2418 value = -value;
2419 inst_env->reg[REG_PC] = (long) value;
2420 }
2421 }
2422
2423 inst_env->slot_needed = 0;
2424 inst_env->prefix_found = 0;
2425 inst_env->xflag_found = 0;
2426 inst_env->disable_interrupt = 0;
2427 }
2428
2429 /* Handles the ADDI instruction. */
2430
2431 static void
2432 addi_op (unsigned short inst, inst_env_type *inst_env)
2433 {
2434 /* It's invalid to have the PC as base register. And ADDI can't have
2435 a prefix. */
2436 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2437 {
2438 inst_env->invalid = 1;
2439 return;
2440 }
2441
2442 inst_env->slot_needed = 0;
2443 inst_env->prefix_found = 0;
2444 inst_env->xflag_found = 0;
2445 inst_env->disable_interrupt = 0;
2446 }
2447
2448 /* Handles the ASR instruction. */
2449
2450 static void
2451 asr_op (unsigned short inst, inst_env_type *inst_env)
2452 {
2453 int shift_steps;
2454 unsigned long value;
2455 unsigned long signed_extend_mask = 0;
2456
2457 /* ASR can't have a prefix, so check that it doesn't. */
2458 if (inst_env->prefix_found)
2459 {
2460 inst_env->invalid = 1;
2461 return;
2462 }
2463
2464 /* Check if the PC is the target register. */
2465 if (cris_get_operand2 (inst) == REG_PC)
2466 {
2467 /* It's invalid to change the PC in a delay slot. */
2468 if (inst_env->slot_needed)
2469 {
2470 inst_env->invalid = 1;
2471 return;
2472 }
2473 /* Get the number of bits to shift. */
2474 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2475 value = inst_env->reg[REG_PC];
2476
2477 /* Find out how many bits the operation should apply to. */
2478 if (cris_get_size (inst) == INST_BYTE_SIZE)
2479 {
2480 if (value & SIGNED_BYTE_MASK)
2481 {
2482 signed_extend_mask = 0xFF;
2483 signed_extend_mask = signed_extend_mask >> shift_steps;
2484 signed_extend_mask = ~signed_extend_mask;
2485 }
2486 value = value >> shift_steps;
2487 value |= signed_extend_mask;
2488 value &= 0xFF;
2489 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2490 inst_env->reg[REG_PC] |= value;
2491 }
2492 else if (cris_get_size (inst) == INST_WORD_SIZE)
2493 {
2494 if (value & SIGNED_WORD_MASK)
2495 {
2496 signed_extend_mask = 0xFFFF;
2497 signed_extend_mask = signed_extend_mask >> shift_steps;
2498 signed_extend_mask = ~signed_extend_mask;
2499 }
2500 value = value >> shift_steps;
2501 value |= signed_extend_mask;
2502 value &= 0xFFFF;
2503 inst_env->reg[REG_PC] &= 0xFFFF0000;
2504 inst_env->reg[REG_PC] |= value;
2505 }
2506 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2507 {
2508 if (value & SIGNED_DWORD_MASK)
2509 {
2510 signed_extend_mask = 0xFFFFFFFF;
2511 signed_extend_mask = signed_extend_mask >> shift_steps;
2512 signed_extend_mask = ~signed_extend_mask;
2513 }
2514 value = value >> shift_steps;
2515 value |= signed_extend_mask;
2516 inst_env->reg[REG_PC] = value;
2517 }
2518 }
2519 inst_env->slot_needed = 0;
2520 inst_env->prefix_found = 0;
2521 inst_env->xflag_found = 0;
2522 inst_env->disable_interrupt = 0;
2523 }
2524
2525 /* Handles the ASRQ instruction. */
2526
2527 static void
2528 asrq_op (unsigned short inst, inst_env_type *inst_env)
2529 {
2530
2531 int shift_steps;
2532 unsigned long value;
2533 unsigned long signed_extend_mask = 0;
2534
2535 /* ASRQ can't have a prefix, so check that it doesn't. */
2536 if (inst_env->prefix_found)
2537 {
2538 inst_env->invalid = 1;
2539 return;
2540 }
2541
2542 /* Check if the PC is the target register. */
2543 if (cris_get_operand2 (inst) == REG_PC)
2544 {
2545
2546 /* It's invalid to change the PC in a delay slot. */
2547 if (inst_env->slot_needed)
2548 {
2549 inst_env->invalid = 1;
2550 return;
2551 }
2552 /* The shift size is given as a 5 bit quick value, i.e. we don't
2553 want the the sign bit of the quick value. */
2554 shift_steps = cris_get_asr_shift_steps (inst);
2555 value = inst_env->reg[REG_PC];
2556 if (value & SIGNED_DWORD_MASK)
2557 {
2558 signed_extend_mask = 0xFFFFFFFF;
2559 signed_extend_mask = signed_extend_mask >> shift_steps;
2560 signed_extend_mask = ~signed_extend_mask;
2561 }
2562 value = value >> shift_steps;
2563 value |= signed_extend_mask;
2564 inst_env->reg[REG_PC] = value;
2565 }
2566 inst_env->slot_needed = 0;
2567 inst_env->prefix_found = 0;
2568 inst_env->xflag_found = 0;
2569 inst_env->disable_interrupt = 0;
2570 }
2571
2572 /* Handles the AX, EI and SETF instruction. */
2573
2574 static void
2575 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2576 {
2577 if (inst_env->prefix_found)
2578 {
2579 inst_env->invalid = 1;
2580 return;
2581 }
2582 /* Check if the instruction is setting the X flag. */
2583 if (cris_is_xflag_bit_on (inst))
2584 {
2585 inst_env->xflag_found = 1;
2586 }
2587 else
2588 {
2589 inst_env->xflag_found = 0;
2590 }
2591 inst_env->slot_needed = 0;
2592 inst_env->prefix_found = 0;
2593 inst_env->disable_interrupt = 1;
2594 }
2595
2596 /* Checks if the instruction is in assign mode. If so, it updates the assign
2597 register. Note that check_assign assumes that the caller has checked that
2598 there is a prefix to this instruction. The mode check depends on this. */
2599
2600 static void
2601 check_assign (unsigned short inst, inst_env_type *inst_env)
2602 {
2603 /* Check if it's an assign addressing mode. */
2604 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2605 {
2606 /* Assign the prefix value to operand 1. */
2607 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2608 }
2609 }
2610
2611 /* Handles the 2-operand BOUND instruction. */
2612
2613 static void
2614 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2615 {
2616 /* It's invalid to have the PC as the index operand. */
2617 if (cris_get_operand2 (inst) == REG_PC)
2618 {
2619 inst_env->invalid = 1;
2620 return;
2621 }
2622 /* Check if we have a prefix. */
2623 if (inst_env->prefix_found)
2624 {
2625 check_assign (inst, inst_env);
2626 }
2627 /* Check if this is an autoincrement mode. */
2628 else if (cris_get_mode (inst) == AUTOINC_MODE)
2629 {
2630 /* It's invalid to change the PC in a delay slot. */
2631 if (inst_env->slot_needed)
2632 {
2633 inst_env->invalid = 1;
2634 return;
2635 }
2636 process_autoincrement (cris_get_size (inst), inst, inst_env);
2637 }
2638 inst_env->slot_needed = 0;
2639 inst_env->prefix_found = 0;
2640 inst_env->xflag_found = 0;
2641 inst_env->disable_interrupt = 0;
2642 }
2643
2644 /* Handles the 3-operand BOUND instruction. */
2645
2646 static void
2647 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2648 {
2649 /* It's an error if we haven't got a prefix. And it's also an error
2650 if the PC is the destination register. */
2651 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2652 {
2653 inst_env->invalid = 1;
2654 return;
2655 }
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2660 }
2661
2662 /* Clears the status flags in inst_env. */
2663
2664 static void
2665 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2666 {
2667 /* It's an error if we have got a prefix. */
2668 if (inst_env->prefix_found)
2669 {
2670 inst_env->invalid = 1;
2671 return;
2672 }
2673
2674 inst_env->slot_needed = 0;
2675 inst_env->prefix_found = 0;
2676 inst_env->xflag_found = 0;
2677 inst_env->disable_interrupt = 0;
2678 }
2679
2680 /* Clears the status flags in inst_env. */
2681
2682 static void
2683 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2684 {
2685 /* It's an error if we have got a prefix. */
2686 if (inst_env->prefix_found)
2687 {
2688 inst_env->invalid = 1;
2689 return;
2690 }
2691
2692 inst_env->slot_needed = 0;
2693 inst_env->prefix_found = 0;
2694 inst_env->xflag_found = 0;
2695 inst_env->disable_interrupt = 1;
2696 }
2697
2698 /* Handles the CLEAR instruction if it's in register mode. */
2699
2700 static void
2701 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2702 {
2703 /* Check if the target is the PC. */
2704 if (cris_get_operand2 (inst) == REG_PC)
2705 {
2706 /* The instruction will clear the instruction's size bits. */
2707 int clear_size = cris_get_clear_size (inst);
2708 if (clear_size == INST_BYTE_SIZE)
2709 {
2710 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2711 }
2712 if (clear_size == INST_WORD_SIZE)
2713 {
2714 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2715 }
2716 if (clear_size == INST_DWORD_SIZE)
2717 {
2718 inst_env->delay_slot_pc = 0x0;
2719 }
2720 /* The jump will be delayed with one delay slot. So we need a delay
2721 slot. */
2722 inst_env->slot_needed = 1;
2723 inst_env->delay_slot_pc_active = 1;
2724 }
2725 else
2726 {
2727 /* The PC will not change => no delay slot. */
2728 inst_env->slot_needed = 0;
2729 }
2730 inst_env->prefix_found = 0;
2731 inst_env->xflag_found = 0;
2732 inst_env->disable_interrupt = 0;
2733 }
2734
2735 /* Handles the TEST instruction if it's in register mode. */
2736
2737 static void
2738 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2739 {
2740 /* It's an error if we have got a prefix. */
2741 if (inst_env->prefix_found)
2742 {
2743 inst_env->invalid = 1;
2744 return;
2745 }
2746 inst_env->slot_needed = 0;
2747 inst_env->prefix_found = 0;
2748 inst_env->xflag_found = 0;
2749 inst_env->disable_interrupt = 0;
2750
2751 }
2752
2753 /* Handles the CLEAR and TEST instruction if the instruction isn't
2754 in register mode. */
2755
2756 static void
2757 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2758 {
2759 /* Check if we are in a prefix mode. */
2760 if (inst_env->prefix_found)
2761 {
2762 /* The only way the PC can change is if this instruction is in
2763 assign addressing mode. */
2764 check_assign (inst, inst_env);
2765 }
2766 /* Indirect mode can't change the PC so just check if the mode is
2767 autoincrement. */
2768 else if (cris_get_mode (inst) == AUTOINC_MODE)
2769 {
2770 process_autoincrement (cris_get_size (inst), inst, inst_env);
2771 }
2772 inst_env->slot_needed = 0;
2773 inst_env->prefix_found = 0;
2774 inst_env->xflag_found = 0;
2775 inst_env->disable_interrupt = 0;
2776 }
2777
2778 /* Checks that the PC isn't the destination register or the instructions has
2779 a prefix. */
2780
2781 static void
2782 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2783 {
2784 /* It's invalid to have the PC as the destination. The instruction can't
2785 have a prefix. */
2786 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2787 {
2788 inst_env->invalid = 1;
2789 return;
2790 }
2791
2792 inst_env->slot_needed = 0;
2793 inst_env->prefix_found = 0;
2794 inst_env->xflag_found = 0;
2795 inst_env->disable_interrupt = 0;
2796 }
2797
2798 /* Checks that the instruction doesn't have a prefix. */
2799
2800 static void
2801 break_op (unsigned short inst, inst_env_type *inst_env)
2802 {
2803 /* The instruction can't have a prefix. */
2804 if (inst_env->prefix_found)
2805 {
2806 inst_env->invalid = 1;
2807 return;
2808 }
2809
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 1;
2814 }
2815
2816 /* Checks that the PC isn't the destination register and that the instruction
2817 doesn't have a prefix. */
2818
2819 static void
2820 scc_op (unsigned short inst, inst_env_type *inst_env)
2821 {
2822 /* It's invalid to have the PC as the destination. The instruction can't
2823 have a prefix. */
2824 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2825 {
2826 inst_env->invalid = 1;
2827 return;
2828 }
2829
2830 inst_env->slot_needed = 0;
2831 inst_env->prefix_found = 0;
2832 inst_env->xflag_found = 0;
2833 inst_env->disable_interrupt = 1;
2834 }
2835
2836 /* Handles the register mode JUMP instruction. */
2837
2838 static void
2839 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2840 {
2841 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2842 you can't have a prefix. */
2843 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2844 {
2845 inst_env->invalid = 1;
2846 return;
2847 }
2848
2849 /* Just change the PC. */
2850 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2851 inst_env->slot_needed = 0;
2852 inst_env->prefix_found = 0;
2853 inst_env->xflag_found = 0;
2854 inst_env->disable_interrupt = 1;
2855 }
2856
2857 /* Handles the JUMP instruction for all modes except register. */
2858
2859 static void
2860 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2861 {
2862 unsigned long newpc;
2863 CORE_ADDR address;
2864
2865 /* It's invalid to do a JUMP in a delay slot. */
2866 if (inst_env->slot_needed)
2867 {
2868 inst_env->invalid = 1;
2869 }
2870 else
2871 {
2872 /* Check if we have a prefix. */
2873 if (inst_env->prefix_found)
2874 {
2875 check_assign (inst, inst_env);
2876
2877 /* Get the new value for the the PC. */
2878 newpc =
2879 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2880 4);
2881 }
2882 else
2883 {
2884 /* Get the new value for the PC. */
2885 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2886 newpc = read_memory_unsigned_integer (address, 4);
2887
2888 /* Check if we should increment a register. */
2889 if (cris_get_mode (inst) == AUTOINC_MODE)
2890 {
2891 inst_env->reg[cris_get_operand1 (inst)] += 4;
2892 }
2893 }
2894 inst_env->reg[REG_PC] = newpc;
2895 }
2896 inst_env->slot_needed = 0;
2897 inst_env->prefix_found = 0;
2898 inst_env->xflag_found = 0;
2899 inst_env->disable_interrupt = 1;
2900 }
2901
2902 /* Handles moves to special registers (aka P-register) for all modes. */
2903
2904 static void
2905 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2906 inst_env_type *inst_env)
2907 {
2908 if (inst_env->prefix_found)
2909 {
2910 /* The instruction has a prefix that means we are only interested if
2911 the instruction is in assign mode. */
2912 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2913 {
2914 /* The prefix handles the problem if we are in a delay slot. */
2915 if (cris_get_operand1 (inst) == REG_PC)
2916 {
2917 /* Just take care of the assign. */
2918 check_assign (inst, inst_env);
2919 }
2920 }
2921 }
2922 else if (cris_get_mode (inst) == AUTOINC_MODE)
2923 {
2924 /* The instruction doesn't have a prefix, the only case left that we
2925 are interested in is the autoincrement mode. */
2926 if (cris_get_operand1 (inst) == REG_PC)
2927 {
2928 /* If the PC is to be incremented it's invalid to be in a
2929 delay slot. */
2930 if (inst_env->slot_needed)
2931 {
2932 inst_env->invalid = 1;
2933 return;
2934 }
2935
2936 /* The increment depends on the size of the special register. */
2937 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2938 {
2939 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2940 }
2941 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2942 {
2943 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2944 }
2945 else
2946 {
2947 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2948 }
2949 }
2950 }
2951 inst_env->slot_needed = 0;
2952 inst_env->prefix_found = 0;
2953 inst_env->xflag_found = 0;
2954 inst_env->disable_interrupt = 1;
2955 }
2956
2957 /* Handles moves from special registers (aka P-register) for all modes
2958 except register. */
2959
2960 static void
2961 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2962 inst_env_type *inst_env)
2963 {
2964 if (inst_env->prefix_found)
2965 {
2966 /* The instruction has a prefix that means we are only interested if
2967 the instruction is in assign mode. */
2968 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2969 {
2970 /* The prefix handles the problem if we are in a delay slot. */
2971 if (cris_get_operand1 (inst) == REG_PC)
2972 {
2973 /* Just take care of the assign. */
2974 check_assign (inst, inst_env);
2975 }
2976 }
2977 }
2978 /* The instruction doesn't have a prefix, the only case left that we
2979 are interested in is the autoincrement mode. */
2980 else if (cris_get_mode (inst) == AUTOINC_MODE)
2981 {
2982 if (cris_get_operand1 (inst) == REG_PC)
2983 {
2984 /* If the PC is to be incremented it's invalid to be in a
2985 delay slot. */
2986 if (inst_env->slot_needed)
2987 {
2988 inst_env->invalid = 1;
2989 return;
2990 }
2991
2992 /* The increment depends on the size of the special register. */
2993 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2994 {
2995 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2996 }
2997 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2998 {
2999 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3000 }
3001 else
3002 {
3003 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3004 }
3005 }
3006 }
3007 inst_env->slot_needed = 0;
3008 inst_env->prefix_found = 0;
3009 inst_env->xflag_found = 0;
3010 inst_env->disable_interrupt = 1;
3011 }
3012
3013 /* Handles moves from special registers (aka P-register) when the mode
3014 is register. */
3015
3016 static void
3017 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3018 {
3019 /* Register mode move from special register can't have a prefix. */
3020 if (inst_env->prefix_found)
3021 {
3022 inst_env->invalid = 1;
3023 return;
3024 }
3025
3026 if (cris_get_operand1 (inst) == REG_PC)
3027 {
3028 /* It's invalid to change the PC in a delay slot. */
3029 if (inst_env->slot_needed)
3030 {
3031 inst_env->invalid = 1;
3032 return;
3033 }
3034 /* The destination is the PC, the jump will have a delay slot. */
3035 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3036 inst_env->slot_needed = 1;
3037 inst_env->delay_slot_pc_active = 1;
3038 }
3039 else
3040 {
3041 /* If the destination isn't PC, there will be no jump. */
3042 inst_env->slot_needed = 0;
3043 }
3044 inst_env->prefix_found = 0;
3045 inst_env->xflag_found = 0;
3046 inst_env->disable_interrupt = 1;
3047 }
3048
3049 /* Handles the MOVEM from memory to general register instruction. */
3050
3051 static void
3052 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3053 {
3054 if (inst_env->prefix_found)
3055 {
3056 /* The prefix handles the problem if we are in a delay slot. Is the
3057 MOVEM instruction going to change the PC? */
3058 if (cris_get_operand2 (inst) >= REG_PC)
3059 {
3060 inst_env->reg[REG_PC] =
3061 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3062 }
3063 /* The assign value is the value after the increment. Normally, the
3064 assign value is the value before the increment. */
3065 if ((cris_get_operand1 (inst) == REG_PC)
3066 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3067 {
3068 inst_env->reg[REG_PC] = inst_env->prefix_value;
3069 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3070 }
3071 }
3072 else
3073 {
3074 /* Is the MOVEM instruction going to change the PC? */
3075 if (cris_get_operand2 (inst) == REG_PC)
3076 {
3077 /* It's invalid to change the PC in a delay slot. */
3078 if (inst_env->slot_needed)
3079 {
3080 inst_env->invalid = 1;
3081 return;
3082 }
3083 inst_env->reg[REG_PC] =
3084 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3085 4);
3086 }
3087 /* The increment is not depending on the size, instead it's depending
3088 on the number of registers loaded from memory. */
3089 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3090 {
3091 /* It's invalid to change the PC in a delay slot. */
3092 if (inst_env->slot_needed)
3093 {
3094 inst_env->invalid = 1;
3095 return;
3096 }
3097 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3098 }
3099 }
3100 inst_env->slot_needed = 0;
3101 inst_env->prefix_found = 0;
3102 inst_env->xflag_found = 0;
3103 inst_env->disable_interrupt = 0;
3104 }
3105
3106 /* Handles the MOVEM to memory from general register instruction. */
3107
3108 static void
3109 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3110 {
3111 if (inst_env->prefix_found)
3112 {
3113 /* The assign value is the value after the increment. Normally, the
3114 assign value is the value before the increment. */
3115 if ((cris_get_operand1 (inst) == REG_PC) &&
3116 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3117 {
3118 /* The prefix handles the problem if we are in a delay slot. */
3119 inst_env->reg[REG_PC] = inst_env->prefix_value;
3120 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3121 }
3122 }
3123 else
3124 {
3125 /* The increment is not depending on the size, instead it's depending
3126 on the number of registers loaded to memory. */
3127 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3128 {
3129 /* It's invalid to change the PC in a delay slot. */
3130 if (inst_env->slot_needed)
3131 {
3132 inst_env->invalid = 1;
3133 return;
3134 }
3135 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3136 }
3137 }
3138 inst_env->slot_needed = 0;
3139 inst_env->prefix_found = 0;
3140 inst_env->xflag_found = 0;
3141 inst_env->disable_interrupt = 0;
3142 }
3143
3144 /* Handles the intructions that's not yet implemented, by setting
3145 inst_env->invalid to true. */
3146
3147 static void
3148 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3149 {
3150 inst_env->invalid = 1;
3151 }
3152
3153 /* Handles the XOR instruction. */
3154
3155 static void
3156 xor_op (unsigned short inst, inst_env_type *inst_env)
3157 {
3158 /* XOR can't have a prefix. */
3159 if (inst_env->prefix_found)
3160 {
3161 inst_env->invalid = 1;
3162 return;
3163 }
3164
3165 /* Check if the PC is the target. */
3166 if (cris_get_operand2 (inst) == REG_PC)
3167 {
3168 /* It's invalid to change the PC in a delay slot. */
3169 if (inst_env->slot_needed)
3170 {
3171 inst_env->invalid = 1;
3172 return;
3173 }
3174 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3175 }
3176 inst_env->slot_needed = 0;
3177 inst_env->prefix_found = 0;
3178 inst_env->xflag_found = 0;
3179 inst_env->disable_interrupt = 0;
3180 }
3181
3182 /* Handles the MULS instruction. */
3183
3184 static void
3185 muls_op (unsigned short inst, inst_env_type *inst_env)
3186 {
3187 /* MULS/U can't have a prefix. */
3188 if (inst_env->prefix_found)
3189 {
3190 inst_env->invalid = 1;
3191 return;
3192 }
3193
3194 /* Consider it invalid if the PC is the target. */
3195 if (cris_get_operand2 (inst) == REG_PC)
3196 {
3197 inst_env->invalid = 1;
3198 return;
3199 }
3200 inst_env->slot_needed = 0;
3201 inst_env->prefix_found = 0;
3202 inst_env->xflag_found = 0;
3203 inst_env->disable_interrupt = 0;
3204 }
3205
3206 /* Handles the MULU instruction. */
3207
3208 static void
3209 mulu_op (unsigned short inst, inst_env_type *inst_env)
3210 {
3211 /* MULS/U can't have a prefix. */
3212 if (inst_env->prefix_found)
3213 {
3214 inst_env->invalid = 1;
3215 return;
3216 }
3217
3218 /* Consider it invalid if the PC is the target. */
3219 if (cris_get_operand2 (inst) == REG_PC)
3220 {
3221 inst_env->invalid = 1;
3222 return;
3223 }
3224 inst_env->slot_needed = 0;
3225 inst_env->prefix_found = 0;
3226 inst_env->xflag_found = 0;
3227 inst_env->disable_interrupt = 0;
3228 }
3229
3230 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3231 The MOVE instruction is the move from source to register. */
3232
3233 static void
3234 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3235 unsigned long source1, unsigned long source2)
3236 {
3237 unsigned long pc_mask;
3238 unsigned long operation_mask;
3239
3240 /* Find out how many bits the operation should apply to. */
3241 if (cris_get_size (inst) == INST_BYTE_SIZE)
3242 {
3243 pc_mask = 0xFFFFFF00;
3244 operation_mask = 0xFF;
3245 }
3246 else if (cris_get_size (inst) == INST_WORD_SIZE)
3247 {
3248 pc_mask = 0xFFFF0000;
3249 operation_mask = 0xFFFF;
3250 }
3251 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3252 {
3253 pc_mask = 0x0;
3254 operation_mask = 0xFFFFFFFF;
3255 }
3256 else
3257 {
3258 /* The size is out of range. */
3259 inst_env->invalid = 1;
3260 return;
3261 }
3262
3263 /* The instruction just works on uw_operation_mask bits. */
3264 source2 &= operation_mask;
3265 source1 &= operation_mask;
3266
3267 /* Now calculate the result. The opcode's 3 first bits separates
3268 the different actions. */
3269 switch (cris_get_opcode (inst) & 7)
3270 {
3271 case 0: /* add */
3272 source1 += source2;
3273 break;
3274
3275 case 1: /* move */
3276 source1 = source2;
3277 break;
3278
3279 case 2: /* subtract */
3280 source1 -= source2;
3281 break;
3282
3283 case 3: /* compare */
3284 break;
3285
3286 case 4: /* and */
3287 source1 &= source2;
3288 break;
3289
3290 case 5: /* or */
3291 source1 |= source2;
3292 break;
3293
3294 default:
3295 inst_env->invalid = 1;
3296 return;
3297
3298 break;
3299 }
3300
3301 /* Make sure that the result doesn't contain more than the instruction
3302 size bits. */
3303 source2 &= operation_mask;
3304
3305 /* Calculate the new breakpoint address. */
3306 inst_env->reg[REG_PC] &= pc_mask;
3307 inst_env->reg[REG_PC] |= source1;
3308
3309 }
3310
3311 /* Extends the value from either byte or word size to a dword. If the mode
3312 is zero extend then the value is extended with zero. If instead the mode
3313 is signed extend the sign bit of the value is taken into consideration. */
3314
3315 static unsigned long
3316 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3317 {
3318 /* The size can be either byte or word, check which one it is.
3319 Don't check the highest bit, it's indicating if it's a zero
3320 or sign extend. */
3321 if (cris_get_size (*inst) & INST_WORD_SIZE)
3322 {
3323 /* Word size. */
3324 value &= 0xFFFF;
3325
3326 /* Check if the instruction is signed extend. If so, check if value has
3327 the sign bit on. */
3328 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3329 {
3330 value |= SIGNED_WORD_EXTEND_MASK;
3331 }
3332 }
3333 else
3334 {
3335 /* Byte size. */
3336 value &= 0xFF;
3337
3338 /* Check if the instruction is signed extend. If so, check if value has
3339 the sign bit on. */
3340 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3341 {
3342 value |= SIGNED_BYTE_EXTEND_MASK;
3343 }
3344 }
3345 /* The size should now be dword. */
3346 cris_set_size_to_dword (inst);
3347 return value;
3348 }
3349
3350 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3351 instruction. The MOVE instruction is the move from source to register. */
3352
3353 static void
3354 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3355 inst_env_type *inst_env)
3356 {
3357 unsigned long operand1;
3358 unsigned long operand2;
3359
3360 /* It's invalid to have a prefix to the instruction. This is a register
3361 mode instruction and can't have a prefix. */
3362 if (inst_env->prefix_found)
3363 {
3364 inst_env->invalid = 1;
3365 return;
3366 }
3367 /* Check if the instruction has PC as its target. */
3368 if (cris_get_operand2 (inst) == REG_PC)
3369 {
3370 if (inst_env->slot_needed)
3371 {
3372 inst_env->invalid = 1;
3373 return;
3374 }
3375 /* The instruction has the PC as its target register. */
3376 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3377 operand2 = inst_env->reg[REG_PC];
3378
3379 /* Check if it's a extend, signed or zero instruction. */
3380 if (cris_get_opcode (inst) < 4)
3381 {
3382 operand1 = do_sign_or_zero_extend (operand1, &inst);
3383 }
3384 /* Calculate the PC value after the instruction, i.e. where the
3385 breakpoint should be. The order of the udw_operands is vital. */
3386 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3387 }
3388 inst_env->slot_needed = 0;
3389 inst_env->prefix_found = 0;
3390 inst_env->xflag_found = 0;
3391 inst_env->disable_interrupt = 0;
3392 }
3393
3394 /* Returns the data contained at address. The size of the data is derived from
3395 the size of the operation. If the instruction is a zero or signed
3396 extend instruction, the size field is changed in instruction. */
3397
3398 static unsigned long
3399 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3400 {
3401 int size = cris_get_size (*inst);
3402 unsigned long value;
3403
3404 /* If it's an extend instruction we don't want the signed extend bit,
3405 because it influences the size. */
3406 if (cris_get_opcode (*inst) < 4)
3407 {
3408 size &= ~SIGNED_EXTEND_BIT_MASK;
3409 }
3410 /* Is there a need for checking the size? Size should contain the number of
3411 bytes to read. */
3412 size = 1 << size;
3413 value = read_memory_unsigned_integer (address, size);
3414
3415 /* Check if it's an extend, signed or zero instruction. */
3416 if (cris_get_opcode (*inst) < 4)
3417 {
3418 value = do_sign_or_zero_extend (value, inst);
3419 }
3420 return value;
3421 }
3422
3423 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3424 instructions. The MOVE instruction is the move from source to register. */
3425
3426 static void
3427 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3428 inst_env_type *inst_env)
3429 {
3430 unsigned long operand2;
3431 unsigned long operand3;
3432
3433 check_assign (inst, inst_env);
3434 if (cris_get_operand2 (inst) == REG_PC)
3435 {
3436 operand2 = inst_env->reg[REG_PC];
3437
3438 /* Get the value of the third operand. */
3439 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3440
3441 /* Calculate the PC value after the instruction, i.e. where the
3442 breakpoint should be. The order of the udw_operands is vital. */
3443 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3444 }
3445 inst_env->slot_needed = 0;
3446 inst_env->prefix_found = 0;
3447 inst_env->xflag_found = 0;
3448 inst_env->disable_interrupt = 0;
3449 }
3450
3451 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3452 OR instructions. Note that for this to work as expected, the calling
3453 function must have made sure that there is a prefix to this instruction. */
3454
3455 static void
3456 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3457 inst_env_type *inst_env)
3458 {
3459 unsigned long operand2;
3460 unsigned long operand3;
3461
3462 if (cris_get_operand1 (inst) == REG_PC)
3463 {
3464 /* The PC will be changed by the instruction. */
3465 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3466
3467 /* Get the value of the third operand. */
3468 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3469
3470 /* Calculate the PC value after the instruction, i.e. where the
3471 breakpoint should be. */
3472 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3473 }
3474 inst_env->slot_needed = 0;
3475 inst_env->prefix_found = 0;
3476 inst_env->xflag_found = 0;
3477 inst_env->disable_interrupt = 0;
3478 }
3479
3480 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3481 instructions. The MOVE instruction is the move from source to register. */
3482
3483 static void
3484 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3485 inst_env_type *inst_env)
3486 {
3487 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3488 {
3489 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3490 SUB, AND or OR something weird is going on (if everything works these
3491 instructions should end up in the three operand version). */
3492 inst_env->invalid = 1;
3493 return;
3494 }
3495 else
3496 {
3497 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3498 so use it. */
3499 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3500 }
3501 inst_env->slot_needed = 0;
3502 inst_env->prefix_found = 0;
3503 inst_env->xflag_found = 0;
3504 inst_env->disable_interrupt = 0;
3505 }
3506
3507 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3508 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3509 source to register. */
3510
3511 static void
3512 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3513 inst_env_type *inst_env)
3514 {
3515 unsigned long operand1;
3516 unsigned long operand2;
3517 unsigned long operand3;
3518 int size;
3519
3520 /* The instruction is either an indirect or autoincrement addressing mode.
3521 Check if the destination register is the PC. */
3522 if (cris_get_operand2 (inst) == REG_PC)
3523 {
3524 /* Must be done here, get_data_from_address may change the size
3525 field. */
3526 size = cris_get_size (inst);
3527 operand2 = inst_env->reg[REG_PC];
3528
3529 /* Get the value of the third operand, i.e. the indirect operand. */
3530 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3531 operand3 = get_data_from_address (&inst, operand1);
3532
3533 /* Calculate the PC value after the instruction, i.e. where the
3534 breakpoint should be. The order of the udw_operands is vital. */
3535 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3536 }
3537 /* If this is an autoincrement addressing mode, check if the increment
3538 changes the PC. */
3539 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3540 {
3541 /* Get the size field. */
3542 size = cris_get_size (inst);
3543
3544 /* If it's an extend instruction we don't want the signed extend bit,
3545 because it influences the size. */
3546 if (cris_get_opcode (inst) < 4)
3547 {
3548 size &= ~SIGNED_EXTEND_BIT_MASK;
3549 }
3550 process_autoincrement (size, inst, inst_env);
3551 }
3552 inst_env->slot_needed = 0;
3553 inst_env->prefix_found = 0;
3554 inst_env->xflag_found = 0;
3555 inst_env->disable_interrupt = 0;
3556 }
3557
3558 /* Handles the two-operand addressing mode, all modes except register, for
3559 the ADD, SUB CMP, AND and OR instruction. */
3560
3561 static void
3562 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3563 inst_env_type *inst_env)
3564 {
3565 if (inst_env->prefix_found)
3566 {
3567 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3568 {
3569 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3570 }
3571 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3572 {
3573 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3574 }
3575 else
3576 {
3577 /* The mode is invalid for a prefixed base instruction. */
3578 inst_env->invalid = 1;
3579 return;
3580 }
3581 }
3582 else
3583 {
3584 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3585 }
3586 }
3587
3588 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3589
3590 static void
3591 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3592 {
3593 unsigned long operand1;
3594 unsigned long operand2;
3595
3596 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3597 instruction and can't have a prefix. */
3598 if (inst_env->prefix_found)
3599 {
3600 inst_env->invalid = 1;
3601 return;
3602 }
3603
3604 /* Check if the instruction has PC as its target. */
3605 if (cris_get_operand2 (inst) == REG_PC)
3606 {
3607 if (inst_env->slot_needed)
3608 {
3609 inst_env->invalid = 1;
3610 return;
3611 }
3612 operand1 = cris_get_quick_value (inst);
3613 operand2 = inst_env->reg[REG_PC];
3614
3615 /* The size should now be dword. */
3616 cris_set_size_to_dword (&inst);
3617
3618 /* Calculate the PC value after the instruction, i.e. where the
3619 breakpoint should be. */
3620 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3621 }
3622 inst_env->slot_needed = 0;
3623 inst_env->prefix_found = 0;
3624 inst_env->xflag_found = 0;
3625 inst_env->disable_interrupt = 0;
3626 }
3627
3628 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3629
3630 static void
3631 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3632 {
3633 unsigned long operand1;
3634 unsigned long operand2;
3635
3636 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3637 instruction and can't have a prefix. */
3638 if (inst_env->prefix_found)
3639 {
3640 inst_env->invalid = 1;
3641 return;
3642 }
3643 /* Check if the instruction has PC as its target. */
3644 if (cris_get_operand2 (inst) == REG_PC)
3645 {
3646 if (inst_env->slot_needed)
3647 {
3648 inst_env->invalid = 1;
3649 return;
3650 }
3651 /* The instruction has the PC as its target register. */
3652 operand1 = cris_get_quick_value (inst);
3653 operand2 = inst_env->reg[REG_PC];
3654
3655 /* The quick value is signed, so check if we must do a signed extend. */
3656 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3657 {
3658 /* sign extend */
3659 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3660 }
3661 /* The size should now be dword. */
3662 cris_set_size_to_dword (&inst);
3663
3664 /* Calculate the PC value after the instruction, i.e. where the
3665 breakpoint should be. */
3666 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3667 }
3668 inst_env->slot_needed = 0;
3669 inst_env->prefix_found = 0;
3670 inst_env->xflag_found = 0;
3671 inst_env->disable_interrupt = 0;
3672 }
3673
3674 /* Translate op_type to a function and call it. */
3675
3676 static void
3677 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3678 unsigned short inst, inst_env_type *inst_env)
3679 {
3680 switch (op_type)
3681 {
3682 case cris_not_implemented_op:
3683 not_implemented_op (inst, inst_env);
3684 break;
3685
3686 case cris_abs_op:
3687 abs_op (inst, inst_env);
3688 break;
3689
3690 case cris_addi_op:
3691 addi_op (inst, inst_env);
3692 break;
3693
3694 case cris_asr_op:
3695 asr_op (inst, inst_env);
3696 break;
3697
3698 case cris_asrq_op:
3699 asrq_op (inst, inst_env);
3700 break;
3701
3702 case cris_ax_ei_setf_op:
3703 ax_ei_setf_op (inst, inst_env);
3704 break;
3705
3706 case cris_bdap_prefix:
3707 bdap_prefix (inst, inst_env);
3708 break;
3709
3710 case cris_biap_prefix:
3711 biap_prefix (inst, inst_env);
3712 break;
3713
3714 case cris_break_op:
3715 break_op (inst, inst_env);
3716 break;
3717
3718 case cris_btst_nop_op:
3719 btst_nop_op (inst, inst_env);
3720 break;
3721
3722 case cris_clearf_di_op:
3723 clearf_di_op (inst, inst_env);
3724 break;
3725
3726 case cris_dip_prefix:
3727 dip_prefix (inst, inst_env);
3728 break;
3729
3730 case cris_dstep_logshift_mstep_neg_not_op:
3731 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3732 break;
3733
3734 case cris_eight_bit_offset_branch_op:
3735 eight_bit_offset_branch_op (inst, inst_env);
3736 break;
3737
3738 case cris_move_mem_to_reg_movem_op:
3739 move_mem_to_reg_movem_op (inst, inst_env);
3740 break;
3741
3742 case cris_move_reg_to_mem_movem_op:
3743 move_reg_to_mem_movem_op (inst, inst_env);
3744 break;
3745
3746 case cris_move_to_preg_op:
3747 move_to_preg_op (gdbarch, inst, inst_env);
3748 break;
3749
3750 case cris_muls_op:
3751 muls_op (inst, inst_env);
3752 break;
3753
3754 case cris_mulu_op:
3755 mulu_op (inst, inst_env);
3756 break;
3757
3758 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3759 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3760 break;
3761
3762 case cris_none_reg_mode_clear_test_op:
3763 none_reg_mode_clear_test_op (inst, inst_env);
3764 break;
3765
3766 case cris_none_reg_mode_jump_op:
3767 none_reg_mode_jump_op (inst, inst_env);
3768 break;
3769
3770 case cris_none_reg_mode_move_from_preg_op:
3771 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3772 break;
3773
3774 case cris_quick_mode_add_sub_op:
3775 quick_mode_add_sub_op (inst, inst_env);
3776 break;
3777
3778 case cris_quick_mode_and_cmp_move_or_op:
3779 quick_mode_and_cmp_move_or_op (inst, inst_env);
3780 break;
3781
3782 case cris_quick_mode_bdap_prefix:
3783 quick_mode_bdap_prefix (inst, inst_env);
3784 break;
3785
3786 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3787 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3788 break;
3789
3790 case cris_reg_mode_clear_op:
3791 reg_mode_clear_op (inst, inst_env);
3792 break;
3793
3794 case cris_reg_mode_jump_op:
3795 reg_mode_jump_op (inst, inst_env);
3796 break;
3797
3798 case cris_reg_mode_move_from_preg_op:
3799 reg_mode_move_from_preg_op (inst, inst_env);
3800 break;
3801
3802 case cris_reg_mode_test_op:
3803 reg_mode_test_op (inst, inst_env);
3804 break;
3805
3806 case cris_scc_op:
3807 scc_op (inst, inst_env);
3808 break;
3809
3810 case cris_sixteen_bit_offset_branch_op:
3811 sixteen_bit_offset_branch_op (inst, inst_env);
3812 break;
3813
3814 case cris_three_operand_add_sub_cmp_and_or_op:
3815 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3816 break;
3817
3818 case cris_three_operand_bound_op:
3819 three_operand_bound_op (inst, inst_env);
3820 break;
3821
3822 case cris_two_operand_bound_op:
3823 two_operand_bound_op (inst, inst_env);
3824 break;
3825
3826 case cris_xor_op:
3827 xor_op (inst, inst_env);
3828 break;
3829 }
3830 }
3831
3832 /* This wrapper is to avoid cris_get_assembler being called before
3833 exec_bfd has been set. */
3834
3835 static int
3836 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3837 {
3838 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3839 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3840 disassembler, even when there is no BFD. Does something like
3841 "gdb; target remote; disassmeble *0x123" work? */
3842 gdb_assert (exec_bfd != NULL);
3843 print_insn = cris_get_disassembler (exec_bfd);
3844 gdb_assert (print_insn != NULL);
3845 return print_insn (addr, info);
3846 }
3847
3848 /* Copied from <asm/elf.h>. */
3849 typedef unsigned long elf_greg_t;
3850
3851 /* Same as user_regs_struct struct in <asm/user.h>. */
3852 #define CRISV10_ELF_NGREG 35
3853 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3854
3855 #define CRISV32_ELF_NGREG 32
3856 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3857
3858 /* Unpack an elf_gregset_t into GDB's register cache. */
3859
3860 static void
3861 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3862 {
3863 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3865 int i;
3866 elf_greg_t *regp = *gregsetp;
3867 static char zerobuf[4] = {0};
3868
3869 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3870 knows about the actual size of each register so that's no problem. */
3871 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3872 {
3873 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3874 }
3875
3876 if (tdep->cris_version == 32)
3877 {
3878 /* Needed to set pseudo-register PC for CRISv32. */
3879 /* FIXME: If ERP is in a delay slot at this point then the PC will
3880 be wrong. Issue a warning to alert the user. */
3881 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3882 (char *)&regp[ERP_REGNUM]);
3883
3884 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3885 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3886 }
3887 }
3888
3889 /* Use a local version of this function to get the correct types for
3890 regsets, until multi-arch core support is ready. */
3891
3892 static void
3893 fetch_core_registers (struct regcache *regcache,
3894 char *core_reg_sect, unsigned core_reg_size,
3895 int which, CORE_ADDR reg_addr)
3896 {
3897 elf_gregset_t gregset;
3898
3899 switch (which)
3900 {
3901 case 0:
3902 if (core_reg_size != sizeof (elf_gregset_t)
3903 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3904 {
3905 warning (_("wrong size gregset struct in core file"));
3906 }
3907 else
3908 {
3909 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3910 cris_supply_gregset (regcache, &gregset);
3911 }
3912
3913 default:
3914 /* We've covered all the kinds of registers we know about here,
3915 so this must be something we wouldn't know what to do with
3916 anyway. Just ignore it. */
3917 break;
3918 }
3919 }
3920
3921 static struct core_fns cris_elf_core_fns =
3922 {
3923 bfd_target_elf_flavour, /* core_flavour */
3924 default_check_format, /* check_format */
3925 default_core_sniffer, /* core_sniffer */
3926 fetch_core_registers, /* core_read_registers */
3927 NULL /* next */
3928 };
3929
3930 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3931
3932 void
3933 _initialize_cris_tdep (void)
3934 {
3935 static struct cmd_list_element *cris_set_cmdlist;
3936 static struct cmd_list_element *cris_show_cmdlist;
3937
3938 struct cmd_list_element *c;
3939
3940 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3941
3942 /* CRIS-specific user-commands. */
3943 add_setshow_uinteger_cmd ("cris-version", class_support,
3944 &usr_cmd_cris_version,
3945 _("Set the current CRIS version."),
3946 _("Show the current CRIS version."),
3947 _("\
3948 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3949 Defaults to 10. "),
3950 set_cris_version,
3951 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3952 &setlist, &showlist);
3953
3954 add_setshow_enum_cmd ("cris-mode", class_support,
3955 cris_modes, &usr_cmd_cris_mode,
3956 _("Set the current CRIS mode."),
3957 _("Show the current CRIS mode."),
3958 _("\
3959 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3960 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3961 set_cris_mode,
3962 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3963 &setlist, &showlist);
3964
3965 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3966 &usr_cmd_cris_dwarf2_cfi,
3967 _("Set the usage of Dwarf-2 CFI for CRIS."),
3968 _("Show the usage of Dwarf-2 CFI for CRIS."),
3969 _("Set this to \"off\" if using gcc-cris < R59."),
3970 set_cris_dwarf2_cfi,
3971 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3972 &setlist, &showlist);
3973
3974 deprecated_add_core_fns (&cris_elf_core_fns);
3975 }
3976
3977 /* Prints out all target specific values. */
3978
3979 static void
3980 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3981 {
3982 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3983 if (tdep != NULL)
3984 {
3985 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3986 tdep->cris_version);
3987 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3988 tdep->cris_mode);
3989 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3990 tdep->cris_dwarf2_cfi);
3991 }
3992 }
3993
3994 static void
3995 set_cris_version (char *ignore_args, int from_tty,
3996 struct cmd_list_element *c)
3997 {
3998 struct gdbarch_info info;
3999
4000 usr_cmd_cris_version_valid = 1;
4001
4002 /* Update the current architecture, if needed. */
4003 gdbarch_info_init (&info);
4004 if (!gdbarch_update_p (info))
4005 internal_error (__FILE__, __LINE__,
4006 _("cris_gdbarch_update: failed to update architecture."));
4007 }
4008
4009 static void
4010 set_cris_mode (char *ignore_args, int from_tty,
4011 struct cmd_list_element *c)
4012 {
4013 struct gdbarch_info info;
4014
4015 /* Update the current architecture, if needed. */
4016 gdbarch_info_init (&info);
4017 if (!gdbarch_update_p (info))
4018 internal_error (__FILE__, __LINE__,
4019 "cris_gdbarch_update: failed to update architecture.");
4020 }
4021
4022 static void
4023 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4024 struct cmd_list_element *c)
4025 {
4026 struct gdbarch_info info;
4027
4028 /* Update the current architecture, if needed. */
4029 gdbarch_info_init (&info);
4030 if (!gdbarch_update_p (info))
4031 internal_error (__FILE__, __LINE__,
4032 _("cris_gdbarch_update: failed to update architecture."));
4033 }
4034
4035 static struct gdbarch *
4036 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4037 {
4038 struct gdbarch *gdbarch;
4039 struct gdbarch_tdep *tdep;
4040 int cris_version;
4041
4042 if (usr_cmd_cris_version_valid)
4043 {
4044 /* Trust the user's CRIS version setting. */
4045 cris_version = usr_cmd_cris_version;
4046 }
4047 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4048 {
4049 cris_version = 32;
4050 }
4051 else
4052 {
4053 /* Assume it's CRIS version 10. */
4054 cris_version = 10;
4055 }
4056
4057 /* Make the current settings visible to the user. */
4058 usr_cmd_cris_version = cris_version;
4059
4060 /* Find a candidate among the list of pre-declared architectures. */
4061 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4062 arches != NULL;
4063 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4064 {
4065 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4066 == usr_cmd_cris_version)
4067 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4068 == usr_cmd_cris_mode)
4069 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4070 == usr_cmd_cris_dwarf2_cfi))
4071 return arches->gdbarch;
4072 }
4073
4074 /* No matching architecture was found. Create a new one. */
4075 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4076 gdbarch = gdbarch_alloc (&info, tdep);
4077
4078 tdep->cris_version = usr_cmd_cris_version;
4079 tdep->cris_mode = usr_cmd_cris_mode;
4080 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4081
4082 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4083 switch (info.byte_order)
4084 {
4085 case BFD_ENDIAN_LITTLE:
4086 /* Ok. */
4087 break;
4088
4089 case BFD_ENDIAN_BIG:
4090 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4091 break;
4092
4093 default:
4094 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4095 }
4096
4097 set_gdbarch_return_value (gdbarch, cris_return_value);
4098
4099 set_gdbarch_sp_regnum (gdbarch, 14);
4100
4101 /* Length of ordinary registers used in push_word and a few other
4102 places. register_size() is the real way to know how big a
4103 register is. */
4104
4105 set_gdbarch_double_bit (gdbarch, 64);
4106 /* The default definition of a long double is 2 * gdbarch_double_bit,
4107 which means we have to set this explicitly. */
4108 set_gdbarch_long_double_bit (gdbarch, 64);
4109
4110 /* The total amount of space needed to store (in an array called registers)
4111 GDB's copy of the machine's register state. Note: We can not use
4112 cris_register_size at this point, since it relies on gdbarch
4113 being set. */
4114 switch (tdep->cris_version)
4115 {
4116 case 0:
4117 case 1:
4118 case 2:
4119 case 3:
4120 case 8:
4121 case 9:
4122 /* Old versions; not supported. */
4123 internal_error (__FILE__, __LINE__,
4124 _("cris_gdbarch_init: unsupported CRIS version"));
4125 break;
4126
4127 case 10:
4128 case 11:
4129 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4130 P7 (32 bits), and P15 (32 bits) have been implemented. */
4131 set_gdbarch_pc_regnum (gdbarch, 15);
4132 set_gdbarch_register_type (gdbarch, cris_register_type);
4133 /* There are 32 registers (some of which may not be implemented). */
4134 set_gdbarch_num_regs (gdbarch, 32);
4135 set_gdbarch_register_name (gdbarch, cris_register_name);
4136 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4137 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4138
4139 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4140 break;
4141
4142 case 32:
4143 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4144 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4145 and pseudo-register PC (32 bits). */
4146 set_gdbarch_pc_regnum (gdbarch, 32);
4147 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4148 /* 32 registers + pseudo-register PC + 16 support registers. */
4149 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4150 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4151
4152 set_gdbarch_cannot_store_register
4153 (gdbarch, crisv32_cannot_store_register);
4154 set_gdbarch_cannot_fetch_register
4155 (gdbarch, crisv32_cannot_fetch_register);
4156
4157 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4158
4159 set_gdbarch_single_step_through_delay
4160 (gdbarch, crisv32_single_step_through_delay);
4161
4162 break;
4163
4164 default:
4165 internal_error (__FILE__, __LINE__,
4166 _("cris_gdbarch_init: unknown CRIS version"));
4167 }
4168
4169 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4170 have the same ABI). */
4171 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4172 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4173 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4174 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4175
4176 /* The stack grows downward. */
4177 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4178
4179 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4180
4181 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4182 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4183 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4184
4185 if (tdep->cris_dwarf2_cfi == 1)
4186 {
4187 /* Hook in the Dwarf-2 frame sniffer. */
4188 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4189 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4190 dwarf2_append_unwinders (gdbarch);
4191 }
4192
4193 if (tdep->cris_mode != cris_mode_guru)
4194 {
4195 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4196 }
4197
4198 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4199 frame_base_set_default (gdbarch, &cris_frame_base);
4200
4201 set_solib_svr4_fetch_link_map_offsets
4202 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4203
4204 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4205 disassembler, even when there is no BFD. Does something like
4206 "gdb; target remote; disassmeble *0x123" work? */
4207 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4208
4209 return gdbarch;
4210 }
This page took 0.122544 seconds and 4 git commands to generate.