2011-09-02 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 #include "objfiles.h"
43
44 #include "solib.h" /* Support for shared libraries. */
45 #include "solib-svr4.h"
46 #include "gdb_string.h"
47 #include "dis-asm.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* CRIS architecture specific information. */
169 struct gdbarch_tdep
170 {
171 int cris_version;
172 const char *cris_mode;
173 int cris_dwarf2_cfi;
174 };
175
176 /* Sigtramp identification code copied from i386-linux-tdep.c. */
177
178 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179 #define SIGTRAMP_OFFSET0 0
180 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
181 #define SIGTRAMP_OFFSET1 4
182
183 static const unsigned short sigtramp_code[] =
184 {
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
187 };
188
189 #define SIGTRAMP_LEN (sizeof sigtramp_code)
190
191 /* Note: same length as normal sigtramp code. */
192
193 static const unsigned short rt_sigtramp_code[] =
194 {
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
197 };
198
199 /* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
201
202 static CORE_ADDR
203 cris_sigtramp_start (struct frame_info *this_frame)
204 {
205 CORE_ADDR pc = get_frame_pc (this_frame);
206 gdb_byte buf[SIGTRAMP_LEN];
207
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
209 return 0;
210
211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
212 {
213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
214 return 0;
215
216 pc -= SIGTRAMP_OFFSET1;
217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
218 return 0;
219 }
220
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225 }
226
227 /* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
229
230 static CORE_ADDR
231 cris_rt_sigtramp_start (struct frame_info *this_frame)
232 {
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 gdb_byte buf[SIGTRAMP_LEN];
235
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
237 return 0;
238
239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
240 {
241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
242 return 0;
243
244 pc -= SIGTRAMP_OFFSET1;
245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
246 return 0;
247 }
248
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
250 return 0;
251
252 return pc;
253 }
254
255 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
257
258 static CORE_ADDR
259 cris_sigcontext_addr (struct frame_info *this_frame)
260 {
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
263 CORE_ADDR pc;
264 CORE_ADDR sp;
265 char buf[4];
266
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
269
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
280 pc = cris_rt_sigtramp_start (this_frame);
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
291 error (_("Couldn't recognize signal trampoline."));
292 return 0;
293 }
294
295 struct cris_unwind_cache
296 {
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
311 CORE_ADDR return_pc;
312 int leaf_function;
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
316 };
317
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
320 void **this_cache)
321 {
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325 struct cris_unwind_cache *info;
326 CORE_ADDR pc;
327 CORE_ADDR sp;
328 CORE_ADDR addr;
329 char buf[4];
330 int i;
331
332 if ((*this_cache))
333 return (*this_cache);
334
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
338
339 /* Zero all fields. */
340 info->prev_sp = 0;
341 info->base = 0;
342 info->size = 0;
343 info->sp_offset = 0;
344 info->r8_offset = 0;
345 info->uses_frame = 0;
346 info->return_pc = 0;
347 info->leaf_function = 0;
348
349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
350 info->base = extract_unsigned_integer (buf, 4, byte_order);
351
352 addr = cris_sigcontext_addr (this_frame);
353
354 /* Layout of the sigcontext struct:
355 struct sigcontext {
356 struct pt_regs regs;
357 unsigned long oldmask;
358 unsigned long usp;
359 }; */
360
361 if (tdep->cris_version == 10)
362 {
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
364 struct pt_regs. */
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
367
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
376 = info->saved_regs[IRP_REGNUM];
377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
378 }
379 else
380 {
381 /* CRISv32. */
382 /* R0 to R13 are stored in order at offset (1 * 4) in
383 struct pt_regs. */
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
386
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
396
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
401
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
405 = info->saved_regs[ERP_REGNUM];
406
407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
408 = addr + (25 * 4);
409 }
410
411 return info;
412 }
413
414 static void
415 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
417 {
418 struct cris_unwind_cache *cache =
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
421 }
422
423 /* Forward declaration. */
424
425 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427 static struct value *
428 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
430 {
431 /* Make sure we've initialized the cache. */
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
434 }
435
436 static int
437 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
439 void **this_cache)
440 {
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
443 return 1;
444
445 return 0;
446 }
447
448 static const struct frame_unwind cris_sigtramp_frame_unwind =
449 {
450 SIGTRAMP_FRAME,
451 default_frame_unwind_stop_reason,
452 cris_sigtramp_frame_this_id,
453 cris_sigtramp_frame_prev_register,
454 NULL,
455 cris_sigtramp_frame_sniffer
456 };
457
458 static int
459 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
460 struct frame_info *this_frame)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463 ULONGEST erp;
464 int ret = 0;
465
466 if (tdep->cris_mode == cris_mode_guru)
467 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
468 else
469 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
470
471 if (erp & 0x1)
472 {
473 /* In delay slot - check if there's a breakpoint at the preceding
474 instruction. */
475 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
476 ret = 1;
477 }
478 return ret;
479 }
480
481 /* Hardware watchpoint support. */
482
483 /* We support 6 hardware data watchpoints, but cannot trigger on execute
484 (any combination of read/write is fine). */
485
486 int
487 cris_can_use_hardware_watchpoint (int type, int count, int other)
488 {
489 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
490
491 /* No bookkeeping is done here; it is handled by the remote debug agent. */
492
493 if (tdep->cris_version != 32)
494 return 0;
495 else
496 /* CRISv32: Six data watchpoints, one for instructions. */
497 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
498 || type == bp_hardware_watchpoint) && count <= 6)
499 || (type == bp_hardware_breakpoint && count <= 1));
500 }
501
502 /* The CRISv32 hardware data watchpoints work by specifying ranges,
503 which have no alignment or length restrictions. */
504
505 int
506 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
507 {
508 return 1;
509 }
510
511 /* If the inferior has some watchpoint that triggered, return the
512 address associated with that watchpoint. Otherwise, return
513 zero. */
514
515 CORE_ADDR
516 cris_stopped_data_address (void)
517 {
518 CORE_ADDR eda;
519 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
520 return eda;
521 }
522
523 /* The instruction environment needed to find single-step breakpoints. */
524
525 typedef
526 struct instruction_environment
527 {
528 unsigned long reg[NUM_GENREGS];
529 unsigned long preg[NUM_SPECREGS];
530 unsigned long branch_break_address;
531 unsigned long delay_slot_pc;
532 unsigned long prefix_value;
533 int branch_found;
534 int prefix_found;
535 int invalid;
536 int slot_needed;
537 int delay_slot_pc_active;
538 int xflag_found;
539 int disable_interrupt;
540 int byte_order;
541 } inst_env_type;
542
543 /* Machine-dependencies in CRIS for opcodes. */
544
545 /* Instruction sizes. */
546 enum cris_instruction_sizes
547 {
548 INST_BYTE_SIZE = 0,
549 INST_WORD_SIZE = 1,
550 INST_DWORD_SIZE = 2
551 };
552
553 /* Addressing modes. */
554 enum cris_addressing_modes
555 {
556 REGISTER_MODE = 1,
557 INDIRECT_MODE = 2,
558 AUTOINC_MODE = 3
559 };
560
561 /* Prefix addressing modes. */
562 enum cris_prefix_addressing_modes
563 {
564 PREFIX_INDEX_MODE = 2,
565 PREFIX_ASSIGN_MODE = 3,
566
567 /* Handle immediate byte offset addressing mode prefix format. */
568 PREFIX_OFFSET_MODE = 2
569 };
570
571 /* Masks for opcodes. */
572 enum cris_opcode_masks
573 {
574 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
575 SIGNED_EXTEND_BIT_MASK = 0x2,
576 SIGNED_BYTE_MASK = 0x80,
577 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
578 SIGNED_WORD_MASK = 0x8000,
579 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
580 SIGNED_DWORD_MASK = 0x80000000,
581 SIGNED_QUICK_VALUE_MASK = 0x20,
582 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
583 };
584
585 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
586 Bit 15 - 12 Operand2
587 11 - 10 Mode
588 9 - 6 Opcode
589 5 - 4 Size
590 3 - 0 Operand1 */
591
592 static int
593 cris_get_operand2 (unsigned short insn)
594 {
595 return ((insn & 0xF000) >> 12);
596 }
597
598 static int
599 cris_get_mode (unsigned short insn)
600 {
601 return ((insn & 0x0C00) >> 10);
602 }
603
604 static int
605 cris_get_opcode (unsigned short insn)
606 {
607 return ((insn & 0x03C0) >> 6);
608 }
609
610 static int
611 cris_get_size (unsigned short insn)
612 {
613 return ((insn & 0x0030) >> 4);
614 }
615
616 static int
617 cris_get_operand1 (unsigned short insn)
618 {
619 return (insn & 0x000F);
620 }
621
622 /* Additional functions in order to handle opcodes. */
623
624 static int
625 cris_get_quick_value (unsigned short insn)
626 {
627 return (insn & 0x003F);
628 }
629
630 static int
631 cris_get_bdap_quick_offset (unsigned short insn)
632 {
633 return (insn & 0x00FF);
634 }
635
636 static int
637 cris_get_branch_short_offset (unsigned short insn)
638 {
639 return (insn & 0x00FF);
640 }
641
642 static int
643 cris_get_asr_shift_steps (unsigned long value)
644 {
645 return (value & 0x3F);
646 }
647
648 static int
649 cris_get_clear_size (unsigned short insn)
650 {
651 return ((insn) & 0xC000);
652 }
653
654 static int
655 cris_is_signed_extend_bit_on (unsigned short insn)
656 {
657 return (((insn) & 0x20) == 0x20);
658 }
659
660 static int
661 cris_is_xflag_bit_on (unsigned short insn)
662 {
663 return (((insn) & 0x1000) == 0x1000);
664 }
665
666 static void
667 cris_set_size_to_dword (unsigned short *insn)
668 {
669 *insn &= 0xFFCF;
670 *insn |= 0x20;
671 }
672
673 static signed char
674 cris_get_signed_offset (unsigned short insn)
675 {
676 return ((signed char) (insn & 0x00FF));
677 }
678
679 /* Calls an op function given the op-type, working on the insn and the
680 inst_env. */
681 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
682 inst_env_type *);
683
684 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
685 struct gdbarch_list *);
686
687 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
688
689 static void set_cris_version (char *ignore_args, int from_tty,
690 struct cmd_list_element *c);
691
692 static void set_cris_mode (char *ignore_args, int from_tty,
693 struct cmd_list_element *c);
694
695 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
696 struct cmd_list_element *c);
697
698 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
699 struct frame_info *this_frame,
700 struct cris_unwind_cache *info);
701
702 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
703 struct frame_info *this_frame,
704 struct cris_unwind_cache *info);
705
706 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
707 struct frame_info *next_frame);
708
709 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
710 struct frame_info *next_frame);
711
712 /* When arguments must be pushed onto the stack, they go on in reverse
713 order. The below implements a FILO (stack) to do this.
714 Copied from d10v-tdep.c. */
715
716 struct stack_item
717 {
718 int len;
719 struct stack_item *prev;
720 void *data;
721 };
722
723 static struct stack_item *
724 push_stack_item (struct stack_item *prev, void *contents, int len)
725 {
726 struct stack_item *si;
727 si = xmalloc (sizeof (struct stack_item));
728 si->data = xmalloc (len);
729 si->len = len;
730 si->prev = prev;
731 memcpy (si->data, contents, len);
732 return si;
733 }
734
735 static struct stack_item *
736 pop_stack_item (struct stack_item *si)
737 {
738 struct stack_item *dead = si;
739 si = si->prev;
740 xfree (dead->data);
741 xfree (dead);
742 return si;
743 }
744
745 /* Put here the code to store, into fi->saved_regs, the addresses of
746 the saved registers of frame described by FRAME_INFO. This
747 includes special registers such as pc and fp saved in special ways
748 in the stack frame. sp is even more special: the address we return
749 for it IS the sp for the next frame. */
750
751 static struct cris_unwind_cache *
752 cris_frame_unwind_cache (struct frame_info *this_frame,
753 void **this_prologue_cache)
754 {
755 struct gdbarch *gdbarch = get_frame_arch (this_frame);
756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
757 CORE_ADDR pc;
758 struct cris_unwind_cache *info;
759 int i;
760
761 if ((*this_prologue_cache))
762 return (*this_prologue_cache);
763
764 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
765 (*this_prologue_cache) = info;
766 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
767
768 /* Zero all fields. */
769 info->prev_sp = 0;
770 info->base = 0;
771 info->size = 0;
772 info->sp_offset = 0;
773 info->r8_offset = 0;
774 info->uses_frame = 0;
775 info->return_pc = 0;
776 info->leaf_function = 0;
777
778 /* Prologue analysis does the rest... */
779 if (tdep->cris_version == 32)
780 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
781 else
782 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
783
784 return info;
785 }
786
787 /* Given a GDB frame, determine the address of the calling function's
788 frame. This will be used to create a new GDB frame struct. */
789
790 static void
791 cris_frame_this_id (struct frame_info *this_frame,
792 void **this_prologue_cache,
793 struct frame_id *this_id)
794 {
795 struct cris_unwind_cache *info
796 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
797 CORE_ADDR base;
798 CORE_ADDR func;
799 struct frame_id id;
800
801 /* The FUNC is easy. */
802 func = get_frame_func (this_frame);
803
804 /* Hopefully the prologue analysis either correctly determined the
805 frame's base (which is the SP from the previous frame), or set
806 that base to "NULL". */
807 base = info->prev_sp;
808 if (base == 0)
809 return;
810
811 id = frame_id_build (base, func);
812
813 (*this_id) = id;
814 }
815
816 static struct value *
817 cris_frame_prev_register (struct frame_info *this_frame,
818 void **this_prologue_cache, int regnum)
819 {
820 struct cris_unwind_cache *info
821 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
822 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
823 }
824
825 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
826 frame. The frame ID's base needs to match the TOS value saved by
827 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
828
829 static struct frame_id
830 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
831 {
832 CORE_ADDR sp;
833 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
834 return frame_id_build (sp, get_frame_pc (this_frame));
835 }
836
837 static CORE_ADDR
838 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
839 {
840 /* Align to the size of an instruction (so that they can safely be
841 pushed onto the stack). */
842 return sp & ~3;
843 }
844
845 static CORE_ADDR
846 cris_push_dummy_code (struct gdbarch *gdbarch,
847 CORE_ADDR sp, CORE_ADDR funaddr,
848 struct value **args, int nargs,
849 struct type *value_type,
850 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
851 struct regcache *regcache)
852 {
853 /* Allocate space sufficient for a breakpoint. */
854 sp = (sp - 4) & ~3;
855 /* Store the address of that breakpoint */
856 *bp_addr = sp;
857 /* CRIS always starts the call at the callee's entry point. */
858 *real_pc = funaddr;
859 return sp;
860 }
861
862 static CORE_ADDR
863 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
864 struct regcache *regcache, CORE_ADDR bp_addr,
865 int nargs, struct value **args, CORE_ADDR sp,
866 int struct_return, CORE_ADDR struct_addr)
867 {
868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
869 int stack_alloc;
870 int stack_offset;
871 int argreg;
872 int argnum;
873
874 CORE_ADDR regval;
875
876 /* The function's arguments and memory allocated by gdb for the arguments to
877 point at reside in separate areas on the stack.
878 Both frame pointers grow toward higher addresses. */
879 CORE_ADDR fp_arg;
880 CORE_ADDR fp_mem;
881
882 struct stack_item *si = NULL;
883
884 /* Push the return address. */
885 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
886
887 /* Are we returning a value using a structure return or a normal value
888 return? struct_addr is the address of the reserved space for the return
889 structure to be written on the stack. */
890 if (struct_return)
891 {
892 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
893 }
894
895 /* Now load as many as possible of the first arguments into registers,
896 and push the rest onto the stack. */
897 argreg = ARG1_REGNUM;
898 stack_offset = 0;
899
900 for (argnum = 0; argnum < nargs; argnum++)
901 {
902 int len;
903 char *val;
904 int reg_demand;
905 int i;
906
907 len = TYPE_LENGTH (value_type (args[argnum]));
908 val = (char *) value_contents (args[argnum]);
909
910 /* How may registers worth of storage do we need for this argument? */
911 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
912
913 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
914 {
915 /* Data passed by value. Fits in available register(s). */
916 for (i = 0; i < reg_demand; i++)
917 {
918 regcache_cooked_write (regcache, argreg, val);
919 argreg++;
920 val += 4;
921 }
922 }
923 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
924 {
925 /* Data passed by value. Does not fit in available register(s).
926 Use the register(s) first, then the stack. */
927 for (i = 0; i < reg_demand; i++)
928 {
929 if (argreg <= ARG4_REGNUM)
930 {
931 regcache_cooked_write (regcache, argreg, val);
932 argreg++;
933 val += 4;
934 }
935 else
936 {
937 /* Push item for later so that pushed arguments
938 come in the right order. */
939 si = push_stack_item (si, val, 4);
940 val += 4;
941 }
942 }
943 }
944 else if (len > (2 * 4))
945 {
946 /* Data passed by reference. Push copy of data onto stack
947 and pass pointer to this copy as argument. */
948 sp = (sp - len) & ~3;
949 write_memory (sp, val, len);
950
951 if (argreg <= ARG4_REGNUM)
952 {
953 regcache_cooked_write_unsigned (regcache, argreg, sp);
954 argreg++;
955 }
956 else
957 {
958 gdb_byte buf[4];
959 store_unsigned_integer (buf, 4, byte_order, sp);
960 si = push_stack_item (si, buf, 4);
961 }
962 }
963 else
964 {
965 /* Data passed by value. No available registers. Put it on
966 the stack. */
967 si = push_stack_item (si, val, len);
968 }
969 }
970
971 while (si)
972 {
973 /* fp_arg must be word-aligned (i.e., don't += len) to match
974 the function prologue. */
975 sp = (sp - si->len) & ~3;
976 write_memory (sp, si->data, si->len);
977 si = pop_stack_item (si);
978 }
979
980 /* Finally, update the SP register. */
981 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
982
983 return sp;
984 }
985
986 static const struct frame_unwind cris_frame_unwind =
987 {
988 NORMAL_FRAME,
989 default_frame_unwind_stop_reason,
990 cris_frame_this_id,
991 cris_frame_prev_register,
992 NULL,
993 default_frame_sniffer
994 };
995
996 static CORE_ADDR
997 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
998 {
999 struct cris_unwind_cache *info
1000 = cris_frame_unwind_cache (this_frame, this_cache);
1001 return info->base;
1002 }
1003
1004 static const struct frame_base cris_frame_base =
1005 {
1006 &cris_frame_unwind,
1007 cris_frame_base_address,
1008 cris_frame_base_address,
1009 cris_frame_base_address
1010 };
1011
1012 /* Frames information. The definition of the struct frame_info is
1013
1014 CORE_ADDR frame
1015 CORE_ADDR pc
1016 enum frame_type type;
1017 CORE_ADDR return_pc
1018 int leaf_function
1019
1020 If the compilation option -fno-omit-frame-pointer is present the
1021 variable frame will be set to the content of R8 which is the frame
1022 pointer register.
1023
1024 The variable pc contains the address where execution is performed
1025 in the present frame. The innermost frame contains the current content
1026 of the register PC. All other frames contain the content of the
1027 register PC in the next frame.
1028
1029 The variable `type' indicates the frame's type: normal, SIGTRAMP
1030 (associated with a signal handler), dummy (associated with a dummy
1031 frame).
1032
1033 The variable return_pc contains the address where execution should be
1034 resumed when the present frame has finished, the return address.
1035
1036 The variable leaf_function is 1 if the return address is in the register
1037 SRP, and 0 if it is on the stack.
1038
1039 Prologue instructions C-code.
1040 The prologue may consist of (-fno-omit-frame-pointer)
1041 1) 2)
1042 push srp
1043 push r8 push r8
1044 move.d sp,r8 move.d sp,r8
1045 subq X,sp subq X,sp
1046 movem rY,[sp] movem rY,[sp]
1047 move.S rZ,[r8-U] move.S rZ,[r8-U]
1048
1049 where 1 is a non-terminal function, and 2 is a leaf-function.
1050
1051 Note that this assumption is extremely brittle, and will break at the
1052 slightest change in GCC's prologue.
1053
1054 If local variables are declared or register contents are saved on stack
1055 the subq-instruction will be present with X as the number of bytes
1056 needed for storage. The reshuffle with respect to r8 may be performed
1057 with any size S (b, w, d) and any of the general registers Z={0..13}.
1058 The offset U should be representable by a signed 8-bit value in all cases.
1059 Thus, the prefix word is assumed to be immediate byte offset mode followed
1060 by another word containing the instruction.
1061
1062 Degenerate cases:
1063 3)
1064 push r8
1065 move.d sp,r8
1066 move.d r8,sp
1067 pop r8
1068
1069 Prologue instructions C++-code.
1070 Case 1) and 2) in the C-code may be followed by
1071
1072 move.d r10,rS ; this
1073 move.d r11,rT ; P1
1074 move.d r12,rU ; P2
1075 move.d r13,rV ; P3
1076 move.S [r8+U],rZ ; P4
1077
1078 if any of the call parameters are stored. The host expects these
1079 instructions to be executed in order to get the call parameters right. */
1080
1081 /* Examine the prologue of a function. The variable ip is the address of
1082 the first instruction of the prologue. The variable limit is the address
1083 of the first instruction after the prologue. The variable fi contains the
1084 information in struct frame_info. The variable frameless_p controls whether
1085 the entire prologue is examined (0) or just enough instructions to
1086 determine that it is a prologue (1). */
1087
1088 static CORE_ADDR
1089 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1090 struct cris_unwind_cache *info)
1091 {
1092 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1093 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1094
1095 /* Present instruction. */
1096 unsigned short insn;
1097
1098 /* Next instruction, lookahead. */
1099 unsigned short insn_next;
1100 int regno;
1101
1102 /* Is there a push fp? */
1103 int have_fp;
1104
1105 /* Number of byte on stack used for local variables and movem. */
1106 int val;
1107
1108 /* Highest register number in a movem. */
1109 int regsave;
1110
1111 /* move.d r<source_register>,rS */
1112 short source_register;
1113
1114 /* Scan limit. */
1115 int limit;
1116
1117 /* This frame is with respect to a leaf until a push srp is found. */
1118 if (info)
1119 {
1120 info->leaf_function = 1;
1121 }
1122
1123 /* Assume nothing on stack. */
1124 val = 0;
1125 regsave = -1;
1126
1127 /* If we were called without a this_frame, that means we were called
1128 from cris_skip_prologue which already tried to find the end of the
1129 prologue through the symbol information. 64 instructions past current
1130 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1131 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1132
1133 /* Find the prologue instructions. */
1134 while (pc > 0 && pc < limit)
1135 {
1136 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1137 pc += 2;
1138 if (insn == 0xE1FC)
1139 {
1140 /* push <reg> 32 bit instruction. */
1141 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1142 pc += 2;
1143 regno = cris_get_operand2 (insn_next);
1144 if (info)
1145 {
1146 info->sp_offset += 4;
1147 }
1148 /* This check, meant to recognize srp, used to be regno ==
1149 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1150 if (insn_next == 0xBE7E)
1151 {
1152 if (info)
1153 {
1154 info->leaf_function = 0;
1155 }
1156 }
1157 else if (insn_next == 0x8FEE)
1158 {
1159 /* push $r8 */
1160 if (info)
1161 {
1162 info->r8_offset = info->sp_offset;
1163 }
1164 }
1165 }
1166 else if (insn == 0x866E)
1167 {
1168 /* move.d sp,r8 */
1169 if (info)
1170 {
1171 info->uses_frame = 1;
1172 }
1173 continue;
1174 }
1175 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1176 && cris_get_mode (insn) == 0x0000
1177 && cris_get_opcode (insn) == 0x000A)
1178 {
1179 /* subq <val>,sp */
1180 if (info)
1181 {
1182 info->sp_offset += cris_get_quick_value (insn);
1183 }
1184 }
1185 else if (cris_get_mode (insn) == 0x0002
1186 && cris_get_opcode (insn) == 0x000F
1187 && cris_get_size (insn) == 0x0003
1188 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1189 {
1190 /* movem r<regsave>,[sp] */
1191 regsave = cris_get_operand2 (insn);
1192 }
1193 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1194 && ((insn & 0x0F00) >> 8) == 0x0001
1195 && (cris_get_signed_offset (insn) < 0))
1196 {
1197 /* Immediate byte offset addressing prefix word with sp as base
1198 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1199 is between 64 and 128.
1200 movem r<regsave>,[sp=sp-<val>] */
1201 if (info)
1202 {
1203 info->sp_offset += -cris_get_signed_offset (insn);
1204 }
1205 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1206 pc += 2;
1207 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1208 && cris_get_opcode (insn_next) == 0x000F
1209 && cris_get_size (insn_next) == 0x0003
1210 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1211 (gdbarch))
1212 {
1213 regsave = cris_get_operand2 (insn_next);
1214 }
1215 else
1216 {
1217 /* The prologue ended before the limit was reached. */
1218 pc -= 4;
1219 break;
1220 }
1221 }
1222 else if (cris_get_mode (insn) == 0x0001
1223 && cris_get_opcode (insn) == 0x0009
1224 && cris_get_size (insn) == 0x0002)
1225 {
1226 /* move.d r<10..13>,r<0..15> */
1227 source_register = cris_get_operand1 (insn);
1228
1229 /* FIXME? In the glibc solibs, the prologue might contain something
1230 like (this example taken from relocate_doit):
1231 move.d $pc,$r0
1232 sub.d 0xfffef426,$r0
1233 which isn't covered by the source_register check below. Question
1234 is whether to add a check for this combo, or make better use of
1235 the limit variable instead. */
1236 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1237 {
1238 /* The prologue ended before the limit was reached. */
1239 pc -= 2;
1240 break;
1241 }
1242 }
1243 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1244 /* The size is a fixed-size. */
1245 && ((insn & 0x0F00) >> 8) == 0x0001
1246 /* A negative offset. */
1247 && (cris_get_signed_offset (insn) < 0))
1248 {
1249 /* move.S rZ,[r8-U] (?) */
1250 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1251 pc += 2;
1252 regno = cris_get_operand2 (insn_next);
1253 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1254 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1255 && cris_get_opcode (insn_next) == 0x000F)
1256 {
1257 /* move.S rZ,[r8-U] */
1258 continue;
1259 }
1260 else
1261 {
1262 /* The prologue ended before the limit was reached. */
1263 pc -= 4;
1264 break;
1265 }
1266 }
1267 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1268 /* The size is a fixed-size. */
1269 && ((insn & 0x0F00) >> 8) == 0x0001
1270 /* A positive offset. */
1271 && (cris_get_signed_offset (insn) > 0))
1272 {
1273 /* move.S [r8+U],rZ (?) */
1274 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1275 pc += 2;
1276 regno = cris_get_operand2 (insn_next);
1277 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1278 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1279 && cris_get_opcode (insn_next) == 0x0009
1280 && cris_get_operand1 (insn_next) == regno)
1281 {
1282 /* move.S [r8+U],rZ */
1283 continue;
1284 }
1285 else
1286 {
1287 /* The prologue ended before the limit was reached. */
1288 pc -= 4;
1289 break;
1290 }
1291 }
1292 else
1293 {
1294 /* The prologue ended before the limit was reached. */
1295 pc -= 2;
1296 break;
1297 }
1298 }
1299
1300 /* We only want to know the end of the prologue when this_frame and info
1301 are NULL (called from cris_skip_prologue i.e.). */
1302 if (this_frame == NULL && info == NULL)
1303 {
1304 return pc;
1305 }
1306
1307 info->size = info->sp_offset;
1308
1309 /* Compute the previous frame's stack pointer (which is also the
1310 frame's ID's stack address), and this frame's base pointer. */
1311 if (info->uses_frame)
1312 {
1313 ULONGEST this_base;
1314 /* The SP was moved to the FP. This indicates that a new frame
1315 was created. Get THIS frame's FP value by unwinding it from
1316 the next frame. */
1317 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1318 info->base = this_base;
1319 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1320
1321 /* The FP points at the last saved register. Adjust the FP back
1322 to before the first saved register giving the SP. */
1323 info->prev_sp = info->base + info->r8_offset;
1324 }
1325 else
1326 {
1327 ULONGEST this_base;
1328 /* Assume that the FP is this frame's SP but with that pushed
1329 stack space added back. */
1330 this_base = get_frame_register_unsigned (this_frame,
1331 gdbarch_sp_regnum (gdbarch));
1332 info->base = this_base;
1333 info->prev_sp = info->base + info->size;
1334 }
1335
1336 /* Calculate the addresses for the saved registers on the stack. */
1337 /* FIXME: The address calculation should really be done on the fly while
1338 we're analyzing the prologue (we only hold one regsave value as it is
1339 now). */
1340 val = info->sp_offset;
1341
1342 for (regno = regsave; regno >= 0; regno--)
1343 {
1344 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1345 val -= 4;
1346 }
1347
1348 /* The previous frame's SP needed to be computed. Save the computed
1349 value. */
1350 trad_frame_set_value (info->saved_regs,
1351 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1352
1353 if (!info->leaf_function)
1354 {
1355 /* SRP saved on the stack. But where? */
1356 if (info->r8_offset == 0)
1357 {
1358 /* R8 not pushed yet. */
1359 info->saved_regs[SRP_REGNUM].addr = info->base;
1360 }
1361 else
1362 {
1363 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1365 }
1366 }
1367
1368 /* The PC is found in SRP (the actual register or located on the stack). */
1369 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1370 = info->saved_regs[SRP_REGNUM];
1371
1372 return pc;
1373 }
1374
1375 static CORE_ADDR
1376 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1377 struct cris_unwind_cache *info)
1378 {
1379 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1380 ULONGEST this_base;
1381
1382 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1383 meant to be a full-fledged prologue scanner. It is only needed for
1384 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1385
1386 * PLT stubs (library calls)
1387 * call dummys
1388 * signal trampolines
1389
1390 For those cases, it is assumed that there is no actual prologue; that
1391 the stack pointer is not adjusted, and (as a consequence) the return
1392 address is not pushed onto the stack. */
1393
1394 /* We only want to know the end of the prologue when this_frame and info
1395 are NULL (called from cris_skip_prologue i.e.). */
1396 if (this_frame == NULL && info == NULL)
1397 {
1398 return pc;
1399 }
1400
1401 /* The SP is assumed to be unaltered. */
1402 this_base = get_frame_register_unsigned (this_frame,
1403 gdbarch_sp_regnum (gdbarch));
1404 info->base = this_base;
1405 info->prev_sp = this_base;
1406
1407 /* The PC is assumed to be found in SRP. */
1408 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1409 = info->saved_regs[SRP_REGNUM];
1410
1411 return pc;
1412 }
1413
1414 /* Advance pc beyond any function entry prologue instructions at pc
1415 to reach some "real" code. */
1416
1417 /* Given a PC value corresponding to the start of a function, return the PC
1418 of the first instruction after the function prologue. */
1419
1420 static CORE_ADDR
1421 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1422 {
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
1426 CORE_ADDR pc_after_prologue;
1427
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1431 {
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1434 return sal.end;
1435 }
1436
1437 if (tdep->cris_version == 32)
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1439 else
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1441
1442 return pc_after_prologue;
1443 }
1444
1445 static CORE_ADDR
1446 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1447 {
1448 ULONGEST pc;
1449 pc = frame_unwind_register_unsigned (next_frame,
1450 gdbarch_pc_regnum (gdbarch));
1451 return pc;
1452 }
1453
1454 static CORE_ADDR
1455 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1456 {
1457 ULONGEST sp;
1458 sp = frame_unwind_register_unsigned (next_frame,
1459 gdbarch_sp_regnum (gdbarch));
1460 return sp;
1461 }
1462
1463 /* Use the program counter to determine the contents and size of a breakpoint
1464 instruction. It returns a pointer to a string of bytes that encode a
1465 breakpoint instruction, stores the length of the string to *lenptr, and
1466 adjusts pcptr (if necessary) to point to the actual memory location where
1467 the breakpoint should be inserted. */
1468
1469 static const unsigned char *
1470 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1471 CORE_ADDR *pcptr, int *lenptr)
1472 {
1473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1474 static unsigned char break8_insn[] = {0x38, 0xe9};
1475 static unsigned char break15_insn[] = {0x3f, 0xe9};
1476 *lenptr = 2;
1477
1478 if (tdep->cris_mode == cris_mode_guru)
1479 return break15_insn;
1480 else
1481 return break8_insn;
1482 }
1483
1484 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1485 0 otherwise. */
1486
1487 static int
1488 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1489 struct cris_spec_reg spec_reg)
1490 {
1491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1492 int version = tdep->cris_version;
1493
1494 switch (spec_reg.applicable_version)
1495 {
1496 case cris_ver_version_all:
1497 return 1;
1498 case cris_ver_warning:
1499 /* Indeterminate/obsolete. */
1500 return 0;
1501 case cris_ver_v0_3:
1502 return (version >= 0 && version <= 3);
1503 case cris_ver_v3p:
1504 return (version >= 3);
1505 case cris_ver_v8:
1506 return (version == 8 || version == 9);
1507 case cris_ver_v8p:
1508 return (version >= 8);
1509 case cris_ver_v0_10:
1510 return (version >= 0 && version <= 10);
1511 case cris_ver_v3_10:
1512 return (version >= 3 && version <= 10);
1513 case cris_ver_v8_10:
1514 return (version >= 8 && version <= 10);
1515 case cris_ver_v10:
1516 return (version == 10);
1517 case cris_ver_v10p:
1518 return (version >= 10);
1519 case cris_ver_v32p:
1520 return (version >= 32);
1521 default:
1522 /* Invalid cris version. */
1523 return 0;
1524 }
1525 }
1526
1527 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1528 register, -1 for an invalid register. */
1529
1530 static int
1531 cris_register_size (struct gdbarch *gdbarch, int regno)
1532 {
1533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1534 int i;
1535 int spec_regno;
1536
1537 if (regno >= 0 && regno < NUM_GENREGS)
1538 {
1539 /* General registers (R0 - R15) are 32 bits. */
1540 return 4;
1541 }
1542 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1543 {
1544 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1545 Adjust regno accordingly. */
1546 spec_regno = regno - NUM_GENREGS;
1547
1548 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1549 {
1550 if (cris_spec_regs[i].number == spec_regno
1551 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1552 /* Go with the first applicable register. */
1553 return cris_spec_regs[i].reg_size;
1554 }
1555 /* Special register not applicable to this CRIS version. */
1556 return 0;
1557 }
1558 else if (regno >= gdbarch_pc_regnum (gdbarch)
1559 && regno < gdbarch_num_regs (gdbarch))
1560 {
1561 /* This will apply to CRISv32 only where there are additional registers
1562 after the special registers (pseudo PC and support registers). */
1563 return 4;
1564 }
1565
1566
1567 return -1;
1568 }
1569
1570 /* Nonzero if regno should not be fetched from the target. This is the case
1571 for unimplemented (size 0) and non-existant registers. */
1572
1573 static int
1574 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1575 {
1576 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1577 || (cris_register_size (gdbarch, regno) == 0));
1578 }
1579
1580 /* Nonzero if regno should not be written to the target, for various
1581 reasons. */
1582
1583 static int
1584 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1585 {
1586 /* There are three kinds of registers we refuse to write to.
1587 1. Those that not implemented.
1588 2. Those that are read-only (depends on the processor mode).
1589 3. Those registers to which a write has no effect. */
1590
1591 if (regno < 0
1592 || regno >= gdbarch_num_regs (gdbarch)
1593 || cris_register_size (gdbarch, regno) == 0)
1594 /* Not implemented. */
1595 return 1;
1596
1597 else if (regno == VR_REGNUM)
1598 /* Read-only. */
1599 return 1;
1600
1601 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1602 /* Writing has no effect. */
1603 return 1;
1604
1605 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1606 agent decide whether they are writable. */
1607
1608 return 0;
1609 }
1610
1611 /* Nonzero if regno should not be fetched from the target. This is the case
1612 for unimplemented (size 0) and non-existant registers. */
1613
1614 static int
1615 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1616 {
1617 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1618 || (cris_register_size (gdbarch, regno) == 0));
1619 }
1620
1621 /* Nonzero if regno should not be written to the target, for various
1622 reasons. */
1623
1624 static int
1625 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1626 {
1627 /* There are three kinds of registers we refuse to write to.
1628 1. Those that not implemented.
1629 2. Those that are read-only (depends on the processor mode).
1630 3. Those registers to which a write has no effect. */
1631
1632 if (regno < 0
1633 || regno >= gdbarch_num_regs (gdbarch)
1634 || cris_register_size (gdbarch, regno) == 0)
1635 /* Not implemented. */
1636 return 1;
1637
1638 else if (regno == VR_REGNUM)
1639 /* Read-only. */
1640 return 1;
1641
1642 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1643 /* Writing has no effect. */
1644 return 1;
1645
1646 /* Many special registers are read-only in user mode. Let the debug
1647 agent decide whether they are writable. */
1648
1649 return 0;
1650 }
1651
1652 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1653 of data in register regno. */
1654
1655 static struct type *
1656 cris_register_type (struct gdbarch *gdbarch, int regno)
1657 {
1658 if (regno == gdbarch_pc_regnum (gdbarch))
1659 return builtin_type (gdbarch)->builtin_func_ptr;
1660 else if (regno == gdbarch_sp_regnum (gdbarch)
1661 || regno == CRIS_FP_REGNUM)
1662 return builtin_type (gdbarch)->builtin_data_ptr;
1663 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1664 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1665 /* Note: R8 taken care of previous clause. */
1666 return builtin_type (gdbarch)->builtin_uint32;
1667 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1668 return builtin_type (gdbarch)->builtin_uint16;
1669 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1670 return builtin_type (gdbarch)->builtin_uint8;
1671 else
1672 /* Invalid (unimplemented) register. */
1673 return builtin_type (gdbarch)->builtin_int0;
1674 }
1675
1676 static struct type *
1677 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1678 {
1679 if (regno == gdbarch_pc_regnum (gdbarch))
1680 return builtin_type (gdbarch)->builtin_func_ptr;
1681 else if (regno == gdbarch_sp_regnum (gdbarch)
1682 || regno == CRIS_FP_REGNUM)
1683 return builtin_type (gdbarch)->builtin_data_ptr;
1684 else if ((regno >= 0 && regno <= ACR_REGNUM)
1685 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1686 || (regno == PID_REGNUM)
1687 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1688 /* Note: R8 and SP taken care of by previous clause. */
1689 return builtin_type (gdbarch)->builtin_uint32;
1690 else if (regno == WZ_REGNUM)
1691 return builtin_type (gdbarch)->builtin_uint16;
1692 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1693 return builtin_type (gdbarch)->builtin_uint8;
1694 else
1695 {
1696 /* Invalid (unimplemented) register. Should not happen as there are
1697 no unimplemented CRISv32 registers. */
1698 warning (_("crisv32_register_type: unknown regno %d"), regno);
1699 return builtin_type (gdbarch)->builtin_int0;
1700 }
1701 }
1702
1703 /* Stores a function return value of type type, where valbuf is the address
1704 of the value to be stored. */
1705
1706 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1707
1708 static void
1709 cris_store_return_value (struct type *type, struct regcache *regcache,
1710 const void *valbuf)
1711 {
1712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1714 ULONGEST val;
1715 int len = TYPE_LENGTH (type);
1716
1717 if (len <= 4)
1718 {
1719 /* Put the return value in R10. */
1720 val = extract_unsigned_integer (valbuf, len, byte_order);
1721 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1722 }
1723 else if (len <= 8)
1724 {
1725 /* Put the return value in R10 and R11. */
1726 val = extract_unsigned_integer (valbuf, 4, byte_order);
1727 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1728 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1729 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1730 }
1731 else
1732 error (_("cris_store_return_value: type length too large."));
1733 }
1734
1735 /* Return the name of register regno as a string. Return NULL for an
1736 invalid or unimplemented register. */
1737
1738 static const char *
1739 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1740 {
1741 int spec_regno;
1742 int i;
1743
1744 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1745 Adjust regno accordingly. */
1746 spec_regno = regno - NUM_GENREGS;
1747
1748 /* Assume nothing about the layout of the cris_spec_regs struct
1749 when searching. */
1750 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1751 {
1752 if (cris_spec_regs[i].number == spec_regno
1753 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1754 /* Go with the first applicable register. */
1755 return cris_spec_regs[i].name;
1756 }
1757 /* Special register not applicable to this CRIS version. */
1758 return NULL;
1759 }
1760
1761 static const char *
1762 cris_register_name (struct gdbarch *gdbarch, int regno)
1763 {
1764 static char *cris_genreg_names[] =
1765 { "r0", "r1", "r2", "r3", \
1766 "r4", "r5", "r6", "r7", \
1767 "r8", "r9", "r10", "r11", \
1768 "r12", "r13", "sp", "pc" };
1769
1770 if (regno >= 0 && regno < NUM_GENREGS)
1771 {
1772 /* General register. */
1773 return cris_genreg_names[regno];
1774 }
1775 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1776 {
1777 return cris_special_register_name (gdbarch, regno);
1778 }
1779 else
1780 {
1781 /* Invalid register. */
1782 return NULL;
1783 }
1784 }
1785
1786 static const char *
1787 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1788 {
1789 static char *crisv32_genreg_names[] =
1790 { "r0", "r1", "r2", "r3", \
1791 "r4", "r5", "r6", "r7", \
1792 "r8", "r9", "r10", "r11", \
1793 "r12", "r13", "sp", "acr"
1794 };
1795
1796 static char *crisv32_sreg_names[] =
1797 { "s0", "s1", "s2", "s3", \
1798 "s4", "s5", "s6", "s7", \
1799 "s8", "s9", "s10", "s11", \
1800 "s12", "s13", "s14", "s15"
1801 };
1802
1803 if (regno >= 0 && regno < NUM_GENREGS)
1804 {
1805 /* General register. */
1806 return crisv32_genreg_names[regno];
1807 }
1808 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1809 {
1810 return cris_special_register_name (gdbarch, regno);
1811 }
1812 else if (regno == gdbarch_pc_regnum (gdbarch))
1813 {
1814 return "pc";
1815 }
1816 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1817 {
1818 return crisv32_sreg_names[regno - S0_REGNUM];
1819 }
1820 else
1821 {
1822 /* Invalid register. */
1823 return NULL;
1824 }
1825 }
1826
1827 /* Convert DWARF register number REG to the appropriate register
1828 number used by GDB. */
1829
1830 static int
1831 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1832 {
1833 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1834 numbering, MOF is 18).
1835 Adapted from gcc/config/cris/cris.h. */
1836 static int cris_dwarf_regmap[] = {
1837 0, 1, 2, 3,
1838 4, 5, 6, 7,
1839 8, 9, 10, 11,
1840 12, 13, 14, 15,
1841 27, -1, -1, -1,
1842 -1, -1, -1, 23,
1843 -1, -1, -1, 27,
1844 -1, -1, -1, -1
1845 };
1846 int regnum = -1;
1847
1848 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1849 regnum = cris_dwarf_regmap[reg];
1850
1851 if (regnum == -1)
1852 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1853
1854 return regnum;
1855 }
1856
1857 /* DWARF-2 frame support. */
1858
1859 static void
1860 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1861 struct dwarf2_frame_state_reg *reg,
1862 struct frame_info *this_frame)
1863 {
1864 /* The return address column. */
1865 if (regnum == gdbarch_pc_regnum (gdbarch))
1866 reg->how = DWARF2_FRAME_REG_RA;
1867
1868 /* The call frame address. */
1869 else if (regnum == gdbarch_sp_regnum (gdbarch))
1870 reg->how = DWARF2_FRAME_REG_CFA;
1871 }
1872
1873 /* Extract from an array regbuf containing the raw register state a function
1874 return value of type type, and copy that, in virtual format, into
1875 valbuf. */
1876
1877 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1878
1879 static void
1880 cris_extract_return_value (struct type *type, struct regcache *regcache,
1881 void *valbuf)
1882 {
1883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885 ULONGEST val;
1886 int len = TYPE_LENGTH (type);
1887
1888 if (len <= 4)
1889 {
1890 /* Get the return value from R10. */
1891 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1892 store_unsigned_integer (valbuf, len, byte_order, val);
1893 }
1894 else if (len <= 8)
1895 {
1896 /* Get the return value from R10 and R11. */
1897 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1898 store_unsigned_integer (valbuf, 4, byte_order, val);
1899 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1900 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1901 }
1902 else
1903 error (_("cris_extract_return_value: type length too large"));
1904 }
1905
1906 /* Handle the CRIS return value convention. */
1907
1908 static enum return_value_convention
1909 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1910 struct type *type, struct regcache *regcache,
1911 gdb_byte *readbuf, const gdb_byte *writebuf)
1912 {
1913 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1914 || TYPE_CODE (type) == TYPE_CODE_UNION
1915 || TYPE_LENGTH (type) > 8)
1916 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1917 goes on the stack. */
1918 return RETURN_VALUE_STRUCT_CONVENTION;
1919
1920 if (readbuf)
1921 cris_extract_return_value (type, regcache, readbuf);
1922 if (writebuf)
1923 cris_store_return_value (type, regcache, writebuf);
1924
1925 return RETURN_VALUE_REGISTER_CONVENTION;
1926 }
1927
1928 /* Calculates a value that measures how good inst_args constraints an
1929 instruction. It stems from cris_constraint, found in cris-dis.c. */
1930
1931 static int
1932 constraint (unsigned int insn, const signed char *inst_args,
1933 inst_env_type *inst_env)
1934 {
1935 int retval = 0;
1936 int tmp, i;
1937
1938 const char *s = inst_args;
1939
1940 for (; *s; s++)
1941 switch (*s)
1942 {
1943 case 'm':
1944 if ((insn & 0x30) == 0x30)
1945 return -1;
1946 break;
1947
1948 case 'S':
1949 /* A prefix operand. */
1950 if (inst_env->prefix_found)
1951 break;
1952 else
1953 return -1;
1954
1955 case 'B':
1956 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1957 valid "push" size. In case of special register, it may be != 4. */
1958 if (inst_env->prefix_found)
1959 break;
1960 else
1961 return -1;
1962
1963 case 'D':
1964 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1965 if (!retval)
1966 return -1;
1967 else
1968 retval += 4;
1969 break;
1970
1971 case 'P':
1972 tmp = (insn >> 0xC) & 0xF;
1973
1974 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1975 {
1976 /* Since we match four bits, we will give a value of
1977 4 - 1 = 3 in a match. If there is a corresponding
1978 exact match of a special register in another pattern, it
1979 will get a value of 4, which will be higher. This should
1980 be correct in that an exact pattern would match better that
1981 a general pattern.
1982 Note that there is a reason for not returning zero; the
1983 pattern for "clear" is partly matched in the bit-pattern
1984 (the two lower bits must be zero), while the bit-pattern
1985 for a move from a special register is matched in the
1986 register constraint.
1987 This also means we will will have a race condition if
1988 there is a partly match in three bits in the bit pattern. */
1989 if (tmp == cris_spec_regs[i].number)
1990 {
1991 retval += 3;
1992 break;
1993 }
1994 }
1995
1996 if (cris_spec_regs[i].name == NULL)
1997 return -1;
1998 break;
1999 }
2000 return retval;
2001 }
2002
2003 /* Returns the number of bits set in the variable value. */
2004
2005 static int
2006 number_of_bits (unsigned int value)
2007 {
2008 int number_of_bits = 0;
2009
2010 while (value != 0)
2011 {
2012 number_of_bits += 1;
2013 value &= (value - 1);
2014 }
2015 return number_of_bits;
2016 }
2017
2018 /* Finds the address that should contain the single step breakpoint(s).
2019 It stems from code in cris-dis.c. */
2020
2021 static int
2022 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2023 {
2024 int i;
2025 int max_level_of_match = -1;
2026 int max_matched = -1;
2027 int level_of_match;
2028
2029 for (i = 0; cris_opcodes[i].name != NULL; i++)
2030 {
2031 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2032 && ((cris_opcodes[i].lose & insn) == 0)
2033 /* Only CRISv10 instructions, please. */
2034 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2035 {
2036 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2037 if (level_of_match >= 0)
2038 {
2039 level_of_match +=
2040 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2041 if (level_of_match > max_level_of_match)
2042 {
2043 max_matched = i;
2044 max_level_of_match = level_of_match;
2045 if (level_of_match == 16)
2046 {
2047 /* All bits matched, cannot find better. */
2048 break;
2049 }
2050 }
2051 }
2052 }
2053 }
2054 return max_matched;
2055 }
2056
2057 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2058 actually an internal error. */
2059
2060 static int
2061 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2062 {
2063 int i;
2064 int offset;
2065 unsigned short insn;
2066 struct gdbarch *gdbarch = get_frame_arch (frame);
2067 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2068
2069 /* Create a local register image and set the initial state. */
2070 for (i = 0; i < NUM_GENREGS; i++)
2071 {
2072 inst_env->reg[i] =
2073 (unsigned long) get_frame_register_unsigned (frame, i);
2074 }
2075 offset = NUM_GENREGS;
2076 for (i = 0; i < NUM_SPECREGS; i++)
2077 {
2078 inst_env->preg[i] =
2079 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2080 }
2081 inst_env->branch_found = 0;
2082 inst_env->slot_needed = 0;
2083 inst_env->delay_slot_pc_active = 0;
2084 inst_env->prefix_found = 0;
2085 inst_env->invalid = 0;
2086 inst_env->xflag_found = 0;
2087 inst_env->disable_interrupt = 0;
2088 inst_env->byte_order = byte_order;
2089
2090 /* Look for a step target. */
2091 do
2092 {
2093 /* Read an instruction from the client. */
2094 insn = read_memory_unsigned_integer
2095 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2096
2097 /* If the instruction is not in a delay slot the new content of the
2098 PC is [PC] + 2. If the instruction is in a delay slot it is not
2099 that simple. Since a instruction in a delay slot cannot change
2100 the content of the PC, it does not matter what value PC will have.
2101 Just make sure it is a valid instruction. */
2102 if (!inst_env->delay_slot_pc_active)
2103 {
2104 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2105 }
2106 else
2107 {
2108 inst_env->delay_slot_pc_active = 0;
2109 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2110 = inst_env->delay_slot_pc;
2111 }
2112 /* Analyse the present instruction. */
2113 i = find_cris_op (insn, inst_env);
2114 if (i == -1)
2115 {
2116 inst_env->invalid = 1;
2117 }
2118 else
2119 {
2120 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2121 }
2122 } while (!inst_env->invalid
2123 && (inst_env->prefix_found || inst_env->xflag_found
2124 || inst_env->slot_needed));
2125 return i;
2126 }
2127
2128 /* There is no hardware single-step support. The function find_step_target
2129 digs through the opcodes in order to find all possible targets.
2130 Either one ordinary target or two targets for branches may be found. */
2131
2132 static int
2133 cris_software_single_step (struct frame_info *frame)
2134 {
2135 struct gdbarch *gdbarch = get_frame_arch (frame);
2136 struct address_space *aspace = get_frame_address_space (frame);
2137 inst_env_type inst_env;
2138
2139 /* Analyse the present instruction environment and insert
2140 breakpoints. */
2141 int status = find_step_target (frame, &inst_env);
2142 if (status == -1)
2143 {
2144 /* Could not find a target. Things are likely to go downhill
2145 from here. */
2146 warning (_("CRIS software single step could not find a step target."));
2147 }
2148 else
2149 {
2150 /* Insert at most two breakpoints. One for the next PC content
2151 and possibly another one for a branch, jump, etc. */
2152 CORE_ADDR next_pc
2153 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2154 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2155 if (inst_env.branch_found
2156 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2157 {
2158 CORE_ADDR branch_target_address
2159 = (CORE_ADDR) inst_env.branch_break_address;
2160 insert_single_step_breakpoint (gdbarch,
2161 aspace, branch_target_address);
2162 }
2163 }
2164
2165 return 1;
2166 }
2167
2168 /* Calculates the prefix value for quick offset addressing mode. */
2169
2170 static void
2171 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2172 {
2173 /* It's invalid to be in a delay slot. You can't have a prefix to this
2174 instruction (not 100% sure). */
2175 if (inst_env->slot_needed || inst_env->prefix_found)
2176 {
2177 inst_env->invalid = 1;
2178 return;
2179 }
2180
2181 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2182 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2183
2184 /* A prefix doesn't change the xflag_found. But the rest of the flags
2185 need updating. */
2186 inst_env->slot_needed = 0;
2187 inst_env->prefix_found = 1;
2188 }
2189
2190 /* Updates the autoincrement register. The size of the increment is derived
2191 from the size of the operation. The PC is always kept aligned on even
2192 word addresses. */
2193
2194 static void
2195 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2196 {
2197 if (size == INST_BYTE_SIZE)
2198 {
2199 inst_env->reg[cris_get_operand1 (inst)] += 1;
2200
2201 /* The PC must be word aligned, so increase the PC with one
2202 word even if the size is byte. */
2203 if (cris_get_operand1 (inst) == REG_PC)
2204 {
2205 inst_env->reg[REG_PC] += 1;
2206 }
2207 }
2208 else if (size == INST_WORD_SIZE)
2209 {
2210 inst_env->reg[cris_get_operand1 (inst)] += 2;
2211 }
2212 else if (size == INST_DWORD_SIZE)
2213 {
2214 inst_env->reg[cris_get_operand1 (inst)] += 4;
2215 }
2216 else
2217 {
2218 /* Invalid size. */
2219 inst_env->invalid = 1;
2220 }
2221 }
2222
2223 /* Just a forward declaration. */
2224
2225 static unsigned long get_data_from_address (unsigned short *inst,
2226 CORE_ADDR address,
2227 enum bfd_endian byte_order);
2228
2229 /* Calculates the prefix value for the general case of offset addressing
2230 mode. */
2231
2232 static void
2233 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2234 {
2235
2236 long offset;
2237
2238 /* It's invalid to be in a delay slot. */
2239 if (inst_env->slot_needed || inst_env->prefix_found)
2240 {
2241 inst_env->invalid = 1;
2242 return;
2243 }
2244
2245 /* The calculation of prefix_value used to be after process_autoincrement,
2246 but that fails for an instruction such as jsr [$r0+12] which is encoded
2247 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2248 mustn't be incremented until we have read it and what it points at. */
2249 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2250
2251 /* The offset is an indirection of the contents of the operand1 register. */
2252 inst_env->prefix_value +=
2253 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2254 inst_env->byte_order);
2255
2256 if (cris_get_mode (inst) == AUTOINC_MODE)
2257 {
2258 process_autoincrement (cris_get_size (inst), inst, inst_env);
2259 }
2260
2261 /* A prefix doesn't change the xflag_found. But the rest of the flags
2262 need updating. */
2263 inst_env->slot_needed = 0;
2264 inst_env->prefix_found = 1;
2265 }
2266
2267 /* Calculates the prefix value for the index addressing mode. */
2268
2269 static void
2270 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2271 {
2272 /* It's invalid to be in a delay slot. I can't see that it's possible to
2273 have a prefix to this instruction. So I will treat this as invalid. */
2274 if (inst_env->slot_needed || inst_env->prefix_found)
2275 {
2276 inst_env->invalid = 1;
2277 return;
2278 }
2279
2280 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2281
2282 /* The offset is the operand2 value shifted the size of the instruction
2283 to the left. */
2284 inst_env->prefix_value +=
2285 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2286
2287 /* If the PC is operand1 (base) the address used is the address after
2288 the main instruction, i.e. address + 2 (the PC is already compensated
2289 for the prefix operation). */
2290 if (cris_get_operand1 (inst) == REG_PC)
2291 {
2292 inst_env->prefix_value += 2;
2293 }
2294
2295 /* A prefix doesn't change the xflag_found. But the rest of the flags
2296 need updating. */
2297 inst_env->slot_needed = 0;
2298 inst_env->xflag_found = 0;
2299 inst_env->prefix_found = 1;
2300 }
2301
2302 /* Calculates the prefix value for the double indirect addressing mode. */
2303
2304 static void
2305 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2306 {
2307
2308 CORE_ADDR address;
2309
2310 /* It's invalid to be in a delay slot. */
2311 if (inst_env->slot_needed || inst_env->prefix_found)
2312 {
2313 inst_env->invalid = 1;
2314 return;
2315 }
2316
2317 /* The prefix value is one dereference of the contents of the operand1
2318 register. */
2319 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2320 inst_env->prefix_value
2321 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2322
2323 /* Check if the mode is autoincrement. */
2324 if (cris_get_mode (inst) == AUTOINC_MODE)
2325 {
2326 inst_env->reg[cris_get_operand1 (inst)] += 4;
2327 }
2328
2329 /* A prefix doesn't change the xflag_found. But the rest of the flags
2330 need updating. */
2331 inst_env->slot_needed = 0;
2332 inst_env->xflag_found = 0;
2333 inst_env->prefix_found = 1;
2334 }
2335
2336 /* Finds the destination for a branch with 8-bits offset. */
2337
2338 static void
2339 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2340 {
2341
2342 short offset;
2343
2344 /* If we have a prefix or are in a delay slot it's bad. */
2345 if (inst_env->slot_needed || inst_env->prefix_found)
2346 {
2347 inst_env->invalid = 1;
2348 return;
2349 }
2350
2351 /* We have a branch, find out where the branch will land. */
2352 offset = cris_get_branch_short_offset (inst);
2353
2354 /* Check if the offset is signed. */
2355 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2356 {
2357 offset |= 0xFF00;
2358 }
2359
2360 /* The offset ends with the sign bit, set it to zero. The address
2361 should always be word aligned. */
2362 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2363
2364 inst_env->branch_found = 1;
2365 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2366
2367 inst_env->slot_needed = 1;
2368 inst_env->prefix_found = 0;
2369 inst_env->xflag_found = 0;
2370 inst_env->disable_interrupt = 1;
2371 }
2372
2373 /* Finds the destination for a branch with 16-bits offset. */
2374
2375 static void
2376 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2377 {
2378 short offset;
2379
2380 /* If we have a prefix or is in a delay slot it's bad. */
2381 if (inst_env->slot_needed || inst_env->prefix_found)
2382 {
2383 inst_env->invalid = 1;
2384 return;
2385 }
2386
2387 /* We have a branch, find out the offset for the branch. */
2388 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2389 inst_env->byte_order);
2390
2391 /* The instruction is one word longer than normal, so add one word
2392 to the PC. */
2393 inst_env->reg[REG_PC] += 2;
2394
2395 inst_env->branch_found = 1;
2396 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2397
2398
2399 inst_env->slot_needed = 1;
2400 inst_env->prefix_found = 0;
2401 inst_env->xflag_found = 0;
2402 inst_env->disable_interrupt = 1;
2403 }
2404
2405 /* Handles the ABS instruction. */
2406
2407 static void
2408 abs_op (unsigned short inst, inst_env_type *inst_env)
2409 {
2410
2411 long value;
2412
2413 /* ABS can't have a prefix, so it's bad if it does. */
2414 if (inst_env->prefix_found)
2415 {
2416 inst_env->invalid = 1;
2417 return;
2418 }
2419
2420 /* Check if the operation affects the PC. */
2421 if (cris_get_operand2 (inst) == REG_PC)
2422 {
2423
2424 /* It's invalid to change to the PC if we are in a delay slot. */
2425 if (inst_env->slot_needed)
2426 {
2427 inst_env->invalid = 1;
2428 return;
2429 }
2430
2431 value = (long) inst_env->reg[REG_PC];
2432
2433 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2434 if (value != SIGNED_DWORD_MASK)
2435 {
2436 value = -value;
2437 inst_env->reg[REG_PC] = (long) value;
2438 }
2439 }
2440
2441 inst_env->slot_needed = 0;
2442 inst_env->prefix_found = 0;
2443 inst_env->xflag_found = 0;
2444 inst_env->disable_interrupt = 0;
2445 }
2446
2447 /* Handles the ADDI instruction. */
2448
2449 static void
2450 addi_op (unsigned short inst, inst_env_type *inst_env)
2451 {
2452 /* It's invalid to have the PC as base register. And ADDI can't have
2453 a prefix. */
2454 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2455 {
2456 inst_env->invalid = 1;
2457 return;
2458 }
2459
2460 inst_env->slot_needed = 0;
2461 inst_env->prefix_found = 0;
2462 inst_env->xflag_found = 0;
2463 inst_env->disable_interrupt = 0;
2464 }
2465
2466 /* Handles the ASR instruction. */
2467
2468 static void
2469 asr_op (unsigned short inst, inst_env_type *inst_env)
2470 {
2471 int shift_steps;
2472 unsigned long value;
2473 unsigned long signed_extend_mask = 0;
2474
2475 /* ASR can't have a prefix, so check that it doesn't. */
2476 if (inst_env->prefix_found)
2477 {
2478 inst_env->invalid = 1;
2479 return;
2480 }
2481
2482 /* Check if the PC is the target register. */
2483 if (cris_get_operand2 (inst) == REG_PC)
2484 {
2485 /* It's invalid to change the PC in a delay slot. */
2486 if (inst_env->slot_needed)
2487 {
2488 inst_env->invalid = 1;
2489 return;
2490 }
2491 /* Get the number of bits to shift. */
2492 shift_steps
2493 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2494 value = inst_env->reg[REG_PC];
2495
2496 /* Find out how many bits the operation should apply to. */
2497 if (cris_get_size (inst) == INST_BYTE_SIZE)
2498 {
2499 if (value & SIGNED_BYTE_MASK)
2500 {
2501 signed_extend_mask = 0xFF;
2502 signed_extend_mask = signed_extend_mask >> shift_steps;
2503 signed_extend_mask = ~signed_extend_mask;
2504 }
2505 value = value >> shift_steps;
2506 value |= signed_extend_mask;
2507 value &= 0xFF;
2508 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2509 inst_env->reg[REG_PC] |= value;
2510 }
2511 else if (cris_get_size (inst) == INST_WORD_SIZE)
2512 {
2513 if (value & SIGNED_WORD_MASK)
2514 {
2515 signed_extend_mask = 0xFFFF;
2516 signed_extend_mask = signed_extend_mask >> shift_steps;
2517 signed_extend_mask = ~signed_extend_mask;
2518 }
2519 value = value >> shift_steps;
2520 value |= signed_extend_mask;
2521 value &= 0xFFFF;
2522 inst_env->reg[REG_PC] &= 0xFFFF0000;
2523 inst_env->reg[REG_PC] |= value;
2524 }
2525 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2526 {
2527 if (value & SIGNED_DWORD_MASK)
2528 {
2529 signed_extend_mask = 0xFFFFFFFF;
2530 signed_extend_mask = signed_extend_mask >> shift_steps;
2531 signed_extend_mask = ~signed_extend_mask;
2532 }
2533 value = value >> shift_steps;
2534 value |= signed_extend_mask;
2535 inst_env->reg[REG_PC] = value;
2536 }
2537 }
2538 inst_env->slot_needed = 0;
2539 inst_env->prefix_found = 0;
2540 inst_env->xflag_found = 0;
2541 inst_env->disable_interrupt = 0;
2542 }
2543
2544 /* Handles the ASRQ instruction. */
2545
2546 static void
2547 asrq_op (unsigned short inst, inst_env_type *inst_env)
2548 {
2549
2550 int shift_steps;
2551 unsigned long value;
2552 unsigned long signed_extend_mask = 0;
2553
2554 /* ASRQ can't have a prefix, so check that it doesn't. */
2555 if (inst_env->prefix_found)
2556 {
2557 inst_env->invalid = 1;
2558 return;
2559 }
2560
2561 /* Check if the PC is the target register. */
2562 if (cris_get_operand2 (inst) == REG_PC)
2563 {
2564
2565 /* It's invalid to change the PC in a delay slot. */
2566 if (inst_env->slot_needed)
2567 {
2568 inst_env->invalid = 1;
2569 return;
2570 }
2571 /* The shift size is given as a 5 bit quick value, i.e. we don't
2572 want the sign bit of the quick value. */
2573 shift_steps = cris_get_asr_shift_steps (inst);
2574 value = inst_env->reg[REG_PC];
2575 if (value & SIGNED_DWORD_MASK)
2576 {
2577 signed_extend_mask = 0xFFFFFFFF;
2578 signed_extend_mask = signed_extend_mask >> shift_steps;
2579 signed_extend_mask = ~signed_extend_mask;
2580 }
2581 value = value >> shift_steps;
2582 value |= signed_extend_mask;
2583 inst_env->reg[REG_PC] = value;
2584 }
2585 inst_env->slot_needed = 0;
2586 inst_env->prefix_found = 0;
2587 inst_env->xflag_found = 0;
2588 inst_env->disable_interrupt = 0;
2589 }
2590
2591 /* Handles the AX, EI and SETF instruction. */
2592
2593 static void
2594 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2595 {
2596 if (inst_env->prefix_found)
2597 {
2598 inst_env->invalid = 1;
2599 return;
2600 }
2601 /* Check if the instruction is setting the X flag. */
2602 if (cris_is_xflag_bit_on (inst))
2603 {
2604 inst_env->xflag_found = 1;
2605 }
2606 else
2607 {
2608 inst_env->xflag_found = 0;
2609 }
2610 inst_env->slot_needed = 0;
2611 inst_env->prefix_found = 0;
2612 inst_env->disable_interrupt = 1;
2613 }
2614
2615 /* Checks if the instruction is in assign mode. If so, it updates the assign
2616 register. Note that check_assign assumes that the caller has checked that
2617 there is a prefix to this instruction. The mode check depends on this. */
2618
2619 static void
2620 check_assign (unsigned short inst, inst_env_type *inst_env)
2621 {
2622 /* Check if it's an assign addressing mode. */
2623 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2624 {
2625 /* Assign the prefix value to operand 1. */
2626 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2627 }
2628 }
2629
2630 /* Handles the 2-operand BOUND instruction. */
2631
2632 static void
2633 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2634 {
2635 /* It's invalid to have the PC as the index operand. */
2636 if (cris_get_operand2 (inst) == REG_PC)
2637 {
2638 inst_env->invalid = 1;
2639 return;
2640 }
2641 /* Check if we have a prefix. */
2642 if (inst_env->prefix_found)
2643 {
2644 check_assign (inst, inst_env);
2645 }
2646 /* Check if this is an autoincrement mode. */
2647 else if (cris_get_mode (inst) == AUTOINC_MODE)
2648 {
2649 /* It's invalid to change the PC in a delay slot. */
2650 if (inst_env->slot_needed)
2651 {
2652 inst_env->invalid = 1;
2653 return;
2654 }
2655 process_autoincrement (cris_get_size (inst), inst, inst_env);
2656 }
2657 inst_env->slot_needed = 0;
2658 inst_env->prefix_found = 0;
2659 inst_env->xflag_found = 0;
2660 inst_env->disable_interrupt = 0;
2661 }
2662
2663 /* Handles the 3-operand BOUND instruction. */
2664
2665 static void
2666 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2667 {
2668 /* It's an error if we haven't got a prefix. And it's also an error
2669 if the PC is the destination register. */
2670 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2671 {
2672 inst_env->invalid = 1;
2673 return;
2674 }
2675 inst_env->slot_needed = 0;
2676 inst_env->prefix_found = 0;
2677 inst_env->xflag_found = 0;
2678 inst_env->disable_interrupt = 0;
2679 }
2680
2681 /* Clears the status flags in inst_env. */
2682
2683 static void
2684 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2685 {
2686 /* It's an error if we have got a prefix. */
2687 if (inst_env->prefix_found)
2688 {
2689 inst_env->invalid = 1;
2690 return;
2691 }
2692
2693 inst_env->slot_needed = 0;
2694 inst_env->prefix_found = 0;
2695 inst_env->xflag_found = 0;
2696 inst_env->disable_interrupt = 0;
2697 }
2698
2699 /* Clears the status flags in inst_env. */
2700
2701 static void
2702 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2703 {
2704 /* It's an error if we have got a prefix. */
2705 if (inst_env->prefix_found)
2706 {
2707 inst_env->invalid = 1;
2708 return;
2709 }
2710
2711 inst_env->slot_needed = 0;
2712 inst_env->prefix_found = 0;
2713 inst_env->xflag_found = 0;
2714 inst_env->disable_interrupt = 1;
2715 }
2716
2717 /* Handles the CLEAR instruction if it's in register mode. */
2718
2719 static void
2720 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2721 {
2722 /* Check if the target is the PC. */
2723 if (cris_get_operand2 (inst) == REG_PC)
2724 {
2725 /* The instruction will clear the instruction's size bits. */
2726 int clear_size = cris_get_clear_size (inst);
2727 if (clear_size == INST_BYTE_SIZE)
2728 {
2729 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2730 }
2731 if (clear_size == INST_WORD_SIZE)
2732 {
2733 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2734 }
2735 if (clear_size == INST_DWORD_SIZE)
2736 {
2737 inst_env->delay_slot_pc = 0x0;
2738 }
2739 /* The jump will be delayed with one delay slot. So we need a delay
2740 slot. */
2741 inst_env->slot_needed = 1;
2742 inst_env->delay_slot_pc_active = 1;
2743 }
2744 else
2745 {
2746 /* The PC will not change => no delay slot. */
2747 inst_env->slot_needed = 0;
2748 }
2749 inst_env->prefix_found = 0;
2750 inst_env->xflag_found = 0;
2751 inst_env->disable_interrupt = 0;
2752 }
2753
2754 /* Handles the TEST instruction if it's in register mode. */
2755
2756 static void
2757 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2758 {
2759 /* It's an error if we have got a prefix. */
2760 if (inst_env->prefix_found)
2761 {
2762 inst_env->invalid = 1;
2763 return;
2764 }
2765 inst_env->slot_needed = 0;
2766 inst_env->prefix_found = 0;
2767 inst_env->xflag_found = 0;
2768 inst_env->disable_interrupt = 0;
2769
2770 }
2771
2772 /* Handles the CLEAR and TEST instruction if the instruction isn't
2773 in register mode. */
2774
2775 static void
2776 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2777 {
2778 /* Check if we are in a prefix mode. */
2779 if (inst_env->prefix_found)
2780 {
2781 /* The only way the PC can change is if this instruction is in
2782 assign addressing mode. */
2783 check_assign (inst, inst_env);
2784 }
2785 /* Indirect mode can't change the PC so just check if the mode is
2786 autoincrement. */
2787 else if (cris_get_mode (inst) == AUTOINC_MODE)
2788 {
2789 process_autoincrement (cris_get_size (inst), inst, inst_env);
2790 }
2791 inst_env->slot_needed = 0;
2792 inst_env->prefix_found = 0;
2793 inst_env->xflag_found = 0;
2794 inst_env->disable_interrupt = 0;
2795 }
2796
2797 /* Checks that the PC isn't the destination register or the instructions has
2798 a prefix. */
2799
2800 static void
2801 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2802 {
2803 /* It's invalid to have the PC as the destination. The instruction can't
2804 have a prefix. */
2805 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2806 {
2807 inst_env->invalid = 1;
2808 return;
2809 }
2810
2811 inst_env->slot_needed = 0;
2812 inst_env->prefix_found = 0;
2813 inst_env->xflag_found = 0;
2814 inst_env->disable_interrupt = 0;
2815 }
2816
2817 /* Checks that the instruction doesn't have a prefix. */
2818
2819 static void
2820 break_op (unsigned short inst, inst_env_type *inst_env)
2821 {
2822 /* The instruction can't have a prefix. */
2823 if (inst_env->prefix_found)
2824 {
2825 inst_env->invalid = 1;
2826 return;
2827 }
2828
2829 inst_env->slot_needed = 0;
2830 inst_env->prefix_found = 0;
2831 inst_env->xflag_found = 0;
2832 inst_env->disable_interrupt = 1;
2833 }
2834
2835 /* Checks that the PC isn't the destination register and that the instruction
2836 doesn't have a prefix. */
2837
2838 static void
2839 scc_op (unsigned short inst, inst_env_type *inst_env)
2840 {
2841 /* It's invalid to have the PC as the destination. The instruction can't
2842 have a prefix. */
2843 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2844 {
2845 inst_env->invalid = 1;
2846 return;
2847 }
2848
2849 inst_env->slot_needed = 0;
2850 inst_env->prefix_found = 0;
2851 inst_env->xflag_found = 0;
2852 inst_env->disable_interrupt = 1;
2853 }
2854
2855 /* Handles the register mode JUMP instruction. */
2856
2857 static void
2858 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2859 {
2860 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2861 you can't have a prefix. */
2862 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2863 {
2864 inst_env->invalid = 1;
2865 return;
2866 }
2867
2868 /* Just change the PC. */
2869 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2870 inst_env->slot_needed = 0;
2871 inst_env->prefix_found = 0;
2872 inst_env->xflag_found = 0;
2873 inst_env->disable_interrupt = 1;
2874 }
2875
2876 /* Handles the JUMP instruction for all modes except register. */
2877
2878 static void
2879 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2880 {
2881 unsigned long newpc;
2882 CORE_ADDR address;
2883
2884 /* It's invalid to do a JUMP in a delay slot. */
2885 if (inst_env->slot_needed)
2886 {
2887 inst_env->invalid = 1;
2888 }
2889 else
2890 {
2891 /* Check if we have a prefix. */
2892 if (inst_env->prefix_found)
2893 {
2894 check_assign (inst, inst_env);
2895
2896 /* Get the new value for the PC. */
2897 newpc =
2898 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2899 4, inst_env->byte_order);
2900 }
2901 else
2902 {
2903 /* Get the new value for the PC. */
2904 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2905 newpc = read_memory_unsigned_integer (address,
2906 4, inst_env->byte_order);
2907
2908 /* Check if we should increment a register. */
2909 if (cris_get_mode (inst) == AUTOINC_MODE)
2910 {
2911 inst_env->reg[cris_get_operand1 (inst)] += 4;
2912 }
2913 }
2914 inst_env->reg[REG_PC] = newpc;
2915 }
2916 inst_env->slot_needed = 0;
2917 inst_env->prefix_found = 0;
2918 inst_env->xflag_found = 0;
2919 inst_env->disable_interrupt = 1;
2920 }
2921
2922 /* Handles moves to special registers (aka P-register) for all modes. */
2923
2924 static void
2925 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2926 inst_env_type *inst_env)
2927 {
2928 if (inst_env->prefix_found)
2929 {
2930 /* The instruction has a prefix that means we are only interested if
2931 the instruction is in assign mode. */
2932 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2933 {
2934 /* The prefix handles the problem if we are in a delay slot. */
2935 if (cris_get_operand1 (inst) == REG_PC)
2936 {
2937 /* Just take care of the assign. */
2938 check_assign (inst, inst_env);
2939 }
2940 }
2941 }
2942 else if (cris_get_mode (inst) == AUTOINC_MODE)
2943 {
2944 /* The instruction doesn't have a prefix, the only case left that we
2945 are interested in is the autoincrement mode. */
2946 if (cris_get_operand1 (inst) == REG_PC)
2947 {
2948 /* If the PC is to be incremented it's invalid to be in a
2949 delay slot. */
2950 if (inst_env->slot_needed)
2951 {
2952 inst_env->invalid = 1;
2953 return;
2954 }
2955
2956 /* The increment depends on the size of the special register. */
2957 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2958 {
2959 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2960 }
2961 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2962 {
2963 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2964 }
2965 else
2966 {
2967 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2968 }
2969 }
2970 }
2971 inst_env->slot_needed = 0;
2972 inst_env->prefix_found = 0;
2973 inst_env->xflag_found = 0;
2974 inst_env->disable_interrupt = 1;
2975 }
2976
2977 /* Handles moves from special registers (aka P-register) for all modes
2978 except register. */
2979
2980 static void
2981 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2982 inst_env_type *inst_env)
2983 {
2984 if (inst_env->prefix_found)
2985 {
2986 /* The instruction has a prefix that means we are only interested if
2987 the instruction is in assign mode. */
2988 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2989 {
2990 /* The prefix handles the problem if we are in a delay slot. */
2991 if (cris_get_operand1 (inst) == REG_PC)
2992 {
2993 /* Just take care of the assign. */
2994 check_assign (inst, inst_env);
2995 }
2996 }
2997 }
2998 /* The instruction doesn't have a prefix, the only case left that we
2999 are interested in is the autoincrement mode. */
3000 else if (cris_get_mode (inst) == AUTOINC_MODE)
3001 {
3002 if (cris_get_operand1 (inst) == REG_PC)
3003 {
3004 /* If the PC is to be incremented it's invalid to be in a
3005 delay slot. */
3006 if (inst_env->slot_needed)
3007 {
3008 inst_env->invalid = 1;
3009 return;
3010 }
3011
3012 /* The increment depends on the size of the special register. */
3013 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3014 {
3015 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3016 }
3017 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3018 {
3019 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3020 }
3021 else
3022 {
3023 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3024 }
3025 }
3026 }
3027 inst_env->slot_needed = 0;
3028 inst_env->prefix_found = 0;
3029 inst_env->xflag_found = 0;
3030 inst_env->disable_interrupt = 1;
3031 }
3032
3033 /* Handles moves from special registers (aka P-register) when the mode
3034 is register. */
3035
3036 static void
3037 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3038 {
3039 /* Register mode move from special register can't have a prefix. */
3040 if (inst_env->prefix_found)
3041 {
3042 inst_env->invalid = 1;
3043 return;
3044 }
3045
3046 if (cris_get_operand1 (inst) == REG_PC)
3047 {
3048 /* It's invalid to change the PC in a delay slot. */
3049 if (inst_env->slot_needed)
3050 {
3051 inst_env->invalid = 1;
3052 return;
3053 }
3054 /* The destination is the PC, the jump will have a delay slot. */
3055 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3056 inst_env->slot_needed = 1;
3057 inst_env->delay_slot_pc_active = 1;
3058 }
3059 else
3060 {
3061 /* If the destination isn't PC, there will be no jump. */
3062 inst_env->slot_needed = 0;
3063 }
3064 inst_env->prefix_found = 0;
3065 inst_env->xflag_found = 0;
3066 inst_env->disable_interrupt = 1;
3067 }
3068
3069 /* Handles the MOVEM from memory to general register instruction. */
3070
3071 static void
3072 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3073 {
3074 if (inst_env->prefix_found)
3075 {
3076 /* The prefix handles the problem if we are in a delay slot. Is the
3077 MOVEM instruction going to change the PC? */
3078 if (cris_get_operand2 (inst) >= REG_PC)
3079 {
3080 inst_env->reg[REG_PC] =
3081 read_memory_unsigned_integer (inst_env->prefix_value,
3082 4, inst_env->byte_order);
3083 }
3084 /* The assign value is the value after the increment. Normally, the
3085 assign value is the value before the increment. */
3086 if ((cris_get_operand1 (inst) == REG_PC)
3087 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3088 {
3089 inst_env->reg[REG_PC] = inst_env->prefix_value;
3090 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3091 }
3092 }
3093 else
3094 {
3095 /* Is the MOVEM instruction going to change the PC? */
3096 if (cris_get_operand2 (inst) == REG_PC)
3097 {
3098 /* It's invalid to change the PC in a delay slot. */
3099 if (inst_env->slot_needed)
3100 {
3101 inst_env->invalid = 1;
3102 return;
3103 }
3104 inst_env->reg[REG_PC] =
3105 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3106 4, inst_env->byte_order);
3107 }
3108 /* The increment is not depending on the size, instead it's depending
3109 on the number of registers loaded from memory. */
3110 if ((cris_get_operand1 (inst) == REG_PC)
3111 && (cris_get_mode (inst) == AUTOINC_MODE))
3112 {
3113 /* It's invalid to change the PC in a delay slot. */
3114 if (inst_env->slot_needed)
3115 {
3116 inst_env->invalid = 1;
3117 return;
3118 }
3119 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3120 }
3121 }
3122 inst_env->slot_needed = 0;
3123 inst_env->prefix_found = 0;
3124 inst_env->xflag_found = 0;
3125 inst_env->disable_interrupt = 0;
3126 }
3127
3128 /* Handles the MOVEM to memory from general register instruction. */
3129
3130 static void
3131 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3132 {
3133 if (inst_env->prefix_found)
3134 {
3135 /* The assign value is the value after the increment. Normally, the
3136 assign value is the value before the increment. */
3137 if ((cris_get_operand1 (inst) == REG_PC)
3138 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3139 {
3140 /* The prefix handles the problem if we are in a delay slot. */
3141 inst_env->reg[REG_PC] = inst_env->prefix_value;
3142 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3143 }
3144 }
3145 else
3146 {
3147 /* The increment is not depending on the size, instead it's depending
3148 on the number of registers loaded to memory. */
3149 if ((cris_get_operand1 (inst) == REG_PC)
3150 && (cris_get_mode (inst) == AUTOINC_MODE))
3151 {
3152 /* It's invalid to change the PC in a delay slot. */
3153 if (inst_env->slot_needed)
3154 {
3155 inst_env->invalid = 1;
3156 return;
3157 }
3158 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3159 }
3160 }
3161 inst_env->slot_needed = 0;
3162 inst_env->prefix_found = 0;
3163 inst_env->xflag_found = 0;
3164 inst_env->disable_interrupt = 0;
3165 }
3166
3167 /* Handles the intructions that's not yet implemented, by setting
3168 inst_env->invalid to true. */
3169
3170 static void
3171 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3172 {
3173 inst_env->invalid = 1;
3174 }
3175
3176 /* Handles the XOR instruction. */
3177
3178 static void
3179 xor_op (unsigned short inst, inst_env_type *inst_env)
3180 {
3181 /* XOR can't have a prefix. */
3182 if (inst_env->prefix_found)
3183 {
3184 inst_env->invalid = 1;
3185 return;
3186 }
3187
3188 /* Check if the PC is the target. */
3189 if (cris_get_operand2 (inst) == REG_PC)
3190 {
3191 /* It's invalid to change the PC in a delay slot. */
3192 if (inst_env->slot_needed)
3193 {
3194 inst_env->invalid = 1;
3195 return;
3196 }
3197 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3198 }
3199 inst_env->slot_needed = 0;
3200 inst_env->prefix_found = 0;
3201 inst_env->xflag_found = 0;
3202 inst_env->disable_interrupt = 0;
3203 }
3204
3205 /* Handles the MULS instruction. */
3206
3207 static void
3208 muls_op (unsigned short inst, inst_env_type *inst_env)
3209 {
3210 /* MULS/U can't have a prefix. */
3211 if (inst_env->prefix_found)
3212 {
3213 inst_env->invalid = 1;
3214 return;
3215 }
3216
3217 /* Consider it invalid if the PC is the target. */
3218 if (cris_get_operand2 (inst) == REG_PC)
3219 {
3220 inst_env->invalid = 1;
3221 return;
3222 }
3223 inst_env->slot_needed = 0;
3224 inst_env->prefix_found = 0;
3225 inst_env->xflag_found = 0;
3226 inst_env->disable_interrupt = 0;
3227 }
3228
3229 /* Handles the MULU instruction. */
3230
3231 static void
3232 mulu_op (unsigned short inst, inst_env_type *inst_env)
3233 {
3234 /* MULS/U can't have a prefix. */
3235 if (inst_env->prefix_found)
3236 {
3237 inst_env->invalid = 1;
3238 return;
3239 }
3240
3241 /* Consider it invalid if the PC is the target. */
3242 if (cris_get_operand2 (inst) == REG_PC)
3243 {
3244 inst_env->invalid = 1;
3245 return;
3246 }
3247 inst_env->slot_needed = 0;
3248 inst_env->prefix_found = 0;
3249 inst_env->xflag_found = 0;
3250 inst_env->disable_interrupt = 0;
3251 }
3252
3253 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3254 The MOVE instruction is the move from source to register. */
3255
3256 static void
3257 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3258 unsigned long source1, unsigned long source2)
3259 {
3260 unsigned long pc_mask;
3261 unsigned long operation_mask;
3262
3263 /* Find out how many bits the operation should apply to. */
3264 if (cris_get_size (inst) == INST_BYTE_SIZE)
3265 {
3266 pc_mask = 0xFFFFFF00;
3267 operation_mask = 0xFF;
3268 }
3269 else if (cris_get_size (inst) == INST_WORD_SIZE)
3270 {
3271 pc_mask = 0xFFFF0000;
3272 operation_mask = 0xFFFF;
3273 }
3274 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3275 {
3276 pc_mask = 0x0;
3277 operation_mask = 0xFFFFFFFF;
3278 }
3279 else
3280 {
3281 /* The size is out of range. */
3282 inst_env->invalid = 1;
3283 return;
3284 }
3285
3286 /* The instruction just works on uw_operation_mask bits. */
3287 source2 &= operation_mask;
3288 source1 &= operation_mask;
3289
3290 /* Now calculate the result. The opcode's 3 first bits separates
3291 the different actions. */
3292 switch (cris_get_opcode (inst) & 7)
3293 {
3294 case 0: /* add */
3295 source1 += source2;
3296 break;
3297
3298 case 1: /* move */
3299 source1 = source2;
3300 break;
3301
3302 case 2: /* subtract */
3303 source1 -= source2;
3304 break;
3305
3306 case 3: /* compare */
3307 break;
3308
3309 case 4: /* and */
3310 source1 &= source2;
3311 break;
3312
3313 case 5: /* or */
3314 source1 |= source2;
3315 break;
3316
3317 default:
3318 inst_env->invalid = 1;
3319 return;
3320
3321 break;
3322 }
3323
3324 /* Make sure that the result doesn't contain more than the instruction
3325 size bits. */
3326 source2 &= operation_mask;
3327
3328 /* Calculate the new breakpoint address. */
3329 inst_env->reg[REG_PC] &= pc_mask;
3330 inst_env->reg[REG_PC] |= source1;
3331
3332 }
3333
3334 /* Extends the value from either byte or word size to a dword. If the mode
3335 is zero extend then the value is extended with zero. If instead the mode
3336 is signed extend the sign bit of the value is taken into consideration. */
3337
3338 static unsigned long
3339 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3340 {
3341 /* The size can be either byte or word, check which one it is.
3342 Don't check the highest bit, it's indicating if it's a zero
3343 or sign extend. */
3344 if (cris_get_size (*inst) & INST_WORD_SIZE)
3345 {
3346 /* Word size. */
3347 value &= 0xFFFF;
3348
3349 /* Check if the instruction is signed extend. If so, check if value has
3350 the sign bit on. */
3351 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3352 {
3353 value |= SIGNED_WORD_EXTEND_MASK;
3354 }
3355 }
3356 else
3357 {
3358 /* Byte size. */
3359 value &= 0xFF;
3360
3361 /* Check if the instruction is signed extend. If so, check if value has
3362 the sign bit on. */
3363 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3364 {
3365 value |= SIGNED_BYTE_EXTEND_MASK;
3366 }
3367 }
3368 /* The size should now be dword. */
3369 cris_set_size_to_dword (inst);
3370 return value;
3371 }
3372
3373 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3374 instruction. The MOVE instruction is the move from source to register. */
3375
3376 static void
3377 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3378 inst_env_type *inst_env)
3379 {
3380 unsigned long operand1;
3381 unsigned long operand2;
3382
3383 /* It's invalid to have a prefix to the instruction. This is a register
3384 mode instruction and can't have a prefix. */
3385 if (inst_env->prefix_found)
3386 {
3387 inst_env->invalid = 1;
3388 return;
3389 }
3390 /* Check if the instruction has PC as its target. */
3391 if (cris_get_operand2 (inst) == REG_PC)
3392 {
3393 if (inst_env->slot_needed)
3394 {
3395 inst_env->invalid = 1;
3396 return;
3397 }
3398 /* The instruction has the PC as its target register. */
3399 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3400 operand2 = inst_env->reg[REG_PC];
3401
3402 /* Check if it's a extend, signed or zero instruction. */
3403 if (cris_get_opcode (inst) < 4)
3404 {
3405 operand1 = do_sign_or_zero_extend (operand1, &inst);
3406 }
3407 /* Calculate the PC value after the instruction, i.e. where the
3408 breakpoint should be. The order of the udw_operands is vital. */
3409 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3410 }
3411 inst_env->slot_needed = 0;
3412 inst_env->prefix_found = 0;
3413 inst_env->xflag_found = 0;
3414 inst_env->disable_interrupt = 0;
3415 }
3416
3417 /* Returns the data contained at address. The size of the data is derived from
3418 the size of the operation. If the instruction is a zero or signed
3419 extend instruction, the size field is changed in instruction. */
3420
3421 static unsigned long
3422 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3423 enum bfd_endian byte_order)
3424 {
3425 int size = cris_get_size (*inst);
3426 unsigned long value;
3427
3428 /* If it's an extend instruction we don't want the signed extend bit,
3429 because it influences the size. */
3430 if (cris_get_opcode (*inst) < 4)
3431 {
3432 size &= ~SIGNED_EXTEND_BIT_MASK;
3433 }
3434 /* Is there a need for checking the size? Size should contain the number of
3435 bytes to read. */
3436 size = 1 << size;
3437 value = read_memory_unsigned_integer (address, size, byte_order);
3438
3439 /* Check if it's an extend, signed or zero instruction. */
3440 if (cris_get_opcode (*inst) < 4)
3441 {
3442 value = do_sign_or_zero_extend (value, inst);
3443 }
3444 return value;
3445 }
3446
3447 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3448 instructions. The MOVE instruction is the move from source to register. */
3449
3450 static void
3451 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3452 inst_env_type *inst_env)
3453 {
3454 unsigned long operand2;
3455 unsigned long operand3;
3456
3457 check_assign (inst, inst_env);
3458 if (cris_get_operand2 (inst) == REG_PC)
3459 {
3460 operand2 = inst_env->reg[REG_PC];
3461
3462 /* Get the value of the third operand. */
3463 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3464 inst_env->byte_order);
3465
3466 /* Calculate the PC value after the instruction, i.e. where the
3467 breakpoint should be. The order of the udw_operands is vital. */
3468 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3469 }
3470 inst_env->slot_needed = 0;
3471 inst_env->prefix_found = 0;
3472 inst_env->xflag_found = 0;
3473 inst_env->disable_interrupt = 0;
3474 }
3475
3476 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3477 OR instructions. Note that for this to work as expected, the calling
3478 function must have made sure that there is a prefix to this instruction. */
3479
3480 static void
3481 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3482 inst_env_type *inst_env)
3483 {
3484 unsigned long operand2;
3485 unsigned long operand3;
3486
3487 if (cris_get_operand1 (inst) == REG_PC)
3488 {
3489 /* The PC will be changed by the instruction. */
3490 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3491
3492 /* Get the value of the third operand. */
3493 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3494 inst_env->byte_order);
3495
3496 /* Calculate the PC value after the instruction, i.e. where the
3497 breakpoint should be. */
3498 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3499 }
3500 inst_env->slot_needed = 0;
3501 inst_env->prefix_found = 0;
3502 inst_env->xflag_found = 0;
3503 inst_env->disable_interrupt = 0;
3504 }
3505
3506 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3507 instructions. The MOVE instruction is the move from source to register. */
3508
3509 static void
3510 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3511 inst_env_type *inst_env)
3512 {
3513 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3514 {
3515 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3516 SUB, AND or OR something weird is going on (if everything works these
3517 instructions should end up in the three operand version). */
3518 inst_env->invalid = 1;
3519 return;
3520 }
3521 else
3522 {
3523 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3524 so use it. */
3525 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3526 }
3527 inst_env->slot_needed = 0;
3528 inst_env->prefix_found = 0;
3529 inst_env->xflag_found = 0;
3530 inst_env->disable_interrupt = 0;
3531 }
3532
3533 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3534 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3535 source to register. */
3536
3537 static void
3538 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3539 inst_env_type *inst_env)
3540 {
3541 unsigned long operand1;
3542 unsigned long operand2;
3543 unsigned long operand3;
3544 int size;
3545
3546 /* The instruction is either an indirect or autoincrement addressing mode.
3547 Check if the destination register is the PC. */
3548 if (cris_get_operand2 (inst) == REG_PC)
3549 {
3550 /* Must be done here, get_data_from_address may change the size
3551 field. */
3552 size = cris_get_size (inst);
3553 operand2 = inst_env->reg[REG_PC];
3554
3555 /* Get the value of the third operand, i.e. the indirect operand. */
3556 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3557 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3558
3559 /* Calculate the PC value after the instruction, i.e. where the
3560 breakpoint should be. The order of the udw_operands is vital. */
3561 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3562 }
3563 /* If this is an autoincrement addressing mode, check if the increment
3564 changes the PC. */
3565 if ((cris_get_operand1 (inst) == REG_PC)
3566 && (cris_get_mode (inst) == AUTOINC_MODE))
3567 {
3568 /* Get the size field. */
3569 size = cris_get_size (inst);
3570
3571 /* If it's an extend instruction we don't want the signed extend bit,
3572 because it influences the size. */
3573 if (cris_get_opcode (inst) < 4)
3574 {
3575 size &= ~SIGNED_EXTEND_BIT_MASK;
3576 }
3577 process_autoincrement (size, inst, inst_env);
3578 }
3579 inst_env->slot_needed = 0;
3580 inst_env->prefix_found = 0;
3581 inst_env->xflag_found = 0;
3582 inst_env->disable_interrupt = 0;
3583 }
3584
3585 /* Handles the two-operand addressing mode, all modes except register, for
3586 the ADD, SUB CMP, AND and OR instruction. */
3587
3588 static void
3589 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3590 inst_env_type *inst_env)
3591 {
3592 if (inst_env->prefix_found)
3593 {
3594 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3595 {
3596 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3597 }
3598 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3599 {
3600 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3601 }
3602 else
3603 {
3604 /* The mode is invalid for a prefixed base instruction. */
3605 inst_env->invalid = 1;
3606 return;
3607 }
3608 }
3609 else
3610 {
3611 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3612 }
3613 }
3614
3615 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3616
3617 static void
3618 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3619 {
3620 unsigned long operand1;
3621 unsigned long operand2;
3622
3623 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3624 instruction and can't have a prefix. */
3625 if (inst_env->prefix_found)
3626 {
3627 inst_env->invalid = 1;
3628 return;
3629 }
3630
3631 /* Check if the instruction has PC as its target. */
3632 if (cris_get_operand2 (inst) == REG_PC)
3633 {
3634 if (inst_env->slot_needed)
3635 {
3636 inst_env->invalid = 1;
3637 return;
3638 }
3639 operand1 = cris_get_quick_value (inst);
3640 operand2 = inst_env->reg[REG_PC];
3641
3642 /* The size should now be dword. */
3643 cris_set_size_to_dword (&inst);
3644
3645 /* Calculate the PC value after the instruction, i.e. where the
3646 breakpoint should be. */
3647 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3648 }
3649 inst_env->slot_needed = 0;
3650 inst_env->prefix_found = 0;
3651 inst_env->xflag_found = 0;
3652 inst_env->disable_interrupt = 0;
3653 }
3654
3655 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3656
3657 static void
3658 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3659 {
3660 unsigned long operand1;
3661 unsigned long operand2;
3662
3663 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3664 instruction and can't have a prefix. */
3665 if (inst_env->prefix_found)
3666 {
3667 inst_env->invalid = 1;
3668 return;
3669 }
3670 /* Check if the instruction has PC as its target. */
3671 if (cris_get_operand2 (inst) == REG_PC)
3672 {
3673 if (inst_env->slot_needed)
3674 {
3675 inst_env->invalid = 1;
3676 return;
3677 }
3678 /* The instruction has the PC as its target register. */
3679 operand1 = cris_get_quick_value (inst);
3680 operand2 = inst_env->reg[REG_PC];
3681
3682 /* The quick value is signed, so check if we must do a signed extend. */
3683 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3684 {
3685 /* sign extend */
3686 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3687 }
3688 /* The size should now be dword. */
3689 cris_set_size_to_dword (&inst);
3690
3691 /* Calculate the PC value after the instruction, i.e. where the
3692 breakpoint should be. */
3693 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3694 }
3695 inst_env->slot_needed = 0;
3696 inst_env->prefix_found = 0;
3697 inst_env->xflag_found = 0;
3698 inst_env->disable_interrupt = 0;
3699 }
3700
3701 /* Translate op_type to a function and call it. */
3702
3703 static void
3704 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3705 unsigned short inst, inst_env_type *inst_env)
3706 {
3707 switch (op_type)
3708 {
3709 case cris_not_implemented_op:
3710 not_implemented_op (inst, inst_env);
3711 break;
3712
3713 case cris_abs_op:
3714 abs_op (inst, inst_env);
3715 break;
3716
3717 case cris_addi_op:
3718 addi_op (inst, inst_env);
3719 break;
3720
3721 case cris_asr_op:
3722 asr_op (inst, inst_env);
3723 break;
3724
3725 case cris_asrq_op:
3726 asrq_op (inst, inst_env);
3727 break;
3728
3729 case cris_ax_ei_setf_op:
3730 ax_ei_setf_op (inst, inst_env);
3731 break;
3732
3733 case cris_bdap_prefix:
3734 bdap_prefix (inst, inst_env);
3735 break;
3736
3737 case cris_biap_prefix:
3738 biap_prefix (inst, inst_env);
3739 break;
3740
3741 case cris_break_op:
3742 break_op (inst, inst_env);
3743 break;
3744
3745 case cris_btst_nop_op:
3746 btst_nop_op (inst, inst_env);
3747 break;
3748
3749 case cris_clearf_di_op:
3750 clearf_di_op (inst, inst_env);
3751 break;
3752
3753 case cris_dip_prefix:
3754 dip_prefix (inst, inst_env);
3755 break;
3756
3757 case cris_dstep_logshift_mstep_neg_not_op:
3758 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3759 break;
3760
3761 case cris_eight_bit_offset_branch_op:
3762 eight_bit_offset_branch_op (inst, inst_env);
3763 break;
3764
3765 case cris_move_mem_to_reg_movem_op:
3766 move_mem_to_reg_movem_op (inst, inst_env);
3767 break;
3768
3769 case cris_move_reg_to_mem_movem_op:
3770 move_reg_to_mem_movem_op (inst, inst_env);
3771 break;
3772
3773 case cris_move_to_preg_op:
3774 move_to_preg_op (gdbarch, inst, inst_env);
3775 break;
3776
3777 case cris_muls_op:
3778 muls_op (inst, inst_env);
3779 break;
3780
3781 case cris_mulu_op:
3782 mulu_op (inst, inst_env);
3783 break;
3784
3785 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3786 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3787 break;
3788
3789 case cris_none_reg_mode_clear_test_op:
3790 none_reg_mode_clear_test_op (inst, inst_env);
3791 break;
3792
3793 case cris_none_reg_mode_jump_op:
3794 none_reg_mode_jump_op (inst, inst_env);
3795 break;
3796
3797 case cris_none_reg_mode_move_from_preg_op:
3798 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3799 break;
3800
3801 case cris_quick_mode_add_sub_op:
3802 quick_mode_add_sub_op (inst, inst_env);
3803 break;
3804
3805 case cris_quick_mode_and_cmp_move_or_op:
3806 quick_mode_and_cmp_move_or_op (inst, inst_env);
3807 break;
3808
3809 case cris_quick_mode_bdap_prefix:
3810 quick_mode_bdap_prefix (inst, inst_env);
3811 break;
3812
3813 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3814 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3815 break;
3816
3817 case cris_reg_mode_clear_op:
3818 reg_mode_clear_op (inst, inst_env);
3819 break;
3820
3821 case cris_reg_mode_jump_op:
3822 reg_mode_jump_op (inst, inst_env);
3823 break;
3824
3825 case cris_reg_mode_move_from_preg_op:
3826 reg_mode_move_from_preg_op (inst, inst_env);
3827 break;
3828
3829 case cris_reg_mode_test_op:
3830 reg_mode_test_op (inst, inst_env);
3831 break;
3832
3833 case cris_scc_op:
3834 scc_op (inst, inst_env);
3835 break;
3836
3837 case cris_sixteen_bit_offset_branch_op:
3838 sixteen_bit_offset_branch_op (inst, inst_env);
3839 break;
3840
3841 case cris_three_operand_add_sub_cmp_and_or_op:
3842 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3843 break;
3844
3845 case cris_three_operand_bound_op:
3846 three_operand_bound_op (inst, inst_env);
3847 break;
3848
3849 case cris_two_operand_bound_op:
3850 two_operand_bound_op (inst, inst_env);
3851 break;
3852
3853 case cris_xor_op:
3854 xor_op (inst, inst_env);
3855 break;
3856 }
3857 }
3858
3859 /* This wrapper is to avoid cris_get_assembler being called before
3860 exec_bfd has been set. */
3861
3862 static int
3863 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3864 {
3865 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3866 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3867 disassembler, even when there is no BFD. Does something like
3868 "gdb; target remote; disassmeble *0x123" work? */
3869 gdb_assert (exec_bfd != NULL);
3870 print_insn = cris_get_disassembler (exec_bfd);
3871 gdb_assert (print_insn != NULL);
3872 return print_insn (addr, info);
3873 }
3874
3875 /* Copied from <asm/elf.h>. */
3876 typedef unsigned long elf_greg_t;
3877
3878 /* Same as user_regs_struct struct in <asm/user.h>. */
3879 #define CRISV10_ELF_NGREG 35
3880 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3881
3882 #define CRISV32_ELF_NGREG 32
3883 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3884
3885 /* Unpack an elf_gregset_t into GDB's register cache. */
3886
3887 static void
3888 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3889 {
3890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3892 int i;
3893 elf_greg_t *regp = *gregsetp;
3894 static char zerobuf[4] = {0};
3895
3896 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3897 knows about the actual size of each register so that's no problem. */
3898 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3899 {
3900 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3901 }
3902
3903 if (tdep->cris_version == 32)
3904 {
3905 /* Needed to set pseudo-register PC for CRISv32. */
3906 /* FIXME: If ERP is in a delay slot at this point then the PC will
3907 be wrong. Issue a warning to alert the user. */
3908 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3909 (char *)&regp[ERP_REGNUM]);
3910
3911 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3912 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3913 }
3914 }
3915
3916 /* Use a local version of this function to get the correct types for
3917 regsets, until multi-arch core support is ready. */
3918
3919 static void
3920 fetch_core_registers (struct regcache *regcache,
3921 char *core_reg_sect, unsigned core_reg_size,
3922 int which, CORE_ADDR reg_addr)
3923 {
3924 elf_gregset_t gregset;
3925
3926 switch (which)
3927 {
3928 case 0:
3929 if (core_reg_size != sizeof (elf_gregset_t)
3930 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3931 {
3932 warning (_("wrong size gregset struct in core file"));
3933 }
3934 else
3935 {
3936 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3937 cris_supply_gregset (regcache, &gregset);
3938 }
3939
3940 default:
3941 /* We've covered all the kinds of registers we know about here,
3942 so this must be something we wouldn't know what to do with
3943 anyway. Just ignore it. */
3944 break;
3945 }
3946 }
3947
3948 static struct core_fns cris_elf_core_fns =
3949 {
3950 bfd_target_elf_flavour, /* core_flavour */
3951 default_check_format, /* check_format */
3952 default_core_sniffer, /* core_sniffer */
3953 fetch_core_registers, /* core_read_registers */
3954 NULL /* next */
3955 };
3956
3957 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3958
3959 void
3960 _initialize_cris_tdep (void)
3961 {
3962 static struct cmd_list_element *cris_set_cmdlist;
3963 static struct cmd_list_element *cris_show_cmdlist;
3964
3965 struct cmd_list_element *c;
3966
3967 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3968
3969 /* CRIS-specific user-commands. */
3970 add_setshow_uinteger_cmd ("cris-version", class_support,
3971 &usr_cmd_cris_version,
3972 _("Set the current CRIS version."),
3973 _("Show the current CRIS version."),
3974 _("\
3975 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3976 Defaults to 10. "),
3977 set_cris_version,
3978 NULL, /* FIXME: i18n: Current CRIS version
3979 is %s. */
3980 &setlist, &showlist);
3981
3982 add_setshow_enum_cmd ("cris-mode", class_support,
3983 cris_modes, &usr_cmd_cris_mode,
3984 _("Set the current CRIS mode."),
3985 _("Show the current CRIS mode."),
3986 _("\
3987 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3988 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3989 set_cris_mode,
3990 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3991 &setlist, &showlist);
3992
3993 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3994 &usr_cmd_cris_dwarf2_cfi,
3995 _("Set the usage of Dwarf-2 CFI for CRIS."),
3996 _("Show the usage of Dwarf-2 CFI for CRIS."),
3997 _("Set this to \"off\" if using gcc-cris < R59."),
3998 set_cris_dwarf2_cfi,
3999 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
4000 for CRIS is %d. */
4001 &setlist, &showlist);
4002
4003 deprecated_add_core_fns (&cris_elf_core_fns);
4004 }
4005
4006 /* Prints out all target specific values. */
4007
4008 static void
4009 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4010 {
4011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4012 if (tdep != NULL)
4013 {
4014 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4015 tdep->cris_version);
4016 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4017 tdep->cris_mode);
4018 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4019 tdep->cris_dwarf2_cfi);
4020 }
4021 }
4022
4023 static void
4024 set_cris_version (char *ignore_args, int from_tty,
4025 struct cmd_list_element *c)
4026 {
4027 struct gdbarch_info info;
4028
4029 usr_cmd_cris_version_valid = 1;
4030
4031 /* Update the current architecture, if needed. */
4032 gdbarch_info_init (&info);
4033 if (!gdbarch_update_p (info))
4034 internal_error (__FILE__, __LINE__,
4035 _("cris_gdbarch_update: failed to update architecture."));
4036 }
4037
4038 static void
4039 set_cris_mode (char *ignore_args, int from_tty,
4040 struct cmd_list_element *c)
4041 {
4042 struct gdbarch_info info;
4043
4044 /* Update the current architecture, if needed. */
4045 gdbarch_info_init (&info);
4046 if (!gdbarch_update_p (info))
4047 internal_error (__FILE__, __LINE__,
4048 "cris_gdbarch_update: failed to update architecture.");
4049 }
4050
4051 static void
4052 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4053 struct cmd_list_element *c)
4054 {
4055 struct gdbarch_info info;
4056
4057 /* Update the current architecture, if needed. */
4058 gdbarch_info_init (&info);
4059 if (!gdbarch_update_p (info))
4060 internal_error (__FILE__, __LINE__,
4061 _("cris_gdbarch_update: failed to update architecture."));
4062 }
4063
4064 static struct gdbarch *
4065 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4066 {
4067 struct gdbarch *gdbarch;
4068 struct gdbarch_tdep *tdep;
4069 int cris_version;
4070
4071 if (usr_cmd_cris_version_valid)
4072 {
4073 /* Trust the user's CRIS version setting. */
4074 cris_version = usr_cmd_cris_version;
4075 }
4076 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4077 {
4078 cris_version = 32;
4079 }
4080 else
4081 {
4082 /* Assume it's CRIS version 10. */
4083 cris_version = 10;
4084 }
4085
4086 /* Make the current settings visible to the user. */
4087 usr_cmd_cris_version = cris_version;
4088
4089 /* Find a candidate among the list of pre-declared architectures. */
4090 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4091 arches != NULL;
4092 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4093 {
4094 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4095 == usr_cmd_cris_version)
4096 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4097 == usr_cmd_cris_mode)
4098 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4099 == usr_cmd_cris_dwarf2_cfi))
4100 return arches->gdbarch;
4101 }
4102
4103 /* No matching architecture was found. Create a new one. */
4104 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4105 gdbarch = gdbarch_alloc (&info, tdep);
4106
4107 tdep->cris_version = usr_cmd_cris_version;
4108 tdep->cris_mode = usr_cmd_cris_mode;
4109 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4110
4111 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4112 switch (info.byte_order)
4113 {
4114 case BFD_ENDIAN_LITTLE:
4115 /* Ok. */
4116 break;
4117
4118 case BFD_ENDIAN_BIG:
4119 internal_error (__FILE__, __LINE__,
4120 _("cris_gdbarch_init: big endian byte order in info"));
4121 break;
4122
4123 default:
4124 internal_error (__FILE__, __LINE__,
4125 _("cris_gdbarch_init: unknown byte order in info"));
4126 }
4127
4128 set_gdbarch_return_value (gdbarch, cris_return_value);
4129
4130 set_gdbarch_sp_regnum (gdbarch, 14);
4131
4132 /* Length of ordinary registers used in push_word and a few other
4133 places. register_size() is the real way to know how big a
4134 register is. */
4135
4136 set_gdbarch_double_bit (gdbarch, 64);
4137 /* The default definition of a long double is 2 * gdbarch_double_bit,
4138 which means we have to set this explicitly. */
4139 set_gdbarch_long_double_bit (gdbarch, 64);
4140
4141 /* The total amount of space needed to store (in an array called registers)
4142 GDB's copy of the machine's register state. Note: We can not use
4143 cris_register_size at this point, since it relies on gdbarch
4144 being set. */
4145 switch (tdep->cris_version)
4146 {
4147 case 0:
4148 case 1:
4149 case 2:
4150 case 3:
4151 case 8:
4152 case 9:
4153 /* Old versions; not supported. */
4154 internal_error (__FILE__, __LINE__,
4155 _("cris_gdbarch_init: unsupported CRIS version"));
4156 break;
4157
4158 case 10:
4159 case 11:
4160 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4161 P7 (32 bits), and P15 (32 bits) have been implemented. */
4162 set_gdbarch_pc_regnum (gdbarch, 15);
4163 set_gdbarch_register_type (gdbarch, cris_register_type);
4164 /* There are 32 registers (some of which may not be implemented). */
4165 set_gdbarch_num_regs (gdbarch, 32);
4166 set_gdbarch_register_name (gdbarch, cris_register_name);
4167 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4168 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4169
4170 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4171 break;
4172
4173 case 32:
4174 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4175 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4176 and pseudo-register PC (32 bits). */
4177 set_gdbarch_pc_regnum (gdbarch, 32);
4178 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4179 /* 32 registers + pseudo-register PC + 16 support registers. */
4180 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4181 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4182
4183 set_gdbarch_cannot_store_register
4184 (gdbarch, crisv32_cannot_store_register);
4185 set_gdbarch_cannot_fetch_register
4186 (gdbarch, crisv32_cannot_fetch_register);
4187
4188 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4189
4190 set_gdbarch_single_step_through_delay
4191 (gdbarch, crisv32_single_step_through_delay);
4192
4193 break;
4194
4195 default:
4196 internal_error (__FILE__, __LINE__,
4197 _("cris_gdbarch_init: unknown CRIS version"));
4198 }
4199
4200 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4201 have the same ABI). */
4202 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4203 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4204 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4205 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4206
4207 /* The stack grows downward. */
4208 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4209
4210 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4211
4212 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4213 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4214 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4215
4216 if (tdep->cris_dwarf2_cfi == 1)
4217 {
4218 /* Hook in the Dwarf-2 frame sniffer. */
4219 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4220 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4221 dwarf2_append_unwinders (gdbarch);
4222 }
4223
4224 if (tdep->cris_mode != cris_mode_guru)
4225 {
4226 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4227 }
4228
4229 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4230 frame_base_set_default (gdbarch, &cris_frame_base);
4231
4232 set_solib_svr4_fetch_link_map_offsets
4233 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4234
4235 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4236 disassembler, even when there is no BFD. Does something like
4237 "gdb; target remote; disassmeble *0x123" work? */
4238 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4239
4240 return gdbarch;
4241 }
This page took 0.234048 seconds and 4 git commands to generate.