* doc/gdb.texinfo (appendix "Installing GDB"): changes in configure.
[deliverable/binutils-gdb.git] / gdb / dbxread.c
1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* This module provides three functions: dbx_symfile_init,
21 which initializes to read a symbol file; dbx_new_init, which
22 discards existing cached information when all symbols are being
23 discarded; and dbx_symfile_read, which reads a symbol table
24 from a file.
25
26 dbx_symfile_read only does the minimum work necessary for letting the
27 user "name" things symbolically; it does not read the entire symtab.
28 Instead, it reads the external and static symbols and puts them in partial
29 symbol tables. When more extensive information is requested of a
30 file, the corresponding partial symbol table is mutated into a full
31 fledged symbol table by going back and reading the symbols
32 for real. dbx_psymtab_to_symtab() is the function that does this */
33
34 #include <stdio.h>
35 #include <string.h>
36 #include "defs.h"
37 #include "param.h"
38
39 #ifdef USG
40 #include <sys/types.h>
41 #include <fcntl.h>
42 #define L_SET 0
43 #define L_INCR 1
44 #endif
45
46 #include <obstack.h>
47 #include <sys/param.h>
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include <ctype.h>
51 #include "symtab.h"
52 #include "breakpoint.h"
53 #include "command.h"
54 #include "target.h"
55 #include "gdbcore.h" /* for bfd stuff */
56 #include "libaout.h" /* FIXME Secret internal BFD stuff for a.out */
57 #include "symfile.h"
58
59 #include "aout64.h"
60 #include "stab.gnu.h" /* We always use GNU stabs, not native, now */
61
62 #ifndef NO_GNU_STABS
63 /*
64 * Define specifically gnu symbols here.
65 */
66
67 /* The following type indicates the definition of a symbol as being
68 an indirect reference to another symbol. The other symbol
69 appears as an undefined reference, immediately following this symbol.
70
71 Indirection is asymmetrical. The other symbol's value will be used
72 to satisfy requests for the indirect symbol, but not vice versa.
73 If the other symbol does not have a definition, libraries will
74 be searched to find a definition. */
75 #ifndef N_INDR
76 #define N_INDR 0xa
77 #endif
78
79 /* The following symbols refer to set elements.
80 All the N_SET[ATDB] symbols with the same name form one set.
81 Space is allocated for the set in the text section, and each set
82 element's value is stored into one word of the space.
83 The first word of the space is the length of the set (number of elements).
84
85 The address of the set is made into an N_SETV symbol
86 whose name is the same as the name of the set.
87 This symbol acts like a N_DATA global symbol
88 in that it can satisfy undefined external references. */
89
90 #ifndef N_SETA
91 #define N_SETA 0x14 /* Absolute set element symbol */
92 #endif /* This is input to LD, in a .o file. */
93
94 #ifndef N_SETT
95 #define N_SETT 0x16 /* Text set element symbol */
96 #endif /* This is input to LD, in a .o file. */
97
98 #ifndef N_SETD
99 #define N_SETD 0x18 /* Data set element symbol */
100 #endif /* This is input to LD, in a .o file. */
101
102 #ifndef N_SETB
103 #define N_SETB 0x1A /* Bss set element symbol */
104 #endif /* This is input to LD, in a .o file. */
105
106 /* Macros dealing with the set element symbols defined in a.out.h */
107 #define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
108 #define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
109
110 #ifndef N_SETV
111 #define N_SETV 0x1C /* Pointer to set vector in data area. */
112 #endif /* This is output from LD. */
113
114 #ifndef N_WARNING
115 #define N_WARNING 0x1E /* Warning message to print if file included */
116 #endif /* This is input to ld */
117
118 #endif /* NO_GNU_STABS */
119
120 struct dbx_symfile_info {
121 asection *text_sect; /* Text section accessor */
122 int symcount; /* How many symbols are there in the file */
123 char *stringtab; /* The actual string table */
124 int stringtab_size; /* Its size */
125 off_t symtab_offset; /* Offset in file to symbol table */
126 int desc; /* File descriptor of symbol file */
127 };
128
129 extern void qsort ();
130 extern double atof ();
131 extern struct cmd_list_element *cmdlist;
132
133 extern void symbol_file_command ();
134
135 /* Forward declarations */
136
137 static void add_symbol_to_list ();
138 static void read_dbx_symtab ();
139 static void init_psymbol_list ();
140 static void process_one_symbol ();
141 static struct type *read_type ();
142 static struct type *read_range_type ();
143 static struct type *read_enum_type ();
144 static struct type *read_struct_type ();
145 static struct type *read_array_type ();
146 static long read_number ();
147 static void finish_block ();
148 static struct blockvector *make_blockvector ();
149 static struct symbol *define_symbol ();
150 static void start_subfile ();
151 static int hashname ();
152 static struct pending *copy_pending ();
153 static void fix_common_block ();
154 static void add_undefined_type ();
155 static void cleanup_undefined_types ();
156 static void scan_file_globals ();
157 static struct symtab *read_ofile_symtab ();
158 static void dbx_psymtab_to_symtab ();
159
160 /* C++ */
161 static struct type **read_args ();
162
163 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
164 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
165
166 /* Macro to determine which symbols to ignore when reading the first symbol
167 of a file. Some machines override this definition. */
168 #ifndef IGNORE_SYMBOL
169 /* This code is used on Ultrix systems. Ignore it */
170 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
171 #endif
172
173 /* Macro for name of symbol to indicate a file compiled with gcc. */
174 #ifndef GCC_COMPILED_FLAG_SYMBOL
175 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
176 #endif
177
178 /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
179
180 #ifndef STAB_REG_TO_REGNUM
181 #define STAB_REG_TO_REGNUM(VALUE) (VALUE)
182 #endif
183
184 /* Define this as 1 if a pcc declaration of a char or short argument
185 gives the correct address. Otherwise assume pcc gives the
186 address of the corresponding int, which is not the same on a
187 big-endian machine. */
188
189 #ifndef BELIEVE_PCC_PROMOTION
190 #define BELIEVE_PCC_PROMOTION 0
191 #endif
192 \f
193 /* Nonzero means give verbose info on gdb action. From main.c. */
194 extern int info_verbose;
195
196 /* Name of source file whose symbol data we are now processing.
197 This comes from a symbol of type N_SO. */
198
199 static char *last_source_file;
200
201 /* Core address of start of text of current source file.
202 This too comes from the N_SO symbol. */
203
204 static CORE_ADDR last_source_start_addr;
205
206 /* The entry point of a file we are reading. */
207 CORE_ADDR entry_point;
208
209 /* The list of sub-source-files within the current individual compilation.
210 Each file gets its own symtab with its own linetable and associated info,
211 but they all share one blockvector. */
212
213 struct subfile
214 {
215 struct subfile *next;
216 char *name;
217 char *dirname;
218 struct linetable *line_vector;
219 int line_vector_length;
220 int line_vector_index;
221 int prev_line_number;
222 };
223
224 static struct subfile *subfiles;
225
226 static struct subfile *current_subfile;
227
228 /* Count symbols as they are processed, for error messages. */
229
230 static unsigned int symnum;
231
232 /* Vector of types defined so far, indexed by their dbx type numbers.
233 (In newer sun systems, dbx uses a pair of numbers in parens,
234 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
235 translated through the type_translations hash table to get
236 the index into the type vector.) */
237
238 static struct type **type_vector;
239
240 /* Number of elements allocated for type_vector currently. */
241
242 static int type_vector_length;
243
244 /* Vector of line number information. */
245
246 static struct linetable *line_vector;
247
248 /* Index of next entry to go in line_vector_index. */
249
250 static int line_vector_index;
251
252 /* Last line number recorded in the line vector. */
253
254 static int prev_line_number;
255
256 /* Number of elements allocated for line_vector currently. */
257
258 static int line_vector_length;
259
260 /* Hash table of global symbols whose values are not known yet.
261 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
262 have the correct data for that slot yet. */
263 /* The use of the LOC_BLOCK code in this chain is nonstandard--
264 it refers to a FORTRAN common block rather than the usual meaning. */
265
266 #define HASHSIZE 127
267 static struct symbol *global_sym_chain[HASHSIZE];
268
269 /* Record the symbols defined for each context in a list.
270 We don't create a struct block for the context until we
271 know how long to make it. */
272
273 #define PENDINGSIZE 100
274
275 struct pending
276 {
277 struct pending *next;
278 int nsyms;
279 struct symbol *symbol[PENDINGSIZE];
280 };
281
282 /* List of free `struct pending' structures for reuse. */
283 struct pending *free_pendings;
284
285 /* Here are the three lists that symbols are put on. */
286
287 struct pending *file_symbols; /* static at top level, and types */
288
289 struct pending *global_symbols; /* global functions and variables */
290
291 struct pending *local_symbols; /* everything local to lexical context */
292
293 /* List of symbols declared since the last BCOMM. This list is a tail
294 of local_symbols. When ECOMM is seen, the symbols on the list
295 are noted so their proper addresses can be filled in later,
296 using the common block base address gotten from the assembler
297 stabs. */
298
299 struct pending *common_block;
300 int common_block_i;
301
302 /* Stack representing unclosed lexical contexts
303 (that will become blocks, eventually). */
304
305 struct context_stack
306 {
307 struct pending *locals;
308 struct pending_block *old_blocks;
309 struct symbol *name;
310 CORE_ADDR start_addr;
311 CORE_ADDR end_addr; /* Temp slot for exception handling. */
312 int depth;
313 };
314
315 struct context_stack *context_stack;
316
317 /* Index of first unused entry in context stack. */
318 int context_stack_depth;
319
320 /* Currently allocated size of context stack. */
321
322 int context_stack_size;
323
324 /* Nonzero if within a function (so symbols should be local,
325 if nothing says specifically). */
326
327 int within_function;
328
329 #if 0
330 /* The type of the function we are currently reading in. This is
331 used by define_symbol to record the type of arguments to a function. */
332
333 static struct type *in_function_type;
334 #endif
335
336 /* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339 struct pending_block
340 {
341 struct pending_block *next;
342 struct block *block;
343 };
344
345 struct pending_block *pending_blocks;
346
347 extern CORE_ADDR startup_file_start; /* From blockframe.c */
348 extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350 /* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353 static unsigned char processing_gcc_compilation;
354
355 /* Make a list of forward references which haven't been defined. */
356 static struct type **undef_types;
357 static int undef_types_allocated, undef_types_length;
358
359 /* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363 static char *symfile_string_table;
364 static int symfile_string_table_size;
365
366 /* The size of each symbol in the symbol file (in external form).
367 This is set by dbx_symfile_read when building psymtabs, and by
368 dbx_psymtab_to_symtab when building symtabs. */
369
370 static unsigned symbol_size;
371
372 /* Setup a define to deal cleanly with the underscore problem */
373
374 #ifdef NAMES_HAVE_UNDERSCORE
375 #define HASH_OFFSET 1
376 #else
377 #define HASH_OFFSET 0
378 #endif
379
380 /* Complaints about the symbols we have encountered. */
381
382 struct complaint innerblock_complaint =
383 {"inner block not inside outer block in %s", 0, 0};
384
385 struct complaint blockvector_complaint =
386 {"block at %x out of order", 0, 0};
387
388 struct complaint lbrac_complaint =
389 {"bad block start address patched", 0, 0};
390
391 #if 0
392 struct complaint dbx_class_complaint =
393 {"encountered DBX-style class variable debugging information.\n\
394 You seem to have compiled your program with \
395 \"g++ -g0\" instead of \"g++ -g\".\n\
396 Therefore GDB will not know about your class variables", 0, 0};
397 #endif
398
399 struct complaint string_table_offset_complaint =
400 {"bad string table offset in symbol %d", 0, 0};
401
402 struct complaint unknown_symtype_complaint =
403 {"unknown symbol type %s", 0, 0};
404
405 struct complaint lbrac_rbrac_complaint =
406 {"block start larger than block end", 0, 0};
407
408 struct complaint const_vol_complaint =
409 {"const/volatile indicator missing (ok if using g++ v1.x), got '%c'", 0, 0};
410
411 struct complaint error_type_complaint =
412 {"debug info mismatch between compiler and debugger", 0, 0};
413
414 struct complaint invalid_member_complaint =
415 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
416
417 struct complaint range_type_base_complaint =
418 {"base type %d of range type is not defined", 0, 0};
419 \f
420 /* Support for Sun changes to dbx symbol format */
421
422 /* For each identified header file, we have a table of types defined
423 in that header file.
424
425 header_files maps header file names to their type tables.
426 It is a vector of n_header_files elements.
427 Each element describes one header file.
428 It contains a vector of types.
429
430 Sometimes it can happen that the same header file produces
431 different results when included in different places.
432 This can result from conditionals or from different
433 things done before including the file.
434 When this happens, there are multiple entries for the file in this table,
435 one entry for each distinct set of results.
436 The entries are distinguished by the INSTANCE field.
437 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
438 used to match header-file references to their corresponding data. */
439
440 struct header_file
441 {
442 char *name; /* Name of header file */
443 int instance; /* Numeric code distinguishing instances
444 of one header file that produced
445 different results when included.
446 It comes from the N_BINCL or N_EXCL. */
447 struct type **vector; /* Pointer to vector of types */
448 int length; /* Allocated length (# elts) of that vector */
449 };
450
451 static struct header_file *header_files = 0;
452
453 static int n_header_files;
454
455 static int n_allocated_header_files;
456
457 /* During initial symbol readin, we need to have a structure to keep
458 track of which psymtabs have which bincls in them. This structure
459 is used during readin to setup the list of dependencies within each
460 partial symbol table. */
461
462 struct header_file_location
463 {
464 char *name; /* Name of header file */
465 int instance; /* See above */
466 struct partial_symtab *pst; /* Partial symtab that has the
467 BINCL/EINCL defs for this file */
468 };
469
470 /* The actual list and controling variables */
471 static struct header_file_location *bincl_list, *next_bincl;
472 static int bincls_allocated;
473
474 /* Within each object file, various header files are assigned numbers.
475 A type is defined or referred to with a pair of numbers
476 (FILENUM,TYPENUM) where FILENUM is the number of the header file
477 and TYPENUM is the number within that header file.
478 TYPENUM is the index within the vector of types for that header file.
479
480 FILENUM == 1 is special; it refers to the main source of the object file,
481 and not to any header file. FILENUM != 1 is interpreted by looking it up
482 in the following table, which contains indices in header_files. */
483
484 static int *this_object_header_files = 0;
485
486 static int n_this_object_header_files;
487
488 static int n_allocated_this_object_header_files;
489
490 /* When a header file is getting special overriding definitions
491 for one source file, record here the header_files index
492 of its normal definition vector.
493 At other times, this is -1. */
494
495 static int header_file_prev_index;
496
497 /* Free up old header file tables, and allocate new ones.
498 We're reading a new symbol file now. */
499
500 static void
501 free_and_init_header_files ()
502 {
503 register int i;
504 for (i = 0; i < n_header_files; i++)
505 free (header_files[i].name);
506 if (header_files) /* First time null */
507 free (header_files);
508 if (this_object_header_files) /* First time null */
509 free (this_object_header_files);
510
511 n_allocated_header_files = 10;
512 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
513 n_header_files = 0;
514
515 n_allocated_this_object_header_files = 10;
516 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
517 }
518
519 /* Called at the start of each object file's symbols.
520 Clear out the mapping of header file numbers to header files. */
521
522 static void
523 new_object_header_files ()
524 {
525 /* Leave FILENUM of 0 free for builtin types and this file's types. */
526 n_this_object_header_files = 1;
527 header_file_prev_index = -1;
528 }
529
530 /* Add header file number I for this object file
531 at the next successive FILENUM. */
532
533 static void
534 add_this_object_header_file (i)
535 int i;
536 {
537 if (n_this_object_header_files == n_allocated_this_object_header_files)
538 {
539 n_allocated_this_object_header_files *= 2;
540 this_object_header_files
541 = (int *) xrealloc (this_object_header_files,
542 n_allocated_this_object_header_files * sizeof (int));
543 }
544
545 this_object_header_files[n_this_object_header_files++] = i;
546 }
547
548 /* Add to this file an "old" header file, one already seen in
549 a previous object file. NAME is the header file's name.
550 INSTANCE is its instance code, to select among multiple
551 symbol tables for the same header file. */
552
553 static void
554 add_old_header_file (name, instance)
555 char *name;
556 int instance;
557 {
558 register struct header_file *p = header_files;
559 register int i;
560
561 for (i = 0; i < n_header_files; i++)
562 if (!strcmp (p[i].name, name) && instance == p[i].instance)
563 {
564 add_this_object_header_file (i);
565 return;
566 }
567 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
568 symnum);
569 }
570
571 /* Add to this file a "new" header file: definitions for its types follow.
572 NAME is the header file's name.
573 Most often this happens only once for each distinct header file,
574 but not necessarily. If it happens more than once, INSTANCE has
575 a different value each time, and references to the header file
576 use INSTANCE values to select among them.
577
578 dbx output contains "begin" and "end" markers for each new header file,
579 but at this level we just need to know which files there have been;
580 so we record the file when its "begin" is seen and ignore the "end". */
581
582 static void
583 add_new_header_file (name, instance)
584 char *name;
585 int instance;
586 {
587 register int i;
588 header_file_prev_index = -1;
589
590 /* Make sure there is room for one more header file. */
591
592 if (n_header_files == n_allocated_header_files)
593 {
594 n_allocated_header_files *= 2;
595 header_files = (struct header_file *)
596 xrealloc (header_files,
597 (n_allocated_header_files
598 * sizeof (struct header_file)));
599 }
600
601 /* Create an entry for this header file. */
602
603 i = n_header_files++;
604 header_files[i].name = savestring (name, strlen(name));
605 header_files[i].instance = instance;
606 header_files[i].length = 10;
607 header_files[i].vector
608 = (struct type **) xmalloc (10 * sizeof (struct type *));
609 bzero (header_files[i].vector, 10 * sizeof (struct type *));
610
611 add_this_object_header_file (i);
612 }
613
614 /* Look up a dbx type-number pair. Return the address of the slot
615 where the type for that number-pair is stored.
616 The number-pair is in TYPENUMS.
617
618 This can be used for finding the type associated with that pair
619 or for associating a new type with the pair. */
620
621 static struct type **
622 dbx_lookup_type (typenums)
623 int typenums[2];
624 {
625 register int filenum = typenums[0], index = typenums[1];
626
627 if (filenum < 0 || filenum >= n_this_object_header_files)
628 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
629 filenum, index, symnum);
630
631 if (filenum == 0)
632 {
633 /* Type is defined outside of header files.
634 Find it in this object file's type vector. */
635 while (index >= type_vector_length)
636 {
637 type_vector_length *= 2;
638 type_vector = (struct type **)
639 xrealloc (type_vector,
640 (type_vector_length * sizeof (struct type *)));
641 bzero (&type_vector[type_vector_length / 2],
642 type_vector_length * sizeof (struct type *) / 2);
643 }
644 return &type_vector[index];
645 }
646 else
647 {
648 register int real_filenum = this_object_header_files[filenum];
649 register struct header_file *f;
650 int f_orig_length;
651
652 if (real_filenum >= n_header_files)
653 abort ();
654
655 f = &header_files[real_filenum];
656
657 f_orig_length = f->length;
658 if (index >= f_orig_length)
659 {
660 while (index >= f->length)
661 f->length *= 2;
662 f->vector = (struct type **)
663 xrealloc (f->vector, f->length * sizeof (struct type *));
664 bzero (&f->vector[f_orig_length],
665 (f->length - f_orig_length) * sizeof (struct type *));
666 }
667 return &f->vector[index];
668 }
669 }
670
671 /* Create a type object. Occaisionally used when you need a type
672 which isn't going to be given a type number. */
673
674 static struct type *
675 dbx_create_type ()
676 {
677 register struct type *type =
678 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
679
680 bzero (type, sizeof (struct type));
681 TYPE_VPTR_FIELDNO (type) = -1;
682 TYPE_VPTR_BASETYPE (type) = 0;
683 return type;
684 }
685
686 /* Make sure there is a type allocated for type numbers TYPENUMS
687 and return the type object.
688 This can create an empty (zeroed) type object.
689 TYPENUMS may be (-1, -1) to return a new type object that is not
690 put into the type vector, and so may not be referred to by number. */
691
692 static struct type *
693 dbx_alloc_type (typenums)
694 int typenums[2];
695 {
696 register struct type **type_addr;
697 register struct type *type;
698
699 if (typenums[1] != -1)
700 {
701 type_addr = dbx_lookup_type (typenums);
702 type = *type_addr;
703 }
704 else
705 {
706 type_addr = 0;
707 type = 0;
708 }
709
710 /* If we are referring to a type not known at all yet,
711 allocate an empty type for it.
712 We will fill it in later if we find out how. */
713 if (type == 0)
714 {
715 type = dbx_create_type ();
716 if (type_addr)
717 *type_addr = type;
718 }
719
720 return type;
721 }
722
723 #if 0
724 static struct type **
725 explicit_lookup_type (real_filenum, index)
726 int real_filenum, index;
727 {
728 register struct header_file *f = &header_files[real_filenum];
729
730 if (index >= f->length)
731 {
732 f->length *= 2;
733 f->vector = (struct type **)
734 xrealloc (f->vector, f->length * sizeof (struct type *));
735 bzero (&f->vector[f->length / 2],
736 f->length * sizeof (struct type *) / 2);
737 }
738 return &f->vector[index];
739 }
740 #endif
741 \f
742 /* maintain the lists of symbols and blocks */
743
744 /* Add a symbol to one of the lists of symbols. */
745 static void
746 add_symbol_to_list (symbol, listhead)
747 struct symbol *symbol;
748 struct pending **listhead;
749 {
750 /* We keep PENDINGSIZE symbols in each link of the list.
751 If we don't have a link with room in it, add a new link. */
752 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
753 {
754 register struct pending *link;
755 if (free_pendings)
756 {
757 link = free_pendings;
758 free_pendings = link->next;
759 }
760 else
761 link = (struct pending *) xmalloc (sizeof (struct pending));
762
763 link->next = *listhead;
764 *listhead = link;
765 link->nsyms = 0;
766 }
767
768 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
769 }
770
771 /* At end of reading syms, or in case of quit,
772 really free as many `struct pending's as we can easily find. */
773
774 /* ARGSUSED */
775 static void
776 really_free_pendings (foo)
777 int foo;
778 {
779 struct pending *next, *next1;
780 #if 0
781 struct pending_block *bnext, *bnext1;
782 #endif
783
784 for (next = free_pendings; next; next = next1)
785 {
786 next1 = next->next;
787 free (next);
788 }
789 free_pendings = 0;
790
791 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
792 for (bnext = pending_blocks; bnext; bnext = bnext1)
793 {
794 bnext1 = bnext->next;
795 free (bnext);
796 }
797 #endif
798 pending_blocks = 0;
799
800 for (next = file_symbols; next; next = next1)
801 {
802 next1 = next->next;
803 free (next);
804 }
805 file_symbols = 0;
806
807 for (next = global_symbols; next; next = next1)
808 {
809 next1 = next->next;
810 free (next);
811 }
812 global_symbols = 0;
813 }
814
815 /* Take one of the lists of symbols and make a block from it.
816 Keep the order the symbols have in the list (reversed from the input file).
817 Put the block on the list of pending blocks. */
818
819 static void
820 finish_block (symbol, listhead, old_blocks, start, end)
821 struct symbol *symbol;
822 struct pending **listhead;
823 struct pending_block *old_blocks;
824 CORE_ADDR start, end;
825 {
826 register struct pending *next, *next1;
827 register struct block *block;
828 register struct pending_block *pblock;
829 struct pending_block *opblock;
830 register int i;
831
832 /* Count the length of the list of symbols. */
833
834 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
835 /*EMPTY*/;
836
837 block = (struct block *) obstack_alloc (symbol_obstack,
838 (sizeof (struct block)
839 + ((i - 1)
840 * sizeof (struct symbol *))));
841
842 /* Copy the symbols into the block. */
843
844 BLOCK_NSYMS (block) = i;
845 for (next = *listhead; next; next = next->next)
846 {
847 register int j;
848 for (j = next->nsyms - 1; j >= 0; j--)
849 BLOCK_SYM (block, --i) = next->symbol[j];
850 }
851
852 BLOCK_START (block) = start;
853 BLOCK_END (block) = end;
854 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
855 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
856
857 /* Put the block in as the value of the symbol that names it. */
858
859 if (symbol)
860 {
861 SYMBOL_BLOCK_VALUE (symbol) = block;
862 BLOCK_FUNCTION (block) = symbol;
863 }
864 else
865 BLOCK_FUNCTION (block) = 0;
866
867 /* Now "free" the links of the list, and empty the list. */
868
869 for (next = *listhead; next; next = next1)
870 {
871 next1 = next->next;
872 next->next = free_pendings;
873 free_pendings = next;
874 }
875 *listhead = 0;
876
877 /* Install this block as the superblock
878 of all blocks made since the start of this scope
879 that don't have superblocks yet. */
880
881 opblock = 0;
882 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
883 {
884 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
885 #if 1
886 /* Check to be sure the blocks are nested as we receive them.
887 If the compiler/assembler/linker work, this just burns a small
888 amount of time. */
889 if (BLOCK_START (pblock->block) < BLOCK_START (block)
890 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
891 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
892 "(don't know)");
893 BLOCK_START (pblock->block) = BLOCK_START (block);
894 BLOCK_END (pblock->block) = BLOCK_END (block);
895 }
896 #endif
897 BLOCK_SUPERBLOCK (pblock->block) = block;
898 }
899 opblock = pblock;
900 }
901
902 /* Record this block on the list of all blocks in the file.
903 Put it after opblock, or at the beginning if opblock is 0.
904 This puts the block in the list after all its subblocks. */
905
906 /* Allocate in the symbol_obstack to save time.
907 It wastes a little space. */
908 pblock = (struct pending_block *)
909 obstack_alloc (symbol_obstack,
910 sizeof (struct pending_block));
911 pblock->block = block;
912 if (opblock)
913 {
914 pblock->next = opblock->next;
915 opblock->next = pblock;
916 }
917 else
918 {
919 pblock->next = pending_blocks;
920 pending_blocks = pblock;
921 }
922 }
923
924 static struct blockvector *
925 make_blockvector ()
926 {
927 register struct pending_block *next;
928 register struct blockvector *blockvector;
929 register int i;
930
931 /* Count the length of the list of blocks. */
932
933 for (next = pending_blocks, i = 0; next; next = next->next, i++);
934
935 blockvector = (struct blockvector *)
936 obstack_alloc (symbol_obstack,
937 (sizeof (struct blockvector)
938 + (i - 1) * sizeof (struct block *)));
939
940 /* Copy the blocks into the blockvector.
941 This is done in reverse order, which happens to put
942 the blocks into the proper order (ascending starting address).
943 finish_block has hair to insert each block into the list
944 after its subblocks in order to make sure this is true. */
945
946 BLOCKVECTOR_NBLOCKS (blockvector) = i;
947 for (next = pending_blocks; next; next = next->next) {
948 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
949 }
950
951 #if 0 /* Now we make the links in the obstack, so don't free them. */
952 /* Now free the links of the list, and empty the list. */
953
954 for (next = pending_blocks; next; next = next1)
955 {
956 next1 = next->next;
957 free (next);
958 }
959 #endif
960 pending_blocks = 0;
961
962 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
963 /* Some compilers output blocks in the wrong order, but we depend
964 on their being in the right order so we can binary search.
965 Check the order and moan about it. FIXME. */
966 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
967 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
968 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
969 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
970 complain (&blockvector_complaint,
971 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
972 }
973 }
974 #endif
975
976 return blockvector;
977 }
978 \f
979 /* Manage the vector of line numbers. */
980
981 static void
982 record_line (line, pc)
983 int line;
984 CORE_ADDR pc;
985 {
986 struct linetable_entry *e;
987 /* Ignore the dummy line number in libg.o */
988
989 if (line == 0xffff)
990 return;
991
992 /* Make sure line vector is big enough. */
993
994 if (line_vector_index + 1 >= line_vector_length)
995 {
996 line_vector_length *= 2;
997 line_vector = (struct linetable *)
998 xrealloc (line_vector,
999 (sizeof (struct linetable)
1000 + line_vector_length * sizeof (struct linetable_entry)));
1001 current_subfile->line_vector = line_vector;
1002 }
1003
1004 e = line_vector->item + line_vector_index++;
1005 e->line = line; e->pc = pc;
1006 }
1007 \f
1008 /* Start a new symtab for a new source file.
1009 This is called when a dbx symbol of type N_SO is seen;
1010 it indicates the start of data for one original source file. */
1011
1012 static void
1013 start_symtab (name, dirname, start_addr)
1014 char *name;
1015 char *dirname;
1016 CORE_ADDR start_addr;
1017 {
1018
1019 last_source_file = name;
1020 last_source_start_addr = start_addr;
1021 file_symbols = 0;
1022 global_symbols = 0;
1023 within_function = 0;
1024
1025 /* Context stack is initially empty, with room for 10 levels. */
1026 context_stack
1027 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1028 context_stack_size = 10;
1029 context_stack_depth = 0;
1030
1031 new_object_header_files ();
1032
1033 type_vector_length = 160;
1034 type_vector = (struct type **)
1035 xmalloc (type_vector_length * sizeof (struct type *));
1036 bzero (type_vector, type_vector_length * sizeof (struct type *));
1037
1038 /* Initialize the list of sub source files with one entry
1039 for this file (the top-level source file). */
1040
1041 subfiles = 0;
1042 current_subfile = 0;
1043 start_subfile (name, dirname);
1044 }
1045
1046 /* Handle an N_SOL symbol, which indicates the start of
1047 code that came from an included (or otherwise merged-in)
1048 source file with a different name. */
1049
1050 static void
1051 start_subfile (name, dirname)
1052 char *name;
1053 char *dirname;
1054 {
1055 register struct subfile *subfile;
1056
1057 /* Save the current subfile's line vector data. */
1058
1059 if (current_subfile)
1060 {
1061 current_subfile->line_vector_index = line_vector_index;
1062 current_subfile->line_vector_length = line_vector_length;
1063 current_subfile->prev_line_number = prev_line_number;
1064 }
1065
1066 /* See if this subfile is already known as a subfile of the
1067 current main source file. */
1068
1069 for (subfile = subfiles; subfile; subfile = subfile->next)
1070 {
1071 if (!strcmp (subfile->name, name))
1072 {
1073 line_vector = subfile->line_vector;
1074 line_vector_index = subfile->line_vector_index;
1075 line_vector_length = subfile->line_vector_length;
1076 prev_line_number = subfile->prev_line_number;
1077 current_subfile = subfile;
1078 return;
1079 }
1080 }
1081
1082 /* This subfile is not known. Add an entry for it. */
1083
1084 line_vector_index = 0;
1085 line_vector_length = 1000;
1086 prev_line_number = -2; /* Force first line number to be explicit */
1087 line_vector = (struct linetable *)
1088 xmalloc (sizeof (struct linetable)
1089 + line_vector_length * sizeof (struct linetable_entry));
1090
1091 /* Make an entry for this subfile in the list of all subfiles
1092 of the current main source file. */
1093
1094 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1095 subfile->next = subfiles;
1096 subfile->name = obsavestring (name, strlen (name));
1097 if (dirname == NULL)
1098 subfile->dirname = NULL;
1099 else
1100 subfile->dirname = obsavestring (dirname, strlen (dirname));
1101
1102 subfile->line_vector = line_vector;
1103 subfiles = subfile;
1104 current_subfile = subfile;
1105 }
1106
1107 /* Finish the symbol definitions for one main source file,
1108 close off all the lexical contexts for that file
1109 (creating struct block's for them), then make the struct symtab
1110 for that file and put it in the list of all such.
1111
1112 END_ADDR is the address of the end of the file's text. */
1113
1114 static struct symtab *
1115 end_symtab (end_addr)
1116 CORE_ADDR end_addr;
1117 {
1118 register struct symtab *symtab;
1119 register struct blockvector *blockvector;
1120 register struct subfile *subfile;
1121 register struct linetable *lv;
1122 struct subfile *nextsub;
1123
1124 /* Finish the lexical context of the last function in the file;
1125 pop the context stack. */
1126
1127 if (context_stack_depth > 0)
1128 {
1129 register struct context_stack *cstk;
1130 context_stack_depth--;
1131 cstk = &context_stack[context_stack_depth];
1132 /* Make a block for the local symbols within. */
1133 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1134 cstk->start_addr, end_addr);
1135 }
1136
1137 /* Cleanup any undefined types that have been left hanging around
1138 (this needs to be done before the finish_blocks so that
1139 file_symbols is still good). */
1140 cleanup_undefined_types ();
1141
1142 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
1143 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1144 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1145 blockvector = make_blockvector ();
1146
1147 current_subfile->line_vector_index = line_vector_index;
1148
1149 /* Now create the symtab objects proper, one for each subfile. */
1150 /* (The main file is the last one on the chain.) */
1151
1152 for (subfile = subfiles; subfile; subfile = nextsub)
1153 {
1154 symtab = allocate_symtab (subfile->name);
1155
1156 /* Fill in its components. */
1157 symtab->blockvector = blockvector;
1158 lv = subfile->line_vector;
1159 lv->nitems = subfile->line_vector_index;
1160 symtab->linetable = (struct linetable *)
1161 xrealloc (lv, (sizeof (struct linetable)
1162 + lv->nitems * sizeof (struct linetable_entry)));
1163
1164 symtab->dirname = subfile->dirname;
1165
1166 symtab->free_code = free_linetable;
1167 symtab->free_ptr = 0;
1168
1169 /* There should never already be a symtab for this name, since
1170 any prev dups have been removed when the psymtab was read in.
1171 FIXME, there ought to be a way to check this here. */
1172 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
1173
1174 /* Link the new symtab into the list of such. */
1175 symtab->next = symtab_list;
1176 symtab_list = symtab;
1177
1178 nextsub = subfile->next;
1179 free (subfile);
1180 }
1181
1182 free ((char *) type_vector);
1183 type_vector = 0;
1184 type_vector_length = -1;
1185 line_vector = 0;
1186 line_vector_length = -1;
1187 last_source_file = 0;
1188
1189 return symtab;
1190 }
1191 \f
1192 /* Handle the N_BINCL and N_EINCL symbol types
1193 that act like N_SOL for switching source files
1194 (different subfiles, as we call them) within one object file,
1195 but using a stack rather than in an arbitrary order. */
1196
1197 struct subfile_stack
1198 {
1199 struct subfile_stack *next;
1200 char *name;
1201 int prev_index;
1202 };
1203
1204 struct subfile_stack *subfile_stack;
1205
1206 static void
1207 push_subfile ()
1208 {
1209 register struct subfile_stack *tem
1210 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1211
1212 tem->next = subfile_stack;
1213 subfile_stack = tem;
1214 if (current_subfile == 0 || current_subfile->name == 0)
1215 abort ();
1216 tem->name = current_subfile->name;
1217 tem->prev_index = header_file_prev_index;
1218 }
1219
1220 static char *
1221 pop_subfile ()
1222 {
1223 register char *name;
1224 register struct subfile_stack *link = subfile_stack;
1225
1226 if (link == 0)
1227 abort ();
1228
1229 name = link->name;
1230 subfile_stack = link->next;
1231 header_file_prev_index = link->prev_index;
1232 free (link);
1233
1234 return name;
1235 }
1236 \f
1237 static void
1238 record_misc_function (name, address, type)
1239 char *name;
1240 CORE_ADDR address;
1241 int type;
1242 {
1243 enum misc_function_type misc_type;
1244
1245 switch (type &~ N_EXT) {
1246 case N_TEXT: misc_type = mf_text; break;
1247 case N_DATA: misc_type = mf_data; break;
1248 case N_BSS: misc_type = mf_bss; break;
1249 case N_ABS: misc_type = mf_abs; break;
1250 #ifdef N_SETV
1251 case N_SETV: misc_type = mf_data; break;
1252 #endif
1253 default: misc_type = mf_unknown; break;
1254 }
1255
1256 prim_record_misc_function (obsavestring (name, strlen (name)),
1257 address, misc_type);
1258 }
1259 \f
1260 /* The BFD for this file -- only good while we're actively reading
1261 symbols into a psymtab or a symtab. */
1262
1263 static bfd *symfile_bfd;
1264
1265 /* Scan and build partial symbols for a symbol file.
1266 We have been initialized by a call to dbx_symfile_init, which
1267 put all the relevant info into a "struct dbx_symfile_info"
1268 hung off the struct sym_fns SF.
1269
1270 ADDR is the address relative to which the symbols in it are (e.g.
1271 the base address of the text segment).
1272 MAINLINE is true if we are reading the main symbol
1273 table (as opposed to a shared lib or dynamically loaded file). */
1274
1275 static void
1276 dbx_symfile_read (sf, addr, mainline)
1277 struct sym_fns *sf;
1278 CORE_ADDR addr;
1279 int mainline; /* FIXME comments above */
1280 {
1281 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1282 bfd *sym_bfd = sf->sym_bfd;
1283 int val;
1284 char *filename = bfd_get_filename (sym_bfd);
1285
1286 val = lseek (info->desc, info->symtab_offset, L_SET);
1287 if (val < 0)
1288 perror_with_name (filename);
1289
1290 /* If mainline, set global string table pointers, and reinitialize global
1291 partial symbol list. */
1292 if (mainline) {
1293 symfile_string_table = info->stringtab;
1294 symfile_string_table_size = info->stringtab_size;
1295 }
1296
1297 /* If we are reinitializing, or if we have never loaded syms yet, init */
1298 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1299 init_psymbol_list (info->symcount);
1300
1301 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1302
1303 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1304 symbol_size = obj_symbol_entry_size (sym_bfd);
1305
1306 pending_blocks = 0;
1307 make_cleanup (really_free_pendings, 0);
1308
1309 init_misc_bunches ();
1310 make_cleanup (discard_misc_bunches, 0);
1311
1312 /* Now that the symbol table data of the executable file are all in core,
1313 process them and define symbols accordingly. */
1314
1315 read_dbx_symtab (filename,
1316 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1317 info->desc, info->stringtab, info->stringtab_size,
1318 info->symcount,
1319 bfd_section_vma (sym_bfd, info->text_sect),
1320 bfd_section_size (sym_bfd, info->text_sect));
1321
1322 /* Go over the misc symbol bunches and install them in vector. */
1323
1324 condense_misc_bunches (!mainline);
1325
1326 /* Free up any memory we allocated for ourselves. */
1327
1328 if (!mainline) {
1329 free (info->stringtab); /* Stringtab is only saved for mainline */
1330 }
1331 free (info);
1332 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1333
1334 if (!partial_symtab_list) {
1335 wrap_here ("");
1336 printf_filtered ("(no debugging symbols found)...");
1337 wrap_here ("");
1338 }
1339 }
1340
1341 /* Initialize anything that needs initializing when a completely new
1342 symbol file is specified (not just adding some symbols from another
1343 file, e.g. a shared library). */
1344
1345 static void
1346 dbx_new_init ()
1347 {
1348 /* Empty the hash table of global syms looking for values. */
1349 bzero (global_sym_chain, sizeof global_sym_chain);
1350
1351 free_pendings = 0;
1352 file_symbols = 0;
1353 global_symbols = 0;
1354
1355 /* Don't put these on the cleanup chain; they need to stick around
1356 until the next call to dbx_new_init. *Then* we'll free them. */
1357 if (symfile_string_table)
1358 {
1359 free (symfile_string_table);
1360 symfile_string_table = 0;
1361 symfile_string_table_size = 0;
1362 }
1363 free_and_init_header_files ();
1364 }
1365
1366
1367 /* dbx_symfile_init ()
1368 is the dbx-specific initialization routine for reading symbols.
1369 It is passed a struct sym_fns which contains, among other things,
1370 the BFD for the file whose symbols are being read, and a slot for a pointer
1371 to "private data" which we fill with goodies.
1372
1373 We read the string table into malloc'd space and stash a pointer to it.
1374
1375 Since BFD doesn't know how to read debug symbols in a format-independent
1376 way (and may never do so...), we have to do it ourselves. We will never
1377 be called unless this is an a.out (or very similar) file.
1378 FIXME, there should be a cleaner peephole into the BFD environment here. */
1379
1380 static void
1381 dbx_symfile_init (sf)
1382 struct sym_fns *sf;
1383 {
1384 int val;
1385 int desc;
1386 struct stat statbuf;
1387 bfd *sym_bfd = sf->sym_bfd;
1388 char *name = bfd_get_filename (sym_bfd);
1389 struct dbx_symfile_info *info;
1390 unsigned char size_temp[4];
1391
1392 /* Allocate struct to keep track of the symfile */
1393 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1394 info = (struct dbx_symfile_info *)sf->sym_private;
1395
1396 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1397 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1398 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1399 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1400 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1401
1402 info->desc = desc;
1403 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1404 if (!info->text_sect)
1405 abort();
1406 info->symcount = bfd_get_symcount (sym_bfd);
1407
1408 /* Read the string table size and check it for bogosity. */
1409 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1410 if (val < 0)
1411 perror_with_name (name);
1412 if (fstat (desc, &statbuf) == -1)
1413 perror_with_name (name);
1414
1415 val = myread (desc, size_temp, sizeof (long));
1416 if (val < 0)
1417 perror_with_name (name);
1418 info->stringtab_size = bfd_h_get_32 (sym_bfd, size_temp);
1419
1420 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1421 {
1422 info->stringtab = (char *) xmalloc (info->stringtab_size);
1423 /* Caller is responsible for freeing the string table. No cleanup. */
1424 }
1425 else
1426 info->stringtab = NULL;
1427 if (info->stringtab == NULL && info->stringtab_size != 0)
1428 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1429
1430 /* Now read in the string table in one big gulp. */
1431
1432 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1433 if (val < 0)
1434 perror_with_name (name);
1435 val = myread (desc, info->stringtab, info->stringtab_size);
1436 if (val < 0)
1437 perror_with_name (name);
1438
1439 /* Record the position of the symbol table for later use. */
1440
1441 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1442 }
1443 \f
1444 /* Buffer for reading the symbol table entries. */
1445 static struct internal_nlist symbuf[4096];
1446 static int symbuf_idx;
1447 static int symbuf_end;
1448
1449 /* I/O descriptor for reading the symbol table. */
1450 static int symtab_input_desc;
1451
1452 /* The address in memory of the string table of the object file we are
1453 reading (which might not be the "main" object file, but might be a
1454 shared library or some other dynamically loaded thing). This is set
1455 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1456 when building symtabs, and is used only by next_symbol_text. */
1457 static char *stringtab_global;
1458
1459 /* Refill the symbol table input buffer
1460 and set the variables that control fetching entries from it.
1461 Reports an error if no data available.
1462 This function can read past the end of the symbol table
1463 (into the string table) but this does no harm. */
1464
1465 static int
1466 fill_symbuf ()
1467 {
1468 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1469 if (nbytes < 0)
1470 perror_with_name ("<symbol file>");
1471 else if (nbytes == 0)
1472 error ("Premature end of file reading symbol table");
1473 symbuf_end = nbytes / symbol_size;
1474 symbuf_idx = 0;
1475 return 1;
1476 }
1477
1478 #define SWAP_SYMBOL(symp) \
1479 { \
1480 (symp)->n_strx = bfd_h_get_32(symfile_bfd, \
1481 (unsigned char *)&(symp)->n_strx); \
1482 (symp)->n_desc = bfd_h_get_16 (symfile_bfd, \
1483 (unsigned char *)&(symp)->n_desc); \
1484 (symp)->n_value = bfd_h_get_32 (symfile_bfd, \
1485 (unsigned char *)&(symp)->n_value); \
1486 }
1487
1488 /* Invariant: The symbol pointed to by symbuf_idx is the first one
1489 that hasn't been swapped. Swap the symbol at the same time
1490 that symbuf_idx is incremented. */
1491
1492 /* dbx allows the text of a symbol name to be continued into the
1493 next symbol name! When such a continuation is encountered
1494 (a \ at the end of the text of a name)
1495 call this function to get the continuation. */
1496
1497 static char *
1498 next_symbol_text ()
1499 {
1500 if (symbuf_idx == symbuf_end)
1501 fill_symbuf ();
1502 symnum++;
1503 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1504 return symbuf[symbuf_idx++].n_strx + stringtab_global;
1505 }
1506 \f
1507 /* Initializes storage for all of the partial symbols that will be
1508 created by read_dbx_symtab and subsidiaries. */
1509
1510 static void
1511 init_psymbol_list (total_symbols)
1512 int total_symbols;
1513 {
1514 /* Free any previously allocated psymbol lists. */
1515 if (global_psymbols.list)
1516 free (global_psymbols.list);
1517 if (static_psymbols.list)
1518 free (static_psymbols.list);
1519
1520 /* Current best guess is that there are approximately a twentieth
1521 of the total symbols (in a debugging file) are global or static
1522 oriented symbols */
1523 global_psymbols.size = total_symbols / 10;
1524 static_psymbols.size = total_symbols / 10;
1525 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1526 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1527 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1528 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1529 }
1530
1531 /* Initialize the list of bincls to contain none and have some
1532 allocated. */
1533
1534 static void
1535 init_bincl_list (number)
1536 int number;
1537 {
1538 bincls_allocated = number;
1539 next_bincl = bincl_list = (struct header_file_location *)
1540 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1541 }
1542
1543 /* Add a bincl to the list. */
1544
1545 static void
1546 add_bincl_to_list (pst, name, instance)
1547 struct partial_symtab *pst;
1548 char *name;
1549 int instance;
1550 {
1551 if (next_bincl >= bincl_list + bincls_allocated)
1552 {
1553 int offset = next_bincl - bincl_list;
1554 bincls_allocated *= 2;
1555 bincl_list = (struct header_file_location *)
1556 xrealloc ((char *)bincl_list,
1557 bincls_allocated * sizeof (struct header_file_location));
1558 next_bincl = bincl_list + offset;
1559 }
1560 next_bincl->pst = pst;
1561 next_bincl->instance = instance;
1562 next_bincl++->name = name;
1563 }
1564
1565 /* Given a name, value pair, find the corresponding
1566 bincl in the list. Return the partial symtab associated
1567 with that header_file_location. */
1568
1569 static struct partial_symtab *
1570 find_corresponding_bincl_psymtab (name, instance)
1571 char *name;
1572 int instance;
1573 {
1574 struct header_file_location *bincl;
1575
1576 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1577 if (bincl->instance == instance
1578 && !strcmp (name, bincl->name))
1579 return bincl->pst;
1580
1581 return (struct partial_symtab *) 0;
1582 }
1583
1584 /* Free the storage allocated for the bincl list. */
1585
1586 static void
1587 free_bincl_list ()
1588 {
1589 free (bincl_list);
1590 bincls_allocated = 0;
1591 }
1592
1593 static struct partial_symtab *start_psymtab ();
1594 static void end_psymtab();
1595
1596 #ifdef DEBUG
1597 /* This is normally a macro defined in read_dbx_symtab, but this
1598 is a lot easier to debug. */
1599
1600 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1601 char *NAME;
1602 int NAMELENGTH;
1603 enum namespace NAMESPACE;
1604 enum address_class CLASS;
1605 struct psymbol_allocation_list *PLIST;
1606 unsigned long VALUE;
1607 {
1608 register struct partial_symbol *psym;
1609
1610 #define LIST *PLIST
1611 do {
1612 if ((LIST).next >=
1613 (LIST).list + (LIST).size)
1614 {
1615 (LIST).list = (struct partial_symbol *)
1616 xrealloc ((LIST).list,
1617 ((LIST).size * 2
1618 * sizeof (struct partial_symbol)));
1619 /* Next assumes we only went one over. Should be good if
1620 program works correctly */
1621 (LIST).next =
1622 (LIST).list + (LIST).size;
1623 (LIST).size *= 2;
1624 }
1625 psym = (LIST).next++;
1626 #undef LIST
1627
1628 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1629 (NAMELENGTH) + 1);
1630 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1631 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1632 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1633 SYMBOL_CLASS (psym) = (CLASS);
1634 SYMBOL_VALUE (psym) = (VALUE);
1635 } while (0);
1636 }
1637
1638 /* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1639 #define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1640 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1641
1642 #endif /* DEBUG */
1643
1644 /* Given pointers to an a.out symbol table in core containing dbx
1645 style data, setup partial_symtab's describing each source file for
1646 which debugging information is available. NLISTLEN is the number
1647 of symbols in the symbol table. All symbol names are given as
1648 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1649 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1650 and ADDR is its relocated address (if incremental) or 0 (if not). */
1651
1652 static void
1653 read_dbx_symtab (symfile_name, addr,
1654 desc, stringtab, stringtab_size, nlistlen,
1655 text_addr, text_size)
1656 char *symfile_name;
1657 CORE_ADDR addr;
1658 int desc;
1659 register char *stringtab;
1660 register long stringtab_size;
1661 register int nlistlen;
1662 CORE_ADDR text_addr;
1663 int text_size;
1664 {
1665 register struct internal_nlist *bufp;
1666 register char *namestring;
1667 register struct partial_symbol *psym;
1668 int nsl;
1669 int past_first_source_file = 0;
1670 CORE_ADDR last_o_file_start = 0;
1671 struct cleanup *old_chain;
1672 char *p;
1673
1674 /* End of the text segment of the executable file. */
1675 CORE_ADDR end_of_text_addr;
1676
1677 /* Current partial symtab */
1678 struct partial_symtab *pst;
1679
1680 /* List of current psymtab's include files */
1681 char **psymtab_include_list;
1682 int includes_allocated;
1683 int includes_used;
1684
1685 /* Index within current psymtab dependency list */
1686 struct partial_symtab **dependency_list;
1687 int dependencies_used, dependencies_allocated;
1688
1689 stringtab_global = stringtab;
1690
1691 pst = (struct partial_symtab *) 0;
1692
1693 includes_allocated = 30;
1694 includes_used = 0;
1695 psymtab_include_list = (char **) alloca (includes_allocated *
1696 sizeof (char *));
1697
1698 dependencies_allocated = 30;
1699 dependencies_used = 0;
1700 dependency_list =
1701 (struct partial_symtab **) alloca (dependencies_allocated *
1702 sizeof (struct partial_symtab *));
1703
1704 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1705 It should only blow away the psymtabs created herein. We could
1706 be reading a shared library or a dynloaded file! */
1707 old_chain = make_cleanup (free_all_psymtabs, 0);
1708
1709 /* Init bincl list */
1710 init_bincl_list (20);
1711 make_cleanup (free_bincl_list, 0);
1712
1713 last_source_file = 0;
1714
1715 #ifdef END_OF_TEXT_DEFAULT
1716 end_of_text_addr = END_OF_TEXT_DEFAULT;
1717 #else
1718 end_of_text_addr = text_addr + addr + text_size; /* Relocate */
1719 #endif
1720
1721 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1722 symbuf_end = symbuf_idx = 0;
1723
1724 for (symnum = 0; symnum < nlistlen; symnum++)
1725 {
1726 /* Get the symbol for this run and pull out some info */
1727 QUIT; /* allow this to be interruptable */
1728 if (symbuf_idx == symbuf_end)
1729 fill_symbuf ();
1730 bufp = &symbuf[symbuf_idx++];
1731
1732 /*
1733 * Special case to speed up readin.
1734 */
1735 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1736
1737 SWAP_SYMBOL (bufp);
1738
1739 /* Ok. There is a lot of code duplicated in the rest of this
1740 switch statement (for efficiency reasons). Since I don't
1741 like duplicating code, I will do my penance here, and
1742 describe the code which is duplicated:
1743
1744 *) The assignment to namestring.
1745 *) The call to strchr.
1746 *) The addition of a partial symbol the the two partial
1747 symbol lists. This last is a large section of code, so
1748 I've imbedded it in the following macro.
1749 */
1750
1751 /* Set namestring based on bufp. If the string table index is invalid,
1752 give a fake name, and print a single error message per symbol file read,
1753 rather than abort the symbol reading or flood the user with messages. */
1754 #define SET_NAMESTRING()\
1755 if (bufp->n_strx < 0 || bufp->n_strx >= stringtab_size) { \
1756 complain (&string_table_offset_complaint, symnum); \
1757 namestring = "foo"; \
1758 } else \
1759 namestring = bufp->n_strx + stringtab
1760
1761 /* Add a symbol with an integer value to a psymtab. */
1762 /* This is a macro unless we're debugging. See above this function. */
1763 #ifndef DEBUG
1764 # define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1765 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1766 SYMBOL_VALUE)
1767 #endif /* DEBUG */
1768
1769 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1770 #define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1771 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1772 SYMBOL_VALUE_ADDRESS)
1773
1774 /* Add any kind of symbol to a psymtab. */
1775 #define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1776 do { \
1777 if ((LIST).next >= \
1778 (LIST).list + (LIST).size) \
1779 { \
1780 (LIST).list = (struct partial_symbol *) \
1781 xrealloc ((LIST).list, \
1782 ((LIST).size * 2 \
1783 * sizeof (struct partial_symbol))); \
1784 /* Next assumes we only went one over. Should be good if \
1785 program works correctly */ \
1786 (LIST).next = \
1787 (LIST).list + (LIST).size; \
1788 (LIST).size *= 2; \
1789 } \
1790 psym = (LIST).next++; \
1791 \
1792 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1793 (NAMELENGTH) + 1); \
1794 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1795 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1796 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1797 SYMBOL_CLASS (psym) = (CLASS); \
1798 VT (psym) = (VALUE); \
1799 } while (0);
1800
1801 /* End of macro definitions, now let's handle them symbols! */
1802
1803 switch (bufp->n_type)
1804 {
1805 /*
1806 * Standard, external, non-debugger, symbols
1807 */
1808
1809 case N_TEXT | N_EXT:
1810 case N_NBTEXT | N_EXT:
1811 case N_NBDATA | N_EXT:
1812 case N_NBBSS | N_EXT:
1813 case N_SETV | N_EXT:
1814 case N_ABS | N_EXT:
1815 case N_DATA | N_EXT:
1816 case N_BSS | N_EXT:
1817
1818 bufp->n_value += addr; /* Relocate */
1819
1820 SET_NAMESTRING();
1821
1822 bss_ext_symbol:
1823 record_misc_function (namestring, bufp->n_value,
1824 bufp->n_type); /* Always */
1825
1826 continue;
1827
1828 /* Standard, local, non-debugger, symbols */
1829
1830 case N_NBTEXT:
1831
1832 /* We need to be able to deal with both N_FN or N_TEXT,
1833 because we have no way of knowing whether the sys-supplied ld
1834 or GNU ld was used to make the executable. */
1835 case N_FN:
1836 case N_TEXT:
1837 bufp->n_value += addr; /* Relocate */
1838 SET_NAMESTRING();
1839 if ((namestring[0] == '-' && namestring[1] == 'l')
1840 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1841 && namestring [nsl - 2] == '.'))
1842 {
1843 if (entry_point < bufp->n_value
1844 && entry_point >= last_o_file_start
1845 && addr == 0) /* FIXME nogood nomore */
1846 {
1847 startup_file_start = last_o_file_start;
1848 startup_file_end = bufp->n_value;
1849 }
1850 if (past_first_source_file && pst
1851 /* The gould NP1 uses low values for .o and -l symbols
1852 which are not the address. */
1853 && bufp->n_value > pst->textlow)
1854 {
1855 end_psymtab (pst, psymtab_include_list, includes_used,
1856 symnum * symbol_size, bufp->n_value,
1857 dependency_list, dependencies_used,
1858 global_psymbols.next, static_psymbols.next);
1859 pst = (struct partial_symtab *) 0;
1860 includes_used = 0;
1861 dependencies_used = 0;
1862 }
1863 else
1864 past_first_source_file = 1;
1865 last_o_file_start = bufp->n_value;
1866 }
1867 continue;
1868
1869 case N_DATA:
1870 bufp->n_value += addr; /* Relocate */
1871 SET_NAMESTRING ();
1872 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1873 Record it even if it's local, not global, so we can find it.
1874 Same with virtual function tables, both global and static. */
1875 if ((namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1876 || VTBL_PREFIX_P ((namestring+HASH_OFFSET)))
1877 {
1878 /* Not really a function here, but... */
1879 record_misc_function (namestring, bufp->n_value,
1880 bufp->n_type); /* Always */
1881 }
1882 continue;
1883
1884 case N_UNDF | N_EXT:
1885 if (bufp->n_value != 0) {
1886 /* This is a "Fortran COMMON" symbol. See if the target
1887 environment knows where it has been relocated to. */
1888
1889 CORE_ADDR reladdr;
1890
1891 SET_NAMESTRING();
1892 if (target_lookup_symbol (namestring, &reladdr)) {
1893 continue; /* Error in lookup; ignore symbol for now. */
1894 }
1895 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1896 bufp->n_value = reladdr;
1897 goto bss_ext_symbol;
1898 }
1899 continue; /* Just undefined, not COMMON */
1900
1901 /* Lots of symbol types we can just ignore. */
1902
1903 case N_UNDF:
1904 case N_ABS:
1905 case N_BSS:
1906 case N_NBDATA:
1907 case N_NBBSS:
1908 continue;
1909
1910 /* Keep going . . .*/
1911
1912 /*
1913 * Special symbol types for GNU
1914 */
1915 case N_INDR:
1916 case N_INDR | N_EXT:
1917 case N_SETA:
1918 case N_SETA | N_EXT:
1919 case N_SETT:
1920 case N_SETT | N_EXT:
1921 case N_SETD:
1922 case N_SETD | N_EXT:
1923 case N_SETB:
1924 case N_SETB | N_EXT:
1925 case N_SETV:
1926 continue;
1927
1928 /*
1929 * Debugger symbols
1930 */
1931
1932 case N_SO: {
1933 unsigned long valu = bufp->n_value;
1934 /* Symbol number of the first symbol of this file (i.e. the N_SO
1935 if there is just one, or the first if we have a pair). */
1936 int first_symnum = symnum;
1937
1938 /* End the current partial symtab and start a new one */
1939
1940 SET_NAMESTRING();
1941
1942 /* Peek at the next symbol. If it is also an N_SO, the
1943 first one just indicates the directory. */
1944 if (symbuf_idx == symbuf_end)
1945 fill_symbuf ();
1946 bufp = &symbuf[symbuf_idx];
1947 /* n_type is only a char, so swapping swapping is irrelevant. */
1948 if (bufp->n_type == (unsigned char)N_SO)
1949 {
1950 SWAP_SYMBOL (bufp);
1951 SET_NAMESTRING ();
1952 valu = bufp->n_value;
1953 symbuf_idx++;
1954 symnum++;
1955 }
1956 valu += addr; /* Relocate */
1957
1958 if (pst && past_first_source_file)
1959 {
1960 end_psymtab (pst, psymtab_include_list, includes_used,
1961 first_symnum * symbol_size, valu,
1962 dependency_list, dependencies_used,
1963 global_psymbols.next, static_psymbols.next);
1964 pst = (struct partial_symtab *) 0;
1965 includes_used = 0;
1966 dependencies_used = 0;
1967 }
1968 else
1969 past_first_source_file = 1;
1970
1971 pst = start_psymtab (symfile_name, addr,
1972 namestring, valu,
1973 first_symnum * symbol_size,
1974 global_psymbols.next, static_psymbols.next);
1975 continue;
1976 }
1977
1978 case N_BINCL:
1979 /* Add this bincl to the bincl_list for future EXCLs. No
1980 need to save the string; it'll be around until
1981 read_dbx_symtab function returns */
1982
1983 SET_NAMESTRING();
1984
1985 add_bincl_to_list (pst, namestring, bufp->n_value);
1986
1987 /* Mark down an include file in the current psymtab */
1988
1989 psymtab_include_list[includes_used++] = namestring;
1990 if (includes_used >= includes_allocated)
1991 {
1992 char **orig = psymtab_include_list;
1993
1994 psymtab_include_list = (char **)
1995 alloca ((includes_allocated *= 2) *
1996 sizeof (char *));
1997 bcopy (orig, psymtab_include_list,
1998 includes_used * sizeof (char *));
1999 }
2000
2001 continue;
2002
2003 case N_SOL:
2004 /* Mark down an include file in the current psymtab */
2005
2006 SET_NAMESTRING();
2007
2008 /* In C++, one may expect the same filename to come round many
2009 times, when code is coming alternately from the main file
2010 and from inline functions in other files. So I check to see
2011 if this is a file we've seen before -- either the main
2012 source file, or a previously included file.
2013
2014 This seems to be a lot of time to be spending on N_SOL, but
2015 things like "break c-exp.y:435" need to work (I
2016 suppose the psymtab_include_list could be hashed or put
2017 in a binary tree, if profiling shows this is a major hog). */
2018 if (!strcmp (namestring, pst->filename))
2019 continue;
2020 {
2021 register int i;
2022 for (i = 0; i < includes_used; i++)
2023 if (!strcmp (namestring, psymtab_include_list[i]))
2024 {
2025 i = -1;
2026 break;
2027 }
2028 if (i == -1)
2029 continue;
2030 }
2031
2032 psymtab_include_list[includes_used++] = namestring;
2033 if (includes_used >= includes_allocated)
2034 {
2035 char **orig = psymtab_include_list;
2036
2037 psymtab_include_list = (char **)
2038 alloca ((includes_allocated *= 2) *
2039 sizeof (char *));
2040 bcopy (orig, psymtab_include_list,
2041 includes_used * sizeof (char *));
2042 }
2043 continue;
2044
2045 case N_LSYM: /* Typedef or automatic variable. */
2046 case N_STSYM: /* Data seg var -- static */
2047 case N_LCSYM: /* BSS " */
2048 case N_NBSTS: /* Gould nobase. */
2049 case N_NBLCS: /* symbols. */
2050
2051 SET_NAMESTRING();
2052
2053 p = (char *) strchr (namestring, ':');
2054
2055 /* Skip if there is no :. */
2056 if (!p) continue;
2057
2058 switch (p[1])
2059 {
2060 case 'T':
2061 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2062 STRUCT_NAMESPACE, LOC_TYPEDEF,
2063 static_psymbols, bufp->n_value);
2064 if (p[2] == 't')
2065 {
2066 /* Also a typedef with the same name. */
2067 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2068 VAR_NAMESPACE, LOC_TYPEDEF,
2069 static_psymbols, bufp->n_value);
2070 p += 1;
2071 }
2072 goto check_enum;
2073 case 't':
2074 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2075 VAR_NAMESPACE, LOC_TYPEDEF,
2076 static_psymbols, bufp->n_value);
2077 check_enum:
2078 /* If this is an enumerated type, we need to
2079 add all the enum constants to the partial symbol
2080 table. This does not cover enums without names, e.g.
2081 "enum {a, b} c;" in C, but fortunately those are
2082 rare. There is no way for GDB to find those from the
2083 enum type without spending too much time on it. Thus
2084 to solve this problem, the compiler needs to put out separate
2085 constant symbols ('c' N_LSYMS) for enum constants in
2086 enums without names, or put out a dummy type. */
2087
2088 /* We are looking for something of the form
2089 <name> ":" ("t" | "T") [<number> "="] "e"
2090 {<constant> ":" <value> ","} ";". */
2091
2092 /* Skip over the colon and the 't' or 'T'. */
2093 p += 2;
2094 /* This type may be given a number. Skip over it. */
2095 while ((*p >= '0' && *p <= '9')
2096 || *p == '=')
2097 p++;
2098
2099 if (*p++ == 'e')
2100 {
2101 /* We have found an enumerated type. */
2102 /* According to comments in read_enum_type
2103 a comma could end it instead of a semicolon.
2104 I don't know where that happens.
2105 Accept either. */
2106 while (*p && *p != ';' && *p != ',')
2107 {
2108 char *q;
2109
2110 /* Check for and handle cretinous dbx symbol name
2111 continuation! */
2112 if (*p == '\\')
2113 p = next_symbol_text ();
2114
2115 /* Point to the character after the name
2116 of the enum constant. */
2117 for (q = p; *q && *q != ':'; q++)
2118 ;
2119 /* Note that the value doesn't matter for
2120 enum constants in psymtabs, just in symtabs. */
2121 ADD_PSYMBOL_TO_LIST (p, q - p,
2122 VAR_NAMESPACE, LOC_CONST,
2123 static_psymbols, 0);
2124 /* Point past the name. */
2125 p = q;
2126 /* Skip over the value. */
2127 while (*p && *p != ',')
2128 p++;
2129 /* Advance past the comma. */
2130 if (*p)
2131 p++;
2132 }
2133 }
2134
2135 continue;
2136 case 'c':
2137 /* Constant, e.g. from "const" in Pascal. */
2138 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2139 VAR_NAMESPACE, LOC_CONST,
2140 static_psymbols, bufp->n_value);
2141 continue;
2142 default:
2143 /* Skip if the thing following the : is
2144 not a letter (which indicates declaration of a local
2145 variable, which we aren't interested in). */
2146 continue;
2147 }
2148
2149 case N_FUN:
2150 case N_GSYM: /* Global (extern) variable; can be
2151 data or bss (sigh). */
2152
2153 /* Following may probably be ignored; I'll leave them here
2154 for now (until I do Pascal and Modula 2 extensions). */
2155
2156 case N_PC: /* I may or may not need this; I
2157 suspect not. */
2158 case N_M2C: /* I suspect that I can ignore this here. */
2159 case N_SCOPE: /* Same. */
2160
2161 SET_NAMESTRING();
2162
2163 p = (char *) strchr (namestring, ':');
2164 if (!p)
2165 continue; /* Not a debugging symbol. */
2166
2167
2168
2169 /* Main processing section for debugging symbols which
2170 the initial read through the symbol tables needs to worry
2171 about. If we reach this point, the symbol which we are
2172 considering is definitely one we are interested in.
2173 p must also contain the (valid) index into the namestring
2174 which indicates the debugging type symbol. */
2175
2176 switch (p[1])
2177 {
2178 case 'c':
2179 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2180 VAR_NAMESPACE, LOC_CONST,
2181 static_psymbols, bufp->n_value);
2182 continue;
2183 case 'S':
2184 bufp->n_value += addr; /* Relocate */
2185 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2186 VAR_NAMESPACE, LOC_STATIC,
2187 static_psymbols, bufp->n_value);
2188 continue;
2189 case 'G':
2190 bufp->n_value += addr; /* Relocate */
2191 /* The addresses in these entries are reported to be
2192 wrong. See the code that reads 'G's for symtabs. */
2193 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2194 VAR_NAMESPACE, LOC_STATIC,
2195 global_psymbols, bufp->n_value);
2196 continue;
2197
2198 case 't':
2199 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2200 VAR_NAMESPACE, LOC_TYPEDEF,
2201 static_psymbols, bufp->n_value);
2202 continue;
2203
2204 case 'f':
2205 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2206 VAR_NAMESPACE, LOC_BLOCK,
2207 static_psymbols, bufp->n_value);
2208 continue;
2209
2210 /* Global functions were ignored here, but now they
2211 are put into the global psymtab like one would expect.
2212 They're also in the misc fn vector...
2213 FIXME, why did it used to ignore these? That broke
2214 "i fun" on these functions. */
2215 case 'F':
2216 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2217 VAR_NAMESPACE, LOC_BLOCK,
2218 global_psymbols, bufp->n_value);
2219 continue;
2220
2221 /* Two things show up here (hopefully); static symbols of
2222 local scope (static used inside braces) or extensions
2223 of structure symbols. We can ignore both. */
2224 case 'V':
2225 case '(':
2226 case '0':
2227 case '1':
2228 case '2':
2229 case '3':
2230 case '4':
2231 case '5':
2232 case '6':
2233 case '7':
2234 case '8':
2235 case '9':
2236 continue;
2237
2238 default:
2239 /* Unexpected symbol. Ignore it; perhaps it is an extension
2240 that we don't know about.
2241
2242 Someone says sun cc puts out symbols like
2243 /foo/baz/maclib::/usr/local/bin/maclib,
2244 which would get here with a symbol type of ':'. */
2245 continue;
2246 }
2247
2248 case N_EXCL:
2249
2250 SET_NAMESTRING();
2251
2252 /* Find the corresponding bincl and mark that psymtab on the
2253 psymtab dependency list */
2254 {
2255 struct partial_symtab *needed_pst =
2256 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2257
2258 /* If this include file was defined earlier in this file,
2259 leave it alone. */
2260 if (needed_pst == pst) continue;
2261
2262 if (needed_pst)
2263 {
2264 int i;
2265 int found = 0;
2266
2267 for (i = 0; i < dependencies_used; i++)
2268 if (dependency_list[i] == needed_pst)
2269 {
2270 found = 1;
2271 break;
2272 }
2273
2274 /* If it's already in the list, skip the rest. */
2275 if (found) continue;
2276
2277 dependency_list[dependencies_used++] = needed_pst;
2278 if (dependencies_used >= dependencies_allocated)
2279 {
2280 struct partial_symtab **orig = dependency_list;
2281 dependency_list =
2282 (struct partial_symtab **)
2283 alloca ((dependencies_allocated *= 2)
2284 * sizeof (struct partial_symtab *));
2285 bcopy (orig, dependency_list,
2286 (dependencies_used
2287 * sizeof (struct partial_symtab *)));
2288 #ifdef DEBUG_INFO
2289 fprintf (stderr, "Had to reallocate dependency list.\n");
2290 fprintf (stderr, "New dependencies allocated: %d\n",
2291 dependencies_allocated);
2292 #endif
2293 }
2294 }
2295 else
2296 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2297 symnum);
2298 }
2299 continue;
2300
2301 case N_EINCL:
2302 case N_DSLINE:
2303 case N_BSLINE:
2304 case N_SSYM: /* Claim: Structure or union element.
2305 Hopefully, I can ignore this. */
2306 case N_ENTRY: /* Alternate entry point; can ignore. */
2307 case N_MAIN: /* Can definitely ignore this. */
2308 case N_CATCH: /* These are GNU C++ extensions */
2309 case N_EHDECL: /* that can safely be ignored here. */
2310 case N_LENG:
2311 case N_BCOMM:
2312 case N_ECOMM:
2313 case N_ECOML:
2314 case N_FNAME:
2315 case N_SLINE:
2316 case N_RSYM:
2317 case N_PSYM:
2318 case N_LBRAC:
2319 case N_RBRAC:
2320 case N_NSYMS: /* Ultrix 4.0: symbol count */
2321 case N_DEFD: /* GNU Modula-2 */
2322 /* These symbols aren't interesting; don't worry about them */
2323
2324 continue;
2325
2326 default:
2327 /* If we haven't found it yet, ignore it. It's probably some
2328 new type we don't know about yet. */
2329 complain (&unknown_symtype_complaint, local_hex_string(bufp->n_type));
2330 continue;
2331 }
2332 }
2333
2334 /* If there's stuff to be cleaned up, clean it up. */
2335 if (nlistlen > 0 /* We have some syms */
2336 && entry_point < bufp->n_value
2337 && entry_point >= last_o_file_start)
2338 {
2339 startup_file_start = last_o_file_start;
2340 startup_file_end = bufp->n_value;
2341 }
2342
2343 if (pst)
2344 {
2345 end_psymtab (pst, psymtab_include_list, includes_used,
2346 symnum * symbol_size, end_of_text_addr,
2347 dependency_list, dependencies_used,
2348 global_psymbols.next, static_psymbols.next);
2349 includes_used = 0;
2350 dependencies_used = 0;
2351 pst = (struct partial_symtab *) 0;
2352 }
2353
2354 free_bincl_list ();
2355 discard_cleanups (old_chain);
2356 }
2357
2358 /*
2359 * Allocate and partially fill a partial symtab. It will be
2360 * completely filled at the end of the symbol list.
2361
2362 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2363 is the address relative to which its symbols are (incremental) or 0
2364 (normal). */
2365 static struct partial_symtab *
2366 start_psymtab (symfile_name, addr,
2367 filename, textlow, ldsymoff, global_syms, static_syms)
2368 char *symfile_name;
2369 CORE_ADDR addr;
2370 char *filename;
2371 CORE_ADDR textlow;
2372 int ldsymoff;
2373 struct partial_symbol *global_syms;
2374 struct partial_symbol *static_syms;
2375 {
2376 struct partial_symtab *result =
2377 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2378 sizeof (struct partial_symtab));
2379
2380 result->addr = addr;
2381
2382 result->symfile_name =
2383 (char *) obstack_alloc (psymbol_obstack,
2384 strlen (symfile_name) + 1);
2385 strcpy (result->symfile_name, symfile_name);
2386
2387 result->filename =
2388 (char *) obstack_alloc (psymbol_obstack,
2389 strlen (filename) + 1);
2390 strcpy (result->filename, filename);
2391
2392 result->textlow = textlow;
2393 result->ldsymoff = ldsymoff;
2394
2395 result->readin = 0;
2396 result->symtab = 0;
2397 result->read_symtab = dbx_psymtab_to_symtab;
2398
2399 result->globals_offset = global_syms - global_psymbols.list;
2400 result->statics_offset = static_syms - static_psymbols.list;
2401
2402 result->n_global_syms = 0;
2403 result->n_static_syms = 0;
2404
2405
2406 return result;
2407 }
2408
2409 static int
2410 compare_psymbols (s1, s2)
2411 register struct partial_symbol *s1, *s2;
2412 {
2413 register char
2414 *st1 = SYMBOL_NAME (s1),
2415 *st2 = SYMBOL_NAME (s2);
2416
2417 if (st1[0] - st2[0])
2418 return st1[0] - st2[0];
2419 if (st1[1] - st2[1])
2420 return st1[1] - st2[1];
2421 return strcmp (st1 + 1, st2 + 1);
2422 }
2423
2424
2425 /* Close off the current usage of a partial_symbol table entry. This
2426 involves setting the correct number of includes (with a realloc),
2427 setting the high text mark, setting the symbol length in the
2428 executable, and setting the length of the global and static lists
2429 of psymbols.
2430
2431 The global symbols and static symbols are then seperately sorted.
2432
2433 Then the partial symtab is put on the global list.
2434 *** List variables and peculiarities of same. ***
2435 */
2436 static void
2437 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2438 capping_text, dependency_list, number_dependencies,
2439 capping_global, capping_static)
2440 struct partial_symtab *pst;
2441 char **include_list;
2442 int num_includes;
2443 int capping_symbol_offset;
2444 CORE_ADDR capping_text;
2445 struct partial_symtab **dependency_list;
2446 int number_dependencies;
2447 struct partial_symbol *capping_global, *capping_static;
2448 {
2449 int i;
2450
2451 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2452 pst->texthigh = capping_text;
2453
2454 pst->n_global_syms =
2455 capping_global - (global_psymbols.list + pst->globals_offset);
2456 pst->n_static_syms =
2457 capping_static - (static_psymbols.list + pst->statics_offset);
2458
2459 pst->number_of_dependencies = number_dependencies;
2460 if (number_dependencies)
2461 {
2462 pst->dependencies = (struct partial_symtab **)
2463 obstack_alloc (psymbol_obstack,
2464 number_dependencies * sizeof (struct partial_symtab *));
2465 bcopy (dependency_list, pst->dependencies,
2466 number_dependencies * sizeof (struct partial_symtab *));
2467 }
2468 else
2469 pst->dependencies = 0;
2470
2471 for (i = 0; i < num_includes; i++)
2472 {
2473 /* Eventually, put this on obstack */
2474 struct partial_symtab *subpst =
2475 (struct partial_symtab *)
2476 obstack_alloc (psymbol_obstack,
2477 sizeof (struct partial_symtab));
2478
2479 subpst->filename =
2480 (char *) obstack_alloc (psymbol_obstack,
2481 strlen (include_list[i]) + 1);
2482 strcpy (subpst->filename, include_list[i]);
2483
2484 subpst->symfile_name = pst->symfile_name;
2485 subpst->addr = pst->addr;
2486 subpst->ldsymoff =
2487 subpst->ldsymlen =
2488 subpst->textlow =
2489 subpst->texthigh = 0;
2490
2491 /* We could save slight bits of space by only making one of these,
2492 shared by the entire set of include files. FIXME-someday. */
2493 subpst->dependencies = (struct partial_symtab **)
2494 obstack_alloc (psymbol_obstack,
2495 sizeof (struct partial_symtab *));
2496 subpst->dependencies[0] = pst;
2497 subpst->number_of_dependencies = 1;
2498
2499 subpst->globals_offset =
2500 subpst->n_global_syms =
2501 subpst->statics_offset =
2502 subpst->n_static_syms = 0;
2503
2504 subpst->readin = 0;
2505 subpst->symtab = 0;
2506 subpst->read_symtab = dbx_psymtab_to_symtab;
2507
2508 subpst->next = partial_symtab_list;
2509 partial_symtab_list = subpst;
2510 }
2511
2512 /* Sort the global list; don't sort the static list */
2513 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2514 sizeof (struct partial_symbol), compare_psymbols);
2515
2516 /* If there is already a psymtab or symtab for a file of this name, remove it.
2517 (If there is a symtab, more drastic things also happen.)
2518 This happens in VxWorks. */
2519 free_named_symtabs (pst->filename);
2520
2521 /* Put the psymtab on the psymtab list */
2522 pst->next = partial_symtab_list;
2523 partial_symtab_list = pst;
2524 }
2525 \f
2526 static void
2527 psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2528 struct partial_symtab *pst;
2529 int desc;
2530 char *stringtab;
2531 int stringtab_size;
2532 int sym_offset;
2533 {
2534 struct cleanup *old_chain;
2535 int i;
2536
2537 if (!pst)
2538 return;
2539
2540 if (pst->readin)
2541 {
2542 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2543 pst->filename);
2544 return;
2545 }
2546
2547 /* Read in all partial symtabs on which this one is dependent */
2548 for (i = 0; i < pst->number_of_dependencies; i++)
2549 if (!pst->dependencies[i]->readin)
2550 {
2551 /* Inform about additional files that need to be read in. */
2552 if (info_verbose)
2553 {
2554 fputs_filtered (" ", stdout);
2555 wrap_here ("");
2556 fputs_filtered ("and ", stdout);
2557 wrap_here ("");
2558 printf_filtered ("%s...", pst->dependencies[i]->filename);
2559 wrap_here (""); /* Flush output */
2560 fflush (stdout);
2561 }
2562 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2563 stringtab, stringtab_size, sym_offset);
2564 }
2565
2566 if (pst->ldsymlen) /* Otherwise it's a dummy */
2567 {
2568 /* Init stuff necessary for reading in symbols */
2569 free_pendings = 0;
2570 pending_blocks = 0;
2571 file_symbols = 0;
2572 global_symbols = 0;
2573 old_chain = make_cleanup (really_free_pendings, 0);
2574
2575 /* Read in this files symbols */
2576 lseek (desc, sym_offset, L_SET);
2577 pst->symtab =
2578 read_ofile_symtab (desc, stringtab, stringtab_size,
2579 pst->ldsymoff,
2580 pst->ldsymlen, pst->textlow,
2581 pst->texthigh - pst->textlow, pst->addr);
2582 sort_symtab_syms (pst->symtab);
2583
2584 do_cleanups (old_chain);
2585 }
2586
2587 pst->readin = 1;
2588 }
2589
2590 /*
2591 * Read in all of the symbols for a given psymtab for real.
2592 * Be verbose about it if the user wants that.
2593 */
2594 static void
2595 dbx_psymtab_to_symtab (pst)
2596 struct partial_symtab *pst;
2597 {
2598 int desc;
2599 char *stringtab;
2600 int stsize, val;
2601 struct stat statbuf;
2602 struct cleanup *old_chain;
2603 bfd *sym_bfd;
2604 long st_temp;
2605
2606 if (!pst)
2607 return;
2608
2609 if (pst->readin)
2610 {
2611 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2612 pst->filename);
2613 return;
2614 }
2615
2616 if (pst->ldsymlen || pst->number_of_dependencies)
2617 {
2618 /* Print the message now, before reading the string table,
2619 to avoid disconcerting pauses. */
2620 if (info_verbose)
2621 {
2622 printf_filtered ("Reading in symbols for %s...", pst->filename);
2623 fflush (stdout);
2624 }
2625
2626 /* Open symbol file and read in string table. Symbol_file_command
2627 guarantees that the symbol file name will be absolute, so there is
2628 no need for openp. */
2629 desc = open(pst->symfile_name, O_RDONLY, 0);
2630
2631 if (desc < 0)
2632 perror_with_name (pst->symfile_name);
2633
2634 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2635 if (!sym_bfd)
2636 {
2637 (void)close (desc);
2638 error ("Could not open `%s' to read symbols: %s",
2639 pst->symfile_name, bfd_errmsg (bfd_error));
2640 }
2641 old_chain = make_cleanup (bfd_close, sym_bfd);
2642 if (!bfd_check_format (sym_bfd, bfd_object))
2643 error ("\"%s\": can't read symbols: %s.",
2644 pst->symfile_name, bfd_errmsg (bfd_error));
2645
2646 /* We keep the string table for symfile resident in memory, but
2647 not the string table for any other symbol files. */
2648 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
2649 {
2650 /* Read in the string table */
2651
2652 /* FIXME, this uses internal BFD variables. See above in
2653 dbx_symbol_file_open where the macro is defined! */
2654 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2655
2656 val = myread (desc, &st_temp, sizeof st_temp);
2657 if (val < 0)
2658 perror_with_name (pst->symfile_name);
2659 stsize = bfd_h_get_32 (sym_bfd, (unsigned char *)&st_temp);
2660 if (fstat (desc, &statbuf) < 0)
2661 perror_with_name (pst->symfile_name);
2662
2663 if (stsize >= 0 && stsize < statbuf.st_size)
2664 {
2665 #ifdef BROKEN_LARGE_ALLOCA
2666 stringtab = (char *) xmalloc (stsize);
2667 make_cleanup (free, stringtab);
2668 #else
2669 stringtab = (char *) alloca (stsize);
2670 #endif
2671 }
2672 else
2673 stringtab = NULL;
2674 if (stringtab == NULL && stsize != 0)
2675 error ("ridiculous string table size: %d bytes", stsize);
2676
2677 /* FIXME, this uses internal BFD variables. See above in
2678 dbx_symbol_file_open where the macro is defined! */
2679 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2680 if (val < 0)
2681 perror_with_name (pst->symfile_name);
2682 val = myread (desc, stringtab, stsize);
2683 if (val < 0)
2684 perror_with_name (pst->symfile_name);
2685 }
2686 else
2687 {
2688 stringtab = symfile_string_table;
2689 stsize = symfile_string_table_size;
2690 }
2691
2692 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2693 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
2694 symbol_size = obj_symbol_entry_size (sym_bfd);
2695
2696 /* FIXME, this uses internal BFD variables. See above in
2697 dbx_symbol_file_open where the macro is defined! */
2698 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2699 SYMBOL_TABLE_OFFSET);
2700
2701 /* Match with global symbols. This only needs to be done once,
2702 after all of the symtabs and dependencies have been read in. */
2703 scan_file_globals ();
2704
2705 do_cleanups (old_chain);
2706
2707 /* Finish up the debug error message. */
2708 if (info_verbose)
2709 printf_filtered ("done.\n");
2710 }
2711 }
2712
2713 /*
2714 * Scan through all of the global symbols defined in the object file,
2715 * assigning values to the debugging symbols that need to be assigned
2716 * to. Get these symbols from the misc function list.
2717 */
2718 static void
2719 scan_file_globals ()
2720 {
2721 int hash;
2722 int mf;
2723
2724 for (mf = 0; mf < misc_function_count; mf++)
2725 {
2726 char *namestring = misc_function_vector[mf].name;
2727 struct symbol *sym, *prev;
2728
2729 QUIT;
2730
2731 prev = (struct symbol *) 0;
2732
2733 /* Get the hash index and check all the symbols
2734 under that hash index. */
2735
2736 hash = hashname (namestring);
2737
2738 for (sym = global_sym_chain[hash]; sym;)
2739 {
2740 if (*namestring == SYMBOL_NAME (sym)[0]
2741 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2742 {
2743 /* Splice this symbol out of the hash chain and
2744 assign the value we have to it. */
2745 if (prev)
2746 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2747 else
2748 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2749
2750 /* Check to see whether we need to fix up a common block. */
2751 /* Note: this code might be executed several times for
2752 the same symbol if there are multiple references. */
2753 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2754 fix_common_block (sym, misc_function_vector[mf].address);
2755 else
2756 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2757
2758 if (prev)
2759 sym = SYMBOL_VALUE_CHAIN (prev);
2760 else
2761 sym = global_sym_chain[hash];
2762 }
2763 else
2764 {
2765 prev = sym;
2766 sym = SYMBOL_VALUE_CHAIN (sym);
2767 }
2768 }
2769 }
2770 }
2771
2772 /* Process a pair of symbols. Currently they must both be N_SO's. */
2773 /* ARGSUSED */
2774 static void
2775 process_symbol_pair (type1, desc1, value1, name1,
2776 type2, desc2, value2, name2)
2777 int type1;
2778 int desc1;
2779 CORE_ADDR value1;
2780 char *name1;
2781 int type2;
2782 int desc2;
2783 CORE_ADDR value2;
2784 char *name2;
2785 {
2786 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2787 broken PCC's don't put out N_SO pairs. */
2788 if (last_source_file)
2789 (void)end_symtab (value2);
2790 start_symtab (name2, name1, value2);
2791 }
2792
2793 /*
2794 * Read in a defined section of a specific object file's symbols.
2795 *
2796 * DESC is the file descriptor for the file, positioned at the
2797 * beginning of the symtab
2798 * STRINGTAB is a pointer to the files string
2799 * table, already read in
2800 * SYM_OFFSET is the offset within the file of
2801 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2802 * number of symbols to read
2803 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2804 * TEXT_SIZE is the size of the text segment read in.
2805 * OFFSET is a relocation offset which gets added to each symbol
2806 */
2807
2808 static struct symtab *
2809 read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2810 sym_size, text_offset, text_size, offset)
2811 int desc;
2812 register char *stringtab;
2813 unsigned int stringtab_size;
2814 int sym_offset;
2815 int sym_size;
2816 CORE_ADDR text_offset;
2817 int text_size;
2818 int offset;
2819 {
2820 register char *namestring;
2821 struct internal_nlist *bufp;
2822 unsigned char type;
2823 unsigned max_symnum;
2824 subfile_stack = 0;
2825
2826 stringtab_global = stringtab;
2827 last_source_file = 0;
2828
2829 symtab_input_desc = desc;
2830 symbuf_end = symbuf_idx = 0;
2831
2832 /* It is necessary to actually read one symbol *before* the start
2833 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2834 occurs before the N_SO symbol.
2835
2836 Detecting this in read_dbx_symtab
2837 would slow down initial readin, so we look for it here instead. */
2838 if (sym_offset >= (int)symbol_size)
2839 {
2840 lseek (desc, sym_offset - symbol_size, L_INCR);
2841 fill_symbuf ();
2842 bufp = &symbuf[symbuf_idx++];
2843 SWAP_SYMBOL (bufp);
2844
2845 SET_NAMESTRING ();
2846
2847 processing_gcc_compilation =
2848 (bufp->n_type == N_TEXT
2849 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2850 /* FIXME!!! Check for gcc2_compiled... */
2851 }
2852 else
2853 {
2854 /* The N_SO starting this symtab is the first symbol, so we
2855 better not check the symbol before it. I'm not this can
2856 happen, but it doesn't hurt to check for it. */
2857 lseek(desc, sym_offset, L_INCR);
2858 processing_gcc_compilation = 0;
2859 }
2860
2861 if (symbuf_idx == symbuf_end)
2862 fill_symbuf();
2863 bufp = &symbuf[symbuf_idx];
2864 if (bufp->n_type != (unsigned char)N_SO)
2865 error("First symbol in segment of executable not a source symbol");
2866
2867 max_symnum = sym_size / symbol_size;
2868
2869 for (symnum = 0;
2870 symnum < max_symnum;
2871 symnum++)
2872 {
2873 QUIT; /* Allow this to be interruptable */
2874 if (symbuf_idx == symbuf_end)
2875 fill_symbuf();
2876 bufp = &symbuf[symbuf_idx++];
2877 SWAP_SYMBOL (bufp);
2878
2879 type = bufp->n_type & N_TYPE;
2880 if (type == (unsigned char)N_CATCH)
2881 {
2882 /* N_CATCH is not fixed up by the linker, and unfortunately,
2883 there's no other place to put it in the .stab map. */
2884 bufp->n_value += text_offset + offset;
2885 }
2886 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2887 bufp->n_value += offset;
2888
2889 type = bufp->n_type;
2890 SET_NAMESTRING ();
2891
2892 if (type & N_STAB)
2893 {
2894 short bufp_n_desc = bufp->n_desc;
2895 unsigned long valu = bufp->n_value;
2896
2897 /* Check for a pair of N_SO symbols. */
2898 if (type == (unsigned char)N_SO)
2899 {
2900 if (symbuf_idx == symbuf_end)
2901 fill_symbuf ();
2902 bufp = &symbuf[symbuf_idx];
2903 if (bufp->n_type == (unsigned char)N_SO)
2904 {
2905 char *namestring1 = namestring;
2906
2907 SWAP_SYMBOL (bufp);
2908 bufp->n_value += offset; /* Relocate */
2909 symbuf_idx++;
2910 symnum++;
2911 SET_NAMESTRING ();
2912
2913 process_symbol_pair (N_SO, bufp_n_desc, valu, namestring1,
2914 N_SO, bufp->n_desc, bufp->n_value,
2915 namestring);
2916 }
2917 else
2918 process_one_symbol(type, bufp_n_desc, valu, namestring);
2919 }
2920 else
2921 process_one_symbol (type, bufp_n_desc, valu, namestring);
2922 }
2923 /* We skip checking for a new .o or -l file; that should never
2924 happen in this routine. */
2925 else if (type == N_TEXT
2926 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2927 /* I don't think this code will ever be executed, because
2928 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2929 the N_SO symbol which starts this source file.
2930 However, there is no reason not to accept
2931 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2932 processing_gcc_compilation = 1;
2933 else if (type & N_EXT || type == (unsigned char)N_TEXT
2934 || type == (unsigned char)N_NBTEXT
2935 ) {
2936 /* Global symbol: see if we came across a dbx defintion for
2937 a corresponding symbol. If so, store the value. Remove
2938 syms from the chain when their values are stored, but
2939 search the whole chain, as there may be several syms from
2940 different files with the same name. */
2941 /* This is probably not true. Since the files will be read
2942 in one at a time, each reference to a global symbol will
2943 be satisfied in each file as it appears. So we skip this
2944 section. */
2945 ;
2946 }
2947 }
2948
2949 return end_symtab (text_offset + text_size);
2950 }
2951 \f
2952 static int
2953 hashname (name)
2954 char *name;
2955 {
2956 register char *p = name;
2957 register int total = p[0];
2958 register int c;
2959
2960 c = p[1];
2961 total += c << 2;
2962 if (c)
2963 {
2964 c = p[2];
2965 total += c << 4;
2966 if (c)
2967 total += p[3] << 6;
2968 }
2969
2970 /* Ensure result is positive. */
2971 if (total < 0) total += (1000 << 6);
2972 return total % HASHSIZE;
2973 }
2974
2975 \f
2976 static void
2977 process_one_symbol (type, desc, valu, name)
2978 int type, desc;
2979 CORE_ADDR valu;
2980 char *name;
2981 {
2982 #ifndef SUN_FIXED_LBRAC_BUG
2983 /* This records the last pc address we've seen. We depend on their being
2984 an SLINE or FUN or SO before the first LBRAC, since the variable does
2985 not get reset in between reads of different symbol files. */
2986 static CORE_ADDR last_pc_address;
2987 #endif
2988 register struct context_stack *new;
2989 char *colon_pos;
2990
2991 /* Something is wrong if we see real data before
2992 seeing a source file name. */
2993
2994 if (last_source_file == 0 && type != (unsigned char)N_SO)
2995 {
2996 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2997 where that code is defined. */
2998 if (IGNORE_SYMBOL (type))
2999 return;
3000
3001 /* FIXME, this should not be an error, since it precludes extending
3002 the symbol table information in this way... */
3003 error ("Invalid symbol data: does not start by identifying a source file.");
3004 }
3005
3006 switch (type)
3007 {
3008 case N_FUN:
3009 case N_FNAME:
3010 /* Either of these types of symbols indicates the start of
3011 a new function. We must process its "name" normally for dbx,
3012 but also record the start of a new lexical context, and possibly
3013 also the end of the lexical context for the previous function. */
3014 /* This is not always true. This type of symbol may indicate a
3015 text segment variable. */
3016
3017 #ifndef SUN_FIXED_LBRAC_BUG
3018 last_pc_address = valu; /* Save for SunOS bug circumcision */
3019 #endif
3020
3021 colon_pos = strchr (name, ':');
3022 if (!colon_pos++
3023 || (*colon_pos != 'f' && *colon_pos != 'F'))
3024 {
3025 define_symbol (valu, name, desc, type);
3026 break;
3027 }
3028
3029 within_function = 1;
3030 if (context_stack_depth > 0)
3031 {
3032 new = &context_stack[--context_stack_depth];
3033 /* Make a block for the local symbols within. */
3034 finish_block (new->name, &local_symbols, new->old_blocks,
3035 new->start_addr, valu);
3036 }
3037 /* Stack must be empty now. */
3038 if (context_stack_depth != 0)
3039 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3040 symnum);
3041
3042 new = &context_stack[context_stack_depth++];
3043 new->old_blocks = pending_blocks;
3044 new->start_addr = valu;
3045 new->name = define_symbol (valu, name, desc, type);
3046 local_symbols = 0;
3047 break;
3048
3049 case N_CATCH:
3050 /* Record the address at which this catch takes place. */
3051 define_symbol (valu, name, desc, type);
3052 break;
3053
3054 case N_EHDECL:
3055 /* Don't know what to do with these yet. */
3056 error ("action uncertain for eh extensions");
3057 break;
3058
3059 case N_LBRAC:
3060 /* This "symbol" just indicates the start of an inner lexical
3061 context within a function. */
3062
3063 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3064 /* On most machines, the block addresses are relative to the
3065 N_SO, the linker did not relocate them (sigh). */
3066 valu += last_source_start_addr;
3067 #endif
3068
3069 #ifndef SUN_FIXED_LBRAC_BUG
3070 if (valu < last_pc_address) {
3071 /* Patch current LBRAC pc value to match last handy pc value */
3072 complain (&lbrac_complaint, 0);
3073 valu = last_pc_address;
3074 }
3075 #endif
3076 if (context_stack_depth == context_stack_size)
3077 {
3078 context_stack_size *= 2;
3079 context_stack = (struct context_stack *)
3080 xrealloc (context_stack,
3081 (context_stack_size
3082 * sizeof (struct context_stack)));
3083 }
3084
3085 new = &context_stack[context_stack_depth++];
3086 new->depth = desc;
3087 new->locals = local_symbols;
3088 new->old_blocks = pending_blocks;
3089 new->start_addr = valu;
3090 new->name = 0;
3091 local_symbols = 0;
3092 break;
3093
3094 case N_RBRAC:
3095 /* This "symbol" just indicates the end of an inner lexical
3096 context that was started with N_LBRAC. */
3097
3098 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3099 /* On most machines, the block addresses are relative to the
3100 N_SO, the linker did not relocate them (sigh). */
3101 valu += last_source_start_addr;
3102 #endif
3103
3104 new = &context_stack[--context_stack_depth];
3105 if (desc != new->depth)
3106 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3107
3108 /* Some compilers put the variable decls inside of an
3109 LBRAC/RBRAC block. This macro should be nonzero if this
3110 is true. DESC is N_DESC from the N_RBRAC symbol.
3111 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3112 #if !defined (VARIABLES_INSIDE_BLOCK)
3113 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3114 #endif
3115
3116 /* Can only use new->locals as local symbols here if we're in
3117 gcc or on a machine that puts them before the lbrack. */
3118 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3119 local_symbols = new->locals;
3120
3121 /* If this is not the outermost LBRAC...RBRAC pair in the
3122 function, its local symbols preceded it, and are the ones
3123 just recovered from the context stack. Defined the block for them.
3124
3125 If this is the outermost LBRAC...RBRAC pair, there is no
3126 need to do anything; leave the symbols that preceded it
3127 to be attached to the function's own block. However, if
3128 it is so, we need to indicate that we just moved outside
3129 of the function. */
3130 if (local_symbols
3131 && (context_stack_depth
3132 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3133 {
3134 /* FIXME Muzzle a compiler bug that makes end < start. */
3135 if (new->start_addr > valu)
3136 {
3137 complain(&lbrac_rbrac_complaint, 0);
3138 new->start_addr = valu;
3139 }
3140 /* Make a block for the local symbols within. */
3141 finish_block (0, &local_symbols, new->old_blocks,
3142 new->start_addr, valu);
3143 }
3144 else
3145 {
3146 within_function = 0;
3147 }
3148 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3149 /* Now pop locals of block just finished. */
3150 local_symbols = new->locals;
3151 break;
3152
3153 case N_FN:
3154 /* This kind of symbol indicates the start of an object file. */
3155 break;
3156
3157 case N_SO:
3158 /* This type of symbol indicates the start of data
3159 for one source file.
3160 Finish the symbol table of the previous source file
3161 (if any) and start accumulating a new symbol table. */
3162 #ifndef SUN_FIXED_LBRAC_BUG
3163 last_pc_address = valu; /* Save for SunOS bug circumcision */
3164 #endif
3165
3166 #ifdef PCC_SOL_BROKEN
3167 /* pcc bug, occasionally puts out SO for SOL. */
3168 if (context_stack_depth > 0)
3169 {
3170 start_subfile (name, NULL);
3171 break;
3172 }
3173 #endif
3174 if (last_source_file)
3175 (void)end_symtab (valu);
3176 start_symtab (name, NULL, valu);
3177 break;
3178
3179 case N_SOL:
3180 /* This type of symbol indicates the start of data for
3181 a sub-source-file, one whose contents were copied or
3182 included in the compilation of the main source file
3183 (whose name was given in the N_SO symbol.) */
3184 start_subfile (name, NULL);
3185 break;
3186
3187 case N_BINCL:
3188 push_subfile ();
3189 add_new_header_file (name, valu);
3190 start_subfile (name, NULL);
3191 break;
3192
3193 case N_EINCL:
3194 start_subfile (pop_subfile (), NULL);
3195 break;
3196
3197 case N_EXCL:
3198 add_old_header_file (name, valu);
3199 break;
3200
3201 case N_SLINE:
3202 /* This type of "symbol" really just records
3203 one line-number -- core-address correspondence.
3204 Enter it in the line list for this symbol table. */
3205 #ifndef SUN_FIXED_LBRAC_BUG
3206 last_pc_address = valu; /* Save for SunOS bug circumcision */
3207 #endif
3208 record_line (desc, valu);
3209 break;
3210
3211 case N_BCOMM:
3212 if (common_block)
3213 error ("Invalid symbol data: common within common at symtab pos %d",
3214 symnum);
3215 common_block = local_symbols;
3216 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3217 break;
3218
3219 case N_ECOMM:
3220 /* Symbols declared since the BCOMM are to have the common block
3221 start address added in when we know it. common_block points to
3222 the first symbol after the BCOMM in the local_symbols list;
3223 copy the list and hang it off the symbol for the common block name
3224 for later fixup. */
3225 {
3226 int i;
3227 struct symbol *sym =
3228 (struct symbol *) xmalloc (sizeof (struct symbol));
3229 bzero (sym, sizeof *sym);
3230 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3231 SYMBOL_CLASS (sym) = LOC_BLOCK;
3232 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3233 copy_pending (local_symbols, common_block_i, common_block));
3234 i = hashname (SYMBOL_NAME (sym));
3235 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3236 global_sym_chain[i] = sym;
3237 common_block = 0;
3238 break;
3239 }
3240
3241 case N_ECOML:
3242 case N_LENG:
3243 case N_DEFD: /* GNU Modula-2 symbol */
3244 break;
3245
3246 default:
3247 if (name)
3248 define_symbol (valu, name, desc, type);
3249 }
3250 }
3251 \f
3252 /* Read a number by which a type is referred to in dbx data,
3253 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3254 Just a single number N is equivalent to (0,N).
3255 Return the two numbers by storing them in the vector TYPENUMS.
3256 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3257
3258 static void
3259 read_type_number (pp, typenums)
3260 register char **pp;
3261 register int *typenums;
3262 {
3263 if (**pp == '(')
3264 {
3265 (*pp)++;
3266 typenums[0] = read_number (pp, ',');
3267 typenums[1] = read_number (pp, ')');
3268 }
3269 else
3270 {
3271 typenums[0] = 0;
3272 typenums[1] = read_number (pp, 0);
3273 }
3274 }
3275 \f
3276 /* To handle GNU C++ typename abbreviation, we need to be able to
3277 fill in a type's name as soon as space for that type is allocated.
3278 `type_synonym_name' is the name of the type being allocated.
3279 It is cleared as soon as it is used (lest all allocated types
3280 get this name). */
3281 static char *type_synonym_name;
3282
3283 /* ARGSUSED */
3284 static struct symbol *
3285 define_symbol (valu, string, desc, type)
3286 unsigned int valu;
3287 char *string;
3288 int desc;
3289 int type;
3290 {
3291 register struct symbol *sym;
3292 char *p = (char *) strchr (string, ':');
3293 int deftype;
3294 int synonym = 0;
3295 register int i;
3296
3297 /* Ignore syms with empty names. */
3298 if (string[0] == 0)
3299 return 0;
3300
3301 /* Ignore old-style symbols from cc -go */
3302 if (p == 0)
3303 return 0;
3304
3305 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3306
3307 if (processing_gcc_compilation) {
3308 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3309 number of bytes occupied by a type or object, which we ignore. */
3310 SYMBOL_LINE(sym) = desc;
3311 } else {
3312 SYMBOL_LINE(sym) = 0; /* unknown */
3313 }
3314
3315 if (string[0] == CPLUS_MARKER)
3316 {
3317 /* Special GNU C++ names. */
3318 switch (string[1])
3319 {
3320 case 't':
3321 SYMBOL_NAME (sym) = "this";
3322 break;
3323 case 'v': /* $vtbl_ptr_type */
3324 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3325 goto normal;
3326 case 'e':
3327 SYMBOL_NAME (sym) = "eh_throw";
3328 break;
3329
3330 case '_':
3331 /* This was an anonymous type that was never fixed up. */
3332 goto normal;
3333
3334 default:
3335 abort ();
3336 }
3337 }
3338 else
3339 {
3340 normal:
3341 SYMBOL_NAME (sym)
3342 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3343 /* Open-coded bcopy--saves function call time. */
3344 {
3345 register char *p1 = string;
3346 register char *p2 = SYMBOL_NAME (sym);
3347 while (p1 != p)
3348 *p2++ = *p1++;
3349 *p2++ = '\0';
3350 }
3351 }
3352 p++;
3353 /* Determine the type of name being defined. */
3354 /* The Acorn RISC machine's compiler can put out locals that don't
3355 start with "234=" or "(3,4)=", so assume anything other than the
3356 deftypes we know how to handle is a local. */
3357 /* (Peter Watkins @ Computervision)
3358 Handle Sun-style local fortran array types 'ar...' .
3359 (gnu@cygnus.com) -- this strchr() handles them properly?
3360 (tiemann@cygnus.com) -- 'C' is for catch. */
3361 if (!strchr ("cfFGpPrStTvVXC", *p))
3362 deftype = 'l';
3363 else
3364 deftype = *p++;
3365
3366 /* c is a special case, not followed by a type-number.
3367 SYMBOL:c=iVALUE for an integer constant symbol.
3368 SYMBOL:c=rVALUE for a floating constant symbol.
3369 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3370 e.g. "b:c=e6,0" for "const b = blob1"
3371 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3372 if (deftype == 'c')
3373 {
3374 if (*p++ != '=')
3375 error ("Invalid symbol data at symtab pos %d.", symnum);
3376 switch (*p++)
3377 {
3378 case 'r':
3379 {
3380 double d = atof (p);
3381 char *dbl_valu;
3382
3383 SYMBOL_TYPE (sym) = builtin_type_double;
3384 dbl_valu =
3385 (char *) obstack_alloc (symbol_obstack, sizeof (double));
3386 bcopy (&d, dbl_valu, sizeof (double));
3387 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
3388 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
3389 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3390 }
3391 break;
3392 case 'i':
3393 {
3394 SYMBOL_TYPE (sym) = builtin_type_int;
3395 SYMBOL_VALUE (sym) = atoi (p);
3396 SYMBOL_CLASS (sym) = LOC_CONST;
3397 }
3398 break;
3399 case 'e':
3400 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3401 e.g. "b:c=e6,0" for "const b = blob1"
3402 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3403 {
3404 int typenums[2];
3405
3406 read_type_number (&p, typenums);
3407 if (*p++ != ',')
3408 error ("Invalid symbol data: no comma in enum const symbol");
3409
3410 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3411 SYMBOL_VALUE (sym) = atoi (p);
3412 SYMBOL_CLASS (sym) = LOC_CONST;
3413 }
3414 break;
3415 default:
3416 error ("Invalid symbol data at symtab pos %d.", symnum);
3417 }
3418 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3419 add_symbol_to_list (sym, &file_symbols);
3420 return sym;
3421 }
3422
3423 /* Now usually comes a number that says which data type,
3424 and possibly more stuff to define the type
3425 (all of which is handled by read_type) */
3426
3427 if (deftype == 'p' && *p == 'F')
3428 /* pF is a two-letter code that means a function parameter in Fortran.
3429 The type-number specifies the type of the return value.
3430 Translate it into a pointer-to-function type. */
3431 {
3432 p++;
3433 SYMBOL_TYPE (sym)
3434 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3435 }
3436 else
3437 {
3438 struct type *type_read;
3439 synonym = *p == 't';
3440
3441 if (synonym)
3442 {
3443 p += 1;
3444 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3445 strlen (SYMBOL_NAME (sym)));
3446 }
3447
3448 type_read = read_type (&p);
3449
3450 if ((deftype == 'F' || deftype == 'f')
3451 && TYPE_CODE (type_read) != TYPE_CODE_FUNC)
3452 {
3453 #if 0
3454 /* This code doesn't work -- it needs to realloc and can't. */
3455 struct type *new = (struct type *)
3456 obstack_alloc (symbol_obstack, sizeof (struct type));
3457
3458 /* Generate a template for the type of this function. The
3459 types of the arguments will be added as we read the symbol
3460 table. */
3461 *new = *lookup_function_type (type_read);
3462 SYMBOL_TYPE(sym) = new;
3463 in_function_type = new;
3464 #else
3465 SYMBOL_TYPE (sym) = lookup_function_type (type_read);
3466 #endif
3467 }
3468 else
3469 SYMBOL_TYPE (sym) = type_read;
3470 }
3471
3472 switch (deftype)
3473 {
3474 case 'C':
3475 /* The name of a caught exception. */
3476 SYMBOL_CLASS (sym) = LOC_LABEL;
3477 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3478 SYMBOL_VALUE_ADDRESS (sym) = valu;
3479 add_symbol_to_list (sym, &local_symbols);
3480 break;
3481
3482 case 'f':
3483 SYMBOL_CLASS (sym) = LOC_BLOCK;
3484 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3485 add_symbol_to_list (sym, &file_symbols);
3486 break;
3487
3488 case 'F':
3489 SYMBOL_CLASS (sym) = LOC_BLOCK;
3490 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3491 add_symbol_to_list (sym, &global_symbols);
3492 break;
3493
3494 case 'G':
3495 /* For a class G (global) symbol, it appears that the
3496 value is not correct. It is necessary to search for the
3497 corresponding linker definition to find the value.
3498 These definitions appear at the end of the namelist. */
3499 i = hashname (SYMBOL_NAME (sym));
3500 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3501 global_sym_chain[i] = sym;
3502 SYMBOL_CLASS (sym) = LOC_STATIC;
3503 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3504 add_symbol_to_list (sym, &global_symbols);
3505 break;
3506
3507 /* This case is faked by a conditional above,
3508 when there is no code letter in the dbx data.
3509 Dbx data never actually contains 'l'. */
3510 case 'l':
3511 SYMBOL_CLASS (sym) = LOC_LOCAL;
3512 SYMBOL_VALUE (sym) = valu;
3513 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3514 add_symbol_to_list (sym, &local_symbols);
3515 break;
3516
3517 case 'p':
3518 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3519 can also be a LOC_LOCAL_ARG depending on symbol type. */
3520 #ifndef DBX_PARM_SYMBOL_CLASS
3521 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3522 #endif
3523 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3524 SYMBOL_VALUE (sym) = valu;
3525 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3526 #if 0
3527 /* This doesn't work yet. */
3528 add_param_to_type (&in_function_type, sym);
3529 #endif
3530 add_symbol_to_list (sym, &local_symbols);
3531
3532 /* If it's gcc-compiled, if it says `short', believe it. */
3533 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3534 break;
3535
3536 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
3537 /* This macro is defined on machines (e.g. sparc) where
3538 we should believe the type of a PCC 'short' argument,
3539 but shouldn't believe the address (the address is
3540 the address of the corresponding int). Note that
3541 this is only different from the BELIEVE_PCC_PROMOTION
3542 case on big-endian machines.
3543
3544 My guess is that this correction, as opposed to changing
3545 the parameter to an 'int' (as done below, for PCC
3546 on most machines), is the right thing to do
3547 on all machines, but I don't want to risk breaking
3548 something that already works. On most PCC machines,
3549 the sparc problem doesn't come up because the calling
3550 function has to zero the top bytes (not knowing whether
3551 the called function wants an int or a short), so there
3552 is no practical difference between an int and a short
3553 (except perhaps what happens when the GDB user types
3554 "print short_arg = 0x10000;").
3555
3556 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3557 actually produces the correct address (we don't need to fix it
3558 up). I made this code adapt so that it will offset the symbol
3559 if it was pointing at an int-aligned location and not
3560 otherwise. This way you can use the same gdb for 4.0.x and
3561 4.1 systems. */
3562
3563 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3564 {
3565 if (SYMBOL_TYPE (sym) == builtin_type_char
3566 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3567 SYMBOL_VALUE (sym) += 3;
3568 else if (SYMBOL_TYPE (sym) == builtin_type_short
3569 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3570 SYMBOL_VALUE (sym) += 2;
3571 }
3572 break;
3573
3574 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3575
3576 /* If PCC says a parameter is a short or a char,
3577 it is really an int. */
3578 if (SYMBOL_TYPE (sym) == builtin_type_char
3579 || SYMBOL_TYPE (sym) == builtin_type_short)
3580 SYMBOL_TYPE (sym) = builtin_type_int;
3581 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3582 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3583 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3584 break;
3585
3586 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3587
3588 case 'P':
3589 SYMBOL_CLASS (sym) = LOC_REGPARM;
3590 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3591 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3592 add_symbol_to_list (sym, &local_symbols);
3593 break;
3594
3595 case 'r':
3596 SYMBOL_CLASS (sym) = LOC_REGISTER;
3597 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3598 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3599 add_symbol_to_list (sym, &local_symbols);
3600 break;
3601
3602 case 'S':
3603 /* Static symbol at top level of file */
3604 SYMBOL_CLASS (sym) = LOC_STATIC;
3605 SYMBOL_VALUE_ADDRESS (sym) = valu;
3606 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3607 add_symbol_to_list (sym, &file_symbols);
3608 break;
3609
3610 case 't':
3611 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3612 SYMBOL_VALUE (sym) = valu;
3613 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3614 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3615 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3616 TYPE_NAME (SYMBOL_TYPE (sym)) =
3617 obsavestring (SYMBOL_NAME (sym),
3618 strlen (SYMBOL_NAME (sym)));
3619 /* C++ vagaries: we may have a type which is derived from
3620 a base type which did not have its name defined when the
3621 derived class was output. We fill in the derived class's
3622 base part member's name here in that case. */
3623 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3624 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3625 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3626 {
3627 int j;
3628 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
3629 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
3630 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
3631 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
3632 }
3633
3634 add_symbol_to_list (sym, &file_symbols);
3635 break;
3636
3637 case 'T':
3638 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3639 SYMBOL_VALUE (sym) = valu;
3640 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3641 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3642 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3643 TYPE_NAME (SYMBOL_TYPE (sym))
3644 = obconcat ("",
3645 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3646 ? "enum "
3647 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3648 ? "struct " : "union ")),
3649 SYMBOL_NAME (sym));
3650 add_symbol_to_list (sym, &file_symbols);
3651
3652 if (synonym)
3653 {
3654 register struct symbol *typedef_sym
3655 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3656 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3657 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3658
3659 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3660 SYMBOL_VALUE (typedef_sym) = valu;
3661 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3662 add_symbol_to_list (typedef_sym, &file_symbols);
3663 }
3664 break;
3665
3666 case 'V':
3667 /* Static symbol of local scope */
3668 SYMBOL_CLASS (sym) = LOC_STATIC;
3669 SYMBOL_VALUE_ADDRESS (sym) = valu;
3670 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3671 add_symbol_to_list (sym, &local_symbols);
3672 break;
3673
3674 case 'v':
3675 /* Reference parameter */
3676 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3677 SYMBOL_VALUE (sym) = valu;
3678 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3679 add_symbol_to_list (sym, &local_symbols);
3680 break;
3681
3682 case 'X':
3683 /* This is used by Sun FORTRAN for "function result value".
3684 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3685 that Pascal uses it too, but when I tried it Pascal used
3686 "x:3" (local symbol) instead. */
3687 SYMBOL_CLASS (sym) = LOC_LOCAL;
3688 SYMBOL_VALUE (sym) = valu;
3689 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3690 add_symbol_to_list (sym, &local_symbols);
3691 break;
3692
3693 default:
3694 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3695 }
3696 return sym;
3697 }
3698 \f
3699 /* What about types defined as forward references inside of a small lexical
3700 scope? */
3701 /* Add a type to the list of undefined types to be checked through
3702 once this file has been read in. */
3703 static void
3704 add_undefined_type (type)
3705 struct type *type;
3706 {
3707 if (undef_types_length == undef_types_allocated)
3708 {
3709 undef_types_allocated *= 2;
3710 undef_types = (struct type **)
3711 xrealloc (undef_types,
3712 undef_types_allocated * sizeof (struct type *));
3713 }
3714 undef_types[undef_types_length++] = type;
3715 }
3716
3717 /* Add here something to go through each undefined type, see if it's
3718 still undefined, and do a full lookup if so. */
3719 static void
3720 cleanup_undefined_types ()
3721 {
3722 struct type **type;
3723
3724 for (type = undef_types; type < undef_types + undef_types_length; type++)
3725 {
3726 /* Reasonable test to see if it's been defined since. */
3727 if (TYPE_NFIELDS (*type) == 0)
3728 {
3729 struct pending *ppt;
3730 int i;
3731 /* Name of the type, without "struct" or "union" */
3732 char *typename = TYPE_NAME (*type);
3733
3734 if (!strncmp (typename, "struct ", 7))
3735 typename += 7;
3736 if (!strncmp (typename, "union ", 6))
3737 typename += 6;
3738
3739 for (ppt = file_symbols; ppt; ppt = ppt->next)
3740 for (i = 0; i < ppt->nsyms; i++)
3741 {
3742 struct symbol *sym = ppt->symbol[i];
3743
3744 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3745 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3746 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3747 TYPE_CODE (*type))
3748 && !strcmp (SYMBOL_NAME (sym), typename))
3749 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3750 }
3751 }
3752 else
3753 /* It has been defined; don't mark it as a stub. */
3754 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3755 }
3756 undef_types_length = 0;
3757 }
3758
3759 /* Skip rest of this symbol and return an error type.
3760
3761 General notes on error recovery: error_type always skips to the
3762 end of the symbol (modulo cretinous dbx symbol name continuation).
3763 Thus code like this:
3764
3765 if (*(*pp)++ != ';')
3766 return error_type (pp);
3767
3768 is wrong because if *pp starts out pointing at '\0' (typically as the
3769 result of an earlier error), it will be incremented to point to the
3770 start of the next symbol, which might produce strange results, at least
3771 if you run off the end of the string table. Instead use
3772
3773 if (**pp != ';')
3774 return error_type (pp);
3775 ++*pp;
3776
3777 or
3778
3779 if (**pp != ';')
3780 foo = error_type (pp);
3781 else
3782 ++*pp;
3783
3784 And in case it isn't obvious, the point of all this hair is so the compiler
3785 can define new types and new syntaxes, and old versions of the
3786 debugger will be able to read the new symbol tables. */
3787
3788 static struct type *
3789 error_type (pp)
3790 char **pp;
3791 {
3792 complain (&error_type_complaint, 0);
3793 while (1)
3794 {
3795 /* Skip to end of symbol. */
3796 while (**pp != '\0')
3797 (*pp)++;
3798
3799 /* Check for and handle cretinous dbx symbol name continuation! */
3800 if ((*pp)[-1] == '\\')
3801 *pp = next_symbol_text ();
3802 else
3803 break;
3804 }
3805 return builtin_type_error;
3806 }
3807 \f
3808 /* Read a dbx type reference or definition;
3809 return the type that is meant.
3810 This can be just a number, in which case it references
3811 a type already defined and placed in type_vector.
3812 Or the number can be followed by an =, in which case
3813 it means to define a new type according to the text that
3814 follows the =. */
3815
3816 static
3817 struct type *
3818 read_type (pp)
3819 register char **pp;
3820 {
3821 register struct type *type = 0;
3822 struct type *type1;
3823 int typenums[2];
3824 int xtypenums[2];
3825
3826 /* Read type number if present. The type number may be omitted.
3827 for instance in a two-dimensional array declared with type
3828 "ar1;1;10;ar1;1;10;4". */
3829 if ((**pp >= '0' && **pp <= '9')
3830 || **pp == '(')
3831 {
3832 read_type_number (pp, typenums);
3833
3834 /* Detect random reference to type not yet defined.
3835 Allocate a type object but leave it zeroed. */
3836 if (**pp != '=')
3837 return dbx_alloc_type (typenums);
3838
3839 *pp += 2;
3840 }
3841 else
3842 {
3843 /* 'typenums=' not present, type is anonymous. Read and return
3844 the definition, but don't put it in the type vector. */
3845 typenums[0] = typenums[1] = -1;
3846 *pp += 1;
3847 }
3848
3849 switch ((*pp)[-1])
3850 {
3851 case 'x':
3852 {
3853 enum type_code code;
3854
3855 /* Used to index through file_symbols. */
3856 struct pending *ppt;
3857 int i;
3858
3859 /* Name including "struct", etc. */
3860 char *type_name;
3861
3862 /* Name without "struct", etc. */
3863 char *type_name_only;
3864
3865 {
3866 char *prefix;
3867 char *from, *to;
3868
3869 /* Set the type code according to the following letter. */
3870 switch ((*pp)[0])
3871 {
3872 case 's':
3873 code = TYPE_CODE_STRUCT;
3874 prefix = "struct ";
3875 break;
3876 case 'u':
3877 code = TYPE_CODE_UNION;
3878 prefix = "union ";
3879 break;
3880 case 'e':
3881 code = TYPE_CODE_ENUM;
3882 prefix = "enum ";
3883 break;
3884 default:
3885 return error_type (pp);
3886 }
3887
3888 to = type_name = (char *)
3889 obstack_alloc (symbol_obstack,
3890 (strlen (prefix) +
3891 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3892
3893 /* Copy the prefix. */
3894 from = prefix;
3895 while (*to++ = *from++)
3896 ;
3897 to--;
3898
3899 type_name_only = to;
3900
3901 /* Copy the name. */
3902 from = *pp + 1;
3903 while ((*to++ = *from++) != ':')
3904 ;
3905 *--to = '\0';
3906
3907 /* Set the pointer ahead of the name which we just read. */
3908 *pp = from;
3909
3910 #if 0
3911 /* The following hack is clearly wrong, because it doesn't
3912 check whether we are in a baseclass. I tried to reproduce
3913 the case that it is trying to fix, but I couldn't get
3914 g++ to put out a cross reference to a basetype. Perhaps
3915 it doesn't do it anymore. */
3916 /* Note: for C++, the cross reference may be to a base type which
3917 has not yet been seen. In this case, we skip to the comma,
3918 which will mark the end of the base class name. (The ':'
3919 at the end of the base class name will be skipped as well.)
3920 But sometimes (ie. when the cross ref is the last thing on
3921 the line) there will be no ','. */
3922 from = (char *) strchr (*pp, ',');
3923 if (from)
3924 *pp = from;
3925 #endif /* 0 */
3926 }
3927
3928 /* Now check to see whether the type has already been declared. */
3929 /* This is necessary at least in the case where the
3930 program says something like
3931 struct foo bar[5];
3932 The compiler puts out a cross-reference; we better find
3933 set the length of the structure correctly so we can
3934 set the length of the array. */
3935 for (ppt = file_symbols; ppt; ppt = ppt->next)
3936 for (i = 0; i < ppt->nsyms; i++)
3937 {
3938 struct symbol *sym = ppt->symbol[i];
3939
3940 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3941 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3942 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3943 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3944 {
3945 obstack_free (symbol_obstack, type_name);
3946 type = SYMBOL_TYPE (sym);
3947 return type;
3948 }
3949 }
3950
3951 /* Didn't find the type to which this refers, so we must
3952 be dealing with a forward reference. Allocate a type
3953 structure for it, and keep track of it so we can
3954 fill in the rest of the fields when we get the full
3955 type. */
3956 type = dbx_alloc_type (typenums);
3957 TYPE_CODE (type) = code;
3958 TYPE_NAME (type) = type_name;
3959
3960 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3961
3962 add_undefined_type (type);
3963 return type;
3964 }
3965
3966 case '0':
3967 case '1':
3968 case '2':
3969 case '3':
3970 case '4':
3971 case '5':
3972 case '6':
3973 case '7':
3974 case '8':
3975 case '9':
3976 case '(':
3977 (*pp)--;
3978 read_type_number (pp, xtypenums);
3979 type = *dbx_lookup_type (xtypenums);
3980 if (type == 0)
3981 type = builtin_type_void;
3982 if (typenums[0] != -1)
3983 *dbx_lookup_type (typenums) = type;
3984 break;
3985
3986 case '*':
3987 type1 = read_type (pp);
3988 type = lookup_pointer_type (type1);
3989 if (typenums[0] != -1)
3990 *dbx_lookup_type (typenums) = type;
3991 break;
3992
3993 case '@':
3994 {
3995 struct type *domain = read_type (pp);
3996 struct type *memtype;
3997
3998 if (**pp != ',')
3999 /* Invalid member type data format. */
4000 return error_type (pp);
4001 ++*pp;
4002
4003 memtype = read_type (pp);
4004 type = dbx_alloc_type (typenums);
4005 smash_to_member_type (type, domain, memtype);
4006 }
4007 break;
4008
4009 case '#':
4010 if ((*pp)[0] == '#')
4011 {
4012 /* We'll get the parameter types from the name. */
4013 struct type *return_type;
4014
4015 *pp += 1;
4016 return_type = read_type (pp);
4017 if (*(*pp)++ != ';')
4018 complain (&invalid_member_complaint, symnum);
4019 type = allocate_stub_method (return_type);
4020 if (typenums[0] != -1)
4021 *dbx_lookup_type (typenums) = type;
4022 }
4023 else
4024 {
4025 struct type *domain = read_type (pp);
4026 struct type *return_type;
4027 struct type **args;
4028
4029 if (*(*pp)++ != ',')
4030 error ("invalid member type data format, at symtab pos %d.",
4031 symnum);
4032
4033 return_type = read_type (pp);
4034 args = read_args (pp, ';');
4035 type = dbx_alloc_type (typenums);
4036 smash_to_method_type (type, domain, return_type, args);
4037 }
4038 break;
4039
4040 case '&':
4041 type1 = read_type (pp);
4042 type = lookup_reference_type (type1);
4043 if (typenums[0] != -1)
4044 *dbx_lookup_type (typenums) = type;
4045 break;
4046
4047 case 'f':
4048 type1 = read_type (pp);
4049 type = lookup_function_type (type1);
4050 if (typenums[0] != -1)
4051 *dbx_lookup_type (typenums) = type;
4052 break;
4053
4054 case 'r':
4055 type = read_range_type (pp, typenums);
4056 if (typenums[0] != -1)
4057 *dbx_lookup_type (typenums) = type;
4058 break;
4059
4060 case 'e':
4061 type = dbx_alloc_type (typenums);
4062 type = read_enum_type (pp, type);
4063 *dbx_lookup_type (typenums) = type;
4064 break;
4065
4066 case 's':
4067 type = dbx_alloc_type (typenums);
4068 TYPE_NAME (type) = type_synonym_name;
4069 type_synonym_name = 0;
4070 type = read_struct_type (pp, type);
4071 break;
4072
4073 case 'u':
4074 type = dbx_alloc_type (typenums);
4075 TYPE_NAME (type) = type_synonym_name;
4076 type_synonym_name = 0;
4077 type = read_struct_type (pp, type);
4078 TYPE_CODE (type) = TYPE_CODE_UNION;
4079 break;
4080
4081 case 'a':
4082 if (**pp != 'r')
4083 return error_type (pp);
4084 ++*pp;
4085
4086 type = dbx_alloc_type (typenums);
4087 type = read_array_type (pp, type);
4088 break;
4089
4090 default:
4091 --*pp; /* Go back to the symbol in error */
4092 /* Particularly important if it was \0! */
4093 return error_type (pp);
4094 }
4095
4096 if (type == 0)
4097 abort ();
4098
4099 #if 0
4100 /* If this is an overriding temporary alteration for a header file's
4101 contents, and this type number is unknown in the global definition,
4102 put this type into the global definition at this type number. */
4103 if (header_file_prev_index >= 0)
4104 {
4105 register struct type **tp
4106 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4107 if (*tp == 0)
4108 *tp = type;
4109 }
4110 #endif
4111 return type;
4112 }
4113 \f
4114 #if 0
4115 /* This would be a good idea, but it doesn't really work. The problem
4116 is that in order to get the virtual context for a particular type,
4117 you need to know the virtual info from all of its basetypes,
4118 and you need to have processed its methods. Since GDB reads
4119 symbols on a file-by-file basis, this means processing the symbols
4120 of all the files that are needed for each baseclass, which
4121 means potentially reading in all the debugging info just to fill
4122 in information we may never need. */
4123
4124 /* This page contains subroutines of read_type. */
4125
4126 /* FOR_TYPE is a struct type defining a virtual function NAME with type
4127 FN_TYPE. The `virtual context' for this virtual function is the
4128 first base class of FOR_TYPE in which NAME is defined with signature
4129 matching FN_TYPE. OFFSET serves as a hash on matches here.
4130
4131 TYPE is the current type in which we are searching. */
4132
4133 static struct type *
4134 virtual_context (for_type, type, name, fn_type, offset)
4135 struct type *for_type, *type;
4136 char *name;
4137 struct type *fn_type;
4138 int offset;
4139 {
4140 struct type *basetype = 0;
4141 int i;
4142
4143 if (for_type != type)
4144 {
4145 /* Check the methods of TYPE. */
4146 /* Need to do a check_stub_type here, but that breaks
4147 things because we can get infinite regress. */
4148 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4149 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4150 break;
4151 if (i >= 0)
4152 {
4153 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4154 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4155
4156 while (--j >= 0)
4157 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4158 return TYPE_FN_FIELD_FCONTEXT (f, j);
4159 }
4160 }
4161 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
4162 {
4163 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4164 fn_type, offset);
4165 if (basetype != for_type)
4166 return basetype;
4167 }
4168 return for_type;
4169 }
4170 #endif
4171
4172 /* Read the description of a structure (or union type)
4173 and return an object describing the type. */
4174
4175 static struct type *
4176 read_struct_type (pp, type)
4177 char **pp;
4178 register struct type *type;
4179 {
4180 /* Total number of methods defined in this class.
4181 If the class defines two `f' methods, and one `g' method,
4182 then this will have the value 3. */
4183 int total_length = 0;
4184
4185 struct nextfield
4186 {
4187 struct nextfield *next;
4188 int visibility; /* 0=public, 1=protected, 2=public */
4189 struct field field;
4190 };
4191
4192 struct next_fnfield
4193 {
4194 struct next_fnfield *next;
4195 int visibility; /* 0=public, 1=protected, 2=public */
4196 struct fn_field fn_field;
4197 };
4198
4199 struct next_fnfieldlist
4200 {
4201 struct next_fnfieldlist *next;
4202 struct fn_fieldlist fn_fieldlist;
4203 };
4204
4205 register struct nextfield *list = 0;
4206 struct nextfield *new;
4207 register char *p;
4208 int nfields = 0;
4209 register int n;
4210
4211 register struct next_fnfieldlist *mainlist = 0;
4212 int nfn_fields = 0;
4213
4214 if (TYPE_MAIN_VARIANT (type) == 0)
4215 {
4216 TYPE_MAIN_VARIANT (type) = type;
4217 }
4218
4219 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4220
4221 /* First comes the total size in bytes. */
4222
4223 TYPE_LENGTH (type) = read_number (pp, 0);
4224
4225 /* C++: Now, if the class is a derived class, then the next character
4226 will be a '!', followed by the number of base classes derived from.
4227 Each element in the list contains visibility information,
4228 the offset of this base class in the derived structure,
4229 and then the base type. */
4230 if (**pp == '!')
4231 {
4232 int i, n_baseclasses, offset;
4233 struct type *baseclass;
4234 int via_public;
4235
4236 /* Nonzero if it is a virtual baseclass, i.e.,
4237
4238 struct A{};
4239 struct B{};
4240 struct C : public B, public virtual A {};
4241
4242 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4243 2.0 language feature. */
4244 int via_virtual;
4245
4246 *pp += 1;
4247
4248 n_baseclasses = read_number (pp, ',');
4249 TYPE_FIELD_VIRTUAL_BITS (type) =
4250 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4251 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4252
4253 for (i = 0; i < n_baseclasses; i++)
4254 {
4255 if (**pp == '\\')
4256 *pp = next_symbol_text ();
4257
4258 switch (**pp)
4259 {
4260 case '0':
4261 via_virtual = 0;
4262 break;
4263 case '1':
4264 via_virtual = 1;
4265 break;
4266 default:
4267 /* Bad visibility format. */
4268 return error_type (pp);
4269 }
4270 ++*pp;
4271
4272 switch (**pp)
4273 {
4274 case '0':
4275 via_public = 0;
4276 break;
4277 case '2':
4278 via_public = 2;
4279 break;
4280 default:
4281 /* Bad visibility format. */
4282 return error_type (pp);
4283 }
4284 if (via_virtual)
4285 SET_TYPE_FIELD_VIRTUAL (type, i);
4286 ++*pp;
4287
4288 /* Offset of the portion of the object corresponding to
4289 this baseclass. Always zero in the absence of
4290 multiple inheritance. */
4291 offset = read_number (pp, ',');
4292 baseclass = read_type (pp);
4293 *pp += 1; /* skip trailing ';' */
4294
4295 /* Make this baseclass visible for structure-printing purposes. */
4296 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4297 new->next = list;
4298 list = new;
4299 list->visibility = via_public;
4300 list->field.type = baseclass;
4301 list->field.name = type_name_no_tag (baseclass);
4302 list->field.bitpos = offset;
4303 list->field.bitsize = 0; /* this should be an unpacked field! */
4304 nfields++;
4305 }
4306 TYPE_N_BASECLASSES (type) = n_baseclasses;
4307 }
4308
4309 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4310 At the end, we see a semicolon instead of a field.
4311
4312 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4313 a static field.
4314
4315 The `?' is a placeholder for one of '/2' (public visibility),
4316 '/1' (protected visibility), '/0' (private visibility), or nothing
4317 (C style symbol table, public visibility). */
4318
4319 /* We better set p right now, in case there are no fields at all... */
4320 p = *pp;
4321
4322 while (**pp != ';')
4323 {
4324 /* Check for and handle cretinous dbx symbol name continuation! */
4325 if (**pp == '\\') *pp = next_symbol_text ();
4326
4327 /* Get space to record the next field's data. */
4328 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4329 new->next = list;
4330 list = new;
4331
4332 /* Get the field name. */
4333 p = *pp;
4334 if (*p == CPLUS_MARKER)
4335 {
4336 /* Special GNU C++ name. */
4337 if (*++p == 'v')
4338 {
4339 const char *prefix;
4340 char *name = 0;
4341 struct type *context;
4342
4343 switch (*++p)
4344 {
4345 case 'f':
4346 prefix = vptr_name;
4347 break;
4348 case 'b':
4349 prefix = vb_name;
4350 break;
4351 default:
4352 error ("invalid abbreviation at symtab pos %d.", symnum);
4353 }
4354 *pp = p + 1;
4355 context = read_type (pp);
4356 if (type_name_no_tag (context) == 0)
4357 {
4358 if (name == 0)
4359 error ("type name unknown at symtab pos %d.", symnum);
4360 /* FIXME-tiemann: when is `name' ever non-0? */
4361 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4362 }
4363 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4364 p = ++(*pp);
4365 if (p[-1] != ':')
4366 error ("invalid abbreviation at symtab pos %d.", symnum);
4367 list->field.type = read_type (pp);
4368 (*pp)++; /* Skip the comma. */
4369 list->field.bitpos = read_number (pp, ';');
4370 /* This field is unpacked. */
4371 list->field.bitsize = 0;
4372 }
4373 /* GNU C++ anonymous type. */
4374 else if (*p == '_')
4375 break;
4376 else
4377 error ("invalid abbreviation at symtab pos %d.", symnum);
4378
4379 nfields++;
4380 continue;
4381 }
4382
4383 while (*p != ':') p++;
4384 list->field.name = obsavestring (*pp, p - *pp);
4385
4386 /* C++: Check to see if we have hit the methods yet. */
4387 if (p[1] == ':')
4388 break;
4389
4390 *pp = p + 1;
4391
4392 /* This means we have a visibility for a field coming. */
4393 if (**pp == '/')
4394 {
4395 switch (*++*pp)
4396 {
4397 case '0':
4398 list->visibility = 0; /* private */
4399 *pp += 1;
4400 break;
4401
4402 case '1':
4403 list->visibility = 1; /* protected */
4404 *pp += 1;
4405 break;
4406
4407 case '2':
4408 list->visibility = 2; /* public */
4409 *pp += 1;
4410 break;
4411 }
4412 }
4413 else /* normal dbx-style format. */
4414 list->visibility = 2; /* public */
4415
4416 list->field.type = read_type (pp);
4417 if (**pp == ':')
4418 {
4419 /* Static class member. */
4420 list->field.bitpos = (long)-1;
4421 p = ++(*pp);
4422 while (*p != ';') p++;
4423 list->field.bitsize = (long) savestring (*pp, p - *pp);
4424 *pp = p + 1;
4425 nfields++;
4426 continue;
4427 }
4428 else if (**pp != ',')
4429 /* Bad structure-type format. */
4430 return error_type (pp);
4431
4432 (*pp)++; /* Skip the comma. */
4433 list->field.bitpos = read_number (pp, ',');
4434 list->field.bitsize = read_number (pp, ';');
4435
4436 #if 0
4437 /* FIXME-tiemann: Can't the compiler put out something which
4438 lets us distinguish these? (or maybe just not put out anything
4439 for the field). What is the story here? What does the compiler
4440 really do? Also, patch gdb.texinfo for this case; I document
4441 it as a possible problem there. Search for "DBX-style". */
4442
4443 /* This is wrong because this is identical to the symbols
4444 produced for GCC 0-size arrays. For example:
4445 typedef union {
4446 int num;
4447 char str[0];
4448 } foo;
4449 The code which dumped core in such circumstances should be
4450 fixed not to dump core. */
4451
4452 /* g++ -g0 can put out bitpos & bitsize zero for a static
4453 field. This does not give us any way of getting its
4454 class, so we can't know its name. But we can just
4455 ignore the field so we don't dump core and other nasty
4456 stuff. */
4457 if (list->field.bitpos == 0
4458 && list->field.bitsize == 0)
4459 {
4460 complain (&dbx_class_complaint, 0);
4461 /* Ignore this field. */
4462 list = list->next;
4463 }
4464 else
4465 #endif /* 0 */
4466 {
4467 /* Detect an unpacked field and mark it as such.
4468 dbx gives a bit size for all fields.
4469 Note that forward refs cannot be packed,
4470 and treat enums as if they had the width of ints. */
4471 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4472 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4473 list->field.bitsize = 0;
4474 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4475 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4476 && (list->field.bitsize
4477 == 8 * TYPE_LENGTH (builtin_type_int))
4478 )
4479 )
4480 &&
4481 list->field.bitpos % 8 == 0)
4482 list->field.bitsize = 0;
4483 nfields++;
4484 }
4485 }
4486
4487 if (p[1] == ':')
4488 /* chill the list of fields: the last entry (at the head)
4489 is a partially constructed entry which we now scrub. */
4490 list = list->next;
4491
4492 /* Now create the vector of fields, and record how big it is.
4493 We need this info to record proper virtual function table information
4494 for this class's virtual functions. */
4495
4496 TYPE_NFIELDS (type) = nfields;
4497 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4498 sizeof (struct field) * nfields);
4499
4500 TYPE_FIELD_PRIVATE_BITS (type) =
4501 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4502 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4503
4504 TYPE_FIELD_PROTECTED_BITS (type) =
4505 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4506 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4507
4508 /* Copy the saved-up fields into the field vector. */
4509
4510 for (n = nfields; list; list = list->next)
4511 {
4512 n -= 1;
4513 TYPE_FIELD (type, n) = list->field;
4514 if (list->visibility == 0)
4515 SET_TYPE_FIELD_PRIVATE (type, n);
4516 else if (list->visibility == 1)
4517 SET_TYPE_FIELD_PROTECTED (type, n);
4518 }
4519
4520 /* Now come the method fields, as NAME::methods
4521 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4522 At the end, we see a semicolon instead of a field.
4523
4524 For the case of overloaded operators, the format is
4525 OPERATOR::*.methods, where OPERATOR is the string "operator",
4526 `*' holds the place for an operator name (such as `+=')
4527 and `.' marks the end of the operator name. */
4528 if (p[1] == ':')
4529 {
4530 /* Now, read in the methods. To simplify matters, we
4531 "unread" the name that has been read, so that we can
4532 start from the top. */
4533
4534 /* For each list of method lists... */
4535 do
4536 {
4537 int i;
4538 struct next_fnfield *sublist = 0;
4539 struct type *look_ahead_type = NULL;
4540 int length = 0;
4541 struct next_fnfieldlist *new_mainlist =
4542 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4543 char *main_fn_name;
4544
4545 p = *pp;
4546
4547 /* read in the name. */
4548 while (*p != ':') p++;
4549 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4550 {
4551 /* This lets the user type "break operator+".
4552 We could just put in "+" as the name, but that wouldn't
4553 work for "*". */
4554 static char opname[32] = {'o', 'p', CPLUS_MARKER};
4555 char *o = opname + 3;
4556
4557 /* Skip past '::'. */
4558 p += 2;
4559 while (*p != '.')
4560 *o++ = *p++;
4561 main_fn_name = savestring (opname, o - opname);
4562 /* Skip past '.' */
4563 *pp = p + 1;
4564 }
4565 else
4566 {
4567 i = 0;
4568 main_fn_name = savestring (*pp, p - *pp);
4569 /* Skip past '::'. */
4570 *pp = p + 2;
4571 }
4572 new_mainlist->fn_fieldlist.name = main_fn_name;
4573
4574 do
4575 {
4576 struct next_fnfield *new_sublist =
4577 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4578
4579 /* Check for and handle cretinous dbx symbol name continuation! */
4580 if (look_ahead_type == NULL) /* Normal case. */
4581 {
4582 if (**pp == '\\') *pp = next_symbol_text ();
4583
4584 new_sublist->fn_field.type = read_type (pp);
4585 if (**pp != ':')
4586 /* Invalid symtab info for method. */
4587 return error_type (pp);
4588 }
4589 else
4590 { /* g++ version 1 kludge */
4591 new_sublist->fn_field.type = look_ahead_type;
4592 look_ahead_type = NULL;
4593 }
4594
4595 *pp += 1;
4596 p = *pp;
4597 while (*p != ';') p++;
4598 /* If this is just a stub, then we don't have the
4599 real name here. */
4600 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4601 *pp = p + 1;
4602 new_sublist->visibility = *(*pp)++ - '0';
4603 if (**pp == '\\') *pp = next_symbol_text ();
4604 /* FIXME-tiemann: need to add const/volatile info
4605 to the methods. For now, just skip the char.
4606 In future, here's what we need to implement:
4607
4608 A for normal functions.
4609 B for `const' member functions.
4610 C for `volatile' member functions.
4611 D for `const volatile' member functions. */
4612 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4613 (*pp)++;
4614
4615 /* This probably just means we're processing a file compiled
4616 with g++ version 1. */
4617 else
4618 complain(&const_vol_complaint, **pp);
4619
4620 switch (*(*pp)++)
4621 {
4622 case '*':
4623 /* virtual member function, followed by index. */
4624 /* The sign bit is set to distinguish pointers-to-methods
4625 from virtual function indicies. Since the array is
4626 in words, the quantity must be shifted left by 1
4627 on 16 bit machine, and by 2 on 32 bit machine, forcing
4628 the sign bit out, and usable as a valid index into
4629 the array. Remove the sign bit here. */
4630 new_sublist->fn_field.voffset =
4631 (0x7fffffff & read_number (pp, ';')) + 1;
4632
4633 if (**pp == '\\') *pp = next_symbol_text ();
4634
4635 if (**pp == ';' || **pp == '\0')
4636 /* Must be g++ version 1. */
4637 new_sublist->fn_field.fcontext = 0;
4638 else
4639 {
4640 /* Figure out from whence this virtual function came.
4641 It may belong to virtual function table of
4642 one of its baseclasses. */
4643 look_ahead_type = read_type (pp);
4644 if (**pp == ':')
4645 { /* g++ version 1 overloaded methods. */ }
4646 else
4647 {
4648 new_sublist->fn_field.fcontext = look_ahead_type;
4649 if (**pp != ';')
4650 return error_type (pp);
4651 else
4652 ++*pp;
4653 look_ahead_type = NULL;
4654 }
4655 }
4656 break;
4657
4658 case '?':
4659 /* static member function. */
4660 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4661 break;
4662 default:
4663 /* **pp == '.'. */
4664 /* normal member function. */
4665 new_sublist->fn_field.voffset = 0;
4666 new_sublist->fn_field.fcontext = 0;
4667 break;
4668 }
4669
4670 new_sublist->next = sublist;
4671 sublist = new_sublist;
4672 length++;
4673 }
4674 while (**pp != ';' && **pp != '\0');
4675
4676 *pp += 1;
4677
4678 new_mainlist->fn_fieldlist.fn_fields =
4679 (struct fn_field *) obstack_alloc (symbol_obstack,
4680 sizeof (struct fn_field) * length);
4681 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4682 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4683 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4684
4685 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4686 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4687 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4688
4689 for (i = length; (i--, sublist); sublist = sublist->next)
4690 {
4691 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4692 if (sublist->visibility == 0)
4693 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4694 else if (sublist->visibility == 1)
4695 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4696 }
4697
4698 new_mainlist->fn_fieldlist.length = length;
4699 new_mainlist->next = mainlist;
4700 mainlist = new_mainlist;
4701 nfn_fields++;
4702 total_length += length;
4703 }
4704 while (**pp != ';');
4705 }
4706
4707 *pp += 1;
4708
4709 TYPE_FN_FIELDLISTS (type) =
4710 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4711 sizeof (struct fn_fieldlist) * nfn_fields);
4712
4713 TYPE_NFN_FIELDS (type) = nfn_fields;
4714 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4715
4716 {
4717 int i;
4718 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4719 TYPE_NFN_FIELDS_TOTAL (type) +=
4720 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4721 }
4722
4723 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4724 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4725
4726 if (**pp == '~')
4727 {
4728 *pp += 1;
4729
4730 if (**pp == '=')
4731 {
4732 TYPE_FLAGS (type)
4733 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4734 *pp += 1;
4735 }
4736 else if (**pp == '+')
4737 {
4738 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4739 *pp += 1;
4740 }
4741 else if (**pp == '-')
4742 {
4743 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4744 *pp += 1;
4745 }
4746
4747 /* Read either a '%' or the final ';'. */
4748 if (*(*pp)++ == '%')
4749 {
4750 /* Now we must record the virtual function table pointer's
4751 field information. */
4752
4753 struct type *t;
4754 int i;
4755
4756 t = read_type (pp);
4757 p = (*pp)++;
4758 while (*p != '\0' && *p != ';')
4759 p++;
4760 if (*p == '\0')
4761 /* Premature end of symbol. */
4762 return error_type (pp);
4763
4764 TYPE_VPTR_BASETYPE (type) = t;
4765 if (type == t)
4766 {
4767 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4768 {
4769 /* FIXME-tiemann: what's this? */
4770 #if 0
4771 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4772 #else
4773 error_type (pp);
4774 #endif
4775 }
4776 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4777 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4778 sizeof (vptr_name) -1))
4779 {
4780 TYPE_VPTR_FIELDNO (type) = i;
4781 break;
4782 }
4783 if (i < 0)
4784 /* Virtual function table field not found. */
4785 return error_type (pp);
4786 }
4787 else
4788 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4789 *pp = p + 1;
4790 }
4791 }
4792
4793 return type;
4794 }
4795
4796 /* Read a definition of an array type,
4797 and create and return a suitable type object.
4798 Also creates a range type which represents the bounds of that
4799 array. */
4800 static struct type *
4801 read_array_type (pp, type)
4802 register char **pp;
4803 register struct type *type;
4804 {
4805 struct type *index_type, *element_type, *range_type;
4806 int lower, upper;
4807 int adjustable = 0;
4808
4809 /* Format of an array type:
4810 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4811 to handle this.
4812
4813 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4814 for these, produce a type like float[][]. */
4815
4816 index_type = read_type (pp);
4817 if (**pp != ';')
4818 /* Improper format of array type decl. */
4819 return error_type (pp);
4820 ++*pp;
4821
4822 if (!(**pp >= '0' && **pp <= '9'))
4823 {
4824 *pp += 1;
4825 adjustable = 1;
4826 }
4827 lower = read_number (pp, ';');
4828
4829 if (!(**pp >= '0' && **pp <= '9'))
4830 {
4831 *pp += 1;
4832 adjustable = 1;
4833 }
4834 upper = read_number (pp, ';');
4835
4836 element_type = read_type (pp);
4837
4838 if (adjustable)
4839 {
4840 lower = 0;
4841 upper = -1;
4842 }
4843
4844 {
4845 /* Create range type. */
4846 range_type = (struct type *) obstack_alloc (symbol_obstack,
4847 sizeof (struct type));
4848 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4849 TYPE_TARGET_TYPE (range_type) = index_type;
4850
4851 /* This should never be needed. */
4852 TYPE_LENGTH (range_type) = sizeof (int);
4853
4854 TYPE_NFIELDS (range_type) = 2;
4855 TYPE_FIELDS (range_type) =
4856 (struct field *) obstack_alloc (symbol_obstack,
4857 2 * sizeof (struct field));
4858 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4859 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4860 }
4861
4862 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4863 TYPE_TARGET_TYPE (type) = element_type;
4864 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4865 TYPE_NFIELDS (type) = 1;
4866 TYPE_FIELDS (type) =
4867 (struct field *) obstack_alloc (symbol_obstack,
4868 sizeof (struct field));
4869 TYPE_FIELD_TYPE (type, 0) = range_type;
4870
4871 return type;
4872 }
4873
4874
4875 /* Read a definition of an enumeration type,
4876 and create and return a suitable type object.
4877 Also defines the symbols that represent the values of the type. */
4878
4879 static struct type *
4880 read_enum_type (pp, type)
4881 register char **pp;
4882 register struct type *type;
4883 {
4884 register char *p;
4885 char *name;
4886 register long n;
4887 register struct symbol *sym;
4888 int nsyms = 0;
4889 struct pending **symlist;
4890 struct pending *osyms, *syms;
4891 int o_nsyms;
4892
4893 if (within_function)
4894 symlist = &local_symbols;
4895 else
4896 symlist = &file_symbols;
4897 osyms = *symlist;
4898 o_nsyms = osyms ? osyms->nsyms : 0;
4899
4900 /* Read the value-names and their values.
4901 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4902 A semicolon or comman instead of a NAME means the end. */
4903 while (**pp && **pp != ';' && **pp != ',')
4904 {
4905 /* Check for and handle cretinous dbx symbol name continuation! */
4906 if (**pp == '\\') *pp = next_symbol_text ();
4907
4908 p = *pp;
4909 while (*p != ':') p++;
4910 name = obsavestring (*pp, p - *pp);
4911 *pp = p + 1;
4912 n = read_number (pp, ',');
4913
4914 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4915 bzero (sym, sizeof (struct symbol));
4916 SYMBOL_NAME (sym) = name;
4917 SYMBOL_CLASS (sym) = LOC_CONST;
4918 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4919 SYMBOL_VALUE (sym) = n;
4920 add_symbol_to_list (sym, symlist);
4921 nsyms++;
4922 }
4923
4924 if (**pp == ';')
4925 (*pp)++; /* Skip the semicolon. */
4926
4927 /* Now fill in the fields of the type-structure. */
4928
4929 TYPE_LENGTH (type) = sizeof (int);
4930 TYPE_CODE (type) = TYPE_CODE_ENUM;
4931 TYPE_NFIELDS (type) = nsyms;
4932 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4933
4934 /* Find the symbols for the values and put them into the type.
4935 The symbols can be found in the symlist that we put them on
4936 to cause them to be defined. osyms contains the old value
4937 of that symlist; everything up to there was defined by us. */
4938 /* Note that we preserve the order of the enum constants, so
4939 that in something like "enum {FOO, LAST_THING=FOO}" we print
4940 FOO, not LAST_THING. */
4941
4942 for (syms = *symlist, n = 0; syms; syms = syms->next)
4943 {
4944 int j = 0;
4945 if (syms == osyms)
4946 j = o_nsyms;
4947 for (; j < syms->nsyms; j++,n++)
4948 {
4949 struct symbol *xsym = syms->symbol[j];
4950 SYMBOL_TYPE (xsym) = type;
4951 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4952 TYPE_FIELD_VALUE (type, n) = 0;
4953 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4954 TYPE_FIELD_BITSIZE (type, n) = 0;
4955 }
4956 if (syms == osyms)
4957 break;
4958 }
4959
4960 #if 0
4961 /* This screws up perfectly good C programs with enums. FIXME. */
4962 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
4963 if(TYPE_NFIELDS(type) == 2 &&
4964 ((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") &&
4965 !strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) ||
4966 (!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") &&
4967 !strcmp(TYPE_FIELD_NAME(type,0),"FALSE"))))
4968 TYPE_CODE(type) = TYPE_CODE_BOOL;
4969 #endif
4970
4971 return type;
4972 }
4973
4974 /* Read a number from the string pointed to by *PP.
4975 The value of *PP is advanced over the number.
4976 If END is nonzero, the character that ends the
4977 number must match END, or an error happens;
4978 and that character is skipped if it does match.
4979 If END is zero, *PP is left pointing to that character.
4980
4981 If the number fits in a long, set *VALUE and set *BITS to 0.
4982 If not, set *BITS to be the number of bits in the number.
4983
4984 If encounter garbage, set *BITS to -1. */
4985
4986 static void
4987 read_huge_number (pp, end, valu, bits)
4988 char **pp;
4989 int end;
4990 long *valu;
4991 int *bits;
4992 {
4993 char *p = *pp;
4994 int sign = 1;
4995 long n = 0;
4996 int radix = 10;
4997 char overflow = 0;
4998 int nbits = 0;
4999 int c;
5000 long upper_limit;
5001
5002 if (*p == '-')
5003 {
5004 sign = -1;
5005 p++;
5006 }
5007
5008 /* Leading zero means octal. GCC uses this to output values larger
5009 than an int (because that would be hard in decimal). */
5010 if (*p == '0')
5011 {
5012 radix = 8;
5013 p++;
5014 }
5015
5016 upper_limit = LONG_MAX / radix;
5017 while ((c = *p++) >= '0' && c <= ('0' + radix))
5018 {
5019 if (n <= upper_limit)
5020 {
5021 n *= radix;
5022 n += c - '0'; /* FIXME this overflows anyway */
5023 }
5024 else
5025 overflow = 1;
5026
5027 /* This depends on large values being output in octal, which is
5028 what GCC does. */
5029 if (radix == 8)
5030 {
5031 if (nbits == 0)
5032 {
5033 if (c == '0')
5034 /* Ignore leading zeroes. */
5035 ;
5036 else if (c == '1')
5037 nbits = 1;
5038 else if (c == '2' || c == '3')
5039 nbits = 2;
5040 else
5041 nbits = 3;
5042 }
5043 else
5044 nbits += 3;
5045 }
5046 }
5047 if (end)
5048 {
5049 if (c && c != end)
5050 {
5051 if (bits != NULL)
5052 *bits = -1;
5053 return;
5054 }
5055 }
5056 else
5057 --p;
5058
5059 *pp = p;
5060 if (overflow)
5061 {
5062 if (nbits == 0)
5063 {
5064 /* Large decimal constants are an error (because it is hard to
5065 count how many bits are in them). */
5066 if (bits != NULL)
5067 *bits = -1;
5068 return;
5069 }
5070
5071 /* -0x7f is the same as 0x80. So deal with it by adding one to
5072 the number of bits. */
5073 if (sign == -1)
5074 ++nbits;
5075 if (bits)
5076 *bits = nbits;
5077 }
5078 else
5079 {
5080 if (valu)
5081 *valu = n * sign;
5082 if (bits)
5083 *bits = 0;
5084 }
5085 }
5086
5087 #define MAX_OF_C_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5088 #define MIN_OF_C_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5089
5090 static struct type *
5091 read_range_type (pp, typenums)
5092 char **pp;
5093 int typenums[2];
5094 {
5095 int rangenums[2];
5096 long n2, n3;
5097 int n2bits, n3bits;
5098 int self_subrange;
5099 struct type *result_type;
5100
5101 /* First comes a type we are a subrange of.
5102 In C it is usually 0, 1 or the type being defined. */
5103 read_type_number (pp, rangenums);
5104 self_subrange = (rangenums[0] == typenums[0] &&
5105 rangenums[1] == typenums[1]);
5106
5107 /* A semicolon should now follow; skip it. */
5108 if (**pp == ';')
5109 (*pp)++;
5110
5111 /* The remaining two operands are usually lower and upper bounds
5112 of the range. But in some special cases they mean something else. */
5113 read_huge_number (pp, ';', &n2, &n2bits);
5114 read_huge_number (pp, ';', &n3, &n3bits);
5115
5116 if (n2bits == -1 || n3bits == -1)
5117 return error_type (pp);
5118
5119 /* If limits are huge, must be large integral type. */
5120 if (n2bits != 0 || n3bits != 0)
5121 {
5122 char got_signed = 0;
5123 char got_unsigned = 0;
5124 /* Number of bits in the type. */
5125 int nbits;
5126
5127 /* Range from 0 to <large number> is an unsigned large integral type. */
5128 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5129 {
5130 got_unsigned = 1;
5131 nbits = n3bits;
5132 }
5133 /* Range from <large number> to <large number>-1 is a large signed
5134 integral type. */
5135 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5136 {
5137 got_signed = 1;
5138 nbits = n2bits;
5139 }
5140
5141 /* Check for "long long". */
5142 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
5143 return builtin_type_long_long;
5144 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
5145 return builtin_type_unsigned_long_long;
5146
5147 if (got_signed || got_unsigned)
5148 {
5149 result_type = (struct type *) obstack_alloc (symbol_obstack,
5150 sizeof (struct type));
5151 bzero (result_type, sizeof (struct type));
5152 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5153 TYPE_MAIN_VARIANT (result_type) = result_type;
5154 TYPE_CODE (result_type) = TYPE_CODE_INT;
5155 if (got_unsigned)
5156 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5157 return result_type;
5158 }
5159 else
5160 return error_type (pp);
5161 }
5162
5163 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5164 if (self_subrange && n2 == 0 && n3 == 0)
5165 return builtin_type_void;
5166
5167 /* If n3 is zero and n2 is not, we want a floating type,
5168 and n2 is the width in bytes.
5169
5170 Fortran programs appear to use this for complex types also,
5171 and they give no way to distinguish between double and single-complex!
5172 We don't have complex types, so we would lose on all fortran files!
5173 So return type `double' for all of those. It won't work right
5174 for the complex values, but at least it makes the file loadable. */
5175
5176 if (n3 == 0 && n2 > 0)
5177 {
5178 if (n2 == sizeof (float))
5179 return builtin_type_float;
5180 return builtin_type_double;
5181 }
5182
5183 /* If the upper bound is -1, it must really be an unsigned int. */
5184
5185 else if (n2 == 0 && n3 == -1)
5186 {
5187 if (sizeof (int) == sizeof (long))
5188 return builtin_type_unsigned_int;
5189 else
5190 return builtin_type_unsigned_long;
5191 }
5192
5193 /* Special case: char is defined (Who knows why) as a subrange of
5194 itself with range 0-127. */
5195 else if (self_subrange && n2 == 0 && n3 == 127)
5196 return builtin_type_char;
5197
5198 /* Assumptions made here: Subrange of self is equivalent to subrange
5199 of int. */
5200 else if (n2 == 0
5201 && (self_subrange ||
5202 *dbx_lookup_type (rangenums) == builtin_type_int))
5203 {
5204 /* an unsigned type */
5205 #ifdef LONG_LONG
5206 if (n3 == - sizeof (long long))
5207 return builtin_type_unsigned_long_long;
5208 #endif
5209 if (n3 == (unsigned int)~0L)
5210 return builtin_type_unsigned_int;
5211 if (n3 == (unsigned long)~0L)
5212 return builtin_type_unsigned_long;
5213 if (n3 == (unsigned short)~0L)
5214 return builtin_type_unsigned_short;
5215 if (n3 == (unsigned char)~0L)
5216 return builtin_type_unsigned_char;
5217 }
5218 #ifdef LONG_LONG
5219 else if (n3 == 0 && n2 == -sizeof (long long))
5220 return builtin_type_long_long;
5221 #endif
5222 else if (n2 == -n3 -1)
5223 {
5224 /* a signed type */
5225 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5226 return builtin_type_int;
5227 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5228 return builtin_type_long;
5229 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5230 return builtin_type_short;
5231 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5232 return builtin_type_char;
5233 }
5234
5235 /* We have a real range type on our hands. Allocate space and
5236 return a real pointer. */
5237
5238 /* At this point I don't have the faintest idea how to deal with
5239 a self_subrange type; I'm going to assume that this is used
5240 as an idiom, and that all of them are special cases. So . . . */
5241 if (self_subrange)
5242 return error_type (pp);
5243
5244 result_type = (struct type *) obstack_alloc (symbol_obstack,
5245 sizeof (struct type));
5246 bzero (result_type, sizeof (struct type));
5247
5248 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5249
5250 TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums);
5251 if (TYPE_TARGET_TYPE (result_type) == 0) {
5252 complain (&range_type_base_complaint, rangenums[1]);
5253 TYPE_TARGET_TYPE (result_type) = builtin_type_int;
5254 }
5255
5256 TYPE_NFIELDS (result_type) = 2;
5257 TYPE_FIELDS (result_type) =
5258 (struct field *) obstack_alloc (symbol_obstack,
5259 2 * sizeof (struct field));
5260 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5261 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5262 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5263
5264 #if 0
5265 /* Note that TYPE_LENGTH (result_type) is just overridden a few
5266 statements down. What do we really need here? */
5267 /* We have to figure out how many bytes it takes to hold this
5268 range type. I'm going to assume that anything that is pushing
5269 the bounds of a long was taken care of above. */
5270 if (n2 >= MIN_OF_C_TYPE(char) && n3 <= MAX_OF_C_TYPE(char))
5271 TYPE_LENGTH (result_type) = 1;
5272 else if (n2 >= MIN_OF_C_TYPE(short) && n3 <= MAX_OF_C_TYPE(short))
5273 TYPE_LENGTH (result_type) = sizeof (short);
5274 else if (n2 >= MIN_OF_C_TYPE(int) && n3 <= MAX_OF_C_TYPE(int))
5275 TYPE_LENGTH (result_type) = sizeof (int);
5276 else if (n2 >= MIN_OF_C_TYPE(long) && n3 <= MAX_OF_C_TYPE(long))
5277 TYPE_LENGTH (result_type) = sizeof (long);
5278 else
5279 /* Ranged type doesn't fit within known sizes. */
5280 /* FIXME -- use "long long" here. */
5281 return error_type (pp);
5282 #endif
5283
5284 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5285
5286 return result_type;
5287 }
5288
5289 /* Read a number from the string pointed to by *PP.
5290 The value of *PP is advanced over the number.
5291 If END is nonzero, the character that ends the
5292 number must match END, or an error happens;
5293 and that character is skipped if it does match.
5294 If END is zero, *PP is left pointing to that character. */
5295
5296 static long
5297 read_number (pp, end)
5298 char **pp;
5299 int end;
5300 {
5301 register char *p = *pp;
5302 register long n = 0;
5303 register int c;
5304 int sign = 1;
5305
5306 /* Handle an optional leading minus sign. */
5307
5308 if (*p == '-')
5309 {
5310 sign = -1;
5311 p++;
5312 }
5313
5314 /* Read the digits, as far as they go. */
5315
5316 while ((c = *p++) >= '0' && c <= '9')
5317 {
5318 n *= 10;
5319 n += c - '0';
5320 }
5321 if (end)
5322 {
5323 if (c && c != end)
5324 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5325 }
5326 else
5327 --p;
5328
5329 *pp = p;
5330 return n * sign;
5331 }
5332
5333 /* Read in an argument list. This is a list of types, separated by commas
5334 and terminated with END. Return the list of types read in, or (struct type
5335 **)-1 if there is an error. */
5336 static struct type **
5337 read_args (pp, end)
5338 char **pp;
5339 int end;
5340 {
5341 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5342 int n = 0;
5343
5344 while (**pp != end)
5345 {
5346 if (**pp != ',')
5347 /* Invalid argument list: no ','. */
5348 return (struct type **)-1;
5349 *pp += 1;
5350
5351 /* Check for and handle cretinous dbx symbol name continuation! */
5352 if (**pp == '\\')
5353 *pp = next_symbol_text ();
5354
5355 types[n++] = read_type (pp);
5356 }
5357 *pp += 1; /* get past `end' (the ':' character) */
5358
5359 if (n == 1)
5360 {
5361 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5362 }
5363 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5364 {
5365 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5366 bzero (rval + n, sizeof (struct type *));
5367 }
5368 else
5369 {
5370 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5371 }
5372 bcopy (types, rval, n * sizeof (struct type *));
5373 return rval;
5374 }
5375 \f
5376 /* Copy a pending list, used to record the contents of a common
5377 block for later fixup. */
5378 static struct pending *
5379 copy_pending (beg, begi, end)
5380 struct pending *beg, *end;
5381 int begi;
5382 {
5383 struct pending *new = 0;
5384 struct pending *next;
5385
5386 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5387 next = next->next, begi = 0)
5388 {
5389 register int j;
5390 for (j = begi; j < next->nsyms; j++)
5391 add_symbol_to_list (next->symbol[j], &new);
5392 }
5393 return new;
5394 }
5395
5396 /* Add a common block's start address to the offset of each symbol
5397 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5398 the common block name). */
5399
5400 static void
5401 fix_common_block (sym, valu)
5402 struct symbol *sym;
5403 int valu;
5404 {
5405 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5406 for ( ; next; next = next->next)
5407 {
5408 register int j;
5409 for (j = next->nsyms - 1; j >= 0; j--)
5410 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5411 }
5412 }
5413 \f
5414 /* Register our willingness to decode symbols for SunOS and a.out and
5415 b.out files handled by BFD... */
5416 static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5417 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
5418
5419 static struct sym_fns aout_sym_fns = {"a.out", 5,
5420 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
5421
5422 static struct sym_fns bout_sym_fns = {"b.out", 5,
5423 dbx_new_init, dbx_symfile_init, dbx_symfile_read};
5424
5425 void
5426 _initialize_dbxread ()
5427 {
5428 add_symtab_fns(&sunos_sym_fns);
5429 add_symtab_fns(&aout_sym_fns);
5430 add_symtab_fns(&bout_sym_fns);
5431
5432 undef_types_allocated = 20;
5433 undef_types_length = 0;
5434 undef_types = (struct type **) xmalloc (undef_types_allocated *
5435 sizeof (struct type *));
5436 }
This page took 0.139778 seconds and 4 git commands to generate.