Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24
25 /* Local non-gdb includes. */
26 #include "arch-utils.h"
27 #include "cris-tdep.h"
28 #include "dis-asm.h"
29 #include "dwarf2-frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "frame.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "inferior.h"
37 #include "objfiles.h"
38 #include "opcode/cris.h"
39 #include "osabi.h"
40 #include "regcache.h"
41 #include "solib-svr4.h"
42 #include "solib.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "trad-frame.h"
46 #include "value.h"
47
48 enum cris_num_regs
49 {
50 /* There are no floating point registers. Used in gdbserver low-linux.c. */
51 NUM_FREGS = 0,
52
53 /* There are 16 general registers. */
54 NUM_GENREGS = 16,
55
56 /* There are 16 special registers. */
57 NUM_SPECREGS = 16,
58
59 /* CRISv32 has a pseudo PC register, not noted here. */
60
61 /* CRISv32 has 16 support registers. */
62 NUM_SUPPREGS = 16
63 };
64
65 /* Register numbers of various important registers.
66 CRIS_FP_REGNUM Contains address of executing stack frame.
67 STR_REGNUM Contains the address of structure return values.
68 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
69 ARG1_REGNUM Contains the first parameter to a function.
70 ARG2_REGNUM Contains the second parameter to a function.
71 ARG3_REGNUM Contains the third parameter to a function.
72 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
73 gdbarch_sp_regnum Contains address of top of stack.
74 gdbarch_pc_regnum Contains address of next instruction.
75 SRP_REGNUM Subroutine return pointer register.
76 BRP_REGNUM Breakpoint return pointer register. */
77
78 enum cris_regnums
79 {
80 /* Enums with respect to the general registers, valid for all
81 CRIS versions. The frame pointer is always in R8. */
82 CRIS_FP_REGNUM = 8,
83 /* ABI related registers. */
84 STR_REGNUM = 9,
85 RET_REGNUM = 10,
86 ARG1_REGNUM = 10,
87 ARG2_REGNUM = 11,
88 ARG3_REGNUM = 12,
89 ARG4_REGNUM = 13,
90
91 /* Registers which happen to be common. */
92 VR_REGNUM = 17,
93 MOF_REGNUM = 23,
94 SRP_REGNUM = 27,
95
96 /* CRISv10 et al. specific registers. */
97 P0_REGNUM = 16,
98 P4_REGNUM = 20,
99 CCR_REGNUM = 21,
100 P8_REGNUM = 24,
101 IBR_REGNUM = 25,
102 IRP_REGNUM = 26,
103 BAR_REGNUM = 28,
104 DCCR_REGNUM = 29,
105 BRP_REGNUM = 30,
106 USP_REGNUM = 31,
107
108 /* CRISv32 specific registers. */
109 ACR_REGNUM = 15,
110 BZ_REGNUM = 16,
111 PID_REGNUM = 18,
112 SRS_REGNUM = 19,
113 WZ_REGNUM = 20,
114 EXS_REGNUM = 21,
115 EDA_REGNUM = 22,
116 DZ_REGNUM = 24,
117 EBP_REGNUM = 25,
118 ERP_REGNUM = 26,
119 NRP_REGNUM = 28,
120 CCS_REGNUM = 29,
121 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
122 SPC_REGNUM = 31,
123 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
124
125 S0_REGNUM = 33,
126 S1_REGNUM = 34,
127 S2_REGNUM = 35,
128 S3_REGNUM = 36,
129 S4_REGNUM = 37,
130 S5_REGNUM = 38,
131 S6_REGNUM = 39,
132 S7_REGNUM = 40,
133 S8_REGNUM = 41,
134 S9_REGNUM = 42,
135 S10_REGNUM = 43,
136 S11_REGNUM = 44,
137 S12_REGNUM = 45,
138 S13_REGNUM = 46,
139 S14_REGNUM = 47,
140 S15_REGNUM = 48,
141 };
142
143 extern const struct cris_spec_reg cris_spec_regs[];
144
145 /* CRIS version, set via the user command 'set cris-version'. Affects
146 register names and sizes. */
147 static unsigned int usr_cmd_cris_version;
148
149 /* Indicates whether to trust the above variable. */
150 static int usr_cmd_cris_version_valid = 0;
151
152 static const char cris_mode_normal[] = "normal";
153 static const char cris_mode_guru[] = "guru";
154 static const char *const cris_modes[] = {
155 cris_mode_normal,
156 cris_mode_guru,
157 0
158 };
159
160 /* CRIS mode, set via the user command 'set cris-mode'. Affects
161 type of break instruction among other things. */
162 static const char *usr_cmd_cris_mode = cris_mode_normal;
163
164 /* Whether to make use of Dwarf-2 CFI (default on). */
165 static int usr_cmd_cris_dwarf2_cfi = 1;
166
167 /* Sigtramp identification code copied from i386-linux-tdep.c. */
168
169 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
170 #define SIGTRAMP_OFFSET0 0
171 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
172 #define SIGTRAMP_OFFSET1 4
173
174 static const unsigned short sigtramp_code[] =
175 {
176 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
177 SIGTRAMP_INSN1 /* break 13 */
178 };
179
180 #define SIGTRAMP_LEN (sizeof sigtramp_code)
181
182 /* Note: same length as normal sigtramp code. */
183
184 static const unsigned short rt_sigtramp_code[] =
185 {
186 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
187 SIGTRAMP_INSN1 /* break 13 */
188 };
189
190 /* If PC is in a sigtramp routine, return the address of the start of
191 the routine. Otherwise, return 0. */
192
193 static CORE_ADDR
194 cris_sigtramp_start (struct frame_info *this_frame)
195 {
196 CORE_ADDR pc = get_frame_pc (this_frame);
197 gdb_byte buf[SIGTRAMP_LEN];
198
199 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
200 return 0;
201
202 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
203 {
204 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
205 return 0;
206
207 pc -= SIGTRAMP_OFFSET1;
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
209 return 0;
210 }
211
212 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
213 return 0;
214
215 return pc;
216 }
217
218 /* If PC is in a RT sigtramp routine, return the address of the start of
219 the routine. Otherwise, return 0. */
220
221 static CORE_ADDR
222 cris_rt_sigtramp_start (struct frame_info *this_frame)
223 {
224 CORE_ADDR pc = get_frame_pc (this_frame);
225 gdb_byte buf[SIGTRAMP_LEN];
226
227 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
228 return 0;
229
230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
231 {
232 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
233 return 0;
234
235 pc -= SIGTRAMP_OFFSET1;
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
237 return 0;
238 }
239
240 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
241 return 0;
242
243 return pc;
244 }
245
246 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
247 return the address of the associated sigcontext structure. */
248
249 static CORE_ADDR
250 cris_sigcontext_addr (struct frame_info *this_frame)
251 {
252 struct gdbarch *gdbarch = get_frame_arch (this_frame);
253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254 CORE_ADDR pc;
255 CORE_ADDR sp;
256 gdb_byte buf[4];
257
258 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
259 sp = extract_unsigned_integer (buf, 4, byte_order);
260
261 /* Look for normal sigtramp frame first. */
262 pc = cris_sigtramp_start (this_frame);
263 if (pc)
264 {
265 /* struct signal_frame (arch/cris/kernel/signal.c) contains
266 struct sigcontext as its first member, meaning the SP points to
267 it already. */
268 return sp;
269 }
270
271 pc = cris_rt_sigtramp_start (this_frame);
272 if (pc)
273 {
274 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
275 a struct ucontext, which in turn contains a struct sigcontext.
276 Magic digging:
277 4 + 4 + 128 to struct ucontext, then
278 4 + 4 + 12 to struct sigcontext. */
279 return (sp + 156);
280 }
281
282 error (_("Couldn't recognize signal trampoline."));
283 return 0;
284 }
285
286 struct cris_unwind_cache
287 {
288 /* The previous frame's inner most stack address. Used as this
289 frame ID's stack_addr. */
290 CORE_ADDR prev_sp;
291 /* The frame's base, optionally used by the high-level debug info. */
292 CORE_ADDR base;
293 int size;
294 /* How far the SP and r8 (FP) have been offset from the start of
295 the stack frame (as defined by the previous frame's stack
296 pointer). */
297 LONGEST sp_offset;
298 LONGEST r8_offset;
299 int uses_frame;
300
301 /* From old frame_extra_info struct. */
302 CORE_ADDR return_pc;
303 int leaf_function;
304
305 /* Table indicating the location of each and every register. */
306 struct trad_frame_saved_reg *saved_regs;
307 };
308
309 static struct cris_unwind_cache *
310 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
311 void **this_cache)
312 {
313 struct gdbarch *gdbarch = get_frame_arch (this_frame);
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
316 struct cris_unwind_cache *info;
317 CORE_ADDR addr;
318 gdb_byte buf[4];
319 int i;
320
321 if ((*this_cache))
322 return (struct cris_unwind_cache *) (*this_cache);
323
324 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
325 (*this_cache) = info;
326 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
327
328 /* Zero all fields. */
329 info->prev_sp = 0;
330 info->base = 0;
331 info->size = 0;
332 info->sp_offset = 0;
333 info->r8_offset = 0;
334 info->uses_frame = 0;
335 info->return_pc = 0;
336 info->leaf_function = 0;
337
338 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
339 info->base = extract_unsigned_integer (buf, 4, byte_order);
340
341 addr = cris_sigcontext_addr (this_frame);
342
343 /* Layout of the sigcontext struct:
344 struct sigcontext {
345 struct pt_regs regs;
346 unsigned long oldmask;
347 unsigned long usp;
348 }; */
349
350 if (tdep->cris_version == 10)
351 {
352 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
353 struct pt_regs. */
354 for (i = 0; i <= 13; i++)
355 info->saved_regs[i].addr = addr + ((15 - i) * 4);
356
357 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
358 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
359 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
360 /* Note: IRP is off by 2 at this point. There's no point in correcting
361 it though since that will mean that the backtrace will show a PC
362 different from what is shown when stopped. */
363 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
364 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
365 = info->saved_regs[IRP_REGNUM];
366 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
367 }
368 else
369 {
370 /* CRISv32. */
371 /* R0 to R13 are stored in order at offset (1 * 4) in
372 struct pt_regs. */
373 for (i = 0; i <= 13; i++)
374 info->saved_regs[i].addr = addr + ((i + 1) * 4);
375
376 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
377 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
378 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
379 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
380 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
381 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
382 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
383 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
384 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
385
386 /* FIXME: If ERP is in a delay slot at this point then the PC will
387 be wrong at this point. This problem manifests itself in the
388 sigaltstack.exp test case, which occasionally generates FAILs when
389 the signal is received while in a delay slot.
390
391 This could be solved by a couple of read_memory_unsigned_integer and a
392 trad_frame_set_value. */
393 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
394 = info->saved_regs[ERP_REGNUM];
395
396 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
397 = addr + (25 * 4);
398 }
399
400 return info;
401 }
402
403 static void
404 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
405 struct frame_id *this_id)
406 {
407 struct cris_unwind_cache *cache =
408 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
409 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
410 }
411
412 /* Forward declaration. */
413
414 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
415 void **this_cache, int regnum);
416 static struct value *
417 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
418 void **this_cache, int regnum)
419 {
420 /* Make sure we've initialized the cache. */
421 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
422 return cris_frame_prev_register (this_frame, this_cache, regnum);
423 }
424
425 static int
426 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
427 struct frame_info *this_frame,
428 void **this_cache)
429 {
430 if (cris_sigtramp_start (this_frame)
431 || cris_rt_sigtramp_start (this_frame))
432 return 1;
433
434 return 0;
435 }
436
437 static const struct frame_unwind cris_sigtramp_frame_unwind =
438 {
439 SIGTRAMP_FRAME,
440 default_frame_unwind_stop_reason,
441 cris_sigtramp_frame_this_id,
442 cris_sigtramp_frame_prev_register,
443 NULL,
444 cris_sigtramp_frame_sniffer
445 };
446
447 static int
448 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
449 struct frame_info *this_frame)
450 {
451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
452 ULONGEST erp;
453 int ret = 0;
454
455 if (tdep->cris_mode == cris_mode_guru)
456 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
457 else
458 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
459
460 if (erp & 0x1)
461 {
462 /* In delay slot - check if there's a breakpoint at the preceding
463 instruction. */
464 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
465 ret = 1;
466 }
467 return ret;
468 }
469
470 /* The instruction environment needed to find single-step breakpoints. */
471
472 typedef
473 struct instruction_environment
474 {
475 unsigned long reg[NUM_GENREGS];
476 unsigned long preg[NUM_SPECREGS];
477 unsigned long branch_break_address;
478 unsigned long delay_slot_pc;
479 unsigned long prefix_value;
480 int branch_found;
481 int prefix_found;
482 int invalid;
483 int slot_needed;
484 int delay_slot_pc_active;
485 int xflag_found;
486 int disable_interrupt;
487 enum bfd_endian byte_order;
488 } inst_env_type;
489
490 /* Machine-dependencies in CRIS for opcodes. */
491
492 /* Instruction sizes. */
493 enum cris_instruction_sizes
494 {
495 INST_BYTE_SIZE = 0,
496 INST_WORD_SIZE = 1,
497 INST_DWORD_SIZE = 2
498 };
499
500 /* Addressing modes. */
501 enum cris_addressing_modes
502 {
503 REGISTER_MODE = 1,
504 INDIRECT_MODE = 2,
505 AUTOINC_MODE = 3
506 };
507
508 /* Prefix addressing modes. */
509 enum cris_prefix_addressing_modes
510 {
511 PREFIX_INDEX_MODE = 2,
512 PREFIX_ASSIGN_MODE = 3,
513
514 /* Handle immediate byte offset addressing mode prefix format. */
515 PREFIX_OFFSET_MODE = 2
516 };
517
518 /* Masks for opcodes. */
519 enum cris_opcode_masks
520 {
521 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
522 SIGNED_EXTEND_BIT_MASK = 0x2,
523 SIGNED_BYTE_MASK = 0x80,
524 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
525 SIGNED_WORD_MASK = 0x8000,
526 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
527 SIGNED_DWORD_MASK = 0x80000000,
528 SIGNED_QUICK_VALUE_MASK = 0x20,
529 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
530 };
531
532 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
533 Bit 15 - 12 Operand2
534 11 - 10 Mode
535 9 - 6 Opcode
536 5 - 4 Size
537 3 - 0 Operand1 */
538
539 static int
540 cris_get_operand2 (unsigned short insn)
541 {
542 return ((insn & 0xF000) >> 12);
543 }
544
545 static int
546 cris_get_mode (unsigned short insn)
547 {
548 return ((insn & 0x0C00) >> 10);
549 }
550
551 static int
552 cris_get_opcode (unsigned short insn)
553 {
554 return ((insn & 0x03C0) >> 6);
555 }
556
557 static int
558 cris_get_size (unsigned short insn)
559 {
560 return ((insn & 0x0030) >> 4);
561 }
562
563 static int
564 cris_get_operand1 (unsigned short insn)
565 {
566 return (insn & 0x000F);
567 }
568
569 /* Additional functions in order to handle opcodes. */
570
571 static int
572 cris_get_quick_value (unsigned short insn)
573 {
574 return (insn & 0x003F);
575 }
576
577 static int
578 cris_get_bdap_quick_offset (unsigned short insn)
579 {
580 return (insn & 0x00FF);
581 }
582
583 static int
584 cris_get_branch_short_offset (unsigned short insn)
585 {
586 return (insn & 0x00FF);
587 }
588
589 static int
590 cris_get_asr_shift_steps (unsigned long value)
591 {
592 return (value & 0x3F);
593 }
594
595 static int
596 cris_get_clear_size (unsigned short insn)
597 {
598 return ((insn) & 0xC000);
599 }
600
601 static int
602 cris_is_signed_extend_bit_on (unsigned short insn)
603 {
604 return (((insn) & 0x20) == 0x20);
605 }
606
607 static int
608 cris_is_xflag_bit_on (unsigned short insn)
609 {
610 return (((insn) & 0x1000) == 0x1000);
611 }
612
613 static void
614 cris_set_size_to_dword (unsigned short *insn)
615 {
616 *insn &= 0xFFCF;
617 *insn |= 0x20;
618 }
619
620 static signed char
621 cris_get_signed_offset (unsigned short insn)
622 {
623 return ((signed char) (insn & 0x00FF));
624 }
625
626 /* Calls an op function given the op-type, working on the insn and the
627 inst_env. */
628 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
629 inst_env_type *);
630
631 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
632 struct gdbarch_list *);
633
634 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
635
636 static void set_cris_version (const char *ignore_args, int from_tty,
637 struct cmd_list_element *c);
638
639 static void set_cris_mode (const char *ignore_args, int from_tty,
640 struct cmd_list_element *c);
641
642 static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
643 struct cmd_list_element *c);
644
645 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
646 struct frame_info *this_frame,
647 struct cris_unwind_cache *info);
648
649 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
650 struct frame_info *this_frame,
651 struct cris_unwind_cache *info);
652
653 /* When arguments must be pushed onto the stack, they go on in reverse
654 order. The below implements a FILO (stack) to do this.
655 Copied from d10v-tdep.c. */
656
657 struct stack_item
658 {
659 int len;
660 struct stack_item *prev;
661 gdb_byte *data;
662 };
663
664 static struct stack_item *
665 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
666 {
667 struct stack_item *si = XNEW (struct stack_item);
668 si->data = (gdb_byte *) xmalloc (len);
669 si->len = len;
670 si->prev = prev;
671 memcpy (si->data, contents, len);
672 return si;
673 }
674
675 static struct stack_item *
676 pop_stack_item (struct stack_item *si)
677 {
678 struct stack_item *dead = si;
679 si = si->prev;
680 xfree (dead->data);
681 xfree (dead);
682 return si;
683 }
684
685 /* Put here the code to store, into fi->saved_regs, the addresses of
686 the saved registers of frame described by FRAME_INFO. This
687 includes special registers such as pc and fp saved in special ways
688 in the stack frame. sp is even more special: the address we return
689 for it IS the sp for the next frame. */
690
691 static struct cris_unwind_cache *
692 cris_frame_unwind_cache (struct frame_info *this_frame,
693 void **this_prologue_cache)
694 {
695 struct gdbarch *gdbarch = get_frame_arch (this_frame);
696 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
697 struct cris_unwind_cache *info;
698
699 if ((*this_prologue_cache))
700 return (struct cris_unwind_cache *) (*this_prologue_cache);
701
702 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
703 (*this_prologue_cache) = info;
704 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
705
706 /* Zero all fields. */
707 info->prev_sp = 0;
708 info->base = 0;
709 info->size = 0;
710 info->sp_offset = 0;
711 info->r8_offset = 0;
712 info->uses_frame = 0;
713 info->return_pc = 0;
714 info->leaf_function = 0;
715
716 /* Prologue analysis does the rest... */
717 if (tdep->cris_version == 32)
718 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
719 else
720 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
721
722 return info;
723 }
724
725 /* Given a GDB frame, determine the address of the calling function's
726 frame. This will be used to create a new GDB frame struct. */
727
728 static void
729 cris_frame_this_id (struct frame_info *this_frame,
730 void **this_prologue_cache,
731 struct frame_id *this_id)
732 {
733 struct cris_unwind_cache *info
734 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
735 CORE_ADDR base;
736 CORE_ADDR func;
737 struct frame_id id;
738
739 /* The FUNC is easy. */
740 func = get_frame_func (this_frame);
741
742 /* Hopefully the prologue analysis either correctly determined the
743 frame's base (which is the SP from the previous frame), or set
744 that base to "NULL". */
745 base = info->prev_sp;
746 if (base == 0)
747 return;
748
749 id = frame_id_build (base, func);
750
751 (*this_id) = id;
752 }
753
754 static struct value *
755 cris_frame_prev_register (struct frame_info *this_frame,
756 void **this_prologue_cache, int regnum)
757 {
758 struct cris_unwind_cache *info
759 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
760 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
761 }
762
763 static CORE_ADDR
764 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
765 {
766 /* Align to the size of an instruction (so that they can safely be
767 pushed onto the stack). */
768 return sp & ~3;
769 }
770
771 static CORE_ADDR
772 cris_push_dummy_code (struct gdbarch *gdbarch,
773 CORE_ADDR sp, CORE_ADDR funaddr,
774 struct value **args, int nargs,
775 struct type *value_type,
776 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
777 struct regcache *regcache)
778 {
779 /* Allocate space sufficient for a breakpoint. */
780 sp = (sp - 4) & ~3;
781 /* Store the address of that breakpoint */
782 *bp_addr = sp;
783 /* CRIS always starts the call at the callee's entry point. */
784 *real_pc = funaddr;
785 return sp;
786 }
787
788 static CORE_ADDR
789 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
790 struct regcache *regcache, CORE_ADDR bp_addr,
791 int nargs, struct value **args, CORE_ADDR sp,
792 function_call_return_method return_method,
793 CORE_ADDR struct_addr)
794 {
795 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
796 int argreg;
797 int argnum;
798
799 struct stack_item *si = NULL;
800
801 /* Push the return address. */
802 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
803
804 /* Are we returning a value using a structure return or a normal value
805 return? struct_addr is the address of the reserved space for the return
806 structure to be written on the stack. */
807 if (return_method == return_method_struct)
808 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
809
810 /* Now load as many as possible of the first arguments into registers,
811 and push the rest onto the stack. */
812 argreg = ARG1_REGNUM;
813
814 for (argnum = 0; argnum < nargs; argnum++)
815 {
816 int len;
817 const gdb_byte *val;
818 int reg_demand;
819 int i;
820
821 len = TYPE_LENGTH (value_type (args[argnum]));
822 val = value_contents (args[argnum]);
823
824 /* How may registers worth of storage do we need for this argument? */
825 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
826
827 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
828 {
829 /* Data passed by value. Fits in available register(s). */
830 for (i = 0; i < reg_demand; i++)
831 {
832 regcache->cooked_write (argreg, val);
833 argreg++;
834 val += 4;
835 }
836 }
837 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
838 {
839 /* Data passed by value. Does not fit in available register(s).
840 Use the register(s) first, then the stack. */
841 for (i = 0; i < reg_demand; i++)
842 {
843 if (argreg <= ARG4_REGNUM)
844 {
845 regcache->cooked_write (argreg, val);
846 argreg++;
847 val += 4;
848 }
849 else
850 {
851 /* Push item for later so that pushed arguments
852 come in the right order. */
853 si = push_stack_item (si, val, 4);
854 val += 4;
855 }
856 }
857 }
858 else if (len > (2 * 4))
859 {
860 /* Data passed by reference. Push copy of data onto stack
861 and pass pointer to this copy as argument. */
862 sp = (sp - len) & ~3;
863 write_memory (sp, val, len);
864
865 if (argreg <= ARG4_REGNUM)
866 {
867 regcache_cooked_write_unsigned (regcache, argreg, sp);
868 argreg++;
869 }
870 else
871 {
872 gdb_byte buf[4];
873 store_unsigned_integer (buf, 4, byte_order, sp);
874 si = push_stack_item (si, buf, 4);
875 }
876 }
877 else
878 {
879 /* Data passed by value. No available registers. Put it on
880 the stack. */
881 si = push_stack_item (si, val, len);
882 }
883 }
884
885 while (si)
886 {
887 /* fp_arg must be word-aligned (i.e., don't += len) to match
888 the function prologue. */
889 sp = (sp - si->len) & ~3;
890 write_memory (sp, si->data, si->len);
891 si = pop_stack_item (si);
892 }
893
894 /* Finally, update the SP register. */
895 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
896
897 return sp;
898 }
899
900 static const struct frame_unwind cris_frame_unwind =
901 {
902 NORMAL_FRAME,
903 default_frame_unwind_stop_reason,
904 cris_frame_this_id,
905 cris_frame_prev_register,
906 NULL,
907 default_frame_sniffer
908 };
909
910 static CORE_ADDR
911 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
912 {
913 struct cris_unwind_cache *info
914 = cris_frame_unwind_cache (this_frame, this_cache);
915 return info->base;
916 }
917
918 static const struct frame_base cris_frame_base =
919 {
920 &cris_frame_unwind,
921 cris_frame_base_address,
922 cris_frame_base_address,
923 cris_frame_base_address
924 };
925
926 /* Frames information. The definition of the struct frame_info is
927
928 CORE_ADDR frame
929 CORE_ADDR pc
930 enum frame_type type;
931 CORE_ADDR return_pc
932 int leaf_function
933
934 If the compilation option -fno-omit-frame-pointer is present the
935 variable frame will be set to the content of R8 which is the frame
936 pointer register.
937
938 The variable pc contains the address where execution is performed
939 in the present frame. The innermost frame contains the current content
940 of the register PC. All other frames contain the content of the
941 register PC in the next frame.
942
943 The variable `type' indicates the frame's type: normal, SIGTRAMP
944 (associated with a signal handler), dummy (associated with a dummy
945 frame).
946
947 The variable return_pc contains the address where execution should be
948 resumed when the present frame has finished, the return address.
949
950 The variable leaf_function is 1 if the return address is in the register
951 SRP, and 0 if it is on the stack.
952
953 Prologue instructions C-code.
954 The prologue may consist of (-fno-omit-frame-pointer)
955 1) 2)
956 push srp
957 push r8 push r8
958 move.d sp,r8 move.d sp,r8
959 subq X,sp subq X,sp
960 movem rY,[sp] movem rY,[sp]
961 move.S rZ,[r8-U] move.S rZ,[r8-U]
962
963 where 1 is a non-terminal function, and 2 is a leaf-function.
964
965 Note that this assumption is extremely brittle, and will break at the
966 slightest change in GCC's prologue.
967
968 If local variables are declared or register contents are saved on stack
969 the subq-instruction will be present with X as the number of bytes
970 needed for storage. The reshuffle with respect to r8 may be performed
971 with any size S (b, w, d) and any of the general registers Z={0..13}.
972 The offset U should be representable by a signed 8-bit value in all cases.
973 Thus, the prefix word is assumed to be immediate byte offset mode followed
974 by another word containing the instruction.
975
976 Degenerate cases:
977 3)
978 push r8
979 move.d sp,r8
980 move.d r8,sp
981 pop r8
982
983 Prologue instructions C++-code.
984 Case 1) and 2) in the C-code may be followed by
985
986 move.d r10,rS ; this
987 move.d r11,rT ; P1
988 move.d r12,rU ; P2
989 move.d r13,rV ; P3
990 move.S [r8+U],rZ ; P4
991
992 if any of the call parameters are stored. The host expects these
993 instructions to be executed in order to get the call parameters right. */
994
995 /* Examine the prologue of a function. The variable ip is the address of
996 the first instruction of the prologue. The variable limit is the address
997 of the first instruction after the prologue. The variable fi contains the
998 information in struct frame_info. The variable frameless_p controls whether
999 the entire prologue is examined (0) or just enough instructions to
1000 determine that it is a prologue (1). */
1001
1002 static CORE_ADDR
1003 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1004 struct cris_unwind_cache *info)
1005 {
1006 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1008
1009 /* Present instruction. */
1010 unsigned short insn;
1011
1012 /* Next instruction, lookahead. */
1013 unsigned short insn_next;
1014 int regno;
1015
1016 /* Number of byte on stack used for local variables and movem. */
1017 int val;
1018
1019 /* Highest register number in a movem. */
1020 int regsave;
1021
1022 /* move.d r<source_register>,rS */
1023 short source_register;
1024
1025 /* Scan limit. */
1026 int limit;
1027
1028 /* This frame is with respect to a leaf until a push srp is found. */
1029 if (info)
1030 {
1031 info->leaf_function = 1;
1032 }
1033
1034 /* Assume nothing on stack. */
1035 val = 0;
1036 regsave = -1;
1037
1038 /* If we were called without a this_frame, that means we were called
1039 from cris_skip_prologue which already tried to find the end of the
1040 prologue through the symbol information. 64 instructions past current
1041 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1042 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1043
1044 /* Find the prologue instructions. */
1045 while (pc > 0 && pc < limit)
1046 {
1047 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1048 pc += 2;
1049 if (insn == 0xE1FC)
1050 {
1051 /* push <reg> 32 bit instruction. */
1052 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1053 pc += 2;
1054 regno = cris_get_operand2 (insn_next);
1055 if (info)
1056 {
1057 info->sp_offset += 4;
1058 }
1059 /* This check, meant to recognize srp, used to be regno ==
1060 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1061 if (insn_next == 0xBE7E)
1062 {
1063 if (info)
1064 {
1065 info->leaf_function = 0;
1066 }
1067 }
1068 else if (insn_next == 0x8FEE)
1069 {
1070 /* push $r8 */
1071 if (info)
1072 {
1073 info->r8_offset = info->sp_offset;
1074 }
1075 }
1076 }
1077 else if (insn == 0x866E)
1078 {
1079 /* move.d sp,r8 */
1080 if (info)
1081 {
1082 info->uses_frame = 1;
1083 }
1084 continue;
1085 }
1086 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1087 && cris_get_mode (insn) == 0x0000
1088 && cris_get_opcode (insn) == 0x000A)
1089 {
1090 /* subq <val>,sp */
1091 if (info)
1092 {
1093 info->sp_offset += cris_get_quick_value (insn);
1094 }
1095 }
1096 else if (cris_get_mode (insn) == 0x0002
1097 && cris_get_opcode (insn) == 0x000F
1098 && cris_get_size (insn) == 0x0003
1099 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1100 {
1101 /* movem r<regsave>,[sp] */
1102 regsave = cris_get_operand2 (insn);
1103 }
1104 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1105 && ((insn & 0x0F00) >> 8) == 0x0001
1106 && (cris_get_signed_offset (insn) < 0))
1107 {
1108 /* Immediate byte offset addressing prefix word with sp as base
1109 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1110 is between 64 and 128.
1111 movem r<regsave>,[sp=sp-<val>] */
1112 if (info)
1113 {
1114 info->sp_offset += -cris_get_signed_offset (insn);
1115 }
1116 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1117 pc += 2;
1118 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1119 && cris_get_opcode (insn_next) == 0x000F
1120 && cris_get_size (insn_next) == 0x0003
1121 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1122 (gdbarch))
1123 {
1124 regsave = cris_get_operand2 (insn_next);
1125 }
1126 else
1127 {
1128 /* The prologue ended before the limit was reached. */
1129 pc -= 4;
1130 break;
1131 }
1132 }
1133 else if (cris_get_mode (insn) == 0x0001
1134 && cris_get_opcode (insn) == 0x0009
1135 && cris_get_size (insn) == 0x0002)
1136 {
1137 /* move.d r<10..13>,r<0..15> */
1138 source_register = cris_get_operand1 (insn);
1139
1140 /* FIXME? In the glibc solibs, the prologue might contain something
1141 like (this example taken from relocate_doit):
1142 move.d $pc,$r0
1143 sub.d 0xfffef426,$r0
1144 which isn't covered by the source_register check below. Question
1145 is whether to add a check for this combo, or make better use of
1146 the limit variable instead. */
1147 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1148 {
1149 /* The prologue ended before the limit was reached. */
1150 pc -= 2;
1151 break;
1152 }
1153 }
1154 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1155 /* The size is a fixed-size. */
1156 && ((insn & 0x0F00) >> 8) == 0x0001
1157 /* A negative offset. */
1158 && (cris_get_signed_offset (insn) < 0))
1159 {
1160 /* move.S rZ,[r8-U] (?) */
1161 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1162 pc += 2;
1163 regno = cris_get_operand2 (insn_next);
1164 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1165 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1166 && cris_get_opcode (insn_next) == 0x000F)
1167 {
1168 /* move.S rZ,[r8-U] */
1169 continue;
1170 }
1171 else
1172 {
1173 /* The prologue ended before the limit was reached. */
1174 pc -= 4;
1175 break;
1176 }
1177 }
1178 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1179 /* The size is a fixed-size. */
1180 && ((insn & 0x0F00) >> 8) == 0x0001
1181 /* A positive offset. */
1182 && (cris_get_signed_offset (insn) > 0))
1183 {
1184 /* move.S [r8+U],rZ (?) */
1185 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1186 pc += 2;
1187 regno = cris_get_operand2 (insn_next);
1188 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1189 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1190 && cris_get_opcode (insn_next) == 0x0009
1191 && cris_get_operand1 (insn_next) == regno)
1192 {
1193 /* move.S [r8+U],rZ */
1194 continue;
1195 }
1196 else
1197 {
1198 /* The prologue ended before the limit was reached. */
1199 pc -= 4;
1200 break;
1201 }
1202 }
1203 else
1204 {
1205 /* The prologue ended before the limit was reached. */
1206 pc -= 2;
1207 break;
1208 }
1209 }
1210
1211 /* We only want to know the end of the prologue when this_frame and info
1212 are NULL (called from cris_skip_prologue i.e.). */
1213 if (this_frame == NULL && info == NULL)
1214 {
1215 return pc;
1216 }
1217
1218 info->size = info->sp_offset;
1219
1220 /* Compute the previous frame's stack pointer (which is also the
1221 frame's ID's stack address), and this frame's base pointer. */
1222 if (info->uses_frame)
1223 {
1224 ULONGEST this_base;
1225 /* The SP was moved to the FP. This indicates that a new frame
1226 was created. Get THIS frame's FP value by unwinding it from
1227 the next frame. */
1228 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1229 info->base = this_base;
1230 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1231
1232 /* The FP points at the last saved register. Adjust the FP back
1233 to before the first saved register giving the SP. */
1234 info->prev_sp = info->base + info->r8_offset;
1235 }
1236 else
1237 {
1238 ULONGEST this_base;
1239 /* Assume that the FP is this frame's SP but with that pushed
1240 stack space added back. */
1241 this_base = get_frame_register_unsigned (this_frame,
1242 gdbarch_sp_regnum (gdbarch));
1243 info->base = this_base;
1244 info->prev_sp = info->base + info->size;
1245 }
1246
1247 /* Calculate the addresses for the saved registers on the stack. */
1248 /* FIXME: The address calculation should really be done on the fly while
1249 we're analyzing the prologue (we only hold one regsave value as it is
1250 now). */
1251 val = info->sp_offset;
1252
1253 for (regno = regsave; regno >= 0; regno--)
1254 {
1255 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1256 val -= 4;
1257 }
1258
1259 /* The previous frame's SP needed to be computed. Save the computed
1260 value. */
1261 trad_frame_set_value (info->saved_regs,
1262 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1263
1264 if (!info->leaf_function)
1265 {
1266 /* SRP saved on the stack. But where? */
1267 if (info->r8_offset == 0)
1268 {
1269 /* R8 not pushed yet. */
1270 info->saved_regs[SRP_REGNUM].addr = info->base;
1271 }
1272 else
1273 {
1274 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1275 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1276 }
1277 }
1278
1279 /* The PC is found in SRP (the actual register or located on the stack). */
1280 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1281 = info->saved_regs[SRP_REGNUM];
1282
1283 return pc;
1284 }
1285
1286 static CORE_ADDR
1287 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1288 struct cris_unwind_cache *info)
1289 {
1290 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1291 ULONGEST this_base;
1292
1293 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1294 meant to be a full-fledged prologue scanner. It is only needed for
1295 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1296
1297 * PLT stubs (library calls)
1298 * call dummys
1299 * signal trampolines
1300
1301 For those cases, it is assumed that there is no actual prologue; that
1302 the stack pointer is not adjusted, and (as a consequence) the return
1303 address is not pushed onto the stack. */
1304
1305 /* We only want to know the end of the prologue when this_frame and info
1306 are NULL (called from cris_skip_prologue i.e.). */
1307 if (this_frame == NULL && info == NULL)
1308 {
1309 return pc;
1310 }
1311
1312 /* The SP is assumed to be unaltered. */
1313 this_base = get_frame_register_unsigned (this_frame,
1314 gdbarch_sp_regnum (gdbarch));
1315 info->base = this_base;
1316 info->prev_sp = this_base;
1317
1318 /* The PC is assumed to be found in SRP. */
1319 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1320 = info->saved_regs[SRP_REGNUM];
1321
1322 return pc;
1323 }
1324
1325 /* Advance pc beyond any function entry prologue instructions at pc
1326 to reach some "real" code. */
1327
1328 /* Given a PC value corresponding to the start of a function, return the PC
1329 of the first instruction after the function prologue. */
1330
1331 static CORE_ADDR
1332 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1333 {
1334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1335 CORE_ADDR func_addr, func_end;
1336 struct symtab_and_line sal;
1337 CORE_ADDR pc_after_prologue;
1338
1339 /* If we have line debugging information, then the end of the prologue
1340 should the first assembly instruction of the first source line. */
1341 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1342 {
1343 sal = find_pc_line (func_addr, 0);
1344 if (sal.end > 0 && sal.end < func_end)
1345 return sal.end;
1346 }
1347
1348 if (tdep->cris_version == 32)
1349 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1350 else
1351 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1352
1353 return pc_after_prologue;
1354 }
1355
1356 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1357
1358 static int
1359 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1360 {
1361 return 2;
1362 }
1363
1364 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1365
1366 static const gdb_byte *
1367 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1368 {
1369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1370 static unsigned char break8_insn[] = {0x38, 0xe9};
1371 static unsigned char break15_insn[] = {0x3f, 0xe9};
1372
1373 *size = kind;
1374
1375 if (tdep->cris_mode == cris_mode_guru)
1376 return break15_insn;
1377 else
1378 return break8_insn;
1379 }
1380
1381 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1382 0 otherwise. */
1383
1384 static int
1385 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1386 struct cris_spec_reg spec_reg)
1387 {
1388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1389 unsigned int version = tdep->cris_version;
1390
1391 switch (spec_reg.applicable_version)
1392 {
1393 case cris_ver_version_all:
1394 return 1;
1395 case cris_ver_warning:
1396 /* Indeterminate/obsolete. */
1397 return 0;
1398 case cris_ver_v0_3:
1399 return in_inclusive_range (version, 0U, 3U);
1400 case cris_ver_v3p:
1401 return (version >= 3);
1402 case cris_ver_v8:
1403 return in_inclusive_range (version, 8U, 9U);
1404 case cris_ver_v8p:
1405 return (version >= 8);
1406 case cris_ver_v0_10:
1407 return in_inclusive_range (version, 0U, 10U);
1408 case cris_ver_v3_10:
1409 return in_inclusive_range (version, 3U, 10U);
1410 case cris_ver_v8_10:
1411 return in_inclusive_range (version, 8U, 10U);
1412 case cris_ver_v10:
1413 return (version == 10);
1414 case cris_ver_v10p:
1415 return (version >= 10);
1416 case cris_ver_v32p:
1417 return (version >= 32);
1418 default:
1419 /* Invalid cris version. */
1420 return 0;
1421 }
1422 }
1423
1424 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1425 register, -1 for an invalid register. */
1426
1427 static int
1428 cris_register_size (struct gdbarch *gdbarch, int regno)
1429 {
1430 int i;
1431 int spec_regno;
1432
1433 if (regno >= 0 && regno < NUM_GENREGS)
1434 {
1435 /* General registers (R0 - R15) are 32 bits. */
1436 return 4;
1437 }
1438 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1439 {
1440 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1441 Adjust regno accordingly. */
1442 spec_regno = regno - NUM_GENREGS;
1443
1444 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1445 {
1446 if (cris_spec_regs[i].number == spec_regno
1447 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1448 /* Go with the first applicable register. */
1449 return cris_spec_regs[i].reg_size;
1450 }
1451 /* Special register not applicable to this CRIS version. */
1452 return 0;
1453 }
1454 else if (regno >= gdbarch_pc_regnum (gdbarch)
1455 && regno < gdbarch_num_regs (gdbarch))
1456 {
1457 /* This will apply to CRISv32 only where there are additional registers
1458 after the special registers (pseudo PC and support registers). */
1459 return 4;
1460 }
1461
1462
1463 return -1;
1464 }
1465
1466 /* Nonzero if regno should not be fetched from the target. This is the case
1467 for unimplemented (size 0) and non-existant registers. */
1468
1469 static int
1470 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1471 {
1472 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1473 || (cris_register_size (gdbarch, regno) == 0));
1474 }
1475
1476 /* Nonzero if regno should not be written to the target, for various
1477 reasons. */
1478
1479 static int
1480 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1481 {
1482 /* There are three kinds of registers we refuse to write to.
1483 1. Those that not implemented.
1484 2. Those that are read-only (depends on the processor mode).
1485 3. Those registers to which a write has no effect. */
1486
1487 if (regno < 0
1488 || regno >= gdbarch_num_regs (gdbarch)
1489 || cris_register_size (gdbarch, regno) == 0)
1490 /* Not implemented. */
1491 return 1;
1492
1493 else if (regno == VR_REGNUM)
1494 /* Read-only. */
1495 return 1;
1496
1497 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1498 /* Writing has no effect. */
1499 return 1;
1500
1501 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1502 agent decide whether they are writable. */
1503
1504 return 0;
1505 }
1506
1507 /* Nonzero if regno should not be fetched from the target. This is the case
1508 for unimplemented (size 0) and non-existant registers. */
1509
1510 static int
1511 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1512 {
1513 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1514 || (cris_register_size (gdbarch, regno) == 0));
1515 }
1516
1517 /* Nonzero if regno should not be written to the target, for various
1518 reasons. */
1519
1520 static int
1521 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1522 {
1523 /* There are three kinds of registers we refuse to write to.
1524 1. Those that not implemented.
1525 2. Those that are read-only (depends on the processor mode).
1526 3. Those registers to which a write has no effect. */
1527
1528 if (regno < 0
1529 || regno >= gdbarch_num_regs (gdbarch)
1530 || cris_register_size (gdbarch, regno) == 0)
1531 /* Not implemented. */
1532 return 1;
1533
1534 else if (regno == VR_REGNUM)
1535 /* Read-only. */
1536 return 1;
1537
1538 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1539 /* Writing has no effect. */
1540 return 1;
1541
1542 /* Many special registers are read-only in user mode. Let the debug
1543 agent decide whether they are writable. */
1544
1545 return 0;
1546 }
1547
1548 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1549 of data in register regno. */
1550
1551 static struct type *
1552 cris_register_type (struct gdbarch *gdbarch, int regno)
1553 {
1554 if (regno == gdbarch_pc_regnum (gdbarch))
1555 return builtin_type (gdbarch)->builtin_func_ptr;
1556 else if (regno == gdbarch_sp_regnum (gdbarch)
1557 || regno == CRIS_FP_REGNUM)
1558 return builtin_type (gdbarch)->builtin_data_ptr;
1559 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1560 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1561 /* Note: R8 taken care of previous clause. */
1562 return builtin_type (gdbarch)->builtin_uint32;
1563 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1564 return builtin_type (gdbarch)->builtin_uint16;
1565 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1566 return builtin_type (gdbarch)->builtin_uint8;
1567 else
1568 /* Invalid (unimplemented) register. */
1569 return builtin_type (gdbarch)->builtin_int0;
1570 }
1571
1572 static struct type *
1573 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1574 {
1575 if (regno == gdbarch_pc_regnum (gdbarch))
1576 return builtin_type (gdbarch)->builtin_func_ptr;
1577 else if (regno == gdbarch_sp_regnum (gdbarch)
1578 || regno == CRIS_FP_REGNUM)
1579 return builtin_type (gdbarch)->builtin_data_ptr;
1580 else if ((regno >= 0 && regno <= ACR_REGNUM)
1581 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1582 || (regno == PID_REGNUM)
1583 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1584 /* Note: R8 and SP taken care of by previous clause. */
1585 return builtin_type (gdbarch)->builtin_uint32;
1586 else if (regno == WZ_REGNUM)
1587 return builtin_type (gdbarch)->builtin_uint16;
1588 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1589 return builtin_type (gdbarch)->builtin_uint8;
1590 else
1591 {
1592 /* Invalid (unimplemented) register. Should not happen as there are
1593 no unimplemented CRISv32 registers. */
1594 warning (_("crisv32_register_type: unknown regno %d"), regno);
1595 return builtin_type (gdbarch)->builtin_int0;
1596 }
1597 }
1598
1599 /* Stores a function return value of type type, where valbuf is the address
1600 of the value to be stored. */
1601
1602 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1603
1604 static void
1605 cris_store_return_value (struct type *type, struct regcache *regcache,
1606 const gdb_byte *valbuf)
1607 {
1608 struct gdbarch *gdbarch = regcache->arch ();
1609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1610 ULONGEST val;
1611 int len = TYPE_LENGTH (type);
1612
1613 if (len <= 4)
1614 {
1615 /* Put the return value in R10. */
1616 val = extract_unsigned_integer (valbuf, len, byte_order);
1617 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1618 }
1619 else if (len <= 8)
1620 {
1621 /* Put the return value in R10 and R11. */
1622 val = extract_unsigned_integer (valbuf, 4, byte_order);
1623 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1624 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1625 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1626 }
1627 else
1628 error (_("cris_store_return_value: type length too large."));
1629 }
1630
1631 /* Return the name of register regno as a string. Return NULL for an
1632 invalid or unimplemented register. */
1633
1634 static const char *
1635 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1636 {
1637 int spec_regno;
1638 int i;
1639
1640 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1641 Adjust regno accordingly. */
1642 spec_regno = regno - NUM_GENREGS;
1643
1644 /* Assume nothing about the layout of the cris_spec_regs struct
1645 when searching. */
1646 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1647 {
1648 if (cris_spec_regs[i].number == spec_regno
1649 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1650 /* Go with the first applicable register. */
1651 return cris_spec_regs[i].name;
1652 }
1653 /* Special register not applicable to this CRIS version. */
1654 return NULL;
1655 }
1656
1657 static const char *
1658 cris_register_name (struct gdbarch *gdbarch, int regno)
1659 {
1660 static const char *cris_genreg_names[] =
1661 { "r0", "r1", "r2", "r3", \
1662 "r4", "r5", "r6", "r7", \
1663 "r8", "r9", "r10", "r11", \
1664 "r12", "r13", "sp", "pc" };
1665
1666 if (regno >= 0 && regno < NUM_GENREGS)
1667 {
1668 /* General register. */
1669 return cris_genreg_names[regno];
1670 }
1671 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1672 {
1673 return cris_special_register_name (gdbarch, regno);
1674 }
1675 else
1676 {
1677 /* Invalid register. */
1678 return NULL;
1679 }
1680 }
1681
1682 static const char *
1683 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1684 {
1685 static const char *crisv32_genreg_names[] =
1686 { "r0", "r1", "r2", "r3", \
1687 "r4", "r5", "r6", "r7", \
1688 "r8", "r9", "r10", "r11", \
1689 "r12", "r13", "sp", "acr"
1690 };
1691
1692 static const char *crisv32_sreg_names[] =
1693 { "s0", "s1", "s2", "s3", \
1694 "s4", "s5", "s6", "s7", \
1695 "s8", "s9", "s10", "s11", \
1696 "s12", "s13", "s14", "s15"
1697 };
1698
1699 if (regno >= 0 && regno < NUM_GENREGS)
1700 {
1701 /* General register. */
1702 return crisv32_genreg_names[regno];
1703 }
1704 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1705 {
1706 return cris_special_register_name (gdbarch, regno);
1707 }
1708 else if (regno == gdbarch_pc_regnum (gdbarch))
1709 {
1710 return "pc";
1711 }
1712 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1713 {
1714 return crisv32_sreg_names[regno - S0_REGNUM];
1715 }
1716 else
1717 {
1718 /* Invalid register. */
1719 return NULL;
1720 }
1721 }
1722
1723 /* Convert DWARF register number REG to the appropriate register
1724 number used by GDB. */
1725
1726 static int
1727 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1728 {
1729 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1730 numbering, MOF is 18).
1731 Adapted from gcc/config/cris/cris.h. */
1732 static int cris_dwarf_regmap[] = {
1733 0, 1, 2, 3,
1734 4, 5, 6, 7,
1735 8, 9, 10, 11,
1736 12, 13, 14, 15,
1737 27, -1, -1, -1,
1738 -1, -1, -1, 23,
1739 -1, -1, -1, 27,
1740 -1, -1, -1, -1
1741 };
1742 int regnum = -1;
1743
1744 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1745 regnum = cris_dwarf_regmap[reg];
1746
1747 return regnum;
1748 }
1749
1750 /* DWARF-2 frame support. */
1751
1752 static void
1753 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1754 struct dwarf2_frame_state_reg *reg,
1755 struct frame_info *this_frame)
1756 {
1757 /* The return address column. */
1758 if (regnum == gdbarch_pc_regnum (gdbarch))
1759 reg->how = DWARF2_FRAME_REG_RA;
1760
1761 /* The call frame address. */
1762 else if (regnum == gdbarch_sp_regnum (gdbarch))
1763 reg->how = DWARF2_FRAME_REG_CFA;
1764 }
1765
1766 /* Extract from an array regbuf containing the raw register state a function
1767 return value of type type, and copy that, in virtual format, into
1768 valbuf. */
1769
1770 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1771
1772 static void
1773 cris_extract_return_value (struct type *type, struct regcache *regcache,
1774 gdb_byte *valbuf)
1775 {
1776 struct gdbarch *gdbarch = regcache->arch ();
1777 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1778 ULONGEST val;
1779 int len = TYPE_LENGTH (type);
1780
1781 if (len <= 4)
1782 {
1783 /* Get the return value from R10. */
1784 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1785 store_unsigned_integer (valbuf, len, byte_order, val);
1786 }
1787 else if (len <= 8)
1788 {
1789 /* Get the return value from R10 and R11. */
1790 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1791 store_unsigned_integer (valbuf, 4, byte_order, val);
1792 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1793 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1794 }
1795 else
1796 error (_("cris_extract_return_value: type length too large"));
1797 }
1798
1799 /* Handle the CRIS return value convention. */
1800
1801 static enum return_value_convention
1802 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1803 struct type *type, struct regcache *regcache,
1804 gdb_byte *readbuf, const gdb_byte *writebuf)
1805 {
1806 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION
1808 || TYPE_LENGTH (type) > 8)
1809 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1810 goes on the stack. */
1811 return RETURN_VALUE_STRUCT_CONVENTION;
1812
1813 if (readbuf)
1814 cris_extract_return_value (type, regcache, readbuf);
1815 if (writebuf)
1816 cris_store_return_value (type, regcache, writebuf);
1817
1818 return RETURN_VALUE_REGISTER_CONVENTION;
1819 }
1820
1821 /* Calculates a value that measures how good inst_args constraints an
1822 instruction. It stems from cris_constraint, found in cris-dis.c. */
1823
1824 static int
1825 constraint (unsigned int insn, const char *inst_args,
1826 inst_env_type *inst_env)
1827 {
1828 int retval = 0;
1829 int tmp, i;
1830
1831 const gdb_byte *s = (const gdb_byte *) inst_args;
1832
1833 for (; *s; s++)
1834 switch (*s)
1835 {
1836 case 'm':
1837 if ((insn & 0x30) == 0x30)
1838 return -1;
1839 break;
1840
1841 case 'S':
1842 /* A prefix operand. */
1843 if (inst_env->prefix_found)
1844 break;
1845 else
1846 return -1;
1847
1848 case 'B':
1849 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1850 valid "push" size. In case of special register, it may be != 4. */
1851 if (inst_env->prefix_found)
1852 break;
1853 else
1854 return -1;
1855
1856 case 'D':
1857 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1858 if (!retval)
1859 return -1;
1860 else
1861 retval += 4;
1862 break;
1863
1864 case 'P':
1865 tmp = (insn >> 0xC) & 0xF;
1866
1867 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1868 {
1869 /* Since we match four bits, we will give a value of
1870 4 - 1 = 3 in a match. If there is a corresponding
1871 exact match of a special register in another pattern, it
1872 will get a value of 4, which will be higher. This should
1873 be correct in that an exact pattern would match better that
1874 a general pattern.
1875 Note that there is a reason for not returning zero; the
1876 pattern for "clear" is partly matched in the bit-pattern
1877 (the two lower bits must be zero), while the bit-pattern
1878 for a move from a special register is matched in the
1879 register constraint.
1880 This also means we will will have a race condition if
1881 there is a partly match in three bits in the bit pattern. */
1882 if (tmp == cris_spec_regs[i].number)
1883 {
1884 retval += 3;
1885 break;
1886 }
1887 }
1888
1889 if (cris_spec_regs[i].name == NULL)
1890 return -1;
1891 break;
1892 }
1893 return retval;
1894 }
1895
1896 /* Returns the number of bits set in the variable value. */
1897
1898 static int
1899 number_of_bits (unsigned int value)
1900 {
1901 int number_of_bits = 0;
1902
1903 while (value != 0)
1904 {
1905 number_of_bits += 1;
1906 value &= (value - 1);
1907 }
1908 return number_of_bits;
1909 }
1910
1911 /* Finds the address that should contain the single step breakpoint(s).
1912 It stems from code in cris-dis.c. */
1913
1914 static int
1915 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1916 {
1917 int i;
1918 int max_level_of_match = -1;
1919 int max_matched = -1;
1920 int level_of_match;
1921
1922 for (i = 0; cris_opcodes[i].name != NULL; i++)
1923 {
1924 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1925 && ((cris_opcodes[i].lose & insn) == 0)
1926 /* Only CRISv10 instructions, please. */
1927 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1928 {
1929 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1930 if (level_of_match >= 0)
1931 {
1932 level_of_match +=
1933 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1934 if (level_of_match > max_level_of_match)
1935 {
1936 max_matched = i;
1937 max_level_of_match = level_of_match;
1938 if (level_of_match == 16)
1939 {
1940 /* All bits matched, cannot find better. */
1941 break;
1942 }
1943 }
1944 }
1945 }
1946 }
1947 return max_matched;
1948 }
1949
1950 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1951 actually an internal error. */
1952
1953 static int
1954 find_step_target (struct regcache *regcache, inst_env_type *inst_env)
1955 {
1956 int i;
1957 int offset;
1958 unsigned short insn;
1959 struct gdbarch *gdbarch = regcache->arch ();
1960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1961
1962 /* Create a local register image and set the initial state. */
1963 for (i = 0; i < NUM_GENREGS; i++)
1964 {
1965 inst_env->reg[i] =
1966 (unsigned long) regcache_raw_get_unsigned (regcache, i);
1967 }
1968 offset = NUM_GENREGS;
1969 for (i = 0; i < NUM_SPECREGS; i++)
1970 {
1971 inst_env->preg[i] =
1972 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
1973 }
1974 inst_env->branch_found = 0;
1975 inst_env->slot_needed = 0;
1976 inst_env->delay_slot_pc_active = 0;
1977 inst_env->prefix_found = 0;
1978 inst_env->invalid = 0;
1979 inst_env->xflag_found = 0;
1980 inst_env->disable_interrupt = 0;
1981 inst_env->byte_order = byte_order;
1982
1983 /* Look for a step target. */
1984 do
1985 {
1986 /* Read an instruction from the client. */
1987 insn = read_memory_unsigned_integer
1988 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
1989
1990 /* If the instruction is not in a delay slot the new content of the
1991 PC is [PC] + 2. If the instruction is in a delay slot it is not
1992 that simple. Since a instruction in a delay slot cannot change
1993 the content of the PC, it does not matter what value PC will have.
1994 Just make sure it is a valid instruction. */
1995 if (!inst_env->delay_slot_pc_active)
1996 {
1997 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
1998 }
1999 else
2000 {
2001 inst_env->delay_slot_pc_active = 0;
2002 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2003 = inst_env->delay_slot_pc;
2004 }
2005 /* Analyse the present instruction. */
2006 i = find_cris_op (insn, inst_env);
2007 if (i == -1)
2008 {
2009 inst_env->invalid = 1;
2010 }
2011 else
2012 {
2013 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2014 }
2015 } while (!inst_env->invalid
2016 && (inst_env->prefix_found || inst_env->xflag_found
2017 || inst_env->slot_needed));
2018 return i;
2019 }
2020
2021 /* There is no hardware single-step support. The function find_step_target
2022 digs through the opcodes in order to find all possible targets.
2023 Either one ordinary target or two targets for branches may be found. */
2024
2025 static std::vector<CORE_ADDR>
2026 cris_software_single_step (struct regcache *regcache)
2027 {
2028 struct gdbarch *gdbarch = regcache->arch ();
2029 inst_env_type inst_env;
2030 std::vector<CORE_ADDR> next_pcs;
2031
2032 /* Analyse the present instruction environment and insert
2033 breakpoints. */
2034 int status = find_step_target (regcache, &inst_env);
2035 if (status == -1)
2036 {
2037 /* Could not find a target. Things are likely to go downhill
2038 from here. */
2039 warning (_("CRIS software single step could not find a step target."));
2040 }
2041 else
2042 {
2043 /* Insert at most two breakpoints. One for the next PC content
2044 and possibly another one for a branch, jump, etc. */
2045 CORE_ADDR next_pc
2046 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2047
2048 next_pcs.push_back (next_pc);
2049 if (inst_env.branch_found
2050 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2051 {
2052 CORE_ADDR branch_target_address
2053 = (CORE_ADDR) inst_env.branch_break_address;
2054
2055 next_pcs.push_back (branch_target_address);
2056 }
2057 }
2058
2059 return next_pcs;
2060 }
2061
2062 /* Calculates the prefix value for quick offset addressing mode. */
2063
2064 static void
2065 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2066 {
2067 /* It's invalid to be in a delay slot. You can't have a prefix to this
2068 instruction (not 100% sure). */
2069 if (inst_env->slot_needed || inst_env->prefix_found)
2070 {
2071 inst_env->invalid = 1;
2072 return;
2073 }
2074
2075 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2076 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2077
2078 /* A prefix doesn't change the xflag_found. But the rest of the flags
2079 need updating. */
2080 inst_env->slot_needed = 0;
2081 inst_env->prefix_found = 1;
2082 }
2083
2084 /* Updates the autoincrement register. The size of the increment is derived
2085 from the size of the operation. The PC is always kept aligned on even
2086 word addresses. */
2087
2088 static void
2089 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2090 {
2091 if (size == INST_BYTE_SIZE)
2092 {
2093 inst_env->reg[cris_get_operand1 (inst)] += 1;
2094
2095 /* The PC must be word aligned, so increase the PC with one
2096 word even if the size is byte. */
2097 if (cris_get_operand1 (inst) == REG_PC)
2098 {
2099 inst_env->reg[REG_PC] += 1;
2100 }
2101 }
2102 else if (size == INST_WORD_SIZE)
2103 {
2104 inst_env->reg[cris_get_operand1 (inst)] += 2;
2105 }
2106 else if (size == INST_DWORD_SIZE)
2107 {
2108 inst_env->reg[cris_get_operand1 (inst)] += 4;
2109 }
2110 else
2111 {
2112 /* Invalid size. */
2113 inst_env->invalid = 1;
2114 }
2115 }
2116
2117 /* Just a forward declaration. */
2118
2119 static unsigned long get_data_from_address (unsigned short *inst,
2120 CORE_ADDR address,
2121 enum bfd_endian byte_order);
2122
2123 /* Calculates the prefix value for the general case of offset addressing
2124 mode. */
2125
2126 static void
2127 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2128 {
2129 /* It's invalid to be in a delay slot. */
2130 if (inst_env->slot_needed || inst_env->prefix_found)
2131 {
2132 inst_env->invalid = 1;
2133 return;
2134 }
2135
2136 /* The calculation of prefix_value used to be after process_autoincrement,
2137 but that fails for an instruction such as jsr [$r0+12] which is encoded
2138 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2139 mustn't be incremented until we have read it and what it points at. */
2140 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2141
2142 /* The offset is an indirection of the contents of the operand1 register. */
2143 inst_env->prefix_value +=
2144 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2145 inst_env->byte_order);
2146
2147 if (cris_get_mode (inst) == AUTOINC_MODE)
2148 {
2149 process_autoincrement (cris_get_size (inst), inst, inst_env);
2150 }
2151
2152 /* A prefix doesn't change the xflag_found. But the rest of the flags
2153 need updating. */
2154 inst_env->slot_needed = 0;
2155 inst_env->prefix_found = 1;
2156 }
2157
2158 /* Calculates the prefix value for the index addressing mode. */
2159
2160 static void
2161 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2162 {
2163 /* It's invalid to be in a delay slot. I can't see that it's possible to
2164 have a prefix to this instruction. So I will treat this as invalid. */
2165 if (inst_env->slot_needed || inst_env->prefix_found)
2166 {
2167 inst_env->invalid = 1;
2168 return;
2169 }
2170
2171 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2172
2173 /* The offset is the operand2 value shifted the size of the instruction
2174 to the left. */
2175 inst_env->prefix_value +=
2176 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2177
2178 /* If the PC is operand1 (base) the address used is the address after
2179 the main instruction, i.e. address + 2 (the PC is already compensated
2180 for the prefix operation). */
2181 if (cris_get_operand1 (inst) == REG_PC)
2182 {
2183 inst_env->prefix_value += 2;
2184 }
2185
2186 /* A prefix doesn't change the xflag_found. But the rest of the flags
2187 need updating. */
2188 inst_env->slot_needed = 0;
2189 inst_env->xflag_found = 0;
2190 inst_env->prefix_found = 1;
2191 }
2192
2193 /* Calculates the prefix value for the double indirect addressing mode. */
2194
2195 static void
2196 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2197 {
2198
2199 CORE_ADDR address;
2200
2201 /* It's invalid to be in a delay slot. */
2202 if (inst_env->slot_needed || inst_env->prefix_found)
2203 {
2204 inst_env->invalid = 1;
2205 return;
2206 }
2207
2208 /* The prefix value is one dereference of the contents of the operand1
2209 register. */
2210 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2211 inst_env->prefix_value
2212 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2213
2214 /* Check if the mode is autoincrement. */
2215 if (cris_get_mode (inst) == AUTOINC_MODE)
2216 {
2217 inst_env->reg[cris_get_operand1 (inst)] += 4;
2218 }
2219
2220 /* A prefix doesn't change the xflag_found. But the rest of the flags
2221 need updating. */
2222 inst_env->slot_needed = 0;
2223 inst_env->xflag_found = 0;
2224 inst_env->prefix_found = 1;
2225 }
2226
2227 /* Finds the destination for a branch with 8-bits offset. */
2228
2229 static void
2230 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2231 {
2232
2233 short offset;
2234
2235 /* If we have a prefix or are in a delay slot it's bad. */
2236 if (inst_env->slot_needed || inst_env->prefix_found)
2237 {
2238 inst_env->invalid = 1;
2239 return;
2240 }
2241
2242 /* We have a branch, find out where the branch will land. */
2243 offset = cris_get_branch_short_offset (inst);
2244
2245 /* Check if the offset is signed. */
2246 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2247 {
2248 offset |= 0xFF00;
2249 }
2250
2251 /* The offset ends with the sign bit, set it to zero. The address
2252 should always be word aligned. */
2253 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2254
2255 inst_env->branch_found = 1;
2256 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2257
2258 inst_env->slot_needed = 1;
2259 inst_env->prefix_found = 0;
2260 inst_env->xflag_found = 0;
2261 inst_env->disable_interrupt = 1;
2262 }
2263
2264 /* Finds the destination for a branch with 16-bits offset. */
2265
2266 static void
2267 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2268 {
2269 short offset;
2270
2271 /* If we have a prefix or is in a delay slot it's bad. */
2272 if (inst_env->slot_needed || inst_env->prefix_found)
2273 {
2274 inst_env->invalid = 1;
2275 return;
2276 }
2277
2278 /* We have a branch, find out the offset for the branch. */
2279 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2280 inst_env->byte_order);
2281
2282 /* The instruction is one word longer than normal, so add one word
2283 to the PC. */
2284 inst_env->reg[REG_PC] += 2;
2285
2286 inst_env->branch_found = 1;
2287 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2288
2289
2290 inst_env->slot_needed = 1;
2291 inst_env->prefix_found = 0;
2292 inst_env->xflag_found = 0;
2293 inst_env->disable_interrupt = 1;
2294 }
2295
2296 /* Handles the ABS instruction. */
2297
2298 static void
2299 abs_op (unsigned short inst, inst_env_type *inst_env)
2300 {
2301
2302 long value;
2303
2304 /* ABS can't have a prefix, so it's bad if it does. */
2305 if (inst_env->prefix_found)
2306 {
2307 inst_env->invalid = 1;
2308 return;
2309 }
2310
2311 /* Check if the operation affects the PC. */
2312 if (cris_get_operand2 (inst) == REG_PC)
2313 {
2314
2315 /* It's invalid to change to the PC if we are in a delay slot. */
2316 if (inst_env->slot_needed)
2317 {
2318 inst_env->invalid = 1;
2319 return;
2320 }
2321
2322 value = (long) inst_env->reg[REG_PC];
2323
2324 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2325 if (value != SIGNED_DWORD_MASK)
2326 {
2327 value = -value;
2328 inst_env->reg[REG_PC] = (long) value;
2329 }
2330 }
2331
2332 inst_env->slot_needed = 0;
2333 inst_env->prefix_found = 0;
2334 inst_env->xflag_found = 0;
2335 inst_env->disable_interrupt = 0;
2336 }
2337
2338 /* Handles the ADDI instruction. */
2339
2340 static void
2341 addi_op (unsigned short inst, inst_env_type *inst_env)
2342 {
2343 /* It's invalid to have the PC as base register. And ADDI can't have
2344 a prefix. */
2345 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2346 {
2347 inst_env->invalid = 1;
2348 return;
2349 }
2350
2351 inst_env->slot_needed = 0;
2352 inst_env->prefix_found = 0;
2353 inst_env->xflag_found = 0;
2354 inst_env->disable_interrupt = 0;
2355 }
2356
2357 /* Handles the ASR instruction. */
2358
2359 static void
2360 asr_op (unsigned short inst, inst_env_type *inst_env)
2361 {
2362 int shift_steps;
2363 unsigned long value;
2364 unsigned long signed_extend_mask = 0;
2365
2366 /* ASR can't have a prefix, so check that it doesn't. */
2367 if (inst_env->prefix_found)
2368 {
2369 inst_env->invalid = 1;
2370 return;
2371 }
2372
2373 /* Check if the PC is the target register. */
2374 if (cris_get_operand2 (inst) == REG_PC)
2375 {
2376 /* It's invalid to change the PC in a delay slot. */
2377 if (inst_env->slot_needed)
2378 {
2379 inst_env->invalid = 1;
2380 return;
2381 }
2382 /* Get the number of bits to shift. */
2383 shift_steps
2384 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2385 value = inst_env->reg[REG_PC];
2386
2387 /* Find out how many bits the operation should apply to. */
2388 if (cris_get_size (inst) == INST_BYTE_SIZE)
2389 {
2390 if (value & SIGNED_BYTE_MASK)
2391 {
2392 signed_extend_mask = 0xFF;
2393 signed_extend_mask = signed_extend_mask >> shift_steps;
2394 signed_extend_mask = ~signed_extend_mask;
2395 }
2396 value = value >> shift_steps;
2397 value |= signed_extend_mask;
2398 value &= 0xFF;
2399 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2400 inst_env->reg[REG_PC] |= value;
2401 }
2402 else if (cris_get_size (inst) == INST_WORD_SIZE)
2403 {
2404 if (value & SIGNED_WORD_MASK)
2405 {
2406 signed_extend_mask = 0xFFFF;
2407 signed_extend_mask = signed_extend_mask >> shift_steps;
2408 signed_extend_mask = ~signed_extend_mask;
2409 }
2410 value = value >> shift_steps;
2411 value |= signed_extend_mask;
2412 value &= 0xFFFF;
2413 inst_env->reg[REG_PC] &= 0xFFFF0000;
2414 inst_env->reg[REG_PC] |= value;
2415 }
2416 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2417 {
2418 if (value & SIGNED_DWORD_MASK)
2419 {
2420 signed_extend_mask = 0xFFFFFFFF;
2421 signed_extend_mask = signed_extend_mask >> shift_steps;
2422 signed_extend_mask = ~signed_extend_mask;
2423 }
2424 value = value >> shift_steps;
2425 value |= signed_extend_mask;
2426 inst_env->reg[REG_PC] = value;
2427 }
2428 }
2429 inst_env->slot_needed = 0;
2430 inst_env->prefix_found = 0;
2431 inst_env->xflag_found = 0;
2432 inst_env->disable_interrupt = 0;
2433 }
2434
2435 /* Handles the ASRQ instruction. */
2436
2437 static void
2438 asrq_op (unsigned short inst, inst_env_type *inst_env)
2439 {
2440
2441 int shift_steps;
2442 unsigned long value;
2443 unsigned long signed_extend_mask = 0;
2444
2445 /* ASRQ can't have a prefix, so check that it doesn't. */
2446 if (inst_env->prefix_found)
2447 {
2448 inst_env->invalid = 1;
2449 return;
2450 }
2451
2452 /* Check if the PC is the target register. */
2453 if (cris_get_operand2 (inst) == REG_PC)
2454 {
2455
2456 /* It's invalid to change the PC in a delay slot. */
2457 if (inst_env->slot_needed)
2458 {
2459 inst_env->invalid = 1;
2460 return;
2461 }
2462 /* The shift size is given as a 5 bit quick value, i.e. we don't
2463 want the sign bit of the quick value. */
2464 shift_steps = cris_get_asr_shift_steps (inst);
2465 value = inst_env->reg[REG_PC];
2466 if (value & SIGNED_DWORD_MASK)
2467 {
2468 signed_extend_mask = 0xFFFFFFFF;
2469 signed_extend_mask = signed_extend_mask >> shift_steps;
2470 signed_extend_mask = ~signed_extend_mask;
2471 }
2472 value = value >> shift_steps;
2473 value |= signed_extend_mask;
2474 inst_env->reg[REG_PC] = value;
2475 }
2476 inst_env->slot_needed = 0;
2477 inst_env->prefix_found = 0;
2478 inst_env->xflag_found = 0;
2479 inst_env->disable_interrupt = 0;
2480 }
2481
2482 /* Handles the AX, EI and SETF instruction. */
2483
2484 static void
2485 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2486 {
2487 if (inst_env->prefix_found)
2488 {
2489 inst_env->invalid = 1;
2490 return;
2491 }
2492 /* Check if the instruction is setting the X flag. */
2493 if (cris_is_xflag_bit_on (inst))
2494 {
2495 inst_env->xflag_found = 1;
2496 }
2497 else
2498 {
2499 inst_env->xflag_found = 0;
2500 }
2501 inst_env->slot_needed = 0;
2502 inst_env->prefix_found = 0;
2503 inst_env->disable_interrupt = 1;
2504 }
2505
2506 /* Checks if the instruction is in assign mode. If so, it updates the assign
2507 register. Note that check_assign assumes that the caller has checked that
2508 there is a prefix to this instruction. The mode check depends on this. */
2509
2510 static void
2511 check_assign (unsigned short inst, inst_env_type *inst_env)
2512 {
2513 /* Check if it's an assign addressing mode. */
2514 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2515 {
2516 /* Assign the prefix value to operand 1. */
2517 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2518 }
2519 }
2520
2521 /* Handles the 2-operand BOUND instruction. */
2522
2523 static void
2524 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2525 {
2526 /* It's invalid to have the PC as the index operand. */
2527 if (cris_get_operand2 (inst) == REG_PC)
2528 {
2529 inst_env->invalid = 1;
2530 return;
2531 }
2532 /* Check if we have a prefix. */
2533 if (inst_env->prefix_found)
2534 {
2535 check_assign (inst, inst_env);
2536 }
2537 /* Check if this is an autoincrement mode. */
2538 else if (cris_get_mode (inst) == AUTOINC_MODE)
2539 {
2540 /* It's invalid to change the PC in a delay slot. */
2541 if (inst_env->slot_needed)
2542 {
2543 inst_env->invalid = 1;
2544 return;
2545 }
2546 process_autoincrement (cris_get_size (inst), inst, inst_env);
2547 }
2548 inst_env->slot_needed = 0;
2549 inst_env->prefix_found = 0;
2550 inst_env->xflag_found = 0;
2551 inst_env->disable_interrupt = 0;
2552 }
2553
2554 /* Handles the 3-operand BOUND instruction. */
2555
2556 static void
2557 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2558 {
2559 /* It's an error if we haven't got a prefix. And it's also an error
2560 if the PC is the destination register. */
2561 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2562 {
2563 inst_env->invalid = 1;
2564 return;
2565 }
2566 inst_env->slot_needed = 0;
2567 inst_env->prefix_found = 0;
2568 inst_env->xflag_found = 0;
2569 inst_env->disable_interrupt = 0;
2570 }
2571
2572 /* Clears the status flags in inst_env. */
2573
2574 static void
2575 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2576 {
2577 /* It's an error if we have got a prefix. */
2578 if (inst_env->prefix_found)
2579 {
2580 inst_env->invalid = 1;
2581 return;
2582 }
2583
2584 inst_env->slot_needed = 0;
2585 inst_env->prefix_found = 0;
2586 inst_env->xflag_found = 0;
2587 inst_env->disable_interrupt = 0;
2588 }
2589
2590 /* Clears the status flags in inst_env. */
2591
2592 static void
2593 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2594 {
2595 /* It's an error if we have got a prefix. */
2596 if (inst_env->prefix_found)
2597 {
2598 inst_env->invalid = 1;
2599 return;
2600 }
2601
2602 inst_env->slot_needed = 0;
2603 inst_env->prefix_found = 0;
2604 inst_env->xflag_found = 0;
2605 inst_env->disable_interrupt = 1;
2606 }
2607
2608 /* Handles the CLEAR instruction if it's in register mode. */
2609
2610 static void
2611 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2612 {
2613 /* Check if the target is the PC. */
2614 if (cris_get_operand2 (inst) == REG_PC)
2615 {
2616 /* The instruction will clear the instruction's size bits. */
2617 int clear_size = cris_get_clear_size (inst);
2618 if (clear_size == INST_BYTE_SIZE)
2619 {
2620 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2621 }
2622 if (clear_size == INST_WORD_SIZE)
2623 {
2624 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2625 }
2626 if (clear_size == INST_DWORD_SIZE)
2627 {
2628 inst_env->delay_slot_pc = 0x0;
2629 }
2630 /* The jump will be delayed with one delay slot. So we need a delay
2631 slot. */
2632 inst_env->slot_needed = 1;
2633 inst_env->delay_slot_pc_active = 1;
2634 }
2635 else
2636 {
2637 /* The PC will not change => no delay slot. */
2638 inst_env->slot_needed = 0;
2639 }
2640 inst_env->prefix_found = 0;
2641 inst_env->xflag_found = 0;
2642 inst_env->disable_interrupt = 0;
2643 }
2644
2645 /* Handles the TEST instruction if it's in register mode. */
2646
2647 static void
2648 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2649 {
2650 /* It's an error if we have got a prefix. */
2651 if (inst_env->prefix_found)
2652 {
2653 inst_env->invalid = 1;
2654 return;
2655 }
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2660
2661 }
2662
2663 /* Handles the CLEAR and TEST instruction if the instruction isn't
2664 in register mode. */
2665
2666 static void
2667 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2668 {
2669 /* Check if we are in a prefix mode. */
2670 if (inst_env->prefix_found)
2671 {
2672 /* The only way the PC can change is if this instruction is in
2673 assign addressing mode. */
2674 check_assign (inst, inst_env);
2675 }
2676 /* Indirect mode can't change the PC so just check if the mode is
2677 autoincrement. */
2678 else if (cris_get_mode (inst) == AUTOINC_MODE)
2679 {
2680 process_autoincrement (cris_get_size (inst), inst, inst_env);
2681 }
2682 inst_env->slot_needed = 0;
2683 inst_env->prefix_found = 0;
2684 inst_env->xflag_found = 0;
2685 inst_env->disable_interrupt = 0;
2686 }
2687
2688 /* Checks that the PC isn't the destination register or the instructions has
2689 a prefix. */
2690
2691 static void
2692 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2693 {
2694 /* It's invalid to have the PC as the destination. The instruction can't
2695 have a prefix. */
2696 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2697 {
2698 inst_env->invalid = 1;
2699 return;
2700 }
2701
2702 inst_env->slot_needed = 0;
2703 inst_env->prefix_found = 0;
2704 inst_env->xflag_found = 0;
2705 inst_env->disable_interrupt = 0;
2706 }
2707
2708 /* Checks that the instruction doesn't have a prefix. */
2709
2710 static void
2711 break_op (unsigned short inst, inst_env_type *inst_env)
2712 {
2713 /* The instruction can't have a prefix. */
2714 if (inst_env->prefix_found)
2715 {
2716 inst_env->invalid = 1;
2717 return;
2718 }
2719
2720 inst_env->slot_needed = 0;
2721 inst_env->prefix_found = 0;
2722 inst_env->xflag_found = 0;
2723 inst_env->disable_interrupt = 1;
2724 }
2725
2726 /* Checks that the PC isn't the destination register and that the instruction
2727 doesn't have a prefix. */
2728
2729 static void
2730 scc_op (unsigned short inst, inst_env_type *inst_env)
2731 {
2732 /* It's invalid to have the PC as the destination. The instruction can't
2733 have a prefix. */
2734 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2735 {
2736 inst_env->invalid = 1;
2737 return;
2738 }
2739
2740 inst_env->slot_needed = 0;
2741 inst_env->prefix_found = 0;
2742 inst_env->xflag_found = 0;
2743 inst_env->disable_interrupt = 1;
2744 }
2745
2746 /* Handles the register mode JUMP instruction. */
2747
2748 static void
2749 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2750 {
2751 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2752 you can't have a prefix. */
2753 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2754 {
2755 inst_env->invalid = 1;
2756 return;
2757 }
2758
2759 /* Just change the PC. */
2760 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2761 inst_env->slot_needed = 0;
2762 inst_env->prefix_found = 0;
2763 inst_env->xflag_found = 0;
2764 inst_env->disable_interrupt = 1;
2765 }
2766
2767 /* Handles the JUMP instruction for all modes except register. */
2768
2769 static void
2770 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2771 {
2772 unsigned long newpc;
2773 CORE_ADDR address;
2774
2775 /* It's invalid to do a JUMP in a delay slot. */
2776 if (inst_env->slot_needed)
2777 {
2778 inst_env->invalid = 1;
2779 }
2780 else
2781 {
2782 /* Check if we have a prefix. */
2783 if (inst_env->prefix_found)
2784 {
2785 check_assign (inst, inst_env);
2786
2787 /* Get the new value for the PC. */
2788 newpc =
2789 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2790 4, inst_env->byte_order);
2791 }
2792 else
2793 {
2794 /* Get the new value for the PC. */
2795 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2796 newpc = read_memory_unsigned_integer (address,
2797 4, inst_env->byte_order);
2798
2799 /* Check if we should increment a register. */
2800 if (cris_get_mode (inst) == AUTOINC_MODE)
2801 {
2802 inst_env->reg[cris_get_operand1 (inst)] += 4;
2803 }
2804 }
2805 inst_env->reg[REG_PC] = newpc;
2806 }
2807 inst_env->slot_needed = 0;
2808 inst_env->prefix_found = 0;
2809 inst_env->xflag_found = 0;
2810 inst_env->disable_interrupt = 1;
2811 }
2812
2813 /* Handles moves to special registers (aka P-register) for all modes. */
2814
2815 static void
2816 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2817 inst_env_type *inst_env)
2818 {
2819 if (inst_env->prefix_found)
2820 {
2821 /* The instruction has a prefix that means we are only interested if
2822 the instruction is in assign mode. */
2823 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2824 {
2825 /* The prefix handles the problem if we are in a delay slot. */
2826 if (cris_get_operand1 (inst) == REG_PC)
2827 {
2828 /* Just take care of the assign. */
2829 check_assign (inst, inst_env);
2830 }
2831 }
2832 }
2833 else if (cris_get_mode (inst) == AUTOINC_MODE)
2834 {
2835 /* The instruction doesn't have a prefix, the only case left that we
2836 are interested in is the autoincrement mode. */
2837 if (cris_get_operand1 (inst) == REG_PC)
2838 {
2839 /* If the PC is to be incremented it's invalid to be in a
2840 delay slot. */
2841 if (inst_env->slot_needed)
2842 {
2843 inst_env->invalid = 1;
2844 return;
2845 }
2846
2847 /* The increment depends on the size of the special register. */
2848 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2849 {
2850 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2851 }
2852 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2853 {
2854 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2855 }
2856 else
2857 {
2858 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2859 }
2860 }
2861 }
2862 inst_env->slot_needed = 0;
2863 inst_env->prefix_found = 0;
2864 inst_env->xflag_found = 0;
2865 inst_env->disable_interrupt = 1;
2866 }
2867
2868 /* Handles moves from special registers (aka P-register) for all modes
2869 except register. */
2870
2871 static void
2872 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2873 inst_env_type *inst_env)
2874 {
2875 if (inst_env->prefix_found)
2876 {
2877 /* The instruction has a prefix that means we are only interested if
2878 the instruction is in assign mode. */
2879 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2880 {
2881 /* The prefix handles the problem if we are in a delay slot. */
2882 if (cris_get_operand1 (inst) == REG_PC)
2883 {
2884 /* Just take care of the assign. */
2885 check_assign (inst, inst_env);
2886 }
2887 }
2888 }
2889 /* The instruction doesn't have a prefix, the only case left that we
2890 are interested in is the autoincrement mode. */
2891 else if (cris_get_mode (inst) == AUTOINC_MODE)
2892 {
2893 if (cris_get_operand1 (inst) == REG_PC)
2894 {
2895 /* If the PC is to be incremented it's invalid to be in a
2896 delay slot. */
2897 if (inst_env->slot_needed)
2898 {
2899 inst_env->invalid = 1;
2900 return;
2901 }
2902
2903 /* The increment depends on the size of the special register. */
2904 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2905 {
2906 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2907 }
2908 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2909 {
2910 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2911 }
2912 else
2913 {
2914 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2915 }
2916 }
2917 }
2918 inst_env->slot_needed = 0;
2919 inst_env->prefix_found = 0;
2920 inst_env->xflag_found = 0;
2921 inst_env->disable_interrupt = 1;
2922 }
2923
2924 /* Handles moves from special registers (aka P-register) when the mode
2925 is register. */
2926
2927 static void
2928 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2929 {
2930 /* Register mode move from special register can't have a prefix. */
2931 if (inst_env->prefix_found)
2932 {
2933 inst_env->invalid = 1;
2934 return;
2935 }
2936
2937 if (cris_get_operand1 (inst) == REG_PC)
2938 {
2939 /* It's invalid to change the PC in a delay slot. */
2940 if (inst_env->slot_needed)
2941 {
2942 inst_env->invalid = 1;
2943 return;
2944 }
2945 /* The destination is the PC, the jump will have a delay slot. */
2946 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2947 inst_env->slot_needed = 1;
2948 inst_env->delay_slot_pc_active = 1;
2949 }
2950 else
2951 {
2952 /* If the destination isn't PC, there will be no jump. */
2953 inst_env->slot_needed = 0;
2954 }
2955 inst_env->prefix_found = 0;
2956 inst_env->xflag_found = 0;
2957 inst_env->disable_interrupt = 1;
2958 }
2959
2960 /* Handles the MOVEM from memory to general register instruction. */
2961
2962 static void
2963 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2964 {
2965 if (inst_env->prefix_found)
2966 {
2967 /* The prefix handles the problem if we are in a delay slot. Is the
2968 MOVEM instruction going to change the PC? */
2969 if (cris_get_operand2 (inst) >= REG_PC)
2970 {
2971 inst_env->reg[REG_PC] =
2972 read_memory_unsigned_integer (inst_env->prefix_value,
2973 4, inst_env->byte_order);
2974 }
2975 /* The assign value is the value after the increment. Normally, the
2976 assign value is the value before the increment. */
2977 if ((cris_get_operand1 (inst) == REG_PC)
2978 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2979 {
2980 inst_env->reg[REG_PC] = inst_env->prefix_value;
2981 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2982 }
2983 }
2984 else
2985 {
2986 /* Is the MOVEM instruction going to change the PC? */
2987 if (cris_get_operand2 (inst) == REG_PC)
2988 {
2989 /* It's invalid to change the PC in a delay slot. */
2990 if (inst_env->slot_needed)
2991 {
2992 inst_env->invalid = 1;
2993 return;
2994 }
2995 inst_env->reg[REG_PC] =
2996 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2997 4, inst_env->byte_order);
2998 }
2999 /* The increment is not depending on the size, instead it's depending
3000 on the number of registers loaded from memory. */
3001 if ((cris_get_operand1 (inst) == REG_PC)
3002 && (cris_get_mode (inst) == AUTOINC_MODE))
3003 {
3004 /* It's invalid to change the PC in a delay slot. */
3005 if (inst_env->slot_needed)
3006 {
3007 inst_env->invalid = 1;
3008 return;
3009 }
3010 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3011 }
3012 }
3013 inst_env->slot_needed = 0;
3014 inst_env->prefix_found = 0;
3015 inst_env->xflag_found = 0;
3016 inst_env->disable_interrupt = 0;
3017 }
3018
3019 /* Handles the MOVEM to memory from general register instruction. */
3020
3021 static void
3022 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3023 {
3024 if (inst_env->prefix_found)
3025 {
3026 /* The assign value is the value after the increment. Normally, the
3027 assign value is the value before the increment. */
3028 if ((cris_get_operand1 (inst) == REG_PC)
3029 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3030 {
3031 /* The prefix handles the problem if we are in a delay slot. */
3032 inst_env->reg[REG_PC] = inst_env->prefix_value;
3033 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3034 }
3035 }
3036 else
3037 {
3038 /* The increment is not depending on the size, instead it's depending
3039 on the number of registers loaded to memory. */
3040 if ((cris_get_operand1 (inst) == REG_PC)
3041 && (cris_get_mode (inst) == AUTOINC_MODE))
3042 {
3043 /* It's invalid to change the PC in a delay slot. */
3044 if (inst_env->slot_needed)
3045 {
3046 inst_env->invalid = 1;
3047 return;
3048 }
3049 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3050 }
3051 }
3052 inst_env->slot_needed = 0;
3053 inst_env->prefix_found = 0;
3054 inst_env->xflag_found = 0;
3055 inst_env->disable_interrupt = 0;
3056 }
3057
3058 /* Handles the intructions that's not yet implemented, by setting
3059 inst_env->invalid to true. */
3060
3061 static void
3062 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3063 {
3064 inst_env->invalid = 1;
3065 }
3066
3067 /* Handles the XOR instruction. */
3068
3069 static void
3070 xor_op (unsigned short inst, inst_env_type *inst_env)
3071 {
3072 /* XOR can't have a prefix. */
3073 if (inst_env->prefix_found)
3074 {
3075 inst_env->invalid = 1;
3076 return;
3077 }
3078
3079 /* Check if the PC is the target. */
3080 if (cris_get_operand2 (inst) == REG_PC)
3081 {
3082 /* It's invalid to change the PC in a delay slot. */
3083 if (inst_env->slot_needed)
3084 {
3085 inst_env->invalid = 1;
3086 return;
3087 }
3088 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3089 }
3090 inst_env->slot_needed = 0;
3091 inst_env->prefix_found = 0;
3092 inst_env->xflag_found = 0;
3093 inst_env->disable_interrupt = 0;
3094 }
3095
3096 /* Handles the MULS instruction. */
3097
3098 static void
3099 muls_op (unsigned short inst, inst_env_type *inst_env)
3100 {
3101 /* MULS/U can't have a prefix. */
3102 if (inst_env->prefix_found)
3103 {
3104 inst_env->invalid = 1;
3105 return;
3106 }
3107
3108 /* Consider it invalid if the PC is the target. */
3109 if (cris_get_operand2 (inst) == REG_PC)
3110 {
3111 inst_env->invalid = 1;
3112 return;
3113 }
3114 inst_env->slot_needed = 0;
3115 inst_env->prefix_found = 0;
3116 inst_env->xflag_found = 0;
3117 inst_env->disable_interrupt = 0;
3118 }
3119
3120 /* Handles the MULU instruction. */
3121
3122 static void
3123 mulu_op (unsigned short inst, inst_env_type *inst_env)
3124 {
3125 /* MULS/U can't have a prefix. */
3126 if (inst_env->prefix_found)
3127 {
3128 inst_env->invalid = 1;
3129 return;
3130 }
3131
3132 /* Consider it invalid if the PC is the target. */
3133 if (cris_get_operand2 (inst) == REG_PC)
3134 {
3135 inst_env->invalid = 1;
3136 return;
3137 }
3138 inst_env->slot_needed = 0;
3139 inst_env->prefix_found = 0;
3140 inst_env->xflag_found = 0;
3141 inst_env->disable_interrupt = 0;
3142 }
3143
3144 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3145 The MOVE instruction is the move from source to register. */
3146
3147 static void
3148 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3149 unsigned long source1, unsigned long source2)
3150 {
3151 unsigned long pc_mask;
3152 unsigned long operation_mask;
3153
3154 /* Find out how many bits the operation should apply to. */
3155 if (cris_get_size (inst) == INST_BYTE_SIZE)
3156 {
3157 pc_mask = 0xFFFFFF00;
3158 operation_mask = 0xFF;
3159 }
3160 else if (cris_get_size (inst) == INST_WORD_SIZE)
3161 {
3162 pc_mask = 0xFFFF0000;
3163 operation_mask = 0xFFFF;
3164 }
3165 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3166 {
3167 pc_mask = 0x0;
3168 operation_mask = 0xFFFFFFFF;
3169 }
3170 else
3171 {
3172 /* The size is out of range. */
3173 inst_env->invalid = 1;
3174 return;
3175 }
3176
3177 /* The instruction just works on uw_operation_mask bits. */
3178 source2 &= operation_mask;
3179 source1 &= operation_mask;
3180
3181 /* Now calculate the result. The opcode's 3 first bits separates
3182 the different actions. */
3183 switch (cris_get_opcode (inst) & 7)
3184 {
3185 case 0: /* add */
3186 source1 += source2;
3187 break;
3188
3189 case 1: /* move */
3190 source1 = source2;
3191 break;
3192
3193 case 2: /* subtract */
3194 source1 -= source2;
3195 break;
3196
3197 case 3: /* compare */
3198 break;
3199
3200 case 4: /* and */
3201 source1 &= source2;
3202 break;
3203
3204 case 5: /* or */
3205 source1 |= source2;
3206 break;
3207
3208 default:
3209 inst_env->invalid = 1;
3210 return;
3211
3212 break;
3213 }
3214
3215 /* Make sure that the result doesn't contain more than the instruction
3216 size bits. */
3217 source2 &= operation_mask;
3218
3219 /* Calculate the new breakpoint address. */
3220 inst_env->reg[REG_PC] &= pc_mask;
3221 inst_env->reg[REG_PC] |= source1;
3222
3223 }
3224
3225 /* Extends the value from either byte or word size to a dword. If the mode
3226 is zero extend then the value is extended with zero. If instead the mode
3227 is signed extend the sign bit of the value is taken into consideration. */
3228
3229 static unsigned long
3230 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3231 {
3232 /* The size can be either byte or word, check which one it is.
3233 Don't check the highest bit, it's indicating if it's a zero
3234 or sign extend. */
3235 if (cris_get_size (*inst) & INST_WORD_SIZE)
3236 {
3237 /* Word size. */
3238 value &= 0xFFFF;
3239
3240 /* Check if the instruction is signed extend. If so, check if value has
3241 the sign bit on. */
3242 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3243 {
3244 value |= SIGNED_WORD_EXTEND_MASK;
3245 }
3246 }
3247 else
3248 {
3249 /* Byte size. */
3250 value &= 0xFF;
3251
3252 /* Check if the instruction is signed extend. If so, check if value has
3253 the sign bit on. */
3254 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3255 {
3256 value |= SIGNED_BYTE_EXTEND_MASK;
3257 }
3258 }
3259 /* The size should now be dword. */
3260 cris_set_size_to_dword (inst);
3261 return value;
3262 }
3263
3264 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3265 instruction. The MOVE instruction is the move from source to register. */
3266
3267 static void
3268 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3269 inst_env_type *inst_env)
3270 {
3271 unsigned long operand1;
3272 unsigned long operand2;
3273
3274 /* It's invalid to have a prefix to the instruction. This is a register
3275 mode instruction and can't have a prefix. */
3276 if (inst_env->prefix_found)
3277 {
3278 inst_env->invalid = 1;
3279 return;
3280 }
3281 /* Check if the instruction has PC as its target. */
3282 if (cris_get_operand2 (inst) == REG_PC)
3283 {
3284 if (inst_env->slot_needed)
3285 {
3286 inst_env->invalid = 1;
3287 return;
3288 }
3289 /* The instruction has the PC as its target register. */
3290 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3291 operand2 = inst_env->reg[REG_PC];
3292
3293 /* Check if it's a extend, signed or zero instruction. */
3294 if (cris_get_opcode (inst) < 4)
3295 {
3296 operand1 = do_sign_or_zero_extend (operand1, &inst);
3297 }
3298 /* Calculate the PC value after the instruction, i.e. where the
3299 breakpoint should be. The order of the udw_operands is vital. */
3300 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3301 }
3302 inst_env->slot_needed = 0;
3303 inst_env->prefix_found = 0;
3304 inst_env->xflag_found = 0;
3305 inst_env->disable_interrupt = 0;
3306 }
3307
3308 /* Returns the data contained at address. The size of the data is derived from
3309 the size of the operation. If the instruction is a zero or signed
3310 extend instruction, the size field is changed in instruction. */
3311
3312 static unsigned long
3313 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3314 enum bfd_endian byte_order)
3315 {
3316 int size = cris_get_size (*inst);
3317 unsigned long value;
3318
3319 /* If it's an extend instruction we don't want the signed extend bit,
3320 because it influences the size. */
3321 if (cris_get_opcode (*inst) < 4)
3322 {
3323 size &= ~SIGNED_EXTEND_BIT_MASK;
3324 }
3325 /* Is there a need for checking the size? Size should contain the number of
3326 bytes to read. */
3327 size = 1 << size;
3328 value = read_memory_unsigned_integer (address, size, byte_order);
3329
3330 /* Check if it's an extend, signed or zero instruction. */
3331 if (cris_get_opcode (*inst) < 4)
3332 {
3333 value = do_sign_or_zero_extend (value, inst);
3334 }
3335 return value;
3336 }
3337
3338 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3339 instructions. The MOVE instruction is the move from source to register. */
3340
3341 static void
3342 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3343 inst_env_type *inst_env)
3344 {
3345 unsigned long operand2;
3346 unsigned long operand3;
3347
3348 check_assign (inst, inst_env);
3349 if (cris_get_operand2 (inst) == REG_PC)
3350 {
3351 operand2 = inst_env->reg[REG_PC];
3352
3353 /* Get the value of the third operand. */
3354 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3355 inst_env->byte_order);
3356
3357 /* Calculate the PC value after the instruction, i.e. where the
3358 breakpoint should be. The order of the udw_operands is vital. */
3359 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3360 }
3361 inst_env->slot_needed = 0;
3362 inst_env->prefix_found = 0;
3363 inst_env->xflag_found = 0;
3364 inst_env->disable_interrupt = 0;
3365 }
3366
3367 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3368 OR instructions. Note that for this to work as expected, the calling
3369 function must have made sure that there is a prefix to this instruction. */
3370
3371 static void
3372 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3373 inst_env_type *inst_env)
3374 {
3375 unsigned long operand2;
3376 unsigned long operand3;
3377
3378 if (cris_get_operand1 (inst) == REG_PC)
3379 {
3380 /* The PC will be changed by the instruction. */
3381 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3382
3383 /* Get the value of the third operand. */
3384 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3385 inst_env->byte_order);
3386
3387 /* Calculate the PC value after the instruction, i.e. where the
3388 breakpoint should be. */
3389 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3390 }
3391 inst_env->slot_needed = 0;
3392 inst_env->prefix_found = 0;
3393 inst_env->xflag_found = 0;
3394 inst_env->disable_interrupt = 0;
3395 }
3396
3397 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3398 instructions. The MOVE instruction is the move from source to register. */
3399
3400 static void
3401 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3402 inst_env_type *inst_env)
3403 {
3404 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3405 {
3406 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3407 SUB, AND or OR something weird is going on (if everything works these
3408 instructions should end up in the three operand version). */
3409 inst_env->invalid = 1;
3410 return;
3411 }
3412 else
3413 {
3414 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3415 so use it. */
3416 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3417 }
3418 inst_env->slot_needed = 0;
3419 inst_env->prefix_found = 0;
3420 inst_env->xflag_found = 0;
3421 inst_env->disable_interrupt = 0;
3422 }
3423
3424 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3425 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3426 source to register. */
3427
3428 static void
3429 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3430 inst_env_type *inst_env)
3431 {
3432 unsigned long operand1;
3433 unsigned long operand2;
3434 unsigned long operand3;
3435 int size;
3436
3437 /* The instruction is either an indirect or autoincrement addressing mode.
3438 Check if the destination register is the PC. */
3439 if (cris_get_operand2 (inst) == REG_PC)
3440 {
3441 /* Must be done here, get_data_from_address may change the size
3442 field. */
3443 size = cris_get_size (inst);
3444 operand2 = inst_env->reg[REG_PC];
3445
3446 /* Get the value of the third operand, i.e. the indirect operand. */
3447 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3448 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3449
3450 /* Calculate the PC value after the instruction, i.e. where the
3451 breakpoint should be. The order of the udw_operands is vital. */
3452 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3453 }
3454 /* If this is an autoincrement addressing mode, check if the increment
3455 changes the PC. */
3456 if ((cris_get_operand1 (inst) == REG_PC)
3457 && (cris_get_mode (inst) == AUTOINC_MODE))
3458 {
3459 /* Get the size field. */
3460 size = cris_get_size (inst);
3461
3462 /* If it's an extend instruction we don't want the signed extend bit,
3463 because it influences the size. */
3464 if (cris_get_opcode (inst) < 4)
3465 {
3466 size &= ~SIGNED_EXTEND_BIT_MASK;
3467 }
3468 process_autoincrement (size, inst, inst_env);
3469 }
3470 inst_env->slot_needed = 0;
3471 inst_env->prefix_found = 0;
3472 inst_env->xflag_found = 0;
3473 inst_env->disable_interrupt = 0;
3474 }
3475
3476 /* Handles the two-operand addressing mode, all modes except register, for
3477 the ADD, SUB CMP, AND and OR instruction. */
3478
3479 static void
3480 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3481 inst_env_type *inst_env)
3482 {
3483 if (inst_env->prefix_found)
3484 {
3485 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3486 {
3487 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3488 }
3489 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3490 {
3491 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3492 }
3493 else
3494 {
3495 /* The mode is invalid for a prefixed base instruction. */
3496 inst_env->invalid = 1;
3497 return;
3498 }
3499 }
3500 else
3501 {
3502 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3503 }
3504 }
3505
3506 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3507
3508 static void
3509 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3510 {
3511 unsigned long operand1;
3512 unsigned long operand2;
3513
3514 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3515 instruction and can't have a prefix. */
3516 if (inst_env->prefix_found)
3517 {
3518 inst_env->invalid = 1;
3519 return;
3520 }
3521
3522 /* Check if the instruction has PC as its target. */
3523 if (cris_get_operand2 (inst) == REG_PC)
3524 {
3525 if (inst_env->slot_needed)
3526 {
3527 inst_env->invalid = 1;
3528 return;
3529 }
3530 operand1 = cris_get_quick_value (inst);
3531 operand2 = inst_env->reg[REG_PC];
3532
3533 /* The size should now be dword. */
3534 cris_set_size_to_dword (&inst);
3535
3536 /* Calculate the PC value after the instruction, i.e. where the
3537 breakpoint should be. */
3538 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3539 }
3540 inst_env->slot_needed = 0;
3541 inst_env->prefix_found = 0;
3542 inst_env->xflag_found = 0;
3543 inst_env->disable_interrupt = 0;
3544 }
3545
3546 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3547
3548 static void
3549 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3550 {
3551 unsigned long operand1;
3552 unsigned long operand2;
3553
3554 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3555 instruction and can't have a prefix. */
3556 if (inst_env->prefix_found)
3557 {
3558 inst_env->invalid = 1;
3559 return;
3560 }
3561 /* Check if the instruction has PC as its target. */
3562 if (cris_get_operand2 (inst) == REG_PC)
3563 {
3564 if (inst_env->slot_needed)
3565 {
3566 inst_env->invalid = 1;
3567 return;
3568 }
3569 /* The instruction has the PC as its target register. */
3570 operand1 = cris_get_quick_value (inst);
3571 operand2 = inst_env->reg[REG_PC];
3572
3573 /* The quick value is signed, so check if we must do a signed extend. */
3574 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3575 {
3576 /* sign extend */
3577 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3578 }
3579 /* The size should now be dword. */
3580 cris_set_size_to_dword (&inst);
3581
3582 /* Calculate the PC value after the instruction, i.e. where the
3583 breakpoint should be. */
3584 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3585 }
3586 inst_env->slot_needed = 0;
3587 inst_env->prefix_found = 0;
3588 inst_env->xflag_found = 0;
3589 inst_env->disable_interrupt = 0;
3590 }
3591
3592 /* Translate op_type to a function and call it. */
3593
3594 static void
3595 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3596 unsigned short inst, inst_env_type *inst_env)
3597 {
3598 switch (op_type)
3599 {
3600 case cris_not_implemented_op:
3601 not_implemented_op (inst, inst_env);
3602 break;
3603
3604 case cris_abs_op:
3605 abs_op (inst, inst_env);
3606 break;
3607
3608 case cris_addi_op:
3609 addi_op (inst, inst_env);
3610 break;
3611
3612 case cris_asr_op:
3613 asr_op (inst, inst_env);
3614 break;
3615
3616 case cris_asrq_op:
3617 asrq_op (inst, inst_env);
3618 break;
3619
3620 case cris_ax_ei_setf_op:
3621 ax_ei_setf_op (inst, inst_env);
3622 break;
3623
3624 case cris_bdap_prefix:
3625 bdap_prefix (inst, inst_env);
3626 break;
3627
3628 case cris_biap_prefix:
3629 biap_prefix (inst, inst_env);
3630 break;
3631
3632 case cris_break_op:
3633 break_op (inst, inst_env);
3634 break;
3635
3636 case cris_btst_nop_op:
3637 btst_nop_op (inst, inst_env);
3638 break;
3639
3640 case cris_clearf_di_op:
3641 clearf_di_op (inst, inst_env);
3642 break;
3643
3644 case cris_dip_prefix:
3645 dip_prefix (inst, inst_env);
3646 break;
3647
3648 case cris_dstep_logshift_mstep_neg_not_op:
3649 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3650 break;
3651
3652 case cris_eight_bit_offset_branch_op:
3653 eight_bit_offset_branch_op (inst, inst_env);
3654 break;
3655
3656 case cris_move_mem_to_reg_movem_op:
3657 move_mem_to_reg_movem_op (inst, inst_env);
3658 break;
3659
3660 case cris_move_reg_to_mem_movem_op:
3661 move_reg_to_mem_movem_op (inst, inst_env);
3662 break;
3663
3664 case cris_move_to_preg_op:
3665 move_to_preg_op (gdbarch, inst, inst_env);
3666 break;
3667
3668 case cris_muls_op:
3669 muls_op (inst, inst_env);
3670 break;
3671
3672 case cris_mulu_op:
3673 mulu_op (inst, inst_env);
3674 break;
3675
3676 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3677 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3678 break;
3679
3680 case cris_none_reg_mode_clear_test_op:
3681 none_reg_mode_clear_test_op (inst, inst_env);
3682 break;
3683
3684 case cris_none_reg_mode_jump_op:
3685 none_reg_mode_jump_op (inst, inst_env);
3686 break;
3687
3688 case cris_none_reg_mode_move_from_preg_op:
3689 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3690 break;
3691
3692 case cris_quick_mode_add_sub_op:
3693 quick_mode_add_sub_op (inst, inst_env);
3694 break;
3695
3696 case cris_quick_mode_and_cmp_move_or_op:
3697 quick_mode_and_cmp_move_or_op (inst, inst_env);
3698 break;
3699
3700 case cris_quick_mode_bdap_prefix:
3701 quick_mode_bdap_prefix (inst, inst_env);
3702 break;
3703
3704 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3705 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3706 break;
3707
3708 case cris_reg_mode_clear_op:
3709 reg_mode_clear_op (inst, inst_env);
3710 break;
3711
3712 case cris_reg_mode_jump_op:
3713 reg_mode_jump_op (inst, inst_env);
3714 break;
3715
3716 case cris_reg_mode_move_from_preg_op:
3717 reg_mode_move_from_preg_op (inst, inst_env);
3718 break;
3719
3720 case cris_reg_mode_test_op:
3721 reg_mode_test_op (inst, inst_env);
3722 break;
3723
3724 case cris_scc_op:
3725 scc_op (inst, inst_env);
3726 break;
3727
3728 case cris_sixteen_bit_offset_branch_op:
3729 sixteen_bit_offset_branch_op (inst, inst_env);
3730 break;
3731
3732 case cris_three_operand_add_sub_cmp_and_or_op:
3733 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3734 break;
3735
3736 case cris_three_operand_bound_op:
3737 three_operand_bound_op (inst, inst_env);
3738 break;
3739
3740 case cris_two_operand_bound_op:
3741 two_operand_bound_op (inst, inst_env);
3742 break;
3743
3744 case cris_xor_op:
3745 xor_op (inst, inst_env);
3746 break;
3747 }
3748 }
3749
3750 /* Originally from <asm/elf.h>. */
3751 typedef unsigned char cris_elf_greg_t[4];
3752
3753 /* Same as user_regs_struct struct in <asm/user.h>. */
3754 #define CRISV10_ELF_NGREG 35
3755 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3756
3757 #define CRISV32_ELF_NGREG 32
3758 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3759
3760 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3761
3762 static void
3763 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
3764 {
3765 struct gdbarch *gdbarch = regcache->arch ();
3766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3767 int i;
3768 cris_elf_greg_t *regp = *gregsetp;
3769
3770 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3771 knows about the actual size of each register so that's no problem. */
3772 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3773 {
3774 regcache->raw_supply (i, (char *)&regp[i]);
3775 }
3776
3777 if (tdep->cris_version == 32)
3778 {
3779 /* Needed to set pseudo-register PC for CRISv32. */
3780 /* FIXME: If ERP is in a delay slot at this point then the PC will
3781 be wrong. Issue a warning to alert the user. */
3782 regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3783 (char *)&regp[ERP_REGNUM]);
3784
3785 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3786 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3787 }
3788 }
3789
3790 /* Use a local version of this function to get the correct types for
3791 regsets, until multi-arch core support is ready. */
3792
3793 static void
3794 fetch_core_registers (struct regcache *regcache,
3795 char *core_reg_sect, unsigned core_reg_size,
3796 int which, CORE_ADDR reg_addr)
3797 {
3798 cris_elf_gregset_t gregset;
3799
3800 switch (which)
3801 {
3802 case 0:
3803 if (core_reg_size != sizeof (cris_elf_gregset_t)
3804 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3805 {
3806 warning (_("wrong size gregset struct in core file"));
3807 }
3808 else
3809 {
3810 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3811 cris_supply_gregset (regcache, &gregset);
3812 }
3813
3814 default:
3815 /* We've covered all the kinds of registers we know about here,
3816 so this must be something we wouldn't know what to do with
3817 anyway. Just ignore it. */
3818 break;
3819 }
3820 }
3821
3822 static struct core_fns cris_elf_core_fns =
3823 {
3824 bfd_target_elf_flavour, /* core_flavour */
3825 default_check_format, /* check_format */
3826 default_core_sniffer, /* core_sniffer */
3827 fetch_core_registers, /* core_read_registers */
3828 NULL /* next */
3829 };
3830
3831 void
3832 _initialize_cris_tdep (void)
3833 {
3834 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3835
3836 /* CRIS-specific user-commands. */
3837 add_setshow_zuinteger_cmd ("cris-version", class_support,
3838 &usr_cmd_cris_version,
3839 _("Set the current CRIS version."),
3840 _("Show the current CRIS version."),
3841 _("\
3842 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3843 Defaults to 10. "),
3844 set_cris_version,
3845 NULL, /* FIXME: i18n: Current CRIS version
3846 is %s. */
3847 &setlist, &showlist);
3848
3849 add_setshow_enum_cmd ("cris-mode", class_support,
3850 cris_modes, &usr_cmd_cris_mode,
3851 _("Set the current CRIS mode."),
3852 _("Show the current CRIS mode."),
3853 _("\
3854 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3855 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3856 set_cris_mode,
3857 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3858 &setlist, &showlist);
3859
3860 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3861 &usr_cmd_cris_dwarf2_cfi,
3862 _("Set the usage of Dwarf-2 CFI for CRIS."),
3863 _("Show the usage of Dwarf-2 CFI for CRIS."),
3864 _("Set this to \"off\" if using gcc-cris < R59."),
3865 set_cris_dwarf2_cfi,
3866 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3867 for CRIS is %d. */
3868 &setlist, &showlist);
3869
3870 deprecated_add_core_fns (&cris_elf_core_fns);
3871 }
3872
3873 /* Prints out all target specific values. */
3874
3875 static void
3876 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3877 {
3878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3879 if (tdep != NULL)
3880 {
3881 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3882 tdep->cris_version);
3883 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3884 tdep->cris_mode);
3885 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3886 tdep->cris_dwarf2_cfi);
3887 }
3888 }
3889
3890 static void
3891 set_cris_version (const char *ignore_args, int from_tty,
3892 struct cmd_list_element *c)
3893 {
3894 struct gdbarch_info info;
3895
3896 usr_cmd_cris_version_valid = 1;
3897
3898 /* Update the current architecture, if needed. */
3899 gdbarch_info_init (&info);
3900 if (!gdbarch_update_p (info))
3901 internal_error (__FILE__, __LINE__,
3902 _("cris_gdbarch_update: failed to update architecture."));
3903 }
3904
3905 static void
3906 set_cris_mode (const char *ignore_args, int from_tty,
3907 struct cmd_list_element *c)
3908 {
3909 struct gdbarch_info info;
3910
3911 /* Update the current architecture, if needed. */
3912 gdbarch_info_init (&info);
3913 if (!gdbarch_update_p (info))
3914 internal_error (__FILE__, __LINE__,
3915 "cris_gdbarch_update: failed to update architecture.");
3916 }
3917
3918 static void
3919 set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
3920 struct cmd_list_element *c)
3921 {
3922 struct gdbarch_info info;
3923
3924 /* Update the current architecture, if needed. */
3925 gdbarch_info_init (&info);
3926 if (!gdbarch_update_p (info))
3927 internal_error (__FILE__, __LINE__,
3928 _("cris_gdbarch_update: failed to update architecture."));
3929 }
3930
3931 static struct gdbarch *
3932 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3933 {
3934 struct gdbarch *gdbarch;
3935 struct gdbarch_tdep *tdep;
3936 unsigned int cris_version;
3937
3938 if (usr_cmd_cris_version_valid)
3939 {
3940 /* Trust the user's CRIS version setting. */
3941 cris_version = usr_cmd_cris_version;
3942 }
3943 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3944 {
3945 cris_version = 32;
3946 }
3947 else
3948 {
3949 /* Assume it's CRIS version 10. */
3950 cris_version = 10;
3951 }
3952
3953 /* Make the current settings visible to the user. */
3954 usr_cmd_cris_version = cris_version;
3955
3956 /* Find a candidate among the list of pre-declared architectures. */
3957 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3958 arches != NULL;
3959 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3960 {
3961 if ((gdbarch_tdep (arches->gdbarch)->cris_version
3962 == usr_cmd_cris_version)
3963 && (gdbarch_tdep (arches->gdbarch)->cris_mode
3964 == usr_cmd_cris_mode)
3965 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
3966 == usr_cmd_cris_dwarf2_cfi))
3967 return arches->gdbarch;
3968 }
3969
3970 /* No matching architecture was found. Create a new one. */
3971 tdep = XCNEW (struct gdbarch_tdep);
3972 info.byte_order = BFD_ENDIAN_LITTLE;
3973 gdbarch = gdbarch_alloc (&info, tdep);
3974
3975 tdep->cris_version = usr_cmd_cris_version;
3976 tdep->cris_mode = usr_cmd_cris_mode;
3977 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
3978
3979 set_gdbarch_return_value (gdbarch, cris_return_value);
3980 set_gdbarch_sp_regnum (gdbarch, 14);
3981
3982 /* Length of ordinary registers used in push_word and a few other
3983 places. register_size() is the real way to know how big a
3984 register is. */
3985
3986 set_gdbarch_double_bit (gdbarch, 64);
3987 /* The default definition of a long double is 2 * gdbarch_double_bit,
3988 which means we have to set this explicitly. */
3989 set_gdbarch_long_double_bit (gdbarch, 64);
3990
3991 /* The total amount of space needed to store (in an array called registers)
3992 GDB's copy of the machine's register state. Note: We can not use
3993 cris_register_size at this point, since it relies on gdbarch
3994 being set. */
3995 switch (tdep->cris_version)
3996 {
3997 case 0:
3998 case 1:
3999 case 2:
4000 case 3:
4001 case 8:
4002 case 9:
4003 /* Old versions; not supported. */
4004 return 0;
4005
4006 case 10:
4007 case 11:
4008 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4009 P7 (32 bits), and P15 (32 bits) have been implemented. */
4010 set_gdbarch_pc_regnum (gdbarch, 15);
4011 set_gdbarch_register_type (gdbarch, cris_register_type);
4012 /* There are 32 registers (some of which may not be implemented). */
4013 set_gdbarch_num_regs (gdbarch, 32);
4014 set_gdbarch_register_name (gdbarch, cris_register_name);
4015 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4016 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4017
4018 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4019 break;
4020
4021 case 32:
4022 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4023 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4024 and pseudo-register PC (32 bits). */
4025 set_gdbarch_pc_regnum (gdbarch, 32);
4026 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4027 /* 32 registers + pseudo-register PC + 16 support registers. */
4028 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4029 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4030
4031 set_gdbarch_cannot_store_register
4032 (gdbarch, crisv32_cannot_store_register);
4033 set_gdbarch_cannot_fetch_register
4034 (gdbarch, crisv32_cannot_fetch_register);
4035
4036 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4037
4038 set_gdbarch_single_step_through_delay
4039 (gdbarch, crisv32_single_step_through_delay);
4040
4041 break;
4042
4043 default:
4044 /* Unknown version. */
4045 return 0;
4046 }
4047
4048 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4049 have the same ABI). */
4050 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4051 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4052 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4053 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4054
4055 /* The stack grows downward. */
4056 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4057
4058 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4059 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
4060
4061 if (tdep->cris_dwarf2_cfi == 1)
4062 {
4063 /* Hook in the Dwarf-2 frame sniffer. */
4064 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4065 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4066 dwarf2_append_unwinders (gdbarch);
4067 }
4068
4069 if (tdep->cris_mode != cris_mode_guru)
4070 {
4071 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4072 }
4073
4074 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4075 frame_base_set_default (gdbarch, &cris_frame_base);
4076
4077 /* Hook in ABI-specific overrides, if they have been registered. */
4078 gdbarch_init_osabi (info, gdbarch);
4079
4080 return gdbarch;
4081 }
This page took 0.290745 seconds and 4 git commands to generate.