Rewrite find_active_thread() and find_tcb() to use ptid_t, instead of
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Martin Hunt, hunt@cygnus.com */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "obstack.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "floatformat.h"
42 #include "sim-d10v.h"
43
44 #undef XMALLOC
45 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
46
47 struct frame_extra_info
48 {
49 CORE_ADDR return_pc;
50 int frameless;
51 int size;
52 };
53
54 struct gdbarch_tdep
55 {
56 int a0_regnum;
57 int nr_dmap_regs;
58 unsigned long (*dmap_register) (int nr);
59 unsigned long (*imap_register) (int nr);
60 };
61
62 /* These are the addresses the D10V-EVA board maps data and
63 instruction memory to. */
64
65 #define DMEM_START 0x2000000
66 #define IMEM_START 0x1000000
67 #define STACK_START 0x0007ffe
68
69 /* d10v register names. */
70
71 enum
72 {
73 R0_REGNUM = 0,
74 LR_REGNUM = 13,
75 PSW_REGNUM = 16,
76 NR_IMAP_REGS = 2,
77 NR_A_REGS = 2
78 };
79 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
80 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
81
82 /* d10v calling convention. */
83
84 #define ARG1_REGNUM R0_REGNUM
85 #define ARGN_REGNUM 3
86 #define RET1_REGNUM R0_REGNUM
87
88 /* Local functions */
89
90 extern void _initialize_d10v_tdep (void);
91
92 static void d10v_eva_prepare_to_trace (void);
93
94 static void d10v_eva_get_trace_data (void);
95
96 static int prologue_find_regs (unsigned short op, struct frame_info *fi,
97 CORE_ADDR addr);
98
99 static void d10v_frame_init_saved_regs (struct frame_info *);
100
101 static void do_d10v_pop_frame (struct frame_info *fi);
102
103 static int
104 d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
105 {
106 return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
107 }
108
109 static CORE_ADDR
110 d10v_stack_align (CORE_ADDR len)
111 {
112 return (len + 1) & ~1;
113 }
114
115 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
116 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
117 and TYPE is the type (which is known to be struct, union or array).
118
119 The d10v returns anything less than 8 bytes in size in
120 registers. */
121
122 static int
123 d10v_use_struct_convention (int gcc_p, struct type *type)
124 {
125 return (TYPE_LENGTH (type) > 8);
126 }
127
128
129 static unsigned char *
130 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
131 {
132 static unsigned char breakpoint[] =
133 {0x2f, 0x90, 0x5e, 0x00};
134 *lenptr = sizeof (breakpoint);
135 return breakpoint;
136 }
137
138 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
139 when the reg_nr isn't valid. */
140
141 enum ts2_regnums
142 {
143 TS2_IMAP0_REGNUM = 32,
144 TS2_DMAP_REGNUM = 34,
145 TS2_NR_DMAP_REGS = 1,
146 TS2_A0_REGNUM = 35
147 };
148
149 static char *
150 d10v_ts2_register_name (int reg_nr)
151 {
152 static char *register_names[] =
153 {
154 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
155 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
156 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
157 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
158 "imap0", "imap1", "dmap", "a0", "a1"
159 };
160 if (reg_nr < 0)
161 return NULL;
162 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
163 return NULL;
164 return register_names[reg_nr];
165 }
166
167 enum ts3_regnums
168 {
169 TS3_IMAP0_REGNUM = 36,
170 TS3_DMAP0_REGNUM = 38,
171 TS3_NR_DMAP_REGS = 4,
172 TS3_A0_REGNUM = 32
173 };
174
175 static char *
176 d10v_ts3_register_name (int reg_nr)
177 {
178 static char *register_names[] =
179 {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
183 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
184 "a0", "a1",
185 "spi", "spu",
186 "imap0", "imap1",
187 "dmap0", "dmap1", "dmap2", "dmap3"
188 };
189 if (reg_nr < 0)
190 return NULL;
191 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
192 return NULL;
193 return register_names[reg_nr];
194 }
195
196 /* Access the DMAP/IMAP registers in a target independent way.
197
198 Divide the D10V's 64k data space into four 16k segments:
199 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
200 0xc000 -- 0xffff.
201
202 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
203 0x7fff) always map to the on-chip data RAM, and the fourth always
204 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
205 unified memory or instruction memory, under the control of the
206 single DMAP register.
207
208 On the TS3, there are four DMAP registers, each of which controls
209 one of the segments. */
210
211 static unsigned long
212 d10v_ts2_dmap_register (int reg_nr)
213 {
214 switch (reg_nr)
215 {
216 case 0:
217 case 1:
218 return 0x2000;
219 case 2:
220 return read_register (TS2_DMAP_REGNUM);
221 default:
222 return 0;
223 }
224 }
225
226 static unsigned long
227 d10v_ts3_dmap_register (int reg_nr)
228 {
229 return read_register (TS3_DMAP0_REGNUM + reg_nr);
230 }
231
232 static unsigned long
233 d10v_dmap_register (int reg_nr)
234 {
235 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
236 }
237
238 static unsigned long
239 d10v_ts2_imap_register (int reg_nr)
240 {
241 return read_register (TS2_IMAP0_REGNUM + reg_nr);
242 }
243
244 static unsigned long
245 d10v_ts3_imap_register (int reg_nr)
246 {
247 return read_register (TS3_IMAP0_REGNUM + reg_nr);
248 }
249
250 static unsigned long
251 d10v_imap_register (int reg_nr)
252 {
253 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
254 }
255
256 /* MAP GDB's internal register numbering (determined by the layout fo
257 the REGISTER_BYTE array) onto the simulator's register
258 numbering. */
259
260 static int
261 d10v_ts2_register_sim_regno (int nr)
262 {
263 if (nr >= TS2_IMAP0_REGNUM
264 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
265 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
266 if (nr == TS2_DMAP_REGNUM)
267 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
268 if (nr >= TS2_A0_REGNUM
269 && nr < TS2_A0_REGNUM + NR_A_REGS)
270 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
271 return nr;
272 }
273
274 static int
275 d10v_ts3_register_sim_regno (int nr)
276 {
277 if (nr >= TS3_IMAP0_REGNUM
278 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
279 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
280 if (nr >= TS3_DMAP0_REGNUM
281 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
282 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
283 if (nr >= TS3_A0_REGNUM
284 && nr < TS3_A0_REGNUM + NR_A_REGS)
285 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
286 return nr;
287 }
288
289 /* Index within `registers' of the first byte of the space for
290 register REG_NR. */
291
292 static int
293 d10v_register_byte (int reg_nr)
294 {
295 if (reg_nr < A0_REGNUM)
296 return (reg_nr * 2);
297 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
298 return (A0_REGNUM * 2
299 + (reg_nr - A0_REGNUM) * 8);
300 else
301 return (A0_REGNUM * 2
302 + NR_A_REGS * 8
303 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
304 }
305
306 /* Number of bytes of storage in the actual machine representation for
307 register REG_NR. */
308
309 static int
310 d10v_register_raw_size (int reg_nr)
311 {
312 if (reg_nr < A0_REGNUM)
313 return 2;
314 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
315 return 8;
316 else
317 return 2;
318 }
319
320 /* Number of bytes of storage in the program's representation
321 for register N. */
322
323 static int
324 d10v_register_virtual_size (int reg_nr)
325 {
326 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
327 }
328
329 /* Return the GDB type object for the "standard" data type
330 of data in register N. */
331
332 static struct type *
333 d10v_register_virtual_type (int reg_nr)
334 {
335 if (reg_nr == PC_REGNUM)
336 return builtin_type_void_func_ptr;
337 else if (reg_nr >= A0_REGNUM
338 && reg_nr < (A0_REGNUM + NR_A_REGS))
339 return builtin_type_int64;
340 else
341 return builtin_type_int16;
342 }
343
344 static CORE_ADDR
345 d10v_make_daddr (CORE_ADDR x)
346 {
347 return ((x) | DMEM_START);
348 }
349
350 static CORE_ADDR
351 d10v_make_iaddr (CORE_ADDR x)
352 {
353 return (((x) << 2) | IMEM_START);
354 }
355
356 static int
357 d10v_daddr_p (CORE_ADDR x)
358 {
359 return (((x) & 0x3000000) == DMEM_START);
360 }
361
362 static int
363 d10v_iaddr_p (CORE_ADDR x)
364 {
365 return (((x) & 0x3000000) == IMEM_START);
366 }
367
368
369 static CORE_ADDR
370 d10v_convert_iaddr_to_raw (CORE_ADDR x)
371 {
372 return (((x) >> 2) & 0xffff);
373 }
374
375 static CORE_ADDR
376 d10v_convert_daddr_to_raw (CORE_ADDR x)
377 {
378 return ((x) & 0xffff);
379 }
380
381 static void
382 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
383 {
384 /* Is it a code address? */
385 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
386 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
387 {
388 #if 0
389 if (! d10v_iaddr_p (addr))
390 {
391 warning_begin ();
392 fprintf_unfiltered (gdb_stderr, "address `");
393 print_address_numeric (addr, 1, gdb_stderr);
394 fprintf_unfiltered (gdb_stderr, "' is not a code address\n");
395 }
396 #endif
397
398 store_unsigned_integer (buf, TYPE_LENGTH (type),
399 d10v_convert_iaddr_to_raw (addr));
400 }
401 else
402 {
403 /* Strip off any upper segment bits. */
404 store_unsigned_integer (buf, TYPE_LENGTH (type),
405 d10v_convert_daddr_to_raw (addr));
406 }
407 }
408
409 static CORE_ADDR
410 d10v_pointer_to_address (struct type *type, void *buf)
411 {
412 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
413
414 /* Is it a code address? */
415 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
416 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
417 return d10v_make_iaddr (addr);
418 else
419 return d10v_make_daddr (addr);
420 }
421
422
423 /* Store the address of the place in which to copy the structure the
424 subroutine will return. This is called from call_function.
425
426 We store structs through a pointer passed in the first Argument
427 register. */
428
429 static void
430 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
431 {
432 write_register (ARG1_REGNUM, (addr));
433 }
434
435 /* Write into appropriate registers a function return value
436 of type TYPE, given in virtual format.
437
438 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
439
440 static void
441 d10v_store_return_value (struct type *type, char *valbuf)
442 {
443 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
444 valbuf,
445 TYPE_LENGTH (type));
446 }
447
448 /* Extract from an array REGBUF containing the (raw) register state
449 the address in which a function should return its structure value,
450 as a CORE_ADDR (or an expression that can be used as one). */
451
452 static CORE_ADDR
453 d10v_extract_struct_value_address (char *regbuf)
454 {
455 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
456 REGISTER_RAW_SIZE (ARG1_REGNUM))
457 | DMEM_START);
458 }
459
460 static CORE_ADDR
461 d10v_frame_saved_pc (struct frame_info *frame)
462 {
463 return ((frame)->extra_info->return_pc);
464 }
465
466 /* Immediately after a function call, return the saved pc. We can't
467 use frame->return_pc beause that is determined by reading R13 off
468 the stack and that may not be written yet. */
469
470 static CORE_ADDR
471 d10v_saved_pc_after_call (struct frame_info *frame)
472 {
473 return ((read_register (LR_REGNUM) << 2)
474 | IMEM_START);
475 }
476
477 /* Discard from the stack the innermost frame, restoring all saved
478 registers. */
479
480 static void
481 d10v_pop_frame (void)
482 {
483 generic_pop_current_frame (do_d10v_pop_frame);
484 }
485
486 static void
487 do_d10v_pop_frame (struct frame_info *fi)
488 {
489 CORE_ADDR fp;
490 int regnum;
491 char raw_buffer[8];
492
493 fp = FRAME_FP (fi);
494 /* fill out fsr with the address of where each */
495 /* register was stored in the frame */
496 d10v_frame_init_saved_regs (fi);
497
498 /* now update the current registers with the old values */
499 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
500 {
501 if (fi->saved_regs[regnum])
502 {
503 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
504 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
505 }
506 }
507 for (regnum = 0; regnum < SP_REGNUM; regnum++)
508 {
509 if (fi->saved_regs[regnum])
510 {
511 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
512 }
513 }
514 if (fi->saved_regs[PSW_REGNUM])
515 {
516 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
517 }
518
519 write_register (PC_REGNUM, read_register (LR_REGNUM));
520 write_register (SP_REGNUM, fp + fi->extra_info->size);
521 target_store_registers (-1);
522 flush_cached_frames ();
523 }
524
525 static int
526 check_prologue (unsigned short op)
527 {
528 /* st rn, @-sp */
529 if ((op & 0x7E1F) == 0x6C1F)
530 return 1;
531
532 /* st2w rn, @-sp */
533 if ((op & 0x7E3F) == 0x6E1F)
534 return 1;
535
536 /* subi sp, n */
537 if ((op & 0x7FE1) == 0x01E1)
538 return 1;
539
540 /* mv r11, sp */
541 if (op == 0x417E)
542 return 1;
543
544 /* nop */
545 if (op == 0x5E00)
546 return 1;
547
548 /* st rn, @sp */
549 if ((op & 0x7E1F) == 0x681E)
550 return 1;
551
552 /* st2w rn, @sp */
553 if ((op & 0x7E3F) == 0x3A1E)
554 return 1;
555
556 return 0;
557 }
558
559 static CORE_ADDR
560 d10v_skip_prologue (CORE_ADDR pc)
561 {
562 unsigned long op;
563 unsigned short op1, op2;
564 CORE_ADDR func_addr, func_end;
565 struct symtab_and_line sal;
566
567 /* If we have line debugging information, then the end of the */
568 /* prologue should the first assembly instruction of the first source line */
569 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
570 {
571 sal = find_pc_line (func_addr, 0);
572 if (sal.end && sal.end < func_end)
573 return sal.end;
574 }
575
576 if (target_read_memory (pc, (char *) &op, 4))
577 return pc; /* Can't access it -- assume no prologue. */
578
579 while (1)
580 {
581 op = (unsigned long) read_memory_integer (pc, 4);
582 if ((op & 0xC0000000) == 0xC0000000)
583 {
584 /* long instruction */
585 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
586 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
587 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
588 break;
589 }
590 else
591 {
592 /* short instructions */
593 if ((op & 0xC0000000) == 0x80000000)
594 {
595 op2 = (op & 0x3FFF8000) >> 15;
596 op1 = op & 0x7FFF;
597 }
598 else
599 {
600 op1 = (op & 0x3FFF8000) >> 15;
601 op2 = op & 0x7FFF;
602 }
603 if (check_prologue (op1))
604 {
605 if (!check_prologue (op2))
606 {
607 /* if the previous opcode was really part of the prologue */
608 /* and not just a NOP, then we want to break after both instructions */
609 if (op1 != 0x5E00)
610 pc += 4;
611 break;
612 }
613 }
614 else
615 break;
616 }
617 pc += 4;
618 }
619 return pc;
620 }
621
622 /* Given a GDB frame, determine the address of the calling function's frame.
623 This will be used to create a new GDB frame struct, and then
624 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
625 */
626
627 static CORE_ADDR
628 d10v_frame_chain (struct frame_info *fi)
629 {
630 d10v_frame_init_saved_regs (fi);
631
632 if (fi->extra_info->return_pc == IMEM_START
633 || inside_entry_file (fi->extra_info->return_pc))
634 return (CORE_ADDR) 0;
635
636 if (!fi->saved_regs[FP_REGNUM])
637 {
638 if (!fi->saved_regs[SP_REGNUM]
639 || fi->saved_regs[SP_REGNUM] == STACK_START)
640 return (CORE_ADDR) 0;
641
642 return fi->saved_regs[SP_REGNUM];
643 }
644
645 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
646 REGISTER_RAW_SIZE (FP_REGNUM)))
647 return (CORE_ADDR) 0;
648
649 return d10v_make_daddr (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
650 REGISTER_RAW_SIZE (FP_REGNUM)));
651 }
652
653 static int next_addr, uses_frame;
654
655 static int
656 prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
657 {
658 int n;
659
660 /* st rn, @-sp */
661 if ((op & 0x7E1F) == 0x6C1F)
662 {
663 n = (op & 0x1E0) >> 5;
664 next_addr -= 2;
665 fi->saved_regs[n] = next_addr;
666 return 1;
667 }
668
669 /* st2w rn, @-sp */
670 else if ((op & 0x7E3F) == 0x6E1F)
671 {
672 n = (op & 0x1E0) >> 5;
673 next_addr -= 4;
674 fi->saved_regs[n] = next_addr;
675 fi->saved_regs[n + 1] = next_addr + 2;
676 return 1;
677 }
678
679 /* subi sp, n */
680 if ((op & 0x7FE1) == 0x01E1)
681 {
682 n = (op & 0x1E) >> 1;
683 if (n == 0)
684 n = 16;
685 next_addr -= n;
686 return 1;
687 }
688
689 /* mv r11, sp */
690 if (op == 0x417E)
691 {
692 uses_frame = 1;
693 return 1;
694 }
695
696 /* nop */
697 if (op == 0x5E00)
698 return 1;
699
700 /* st rn, @sp */
701 if ((op & 0x7E1F) == 0x681E)
702 {
703 n = (op & 0x1E0) >> 5;
704 fi->saved_regs[n] = next_addr;
705 return 1;
706 }
707
708 /* st2w rn, @sp */
709 if ((op & 0x7E3F) == 0x3A1E)
710 {
711 n = (op & 0x1E0) >> 5;
712 fi->saved_regs[n] = next_addr;
713 fi->saved_regs[n + 1] = next_addr + 2;
714 return 1;
715 }
716
717 return 0;
718 }
719
720 /* Put here the code to store, into fi->saved_regs, the addresses of
721 the saved registers of frame described by FRAME_INFO. This
722 includes special registers such as pc and fp saved in special ways
723 in the stack frame. sp is even more special: the address we return
724 for it IS the sp for the next frame. */
725
726 static void
727 d10v_frame_init_saved_regs (struct frame_info *fi)
728 {
729 CORE_ADDR fp, pc;
730 unsigned long op;
731 unsigned short op1, op2;
732 int i;
733
734 fp = fi->frame;
735 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
736 next_addr = 0;
737
738 pc = get_pc_function_start (fi->pc);
739
740 uses_frame = 0;
741 while (1)
742 {
743 op = (unsigned long) read_memory_integer (pc, 4);
744 if ((op & 0xC0000000) == 0xC0000000)
745 {
746 /* long instruction */
747 if ((op & 0x3FFF0000) == 0x01FF0000)
748 {
749 /* add3 sp,sp,n */
750 short n = op & 0xFFFF;
751 next_addr += n;
752 }
753 else if ((op & 0x3F0F0000) == 0x340F0000)
754 {
755 /* st rn, @(offset,sp) */
756 short offset = op & 0xFFFF;
757 short n = (op >> 20) & 0xF;
758 fi->saved_regs[n] = next_addr + offset;
759 }
760 else if ((op & 0x3F1F0000) == 0x350F0000)
761 {
762 /* st2w rn, @(offset,sp) */
763 short offset = op & 0xFFFF;
764 short n = (op >> 20) & 0xF;
765 fi->saved_regs[n] = next_addr + offset;
766 fi->saved_regs[n + 1] = next_addr + offset + 2;
767 }
768 else
769 break;
770 }
771 else
772 {
773 /* short instructions */
774 if ((op & 0xC0000000) == 0x80000000)
775 {
776 op2 = (op & 0x3FFF8000) >> 15;
777 op1 = op & 0x7FFF;
778 }
779 else
780 {
781 op1 = (op & 0x3FFF8000) >> 15;
782 op2 = op & 0x7FFF;
783 }
784 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
785 break;
786 }
787 pc += 4;
788 }
789
790 fi->extra_info->size = -next_addr;
791
792 if (!(fp & 0xffff))
793 fp = d10v_make_daddr (read_register (SP_REGNUM));
794
795 for (i = 0; i < NUM_REGS - 1; i++)
796 if (fi->saved_regs[i])
797 {
798 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
799 }
800
801 if (fi->saved_regs[LR_REGNUM])
802 {
803 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
804 fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
805 }
806 else
807 {
808 fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
809 }
810
811 /* th SP is not normally (ever?) saved, but check anyway */
812 if (!fi->saved_regs[SP_REGNUM])
813 {
814 /* if the FP was saved, that means the current FP is valid, */
815 /* otherwise, it isn't being used, so we use the SP instead */
816 if (uses_frame)
817 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
818 else
819 {
820 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
821 fi->extra_info->frameless = 1;
822 fi->saved_regs[FP_REGNUM] = 0;
823 }
824 }
825 }
826
827 static void
828 d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
829 {
830 fi->extra_info = (struct frame_extra_info *)
831 frame_obstack_alloc (sizeof (struct frame_extra_info));
832 frame_saved_regs_zalloc (fi);
833
834 fi->extra_info->frameless = 0;
835 fi->extra_info->size = 0;
836 fi->extra_info->return_pc = 0;
837
838 /* The call dummy doesn't save any registers on the stack, so we can
839 return now. */
840 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
841 {
842 return;
843 }
844 else
845 {
846 d10v_frame_init_saved_regs (fi);
847 }
848 }
849
850 static void
851 show_regs (char *args, int from_tty)
852 {
853 int a;
854 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
855 (long) read_register (PC_REGNUM),
856 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
857 (long) read_register (PSW_REGNUM),
858 (long) read_register (24),
859 (long) read_register (25),
860 (long) read_register (23));
861 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
862 (long) read_register (0),
863 (long) read_register (1),
864 (long) read_register (2),
865 (long) read_register (3),
866 (long) read_register (4),
867 (long) read_register (5),
868 (long) read_register (6),
869 (long) read_register (7));
870 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
871 (long) read_register (8),
872 (long) read_register (9),
873 (long) read_register (10),
874 (long) read_register (11),
875 (long) read_register (12),
876 (long) read_register (13),
877 (long) read_register (14),
878 (long) read_register (15));
879 for (a = 0; a < NR_IMAP_REGS; a++)
880 {
881 if (a > 0)
882 printf_filtered (" ");
883 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
884 }
885 if (NR_DMAP_REGS == 1)
886 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
887 else
888 {
889 for (a = 0; a < NR_DMAP_REGS; a++)
890 {
891 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
892 }
893 printf_filtered ("\n");
894 }
895 printf_filtered ("A0-A%d", NR_A_REGS - 1);
896 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
897 {
898 char num[MAX_REGISTER_RAW_SIZE];
899 int i;
900 printf_filtered (" ");
901 read_register_gen (a, (char *) &num);
902 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
903 {
904 printf_filtered ("%02x", (num[i] & 0xff));
905 }
906 }
907 printf_filtered ("\n");
908 }
909
910 static CORE_ADDR
911 d10v_read_pc (ptid_t ptid)
912 {
913 ptid_t save_ptid;
914 CORE_ADDR pc;
915 CORE_ADDR retval;
916
917 save_ptid = inferior_ptid;
918 inferior_ptid = ptid;
919 pc = (int) read_register (PC_REGNUM);
920 inferior_ptid = save_ptid;
921 retval = d10v_make_iaddr (pc);
922 return retval;
923 }
924
925 static void
926 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
927 {
928 ptid_t save_ptid;
929
930 save_ptid = inferior_ptid;
931 inferior_ptid = ptid;
932 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
933 inferior_ptid = save_ptid;
934 }
935
936 static CORE_ADDR
937 d10v_read_sp (void)
938 {
939 return (d10v_make_daddr (read_register (SP_REGNUM)));
940 }
941
942 static void
943 d10v_write_sp (CORE_ADDR val)
944 {
945 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
946 }
947
948 static void
949 d10v_write_fp (CORE_ADDR val)
950 {
951 write_register (FP_REGNUM, d10v_convert_daddr_to_raw (val));
952 }
953
954 static CORE_ADDR
955 d10v_read_fp (void)
956 {
957 return (d10v_make_daddr (read_register (FP_REGNUM)));
958 }
959
960 /* Function: push_return_address (pc)
961 Set up the return address for the inferior function call.
962 Needed for targets where we don't actually execute a JSR/BSR instruction */
963
964 static CORE_ADDR
965 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
966 {
967 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
968 return sp;
969 }
970
971
972 /* When arguments must be pushed onto the stack, they go on in reverse
973 order. The below implements a FILO (stack) to do this. */
974
975 struct stack_item
976 {
977 int len;
978 struct stack_item *prev;
979 void *data;
980 };
981
982 static struct stack_item *push_stack_item (struct stack_item *prev,
983 void *contents, int len);
984 static struct stack_item *
985 push_stack_item (struct stack_item *prev, void *contents, int len)
986 {
987 struct stack_item *si;
988 si = xmalloc (sizeof (struct stack_item));
989 si->data = xmalloc (len);
990 si->len = len;
991 si->prev = prev;
992 memcpy (si->data, contents, len);
993 return si;
994 }
995
996 static struct stack_item *pop_stack_item (struct stack_item *si);
997 static struct stack_item *
998 pop_stack_item (struct stack_item *si)
999 {
1000 struct stack_item *dead = si;
1001 si = si->prev;
1002 xfree (dead->data);
1003 xfree (dead);
1004 return si;
1005 }
1006
1007
1008 static CORE_ADDR
1009 d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1010 int struct_return, CORE_ADDR struct_addr)
1011 {
1012 int i;
1013 int regnum = ARG1_REGNUM;
1014 struct stack_item *si = NULL;
1015
1016 /* Fill in registers and arg lists */
1017 for (i = 0; i < nargs; i++)
1018 {
1019 struct value *arg = args[i];
1020 struct type *type = check_typedef (VALUE_TYPE (arg));
1021 char *contents = VALUE_CONTENTS (arg);
1022 int len = TYPE_LENGTH (type);
1023 /* printf ("push: type=%d len=%d\n", type->code, len); */
1024 {
1025 int aligned_regnum = (regnum + 1) & ~1;
1026 if (len <= 2 && regnum <= ARGN_REGNUM)
1027 /* fits in a single register, do not align */
1028 {
1029 long val = extract_unsigned_integer (contents, len);
1030 write_register (regnum++, val);
1031 }
1032 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1033 /* value fits in remaining registers, store keeping left
1034 aligned */
1035 {
1036 int b;
1037 regnum = aligned_regnum;
1038 for (b = 0; b < (len & ~1); b += 2)
1039 {
1040 long val = extract_unsigned_integer (&contents[b], 2);
1041 write_register (regnum++, val);
1042 }
1043 if (b < len)
1044 {
1045 long val = extract_unsigned_integer (&contents[b], 1);
1046 write_register (regnum++, (val << 8));
1047 }
1048 }
1049 else
1050 {
1051 /* arg will go onto stack */
1052 regnum = ARGN_REGNUM + 1;
1053 si = push_stack_item (si, contents, len);
1054 }
1055 }
1056 }
1057
1058 while (si)
1059 {
1060 sp = (sp - si->len) & ~1;
1061 write_memory (sp, si->data, si->len);
1062 si = pop_stack_item (si);
1063 }
1064
1065 return sp;
1066 }
1067
1068
1069 /* Given a return value in `regbuf' with a type `valtype',
1070 extract and copy its value into `valbuf'. */
1071
1072 static void
1073 d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1074 char *valbuf)
1075 {
1076 int len;
1077 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1078 {
1079 len = TYPE_LENGTH (type);
1080 if (len == 1)
1081 {
1082 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1083 store_unsigned_integer (valbuf, 1, c);
1084 }
1085 else if ((len & 1) == 0)
1086 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1087 else
1088 {
1089 /* For return values of odd size, the first byte is in the
1090 least significant part of the first register. The
1091 remaining bytes in remaining registers. Interestingly,
1092 when such values are passed in, the last byte is in the
1093 most significant byte of that same register - wierd. */
1094 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1095 }
1096 }
1097 }
1098
1099 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1100 understands. Returns number of bytes that can be transfered
1101 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1102 (segmentation fault). Since the simulator knows all about how the
1103 VM system works, we just call that to do the translation. */
1104
1105 static void
1106 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1107 CORE_ADDR *targ_addr, int *targ_len)
1108 {
1109 long out_addr;
1110 long out_len;
1111 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1112 &out_addr,
1113 d10v_dmap_register,
1114 d10v_imap_register);
1115 *targ_addr = out_addr;
1116 *targ_len = out_len;
1117 }
1118
1119
1120 /* The following code implements access to, and display of, the D10V's
1121 instruction trace buffer. The buffer consists of 64K or more
1122 4-byte words of data, of which each words includes an 8-bit count,
1123 an 8-bit segment number, and a 16-bit instruction address.
1124
1125 In theory, the trace buffer is continuously capturing instruction
1126 data that the CPU presents on its "debug bus", but in practice, the
1127 ROMified GDB stub only enables tracing when it continues or steps
1128 the program, and stops tracing when the program stops; so it
1129 actually works for GDB to read the buffer counter out of memory and
1130 then read each trace word. The counter records where the tracing
1131 stops, but there is no record of where it started, so we remember
1132 the PC when we resumed and then search backwards in the trace
1133 buffer for a word that includes that address. This is not perfect,
1134 because you will miss trace data if the resumption PC is the target
1135 of a branch. (The value of the buffer counter is semi-random, any
1136 trace data from a previous program stop is gone.) */
1137
1138 /* The address of the last word recorded in the trace buffer. */
1139
1140 #define DBBC_ADDR (0xd80000)
1141
1142 /* The base of the trace buffer, at least for the "Board_0". */
1143
1144 #define TRACE_BUFFER_BASE (0xf40000)
1145
1146 static void trace_command (char *, int);
1147
1148 static void untrace_command (char *, int);
1149
1150 static void trace_info (char *, int);
1151
1152 static void tdisassemble_command (char *, int);
1153
1154 static void display_trace (int, int);
1155
1156 /* True when instruction traces are being collected. */
1157
1158 static int tracing;
1159
1160 /* Remembered PC. */
1161
1162 static CORE_ADDR last_pc;
1163
1164 /* True when trace output should be displayed whenever program stops. */
1165
1166 static int trace_display;
1167
1168 /* True when trace listing should include source lines. */
1169
1170 static int default_trace_show_source = 1;
1171
1172 struct trace_buffer
1173 {
1174 int size;
1175 short *counts;
1176 CORE_ADDR *addrs;
1177 }
1178 trace_data;
1179
1180 static void
1181 trace_command (char *args, int from_tty)
1182 {
1183 /* Clear the host-side trace buffer, allocating space if needed. */
1184 trace_data.size = 0;
1185 if (trace_data.counts == NULL)
1186 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1187 if (trace_data.addrs == NULL)
1188 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1189
1190 tracing = 1;
1191
1192 printf_filtered ("Tracing is now on.\n");
1193 }
1194
1195 static void
1196 untrace_command (char *args, int from_tty)
1197 {
1198 tracing = 0;
1199
1200 printf_filtered ("Tracing is now off.\n");
1201 }
1202
1203 static void
1204 trace_info (char *args, int from_tty)
1205 {
1206 int i;
1207
1208 if (trace_data.size)
1209 {
1210 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1211
1212 for (i = 0; i < trace_data.size; ++i)
1213 {
1214 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1215 i,
1216 trace_data.counts[i],
1217 (trace_data.counts[i] == 1 ? "" : "s"),
1218 paddr_nz (trace_data.addrs[i]));
1219 }
1220 }
1221 else
1222 printf_filtered ("No entries in trace buffer.\n");
1223
1224 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1225 }
1226
1227 /* Print the instruction at address MEMADDR in debugged memory,
1228 on STREAM. Returns length of the instruction, in bytes. */
1229
1230 static int
1231 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1232 {
1233 /* If there's no disassembler, something is very wrong. */
1234 if (tm_print_insn == NULL)
1235 internal_error (__FILE__, __LINE__,
1236 "print_insn: no disassembler");
1237
1238 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1239 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1240 else
1241 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1242 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
1243 }
1244
1245 static void
1246 d10v_eva_prepare_to_trace (void)
1247 {
1248 if (!tracing)
1249 return;
1250
1251 last_pc = read_register (PC_REGNUM);
1252 }
1253
1254 /* Collect trace data from the target board and format it into a form
1255 more useful for display. */
1256
1257 static void
1258 d10v_eva_get_trace_data (void)
1259 {
1260 int count, i, j, oldsize;
1261 int trace_addr, trace_seg, trace_cnt, next_cnt;
1262 unsigned int last_trace, trace_word, next_word;
1263 unsigned int *tmpspace;
1264
1265 if (!tracing)
1266 return;
1267
1268 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1269
1270 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1271
1272 /* Collect buffer contents from the target, stopping when we reach
1273 the word recorded when execution resumed. */
1274
1275 count = 0;
1276 while (last_trace > 0)
1277 {
1278 QUIT;
1279 trace_word =
1280 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1281 trace_addr = trace_word & 0xffff;
1282 last_trace -= 4;
1283 /* Ignore an apparently nonsensical entry. */
1284 if (trace_addr == 0xffd5)
1285 continue;
1286 tmpspace[count++] = trace_word;
1287 if (trace_addr == last_pc)
1288 break;
1289 if (count > 65535)
1290 break;
1291 }
1292
1293 /* Move the data to the host-side trace buffer, adjusting counts to
1294 include the last instruction executed and transforming the address
1295 into something that GDB likes. */
1296
1297 for (i = 0; i < count; ++i)
1298 {
1299 trace_word = tmpspace[i];
1300 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1301 trace_addr = trace_word & 0xffff;
1302 next_cnt = (next_word >> 24) & 0xff;
1303 j = trace_data.size + count - i - 1;
1304 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1305 trace_data.counts[j] = next_cnt + 1;
1306 }
1307
1308 oldsize = trace_data.size;
1309 trace_data.size += count;
1310
1311 xfree (tmpspace);
1312
1313 if (trace_display)
1314 display_trace (oldsize, trace_data.size);
1315 }
1316
1317 static void
1318 tdisassemble_command (char *arg, int from_tty)
1319 {
1320 int i, count;
1321 CORE_ADDR low, high;
1322 char *space_index;
1323
1324 if (!arg)
1325 {
1326 low = 0;
1327 high = trace_data.size;
1328 }
1329 else if (!(space_index = (char *) strchr (arg, ' ')))
1330 {
1331 low = parse_and_eval_address (arg);
1332 high = low + 5;
1333 }
1334 else
1335 {
1336 /* Two arguments. */
1337 *space_index = '\0';
1338 low = parse_and_eval_address (arg);
1339 high = parse_and_eval_address (space_index + 1);
1340 if (high < low)
1341 high = low;
1342 }
1343
1344 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1345
1346 display_trace (low, high);
1347
1348 printf_filtered ("End of trace dump.\n");
1349 gdb_flush (gdb_stdout);
1350 }
1351
1352 static void
1353 display_trace (int low, int high)
1354 {
1355 int i, count, trace_show_source, first, suppress;
1356 CORE_ADDR next_address;
1357
1358 trace_show_source = default_trace_show_source;
1359 if (!have_full_symbols () && !have_partial_symbols ())
1360 {
1361 trace_show_source = 0;
1362 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1363 printf_filtered ("Trace will not display any source.\n");
1364 }
1365
1366 first = 1;
1367 suppress = 0;
1368 for (i = low; i < high; ++i)
1369 {
1370 next_address = trace_data.addrs[i];
1371 count = trace_data.counts[i];
1372 while (count-- > 0)
1373 {
1374 QUIT;
1375 if (trace_show_source)
1376 {
1377 struct symtab_and_line sal, sal_prev;
1378
1379 sal_prev = find_pc_line (next_address - 4, 0);
1380 sal = find_pc_line (next_address, 0);
1381
1382 if (sal.symtab)
1383 {
1384 if (first || sal.line != sal_prev.line)
1385 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1386 suppress = 0;
1387 }
1388 else
1389 {
1390 if (!suppress)
1391 /* FIXME-32x64--assumes sal.pc fits in long. */
1392 printf_filtered ("No source file for address %s.\n",
1393 local_hex_string ((unsigned long) sal.pc));
1394 suppress = 1;
1395 }
1396 }
1397 first = 0;
1398 print_address (next_address, gdb_stdout);
1399 printf_filtered (":");
1400 printf_filtered ("\t");
1401 wrap_here (" ");
1402 next_address = next_address + print_insn (next_address, gdb_stdout);
1403 printf_filtered ("\n");
1404 gdb_flush (gdb_stdout);
1405 }
1406 }
1407 }
1408
1409
1410 static gdbarch_init_ftype d10v_gdbarch_init;
1411
1412 static struct gdbarch *
1413 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1414 {
1415 static LONGEST d10v_call_dummy_words[] =
1416 {0};
1417 struct gdbarch *gdbarch;
1418 int d10v_num_regs;
1419 struct gdbarch_tdep *tdep;
1420 gdbarch_register_name_ftype *d10v_register_name;
1421 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1422
1423 /* Find a candidate among the list of pre-declared architectures. */
1424 arches = gdbarch_list_lookup_by_info (arches, &info);
1425 if (arches != NULL)
1426 return arches->gdbarch;
1427
1428 /* None found, create a new architecture from the information
1429 provided. */
1430 tdep = XMALLOC (struct gdbarch_tdep);
1431 gdbarch = gdbarch_alloc (&info, tdep);
1432
1433 switch (info.bfd_arch_info->mach)
1434 {
1435 case bfd_mach_d10v_ts2:
1436 d10v_num_regs = 37;
1437 d10v_register_name = d10v_ts2_register_name;
1438 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1439 tdep->a0_regnum = TS2_A0_REGNUM;
1440 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1441 tdep->dmap_register = d10v_ts2_dmap_register;
1442 tdep->imap_register = d10v_ts2_imap_register;
1443 break;
1444 default:
1445 case bfd_mach_d10v_ts3:
1446 d10v_num_regs = 42;
1447 d10v_register_name = d10v_ts3_register_name;
1448 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1449 tdep->a0_regnum = TS3_A0_REGNUM;
1450 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1451 tdep->dmap_register = d10v_ts3_dmap_register;
1452 tdep->imap_register = d10v_ts3_imap_register;
1453 break;
1454 }
1455
1456 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1457 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1458 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1459 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1460 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1461 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1462
1463 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1464 set_gdbarch_sp_regnum (gdbarch, 15);
1465 set_gdbarch_fp_regnum (gdbarch, 11);
1466 set_gdbarch_pc_regnum (gdbarch, 18);
1467 set_gdbarch_register_name (gdbarch, d10v_register_name);
1468 set_gdbarch_register_size (gdbarch, 2);
1469 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1470 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1471 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1472 set_gdbarch_max_register_raw_size (gdbarch, 8);
1473 set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
1474 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1475 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1476
1477 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_addr_bit (gdbarch, 32);
1479 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1480 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1481 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1482 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1483 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1484 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1486 double'' is 64 bits. */
1487 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1488 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1489 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1490 switch (info.byte_order)
1491 {
1492 case BIG_ENDIAN:
1493 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1494 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1495 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1496 break;
1497 case LITTLE_ENDIAN:
1498 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1499 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1500 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1501 break;
1502 default:
1503 internal_error (__FILE__, __LINE__,
1504 "d10v_gdbarch_init: bad byte order for float format");
1505 }
1506
1507 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1508 set_gdbarch_call_dummy_length (gdbarch, 0);
1509 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1510 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1511 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1512 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1513 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1514 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1515 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1516 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1517 set_gdbarch_call_dummy_p (gdbarch, 1);
1518 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1519 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1520 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1521
1522 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1523 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1524 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1525 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1526
1527 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1528 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1529 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1530 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1531
1532 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1533 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1534
1535 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1536
1537 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1538 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1539 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1540 set_gdbarch_function_start_offset (gdbarch, 0);
1541 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1542
1543 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1544
1545 set_gdbarch_frame_args_skip (gdbarch, 0);
1546 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1547 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1548 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1549 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1550 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1551 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1552 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1553 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1554 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1555
1556 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1557 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1558
1559 return gdbarch;
1560 }
1561
1562
1563 extern void (*target_resume_hook) (void);
1564 extern void (*target_wait_loop_hook) (void);
1565
1566 void
1567 _initialize_d10v_tdep (void)
1568 {
1569 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1570
1571 tm_print_insn = print_insn_d10v;
1572
1573 target_resume_hook = d10v_eva_prepare_to_trace;
1574 target_wait_loop_hook = d10v_eva_get_trace_data;
1575
1576 add_com ("regs", class_vars, show_regs, "Print all registers");
1577
1578 add_com ("itrace", class_support, trace_command,
1579 "Enable tracing of instruction execution.");
1580
1581 add_com ("iuntrace", class_support, untrace_command,
1582 "Disable tracing of instruction execution.");
1583
1584 add_com ("itdisassemble", class_vars, tdisassemble_command,
1585 "Disassemble the trace buffer.\n\
1586 Two optional arguments specify a range of trace buffer entries\n\
1587 as reported by info trace (NOT addresses!).");
1588
1589 add_info ("itrace", trace_info,
1590 "Display info about the trace data buffer.");
1591
1592 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1593 var_integer, (char *) &trace_display,
1594 "Set automatic display of trace.\n", &setlist),
1595 &showlist);
1596 add_show_from_set (add_set_cmd ("itracesource", no_class,
1597 var_integer, (char *) &default_trace_show_source,
1598 "Set display of source code with trace.\n", &setlist),
1599 &showlist);
1600
1601 }
This page took 0.095901 seconds and 4 git commands to generate.