2004-01-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "inferior.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "value.h"
31 #include "opcode/cris.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdb_assert.h"
35
36 /* To get entry_point_address. */
37 #include "symfile.h"
38
39 #include "solib.h" /* Support for shared libraries. */
40 #include "solib-svr4.h" /* For struct link_map_offsets. */
41 #include "gdb_string.h"
42 #include "dis-asm.h"
43
44
45 enum cris_num_regs
46 {
47 /* There are no floating point registers. Used in gdbserver low-linux.c. */
48 NUM_FREGS = 0,
49
50 /* There are 16 general registers. */
51 NUM_GENREGS = 16,
52
53 /* There are 16 special registers. */
54 NUM_SPECREGS = 16
55 };
56
57 /* Register numbers of various important registers.
58 DEPRECATED_FP_REGNUM Contains address of executing stack frame.
59 STR_REGNUM Contains the address of structure return values.
60 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
61 ARG1_REGNUM Contains the first parameter to a function.
62 ARG2_REGNUM Contains the second parameter to a function.
63 ARG3_REGNUM Contains the third parameter to a function.
64 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
65 SP_REGNUM Contains address of top of stack.
66 PC_REGNUM Contains address of next instruction.
67 SRP_REGNUM Subroutine return pointer register.
68 BRP_REGNUM Breakpoint return pointer register. */
69
70 /* DEPRECATED_FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have
71 been incorporated into the multi-arch framework. */
72
73 enum cris_regnums
74 {
75 /* Enums with respect to the general registers, valid for all
76 CRIS versions. */
77 STR_REGNUM = 9,
78 RET_REGNUM = 10,
79 ARG1_REGNUM = 10,
80 ARG2_REGNUM = 11,
81 ARG3_REGNUM = 12,
82 ARG4_REGNUM = 13,
83
84 /* Enums with respect to the special registers, some of which may not be
85 applicable to all CRIS versions. */
86 P0_REGNUM = 16,
87 VR_REGNUM = 17,
88 P2_REGNUM = 18,
89 P3_REGNUM = 19,
90 P4_REGNUM = 20,
91 CCR_REGNUM = 21,
92 MOF_REGNUM = 23,
93 P8_REGNUM = 24,
94 IBR_REGNUM = 25,
95 IRP_REGNUM = 26,
96 SRP_REGNUM = 27,
97 BAR_REGNUM = 28,
98 DCCR_REGNUM = 29,
99 BRP_REGNUM = 30,
100 USP_REGNUM = 31
101 };
102
103 extern const struct cris_spec_reg cris_spec_regs[];
104
105 /* CRIS version, set via the user command 'set cris-version'. Affects
106 register names and sizes.*/
107 static int usr_cmd_cris_version;
108
109 /* Indicates whether to trust the above variable. */
110 static int usr_cmd_cris_version_valid = 0;
111
112 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
113 of some registers. */
114 static const char *usr_cmd_cris_mode;
115
116 /* Indicates whether to trust the above variable. */
117 static int usr_cmd_cris_mode_valid = 0;
118
119 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
120 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
121 static const char *cris_mode_enums[] =
122 {
123 CRIS_MODE_USER,
124 CRIS_MODE_SUPERVISOR,
125 0
126 };
127
128 /* CRIS ABI, set via the user command 'set cris-abi'.
129 There are two flavours:
130 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
131 passed by value.
132 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
133 value. */
134 static const char *usr_cmd_cris_abi;
135
136 /* Indicates whether to trust the above variable. */
137 static int usr_cmd_cris_abi_valid = 0;
138
139 /* These variables are strings instead of enums to make them usable as
140 parameters to add_set_enum_cmd. */
141 static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
142 static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
143 static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
144 static const char *cris_abi_enums[] =
145 {
146 CRIS_ABI_ORIGINAL,
147 CRIS_ABI_V2,
148 0
149 };
150
151 /* CRIS architecture specific information. */
152 struct gdbarch_tdep
153 {
154 int cris_version;
155 const char *cris_mode;
156 const char *cris_abi;
157 };
158
159 /* Functions for accessing target dependent data. */
160
161 static int
162 cris_version (void)
163 {
164 return (gdbarch_tdep (current_gdbarch)->cris_version);
165 }
166
167 static const char *
168 cris_mode (void)
169 {
170 return (gdbarch_tdep (current_gdbarch)->cris_mode);
171 }
172
173 static const char *
174 cris_abi (void)
175 {
176 return (gdbarch_tdep (current_gdbarch)->cris_abi);
177 }
178
179 /* For saving call-clobbered contents in R9 when returning structs. */
180 static CORE_ADDR struct_return_address;
181
182 struct frame_extra_info
183 {
184 CORE_ADDR return_pc;
185 int leaf_function;
186 };
187
188 /* The instruction environment needed to find single-step breakpoints. */
189 typedef
190 struct instruction_environment
191 {
192 unsigned long reg[NUM_GENREGS];
193 unsigned long preg[NUM_SPECREGS];
194 unsigned long branch_break_address;
195 unsigned long delay_slot_pc;
196 unsigned long prefix_value;
197 int branch_found;
198 int prefix_found;
199 int invalid;
200 int slot_needed;
201 int delay_slot_pc_active;
202 int xflag_found;
203 int disable_interrupt;
204 } inst_env_type;
205
206 /* Save old breakpoints in order to restore the state before a single_step.
207 At most, two breakpoints will have to be remembered. */
208 typedef
209 char binsn_quantum[BREAKPOINT_MAX];
210 static binsn_quantum break_mem[2];
211 static CORE_ADDR next_pc = 0;
212 static CORE_ADDR branch_target_address = 0;
213 static unsigned char branch_break_inserted = 0;
214
215 /* Machine-dependencies in CRIS for opcodes. */
216
217 /* Instruction sizes. */
218 enum cris_instruction_sizes
219 {
220 INST_BYTE_SIZE = 0,
221 INST_WORD_SIZE = 1,
222 INST_DWORD_SIZE = 2
223 };
224
225 /* Addressing modes. */
226 enum cris_addressing_modes
227 {
228 REGISTER_MODE = 1,
229 INDIRECT_MODE = 2,
230 AUTOINC_MODE = 3
231 };
232
233 /* Prefix addressing modes. */
234 enum cris_prefix_addressing_modes
235 {
236 PREFIX_INDEX_MODE = 2,
237 PREFIX_ASSIGN_MODE = 3,
238
239 /* Handle immediate byte offset addressing mode prefix format. */
240 PREFIX_OFFSET_MODE = 2
241 };
242
243 /* Masks for opcodes. */
244 enum cris_opcode_masks
245 {
246 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
247 SIGNED_EXTEND_BIT_MASK = 0x2,
248 SIGNED_BYTE_MASK = 0x80,
249 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
250 SIGNED_WORD_MASK = 0x8000,
251 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
252 SIGNED_DWORD_MASK = 0x80000000,
253 SIGNED_QUICK_VALUE_MASK = 0x20,
254 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
255 };
256
257 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
258 Bit 15 - 12 Operand2
259 11 - 10 Mode
260 9 - 6 Opcode
261 5 - 4 Size
262 3 - 0 Operand1 */
263
264 static int
265 cris_get_operand2 (unsigned short insn)
266 {
267 return ((insn & 0xF000) >> 12);
268 }
269
270 static int
271 cris_get_mode (unsigned short insn)
272 {
273 return ((insn & 0x0C00) >> 10);
274 }
275
276 static int
277 cris_get_opcode (unsigned short insn)
278 {
279 return ((insn & 0x03C0) >> 6);
280 }
281
282 static int
283 cris_get_size (unsigned short insn)
284 {
285 return ((insn & 0x0030) >> 4);
286 }
287
288 static int
289 cris_get_operand1 (unsigned short insn)
290 {
291 return (insn & 0x000F);
292 }
293
294 /* Additional functions in order to handle opcodes. */
295
296 static int
297 cris_get_wide_opcode (unsigned short insn)
298 {
299 return ((insn & 0x03E0) >> 5);
300 }
301
302 static int
303 cris_get_short_size (unsigned short insn)
304 {
305 return ((insn & 0x0010) >> 4);
306 }
307
308 static int
309 cris_get_quick_value (unsigned short insn)
310 {
311 return (insn & 0x003F);
312 }
313
314 static int
315 cris_get_bdap_quick_offset (unsigned short insn)
316 {
317 return (insn & 0x00FF);
318 }
319
320 static int
321 cris_get_branch_short_offset (unsigned short insn)
322 {
323 return (insn & 0x00FF);
324 }
325
326 static int
327 cris_get_asr_shift_steps (unsigned long value)
328 {
329 return (value & 0x3F);
330 }
331
332 static int
333 cris_get_asr_quick_shift_steps (unsigned short insn)
334 {
335 return (insn & 0x1F);
336 }
337
338 static int
339 cris_get_clear_size (unsigned short insn)
340 {
341 return ((insn) & 0xC000);
342 }
343
344 static int
345 cris_is_signed_extend_bit_on (unsigned short insn)
346 {
347 return (((insn) & 0x20) == 0x20);
348 }
349
350 static int
351 cris_is_xflag_bit_on (unsigned short insn)
352 {
353 return (((insn) & 0x1000) == 0x1000);
354 }
355
356 static void
357 cris_set_size_to_dword (unsigned short *insn)
358 {
359 *insn &= 0xFFCF;
360 *insn |= 0x20;
361 }
362
363 static signed char
364 cris_get_signed_offset (unsigned short insn)
365 {
366 return ((signed char) (insn & 0x00FF));
367 }
368
369 /* Calls an op function given the op-type, working on the insn and the
370 inst_env. */
371 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
372
373 static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
374
375 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
376 struct gdbarch_list *);
377
378 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
379
380 static void cris_version_update (char *ignore_args, int from_tty,
381 struct cmd_list_element *c);
382
383 static void cris_mode_update (char *ignore_args, int from_tty,
384 struct cmd_list_element *c);
385
386 static void cris_abi_update (char *ignore_args, int from_tty,
387 struct cmd_list_element *c);
388
389 static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
390
391 /* Frames information. The definition of the struct frame_info is
392
393 CORE_ADDR frame
394 CORE_ADDR pc
395 enum frame_type type;
396 CORE_ADDR return_pc
397 int leaf_function
398
399 If the compilation option -fno-omit-frame-pointer is present the
400 variable frame will be set to the content of R8 which is the frame
401 pointer register.
402
403 The variable pc contains the address where execution is performed
404 in the present frame. The innermost frame contains the current content
405 of the register PC. All other frames contain the content of the
406 register PC in the next frame.
407
408 The variable `type' indicates the frame's type: normal, SIGTRAMP
409 (associated with a signal handler), dummy (associated with a dummy
410 frame).
411
412 The variable return_pc contains the address where execution should be
413 resumed when the present frame has finished, the return address.
414
415 The variable leaf_function is 1 if the return address is in the register
416 SRP, and 0 if it is on the stack.
417
418 Prologue instructions C-code.
419 The prologue may consist of (-fno-omit-frame-pointer)
420 1) 2)
421 push srp
422 push r8 push r8
423 move.d sp,r8 move.d sp,r8
424 subq X,sp subq X,sp
425 movem rY,[sp] movem rY,[sp]
426 move.S rZ,[r8-U] move.S rZ,[r8-U]
427
428 where 1 is a non-terminal function, and 2 is a leaf-function.
429
430 Note that this assumption is extremely brittle, and will break at the
431 slightest change in GCC's prologue.
432
433 If local variables are declared or register contents are saved on stack
434 the subq-instruction will be present with X as the number of bytes
435 needed for storage. The reshuffle with respect to r8 may be performed
436 with any size S (b, w, d) and any of the general registers Z={0..13}.
437 The offset U should be representable by a signed 8-bit value in all cases.
438 Thus, the prefix word is assumed to be immediate byte offset mode followed
439 by another word containing the instruction.
440
441 Degenerate cases:
442 3)
443 push r8
444 move.d sp,r8
445 move.d r8,sp
446 pop r8
447
448 Prologue instructions C++-code.
449 Case 1) and 2) in the C-code may be followed by
450
451 move.d r10,rS ; this
452 move.d r11,rT ; P1
453 move.d r12,rU ; P2
454 move.d r13,rV ; P3
455 move.S [r8+U],rZ ; P4
456
457 if any of the call parameters are stored. The host expects these
458 instructions to be executed in order to get the call parameters right. */
459
460 /* Examine the prologue of a function. The variable ip is the address of
461 the first instruction of the prologue. The variable limit is the address
462 of the first instruction after the prologue. The variable fi contains the
463 information in struct frame_info. The variable frameless_p controls whether
464 the entire prologue is examined (0) or just enough instructions to
465 determine that it is a prologue (1). */
466
467 static CORE_ADDR
468 cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
469 int frameless_p)
470 {
471 /* Present instruction. */
472 unsigned short insn;
473
474 /* Next instruction, lookahead. */
475 unsigned short insn_next;
476 int regno;
477
478 /* Is there a push fp? */
479 int have_fp;
480
481 /* Number of byte on stack used for local variables and movem. */
482 int val;
483
484 /* Highest register number in a movem. */
485 int regsave;
486
487 /* move.d r<source_register>,rS */
488 short source_register;
489
490 /* This frame is with respect to a leaf until a push srp is found. */
491 get_frame_extra_info (fi)->leaf_function = 1;
492
493 /* This frame is without the FP until a push fp is found. */
494 have_fp = 0;
495
496 /* Assume nothing on stack. */
497 val = 0;
498 regsave = -1;
499
500 /* No information about register contents so far. */
501
502 /* We only want to know the end of the prologue when fi->saved_regs == 0.
503 When the saved registers are allocated full information is required. */
504 if (deprecated_get_frame_saved_regs (fi))
505 {
506 for (regno = 0; regno < NUM_REGS; regno++)
507 deprecated_get_frame_saved_regs (fi)[regno] = 0;
508 }
509
510 /* Find the prologue instructions. */
511 do
512 {
513 insn = read_memory_unsigned_integer (ip, sizeof (short));
514 ip += sizeof (short);
515 if (insn == 0xE1FC)
516 {
517 /* push <reg> 32 bit instruction */
518 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
519 ip += sizeof (short);
520 regno = cris_get_operand2 (insn_next);
521
522 /* This check, meant to recognize srp, used to be regno ==
523 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
524 if (insn_next == 0xBE7E)
525 {
526 if (frameless_p)
527 {
528 return ip;
529 }
530 get_frame_extra_info (fi)->leaf_function = 0;
531 }
532 else if (regno == DEPRECATED_FP_REGNUM)
533 {
534 have_fp = 1;
535 }
536 }
537 else if (insn == 0x866E)
538 {
539 /* move.d sp,r8 */
540 if (frameless_p)
541 {
542 return ip;
543 }
544 continue;
545 }
546 else if (cris_get_operand2 (insn) == SP_REGNUM
547 && cris_get_mode (insn) == 0x0000
548 && cris_get_opcode (insn) == 0x000A)
549 {
550 /* subq <val>,sp */
551 val = cris_get_quick_value (insn);
552 }
553 else if (cris_get_mode (insn) == 0x0002
554 && cris_get_opcode (insn) == 0x000F
555 && cris_get_size (insn) == 0x0003
556 && cris_get_operand1 (insn) == SP_REGNUM)
557 {
558 /* movem r<regsave>,[sp] */
559 if (frameless_p)
560 {
561 return ip;
562 }
563 regsave = cris_get_operand2 (insn);
564 }
565 else if (cris_get_operand2 (insn) == SP_REGNUM
566 && ((insn & 0x0F00) >> 8) == 0x0001
567 && (cris_get_signed_offset (insn) < 0))
568 {
569 /* Immediate byte offset addressing prefix word with sp as base
570 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
571 is between 64 and 128.
572 movem r<regsave>,[sp=sp-<val>] */
573 val = -cris_get_signed_offset (insn);
574 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
575 ip += sizeof (short);
576 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
577 && cris_get_opcode (insn_next) == 0x000F
578 && cris_get_size (insn_next) == 0x0003
579 && cris_get_operand1 (insn_next) == SP_REGNUM)
580 {
581 if (frameless_p)
582 {
583 return ip;
584 }
585 regsave = cris_get_operand2 (insn_next);
586 }
587 else
588 {
589 /* The prologue ended before the limit was reached. */
590 ip -= 2 * sizeof (short);
591 break;
592 }
593 }
594 else if (cris_get_mode (insn) == 0x0001
595 && cris_get_opcode (insn) == 0x0009
596 && cris_get_size (insn) == 0x0002)
597 {
598 /* move.d r<10..13>,r<0..15> */
599 if (frameless_p)
600 {
601 return ip;
602 }
603 source_register = cris_get_operand1 (insn);
604
605 /* FIXME? In the glibc solibs, the prologue might contain something
606 like (this example taken from relocate_doit):
607 move.d $pc,$r0
608 sub.d 0xfffef426,$r0
609 which isn't covered by the source_register check below. Question
610 is whether to add a check for this combo, or make better use of
611 the limit variable instead. */
612 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
613 {
614 /* The prologue ended before the limit was reached. */
615 ip -= sizeof (short);
616 break;
617 }
618 }
619 else if (cris_get_operand2 (insn) == DEPRECATED_FP_REGNUM
620 /* The size is a fixed-size. */
621 && ((insn & 0x0F00) >> 8) == 0x0001
622 /* A negative offset. */
623 && (cris_get_signed_offset (insn) < 0))
624 {
625 /* move.S rZ,[r8-U] (?) */
626 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
627 ip += sizeof (short);
628 regno = cris_get_operand2 (insn_next);
629 if ((regno >= 0 && regno < SP_REGNUM)
630 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
631 && cris_get_opcode (insn_next) == 0x000F)
632 {
633 /* move.S rZ,[r8-U] */
634 continue;
635 }
636 else
637 {
638 /* The prologue ended before the limit was reached. */
639 ip -= 2 * sizeof (short);
640 break;
641 }
642 }
643 else if (cris_get_operand2 (insn) == DEPRECATED_FP_REGNUM
644 /* The size is a fixed-size. */
645 && ((insn & 0x0F00) >> 8) == 0x0001
646 /* A positive offset. */
647 && (cris_get_signed_offset (insn) > 0))
648 {
649 /* move.S [r8+U],rZ (?) */
650 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
651 ip += sizeof (short);
652 regno = cris_get_operand2 (insn_next);
653 if ((regno >= 0 && regno < SP_REGNUM)
654 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
655 && cris_get_opcode (insn_next) == 0x0009
656 && cris_get_operand1 (insn_next) == regno)
657 {
658 /* move.S [r8+U],rZ */
659 continue;
660 }
661 else
662 {
663 /* The prologue ended before the limit was reached. */
664 ip -= 2 * sizeof (short);
665 break;
666 }
667 }
668 else
669 {
670 /* The prologue ended before the limit was reached. */
671 ip -= sizeof (short);
672 break;
673 }
674 }
675 while (ip < limit);
676
677 /* We only want to know the end of the prologue when
678 fi->saved_regs == 0. */
679 if (!deprecated_get_frame_saved_regs (fi))
680 return ip;
681
682 if (have_fp)
683 {
684 deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM] = get_frame_base (fi);
685
686 /* Calculate the addresses. */
687 for (regno = regsave; regno >= 0; regno--)
688 {
689 deprecated_get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
690 val -= 4;
691 }
692 if (get_frame_extra_info (fi)->leaf_function)
693 {
694 /* Set the register SP to contain the stack pointer of
695 the caller. */
696 deprecated_get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
697 }
698 else
699 {
700 /* Set the register SP to contain the stack pointer of
701 the caller. */
702 deprecated_get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
703
704 /* Set the register SRP to contain the return address of
705 the caller. */
706 deprecated_get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
707 }
708 }
709 return ip;
710 }
711
712 /* Advance pc beyond any function entry prologue instructions at pc
713 to reach some "real" code. */
714
715 static CORE_ADDR
716 cris_skip_prologue (CORE_ADDR pc)
717 {
718 return cris_skip_prologue_main (pc, 0);
719 }
720
721 /* As cris_skip_prologue, but stops as soon as it knows that the function
722 has a frame. Its result is equal to its input pc if the function is
723 frameless, unequal otherwise. */
724
725 static CORE_ADDR
726 cris_skip_prologue_frameless_p (CORE_ADDR pc)
727 {
728 return cris_skip_prologue_main (pc, 1);
729 }
730
731 /* Given a PC value corresponding to the start of a function, return the PC
732 of the first instruction after the function prologue. */
733
734 static CORE_ADDR
735 cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
736 {
737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
738 struct frame_info *fi;
739 struct symtab_and_line sal = find_pc_line (pc, 0);
740 int best_limit;
741 CORE_ADDR pc_after_prologue;
742
743 /* frame_info now contains dynamic memory. Since fi is a dummy
744 here, I don't bother allocating memory for saved_regs. */
745 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
746
747 /* If there is no symbol information then sal.end == 0, and we end up
748 examining only the first instruction in the function prologue.
749 Exaggerating the limit seems to be harmless. */
750 if (sal.end > 0)
751 best_limit = sal.end;
752 else
753 best_limit = pc + 100;
754
755 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
756 do_cleanups (old_chain);
757 return pc_after_prologue;
758 }
759
760 /* Use the program counter to determine the contents and size of a breakpoint
761 instruction. It returns a pointer to a string of bytes that encode a
762 breakpoint instruction, stores the length of the string to *lenptr, and
763 adjusts pcptr (if necessary) to point to the actual memory location where
764 the breakpoint should be inserted. */
765
766 static const unsigned char *
767 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
768 {
769 static unsigned char break_insn[] = {0x38, 0xe9};
770 *lenptr = 2;
771
772 return break_insn;
773 }
774
775 /* Returns the register SRP (subroutine return pointer) which must contain
776 the content of the register PC after a function call. */
777
778 static CORE_ADDR
779 cris_saved_pc_after_call (struct frame_info *frame)
780 {
781 return read_register (SRP_REGNUM);
782 }
783
784 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
785 0 otherwise. */
786
787 static int
788 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
789 {
790 int version = cris_version ();
791
792 switch (spec_reg.applicable_version)
793 {
794 case cris_ver_version_all:
795 return 1;
796 case cris_ver_warning:
797 /* Indeterminate/obsolete. */
798 return 0;
799 case cris_ver_sim:
800 /* Simulator only. */
801 return 0;
802 case cris_ver_v0_3:
803 return (version >= 0 && version <= 3);
804 case cris_ver_v3p:
805 return (version >= 3);
806 case cris_ver_v8:
807 return (version == 8 || version == 9);
808 case cris_ver_v8p:
809 return (version >= 8);
810 case cris_ver_v10p:
811 return (version >= 10);
812 default:
813 /* Invalid cris version. */
814 return 0;
815 }
816 }
817
818 /* Returns the register size in unit byte. Returns 0 for an unimplemented
819 register, -1 for an invalid register. */
820
821 static int
822 cris_register_size (int regno)
823 {
824 int i;
825 int spec_regno;
826
827 if (regno >= 0 && regno < NUM_GENREGS)
828 {
829 /* General registers (R0 - R15) are 32 bits. */
830 return 4;
831 }
832 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
833 {
834 /* Special register (R16 - R31). cris_spec_regs is zero-based.
835 Adjust regno accordingly. */
836 spec_regno = regno - NUM_GENREGS;
837
838 /* The entries in cris_spec_regs are stored in register number order,
839 which means we can shortcut into the array when searching it. */
840 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
841 {
842 if (cris_spec_regs[i].number == spec_regno
843 && cris_spec_reg_applicable (cris_spec_regs[i]))
844 /* Go with the first applicable register. */
845 return cris_spec_regs[i].reg_size;
846 }
847 /* Special register not applicable to this CRIS version. */
848 return 0;
849 }
850 else
851 {
852 /* Invalid register. */
853 return -1;
854 }
855 }
856
857 /* Nonzero if regno should not be fetched from the target. This is the case
858 for unimplemented (size 0) and non-existant registers. */
859
860 static int
861 cris_cannot_fetch_register (int regno)
862 {
863 return ((regno < 0 || regno >= NUM_REGS)
864 || (cris_register_size (regno) == 0));
865 }
866
867 /* Nonzero if regno should not be written to the target, for various
868 reasons. */
869
870 static int
871 cris_cannot_store_register (int regno)
872 {
873 /* There are three kinds of registers we refuse to write to.
874 1. Those that not implemented.
875 2. Those that are read-only (depends on the processor mode).
876 3. Those registers to which a write has no effect.
877 */
878
879 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
880 /* Not implemented. */
881 return 1;
882
883 else if (regno == VR_REGNUM)
884 /* Read-only. */
885 return 1;
886
887 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
888 /* Writing has no effect. */
889 return 1;
890
891 else if (cris_mode () == CRIS_MODE_USER)
892 {
893 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
894 || regno == IRP_REGNUM)
895 /* Read-only in user mode. */
896 return 1;
897 }
898
899 return 0;
900 }
901
902 /* Returns the register offset for the first byte of register regno's space
903 in the saved register state. Returns -1 for an invalid or unimplemented
904 register. */
905
906 static int
907 cris_register_offset (int regno)
908 {
909 int i;
910 int reg_size;
911 int offset = 0;
912
913 if (regno >= 0 && regno < NUM_REGS)
914 {
915 /* FIXME: The offsets should be cached and calculated only once,
916 when the architecture being debugged has changed. */
917 for (i = 0; i < regno; i++)
918 offset += cris_register_size (i);
919
920 return offset;
921 }
922 else
923 {
924 /* Invalid register. */
925 return -1;
926 }
927 }
928
929 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
930 of data in register regno. */
931
932 static struct type *
933 cris_register_virtual_type (int regno)
934 {
935 if (regno == SP_REGNUM || regno == PC_REGNUM
936 || (regno > P8_REGNUM && regno < USP_REGNUM))
937 {
938 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
939 return lookup_pointer_type (builtin_type_void);
940 }
941 else if (regno == P8_REGNUM || regno == USP_REGNUM
942 || (regno >= 0 && regno < SP_REGNUM))
943 {
944 /* R0 - R13, P8, P15 */
945 return builtin_type_unsigned_long;
946 }
947 else if (regno > P3_REGNUM && regno < P8_REGNUM)
948 {
949 /* P4, CCR, DCR0, DCR1 */
950 return builtin_type_unsigned_short;
951 }
952 else if (regno > PC_REGNUM && regno < P4_REGNUM)
953 {
954 /* P0, P1, P2, P3 */
955 return builtin_type_unsigned_char;
956 }
957 else
958 {
959 /* Invalid register. */
960 return builtin_type_void;
961 }
962 }
963
964 /* Stores a function return value of type type, where valbuf is the address
965 of the value to be stored. */
966
967 /* In the original CRIS ABI, R10 is used to store return values. */
968
969 static void
970 cris_abi_original_store_return_value (struct type *type, char *valbuf)
971 {
972 int len = TYPE_LENGTH (type);
973
974 if (len <= DEPRECATED_REGISTER_SIZE)
975 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (RET_REGNUM), valbuf, len);
976 else
977 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
978 }
979
980 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
981
982 static void
983 cris_abi_v2_store_return_value (struct type *type, char *valbuf)
984 {
985 int len = TYPE_LENGTH (type);
986
987 if (len <= 2 * DEPRECATED_REGISTER_SIZE)
988 {
989 /* Note that this works since R10 and R11 are consecutive registers. */
990 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (RET_REGNUM),
991 valbuf, len);
992 }
993 else
994 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
995 }
996
997 /* Return the name of register regno as a string. Return NULL for an invalid or
998 unimplemented register. */
999
1000 static const char *
1001 cris_register_name (int regno)
1002 {
1003 static char *cris_genreg_names[] =
1004 { "r0", "r1", "r2", "r3", \
1005 "r4", "r5", "r6", "r7", \
1006 "r8", "r9", "r10", "r11", \
1007 "r12", "r13", "sp", "pc" };
1008
1009 int i;
1010 int spec_regno;
1011
1012 if (regno >= 0 && regno < NUM_GENREGS)
1013 {
1014 /* General register. */
1015 return cris_genreg_names[regno];
1016 }
1017 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1018 {
1019 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1020 Adjust regno accordingly. */
1021 spec_regno = regno - NUM_GENREGS;
1022
1023 /* The entries in cris_spec_regs are stored in register number order,
1024 which means we can shortcut into the array when searching it. */
1025 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1026 {
1027 if (cris_spec_regs[i].number == spec_regno
1028 && cris_spec_reg_applicable (cris_spec_regs[i]))
1029 /* Go with the first applicable register. */
1030 return cris_spec_regs[i].name;
1031 }
1032 /* Special register not applicable to this CRIS version. */
1033 return NULL;
1034 }
1035 else
1036 {
1037 /* Invalid register. */
1038 return NULL;
1039 }
1040 }
1041
1042 static int
1043 cris_register_bytes_ok (long bytes)
1044 {
1045 return (bytes == DEPRECATED_REGISTER_BYTES);
1046 }
1047
1048 /* Extract from an array regbuf containing the raw register state a function
1049 return value of type type, and copy that, in virtual format, into
1050 valbuf. */
1051
1052 /* In the original CRIS ABI, R10 is used to return values. */
1053
1054 static void
1055 cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1056 char *valbuf)
1057 {
1058 int len = TYPE_LENGTH (type);
1059
1060 if (len <= DEPRECATED_REGISTER_SIZE)
1061 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (RET_REGNUM), len);
1062 else
1063 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1064 }
1065
1066 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1067
1068 static void
1069 cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1070 char *valbuf)
1071 {
1072 int len = TYPE_LENGTH (type);
1073
1074 if (len <= 2 * DEPRECATED_REGISTER_SIZE)
1075 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (RET_REGNUM), len);
1076 else
1077 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1078 }
1079
1080 /* Store the address of the place in which to copy the structure the
1081 subroutine will return. In the CRIS ABI, R9 is used in order to pass
1082 the address of the allocated area where a structure return value must
1083 be stored. R9 is call-clobbered, which means we must save it here for
1084 later use. */
1085
1086 static void
1087 cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1088 {
1089 write_register (STR_REGNUM, addr);
1090 struct_return_address = addr;
1091 }
1092
1093 /* Extract from regbuf the address where a function should return a
1094 structure value. It's not there in the CRIS ABI, so we must do it another
1095 way. */
1096
1097 static CORE_ADDR
1098 cris_extract_struct_value_address (char *regbuf)
1099 {
1100 return struct_return_address;
1101 }
1102
1103 /* Returns 1 if the given type will be passed by pointer rather than
1104 directly. */
1105
1106 /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1107 passed by value. */
1108
1109 static int
1110 cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1111 {
1112 return (TYPE_LENGTH (type) > 4);
1113 }
1114
1115 /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1116 by value. */
1117
1118 static int
1119 cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1120 {
1121 return (TYPE_LENGTH (type) > 8);
1122 }
1123
1124 /* Returns 1 if the function invocation represented by fi does not have a
1125 stack frame associated with it. Otherwise return 0. */
1126
1127 static int
1128 cris_frameless_function_invocation (struct frame_info *fi)
1129 {
1130 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1131 return 0;
1132 else
1133 return frameless_look_for_prologue (fi);
1134 }
1135
1136 /* See frame.h. Determines the address of all registers in the
1137 current stack frame storing each in frame->saved_regs. Space for
1138 frame->saved_regs shall be allocated by
1139 DEPRECATED_FRAME_INIT_SAVED_REGS using frame_saved_regs_zalloc. */
1140
1141 static void
1142 cris_frame_init_saved_regs (struct frame_info *fi)
1143 {
1144 CORE_ADDR ip;
1145 struct symtab_and_line sal;
1146 int best_limit;
1147 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1148 get_frame_base (fi));
1149
1150 /* Examine the entire prologue. */
1151 int frameless_p = 0;
1152
1153 /* Has this frame's registers already been initialized? */
1154 if (deprecated_get_frame_saved_regs (fi))
1155 return;
1156
1157 frame_saved_regs_zalloc (fi);
1158
1159 if (dummy_regs)
1160 {
1161 /* I don't see this ever happening, considering the context in which
1162 cris_frame_init_saved_regs is called (always when we're not in
1163 a dummy frame). */
1164 memcpy (deprecated_get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
1165 }
1166 else
1167 {
1168 ip = get_frame_func (fi);
1169 sal = find_pc_line (ip, 0);
1170
1171 /* If there is no symbol information then sal.end == 0, and we end up
1172 examining only the first instruction in the function prologue.
1173 Exaggerating the limit seems to be harmless. */
1174 if (sal.end > 0)
1175 best_limit = sal.end;
1176 else
1177 best_limit = ip + 100;
1178
1179 cris_examine (ip, best_limit, fi, frameless_p);
1180 }
1181 }
1182
1183 /* Initialises the extra frame information at the creation of a new frame.
1184 The inparameter fromleaf is 0 when the call is from create_new_frame.
1185 When the call is from get_prev_frame_info, fromleaf is determined by
1186 cris_frameless_function_invocation. */
1187
1188 static void
1189 cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1190 {
1191 if (get_next_frame (fi))
1192 {
1193 /* Called from get_prev_frame. */
1194 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1195 }
1196
1197 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1198
1199 get_frame_extra_info (fi)->return_pc = 0;
1200 get_frame_extra_info (fi)->leaf_function = 0;
1201
1202 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1203 get_frame_base (fi),
1204 get_frame_base (fi)))
1205 {
1206 /* We need to setup fi->frame here because call_function_by_hand
1207 gets it wrong by assuming it's always FP. */
1208 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1209 get_frame_extra_info (fi)->return_pc =
1210 deprecated_read_register_dummy (get_frame_pc (fi),
1211 get_frame_base (fi), PC_REGNUM);
1212
1213 /* FIXME: Is this necessarily true? */
1214 get_frame_extra_info (fi)->leaf_function = 0;
1215 }
1216 else
1217 {
1218 cris_frame_init_saved_regs (fi);
1219
1220 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1221
1222 if (deprecated_get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
1223 {
1224 /* SRP was saved on the stack; non-leaf function. */
1225 get_frame_extra_info (fi)->return_pc =
1226 read_memory_integer (deprecated_get_frame_saved_regs (fi)[SRP_REGNUM],
1227 DEPRECATED_REGISTER_RAW_SIZE (SRP_REGNUM));
1228 }
1229 else
1230 {
1231 /* SRP is still in a register; leaf function. */
1232 get_frame_extra_info (fi)->return_pc = read_register (SRP_REGNUM);
1233 /* FIXME: Should leaf_function be set to 1 here? */
1234 get_frame_extra_info (fi)->leaf_function = 1;
1235 }
1236 }
1237 }
1238
1239 /* Return the content of the frame pointer in the present frame. In other
1240 words, determine the address of the calling function's frame. */
1241
1242 static CORE_ADDR
1243 cris_frame_chain (struct frame_info *fi)
1244 {
1245 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1246 get_frame_base (fi),
1247 get_frame_base (fi)))
1248 {
1249 return get_frame_base (fi);
1250 }
1251 else if (!deprecated_inside_entry_file (get_frame_pc (fi)))
1252 {
1253 return read_memory_unsigned_integer (get_frame_base (fi), 4);
1254 }
1255 else
1256 {
1257 return 0;
1258 }
1259 }
1260
1261 /* Return the saved PC (which equals the return address) of this frame. */
1262
1263 static CORE_ADDR
1264 cris_frame_saved_pc (struct frame_info *fi)
1265 {
1266 return get_frame_extra_info (fi)->return_pc;
1267 }
1268
1269 /* Setup the function arguments for calling a function in the inferior. */
1270
1271 static CORE_ADDR
1272 cris_abi_original_push_arguments (int nargs, struct value **args,
1273 CORE_ADDR sp, int struct_return,
1274 CORE_ADDR struct_addr)
1275 {
1276 int stack_alloc;
1277 int stack_offset;
1278 int argreg;
1279 int argnum;
1280 struct type *type;
1281 int len;
1282 CORE_ADDR regval;
1283 char *val;
1284
1285 /* Data and parameters reside in different areas on the stack.
1286 Both frame pointers grow toward higher addresses. */
1287 CORE_ADDR fp_params;
1288 CORE_ADDR fp_data;
1289
1290 /* Are we returning a value using a structure return or a normal value
1291 return? struct_addr is the address of the reserved space for the return
1292 structure to be written on the stack. */
1293 if (struct_return)
1294 {
1295 write_register (STR_REGNUM, struct_addr);
1296 }
1297
1298 /* Make sure there's space on the stack. Allocate space for data and a
1299 parameter to refer to that data. */
1300 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1301 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + DEPRECATED_REGISTER_SIZE);
1302 sp -= stack_alloc;
1303 /* We may over-allocate a little here, but that won't hurt anything. */
1304
1305 /* Initialize stack frame pointers. */
1306 fp_params = sp;
1307 fp_data = sp + (nargs * DEPRECATED_REGISTER_SIZE);
1308
1309 /* Now load as many as possible of the first arguments into
1310 registers, and push the rest onto the stack. */
1311 argreg = ARG1_REGNUM;
1312 stack_offset = 0;
1313
1314 for (argnum = 0; argnum < nargs; argnum++)
1315 {
1316 type = VALUE_TYPE (args[argnum]);
1317 len = TYPE_LENGTH (type);
1318 val = (char *) VALUE_CONTENTS (args[argnum]);
1319
1320 if (len <= DEPRECATED_REGISTER_SIZE && argreg <= ARG4_REGNUM)
1321 {
1322 /* Data fits in a register; put it in the first available
1323 register. */
1324 write_register (argreg, *(unsigned long *) val);
1325 argreg++;
1326 }
1327 else if (len > DEPRECATED_REGISTER_SIZE && argreg <= ARG4_REGNUM)
1328 {
1329 /* Data does not fit in register; pass it on the stack and
1330 put its address in the first available register. */
1331 write_memory (fp_data, val, len);
1332 write_register (argreg, fp_data);
1333 fp_data += len;
1334 argreg++;
1335 }
1336 else if (len > DEPRECATED_REGISTER_SIZE)
1337 {
1338 /* Data does not fit in register; put both data and
1339 parameter on the stack. */
1340 write_memory (fp_data, val, len);
1341 write_memory (fp_params, (char *) (&fp_data), DEPRECATED_REGISTER_SIZE);
1342 fp_data += len;
1343 fp_params += DEPRECATED_REGISTER_SIZE;
1344 }
1345 else
1346 {
1347 /* Data fits in a register, but we are out of registers;
1348 put the parameter on the stack. */
1349 write_memory (fp_params, val, DEPRECATED_REGISTER_SIZE);
1350 fp_params += DEPRECATED_REGISTER_SIZE;
1351 }
1352 }
1353
1354 return sp;
1355 }
1356
1357 static CORE_ADDR
1358 cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1359 int struct_return, CORE_ADDR struct_addr)
1360 {
1361 int stack_alloc;
1362 int stack_offset;
1363 int argreg;
1364 int argnum;
1365
1366 CORE_ADDR regval;
1367
1368 /* The function's arguments and memory allocated by gdb for the arguments to
1369 point at reside in separate areas on the stack.
1370 Both frame pointers grow toward higher addresses. */
1371 CORE_ADDR fp_arg;
1372 CORE_ADDR fp_mem;
1373
1374 /* Are we returning a value using a structure return or a normal value
1375 return? struct_addr is the address of the reserved space for the return
1376 structure to be written on the stack. */
1377 if (struct_return)
1378 {
1379 write_register (STR_REGNUM, struct_addr);
1380 }
1381
1382 /* Allocate enough to keep things word-aligned on both parts of the
1383 stack. */
1384 stack_alloc = 0;
1385 for (argnum = 0; argnum < nargs; argnum++)
1386 {
1387 int len;
1388 int reg_demand;
1389
1390 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1391 reg_demand = (len / DEPRECATED_REGISTER_SIZE) + (len % DEPRECATED_REGISTER_SIZE != 0 ? 1 : 0);
1392
1393 /* reg_demand * DEPRECATED_REGISTER_SIZE is the amount of memory
1394 we might need to allocate for this argument. 2 *
1395 DEPRECATED_REGISTER_SIZE is the amount of stack space we
1396 might need to pass the argument itself (either by value or by
1397 reference). */
1398 stack_alloc += (reg_demand * DEPRECATED_REGISTER_SIZE + 2 * DEPRECATED_REGISTER_SIZE);
1399 }
1400 sp -= stack_alloc;
1401 /* We may over-allocate a little here, but that won't hurt anything. */
1402
1403 /* Initialize frame pointers. */
1404 fp_arg = sp;
1405 fp_mem = sp + (nargs * (2 * DEPRECATED_REGISTER_SIZE));
1406
1407 /* Now load as many as possible of the first arguments into registers,
1408 and push the rest onto the stack. */
1409 argreg = ARG1_REGNUM;
1410 stack_offset = 0;
1411
1412 for (argnum = 0; argnum < nargs; argnum++)
1413 {
1414 int len;
1415 char *val;
1416 int reg_demand;
1417 int i;
1418
1419 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1420 val = (char *) VALUE_CONTENTS (args[argnum]);
1421
1422 /* How may registers worth of storage do we need for this argument? */
1423 reg_demand = (len / DEPRECATED_REGISTER_SIZE) + (len % DEPRECATED_REGISTER_SIZE != 0 ? 1 : 0);
1424
1425 if (len <= (2 * DEPRECATED_REGISTER_SIZE)
1426 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1427 {
1428 /* Data passed by value. Fits in available register(s). */
1429 for (i = 0; i < reg_demand; i++)
1430 {
1431 write_register (argreg, *(unsigned long *) val);
1432 argreg++;
1433 val += DEPRECATED_REGISTER_SIZE;
1434 }
1435 }
1436 else if (len <= (2 * DEPRECATED_REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1437 {
1438 /* Data passed by value. Does not fit in available register(s).
1439 Use the register(s) first, then the stack. */
1440 for (i = 0; i < reg_demand; i++)
1441 {
1442 if (argreg <= ARG4_REGNUM)
1443 {
1444 write_register (argreg, *(unsigned long *) val);
1445 argreg++;
1446 val += DEPRECATED_REGISTER_SIZE;
1447 }
1448 else
1449 {
1450 /* I guess this memory write could write the
1451 remaining data all at once instead of in
1452 DEPRECATED_REGISTER_SIZE chunks. */
1453 write_memory (fp_arg, val, DEPRECATED_REGISTER_SIZE);
1454 fp_arg += DEPRECATED_REGISTER_SIZE;
1455 val += DEPRECATED_REGISTER_SIZE;
1456 }
1457 }
1458 }
1459 else if (len > (2 * DEPRECATED_REGISTER_SIZE))
1460 {
1461 /* Data passed by reference. Put it on the stack. */
1462 write_memory (fp_mem, val, len);
1463 write_memory (fp_arg, (char *) (&fp_mem), DEPRECATED_REGISTER_SIZE);
1464
1465 /* fp_mem need not be word-aligned since it's just a chunk of
1466 memory being pointed at. That is, += len would do. */
1467 fp_mem += reg_demand * DEPRECATED_REGISTER_SIZE;
1468 fp_arg += DEPRECATED_REGISTER_SIZE;
1469 }
1470 else
1471 {
1472 /* Data passed by value. No available registers. Put it on
1473 the stack. */
1474 write_memory (fp_arg, val, len);
1475
1476 /* fp_arg must be word-aligned (i.e., don't += len) to match
1477 the function prologue. */
1478 fp_arg += reg_demand * DEPRECATED_REGISTER_SIZE;
1479 }
1480 }
1481
1482 return sp;
1483 }
1484
1485 /* Never put the return address on the stack. The register SRP is pushed
1486 by the called function unless it is a leaf-function. Due to the BRP
1487 register the PC will change when continue is sent. */
1488
1489 static CORE_ADDR
1490 cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1491 {
1492 write_register (SRP_REGNUM, entry_point_address ());
1493 return sp;
1494 }
1495
1496 /* Restore the machine to the state it had before the current frame
1497 was created. Discard the innermost frame from the stack and restore
1498 all saved registers. */
1499
1500 static void
1501 cris_pop_frame (void)
1502 {
1503 struct frame_info *fi = get_current_frame ();
1504 int regno;
1505 int stack_offset = 0;
1506
1507 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1508 get_frame_base (fi),
1509 get_frame_base (fi)))
1510 {
1511 /* This happens when we hit a breakpoint set at the entry point,
1512 when returning from a dummy frame. */
1513 generic_pop_dummy_frame ();
1514 }
1515 else
1516 {
1517 cris_frame_init_saved_regs (fi);
1518
1519 /* For each register, the address of where it was saved on entry to
1520 the frame now lies in fi->saved_regs[regno], or zero if it was not
1521 saved. This includes special registers such as PC and FP saved in
1522 special ways in the stack frame. The SP_REGNUM is even more
1523 special, the address here is the SP for the next frame, not the
1524 address where the SP was saved. */
1525
1526 /* Restore general registers R0 - R7. They were pushed on the stack
1527 after SP was saved. */
1528 for (regno = 0; regno < DEPRECATED_FP_REGNUM; regno++)
1529 {
1530 if (deprecated_get_frame_saved_regs (fi)[regno])
1531 {
1532 write_register (regno,
1533 read_memory_integer (deprecated_get_frame_saved_regs (fi)[regno], 4));
1534 }
1535 }
1536
1537 if (deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM])
1538 {
1539 /* Pop the frame pointer (R8). It was pushed before SP
1540 was saved. */
1541 write_register (DEPRECATED_FP_REGNUM,
1542 read_memory_integer (deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM], 4));
1543 stack_offset += 4;
1544
1545 /* Not a leaf function. */
1546 if (deprecated_get_frame_saved_regs (fi)[SRP_REGNUM])
1547 {
1548 /* SRP was pushed before SP was saved. */
1549 stack_offset += 4;
1550 }
1551
1552 /* Restore the SP and adjust for R8 and (possibly) SRP. */
1553 write_register (SP_REGNUM, deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM] + stack_offset);
1554 }
1555 else
1556 {
1557 /* Currently, we can't get the correct info into fi->saved_regs
1558 without a frame pointer. */
1559 }
1560
1561 /* Restore the PC. */
1562 write_register (PC_REGNUM, get_frame_extra_info (fi)->return_pc);
1563 }
1564 flush_cached_frames ();
1565 }
1566
1567 /* Calculates a value that measures how good inst_args constraints an
1568 instruction. It stems from cris_constraint, found in cris-dis.c. */
1569
1570 static int
1571 constraint (unsigned int insn, const signed char *inst_args,
1572 inst_env_type *inst_env)
1573 {
1574 int retval = 0;
1575 int tmp, i;
1576
1577 const char *s = inst_args;
1578
1579 for (; *s; s++)
1580 switch (*s)
1581 {
1582 case 'm':
1583 if ((insn & 0x30) == 0x30)
1584 return -1;
1585 break;
1586
1587 case 'S':
1588 /* A prefix operand. */
1589 if (inst_env->prefix_found)
1590 break;
1591 else
1592 return -1;
1593
1594 case 'B':
1595 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1596 valid "push" size. In case of special register, it may be != 4. */
1597 if (inst_env->prefix_found)
1598 break;
1599 else
1600 return -1;
1601
1602 case 'D':
1603 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1604 if (!retval)
1605 return -1;
1606 else
1607 retval += 4;
1608 break;
1609
1610 case 'P':
1611 tmp = (insn >> 0xC) & 0xF;
1612
1613 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1614 {
1615 /* Since we match four bits, we will give a value of
1616 4 - 1 = 3 in a match. If there is a corresponding
1617 exact match of a special register in another pattern, it
1618 will get a value of 4, which will be higher. This should
1619 be correct in that an exact pattern would match better that
1620 a general pattern.
1621 Note that there is a reason for not returning zero; the
1622 pattern for "clear" is partly matched in the bit-pattern
1623 (the two lower bits must be zero), while the bit-pattern
1624 for a move from a special register is matched in the
1625 register constraint.
1626 This also means we will will have a race condition if
1627 there is a partly match in three bits in the bit pattern. */
1628 if (tmp == cris_spec_regs[i].number)
1629 {
1630 retval += 3;
1631 break;
1632 }
1633 }
1634
1635 if (cris_spec_regs[i].name == NULL)
1636 return -1;
1637 break;
1638 }
1639 return retval;
1640 }
1641
1642 /* Returns the number of bits set in the variable value. */
1643
1644 static int
1645 number_of_bits (unsigned int value)
1646 {
1647 int number_of_bits = 0;
1648
1649 while (value != 0)
1650 {
1651 number_of_bits += 1;
1652 value &= (value - 1);
1653 }
1654 return number_of_bits;
1655 }
1656
1657 /* Finds the address that should contain the single step breakpoint(s).
1658 It stems from code in cris-dis.c. */
1659
1660 static int
1661 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1662 {
1663 int i;
1664 int max_level_of_match = -1;
1665 int max_matched = -1;
1666 int level_of_match;
1667
1668 for (i = 0; cris_opcodes[i].name != NULL; i++)
1669 {
1670 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1671 && ((cris_opcodes[i].lose & insn) == 0))
1672 {
1673 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1674 if (level_of_match >= 0)
1675 {
1676 level_of_match +=
1677 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1678 if (level_of_match > max_level_of_match)
1679 {
1680 max_matched = i;
1681 max_level_of_match = level_of_match;
1682 if (level_of_match == 16)
1683 {
1684 /* All bits matched, cannot find better. */
1685 break;
1686 }
1687 }
1688 }
1689 }
1690 }
1691 return max_matched;
1692 }
1693
1694 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1695 actually an internal error. */
1696
1697 static int
1698 find_step_target (inst_env_type *inst_env)
1699 {
1700 int i;
1701 int offset;
1702 unsigned short insn;
1703
1704 /* Create a local register image and set the initial state. */
1705 for (i = 0; i < NUM_GENREGS; i++)
1706 {
1707 inst_env->reg[i] = (unsigned long) read_register (i);
1708 }
1709 offset = NUM_GENREGS;
1710 for (i = 0; i < NUM_SPECREGS; i++)
1711 {
1712 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1713 }
1714 inst_env->branch_found = 0;
1715 inst_env->slot_needed = 0;
1716 inst_env->delay_slot_pc_active = 0;
1717 inst_env->prefix_found = 0;
1718 inst_env->invalid = 0;
1719 inst_env->xflag_found = 0;
1720 inst_env->disable_interrupt = 0;
1721
1722 /* Look for a step target. */
1723 do
1724 {
1725 /* Read an instruction from the client. */
1726 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1727
1728 /* If the instruction is not in a delay slot the new content of the
1729 PC is [PC] + 2. If the instruction is in a delay slot it is not
1730 that simple. Since a instruction in a delay slot cannot change
1731 the content of the PC, it does not matter what value PC will have.
1732 Just make sure it is a valid instruction. */
1733 if (!inst_env->delay_slot_pc_active)
1734 {
1735 inst_env->reg[PC_REGNUM] += 2;
1736 }
1737 else
1738 {
1739 inst_env->delay_slot_pc_active = 0;
1740 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1741 }
1742 /* Analyse the present instruction. */
1743 i = find_cris_op (insn, inst_env);
1744 if (i == -1)
1745 {
1746 inst_env->invalid = 1;
1747 }
1748 else
1749 {
1750 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1751 }
1752 } while (!inst_env->invalid
1753 && (inst_env->prefix_found || inst_env->xflag_found
1754 || inst_env->slot_needed));
1755 return i;
1756 }
1757
1758 /* There is no hardware single-step support. The function find_step_target
1759 digs through the opcodes in order to find all possible targets.
1760 Either one ordinary target or two targets for branches may be found. */
1761
1762 static void
1763 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1764 {
1765 inst_env_type inst_env;
1766
1767 if (insert_breakpoints)
1768 {
1769 /* Analyse the present instruction environment and insert
1770 breakpoints. */
1771 int status = find_step_target (&inst_env);
1772 if (status == -1)
1773 {
1774 /* Could not find a target. FIXME: Should do something. */
1775 }
1776 else
1777 {
1778 /* Insert at most two breakpoints. One for the next PC content
1779 and possibly another one for a branch, jump, etc. */
1780 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1781 target_insert_breakpoint (next_pc, break_mem[0]);
1782 if (inst_env.branch_found
1783 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1784 {
1785 branch_target_address =
1786 (CORE_ADDR) inst_env.branch_break_address;
1787 target_insert_breakpoint (branch_target_address, break_mem[1]);
1788 branch_break_inserted = 1;
1789 }
1790 }
1791 }
1792 else
1793 {
1794 /* Remove breakpoints. */
1795 target_remove_breakpoint (next_pc, break_mem[0]);
1796 if (branch_break_inserted)
1797 {
1798 target_remove_breakpoint (branch_target_address, break_mem[1]);
1799 branch_break_inserted = 0;
1800 }
1801 }
1802 }
1803
1804 /* Calculates the prefix value for quick offset addressing mode. */
1805
1806 static void
1807 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1808 {
1809 /* It's invalid to be in a delay slot. You can't have a prefix to this
1810 instruction (not 100% sure). */
1811 if (inst_env->slot_needed || inst_env->prefix_found)
1812 {
1813 inst_env->invalid = 1;
1814 return;
1815 }
1816
1817 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1818 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1819
1820 /* A prefix doesn't change the xflag_found. But the rest of the flags
1821 need updating. */
1822 inst_env->slot_needed = 0;
1823 inst_env->prefix_found = 1;
1824 }
1825
1826 /* Updates the autoincrement register. The size of the increment is derived
1827 from the size of the operation. The PC is always kept aligned on even
1828 word addresses. */
1829
1830 static void
1831 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1832 {
1833 if (size == INST_BYTE_SIZE)
1834 {
1835 inst_env->reg[cris_get_operand1 (inst)] += 1;
1836
1837 /* The PC must be word aligned, so increase the PC with one
1838 word even if the size is byte. */
1839 if (cris_get_operand1 (inst) == REG_PC)
1840 {
1841 inst_env->reg[REG_PC] += 1;
1842 }
1843 }
1844 else if (size == INST_WORD_SIZE)
1845 {
1846 inst_env->reg[cris_get_operand1 (inst)] += 2;
1847 }
1848 else if (size == INST_DWORD_SIZE)
1849 {
1850 inst_env->reg[cris_get_operand1 (inst)] += 4;
1851 }
1852 else
1853 {
1854 /* Invalid size. */
1855 inst_env->invalid = 1;
1856 }
1857 }
1858
1859 /* Just a forward declaration. */
1860
1861 static unsigned long get_data_from_address (unsigned short *inst,
1862 CORE_ADDR address);
1863
1864 /* Calculates the prefix value for the general case of offset addressing
1865 mode. */
1866
1867 static void
1868 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1869 {
1870
1871 long offset;
1872
1873 /* It's invalid to be in a delay slot. */
1874 if (inst_env->slot_needed || inst_env->prefix_found)
1875 {
1876 inst_env->invalid = 1;
1877 return;
1878 }
1879
1880 /* The calculation of prefix_value used to be after process_autoincrement,
1881 but that fails for an instruction such as jsr [$r0+12] which is encoded
1882 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1883 mustn't be incremented until we have read it and what it points at. */
1884 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1885
1886 /* The offset is an indirection of the contents of the operand1 register. */
1887 inst_env->prefix_value +=
1888 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1889
1890 if (cris_get_mode (inst) == AUTOINC_MODE)
1891 {
1892 process_autoincrement (cris_get_size (inst), inst, inst_env);
1893 }
1894
1895 /* A prefix doesn't change the xflag_found. But the rest of the flags
1896 need updating. */
1897 inst_env->slot_needed = 0;
1898 inst_env->prefix_found = 1;
1899 }
1900
1901 /* Calculates the prefix value for the index addressing mode. */
1902
1903 static void
1904 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1905 {
1906 /* It's invalid to be in a delay slot. I can't see that it's possible to
1907 have a prefix to this instruction. So I will treat this as invalid. */
1908 if (inst_env->slot_needed || inst_env->prefix_found)
1909 {
1910 inst_env->invalid = 1;
1911 return;
1912 }
1913
1914 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1915
1916 /* The offset is the operand2 value shifted the size of the instruction
1917 to the left. */
1918 inst_env->prefix_value +=
1919 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1920
1921 /* If the PC is operand1 (base) the address used is the address after
1922 the main instruction, i.e. address + 2 (the PC is already compensated
1923 for the prefix operation). */
1924 if (cris_get_operand1 (inst) == REG_PC)
1925 {
1926 inst_env->prefix_value += 2;
1927 }
1928
1929 /* A prefix doesn't change the xflag_found. But the rest of the flags
1930 need updating. */
1931 inst_env->slot_needed = 0;
1932 inst_env->xflag_found = 0;
1933 inst_env->prefix_found = 1;
1934 }
1935
1936 /* Calculates the prefix value for the double indirect addressing mode. */
1937
1938 static void
1939 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1940 {
1941
1942 CORE_ADDR address;
1943
1944 /* It's invalid to be in a delay slot. */
1945 if (inst_env->slot_needed || inst_env->prefix_found)
1946 {
1947 inst_env->invalid = 1;
1948 return;
1949 }
1950
1951 /* The prefix value is one dereference of the contents of the operand1
1952 register. */
1953 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1954 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1955
1956 /* Check if the mode is autoincrement. */
1957 if (cris_get_mode (inst) == AUTOINC_MODE)
1958 {
1959 inst_env->reg[cris_get_operand1 (inst)] += 4;
1960 }
1961
1962 /* A prefix doesn't change the xflag_found. But the rest of the flags
1963 need updating. */
1964 inst_env->slot_needed = 0;
1965 inst_env->xflag_found = 0;
1966 inst_env->prefix_found = 1;
1967 }
1968
1969 /* Finds the destination for a branch with 8-bits offset. */
1970
1971 static void
1972 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1973 {
1974
1975 short offset;
1976
1977 /* If we have a prefix or are in a delay slot it's bad. */
1978 if (inst_env->slot_needed || inst_env->prefix_found)
1979 {
1980 inst_env->invalid = 1;
1981 return;
1982 }
1983
1984 /* We have a branch, find out where the branch will land. */
1985 offset = cris_get_branch_short_offset (inst);
1986
1987 /* Check if the offset is signed. */
1988 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1989 {
1990 offset |= 0xFF00;
1991 }
1992
1993 /* The offset ends with the sign bit, set it to zero. The address
1994 should always be word aligned. */
1995 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
1996
1997 inst_env->branch_found = 1;
1998 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
1999
2000 inst_env->slot_needed = 1;
2001 inst_env->prefix_found = 0;
2002 inst_env->xflag_found = 0;
2003 inst_env->disable_interrupt = 1;
2004 }
2005
2006 /* Finds the destination for a branch with 16-bits offset. */
2007
2008 static void
2009 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2010 {
2011 short offset;
2012
2013 /* If we have a prefix or is in a delay slot it's bad. */
2014 if (inst_env->slot_needed || inst_env->prefix_found)
2015 {
2016 inst_env->invalid = 1;
2017 return;
2018 }
2019
2020 /* We have a branch, find out the offset for the branch. */
2021 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2022
2023 /* The instruction is one word longer than normal, so add one word
2024 to the PC. */
2025 inst_env->reg[REG_PC] += 2;
2026
2027 inst_env->branch_found = 1;
2028 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2029
2030
2031 inst_env->slot_needed = 1;
2032 inst_env->prefix_found = 0;
2033 inst_env->xflag_found = 0;
2034 inst_env->disable_interrupt = 1;
2035 }
2036
2037 /* Handles the ABS instruction. */
2038
2039 static void
2040 abs_op (unsigned short inst, inst_env_type *inst_env)
2041 {
2042
2043 long value;
2044
2045 /* ABS can't have a prefix, so it's bad if it does. */
2046 if (inst_env->prefix_found)
2047 {
2048 inst_env->invalid = 1;
2049 return;
2050 }
2051
2052 /* Check if the operation affects the PC. */
2053 if (cris_get_operand2 (inst) == REG_PC)
2054 {
2055
2056 /* It's invalid to change to the PC if we are in a delay slot. */
2057 if (inst_env->slot_needed)
2058 {
2059 inst_env->invalid = 1;
2060 return;
2061 }
2062
2063 value = (long) inst_env->reg[REG_PC];
2064
2065 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2066 if (value != SIGNED_DWORD_MASK)
2067 {
2068 value = -value;
2069 inst_env->reg[REG_PC] = (long) value;
2070 }
2071 }
2072
2073 inst_env->slot_needed = 0;
2074 inst_env->prefix_found = 0;
2075 inst_env->xflag_found = 0;
2076 inst_env->disable_interrupt = 0;
2077 }
2078
2079 /* Handles the ADDI instruction. */
2080
2081 static void
2082 addi_op (unsigned short inst, inst_env_type *inst_env)
2083 {
2084 /* It's invalid to have the PC as base register. And ADDI can't have
2085 a prefix. */
2086 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2087 {
2088 inst_env->invalid = 1;
2089 return;
2090 }
2091
2092 inst_env->slot_needed = 0;
2093 inst_env->prefix_found = 0;
2094 inst_env->xflag_found = 0;
2095 inst_env->disable_interrupt = 0;
2096 }
2097
2098 /* Handles the ASR instruction. */
2099
2100 static void
2101 asr_op (unsigned short inst, inst_env_type *inst_env)
2102 {
2103 int shift_steps;
2104 unsigned long value;
2105 unsigned long signed_extend_mask = 0;
2106
2107 /* ASR can't have a prefix, so check that it doesn't. */
2108 if (inst_env->prefix_found)
2109 {
2110 inst_env->invalid = 1;
2111 return;
2112 }
2113
2114 /* Check if the PC is the target register. */
2115 if (cris_get_operand2 (inst) == REG_PC)
2116 {
2117 /* It's invalid to change the PC in a delay slot. */
2118 if (inst_env->slot_needed)
2119 {
2120 inst_env->invalid = 1;
2121 return;
2122 }
2123 /* Get the number of bits to shift. */
2124 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2125 value = inst_env->reg[REG_PC];
2126
2127 /* Find out how many bits the operation should apply to. */
2128 if (cris_get_size (inst) == INST_BYTE_SIZE)
2129 {
2130 if (value & SIGNED_BYTE_MASK)
2131 {
2132 signed_extend_mask = 0xFF;
2133 signed_extend_mask = signed_extend_mask >> shift_steps;
2134 signed_extend_mask = ~signed_extend_mask;
2135 }
2136 value = value >> shift_steps;
2137 value |= signed_extend_mask;
2138 value &= 0xFF;
2139 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2140 inst_env->reg[REG_PC] |= value;
2141 }
2142 else if (cris_get_size (inst) == INST_WORD_SIZE)
2143 {
2144 if (value & SIGNED_WORD_MASK)
2145 {
2146 signed_extend_mask = 0xFFFF;
2147 signed_extend_mask = signed_extend_mask >> shift_steps;
2148 signed_extend_mask = ~signed_extend_mask;
2149 }
2150 value = value >> shift_steps;
2151 value |= signed_extend_mask;
2152 value &= 0xFFFF;
2153 inst_env->reg[REG_PC] &= 0xFFFF0000;
2154 inst_env->reg[REG_PC] |= value;
2155 }
2156 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2157 {
2158 if (value & SIGNED_DWORD_MASK)
2159 {
2160 signed_extend_mask = 0xFFFFFFFF;
2161 signed_extend_mask = signed_extend_mask >> shift_steps;
2162 signed_extend_mask = ~signed_extend_mask;
2163 }
2164 value = value >> shift_steps;
2165 value |= signed_extend_mask;
2166 inst_env->reg[REG_PC] = value;
2167 }
2168 }
2169 inst_env->slot_needed = 0;
2170 inst_env->prefix_found = 0;
2171 inst_env->xflag_found = 0;
2172 inst_env->disable_interrupt = 0;
2173 }
2174
2175 /* Handles the ASRQ instruction. */
2176
2177 static void
2178 asrq_op (unsigned short inst, inst_env_type *inst_env)
2179 {
2180
2181 int shift_steps;
2182 unsigned long value;
2183 unsigned long signed_extend_mask = 0;
2184
2185 /* ASRQ can't have a prefix, so check that it doesn't. */
2186 if (inst_env->prefix_found)
2187 {
2188 inst_env->invalid = 1;
2189 return;
2190 }
2191
2192 /* Check if the PC is the target register. */
2193 if (cris_get_operand2 (inst) == REG_PC)
2194 {
2195
2196 /* It's invalid to change the PC in a delay slot. */
2197 if (inst_env->slot_needed)
2198 {
2199 inst_env->invalid = 1;
2200 return;
2201 }
2202 /* The shift size is given as a 5 bit quick value, i.e. we don't
2203 want the the sign bit of the quick value. */
2204 shift_steps = cris_get_asr_shift_steps (inst);
2205 value = inst_env->reg[REG_PC];
2206 if (value & SIGNED_DWORD_MASK)
2207 {
2208 signed_extend_mask = 0xFFFFFFFF;
2209 signed_extend_mask = signed_extend_mask >> shift_steps;
2210 signed_extend_mask = ~signed_extend_mask;
2211 }
2212 value = value >> shift_steps;
2213 value |= signed_extend_mask;
2214 inst_env->reg[REG_PC] = value;
2215 }
2216 inst_env->slot_needed = 0;
2217 inst_env->prefix_found = 0;
2218 inst_env->xflag_found = 0;
2219 inst_env->disable_interrupt = 0;
2220 }
2221
2222 /* Handles the AX, EI and SETF instruction. */
2223
2224 static void
2225 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2226 {
2227 if (inst_env->prefix_found)
2228 {
2229 inst_env->invalid = 1;
2230 return;
2231 }
2232 /* Check if the instruction is setting the X flag. */
2233 if (cris_is_xflag_bit_on (inst))
2234 {
2235 inst_env->xflag_found = 1;
2236 }
2237 else
2238 {
2239 inst_env->xflag_found = 0;
2240 }
2241 inst_env->slot_needed = 0;
2242 inst_env->prefix_found = 0;
2243 inst_env->disable_interrupt = 1;
2244 }
2245
2246 /* Checks if the instruction is in assign mode. If so, it updates the assign
2247 register. Note that check_assign assumes that the caller has checked that
2248 there is a prefix to this instruction. The mode check depends on this. */
2249
2250 static void
2251 check_assign (unsigned short inst, inst_env_type *inst_env)
2252 {
2253 /* Check if it's an assign addressing mode. */
2254 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2255 {
2256 /* Assign the prefix value to operand 1. */
2257 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2258 }
2259 }
2260
2261 /* Handles the 2-operand BOUND instruction. */
2262
2263 static void
2264 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2265 {
2266 /* It's invalid to have the PC as the index operand. */
2267 if (cris_get_operand2 (inst) == REG_PC)
2268 {
2269 inst_env->invalid = 1;
2270 return;
2271 }
2272 /* Check if we have a prefix. */
2273 if (inst_env->prefix_found)
2274 {
2275 check_assign (inst, inst_env);
2276 }
2277 /* Check if this is an autoincrement mode. */
2278 else if (cris_get_mode (inst) == AUTOINC_MODE)
2279 {
2280 /* It's invalid to change the PC in a delay slot. */
2281 if (inst_env->slot_needed)
2282 {
2283 inst_env->invalid = 1;
2284 return;
2285 }
2286 process_autoincrement (cris_get_size (inst), inst, inst_env);
2287 }
2288 inst_env->slot_needed = 0;
2289 inst_env->prefix_found = 0;
2290 inst_env->xflag_found = 0;
2291 inst_env->disable_interrupt = 0;
2292 }
2293
2294 /* Handles the 3-operand BOUND instruction. */
2295
2296 static void
2297 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2298 {
2299 /* It's an error if we haven't got a prefix. And it's also an error
2300 if the PC is the destination register. */
2301 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2302 {
2303 inst_env->invalid = 1;
2304 return;
2305 }
2306 inst_env->slot_needed = 0;
2307 inst_env->prefix_found = 0;
2308 inst_env->xflag_found = 0;
2309 inst_env->disable_interrupt = 0;
2310 }
2311
2312 /* Clears the status flags in inst_env. */
2313
2314 static void
2315 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2316 {
2317 /* It's an error if we have got a prefix. */
2318 if (inst_env->prefix_found)
2319 {
2320 inst_env->invalid = 1;
2321 return;
2322 }
2323
2324 inst_env->slot_needed = 0;
2325 inst_env->prefix_found = 0;
2326 inst_env->xflag_found = 0;
2327 inst_env->disable_interrupt = 0;
2328 }
2329
2330 /* Clears the status flags in inst_env. */
2331
2332 static void
2333 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2334 {
2335 /* It's an error if we have got a prefix. */
2336 if (inst_env->prefix_found)
2337 {
2338 inst_env->invalid = 1;
2339 return;
2340 }
2341
2342 inst_env->slot_needed = 0;
2343 inst_env->prefix_found = 0;
2344 inst_env->xflag_found = 0;
2345 inst_env->disable_interrupt = 1;
2346 }
2347
2348 /* Handles the CLEAR instruction if it's in register mode. */
2349
2350 static void
2351 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2352 {
2353 /* Check if the target is the PC. */
2354 if (cris_get_operand2 (inst) == REG_PC)
2355 {
2356 /* The instruction will clear the instruction's size bits. */
2357 int clear_size = cris_get_clear_size (inst);
2358 if (clear_size == INST_BYTE_SIZE)
2359 {
2360 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2361 }
2362 if (clear_size == INST_WORD_SIZE)
2363 {
2364 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2365 }
2366 if (clear_size == INST_DWORD_SIZE)
2367 {
2368 inst_env->delay_slot_pc = 0x0;
2369 }
2370 /* The jump will be delayed with one delay slot. So we need a delay
2371 slot. */
2372 inst_env->slot_needed = 1;
2373 inst_env->delay_slot_pc_active = 1;
2374 }
2375 else
2376 {
2377 /* The PC will not change => no delay slot. */
2378 inst_env->slot_needed = 0;
2379 }
2380 inst_env->prefix_found = 0;
2381 inst_env->xflag_found = 0;
2382 inst_env->disable_interrupt = 0;
2383 }
2384
2385 /* Handles the TEST instruction if it's in register mode. */
2386
2387 static void
2388 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2389 {
2390 /* It's an error if we have got a prefix. */
2391 if (inst_env->prefix_found)
2392 {
2393 inst_env->invalid = 1;
2394 return;
2395 }
2396 inst_env->slot_needed = 0;
2397 inst_env->prefix_found = 0;
2398 inst_env->xflag_found = 0;
2399 inst_env->disable_interrupt = 0;
2400
2401 }
2402
2403 /* Handles the CLEAR and TEST instruction if the instruction isn't
2404 in register mode. */
2405
2406 static void
2407 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2408 {
2409 /* Check if we are in a prefix mode. */
2410 if (inst_env->prefix_found)
2411 {
2412 /* The only way the PC can change is if this instruction is in
2413 assign addressing mode. */
2414 check_assign (inst, inst_env);
2415 }
2416 /* Indirect mode can't change the PC so just check if the mode is
2417 autoincrement. */
2418 else if (cris_get_mode (inst) == AUTOINC_MODE)
2419 {
2420 process_autoincrement (cris_get_size (inst), inst, inst_env);
2421 }
2422 inst_env->slot_needed = 0;
2423 inst_env->prefix_found = 0;
2424 inst_env->xflag_found = 0;
2425 inst_env->disable_interrupt = 0;
2426 }
2427
2428 /* Checks that the PC isn't the destination register or the instructions has
2429 a prefix. */
2430
2431 static void
2432 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2433 {
2434 /* It's invalid to have the PC as the destination. The instruction can't
2435 have a prefix. */
2436 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2437 {
2438 inst_env->invalid = 1;
2439 return;
2440 }
2441
2442 inst_env->slot_needed = 0;
2443 inst_env->prefix_found = 0;
2444 inst_env->xflag_found = 0;
2445 inst_env->disable_interrupt = 0;
2446 }
2447
2448 /* Checks that the instruction doesn't have a prefix. */
2449
2450 static void
2451 break_op (unsigned short inst, inst_env_type *inst_env)
2452 {
2453 /* The instruction can't have a prefix. */
2454 if (inst_env->prefix_found)
2455 {
2456 inst_env->invalid = 1;
2457 return;
2458 }
2459
2460 inst_env->slot_needed = 0;
2461 inst_env->prefix_found = 0;
2462 inst_env->xflag_found = 0;
2463 inst_env->disable_interrupt = 1;
2464 }
2465
2466 /* Checks that the PC isn't the destination register and that the instruction
2467 doesn't have a prefix. */
2468
2469 static void
2470 scc_op (unsigned short inst, inst_env_type *inst_env)
2471 {
2472 /* It's invalid to have the PC as the destination. The instruction can't
2473 have a prefix. */
2474 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2475 {
2476 inst_env->invalid = 1;
2477 return;
2478 }
2479
2480 inst_env->slot_needed = 0;
2481 inst_env->prefix_found = 0;
2482 inst_env->xflag_found = 0;
2483 inst_env->disable_interrupt = 1;
2484 }
2485
2486 /* Handles the register mode JUMP instruction. */
2487
2488 static void
2489 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2490 {
2491 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2492 you can't have a prefix. */
2493 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2494 {
2495 inst_env->invalid = 1;
2496 return;
2497 }
2498
2499 /* Just change the PC. */
2500 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2501 inst_env->slot_needed = 0;
2502 inst_env->prefix_found = 0;
2503 inst_env->xflag_found = 0;
2504 inst_env->disable_interrupt = 1;
2505 }
2506
2507 /* Handles the JUMP instruction for all modes except register. */
2508
2509 static void
2510 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2511 {
2512 unsigned long newpc;
2513 CORE_ADDR address;
2514
2515 /* It's invalid to do a JUMP in a delay slot. */
2516 if (inst_env->slot_needed)
2517 {
2518 inst_env->invalid = 1;
2519 }
2520 else
2521 {
2522 /* Check if we have a prefix. */
2523 if (inst_env->prefix_found)
2524 {
2525 check_assign (inst, inst_env);
2526
2527 /* Get the new value for the the PC. */
2528 newpc =
2529 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2530 4);
2531 }
2532 else
2533 {
2534 /* Get the new value for the PC. */
2535 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2536 newpc = read_memory_unsigned_integer (address, 4);
2537
2538 /* Check if we should increment a register. */
2539 if (cris_get_mode (inst) == AUTOINC_MODE)
2540 {
2541 inst_env->reg[cris_get_operand1 (inst)] += 4;
2542 }
2543 }
2544 inst_env->reg[REG_PC] = newpc;
2545 }
2546 inst_env->slot_needed = 0;
2547 inst_env->prefix_found = 0;
2548 inst_env->xflag_found = 0;
2549 inst_env->disable_interrupt = 1;
2550 }
2551
2552 /* Handles moves to special registers (aka P-register) for all modes. */
2553
2554 static void
2555 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2556 {
2557 if (inst_env->prefix_found)
2558 {
2559 /* The instruction has a prefix that means we are only interested if
2560 the instruction is in assign mode. */
2561 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2562 {
2563 /* The prefix handles the problem if we are in a delay slot. */
2564 if (cris_get_operand1 (inst) == REG_PC)
2565 {
2566 /* Just take care of the assign. */
2567 check_assign (inst, inst_env);
2568 }
2569 }
2570 }
2571 else if (cris_get_mode (inst) == AUTOINC_MODE)
2572 {
2573 /* The instruction doesn't have a prefix, the only case left that we
2574 are interested in is the autoincrement mode. */
2575 if (cris_get_operand1 (inst) == REG_PC)
2576 {
2577 /* If the PC is to be incremented it's invalid to be in a
2578 delay slot. */
2579 if (inst_env->slot_needed)
2580 {
2581 inst_env->invalid = 1;
2582 return;
2583 }
2584
2585 /* The increment depends on the size of the special register. */
2586 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2587 {
2588 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2589 }
2590 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2591 {
2592 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2593 }
2594 else
2595 {
2596 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2597 }
2598 }
2599 }
2600 inst_env->slot_needed = 0;
2601 inst_env->prefix_found = 0;
2602 inst_env->xflag_found = 0;
2603 inst_env->disable_interrupt = 1;
2604 }
2605
2606 /* Handles moves from special registers (aka P-register) for all modes
2607 except register. */
2608
2609 static void
2610 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2611 {
2612 if (inst_env->prefix_found)
2613 {
2614 /* The instruction has a prefix that means we are only interested if
2615 the instruction is in assign mode. */
2616 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2617 {
2618 /* The prefix handles the problem if we are in a delay slot. */
2619 if (cris_get_operand1 (inst) == REG_PC)
2620 {
2621 /* Just take care of the assign. */
2622 check_assign (inst, inst_env);
2623 }
2624 }
2625 }
2626 /* The instruction doesn't have a prefix, the only case left that we
2627 are interested in is the autoincrement mode. */
2628 else if (cris_get_mode (inst) == AUTOINC_MODE)
2629 {
2630 if (cris_get_operand1 (inst) == REG_PC)
2631 {
2632 /* If the PC is to be incremented it's invalid to be in a
2633 delay slot. */
2634 if (inst_env->slot_needed)
2635 {
2636 inst_env->invalid = 1;
2637 return;
2638 }
2639
2640 /* The increment depends on the size of the special register. */
2641 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2642 {
2643 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2644 }
2645 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2646 {
2647 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2648 }
2649 else
2650 {
2651 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2652 }
2653 }
2654 }
2655 inst_env->slot_needed = 0;
2656 inst_env->prefix_found = 0;
2657 inst_env->xflag_found = 0;
2658 inst_env->disable_interrupt = 1;
2659 }
2660
2661 /* Handles moves from special registers (aka P-register) when the mode
2662 is register. */
2663
2664 static void
2665 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2666 {
2667 /* Register mode move from special register can't have a prefix. */
2668 if (inst_env->prefix_found)
2669 {
2670 inst_env->invalid = 1;
2671 return;
2672 }
2673
2674 if (cris_get_operand1 (inst) == REG_PC)
2675 {
2676 /* It's invalid to change the PC in a delay slot. */
2677 if (inst_env->slot_needed)
2678 {
2679 inst_env->invalid = 1;
2680 return;
2681 }
2682 /* The destination is the PC, the jump will have a delay slot. */
2683 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2684 inst_env->slot_needed = 1;
2685 inst_env->delay_slot_pc_active = 1;
2686 }
2687 else
2688 {
2689 /* If the destination isn't PC, there will be no jump. */
2690 inst_env->slot_needed = 0;
2691 }
2692 inst_env->prefix_found = 0;
2693 inst_env->xflag_found = 0;
2694 inst_env->disable_interrupt = 1;
2695 }
2696
2697 /* Handles the MOVEM from memory to general register instruction. */
2698
2699 static void
2700 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2701 {
2702 if (inst_env->prefix_found)
2703 {
2704 /* The prefix handles the problem if we are in a delay slot. Is the
2705 MOVEM instruction going to change the PC? */
2706 if (cris_get_operand2 (inst) >= REG_PC)
2707 {
2708 inst_env->reg[REG_PC] =
2709 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2710 }
2711 /* The assign value is the value after the increment. Normally, the
2712 assign value is the value before the increment. */
2713 if ((cris_get_operand1 (inst) == REG_PC)
2714 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2715 {
2716 inst_env->reg[REG_PC] = inst_env->prefix_value;
2717 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2718 }
2719 }
2720 else
2721 {
2722 /* Is the MOVEM instruction going to change the PC? */
2723 if (cris_get_operand2 (inst) == REG_PC)
2724 {
2725 /* It's invalid to change the PC in a delay slot. */
2726 if (inst_env->slot_needed)
2727 {
2728 inst_env->invalid = 1;
2729 return;
2730 }
2731 inst_env->reg[REG_PC] =
2732 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2733 4);
2734 }
2735 /* The increment is not depending on the size, instead it's depending
2736 on the number of registers loaded from memory. */
2737 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2738 {
2739 /* It's invalid to change the PC in a delay slot. */
2740 if (inst_env->slot_needed)
2741 {
2742 inst_env->invalid = 1;
2743 return;
2744 }
2745 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2746 }
2747 }
2748 inst_env->slot_needed = 0;
2749 inst_env->prefix_found = 0;
2750 inst_env->xflag_found = 0;
2751 inst_env->disable_interrupt = 0;
2752 }
2753
2754 /* Handles the MOVEM to memory from general register instruction. */
2755
2756 static void
2757 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2758 {
2759 if (inst_env->prefix_found)
2760 {
2761 /* The assign value is the value after the increment. Normally, the
2762 assign value is the value before the increment. */
2763 if ((cris_get_operand1 (inst) == REG_PC) &&
2764 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2765 {
2766 /* The prefix handles the problem if we are in a delay slot. */
2767 inst_env->reg[REG_PC] = inst_env->prefix_value;
2768 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2769 }
2770 }
2771 else
2772 {
2773 /* The increment is not depending on the size, instead it's depending
2774 on the number of registers loaded to memory. */
2775 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2776 {
2777 /* It's invalid to change the PC in a delay slot. */
2778 if (inst_env->slot_needed)
2779 {
2780 inst_env->invalid = 1;
2781 return;
2782 }
2783 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2784 }
2785 }
2786 inst_env->slot_needed = 0;
2787 inst_env->prefix_found = 0;
2788 inst_env->xflag_found = 0;
2789 inst_env->disable_interrupt = 0;
2790 }
2791
2792 /* Handles the pop instruction to a general register.
2793 POP is a assembler macro for MOVE.D [SP+], Rd. */
2794
2795 static void
2796 reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2797 {
2798 /* POP can't have a prefix. */
2799 if (inst_env->prefix_found)
2800 {
2801 inst_env->invalid = 1;
2802 return;
2803 }
2804 if (cris_get_operand2 (inst) == REG_PC)
2805 {
2806 /* It's invalid to change the PC in a delay slot. */
2807 if (inst_env->slot_needed)
2808 {
2809 inst_env->invalid = 1;
2810 return;
2811 }
2812 inst_env->reg[REG_PC] =
2813 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2814 }
2815 inst_env->slot_needed = 0;
2816 inst_env->prefix_found = 0;
2817 inst_env->xflag_found = 0;
2818 inst_env->disable_interrupt = 0;
2819 }
2820
2821 /* Handles moves from register to memory. */
2822
2823 static void
2824 move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2825 {
2826 /* Check if we have a prefix. */
2827 if (inst_env->prefix_found)
2828 {
2829 /* The only thing that can change the PC is an assign. */
2830 check_assign (inst, inst_env);
2831 }
2832 else if ((cris_get_operand1 (inst) == REG_PC)
2833 && (cris_get_mode (inst) == AUTOINC_MODE))
2834 {
2835 /* It's invalid to change the PC in a delay slot. */
2836 if (inst_env->slot_needed)
2837 {
2838 inst_env->invalid = 1;
2839 return;
2840 }
2841 process_autoincrement (cris_get_size (inst), inst, inst_env);
2842 }
2843 inst_env->slot_needed = 0;
2844 inst_env->prefix_found = 0;
2845 inst_env->xflag_found = 0;
2846 inst_env->disable_interrupt = 0;
2847 }
2848
2849 /* Handles the intructions that's not yet implemented, by setting
2850 inst_env->invalid to true. */
2851
2852 static void
2853 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2854 {
2855 inst_env->invalid = 1;
2856 }
2857
2858 /* Handles the XOR instruction. */
2859
2860 static void
2861 xor_op (unsigned short inst, inst_env_type *inst_env)
2862 {
2863 /* XOR can't have a prefix. */
2864 if (inst_env->prefix_found)
2865 {
2866 inst_env->invalid = 1;
2867 return;
2868 }
2869
2870 /* Check if the PC is the target. */
2871 if (cris_get_operand2 (inst) == REG_PC)
2872 {
2873 /* It's invalid to change the PC in a delay slot. */
2874 if (inst_env->slot_needed)
2875 {
2876 inst_env->invalid = 1;
2877 return;
2878 }
2879 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2880 }
2881 inst_env->slot_needed = 0;
2882 inst_env->prefix_found = 0;
2883 inst_env->xflag_found = 0;
2884 inst_env->disable_interrupt = 0;
2885 }
2886
2887 /* Handles the MULS instruction. */
2888
2889 static void
2890 muls_op (unsigned short inst, inst_env_type *inst_env)
2891 {
2892 /* MULS/U can't have a prefix. */
2893 if (inst_env->prefix_found)
2894 {
2895 inst_env->invalid = 1;
2896 return;
2897 }
2898
2899 /* Consider it invalid if the PC is the target. */
2900 if (cris_get_operand2 (inst) == REG_PC)
2901 {
2902 inst_env->invalid = 1;
2903 return;
2904 }
2905 inst_env->slot_needed = 0;
2906 inst_env->prefix_found = 0;
2907 inst_env->xflag_found = 0;
2908 inst_env->disable_interrupt = 0;
2909 }
2910
2911 /* Handles the MULU instruction. */
2912
2913 static void
2914 mulu_op (unsigned short inst, inst_env_type *inst_env)
2915 {
2916 /* MULS/U can't have a prefix. */
2917 if (inst_env->prefix_found)
2918 {
2919 inst_env->invalid = 1;
2920 return;
2921 }
2922
2923 /* Consider it invalid if the PC is the target. */
2924 if (cris_get_operand2 (inst) == REG_PC)
2925 {
2926 inst_env->invalid = 1;
2927 return;
2928 }
2929 inst_env->slot_needed = 0;
2930 inst_env->prefix_found = 0;
2931 inst_env->xflag_found = 0;
2932 inst_env->disable_interrupt = 0;
2933 }
2934
2935 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2936 The MOVE instruction is the move from source to register. */
2937
2938 static void
2939 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2940 unsigned long source1, unsigned long source2)
2941 {
2942 unsigned long pc_mask;
2943 unsigned long operation_mask;
2944
2945 /* Find out how many bits the operation should apply to. */
2946 if (cris_get_size (inst) == INST_BYTE_SIZE)
2947 {
2948 pc_mask = 0xFFFFFF00;
2949 operation_mask = 0xFF;
2950 }
2951 else if (cris_get_size (inst) == INST_WORD_SIZE)
2952 {
2953 pc_mask = 0xFFFF0000;
2954 operation_mask = 0xFFFF;
2955 }
2956 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2957 {
2958 pc_mask = 0x0;
2959 operation_mask = 0xFFFFFFFF;
2960 }
2961 else
2962 {
2963 /* The size is out of range. */
2964 inst_env->invalid = 1;
2965 return;
2966 }
2967
2968 /* The instruction just works on uw_operation_mask bits. */
2969 source2 &= operation_mask;
2970 source1 &= operation_mask;
2971
2972 /* Now calculate the result. The opcode's 3 first bits separates
2973 the different actions. */
2974 switch (cris_get_opcode (inst) & 7)
2975 {
2976 case 0: /* add */
2977 source1 += source2;
2978 break;
2979
2980 case 1: /* move */
2981 source1 = source2;
2982 break;
2983
2984 case 2: /* subtract */
2985 source1 -= source2;
2986 break;
2987
2988 case 3: /* compare */
2989 break;
2990
2991 case 4: /* and */
2992 source1 &= source2;
2993 break;
2994
2995 case 5: /* or */
2996 source1 |= source2;
2997 break;
2998
2999 default:
3000 inst_env->invalid = 1;
3001 return;
3002
3003 break;
3004 }
3005
3006 /* Make sure that the result doesn't contain more than the instruction
3007 size bits. */
3008 source2 &= operation_mask;
3009
3010 /* Calculate the new breakpoint address. */
3011 inst_env->reg[REG_PC] &= pc_mask;
3012 inst_env->reg[REG_PC] |= source1;
3013
3014 }
3015
3016 /* Extends the value from either byte or word size to a dword. If the mode
3017 is zero extend then the value is extended with zero. If instead the mode
3018 is signed extend the sign bit of the value is taken into consideration. */
3019
3020 static unsigned long
3021 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3022 {
3023 /* The size can be either byte or word, check which one it is.
3024 Don't check the highest bit, it's indicating if it's a zero
3025 or sign extend. */
3026 if (cris_get_size (*inst) & INST_WORD_SIZE)
3027 {
3028 /* Word size. */
3029 value &= 0xFFFF;
3030
3031 /* Check if the instruction is signed extend. If so, check if value has
3032 the sign bit on. */
3033 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3034 {
3035 value |= SIGNED_WORD_EXTEND_MASK;
3036 }
3037 }
3038 else
3039 {
3040 /* Byte size. */
3041 value &= 0xFF;
3042
3043 /* Check if the instruction is signed extend. If so, check if value has
3044 the sign bit on. */
3045 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3046 {
3047 value |= SIGNED_BYTE_EXTEND_MASK;
3048 }
3049 }
3050 /* The size should now be dword. */
3051 cris_set_size_to_dword (inst);
3052 return value;
3053 }
3054
3055 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3056 instruction. The MOVE instruction is the move from source to register. */
3057
3058 static void
3059 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3060 inst_env_type *inst_env)
3061 {
3062 unsigned long operand1;
3063 unsigned long operand2;
3064
3065 /* It's invalid to have a prefix to the instruction. This is a register
3066 mode instruction and can't have a prefix. */
3067 if (inst_env->prefix_found)
3068 {
3069 inst_env->invalid = 1;
3070 return;
3071 }
3072 /* Check if the instruction has PC as its target. */
3073 if (cris_get_operand2 (inst) == REG_PC)
3074 {
3075 if (inst_env->slot_needed)
3076 {
3077 inst_env->invalid = 1;
3078 return;
3079 }
3080 /* The instruction has the PC as its target register. */
3081 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3082 operand2 = inst_env->reg[REG_PC];
3083
3084 /* Check if it's a extend, signed or zero instruction. */
3085 if (cris_get_opcode (inst) < 4)
3086 {
3087 operand1 = do_sign_or_zero_extend (operand1, &inst);
3088 }
3089 /* Calculate the PC value after the instruction, i.e. where the
3090 breakpoint should be. The order of the udw_operands is vital. */
3091 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3092 }
3093 inst_env->slot_needed = 0;
3094 inst_env->prefix_found = 0;
3095 inst_env->xflag_found = 0;
3096 inst_env->disable_interrupt = 0;
3097 }
3098
3099 /* Returns the data contained at address. The size of the data is derived from
3100 the size of the operation. If the instruction is a zero or signed
3101 extend instruction, the size field is changed in instruction. */
3102
3103 static unsigned long
3104 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3105 {
3106 int size = cris_get_size (*inst);
3107 unsigned long value;
3108
3109 /* If it's an extend instruction we don't want the signed extend bit,
3110 because it influences the size. */
3111 if (cris_get_opcode (*inst) < 4)
3112 {
3113 size &= ~SIGNED_EXTEND_BIT_MASK;
3114 }
3115 /* Is there a need for checking the size? Size should contain the number of
3116 bytes to read. */
3117 size = 1 << size;
3118 value = read_memory_unsigned_integer (address, size);
3119
3120 /* Check if it's an extend, signed or zero instruction. */
3121 if (cris_get_opcode (*inst) < 4)
3122 {
3123 value = do_sign_or_zero_extend (value, inst);
3124 }
3125 return value;
3126 }
3127
3128 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3129 instructions. The MOVE instruction is the move from source to register. */
3130
3131 static void
3132 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3133 inst_env_type *inst_env)
3134 {
3135 unsigned long operand2;
3136 unsigned long operand3;
3137
3138 check_assign (inst, inst_env);
3139 if (cris_get_operand2 (inst) == REG_PC)
3140 {
3141 operand2 = inst_env->reg[REG_PC];
3142
3143 /* Get the value of the third operand. */
3144 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3145
3146 /* Calculate the PC value after the instruction, i.e. where the
3147 breakpoint should be. The order of the udw_operands is vital. */
3148 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3149 }
3150 inst_env->slot_needed = 0;
3151 inst_env->prefix_found = 0;
3152 inst_env->xflag_found = 0;
3153 inst_env->disable_interrupt = 0;
3154 }
3155
3156 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3157 OR instructions. Note that for this to work as expected, the calling
3158 function must have made sure that there is a prefix to this instruction. */
3159
3160 static void
3161 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3162 inst_env_type *inst_env)
3163 {
3164 unsigned long operand2;
3165 unsigned long operand3;
3166
3167 if (cris_get_operand1 (inst) == REG_PC)
3168 {
3169 /* The PC will be changed by the instruction. */
3170 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3171
3172 /* Get the value of the third operand. */
3173 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3174
3175 /* Calculate the PC value after the instruction, i.e. where the
3176 breakpoint should be. */
3177 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3178 }
3179 inst_env->slot_needed = 0;
3180 inst_env->prefix_found = 0;
3181 inst_env->xflag_found = 0;
3182 inst_env->disable_interrupt = 0;
3183 }
3184
3185 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3186 instructions. The MOVE instruction is the move from source to register. */
3187
3188 static void
3189 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3190 inst_env_type *inst_env)
3191 {
3192 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3193 {
3194 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3195 SUB, AND or OR something weird is going on (if everything works these
3196 instructions should end up in the three operand version). */
3197 inst_env->invalid = 1;
3198 return;
3199 }
3200 else
3201 {
3202 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3203 so use it. */
3204 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3205 }
3206 inst_env->slot_needed = 0;
3207 inst_env->prefix_found = 0;
3208 inst_env->xflag_found = 0;
3209 inst_env->disable_interrupt = 0;
3210 }
3211
3212 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3213 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3214 source to register. */
3215
3216 static void
3217 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3218 inst_env_type *inst_env)
3219 {
3220 unsigned long operand1;
3221 unsigned long operand2;
3222 unsigned long operand3;
3223 int size;
3224
3225 /* The instruction is either an indirect or autoincrement addressing mode.
3226 Check if the destination register is the PC. */
3227 if (cris_get_operand2 (inst) == REG_PC)
3228 {
3229 /* Must be done here, get_data_from_address may change the size
3230 field. */
3231 size = cris_get_size (inst);
3232 operand2 = inst_env->reg[REG_PC];
3233
3234 /* Get the value of the third operand, i.e. the indirect operand. */
3235 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3236 operand3 = get_data_from_address (&inst, operand1);
3237
3238 /* Calculate the PC value after the instruction, i.e. where the
3239 breakpoint should be. The order of the udw_operands is vital. */
3240 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3241 }
3242 /* If this is an autoincrement addressing mode, check if the increment
3243 changes the PC. */
3244 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3245 {
3246 /* Get the size field. */
3247 size = cris_get_size (inst);
3248
3249 /* If it's an extend instruction we don't want the signed extend bit,
3250 because it influences the size. */
3251 if (cris_get_opcode (inst) < 4)
3252 {
3253 size &= ~SIGNED_EXTEND_BIT_MASK;
3254 }
3255 process_autoincrement (size, inst, inst_env);
3256 }
3257 inst_env->slot_needed = 0;
3258 inst_env->prefix_found = 0;
3259 inst_env->xflag_found = 0;
3260 inst_env->disable_interrupt = 0;
3261 }
3262
3263 /* Handles the two-operand addressing mode, all modes except register, for
3264 the ADD, SUB CMP, AND and OR instruction. */
3265
3266 static void
3267 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3268 inst_env_type *inst_env)
3269 {
3270 if (inst_env->prefix_found)
3271 {
3272 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3273 {
3274 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3275 }
3276 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3277 {
3278 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3279 }
3280 else
3281 {
3282 /* The mode is invalid for a prefixed base instruction. */
3283 inst_env->invalid = 1;
3284 return;
3285 }
3286 }
3287 else
3288 {
3289 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3290 }
3291 }
3292
3293 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3294
3295 static void
3296 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3297 {
3298 unsigned long operand1;
3299 unsigned long operand2;
3300
3301 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3302 instruction and can't have a prefix. */
3303 if (inst_env->prefix_found)
3304 {
3305 inst_env->invalid = 1;
3306 return;
3307 }
3308
3309 /* Check if the instruction has PC as its target. */
3310 if (cris_get_operand2 (inst) == REG_PC)
3311 {
3312 if (inst_env->slot_needed)
3313 {
3314 inst_env->invalid = 1;
3315 return;
3316 }
3317 operand1 = cris_get_quick_value (inst);
3318 operand2 = inst_env->reg[REG_PC];
3319
3320 /* The size should now be dword. */
3321 cris_set_size_to_dword (&inst);
3322
3323 /* Calculate the PC value after the instruction, i.e. where the
3324 breakpoint should be. */
3325 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3326 }
3327 inst_env->slot_needed = 0;
3328 inst_env->prefix_found = 0;
3329 inst_env->xflag_found = 0;
3330 inst_env->disable_interrupt = 0;
3331 }
3332
3333 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3334
3335 static void
3336 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3337 {
3338 unsigned long operand1;
3339 unsigned long operand2;
3340
3341 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3342 instruction and can't have a prefix. */
3343 if (inst_env->prefix_found)
3344 {
3345 inst_env->invalid = 1;
3346 return;
3347 }
3348 /* Check if the instruction has PC as its target. */
3349 if (cris_get_operand2 (inst) == REG_PC)
3350 {
3351 if (inst_env->slot_needed)
3352 {
3353 inst_env->invalid = 1;
3354 return;
3355 }
3356 /* The instruction has the PC as its target register. */
3357 operand1 = cris_get_quick_value (inst);
3358 operand2 = inst_env->reg[REG_PC];
3359
3360 /* The quick value is signed, so check if we must do a signed extend. */
3361 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3362 {
3363 /* sign extend */
3364 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3365 }
3366 /* The size should now be dword. */
3367 cris_set_size_to_dword (&inst);
3368
3369 /* Calculate the PC value after the instruction, i.e. where the
3370 breakpoint should be. */
3371 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3372 }
3373 inst_env->slot_needed = 0;
3374 inst_env->prefix_found = 0;
3375 inst_env->xflag_found = 0;
3376 inst_env->disable_interrupt = 0;
3377 }
3378
3379 /* Translate op_type to a function and call it. */
3380
3381 static void
3382 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3383 inst_env_type *inst_env)
3384 {
3385 switch (op_type)
3386 {
3387 case cris_not_implemented_op:
3388 not_implemented_op (inst, inst_env);
3389 break;
3390
3391 case cris_abs_op:
3392 abs_op (inst, inst_env);
3393 break;
3394
3395 case cris_addi_op:
3396 addi_op (inst, inst_env);
3397 break;
3398
3399 case cris_asr_op:
3400 asr_op (inst, inst_env);
3401 break;
3402
3403 case cris_asrq_op:
3404 asrq_op (inst, inst_env);
3405 break;
3406
3407 case cris_ax_ei_setf_op:
3408 ax_ei_setf_op (inst, inst_env);
3409 break;
3410
3411 case cris_bdap_prefix:
3412 bdap_prefix (inst, inst_env);
3413 break;
3414
3415 case cris_biap_prefix:
3416 biap_prefix (inst, inst_env);
3417 break;
3418
3419 case cris_break_op:
3420 break_op (inst, inst_env);
3421 break;
3422
3423 case cris_btst_nop_op:
3424 btst_nop_op (inst, inst_env);
3425 break;
3426
3427 case cris_clearf_di_op:
3428 clearf_di_op (inst, inst_env);
3429 break;
3430
3431 case cris_dip_prefix:
3432 dip_prefix (inst, inst_env);
3433 break;
3434
3435 case cris_dstep_logshift_mstep_neg_not_op:
3436 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3437 break;
3438
3439 case cris_eight_bit_offset_branch_op:
3440 eight_bit_offset_branch_op (inst, inst_env);
3441 break;
3442
3443 case cris_move_mem_to_reg_movem_op:
3444 move_mem_to_reg_movem_op (inst, inst_env);
3445 break;
3446
3447 case cris_move_reg_to_mem_movem_op:
3448 move_reg_to_mem_movem_op (inst, inst_env);
3449 break;
3450
3451 case cris_move_to_preg_op:
3452 move_to_preg_op (inst, inst_env);
3453 break;
3454
3455 case cris_muls_op:
3456 muls_op (inst, inst_env);
3457 break;
3458
3459 case cris_mulu_op:
3460 mulu_op (inst, inst_env);
3461 break;
3462
3463 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3464 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3465 break;
3466
3467 case cris_none_reg_mode_clear_test_op:
3468 none_reg_mode_clear_test_op (inst, inst_env);
3469 break;
3470
3471 case cris_none_reg_mode_jump_op:
3472 none_reg_mode_jump_op (inst, inst_env);
3473 break;
3474
3475 case cris_none_reg_mode_move_from_preg_op:
3476 none_reg_mode_move_from_preg_op (inst, inst_env);
3477 break;
3478
3479 case cris_quick_mode_add_sub_op:
3480 quick_mode_add_sub_op (inst, inst_env);
3481 break;
3482
3483 case cris_quick_mode_and_cmp_move_or_op:
3484 quick_mode_and_cmp_move_or_op (inst, inst_env);
3485 break;
3486
3487 case cris_quick_mode_bdap_prefix:
3488 quick_mode_bdap_prefix (inst, inst_env);
3489 break;
3490
3491 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3492 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3493 break;
3494
3495 case cris_reg_mode_clear_op:
3496 reg_mode_clear_op (inst, inst_env);
3497 break;
3498
3499 case cris_reg_mode_jump_op:
3500 reg_mode_jump_op (inst, inst_env);
3501 break;
3502
3503 case cris_reg_mode_move_from_preg_op:
3504 reg_mode_move_from_preg_op (inst, inst_env);
3505 break;
3506
3507 case cris_reg_mode_test_op:
3508 reg_mode_test_op (inst, inst_env);
3509 break;
3510
3511 case cris_scc_op:
3512 scc_op (inst, inst_env);
3513 break;
3514
3515 case cris_sixteen_bit_offset_branch_op:
3516 sixteen_bit_offset_branch_op (inst, inst_env);
3517 break;
3518
3519 case cris_three_operand_add_sub_cmp_and_or_op:
3520 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3521 break;
3522
3523 case cris_three_operand_bound_op:
3524 three_operand_bound_op (inst, inst_env);
3525 break;
3526
3527 case cris_two_operand_bound_op:
3528 two_operand_bound_op (inst, inst_env);
3529 break;
3530
3531 case cris_xor_op:
3532 xor_op (inst, inst_env);
3533 break;
3534 }
3535 }
3536
3537 /* This wrapper is to avoid cris_get_assembler being called before
3538 exec_bfd has been set. */
3539
3540 static int
3541 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3542 {
3543 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3544 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3545 disassembler, even when there is no BFD. Does something like
3546 "gdb; target remote; disassmeble *0x123" work? */
3547 gdb_assert (exec_bfd != NULL);
3548 print_insn = cris_get_disassembler (exec_bfd);
3549 gdb_assert (print_insn != NULL);
3550 return print_insn (addr, info);
3551 }
3552
3553 /* Copied from <asm/elf.h>. */
3554 typedef unsigned long elf_greg_t;
3555
3556 /* Same as user_regs_struct struct in <asm/user.h>. */
3557 typedef elf_greg_t elf_gregset_t[35];
3558
3559 /* Unpack an elf_gregset_t into GDB's register cache. */
3560
3561 static void
3562 supply_gregset (elf_gregset_t *gregsetp)
3563 {
3564 int i;
3565 elf_greg_t *regp = *gregsetp;
3566 static char zerobuf[4] = {0};
3567
3568 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3569 knows about the actual size of each register so that's no problem. */
3570 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3571 {
3572 supply_register (i, (char *)&regp[i]);
3573 }
3574 }
3575
3576 /* Use a local version of this function to get the correct types for
3577 regsets, until multi-arch core support is ready. */
3578
3579 static void
3580 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3581 int which, CORE_ADDR reg_addr)
3582 {
3583 elf_gregset_t gregset;
3584
3585 switch (which)
3586 {
3587 case 0:
3588 if (core_reg_size != sizeof (gregset))
3589 {
3590 warning ("wrong size gregset struct in core file");
3591 }
3592 else
3593 {
3594 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3595 supply_gregset (&gregset);
3596 }
3597
3598 default:
3599 /* We've covered all the kinds of registers we know about here,
3600 so this must be something we wouldn't know what to do with
3601 anyway. Just ignore it. */
3602 break;
3603 }
3604 }
3605
3606 static struct core_fns cris_elf_core_fns =
3607 {
3608 bfd_target_elf_flavour, /* core_flavour */
3609 default_check_format, /* check_format */
3610 default_core_sniffer, /* core_sniffer */
3611 fetch_core_registers, /* core_read_registers */
3612 NULL /* next */
3613 };
3614
3615 /* Fetch (and possibly build) an appropriate link_map_offsets
3616 structure for native GNU/Linux CRIS targets using the struct
3617 offsets defined in link.h (but without actual reference to that
3618 file).
3619
3620 This makes it possible to access GNU/Linux CRIS shared libraries
3621 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3622 debugging).
3623
3624 See gdb/solib-svr4.h for an explanation of these fields. */
3625
3626 static struct link_map_offsets *
3627 cris_linux_svr4_fetch_link_map_offsets (void)
3628 {
3629 static struct link_map_offsets lmo;
3630 static struct link_map_offsets *lmp = NULL;
3631
3632 if (lmp == NULL)
3633 {
3634 lmp = &lmo;
3635
3636 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3637 this is all we need. */
3638 lmo.r_map_offset = 4;
3639 lmo.r_map_size = 4;
3640
3641 lmo.link_map_size = 20;
3642
3643 lmo.l_addr_offset = 0;
3644 lmo.l_addr_size = 4;
3645
3646 lmo.l_name_offset = 4;
3647 lmo.l_name_size = 4;
3648
3649 lmo.l_next_offset = 12;
3650 lmo.l_next_size = 4;
3651
3652 lmo.l_prev_offset = 16;
3653 lmo.l_prev_size = 4;
3654 }
3655
3656 return lmp;
3657 }
3658
3659 static void
3660 cris_fpless_backtrace (char *noargs, int from_tty)
3661 {
3662 /* Points at the instruction after the jsr (except when in innermost frame
3663 where it points at the original pc). */
3664 CORE_ADDR pc = 0;
3665
3666 /* Temporary variable, used for parsing from the start of the function that
3667 the pc is in, up to the pc. */
3668 CORE_ADDR tmp_pc = 0;
3669 CORE_ADDR sp = 0;
3670
3671 /* Information about current frame. */
3672 struct symtab_and_line sal;
3673 char* func_name;
3674
3675 /* Present instruction. */
3676 unsigned short insn;
3677
3678 /* Next instruction, lookahead. */
3679 unsigned short insn_next;
3680
3681 /* This is to store the offset between sp at start of function and until we
3682 reach push srp (if any). */
3683 int sp_add_later = 0;
3684 int push_srp_found = 0;
3685
3686 int val = 0;
3687
3688 /* Frame counter. */
3689 int frame = 0;
3690
3691 /* For the innermost frame, we want to look at srp in case it's a leaf
3692 function (since there's no push srp in that case). */
3693 int innermost_frame = 1;
3694
3695 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3696 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3697
3698 /* We make an explicit return when we can't find an outer frame. */
3699 while (1)
3700 {
3701 /* Get file name and line number. */
3702 sal = find_pc_line (pc, 0);
3703
3704 /* Get function name. */
3705 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3706 (CORE_ADDR *) NULL);
3707
3708 /* Print information about current frame. */
3709 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3710 if (sal.symtab)
3711 {
3712 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3713 }
3714 printf_unfiltered ("\n");
3715
3716 /* Get the start address of this function. */
3717 tmp_pc = get_pc_function_start (pc);
3718
3719 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3720 of the function, up to the pc. */
3721 while (tmp_pc < pc)
3722 {
3723 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3724 tmp_pc += sizeof (short);
3725 if (insn == 0xE1FC)
3726 {
3727 /* push <reg> 32 bit instruction */
3728 insn_next = read_memory_unsigned_integer (tmp_pc,
3729 sizeof (short));
3730 tmp_pc += sizeof (short);
3731
3732 /* Recognize srp. */
3733 if (insn_next == 0xBE7E)
3734 {
3735 /* For subsequent (not this one though) push or sub which
3736 affects sp, adjust sp immediately. */
3737 push_srp_found = 1;
3738
3739 /* Note: this will break if we ever encounter a
3740 push vr (1 byte) or push ccr (2 bytes). */
3741 sp_add_later += 4;
3742 }
3743 else
3744 {
3745 /* Some other register was pushed. */
3746 if (push_srp_found)
3747 {
3748 sp += 4;
3749 }
3750 else
3751 {
3752 sp_add_later += 4;
3753 }
3754 }
3755 }
3756 else if (cris_get_operand2 (insn) == SP_REGNUM
3757 && cris_get_mode (insn) == 0x0000
3758 && cris_get_opcode (insn) == 0x000A)
3759 {
3760 /* subq <val>,sp */
3761 val = cris_get_quick_value (insn);
3762
3763 if (push_srp_found)
3764 {
3765 sp += val;
3766 }
3767 else
3768 {
3769 sp_add_later += val;
3770 }
3771
3772 }
3773 else if (cris_get_operand2 (insn) == SP_REGNUM
3774 /* Autoincrement addressing mode. */
3775 && cris_get_mode (insn) == 0x0003
3776 /* Opcode. */
3777 && ((insn) & 0x03E0) >> 5 == 0x0004)
3778 {
3779 /* subu <val>,sp */
3780 val = get_data_from_address (&insn, tmp_pc);
3781
3782 if (push_srp_found)
3783 {
3784 sp += val;
3785 }
3786 else
3787 {
3788 sp_add_later += val;
3789 }
3790 }
3791 else if (cris_get_operand2 (insn) == SP_REGNUM
3792 && ((insn & 0x0F00) >> 8) == 0x0001
3793 && (cris_get_signed_offset (insn) < 0))
3794 {
3795 /* Immediate byte offset addressing prefix word with sp as base
3796 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3797 is between 64 and 128.
3798 movem r<regsave>,[sp=sp-<val>] */
3799 val = -cris_get_signed_offset (insn);
3800 insn_next = read_memory_unsigned_integer (tmp_pc,
3801 sizeof (short));
3802 tmp_pc += sizeof (short);
3803
3804 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3805 && cris_get_opcode (insn_next) == 0x000F
3806 && cris_get_size (insn_next) == 0x0003
3807 && cris_get_operand1 (insn_next) == SP_REGNUM)
3808 {
3809 if (push_srp_found)
3810 {
3811 sp += val;
3812 }
3813 else
3814 {
3815 sp_add_later += val;
3816 }
3817 }
3818 }
3819 }
3820
3821 if (push_srp_found)
3822 {
3823 /* Reset flag. */
3824 push_srp_found = 0;
3825
3826 /* sp should now point at where srp is stored on the stack. Update
3827 the pc to the srp. */
3828 pc = read_memory_unsigned_integer (sp, 4);
3829 }
3830 else if (innermost_frame)
3831 {
3832 /* We couldn't find a push srp in the prologue, so this must be
3833 a leaf function, and thus we use the srp register directly.
3834 This should happen at most once, for the innermost function. */
3835 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3836 }
3837 else
3838 {
3839 /* Couldn't find an outer frame. */
3840 return;
3841 }
3842
3843 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3844 want to look at the srp register later either). */
3845 innermost_frame = 0;
3846
3847 /* Now, add the offset for everything up to, and including push srp,
3848 that was held back during the prologue parsing. */
3849 sp += sp_add_later;
3850 sp_add_later = 0;
3851 }
3852 }
3853
3854 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3855
3856 void
3857 _initialize_cris_tdep (void)
3858 {
3859 struct cmd_list_element *c;
3860
3861 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3862
3863 /* CRIS-specific user-commands. */
3864 c = add_set_cmd ("cris-version", class_support, var_integer,
3865 (char *) &usr_cmd_cris_version,
3866 "Set the current CRIS version.", &setlist);
3867 set_cmd_sfunc (c, cris_version_update);
3868 add_show_from_set (c, &showlist);
3869
3870 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3871 &usr_cmd_cris_mode,
3872 "Set the current CRIS mode.", &setlist);
3873 set_cmd_sfunc (c, cris_mode_update);
3874 add_show_from_set (c, &showlist);
3875
3876 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3877 &usr_cmd_cris_abi,
3878 "Set the current CRIS ABI version.", &setlist);
3879 set_cmd_sfunc (c, cris_abi_update);
3880 add_show_from_set (c, &showlist);
3881
3882 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3883 "Display call chain using the subroutine return pointer.\n"
3884 "Note that this displays the address after the jump to the "
3885 "subroutine.", &cmdlist);
3886
3887 add_core_fns (&cris_elf_core_fns);
3888
3889 }
3890
3891 /* Prints out all target specific values. */
3892
3893 static void
3894 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3895 {
3896 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3897 if (tdep != NULL)
3898 {
3899 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3900 tdep->cris_version);
3901 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3902 tdep->cris_mode);
3903 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3904 tdep->cris_abi);
3905
3906 }
3907 }
3908
3909 static void
3910 cris_version_update (char *ignore_args, int from_tty,
3911 struct cmd_list_element *c)
3912 {
3913 struct gdbarch_info info;
3914
3915 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3916 the set command passed as a parameter. The clone operation will
3917 include (BUG?) any ``set'' command callback, if present.
3918 Commands like ``info set'' call all the ``show'' command
3919 callbacks. Unfortunately, for ``show'' commands cloned from
3920 ``set'', this includes callbacks belonging to ``set'' commands.
3921 Making this worse, this only occures if add_show_from_set() is
3922 called after add_cmd_sfunc() (BUG?). */
3923
3924 /* From here on, trust the user's CRIS version setting. */
3925 if (cmd_type (c) == set_cmd)
3926 {
3927 usr_cmd_cris_version_valid = 1;
3928
3929 /* Update the current architecture, if needed. */
3930 gdbarch_info_init (&info);
3931 if (!gdbarch_update_p (info))
3932 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3933 }
3934 }
3935
3936 static void
3937 cris_mode_update (char *ignore_args, int from_tty,
3938 struct cmd_list_element *c)
3939 {
3940 struct gdbarch_info info;
3941
3942 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3943 the set command passed as a parameter. The clone operation will
3944 include (BUG?) any ``set'' command callback, if present.
3945 Commands like ``info set'' call all the ``show'' command
3946 callbacks. Unfortunately, for ``show'' commands cloned from
3947 ``set'', this includes callbacks belonging to ``set'' commands.
3948 Making this worse, this only occures if add_show_from_set() is
3949 called after add_cmd_sfunc() (BUG?). */
3950
3951 /* From here on, trust the user's CRIS mode setting. */
3952 if (cmd_type (c) == set_cmd)
3953 {
3954 usr_cmd_cris_mode_valid = 1;
3955
3956 /* Update the current architecture, if needed. */
3957 gdbarch_info_init (&info);
3958 if (!gdbarch_update_p (info))
3959 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3960 }
3961 }
3962
3963 static void
3964 cris_abi_update (char *ignore_args, int from_tty,
3965 struct cmd_list_element *c)
3966 {
3967 struct gdbarch_info info;
3968
3969 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3970 the set command passed as a parameter. The clone operation will
3971 include (BUG?) any ``set'' command callback, if present.
3972 Commands like ``info set'' call all the ``show'' command
3973 callbacks. Unfortunately, for ``show'' commands cloned from
3974 ``set'', this includes callbacks belonging to ``set'' commands.
3975 Making this worse, this only occures if add_show_from_set() is
3976 called after add_cmd_sfunc() (BUG?). */
3977
3978 /* From here on, trust the user's CRIS ABI setting. */
3979 if (cmd_type (c) == set_cmd)
3980 {
3981 usr_cmd_cris_abi_valid = 1;
3982
3983 /* Update the current architecture, if needed. */
3984 gdbarch_info_init (&info);
3985 if (!gdbarch_update_p (info))
3986 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3987 }
3988 }
3989
3990 /* Copied from pa64solib.c, with a couple of minor changes. */
3991
3992 static CORE_ADDR
3993 bfd_lookup_symbol (bfd *abfd, const char *symname)
3994 {
3995 unsigned int storage_needed;
3996 asymbol *sym;
3997 asymbol **symbol_table;
3998 unsigned int number_of_symbols;
3999 unsigned int i;
4000 struct cleanup *back_to;
4001 CORE_ADDR symaddr = 0;
4002
4003 storage_needed = bfd_get_symtab_upper_bound (abfd);
4004
4005 if (storage_needed > 0)
4006 {
4007 symbol_table = (asymbol **) xmalloc (storage_needed);
4008 back_to = make_cleanup (free, symbol_table);
4009 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
4010
4011 for (i = 0; i < number_of_symbols; i++)
4012 {
4013 sym = *symbol_table++;
4014 if (!strcmp (sym->name, symname))
4015 {
4016 /* Bfd symbols are section relative. */
4017 symaddr = sym->value + sym->section->vma;
4018 break;
4019 }
4020 }
4021 do_cleanups (back_to);
4022 }
4023 return (symaddr);
4024 }
4025
4026 static struct gdbarch *
4027 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4028 {
4029 struct gdbarch *gdbarch;
4030 struct gdbarch_tdep *tdep;
4031 int cris_version;
4032 const char *cris_mode;
4033 const char *cris_abi;
4034 CORE_ADDR cris_abi_sym = 0;
4035 int register_bytes;
4036
4037 if (usr_cmd_cris_version_valid)
4038 {
4039 /* Trust the user's CRIS version setting. */
4040 cris_version = usr_cmd_cris_version;
4041 }
4042 else
4043 {
4044 /* Assume it's CRIS version 10. */
4045 cris_version = 10;
4046 }
4047
4048 if (usr_cmd_cris_mode_valid)
4049 {
4050 /* Trust the user's CRIS mode setting. */
4051 cris_mode = usr_cmd_cris_mode;
4052 }
4053 else if (cris_version == 10)
4054 {
4055 /* Assume CRIS version 10 is in user mode. */
4056 cris_mode = CRIS_MODE_USER;
4057 }
4058 else
4059 {
4060 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4061 but we regard its only mode as supervisor mode. */
4062 cris_mode = CRIS_MODE_SUPERVISOR;
4063 }
4064
4065 if (usr_cmd_cris_abi_valid)
4066 {
4067 /* Trust the user's ABI setting. */
4068 cris_abi = usr_cmd_cris_abi;
4069 }
4070 else if (info.abfd)
4071 {
4072 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4073 {
4074 /* An elf target uses the new ABI. */
4075 cris_abi = CRIS_ABI_V2;
4076 }
4077 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4078 {
4079 /* An a.out target may use either ABI. Look for hints in the
4080 symbol table. */
4081 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4082 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4083 }
4084 else
4085 {
4086 /* Unknown bfd flavour. Assume it's the new ABI. */
4087 cris_abi = CRIS_ABI_V2;
4088 }
4089 }
4090 else if (arches != NULL)
4091 {
4092 /* No bfd available. Stick with the ABI from the most recently
4093 selected architecture of this same family (the head of arches
4094 always points to this). (This is to avoid changing the ABI
4095 when the user updates the architecture with the 'set
4096 cris-version' command.) */
4097 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
4098 }
4099 else
4100 {
4101 /* No bfd, and no previously selected architecture available.
4102 Assume it's the new ABI. */
4103 cris_abi = CRIS_ABI_V2;
4104 }
4105
4106 /* Make the current settings visible to the user. */
4107 usr_cmd_cris_version = cris_version;
4108 usr_cmd_cris_mode = cris_mode;
4109 usr_cmd_cris_abi = cris_abi;
4110
4111 /* Find a candidate among the list of pre-declared architectures. Both
4112 CRIS version and ABI must match. */
4113 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4114 arches != NULL;
4115 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4116 {
4117 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4118 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4119 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4120 return arches->gdbarch;
4121 }
4122
4123 /* No matching architecture was found. Create a new one. */
4124 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4125 gdbarch = gdbarch_alloc (&info, tdep);
4126
4127 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4128 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4129 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
4130
4131 tdep->cris_version = cris_version;
4132 tdep->cris_mode = cris_mode;
4133 tdep->cris_abi = cris_abi;
4134
4135 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4136 switch (info.byte_order)
4137 {
4138 case BFD_ENDIAN_LITTLE:
4139 /* Ok. */
4140 break;
4141
4142 case BFD_ENDIAN_BIG:
4143 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4144 break;
4145
4146 default:
4147 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4148 }
4149
4150 /* Initialize the ABI dependent things. */
4151 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4152 {
4153 set_gdbarch_double_bit (gdbarch, 32);
4154 set_gdbarch_deprecated_push_arguments (gdbarch, cris_abi_original_push_arguments);
4155 set_gdbarch_deprecated_store_return_value (gdbarch,
4156 cris_abi_original_store_return_value);
4157 set_gdbarch_deprecated_extract_return_value
4158 (gdbarch, cris_abi_original_extract_return_value);
4159 set_gdbarch_deprecated_reg_struct_has_addr
4160 (gdbarch, cris_abi_original_reg_struct_has_addr);
4161 }
4162 else if (tdep->cris_abi == CRIS_ABI_V2)
4163 {
4164 set_gdbarch_double_bit (gdbarch, 64);
4165 set_gdbarch_deprecated_push_arguments (gdbarch, cris_abi_v2_push_arguments);
4166 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
4167 set_gdbarch_deprecated_extract_return_value
4168 (gdbarch, cris_abi_v2_extract_return_value);
4169 set_gdbarch_deprecated_reg_struct_has_addr
4170 (gdbarch, cris_abi_v2_reg_struct_has_addr);
4171 }
4172 else
4173 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4174
4175 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4176 which means we have to set this explicitly. */
4177 set_gdbarch_long_double_bit (gdbarch, 64);
4178
4179 /* There are 32 registers (some of which may not be implemented). */
4180 set_gdbarch_num_regs (gdbarch, 32);
4181 set_gdbarch_sp_regnum (gdbarch, 14);
4182 set_gdbarch_deprecated_fp_regnum (gdbarch, 8);
4183 set_gdbarch_pc_regnum (gdbarch, 15);
4184
4185 set_gdbarch_register_name (gdbarch, cris_register_name);
4186
4187 /* Length of ordinary registers used in push_word and a few other
4188 places. DEPRECATED_REGISTER_RAW_SIZE is the real way to know how
4189 big a register is. */
4190 set_gdbarch_deprecated_register_size (gdbarch, 4);
4191
4192 /* NEW */
4193 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4194 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4195
4196
4197 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4198 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4199
4200
4201 /* The total amount of space needed to store (in an array called registers)
4202 GDB's copy of the machine's register state. Note: We can not use
4203 cris_register_size at this point, since it relies on current_gdbarch
4204 being set. */
4205 switch (tdep->cris_version)
4206 {
4207 case 0:
4208 case 1:
4209 case 2:
4210 case 3:
4211 /* Support for these may be added later. */
4212 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4213 break;
4214
4215 case 8:
4216 case 9:
4217 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4218 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4219 and P8 - P14 (32 bits). */
4220 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4221 break;
4222
4223 case 10:
4224 case 11:
4225 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4226 P7 (32 bits), and P15 (32 bits) have been implemented. */
4227 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4228 break;
4229
4230 default:
4231 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4232 }
4233
4234 set_gdbarch_deprecated_register_bytes (gdbarch, register_bytes);
4235
4236 /* Returns the register offset for the first byte of register regno's space
4237 in the saved register state. */
4238 set_gdbarch_deprecated_register_byte (gdbarch, cris_register_offset);
4239
4240 /* The length of the registers in the actual machine representation. */
4241 set_gdbarch_deprecated_register_raw_size (gdbarch, cris_register_size);
4242
4243 /* The largest value DEPRECATED_REGISTER_RAW_SIZE can have. */
4244 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 32);
4245
4246 /* The length of the registers in the program's representation. */
4247 set_gdbarch_deprecated_register_virtual_size (gdbarch, cris_register_size);
4248
4249 /* The largest value DEPRECATED_REGISTER_VIRTUAL_SIZE can have. */
4250 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 32);
4251
4252 set_gdbarch_deprecated_register_virtual_type (gdbarch, cris_register_virtual_type);
4253
4254 /* Use generic dummy frames. */
4255
4256 /* Read all about dummy frames in blockframe.c. */
4257 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4258
4259 /* Defined to 1 to indicate that the target supports inferior function
4260 calls. */
4261 set_gdbarch_deprecated_call_dummy_words (gdbarch, 0);
4262 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
4263
4264 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
4265
4266 set_gdbarch_deprecated_push_return_address (gdbarch, cris_push_return_address);
4267 set_gdbarch_deprecated_pop_frame (gdbarch, cris_pop_frame);
4268
4269 set_gdbarch_deprecated_store_struct_return (gdbarch, cris_store_struct_return);
4270 set_gdbarch_deprecated_extract_struct_value_address
4271 (gdbarch, cris_extract_struct_value_address);
4272 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
4273
4274 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4275 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4276 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4277 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4278
4279 /* The stack grows downward. */
4280 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4281
4282 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4283
4284 /* The number of bytes at the start of arglist that are not really args,
4285 0 in the CRIS ABI. */
4286 set_gdbarch_frame_args_skip (gdbarch, 0);
4287 set_gdbarch_frameless_function_invocation
4288 (gdbarch, cris_frameless_function_invocation);
4289 set_gdbarch_deprecated_frame_chain (gdbarch, cris_frame_chain);
4290
4291 set_gdbarch_deprecated_frame_saved_pc (gdbarch, cris_frame_saved_pc);
4292 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4293
4294 /* Helpful for backtracing and returning in a call dummy. */
4295 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4296
4297 /* Should be using push_dummy_call. */
4298 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
4299
4300 /* Use target_specific function to define link map offsets. */
4301 set_solib_svr4_fetch_link_map_offsets
4302 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4303
4304 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4305 disassembler, even when there is no BFD. Does something like
4306 "gdb; target remote; disassmeble *0x123" work? */
4307 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4308
4309 return gdbarch;
4310 }
This page took 0.112053 seconds and 5 git commands to generate.