* arch-utils.c (displaced_step_at_entry_point): Do not call
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 #include "objfiles.h"
43
44 #include "solib.h" /* Support for shared libraries. */
45 #include "solib-svr4.h"
46 #include "gdb_string.h"
47 #include "dis-asm.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et. al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* CRIS architecture specific information. */
169 struct gdbarch_tdep
170 {
171 int cris_version;
172 const char *cris_mode;
173 int cris_dwarf2_cfi;
174 };
175
176 /* Sigtramp identification code copied from i386-linux-tdep.c. */
177
178 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179 #define SIGTRAMP_OFFSET0 0
180 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
181 #define SIGTRAMP_OFFSET1 4
182
183 static const unsigned short sigtramp_code[] =
184 {
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
187 };
188
189 #define SIGTRAMP_LEN (sizeof sigtramp_code)
190
191 /* Note: same length as normal sigtramp code. */
192
193 static const unsigned short rt_sigtramp_code[] =
194 {
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
197 };
198
199 /* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
201
202 static CORE_ADDR
203 cris_sigtramp_start (struct frame_info *this_frame)
204 {
205 CORE_ADDR pc = get_frame_pc (this_frame);
206 gdb_byte buf[SIGTRAMP_LEN];
207
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
209 return 0;
210
211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
212 {
213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
214 return 0;
215
216 pc -= SIGTRAMP_OFFSET1;
217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
218 return 0;
219 }
220
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225 }
226
227 /* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
229
230 static CORE_ADDR
231 cris_rt_sigtramp_start (struct frame_info *this_frame)
232 {
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 gdb_byte buf[SIGTRAMP_LEN];
235
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
237 return 0;
238
239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
240 {
241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
242 return 0;
243
244 pc -= SIGTRAMP_OFFSET1;
245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
246 return 0;
247 }
248
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
250 return 0;
251
252 return pc;
253 }
254
255 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
257
258 static CORE_ADDR
259 cris_sigcontext_addr (struct frame_info *this_frame)
260 {
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
263 CORE_ADDR pc;
264 CORE_ADDR sp;
265 char buf[4];
266
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
269
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
280 pc = cris_rt_sigtramp_start (this_frame);
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
291 error (_("Couldn't recognize signal trampoline."));
292 return 0;
293 }
294
295 struct cris_unwind_cache
296 {
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
311 CORE_ADDR return_pc;
312 int leaf_function;
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
316 };
317
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
320 void **this_cache)
321 {
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325 struct cris_unwind_cache *info;
326 CORE_ADDR pc;
327 CORE_ADDR sp;
328 CORE_ADDR addr;
329 char buf[4];
330 int i;
331
332 if ((*this_cache))
333 return (*this_cache);
334
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
338
339 /* Zero all fields. */
340 info->prev_sp = 0;
341 info->base = 0;
342 info->size = 0;
343 info->sp_offset = 0;
344 info->r8_offset = 0;
345 info->uses_frame = 0;
346 info->return_pc = 0;
347 info->leaf_function = 0;
348
349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
350 info->base = extract_unsigned_integer (buf, 4, byte_order);
351
352 addr = cris_sigcontext_addr (this_frame);
353
354 /* Layout of the sigcontext struct:
355 struct sigcontext {
356 struct pt_regs regs;
357 unsigned long oldmask;
358 unsigned long usp;
359 }; */
360
361 if (tdep->cris_version == 10)
362 {
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
364 struct pt_regs. */
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
367
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
376 = info->saved_regs[IRP_REGNUM];
377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
378 }
379 else
380 {
381 /* CRISv32. */
382 /* R0 to R13 are stored in order at offset (1 * 4) in
383 struct pt_regs. */
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
386
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
396
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
401
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
405 = info->saved_regs[ERP_REGNUM];
406
407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
408 = addr + (25 * 4);
409 }
410
411 return info;
412 }
413
414 static void
415 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
417 {
418 struct cris_unwind_cache *cache =
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
421 }
422
423 /* Forward declaration. */
424
425 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427 static struct value *
428 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
430 {
431 /* Make sure we've initialized the cache. */
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
434 }
435
436 static int
437 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
439 void **this_cache)
440 {
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
443 return 1;
444
445 return 0;
446 }
447
448 static const struct frame_unwind cris_sigtramp_frame_unwind =
449 {
450 SIGTRAMP_FRAME,
451 cris_sigtramp_frame_this_id,
452 cris_sigtramp_frame_prev_register,
453 NULL,
454 cris_sigtramp_frame_sniffer
455 };
456
457 static int
458 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
459 struct frame_info *this_frame)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 ULONGEST erp;
463 int ret = 0;
464
465 if (tdep->cris_mode == cris_mode_guru)
466 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
467 else
468 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
469
470 if (erp & 0x1)
471 {
472 /* In delay slot - check if there's a breakpoint at the preceding
473 instruction. */
474 if (breakpoint_here_p (erp & ~0x1))
475 ret = 1;
476 }
477 return ret;
478 }
479
480 /* Hardware watchpoint support. */
481
482 /* We support 6 hardware data watchpoints, but cannot trigger on execute
483 (any combination of read/write is fine). */
484
485 int
486 cris_can_use_hardware_watchpoint (int type, int count, int other)
487 {
488 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
489
490 /* No bookkeeping is done here; it is handled by the remote debug agent. */
491
492 if (tdep->cris_version != 32)
493 return 0;
494 else
495 /* CRISv32: Six data watchpoints, one for instructions. */
496 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
497 || type == bp_hardware_watchpoint) && count <= 6)
498 || (type == bp_hardware_breakpoint && count <= 1));
499 }
500
501 /* The CRISv32 hardware data watchpoints work by specifying ranges,
502 which have no alignment or length restrictions. */
503
504 int
505 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
506 {
507 return 1;
508 }
509
510 /* If the inferior has some watchpoint that triggered, return the
511 address associated with that watchpoint. Otherwise, return
512 zero. */
513
514 CORE_ADDR
515 cris_stopped_data_address (void)
516 {
517 CORE_ADDR eda;
518 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
519 return eda;
520 }
521
522 /* The instruction environment needed to find single-step breakpoints. */
523
524 typedef
525 struct instruction_environment
526 {
527 unsigned long reg[NUM_GENREGS];
528 unsigned long preg[NUM_SPECREGS];
529 unsigned long branch_break_address;
530 unsigned long delay_slot_pc;
531 unsigned long prefix_value;
532 int branch_found;
533 int prefix_found;
534 int invalid;
535 int slot_needed;
536 int delay_slot_pc_active;
537 int xflag_found;
538 int disable_interrupt;
539 int byte_order;
540 } inst_env_type;
541
542 /* Machine-dependencies in CRIS for opcodes. */
543
544 /* Instruction sizes. */
545 enum cris_instruction_sizes
546 {
547 INST_BYTE_SIZE = 0,
548 INST_WORD_SIZE = 1,
549 INST_DWORD_SIZE = 2
550 };
551
552 /* Addressing modes. */
553 enum cris_addressing_modes
554 {
555 REGISTER_MODE = 1,
556 INDIRECT_MODE = 2,
557 AUTOINC_MODE = 3
558 };
559
560 /* Prefix addressing modes. */
561 enum cris_prefix_addressing_modes
562 {
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
565
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
568 };
569
570 /* Masks for opcodes. */
571 enum cris_opcode_masks
572 {
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
582 };
583
584 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
585 Bit 15 - 12 Operand2
586 11 - 10 Mode
587 9 - 6 Opcode
588 5 - 4 Size
589 3 - 0 Operand1 */
590
591 static int
592 cris_get_operand2 (unsigned short insn)
593 {
594 return ((insn & 0xF000) >> 12);
595 }
596
597 static int
598 cris_get_mode (unsigned short insn)
599 {
600 return ((insn & 0x0C00) >> 10);
601 }
602
603 static int
604 cris_get_opcode (unsigned short insn)
605 {
606 return ((insn & 0x03C0) >> 6);
607 }
608
609 static int
610 cris_get_size (unsigned short insn)
611 {
612 return ((insn & 0x0030) >> 4);
613 }
614
615 static int
616 cris_get_operand1 (unsigned short insn)
617 {
618 return (insn & 0x000F);
619 }
620
621 /* Additional functions in order to handle opcodes. */
622
623 static int
624 cris_get_quick_value (unsigned short insn)
625 {
626 return (insn & 0x003F);
627 }
628
629 static int
630 cris_get_bdap_quick_offset (unsigned short insn)
631 {
632 return (insn & 0x00FF);
633 }
634
635 static int
636 cris_get_branch_short_offset (unsigned short insn)
637 {
638 return (insn & 0x00FF);
639 }
640
641 static int
642 cris_get_asr_shift_steps (unsigned long value)
643 {
644 return (value & 0x3F);
645 }
646
647 static int
648 cris_get_clear_size (unsigned short insn)
649 {
650 return ((insn) & 0xC000);
651 }
652
653 static int
654 cris_is_signed_extend_bit_on (unsigned short insn)
655 {
656 return (((insn) & 0x20) == 0x20);
657 }
658
659 static int
660 cris_is_xflag_bit_on (unsigned short insn)
661 {
662 return (((insn) & 0x1000) == 0x1000);
663 }
664
665 static void
666 cris_set_size_to_dword (unsigned short *insn)
667 {
668 *insn &= 0xFFCF;
669 *insn |= 0x20;
670 }
671
672 static signed char
673 cris_get_signed_offset (unsigned short insn)
674 {
675 return ((signed char) (insn & 0x00FF));
676 }
677
678 /* Calls an op function given the op-type, working on the insn and the
679 inst_env. */
680 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
681 inst_env_type *);
682
683 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
684 struct gdbarch_list *);
685
686 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
687
688 static void set_cris_version (char *ignore_args, int from_tty,
689 struct cmd_list_element *c);
690
691 static void set_cris_mode (char *ignore_args, int from_tty,
692 struct cmd_list_element *c);
693
694 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
695 struct cmd_list_element *c);
696
697 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
698 struct frame_info *this_frame,
699 struct cris_unwind_cache *info);
700
701 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
702 struct frame_info *this_frame,
703 struct cris_unwind_cache *info);
704
705 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
706 struct frame_info *next_frame);
707
708 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
709 struct frame_info *next_frame);
710
711 /* When arguments must be pushed onto the stack, they go on in reverse
712 order. The below implements a FILO (stack) to do this.
713 Copied from d10v-tdep.c. */
714
715 struct stack_item
716 {
717 int len;
718 struct stack_item *prev;
719 void *data;
720 };
721
722 static struct stack_item *
723 push_stack_item (struct stack_item *prev, void *contents, int len)
724 {
725 struct stack_item *si;
726 si = xmalloc (sizeof (struct stack_item));
727 si->data = xmalloc (len);
728 si->len = len;
729 si->prev = prev;
730 memcpy (si->data, contents, len);
731 return si;
732 }
733
734 static struct stack_item *
735 pop_stack_item (struct stack_item *si)
736 {
737 struct stack_item *dead = si;
738 si = si->prev;
739 xfree (dead->data);
740 xfree (dead);
741 return si;
742 }
743
744 /* Put here the code to store, into fi->saved_regs, the addresses of
745 the saved registers of frame described by FRAME_INFO. This
746 includes special registers such as pc and fp saved in special ways
747 in the stack frame. sp is even more special: the address we return
748 for it IS the sp for the next frame. */
749
750 static struct cris_unwind_cache *
751 cris_frame_unwind_cache (struct frame_info *this_frame,
752 void **this_prologue_cache)
753 {
754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
756 CORE_ADDR pc;
757 struct cris_unwind_cache *info;
758 int i;
759
760 if ((*this_prologue_cache))
761 return (*this_prologue_cache);
762
763 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
764 (*this_prologue_cache) = info;
765 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
766
767 /* Zero all fields. */
768 info->prev_sp = 0;
769 info->base = 0;
770 info->size = 0;
771 info->sp_offset = 0;
772 info->r8_offset = 0;
773 info->uses_frame = 0;
774 info->return_pc = 0;
775 info->leaf_function = 0;
776
777 /* Prologue analysis does the rest... */
778 if (tdep->cris_version == 32)
779 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
780 else
781 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
782
783 return info;
784 }
785
786 /* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
788
789 static void
790 cris_frame_this_id (struct frame_info *this_frame,
791 void **this_prologue_cache,
792 struct frame_id *this_id)
793 {
794 struct cris_unwind_cache *info
795 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
796 CORE_ADDR base;
797 CORE_ADDR func;
798 struct frame_id id;
799
800 /* The FUNC is easy. */
801 func = get_frame_func (this_frame);
802
803 /* Hopefully the prologue analysis either correctly determined the
804 frame's base (which is the SP from the previous frame), or set
805 that base to "NULL". */
806 base = info->prev_sp;
807 if (base == 0)
808 return;
809
810 id = frame_id_build (base, func);
811
812 (*this_id) = id;
813 }
814
815 static struct value *
816 cris_frame_prev_register (struct frame_info *this_frame,
817 void **this_prologue_cache, int regnum)
818 {
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
822 }
823
824 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
825 frame. The frame ID's base needs to match the TOS value saved by
826 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
827
828 static struct frame_id
829 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
830 {
831 CORE_ADDR sp;
832 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
833 return frame_id_build (sp, get_frame_pc (this_frame));
834 }
835
836 static CORE_ADDR
837 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
838 {
839 /* Align to the size of an instruction (so that they can safely be
840 pushed onto the stack). */
841 return sp & ~3;
842 }
843
844 static CORE_ADDR
845 cris_push_dummy_code (struct gdbarch *gdbarch,
846 CORE_ADDR sp, CORE_ADDR funaddr,
847 struct value **args, int nargs,
848 struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
851 {
852 /* Allocate space sufficient for a breakpoint. */
853 sp = (sp - 4) & ~3;
854 /* Store the address of that breakpoint */
855 *bp_addr = sp;
856 /* CRIS always starts the call at the callee's entry point. */
857 *real_pc = funaddr;
858 return sp;
859 }
860
861 static CORE_ADDR
862 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
863 struct regcache *regcache, CORE_ADDR bp_addr,
864 int nargs, struct value **args, CORE_ADDR sp,
865 int struct_return, CORE_ADDR struct_addr)
866 {
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int stack_alloc;
869 int stack_offset;
870 int argreg;
871 int argnum;
872
873 CORE_ADDR regval;
874
875 /* The function's arguments and memory allocated by gdb for the arguments to
876 point at reside in separate areas on the stack.
877 Both frame pointers grow toward higher addresses. */
878 CORE_ADDR fp_arg;
879 CORE_ADDR fp_mem;
880
881 struct stack_item *si = NULL;
882
883 /* Push the return address. */
884 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
885
886 /* Are we returning a value using a structure return or a normal value
887 return? struct_addr is the address of the reserved space for the return
888 structure to be written on the stack. */
889 if (struct_return)
890 {
891 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
892 }
893
894 /* Now load as many as possible of the first arguments into registers,
895 and push the rest onto the stack. */
896 argreg = ARG1_REGNUM;
897 stack_offset = 0;
898
899 for (argnum = 0; argnum < nargs; argnum++)
900 {
901 int len;
902 char *val;
903 int reg_demand;
904 int i;
905
906 len = TYPE_LENGTH (value_type (args[argnum]));
907 val = (char *) value_contents (args[argnum]);
908
909 /* How may registers worth of storage do we need for this argument? */
910 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
911
912 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
913 {
914 /* Data passed by value. Fits in available register(s). */
915 for (i = 0; i < reg_demand; i++)
916 {
917 regcache_cooked_write (regcache, argreg, val);
918 argreg++;
919 val += 4;
920 }
921 }
922 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
923 {
924 /* Data passed by value. Does not fit in available register(s).
925 Use the register(s) first, then the stack. */
926 for (i = 0; i < reg_demand; i++)
927 {
928 if (argreg <= ARG4_REGNUM)
929 {
930 regcache_cooked_write (regcache, argreg, val);
931 argreg++;
932 val += 4;
933 }
934 else
935 {
936 /* Push item for later so that pushed arguments
937 come in the right order. */
938 si = push_stack_item (si, val, 4);
939 val += 4;
940 }
941 }
942 }
943 else if (len > (2 * 4))
944 {
945 /* Data passed by reference. Push copy of data onto stack
946 and pass pointer to this copy as argument. */
947 sp = (sp - len) & ~3;
948 write_memory (sp, val, len);
949
950 if (argreg <= ARG4_REGNUM)
951 {
952 regcache_cooked_write_unsigned (regcache, argreg, sp);
953 argreg++;
954 }
955 else
956 {
957 gdb_byte buf[4];
958 store_unsigned_integer (buf, 4, byte_order, sp);
959 si = push_stack_item (si, buf, 4);
960 }
961 }
962 else
963 {
964 /* Data passed by value. No available registers. Put it on
965 the stack. */
966 si = push_stack_item (si, val, len);
967 }
968 }
969
970 while (si)
971 {
972 /* fp_arg must be word-aligned (i.e., don't += len) to match
973 the function prologue. */
974 sp = (sp - si->len) & ~3;
975 write_memory (sp, si->data, si->len);
976 si = pop_stack_item (si);
977 }
978
979 /* Finally, update the SP register. */
980 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
981
982 return sp;
983 }
984
985 static const struct frame_unwind cris_frame_unwind =
986 {
987 NORMAL_FRAME,
988 cris_frame_this_id,
989 cris_frame_prev_register,
990 NULL,
991 default_frame_sniffer
992 };
993
994 static CORE_ADDR
995 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
996 {
997 struct cris_unwind_cache *info
998 = cris_frame_unwind_cache (this_frame, this_cache);
999 return info->base;
1000 }
1001
1002 static const struct frame_base cris_frame_base =
1003 {
1004 &cris_frame_unwind,
1005 cris_frame_base_address,
1006 cris_frame_base_address,
1007 cris_frame_base_address
1008 };
1009
1010 /* Frames information. The definition of the struct frame_info is
1011
1012 CORE_ADDR frame
1013 CORE_ADDR pc
1014 enum frame_type type;
1015 CORE_ADDR return_pc
1016 int leaf_function
1017
1018 If the compilation option -fno-omit-frame-pointer is present the
1019 variable frame will be set to the content of R8 which is the frame
1020 pointer register.
1021
1022 The variable pc contains the address where execution is performed
1023 in the present frame. The innermost frame contains the current content
1024 of the register PC. All other frames contain the content of the
1025 register PC in the next frame.
1026
1027 The variable `type' indicates the frame's type: normal, SIGTRAMP
1028 (associated with a signal handler), dummy (associated with a dummy
1029 frame).
1030
1031 The variable return_pc contains the address where execution should be
1032 resumed when the present frame has finished, the return address.
1033
1034 The variable leaf_function is 1 if the return address is in the register
1035 SRP, and 0 if it is on the stack.
1036
1037 Prologue instructions C-code.
1038 The prologue may consist of (-fno-omit-frame-pointer)
1039 1) 2)
1040 push srp
1041 push r8 push r8
1042 move.d sp,r8 move.d sp,r8
1043 subq X,sp subq X,sp
1044 movem rY,[sp] movem rY,[sp]
1045 move.S rZ,[r8-U] move.S rZ,[r8-U]
1046
1047 where 1 is a non-terminal function, and 2 is a leaf-function.
1048
1049 Note that this assumption is extremely brittle, and will break at the
1050 slightest change in GCC's prologue.
1051
1052 If local variables are declared or register contents are saved on stack
1053 the subq-instruction will be present with X as the number of bytes
1054 needed for storage. The reshuffle with respect to r8 may be performed
1055 with any size S (b, w, d) and any of the general registers Z={0..13}.
1056 The offset U should be representable by a signed 8-bit value in all cases.
1057 Thus, the prefix word is assumed to be immediate byte offset mode followed
1058 by another word containing the instruction.
1059
1060 Degenerate cases:
1061 3)
1062 push r8
1063 move.d sp,r8
1064 move.d r8,sp
1065 pop r8
1066
1067 Prologue instructions C++-code.
1068 Case 1) and 2) in the C-code may be followed by
1069
1070 move.d r10,rS ; this
1071 move.d r11,rT ; P1
1072 move.d r12,rU ; P2
1073 move.d r13,rV ; P3
1074 move.S [r8+U],rZ ; P4
1075
1076 if any of the call parameters are stored. The host expects these
1077 instructions to be executed in order to get the call parameters right. */
1078
1079 /* Examine the prologue of a function. The variable ip is the address of
1080 the first instruction of the prologue. The variable limit is the address
1081 of the first instruction after the prologue. The variable fi contains the
1082 information in struct frame_info. The variable frameless_p controls whether
1083 the entire prologue is examined (0) or just enough instructions to
1084 determine that it is a prologue (1). */
1085
1086 static CORE_ADDR
1087 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1088 struct cris_unwind_cache *info)
1089 {
1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092
1093 /* Present instruction. */
1094 unsigned short insn;
1095
1096 /* Next instruction, lookahead. */
1097 unsigned short insn_next;
1098 int regno;
1099
1100 /* Is there a push fp? */
1101 int have_fp;
1102
1103 /* Number of byte on stack used for local variables and movem. */
1104 int val;
1105
1106 /* Highest register number in a movem. */
1107 int regsave;
1108
1109 /* move.d r<source_register>,rS */
1110 short source_register;
1111
1112 /* Scan limit. */
1113 int limit;
1114
1115 /* This frame is with respect to a leaf until a push srp is found. */
1116 if (info)
1117 {
1118 info->leaf_function = 1;
1119 }
1120
1121 /* Assume nothing on stack. */
1122 val = 0;
1123 regsave = -1;
1124
1125 /* If we were called without a this_frame, that means we were called
1126 from cris_skip_prologue which already tried to find the end of the
1127 prologue through the symbol information. 64 instructions past current
1128 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1129 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1130
1131 /* Find the prologue instructions. */
1132 while (pc > 0 && pc < limit)
1133 {
1134 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1135 pc += 2;
1136 if (insn == 0xE1FC)
1137 {
1138 /* push <reg> 32 bit instruction */
1139 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1140 pc += 2;
1141 regno = cris_get_operand2 (insn_next);
1142 if (info)
1143 {
1144 info->sp_offset += 4;
1145 }
1146 /* This check, meant to recognize srp, used to be regno ==
1147 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1148 if (insn_next == 0xBE7E)
1149 {
1150 if (info)
1151 {
1152 info->leaf_function = 0;
1153 }
1154 }
1155 else if (insn_next == 0x8FEE)
1156 {
1157 /* push $r8 */
1158 if (info)
1159 {
1160 info->r8_offset = info->sp_offset;
1161 }
1162 }
1163 }
1164 else if (insn == 0x866E)
1165 {
1166 /* move.d sp,r8 */
1167 if (info)
1168 {
1169 info->uses_frame = 1;
1170 }
1171 continue;
1172 }
1173 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1174 && cris_get_mode (insn) == 0x0000
1175 && cris_get_opcode (insn) == 0x000A)
1176 {
1177 /* subq <val>,sp */
1178 if (info)
1179 {
1180 info->sp_offset += cris_get_quick_value (insn);
1181 }
1182 }
1183 else if (cris_get_mode (insn) == 0x0002
1184 && cris_get_opcode (insn) == 0x000F
1185 && cris_get_size (insn) == 0x0003
1186 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1187 {
1188 /* movem r<regsave>,[sp] */
1189 regsave = cris_get_operand2 (insn);
1190 }
1191 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1192 && ((insn & 0x0F00) >> 8) == 0x0001
1193 && (cris_get_signed_offset (insn) < 0))
1194 {
1195 /* Immediate byte offset addressing prefix word with sp as base
1196 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1197 is between 64 and 128.
1198 movem r<regsave>,[sp=sp-<val>] */
1199 if (info)
1200 {
1201 info->sp_offset += -cris_get_signed_offset (insn);
1202 }
1203 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1204 pc += 2;
1205 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1206 && cris_get_opcode (insn_next) == 0x000F
1207 && cris_get_size (insn_next) == 0x0003
1208 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1209 (gdbarch))
1210 {
1211 regsave = cris_get_operand2 (insn_next);
1212 }
1213 else
1214 {
1215 /* The prologue ended before the limit was reached. */
1216 pc -= 4;
1217 break;
1218 }
1219 }
1220 else if (cris_get_mode (insn) == 0x0001
1221 && cris_get_opcode (insn) == 0x0009
1222 && cris_get_size (insn) == 0x0002)
1223 {
1224 /* move.d r<10..13>,r<0..15> */
1225 source_register = cris_get_operand1 (insn);
1226
1227 /* FIXME? In the glibc solibs, the prologue might contain something
1228 like (this example taken from relocate_doit):
1229 move.d $pc,$r0
1230 sub.d 0xfffef426,$r0
1231 which isn't covered by the source_register check below. Question
1232 is whether to add a check for this combo, or make better use of
1233 the limit variable instead. */
1234 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1235 {
1236 /* The prologue ended before the limit was reached. */
1237 pc -= 2;
1238 break;
1239 }
1240 }
1241 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1242 /* The size is a fixed-size. */
1243 && ((insn & 0x0F00) >> 8) == 0x0001
1244 /* A negative offset. */
1245 && (cris_get_signed_offset (insn) < 0))
1246 {
1247 /* move.S rZ,[r8-U] (?) */
1248 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1249 pc += 2;
1250 regno = cris_get_operand2 (insn_next);
1251 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1252 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1253 && cris_get_opcode (insn_next) == 0x000F)
1254 {
1255 /* move.S rZ,[r8-U] */
1256 continue;
1257 }
1258 else
1259 {
1260 /* The prologue ended before the limit was reached. */
1261 pc -= 4;
1262 break;
1263 }
1264 }
1265 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1266 /* The size is a fixed-size. */
1267 && ((insn & 0x0F00) >> 8) == 0x0001
1268 /* A positive offset. */
1269 && (cris_get_signed_offset (insn) > 0))
1270 {
1271 /* move.S [r8+U],rZ (?) */
1272 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1273 pc += 2;
1274 regno = cris_get_operand2 (insn_next);
1275 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1276 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1277 && cris_get_opcode (insn_next) == 0x0009
1278 && cris_get_operand1 (insn_next) == regno)
1279 {
1280 /* move.S [r8+U],rZ */
1281 continue;
1282 }
1283 else
1284 {
1285 /* The prologue ended before the limit was reached. */
1286 pc -= 4;
1287 break;
1288 }
1289 }
1290 else
1291 {
1292 /* The prologue ended before the limit was reached. */
1293 pc -= 2;
1294 break;
1295 }
1296 }
1297
1298 /* We only want to know the end of the prologue when this_frame and info
1299 are NULL (called from cris_skip_prologue i.e.). */
1300 if (this_frame == NULL && info == NULL)
1301 {
1302 return pc;
1303 }
1304
1305 info->size = info->sp_offset;
1306
1307 /* Compute the previous frame's stack pointer (which is also the
1308 frame's ID's stack address), and this frame's base pointer. */
1309 if (info->uses_frame)
1310 {
1311 ULONGEST this_base;
1312 /* The SP was moved to the FP. This indicates that a new frame
1313 was created. Get THIS frame's FP value by unwinding it from
1314 the next frame. */
1315 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1316 info->base = this_base;
1317 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1318
1319 /* The FP points at the last saved register. Adjust the FP back
1320 to before the first saved register giving the SP. */
1321 info->prev_sp = info->base + info->r8_offset;
1322 }
1323 else
1324 {
1325 ULONGEST this_base;
1326 /* Assume that the FP is this frame's SP but with that pushed
1327 stack space added back. */
1328 this_base = get_frame_register_unsigned (this_frame,
1329 gdbarch_sp_regnum (gdbarch));
1330 info->base = this_base;
1331 info->prev_sp = info->base + info->size;
1332 }
1333
1334 /* Calculate the addresses for the saved registers on the stack. */
1335 /* FIXME: The address calculation should really be done on the fly while
1336 we're analyzing the prologue (we only hold one regsave value as it is
1337 now). */
1338 val = info->sp_offset;
1339
1340 for (regno = regsave; regno >= 0; regno--)
1341 {
1342 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1343 val -= 4;
1344 }
1345
1346 /* The previous frame's SP needed to be computed. Save the computed
1347 value. */
1348 trad_frame_set_value (info->saved_regs,
1349 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1350
1351 if (!info->leaf_function)
1352 {
1353 /* SRP saved on the stack. But where? */
1354 if (info->r8_offset == 0)
1355 {
1356 /* R8 not pushed yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base;
1358 }
1359 else
1360 {
1361 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1362 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1363 }
1364 }
1365
1366 /* The PC is found in SRP (the actual register or located on the stack). */
1367 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1368 = info->saved_regs[SRP_REGNUM];
1369
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1375 struct cris_unwind_cache *info)
1376 {
1377 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1378 ULONGEST this_base;
1379
1380 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1381 meant to be a full-fledged prologue scanner. It is only needed for
1382 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1383
1384 * PLT stubs (library calls)
1385 * call dummys
1386 * signal trampolines
1387
1388 For those cases, it is assumed that there is no actual prologue; that
1389 the stack pointer is not adjusted, and (as a consequence) the return
1390 address is not pushed onto the stack. */
1391
1392 /* We only want to know the end of the prologue when this_frame and info
1393 are NULL (called from cris_skip_prologue i.e.). */
1394 if (this_frame == NULL && info == NULL)
1395 {
1396 return pc;
1397 }
1398
1399 /* The SP is assumed to be unaltered. */
1400 this_base = get_frame_register_unsigned (this_frame,
1401 gdbarch_sp_regnum (gdbarch));
1402 info->base = this_base;
1403 info->prev_sp = this_base;
1404
1405 /* The PC is assumed to be found in SRP. */
1406 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1407 = info->saved_regs[SRP_REGNUM];
1408
1409 return pc;
1410 }
1411
1412 /* Advance pc beyond any function entry prologue instructions at pc
1413 to reach some "real" code. */
1414
1415 /* Given a PC value corresponding to the start of a function, return the PC
1416 of the first instruction after the function prologue. */
1417
1418 static CORE_ADDR
1419 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1420 {
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1422 CORE_ADDR func_addr, func_end;
1423 struct symtab_and_line sal;
1424 CORE_ADDR pc_after_prologue;
1425
1426 /* If we have line debugging information, then the end of the prologue
1427 should the first assembly instruction of the first source line. */
1428 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1429 {
1430 sal = find_pc_line (func_addr, 0);
1431 if (sal.end > 0 && sal.end < func_end)
1432 return sal.end;
1433 }
1434
1435 if (tdep->cris_version == 32)
1436 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1437 else
1438 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1439
1440 return pc_after_prologue;
1441 }
1442
1443 static CORE_ADDR
1444 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1445 {
1446 ULONGEST pc;
1447 pc = frame_unwind_register_unsigned (next_frame,
1448 gdbarch_pc_regnum (gdbarch));
1449 return pc;
1450 }
1451
1452 static CORE_ADDR
1453 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1454 {
1455 ULONGEST sp;
1456 sp = frame_unwind_register_unsigned (next_frame,
1457 gdbarch_sp_regnum (gdbarch));
1458 return sp;
1459 }
1460
1461 /* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1466
1467 static const unsigned char *
1468 cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
1469 {
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1471 static unsigned char break8_insn[] = {0x38, 0xe9};
1472 static unsigned char break15_insn[] = {0x3f, 0xe9};
1473 *lenptr = 2;
1474
1475 if (tdep->cris_mode == cris_mode_guru)
1476 return break15_insn;
1477 else
1478 return break8_insn;
1479 }
1480
1481 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1482 0 otherwise. */
1483
1484 static int
1485 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1486 struct cris_spec_reg spec_reg)
1487 {
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1489 int version = tdep->cris_version;
1490
1491 switch (spec_reg.applicable_version)
1492 {
1493 case cris_ver_version_all:
1494 return 1;
1495 case cris_ver_warning:
1496 /* Indeterminate/obsolete. */
1497 return 0;
1498 case cris_ver_v0_3:
1499 return (version >= 0 && version <= 3);
1500 case cris_ver_v3p:
1501 return (version >= 3);
1502 case cris_ver_v8:
1503 return (version == 8 || version == 9);
1504 case cris_ver_v8p:
1505 return (version >= 8);
1506 case cris_ver_v0_10:
1507 return (version >= 0 && version <= 10);
1508 case cris_ver_v3_10:
1509 return (version >= 3 && version <= 10);
1510 case cris_ver_v8_10:
1511 return (version >= 8 && version <= 10);
1512 case cris_ver_v10:
1513 return (version == 10);
1514 case cris_ver_v10p:
1515 return (version >= 10);
1516 case cris_ver_v32p:
1517 return (version >= 32);
1518 default:
1519 /* Invalid cris version. */
1520 return 0;
1521 }
1522 }
1523
1524 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1525 register, -1 for an invalid register. */
1526
1527 static int
1528 cris_register_size (struct gdbarch *gdbarch, int regno)
1529 {
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1531 int i;
1532 int spec_regno;
1533
1534 if (regno >= 0 && regno < NUM_GENREGS)
1535 {
1536 /* General registers (R0 - R15) are 32 bits. */
1537 return 4;
1538 }
1539 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1540 {
1541 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1542 Adjust regno accordingly. */
1543 spec_regno = regno - NUM_GENREGS;
1544
1545 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1546 {
1547 if (cris_spec_regs[i].number == spec_regno
1548 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1549 /* Go with the first applicable register. */
1550 return cris_spec_regs[i].reg_size;
1551 }
1552 /* Special register not applicable to this CRIS version. */
1553 return 0;
1554 }
1555 else if (regno >= gdbarch_pc_regnum (gdbarch)
1556 && regno < gdbarch_num_regs (gdbarch))
1557 {
1558 /* This will apply to CRISv32 only where there are additional registers
1559 after the special registers (pseudo PC and support registers). */
1560 return 4;
1561 }
1562
1563
1564 return -1;
1565 }
1566
1567 /* Nonzero if regno should not be fetched from the target. This is the case
1568 for unimplemented (size 0) and non-existant registers. */
1569
1570 static int
1571 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1572 {
1573 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1574 || (cris_register_size (gdbarch, regno) == 0));
1575 }
1576
1577 /* Nonzero if regno should not be written to the target, for various
1578 reasons. */
1579
1580 static int
1581 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1582 {
1583 /* There are three kinds of registers we refuse to write to.
1584 1. Those that not implemented.
1585 2. Those that are read-only (depends on the processor mode).
1586 3. Those registers to which a write has no effect.
1587 */
1588
1589 if (regno < 0
1590 || regno >= gdbarch_num_regs (gdbarch)
1591 || cris_register_size (gdbarch, regno) == 0)
1592 /* Not implemented. */
1593 return 1;
1594
1595 else if (regno == VR_REGNUM)
1596 /* Read-only. */
1597 return 1;
1598
1599 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1600 /* Writing has no effect. */
1601 return 1;
1602
1603 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1604 agent decide whether they are writable. */
1605
1606 return 0;
1607 }
1608
1609 /* Nonzero if regno should not be fetched from the target. This is the case
1610 for unimplemented (size 0) and non-existant registers. */
1611
1612 static int
1613 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1614 {
1615 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1616 || (cris_register_size (gdbarch, regno) == 0));
1617 }
1618
1619 /* Nonzero if regno should not be written to the target, for various
1620 reasons. */
1621
1622 static int
1623 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1624 {
1625 /* There are three kinds of registers we refuse to write to.
1626 1. Those that not implemented.
1627 2. Those that are read-only (depends on the processor mode).
1628 3. Those registers to which a write has no effect.
1629 */
1630
1631 if (regno < 0
1632 || regno >= gdbarch_num_regs (gdbarch)
1633 || cris_register_size (gdbarch, regno) == 0)
1634 /* Not implemented. */
1635 return 1;
1636
1637 else if (regno == VR_REGNUM)
1638 /* Read-only. */
1639 return 1;
1640
1641 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1642 /* Writing has no effect. */
1643 return 1;
1644
1645 /* Many special registers are read-only in user mode. Let the debug
1646 agent decide whether they are writable. */
1647
1648 return 0;
1649 }
1650
1651 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1652 of data in register regno. */
1653
1654 static struct type *
1655 cris_register_type (struct gdbarch *gdbarch, int regno)
1656 {
1657 if (regno == gdbarch_pc_regnum (gdbarch))
1658 return builtin_type (gdbarch)->builtin_func_ptr;
1659 else if (regno == gdbarch_sp_regnum (gdbarch)
1660 || regno == CRIS_FP_REGNUM)
1661 return builtin_type (gdbarch)->builtin_data_ptr;
1662 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1663 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1664 /* Note: R8 taken care of previous clause. */
1665 return builtin_type (gdbarch)->builtin_uint32;
1666 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1667 return builtin_type (gdbarch)->builtin_uint16;
1668 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1669 return builtin_type (gdbarch)->builtin_uint8;
1670 else
1671 /* Invalid (unimplemented) register. */
1672 return builtin_type (gdbarch)->builtin_int0;
1673 }
1674
1675 static struct type *
1676 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1677 {
1678 if (regno == gdbarch_pc_regnum (gdbarch))
1679 return builtin_type (gdbarch)->builtin_func_ptr;
1680 else if (regno == gdbarch_sp_regnum (gdbarch)
1681 || regno == CRIS_FP_REGNUM)
1682 return builtin_type (gdbarch)->builtin_data_ptr;
1683 else if ((regno >= 0 && regno <= ACR_REGNUM)
1684 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1685 || (regno == PID_REGNUM)
1686 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1687 /* Note: R8 and SP taken care of by previous clause. */
1688 return builtin_type (gdbarch)->builtin_uint32;
1689 else if (regno == WZ_REGNUM)
1690 return builtin_type (gdbarch)->builtin_uint16;
1691 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1692 return builtin_type (gdbarch)->builtin_uint8;
1693 else
1694 {
1695 /* Invalid (unimplemented) register. Should not happen as there are
1696 no unimplemented CRISv32 registers. */
1697 warning (_("crisv32_register_type: unknown regno %d"), regno);
1698 return builtin_type (gdbarch)->builtin_int0;
1699 }
1700 }
1701
1702 /* Stores a function return value of type type, where valbuf is the address
1703 of the value to be stored. */
1704
1705 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1706
1707 static void
1708 cris_store_return_value (struct type *type, struct regcache *regcache,
1709 const void *valbuf)
1710 {
1711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1713 ULONGEST val;
1714 int len = TYPE_LENGTH (type);
1715
1716 if (len <= 4)
1717 {
1718 /* Put the return value in R10. */
1719 val = extract_unsigned_integer (valbuf, len, byte_order);
1720 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1721 }
1722 else if (len <= 8)
1723 {
1724 /* Put the return value in R10 and R11. */
1725 val = extract_unsigned_integer (valbuf, 4, byte_order);
1726 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1727 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1728 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1729 }
1730 else
1731 error (_("cris_store_return_value: type length too large."));
1732 }
1733
1734 /* Return the name of register regno as a string. Return NULL for an invalid or
1735 unimplemented register. */
1736
1737 static const char *
1738 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1739 {
1740 int spec_regno;
1741 int i;
1742
1743 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1744 Adjust regno accordingly. */
1745 spec_regno = regno - NUM_GENREGS;
1746
1747 /* Assume nothing about the layout of the cris_spec_regs struct
1748 when searching. */
1749 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1750 {
1751 if (cris_spec_regs[i].number == spec_regno
1752 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1753 /* Go with the first applicable register. */
1754 return cris_spec_regs[i].name;
1755 }
1756 /* Special register not applicable to this CRIS version. */
1757 return NULL;
1758 }
1759
1760 static const char *
1761 cris_register_name (struct gdbarch *gdbarch, int regno)
1762 {
1763 static char *cris_genreg_names[] =
1764 { "r0", "r1", "r2", "r3", \
1765 "r4", "r5", "r6", "r7", \
1766 "r8", "r9", "r10", "r11", \
1767 "r12", "r13", "sp", "pc" };
1768
1769 if (regno >= 0 && regno < NUM_GENREGS)
1770 {
1771 /* General register. */
1772 return cris_genreg_names[regno];
1773 }
1774 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1775 {
1776 return cris_special_register_name (gdbarch, regno);
1777 }
1778 else
1779 {
1780 /* Invalid register. */
1781 return NULL;
1782 }
1783 }
1784
1785 static const char *
1786 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1787 {
1788 static char *crisv32_genreg_names[] =
1789 { "r0", "r1", "r2", "r3", \
1790 "r4", "r5", "r6", "r7", \
1791 "r8", "r9", "r10", "r11", \
1792 "r12", "r13", "sp", "acr"
1793 };
1794
1795 static char *crisv32_sreg_names[] =
1796 { "s0", "s1", "s2", "s3", \
1797 "s4", "s5", "s6", "s7", \
1798 "s8", "s9", "s10", "s11", \
1799 "s12", "s13", "s14", "s15"
1800 };
1801
1802 if (regno >= 0 && regno < NUM_GENREGS)
1803 {
1804 /* General register. */
1805 return crisv32_genreg_names[regno];
1806 }
1807 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1808 {
1809 return cris_special_register_name (gdbarch, regno);
1810 }
1811 else if (regno == gdbarch_pc_regnum (gdbarch))
1812 {
1813 return "pc";
1814 }
1815 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1816 {
1817 return crisv32_sreg_names[regno - S0_REGNUM];
1818 }
1819 else
1820 {
1821 /* Invalid register. */
1822 return NULL;
1823 }
1824 }
1825
1826 /* Convert DWARF register number REG to the appropriate register
1827 number used by GDB. */
1828
1829 static int
1830 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1831 {
1832 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1833 numbering, MOF is 18).
1834 Adapted from gcc/config/cris/cris.h. */
1835 static int cris_dwarf_regmap[] = {
1836 0, 1, 2, 3,
1837 4, 5, 6, 7,
1838 8, 9, 10, 11,
1839 12, 13, 14, 15,
1840 27, -1, -1, -1,
1841 -1, -1, -1, 23,
1842 -1, -1, -1, 27,
1843 -1, -1, -1, -1
1844 };
1845 int regnum = -1;
1846
1847 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1848 regnum = cris_dwarf_regmap[reg];
1849
1850 if (regnum == -1)
1851 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1852
1853 return regnum;
1854 }
1855
1856 /* DWARF-2 frame support. */
1857
1858 static void
1859 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1860 struct dwarf2_frame_state_reg *reg,
1861 struct frame_info *this_frame)
1862 {
1863 /* The return address column. */
1864 if (regnum == gdbarch_pc_regnum (gdbarch))
1865 reg->how = DWARF2_FRAME_REG_RA;
1866
1867 /* The call frame address. */
1868 else if (regnum == gdbarch_sp_regnum (gdbarch))
1869 reg->how = DWARF2_FRAME_REG_CFA;
1870 }
1871
1872 /* Extract from an array regbuf containing the raw register state a function
1873 return value of type type, and copy that, in virtual format, into
1874 valbuf. */
1875
1876 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1877
1878 static void
1879 cris_extract_return_value (struct type *type, struct regcache *regcache,
1880 void *valbuf)
1881 {
1882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1884 ULONGEST val;
1885 int len = TYPE_LENGTH (type);
1886
1887 if (len <= 4)
1888 {
1889 /* Get the return value from R10. */
1890 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1891 store_unsigned_integer (valbuf, len, byte_order, val);
1892 }
1893 else if (len <= 8)
1894 {
1895 /* Get the return value from R10 and R11. */
1896 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1897 store_unsigned_integer (valbuf, 4, byte_order, val);
1898 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1899 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1900 }
1901 else
1902 error (_("cris_extract_return_value: type length too large"));
1903 }
1904
1905 /* Handle the CRIS return value convention. */
1906
1907 static enum return_value_convention
1908 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1909 struct type *type, struct regcache *regcache,
1910 gdb_byte *readbuf, const gdb_byte *writebuf)
1911 {
1912 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1913 || TYPE_CODE (type) == TYPE_CODE_UNION
1914 || TYPE_LENGTH (type) > 8)
1915 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1916 goes on the stack. */
1917 return RETURN_VALUE_STRUCT_CONVENTION;
1918
1919 if (readbuf)
1920 cris_extract_return_value (type, regcache, readbuf);
1921 if (writebuf)
1922 cris_store_return_value (type, regcache, writebuf);
1923
1924 return RETURN_VALUE_REGISTER_CONVENTION;
1925 }
1926
1927 /* Calculates a value that measures how good inst_args constraints an
1928 instruction. It stems from cris_constraint, found in cris-dis.c. */
1929
1930 static int
1931 constraint (unsigned int insn, const signed char *inst_args,
1932 inst_env_type *inst_env)
1933 {
1934 int retval = 0;
1935 int tmp, i;
1936
1937 const char *s = inst_args;
1938
1939 for (; *s; s++)
1940 switch (*s)
1941 {
1942 case 'm':
1943 if ((insn & 0x30) == 0x30)
1944 return -1;
1945 break;
1946
1947 case 'S':
1948 /* A prefix operand. */
1949 if (inst_env->prefix_found)
1950 break;
1951 else
1952 return -1;
1953
1954 case 'B':
1955 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1956 valid "push" size. In case of special register, it may be != 4. */
1957 if (inst_env->prefix_found)
1958 break;
1959 else
1960 return -1;
1961
1962 case 'D':
1963 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1964 if (!retval)
1965 return -1;
1966 else
1967 retval += 4;
1968 break;
1969
1970 case 'P':
1971 tmp = (insn >> 0xC) & 0xF;
1972
1973 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1974 {
1975 /* Since we match four bits, we will give a value of
1976 4 - 1 = 3 in a match. If there is a corresponding
1977 exact match of a special register in another pattern, it
1978 will get a value of 4, which will be higher. This should
1979 be correct in that an exact pattern would match better that
1980 a general pattern.
1981 Note that there is a reason for not returning zero; the
1982 pattern for "clear" is partly matched in the bit-pattern
1983 (the two lower bits must be zero), while the bit-pattern
1984 for a move from a special register is matched in the
1985 register constraint.
1986 This also means we will will have a race condition if
1987 there is a partly match in three bits in the bit pattern. */
1988 if (tmp == cris_spec_regs[i].number)
1989 {
1990 retval += 3;
1991 break;
1992 }
1993 }
1994
1995 if (cris_spec_regs[i].name == NULL)
1996 return -1;
1997 break;
1998 }
1999 return retval;
2000 }
2001
2002 /* Returns the number of bits set in the variable value. */
2003
2004 static int
2005 number_of_bits (unsigned int value)
2006 {
2007 int number_of_bits = 0;
2008
2009 while (value != 0)
2010 {
2011 number_of_bits += 1;
2012 value &= (value - 1);
2013 }
2014 return number_of_bits;
2015 }
2016
2017 /* Finds the address that should contain the single step breakpoint(s).
2018 It stems from code in cris-dis.c. */
2019
2020 static int
2021 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2022 {
2023 int i;
2024 int max_level_of_match = -1;
2025 int max_matched = -1;
2026 int level_of_match;
2027
2028 for (i = 0; cris_opcodes[i].name != NULL; i++)
2029 {
2030 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2031 && ((cris_opcodes[i].lose & insn) == 0)
2032 /* Only CRISv10 instructions, please. */
2033 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2034 {
2035 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2036 if (level_of_match >= 0)
2037 {
2038 level_of_match +=
2039 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2040 if (level_of_match > max_level_of_match)
2041 {
2042 max_matched = i;
2043 max_level_of_match = level_of_match;
2044 if (level_of_match == 16)
2045 {
2046 /* All bits matched, cannot find better. */
2047 break;
2048 }
2049 }
2050 }
2051 }
2052 }
2053 return max_matched;
2054 }
2055
2056 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2057 actually an internal error. */
2058
2059 static int
2060 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2061 {
2062 int i;
2063 int offset;
2064 unsigned short insn;
2065 struct gdbarch *gdbarch = get_frame_arch (frame);
2066 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2067
2068 /* Create a local register image and set the initial state. */
2069 for (i = 0; i < NUM_GENREGS; i++)
2070 {
2071 inst_env->reg[i] =
2072 (unsigned long) get_frame_register_unsigned (frame, i);
2073 }
2074 offset = NUM_GENREGS;
2075 for (i = 0; i < NUM_SPECREGS; i++)
2076 {
2077 inst_env->preg[i] =
2078 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2079 }
2080 inst_env->branch_found = 0;
2081 inst_env->slot_needed = 0;
2082 inst_env->delay_slot_pc_active = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->invalid = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
2087 inst_env->byte_order = byte_order;
2088
2089 /* Look for a step target. */
2090 do
2091 {
2092 /* Read an instruction from the client. */
2093 insn = read_memory_unsigned_integer
2094 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2095
2096 /* If the instruction is not in a delay slot the new content of the
2097 PC is [PC] + 2. If the instruction is in a delay slot it is not
2098 that simple. Since a instruction in a delay slot cannot change
2099 the content of the PC, it does not matter what value PC will have.
2100 Just make sure it is a valid instruction. */
2101 if (!inst_env->delay_slot_pc_active)
2102 {
2103 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2104 }
2105 else
2106 {
2107 inst_env->delay_slot_pc_active = 0;
2108 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2109 = inst_env->delay_slot_pc;
2110 }
2111 /* Analyse the present instruction. */
2112 i = find_cris_op (insn, inst_env);
2113 if (i == -1)
2114 {
2115 inst_env->invalid = 1;
2116 }
2117 else
2118 {
2119 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2120 }
2121 } while (!inst_env->invalid
2122 && (inst_env->prefix_found || inst_env->xflag_found
2123 || inst_env->slot_needed));
2124 return i;
2125 }
2126
2127 /* There is no hardware single-step support. The function find_step_target
2128 digs through the opcodes in order to find all possible targets.
2129 Either one ordinary target or two targets for branches may be found. */
2130
2131 static int
2132 cris_software_single_step (struct frame_info *frame)
2133 {
2134 struct gdbarch *gdbarch = get_frame_arch (frame);
2135 inst_env_type inst_env;
2136
2137 /* Analyse the present instruction environment and insert
2138 breakpoints. */
2139 int status = find_step_target (frame, &inst_env);
2140 if (status == -1)
2141 {
2142 /* Could not find a target. Things are likely to go downhill
2143 from here. */
2144 warning (_("CRIS software single step could not find a step target."));
2145 }
2146 else
2147 {
2148 /* Insert at most two breakpoints. One for the next PC content
2149 and possibly another one for a branch, jump, etc. */
2150 CORE_ADDR next_pc
2151 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2152 insert_single_step_breakpoint (gdbarch, next_pc);
2153 if (inst_env.branch_found
2154 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2155 {
2156 CORE_ADDR branch_target_address
2157 = (CORE_ADDR) inst_env.branch_break_address;
2158 insert_single_step_breakpoint (gdbarch, branch_target_address);
2159 }
2160 }
2161
2162 return 1;
2163 }
2164
2165 /* Calculates the prefix value for quick offset addressing mode. */
2166
2167 static void
2168 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2169 {
2170 /* It's invalid to be in a delay slot. You can't have a prefix to this
2171 instruction (not 100% sure). */
2172 if (inst_env->slot_needed || inst_env->prefix_found)
2173 {
2174 inst_env->invalid = 1;
2175 return;
2176 }
2177
2178 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2179 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2180
2181 /* A prefix doesn't change the xflag_found. But the rest of the flags
2182 need updating. */
2183 inst_env->slot_needed = 0;
2184 inst_env->prefix_found = 1;
2185 }
2186
2187 /* Updates the autoincrement register. The size of the increment is derived
2188 from the size of the operation. The PC is always kept aligned on even
2189 word addresses. */
2190
2191 static void
2192 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2193 {
2194 if (size == INST_BYTE_SIZE)
2195 {
2196 inst_env->reg[cris_get_operand1 (inst)] += 1;
2197
2198 /* The PC must be word aligned, so increase the PC with one
2199 word even if the size is byte. */
2200 if (cris_get_operand1 (inst) == REG_PC)
2201 {
2202 inst_env->reg[REG_PC] += 1;
2203 }
2204 }
2205 else if (size == INST_WORD_SIZE)
2206 {
2207 inst_env->reg[cris_get_operand1 (inst)] += 2;
2208 }
2209 else if (size == INST_DWORD_SIZE)
2210 {
2211 inst_env->reg[cris_get_operand1 (inst)] += 4;
2212 }
2213 else
2214 {
2215 /* Invalid size. */
2216 inst_env->invalid = 1;
2217 }
2218 }
2219
2220 /* Just a forward declaration. */
2221
2222 static unsigned long get_data_from_address (unsigned short *inst,
2223 CORE_ADDR address,
2224 enum bfd_endian byte_order);
2225
2226 /* Calculates the prefix value for the general case of offset addressing
2227 mode. */
2228
2229 static void
2230 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2231 {
2232
2233 long offset;
2234
2235 /* It's invalid to be in a delay slot. */
2236 if (inst_env->slot_needed || inst_env->prefix_found)
2237 {
2238 inst_env->invalid = 1;
2239 return;
2240 }
2241
2242 /* The calculation of prefix_value used to be after process_autoincrement,
2243 but that fails for an instruction such as jsr [$r0+12] which is encoded
2244 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2245 mustn't be incremented until we have read it and what it points at. */
2246 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2247
2248 /* The offset is an indirection of the contents of the operand1 register. */
2249 inst_env->prefix_value +=
2250 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2251 inst_env->byte_order);
2252
2253 if (cris_get_mode (inst) == AUTOINC_MODE)
2254 {
2255 process_autoincrement (cris_get_size (inst), inst, inst_env);
2256 }
2257
2258 /* A prefix doesn't change the xflag_found. But the rest of the flags
2259 need updating. */
2260 inst_env->slot_needed = 0;
2261 inst_env->prefix_found = 1;
2262 }
2263
2264 /* Calculates the prefix value for the index addressing mode. */
2265
2266 static void
2267 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2268 {
2269 /* It's invalid to be in a delay slot. I can't see that it's possible to
2270 have a prefix to this instruction. So I will treat this as invalid. */
2271 if (inst_env->slot_needed || inst_env->prefix_found)
2272 {
2273 inst_env->invalid = 1;
2274 return;
2275 }
2276
2277 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2278
2279 /* The offset is the operand2 value shifted the size of the instruction
2280 to the left. */
2281 inst_env->prefix_value +=
2282 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2283
2284 /* If the PC is operand1 (base) the address used is the address after
2285 the main instruction, i.e. address + 2 (the PC is already compensated
2286 for the prefix operation). */
2287 if (cris_get_operand1 (inst) == REG_PC)
2288 {
2289 inst_env->prefix_value += 2;
2290 }
2291
2292 /* A prefix doesn't change the xflag_found. But the rest of the flags
2293 need updating. */
2294 inst_env->slot_needed = 0;
2295 inst_env->xflag_found = 0;
2296 inst_env->prefix_found = 1;
2297 }
2298
2299 /* Calculates the prefix value for the double indirect addressing mode. */
2300
2301 static void
2302 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2303 {
2304
2305 CORE_ADDR address;
2306
2307 /* It's invalid to be in a delay slot. */
2308 if (inst_env->slot_needed || inst_env->prefix_found)
2309 {
2310 inst_env->invalid = 1;
2311 return;
2312 }
2313
2314 /* The prefix value is one dereference of the contents of the operand1
2315 register. */
2316 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2317 inst_env->prefix_value
2318 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2319
2320 /* Check if the mode is autoincrement. */
2321 if (cris_get_mode (inst) == AUTOINC_MODE)
2322 {
2323 inst_env->reg[cris_get_operand1 (inst)] += 4;
2324 }
2325
2326 /* A prefix doesn't change the xflag_found. But the rest of the flags
2327 need updating. */
2328 inst_env->slot_needed = 0;
2329 inst_env->xflag_found = 0;
2330 inst_env->prefix_found = 1;
2331 }
2332
2333 /* Finds the destination for a branch with 8-bits offset. */
2334
2335 static void
2336 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2337 {
2338
2339 short offset;
2340
2341 /* If we have a prefix or are in a delay slot it's bad. */
2342 if (inst_env->slot_needed || inst_env->prefix_found)
2343 {
2344 inst_env->invalid = 1;
2345 return;
2346 }
2347
2348 /* We have a branch, find out where the branch will land. */
2349 offset = cris_get_branch_short_offset (inst);
2350
2351 /* Check if the offset is signed. */
2352 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2353 {
2354 offset |= 0xFF00;
2355 }
2356
2357 /* The offset ends with the sign bit, set it to zero. The address
2358 should always be word aligned. */
2359 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2360
2361 inst_env->branch_found = 1;
2362 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2363
2364 inst_env->slot_needed = 1;
2365 inst_env->prefix_found = 0;
2366 inst_env->xflag_found = 0;
2367 inst_env->disable_interrupt = 1;
2368 }
2369
2370 /* Finds the destination for a branch with 16-bits offset. */
2371
2372 static void
2373 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2374 {
2375 short offset;
2376
2377 /* If we have a prefix or is in a delay slot it's bad. */
2378 if (inst_env->slot_needed || inst_env->prefix_found)
2379 {
2380 inst_env->invalid = 1;
2381 return;
2382 }
2383
2384 /* We have a branch, find out the offset for the branch. */
2385 offset = read_memory_integer (inst_env->reg[REG_PC], 2, inst_env->byte_order);
2386
2387 /* The instruction is one word longer than normal, so add one word
2388 to the PC. */
2389 inst_env->reg[REG_PC] += 2;
2390
2391 inst_env->branch_found = 1;
2392 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2393
2394
2395 inst_env->slot_needed = 1;
2396 inst_env->prefix_found = 0;
2397 inst_env->xflag_found = 0;
2398 inst_env->disable_interrupt = 1;
2399 }
2400
2401 /* Handles the ABS instruction. */
2402
2403 static void
2404 abs_op (unsigned short inst, inst_env_type *inst_env)
2405 {
2406
2407 long value;
2408
2409 /* ABS can't have a prefix, so it's bad if it does. */
2410 if (inst_env->prefix_found)
2411 {
2412 inst_env->invalid = 1;
2413 return;
2414 }
2415
2416 /* Check if the operation affects the PC. */
2417 if (cris_get_operand2 (inst) == REG_PC)
2418 {
2419
2420 /* It's invalid to change to the PC if we are in a delay slot. */
2421 if (inst_env->slot_needed)
2422 {
2423 inst_env->invalid = 1;
2424 return;
2425 }
2426
2427 value = (long) inst_env->reg[REG_PC];
2428
2429 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2430 if (value != SIGNED_DWORD_MASK)
2431 {
2432 value = -value;
2433 inst_env->reg[REG_PC] = (long) value;
2434 }
2435 }
2436
2437 inst_env->slot_needed = 0;
2438 inst_env->prefix_found = 0;
2439 inst_env->xflag_found = 0;
2440 inst_env->disable_interrupt = 0;
2441 }
2442
2443 /* Handles the ADDI instruction. */
2444
2445 static void
2446 addi_op (unsigned short inst, inst_env_type *inst_env)
2447 {
2448 /* It's invalid to have the PC as base register. And ADDI can't have
2449 a prefix. */
2450 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2451 {
2452 inst_env->invalid = 1;
2453 return;
2454 }
2455
2456 inst_env->slot_needed = 0;
2457 inst_env->prefix_found = 0;
2458 inst_env->xflag_found = 0;
2459 inst_env->disable_interrupt = 0;
2460 }
2461
2462 /* Handles the ASR instruction. */
2463
2464 static void
2465 asr_op (unsigned short inst, inst_env_type *inst_env)
2466 {
2467 int shift_steps;
2468 unsigned long value;
2469 unsigned long signed_extend_mask = 0;
2470
2471 /* ASR can't have a prefix, so check that it doesn't. */
2472 if (inst_env->prefix_found)
2473 {
2474 inst_env->invalid = 1;
2475 return;
2476 }
2477
2478 /* Check if the PC is the target register. */
2479 if (cris_get_operand2 (inst) == REG_PC)
2480 {
2481 /* It's invalid to change the PC in a delay slot. */
2482 if (inst_env->slot_needed)
2483 {
2484 inst_env->invalid = 1;
2485 return;
2486 }
2487 /* Get the number of bits to shift. */
2488 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2489 value = inst_env->reg[REG_PC];
2490
2491 /* Find out how many bits the operation should apply to. */
2492 if (cris_get_size (inst) == INST_BYTE_SIZE)
2493 {
2494 if (value & SIGNED_BYTE_MASK)
2495 {
2496 signed_extend_mask = 0xFF;
2497 signed_extend_mask = signed_extend_mask >> shift_steps;
2498 signed_extend_mask = ~signed_extend_mask;
2499 }
2500 value = value >> shift_steps;
2501 value |= signed_extend_mask;
2502 value &= 0xFF;
2503 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2504 inst_env->reg[REG_PC] |= value;
2505 }
2506 else if (cris_get_size (inst) == INST_WORD_SIZE)
2507 {
2508 if (value & SIGNED_WORD_MASK)
2509 {
2510 signed_extend_mask = 0xFFFF;
2511 signed_extend_mask = signed_extend_mask >> shift_steps;
2512 signed_extend_mask = ~signed_extend_mask;
2513 }
2514 value = value >> shift_steps;
2515 value |= signed_extend_mask;
2516 value &= 0xFFFF;
2517 inst_env->reg[REG_PC] &= 0xFFFF0000;
2518 inst_env->reg[REG_PC] |= value;
2519 }
2520 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2521 {
2522 if (value & SIGNED_DWORD_MASK)
2523 {
2524 signed_extend_mask = 0xFFFFFFFF;
2525 signed_extend_mask = signed_extend_mask >> shift_steps;
2526 signed_extend_mask = ~signed_extend_mask;
2527 }
2528 value = value >> shift_steps;
2529 value |= signed_extend_mask;
2530 inst_env->reg[REG_PC] = value;
2531 }
2532 }
2533 inst_env->slot_needed = 0;
2534 inst_env->prefix_found = 0;
2535 inst_env->xflag_found = 0;
2536 inst_env->disable_interrupt = 0;
2537 }
2538
2539 /* Handles the ASRQ instruction. */
2540
2541 static void
2542 asrq_op (unsigned short inst, inst_env_type *inst_env)
2543 {
2544
2545 int shift_steps;
2546 unsigned long value;
2547 unsigned long signed_extend_mask = 0;
2548
2549 /* ASRQ can't have a prefix, so check that it doesn't. */
2550 if (inst_env->prefix_found)
2551 {
2552 inst_env->invalid = 1;
2553 return;
2554 }
2555
2556 /* Check if the PC is the target register. */
2557 if (cris_get_operand2 (inst) == REG_PC)
2558 {
2559
2560 /* It's invalid to change the PC in a delay slot. */
2561 if (inst_env->slot_needed)
2562 {
2563 inst_env->invalid = 1;
2564 return;
2565 }
2566 /* The shift size is given as a 5 bit quick value, i.e. we don't
2567 want the the sign bit of the quick value. */
2568 shift_steps = cris_get_asr_shift_steps (inst);
2569 value = inst_env->reg[REG_PC];
2570 if (value & SIGNED_DWORD_MASK)
2571 {
2572 signed_extend_mask = 0xFFFFFFFF;
2573 signed_extend_mask = signed_extend_mask >> shift_steps;
2574 signed_extend_mask = ~signed_extend_mask;
2575 }
2576 value = value >> shift_steps;
2577 value |= signed_extend_mask;
2578 inst_env->reg[REG_PC] = value;
2579 }
2580 inst_env->slot_needed = 0;
2581 inst_env->prefix_found = 0;
2582 inst_env->xflag_found = 0;
2583 inst_env->disable_interrupt = 0;
2584 }
2585
2586 /* Handles the AX, EI and SETF instruction. */
2587
2588 static void
2589 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2590 {
2591 if (inst_env->prefix_found)
2592 {
2593 inst_env->invalid = 1;
2594 return;
2595 }
2596 /* Check if the instruction is setting the X flag. */
2597 if (cris_is_xflag_bit_on (inst))
2598 {
2599 inst_env->xflag_found = 1;
2600 }
2601 else
2602 {
2603 inst_env->xflag_found = 0;
2604 }
2605 inst_env->slot_needed = 0;
2606 inst_env->prefix_found = 0;
2607 inst_env->disable_interrupt = 1;
2608 }
2609
2610 /* Checks if the instruction is in assign mode. If so, it updates the assign
2611 register. Note that check_assign assumes that the caller has checked that
2612 there is a prefix to this instruction. The mode check depends on this. */
2613
2614 static void
2615 check_assign (unsigned short inst, inst_env_type *inst_env)
2616 {
2617 /* Check if it's an assign addressing mode. */
2618 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2619 {
2620 /* Assign the prefix value to operand 1. */
2621 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2622 }
2623 }
2624
2625 /* Handles the 2-operand BOUND instruction. */
2626
2627 static void
2628 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2629 {
2630 /* It's invalid to have the PC as the index operand. */
2631 if (cris_get_operand2 (inst) == REG_PC)
2632 {
2633 inst_env->invalid = 1;
2634 return;
2635 }
2636 /* Check if we have a prefix. */
2637 if (inst_env->prefix_found)
2638 {
2639 check_assign (inst, inst_env);
2640 }
2641 /* Check if this is an autoincrement mode. */
2642 else if (cris_get_mode (inst) == AUTOINC_MODE)
2643 {
2644 /* It's invalid to change the PC in a delay slot. */
2645 if (inst_env->slot_needed)
2646 {
2647 inst_env->invalid = 1;
2648 return;
2649 }
2650 process_autoincrement (cris_get_size (inst), inst, inst_env);
2651 }
2652 inst_env->slot_needed = 0;
2653 inst_env->prefix_found = 0;
2654 inst_env->xflag_found = 0;
2655 inst_env->disable_interrupt = 0;
2656 }
2657
2658 /* Handles the 3-operand BOUND instruction. */
2659
2660 static void
2661 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2662 {
2663 /* It's an error if we haven't got a prefix. And it's also an error
2664 if the PC is the destination register. */
2665 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2666 {
2667 inst_env->invalid = 1;
2668 return;
2669 }
2670 inst_env->slot_needed = 0;
2671 inst_env->prefix_found = 0;
2672 inst_env->xflag_found = 0;
2673 inst_env->disable_interrupt = 0;
2674 }
2675
2676 /* Clears the status flags in inst_env. */
2677
2678 static void
2679 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2680 {
2681 /* It's an error if we have got a prefix. */
2682 if (inst_env->prefix_found)
2683 {
2684 inst_env->invalid = 1;
2685 return;
2686 }
2687
2688 inst_env->slot_needed = 0;
2689 inst_env->prefix_found = 0;
2690 inst_env->xflag_found = 0;
2691 inst_env->disable_interrupt = 0;
2692 }
2693
2694 /* Clears the status flags in inst_env. */
2695
2696 static void
2697 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2698 {
2699 /* It's an error if we have got a prefix. */
2700 if (inst_env->prefix_found)
2701 {
2702 inst_env->invalid = 1;
2703 return;
2704 }
2705
2706 inst_env->slot_needed = 0;
2707 inst_env->prefix_found = 0;
2708 inst_env->xflag_found = 0;
2709 inst_env->disable_interrupt = 1;
2710 }
2711
2712 /* Handles the CLEAR instruction if it's in register mode. */
2713
2714 static void
2715 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2716 {
2717 /* Check if the target is the PC. */
2718 if (cris_get_operand2 (inst) == REG_PC)
2719 {
2720 /* The instruction will clear the instruction's size bits. */
2721 int clear_size = cris_get_clear_size (inst);
2722 if (clear_size == INST_BYTE_SIZE)
2723 {
2724 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2725 }
2726 if (clear_size == INST_WORD_SIZE)
2727 {
2728 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2729 }
2730 if (clear_size == INST_DWORD_SIZE)
2731 {
2732 inst_env->delay_slot_pc = 0x0;
2733 }
2734 /* The jump will be delayed with one delay slot. So we need a delay
2735 slot. */
2736 inst_env->slot_needed = 1;
2737 inst_env->delay_slot_pc_active = 1;
2738 }
2739 else
2740 {
2741 /* The PC will not change => no delay slot. */
2742 inst_env->slot_needed = 0;
2743 }
2744 inst_env->prefix_found = 0;
2745 inst_env->xflag_found = 0;
2746 inst_env->disable_interrupt = 0;
2747 }
2748
2749 /* Handles the TEST instruction if it's in register mode. */
2750
2751 static void
2752 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2753 {
2754 /* It's an error if we have got a prefix. */
2755 if (inst_env->prefix_found)
2756 {
2757 inst_env->invalid = 1;
2758 return;
2759 }
2760 inst_env->slot_needed = 0;
2761 inst_env->prefix_found = 0;
2762 inst_env->xflag_found = 0;
2763 inst_env->disable_interrupt = 0;
2764
2765 }
2766
2767 /* Handles the CLEAR and TEST instruction if the instruction isn't
2768 in register mode. */
2769
2770 static void
2771 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2772 {
2773 /* Check if we are in a prefix mode. */
2774 if (inst_env->prefix_found)
2775 {
2776 /* The only way the PC can change is if this instruction is in
2777 assign addressing mode. */
2778 check_assign (inst, inst_env);
2779 }
2780 /* Indirect mode can't change the PC so just check if the mode is
2781 autoincrement. */
2782 else if (cris_get_mode (inst) == AUTOINC_MODE)
2783 {
2784 process_autoincrement (cris_get_size (inst), inst, inst_env);
2785 }
2786 inst_env->slot_needed = 0;
2787 inst_env->prefix_found = 0;
2788 inst_env->xflag_found = 0;
2789 inst_env->disable_interrupt = 0;
2790 }
2791
2792 /* Checks that the PC isn't the destination register or the instructions has
2793 a prefix. */
2794
2795 static void
2796 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2797 {
2798 /* It's invalid to have the PC as the destination. The instruction can't
2799 have a prefix. */
2800 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2801 {
2802 inst_env->invalid = 1;
2803 return;
2804 }
2805
2806 inst_env->slot_needed = 0;
2807 inst_env->prefix_found = 0;
2808 inst_env->xflag_found = 0;
2809 inst_env->disable_interrupt = 0;
2810 }
2811
2812 /* Checks that the instruction doesn't have a prefix. */
2813
2814 static void
2815 break_op (unsigned short inst, inst_env_type *inst_env)
2816 {
2817 /* The instruction can't have a prefix. */
2818 if (inst_env->prefix_found)
2819 {
2820 inst_env->invalid = 1;
2821 return;
2822 }
2823
2824 inst_env->slot_needed = 0;
2825 inst_env->prefix_found = 0;
2826 inst_env->xflag_found = 0;
2827 inst_env->disable_interrupt = 1;
2828 }
2829
2830 /* Checks that the PC isn't the destination register and that the instruction
2831 doesn't have a prefix. */
2832
2833 static void
2834 scc_op (unsigned short inst, inst_env_type *inst_env)
2835 {
2836 /* It's invalid to have the PC as the destination. The instruction can't
2837 have a prefix. */
2838 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2839 {
2840 inst_env->invalid = 1;
2841 return;
2842 }
2843
2844 inst_env->slot_needed = 0;
2845 inst_env->prefix_found = 0;
2846 inst_env->xflag_found = 0;
2847 inst_env->disable_interrupt = 1;
2848 }
2849
2850 /* Handles the register mode JUMP instruction. */
2851
2852 static void
2853 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2854 {
2855 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2856 you can't have a prefix. */
2857 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2858 {
2859 inst_env->invalid = 1;
2860 return;
2861 }
2862
2863 /* Just change the PC. */
2864 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2865 inst_env->slot_needed = 0;
2866 inst_env->prefix_found = 0;
2867 inst_env->xflag_found = 0;
2868 inst_env->disable_interrupt = 1;
2869 }
2870
2871 /* Handles the JUMP instruction for all modes except register. */
2872
2873 static void
2874 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2875 {
2876 unsigned long newpc;
2877 CORE_ADDR address;
2878
2879 /* It's invalid to do a JUMP in a delay slot. */
2880 if (inst_env->slot_needed)
2881 {
2882 inst_env->invalid = 1;
2883 }
2884 else
2885 {
2886 /* Check if we have a prefix. */
2887 if (inst_env->prefix_found)
2888 {
2889 check_assign (inst, inst_env);
2890
2891 /* Get the new value for the the PC. */
2892 newpc =
2893 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2894 4, inst_env->byte_order);
2895 }
2896 else
2897 {
2898 /* Get the new value for the PC. */
2899 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2900 newpc = read_memory_unsigned_integer (address,
2901 4, inst_env->byte_order);
2902
2903 /* Check if we should increment a register. */
2904 if (cris_get_mode (inst) == AUTOINC_MODE)
2905 {
2906 inst_env->reg[cris_get_operand1 (inst)] += 4;
2907 }
2908 }
2909 inst_env->reg[REG_PC] = newpc;
2910 }
2911 inst_env->slot_needed = 0;
2912 inst_env->prefix_found = 0;
2913 inst_env->xflag_found = 0;
2914 inst_env->disable_interrupt = 1;
2915 }
2916
2917 /* Handles moves to special registers (aka P-register) for all modes. */
2918
2919 static void
2920 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2921 inst_env_type *inst_env)
2922 {
2923 if (inst_env->prefix_found)
2924 {
2925 /* The instruction has a prefix that means we are only interested if
2926 the instruction is in assign mode. */
2927 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2928 {
2929 /* The prefix handles the problem if we are in a delay slot. */
2930 if (cris_get_operand1 (inst) == REG_PC)
2931 {
2932 /* Just take care of the assign. */
2933 check_assign (inst, inst_env);
2934 }
2935 }
2936 }
2937 else if (cris_get_mode (inst) == AUTOINC_MODE)
2938 {
2939 /* The instruction doesn't have a prefix, the only case left that we
2940 are interested in is the autoincrement mode. */
2941 if (cris_get_operand1 (inst) == REG_PC)
2942 {
2943 /* If the PC is to be incremented it's invalid to be in a
2944 delay slot. */
2945 if (inst_env->slot_needed)
2946 {
2947 inst_env->invalid = 1;
2948 return;
2949 }
2950
2951 /* The increment depends on the size of the special register. */
2952 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2953 {
2954 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2955 }
2956 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2957 {
2958 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2959 }
2960 else
2961 {
2962 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2963 }
2964 }
2965 }
2966 inst_env->slot_needed = 0;
2967 inst_env->prefix_found = 0;
2968 inst_env->xflag_found = 0;
2969 inst_env->disable_interrupt = 1;
2970 }
2971
2972 /* Handles moves from special registers (aka P-register) for all modes
2973 except register. */
2974
2975 static void
2976 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2977 inst_env_type *inst_env)
2978 {
2979 if (inst_env->prefix_found)
2980 {
2981 /* The instruction has a prefix that means we are only interested if
2982 the instruction is in assign mode. */
2983 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2984 {
2985 /* The prefix handles the problem if we are in a delay slot. */
2986 if (cris_get_operand1 (inst) == REG_PC)
2987 {
2988 /* Just take care of the assign. */
2989 check_assign (inst, inst_env);
2990 }
2991 }
2992 }
2993 /* The instruction doesn't have a prefix, the only case left that we
2994 are interested in is the autoincrement mode. */
2995 else if (cris_get_mode (inst) == AUTOINC_MODE)
2996 {
2997 if (cris_get_operand1 (inst) == REG_PC)
2998 {
2999 /* If the PC is to be incremented it's invalid to be in a
3000 delay slot. */
3001 if (inst_env->slot_needed)
3002 {
3003 inst_env->invalid = 1;
3004 return;
3005 }
3006
3007 /* The increment depends on the size of the special register. */
3008 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3009 {
3010 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3011 }
3012 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3013 {
3014 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3015 }
3016 else
3017 {
3018 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3019 }
3020 }
3021 }
3022 inst_env->slot_needed = 0;
3023 inst_env->prefix_found = 0;
3024 inst_env->xflag_found = 0;
3025 inst_env->disable_interrupt = 1;
3026 }
3027
3028 /* Handles moves from special registers (aka P-register) when the mode
3029 is register. */
3030
3031 static void
3032 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3033 {
3034 /* Register mode move from special register can't have a prefix. */
3035 if (inst_env->prefix_found)
3036 {
3037 inst_env->invalid = 1;
3038 return;
3039 }
3040
3041 if (cris_get_operand1 (inst) == REG_PC)
3042 {
3043 /* It's invalid to change the PC in a delay slot. */
3044 if (inst_env->slot_needed)
3045 {
3046 inst_env->invalid = 1;
3047 return;
3048 }
3049 /* The destination is the PC, the jump will have a delay slot. */
3050 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3051 inst_env->slot_needed = 1;
3052 inst_env->delay_slot_pc_active = 1;
3053 }
3054 else
3055 {
3056 /* If the destination isn't PC, there will be no jump. */
3057 inst_env->slot_needed = 0;
3058 }
3059 inst_env->prefix_found = 0;
3060 inst_env->xflag_found = 0;
3061 inst_env->disable_interrupt = 1;
3062 }
3063
3064 /* Handles the MOVEM from memory to general register instruction. */
3065
3066 static void
3067 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3068 {
3069 if (inst_env->prefix_found)
3070 {
3071 /* The prefix handles the problem if we are in a delay slot. Is the
3072 MOVEM instruction going to change the PC? */
3073 if (cris_get_operand2 (inst) >= REG_PC)
3074 {
3075 inst_env->reg[REG_PC] =
3076 read_memory_unsigned_integer (inst_env->prefix_value,
3077 4, inst_env->byte_order);
3078 }
3079 /* The assign value is the value after the increment. Normally, the
3080 assign value is the value before the increment. */
3081 if ((cris_get_operand1 (inst) == REG_PC)
3082 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3083 {
3084 inst_env->reg[REG_PC] = inst_env->prefix_value;
3085 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3086 }
3087 }
3088 else
3089 {
3090 /* Is the MOVEM instruction going to change the PC? */
3091 if (cris_get_operand2 (inst) == REG_PC)
3092 {
3093 /* It's invalid to change the PC in a delay slot. */
3094 if (inst_env->slot_needed)
3095 {
3096 inst_env->invalid = 1;
3097 return;
3098 }
3099 inst_env->reg[REG_PC] =
3100 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3101 4, inst_env->byte_order);
3102 }
3103 /* The increment is not depending on the size, instead it's depending
3104 on the number of registers loaded from memory. */
3105 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3106 {
3107 /* It's invalid to change the PC in a delay slot. */
3108 if (inst_env->slot_needed)
3109 {
3110 inst_env->invalid = 1;
3111 return;
3112 }
3113 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3114 }
3115 }
3116 inst_env->slot_needed = 0;
3117 inst_env->prefix_found = 0;
3118 inst_env->xflag_found = 0;
3119 inst_env->disable_interrupt = 0;
3120 }
3121
3122 /* Handles the MOVEM to memory from general register instruction. */
3123
3124 static void
3125 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3126 {
3127 if (inst_env->prefix_found)
3128 {
3129 /* The assign value is the value after the increment. Normally, the
3130 assign value is the value before the increment. */
3131 if ((cris_get_operand1 (inst) == REG_PC) &&
3132 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3133 {
3134 /* The prefix handles the problem if we are in a delay slot. */
3135 inst_env->reg[REG_PC] = inst_env->prefix_value;
3136 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3137 }
3138 }
3139 else
3140 {
3141 /* The increment is not depending on the size, instead it's depending
3142 on the number of registers loaded to memory. */
3143 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3144 {
3145 /* It's invalid to change the PC in a delay slot. */
3146 if (inst_env->slot_needed)
3147 {
3148 inst_env->invalid = 1;
3149 return;
3150 }
3151 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3152 }
3153 }
3154 inst_env->slot_needed = 0;
3155 inst_env->prefix_found = 0;
3156 inst_env->xflag_found = 0;
3157 inst_env->disable_interrupt = 0;
3158 }
3159
3160 /* Handles the intructions that's not yet implemented, by setting
3161 inst_env->invalid to true. */
3162
3163 static void
3164 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3165 {
3166 inst_env->invalid = 1;
3167 }
3168
3169 /* Handles the XOR instruction. */
3170
3171 static void
3172 xor_op (unsigned short inst, inst_env_type *inst_env)
3173 {
3174 /* XOR can't have a prefix. */
3175 if (inst_env->prefix_found)
3176 {
3177 inst_env->invalid = 1;
3178 return;
3179 }
3180
3181 /* Check if the PC is the target. */
3182 if (cris_get_operand2 (inst) == REG_PC)
3183 {
3184 /* It's invalid to change the PC in a delay slot. */
3185 if (inst_env->slot_needed)
3186 {
3187 inst_env->invalid = 1;
3188 return;
3189 }
3190 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3191 }
3192 inst_env->slot_needed = 0;
3193 inst_env->prefix_found = 0;
3194 inst_env->xflag_found = 0;
3195 inst_env->disable_interrupt = 0;
3196 }
3197
3198 /* Handles the MULS instruction. */
3199
3200 static void
3201 muls_op (unsigned short inst, inst_env_type *inst_env)
3202 {
3203 /* MULS/U can't have a prefix. */
3204 if (inst_env->prefix_found)
3205 {
3206 inst_env->invalid = 1;
3207 return;
3208 }
3209
3210 /* Consider it invalid if the PC is the target. */
3211 if (cris_get_operand2 (inst) == REG_PC)
3212 {
3213 inst_env->invalid = 1;
3214 return;
3215 }
3216 inst_env->slot_needed = 0;
3217 inst_env->prefix_found = 0;
3218 inst_env->xflag_found = 0;
3219 inst_env->disable_interrupt = 0;
3220 }
3221
3222 /* Handles the MULU instruction. */
3223
3224 static void
3225 mulu_op (unsigned short inst, inst_env_type *inst_env)
3226 {
3227 /* MULS/U can't have a prefix. */
3228 if (inst_env->prefix_found)
3229 {
3230 inst_env->invalid = 1;
3231 return;
3232 }
3233
3234 /* Consider it invalid if the PC is the target. */
3235 if (cris_get_operand2 (inst) == REG_PC)
3236 {
3237 inst_env->invalid = 1;
3238 return;
3239 }
3240 inst_env->slot_needed = 0;
3241 inst_env->prefix_found = 0;
3242 inst_env->xflag_found = 0;
3243 inst_env->disable_interrupt = 0;
3244 }
3245
3246 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3247 The MOVE instruction is the move from source to register. */
3248
3249 static void
3250 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3251 unsigned long source1, unsigned long source2)
3252 {
3253 unsigned long pc_mask;
3254 unsigned long operation_mask;
3255
3256 /* Find out how many bits the operation should apply to. */
3257 if (cris_get_size (inst) == INST_BYTE_SIZE)
3258 {
3259 pc_mask = 0xFFFFFF00;
3260 operation_mask = 0xFF;
3261 }
3262 else if (cris_get_size (inst) == INST_WORD_SIZE)
3263 {
3264 pc_mask = 0xFFFF0000;
3265 operation_mask = 0xFFFF;
3266 }
3267 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3268 {
3269 pc_mask = 0x0;
3270 operation_mask = 0xFFFFFFFF;
3271 }
3272 else
3273 {
3274 /* The size is out of range. */
3275 inst_env->invalid = 1;
3276 return;
3277 }
3278
3279 /* The instruction just works on uw_operation_mask bits. */
3280 source2 &= operation_mask;
3281 source1 &= operation_mask;
3282
3283 /* Now calculate the result. The opcode's 3 first bits separates
3284 the different actions. */
3285 switch (cris_get_opcode (inst) & 7)
3286 {
3287 case 0: /* add */
3288 source1 += source2;
3289 break;
3290
3291 case 1: /* move */
3292 source1 = source2;
3293 break;
3294
3295 case 2: /* subtract */
3296 source1 -= source2;
3297 break;
3298
3299 case 3: /* compare */
3300 break;
3301
3302 case 4: /* and */
3303 source1 &= source2;
3304 break;
3305
3306 case 5: /* or */
3307 source1 |= source2;
3308 break;
3309
3310 default:
3311 inst_env->invalid = 1;
3312 return;
3313
3314 break;
3315 }
3316
3317 /* Make sure that the result doesn't contain more than the instruction
3318 size bits. */
3319 source2 &= operation_mask;
3320
3321 /* Calculate the new breakpoint address. */
3322 inst_env->reg[REG_PC] &= pc_mask;
3323 inst_env->reg[REG_PC] |= source1;
3324
3325 }
3326
3327 /* Extends the value from either byte or word size to a dword. If the mode
3328 is zero extend then the value is extended with zero. If instead the mode
3329 is signed extend the sign bit of the value is taken into consideration. */
3330
3331 static unsigned long
3332 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3333 {
3334 /* The size can be either byte or word, check which one it is.
3335 Don't check the highest bit, it's indicating if it's a zero
3336 or sign extend. */
3337 if (cris_get_size (*inst) & INST_WORD_SIZE)
3338 {
3339 /* Word size. */
3340 value &= 0xFFFF;
3341
3342 /* Check if the instruction is signed extend. If so, check if value has
3343 the sign bit on. */
3344 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3345 {
3346 value |= SIGNED_WORD_EXTEND_MASK;
3347 }
3348 }
3349 else
3350 {
3351 /* Byte size. */
3352 value &= 0xFF;
3353
3354 /* Check if the instruction is signed extend. If so, check if value has
3355 the sign bit on. */
3356 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3357 {
3358 value |= SIGNED_BYTE_EXTEND_MASK;
3359 }
3360 }
3361 /* The size should now be dword. */
3362 cris_set_size_to_dword (inst);
3363 return value;
3364 }
3365
3366 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3367 instruction. The MOVE instruction is the move from source to register. */
3368
3369 static void
3370 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3371 inst_env_type *inst_env)
3372 {
3373 unsigned long operand1;
3374 unsigned long operand2;
3375
3376 /* It's invalid to have a prefix to the instruction. This is a register
3377 mode instruction and can't have a prefix. */
3378 if (inst_env->prefix_found)
3379 {
3380 inst_env->invalid = 1;
3381 return;
3382 }
3383 /* Check if the instruction has PC as its target. */
3384 if (cris_get_operand2 (inst) == REG_PC)
3385 {
3386 if (inst_env->slot_needed)
3387 {
3388 inst_env->invalid = 1;
3389 return;
3390 }
3391 /* The instruction has the PC as its target register. */
3392 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3393 operand2 = inst_env->reg[REG_PC];
3394
3395 /* Check if it's a extend, signed or zero instruction. */
3396 if (cris_get_opcode (inst) < 4)
3397 {
3398 operand1 = do_sign_or_zero_extend (operand1, &inst);
3399 }
3400 /* Calculate the PC value after the instruction, i.e. where the
3401 breakpoint should be. The order of the udw_operands is vital. */
3402 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3403 }
3404 inst_env->slot_needed = 0;
3405 inst_env->prefix_found = 0;
3406 inst_env->xflag_found = 0;
3407 inst_env->disable_interrupt = 0;
3408 }
3409
3410 /* Returns the data contained at address. The size of the data is derived from
3411 the size of the operation. If the instruction is a zero or signed
3412 extend instruction, the size field is changed in instruction. */
3413
3414 static unsigned long
3415 get_data_from_address (unsigned short *inst, CORE_ADDR address, enum bfd_endian byte_order)
3416 {
3417 int size = cris_get_size (*inst);
3418 unsigned long value;
3419
3420 /* If it's an extend instruction we don't want the signed extend bit,
3421 because it influences the size. */
3422 if (cris_get_opcode (*inst) < 4)
3423 {
3424 size &= ~SIGNED_EXTEND_BIT_MASK;
3425 }
3426 /* Is there a need for checking the size? Size should contain the number of
3427 bytes to read. */
3428 size = 1 << size;
3429 value = read_memory_unsigned_integer (address, size, byte_order);
3430
3431 /* Check if it's an extend, signed or zero instruction. */
3432 if (cris_get_opcode (*inst) < 4)
3433 {
3434 value = do_sign_or_zero_extend (value, inst);
3435 }
3436 return value;
3437 }
3438
3439 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3440 instructions. The MOVE instruction is the move from source to register. */
3441
3442 static void
3443 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3444 inst_env_type *inst_env)
3445 {
3446 unsigned long operand2;
3447 unsigned long operand3;
3448
3449 check_assign (inst, inst_env);
3450 if (cris_get_operand2 (inst) == REG_PC)
3451 {
3452 operand2 = inst_env->reg[REG_PC];
3453
3454 /* Get the value of the third operand. */
3455 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3456 inst_env->byte_order);
3457
3458 /* Calculate the PC value after the instruction, i.e. where the
3459 breakpoint should be. The order of the udw_operands is vital. */
3460 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3461 }
3462 inst_env->slot_needed = 0;
3463 inst_env->prefix_found = 0;
3464 inst_env->xflag_found = 0;
3465 inst_env->disable_interrupt = 0;
3466 }
3467
3468 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3469 OR instructions. Note that for this to work as expected, the calling
3470 function must have made sure that there is a prefix to this instruction. */
3471
3472 static void
3473 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3474 inst_env_type *inst_env)
3475 {
3476 unsigned long operand2;
3477 unsigned long operand3;
3478
3479 if (cris_get_operand1 (inst) == REG_PC)
3480 {
3481 /* The PC will be changed by the instruction. */
3482 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3483
3484 /* Get the value of the third operand. */
3485 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3486 inst_env->byte_order);
3487
3488 /* Calculate the PC value after the instruction, i.e. where the
3489 breakpoint should be. */
3490 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3491 }
3492 inst_env->slot_needed = 0;
3493 inst_env->prefix_found = 0;
3494 inst_env->xflag_found = 0;
3495 inst_env->disable_interrupt = 0;
3496 }
3497
3498 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3499 instructions. The MOVE instruction is the move from source to register. */
3500
3501 static void
3502 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3503 inst_env_type *inst_env)
3504 {
3505 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3506 {
3507 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3508 SUB, AND or OR something weird is going on (if everything works these
3509 instructions should end up in the three operand version). */
3510 inst_env->invalid = 1;
3511 return;
3512 }
3513 else
3514 {
3515 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3516 so use it. */
3517 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3518 }
3519 inst_env->slot_needed = 0;
3520 inst_env->prefix_found = 0;
3521 inst_env->xflag_found = 0;
3522 inst_env->disable_interrupt = 0;
3523 }
3524
3525 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3526 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3527 source to register. */
3528
3529 static void
3530 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3531 inst_env_type *inst_env)
3532 {
3533 unsigned long operand1;
3534 unsigned long operand2;
3535 unsigned long operand3;
3536 int size;
3537
3538 /* The instruction is either an indirect or autoincrement addressing mode.
3539 Check if the destination register is the PC. */
3540 if (cris_get_operand2 (inst) == REG_PC)
3541 {
3542 /* Must be done here, get_data_from_address may change the size
3543 field. */
3544 size = cris_get_size (inst);
3545 operand2 = inst_env->reg[REG_PC];
3546
3547 /* Get the value of the third operand, i.e. the indirect operand. */
3548 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3549 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3550
3551 /* Calculate the PC value after the instruction, i.e. where the
3552 breakpoint should be. The order of the udw_operands is vital. */
3553 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3554 }
3555 /* If this is an autoincrement addressing mode, check if the increment
3556 changes the PC. */
3557 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3558 {
3559 /* Get the size field. */
3560 size = cris_get_size (inst);
3561
3562 /* If it's an extend instruction we don't want the signed extend bit,
3563 because it influences the size. */
3564 if (cris_get_opcode (inst) < 4)
3565 {
3566 size &= ~SIGNED_EXTEND_BIT_MASK;
3567 }
3568 process_autoincrement (size, inst, inst_env);
3569 }
3570 inst_env->slot_needed = 0;
3571 inst_env->prefix_found = 0;
3572 inst_env->xflag_found = 0;
3573 inst_env->disable_interrupt = 0;
3574 }
3575
3576 /* Handles the two-operand addressing mode, all modes except register, for
3577 the ADD, SUB CMP, AND and OR instruction. */
3578
3579 static void
3580 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3581 inst_env_type *inst_env)
3582 {
3583 if (inst_env->prefix_found)
3584 {
3585 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3586 {
3587 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3588 }
3589 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3590 {
3591 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3592 }
3593 else
3594 {
3595 /* The mode is invalid for a prefixed base instruction. */
3596 inst_env->invalid = 1;
3597 return;
3598 }
3599 }
3600 else
3601 {
3602 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3603 }
3604 }
3605
3606 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3607
3608 static void
3609 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3610 {
3611 unsigned long operand1;
3612 unsigned long operand2;
3613
3614 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3615 instruction and can't have a prefix. */
3616 if (inst_env->prefix_found)
3617 {
3618 inst_env->invalid = 1;
3619 return;
3620 }
3621
3622 /* Check if the instruction has PC as its target. */
3623 if (cris_get_operand2 (inst) == REG_PC)
3624 {
3625 if (inst_env->slot_needed)
3626 {
3627 inst_env->invalid = 1;
3628 return;
3629 }
3630 operand1 = cris_get_quick_value (inst);
3631 operand2 = inst_env->reg[REG_PC];
3632
3633 /* The size should now be dword. */
3634 cris_set_size_to_dword (&inst);
3635
3636 /* Calculate the PC value after the instruction, i.e. where the
3637 breakpoint should be. */
3638 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3639 }
3640 inst_env->slot_needed = 0;
3641 inst_env->prefix_found = 0;
3642 inst_env->xflag_found = 0;
3643 inst_env->disable_interrupt = 0;
3644 }
3645
3646 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3647
3648 static void
3649 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3650 {
3651 unsigned long operand1;
3652 unsigned long operand2;
3653
3654 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3655 instruction and can't have a prefix. */
3656 if (inst_env->prefix_found)
3657 {
3658 inst_env->invalid = 1;
3659 return;
3660 }
3661 /* Check if the instruction has PC as its target. */
3662 if (cris_get_operand2 (inst) == REG_PC)
3663 {
3664 if (inst_env->slot_needed)
3665 {
3666 inst_env->invalid = 1;
3667 return;
3668 }
3669 /* The instruction has the PC as its target register. */
3670 operand1 = cris_get_quick_value (inst);
3671 operand2 = inst_env->reg[REG_PC];
3672
3673 /* The quick value is signed, so check if we must do a signed extend. */
3674 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3675 {
3676 /* sign extend */
3677 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3678 }
3679 /* The size should now be dword. */
3680 cris_set_size_to_dword (&inst);
3681
3682 /* Calculate the PC value after the instruction, i.e. where the
3683 breakpoint should be. */
3684 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3685 }
3686 inst_env->slot_needed = 0;
3687 inst_env->prefix_found = 0;
3688 inst_env->xflag_found = 0;
3689 inst_env->disable_interrupt = 0;
3690 }
3691
3692 /* Translate op_type to a function and call it. */
3693
3694 static void
3695 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3696 unsigned short inst, inst_env_type *inst_env)
3697 {
3698 switch (op_type)
3699 {
3700 case cris_not_implemented_op:
3701 not_implemented_op (inst, inst_env);
3702 break;
3703
3704 case cris_abs_op:
3705 abs_op (inst, inst_env);
3706 break;
3707
3708 case cris_addi_op:
3709 addi_op (inst, inst_env);
3710 break;
3711
3712 case cris_asr_op:
3713 asr_op (inst, inst_env);
3714 break;
3715
3716 case cris_asrq_op:
3717 asrq_op (inst, inst_env);
3718 break;
3719
3720 case cris_ax_ei_setf_op:
3721 ax_ei_setf_op (inst, inst_env);
3722 break;
3723
3724 case cris_bdap_prefix:
3725 bdap_prefix (inst, inst_env);
3726 break;
3727
3728 case cris_biap_prefix:
3729 biap_prefix (inst, inst_env);
3730 break;
3731
3732 case cris_break_op:
3733 break_op (inst, inst_env);
3734 break;
3735
3736 case cris_btst_nop_op:
3737 btst_nop_op (inst, inst_env);
3738 break;
3739
3740 case cris_clearf_di_op:
3741 clearf_di_op (inst, inst_env);
3742 break;
3743
3744 case cris_dip_prefix:
3745 dip_prefix (inst, inst_env);
3746 break;
3747
3748 case cris_dstep_logshift_mstep_neg_not_op:
3749 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3750 break;
3751
3752 case cris_eight_bit_offset_branch_op:
3753 eight_bit_offset_branch_op (inst, inst_env);
3754 break;
3755
3756 case cris_move_mem_to_reg_movem_op:
3757 move_mem_to_reg_movem_op (inst, inst_env);
3758 break;
3759
3760 case cris_move_reg_to_mem_movem_op:
3761 move_reg_to_mem_movem_op (inst, inst_env);
3762 break;
3763
3764 case cris_move_to_preg_op:
3765 move_to_preg_op (gdbarch, inst, inst_env);
3766 break;
3767
3768 case cris_muls_op:
3769 muls_op (inst, inst_env);
3770 break;
3771
3772 case cris_mulu_op:
3773 mulu_op (inst, inst_env);
3774 break;
3775
3776 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3777 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3778 break;
3779
3780 case cris_none_reg_mode_clear_test_op:
3781 none_reg_mode_clear_test_op (inst, inst_env);
3782 break;
3783
3784 case cris_none_reg_mode_jump_op:
3785 none_reg_mode_jump_op (inst, inst_env);
3786 break;
3787
3788 case cris_none_reg_mode_move_from_preg_op:
3789 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3790 break;
3791
3792 case cris_quick_mode_add_sub_op:
3793 quick_mode_add_sub_op (inst, inst_env);
3794 break;
3795
3796 case cris_quick_mode_and_cmp_move_or_op:
3797 quick_mode_and_cmp_move_or_op (inst, inst_env);
3798 break;
3799
3800 case cris_quick_mode_bdap_prefix:
3801 quick_mode_bdap_prefix (inst, inst_env);
3802 break;
3803
3804 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3805 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3806 break;
3807
3808 case cris_reg_mode_clear_op:
3809 reg_mode_clear_op (inst, inst_env);
3810 break;
3811
3812 case cris_reg_mode_jump_op:
3813 reg_mode_jump_op (inst, inst_env);
3814 break;
3815
3816 case cris_reg_mode_move_from_preg_op:
3817 reg_mode_move_from_preg_op (inst, inst_env);
3818 break;
3819
3820 case cris_reg_mode_test_op:
3821 reg_mode_test_op (inst, inst_env);
3822 break;
3823
3824 case cris_scc_op:
3825 scc_op (inst, inst_env);
3826 break;
3827
3828 case cris_sixteen_bit_offset_branch_op:
3829 sixteen_bit_offset_branch_op (inst, inst_env);
3830 break;
3831
3832 case cris_three_operand_add_sub_cmp_and_or_op:
3833 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3834 break;
3835
3836 case cris_three_operand_bound_op:
3837 three_operand_bound_op (inst, inst_env);
3838 break;
3839
3840 case cris_two_operand_bound_op:
3841 two_operand_bound_op (inst, inst_env);
3842 break;
3843
3844 case cris_xor_op:
3845 xor_op (inst, inst_env);
3846 break;
3847 }
3848 }
3849
3850 /* This wrapper is to avoid cris_get_assembler being called before
3851 exec_bfd has been set. */
3852
3853 static int
3854 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3855 {
3856 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3857 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3858 disassembler, even when there is no BFD. Does something like
3859 "gdb; target remote; disassmeble *0x123" work? */
3860 gdb_assert (exec_bfd != NULL);
3861 print_insn = cris_get_disassembler (exec_bfd);
3862 gdb_assert (print_insn != NULL);
3863 return print_insn (addr, info);
3864 }
3865
3866 /* Copied from <asm/elf.h>. */
3867 typedef unsigned long elf_greg_t;
3868
3869 /* Same as user_regs_struct struct in <asm/user.h>. */
3870 #define CRISV10_ELF_NGREG 35
3871 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3872
3873 #define CRISV32_ELF_NGREG 32
3874 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3875
3876 /* Unpack an elf_gregset_t into GDB's register cache. */
3877
3878 static void
3879 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3880 {
3881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3883 int i;
3884 elf_greg_t *regp = *gregsetp;
3885 static char zerobuf[4] = {0};
3886
3887 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3888 knows about the actual size of each register so that's no problem. */
3889 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3890 {
3891 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3892 }
3893
3894 if (tdep->cris_version == 32)
3895 {
3896 /* Needed to set pseudo-register PC for CRISv32. */
3897 /* FIXME: If ERP is in a delay slot at this point then the PC will
3898 be wrong. Issue a warning to alert the user. */
3899 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3900 (char *)&regp[ERP_REGNUM]);
3901
3902 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3903 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3904 }
3905 }
3906
3907 /* Use a local version of this function to get the correct types for
3908 regsets, until multi-arch core support is ready. */
3909
3910 static void
3911 fetch_core_registers (struct regcache *regcache,
3912 char *core_reg_sect, unsigned core_reg_size,
3913 int which, CORE_ADDR reg_addr)
3914 {
3915 elf_gregset_t gregset;
3916
3917 switch (which)
3918 {
3919 case 0:
3920 if (core_reg_size != sizeof (elf_gregset_t)
3921 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3922 {
3923 warning (_("wrong size gregset struct in core file"));
3924 }
3925 else
3926 {
3927 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3928 cris_supply_gregset (regcache, &gregset);
3929 }
3930
3931 default:
3932 /* We've covered all the kinds of registers we know about here,
3933 so this must be something we wouldn't know what to do with
3934 anyway. Just ignore it. */
3935 break;
3936 }
3937 }
3938
3939 static struct core_fns cris_elf_core_fns =
3940 {
3941 bfd_target_elf_flavour, /* core_flavour */
3942 default_check_format, /* check_format */
3943 default_core_sniffer, /* core_sniffer */
3944 fetch_core_registers, /* core_read_registers */
3945 NULL /* next */
3946 };
3947
3948 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3949
3950 void
3951 _initialize_cris_tdep (void)
3952 {
3953 static struct cmd_list_element *cris_set_cmdlist;
3954 static struct cmd_list_element *cris_show_cmdlist;
3955
3956 struct cmd_list_element *c;
3957
3958 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3959
3960 /* CRIS-specific user-commands. */
3961 add_setshow_uinteger_cmd ("cris-version", class_support,
3962 &usr_cmd_cris_version,
3963 _("Set the current CRIS version."),
3964 _("Show the current CRIS version."),
3965 _("\
3966 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3967 Defaults to 10. "),
3968 set_cris_version,
3969 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3970 &setlist, &showlist);
3971
3972 add_setshow_enum_cmd ("cris-mode", class_support,
3973 cris_modes, &usr_cmd_cris_mode,
3974 _("Set the current CRIS mode."),
3975 _("Show the current CRIS mode."),
3976 _("\
3977 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3978 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3979 set_cris_mode,
3980 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3981 &setlist, &showlist);
3982
3983 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3984 &usr_cmd_cris_dwarf2_cfi,
3985 _("Set the usage of Dwarf-2 CFI for CRIS."),
3986 _("Show the usage of Dwarf-2 CFI for CRIS."),
3987 _("Set this to \"off\" if using gcc-cris < R59."),
3988 set_cris_dwarf2_cfi,
3989 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3990 &setlist, &showlist);
3991
3992 deprecated_add_core_fns (&cris_elf_core_fns);
3993 }
3994
3995 /* Prints out all target specific values. */
3996
3997 static void
3998 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3999 {
4000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4001 if (tdep != NULL)
4002 {
4003 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4004 tdep->cris_version);
4005 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4006 tdep->cris_mode);
4007 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4008 tdep->cris_dwarf2_cfi);
4009 }
4010 }
4011
4012 static void
4013 set_cris_version (char *ignore_args, int from_tty,
4014 struct cmd_list_element *c)
4015 {
4016 struct gdbarch_info info;
4017
4018 usr_cmd_cris_version_valid = 1;
4019
4020 /* Update the current architecture, if needed. */
4021 gdbarch_info_init (&info);
4022 if (!gdbarch_update_p (info))
4023 internal_error (__FILE__, __LINE__,
4024 _("cris_gdbarch_update: failed to update architecture."));
4025 }
4026
4027 static void
4028 set_cris_mode (char *ignore_args, int from_tty,
4029 struct cmd_list_element *c)
4030 {
4031 struct gdbarch_info info;
4032
4033 /* Update the current architecture, if needed. */
4034 gdbarch_info_init (&info);
4035 if (!gdbarch_update_p (info))
4036 internal_error (__FILE__, __LINE__,
4037 "cris_gdbarch_update: failed to update architecture.");
4038 }
4039
4040 static void
4041 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4042 struct cmd_list_element *c)
4043 {
4044 struct gdbarch_info info;
4045
4046 /* Update the current architecture, if needed. */
4047 gdbarch_info_init (&info);
4048 if (!gdbarch_update_p (info))
4049 internal_error (__FILE__, __LINE__,
4050 _("cris_gdbarch_update: failed to update architecture."));
4051 }
4052
4053 static struct gdbarch *
4054 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4055 {
4056 struct gdbarch *gdbarch;
4057 struct gdbarch_tdep *tdep;
4058 int cris_version;
4059
4060 if (usr_cmd_cris_version_valid)
4061 {
4062 /* Trust the user's CRIS version setting. */
4063 cris_version = usr_cmd_cris_version;
4064 }
4065 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4066 {
4067 cris_version = 32;
4068 }
4069 else
4070 {
4071 /* Assume it's CRIS version 10. */
4072 cris_version = 10;
4073 }
4074
4075 /* Make the current settings visible to the user. */
4076 usr_cmd_cris_version = cris_version;
4077
4078 /* Find a candidate among the list of pre-declared architectures. */
4079 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4080 arches != NULL;
4081 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4082 {
4083 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4084 == usr_cmd_cris_version)
4085 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4086 == usr_cmd_cris_mode)
4087 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4088 == usr_cmd_cris_dwarf2_cfi))
4089 return arches->gdbarch;
4090 }
4091
4092 /* No matching architecture was found. Create a new one. */
4093 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4094 gdbarch = gdbarch_alloc (&info, tdep);
4095
4096 tdep->cris_version = usr_cmd_cris_version;
4097 tdep->cris_mode = usr_cmd_cris_mode;
4098 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4099
4100 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4101 switch (info.byte_order)
4102 {
4103 case BFD_ENDIAN_LITTLE:
4104 /* Ok. */
4105 break;
4106
4107 case BFD_ENDIAN_BIG:
4108 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4109 break;
4110
4111 default:
4112 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4113 }
4114
4115 set_gdbarch_return_value (gdbarch, cris_return_value);
4116
4117 set_gdbarch_sp_regnum (gdbarch, 14);
4118
4119 /* Length of ordinary registers used in push_word and a few other
4120 places. register_size() is the real way to know how big a
4121 register is. */
4122
4123 set_gdbarch_double_bit (gdbarch, 64);
4124 /* The default definition of a long double is 2 * gdbarch_double_bit,
4125 which means we have to set this explicitly. */
4126 set_gdbarch_long_double_bit (gdbarch, 64);
4127
4128 /* The total amount of space needed to store (in an array called registers)
4129 GDB's copy of the machine's register state. Note: We can not use
4130 cris_register_size at this point, since it relies on gdbarch
4131 being set. */
4132 switch (tdep->cris_version)
4133 {
4134 case 0:
4135 case 1:
4136 case 2:
4137 case 3:
4138 case 8:
4139 case 9:
4140 /* Old versions; not supported. */
4141 internal_error (__FILE__, __LINE__,
4142 _("cris_gdbarch_init: unsupported CRIS version"));
4143 break;
4144
4145 case 10:
4146 case 11:
4147 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4148 P7 (32 bits), and P15 (32 bits) have been implemented. */
4149 set_gdbarch_pc_regnum (gdbarch, 15);
4150 set_gdbarch_register_type (gdbarch, cris_register_type);
4151 /* There are 32 registers (some of which may not be implemented). */
4152 set_gdbarch_num_regs (gdbarch, 32);
4153 set_gdbarch_register_name (gdbarch, cris_register_name);
4154 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4155 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4156
4157 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4158 break;
4159
4160 case 32:
4161 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4162 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4163 and pseudo-register PC (32 bits). */
4164 set_gdbarch_pc_regnum (gdbarch, 32);
4165 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4166 /* 32 registers + pseudo-register PC + 16 support registers. */
4167 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4168 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4169
4170 set_gdbarch_cannot_store_register
4171 (gdbarch, crisv32_cannot_store_register);
4172 set_gdbarch_cannot_fetch_register
4173 (gdbarch, crisv32_cannot_fetch_register);
4174
4175 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4176
4177 set_gdbarch_single_step_through_delay
4178 (gdbarch, crisv32_single_step_through_delay);
4179
4180 break;
4181
4182 default:
4183 internal_error (__FILE__, __LINE__,
4184 _("cris_gdbarch_init: unknown CRIS version"));
4185 }
4186
4187 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4188 have the same ABI). */
4189 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4190 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4191 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4192 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4193
4194 /* The stack grows downward. */
4195 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4196
4197 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4198
4199 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4200 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4201 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4202
4203 if (tdep->cris_dwarf2_cfi == 1)
4204 {
4205 /* Hook in the Dwarf-2 frame sniffer. */
4206 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4207 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4208 dwarf2_append_unwinders (gdbarch);
4209 }
4210
4211 if (tdep->cris_mode != cris_mode_guru)
4212 {
4213 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4214 }
4215
4216 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4217 frame_base_set_default (gdbarch, &cris_frame_base);
4218
4219 set_solib_svr4_fetch_link_map_offsets
4220 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4221
4222 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4223 disassembler, even when there is no BFD. Does something like
4224 "gdb; target remote; disassmeble *0x123" work? */
4225 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4226
4227 return gdbarch;
4228 }
This page took 0.111113 seconds and 5 git commands to generate.