* symtab.c (lookup_symbol_aux): Call lookup_symbol_aux to lookup
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2 Copyright (C) 1996, 1997, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* Contributed by Martin Hunt, hunt@cygnus.com */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "obstack.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "value.h"
32 #include "inferior.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38
39 #include "floatformat.h"
40 #include "sim-d10v.h"
41
42 #undef XMALLOC
43 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
44
45 struct frame_extra_info
46 {
47 CORE_ADDR return_pc;
48 int frameless;
49 int size;
50 };
51
52 struct gdbarch_tdep
53 {
54 int a0_regnum;
55 int nr_dmap_regs;
56 unsigned long (*dmap_register) (int nr);
57 unsigned long (*imap_register) (int nr);
58 };
59
60 /* These are the addresses the D10V-EVA board maps data and
61 instruction memory to. */
62
63 #define DMEM_START 0x2000000
64 #define IMEM_START 0x1000000
65 #define STACK_START 0x0007ffe
66
67 /* d10v register names. */
68
69 enum
70 {
71 R0_REGNUM = 0,
72 LR_REGNUM = 13,
73 PSW_REGNUM = 16,
74 NR_IMAP_REGS = 2,
75 NR_A_REGS = 2
76 };
77 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
78 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
79
80 /* d10v calling convention. */
81
82 #define ARG1_REGNUM R0_REGNUM
83 #define ARGN_REGNUM 3
84 #define RET1_REGNUM R0_REGNUM
85
86 /* Local functions */
87
88 extern void _initialize_d10v_tdep (void);
89
90 static void d10v_eva_prepare_to_trace (void);
91
92 static void d10v_eva_get_trace_data (void);
93
94 static int prologue_find_regs (unsigned short op, struct frame_info *fi,
95 CORE_ADDR addr);
96
97 extern void d10v_frame_init_saved_regs (struct frame_info *);
98
99 static void do_d10v_pop_frame (struct frame_info *fi);
100
101 int
102 d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
103 {
104 return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
105 }
106
107 static CORE_ADDR
108 d10v_stack_align (CORE_ADDR len)
109 {
110 return (len + 1) & ~1;
111 }
112
113 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
114 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
115 and TYPE is the type (which is known to be struct, union or array).
116
117 The d10v returns anything less than 8 bytes in size in
118 registers. */
119
120 int
121 d10v_use_struct_convention (int gcc_p, struct type *type)
122 {
123 return (TYPE_LENGTH (type) > 8);
124 }
125
126
127 unsigned char *
128 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
129 {
130 static unsigned char breakpoint[] =
131 {0x2f, 0x90, 0x5e, 0x00};
132 *lenptr = sizeof (breakpoint);
133 return breakpoint;
134 }
135
136 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
137 when the reg_nr isn't valid. */
138
139 enum ts2_regnums
140 {
141 TS2_IMAP0_REGNUM = 32,
142 TS2_DMAP_REGNUM = 34,
143 TS2_NR_DMAP_REGS = 1,
144 TS2_A0_REGNUM = 35
145 };
146
147 static char *
148 d10v_ts2_register_name (int reg_nr)
149 {
150 static char *register_names[] =
151 {
152 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
153 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
154 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
155 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
156 "imap0", "imap1", "dmap", "a0", "a1"
157 };
158 if (reg_nr < 0)
159 return NULL;
160 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
161 return NULL;
162 return register_names[reg_nr];
163 }
164
165 enum ts3_regnums
166 {
167 TS3_IMAP0_REGNUM = 36,
168 TS3_DMAP0_REGNUM = 38,
169 TS3_NR_DMAP_REGS = 4,
170 TS3_A0_REGNUM = 32
171 };
172
173 static char *
174 d10v_ts3_register_name (int reg_nr)
175 {
176 static char *register_names[] =
177 {
178 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
179 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
180 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
181 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
182 "a0", "a1",
183 "spi", "spu",
184 "imap0", "imap1",
185 "dmap0", "dmap1", "dmap2", "dmap3"
186 };
187 if (reg_nr < 0)
188 return NULL;
189 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
190 return NULL;
191 return register_names[reg_nr];
192 }
193
194 /* Access the DMAP/IMAP registers in a target independent way. */
195
196 static unsigned long
197 d10v_ts2_dmap_register (int reg_nr)
198 {
199 switch (reg_nr)
200 {
201 case 0:
202 case 1:
203 return 0x2000;
204 case 2:
205 return read_register (TS2_DMAP_REGNUM);
206 default:
207 return 0;
208 }
209 }
210
211 static unsigned long
212 d10v_ts3_dmap_register (int reg_nr)
213 {
214 return read_register (TS3_DMAP0_REGNUM + reg_nr);
215 }
216
217 static unsigned long
218 d10v_dmap_register (int reg_nr)
219 {
220 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
221 }
222
223 static unsigned long
224 d10v_ts2_imap_register (int reg_nr)
225 {
226 return read_register (TS2_IMAP0_REGNUM + reg_nr);
227 }
228
229 static unsigned long
230 d10v_ts3_imap_register (int reg_nr)
231 {
232 return read_register (TS3_IMAP0_REGNUM + reg_nr);
233 }
234
235 static unsigned long
236 d10v_imap_register (int reg_nr)
237 {
238 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
239 }
240
241 /* MAP GDB's internal register numbering (determined by the layout fo
242 the REGISTER_BYTE array) onto the simulator's register
243 numbering. */
244
245 static int
246 d10v_ts2_register_sim_regno (int nr)
247 {
248 if (nr >= TS2_IMAP0_REGNUM
249 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
250 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
251 if (nr == TS2_DMAP_REGNUM)
252 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
253 if (nr >= TS2_A0_REGNUM
254 && nr < TS2_A0_REGNUM + NR_A_REGS)
255 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
256 return nr;
257 }
258
259 static int
260 d10v_ts3_register_sim_regno (int nr)
261 {
262 if (nr >= TS3_IMAP0_REGNUM
263 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
264 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
265 if (nr >= TS3_DMAP0_REGNUM
266 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
267 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
268 if (nr >= TS3_A0_REGNUM
269 && nr < TS3_A0_REGNUM + NR_A_REGS)
270 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
271 return nr;
272 }
273
274 /* Index within `registers' of the first byte of the space for
275 register REG_NR. */
276
277 int
278 d10v_register_byte (int reg_nr)
279 {
280 if (reg_nr < A0_REGNUM)
281 return (reg_nr * 2);
282 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
283 return (A0_REGNUM * 2
284 + (reg_nr - A0_REGNUM) * 8);
285 else
286 return (A0_REGNUM * 2
287 + NR_A_REGS * 8
288 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
289 }
290
291 /* Number of bytes of storage in the actual machine representation for
292 register REG_NR. */
293
294 int
295 d10v_register_raw_size (int reg_nr)
296 {
297 if (reg_nr < A0_REGNUM)
298 return 2;
299 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
300 return 8;
301 else
302 return 2;
303 }
304
305 /* Number of bytes of storage in the program's representation
306 for register N. */
307
308 int
309 d10v_register_virtual_size (int reg_nr)
310 {
311 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
312 }
313
314 /* Return the GDB type object for the "standard" data type
315 of data in register N. */
316
317 struct type *
318 d10v_register_virtual_type (int reg_nr)
319 {
320 if (reg_nr >= A0_REGNUM
321 && reg_nr < (A0_REGNUM + NR_A_REGS))
322 return builtin_type_int64;
323 else if (reg_nr == PC_REGNUM
324 || reg_nr == SP_REGNUM)
325 return builtin_type_int32;
326 else
327 return builtin_type_int16;
328 }
329
330 /* convert $pc and $sp to/from virtual addresses */
331 int
332 d10v_register_convertible (int nr)
333 {
334 return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
335 }
336
337 void
338 d10v_register_convert_to_virtual (int regnum, struct type *type, char *from,
339 char *to)
340 {
341 ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
342 if (regnum == PC_REGNUM)
343 x = (x << 2) | IMEM_START;
344 else
345 x |= DMEM_START;
346 store_unsigned_integer (to, TYPE_LENGTH (type), x);
347 }
348
349 void
350 d10v_register_convert_to_raw (struct type *type, int regnum, char *from,
351 char *to)
352 {
353 ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
354 x &= 0x3ffff;
355 if (regnum == PC_REGNUM)
356 x >>= 2;
357 store_unsigned_integer (to, 2, x);
358 }
359
360
361 CORE_ADDR
362 d10v_make_daddr (CORE_ADDR x)
363 {
364 return ((x) | DMEM_START);
365 }
366
367 CORE_ADDR
368 d10v_make_iaddr (CORE_ADDR x)
369 {
370 return (((x) << 2) | IMEM_START);
371 }
372
373 int
374 d10v_daddr_p (CORE_ADDR x)
375 {
376 return (((x) & 0x3000000) == DMEM_START);
377 }
378
379 int
380 d10v_iaddr_p (CORE_ADDR x)
381 {
382 return (((x) & 0x3000000) == IMEM_START);
383 }
384
385
386 CORE_ADDR
387 d10v_convert_iaddr_to_raw (CORE_ADDR x)
388 {
389 return (((x) >> 2) & 0xffff);
390 }
391
392 CORE_ADDR
393 d10v_convert_daddr_to_raw (CORE_ADDR x)
394 {
395 return ((x) & 0xffff);
396 }
397
398 /* Store the address of the place in which to copy the structure the
399 subroutine will return. This is called from call_function.
400
401 We store structs through a pointer passed in the first Argument
402 register. */
403
404 void
405 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
406 {
407 write_register (ARG1_REGNUM, (addr));
408 }
409
410 /* Write into appropriate registers a function return value
411 of type TYPE, given in virtual format.
412
413 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
414
415 void
416 d10v_store_return_value (struct type *type, char *valbuf)
417 {
418 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
419 valbuf,
420 TYPE_LENGTH (type));
421 }
422
423 /* Extract from an array REGBUF containing the (raw) register state
424 the address in which a function should return its structure value,
425 as a CORE_ADDR (or an expression that can be used as one). */
426
427 CORE_ADDR
428 d10v_extract_struct_value_address (char *regbuf)
429 {
430 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
431 REGISTER_RAW_SIZE (ARG1_REGNUM))
432 | DMEM_START);
433 }
434
435 CORE_ADDR
436 d10v_frame_saved_pc (struct frame_info *frame)
437 {
438 return ((frame)->extra_info->return_pc);
439 }
440
441 /* Immediately after a function call, return the saved pc. We can't
442 use frame->return_pc beause that is determined by reading R13 off
443 the stack and that may not be written yet. */
444
445 CORE_ADDR
446 d10v_saved_pc_after_call (struct frame_info *frame)
447 {
448 return ((read_register (LR_REGNUM) << 2)
449 | IMEM_START);
450 }
451
452 /* Discard from the stack the innermost frame, restoring all saved
453 registers. */
454
455 void
456 d10v_pop_frame (void)
457 {
458 generic_pop_current_frame (do_d10v_pop_frame);
459 }
460
461 static void
462 do_d10v_pop_frame (struct frame_info *fi)
463 {
464 CORE_ADDR fp;
465 int regnum;
466 char raw_buffer[8];
467
468 fp = FRAME_FP (fi);
469 /* fill out fsr with the address of where each */
470 /* register was stored in the frame */
471 d10v_frame_init_saved_regs (fi);
472
473 /* now update the current registers with the old values */
474 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
475 {
476 if (fi->saved_regs[regnum])
477 {
478 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
479 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
480 }
481 }
482 for (regnum = 0; regnum < SP_REGNUM; regnum++)
483 {
484 if (fi->saved_regs[regnum])
485 {
486 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
487 }
488 }
489 if (fi->saved_regs[PSW_REGNUM])
490 {
491 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
492 }
493
494 write_register (PC_REGNUM, read_register (LR_REGNUM));
495 write_register (SP_REGNUM, fp + fi->extra_info->size);
496 target_store_registers (-1);
497 flush_cached_frames ();
498 }
499
500 static int
501 check_prologue (unsigned short op)
502 {
503 /* st rn, @-sp */
504 if ((op & 0x7E1F) == 0x6C1F)
505 return 1;
506
507 /* st2w rn, @-sp */
508 if ((op & 0x7E3F) == 0x6E1F)
509 return 1;
510
511 /* subi sp, n */
512 if ((op & 0x7FE1) == 0x01E1)
513 return 1;
514
515 /* mv r11, sp */
516 if (op == 0x417E)
517 return 1;
518
519 /* nop */
520 if (op == 0x5E00)
521 return 1;
522
523 /* st rn, @sp */
524 if ((op & 0x7E1F) == 0x681E)
525 return 1;
526
527 /* st2w rn, @sp */
528 if ((op & 0x7E3F) == 0x3A1E)
529 return 1;
530
531 return 0;
532 }
533
534 CORE_ADDR
535 d10v_skip_prologue (CORE_ADDR pc)
536 {
537 unsigned long op;
538 unsigned short op1, op2;
539 CORE_ADDR func_addr, func_end;
540 struct symtab_and_line sal;
541
542 /* If we have line debugging information, then the end of the */
543 /* prologue should the first assembly instruction of the first source line */
544 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
545 {
546 sal = find_pc_line (func_addr, 0);
547 if (sal.end && sal.end < func_end)
548 return sal.end;
549 }
550
551 if (target_read_memory (pc, (char *) &op, 4))
552 return pc; /* Can't access it -- assume no prologue. */
553
554 while (1)
555 {
556 op = (unsigned long) read_memory_integer (pc, 4);
557 if ((op & 0xC0000000) == 0xC0000000)
558 {
559 /* long instruction */
560 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
561 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
562 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
563 break;
564 }
565 else
566 {
567 /* short instructions */
568 if ((op & 0xC0000000) == 0x80000000)
569 {
570 op2 = (op & 0x3FFF8000) >> 15;
571 op1 = op & 0x7FFF;
572 }
573 else
574 {
575 op1 = (op & 0x3FFF8000) >> 15;
576 op2 = op & 0x7FFF;
577 }
578 if (check_prologue (op1))
579 {
580 if (!check_prologue (op2))
581 {
582 /* if the previous opcode was really part of the prologue */
583 /* and not just a NOP, then we want to break after both instructions */
584 if (op1 != 0x5E00)
585 pc += 4;
586 break;
587 }
588 }
589 else
590 break;
591 }
592 pc += 4;
593 }
594 return pc;
595 }
596
597 /* Given a GDB frame, determine the address of the calling function's frame.
598 This will be used to create a new GDB frame struct, and then
599 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
600 */
601
602 CORE_ADDR
603 d10v_frame_chain (struct frame_info *fi)
604 {
605 d10v_frame_init_saved_regs (fi);
606
607 if (fi->extra_info->return_pc == IMEM_START
608 || inside_entry_file (fi->extra_info->return_pc))
609 return (CORE_ADDR) 0;
610
611 if (!fi->saved_regs[FP_REGNUM])
612 {
613 if (!fi->saved_regs[SP_REGNUM]
614 || fi->saved_regs[SP_REGNUM] == STACK_START)
615 return (CORE_ADDR) 0;
616
617 return fi->saved_regs[SP_REGNUM];
618 }
619
620 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
621 REGISTER_RAW_SIZE (FP_REGNUM)))
622 return (CORE_ADDR) 0;
623
624 return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
625 REGISTER_RAW_SIZE (FP_REGNUM)));
626 }
627
628 static int next_addr, uses_frame;
629
630 static int
631 prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
632 {
633 int n;
634
635 /* st rn, @-sp */
636 if ((op & 0x7E1F) == 0x6C1F)
637 {
638 n = (op & 0x1E0) >> 5;
639 next_addr -= 2;
640 fi->saved_regs[n] = next_addr;
641 return 1;
642 }
643
644 /* st2w rn, @-sp */
645 else if ((op & 0x7E3F) == 0x6E1F)
646 {
647 n = (op & 0x1E0) >> 5;
648 next_addr -= 4;
649 fi->saved_regs[n] = next_addr;
650 fi->saved_regs[n + 1] = next_addr + 2;
651 return 1;
652 }
653
654 /* subi sp, n */
655 if ((op & 0x7FE1) == 0x01E1)
656 {
657 n = (op & 0x1E) >> 1;
658 if (n == 0)
659 n = 16;
660 next_addr -= n;
661 return 1;
662 }
663
664 /* mv r11, sp */
665 if (op == 0x417E)
666 {
667 uses_frame = 1;
668 return 1;
669 }
670
671 /* nop */
672 if (op == 0x5E00)
673 return 1;
674
675 /* st rn, @sp */
676 if ((op & 0x7E1F) == 0x681E)
677 {
678 n = (op & 0x1E0) >> 5;
679 fi->saved_regs[n] = next_addr;
680 return 1;
681 }
682
683 /* st2w rn, @sp */
684 if ((op & 0x7E3F) == 0x3A1E)
685 {
686 n = (op & 0x1E0) >> 5;
687 fi->saved_regs[n] = next_addr;
688 fi->saved_regs[n + 1] = next_addr + 2;
689 return 1;
690 }
691
692 return 0;
693 }
694
695 /* Put here the code to store, into fi->saved_regs, the addresses of
696 the saved registers of frame described by FRAME_INFO. This
697 includes special registers such as pc and fp saved in special ways
698 in the stack frame. sp is even more special: the address we return
699 for it IS the sp for the next frame. */
700
701 void
702 d10v_frame_init_saved_regs (struct frame_info *fi)
703 {
704 CORE_ADDR fp, pc;
705 unsigned long op;
706 unsigned short op1, op2;
707 int i;
708
709 fp = fi->frame;
710 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
711 next_addr = 0;
712
713 pc = get_pc_function_start (fi->pc);
714
715 uses_frame = 0;
716 while (1)
717 {
718 op = (unsigned long) read_memory_integer (pc, 4);
719 if ((op & 0xC0000000) == 0xC0000000)
720 {
721 /* long instruction */
722 if ((op & 0x3FFF0000) == 0x01FF0000)
723 {
724 /* add3 sp,sp,n */
725 short n = op & 0xFFFF;
726 next_addr += n;
727 }
728 else if ((op & 0x3F0F0000) == 0x340F0000)
729 {
730 /* st rn, @(offset,sp) */
731 short offset = op & 0xFFFF;
732 short n = (op >> 20) & 0xF;
733 fi->saved_regs[n] = next_addr + offset;
734 }
735 else if ((op & 0x3F1F0000) == 0x350F0000)
736 {
737 /* st2w rn, @(offset,sp) */
738 short offset = op & 0xFFFF;
739 short n = (op >> 20) & 0xF;
740 fi->saved_regs[n] = next_addr + offset;
741 fi->saved_regs[n + 1] = next_addr + offset + 2;
742 }
743 else
744 break;
745 }
746 else
747 {
748 /* short instructions */
749 if ((op & 0xC0000000) == 0x80000000)
750 {
751 op2 = (op & 0x3FFF8000) >> 15;
752 op1 = op & 0x7FFF;
753 }
754 else
755 {
756 op1 = (op & 0x3FFF8000) >> 15;
757 op2 = op & 0x7FFF;
758 }
759 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
760 break;
761 }
762 pc += 4;
763 }
764
765 fi->extra_info->size = -next_addr;
766
767 if (!(fp & 0xffff))
768 fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));
769
770 for (i = 0; i < NUM_REGS - 1; i++)
771 if (fi->saved_regs[i])
772 {
773 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
774 }
775
776 if (fi->saved_regs[LR_REGNUM])
777 {
778 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
779 fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
780 }
781 else
782 {
783 fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
784 }
785
786 /* th SP is not normally (ever?) saved, but check anyway */
787 if (!fi->saved_regs[SP_REGNUM])
788 {
789 /* if the FP was saved, that means the current FP is valid, */
790 /* otherwise, it isn't being used, so we use the SP instead */
791 if (uses_frame)
792 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
793 else
794 {
795 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
796 fi->extra_info->frameless = 1;
797 fi->saved_regs[FP_REGNUM] = 0;
798 }
799 }
800 }
801
802 void
803 d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
804 {
805 fi->extra_info = (struct frame_extra_info *)
806 frame_obstack_alloc (sizeof (struct frame_extra_info));
807 frame_saved_regs_zalloc (fi);
808
809 fi->extra_info->frameless = 0;
810 fi->extra_info->size = 0;
811 fi->extra_info->return_pc = 0;
812
813 /* The call dummy doesn't save any registers on the stack, so we can
814 return now. */
815 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
816 {
817 return;
818 }
819 else
820 {
821 d10v_frame_init_saved_regs (fi);
822 }
823 }
824
825 static void
826 show_regs (char *args, int from_tty)
827 {
828 int a;
829 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
830 (long) read_register (PC_REGNUM),
831 (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
832 (long) read_register (PSW_REGNUM),
833 (long) read_register (24),
834 (long) read_register (25),
835 (long) read_register (23));
836 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
837 (long) read_register (0),
838 (long) read_register (1),
839 (long) read_register (2),
840 (long) read_register (3),
841 (long) read_register (4),
842 (long) read_register (5),
843 (long) read_register (6),
844 (long) read_register (7));
845 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
846 (long) read_register (8),
847 (long) read_register (9),
848 (long) read_register (10),
849 (long) read_register (11),
850 (long) read_register (12),
851 (long) read_register (13),
852 (long) read_register (14),
853 (long) read_register (15));
854 for (a = 0; a < NR_IMAP_REGS; a++)
855 {
856 if (a > 0)
857 printf_filtered (" ");
858 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
859 }
860 if (NR_DMAP_REGS == 1)
861 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
862 else
863 {
864 for (a = 0; a < NR_DMAP_REGS; a++)
865 {
866 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
867 }
868 printf_filtered ("\n");
869 }
870 printf_filtered ("A0-A%d", NR_A_REGS - 1);
871 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
872 {
873 char num[MAX_REGISTER_RAW_SIZE];
874 int i;
875 printf_filtered (" ");
876 read_register_gen (a, (char *) &num);
877 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
878 {
879 printf_filtered ("%02x", (num[i] & 0xff));
880 }
881 }
882 printf_filtered ("\n");
883 }
884
885 CORE_ADDR
886 d10v_read_pc (int pid)
887 {
888 int save_pid;
889 CORE_ADDR pc;
890 CORE_ADDR retval;
891
892 save_pid = inferior_pid;
893 inferior_pid = pid;
894 pc = (int) read_register (PC_REGNUM);
895 inferior_pid = save_pid;
896 retval = D10V_MAKE_IADDR (pc);
897 return retval;
898 }
899
900 void
901 d10v_write_pc (CORE_ADDR val, int pid)
902 {
903 int save_pid;
904
905 save_pid = inferior_pid;
906 inferior_pid = pid;
907 write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
908 inferior_pid = save_pid;
909 }
910
911 CORE_ADDR
912 d10v_read_sp (void)
913 {
914 return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
915 }
916
917 void
918 d10v_write_sp (CORE_ADDR val)
919 {
920 write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
921 }
922
923 void
924 d10v_write_fp (CORE_ADDR val)
925 {
926 write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
927 }
928
929 CORE_ADDR
930 d10v_read_fp (void)
931 {
932 return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
933 }
934
935 /* Function: push_return_address (pc)
936 Set up the return address for the inferior function call.
937 Needed for targets where we don't actually execute a JSR/BSR instruction */
938
939 CORE_ADDR
940 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
941 {
942 write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
943 return sp;
944 }
945
946
947 /* When arguments must be pushed onto the stack, they go on in reverse
948 order. The below implements a FILO (stack) to do this. */
949
950 struct stack_item
951 {
952 int len;
953 struct stack_item *prev;
954 void *data;
955 };
956
957 static struct stack_item *push_stack_item (struct stack_item *prev,
958 void *contents, int len);
959 static struct stack_item *
960 push_stack_item (struct stack_item *prev, void *contents, int len)
961 {
962 struct stack_item *si;
963 si = xmalloc (sizeof (struct stack_item));
964 si->data = xmalloc (len);
965 si->len = len;
966 si->prev = prev;
967 memcpy (si->data, contents, len);
968 return si;
969 }
970
971 static struct stack_item *pop_stack_item (struct stack_item *si);
972 static struct stack_item *
973 pop_stack_item (struct stack_item *si)
974 {
975 struct stack_item *dead = si;
976 si = si->prev;
977 xfree (dead->data);
978 xfree (dead);
979 return si;
980 }
981
982
983 CORE_ADDR
984 d10v_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
985 int struct_return, CORE_ADDR struct_addr)
986 {
987 int i;
988 int regnum = ARG1_REGNUM;
989 struct stack_item *si = NULL;
990
991 /* Fill in registers and arg lists */
992 for (i = 0; i < nargs; i++)
993 {
994 value_ptr arg = args[i];
995 struct type *type = check_typedef (VALUE_TYPE (arg));
996 char *contents = VALUE_CONTENTS (arg);
997 int len = TYPE_LENGTH (type);
998 /* printf ("push: type=%d len=%d\n", type->code, len); */
999 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1000 {
1001 /* pointers require special handling - first convert and
1002 then store */
1003 long val = extract_signed_integer (contents, len);
1004 len = 2;
1005 if (TYPE_TARGET_TYPE (type)
1006 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1007 {
1008 /* function pointer */
1009 val = D10V_CONVERT_IADDR_TO_RAW (val);
1010 }
1011 else if (D10V_IADDR_P (val))
1012 {
1013 /* also function pointer! */
1014 val = D10V_CONVERT_DADDR_TO_RAW (val);
1015 }
1016 else
1017 {
1018 /* data pointer */
1019 val &= 0xFFFF;
1020 }
1021 if (regnum <= ARGN_REGNUM)
1022 write_register (regnum++, val & 0xffff);
1023 else
1024 {
1025 char ptr[2];
1026 /* arg will go onto stack */
1027 store_address (ptr, 2, val & 0xffff);
1028 si = push_stack_item (si, ptr, 2);
1029 }
1030 }
1031 else
1032 {
1033 int aligned_regnum = (regnum + 1) & ~1;
1034 if (len <= 2 && regnum <= ARGN_REGNUM)
1035 /* fits in a single register, do not align */
1036 {
1037 long val = extract_unsigned_integer (contents, len);
1038 write_register (regnum++, val);
1039 }
1040 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1041 /* value fits in remaining registers, store keeping left
1042 aligned */
1043 {
1044 int b;
1045 regnum = aligned_regnum;
1046 for (b = 0; b < (len & ~1); b += 2)
1047 {
1048 long val = extract_unsigned_integer (&contents[b], 2);
1049 write_register (regnum++, val);
1050 }
1051 if (b < len)
1052 {
1053 long val = extract_unsigned_integer (&contents[b], 1);
1054 write_register (regnum++, (val << 8));
1055 }
1056 }
1057 else
1058 {
1059 /* arg will go onto stack */
1060 regnum = ARGN_REGNUM + 1;
1061 si = push_stack_item (si, contents, len);
1062 }
1063 }
1064 }
1065
1066 while (si)
1067 {
1068 sp = (sp - si->len) & ~1;
1069 write_memory (sp, si->data, si->len);
1070 si = pop_stack_item (si);
1071 }
1072
1073 return sp;
1074 }
1075
1076
1077 /* Given a return value in `regbuf' with a type `valtype',
1078 extract and copy its value into `valbuf'. */
1079
1080 void
1081 d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1082 char *valbuf)
1083 {
1084 int len;
1085 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1086 if (TYPE_CODE (type) == TYPE_CODE_PTR
1087 && TYPE_TARGET_TYPE (type)
1088 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
1089 {
1090 /* pointer to function */
1091 int num;
1092 short snum;
1093 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1094 store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
1095 }
1096 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
1097 {
1098 /* pointer to data */
1099 int num;
1100 short snum;
1101 snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1102 store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
1103 }
1104 else
1105 {
1106 len = TYPE_LENGTH (type);
1107 if (len == 1)
1108 {
1109 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1110 store_unsigned_integer (valbuf, 1, c);
1111 }
1112 else if ((len & 1) == 0)
1113 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1114 else
1115 {
1116 /* For return values of odd size, the first byte is in the
1117 least significant part of the first register. The
1118 remaining bytes in remaining registers. Interestingly,
1119 when such values are passed in, the last byte is in the
1120 most significant byte of that same register - wierd. */
1121 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1122 }
1123 }
1124 }
1125
1126 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1127 understands. Returns number of bytes that can be transfered
1128 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1129 (segmentation fault). Since the simulator knows all about how the
1130 VM system works, we just call that to do the translation. */
1131
1132 static void
1133 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1134 CORE_ADDR *targ_addr, int *targ_len)
1135 {
1136 long out_addr;
1137 long out_len;
1138 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1139 &out_addr,
1140 d10v_dmap_register,
1141 d10v_imap_register);
1142 *targ_addr = out_addr;
1143 *targ_len = out_len;
1144 }
1145
1146
1147 /* The following code implements access to, and display of, the D10V's
1148 instruction trace buffer. The buffer consists of 64K or more
1149 4-byte words of data, of which each words includes an 8-bit count,
1150 an 8-bit segment number, and a 16-bit instruction address.
1151
1152 In theory, the trace buffer is continuously capturing instruction
1153 data that the CPU presents on its "debug bus", but in practice, the
1154 ROMified GDB stub only enables tracing when it continues or steps
1155 the program, and stops tracing when the program stops; so it
1156 actually works for GDB to read the buffer counter out of memory and
1157 then read each trace word. The counter records where the tracing
1158 stops, but there is no record of where it started, so we remember
1159 the PC when we resumed and then search backwards in the trace
1160 buffer for a word that includes that address. This is not perfect,
1161 because you will miss trace data if the resumption PC is the target
1162 of a branch. (The value of the buffer counter is semi-random, any
1163 trace data from a previous program stop is gone.) */
1164
1165 /* The address of the last word recorded in the trace buffer. */
1166
1167 #define DBBC_ADDR (0xd80000)
1168
1169 /* The base of the trace buffer, at least for the "Board_0". */
1170
1171 #define TRACE_BUFFER_BASE (0xf40000)
1172
1173 static void trace_command (char *, int);
1174
1175 static void untrace_command (char *, int);
1176
1177 static void trace_info (char *, int);
1178
1179 static void tdisassemble_command (char *, int);
1180
1181 static void display_trace (int, int);
1182
1183 /* True when instruction traces are being collected. */
1184
1185 static int tracing;
1186
1187 /* Remembered PC. */
1188
1189 static CORE_ADDR last_pc;
1190
1191 /* True when trace output should be displayed whenever program stops. */
1192
1193 static int trace_display;
1194
1195 /* True when trace listing should include source lines. */
1196
1197 static int default_trace_show_source = 1;
1198
1199 struct trace_buffer
1200 {
1201 int size;
1202 short *counts;
1203 CORE_ADDR *addrs;
1204 }
1205 trace_data;
1206
1207 static void
1208 trace_command (char *args, int from_tty)
1209 {
1210 /* Clear the host-side trace buffer, allocating space if needed. */
1211 trace_data.size = 0;
1212 if (trace_data.counts == NULL)
1213 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1214 if (trace_data.addrs == NULL)
1215 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1216
1217 tracing = 1;
1218
1219 printf_filtered ("Tracing is now on.\n");
1220 }
1221
1222 static void
1223 untrace_command (char *args, int from_tty)
1224 {
1225 tracing = 0;
1226
1227 printf_filtered ("Tracing is now off.\n");
1228 }
1229
1230 static void
1231 trace_info (char *args, int from_tty)
1232 {
1233 int i;
1234
1235 if (trace_data.size)
1236 {
1237 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1238
1239 for (i = 0; i < trace_data.size; ++i)
1240 {
1241 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1242 i,
1243 trace_data.counts[i],
1244 (trace_data.counts[i] == 1 ? "" : "s"),
1245 paddr_nz (trace_data.addrs[i]));
1246 }
1247 }
1248 else
1249 printf_filtered ("No entries in trace buffer.\n");
1250
1251 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1252 }
1253
1254 /* Print the instruction at address MEMADDR in debugged memory,
1255 on STREAM. Returns length of the instruction, in bytes. */
1256
1257 static int
1258 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1259 {
1260 /* If there's no disassembler, something is very wrong. */
1261 if (tm_print_insn == NULL)
1262 internal_error ("print_insn: no disassembler");
1263
1264 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1265 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1266 else
1267 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1268 return (*tm_print_insn) (memaddr, &tm_print_insn_info);
1269 }
1270
1271 static void
1272 d10v_eva_prepare_to_trace (void)
1273 {
1274 if (!tracing)
1275 return;
1276
1277 last_pc = read_register (PC_REGNUM);
1278 }
1279
1280 /* Collect trace data from the target board and format it into a form
1281 more useful for display. */
1282
1283 static void
1284 d10v_eva_get_trace_data (void)
1285 {
1286 int count, i, j, oldsize;
1287 int trace_addr, trace_seg, trace_cnt, next_cnt;
1288 unsigned int last_trace, trace_word, next_word;
1289 unsigned int *tmpspace;
1290
1291 if (!tracing)
1292 return;
1293
1294 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1295
1296 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1297
1298 /* Collect buffer contents from the target, stopping when we reach
1299 the word recorded when execution resumed. */
1300
1301 count = 0;
1302 while (last_trace > 0)
1303 {
1304 QUIT;
1305 trace_word =
1306 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1307 trace_addr = trace_word & 0xffff;
1308 last_trace -= 4;
1309 /* Ignore an apparently nonsensical entry. */
1310 if (trace_addr == 0xffd5)
1311 continue;
1312 tmpspace[count++] = trace_word;
1313 if (trace_addr == last_pc)
1314 break;
1315 if (count > 65535)
1316 break;
1317 }
1318
1319 /* Move the data to the host-side trace buffer, adjusting counts to
1320 include the last instruction executed and transforming the address
1321 into something that GDB likes. */
1322
1323 for (i = 0; i < count; ++i)
1324 {
1325 trace_word = tmpspace[i];
1326 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1327 trace_addr = trace_word & 0xffff;
1328 next_cnt = (next_word >> 24) & 0xff;
1329 j = trace_data.size + count - i - 1;
1330 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1331 trace_data.counts[j] = next_cnt + 1;
1332 }
1333
1334 oldsize = trace_data.size;
1335 trace_data.size += count;
1336
1337 xfree (tmpspace);
1338
1339 if (trace_display)
1340 display_trace (oldsize, trace_data.size);
1341 }
1342
1343 static void
1344 tdisassemble_command (char *arg, int from_tty)
1345 {
1346 int i, count;
1347 CORE_ADDR low, high;
1348 char *space_index;
1349
1350 if (!arg)
1351 {
1352 low = 0;
1353 high = trace_data.size;
1354 }
1355 else if (!(space_index = (char *) strchr (arg, ' ')))
1356 {
1357 low = parse_and_eval_address (arg);
1358 high = low + 5;
1359 }
1360 else
1361 {
1362 /* Two arguments. */
1363 *space_index = '\0';
1364 low = parse_and_eval_address (arg);
1365 high = parse_and_eval_address (space_index + 1);
1366 if (high < low)
1367 high = low;
1368 }
1369
1370 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1371
1372 display_trace (low, high);
1373
1374 printf_filtered ("End of trace dump.\n");
1375 gdb_flush (gdb_stdout);
1376 }
1377
1378 static void
1379 display_trace (int low, int high)
1380 {
1381 int i, count, trace_show_source, first, suppress;
1382 CORE_ADDR next_address;
1383
1384 trace_show_source = default_trace_show_source;
1385 if (!have_full_symbols () && !have_partial_symbols ())
1386 {
1387 trace_show_source = 0;
1388 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1389 printf_filtered ("Trace will not display any source.\n");
1390 }
1391
1392 first = 1;
1393 suppress = 0;
1394 for (i = low; i < high; ++i)
1395 {
1396 next_address = trace_data.addrs[i];
1397 count = trace_data.counts[i];
1398 while (count-- > 0)
1399 {
1400 QUIT;
1401 if (trace_show_source)
1402 {
1403 struct symtab_and_line sal, sal_prev;
1404
1405 sal_prev = find_pc_line (next_address - 4, 0);
1406 sal = find_pc_line (next_address, 0);
1407
1408 if (sal.symtab)
1409 {
1410 if (first || sal.line != sal_prev.line)
1411 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1412 suppress = 0;
1413 }
1414 else
1415 {
1416 if (!suppress)
1417 /* FIXME-32x64--assumes sal.pc fits in long. */
1418 printf_filtered ("No source file for address %s.\n",
1419 local_hex_string ((unsigned long) sal.pc));
1420 suppress = 1;
1421 }
1422 }
1423 first = 0;
1424 print_address (next_address, gdb_stdout);
1425 printf_filtered (":");
1426 printf_filtered ("\t");
1427 wrap_here (" ");
1428 next_address = next_address + print_insn (next_address, gdb_stdout);
1429 printf_filtered ("\n");
1430 gdb_flush (gdb_stdout);
1431 }
1432 }
1433 }
1434
1435
1436 static gdbarch_init_ftype d10v_gdbarch_init;
1437
1438 static struct gdbarch *
1439 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1440 {
1441 static LONGEST d10v_call_dummy_words[] =
1442 {0};
1443 struct gdbarch *gdbarch;
1444 int d10v_num_regs;
1445 struct gdbarch_tdep *tdep;
1446 gdbarch_register_name_ftype *d10v_register_name;
1447 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1448
1449 /* Find a candidate among the list of pre-declared architectures. */
1450 arches = gdbarch_list_lookup_by_info (arches, &info);
1451 if (arches != NULL)
1452 return arches->gdbarch;
1453
1454 /* None found, create a new architecture from the information
1455 provided. */
1456 tdep = XMALLOC (struct gdbarch_tdep);
1457 gdbarch = gdbarch_alloc (&info, tdep);
1458
1459 switch (info.bfd_arch_info->mach)
1460 {
1461 case bfd_mach_d10v_ts2:
1462 d10v_num_regs = 37;
1463 d10v_register_name = d10v_ts2_register_name;
1464 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1465 tdep->a0_regnum = TS2_A0_REGNUM;
1466 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1467 tdep->dmap_register = d10v_ts2_dmap_register;
1468 tdep->imap_register = d10v_ts2_imap_register;
1469 break;
1470 default:
1471 case bfd_mach_d10v_ts3:
1472 d10v_num_regs = 42;
1473 d10v_register_name = d10v_ts3_register_name;
1474 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1475 tdep->a0_regnum = TS3_A0_REGNUM;
1476 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1477 tdep->dmap_register = d10v_ts3_dmap_register;
1478 tdep->imap_register = d10v_ts3_imap_register;
1479 break;
1480 }
1481
1482 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1483 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1484 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1485 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1486 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1487 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1488
1489 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1490 set_gdbarch_sp_regnum (gdbarch, 15);
1491 set_gdbarch_fp_regnum (gdbarch, 11);
1492 set_gdbarch_pc_regnum (gdbarch, 18);
1493 set_gdbarch_register_name (gdbarch, d10v_register_name);
1494 set_gdbarch_register_size (gdbarch, 2);
1495 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1496 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1497 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1498 set_gdbarch_max_register_raw_size (gdbarch, 8);
1499 set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
1500 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1501 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1502
1503 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1504 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1505 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1506 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1507 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1508 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1509 double'' is 64 bits. */
1510 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1511 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1512 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1513 switch (info.byte_order)
1514 {
1515 case BIG_ENDIAN:
1516 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1517 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1518 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1519 break;
1520 case LITTLE_ENDIAN:
1521 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1522 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1523 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1524 break;
1525 default:
1526 internal_error ("d10v_gdbarch_init: bad byte order for float format");
1527 }
1528
1529 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1530 set_gdbarch_call_dummy_length (gdbarch, 0);
1531 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1532 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1533 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1534 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1535 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1536 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1537 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1538 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1539 set_gdbarch_call_dummy_p (gdbarch, 1);
1540 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1541 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1542 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1543
1544 set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
1545 set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
1546 set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);
1547
1548 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1549 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1550 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1551 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1552
1553 set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
1554 set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
1555 set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
1556 set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
1557 set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
1558 set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);
1559
1560 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1561 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1562 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1563 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1564
1565 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1566 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1567
1568 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1569
1570 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1571 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1572 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1573 set_gdbarch_function_start_offset (gdbarch, 0);
1574 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1575
1576 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1577
1578 set_gdbarch_frame_args_skip (gdbarch, 0);
1579 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1580 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1581 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1582 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1583 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1584 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1585 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1586 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1587 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1588
1589 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1590 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1591
1592 return gdbarch;
1593 }
1594
1595
1596 extern void (*target_resume_hook) (void);
1597 extern void (*target_wait_loop_hook) (void);
1598
1599 void
1600 _initialize_d10v_tdep (void)
1601 {
1602 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1603
1604 tm_print_insn = print_insn_d10v;
1605
1606 target_resume_hook = d10v_eva_prepare_to_trace;
1607 target_wait_loop_hook = d10v_eva_get_trace_data;
1608
1609 add_com ("regs", class_vars, show_regs, "Print all registers");
1610
1611 add_com ("itrace", class_support, trace_command,
1612 "Enable tracing of instruction execution.");
1613
1614 add_com ("iuntrace", class_support, untrace_command,
1615 "Disable tracing of instruction execution.");
1616
1617 add_com ("itdisassemble", class_vars, tdisassemble_command,
1618 "Disassemble the trace buffer.\n\
1619 Two optional arguments specify a range of trace buffer entries\n\
1620 as reported by info trace (NOT addresses!).");
1621
1622 add_info ("itrace", trace_info,
1623 "Display info about the trace data buffer.");
1624
1625 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1626 var_integer, (char *) &trace_display,
1627 "Set automatic display of trace.\n", &setlist),
1628 &showlist);
1629 add_show_from_set (add_set_cmd ("itracesource", no_class,
1630 var_integer, (char *) &default_trace_show_source,
1631 "Set display of source code with trace.\n", &setlist),
1632 &showlist);
1633
1634 }
This page took 0.068173 seconds and 4 git commands to generate.