1 /* Helper routines for D support in GDB.
3 Copyright (C) 2014-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "namespace.h"
26 #include "gdb_obstack.h"
28 /* This returns the length of first component of NAME, which should be
29 the demangled name of a D variable/function/method/etc.
30 Specifically, it returns the index of the first dot forming the
31 boundary of the first component: so, given 'A.foo' or 'A.B.foo'
32 it returns the 1, and given 'foo', it returns 0. */
34 /* The character in NAME indexed by the return value is guaranteed to
35 always be either '.' or '\0'. */
38 d_find_first_component (const char *name
)
40 unsigned int index
= 0;
44 if (name
[index
] == '.' || name
[index
] == '\0')
49 /* If NAME is the fully-qualified name of a D function/variable/method,
50 this returns the length of its entire prefix: all of the modules and
51 classes that make up its name. Given 'A.foo', it returns 1, given
52 'A.B.foo', it returns 4, given 'foo', it returns 0. */
55 d_entire_prefix_len (const char *name
)
57 unsigned int current_len
= d_find_first_component (name
);
58 unsigned int previous_len
= 0;
60 while (name
[current_len
] != '\0')
62 gdb_assert (name
[current_len
] == '.');
63 previous_len
= current_len
;
66 current_len
+= d_find_first_component (name
+ current_len
);
72 /* Look up NAME in BLOCK's static block and in global blocks.
73 If SEARCH is non-zero, search through base classes for a matching
74 symbol. Other arguments are as in d_lookup_symbol_nonlocal. */
76 static struct block_symbol
77 d_lookup_symbol (const struct language_defn
*langdef
,
78 const char *name
, const struct block
*block
,
79 const domain_enum domain
, int search
)
81 struct block_symbol sym
;
83 sym
= lookup_symbol_in_static_block (name
, block
, domain
);
84 if (sym
.symbol
!= NULL
)
87 /* If we didn't find a definition for a builtin type in the static block,
88 such as "ucent" which is a specialist type, search for it now. */
89 if (langdef
!= NULL
&& domain
== VAR_DOMAIN
)
91 struct gdbarch
*gdbarch
;
94 gdbarch
= target_gdbarch ();
96 gdbarch
= block_gdbarch (block
);
98 = language_lookup_primitive_type_as_symbol (langdef
, gdbarch
, name
);
100 if (sym
.symbol
!= NULL
)
104 sym
= lookup_global_symbol (name
, block
, domain
);
106 if (sym
.symbol
!= NULL
)
111 std::string classname
, nested
;
112 unsigned int prefix_len
;
113 struct block_symbol class_sym
;
115 /* A simple lookup failed. Check if the symbol was defined in
118 /* Find the name of the class and the name of the method,
120 prefix_len
= d_entire_prefix_len (name
);
122 /* If no prefix was found, search "this". */
126 struct block_symbol lang_this
;
128 lang_this
= lookup_language_this (language_def (language_d
), block
);
129 if (lang_this
.symbol
== NULL
)
130 return null_block_symbol
;
132 type
= check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (lang_this
.symbol
)));
133 classname
= TYPE_NAME (type
);
138 /* The class name is everything up to and including PREFIX_LEN. */
139 classname
= std::string (name
, prefix_len
);
141 /* The rest of the name is everything else past the initial scope
143 nested
= std::string (name
+ prefix_len
+ 1);
146 /* Lookup a class named CLASSNAME. If none is found, there is nothing
147 more that can be done. */
148 class_sym
= lookup_global_symbol (classname
.c_str (), block
, domain
);
149 if (class_sym
.symbol
== NULL
)
150 return null_block_symbol
;
152 /* Look for a symbol named NESTED in this class. */
153 sym
= d_lookup_nested_symbol (SYMBOL_TYPE (class_sym
.symbol
),
154 nested
.c_str (), block
);
160 /* Look up NAME in the D module MODULE. Other arguments are as in
161 d_lookup_symbol_nonlocal. If SEARCH is non-zero, search through
162 base classes for a matching symbol. */
164 static struct block_symbol
165 d_lookup_symbol_in_module (const char *module
, const char *name
,
166 const struct block
*block
,
167 const domain_enum domain
, int search
)
169 char *concatenated_name
= NULL
;
171 if (module
[0] != '\0')
174 = (char *) alloca (strlen (module
) + strlen (name
) + 2);
175 strcpy (concatenated_name
, module
);
176 strcat (concatenated_name
, ".");
177 strcat (concatenated_name
, name
);
178 name
= concatenated_name
;
181 return d_lookup_symbol (NULL
, name
, block
, domain
, search
);
184 /* Lookup NAME at module scope. SCOPE is the module that the current
185 function is defined within; only consider modules whose length is at
186 least SCOPE_LEN. Other arguments are as in d_lookup_symbol_nonlocal.
188 For example, if we're within a function A.B.f and looking for a
189 symbol x, this will get called with NAME = "x", SCOPE = "A.B", and
190 SCOPE_LEN = 0. It then calls itself with NAME and SCOPE the same,
191 but with SCOPE_LEN = 1. And then it calls itself with NAME and
192 SCOPE the same, but with SCOPE_LEN = 4. This third call looks for
193 "A.B.x"; if it doesn't find it, then the second call looks for "A.x",
194 and if that call fails, then the first call looks for "x". */
196 static struct block_symbol
197 lookup_module_scope (const struct language_defn
*langdef
,
198 const char *name
, const struct block
*block
,
199 const domain_enum domain
, const char *scope
,
204 if (scope
[scope_len
] != '\0')
206 /* Recursively search for names in child modules first. */
208 struct block_symbol sym
;
209 int new_scope_len
= scope_len
;
211 /* If the current scope is followed by ".", skip past that. */
212 if (new_scope_len
!= 0)
214 gdb_assert (scope
[new_scope_len
] == '.');
217 new_scope_len
+= d_find_first_component (scope
+ new_scope_len
);
218 sym
= lookup_module_scope (langdef
, name
, block
, domain
,
219 scope
, new_scope_len
);
220 if (sym
.symbol
!= NULL
)
224 /* Okay, we didn't find a match in our children, so look for the
225 name in the current module.
227 If we there is no scope and we know we have a bare symbol, then short
228 circuit everything and call d_lookup_symbol directly.
229 This isn't an optimization, rather it allows us to pass LANGDEF which
230 is needed for primitive type lookup. */
232 if (scope_len
== 0 && strchr (name
, '.') == NULL
)
233 return d_lookup_symbol (langdef
, name
, block
, domain
, 1);
235 module
= (char *) alloca (scope_len
+ 1);
236 strncpy (module
, scope
, scope_len
);
237 module
[scope_len
] = '\0';
238 return d_lookup_symbol_in_module (module
, name
,
242 /* Search through the base classes of PARENT_TYPE for a symbol named
243 NAME in block BLOCK. */
245 static struct block_symbol
246 find_symbol_in_baseclass (struct type
*parent_type
, const char *name
,
247 const struct block
*block
)
249 struct block_symbol sym
;
255 for (i
= 0; i
< TYPE_N_BASECLASSES (parent_type
); ++i
)
257 struct type
*base_type
= TYPE_BASECLASS (parent_type
, i
);
258 const char *base_name
= TYPE_BASECLASS_NAME (parent_type
, i
);
260 if (base_name
== NULL
)
263 /* Search this particular base class. */
264 sym
= d_lookup_symbol_in_module (base_name
, name
, block
,
266 if (sym
.symbol
!= NULL
)
269 /* Now search all static file-level symbols. We have to do this for
270 things like typedefs in the class. First search in this symtab,
271 what we want is possibly there. */
272 std::string concatenated_name
= std::string (base_name
) + "." + name
;
273 sym
= lookup_symbol_in_static_block (concatenated_name
.c_str (), block
,
275 if (sym
.symbol
!= NULL
)
278 /* Nope. We now have to search all static blocks in all objfiles,
279 even if block != NULL, because there's no guarantees as to which
280 symtab the symbol we want is in. */
281 sym
= lookup_static_symbol (concatenated_name
.c_str (), VAR_DOMAIN
);
282 if (sym
.symbol
!= NULL
)
285 /* If this class has base classes, search them next. */
286 base_type
= check_typedef (base_type
);
287 if (TYPE_N_BASECLASSES (base_type
) > 0)
289 sym
= find_symbol_in_baseclass (base_type
, name
, block
);
290 if (sym
.symbol
!= NULL
)
298 /* Look up a symbol named NESTED_NAME that is nested inside the D
299 class or module given by PARENT_TYPE, from within the context
300 given by BLOCK. Return NULL if there is no such nested type. */
303 d_lookup_nested_symbol (struct type
*parent_type
,
304 const char *nested_name
,
305 const struct block
*block
)
307 /* type_name_no_tag_required provides better error reporting using the
309 struct type
*saved_parent_type
= parent_type
;
311 parent_type
= check_typedef (parent_type
);
313 switch (TYPE_CODE (parent_type
))
315 case TYPE_CODE_STRUCT
:
316 case TYPE_CODE_UNION
:
318 case TYPE_CODE_MODULE
:
321 const char *parent_name
= type_name_no_tag_or_error (saved_parent_type
);
322 struct block_symbol sym
323 = d_lookup_symbol_in_module (parent_name
, nested_name
,
324 block
, VAR_DOMAIN
, 0);
325 char *concatenated_name
;
327 if (sym
.symbol
!= NULL
)
330 /* Now search all static file-level symbols. We have to do this
331 for things like typedefs in the class. We do not try to
332 guess any imported module as even the fully specified
333 module search is already not D compliant and more assumptions
334 could make it too magic. */
335 size
= strlen (parent_name
) + strlen (nested_name
) + 2;
336 concatenated_name
= (char *) alloca (size
);
338 xsnprintf (concatenated_name
, size
, "%s.%s",
339 parent_name
, nested_name
);
341 sym
= lookup_static_symbol (concatenated_name
, VAR_DOMAIN
);
342 if (sym
.symbol
!= NULL
)
345 /* If no matching symbols were found, try searching any
347 return find_symbol_in_baseclass (parent_type
, nested_name
, block
);
351 case TYPE_CODE_METHOD
:
352 return null_block_symbol
;
355 gdb_assert_not_reached ("called with non-aggregate type.");
359 /* Search for NAME by applying all import statements belonging to
360 BLOCK which are applicable in SCOPE. */
362 static struct block_symbol
363 d_lookup_symbol_imports (const char *scope
, const char *name
,
364 const struct block
*block
,
365 const domain_enum domain
)
367 struct using_direct
*current
;
368 struct block_symbol sym
;
370 /* First, try to find the symbol in the given module. */
371 sym
= d_lookup_symbol_in_module (scope
, name
, block
, domain
, 1);
373 if (sym
.symbol
!= NULL
)
376 /* Go through the using directives. If any of them add new names to
377 the module we're searching in, see if we can find a match by
380 for (current
= block_using (block
);
382 current
= current
->next
)
384 const char **excludep
;
386 /* If the import destination is the current scope then search it. */
387 if (!current
->searched
&& strcmp (scope
, current
->import_dest
) == 0)
389 /* Mark this import as searched so that the recursive call
390 does not search it again. */
391 scoped_restore restore_searched
392 = make_scoped_restore (¤t
->searched
, 1);
394 /* If there is an import of a single declaration, compare the
395 imported declaration (after optional renaming by its alias)
396 with the sought out name. If there is a match pass
397 current->import_src as MODULE to direct the search towards
398 the imported module. */
399 if (current
->declaration
400 && strcmp (name
, current
->alias
401 ? current
->alias
: current
->declaration
) == 0)
402 sym
= d_lookup_symbol_in_module (current
->import_src
,
403 current
->declaration
,
406 /* If a symbol was found or this import statement was an import
407 declaration, the search of this import is complete. */
408 if (sym
.symbol
!= NULL
|| current
->declaration
)
410 if (sym
.symbol
!= NULL
)
416 /* Do not follow CURRENT if NAME matches its EXCLUDES. */
417 for (excludep
= current
->excludes
; *excludep
; excludep
++)
418 if (strcmp (name
, *excludep
) == 0)
423 /* If the import statement is creating an alias. */
424 if (current
->alias
!= NULL
)
426 if (strcmp (name
, current
->alias
) == 0)
428 /* If the alias matches the sought name. Pass
429 current->import_src as the NAME to direct the
430 search towards the aliased module. */
431 sym
= lookup_module_scope (NULL
, current
->import_src
, block
,
436 /* If the alias matches the first component of the
437 sought name, pass current->import_src as MODULE
438 to direct the search, skipping over the aliased
439 component in NAME. */
440 int name_scope
= d_find_first_component (name
);
442 if (name
[name_scope
] != '\0'
443 && strncmp (name
, current
->alias
, name_scope
) == 0)
447 sym
= d_lookup_symbol_in_module (current
->import_src
,
455 /* If this import statement creates no alias, pass
456 current->import_src as MODULE to direct the search
457 towards the imported module. */
458 sym
= d_lookup_symbol_in_module (current
->import_src
,
459 name
, block
, domain
, 1);
462 if (sym
.symbol
!= NULL
)
467 return null_block_symbol
;
470 /* Searches for NAME in the current module, and by applying relevant
471 import statements belonging to BLOCK and its parents. SCOPE is the
472 module scope of the context in which the search is being evaluated. */
474 static struct block_symbol
475 d_lookup_symbol_module (const char *scope
, const char *name
,
476 const struct block
*block
,
477 const domain_enum domain
)
479 struct block_symbol sym
;
481 /* First, try to find the symbol in the given module. */
482 sym
= d_lookup_symbol_in_module (scope
, name
,
484 if (sym
.symbol
!= NULL
)
487 /* Search for name in modules imported to this and parent
489 while (block
!= NULL
)
491 sym
= d_lookup_symbol_imports (scope
, name
, block
, domain
);
493 if (sym
.symbol
!= NULL
)
496 block
= BLOCK_SUPERBLOCK (block
);
499 return null_block_symbol
;
502 /* The D-specific version of name lookup for static and global names
503 This makes sure that names get looked for in all modules that are
504 in scope. NAME is the natural name of the symbol that we're looking
505 looking for, BLOCK is the block that we're searching within, DOMAIN
506 says what kind of symbols we're looking for, and if SYMTAB is non-NULL,
507 we should store the symtab where we found the symbol in it. */
510 d_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
512 const struct block
*block
,
513 const domain_enum domain
)
515 struct block_symbol sym
;
516 const char *scope
= block_scope (block
);
518 sym
= lookup_module_scope (langdef
, name
, block
, domain
, scope
, 0);
519 if (sym
.symbol
!= NULL
)
522 return d_lookup_symbol_module (scope
, name
, block
, domain
);