The list of changes is too long to fit in the cvs log (since it truncates!).
[deliverable/binutils-gdb.git] / gdb / dbxread.c
1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 GDB is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GDB is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GDB; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19 \f
20 /* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31 /* There used to be some PROFILE_TYPES code in this file which counted
32 the number of occurances of various symbols. I'd suggest instead:
33 nm -ap foo | awk 'print $5' | sort | uniq -c
34 to print how many of each n_type, or something like
35 nm -ap foo | awk '$5 == "LSYM" {print $6 $7 $8 $9 $10 $11}' | \
36 awk 'BEGIN {FS=":"}
37 {print substr($2,1,1)}' | sort | uniq -c
38 to print the number of each kind of symbol descriptor (i.e. the letter
39 after ':'). */
40
41 #include <stdio.h>
42 #include <string.h>
43 #include "defs.h"
44 #include "param.h"
45
46 #ifdef USG
47 #include <sys/types.h>
48 #include <fcntl.h>
49 #define L_SET 0
50 #define L_INCR 1
51 #endif
52
53 #include "a.out.gnu.h"
54 #include "stab.gnu.h" /* We always use GNU stabs, not native, now */
55 #include <ctype.h>
56
57 #ifndef NO_GNU_STABS
58 /*
59 * Define specifically gnu symbols here.
60 */
61
62 /* The following type indicates the definition of a symbol as being
63 an indirect reference to another symbol. The other symbol
64 appears as an undefined reference, immediately following this symbol.
65
66 Indirection is asymmetrical. The other symbol's value will be used
67 to satisfy requests for the indirect symbol, but not vice versa.
68 If the other symbol does not have a definition, libraries will
69 be searched to find a definition. */
70 #ifndef N_INDR
71 #define N_INDR 0xa
72 #endif
73
74 /* The following symbols refer to set elements.
75 All the N_SET[ATDB] symbols with the same name form one set.
76 Space is allocated for the set in the text section, and each set
77 element's value is stored into one word of the space.
78 The first word of the space is the length of the set (number of elements).
79
80 The address of the set is made into an N_SETV symbol
81 whose name is the same as the name of the set.
82 This symbol acts like a N_DATA global symbol
83 in that it can satisfy undefined external references. */
84
85 #ifndef N_SETA
86 #define N_SETA 0x14 /* Absolute set element symbol */
87 #endif /* This is input to LD, in a .o file. */
88
89 #ifndef N_SETT
90 #define N_SETT 0x16 /* Text set element symbol */
91 #endif /* This is input to LD, in a .o file. */
92
93 #ifndef N_SETD
94 #define N_SETD 0x18 /* Data set element symbol */
95 #endif /* This is input to LD, in a .o file. */
96
97 #ifndef N_SETB
98 #define N_SETB 0x1A /* Bss set element symbol */
99 #endif /* This is input to LD, in a .o file. */
100
101 /* Macros dealing with the set element symbols defined in a.out.h */
102 #define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
103 #define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
104
105 #ifndef N_SETV
106 #define N_SETV 0x1C /* Pointer to set vector in data area. */
107 #endif /* This is output from LD. */
108
109 #ifndef N_WARNING
110 #define N_WARNING 0x1E /* Warning message to print if file included */
111 #endif /* This is input to ld */
112
113 #endif /* NO_GNU_STABS */
114
115 #include <obstack.h>
116 #include <sys/param.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include "symtab.h"
120 #include "breakpoint.h"
121 #include "command.h"
122 #include "target.h"
123 #include "gdbcore.h" /* for bfd stuff */
124 #include "liba.out.h" /* FIXME Secret internal BFD stuff for a.out */
125 #include "symfile.h"
126
127 struct dbx_symfile_info {
128 asection *text_sect; /* Text section accessor */
129 int symcount; /* How many symbols are there in the file */
130 char *stringtab; /* The actual string table */
131 int stringtab_size; /* Its size */
132 off_t symtab_offset; /* Offset in file to symbol table */
133 int desc; /* File descriptor of symbol file */
134 };
135
136 extern void qsort ();
137 extern double atof ();
138 extern struct cmd_list_element *cmdlist;
139
140 extern void symbol_file_command ();
141
142 /* Forward declarations */
143
144 static void add_symbol_to_list ();
145 static void read_dbx_symtab ();
146 static void init_psymbol_list ();
147 static void process_one_symbol ();
148 static struct type *read_type ();
149 static struct type *read_range_type ();
150 static struct type *read_enum_type ();
151 static struct type *read_struct_type ();
152 static struct type *read_array_type ();
153 static long read_number ();
154 static void finish_block ();
155 static struct blockvector *make_blockvector ();
156 static struct symbol *define_symbol ();
157 static void start_subfile ();
158 static int hashname ();
159 static struct pending *copy_pending ();
160 static void fix_common_block ();
161 static void add_undefined_type ();
162 static void cleanup_undefined_types ();
163 static void scan_file_globals ();
164 static void read_ofile_symtab ();
165 static void dbx_psymtab_to_symtab ();
166
167 /* C++ */
168 static struct type **read_args ();
169
170 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
171 static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
172
173 /* Macro to determine which symbols to ignore when reading the first symbol
174 of a file. Some machines override this definition. */
175 #ifndef IGNORE_SYMBOL
176 /* This code is used on Ultrix systems. Ignore it */
177 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
178 #endif
179
180 /* Macro for name of symbol to indicate a file compiled with gcc. */
181 #ifndef GCC_COMPILED_FLAG_SYMBOL
182 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
183 #endif
184
185 /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
186
187 #ifndef STAB_REG_TO_REGNUM
188 #define STAB_REG_TO_REGNUM(VALUE) (VALUE)
189 #endif
190
191 /* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196 #ifndef BELIEVE_PCC_PROMOTION
197 #define BELIEVE_PCC_PROMOTION 0
198 #endif
199 \f
200 /* Nonzero means give verbose info on gdb action. From main.c. */
201 extern int info_verbose;
202
203 /* Name of source file whose symbol data we are now processing.
204 This comes from a symbol of type N_SO. */
205
206 static char *last_source_file;
207
208 /* Core address of start of text of current source file.
209 This too comes from the N_SO symbol. */
210
211 static CORE_ADDR last_source_start_addr;
212
213 /* The entry point of a file we are reading. */
214 CORE_ADDR entry_point;
215
216 /* The list of sub-source-files within the current individual compilation.
217 Each file gets its own symtab with its own linetable and associated info,
218 but they all share one blockvector. */
219
220 struct subfile
221 {
222 struct subfile *next;
223 char *name;
224 char *dirname;
225 struct linetable *line_vector;
226 int line_vector_length;
227 int line_vector_index;
228 int prev_line_number;
229 };
230
231 static struct subfile *subfiles;
232
233 static struct subfile *current_subfile;
234
235 /* Count symbols as they are processed, for error messages. */
236
237 static unsigned int symnum;
238
239 /* Vector of types defined so far, indexed by their dbx type numbers.
240 (In newer sun systems, dbx uses a pair of numbers in parens,
241 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
242 translated through the type_translations hash table to get
243 the index into the type vector.) */
244
245 static struct typevector *type_vector;
246
247 /* Number of elements allocated for type_vector currently. */
248
249 static int type_vector_length;
250
251 /* Vector of line number information. */
252
253 static struct linetable *line_vector;
254
255 /* Index of next entry to go in line_vector_index. */
256
257 static int line_vector_index;
258
259 /* Last line number recorded in the line vector. */
260
261 static int prev_line_number;
262
263 /* Number of elements allocated for line_vector currently. */
264
265 static int line_vector_length;
266
267 /* Hash table of global symbols whose values are not known yet.
268 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
269 have the correct data for that slot yet. */
270 /* The use of the LOC_BLOCK code in this chain is nonstandard--
271 it refers to a FORTRAN common block rather than the usual meaning. */
272
273 #define HASHSIZE 127
274 static struct symbol *global_sym_chain[HASHSIZE];
275
276 /* Record the symbols defined for each context in a list.
277 We don't create a struct block for the context until we
278 know how long to make it. */
279
280 #define PENDINGSIZE 100
281
282 struct pending
283 {
284 struct pending *next;
285 int nsyms;
286 struct symbol *symbol[PENDINGSIZE];
287 };
288
289 /* List of free `struct pending' structures for reuse. */
290 struct pending *free_pendings;
291
292 /* Here are the three lists that symbols are put on. */
293
294 struct pending *file_symbols; /* static at top level, and types */
295
296 struct pending *global_symbols; /* global functions and variables */
297
298 struct pending *local_symbols; /* everything local to lexical context */
299
300 /* List of symbols declared since the last BCOMM. This list is a tail
301 of local_symbols. When ECOMM is seen, the symbols on the list
302 are noted so their proper addresses can be filled in later,
303 using the common block base address gotten from the assembler
304 stabs. */
305
306 struct pending *common_block;
307 int common_block_i;
308
309 /* Stack representing unclosed lexical contexts
310 (that will become blocks, eventually). */
311
312 struct context_stack
313 {
314 struct pending *locals;
315 struct pending_block *old_blocks;
316 struct symbol *name;
317 CORE_ADDR start_addr;
318 CORE_ADDR end_addr; /* Temp slot for exception handling. */
319 int depth;
320 };
321
322 struct context_stack *context_stack;
323
324 /* Index of first unused entry in context stack. */
325 int context_stack_depth;
326
327 /* Currently allocated size of context stack. */
328
329 int context_stack_size;
330
331 /* Nonzero if within a function (so symbols should be local,
332 if nothing says specifically). */
333
334 int within_function;
335
336 /* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339 struct pending_block
340 {
341 struct pending_block *next;
342 struct block *block;
343 };
344
345 struct pending_block *pending_blocks;
346
347 extern CORE_ADDR startup_file_start; /* From blockframe.c */
348 extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350 /* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353 static unsigned char processing_gcc_compilation;
354
355 /* Make a list of forward references which haven't been defined. */
356 static struct type **undef_types;
357 static int undef_types_allocated, undef_types_length;
358
359 /* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363 static char *symfile_string_table;
364 static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368 #ifdef NAMES_HAVE_UNDERSCORE
369 #define HASH_OFFSET 1
370 #else
371 #define HASH_OFFSET 0
372 #endif
373
374 /* Complaints about the symbols we have encountered. */
375
376 struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379 struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382 struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385 #if 0
386 struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388 You seem to have compiled your program with \
389 \"g++ -g0\" instead of \"g++ -g\".\n\
390 Therefore GDB will not know about your class variables", 0, 0};
391 #endif
392
393 struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396 struct complaint unknown_symtype_complaint =
397 {"unknown symbol type 0x%x", 0, 0};
398
399 struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402 struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405 struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408 struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410 \f
411 /* Support for Sun changes to dbx symbol format */
412
413 /* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431 struct header_file
432 {
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440 };
441
442 static struct header_file *header_files = 0;
443
444 static int n_header_files;
445
446 static int n_allocated_header_files;
447
448 /* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453 struct header_file_location
454 {
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459 };
460
461 /* The actual list and controling variables */
462 static struct header_file_location *bincl_list, *next_bincl;
463 static int bincls_allocated;
464
465 /* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475 static int *this_object_header_files = 0;
476
477 static int n_this_object_header_files;
478
479 static int n_allocated_this_object_header_files;
480
481 /* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486 static int header_file_prev_index;
487
488 /* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491 void
492 free_and_init_header_files ()
493 {
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508 }
509
510 /* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513 static void
514 new_object_header_files ()
515 {
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519 }
520
521 /* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524 static void
525 add_this_object_header_file (i)
526 int i;
527 {
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537 }
538
539 /* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544 static void
545 add_old_header_file (name, instance)
546 char *name;
547 int instance;
548 {
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560 }
561
562 /* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573 static void
574 add_new_header_file (name, instance)
575 char *name;
576 int instance;
577 {
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603 }
604
605 /* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612 static struct type **
613 dbx_lookup_type (typenums)
614 int typenums[2];
615 {
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661 }
662
663 /* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666 static struct type *
667 dbx_create_type ()
668 {
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 TYPE_VPTR_BASETYPE (type) = 0;
675 return type;
676 }
677
678 /* Make sure there is a type allocated for type numbers TYPENUMS
679 and return the type object.
680 This can create an empty (zeroed) type object.
681 TYPENUMS may be (-1, -1) to return a new type object that is not
682 put into the type vector, and so may not be referred to by number. */
683
684 static struct type *
685 dbx_alloc_type (typenums)
686 int typenums[2];
687 {
688 register struct type **type_addr;
689 register struct type *type;
690
691 if (typenums[1] != -1)
692 {
693 type_addr = dbx_lookup_type (typenums);
694 type = *type_addr;
695 }
696 else
697 {
698 type_addr = 0;
699 type = 0;
700 }
701
702 /* If we are referring to a type not known at all yet,
703 allocate an empty type for it.
704 We will fill it in later if we find out how. */
705 if (type == 0)
706 {
707 type = dbx_create_type ();
708 if (type_addr)
709 *type_addr = type;
710 }
711
712 return type;
713 }
714
715 #if 0
716 static struct type **
717 explicit_lookup_type (real_filenum, index)
718 int real_filenum, index;
719 {
720 register struct header_file *f = &header_files[real_filenum];
721
722 if (index >= f->length)
723 {
724 f->length *= 2;
725 f->vector = (struct type **)
726 xrealloc (f->vector, f->length * sizeof (struct type *));
727 bzero (&f->vector[f->length / 2],
728 f->length * sizeof (struct type *) / 2);
729 }
730 return &f->vector[index];
731 }
732 #endif
733 \f
734 /* maintain the lists of symbols and blocks */
735
736 /* Add a symbol to one of the lists of symbols. */
737 static void
738 add_symbol_to_list (symbol, listhead)
739 struct symbol *symbol;
740 struct pending **listhead;
741 {
742 /* We keep PENDINGSIZE symbols in each link of the list.
743 If we don't have a link with room in it, add a new link. */
744 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
745 {
746 register struct pending *link;
747 if (free_pendings)
748 {
749 link = free_pendings;
750 free_pendings = link->next;
751 }
752 else
753 link = (struct pending *) xmalloc (sizeof (struct pending));
754
755 link->next = *listhead;
756 *listhead = link;
757 link->nsyms = 0;
758 }
759
760 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
761 }
762
763 /* At end of reading syms, or in case of quit,
764 really free as many `struct pending's as we can easily find. */
765
766 /* ARGSUSED */
767 static void
768 really_free_pendings (foo)
769 int foo;
770 {
771 struct pending *next, *next1;
772 #if 0
773 struct pending_block *bnext, *bnext1;
774 #endif
775
776 for (next = free_pendings; next; next = next1)
777 {
778 next1 = next->next;
779 free (next);
780 }
781 free_pendings = 0;
782
783 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
784 for (bnext = pending_blocks; bnext; bnext = bnext1)
785 {
786 bnext1 = bnext->next;
787 free (bnext);
788 }
789 #endif
790 pending_blocks = 0;
791
792 for (next = file_symbols; next; next = next1)
793 {
794 next1 = next->next;
795 free (next);
796 }
797 file_symbols = 0;
798
799 for (next = global_symbols; next; next = next1)
800 {
801 next1 = next->next;
802 free (next);
803 }
804 global_symbols = 0;
805 }
806
807 /* Take one of the lists of symbols and make a block from it.
808 Keep the order the symbols have in the list (reversed from the input file).
809 Put the block on the list of pending blocks. */
810
811 static void
812 finish_block (symbol, listhead, old_blocks, start, end)
813 struct symbol *symbol;
814 struct pending **listhead;
815 struct pending_block *old_blocks;
816 CORE_ADDR start, end;
817 {
818 register struct pending *next, *next1;
819 register struct block *block;
820 register struct pending_block *pblock;
821 struct pending_block *opblock;
822 register int i;
823
824 /* Count the length of the list of symbols. */
825
826 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
827 /*EMPTY*/;
828
829 block = (struct block *) obstack_alloc (symbol_obstack,
830 (sizeof (struct block)
831 + ((i - 1)
832 * sizeof (struct symbol *))));
833
834 /* Copy the symbols into the block. */
835
836 BLOCK_NSYMS (block) = i;
837 for (next = *listhead; next; next = next->next)
838 {
839 register int j;
840 for (j = next->nsyms - 1; j >= 0; j--)
841 BLOCK_SYM (block, --i) = next->symbol[j];
842 }
843
844 BLOCK_START (block) = start;
845 BLOCK_END (block) = end;
846 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
847 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
848
849 /* Put the block in as the value of the symbol that names it. */
850
851 if (symbol)
852 {
853 SYMBOL_BLOCK_VALUE (symbol) = block;
854 BLOCK_FUNCTION (block) = symbol;
855 }
856 else
857 BLOCK_FUNCTION (block) = 0;
858
859 /* Now "free" the links of the list, and empty the list. */
860
861 for (next = *listhead; next; next = next1)
862 {
863 next1 = next->next;
864 next->next = free_pendings;
865 free_pendings = next;
866 }
867 *listhead = 0;
868
869 /* Install this block as the superblock
870 of all blocks made since the start of this scope
871 that don't have superblocks yet. */
872
873 opblock = 0;
874 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
875 {
876 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
877 #if 1
878 /* Check to be sure the blocks are nested as we receive them.
879 If the compiler/assembler/linker work, this just burns a small
880 amount of time. */
881 if (BLOCK_START (pblock->block) < BLOCK_START (block)
882 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
883 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
884 "(don't know)");
885 BLOCK_START (pblock->block) = BLOCK_START (block);
886 BLOCK_END (pblock->block) = BLOCK_END (block);
887 }
888 #endif
889 BLOCK_SUPERBLOCK (pblock->block) = block;
890 }
891 opblock = pblock;
892 }
893
894 /* Record this block on the list of all blocks in the file.
895 Put it after opblock, or at the beginning if opblock is 0.
896 This puts the block in the list after all its subblocks. */
897
898 /* Allocate in the symbol_obstack to save time.
899 It wastes a little space. */
900 pblock = (struct pending_block *)
901 obstack_alloc (symbol_obstack,
902 sizeof (struct pending_block));
903 pblock->block = block;
904 if (opblock)
905 {
906 pblock->next = opblock->next;
907 opblock->next = pblock;
908 }
909 else
910 {
911 pblock->next = pending_blocks;
912 pending_blocks = pblock;
913 }
914 }
915
916 static struct blockvector *
917 make_blockvector ()
918 {
919 register struct pending_block *next;
920 register struct blockvector *blockvector;
921 register int i;
922
923 /* Count the length of the list of blocks. */
924
925 for (next = pending_blocks, i = 0; next; next = next->next, i++);
926
927 blockvector = (struct blockvector *)
928 obstack_alloc (symbol_obstack,
929 (sizeof (struct blockvector)
930 + (i - 1) * sizeof (struct block *)));
931
932 /* Copy the blocks into the blockvector.
933 This is done in reverse order, which happens to put
934 the blocks into the proper order (ascending starting address).
935 finish_block has hair to insert each block into the list
936 after its subblocks in order to make sure this is true. */
937
938 BLOCKVECTOR_NBLOCKS (blockvector) = i;
939 for (next = pending_blocks; next; next = next->next) {
940 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
941 }
942
943 #if 0 /* Now we make the links in the obstack, so don't free them. */
944 /* Now free the links of the list, and empty the list. */
945
946 for (next = pending_blocks; next; next = next1)
947 {
948 next1 = next->next;
949 free (next);
950 }
951 #endif
952 pending_blocks = 0;
953
954 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
955 /* Some compilers output blocks in the wrong order, but we depend
956 on their being in the right order so we can binary search.
957 Check the order and moan about it. FIXME. */
958 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
959 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
960 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
961 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
962 complain (&blockvector_complaint,
963 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
964 }
965 }
966 #endif
967
968 return blockvector;
969 }
970 \f
971 /* Manage the vector of line numbers. */
972
973 static void
974 record_line (line, pc)
975 int line;
976 CORE_ADDR pc;
977 {
978 struct linetable_entry *e;
979 /* Ignore the dummy line number in libg.o */
980
981 if (line == 0xffff)
982 return;
983
984 /* Make sure line vector is big enough. */
985
986 if (line_vector_index + 1 >= line_vector_length)
987 {
988 line_vector_length *= 2;
989 line_vector = (struct linetable *)
990 xrealloc (line_vector,
991 (sizeof (struct linetable)
992 + line_vector_length * sizeof (struct linetable_entry)));
993 current_subfile->line_vector = line_vector;
994 }
995
996 e = line_vector->item + line_vector_index++;
997 e->line = line; e->pc = pc;
998 }
999 \f
1000 /* Start a new symtab for a new source file.
1001 This is called when a dbx symbol of type N_SO is seen;
1002 it indicates the start of data for one original source file. */
1003
1004 static void
1005 start_symtab (name, dirname, start_addr)
1006 char *name;
1007 char *dirname;
1008 CORE_ADDR start_addr;
1009 {
1010
1011 last_source_file = name;
1012 last_source_start_addr = start_addr;
1013 file_symbols = 0;
1014 global_symbols = 0;
1015 within_function = 0;
1016
1017 /* Context stack is initially empty, with room for 10 levels. */
1018 context_stack
1019 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1020 context_stack_size = 10;
1021 context_stack_depth = 0;
1022
1023 new_object_header_files ();
1024
1025 type_vector_length = 160;
1026 type_vector = (struct typevector *)
1027 xmalloc (sizeof (struct typevector)
1028 + type_vector_length * sizeof (struct type *));
1029 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1030
1031 /* Initialize the list of sub source files with one entry
1032 for this file (the top-level source file). */
1033
1034 subfiles = 0;
1035 current_subfile = 0;
1036 start_subfile (name, dirname);
1037 }
1038
1039 /* Handle an N_SOL symbol, which indicates the start of
1040 code that came from an included (or otherwise merged-in)
1041 source file with a different name. */
1042
1043 static void
1044 start_subfile (name, dirname)
1045 char *name;
1046 char *dirname;
1047 {
1048 register struct subfile *subfile;
1049
1050 /* Save the current subfile's line vector data. */
1051
1052 if (current_subfile)
1053 {
1054 current_subfile->line_vector_index = line_vector_index;
1055 current_subfile->line_vector_length = line_vector_length;
1056 current_subfile->prev_line_number = prev_line_number;
1057 }
1058
1059 /* See if this subfile is already known as a subfile of the
1060 current main source file. */
1061
1062 for (subfile = subfiles; subfile; subfile = subfile->next)
1063 {
1064 if (!strcmp (subfile->name, name))
1065 {
1066 line_vector = subfile->line_vector;
1067 line_vector_index = subfile->line_vector_index;
1068 line_vector_length = subfile->line_vector_length;
1069 prev_line_number = subfile->prev_line_number;
1070 current_subfile = subfile;
1071 return;
1072 }
1073 }
1074
1075 /* This subfile is not known. Add an entry for it. */
1076
1077 line_vector_index = 0;
1078 line_vector_length = 1000;
1079 prev_line_number = -2; /* Force first line number to be explicit */
1080 line_vector = (struct linetable *)
1081 xmalloc (sizeof (struct linetable)
1082 + line_vector_length * sizeof (struct linetable_entry));
1083
1084 /* Make an entry for this subfile in the list of all subfiles
1085 of the current main source file. */
1086
1087 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1088 subfile->next = subfiles;
1089 subfile->name = obsavestring (name, strlen (name));
1090 if (dirname == NULL)
1091 subfile->dirname = NULL;
1092 else
1093 subfile->dirname = obsavestring (dirname, strlen (dirname));
1094
1095 subfile->line_vector = line_vector;
1096 subfiles = subfile;
1097 current_subfile = subfile;
1098 }
1099
1100 /* Finish the symbol definitions for one main source file,
1101 close off all the lexical contexts for that file
1102 (creating struct block's for them), then make the struct symtab
1103 for that file and put it in the list of all such.
1104
1105 END_ADDR is the address of the end of the file's text. */
1106
1107 static void
1108 end_symtab (end_addr)
1109 CORE_ADDR end_addr;
1110 {
1111 register struct symtab *symtab;
1112 register struct blockvector *blockvector;
1113 register struct subfile *subfile;
1114 register struct linetable *lv;
1115 struct subfile *nextsub;
1116
1117 /* Finish the lexical context of the last function in the file;
1118 pop the context stack. */
1119
1120 if (context_stack_depth > 0)
1121 {
1122 register struct context_stack *cstk;
1123 context_stack_depth--;
1124 cstk = &context_stack[context_stack_depth];
1125 /* Make a block for the local symbols within. */
1126 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1127 cstk->start_addr, end_addr);
1128 }
1129
1130 /* Cleanup any undefined types that have been left hanging around
1131 (this needs to be done before the finish_blocks so that
1132 file_symbols is still good). */
1133 cleanup_undefined_types ();
1134
1135 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
1136 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1137 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1138 blockvector = make_blockvector ();
1139
1140 current_subfile->line_vector_index = line_vector_index;
1141
1142 /* Now create the symtab objects proper, one for each subfile. */
1143 /* (The main file is one of them.) */
1144
1145 for (subfile = subfiles; subfile; subfile = nextsub)
1146 {
1147 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1148
1149 /* Fill in its components. */
1150 symtab->blockvector = blockvector;
1151 lv = subfile->line_vector;
1152 lv->nitems = subfile->line_vector_index;
1153 symtab->linetable = (struct linetable *)
1154 xrealloc (lv, (sizeof (struct linetable)
1155 + lv->nitems * sizeof (struct linetable_entry)));
1156 type_vector->length = type_vector_length;
1157 symtab->typevector = type_vector;
1158
1159 symtab->filename = subfile->name;
1160 symtab->dirname = subfile->dirname;
1161
1162 symtab->free_code = free_linetable;
1163 symtab->free_ptr = 0;
1164 if (subfile->next == 0)
1165 symtab->free_ptr = (char *) type_vector;
1166
1167 symtab->nlines = 0;
1168 symtab->line_charpos = 0;
1169
1170 symtab->language = language_unknown;
1171 symtab->fullname = NULL;
1172
1173 /* There should never already be a symtab for this name, since
1174 any prev dups have been removed when the psymtab was read in.
1175 FIXME, there ought to be a way to check this here. */
1176 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
1177
1178 /* Link the new symtab into the list of such. */
1179 symtab->next = symtab_list;
1180 symtab_list = symtab;
1181
1182 nextsub = subfile->next;
1183 free (subfile);
1184 }
1185
1186 type_vector = 0;
1187 type_vector_length = -1;
1188 line_vector = 0;
1189 line_vector_length = -1;
1190 last_source_file = 0;
1191 }
1192 \f
1193 /* Handle the N_BINCL and N_EINCL symbol types
1194 that act like N_SOL for switching source files
1195 (different subfiles, as we call them) within one object file,
1196 but using a stack rather than in an arbitrary order. */
1197
1198 struct subfile_stack
1199 {
1200 struct subfile_stack *next;
1201 char *name;
1202 int prev_index;
1203 };
1204
1205 struct subfile_stack *subfile_stack;
1206
1207 static void
1208 push_subfile ()
1209 {
1210 register struct subfile_stack *tem
1211 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1212
1213 tem->next = subfile_stack;
1214 subfile_stack = tem;
1215 if (current_subfile == 0 || current_subfile->name == 0)
1216 abort ();
1217 tem->name = current_subfile->name;
1218 tem->prev_index = header_file_prev_index;
1219 }
1220
1221 static char *
1222 pop_subfile ()
1223 {
1224 register char *name;
1225 register struct subfile_stack *link = subfile_stack;
1226
1227 if (link == 0)
1228 abort ();
1229
1230 name = link->name;
1231 subfile_stack = link->next;
1232 header_file_prev_index = link->prev_index;
1233 free (link);
1234
1235 return name;
1236 }
1237 \f
1238 void
1239 record_misc_function (name, address, type)
1240 char *name;
1241 CORE_ADDR address;
1242 int type;
1243 {
1244 enum misc_function_type misc_type =
1245 (type == (N_TEXT | N_EXT) ? mf_text :
1246 (type == (N_DATA | N_EXT)
1247 || type == (N_DATA)
1248 || type == (N_SETV | N_EXT)
1249 ) ? mf_data :
1250 type == (N_BSS | N_EXT) ? mf_bss :
1251 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1252
1253 prim_record_misc_function (obsavestring (name, strlen (name)),
1254 address, misc_type);
1255 }
1256 \f
1257 /* The BFD for this file -- only good while we're actively reading
1258 symbols into a psymtab or a symtab. */
1259
1260 static bfd *symfile_bfd;
1261
1262 /* Scan and build partial symbols for a symbol file.
1263 We have been initialized by a call to dbx_symfile_init, which
1264 put all the relevant info into a "struct dbx_symfile_info"
1265 hung off the struct sym_fns SF.
1266
1267 ADDR is the address relative to which the symbols in it are (e.g.
1268 the base address of the text segment).
1269 MAINLINE is true if we are reading the main symbol
1270 table (as opposed to a shared lib or dynamically loaded file). */
1271
1272 void
1273 dbx_symfile_read (sf, addr, mainline)
1274 struct sym_fns *sf;
1275 CORE_ADDR addr;
1276 int mainline; /* FIXME comments above */
1277 {
1278 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1279 bfd *sym_bfd = sf->sym_bfd;
1280 int val;
1281 char *filename = bfd_get_filename (sym_bfd);
1282
1283 val = lseek (info->desc, info->symtab_offset, L_SET);
1284 if (val < 0)
1285 perror_with_name (filename);
1286
1287 /* If mainline, set global string table pointers, and reinitialize global
1288 partial symbol list. */
1289 if (mainline) {
1290 symfile_string_table = info->stringtab;
1291 symfile_string_table_size = info->stringtab_size;
1292 }
1293
1294 /* If we are reinitializing, or if we have never loaded syms yet, init */
1295 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1296 init_psymbol_list (info->symcount);
1297
1298 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1299
1300 pending_blocks = 0;
1301 make_cleanup (really_free_pendings, 0);
1302
1303 init_misc_bunches ();
1304 make_cleanup (discard_misc_bunches, 0);
1305
1306 /* Now that the symbol table data of the executable file are all in core,
1307 process them and define symbols accordingly. */
1308
1309 read_dbx_symtab (filename,
1310 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1311 info->desc, info->stringtab, info->stringtab_size,
1312 info->symcount,
1313 bfd_section_vma (sym_bfd, info->text_sect),
1314 bfd_section_size (sym_bfd, info->text_sect));
1315
1316 /* Go over the misc symbol bunches and install them in vector. */
1317
1318 condense_misc_bunches (!mainline);
1319
1320 /* Free up any memory we allocated for ourselves. */
1321
1322 if (!mainline) {
1323 free (info->stringtab); /* Stringtab is only saved for mainline */
1324 }
1325 free (info);
1326 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1327
1328 /* Call to select_source_symtab used to be here; it was using too
1329 much time. I'll make sure that list_sources can handle the lack
1330 of current_source_symtab */
1331
1332 if (!partial_symtab_list)
1333 printf_filtered ("\n(no debugging symbols found)...");
1334 }
1335
1336 /* Discard any information we have cached during the reading of a
1337 single symbol file. This should not toss global information
1338 from previous symbol files that have been read. E.g. we might
1339 be discarding info from reading a shared library, and should not
1340 throw away the info from the main file. */
1341
1342 void
1343 dbx_symfile_discard ()
1344 {
1345
1346 /* Empty the hash table of global syms looking for values. */
1347 bzero (global_sym_chain, sizeof global_sym_chain);
1348
1349 free_pendings = 0;
1350 file_symbols = 0;
1351 global_symbols = 0;
1352 }
1353
1354 /* Initialize anything that needs initializing when a completely new
1355 symbol file is specified (not just adding some symbols from another
1356 file, e.g. a shared library). */
1357
1358 void
1359 dbx_new_init ()
1360 {
1361 dbx_symfile_discard ();
1362 /* Don't put these on the cleanup chain; they need to stick around
1363 until the next call to symbol_file_command. *Then* we'll free
1364 them. */
1365 if (symfile_string_table)
1366 {
1367 free (symfile_string_table);
1368 symfile_string_table = 0;
1369 symfile_string_table_size = 0;
1370 }
1371 free_and_init_header_files ();
1372 }
1373
1374
1375 /* dbx_symfile_init ()
1376 is the dbx-specific initialization routine for reading symbols.
1377 It is passed a struct sym_fns which contains, among other things,
1378 the BFD for the file whose symbols are being read, and a slot for a pointer
1379 to "private data" which we fill with goodies.
1380
1381 We read the string table into malloc'd space and stash a pointer to it.
1382
1383 Since BFD doesn't know how to read debug symbols in a format-independent
1384 way (and may never do so...), we have to do it ourselves. We will never
1385 be called unless this is an a.out (or very similar) file.
1386 FIXME, there should be a cleaner peephole into the BFD environment here. */
1387
1388 void
1389 dbx_symfile_init (sf)
1390 struct sym_fns *sf;
1391 {
1392 int val;
1393 int desc;
1394 struct stat statbuf;
1395 bfd *sym_bfd = sf->sym_bfd;
1396 char *name = bfd_get_filename (sym_bfd);
1397 struct dbx_symfile_info *info;
1398 unsigned char size_temp[4];
1399
1400 /* Allocate struct to keep track of the symfile */
1401 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1402 info = (struct dbx_symfile_info *)sf->sym_private;
1403
1404 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1405 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1406 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1407 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1408 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1409
1410 info->desc = desc;
1411 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1412 if (!info->text_sect)
1413 abort();
1414 info->symcount = bfd_get_symcount (sym_bfd);
1415
1416 /* Read the string table size and check it for bogosity. */
1417 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1418 if (val < 0)
1419 perror_with_name (name);
1420 if (fstat (desc, &statbuf) == -1)
1421 perror_with_name (name);
1422
1423 val = myread (desc, size_temp, sizeof (long));
1424 if (val < 0)
1425 perror_with_name (name);
1426 info->stringtab_size = bfd_h_getlong (sym_bfd, size_temp);
1427
1428 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1429 {
1430 info->stringtab = (char *) xmalloc (info->stringtab_size);
1431 /* Caller is responsible for freeing the string table. No cleanup. */
1432 }
1433 else
1434 info->stringtab = NULL;
1435 if (info->stringtab == NULL && info->stringtab_size != 0)
1436 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1437
1438 /* Now read in the string table in one big gulp. */
1439
1440 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1441 if (val < 0)
1442 perror_with_name (name);
1443 val = myread (desc, info->stringtab, info->stringtab_size);
1444 if (val < 0)
1445 perror_with_name (name);
1446
1447 /* Record the position of the symbol table for later use. */
1448
1449 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1450 }
1451 \f
1452 /* Buffer for reading the symbol table entries. */
1453 static struct nlist symbuf[4096];
1454 static int symbuf_idx;
1455 static int symbuf_end;
1456
1457 /* I/O descriptor for reading the symbol table. */
1458 static int symtab_input_desc;
1459
1460 /* The address in memory of the string table of the object file we are
1461 reading (which might not be the "main" object file, but might be a
1462 shared library or some other dynamically loaded thing). This is set
1463 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1464 when building symtabs, and is used only by next_symbol_text. */
1465 static char *stringtab_global;
1466
1467 /* Refill the symbol table input buffer
1468 and set the variables that control fetching entries from it.
1469 Reports an error if no data available.
1470 This function can read past the end of the symbol table
1471 (into the string table) but this does no harm. */
1472
1473 static int
1474 fill_symbuf ()
1475 {
1476 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1477 if (nbytes < 0)
1478 perror_with_name ("<symbol file>");
1479 else if (nbytes == 0)
1480 error ("Premature end of file reading symbol table");
1481 symbuf_end = nbytes / sizeof (struct nlist);
1482 symbuf_idx = 0;
1483 return 1;
1484 }
1485
1486 #define SWAP_SYMBOL(symp) \
1487 { \
1488 (symp)->n_un.n_strx = bfd_h_getlong(symfile_bfd, \
1489 (unsigned char *)&(symp)->n_un.n_strx); \
1490 (symp)->n_desc = bfd_h_getshort (symfile_bfd, \
1491 (unsigned char *)&(symp)->n_desc); \
1492 (symp)->n_value = bfd_h_getlong (symfile_bfd, \
1493 (unsigned char *)&(symp)->n_value); \
1494 }
1495
1496 /* Invariant: The symbol pointed to by symbuf_idx is the first one
1497 that hasn't been swapped. Swap the symbol at the same time
1498 that symbuf_idx is incremented. */
1499
1500 /* dbx allows the text of a symbol name to be continued into the
1501 next symbol name! When such a continuation is encountered
1502 (a \ at the end of the text of a name)
1503 call this function to get the continuation. */
1504
1505 static char *
1506 next_symbol_text ()
1507 {
1508 if (symbuf_idx == symbuf_end)
1509 fill_symbuf ();
1510 symnum++;
1511 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1512 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1513 }
1514 \f
1515 /* Initializes storage for all of the partial symbols that will be
1516 created by read_dbx_symtab and subsidiaries. */
1517
1518 static void
1519 init_psymbol_list (total_symbols)
1520 int total_symbols;
1521 {
1522 /* Free any previously allocated psymbol lists. */
1523 if (global_psymbols.list)
1524 free (global_psymbols.list);
1525 if (static_psymbols.list)
1526 free (static_psymbols.list);
1527
1528 /* Current best guess is that there are approximately a twentieth
1529 of the total symbols (in a debugging file) are global or static
1530 oriented symbols */
1531 global_psymbols.size = total_symbols / 10;
1532 static_psymbols.size = total_symbols / 10;
1533 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1534 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1535 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1536 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1537 }
1538
1539 /* Initialize the list of bincls to contain none and have some
1540 allocated. */
1541
1542 static void
1543 init_bincl_list (number)
1544 int number;
1545 {
1546 bincls_allocated = number;
1547 next_bincl = bincl_list = (struct header_file_location *)
1548 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1549 }
1550
1551 /* Add a bincl to the list. */
1552
1553 static void
1554 add_bincl_to_list (pst, name, instance)
1555 struct partial_symtab *pst;
1556 char *name;
1557 int instance;
1558 {
1559 if (next_bincl >= bincl_list + bincls_allocated)
1560 {
1561 int offset = next_bincl - bincl_list;
1562 bincls_allocated *= 2;
1563 bincl_list = (struct header_file_location *)
1564 xrealloc ((char *)bincl_list,
1565 bincls_allocated * sizeof (struct header_file_location));
1566 next_bincl = bincl_list + offset;
1567 }
1568 next_bincl->pst = pst;
1569 next_bincl->instance = instance;
1570 next_bincl++->name = name;
1571 }
1572
1573 /* Given a name, value pair, find the corresponding
1574 bincl in the list. Return the partial symtab associated
1575 with that header_file_location. */
1576
1577 struct partial_symtab *
1578 find_corresponding_bincl_psymtab (name, instance)
1579 char *name;
1580 int instance;
1581 {
1582 struct header_file_location *bincl;
1583
1584 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1585 if (bincl->instance == instance
1586 && !strcmp (name, bincl->name))
1587 return bincl->pst;
1588
1589 return (struct partial_symtab *) 0;
1590 }
1591
1592 /* Free the storage allocated for the bincl list. */
1593
1594 static void
1595 free_bincl_list ()
1596 {
1597 free (bincl_list);
1598 bincls_allocated = 0;
1599 }
1600
1601 static struct partial_symtab *start_psymtab ();
1602 static void end_psymtab();
1603
1604 #ifdef DEBUG
1605 /* This is normally a macro defined in read_dbx_symtab, but this
1606 is a lot easier to debug. */
1607
1608 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1609 char *NAME;
1610 int NAMELENGTH;
1611 enum namespace NAMESPACE;
1612 enum address_class CLASS;
1613 struct psymbol_allocation_list *PLIST;
1614 unsigned long VALUE;
1615 {
1616 register struct partial_symbol *psym;
1617
1618 #define LIST *PLIST
1619 do {
1620 if ((LIST).next >=
1621 (LIST).list + (LIST).size)
1622 {
1623 (LIST).list = (struct partial_symbol *)
1624 xrealloc ((LIST).list,
1625 ((LIST).size * 2
1626 * sizeof (struct partial_symbol)));
1627 /* Next assumes we only went one over. Should be good if
1628 program works correctly */
1629 (LIST).next =
1630 (LIST).list + (LIST).size;
1631 (LIST).size *= 2;
1632 }
1633 psym = (LIST).next++;
1634 #undef LIST
1635
1636 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1637 (NAMELENGTH) + 1);
1638 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1639 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1640 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1641 SYMBOL_CLASS (psym) = (CLASS);
1642 SYMBOL_VALUE (psym) = (VALUE);
1643 } while (0);
1644 }
1645
1646 /* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1647 #define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1648 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1649
1650 #endif /* DEBUG */
1651
1652 /* Given pointers to an a.out symbol table in core containing dbx
1653 style data, setup partial_symtab's describing each source file for
1654 which debugging information is available. NLISTLEN is the number
1655 of symbols in the symbol table. All symbol names are given as
1656 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1657 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1658 and ADDR is its relocated address (if incremental) or 0 (if not). */
1659
1660 static void
1661 read_dbx_symtab (symfile_name, addr,
1662 desc, stringtab, stringtab_size, nlistlen,
1663 text_addr, text_size)
1664 char *symfile_name;
1665 CORE_ADDR addr;
1666 int desc;
1667 register char *stringtab;
1668 register long stringtab_size;
1669 register int nlistlen;
1670 CORE_ADDR text_addr;
1671 int text_size;
1672 {
1673 register struct nlist *bufp;
1674 register char *namestring;
1675 register struct partial_symbol *psym;
1676 int nsl;
1677 int past_first_source_file = 0;
1678 CORE_ADDR last_o_file_start = 0;
1679 struct cleanup *old_chain;
1680 char *p;
1681
1682 /* End of the text segment of the executable file. */
1683 CORE_ADDR end_of_text_addr;
1684
1685 /* Current partial symtab */
1686 struct partial_symtab *pst;
1687
1688 /* List of current psymtab's include files */
1689 char **psymtab_include_list;
1690 int includes_allocated;
1691 int includes_used;
1692
1693 /* Index within current psymtab dependency list */
1694 struct partial_symtab **dependency_list;
1695 int dependencies_used, dependencies_allocated;
1696
1697 stringtab_global = stringtab;
1698
1699 pst = (struct partial_symtab *) 0;
1700
1701 includes_allocated = 30;
1702 includes_used = 0;
1703 psymtab_include_list = (char **) alloca (includes_allocated *
1704 sizeof (char *));
1705
1706 dependencies_allocated = 30;
1707 dependencies_used = 0;
1708 dependency_list =
1709 (struct partial_symtab **) alloca (dependencies_allocated *
1710 sizeof (struct partial_symtab *));
1711
1712 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1713 It should only blow away the psymtabs created herein. We could
1714 be reading a shared library or a dynloaded file! */
1715 old_chain = make_cleanup (free_all_psymtabs, 0);
1716
1717 /* Init bincl list */
1718 init_bincl_list (20);
1719 make_cleanup (free_bincl_list, 0);
1720
1721 last_source_file = 0;
1722
1723 #ifdef END_OF_TEXT_DEFAULT
1724 end_of_text_addr = END_OF_TEXT_DEFAULT;
1725 #else
1726 end_of_text_addr = text_addr + text_size;
1727 #endif
1728
1729 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1730 symbuf_end = symbuf_idx = 0;
1731
1732 for (symnum = 0; symnum < nlistlen; symnum++)
1733 {
1734 /* Get the symbol for this run and pull out some info */
1735 QUIT; /* allow this to be interruptable */
1736 if (symbuf_idx == symbuf_end)
1737 fill_symbuf ();
1738 bufp = &symbuf[symbuf_idx++];
1739
1740 /*
1741 * Special case to speed up readin.
1742 */
1743 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1744
1745 SWAP_SYMBOL (bufp);
1746
1747 /* Ok. There is a lot of code duplicated in the rest of this
1748 switch statement (for efficiency reasons). Since I don't
1749 like duplicating code, I will do my penance here, and
1750 describe the code which is duplicated:
1751
1752 *) The assignment to namestring.
1753 *) The call to strchr.
1754 *) The addition of a partial symbol the the two partial
1755 symbol lists. This last is a large section of code, so
1756 I've imbedded it in the following macro.
1757 */
1758
1759 /* Set namestring based on bufp. If the string table index is invalid,
1760 give a fake name, and print a single error message per symbol file read,
1761 rather than abort the symbol reading or flood the user with messages. */
1762 #define SET_NAMESTRING()\
1763 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1764 complain (&string_table_offset_complaint, symnum); \
1765 namestring = "foo"; \
1766 } else \
1767 namestring = bufp->n_un.n_strx + stringtab
1768
1769 /* Add a symbol with an integer value to a psymtab. */
1770 /* This is a macro unless we're debugging. See above this function. */
1771 #ifndef DEBUG
1772 # define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1773 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1774 SYMBOL_VALUE)
1775 #endif /* DEBUG */
1776
1777 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1778 #define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1779 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1780 SYMBOL_VALUE_ADDRESS)
1781
1782 /* Add any kind of symbol to a psymtab. */
1783 #define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1784 do { \
1785 if ((LIST).next >= \
1786 (LIST).list + (LIST).size) \
1787 { \
1788 (LIST).list = (struct partial_symbol *) \
1789 xrealloc ((LIST).list, \
1790 ((LIST).size * 2 \
1791 * sizeof (struct partial_symbol))); \
1792 /* Next assumes we only went one over. Should be good if \
1793 program works correctly */ \
1794 (LIST).next = \
1795 (LIST).list + (LIST).size; \
1796 (LIST).size *= 2; \
1797 } \
1798 psym = (LIST).next++; \
1799 \
1800 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1801 (NAMELENGTH) + 1); \
1802 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1803 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1804 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1805 SYMBOL_CLASS (psym) = (CLASS); \
1806 VT (psym) = (VALUE); \
1807 } while (0);
1808
1809 /* End of macro definitions, now let's handle them symbols! */
1810
1811 switch (bufp->n_type)
1812 {
1813 /*
1814 * Standard, external, non-debugger, symbols
1815 */
1816
1817 case N_TEXT | N_EXT:
1818 case N_NBTEXT | N_EXT:
1819 case N_NBDATA | N_EXT:
1820 case N_NBBSS | N_EXT:
1821 case N_SETV | N_EXT:
1822 case N_ABS | N_EXT:
1823 case N_DATA | N_EXT:
1824 case N_BSS | N_EXT:
1825
1826 bufp->n_value += addr; /* Relocate */
1827
1828 SET_NAMESTRING();
1829
1830 bss_ext_symbol:
1831 record_misc_function (namestring, bufp->n_value,
1832 bufp->n_type); /* Always */
1833
1834 continue;
1835
1836 /* Standard, local, non-debugger, symbols */
1837
1838 case N_NBTEXT:
1839
1840 /* We need to be able to deal with both N_FN or N_TEXT,
1841 because we have no way of knowing whether the sys-supplied ld
1842 or GNU ld was used to make the executable. */
1843 #if ! (N_FN & N_EXT)
1844 case N_FN:
1845 #endif
1846 case N_FN | N_EXT:
1847 case N_TEXT:
1848 bufp->n_value += addr; /* Relocate */
1849 SET_NAMESTRING();
1850 if ((namestring[0] == '-' && namestring[1] == 'l')
1851 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1852 && namestring [nsl - 2] == '.'))
1853 {
1854 if (entry_point < bufp->n_value
1855 && entry_point >= last_o_file_start
1856 && addr == 0) /* FIXME nogood nomore */
1857 {
1858 startup_file_start = last_o_file_start;
1859 startup_file_end = bufp->n_value;
1860 }
1861 if (past_first_source_file && pst
1862 /* The gould NP1 uses low values for .o and -l symbols
1863 which are not the address. */
1864 && bufp->n_value > pst->textlow)
1865 {
1866 end_psymtab (pst, psymtab_include_list, includes_used,
1867 symnum * sizeof (struct nlist), bufp->n_value,
1868 dependency_list, dependencies_used,
1869 global_psymbols.next, static_psymbols.next);
1870 pst = (struct partial_symtab *) 0;
1871 includes_used = 0;
1872 dependencies_used = 0;
1873 }
1874 else
1875 past_first_source_file = 1;
1876 last_o_file_start = bufp->n_value;
1877 }
1878 continue;
1879
1880 case N_DATA:
1881 bufp->n_value += addr; /* Relocate */
1882 SET_NAMESTRING ();
1883 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1884 Record it even if it's local, not global, so we can find it.
1885 Same with virtual function tables, both global and static. */
1886 if ((namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1887 || VTBL_PREFIX_P ((namestring+HASH_OFFSET)))
1888 {
1889 /* Not really a function here, but... */
1890 record_misc_function (namestring, bufp->n_value,
1891 bufp->n_type); /* Always */
1892 }
1893 continue;
1894
1895 case N_UNDF | N_EXT:
1896 if (bufp->n_value != 0) {
1897 /* This is a "Fortran COMMON" symbol. See if the target
1898 environment knows where it has been relocated to. */
1899
1900 CORE_ADDR reladdr;
1901
1902 SET_NAMESTRING();
1903 if (target_lookup_symbol (namestring, &reladdr)) {
1904 continue; /* Error in lookup; ignore symbol for now. */
1905 }
1906 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1907 bufp->n_value = reladdr;
1908 goto bss_ext_symbol;
1909 }
1910 continue; /* Just undefined, not COMMON */
1911
1912 /* Lots of symbol types we can just ignore. */
1913
1914 case N_UNDF:
1915 case N_ABS:
1916 case N_BSS:
1917 case N_NBDATA:
1918 case N_NBBSS:
1919 continue;
1920
1921 /* Keep going . . .*/
1922
1923 /*
1924 * Special symbol types for GNU
1925 */
1926 case N_INDR:
1927 case N_INDR | N_EXT:
1928 case N_SETA:
1929 case N_SETA | N_EXT:
1930 case N_SETT:
1931 case N_SETT | N_EXT:
1932 case N_SETD:
1933 case N_SETD | N_EXT:
1934 case N_SETB:
1935 case N_SETB | N_EXT:
1936 case N_SETV:
1937 continue;
1938
1939 /*
1940 * Debugger symbols
1941 */
1942
1943 case N_SO: {
1944 unsigned long valu = bufp->n_value;
1945 /* Symbol number of the first symbol of this file (i.e. the N_SO
1946 if there is just one, or the first if we have a pair). */
1947 int first_symnum = symnum;
1948
1949 /* End the current partial symtab and start a new one */
1950
1951 SET_NAMESTRING();
1952
1953 /* Peek at the next symbol. If it is also an N_SO, the
1954 first one just indicates the directory. */
1955 if (symbuf_idx == symbuf_end)
1956 fill_symbuf ();
1957 bufp = &symbuf[symbuf_idx];
1958 /* n_type is only a char, so swapping swapping is irrelevant. */
1959 if (bufp->n_type == (unsigned char)N_SO)
1960 {
1961 SWAP_SYMBOL (bufp);
1962 SET_NAMESTRING ();
1963 valu = bufp->n_value;
1964 symbuf_idx++;
1965 symnum++;
1966 }
1967 valu += addr; /* Relocate */
1968
1969 if (pst && past_first_source_file)
1970 {
1971 end_psymtab (pst, psymtab_include_list, includes_used,
1972 first_symnum * sizeof (struct nlist), valu,
1973 dependency_list, dependencies_used,
1974 global_psymbols.next, static_psymbols.next);
1975 pst = (struct partial_symtab *) 0;
1976 includes_used = 0;
1977 dependencies_used = 0;
1978 }
1979 else
1980 past_first_source_file = 1;
1981
1982 pst = start_psymtab (symfile_name, addr,
1983 namestring, valu,
1984 first_symnum * sizeof (struct nlist),
1985 global_psymbols.next, static_psymbols.next);
1986
1987 continue;
1988 }
1989
1990 case N_BINCL:
1991 /* Add this bincl to the bincl_list for future EXCLs. No
1992 need to save the string; it'll be around until
1993 read_dbx_symtab function returns */
1994
1995 SET_NAMESTRING();
1996
1997 add_bincl_to_list (pst, namestring, bufp->n_value);
1998
1999 /* Mark down an include file in the current psymtab */
2000
2001 psymtab_include_list[includes_used++] = namestring;
2002 if (includes_used >= includes_allocated)
2003 {
2004 char **orig = psymtab_include_list;
2005
2006 psymtab_include_list = (char **)
2007 alloca ((includes_allocated *= 2) *
2008 sizeof (char *));
2009 bcopy (orig, psymtab_include_list,
2010 includes_used * sizeof (char *));
2011 }
2012
2013 continue;
2014
2015 case N_SOL:
2016 /* Mark down an include file in the current psymtab */
2017
2018 SET_NAMESTRING();
2019
2020 /* In C++, one may expect the same filename to come round many
2021 times, when code is coming alternately from the main file
2022 and from inline functions in other files. So I check to see
2023 if this is a file we've seen before -- either the main
2024 source file, or a previously included file.
2025
2026 This seems to be a lot of time to be spending on N_SOL, but
2027 things like "break expread.y:435" need to work (I
2028 suppose the psymtab_include_list could be hashed or put
2029 in a binary tree, if profiling shows this is a major hog). */
2030 if (!strcmp (namestring, pst->filename))
2031 continue;
2032 {
2033 register int i;
2034 for (i = 0; i < includes_used; i++)
2035 if (!strcmp (namestring, psymtab_include_list[i]))
2036 {
2037 i = -1;
2038 break;
2039 }
2040 if (i == -1)
2041 continue;
2042 }
2043
2044 psymtab_include_list[includes_used++] = namestring;
2045 if (includes_used >= includes_allocated)
2046 {
2047 char **orig = psymtab_include_list;
2048
2049 psymtab_include_list = (char **)
2050 alloca ((includes_allocated *= 2) *
2051 sizeof (char *));
2052 bcopy (orig, psymtab_include_list,
2053 includes_used * sizeof (char *));
2054 }
2055 continue;
2056
2057 case N_LSYM: /* Typedef or automatic variable. */
2058 SET_NAMESTRING();
2059
2060 p = (char *) strchr (namestring, ':');
2061
2062 /* Skip if there is no :. */
2063 if (!p) continue;
2064
2065 switch (p[1])
2066 {
2067 case 'T':
2068 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2069 STRUCT_NAMESPACE, LOC_TYPEDEF,
2070 static_psymbols, bufp->n_value);
2071 if (p[2] == 't')
2072 {
2073 /* Also a typedef with the same name. */
2074 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2075 VAR_NAMESPACE, LOC_TYPEDEF,
2076 static_psymbols, bufp->n_value);
2077 p += 1;
2078 }
2079 goto check_enum;
2080 case 't':
2081 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2082 VAR_NAMESPACE, LOC_TYPEDEF,
2083 static_psymbols, bufp->n_value);
2084 check_enum:
2085 /* If this is an enumerated type, we need to
2086 add all the enum constants to the partial symbol
2087 table. This does not cover enums without names, e.g.
2088 "enum {a, b} c;" in C, but fortunately those are
2089 rare. There is no way for GDB to find those from the
2090 enum type without spending too much time on it. Thus
2091 to solve this problem, the compiler needs to put out separate
2092 constant symbols ('c' N_LSYMS) for enum constants in
2093 enums without names, or put out a dummy type. */
2094
2095 /* We are looking for something of the form
2096 <name> ":" ("t" | "T") [<number> "="] "e"
2097 {<constant> ":" <value> ","} ";". */
2098
2099 /* Skip over the colon and the 't' or 'T'. */
2100 p += 2;
2101 /* This type may be given a number. Skip over it. */
2102 while ((*p >= '0' && *p <= '9')
2103 || *p == '=')
2104 p++;
2105
2106 if (*p++ == 'e')
2107 {
2108 /* We have found an enumerated type. */
2109 /* According to comments in read_enum_type
2110 a comma could end it instead of a semicolon.
2111 I don't know where that happens.
2112 Accept either. */
2113 while (*p && *p != ';' && *p != ',')
2114 {
2115 char *q;
2116
2117 /* Check for and handle cretinous dbx symbol name
2118 continuation! */
2119 if (*p == '\\')
2120 p = next_symbol_text ();
2121
2122 /* Point to the character after the name
2123 of the enum constant. */
2124 for (q = p; *q && *q != ':'; q++)
2125 ;
2126 /* Note that the value doesn't matter for
2127 enum constants in psymtabs, just in symtabs. */
2128 ADD_PSYMBOL_TO_LIST (p, q - p,
2129 VAR_NAMESPACE, LOC_CONST,
2130 static_psymbols, 0);
2131 /* Point past the name. */
2132 p = q;
2133 /* Skip over the value. */
2134 while (*p && *p != ',')
2135 p++;
2136 /* Advance past the comma. */
2137 if (*p)
2138 p++;
2139 }
2140 }
2141
2142 continue;
2143 case 'c':
2144 /* Constant, e.g. from "const" in Pascal. */
2145 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2146 VAR_NAMESPACE, LOC_CONST,
2147 static_psymbols, bufp->n_value);
2148 continue;
2149 default:
2150 /* Skip if the thing following the : is
2151 not a letter (which indicates declaration of a local
2152 variable, which we aren't interested in). */
2153 continue;
2154 }
2155
2156 case N_FUN:
2157 case N_GSYM: /* Global (extern) variable; can be
2158 data or bss (sigh). */
2159 case N_STSYM: /* Data seg var -- static */
2160 case N_LCSYM: /* BSS " */
2161
2162 case N_NBSTS: /* Gould nobase. */
2163 case N_NBLCS: /* symbols. */
2164
2165 /* Following may probably be ignored; I'll leave them here
2166 for now (until I do Pascal and Modula 2 extensions). */
2167
2168 case N_PC: /* I may or may not need this; I
2169 suspect not. */
2170 case N_M2C: /* I suspect that I can ignore this here. */
2171 case N_SCOPE: /* Same. */
2172
2173 SET_NAMESTRING();
2174
2175 p = (char *) strchr (namestring, ':');
2176 if (!p)
2177 continue; /* Not a debugging symbol. */
2178
2179
2180
2181 /* Main processing section for debugging symbols which
2182 the initial read through the symbol tables needs to worry
2183 about. If we reach this point, the symbol which we are
2184 considering is definitely one we are interested in.
2185 p must also contain the (valid) index into the namestring
2186 which indicates the debugging type symbol. */
2187
2188 switch (p[1])
2189 {
2190 case 'c':
2191 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2192 VAR_NAMESPACE, LOC_CONST,
2193 static_psymbols, bufp->n_value);
2194 continue;
2195 case 'S':
2196 bufp->n_value += addr; /* Relocate */
2197 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2198 VAR_NAMESPACE, LOC_STATIC,
2199 static_psymbols, bufp->n_value);
2200 continue;
2201 case 'G':
2202 bufp->n_value += addr; /* Relocate */
2203 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2204 VAR_NAMESPACE, LOC_EXTERNAL,
2205 global_psymbols, bufp->n_value);
2206 continue;
2207
2208 case 't':
2209 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2210 VAR_NAMESPACE, LOC_TYPEDEF,
2211 global_psymbols, bufp->n_value);
2212 continue;
2213
2214 case 'f':
2215 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2216 VAR_NAMESPACE, LOC_BLOCK,
2217 static_psymbols, bufp->n_value);
2218 continue;
2219
2220 /* Global functions were ignored here, but now they
2221 are put into the global psymtab like one would expect.
2222 They're also in the misc fn vector...
2223 FIXME, why did it used to ignore these? That broke
2224 "i fun" on these functions. */
2225 case 'F':
2226 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2227 VAR_NAMESPACE, LOC_BLOCK,
2228 global_psymbols, bufp->n_value);
2229 continue;
2230
2231 /* Two things show up here (hopefully); static symbols of
2232 local scope (static used inside braces) or extensions
2233 of structure symbols. We can ignore both. */
2234 case 'V':
2235 case '(':
2236 case '0':
2237 case '1':
2238 case '2':
2239 case '3':
2240 case '4':
2241 case '5':
2242 case '6':
2243 case '7':
2244 case '8':
2245 case '9':
2246 continue;
2247
2248 default:
2249 /* Unexpected symbol. Ignore it; perhaps it is an extension
2250 that we don't know about.
2251
2252 Someone says sun cc puts out symbols like
2253 /foo/baz/maclib::/usr/local/bin/maclib,
2254 which would get here with a symbol type of ':'. */
2255 continue;
2256 }
2257
2258 case N_EXCL:
2259
2260 SET_NAMESTRING();
2261
2262 /* Find the corresponding bincl and mark that psymtab on the
2263 psymtab dependency list */
2264 {
2265 struct partial_symtab *needed_pst =
2266 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2267
2268 /* If this include file was defined earlier in this file,
2269 leave it alone. */
2270 if (needed_pst == pst) continue;
2271
2272 if (needed_pst)
2273 {
2274 int i;
2275 int found = 0;
2276
2277 for (i = 0; i < dependencies_used; i++)
2278 if (dependency_list[i] == needed_pst)
2279 {
2280 found = 1;
2281 break;
2282 }
2283
2284 /* If it's already in the list, skip the rest. */
2285 if (found) continue;
2286
2287 dependency_list[dependencies_used++] = needed_pst;
2288 if (dependencies_used >= dependencies_allocated)
2289 {
2290 struct partial_symtab **orig = dependency_list;
2291 dependency_list =
2292 (struct partial_symtab **)
2293 alloca ((dependencies_allocated *= 2)
2294 * sizeof (struct partial_symtab *));
2295 bcopy (orig, dependency_list,
2296 (dependencies_used
2297 * sizeof (struct partial_symtab *)));
2298 #ifdef DEBUG_INFO
2299 fprintf (stderr, "Had to reallocate dependency list.\n");
2300 fprintf (stderr, "New dependencies allocated: %d\n",
2301 dependencies_allocated);
2302 #endif
2303 }
2304 }
2305 else
2306 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2307 symnum);
2308 }
2309 continue;
2310
2311 case N_EINCL:
2312 case N_DSLINE:
2313 case N_BSLINE:
2314 case N_SSYM: /* Claim: Structure or union element.
2315 Hopefully, I can ignore this. */
2316 case N_ENTRY: /* Alternate entry point; can ignore. */
2317 case N_MAIN: /* Can definitely ignore this. */
2318 case N_CATCH: /* These are GNU C++ extensions */
2319 case N_EHDECL: /* that can safely be ignored here. */
2320 case N_LENG:
2321 case N_BCOMM:
2322 case N_ECOMM:
2323 case N_ECOML:
2324 case N_FNAME:
2325 case N_SLINE:
2326 case N_RSYM:
2327 case N_PSYM:
2328 case N_LBRAC:
2329 case N_RBRAC:
2330 case N_NSYMS: /* Ultrix 4.0: symbol count */
2331 /* These symbols aren't interesting; don't worry about them */
2332
2333 continue;
2334
2335 default:
2336 /* If we haven't found it yet, ignore it. It's probably some
2337 new type we don't know about yet. */
2338 complain (&unknown_symtype_complaint, bufp->n_type);
2339 continue;
2340 }
2341 }
2342
2343 /* If there's stuff to be cleaned up, clean it up. */
2344 if (nlistlen > 0 /* We have some syms */
2345 && entry_point < bufp->n_value
2346 && entry_point >= last_o_file_start)
2347 {
2348 startup_file_start = last_o_file_start;
2349 startup_file_end = bufp->n_value;
2350 }
2351
2352 if (pst)
2353 {
2354 end_psymtab (pst, psymtab_include_list, includes_used,
2355 symnum * sizeof (struct nlist), end_of_text_addr,
2356 dependency_list, dependencies_used,
2357 global_psymbols.next, static_psymbols.next);
2358 includes_used = 0;
2359 dependencies_used = 0;
2360 pst = (struct partial_symtab *) 0;
2361 }
2362
2363 free_bincl_list ();
2364 discard_cleanups (old_chain);
2365 }
2366
2367 /*
2368 * Allocate and partially fill a partial symtab. It will be
2369 * completely filled at the end of the symbol list.
2370
2371 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2372 is the address relative to which its symbols are (incremental) or 0
2373 (normal). */
2374 static struct partial_symtab *
2375 start_psymtab (symfile_name, addr,
2376 filename, textlow, ldsymoff, global_syms, static_syms)
2377 char *symfile_name;
2378 CORE_ADDR addr;
2379 char *filename;
2380 CORE_ADDR textlow;
2381 int ldsymoff;
2382 struct partial_symbol *global_syms;
2383 struct partial_symbol *static_syms;
2384 {
2385 struct partial_symtab *result =
2386 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2387 sizeof (struct partial_symtab));
2388
2389 result->addr = addr;
2390
2391 result->symfile_name =
2392 (char *) obstack_alloc (psymbol_obstack,
2393 strlen (symfile_name) + 1);
2394 strcpy (result->symfile_name, symfile_name);
2395
2396 result->filename =
2397 (char *) obstack_alloc (psymbol_obstack,
2398 strlen (filename) + 1);
2399 strcpy (result->filename, filename);
2400
2401 result->textlow = textlow;
2402 result->ldsymoff = ldsymoff;
2403
2404 result->readin = 0;
2405 result->symtab = 0;
2406 result->read_symtab = dbx_psymtab_to_symtab;
2407
2408 result->globals_offset = global_syms - global_psymbols.list;
2409 result->statics_offset = static_syms - static_psymbols.list;
2410
2411 result->n_global_syms = 0;
2412 result->n_static_syms = 0;
2413
2414
2415 return result;
2416 }
2417
2418 static int
2419 compare_psymbols (s1, s2)
2420 register struct partial_symbol *s1, *s2;
2421 {
2422 register char
2423 *st1 = SYMBOL_NAME (s1),
2424 *st2 = SYMBOL_NAME (s2);
2425
2426 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2427 strcmp (st1 + 1, st2 + 1));
2428 }
2429
2430
2431 /* Close off the current usage of a partial_symbol table entry. This
2432 involves setting the correct number of includes (with a realloc),
2433 setting the high text mark, setting the symbol length in the
2434 executable, and setting the length of the global and static lists
2435 of psymbols.
2436
2437 The global symbols and static symbols are then seperately sorted.
2438
2439 Then the partial symtab is put on the global list.
2440 *** List variables and peculiarities of same. ***
2441 */
2442 static void
2443 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2444 capping_text, dependency_list, number_dependencies,
2445 capping_global, capping_static)
2446 struct partial_symtab *pst;
2447 char **include_list;
2448 int num_includes;
2449 int capping_symbol_offset;
2450 CORE_ADDR capping_text;
2451 struct partial_symtab **dependency_list;
2452 int number_dependencies;
2453 struct partial_symbol *capping_global, *capping_static;
2454 {
2455 int i;
2456
2457 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2458 pst->texthigh = capping_text;
2459
2460 pst->n_global_syms =
2461 capping_global - (global_psymbols.list + pst->globals_offset);
2462 pst->n_static_syms =
2463 capping_static - (static_psymbols.list + pst->statics_offset);
2464
2465 pst->number_of_dependencies = number_dependencies;
2466 if (number_dependencies)
2467 {
2468 pst->dependencies = (struct partial_symtab **)
2469 obstack_alloc (psymbol_obstack,
2470 number_dependencies * sizeof (struct partial_symtab *));
2471 bcopy (dependency_list, pst->dependencies,
2472 number_dependencies * sizeof (struct partial_symtab *));
2473 }
2474 else
2475 pst->dependencies = 0;
2476
2477 for (i = 0; i < num_includes; i++)
2478 {
2479 /* Eventually, put this on obstack */
2480 struct partial_symtab *subpst =
2481 (struct partial_symtab *)
2482 obstack_alloc (psymbol_obstack,
2483 sizeof (struct partial_symtab));
2484
2485 subpst->filename =
2486 (char *) obstack_alloc (psymbol_obstack,
2487 strlen (include_list[i]) + 1);
2488 strcpy (subpst->filename, include_list[i]);
2489
2490 subpst->symfile_name = pst->symfile_name;
2491 subpst->addr = pst->addr;
2492 subpst->ldsymoff =
2493 subpst->ldsymlen =
2494 subpst->textlow =
2495 subpst->texthigh = 0;
2496
2497 /* We could save slight bits of space by only making one of these,
2498 shared by the entire set of include files. FIXME-someday. */
2499 subpst->dependencies = (struct partial_symtab **)
2500 obstack_alloc (psymbol_obstack,
2501 sizeof (struct partial_symtab *));
2502 subpst->dependencies[0] = pst;
2503 subpst->number_of_dependencies = 1;
2504
2505 subpst->globals_offset =
2506 subpst->n_global_syms =
2507 subpst->statics_offset =
2508 subpst->n_static_syms = 0;
2509
2510 subpst->readin = 0;
2511 subpst->symtab = 0;
2512 subpst->read_symtab = dbx_psymtab_to_symtab;
2513
2514 subpst->next = partial_symtab_list;
2515 partial_symtab_list = subpst;
2516 }
2517
2518 /* Sort the global list; don't sort the static list */
2519 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2520 sizeof (struct partial_symbol), compare_psymbols);
2521
2522 /* If there is already a psymtab or symtab for a file of this name, remove it.
2523 (If there is a symtab, more drastic things also happen.)
2524 This happens in VxWorks. */
2525 free_named_symtabs (pst->filename);
2526
2527 /* Put the psymtab on the psymtab list */
2528 pst->next = partial_symtab_list;
2529 partial_symtab_list = pst;
2530 }
2531 \f
2532 static void
2533 psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2534 struct partial_symtab *pst;
2535 int desc;
2536 char *stringtab;
2537 int stringtab_size;
2538 int sym_offset;
2539 {
2540 struct cleanup *old_chain;
2541 int i;
2542
2543 if (!pst)
2544 return;
2545
2546 if (pst->readin)
2547 {
2548 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2549 pst->filename);
2550 return;
2551 }
2552
2553 /* Read in all partial symbtabs on which this one is dependent */
2554 for (i = 0; i < pst->number_of_dependencies; i++)
2555 if (!pst->dependencies[i]->readin)
2556 {
2557 /* Inform about additional files that need to be read in. */
2558 if (info_verbose)
2559 {
2560 fputs_filtered (" ", stdout);
2561 wrap_here ("");
2562 fputs_filtered ("and ", stdout);
2563 wrap_here ("");
2564 printf_filtered ("%s...", pst->dependencies[i]->filename);
2565 wrap_here (""); /* Flush output */
2566 fflush (stdout);
2567 }
2568 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2569 stringtab, stringtab_size, sym_offset);
2570 }
2571
2572 if (pst->ldsymlen) /* Otherwise it's a dummy */
2573 {
2574 /* Init stuff necessary for reading in symbols */
2575 free_pendings = 0;
2576 pending_blocks = 0;
2577 file_symbols = 0;
2578 global_symbols = 0;
2579 old_chain = make_cleanup (really_free_pendings, 0);
2580
2581 /* Read in this files symbols */
2582 lseek (desc, sym_offset, L_SET);
2583 read_ofile_symtab (desc, stringtab, stringtab_size,
2584 pst->ldsymoff,
2585 pst->ldsymlen, pst->textlow,
2586 pst->texthigh - pst->textlow, pst->addr);
2587 sort_symtab_syms (symtab_list); /* At beginning since just added */
2588
2589 do_cleanups (old_chain);
2590 }
2591
2592 pst->readin = 1;
2593 }
2594
2595 /*
2596 * Read in all of the symbols for a given psymtab for real.
2597 * Be verbose about it if the user wants that.
2598 */
2599 static void
2600 dbx_psymtab_to_symtab (pst)
2601 struct partial_symtab *pst;
2602 {
2603 int desc;
2604 char *stringtab;
2605 int stsize, val;
2606 struct stat statbuf;
2607 struct cleanup *old_chain;
2608 bfd *sym_bfd;
2609 long st_temp;
2610
2611 if (!pst)
2612 return;
2613
2614 if (pst->readin)
2615 {
2616 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2617 pst->filename);
2618 return;
2619 }
2620
2621 if (pst->ldsymlen || pst->number_of_dependencies)
2622 {
2623 /* Print the message now, before reading the string table,
2624 to avoid disconcerting pauses. */
2625 if (info_verbose)
2626 {
2627 printf_filtered ("Reading in symbols for %s...", pst->filename);
2628 fflush (stdout);
2629 }
2630
2631 /* Open symbol file and read in string table. Symbol_file_command
2632 guarantees that the symbol file name will be absolute, so there is
2633 no need for openp. */
2634 desc = open(pst->symfile_name, O_RDONLY, 0);
2635
2636 if (desc < 0)
2637 perror_with_name (pst->symfile_name);
2638
2639 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2640 if (!sym_bfd)
2641 {
2642 (void)close (desc);
2643 error ("Could not open `%s' to read symbols: %s",
2644 pst->symfile_name, bfd_errmsg (bfd_error));
2645 }
2646 old_chain = make_cleanup (bfd_close, sym_bfd);
2647 if (!bfd_check_format (sym_bfd, bfd_object))
2648 error ("\"%s\": can't read symbols: %s.",
2649 pst->symfile_name, bfd_errmsg (bfd_error));
2650
2651 /* We keep the string table for symfile resident in memory, but
2652 not the string table for any other symbol files. */
2653 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
2654 {
2655 /* Read in the string table */
2656
2657 /* FIXME, this uses internal BFD variables. See above in
2658 dbx_symbol_file_open where the macro is defined! */
2659 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2660
2661 val = myread (desc, &st_temp, sizeof st_temp);
2662 if (val < 0)
2663 perror_with_name (pst->symfile_name);
2664 stsize = bfd_h_getlong (sym_bfd, (unsigned char *)&st_temp);
2665 if (fstat (desc, &statbuf) < 0)
2666 perror_with_name (pst->symfile_name);
2667
2668 if (stsize >= 0 && stsize < statbuf.st_size)
2669 {
2670 #ifdef BROKEN_LARGE_ALLOCA
2671 stringtab = (char *) xmalloc (stsize);
2672 make_cleanup (free, stringtab);
2673 #else
2674 stringtab = (char *) alloca (stsize);
2675 #endif
2676 }
2677 else
2678 stringtab = NULL;
2679 if (stringtab == NULL && stsize != 0)
2680 error ("ridiculous string table size: %d bytes", stsize);
2681
2682 /* FIXME, this uses internal BFD variables. See above in
2683 dbx_symbol_file_open where the macro is defined! */
2684 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2685 if (val < 0)
2686 perror_with_name (pst->symfile_name);
2687 val = myread (desc, stringtab, stsize);
2688 if (val < 0)
2689 perror_with_name (pst->symfile_name);
2690 }
2691 else
2692 {
2693 stringtab = symfile_string_table;
2694 stsize = symfile_string_table_size;
2695 }
2696
2697 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2698
2699 /* FIXME, this uses internal BFD variables. See above in
2700 dbx_symbol_file_open where the macro is defined! */
2701 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2702 SYMBOL_TABLE_OFFSET);
2703
2704 /* Match with global symbols. This only needs to be done once,
2705 after all of the symtabs and dependencies have been read in. */
2706 scan_file_globals ();
2707
2708 do_cleanups (old_chain);
2709
2710 /* Finish up the debug error message. */
2711 if (info_verbose)
2712 printf_filtered ("done.\n");
2713 }
2714 }
2715
2716 /*
2717 * Scan through all of the global symbols defined in the object file,
2718 * assigning values to the debugging symbols that need to be assigned
2719 * to. Get these symbols from the misc function list.
2720 */
2721 static void
2722 scan_file_globals ()
2723 {
2724 int hash;
2725 int mf;
2726
2727 for (mf = 0; mf < misc_function_count; mf++)
2728 {
2729 char *namestring = misc_function_vector[mf].name;
2730 struct symbol *sym, *prev;
2731
2732 QUIT;
2733
2734 prev = (struct symbol *) 0;
2735
2736 /* Get the hash index and check all the symbols
2737 under that hash index. */
2738
2739 hash = hashname (namestring);
2740
2741 for (sym = global_sym_chain[hash]; sym;)
2742 {
2743 if (*namestring == SYMBOL_NAME (sym)[0]
2744 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2745 {
2746 /* Splice this symbol out of the hash chain and
2747 assign the value we have to it. */
2748 if (prev)
2749 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2750 else
2751 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2752
2753 /* Check to see whether we need to fix up a common block. */
2754 /* Note: this code might be executed several times for
2755 the same symbol if there are multiple references. */
2756 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2757 fix_common_block (sym, misc_function_vector[mf].address);
2758 else
2759 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2760
2761 if (prev)
2762 sym = SYMBOL_VALUE_CHAIN (prev);
2763 else
2764 sym = global_sym_chain[hash];
2765 }
2766 else
2767 {
2768 prev = sym;
2769 sym = SYMBOL_VALUE_CHAIN (sym);
2770 }
2771 }
2772 }
2773 }
2774
2775 /* Process a pair of symbols. Currently they must both be N_SO's. */
2776 static void
2777 process_symbol_pair (type1, desc1, value1, name1,
2778 type2, desc2, value2, name2)
2779 int type1;
2780 int desc1;
2781 CORE_ADDR value1;
2782 char *name1;
2783 int type2;
2784 int desc2;
2785 CORE_ADDR value2;
2786 char *name2;
2787 {
2788 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2789 broken PCC's don't put out N_SO pairs. */
2790 if (last_source_file)
2791 end_symtab (value2);
2792 start_symtab (name2, name1, value2);
2793 }
2794
2795 /*
2796 * Read in a defined section of a specific object file's symbols.
2797 *
2798 * DESC is the file descriptor for the file, positioned at the
2799 * beginning of the symtab
2800 * STRINGTAB is a pointer to the files string
2801 * table, already read in
2802 * SYM_OFFSET is the offset within the file of
2803 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2804 * number of symbols to read
2805 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2806 * TEXT_SIZE is the size of the text segment read in.
2807 * OFFSET is a relocation offset which gets added to each symbol
2808 */
2809
2810 static void
2811 read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2812 sym_size, text_offset, text_size, offset)
2813 int desc;
2814 register char *stringtab;
2815 unsigned int stringtab_size;
2816 int sym_offset;
2817 int sym_size;
2818 CORE_ADDR text_offset;
2819 int text_size;
2820 int offset;
2821 {
2822 register char *namestring;
2823 struct nlist *bufp;
2824 unsigned char type;
2825 subfile_stack = 0;
2826
2827 stringtab_global = stringtab;
2828 last_source_file = 0;
2829
2830 symtab_input_desc = desc;
2831 symbuf_end = symbuf_idx = 0;
2832
2833 /* It is necessary to actually read one symbol *before* the start
2834 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2835 occurs before the N_SO symbol.
2836
2837 Detecting this in read_dbx_symtab
2838 would slow down initial readin, so we look for it here instead. */
2839 if (sym_offset >= (int)sizeof (struct nlist))
2840 {
2841 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2842 fill_symbuf ();
2843 bufp = &symbuf[symbuf_idx++];
2844 SWAP_SYMBOL (bufp);
2845
2846 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2847 error ("Invalid symbol data: bad string table offset: %d",
2848 bufp->n_un.n_strx);
2849 namestring = bufp->n_un.n_strx + stringtab;
2850
2851 processing_gcc_compilation =
2852 (bufp->n_type == N_TEXT
2853 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2854 }
2855 else
2856 {
2857 /* The N_SO starting this symtab is the first symbol, so we
2858 better not check the symbol before it. I'm not this can
2859 happen, but it doesn't hurt to check for it. */
2860 lseek(desc, sym_offset, L_INCR);
2861 processing_gcc_compilation = 0;
2862 }
2863
2864 if (symbuf_idx == symbuf_end)
2865 fill_symbuf();
2866 bufp = &symbuf[symbuf_idx];
2867 if (bufp->n_type != (unsigned char)N_SO)
2868 error("First symbol in segment of executable not a source symbol");
2869
2870 for (symnum = 0;
2871 symnum < sym_size / sizeof(struct nlist);
2872 symnum++)
2873 {
2874 QUIT; /* Allow this to be interruptable */
2875 if (symbuf_idx == symbuf_end)
2876 fill_symbuf();
2877 bufp = &symbuf[symbuf_idx++];
2878 SWAP_SYMBOL (bufp);
2879
2880 type = bufp->n_type & N_TYPE;
2881 if (type == (unsigned char)N_CATCH)
2882 {
2883 /* N_CATCH is not fixed up by the linker, and unfortunately,
2884 there's no other place to put it in the .stab map. */
2885 bufp->n_value += text_offset + offset;
2886 }
2887 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2888 bufp->n_value += offset;
2889
2890 type = bufp->n_type;
2891 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2892 error ("Invalid symbol data: bad string table offset: %d",
2893 bufp->n_un.n_strx);
2894 namestring = bufp->n_un.n_strx + stringtab;
2895
2896 if (type & N_STAB)
2897 {
2898 short bufp_n_desc = bufp->n_desc;
2899 unsigned long valu = bufp->n_value;
2900
2901 /* Check for a pair of N_SO symbols. */
2902 if (type == (unsigned char)N_SO)
2903 {
2904 if (symbuf_idx == symbuf_end)
2905 fill_symbuf ();
2906 bufp = &symbuf[symbuf_idx];
2907 if (bufp->n_type == (unsigned char)N_SO)
2908 {
2909 char *namestring2;
2910
2911 SWAP_SYMBOL (bufp);
2912 bufp->n_value += offset; /* Relocate */
2913 symbuf_idx++;
2914 symnum++;
2915
2916 if (bufp->n_un.n_strx < 0
2917 || bufp->n_un.n_strx >= stringtab_size)
2918 error ("Invalid symbol data: bad string table offset: %d",
2919 bufp->n_un.n_strx);
2920 namestring2 = bufp->n_un.n_strx + stringtab;
2921
2922 process_symbol_pair (N_SO, bufp_n_desc, valu, namestring,
2923 N_SO, bufp->n_desc, bufp->n_value,
2924 namestring2);
2925 }
2926 else
2927 process_one_symbol(type, bufp_n_desc, valu, namestring);
2928 }
2929 else
2930 process_one_symbol (type, bufp_n_desc, valu, namestring);
2931 }
2932 /* We skip checking for a new .o or -l file; that should never
2933 happen in this routine. */
2934 else if (type == N_TEXT
2935 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2936 /* I don't think this code will ever be executed, because
2937 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2938 the N_SO symbol which starts this source file.
2939 However, there is no reason not to accept
2940 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2941 processing_gcc_compilation = 1;
2942 else if (type & N_EXT || type == (unsigned char)N_TEXT
2943 || type == (unsigned char)N_NBTEXT
2944 )
2945 /* Global symbol: see if we came across a dbx defintion for
2946 a corresponding symbol. If so, store the value. Remove
2947 syms from the chain when their values are stored, but
2948 search the whole chain, as there may be several syms from
2949 different files with the same name. */
2950 /* This is probably not true. Since the files will be read
2951 in one at a time, each reference to a global symbol will
2952 be satisfied in each file as it appears. So we skip this
2953 section. */
2954 ;
2955 }
2956 end_symtab (text_offset + text_size);
2957 }
2958 \f
2959 static int
2960 hashname (name)
2961 char *name;
2962 {
2963 register char *p = name;
2964 register int total = p[0];
2965 register int c;
2966
2967 c = p[1];
2968 total += c << 2;
2969 if (c)
2970 {
2971 c = p[2];
2972 total += c << 4;
2973 if (c)
2974 total += p[3] << 6;
2975 }
2976
2977 /* Ensure result is positive. */
2978 if (total < 0) total += (1000 << 6);
2979 return total % HASHSIZE;
2980 }
2981
2982 \f
2983 static void
2984 process_one_symbol (type, desc, valu, name)
2985 int type, desc;
2986 CORE_ADDR valu;
2987 char *name;
2988 {
2989 #ifndef SUN_FIXED_LBRAC_BUG
2990 /* This records the last pc address we've seen. We depend on their being
2991 an SLINE or FUN or SO before the first LBRAC, since the variable does
2992 not get reset in between reads of different symbol files. */
2993 static CORE_ADDR last_pc_address;
2994 #endif
2995 register struct context_stack *new;
2996 char *colon_pos;
2997
2998 /* Something is wrong if we see real data before
2999 seeing a source file name. */
3000
3001 if (last_source_file == 0 && type != (unsigned char)N_SO)
3002 {
3003 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
3004 where that code is defined. */
3005 if (IGNORE_SYMBOL (type))
3006 return;
3007
3008 /* FIXME, this should not be an error, since it precludes extending
3009 the symbol table information in this way... */
3010 error ("Invalid symbol data: does not start by identifying a source file.");
3011 }
3012
3013 switch (type)
3014 {
3015 case N_FUN:
3016 case N_FNAME:
3017 /* Either of these types of symbols indicates the start of
3018 a new function. We must process its "name" normally for dbx,
3019 but also record the start of a new lexical context, and possibly
3020 also the end of the lexical context for the previous function. */
3021 /* This is not always true. This type of symbol may indicate a
3022 text segment variable. */
3023
3024 #ifndef SUN_FIXED_LBRAC_BUG
3025 last_pc_address = valu; /* Save for SunOS bug circumcision */
3026 #endif
3027
3028 colon_pos = strchr (name, ':');
3029 if (!colon_pos++
3030 || (*colon_pos != 'f' && *colon_pos != 'F'))
3031 {
3032 define_symbol (valu, name, desc, type);
3033 break;
3034 }
3035
3036 within_function = 1;
3037 if (context_stack_depth > 0)
3038 {
3039 new = &context_stack[--context_stack_depth];
3040 /* Make a block for the local symbols within. */
3041 finish_block (new->name, &local_symbols, new->old_blocks,
3042 new->start_addr, valu);
3043 }
3044 /* Stack must be empty now. */
3045 if (context_stack_depth != 0)
3046 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3047 symnum);
3048
3049 new = &context_stack[context_stack_depth++];
3050 new->old_blocks = pending_blocks;
3051 new->start_addr = valu;
3052 new->name = define_symbol (valu, name, desc, type);
3053 local_symbols = 0;
3054 break;
3055
3056 case N_CATCH:
3057 /* Record the address at which this catch takes place. */
3058 define_symbol (valu, name, desc, type);
3059 break;
3060
3061 case N_EHDECL:
3062 /* Don't know what to do with these yet. */
3063 error ("action uncertain for eh extensions");
3064 break;
3065
3066 case N_LBRAC:
3067 /* This "symbol" just indicates the start of an inner lexical
3068 context within a function. */
3069
3070 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3071 /* On most machines, the block addresses are relative to the
3072 N_SO, the linker did not relocate them (sigh). */
3073 valu += last_source_start_addr;
3074 #endif
3075
3076 #ifndef SUN_FIXED_LBRAC_BUG
3077 if (valu < last_pc_address) {
3078 /* Patch current LBRAC pc value to match last handy pc value */
3079 complain (&lbrac_complaint, 0);
3080 valu = last_pc_address;
3081 }
3082 #endif
3083 if (context_stack_depth == context_stack_size)
3084 {
3085 context_stack_size *= 2;
3086 context_stack = (struct context_stack *)
3087 xrealloc (context_stack,
3088 (context_stack_size
3089 * sizeof (struct context_stack)));
3090 }
3091
3092 new = &context_stack[context_stack_depth++];
3093 new->depth = desc;
3094 new->locals = local_symbols;
3095 new->old_blocks = pending_blocks;
3096 new->start_addr = valu;
3097 new->name = 0;
3098 local_symbols = 0;
3099 break;
3100
3101 case N_RBRAC:
3102 /* This "symbol" just indicates the end of an inner lexical
3103 context that was started with N_LBRAC. */
3104
3105 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3106 /* On most machines, the block addresses are relative to the
3107 N_SO, the linker did not relocate them (sigh). */
3108 valu += last_source_start_addr;
3109 #endif
3110
3111 new = &context_stack[--context_stack_depth];
3112 if (desc != new->depth)
3113 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3114
3115 /* Some compilers put the variable decls inside of an
3116 LBRAC/RBRAC block. This macro should be nonzero if this
3117 is true. DESC is N_DESC from the N_RBRAC symbol.
3118 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3119 #if !defined (VARIABLES_INSIDE_BLOCK)
3120 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3121 #endif
3122
3123 /* Can only use new->locals as local symbols here if we're in
3124 gcc or on a machine that puts them before the lbrack. */
3125 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3126 local_symbols = new->locals;
3127
3128 /* If this is not the outermost LBRAC...RBRAC pair in the
3129 function, its local symbols preceded it, and are the ones
3130 just recovered from the context stack. Defined the block for them.
3131
3132 If this is the outermost LBRAC...RBRAC pair, there is no
3133 need to do anything; leave the symbols that preceded it
3134 to be attached to the function's own block. However, if
3135 it is so, we need to indicate that we just moved outside
3136 of the function. */
3137 if (local_symbols
3138 && (context_stack_depth
3139 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3140 {
3141 /* FIXME Muzzle a compiler bug that makes end < start. */
3142 if (new->start_addr > valu)
3143 {
3144 complain(&lbrac_rbrac_complaint, 0);
3145 new->start_addr = valu;
3146 }
3147 /* Make a block for the local symbols within. */
3148 finish_block (0, &local_symbols, new->old_blocks,
3149 new->start_addr, valu);
3150 }
3151 else
3152 {
3153 within_function = 0;
3154 }
3155 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3156 /* Now pop locals of block just finished. */
3157 local_symbols = new->locals;
3158 break;
3159
3160 case N_FN | N_EXT:
3161 /* This kind of symbol supposedly indicates the start
3162 of an object file. In fact this type does not appear. */
3163 break;
3164
3165 case N_SO:
3166 /* This type of symbol indicates the start of data
3167 for one source file.
3168 Finish the symbol table of the previous source file
3169 (if any) and start accumulating a new symbol table. */
3170 #ifndef SUN_FIXED_LBRAC_BUG
3171 last_pc_address = valu; /* Save for SunOS bug circumcision */
3172 #endif
3173
3174 #ifdef PCC_SOL_BROKEN
3175 /* pcc bug, occasionally puts out SO for SOL. */
3176 if (context_stack_depth > 0)
3177 {
3178 start_subfile (name, NULL);
3179 break;
3180 }
3181 #endif
3182 if (last_source_file)
3183 end_symtab (valu);
3184 start_symtab (name, NULL, valu);
3185 break;
3186
3187 case N_SOL:
3188 /* This type of symbol indicates the start of data for
3189 a sub-source-file, one whose contents were copied or
3190 included in the compilation of the main source file
3191 (whose name was given in the N_SO symbol.) */
3192 start_subfile (name, NULL);
3193 break;
3194
3195 case N_BINCL:
3196 push_subfile ();
3197 add_new_header_file (name, valu);
3198 start_subfile (name, NULL);
3199 break;
3200
3201 case N_EINCL:
3202 start_subfile (pop_subfile (), NULL);
3203 break;
3204
3205 case N_EXCL:
3206 add_old_header_file (name, valu);
3207 break;
3208
3209 case N_SLINE:
3210 /* This type of "symbol" really just records
3211 one line-number -- core-address correspondence.
3212 Enter it in the line list for this symbol table. */
3213 #ifndef SUN_FIXED_LBRAC_BUG
3214 last_pc_address = valu; /* Save for SunOS bug circumcision */
3215 #endif
3216 record_line (desc, valu);
3217 break;
3218
3219 case N_BCOMM:
3220 if (common_block)
3221 error ("Invalid symbol data: common within common at symtab pos %d",
3222 symnum);
3223 common_block = local_symbols;
3224 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3225 break;
3226
3227 case N_ECOMM:
3228 /* Symbols declared since the BCOMM are to have the common block
3229 start address added in when we know it. common_block points to
3230 the first symbol after the BCOMM in the local_symbols list;
3231 copy the list and hang it off the symbol for the common block name
3232 for later fixup. */
3233 {
3234 int i;
3235 struct symbol *sym =
3236 (struct symbol *) xmalloc (sizeof (struct symbol));
3237 bzero (sym, sizeof *sym);
3238 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3239 SYMBOL_CLASS (sym) = LOC_BLOCK;
3240 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3241 copy_pending (local_symbols, common_block_i, common_block));
3242 i = hashname (SYMBOL_NAME (sym));
3243 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3244 global_sym_chain[i] = sym;
3245 common_block = 0;
3246 break;
3247 }
3248
3249 case N_ECOML:
3250 case N_LENG:
3251 break;
3252
3253 default:
3254 if (name)
3255 define_symbol (valu, name, desc, type);
3256 }
3257 }
3258 \f
3259 /* Read a number by which a type is referred to in dbx data,
3260 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3261 Just a single number N is equivalent to (0,N).
3262 Return the two numbers by storing them in the vector TYPENUMS.
3263 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3264
3265 static void
3266 read_type_number (pp, typenums)
3267 register char **pp;
3268 register int *typenums;
3269 {
3270 if (**pp == '(')
3271 {
3272 (*pp)++;
3273 typenums[0] = read_number (pp, ',');
3274 typenums[1] = read_number (pp, ')');
3275 }
3276 else
3277 {
3278 typenums[0] = 0;
3279 typenums[1] = read_number (pp, 0);
3280 }
3281 }
3282 \f
3283 /* To handle GNU C++ typename abbreviation, we need to be able to
3284 fill in a type's name as soon as space for that type is allocated.
3285 `type_synonym_name' is the name of the type being allocated.
3286 It is cleared as soon as it is used (lest all allocated types
3287 get this name). */
3288 static char *type_synonym_name;
3289
3290 static struct symbol *
3291 define_symbol (valu, string, desc, type)
3292 unsigned int valu;
3293 char *string;
3294 int desc;
3295 int type;
3296 {
3297 register struct symbol *sym;
3298 char *p = (char *) strchr (string, ':');
3299 int deftype;
3300 int synonym = 0;
3301 register int i;
3302
3303 /* Ignore syms with empty names. */
3304 if (string[0] == 0)
3305 return 0;
3306
3307 /* Ignore old-style symbols from cc -go */
3308 if (p == 0)
3309 return 0;
3310
3311 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3312
3313 if (processing_gcc_compilation) {
3314 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3315 number of bytes occupied by a type or object, which we ignore. */
3316 SYMBOL_LINE(sym) = desc;
3317 } else {
3318 SYMBOL_LINE(sym) = 0; /* unknown */
3319 }
3320
3321 if (string[0] == CPLUS_MARKER)
3322 {
3323 /* Special GNU C++ names. */
3324 switch (string[1])
3325 {
3326 case 't':
3327 SYMBOL_NAME (sym) = "this";
3328 break;
3329 case 'v': /* $vtbl_ptr_type */
3330 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3331 goto normal;
3332 case 'e':
3333 SYMBOL_NAME (sym) = "eh_throw";
3334 break;
3335
3336 case '_':
3337 /* This was an anonymous type that was never fixed up. */
3338 goto normal;
3339
3340 default:
3341 abort ();
3342 }
3343 }
3344 else
3345 {
3346 normal:
3347 SYMBOL_NAME (sym)
3348 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3349 /* Open-coded bcopy--saves function call time. */
3350 {
3351 register char *p1 = string;
3352 register char *p2 = SYMBOL_NAME (sym);
3353 while (p1 != p)
3354 *p2++ = *p1++;
3355 *p2++ = '\0';
3356 }
3357 }
3358 p++;
3359 /* Determine the type of name being defined. */
3360 /* The Acorn RISC machine's compiler can put out locals that don't
3361 start with "234=" or "(3,4)=", so assume anything other than the
3362 deftypes we know how to handle is a local. */
3363 /* (Peter Watkins @ Computervision)
3364 Handle Sun-style local fortran array types 'ar...' .
3365 (gnu@cygnus.com) -- this strchr() handles them properly?
3366 (tiemann@cygnus.com) -- 'C' is for catch. */
3367 if (!strchr ("cfFGpPrStTvVXC", *p))
3368 deftype = 'l';
3369 else
3370 deftype = *p++;
3371
3372 /* c is a special case, not followed by a type-number.
3373 SYMBOL:c=iVALUE for an integer constant symbol.
3374 SYMBOL:c=rVALUE for a floating constant symbol.
3375 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3376 e.g. "b:c=e6,0" for "const b = blob1"
3377 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3378 if (deftype == 'c')
3379 {
3380 if (*p++ != '=')
3381 error ("Invalid symbol data at symtab pos %d.", symnum);
3382 switch (*p++)
3383 {
3384 case 'r':
3385 {
3386 double d = atof (p);
3387 char *dbl_valu;
3388
3389 SYMBOL_TYPE (sym) = builtin_type_double;
3390 dbl_valu =
3391 (char *) obstack_alloc (symbol_obstack, sizeof (double));
3392 bcopy (&d, dbl_valu, sizeof (double));
3393 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
3394 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
3395 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3396 }
3397 break;
3398 case 'i':
3399 {
3400 SYMBOL_TYPE (sym) = builtin_type_int;
3401 SYMBOL_VALUE (sym) = atoi (p);
3402 SYMBOL_CLASS (sym) = LOC_CONST;
3403 }
3404 break;
3405 case 'e':
3406 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3407 e.g. "b:c=e6,0" for "const b = blob1"
3408 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3409 {
3410 int typenums[2];
3411
3412 read_type_number (&p, typenums);
3413 if (*p++ != ',')
3414 error ("Invalid symbol data: no comma in enum const symbol");
3415
3416 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3417 SYMBOL_VALUE (sym) = atoi (p);
3418 SYMBOL_CLASS (sym) = LOC_CONST;
3419 }
3420 break;
3421 default:
3422 error ("Invalid symbol data at symtab pos %d.", symnum);
3423 }
3424 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3425 add_symbol_to_list (sym, &file_symbols);
3426 return sym;
3427 }
3428
3429 /* Now usually comes a number that says which data type,
3430 and possibly more stuff to define the type
3431 (all of which is handled by read_type) */
3432
3433 if (deftype == 'p' && *p == 'F')
3434 /* pF is a two-letter code that means a function parameter in Fortran.
3435 The type-number specifies the type of the return value.
3436 Translate it into a pointer-to-function type. */
3437 {
3438 p++;
3439 SYMBOL_TYPE (sym)
3440 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3441 }
3442 else
3443 {
3444 struct type *type_read;
3445 synonym = *p == 't';
3446
3447 if (synonym)
3448 {
3449 p += 1;
3450 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3451 strlen (SYMBOL_NAME (sym)));
3452 }
3453
3454 type_read = read_type (&p);
3455
3456 if ((deftype == 'F' || deftype == 'f')
3457 && TYPE_CODE (type_read) != TYPE_CODE_FUNC)
3458 SYMBOL_TYPE (sym) = lookup_function_type (type_read);
3459 else
3460 SYMBOL_TYPE (sym) = type_read;
3461 }
3462
3463 switch (deftype)
3464 {
3465 case 'C':
3466 /* The name of a caught exception. */
3467 SYMBOL_CLASS (sym) = LOC_LABEL;
3468 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3469 SYMBOL_VALUE_ADDRESS (sym) = valu;
3470 add_symbol_to_list (sym, &local_symbols);
3471 break;
3472
3473 case 'f':
3474 SYMBOL_CLASS (sym) = LOC_BLOCK;
3475 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3476 add_symbol_to_list (sym, &file_symbols);
3477 break;
3478
3479 case 'F':
3480 SYMBOL_CLASS (sym) = LOC_BLOCK;
3481 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3482 add_symbol_to_list (sym, &global_symbols);
3483 break;
3484
3485 case 'G':
3486 /* For a class G (global) symbol, it appears that the
3487 value is not correct. It is necessary to search for the
3488 corresponding linker definition to find the value.
3489 These definitions appear at the end of the namelist. */
3490 i = hashname (SYMBOL_NAME (sym));
3491 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3492 global_sym_chain[i] = sym;
3493 SYMBOL_CLASS (sym) = LOC_STATIC;
3494 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3495 add_symbol_to_list (sym, &global_symbols);
3496 break;
3497
3498 /* This case is faked by a conditional above,
3499 when there is no code letter in the dbx data.
3500 Dbx data never actually contains 'l'. */
3501 case 'l':
3502 SYMBOL_CLASS (sym) = LOC_LOCAL;
3503 SYMBOL_VALUE (sym) = valu;
3504 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3505 add_symbol_to_list (sym, &local_symbols);
3506 break;
3507
3508 case 'p':
3509 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3510 can also be a LOC_LOCAL_ARG depending on symbol type. */
3511 #ifndef DBX_PARM_SYMBOL_CLASS
3512 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3513 #endif
3514 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3515 SYMBOL_VALUE (sym) = valu;
3516 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3517 add_symbol_to_list (sym, &local_symbols);
3518
3519 /* If it's gcc-compiled, if it says `short', believe it. */
3520 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3521 break;
3522
3523 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
3524 /* This macro is defined on machines (e.g. sparc) where
3525 we should believe the type of a PCC 'short' argument,
3526 but shouldn't believe the address (the address is
3527 the address of the corresponding int). Note that
3528 this is only different from the BELIEVE_PCC_PROMOTION
3529 case on big-endian machines.
3530
3531 My guess is that this correction, as opposed to changing
3532 the parameter to an 'int' (as done below, for PCC
3533 on most machines), is the right thing to do
3534 on all machines, but I don't want to risk breaking
3535 something that already works. On most PCC machines,
3536 the sparc problem doesn't come up because the calling
3537 function has to zero the top bytes (not knowing whether
3538 the called function wants an int or a short), so there
3539 is no practical difference between an int and a short
3540 (except perhaps what happens when the GDB user types
3541 "print short_arg = 0x10000;").
3542
3543 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3544 actually produces the correct address (we don't need to fix it
3545 up). I made this code adapt so that it will offset the symbol
3546 if it was pointing at an int-aligned location and not
3547 otherwise. This way you can use the same gdb for 4.0.x and
3548 4.1 systems. */
3549
3550 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3551 {
3552 if (SYMBOL_TYPE (sym) == builtin_type_char
3553 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3554 SYMBOL_VALUE (sym) += 3;
3555 else if (SYMBOL_TYPE (sym) == builtin_type_short
3556 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3557 SYMBOL_VALUE (sym) += 2;
3558 }
3559 break;
3560
3561 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3562
3563 /* If PCC says a parameter is a short or a char,
3564 it is really an int. */
3565 if (SYMBOL_TYPE (sym) == builtin_type_char
3566 || SYMBOL_TYPE (sym) == builtin_type_short)
3567 SYMBOL_TYPE (sym) = builtin_type_int;
3568 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3569 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3570 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3571 break;
3572
3573 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3574
3575 case 'P':
3576 SYMBOL_CLASS (sym) = LOC_REGPARM;
3577 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3578 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3579 add_symbol_to_list (sym, &local_symbols);
3580 break;
3581
3582 case 'r':
3583 SYMBOL_CLASS (sym) = LOC_REGISTER;
3584 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3585 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3586 add_symbol_to_list (sym, &local_symbols);
3587 break;
3588
3589 case 'S':
3590 /* Static symbol at top level of file */
3591 SYMBOL_CLASS (sym) = LOC_STATIC;
3592 SYMBOL_VALUE_ADDRESS (sym) = valu;
3593 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3594 add_symbol_to_list (sym, &file_symbols);
3595 break;
3596
3597 case 't':
3598 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3599 SYMBOL_VALUE (sym) = valu;
3600 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3601 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3602 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3603 TYPE_NAME (SYMBOL_TYPE (sym)) =
3604 obsavestring (SYMBOL_NAME (sym),
3605 strlen (SYMBOL_NAME (sym)));
3606 /* C++ vagaries: we may have a type which is derived from
3607 a base type which did not have its name defined when the
3608 derived class was output. We fill in the derived class's
3609 base part member's name here in that case. */
3610 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3611 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3612 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3613 {
3614 int i;
3615 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3616 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3617 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3618 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3619 }
3620
3621 add_symbol_to_list (sym, &file_symbols);
3622 break;
3623
3624 case 'T':
3625 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3626 SYMBOL_VALUE (sym) = valu;
3627 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3628 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3629 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3630 TYPE_NAME (SYMBOL_TYPE (sym))
3631 = obconcat ("",
3632 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3633 ? "enum "
3634 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3635 ? "struct " : "union ")),
3636 SYMBOL_NAME (sym));
3637 add_symbol_to_list (sym, &file_symbols);
3638
3639 if (synonym)
3640 {
3641 register struct symbol *typedef_sym
3642 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3643 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3644 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3645
3646 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3647 SYMBOL_VALUE (typedef_sym) = valu;
3648 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3649 add_symbol_to_list (typedef_sym, &file_symbols);
3650 }
3651 break;
3652
3653 case 'V':
3654 /* Static symbol of local scope */
3655 SYMBOL_CLASS (sym) = LOC_STATIC;
3656 SYMBOL_VALUE_ADDRESS (sym) = valu;
3657 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3658 add_symbol_to_list (sym, &local_symbols);
3659 break;
3660
3661 case 'v':
3662 /* Reference parameter */
3663 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3664 SYMBOL_VALUE (sym) = valu;
3665 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3666 add_symbol_to_list (sym, &local_symbols);
3667 break;
3668
3669 case 'X':
3670 /* This is used by Sun FORTRAN for "function result value".
3671 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3672 that Pascal uses it too, but when I tried it Pascal used
3673 "x:3" (local symbol) instead. */
3674 SYMBOL_CLASS (sym) = LOC_LOCAL;
3675 SYMBOL_VALUE (sym) = valu;
3676 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3677 add_symbol_to_list (sym, &local_symbols);
3678 break;
3679
3680 default:
3681 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3682 }
3683 return sym;
3684 }
3685 \f
3686 /* What about types defined as forward references inside of a small lexical
3687 scope? */
3688 /* Add a type to the list of undefined types to be checked through
3689 once this file has been read in. */
3690 static void
3691 add_undefined_type (type)
3692 struct type *type;
3693 {
3694 if (undef_types_length == undef_types_allocated)
3695 {
3696 undef_types_allocated *= 2;
3697 undef_types = (struct type **)
3698 xrealloc (undef_types,
3699 undef_types_allocated * sizeof (struct type *));
3700 }
3701 undef_types[undef_types_length++] = type;
3702 }
3703
3704 /* Add here something to go through each undefined type, see if it's
3705 still undefined, and do a full lookup if so. */
3706 static void
3707 cleanup_undefined_types ()
3708 {
3709 struct type **type;
3710
3711 for (type = undef_types; type < undef_types + undef_types_length; type++)
3712 {
3713 /* Reasonable test to see if it's been defined since. */
3714 if (TYPE_NFIELDS (*type) == 0)
3715 {
3716 struct pending *ppt;
3717 int i;
3718 /* Name of the type, without "struct" or "union" */
3719 char *typename = TYPE_NAME (*type);
3720
3721 if (!strncmp (typename, "struct ", 7))
3722 typename += 7;
3723 if (!strncmp (typename, "union ", 6))
3724 typename += 6;
3725
3726 for (ppt = file_symbols; ppt; ppt = ppt->next)
3727 for (i = 0; i < ppt->nsyms; i++)
3728 {
3729 struct symbol *sym = ppt->symbol[i];
3730
3731 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3732 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3733 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3734 TYPE_CODE (*type))
3735 && !strcmp (SYMBOL_NAME (sym), typename))
3736 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3737 }
3738 }
3739 else
3740 /* It has been defined; don't mark it as a stub. */
3741 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3742 }
3743 undef_types_length = 0;
3744 }
3745
3746 /* Skip rest of this symbol and return an error type.
3747
3748 General notes on error recovery: error_type always skips to the
3749 end of the symbol (modulo cretinous dbx symbol name continuation).
3750 Thus code like this:
3751
3752 if (*(*pp)++ != ';')
3753 return error_type (pp);
3754
3755 is wrong because if *pp starts out pointing at '\0' (typically as the
3756 result of an earlier error), it will be incremented to point to the
3757 start of the next symbol, which might produce strange results, at least
3758 if you run off the end of the string table. Instead use
3759
3760 if (**pp != ';')
3761 return error_type (pp);
3762 ++*pp;
3763
3764 or
3765
3766 if (**pp != ';')
3767 foo = error_type (pp);
3768 else
3769 ++*pp;
3770
3771 And in case it isn't obvious, the point of all this hair is so the compiler
3772 can define new types and new syntaxes, and old versions of the
3773 debugger will be able to read the new symbol tables. */
3774
3775 static struct type *
3776 error_type (pp)
3777 char **pp;
3778 {
3779 complain (&error_type_complaint, 0);
3780 while (1)
3781 {
3782 /* Skip to end of symbol. */
3783 while (**pp != '\0')
3784 (*pp)++;
3785
3786 /* Check for and handle cretinous dbx symbol name continuation! */
3787 if ((*pp)[-1] == '\\')
3788 *pp = next_symbol_text ();
3789 else
3790 break;
3791 }
3792 return builtin_type_error;
3793 }
3794 \f
3795 /* Read a dbx type reference or definition;
3796 return the type that is meant.
3797 This can be just a number, in which case it references
3798 a type already defined and placed in type_vector.
3799 Or the number can be followed by an =, in which case
3800 it means to define a new type according to the text that
3801 follows the =. */
3802
3803 static
3804 struct type *
3805 read_type (pp)
3806 register char **pp;
3807 {
3808 register struct type *type = 0;
3809 struct type *type1;
3810 int typenums[2];
3811 int xtypenums[2];
3812
3813 /* Read type number if present. The type number may be omitted.
3814 for instance in a two-dimensional array declared with type
3815 "ar1;1;10;ar1;1;10;4". */
3816 if ((**pp >= '0' && **pp <= '9')
3817 || **pp == '(')
3818 {
3819 read_type_number (pp, typenums);
3820
3821 /* Detect random reference to type not yet defined.
3822 Allocate a type object but leave it zeroed. */
3823 if (**pp != '=')
3824 return dbx_alloc_type (typenums);
3825
3826 *pp += 2;
3827 }
3828 else
3829 {
3830 /* 'typenums=' not present, type is anonymous. Read and return
3831 the definition, but don't put it in the type vector. */
3832 typenums[0] = typenums[1] = -1;
3833 *pp += 1;
3834 }
3835
3836 switch ((*pp)[-1])
3837 {
3838 case 'x':
3839 {
3840 enum type_code code;
3841
3842 /* Used to index through file_symbols. */
3843 struct pending *ppt;
3844 int i;
3845
3846 /* Name including "struct", etc. */
3847 char *type_name;
3848
3849 /* Name without "struct", etc. */
3850 char *type_name_only;
3851
3852 {
3853 char *prefix;
3854 char *from, *to;
3855
3856 /* Set the type code according to the following letter. */
3857 switch ((*pp)[0])
3858 {
3859 case 's':
3860 code = TYPE_CODE_STRUCT;
3861 prefix = "struct ";
3862 break;
3863 case 'u':
3864 code = TYPE_CODE_UNION;
3865 prefix = "union ";
3866 break;
3867 case 'e':
3868 code = TYPE_CODE_ENUM;
3869 prefix = "enum ";
3870 break;
3871 default:
3872 return error_type (pp);
3873 }
3874
3875 to = type_name = (char *)
3876 obstack_alloc (symbol_obstack,
3877 (strlen (prefix) +
3878 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3879
3880 /* Copy the prefix. */
3881 from = prefix;
3882 while (*to++ = *from++)
3883 ;
3884 to--;
3885
3886 type_name_only = to;
3887
3888 /* Copy the name. */
3889 from = *pp + 1;
3890 while ((*to++ = *from++) != ':')
3891 ;
3892 *--to = '\0';
3893
3894 /* Set the pointer ahead of the name which we just read. */
3895 *pp = from;
3896
3897 #if 0
3898 /* The following hack is clearly wrong, because it doesn't
3899 check whether we are in a baseclass. I tried to reproduce
3900 the case that it is trying to fix, but I couldn't get
3901 g++ to put out a cross reference to a basetype. Perhaps
3902 it doesn't do it anymore. */
3903 /* Note: for C++, the cross reference may be to a base type which
3904 has not yet been seen. In this case, we skip to the comma,
3905 which will mark the end of the base class name. (The ':'
3906 at the end of the base class name will be skipped as well.)
3907 But sometimes (ie. when the cross ref is the last thing on
3908 the line) there will be no ','. */
3909 from = (char *) strchr (*pp, ',');
3910 if (from)
3911 *pp = from;
3912 #endif /* 0 */
3913 }
3914
3915 /* Now check to see whether the type has already been declared. */
3916 /* This is necessary at least in the case where the
3917 program says something like
3918 struct foo bar[5];
3919 The compiler puts out a cross-reference; we better find
3920 set the length of the structure correctly so we can
3921 set the length of the array. */
3922 for (ppt = file_symbols; ppt; ppt = ppt->next)
3923 for (i = 0; i < ppt->nsyms; i++)
3924 {
3925 struct symbol *sym = ppt->symbol[i];
3926
3927 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3928 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3929 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3930 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3931 {
3932 obstack_free (symbol_obstack, type_name);
3933 type = SYMBOL_TYPE (sym);
3934 return type;
3935 }
3936 }
3937
3938 /* Didn't find the type to which this refers, so we must
3939 be dealing with a forward reference. Allocate a type
3940 structure for it, and keep track of it so we can
3941 fill in the rest of the fields when we get the full
3942 type. */
3943 type = dbx_alloc_type (typenums);
3944 TYPE_CODE (type) = code;
3945 TYPE_NAME (type) = type_name;
3946
3947 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3948
3949 add_undefined_type (type);
3950 return type;
3951 }
3952
3953 case '0':
3954 case '1':
3955 case '2':
3956 case '3':
3957 case '4':
3958 case '5':
3959 case '6':
3960 case '7':
3961 case '8':
3962 case '9':
3963 case '(':
3964 (*pp)--;
3965 read_type_number (pp, xtypenums);
3966 type = *dbx_lookup_type (xtypenums);
3967 if (type == 0)
3968 type = builtin_type_void;
3969 if (typenums[0] != -1)
3970 *dbx_lookup_type (typenums) = type;
3971 break;
3972
3973 case '*':
3974 type1 = read_type (pp);
3975 type = lookup_pointer_type (type1);
3976 if (typenums[0] != -1)
3977 *dbx_lookup_type (typenums) = type;
3978 break;
3979
3980 case '@':
3981 {
3982 struct type *domain = read_type (pp);
3983 struct type *memtype;
3984
3985 if (**pp != ',')
3986 /* Invalid member type data format. */
3987 return error_type (pp);
3988 ++*pp;
3989
3990 memtype = read_type (pp);
3991 type = dbx_alloc_type (typenums);
3992 smash_to_member_type (type, domain, memtype);
3993 }
3994 break;
3995
3996 case '#':
3997 if ((*pp)[0] == '#')
3998 {
3999 /* We'll get the parameter types from the name. */
4000 struct type *return_type;
4001
4002 *pp += 1;
4003 return_type = read_type (pp);
4004 if (*(*pp)++ != ';')
4005 complain (&invalid_member_complaint, symnum);
4006 type = allocate_stub_method (return_type);
4007 if (typenums[0] != -1)
4008 *dbx_lookup_type (typenums) = type;
4009 }
4010 else
4011 {
4012 struct type *domain = read_type (pp);
4013 struct type *return_type;
4014 struct type **args;
4015
4016 if (*(*pp)++ != ',')
4017 error ("invalid member type data format, at symtab pos %d.",
4018 symnum);
4019
4020 return_type = read_type (pp);
4021 args = read_args (pp, ';');
4022 type = dbx_alloc_type (typenums);
4023 smash_to_method_type (type, domain, return_type, args);
4024 }
4025 break;
4026
4027 case '&':
4028 type1 = read_type (pp);
4029 type = lookup_reference_type (type1);
4030 if (typenums[0] != -1)
4031 *dbx_lookup_type (typenums) = type;
4032 break;
4033
4034 case 'f':
4035 type1 = read_type (pp);
4036 type = lookup_function_type (type1);
4037 if (typenums[0] != -1)
4038 *dbx_lookup_type (typenums) = type;
4039 break;
4040
4041 case 'r':
4042 type = read_range_type (pp, typenums);
4043 if (typenums[0] != -1)
4044 *dbx_lookup_type (typenums) = type;
4045 break;
4046
4047 case 'e':
4048 type = dbx_alloc_type (typenums);
4049 type = read_enum_type (pp, type);
4050 *dbx_lookup_type (typenums) = type;
4051 break;
4052
4053 case 's':
4054 type = dbx_alloc_type (typenums);
4055 TYPE_NAME (type) = type_synonym_name;
4056 type_synonym_name = 0;
4057 type = read_struct_type (pp, type);
4058 break;
4059
4060 case 'u':
4061 type = dbx_alloc_type (typenums);
4062 TYPE_NAME (type) = type_synonym_name;
4063 type_synonym_name = 0;
4064 type = read_struct_type (pp, type);
4065 TYPE_CODE (type) = TYPE_CODE_UNION;
4066 break;
4067
4068 case 'a':
4069 if (**pp != 'r')
4070 return error_type (pp);
4071 ++*pp;
4072
4073 type = dbx_alloc_type (typenums);
4074 type = read_array_type (pp, type);
4075 break;
4076
4077 default:
4078 return error_type (pp);
4079 }
4080
4081 if (type == 0)
4082 abort ();
4083
4084 #if 0
4085 /* If this is an overriding temporary alteration for a header file's
4086 contents, and this type number is unknown in the global definition,
4087 put this type into the global definition at this type number. */
4088 if (header_file_prev_index >= 0)
4089 {
4090 register struct type **tp
4091 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4092 if (*tp == 0)
4093 *tp = type;
4094 }
4095 #endif
4096 return type;
4097 }
4098 \f
4099 #if 0
4100 /* This would be a good idea, but it doesn't really work. The problem
4101 is that in order to get the virtual context for a particular type,
4102 you need to know the virtual info from all of its basetypes,
4103 and you need to have processed its methods. Since GDB reads
4104 symbols on a file-by-file basis, this means processing the symbols
4105 of all the files that are needed for each baseclass, which
4106 means potentially reading in all the debugging info just to fill
4107 in information we may never need. */
4108
4109 /* This page contains subroutines of read_type. */
4110
4111 /* FOR_TYPE is a struct type defining a virtual function NAME with type
4112 FN_TYPE. The `virtual context' for this virtual function is the
4113 first base class of FOR_TYPE in which NAME is defined with signature
4114 matching FN_TYPE. OFFSET serves as a hash on matches here.
4115
4116 TYPE is the current type in which we are searching. */
4117
4118 static struct type *
4119 virtual_context (for_type, type, name, fn_type, offset)
4120 struct type *for_type, *type;
4121 char *name;
4122 struct type *fn_type;
4123 int offset;
4124 {
4125 struct type *basetype = 0;
4126 int i;
4127
4128 if (for_type != type)
4129 {
4130 /* Check the methods of TYPE. */
4131 /* Need to do a check_stub_type here, but that breaks
4132 things because we can get infinite regress. */
4133 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4134 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4135 break;
4136 if (i >= 0)
4137 {
4138 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4139 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4140
4141 while (--j >= 0)
4142 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4143 return TYPE_FN_FIELD_FCONTEXT (f, j);
4144 }
4145 }
4146 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
4147 {
4148 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4149 fn_type, offset);
4150 if (basetype != for_type)
4151 return basetype;
4152 }
4153 return for_type;
4154 }
4155 #endif
4156
4157 /* Read the description of a structure (or union type)
4158 and return an object describing the type. */
4159
4160 static struct type *
4161 read_struct_type (pp, type)
4162 char **pp;
4163 register struct type *type;
4164 {
4165 /* Total number of methods defined in this class.
4166 If the class defines two `f' methods, and one `g' method,
4167 then this will have the value 3. */
4168 int total_length = 0;
4169
4170 struct nextfield
4171 {
4172 struct nextfield *next;
4173 int visibility; /* 0=public, 1=protected, 2=public */
4174 struct field field;
4175 };
4176
4177 struct next_fnfield
4178 {
4179 struct next_fnfield *next;
4180 int visibility; /* 0=public, 1=protected, 2=public */
4181 struct fn_field fn_field;
4182 };
4183
4184 struct next_fnfieldlist
4185 {
4186 struct next_fnfieldlist *next;
4187 struct fn_fieldlist fn_fieldlist;
4188 };
4189
4190 register struct nextfield *list = 0;
4191 struct nextfield *new;
4192 register char *p;
4193 int nfields = 0;
4194 register int n;
4195
4196 register struct next_fnfieldlist *mainlist = 0;
4197 int nfn_fields = 0;
4198
4199 if (TYPE_MAIN_VARIANT (type) == 0)
4200 {
4201 TYPE_MAIN_VARIANT (type) = type;
4202 }
4203
4204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4205
4206 /* First comes the total size in bytes. */
4207
4208 TYPE_LENGTH (type) = read_number (pp, 0);
4209
4210 /* C++: Now, if the class is a derived class, then the next character
4211 will be a '!', followed by the number of base classes derived from.
4212 Each element in the list contains visibility information,
4213 the offset of this base class in the derived structure,
4214 and then the base type. */
4215 if (**pp == '!')
4216 {
4217 int i, n_baseclasses, offset;
4218 struct type *baseclass;
4219 int via_public;
4220
4221 /* Nonzero if it is a virtual baseclass, i.e.,
4222
4223 struct A{};
4224 struct B{};
4225 struct C : public B, public virtual A {};
4226
4227 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4228 2.0 language feature. */
4229 int via_virtual;
4230
4231 *pp += 1;
4232
4233 n_baseclasses = read_number (pp, ',');
4234 TYPE_FIELD_VIRTUAL_BITS (type) =
4235 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4236 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4237
4238 for (i = 0; i < n_baseclasses; i++)
4239 {
4240 if (**pp == '\\')
4241 *pp = next_symbol_text ();
4242
4243 switch (**pp)
4244 {
4245 case '0':
4246 via_virtual = 0;
4247 break;
4248 case '1':
4249 via_virtual = 1;
4250 break;
4251 default:
4252 /* Bad visibility format. */
4253 return error_type (pp);
4254 }
4255 ++*pp;
4256
4257 switch (**pp)
4258 {
4259 case '0':
4260 via_public = 0;
4261 break;
4262 case '2':
4263 via_public = 2;
4264 break;
4265 default:
4266 /* Bad visibility format. */
4267 return error_type (pp);
4268 }
4269 if (via_virtual)
4270 SET_TYPE_FIELD_VIRTUAL (type, i);
4271 ++*pp;
4272
4273 /* Offset of the portion of the object corresponding to
4274 this baseclass. Always zero in the absence of
4275 multiple inheritance. */
4276 offset = read_number (pp, ',');
4277 baseclass = read_type (pp);
4278 *pp += 1; /* skip trailing ';' */
4279
4280 #if 0
4281 /* One's understanding improves, grasshopper... */
4282 if (offset != 0)
4283 {
4284 static int error_printed = 0;
4285
4286 if (!error_printed)
4287 {
4288 fprintf (stderr,
4289 "\nWarning: GDB has limited understanding of multiple inheritance...");
4290 if (!info_verbose)
4291 fprintf(stderr, "\n");
4292 error_printed = 1;
4293 }
4294 }
4295 #endif
4296
4297 /* Make this baseclass visible for structure-printing purposes. */
4298 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4299 new->next = list;
4300 list = new;
4301 list->visibility = via_public;
4302 list->field.type = baseclass;
4303 list->field.name = type_name_no_tag (baseclass);
4304 list->field.bitpos = offset;
4305 list->field.bitsize = 0; /* this should be an unpacked field! */
4306 nfields++;
4307 }
4308 TYPE_N_BASECLASSES (type) = n_baseclasses;
4309 }
4310
4311 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4312 At the end, we see a semicolon instead of a field.
4313
4314 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4315 a static field.
4316
4317 The `?' is a placeholder for one of '/2' (public visibility),
4318 '/1' (protected visibility), '/0' (private visibility), or nothing
4319 (C style symbol table, public visibility). */
4320
4321 /* We better set p right now, in case there are no fields at all... */
4322 p = *pp;
4323
4324 while (**pp != ';')
4325 {
4326 /* Check for and handle cretinous dbx symbol name continuation! */
4327 if (**pp == '\\') *pp = next_symbol_text ();
4328
4329 /* Get space to record the next field's data. */
4330 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4331 new->next = list;
4332 list = new;
4333
4334 /* Get the field name. */
4335 p = *pp;
4336 if (*p == CPLUS_MARKER)
4337 {
4338 /* Special GNU C++ name. */
4339 if (*++p == 'v')
4340 {
4341 const char *prefix;
4342 char *name = 0;
4343 struct type *context;
4344
4345 switch (*++p)
4346 {
4347 case 'f':
4348 prefix = vptr_name;
4349 break;
4350 case 'b':
4351 prefix = vb_name;
4352 break;
4353 default:
4354 error ("invalid abbreviation at symtab pos %d.", symnum);
4355 }
4356 *pp = p + 1;
4357 context = read_type (pp);
4358 if (type_name_no_tag (context) == 0)
4359 {
4360 if (name == 0)
4361 error ("type name unknown at symtab pos %d.", symnum);
4362 /* FIXME-tiemann: when is `name' ever non-0? */
4363 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4364 }
4365 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4366 p = ++(*pp);
4367 if (p[-1] != ':')
4368 error ("invalid abbreviation at symtab pos %d.", symnum);
4369 list->field.type = read_type (pp);
4370 (*pp)++; /* Skip the comma. */
4371 list->field.bitpos = read_number (pp, ';');
4372 /* This field is unpacked. */
4373 list->field.bitsize = 0;
4374 }
4375 else
4376 error ("invalid abbreviation at symtab pos %d.", symnum);
4377
4378 nfields++;
4379 continue;
4380 }
4381
4382 while (*p != ':') p++;
4383 list->field.name = obsavestring (*pp, p - *pp);
4384
4385 /* C++: Check to see if we have hit the methods yet. */
4386 if (p[1] == ':')
4387 break;
4388
4389 *pp = p + 1;
4390
4391 /* This means we have a visibility for a field coming. */
4392 if (**pp == '/')
4393 {
4394 switch (*++*pp)
4395 {
4396 case '0':
4397 list->visibility = 0; /* private */
4398 *pp += 1;
4399 break;
4400
4401 case '1':
4402 list->visibility = 1; /* protected */
4403 *pp += 1;
4404 break;
4405
4406 case '2':
4407 list->visibility = 2; /* public */
4408 *pp += 1;
4409 break;
4410 }
4411 }
4412 else /* normal dbx-style format. */
4413 list->visibility = 2; /* public */
4414
4415 list->field.type = read_type (pp);
4416 if (**pp == ':')
4417 {
4418 /* Static class member. */
4419 list->field.bitpos = (long)-1;
4420 p = ++(*pp);
4421 while (*p != ';') p++;
4422 list->field.bitsize = (long) savestring (*pp, p - *pp);
4423 *pp = p + 1;
4424 nfields++;
4425 continue;
4426 }
4427 else if (**pp != ',')
4428 /* Bad structure-type format. */
4429 return error_type (pp);
4430
4431 (*pp)++; /* Skip the comma. */
4432 list->field.bitpos = read_number (pp, ',');
4433 list->field.bitsize = read_number (pp, ';');
4434
4435 #if 0
4436 /* FIXME-tiemann: Can't the compiler put out something which
4437 lets us distinguish these? (or maybe just not put out anything
4438 for the field). What is the story here? What does the compiler
4439 really do? Also, patch gdb.texinfo for this case; I document
4440 it as a possible problem there. Search for "DBX-style". */
4441
4442 /* This is wrong because this is identical to the symbols
4443 produced for GCC 0-size arrays. For example:
4444 typedef union {
4445 int num;
4446 char str[0];
4447 } foo;
4448 The code which dumped core in such circumstances should be
4449 fixed not to dump core. */
4450
4451 /* g++ -g0 can put out bitpos & bitsize zero for a static
4452 field. This does not give us any way of getting its
4453 class, so we can't know its name. But we can just
4454 ignore the field so we don't dump core and other nasty
4455 stuff. */
4456 if (list->field.bitpos == 0
4457 && list->field.bitsize == 0)
4458 {
4459 complain (&dbx_class_complaint, 0);
4460 /* Ignore this field. */
4461 list = list->next;
4462 }
4463 else
4464 #endif /* 0 */
4465 {
4466 /* Detect an unpacked field and mark it as such.
4467 dbx gives a bit size for all fields.
4468 Note that forward refs cannot be packed,
4469 and treat enums as if they had the width of ints. */
4470 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4471 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4472 list->field.bitsize = 0;
4473 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4474 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4475 && (list->field.bitsize
4476 == 8 * TYPE_LENGTH (builtin_type_int))
4477 )
4478 )
4479 &&
4480 list->field.bitpos % 8 == 0)
4481 list->field.bitsize = 0;
4482 nfields++;
4483 }
4484 }
4485
4486 if (p[1] == ':')
4487 /* chill the list of fields: the last entry (at the head)
4488 is a partially constructed entry which we now scrub. */
4489 list = list->next;
4490
4491 /* Now create the vector of fields, and record how big it is.
4492 We need this info to record proper virtual function table information
4493 for this class's virtual functions. */
4494
4495 TYPE_NFIELDS (type) = nfields;
4496 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4497 sizeof (struct field) * nfields);
4498
4499 TYPE_FIELD_PRIVATE_BITS (type) =
4500 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4501 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4502
4503 TYPE_FIELD_PROTECTED_BITS (type) =
4504 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4505 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4506
4507 /* Copy the saved-up fields into the field vector. */
4508
4509 for (n = nfields; list; list = list->next)
4510 {
4511 n -= 1;
4512 TYPE_FIELD (type, n) = list->field;
4513 if (list->visibility == 0)
4514 SET_TYPE_FIELD_PRIVATE (type, n);
4515 else if (list->visibility == 1)
4516 SET_TYPE_FIELD_PROTECTED (type, n);
4517 }
4518
4519 /* Now come the method fields, as NAME::methods
4520 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4521 At the end, we see a semicolon instead of a field.
4522
4523 For the case of overloaded operators, the format is
4524 OPERATOR::*.methods, where OPERATOR is the string "operator",
4525 `*' holds the place for an operator name (such as `+=')
4526 and `.' marks the end of the operator name. */
4527 if (p[1] == ':')
4528 {
4529 /* Now, read in the methods. To simplify matters, we
4530 "unread" the name that has been read, so that we can
4531 start from the top. */
4532
4533 /* For each list of method lists... */
4534 do
4535 {
4536 int i;
4537 struct next_fnfield *sublist = 0;
4538 int length = 0;
4539 struct next_fnfieldlist *new_mainlist =
4540 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4541 char *main_fn_name;
4542
4543 p = *pp;
4544
4545 /* read in the name. */
4546 while (*p != ':') p++;
4547 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4548 {
4549 /* This lets the user type "break operator+".
4550 We could just put in "+" as the name, but that wouldn't
4551 work for "*". */
4552 static char opname[32] = {'o', 'p', CPLUS_MARKER};
4553 char *o = opname + 3;
4554
4555 /* Skip past '::'. */
4556 p += 2;
4557 while (*p != '.')
4558 *o++ = *p++;
4559 main_fn_name = savestring (opname, o - opname);
4560 /* Skip past '.' */
4561 *pp = p + 1;
4562 }
4563 else
4564 {
4565 i = 0;
4566 main_fn_name = savestring (*pp, p - *pp);
4567 /* Skip past '::'. */
4568 *pp = p + 2;
4569 }
4570 new_mainlist->fn_fieldlist.name = main_fn_name;
4571
4572 do
4573 {
4574 struct next_fnfield *new_sublist =
4575 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4576
4577 /* Check for and handle cretinous dbx symbol name continuation! */
4578 if (**pp == '\\') *pp = next_symbol_text ();
4579
4580 new_sublist->fn_field.type = read_type (pp);
4581 if (**pp != ':')
4582 /* Invalid symtab info for method. */
4583 return error_type (pp);
4584
4585 *pp += 1;
4586 p = *pp;
4587 while (*p != ';') p++;
4588 /* If this is just a stub, then we don't have the
4589 real name here. */
4590 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4591 *pp = p + 1;
4592 new_sublist->visibility = *(*pp)++ - '0';
4593 if (**pp == '\\') *pp = next_symbol_text ();
4594 /* FIXME-tiemann: need to add const/volatile info
4595 to the methods. For now, just skip the char.
4596 In future, here's what we need to implement:
4597
4598 A for normal functions.
4599 B for `const' member functions.
4600 C for `volatile' member functions.
4601 D for `const volatile' member functions. */
4602 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4603 (*pp)++;
4604 #if 0
4605 /* This probably just means we're processing a file compiled
4606 with g++ version 1. */
4607 else
4608 complain(&const_vol_complaint, **pp);
4609 #endif /* 0 */
4610
4611 switch (*(*pp)++)
4612 {
4613 case '*':
4614 /* virtual member function, followed by index. */
4615 /* The sign bit is set to distinguish pointers-to-methods
4616 from virtual function indicies. Since the array is
4617 in words, the quantity must be shifted left by 1
4618 on 16 bit machine, and by 2 on 32 bit machine, forcing
4619 the sign bit out, and usable as a valid index into
4620 the array. Remove the sign bit here. */
4621 new_sublist->fn_field.voffset =
4622 (0x7fffffff & read_number (pp, ';')) + 1;
4623
4624 if (**pp == ';' || **pp == '\0')
4625 /* Must be g++ version 1. */
4626 new_sublist->fn_field.fcontext = 0;
4627 else
4628 {
4629 /* Figure out from whence this virtual function came.
4630 It may belong to virtual function table of
4631 one of its baseclasses. */
4632 new_sublist->fn_field.fcontext = read_type (pp);
4633 if (**pp != ';')
4634 return error_type (pp);
4635 else
4636 ++*pp;
4637 }
4638 break;
4639
4640 case '?':
4641 /* static member function. */
4642 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4643 break;
4644 default:
4645 /* **pp == '.'. */
4646 /* normal member function. */
4647 new_sublist->fn_field.voffset = 0;
4648 new_sublist->fn_field.fcontext = 0;
4649 break;
4650 }
4651
4652 new_sublist->next = sublist;
4653 sublist = new_sublist;
4654 length++;
4655 }
4656 while (**pp != ';' && **pp != '\0');
4657
4658 *pp += 1;
4659
4660 new_mainlist->fn_fieldlist.fn_fields =
4661 (struct fn_field *) obstack_alloc (symbol_obstack,
4662 sizeof (struct fn_field) * length);
4663 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4664 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4665 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4666
4667 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4668 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4669 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4670
4671 for (i = length; (i--, sublist); sublist = sublist->next)
4672 {
4673 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4674 if (sublist->visibility == 0)
4675 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4676 else if (sublist->visibility == 1)
4677 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4678 }
4679
4680 new_mainlist->fn_fieldlist.length = length;
4681 new_mainlist->next = mainlist;
4682 mainlist = new_mainlist;
4683 nfn_fields++;
4684 total_length += length;
4685 }
4686 while (**pp != ';');
4687 }
4688
4689 *pp += 1;
4690
4691 TYPE_FN_FIELDLISTS (type) =
4692 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4693 sizeof (struct fn_fieldlist) * nfn_fields);
4694
4695 TYPE_NFN_FIELDS (type) = nfn_fields;
4696 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4697
4698 {
4699 int i;
4700 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4701 TYPE_NFN_FIELDS_TOTAL (type) +=
4702 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4703 }
4704
4705 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4706 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4707
4708 if (**pp == '~')
4709 {
4710 *pp += 1;
4711
4712 if (**pp == '=')
4713 {
4714 TYPE_FLAGS (type)
4715 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4716 *pp += 1;
4717 }
4718 else if (**pp == '+')
4719 {
4720 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4721 *pp += 1;
4722 }
4723 else if (**pp == '-')
4724 {
4725 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4726 *pp += 1;
4727 }
4728
4729 /* Read either a '%' or the final ';'. */
4730 if (*(*pp)++ == '%')
4731 {
4732 /* Now we must record the virtual function table pointer's
4733 field information. */
4734
4735 struct type *t;
4736 int i;
4737
4738 t = read_type (pp);
4739 p = (*pp)++;
4740 while (*p != '\0' && *p != ';')
4741 p++;
4742 if (*p == '\0')
4743 /* Premature end of symbol. */
4744 return error_type (pp);
4745
4746 TYPE_VPTR_BASETYPE (type) = t;
4747 if (type == t)
4748 {
4749 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4750 {
4751 /* FIXME-tiemann: what's this? */
4752 #if 0
4753 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4754 #else
4755 error_type (pp);
4756 #endif
4757 }
4758 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4759 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4760 sizeof (vptr_name) -1))
4761 {
4762 TYPE_VPTR_FIELDNO (type) = i;
4763 break;
4764 }
4765 if (i < 0)
4766 /* Virtual function table field not found. */
4767 return error_type (pp);
4768 }
4769 else
4770 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4771 *pp = p + 1;
4772 }
4773 }
4774
4775 return type;
4776 }
4777
4778 /* Read a definition of an array type,
4779 and create and return a suitable type object.
4780 Also creates a range type which represents the bounds of that
4781 array. */
4782 static struct type *
4783 read_array_type (pp, type)
4784 register char **pp;
4785 register struct type *type;
4786 {
4787 struct type *index_type, *element_type, *range_type;
4788 int lower, upper;
4789 int adjustable = 0;
4790
4791 /* Format of an array type:
4792 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4793 to handle this.
4794
4795 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4796 for these, produce a type like float[][]. */
4797
4798 index_type = read_type (pp);
4799 if (**pp != ';')
4800 /* Improper format of array type decl. */
4801 return error_type (pp);
4802 ++*pp;
4803
4804 if (!(**pp >= '0' && **pp <= '9'))
4805 {
4806 *pp += 1;
4807 adjustable = 1;
4808 }
4809 lower = read_number (pp, ';');
4810
4811 if (!(**pp >= '0' && **pp <= '9'))
4812 {
4813 *pp += 1;
4814 adjustable = 1;
4815 }
4816 upper = read_number (pp, ';');
4817
4818 element_type = read_type (pp);
4819
4820 if (adjustable)
4821 {
4822 lower = 0;
4823 upper = -1;
4824 }
4825
4826 {
4827 /* Create range type. */
4828 range_type = (struct type *) obstack_alloc (symbol_obstack,
4829 sizeof (struct type));
4830 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4831 TYPE_TARGET_TYPE (range_type) = index_type;
4832
4833 /* This should never be needed. */
4834 TYPE_LENGTH (range_type) = sizeof (int);
4835
4836 TYPE_NFIELDS (range_type) = 2;
4837 TYPE_FIELDS (range_type) =
4838 (struct field *) obstack_alloc (symbol_obstack,
4839 2 * sizeof (struct field));
4840 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4841 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4842 }
4843
4844 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4845 TYPE_TARGET_TYPE (type) = element_type;
4846 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4847 TYPE_NFIELDS (type) = 1;
4848 TYPE_FIELDS (type) =
4849 (struct field *) obstack_alloc (symbol_obstack,
4850 sizeof (struct field));
4851 TYPE_FIELD_TYPE (type, 0) = range_type;
4852
4853 return type;
4854 }
4855
4856
4857 /* Read a definition of an enumeration type,
4858 and create and return a suitable type object.
4859 Also defines the symbols that represent the values of the type. */
4860
4861 static struct type *
4862 read_enum_type (pp, type)
4863 register char **pp;
4864 register struct type *type;
4865 {
4866 register char *p;
4867 char *name;
4868 register long n;
4869 register struct symbol *sym;
4870 int nsyms = 0;
4871 struct pending **symlist;
4872 struct pending *osyms, *syms;
4873 int o_nsyms;
4874
4875 if (within_function)
4876 symlist = &local_symbols;
4877 else
4878 symlist = &file_symbols;
4879 osyms = *symlist;
4880 o_nsyms = osyms ? osyms->nsyms : 0;
4881
4882 /* Read the value-names and their values.
4883 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4884 A semicolon or comman instead of a NAME means the end. */
4885 while (**pp && **pp != ';' && **pp != ',')
4886 {
4887 /* Check for and handle cretinous dbx symbol name continuation! */
4888 if (**pp == '\\') *pp = next_symbol_text ();
4889
4890 p = *pp;
4891 while (*p != ':') p++;
4892 name = obsavestring (*pp, p - *pp);
4893 *pp = p + 1;
4894 n = read_number (pp, ',');
4895
4896 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4897 bzero (sym, sizeof (struct symbol));
4898 SYMBOL_NAME (sym) = name;
4899 SYMBOL_CLASS (sym) = LOC_CONST;
4900 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4901 SYMBOL_VALUE (sym) = n;
4902 add_symbol_to_list (sym, symlist);
4903 nsyms++;
4904 }
4905
4906 if (**pp == ';')
4907 (*pp)++; /* Skip the semicolon. */
4908
4909 /* Now fill in the fields of the type-structure. */
4910
4911 TYPE_LENGTH (type) = sizeof (int);
4912 TYPE_CODE (type) = TYPE_CODE_ENUM;
4913 TYPE_NFIELDS (type) = nsyms;
4914 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4915
4916 /* Find the symbols for the values and put them into the type.
4917 The symbols can be found in the symlist that we put them on
4918 to cause them to be defined. osyms contains the old value
4919 of that symlist; everything up to there was defined by us. */
4920 /* Note that we preserve the order of the enum constants, so
4921 that in something like "enum {FOO, LAST_THING=FOO}" we print
4922 FOO, not LAST_THING. */
4923
4924 for (syms = *symlist, n = 0; syms; syms = syms->next)
4925 {
4926 int j = 0;
4927 if (syms == osyms)
4928 j = o_nsyms;
4929 for (; j < syms->nsyms; j++,n++)
4930 {
4931 struct symbol *sym = syms->symbol[j];
4932 SYMBOL_TYPE (sym) = type;
4933 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4934 TYPE_FIELD_VALUE (type, n) = 0;
4935 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4936 TYPE_FIELD_BITSIZE (type, n) = 0;
4937 }
4938 if (syms == osyms)
4939 break;
4940 }
4941
4942 return type;
4943 }
4944
4945 /* Read a number from the string pointed to by *PP.
4946 The value of *PP is advanced over the number.
4947 If END is nonzero, the character that ends the
4948 number must match END, or an error happens;
4949 and that character is skipped if it does match.
4950 If END is zero, *PP is left pointing to that character.
4951
4952 If the number fits in a long, set *VALUE and set *BITS to 0.
4953 If not, set *BITS to be the number of bits in the number.
4954
4955 If encounter garbage, set *BITS to -1. */
4956
4957 static void
4958 read_huge_number (pp, end, valu, bits)
4959 char **pp;
4960 int end;
4961 long *valu;
4962 int *bits;
4963 {
4964 char *p = *pp;
4965 int sign = 1;
4966 long n = 0;
4967 int radix = 10;
4968 char overflow = 0;
4969 int nbits = 0;
4970 int c;
4971
4972 if (*p == '-')
4973 {
4974 sign = -1;
4975 p++;
4976 }
4977
4978 /* Leading zero means octal. GCC uses this to output values larger
4979 than an int (because that would be hard in decimal). */
4980 if (*p == '0')
4981 {
4982 radix = 8;
4983 p++;
4984 }
4985
4986 while ((c = *p++) >= '0' && c <= ('0' + radix))
4987 {
4988 if (n <= LONG_MAX / radix)
4989 {
4990 n *= radix;
4991 n += c - '0'; /* FIXME this overflows anyway */
4992 }
4993 else
4994 overflow = 1;
4995
4996 /* This depends on large values being output in octal, which is
4997 what GCC does. */
4998 if (radix == 8)
4999 {
5000 if (nbits == 0)
5001 {
5002 if (c == '0')
5003 /* Ignore leading zeroes. */
5004 ;
5005 else if (c == '1')
5006 nbits = 1;
5007 else if (c == '2' || c == '3')
5008 nbits = 2;
5009 else
5010 nbits = 3;
5011 }
5012 else
5013 nbits += 3;
5014 }
5015 }
5016 if (end)
5017 {
5018 if (c && c != end)
5019 {
5020 if (bits != NULL)
5021 *bits = -1;
5022 return;
5023 }
5024 }
5025 else
5026 --p;
5027
5028 *pp = p;
5029 if (overflow)
5030 {
5031 if (nbits == 0)
5032 {
5033 /* Large decimal constants are an error (because it is hard to
5034 count how many bits are in them). */
5035 if (bits != NULL)
5036 *bits = -1;
5037 return;
5038 }
5039
5040 /* -0x7f is the same as 0x80. So deal with it by adding one to
5041 the number of bits. */
5042 if (sign == -1)
5043 ++nbits;
5044 if (bits)
5045 *bits = nbits;
5046 }
5047 else
5048 {
5049 if (valu)
5050 *valu = n * sign;
5051 if (bits)
5052 *bits = 0;
5053 }
5054 }
5055
5056 #define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5057 #define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5058
5059 static struct type *
5060 read_range_type (pp, typenums)
5061 char **pp;
5062 int typenums[2];
5063 {
5064 int rangenums[2];
5065 long n2, n3;
5066 int n2bits, n3bits;
5067 int self_subrange;
5068 struct type *result_type;
5069
5070 /* First comes a type we are a subrange of.
5071 In C it is usually 0, 1 or the type being defined. */
5072 read_type_number (pp, rangenums);
5073 self_subrange = (rangenums[0] == typenums[0] &&
5074 rangenums[1] == typenums[1]);
5075
5076 /* A semicolon should now follow; skip it. */
5077 if (**pp == ';')
5078 (*pp)++;
5079
5080 /* The remaining two operands are usually lower and upper bounds
5081 of the range. But in some special cases they mean something else. */
5082 read_huge_number (pp, ';', &n2, &n2bits);
5083 read_huge_number (pp, ';', &n3, &n3bits);
5084
5085 if (n2bits == -1 || n3bits == -1)
5086 return error_type (pp);
5087
5088 /* If limits are huge, must be large integral type. */
5089 if (n2bits != 0 || n3bits != 0)
5090 {
5091 char got_signed = 0;
5092 char got_unsigned = 0;
5093 /* Number of bits in the type. */
5094 int nbits;
5095
5096 /* Range from 0 to <large number> is an unsigned large integral type. */
5097 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5098 {
5099 got_unsigned = 1;
5100 nbits = n3bits;
5101 }
5102 /* Range from <large number> to <large number>-1 is a large signed
5103 integral type. */
5104 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5105 {
5106 got_signed = 1;
5107 nbits = n2bits;
5108 }
5109
5110 /* Check for "long long". */
5111 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
5112 return builtin_type_long_long;
5113 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
5114 return builtin_type_unsigned_long_long;
5115
5116 if (got_signed || got_unsigned)
5117 {
5118 result_type = (struct type *) obstack_alloc (symbol_obstack,
5119 sizeof (struct type));
5120 bzero (result_type, sizeof (struct type));
5121 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5122 TYPE_MAIN_VARIANT (result_type) = result_type;
5123 TYPE_CODE (result_type) = TYPE_CODE_INT;
5124 if (got_unsigned)
5125 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5126 return result_type;
5127 }
5128 else
5129 return error_type (pp);
5130 }
5131
5132 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5133 if (self_subrange && n2 == 0 && n3 == 0)
5134 return builtin_type_void;
5135
5136 /* If n3 is zero and n2 is not, we want a floating type,
5137 and n2 is the width in bytes.
5138
5139 Fortran programs appear to use this for complex types also,
5140 and they give no way to distinguish between double and single-complex!
5141 We don't have complex types, so we would lose on all fortran files!
5142 So return type `double' for all of those. It won't work right
5143 for the complex values, but at least it makes the file loadable. */
5144
5145 if (n3 == 0 && n2 > 0)
5146 {
5147 if (n2 == sizeof (float))
5148 return builtin_type_float;
5149 return builtin_type_double;
5150 }
5151
5152 /* If the upper bound is -1, it must really be an unsigned int. */
5153
5154 else if (n2 == 0 && n3 == -1)
5155 {
5156 if (sizeof (int) == sizeof (long))
5157 return builtin_type_unsigned_int;
5158 else
5159 return builtin_type_unsigned_long;
5160 }
5161
5162 /* Special case: char is defined (Who knows why) as a subrange of
5163 itself with range 0-127. */
5164 else if (self_subrange && n2 == 0 && n3 == 127)
5165 return builtin_type_char;
5166
5167 /* Assumptions made here: Subrange of self is equivalent to subrange
5168 of int. */
5169 else if (n2 == 0
5170 && (self_subrange ||
5171 *dbx_lookup_type (rangenums) == builtin_type_int))
5172 {
5173 /* an unsigned type */
5174 #ifdef LONG_LONG
5175 if (n3 == - sizeof (long long))
5176 return builtin_type_unsigned_long_long;
5177 #endif
5178 if (n3 == (unsigned int)~0L)
5179 return builtin_type_unsigned_int;
5180 if (n3 == (unsigned long)~0L)
5181 return builtin_type_unsigned_long;
5182 if (n3 == (unsigned short)~0L)
5183 return builtin_type_unsigned_short;
5184 if (n3 == (unsigned char)~0L)
5185 return builtin_type_unsigned_char;
5186 }
5187 #ifdef LONG_LONG
5188 else if (n3 == 0 && n2 == -sizeof (long long))
5189 return builtin_type_long_long;
5190 #endif
5191 else if (n2 == -n3 -1)
5192 {
5193 /* a signed type */
5194 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5195 return builtin_type_int;
5196 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5197 return builtin_type_long;
5198 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5199 return builtin_type_short;
5200 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5201 return builtin_type_char;
5202 }
5203
5204 /* We have a real range type on our hands. Allocate space and
5205 return a real pointer. */
5206
5207 /* At this point I don't have the faintest idea how to deal with
5208 a self_subrange type; I'm going to assume that this is used
5209 as an idiom, and that all of them are special cases. So . . . */
5210 if (self_subrange)
5211 return error_type (pp);
5212
5213 result_type = (struct type *) obstack_alloc (symbol_obstack,
5214 sizeof (struct type));
5215 bzero (result_type, sizeof (struct type));
5216
5217 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5218 builtin_type_int :
5219 *dbx_lookup_type(rangenums));
5220
5221 /* We have to figure out how many bytes it takes to hold this
5222 range type. I'm going to assume that anything that is pushing
5223 the bounds of a long was taken care of above. */
5224 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5225 TYPE_LENGTH (result_type) = 1;
5226 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5227 TYPE_LENGTH (result_type) = sizeof (short);
5228 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5229 TYPE_LENGTH (result_type) = sizeof (int);
5230 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5231 TYPE_LENGTH (result_type) = sizeof (long);
5232 else
5233 /* Ranged type doesn't fit within known sizes. */
5234 return error_type (pp);
5235
5236 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5237 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5238 TYPE_NFIELDS (result_type) = 2;
5239 TYPE_FIELDS (result_type) =
5240 (struct field *) obstack_alloc (symbol_obstack,
5241 2 * sizeof (struct field));
5242 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5243 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5244 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5245
5246 return result_type;
5247 }
5248
5249 /* Read a number from the string pointed to by *PP.
5250 The value of *PP is advanced over the number.
5251 If END is nonzero, the character that ends the
5252 number must match END, or an error happens;
5253 and that character is skipped if it does match.
5254 If END is zero, *PP is left pointing to that character. */
5255
5256 static long
5257 read_number (pp, end)
5258 char **pp;
5259 int end;
5260 {
5261 register char *p = *pp;
5262 register long n = 0;
5263 register int c;
5264 int sign = 1;
5265
5266 /* Handle an optional leading minus sign. */
5267
5268 if (*p == '-')
5269 {
5270 sign = -1;
5271 p++;
5272 }
5273
5274 /* Read the digits, as far as they go. */
5275
5276 while ((c = *p++) >= '0' && c <= '9')
5277 {
5278 n *= 10;
5279 n += c - '0';
5280 }
5281 if (end)
5282 {
5283 if (c && c != end)
5284 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5285 }
5286 else
5287 --p;
5288
5289 *pp = p;
5290 return n * sign;
5291 }
5292
5293 /* Read in an argument list. This is a list of types, separated by commas
5294 and terminated with END. Return the list of types read in, or (struct type
5295 **)-1 if there is an error. */
5296 static struct type **
5297 read_args (pp, end)
5298 char **pp;
5299 int end;
5300 {
5301 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5302 int n = 0;
5303
5304 while (**pp != end)
5305 {
5306 if (**pp != ',')
5307 /* Invalid argument list: no ','. */
5308 return (struct type **)-1;
5309 *pp += 1;
5310
5311 /* Check for and handle cretinous dbx symbol name continuation! */
5312 if (**pp == '\\')
5313 *pp = next_symbol_text ();
5314
5315 types[n++] = read_type (pp);
5316 }
5317 *pp += 1; /* get past `end' (the ':' character) */
5318
5319 if (n == 1)
5320 {
5321 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5322 }
5323 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5324 {
5325 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5326 bzero (rval + n, sizeof (struct type *));
5327 }
5328 else
5329 {
5330 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5331 }
5332 bcopy (types, rval, n * sizeof (struct type *));
5333 return rval;
5334 }
5335 \f
5336 /* Copy a pending list, used to record the contents of a common
5337 block for later fixup. */
5338 static struct pending *
5339 copy_pending (beg, begi, end)
5340 struct pending *beg, *end;
5341 int begi;
5342 {
5343 struct pending *new = 0;
5344 struct pending *next;
5345
5346 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5347 next = next->next, begi = 0)
5348 {
5349 register int j;
5350 for (j = begi; j < next->nsyms; j++)
5351 add_symbol_to_list (next->symbol[j], &new);
5352 }
5353 return new;
5354 }
5355
5356 /* Add a common block's start address to the offset of each symbol
5357 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5358 the common block name). */
5359
5360 static void
5361 fix_common_block (sym, valu)
5362 struct symbol *sym;
5363 int valu;
5364 {
5365 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5366 for ( ; next; next = next->next)
5367 {
5368 register int j;
5369 for (j = next->nsyms - 1; j >= 0; j--)
5370 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5371 }
5372 }
5373 \f
5374 /* Register our willingness to decode symbols for SunOS and a.out and
5375 b.out files handled by BFD... */
5376 static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5377 dbx_new_init, dbx_symfile_init,
5378 dbx_symfile_read, dbx_symfile_discard};
5379
5380 static struct sym_fns aout_sym_fns = {"a.out", 5,
5381 dbx_new_init, dbx_symfile_init,
5382 dbx_symfile_read, dbx_symfile_discard};
5383
5384 static struct sym_fns bout_sym_fns = {"b.out", 5,
5385 dbx_new_init, dbx_symfile_init,
5386 dbx_symfile_read, dbx_symfile_discard};
5387
5388 void
5389 _initialize_dbxread ()
5390 {
5391 add_symtab_fns(&sunos_sym_fns);
5392 add_symtab_fns(&aout_sym_fns);
5393 add_symtab_fns(&bout_sym_fns);
5394
5395 undef_types_allocated = 20;
5396 undef_types_length = 0;
5397 undef_types = (struct type **) xmalloc (undef_types_allocated *
5398 sizeof (struct type *));
5399
5400 dbx_new_init ();
5401 }
This page took 0.150679 seconds and 4 git commands to generate.