* sim-d10v.h: Delete file. Moved to include/gdb/.
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Contributed by Martin Hunt, hunt@cygnus.com */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdb_string.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "floatformat.h"
43 #include "gdb/sim-d10v.h"
44
45 struct frame_extra_info
46 {
47 CORE_ADDR return_pc;
48 int frameless;
49 int size;
50 };
51
52 struct gdbarch_tdep
53 {
54 int a0_regnum;
55 int nr_dmap_regs;
56 unsigned long (*dmap_register) (int nr);
57 unsigned long (*imap_register) (int nr);
58 };
59
60 /* These are the addresses the D10V-EVA board maps data and
61 instruction memory to. */
62
63 enum memspace {
64 DMEM_START = 0x2000000,
65 IMEM_START = 0x1000000,
66 STACK_START = 0x200bffe
67 };
68
69 /* d10v register names. */
70
71 enum
72 {
73 R0_REGNUM = 0,
74 R3_REGNUM = 3,
75 _FP_REGNUM = 11,
76 LR_REGNUM = 13,
77 _SP_REGNUM = 15,
78 PSW_REGNUM = 16,
79 _PC_REGNUM = 18,
80 NR_IMAP_REGS = 2,
81 NR_A_REGS = 2,
82 TS2_NUM_REGS = 37,
83 TS3_NUM_REGS = 42,
84 /* d10v calling convention. */
85 ARG1_REGNUM = R0_REGNUM,
86 ARGN_REGNUM = R3_REGNUM,
87 RET1_REGNUM = R0_REGNUM,
88 };
89
90 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
91 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
92
93 /* Local functions */
94
95 extern void _initialize_d10v_tdep (void);
96
97 static void d10v_eva_prepare_to_trace (void);
98
99 static void d10v_eva_get_trace_data (void);
100
101 static int prologue_find_regs (unsigned short op, struct frame_info *fi,
102 CORE_ADDR addr);
103
104 static void d10v_frame_init_saved_regs (struct frame_info *);
105
106 static void do_d10v_pop_frame (struct frame_info *fi);
107
108 static int
109 d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
110 {
111 if (chain != 0 && frame != NULL)
112 {
113 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
114 return 1; /* Path back from a call dummy must be valid. */
115 return ((frame)->pc > IMEM_START
116 && !inside_main_func (frame->pc));
117 }
118 else return 0;
119 }
120
121 static CORE_ADDR
122 d10v_stack_align (CORE_ADDR len)
123 {
124 return (len + 1) & ~1;
125 }
126
127 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
128 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
129 and TYPE is the type (which is known to be struct, union or array).
130
131 The d10v returns anything less than 8 bytes in size in
132 registers. */
133
134 static int
135 d10v_use_struct_convention (int gcc_p, struct type *type)
136 {
137 long alignment;
138 int i;
139 /* The d10v only passes a struct in a register when that structure
140 has an alignment that matches the size of a register. */
141 /* If the structure doesn't fit in 4 registers, put it on the
142 stack. */
143 if (TYPE_LENGTH (type) > 8)
144 return 1;
145 /* If the struct contains only one field, don't put it on the stack
146 - gcc can fit it in one or more registers. */
147 if (TYPE_NFIELDS (type) == 1)
148 return 0;
149 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
150 for (i = 1; i < TYPE_NFIELDS (type); i++)
151 {
152 /* If the alignment changes, just assume it goes on the
153 stack. */
154 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
155 return 1;
156 }
157 /* If the alignment is suitable for the d10v's 16 bit registers,
158 don't put it on the stack. */
159 if (alignment == 2 || alignment == 4)
160 return 0;
161 return 1;
162 }
163
164
165 static const unsigned char *
166 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
167 {
168 static unsigned char breakpoint[] =
169 {0x2f, 0x90, 0x5e, 0x00};
170 *lenptr = sizeof (breakpoint);
171 return breakpoint;
172 }
173
174 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
175 when the reg_nr isn't valid. */
176
177 enum ts2_regnums
178 {
179 TS2_IMAP0_REGNUM = 32,
180 TS2_DMAP_REGNUM = 34,
181 TS2_NR_DMAP_REGS = 1,
182 TS2_A0_REGNUM = 35
183 };
184
185 static char *
186 d10v_ts2_register_name (int reg_nr)
187 {
188 static char *register_names[] =
189 {
190 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
191 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
192 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
193 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
194 "imap0", "imap1", "dmap", "a0", "a1"
195 };
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201 }
202
203 enum ts3_regnums
204 {
205 TS3_IMAP0_REGNUM = 36,
206 TS3_DMAP0_REGNUM = 38,
207 TS3_NR_DMAP_REGS = 4,
208 TS3_A0_REGNUM = 32
209 };
210
211 static char *
212 d10v_ts3_register_name (int reg_nr)
213 {
214 static char *register_names[] =
215 {
216 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
217 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
218 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
219 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
220 "a0", "a1",
221 "spi", "spu",
222 "imap0", "imap1",
223 "dmap0", "dmap1", "dmap2", "dmap3"
224 };
225 if (reg_nr < 0)
226 return NULL;
227 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
228 return NULL;
229 return register_names[reg_nr];
230 }
231
232 /* Access the DMAP/IMAP registers in a target independent way.
233
234 Divide the D10V's 64k data space into four 16k segments:
235 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
236 0xc000 -- 0xffff.
237
238 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
239 0x7fff) always map to the on-chip data RAM, and the fourth always
240 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
241 unified memory or instruction memory, under the control of the
242 single DMAP register.
243
244 On the TS3, there are four DMAP registers, each of which controls
245 one of the segments. */
246
247 static unsigned long
248 d10v_ts2_dmap_register (int reg_nr)
249 {
250 switch (reg_nr)
251 {
252 case 0:
253 case 1:
254 return 0x2000;
255 case 2:
256 return read_register (TS2_DMAP_REGNUM);
257 default:
258 return 0;
259 }
260 }
261
262 static unsigned long
263 d10v_ts3_dmap_register (int reg_nr)
264 {
265 return read_register (TS3_DMAP0_REGNUM + reg_nr);
266 }
267
268 static unsigned long
269 d10v_dmap_register (int reg_nr)
270 {
271 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
272 }
273
274 static unsigned long
275 d10v_ts2_imap_register (int reg_nr)
276 {
277 return read_register (TS2_IMAP0_REGNUM + reg_nr);
278 }
279
280 static unsigned long
281 d10v_ts3_imap_register (int reg_nr)
282 {
283 return read_register (TS3_IMAP0_REGNUM + reg_nr);
284 }
285
286 static unsigned long
287 d10v_imap_register (int reg_nr)
288 {
289 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
290 }
291
292 /* MAP GDB's internal register numbering (determined by the layout fo
293 the REGISTER_BYTE array) onto the simulator's register
294 numbering. */
295
296 static int
297 d10v_ts2_register_sim_regno (int nr)
298 {
299 if (nr >= TS2_IMAP0_REGNUM
300 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
301 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
302 if (nr == TS2_DMAP_REGNUM)
303 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
304 if (nr >= TS2_A0_REGNUM
305 && nr < TS2_A0_REGNUM + NR_A_REGS)
306 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
307 return nr;
308 }
309
310 static int
311 d10v_ts3_register_sim_regno (int nr)
312 {
313 if (nr >= TS3_IMAP0_REGNUM
314 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
315 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
316 if (nr >= TS3_DMAP0_REGNUM
317 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
318 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
319 if (nr >= TS3_A0_REGNUM
320 && nr < TS3_A0_REGNUM + NR_A_REGS)
321 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
322 return nr;
323 }
324
325 /* Index within `registers' of the first byte of the space for
326 register REG_NR. */
327
328 static int
329 d10v_register_byte (int reg_nr)
330 {
331 if (reg_nr < A0_REGNUM)
332 return (reg_nr * 2);
333 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
334 return (A0_REGNUM * 2
335 + (reg_nr - A0_REGNUM) * 8);
336 else
337 return (A0_REGNUM * 2
338 + NR_A_REGS * 8
339 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
340 }
341
342 /* Number of bytes of storage in the actual machine representation for
343 register REG_NR. */
344
345 static int
346 d10v_register_raw_size (int reg_nr)
347 {
348 if (reg_nr < A0_REGNUM)
349 return 2;
350 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
351 return 8;
352 else
353 return 2;
354 }
355
356 /* Return the GDB type object for the "standard" data type
357 of data in register N. */
358
359 static struct type *
360 d10v_register_virtual_type (int reg_nr)
361 {
362 if (reg_nr == PC_REGNUM)
363 return builtin_type_void_func_ptr;
364 else if (reg_nr >= A0_REGNUM
365 && reg_nr < (A0_REGNUM + NR_A_REGS))
366 return builtin_type_int64;
367 else
368 return builtin_type_int16;
369 }
370
371 static int
372 d10v_daddr_p (CORE_ADDR x)
373 {
374 return (((x) & 0x3000000) == DMEM_START);
375 }
376
377 static int
378 d10v_iaddr_p (CORE_ADDR x)
379 {
380 return (((x) & 0x3000000) == IMEM_START);
381 }
382
383 static CORE_ADDR
384 d10v_make_daddr (CORE_ADDR x)
385 {
386 return ((x) | DMEM_START);
387 }
388
389 static CORE_ADDR
390 d10v_make_iaddr (CORE_ADDR x)
391 {
392 if (d10v_iaddr_p (x))
393 return x; /* Idempotency -- x is already in the IMEM space. */
394 else
395 return (((x) << 2) | IMEM_START);
396 }
397
398 static CORE_ADDR
399 d10v_convert_iaddr_to_raw (CORE_ADDR x)
400 {
401 return (((x) >> 2) & 0xffff);
402 }
403
404 static CORE_ADDR
405 d10v_convert_daddr_to_raw (CORE_ADDR x)
406 {
407 return ((x) & 0xffff);
408 }
409
410 static void
411 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
412 {
413 /* Is it a code address? */
414 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
415 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
416 {
417 store_unsigned_integer (buf, TYPE_LENGTH (type),
418 d10v_convert_iaddr_to_raw (addr));
419 }
420 else
421 {
422 /* Strip off any upper segment bits. */
423 store_unsigned_integer (buf, TYPE_LENGTH (type),
424 d10v_convert_daddr_to_raw (addr));
425 }
426 }
427
428 static CORE_ADDR
429 d10v_pointer_to_address (struct type *type, void *buf)
430 {
431 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
432
433 /* Is it a code address? */
434 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
435 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
436 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
437 return d10v_make_iaddr (addr);
438 else
439 return d10v_make_daddr (addr);
440 }
441
442 static CORE_ADDR
443 d10v_integer_to_address (struct type *type, void *buf)
444 {
445 LONGEST val;
446 val = unpack_long (type, buf);
447 if (TYPE_CODE (type) == TYPE_CODE_INT
448 && TYPE_LENGTH (type) <= TYPE_LENGTH (builtin_type_void_data_ptr))
449 /* Convert small integers that would would be directly copied into
450 a pointer variable into an address pointing into data space. */
451 return d10v_make_daddr (val & 0xffff);
452 else
453 /* The value is too large to fit in a pointer. Assume this was
454 intentional and that the user in fact specified a raw address. */
455 return val;
456 }
457
458 /* Store the address of the place in which to copy the structure the
459 subroutine will return. This is called from call_function.
460
461 We store structs through a pointer passed in the first Argument
462 register. */
463
464 static void
465 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
466 {
467 write_register (ARG1_REGNUM, (addr));
468 }
469
470 /* Write into appropriate registers a function return value
471 of type TYPE, given in virtual format.
472
473 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
474
475 static void
476 d10v_store_return_value (struct type *type, char *valbuf)
477 {
478 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
479 valbuf,
480 TYPE_LENGTH (type));
481 }
482
483 /* Extract from an array REGBUF containing the (raw) register state
484 the address in which a function should return its structure value,
485 as a CORE_ADDR (or an expression that can be used as one). */
486
487 static CORE_ADDR
488 d10v_extract_struct_value_address (char *regbuf)
489 {
490 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
491 REGISTER_RAW_SIZE (ARG1_REGNUM))
492 | DMEM_START);
493 }
494
495 static CORE_ADDR
496 d10v_frame_saved_pc (struct frame_info *frame)
497 {
498 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
499 return d10v_make_iaddr (generic_read_register_dummy (frame->pc,
500 frame->frame,
501 PC_REGNUM));
502 else
503 return ((frame)->extra_info->return_pc);
504 }
505
506 /* Immediately after a function call, return the saved pc. We can't
507 use frame->return_pc beause that is determined by reading R13 off
508 the stack and that may not be written yet. */
509
510 static CORE_ADDR
511 d10v_saved_pc_after_call (struct frame_info *frame)
512 {
513 return ((read_register (LR_REGNUM) << 2)
514 | IMEM_START);
515 }
516
517 /* Discard from the stack the innermost frame, restoring all saved
518 registers. */
519
520 static void
521 d10v_pop_frame (void)
522 {
523 generic_pop_current_frame (do_d10v_pop_frame);
524 }
525
526 static void
527 do_d10v_pop_frame (struct frame_info *fi)
528 {
529 CORE_ADDR fp;
530 int regnum;
531 char raw_buffer[8];
532
533 fp = FRAME_FP (fi);
534 /* fill out fsr with the address of where each */
535 /* register was stored in the frame */
536 d10v_frame_init_saved_regs (fi);
537
538 /* now update the current registers with the old values */
539 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
540 {
541 if (fi->saved_regs[regnum])
542 {
543 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
544 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
545 }
546 }
547 for (regnum = 0; regnum < SP_REGNUM; regnum++)
548 {
549 if (fi->saved_regs[regnum])
550 {
551 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
552 }
553 }
554 if (fi->saved_regs[PSW_REGNUM])
555 {
556 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
557 }
558
559 write_register (PC_REGNUM, read_register (LR_REGNUM));
560 write_register (SP_REGNUM, fp + fi->extra_info->size);
561 target_store_registers (-1);
562 flush_cached_frames ();
563 }
564
565 static int
566 check_prologue (unsigned short op)
567 {
568 /* st rn, @-sp */
569 if ((op & 0x7E1F) == 0x6C1F)
570 return 1;
571
572 /* st2w rn, @-sp */
573 if ((op & 0x7E3F) == 0x6E1F)
574 return 1;
575
576 /* subi sp, n */
577 if ((op & 0x7FE1) == 0x01E1)
578 return 1;
579
580 /* mv r11, sp */
581 if (op == 0x417E)
582 return 1;
583
584 /* nop */
585 if (op == 0x5E00)
586 return 1;
587
588 /* st rn, @sp */
589 if ((op & 0x7E1F) == 0x681E)
590 return 1;
591
592 /* st2w rn, @sp */
593 if ((op & 0x7E3F) == 0x3A1E)
594 return 1;
595
596 return 0;
597 }
598
599 static CORE_ADDR
600 d10v_skip_prologue (CORE_ADDR pc)
601 {
602 unsigned long op;
603 unsigned short op1, op2;
604 CORE_ADDR func_addr, func_end;
605 struct symtab_and_line sal;
606
607 /* If we have line debugging information, then the end of the */
608 /* prologue should the first assembly instruction of the first source line */
609 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
610 {
611 sal = find_pc_line (func_addr, 0);
612 if (sal.end && sal.end < func_end)
613 return sal.end;
614 }
615
616 if (target_read_memory (pc, (char *) &op, 4))
617 return pc; /* Can't access it -- assume no prologue. */
618
619 while (1)
620 {
621 op = (unsigned long) read_memory_integer (pc, 4);
622 if ((op & 0xC0000000) == 0xC0000000)
623 {
624 /* long instruction */
625 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
626 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
627 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
628 break;
629 }
630 else
631 {
632 /* short instructions */
633 if ((op & 0xC0000000) == 0x80000000)
634 {
635 op2 = (op & 0x3FFF8000) >> 15;
636 op1 = op & 0x7FFF;
637 }
638 else
639 {
640 op1 = (op & 0x3FFF8000) >> 15;
641 op2 = op & 0x7FFF;
642 }
643 if (check_prologue (op1))
644 {
645 if (!check_prologue (op2))
646 {
647 /* if the previous opcode was really part of the prologue */
648 /* and not just a NOP, then we want to break after both instructions */
649 if (op1 != 0x5E00)
650 pc += 4;
651 break;
652 }
653 }
654 else
655 break;
656 }
657 pc += 4;
658 }
659 return pc;
660 }
661
662 /* Given a GDB frame, determine the address of the calling function's frame.
663 This will be used to create a new GDB frame struct, and then
664 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
665 */
666
667 static CORE_ADDR
668 d10v_frame_chain (struct frame_info *fi)
669 {
670 CORE_ADDR addr;
671
672 /* A generic call dummy's frame is the same as caller's. */
673 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
674 return fi->frame;
675
676 d10v_frame_init_saved_regs (fi);
677
678
679 if (fi->extra_info->return_pc == IMEM_START
680 || inside_entry_file (fi->extra_info->return_pc))
681 {
682 /* This is meant to halt the backtrace at "_start".
683 Make sure we don't halt it at a generic dummy frame. */
684 if (!PC_IN_CALL_DUMMY (fi->extra_info->return_pc, 0, 0))
685 return (CORE_ADDR) 0;
686 }
687
688 if (!fi->saved_regs[FP_REGNUM])
689 {
690 if (!fi->saved_regs[SP_REGNUM]
691 || fi->saved_regs[SP_REGNUM] == STACK_START)
692 return (CORE_ADDR) 0;
693
694 return fi->saved_regs[SP_REGNUM];
695 }
696
697 addr = read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
698 REGISTER_RAW_SIZE (FP_REGNUM));
699 if (addr == 0)
700 return (CORE_ADDR) 0;
701
702 return d10v_make_daddr (addr);
703 }
704
705 static int next_addr, uses_frame;
706
707 static int
708 prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
709 {
710 int n;
711
712 /* st rn, @-sp */
713 if ((op & 0x7E1F) == 0x6C1F)
714 {
715 n = (op & 0x1E0) >> 5;
716 next_addr -= 2;
717 fi->saved_regs[n] = next_addr;
718 return 1;
719 }
720
721 /* st2w rn, @-sp */
722 else if ((op & 0x7E3F) == 0x6E1F)
723 {
724 n = (op & 0x1E0) >> 5;
725 next_addr -= 4;
726 fi->saved_regs[n] = next_addr;
727 fi->saved_regs[n + 1] = next_addr + 2;
728 return 1;
729 }
730
731 /* subi sp, n */
732 if ((op & 0x7FE1) == 0x01E1)
733 {
734 n = (op & 0x1E) >> 1;
735 if (n == 0)
736 n = 16;
737 next_addr -= n;
738 return 1;
739 }
740
741 /* mv r11, sp */
742 if (op == 0x417E)
743 {
744 uses_frame = 1;
745 return 1;
746 }
747
748 /* nop */
749 if (op == 0x5E00)
750 return 1;
751
752 /* st rn, @sp */
753 if ((op & 0x7E1F) == 0x681E)
754 {
755 n = (op & 0x1E0) >> 5;
756 fi->saved_regs[n] = next_addr;
757 return 1;
758 }
759
760 /* st2w rn, @sp */
761 if ((op & 0x7E3F) == 0x3A1E)
762 {
763 n = (op & 0x1E0) >> 5;
764 fi->saved_regs[n] = next_addr;
765 fi->saved_regs[n + 1] = next_addr + 2;
766 return 1;
767 }
768
769 return 0;
770 }
771
772 /* Put here the code to store, into fi->saved_regs, the addresses of
773 the saved registers of frame described by FRAME_INFO. This
774 includes special registers such as pc and fp saved in special ways
775 in the stack frame. sp is even more special: the address we return
776 for it IS the sp for the next frame. */
777
778 static void
779 d10v_frame_init_saved_regs (struct frame_info *fi)
780 {
781 CORE_ADDR fp, pc;
782 unsigned long op;
783 unsigned short op1, op2;
784 int i;
785
786 fp = fi->frame;
787 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
788 next_addr = 0;
789
790 pc = get_pc_function_start (fi->pc);
791
792 uses_frame = 0;
793 while (1)
794 {
795 op = (unsigned long) read_memory_integer (pc, 4);
796 if ((op & 0xC0000000) == 0xC0000000)
797 {
798 /* long instruction */
799 if ((op & 0x3FFF0000) == 0x01FF0000)
800 {
801 /* add3 sp,sp,n */
802 short n = op & 0xFFFF;
803 next_addr += n;
804 }
805 else if ((op & 0x3F0F0000) == 0x340F0000)
806 {
807 /* st rn, @(offset,sp) */
808 short offset = op & 0xFFFF;
809 short n = (op >> 20) & 0xF;
810 fi->saved_regs[n] = next_addr + offset;
811 }
812 else if ((op & 0x3F1F0000) == 0x350F0000)
813 {
814 /* st2w rn, @(offset,sp) */
815 short offset = op & 0xFFFF;
816 short n = (op >> 20) & 0xF;
817 fi->saved_regs[n] = next_addr + offset;
818 fi->saved_regs[n + 1] = next_addr + offset + 2;
819 }
820 else
821 break;
822 }
823 else
824 {
825 /* short instructions */
826 if ((op & 0xC0000000) == 0x80000000)
827 {
828 op2 = (op & 0x3FFF8000) >> 15;
829 op1 = op & 0x7FFF;
830 }
831 else
832 {
833 op1 = (op & 0x3FFF8000) >> 15;
834 op2 = op & 0x7FFF;
835 }
836 if (!prologue_find_regs (op1, fi, pc)
837 || !prologue_find_regs (op2, fi, pc))
838 break;
839 }
840 pc += 4;
841 }
842
843 fi->extra_info->size = -next_addr;
844
845 if (!(fp & 0xffff))
846 fp = d10v_make_daddr (read_register (SP_REGNUM));
847
848 for (i = 0; i < NUM_REGS - 1; i++)
849 if (fi->saved_regs[i])
850 {
851 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
852 }
853
854 if (fi->saved_regs[LR_REGNUM])
855 {
856 CORE_ADDR return_pc
857 = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM],
858 REGISTER_RAW_SIZE (LR_REGNUM));
859 fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
860 }
861 else
862 {
863 fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
864 }
865
866 /* The SP is not normally (ever?) saved, but check anyway */
867 if (!fi->saved_regs[SP_REGNUM])
868 {
869 /* if the FP was saved, that means the current FP is valid, */
870 /* otherwise, it isn't being used, so we use the SP instead */
871 if (uses_frame)
872 fi->saved_regs[SP_REGNUM]
873 = read_register (FP_REGNUM) + fi->extra_info->size;
874 else
875 {
876 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
877 fi->extra_info->frameless = 1;
878 fi->saved_regs[FP_REGNUM] = 0;
879 }
880 }
881 }
882
883 static void
884 d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
885 {
886 fi->extra_info = (struct frame_extra_info *)
887 frame_obstack_alloc (sizeof (struct frame_extra_info));
888 frame_saved_regs_zalloc (fi);
889
890 fi->extra_info->frameless = 0;
891 fi->extra_info->size = 0;
892 fi->extra_info->return_pc = 0;
893
894 /* If fi->pc is zero, but this is not the outermost frame,
895 then let's snatch the return_pc from the callee, so that
896 PC_IN_CALL_DUMMY will work. */
897 if (fi->pc == 0 && fi->level != 0 && fi->next != NULL)
898 fi->pc = d10v_frame_saved_pc (fi->next);
899
900 /* The call dummy doesn't save any registers on the stack, so we can
901 return now. */
902 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
903 {
904 return;
905 }
906 else
907 {
908 d10v_frame_init_saved_regs (fi);
909 }
910 }
911
912 static void
913 show_regs (char *args, int from_tty)
914 {
915 int a;
916 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
917 (long) read_register (PC_REGNUM),
918 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
919 (long) read_register (PSW_REGNUM),
920 (long) read_register (24),
921 (long) read_register (25),
922 (long) read_register (23));
923 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
924 (long) read_register (0),
925 (long) read_register (1),
926 (long) read_register (2),
927 (long) read_register (3),
928 (long) read_register (4),
929 (long) read_register (5),
930 (long) read_register (6),
931 (long) read_register (7));
932 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
933 (long) read_register (8),
934 (long) read_register (9),
935 (long) read_register (10),
936 (long) read_register (11),
937 (long) read_register (12),
938 (long) read_register (13),
939 (long) read_register (14),
940 (long) read_register (15));
941 for (a = 0; a < NR_IMAP_REGS; a++)
942 {
943 if (a > 0)
944 printf_filtered (" ");
945 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
946 }
947 if (NR_DMAP_REGS == 1)
948 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
949 else
950 {
951 for (a = 0; a < NR_DMAP_REGS; a++)
952 {
953 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
954 }
955 printf_filtered ("\n");
956 }
957 printf_filtered ("A0-A%d", NR_A_REGS - 1);
958 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
959 {
960 char num[MAX_REGISTER_RAW_SIZE];
961 int i;
962 printf_filtered (" ");
963 read_register_gen (a, (char *) &num);
964 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
965 {
966 printf_filtered ("%02x", (num[i] & 0xff));
967 }
968 }
969 printf_filtered ("\n");
970 }
971
972 static CORE_ADDR
973 d10v_read_pc (ptid_t ptid)
974 {
975 ptid_t save_ptid;
976 CORE_ADDR pc;
977 CORE_ADDR retval;
978
979 save_ptid = inferior_ptid;
980 inferior_ptid = ptid;
981 pc = (int) read_register (PC_REGNUM);
982 inferior_ptid = save_ptid;
983 retval = d10v_make_iaddr (pc);
984 return retval;
985 }
986
987 static void
988 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
989 {
990 ptid_t save_ptid;
991
992 save_ptid = inferior_ptid;
993 inferior_ptid = ptid;
994 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
995 inferior_ptid = save_ptid;
996 }
997
998 static CORE_ADDR
999 d10v_read_sp (void)
1000 {
1001 return (d10v_make_daddr (read_register (SP_REGNUM)));
1002 }
1003
1004 static void
1005 d10v_write_sp (CORE_ADDR val)
1006 {
1007 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
1008 }
1009
1010 static CORE_ADDR
1011 d10v_read_fp (void)
1012 {
1013 return (d10v_make_daddr (read_register (FP_REGNUM)));
1014 }
1015
1016 /* Function: push_return_address (pc)
1017 Set up the return address for the inferior function call.
1018 Needed for targets where we don't actually execute a JSR/BSR instruction */
1019
1020 static CORE_ADDR
1021 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1022 {
1023 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
1024 return sp;
1025 }
1026
1027
1028 /* When arguments must be pushed onto the stack, they go on in reverse
1029 order. The below implements a FILO (stack) to do this. */
1030
1031 struct stack_item
1032 {
1033 int len;
1034 struct stack_item *prev;
1035 void *data;
1036 };
1037
1038 static struct stack_item *push_stack_item (struct stack_item *prev,
1039 void *contents, int len);
1040 static struct stack_item *
1041 push_stack_item (struct stack_item *prev, void *contents, int len)
1042 {
1043 struct stack_item *si;
1044 si = xmalloc (sizeof (struct stack_item));
1045 si->data = xmalloc (len);
1046 si->len = len;
1047 si->prev = prev;
1048 memcpy (si->data, contents, len);
1049 return si;
1050 }
1051
1052 static struct stack_item *pop_stack_item (struct stack_item *si);
1053 static struct stack_item *
1054 pop_stack_item (struct stack_item *si)
1055 {
1056 struct stack_item *dead = si;
1057 si = si->prev;
1058 xfree (dead->data);
1059 xfree (dead);
1060 return si;
1061 }
1062
1063
1064 static CORE_ADDR
1065 d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1066 int struct_return, CORE_ADDR struct_addr)
1067 {
1068 int i;
1069 int regnum = ARG1_REGNUM;
1070 struct stack_item *si = NULL;
1071
1072 /* Fill in registers and arg lists */
1073 for (i = 0; i < nargs; i++)
1074 {
1075 struct value *arg = args[i];
1076 struct type *type = check_typedef (VALUE_TYPE (arg));
1077 char *contents = VALUE_CONTENTS (arg);
1078 int len = TYPE_LENGTH (type);
1079 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
1080 {
1081 int aligned_regnum = (regnum + 1) & ~1;
1082 if (len <= 2 && regnum <= ARGN_REGNUM)
1083 /* fits in a single register, do not align */
1084 {
1085 long val = extract_unsigned_integer (contents, len);
1086 write_register (regnum++, val);
1087 }
1088 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1089 /* value fits in remaining registers, store keeping left
1090 aligned */
1091 {
1092 int b;
1093 regnum = aligned_regnum;
1094 for (b = 0; b < (len & ~1); b += 2)
1095 {
1096 long val = extract_unsigned_integer (&contents[b], 2);
1097 write_register (regnum++, val);
1098 }
1099 if (b < len)
1100 {
1101 long val = extract_unsigned_integer (&contents[b], 1);
1102 write_register (regnum++, (val << 8));
1103 }
1104 }
1105 else
1106 {
1107 /* arg will go onto stack */
1108 regnum = ARGN_REGNUM + 1;
1109 si = push_stack_item (si, contents, len);
1110 }
1111 }
1112 }
1113
1114 while (si)
1115 {
1116 sp = (sp - si->len) & ~1;
1117 write_memory (sp, si->data, si->len);
1118 si = pop_stack_item (si);
1119 }
1120
1121 return sp;
1122 }
1123
1124
1125 /* Given a return value in `regbuf' with a type `valtype',
1126 extract and copy its value into `valbuf'. */
1127
1128 static void
1129 d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1130 char *valbuf)
1131 {
1132 int len;
1133 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type), TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1134 {
1135 len = TYPE_LENGTH (type);
1136 if (len == 1)
1137 {
1138 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1139 store_unsigned_integer (valbuf, 1, c);
1140 }
1141 else if ((len & 1) == 0)
1142 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1143 else
1144 {
1145 /* For return values of odd size, the first byte is in the
1146 least significant part of the first register. The
1147 remaining bytes in remaining registers. Interestingly,
1148 when such values are passed in, the last byte is in the
1149 most significant byte of that same register - wierd. */
1150 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1151 }
1152 }
1153 }
1154
1155 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1156 understands. Returns number of bytes that can be transfered
1157 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1158 (segmentation fault). Since the simulator knows all about how the
1159 VM system works, we just call that to do the translation. */
1160
1161 static void
1162 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1163 CORE_ADDR *targ_addr, int *targ_len)
1164 {
1165 long out_addr;
1166 long out_len;
1167 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1168 &out_addr,
1169 d10v_dmap_register,
1170 d10v_imap_register);
1171 *targ_addr = out_addr;
1172 *targ_len = out_len;
1173 }
1174
1175
1176 /* The following code implements access to, and display of, the D10V's
1177 instruction trace buffer. The buffer consists of 64K or more
1178 4-byte words of data, of which each words includes an 8-bit count,
1179 an 8-bit segment number, and a 16-bit instruction address.
1180
1181 In theory, the trace buffer is continuously capturing instruction
1182 data that the CPU presents on its "debug bus", but in practice, the
1183 ROMified GDB stub only enables tracing when it continues or steps
1184 the program, and stops tracing when the program stops; so it
1185 actually works for GDB to read the buffer counter out of memory and
1186 then read each trace word. The counter records where the tracing
1187 stops, but there is no record of where it started, so we remember
1188 the PC when we resumed and then search backwards in the trace
1189 buffer for a word that includes that address. This is not perfect,
1190 because you will miss trace data if the resumption PC is the target
1191 of a branch. (The value of the buffer counter is semi-random, any
1192 trace data from a previous program stop is gone.) */
1193
1194 /* The address of the last word recorded in the trace buffer. */
1195
1196 #define DBBC_ADDR (0xd80000)
1197
1198 /* The base of the trace buffer, at least for the "Board_0". */
1199
1200 #define TRACE_BUFFER_BASE (0xf40000)
1201
1202 static void trace_command (char *, int);
1203
1204 static void untrace_command (char *, int);
1205
1206 static void trace_info (char *, int);
1207
1208 static void tdisassemble_command (char *, int);
1209
1210 static void display_trace (int, int);
1211
1212 /* True when instruction traces are being collected. */
1213
1214 static int tracing;
1215
1216 /* Remembered PC. */
1217
1218 static CORE_ADDR last_pc;
1219
1220 /* True when trace output should be displayed whenever program stops. */
1221
1222 static int trace_display;
1223
1224 /* True when trace listing should include source lines. */
1225
1226 static int default_trace_show_source = 1;
1227
1228 struct trace_buffer
1229 {
1230 int size;
1231 short *counts;
1232 CORE_ADDR *addrs;
1233 }
1234 trace_data;
1235
1236 static void
1237 trace_command (char *args, int from_tty)
1238 {
1239 /* Clear the host-side trace buffer, allocating space if needed. */
1240 trace_data.size = 0;
1241 if (trace_data.counts == NULL)
1242 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1243 if (trace_data.addrs == NULL)
1244 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1245
1246 tracing = 1;
1247
1248 printf_filtered ("Tracing is now on.\n");
1249 }
1250
1251 static void
1252 untrace_command (char *args, int from_tty)
1253 {
1254 tracing = 0;
1255
1256 printf_filtered ("Tracing is now off.\n");
1257 }
1258
1259 static void
1260 trace_info (char *args, int from_tty)
1261 {
1262 int i;
1263
1264 if (trace_data.size)
1265 {
1266 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1267
1268 for (i = 0; i < trace_data.size; ++i)
1269 {
1270 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1271 i,
1272 trace_data.counts[i],
1273 (trace_data.counts[i] == 1 ? "" : "s"),
1274 paddr_nz (trace_data.addrs[i]));
1275 }
1276 }
1277 else
1278 printf_filtered ("No entries in trace buffer.\n");
1279
1280 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1281 }
1282
1283 /* Print the instruction at address MEMADDR in debugged memory,
1284 on STREAM. Returns length of the instruction, in bytes. */
1285
1286 static int
1287 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1288 {
1289 /* If there's no disassembler, something is very wrong. */
1290 if (tm_print_insn == NULL)
1291 internal_error (__FILE__, __LINE__,
1292 "print_insn: no disassembler");
1293
1294 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1295 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1296 else
1297 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1298 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
1299 }
1300
1301 static void
1302 d10v_eva_prepare_to_trace (void)
1303 {
1304 if (!tracing)
1305 return;
1306
1307 last_pc = read_register (PC_REGNUM);
1308 }
1309
1310 /* Collect trace data from the target board and format it into a form
1311 more useful for display. */
1312
1313 static void
1314 d10v_eva_get_trace_data (void)
1315 {
1316 int count, i, j, oldsize;
1317 int trace_addr, trace_seg, trace_cnt, next_cnt;
1318 unsigned int last_trace, trace_word, next_word;
1319 unsigned int *tmpspace;
1320
1321 if (!tracing)
1322 return;
1323
1324 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1325
1326 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1327
1328 /* Collect buffer contents from the target, stopping when we reach
1329 the word recorded when execution resumed. */
1330
1331 count = 0;
1332 while (last_trace > 0)
1333 {
1334 QUIT;
1335 trace_word =
1336 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1337 trace_addr = trace_word & 0xffff;
1338 last_trace -= 4;
1339 /* Ignore an apparently nonsensical entry. */
1340 if (trace_addr == 0xffd5)
1341 continue;
1342 tmpspace[count++] = trace_word;
1343 if (trace_addr == last_pc)
1344 break;
1345 if (count > 65535)
1346 break;
1347 }
1348
1349 /* Move the data to the host-side trace buffer, adjusting counts to
1350 include the last instruction executed and transforming the address
1351 into something that GDB likes. */
1352
1353 for (i = 0; i < count; ++i)
1354 {
1355 trace_word = tmpspace[i];
1356 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1357 trace_addr = trace_word & 0xffff;
1358 next_cnt = (next_word >> 24) & 0xff;
1359 j = trace_data.size + count - i - 1;
1360 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1361 trace_data.counts[j] = next_cnt + 1;
1362 }
1363
1364 oldsize = trace_data.size;
1365 trace_data.size += count;
1366
1367 xfree (tmpspace);
1368
1369 if (trace_display)
1370 display_trace (oldsize, trace_data.size);
1371 }
1372
1373 static void
1374 tdisassemble_command (char *arg, int from_tty)
1375 {
1376 int i, count;
1377 CORE_ADDR low, high;
1378 char *space_index;
1379
1380 if (!arg)
1381 {
1382 low = 0;
1383 high = trace_data.size;
1384 }
1385 else if (!(space_index = (char *) strchr (arg, ' ')))
1386 {
1387 low = parse_and_eval_address (arg);
1388 high = low + 5;
1389 }
1390 else
1391 {
1392 /* Two arguments. */
1393 *space_index = '\0';
1394 low = parse_and_eval_address (arg);
1395 high = parse_and_eval_address (space_index + 1);
1396 if (high < low)
1397 high = low;
1398 }
1399
1400 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1401
1402 display_trace (low, high);
1403
1404 printf_filtered ("End of trace dump.\n");
1405 gdb_flush (gdb_stdout);
1406 }
1407
1408 static void
1409 display_trace (int low, int high)
1410 {
1411 int i, count, trace_show_source, first, suppress;
1412 CORE_ADDR next_address;
1413
1414 trace_show_source = default_trace_show_source;
1415 if (!have_full_symbols () && !have_partial_symbols ())
1416 {
1417 trace_show_source = 0;
1418 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1419 printf_filtered ("Trace will not display any source.\n");
1420 }
1421
1422 first = 1;
1423 suppress = 0;
1424 for (i = low; i < high; ++i)
1425 {
1426 next_address = trace_data.addrs[i];
1427 count = trace_data.counts[i];
1428 while (count-- > 0)
1429 {
1430 QUIT;
1431 if (trace_show_source)
1432 {
1433 struct symtab_and_line sal, sal_prev;
1434
1435 sal_prev = find_pc_line (next_address - 4, 0);
1436 sal = find_pc_line (next_address, 0);
1437
1438 if (sal.symtab)
1439 {
1440 if (first || sal.line != sal_prev.line)
1441 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1442 suppress = 0;
1443 }
1444 else
1445 {
1446 if (!suppress)
1447 /* FIXME-32x64--assumes sal.pc fits in long. */
1448 printf_filtered ("No source file for address %s.\n",
1449 local_hex_string ((unsigned long) sal.pc));
1450 suppress = 1;
1451 }
1452 }
1453 first = 0;
1454 print_address (next_address, gdb_stdout);
1455 printf_filtered (":");
1456 printf_filtered ("\t");
1457 wrap_here (" ");
1458 next_address = next_address + print_insn (next_address, gdb_stdout);
1459 printf_filtered ("\n");
1460 gdb_flush (gdb_stdout);
1461 }
1462 }
1463 }
1464
1465
1466 static gdbarch_init_ftype d10v_gdbarch_init;
1467
1468 static struct gdbarch *
1469 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1470 {
1471 static LONGEST d10v_call_dummy_words[] =
1472 {0};
1473 struct gdbarch *gdbarch;
1474 int d10v_num_regs;
1475 struct gdbarch_tdep *tdep;
1476 gdbarch_register_name_ftype *d10v_register_name;
1477 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1478
1479 /* Find a candidate among the list of pre-declared architectures. */
1480 arches = gdbarch_list_lookup_by_info (arches, &info);
1481 if (arches != NULL)
1482 return arches->gdbarch;
1483
1484 /* None found, create a new architecture from the information
1485 provided. */
1486 tdep = XMALLOC (struct gdbarch_tdep);
1487 gdbarch = gdbarch_alloc (&info, tdep);
1488
1489 switch (info.bfd_arch_info->mach)
1490 {
1491 case bfd_mach_d10v_ts2:
1492 d10v_num_regs = 37;
1493 d10v_register_name = d10v_ts2_register_name;
1494 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1495 tdep->a0_regnum = TS2_A0_REGNUM;
1496 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1497 tdep->dmap_register = d10v_ts2_dmap_register;
1498 tdep->imap_register = d10v_ts2_imap_register;
1499 break;
1500 default:
1501 case bfd_mach_d10v_ts3:
1502 d10v_num_regs = 42;
1503 d10v_register_name = d10v_ts3_register_name;
1504 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1505 tdep->a0_regnum = TS3_A0_REGNUM;
1506 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1507 tdep->dmap_register = d10v_ts3_dmap_register;
1508 tdep->imap_register = d10v_ts3_imap_register;
1509 break;
1510 }
1511
1512 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1513 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1514 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1515 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1516 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1517
1518 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1519 set_gdbarch_sp_regnum (gdbarch, 15);
1520 set_gdbarch_fp_regnum (gdbarch, 11);
1521 set_gdbarch_pc_regnum (gdbarch, 18);
1522 set_gdbarch_register_name (gdbarch, d10v_register_name);
1523 set_gdbarch_register_size (gdbarch, 2);
1524 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1525 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1526 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1527 set_gdbarch_max_register_raw_size (gdbarch, 8);
1528 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
1529 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1530 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1531
1532 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1533 set_gdbarch_addr_bit (gdbarch, 32);
1534 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1535 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1536 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1537 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1538 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1539 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1540 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1541 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1542 double'' is 64 bits. */
1543 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1544 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1545 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1546 switch (info.byte_order)
1547 {
1548 case BFD_ENDIAN_BIG:
1549 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1550 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1551 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1552 break;
1553 case BFD_ENDIAN_LITTLE:
1554 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1555 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1556 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1557 break;
1558 default:
1559 internal_error (__FILE__, __LINE__,
1560 "d10v_gdbarch_init: bad byte order for float format");
1561 }
1562
1563 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1564 set_gdbarch_call_dummy_length (gdbarch, 0);
1565 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1566 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1567 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1568 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1569 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1570 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1571 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1572 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1573 set_gdbarch_call_dummy_p (gdbarch, 1);
1574 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1575 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1576 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1577
1578 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1579 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1580 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1581 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1582
1583 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1584 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1585 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1586 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1587
1588 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1589 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1590
1591 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1592
1593 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1594 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1595 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1596 set_gdbarch_function_start_offset (gdbarch, 0);
1597 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1598
1599 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1600
1601 set_gdbarch_frame_args_skip (gdbarch, 0);
1602 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1603 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1604 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1605 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1606 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1607 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1608 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1609 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1610 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1611
1612 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1613 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1614
1615 return gdbarch;
1616 }
1617
1618
1619 extern void (*target_resume_hook) (void);
1620 extern void (*target_wait_loop_hook) (void);
1621
1622 void
1623 _initialize_d10v_tdep (void)
1624 {
1625 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1626
1627 tm_print_insn = print_insn_d10v;
1628
1629 target_resume_hook = d10v_eva_prepare_to_trace;
1630 target_wait_loop_hook = d10v_eva_get_trace_data;
1631
1632 add_com ("regs", class_vars, show_regs, "Print all registers");
1633
1634 add_com ("itrace", class_support, trace_command,
1635 "Enable tracing of instruction execution.");
1636
1637 add_com ("iuntrace", class_support, untrace_command,
1638 "Disable tracing of instruction execution.");
1639
1640 add_com ("itdisassemble", class_vars, tdisassemble_command,
1641 "Disassemble the trace buffer.\n\
1642 Two optional arguments specify a range of trace buffer entries\n\
1643 as reported by info trace (NOT addresses!).");
1644
1645 add_info ("itrace", trace_info,
1646 "Display info about the trace data buffer.");
1647
1648 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1649 var_integer, (char *) &trace_display,
1650 "Set automatic display of trace.\n", &setlist),
1651 &showlist);
1652 add_show_from_set (add_set_cmd ("itracesource", no_class,
1653 var_integer, (char *) &default_trace_show_source,
1654 "Set display of source code with trace.\n", &setlist),
1655 &showlist);
1656
1657 }
This page took 0.062609 seconds and 5 git commands to generate.