Tue Apr 30 13:13:33 1991 Michael Tiemann (tiemann at cygint.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / dbxread.c
1 /* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 GDB is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GDB is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GDB; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19 \f
20 /* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31 /* There used to be some PROFILE_TYPES code in this file which counted
32 the number of occurances of various symbols. I'd suggest instead:
33 nm -ap foo | awk 'print $5' | sort | uniq -c
34 to print how many of each n_type, or something like
35 nm -ap foo | awk '$5 == "LSYM" {print $6 $7 $8 $9 $10 $11}' | \
36 awk 'BEGIN {FS=":"}
37 {print substr($2,1,1)}' | sort | uniq -c
38 to print the number of each kind of symbol descriptor (i.e. the letter
39 after ':'). */
40
41 #include <stdio.h>
42 #include <string.h>
43 #include "defs.h"
44 #include "param.h"
45
46 #ifdef USG
47 #include <sys/types.h>
48 #include <fcntl.h>
49 #define L_SET 0
50 #define L_INCR 1
51 #endif
52
53 #include "a.out.gnu.h"
54 #include "stab.gnu.h" /* We always use GNU stabs, not native, now */
55 #include <ctype.h>
56
57 #ifndef NO_GNU_STABS
58 /*
59 * Define specifically gnu symbols here.
60 */
61
62 /* The following type indicates the definition of a symbol as being
63 an indirect reference to another symbol. The other symbol
64 appears as an undefined reference, immediately following this symbol.
65
66 Indirection is asymmetrical. The other symbol's value will be used
67 to satisfy requests for the indirect symbol, but not vice versa.
68 If the other symbol does not have a definition, libraries will
69 be searched to find a definition. */
70 #ifndef N_INDR
71 #define N_INDR 0xa
72 #endif
73
74 /* The following symbols refer to set elements.
75 All the N_SET[ATDB] symbols with the same name form one set.
76 Space is allocated for the set in the text section, and each set
77 element's value is stored into one word of the space.
78 The first word of the space is the length of the set (number of elements).
79
80 The address of the set is made into an N_SETV symbol
81 whose name is the same as the name of the set.
82 This symbol acts like a N_DATA global symbol
83 in that it can satisfy undefined external references. */
84
85 #ifndef N_SETA
86 #define N_SETA 0x14 /* Absolute set element symbol */
87 #endif /* This is input to LD, in a .o file. */
88
89 #ifndef N_SETT
90 #define N_SETT 0x16 /* Text set element symbol */
91 #endif /* This is input to LD, in a .o file. */
92
93 #ifndef N_SETD
94 #define N_SETD 0x18 /* Data set element symbol */
95 #endif /* This is input to LD, in a .o file. */
96
97 #ifndef N_SETB
98 #define N_SETB 0x1A /* Bss set element symbol */
99 #endif /* This is input to LD, in a .o file. */
100
101 /* Macros dealing with the set element symbols defined in a.out.h */
102 #define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
103 #define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
104
105 #ifndef N_SETV
106 #define N_SETV 0x1C /* Pointer to set vector in data area. */
107 #endif /* This is output from LD. */
108
109 #ifndef N_WARNING
110 #define N_WARNING 0x1E /* Warning message to print if file included */
111 #endif /* This is input to ld */
112
113 #endif /* NO_GNU_STABS */
114
115 #include <obstack.h>
116 #include <sys/param.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include "symtab.h"
120 #include "breakpoint.h"
121 #include "command.h"
122 #include "target.h"
123 #include "gdbcore.h" /* for bfd stuff */
124 #include "liba.out.h" /* FIXME Secret internal BFD stuff for a.out */
125 #include "symfile.h"
126
127 struct dbx_symfile_info {
128 asection *text_sect; /* Text section accessor */
129 int symcount; /* How many symbols are there in the file */
130 char *stringtab; /* The actual string table */
131 int stringtab_size; /* Its size */
132 off_t symtab_offset; /* Offset in file to symbol table */
133 int desc; /* File descriptor of symbol file */
134 };
135
136 extern void qsort ();
137 extern double atof ();
138 extern struct cmd_list_element *cmdlist;
139
140 extern void symbol_file_command ();
141
142 /* Forward declarations */
143
144 static void add_symbol_to_list ();
145 static void read_dbx_symtab ();
146 static void init_psymbol_list ();
147 static void process_one_symbol ();
148 static struct type *read_type ();
149 static struct type *read_range_type ();
150 static struct type *read_enum_type ();
151 static struct type *read_struct_type ();
152 static struct type *read_array_type ();
153 static long read_number ();
154 static void finish_block ();
155 static struct blockvector *make_blockvector ();
156 static struct symbol *define_symbol ();
157 static void start_subfile ();
158 static int hashname ();
159 static struct pending *copy_pending ();
160 static void fix_common_block ();
161 static void add_undefined_type ();
162 static void cleanup_undefined_types ();
163 static void scan_file_globals ();
164 static void read_ofile_symtab ();
165 static void dbx_psymtab_to_symtab ();
166
167 /* C++ */
168 static struct type **read_args ();
169
170 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
171 static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
172
173 /* Macro to determine which symbols to ignore when reading the first symbol
174 of a file. Some machines override this definition. */
175 #ifndef IGNORE_SYMBOL
176 /* This code is used on Ultrix systems. Ignore it */
177 #define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
178 #endif
179
180 /* Macro for name of symbol to indicate a file compiled with gcc. */
181 #ifndef GCC_COMPILED_FLAG_SYMBOL
182 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
183 #endif
184
185 /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
186
187 #ifndef STAB_REG_TO_REGNUM
188 #define STAB_REG_TO_REGNUM(VALUE) (VALUE)
189 #endif
190
191 /* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196 #ifndef BELIEVE_PCC_PROMOTION
197 #define BELIEVE_PCC_PROMOTION 0
198 #endif
199 \f
200 /* Nonzero means give verbose info on gdb action. From main.c. */
201 extern int info_verbose;
202
203 /* Name of source file whose symbol data we are now processing.
204 This comes from a symbol of type N_SO. */
205
206 static char *last_source_file;
207
208 /* Core address of start of text of current source file.
209 This too comes from the N_SO symbol. */
210
211 static CORE_ADDR last_source_start_addr;
212
213 /* The entry point of a file we are reading. */
214 CORE_ADDR entry_point;
215
216 /* The list of sub-source-files within the current individual compilation.
217 Each file gets its own symtab with its own linetable and associated info,
218 but they all share one blockvector. */
219
220 struct subfile
221 {
222 struct subfile *next;
223 char *name;
224 char *dirname;
225 struct linetable *line_vector;
226 int line_vector_length;
227 int line_vector_index;
228 int prev_line_number;
229 };
230
231 static struct subfile *subfiles;
232
233 static struct subfile *current_subfile;
234
235 /* Count symbols as they are processed, for error messages. */
236
237 static unsigned int symnum;
238
239 /* Vector of types defined so far, indexed by their dbx type numbers.
240 (In newer sun systems, dbx uses a pair of numbers in parens,
241 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
242 translated through the type_translations hash table to get
243 the index into the type vector.) */
244
245 static struct typevector *type_vector;
246
247 /* Number of elements allocated for type_vector currently. */
248
249 static int type_vector_length;
250
251 /* Vector of line number information. */
252
253 static struct linetable *line_vector;
254
255 /* Index of next entry to go in line_vector_index. */
256
257 static int line_vector_index;
258
259 /* Last line number recorded in the line vector. */
260
261 static int prev_line_number;
262
263 /* Number of elements allocated for line_vector currently. */
264
265 static int line_vector_length;
266
267 /* Hash table of global symbols whose values are not known yet.
268 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
269 have the correct data for that slot yet. */
270 /* The use of the LOC_BLOCK code in this chain is nonstandard--
271 it refers to a FORTRAN common block rather than the usual meaning. */
272
273 #define HASHSIZE 127
274 static struct symbol *global_sym_chain[HASHSIZE];
275
276 /* Record the symbols defined for each context in a list.
277 We don't create a struct block for the context until we
278 know how long to make it. */
279
280 #define PENDINGSIZE 100
281
282 struct pending
283 {
284 struct pending *next;
285 int nsyms;
286 struct symbol *symbol[PENDINGSIZE];
287 };
288
289 /* List of free `struct pending' structures for reuse. */
290 struct pending *free_pendings;
291
292 /* Here are the three lists that symbols are put on. */
293
294 struct pending *file_symbols; /* static at top level, and types */
295
296 struct pending *global_symbols; /* global functions and variables */
297
298 struct pending *local_symbols; /* everything local to lexical context */
299
300 /* List of symbols declared since the last BCOMM. This list is a tail
301 of local_symbols. When ECOMM is seen, the symbols on the list
302 are noted so their proper addresses can be filled in later,
303 using the common block base address gotten from the assembler
304 stabs. */
305
306 struct pending *common_block;
307 int common_block_i;
308
309 /* Stack representing unclosed lexical contexts
310 (that will become blocks, eventually). */
311
312 struct context_stack
313 {
314 struct pending *locals;
315 struct pending_block *old_blocks;
316 struct symbol *name;
317 CORE_ADDR start_addr;
318 CORE_ADDR end_addr; /* Temp slot for exception handling. */
319 int depth;
320 };
321
322 struct context_stack *context_stack;
323
324 /* Index of first unused entry in context stack. */
325 int context_stack_depth;
326
327 /* Currently allocated size of context stack. */
328
329 int context_stack_size;
330
331 /* Nonzero if within a function (so symbols should be local,
332 if nothing says specifically). */
333
334 int within_function;
335
336 /* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339 struct pending_block
340 {
341 struct pending_block *next;
342 struct block *block;
343 };
344
345 struct pending_block *pending_blocks;
346
347 extern CORE_ADDR startup_file_start; /* From blockframe.c */
348 extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350 /* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353 static unsigned char processing_gcc_compilation;
354
355 /* Make a list of forward references which haven't been defined. */
356 static struct type **undef_types;
357 static int undef_types_allocated, undef_types_length;
358
359 /* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363 static char *symfile_string_table;
364 static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368 #ifdef NAMES_HAVE_UNDERSCORE
369 #define HASH_OFFSET 1
370 #else
371 #define HASH_OFFSET 0
372 #endif
373
374 /* Complaints about the symbols we have encountered. */
375
376 struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379 struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382 struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385 #if 0
386 struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388 You seem to have compiled your program with \
389 \"g++ -g0\" instead of \"g++ -g\".\n\
390 Therefore GDB will not know about your class variables", 0, 0};
391 #endif
392
393 struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396 struct complaint unknown_symtype_complaint =
397 {"unknown symbol type 0x%x", 0, 0};
398
399 struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402 struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405 struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408 struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410 \f
411 /* Support for Sun changes to dbx symbol format */
412
413 /* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431 struct header_file
432 {
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440 };
441
442 static struct header_file *header_files = 0;
443
444 static int n_header_files;
445
446 static int n_allocated_header_files;
447
448 /* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453 struct header_file_location
454 {
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459 };
460
461 /* The actual list and controling variables */
462 static struct header_file_location *bincl_list, *next_bincl;
463 static int bincls_allocated;
464
465 /* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475 static int *this_object_header_files = 0;
476
477 static int n_this_object_header_files;
478
479 static int n_allocated_this_object_header_files;
480
481 /* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486 static int header_file_prev_index;
487
488 /* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491 void
492 free_and_init_header_files ()
493 {
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508 }
509
510 /* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513 static void
514 new_object_header_files ()
515 {
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519 }
520
521 /* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524 static void
525 add_this_object_header_file (i)
526 int i;
527 {
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537 }
538
539 /* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544 static void
545 add_old_header_file (name, instance)
546 char *name;
547 int instance;
548 {
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560 }
561
562 /* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573 static void
574 add_new_header_file (name, instance)
575 char *name;
576 int instance;
577 {
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603 }
604
605 /* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612 static struct type **
613 dbx_lookup_type (typenums)
614 int typenums[2];
615 {
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661 }
662
663 /* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666 static struct type *
667 dbx_create_type ()
668 {
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 TYPE_VPTR_BASETYPE (type) = 0;
675 return type;
676 }
677
678 /* Make sure there is a type allocated for type numbers TYPENUMS
679 and return the type object.
680 This can create an empty (zeroed) type object.
681 TYPENUMS may be (-1, -1) to return a new type object that is not
682 put into the type vector, and so may not be referred to by number. */
683
684 static struct type *
685 dbx_alloc_type (typenums)
686 int typenums[2];
687 {
688 register struct type **type_addr;
689 register struct type *type;
690
691 if (typenums[1] != -1)
692 {
693 type_addr = dbx_lookup_type (typenums);
694 type = *type_addr;
695 }
696 else
697 {
698 type_addr = 0;
699 type = 0;
700 }
701
702 /* If we are referring to a type not known at all yet,
703 allocate an empty type for it.
704 We will fill it in later if we find out how. */
705 if (type == 0)
706 {
707 type = dbx_create_type ();
708 if (type_addr)
709 *type_addr = type;
710 }
711
712 return type;
713 }
714
715 #if 0
716 static struct type **
717 explicit_lookup_type (real_filenum, index)
718 int real_filenum, index;
719 {
720 register struct header_file *f = &header_files[real_filenum];
721
722 if (index >= f->length)
723 {
724 f->length *= 2;
725 f->vector = (struct type **)
726 xrealloc (f->vector, f->length * sizeof (struct type *));
727 bzero (&f->vector[f->length / 2],
728 f->length * sizeof (struct type *) / 2);
729 }
730 return &f->vector[index];
731 }
732 #endif
733 \f
734 /* maintain the lists of symbols and blocks */
735
736 /* Add a symbol to one of the lists of symbols. */
737 static void
738 add_symbol_to_list (symbol, listhead)
739 struct symbol *symbol;
740 struct pending **listhead;
741 {
742 /* We keep PENDINGSIZE symbols in each link of the list.
743 If we don't have a link with room in it, add a new link. */
744 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
745 {
746 register struct pending *link;
747 if (free_pendings)
748 {
749 link = free_pendings;
750 free_pendings = link->next;
751 }
752 else
753 link = (struct pending *) xmalloc (sizeof (struct pending));
754
755 link->next = *listhead;
756 *listhead = link;
757 link->nsyms = 0;
758 }
759
760 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
761 }
762
763 /* At end of reading syms, or in case of quit,
764 really free as many `struct pending's as we can easily find. */
765
766 /* ARGSUSED */
767 static void
768 really_free_pendings (foo)
769 int foo;
770 {
771 struct pending *next, *next1;
772 struct pending_block *bnext, *bnext1;
773
774 for (next = free_pendings; next; next = next1)
775 {
776 next1 = next->next;
777 free (next);
778 }
779 free_pendings = 0;
780
781 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
782 for (bnext = pending_blocks; bnext; bnext = bnext1)
783 {
784 bnext1 = bnext->next;
785 free (bnext);
786 }
787 #endif
788 pending_blocks = 0;
789
790 for (next = file_symbols; next; next = next1)
791 {
792 next1 = next->next;
793 free (next);
794 }
795 file_symbols = 0;
796
797 for (next = global_symbols; next; next = next1)
798 {
799 next1 = next->next;
800 free (next);
801 }
802 global_symbols = 0;
803 }
804
805 /* Take one of the lists of symbols and make a block from it.
806 Keep the order the symbols have in the list (reversed from the input file).
807 Put the block on the list of pending blocks. */
808
809 static void
810 finish_block (symbol, listhead, old_blocks, start, end)
811 struct symbol *symbol;
812 struct pending **listhead;
813 struct pending_block *old_blocks;
814 CORE_ADDR start, end;
815 {
816 register struct pending *next, *next1;
817 register struct block *block;
818 register struct pending_block *pblock;
819 struct pending_block *opblock;
820 register int i;
821
822 /* Count the length of the list of symbols. */
823
824 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
825 /*EMPTY*/;
826
827 block = (struct block *) obstack_alloc (symbol_obstack,
828 (sizeof (struct block)
829 + ((i - 1)
830 * sizeof (struct symbol *))));
831
832 /* Copy the symbols into the block. */
833
834 BLOCK_NSYMS (block) = i;
835 for (next = *listhead; next; next = next->next)
836 {
837 register int j;
838 for (j = next->nsyms - 1; j >= 0; j--)
839 BLOCK_SYM (block, --i) = next->symbol[j];
840 }
841
842 BLOCK_START (block) = start;
843 BLOCK_END (block) = end;
844 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
845 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
846
847 /* Put the block in as the value of the symbol that names it. */
848
849 if (symbol)
850 {
851 SYMBOL_BLOCK_VALUE (symbol) = block;
852 BLOCK_FUNCTION (block) = symbol;
853 }
854 else
855 BLOCK_FUNCTION (block) = 0;
856
857 /* Now "free" the links of the list, and empty the list. */
858
859 for (next = *listhead; next; next = next1)
860 {
861 next1 = next->next;
862 next->next = free_pendings;
863 free_pendings = next;
864 }
865 *listhead = 0;
866
867 /* Install this block as the superblock
868 of all blocks made since the start of this scope
869 that don't have superblocks yet. */
870
871 opblock = 0;
872 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
873 {
874 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
875 #if 1
876 /* Check to be sure the blocks are nested as we receive them.
877 If the compiler/assembler/linker work, this just burns a small
878 amount of time. */
879 if (BLOCK_START (pblock->block) < BLOCK_START (block)
880 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
881 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
882 "(don't know)");
883 BLOCK_START (pblock->block) = BLOCK_START (block);
884 BLOCK_END (pblock->block) = BLOCK_END (block);
885 }
886 #endif
887 BLOCK_SUPERBLOCK (pblock->block) = block;
888 }
889 opblock = pblock;
890 }
891
892 /* Record this block on the list of all blocks in the file.
893 Put it after opblock, or at the beginning if opblock is 0.
894 This puts the block in the list after all its subblocks. */
895
896 /* Allocate in the symbol_obstack to save time.
897 It wastes a little space. */
898 pblock = (struct pending_block *)
899 obstack_alloc (symbol_obstack,
900 sizeof (struct pending_block));
901 pblock->block = block;
902 if (opblock)
903 {
904 pblock->next = opblock->next;
905 opblock->next = pblock;
906 }
907 else
908 {
909 pblock->next = pending_blocks;
910 pending_blocks = pblock;
911 }
912 }
913
914 static struct blockvector *
915 make_blockvector ()
916 {
917 register struct pending_block *next;
918 register struct blockvector *blockvector;
919 register int i;
920
921 /* Count the length of the list of blocks. */
922
923 for (next = pending_blocks, i = 0; next; next = next->next, i++);
924
925 blockvector = (struct blockvector *)
926 obstack_alloc (symbol_obstack,
927 (sizeof (struct blockvector)
928 + (i - 1) * sizeof (struct block *)));
929
930 /* Copy the blocks into the blockvector.
931 This is done in reverse order, which happens to put
932 the blocks into the proper order (ascending starting address).
933 finish_block has hair to insert each block into the list
934 after its subblocks in order to make sure this is true. */
935
936 BLOCKVECTOR_NBLOCKS (blockvector) = i;
937 for (next = pending_blocks; next; next = next->next) {
938 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
939 }
940
941 #if 0 /* Now we make the links in the obstack, so don't free them. */
942 /* Now free the links of the list, and empty the list. */
943
944 for (next = pending_blocks; next; next = next1)
945 {
946 next1 = next->next;
947 free (next);
948 }
949 #endif
950 pending_blocks = 0;
951
952 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
953 /* Some compilers output blocks in the wrong order, but we depend
954 on their being in the right order so we can binary search.
955 Check the order and moan about it. FIXME. */
956 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
957 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
958 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
959 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
960 complain (&blockvector_complaint,
961 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
962 }
963 }
964 #endif
965
966 return blockvector;
967 }
968 \f
969 /* Manage the vector of line numbers. */
970
971 static void
972 record_line (line, pc)
973 int line;
974 CORE_ADDR pc;
975 {
976 struct linetable_entry *e;
977 /* Ignore the dummy line number in libg.o */
978
979 if (line == 0xffff)
980 return;
981
982 /* Make sure line vector is big enough. */
983
984 if (line_vector_index + 1 >= line_vector_length)
985 {
986 line_vector_length *= 2;
987 line_vector = (struct linetable *)
988 xrealloc (line_vector,
989 (sizeof (struct linetable)
990 + line_vector_length * sizeof (struct linetable_entry)));
991 current_subfile->line_vector = line_vector;
992 }
993
994 e = line_vector->item + line_vector_index++;
995 e->line = line; e->pc = pc;
996 }
997 \f
998 /* Start a new symtab for a new source file.
999 This is called when a dbx symbol of type N_SO is seen;
1000 it indicates the start of data for one original source file. */
1001
1002 static void
1003 start_symtab (name, dirname, start_addr)
1004 char *name;
1005 char *dirname;
1006 CORE_ADDR start_addr;
1007 {
1008
1009 last_source_file = name;
1010 last_source_start_addr = start_addr;
1011 file_symbols = 0;
1012 global_symbols = 0;
1013 within_function = 0;
1014
1015 /* Context stack is initially empty, with room for 10 levels. */
1016 context_stack
1017 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1018 context_stack_size = 10;
1019 context_stack_depth = 0;
1020
1021 new_object_header_files ();
1022
1023 type_vector_length = 160;
1024 type_vector = (struct typevector *)
1025 xmalloc (sizeof (struct typevector)
1026 + type_vector_length * sizeof (struct type *));
1027 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1028
1029 /* Initialize the list of sub source files with one entry
1030 for this file (the top-level source file). */
1031
1032 subfiles = 0;
1033 current_subfile = 0;
1034 start_subfile (name, dirname);
1035 }
1036
1037 /* Handle an N_SOL symbol, which indicates the start of
1038 code that came from an included (or otherwise merged-in)
1039 source file with a different name. */
1040
1041 static void
1042 start_subfile (name, dirname)
1043 char *name;
1044 char *dirname;
1045 {
1046 register struct subfile *subfile;
1047
1048 /* Save the current subfile's line vector data. */
1049
1050 if (current_subfile)
1051 {
1052 current_subfile->line_vector_index = line_vector_index;
1053 current_subfile->line_vector_length = line_vector_length;
1054 current_subfile->prev_line_number = prev_line_number;
1055 }
1056
1057 /* See if this subfile is already known as a subfile of the
1058 current main source file. */
1059
1060 for (subfile = subfiles; subfile; subfile = subfile->next)
1061 {
1062 if (!strcmp (subfile->name, name))
1063 {
1064 line_vector = subfile->line_vector;
1065 line_vector_index = subfile->line_vector_index;
1066 line_vector_length = subfile->line_vector_length;
1067 prev_line_number = subfile->prev_line_number;
1068 current_subfile = subfile;
1069 return;
1070 }
1071 }
1072
1073 /* This subfile is not known. Add an entry for it. */
1074
1075 line_vector_index = 0;
1076 line_vector_length = 1000;
1077 prev_line_number = -2; /* Force first line number to be explicit */
1078 line_vector = (struct linetable *)
1079 xmalloc (sizeof (struct linetable)
1080 + line_vector_length * sizeof (struct linetable_entry));
1081
1082 /* Make an entry for this subfile in the list of all subfiles
1083 of the current main source file. */
1084
1085 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1086 subfile->next = subfiles;
1087 subfile->name = obsavestring (name, strlen (name));
1088 if (dirname == NULL)
1089 subfile->dirname = NULL;
1090 else
1091 subfile->dirname = obsavestring (dirname, strlen (dirname));
1092
1093 subfile->line_vector = line_vector;
1094 subfiles = subfile;
1095 current_subfile = subfile;
1096 }
1097
1098 /* Finish the symbol definitions for one main source file,
1099 close off all the lexical contexts for that file
1100 (creating struct block's for them), then make the struct symtab
1101 for that file and put it in the list of all such.
1102
1103 END_ADDR is the address of the end of the file's text. */
1104
1105 static void
1106 end_symtab (end_addr)
1107 CORE_ADDR end_addr;
1108 {
1109 register struct symtab *symtab;
1110 register struct blockvector *blockvector;
1111 register struct subfile *subfile;
1112 register struct linetable *lv;
1113 struct subfile *nextsub;
1114
1115 /* Finish the lexical context of the last function in the file;
1116 pop the context stack. */
1117
1118 if (context_stack_depth > 0)
1119 {
1120 register struct context_stack *cstk;
1121 context_stack_depth--;
1122 cstk = &context_stack[context_stack_depth];
1123 /* Make a block for the local symbols within. */
1124 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1125 cstk->start_addr, end_addr);
1126 }
1127
1128 /* Cleanup any undefined types that have been left hanging around
1129 (this needs to be done before the finish_blocks so that
1130 file_symbols is still good). */
1131 cleanup_undefined_types ();
1132
1133 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
1134 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1135 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1136 blockvector = make_blockvector ();
1137
1138 current_subfile->line_vector_index = line_vector_index;
1139
1140 /* Now create the symtab objects proper, one for each subfile. */
1141 /* (The main file is one of them.) */
1142
1143 for (subfile = subfiles; subfile; subfile = nextsub)
1144 {
1145 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1146
1147 /* Fill in its components. */
1148 symtab->blockvector = blockvector;
1149 lv = subfile->line_vector;
1150 lv->nitems = subfile->line_vector_index;
1151 symtab->linetable = (struct linetable *)
1152 xrealloc (lv, (sizeof (struct linetable)
1153 + lv->nitems * sizeof (struct linetable_entry)));
1154 type_vector->length = type_vector_length;
1155 symtab->typevector = type_vector;
1156
1157 symtab->filename = subfile->name;
1158 symtab->dirname = subfile->dirname;
1159
1160 symtab->free_code = free_linetable;
1161 symtab->free_ptr = 0;
1162 if (subfile->next == 0)
1163 symtab->free_ptr = (char *) type_vector;
1164
1165 symtab->nlines = 0;
1166 symtab->line_charpos = 0;
1167
1168 symtab->language = language_unknown;
1169 symtab->fullname = NULL;
1170
1171 /* There should never already be a symtab for this name, since
1172 any prev dups have been removed when the psymtab was read in.
1173 FIXME, there ought to be a way to check this here. */
1174 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
1175
1176 /* Link the new symtab into the list of such. */
1177 symtab->next = symtab_list;
1178 symtab_list = symtab;
1179
1180 nextsub = subfile->next;
1181 free (subfile);
1182 }
1183
1184 type_vector = 0;
1185 type_vector_length = -1;
1186 line_vector = 0;
1187 line_vector_length = -1;
1188 last_source_file = 0;
1189 }
1190 \f
1191 /* Handle the N_BINCL and N_EINCL symbol types
1192 that act like N_SOL for switching source files
1193 (different subfiles, as we call them) within one object file,
1194 but using a stack rather than in an arbitrary order. */
1195
1196 struct subfile_stack
1197 {
1198 struct subfile_stack *next;
1199 char *name;
1200 int prev_index;
1201 };
1202
1203 struct subfile_stack *subfile_stack;
1204
1205 static void
1206 push_subfile ()
1207 {
1208 register struct subfile_stack *tem
1209 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1210
1211 tem->next = subfile_stack;
1212 subfile_stack = tem;
1213 if (current_subfile == 0 || current_subfile->name == 0)
1214 abort ();
1215 tem->name = current_subfile->name;
1216 tem->prev_index = header_file_prev_index;
1217 }
1218
1219 static char *
1220 pop_subfile ()
1221 {
1222 register char *name;
1223 register struct subfile_stack *link = subfile_stack;
1224
1225 if (link == 0)
1226 abort ();
1227
1228 name = link->name;
1229 subfile_stack = link->next;
1230 header_file_prev_index = link->prev_index;
1231 free (link);
1232
1233 return name;
1234 }
1235 \f
1236 void
1237 record_misc_function (name, address, type)
1238 char *name;
1239 CORE_ADDR address;
1240 int type;
1241 {
1242 enum misc_function_type misc_type =
1243 (type == (N_TEXT | N_EXT) ? mf_text :
1244 (type == (N_DATA | N_EXT)
1245 || type == (N_DATA)
1246 || type == (N_SETV | N_EXT)
1247 ) ? mf_data :
1248 type == (N_BSS | N_EXT) ? mf_bss :
1249 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1250
1251 prim_record_misc_function (obsavestring (name, strlen (name)),
1252 address, misc_type);
1253 }
1254 \f
1255 /* Scan and build partial symbols for a symbol file.
1256 We have been initialized by a call to dbx_symfile_init, which
1257 put all the relevant info into a "struct dbx_symfile_info"
1258 hung off the struct sym_fns SF.
1259
1260 ADDR is the address relative to which the symbols in it are (e.g.
1261 the base address of the text segment).
1262 MAINLINE is true if we are reading the main symbol
1263 table (as opposed to a shared lib or dynamically loaded file). */
1264
1265 void
1266 dbx_symfile_read (sf, addr, mainline)
1267 struct sym_fns *sf;
1268 CORE_ADDR addr;
1269 int mainline; /* FIXME comments above */
1270 {
1271 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1272 bfd *sym_bfd = sf->sym_bfd;
1273 int val;
1274 char *filename = bfd_get_filename (sym_bfd);
1275
1276 val = lseek (info->desc, info->symtab_offset, L_SET);
1277 if (val < 0)
1278 perror_with_name (filename);
1279
1280 /* If mainline, set global string table pointers, and reinitialize global
1281 partial symbol list. */
1282 if (mainline) {
1283 symfile_string_table = info->stringtab;
1284 symfile_string_table_size = info->stringtab_size;
1285 }
1286
1287 /* If we are reinitializing, or if we have never loaded syms yet, init */
1288 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1289 init_psymbol_list (info->symcount);
1290
1291 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1292
1293 pending_blocks = 0;
1294 make_cleanup (really_free_pendings, 0);
1295
1296 init_misc_bunches ();
1297 make_cleanup (discard_misc_bunches, 0);
1298
1299 /* Now that the symbol table data of the executable file are all in core,
1300 process them and define symbols accordingly. */
1301
1302 read_dbx_symtab (filename,
1303 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1304 info->desc, info->stringtab, info->stringtab_size,
1305 info->symcount,
1306 bfd_section_vma (sym_bfd, info->text_sect),
1307 bfd_section_size (sym_bfd, info->text_sect));
1308
1309 /* Go over the misc symbol bunches and install them in vector. */
1310
1311 condense_misc_bunches (!mainline);
1312
1313 /* Free up any memory we allocated for ourselves. */
1314
1315 if (!mainline) {
1316 free (info->stringtab); /* Stringtab is only saved for mainline */
1317 }
1318 free (info);
1319 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1320
1321 /* Call to select_source_symtab used to be here; it was using too
1322 much time. I'll make sure that list_sources can handle the lack
1323 of current_source_symtab */
1324
1325 if (!partial_symtab_list)
1326 printf_filtered ("\n(no debugging symbols found)...");
1327 }
1328
1329 /* Discard any information we have cached during the reading of a
1330 single symbol file. This should not toss global information
1331 from previous symbol files that have been read. E.g. we might
1332 be discarding info from reading a shared library, and should not
1333 throw away the info from the main file. */
1334
1335 void
1336 dbx_symfile_discard ()
1337 {
1338
1339 /* Empty the hash table of global syms looking for values. */
1340 bzero (global_sym_chain, sizeof global_sym_chain);
1341
1342 free_pendings = 0;
1343 file_symbols = 0;
1344 global_symbols = 0;
1345 }
1346
1347 /* Initialize anything that needs initializing when a completely new
1348 symbol file is specified (not just adding some symbols from another
1349 file, e.g. a shared library). */
1350
1351 void
1352 dbx_new_init ()
1353 {
1354 dbx_symfile_discard ();
1355 /* Don't put these on the cleanup chain; they need to stick around
1356 until the next call to symbol_file_command. *Then* we'll free
1357 them. */
1358 if (symfile_string_table)
1359 {
1360 free (symfile_string_table);
1361 symfile_string_table = 0;
1362 symfile_string_table_size = 0;
1363 }
1364 free_and_init_header_files ();
1365 }
1366
1367
1368 /* dbx_symfile_init ()
1369 is the dbx-specific initialization routine for reading symbols.
1370 It is passed a struct sym_fns which contains, among other things,
1371 the BFD for the file whose symbols are being read, and a slot for a pointer
1372 to "private data" which we fill with goodies.
1373
1374 We read the string table into malloc'd space and stash a pointer to it.
1375
1376 Since BFD doesn't know how to read debug symbols in a format-independent
1377 way (and may never do so...), we have to do it ourselves. We will never
1378 be called unless this is an a.out (or very similar) file.
1379 FIXME, there should be a cleaner peephole into the BFD environment here. */
1380
1381 void
1382 dbx_symfile_init (sf)
1383 struct sym_fns *sf;
1384 {
1385 int val;
1386 int desc;
1387 struct stat statbuf;
1388 bfd *sym_bfd = sf->sym_bfd;
1389 char *name = bfd_get_filename (sym_bfd);
1390 struct dbx_symfile_info *info;
1391 unsigned char size_temp[4];
1392
1393 /* Allocate struct to keep track of the symfile */
1394 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1395 info = (struct dbx_symfile_info *)sf->sym_private;
1396
1397 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1398 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1399 #define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1400 #define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1401 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1402
1403 info->desc = desc;
1404 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1405 if (!info->text_sect)
1406 abort();
1407 info->symcount = bfd_get_symcount_upper_bound(sym_bfd); /* It's exact for a.out */
1408
1409 /* Read the string table size and check it for bogosity. */
1410 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1411 if (val < 0)
1412 perror_with_name (name);
1413 if (fstat (desc, &statbuf) == -1)
1414 perror_with_name (name);
1415
1416 val = myread (desc, size_temp, sizeof (long));
1417 if (val < 0)
1418 perror_with_name (name);
1419 info->stringtab_size = bfd_h_getlong (sym_bfd, size_temp);
1420
1421 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1422 {
1423 info->stringtab = (char *) xmalloc (info->stringtab_size);
1424 /* Caller is responsible for freeing the string table. No cleanup. */
1425 }
1426 else
1427 info->stringtab = NULL;
1428 if (info->stringtab == NULL && info->stringtab_size != 0)
1429 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1430
1431 /* Now read in the string table in one big gulp. */
1432
1433 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1434 if (val < 0)
1435 perror_with_name (name);
1436 val = myread (desc, info->stringtab, info->stringtab_size);
1437 if (val < 0)
1438 perror_with_name (name);
1439
1440 /* Record the position of the symbol table for later use. */
1441
1442 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1443 }
1444 \f
1445 /* Buffer for reading the symbol table entries. */
1446 static struct nlist symbuf[4096];
1447 static int symbuf_idx;
1448 static int symbuf_end;
1449
1450 /* I/O descriptor for reading the symbol table. */
1451 static int symtab_input_desc;
1452
1453 /* The address in memory of the string table of the object file we are
1454 reading (which might not be the "main" object file, but might be a
1455 shared library or some other dynamically loaded thing). This is set
1456 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1457 when building symtabs, and is used only by next_symbol_text. */
1458 static char *stringtab_global;
1459
1460 /* Refill the symbol table input buffer
1461 and set the variables that control fetching entries from it.
1462 Reports an error if no data available.
1463 This function can read past the end of the symbol table
1464 (into the string table) but this does no harm. */
1465
1466 static int
1467 fill_symbuf ()
1468 {
1469 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1470 if (nbytes < 0)
1471 perror_with_name ("<symbol file>");
1472 else if (nbytes == 0)
1473 error ("Premature end of file reading symbol table");
1474 symbuf_end = nbytes / sizeof (struct nlist);
1475 symbuf_idx = 0;
1476 return 1;
1477 }
1478
1479 #define SWAP_SYMBOL(symp) \
1480 { \
1481 (symp)->n_un.n_strx = bfd_h_getlong(symfile_bfd, \
1482 (unsigned char *)&(symp)->n_un.n_strx); \
1483 (symp)->n_desc = bfd_h_getshort (symfile_bfd, \
1484 (unsigned char *)&(symp)->n_desc); \
1485 (symp)->n_value = bfd_h_getlong (symfile_bfd, \
1486 (unsigned char *)&(symp)->n_value); \
1487 }
1488
1489 /* Invariant: The symbol pointed to by symbuf_idx is the first one
1490 that hasn't been swapped. Swap the symbol at the same time
1491 that symbuf_idx is incremented. */
1492
1493 /* dbx allows the text of a symbol name to be continued into the
1494 next symbol name! When such a continuation is encountered
1495 (a \ at the end of the text of a name)
1496 call this function to get the continuation. */
1497
1498 static char *
1499 next_symbol_text ()
1500 {
1501 if (symbuf_idx == symbuf_end)
1502 fill_symbuf ();
1503 symnum++;
1504 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1505 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1506 }
1507 \f
1508 /* Initializes storage for all of the partial symbols that will be
1509 created by read_dbx_symtab and subsidiaries. */
1510
1511 static void
1512 init_psymbol_list (total_symbols)
1513 int total_symbols;
1514 {
1515 /* Free any previously allocated psymbol lists. */
1516 if (global_psymbols.list)
1517 free (global_psymbols.list);
1518 if (static_psymbols.list)
1519 free (static_psymbols.list);
1520
1521 /* Current best guess is that there are approximately a twentieth
1522 of the total symbols (in a debugging file) are global or static
1523 oriented symbols */
1524 global_psymbols.size = total_symbols / 10;
1525 static_psymbols.size = total_symbols / 10;
1526 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1527 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1528 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1529 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1530 }
1531
1532 /* Initialize the list of bincls to contain none and have some
1533 allocated. */
1534
1535 static void
1536 init_bincl_list (number)
1537 int number;
1538 {
1539 bincls_allocated = number;
1540 next_bincl = bincl_list = (struct header_file_location *)
1541 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1542 }
1543
1544 /* Add a bincl to the list. */
1545
1546 static void
1547 add_bincl_to_list (pst, name, instance)
1548 struct partial_symtab *pst;
1549 char *name;
1550 int instance;
1551 {
1552 if (next_bincl >= bincl_list + bincls_allocated)
1553 {
1554 int offset = next_bincl - bincl_list;
1555 bincls_allocated *= 2;
1556 bincl_list = (struct header_file_location *)
1557 xrealloc ((char *)bincl_list,
1558 bincls_allocated * sizeof (struct header_file_location));
1559 next_bincl = bincl_list + offset;
1560 }
1561 next_bincl->pst = pst;
1562 next_bincl->instance = instance;
1563 next_bincl++->name = name;
1564 }
1565
1566 /* Given a name, value pair, find the corresponding
1567 bincl in the list. Return the partial symtab associated
1568 with that header_file_location. */
1569
1570 struct partial_symtab *
1571 find_corresponding_bincl_psymtab (name, instance)
1572 char *name;
1573 int instance;
1574 {
1575 struct header_file_location *bincl;
1576
1577 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1578 if (bincl->instance == instance
1579 && !strcmp (name, bincl->name))
1580 return bincl->pst;
1581
1582 return (struct partial_symtab *) 0;
1583 }
1584
1585 /* Free the storage allocated for the bincl list. */
1586
1587 static void
1588 free_bincl_list ()
1589 {
1590 free (bincl_list);
1591 bincls_allocated = 0;
1592 }
1593
1594 static struct partial_symtab *start_psymtab ();
1595 static void end_psymtab();
1596
1597 #ifdef DEBUG
1598 /* This is normally a macro defined in read_dbx_symtab, but this
1599 is a lot easier to debug. */
1600
1601 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1602 char *NAME;
1603 int NAMELENGTH;
1604 enum namespace NAMESPACE;
1605 enum address_class CLASS;
1606 struct psymbol_allocation_list *PLIST;
1607 unsigned long VALUE;
1608 {
1609 register struct partial_symbol *psym;
1610
1611 #define LIST *PLIST
1612 do {
1613 if ((LIST).next >=
1614 (LIST).list + (LIST).size)
1615 {
1616 (LIST).list = (struct partial_symbol *)
1617 xrealloc ((LIST).list,
1618 ((LIST).size * 2
1619 * sizeof (struct partial_symbol)));
1620 /* Next assumes we only went one over. Should be good if
1621 program works correctly */
1622 (LIST).next =
1623 (LIST).list + (LIST).size;
1624 (LIST).size *= 2;
1625 }
1626 psym = (LIST).next++;
1627 #undef LIST
1628
1629 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1630 (NAMELENGTH) + 1);
1631 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1632 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1633 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1634 SYMBOL_CLASS (psym) = (CLASS);
1635 SYMBOL_VALUE (psym) = (VALUE);
1636 } while (0);
1637 }
1638
1639 /* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1640 #define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1641 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1642
1643 #endif /* DEBUG */
1644
1645 /* Given pointers to an a.out symbol table in core containing dbx
1646 style data, setup partial_symtab's describing each source file for
1647 which debugging information is available. NLISTLEN is the number
1648 of symbols in the symbol table. All symbol names are given as
1649 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1650 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1651 and ADDR is its relocated address (if incremental) or 0 (if not). */
1652
1653 static void
1654 read_dbx_symtab (symfile_name, addr,
1655 desc, stringtab, stringtab_size, nlistlen,
1656 text_addr, text_size)
1657 char *symfile_name;
1658 CORE_ADDR addr;
1659 int desc;
1660 register char *stringtab;
1661 register long stringtab_size;
1662 register int nlistlen;
1663 CORE_ADDR text_addr;
1664 int text_size;
1665 {
1666 register struct nlist *bufp;
1667 register char *namestring;
1668 register struct partial_symbol *psym;
1669 int nsl;
1670 int past_first_source_file = 0;
1671 CORE_ADDR last_o_file_start = 0;
1672 struct cleanup *old_chain;
1673 char *p;
1674
1675 /* End of the text segment of the executable file. */
1676 CORE_ADDR end_of_text_addr;
1677
1678 /* Current partial symtab */
1679 struct partial_symtab *pst;
1680
1681 /* List of current psymtab's include files */
1682 char **psymtab_include_list;
1683 int includes_allocated;
1684 int includes_used;
1685
1686 /* Index within current psymtab dependency list */
1687 struct partial_symtab **dependency_list;
1688 int dependencies_used, dependencies_allocated;
1689
1690 stringtab_global = stringtab;
1691
1692 pst = (struct partial_symtab *) 0;
1693
1694 includes_allocated = 30;
1695 includes_used = 0;
1696 psymtab_include_list = (char **) alloca (includes_allocated *
1697 sizeof (char *));
1698
1699 dependencies_allocated = 30;
1700 dependencies_used = 0;
1701 dependency_list =
1702 (struct partial_symtab **) alloca (dependencies_allocated *
1703 sizeof (struct partial_symtab *));
1704
1705 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1706 It should only blow away the psymtabs created herein. We could
1707 be reading a shared library or a dynloaded file! */
1708 old_chain = make_cleanup (free_all_psymtabs, 0);
1709
1710 /* Init bincl list */
1711 init_bincl_list (20);
1712 make_cleanup (free_bincl_list, 0);
1713
1714 last_source_file = 0;
1715
1716 #ifdef END_OF_TEXT_DEFAULT
1717 end_of_text_addr = END_OF_TEXT_DEFAULT;
1718 #else
1719 end_of_text_addr = text_addr + text_size;
1720 #endif
1721
1722 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1723 symbuf_end = symbuf_idx = 0;
1724
1725 for (symnum = 0; symnum < nlistlen; symnum++)
1726 {
1727 /* Get the symbol for this run and pull out some info */
1728 QUIT; /* allow this to be interruptable */
1729 if (symbuf_idx == symbuf_end)
1730 fill_symbuf ();
1731 bufp = &symbuf[symbuf_idx++];
1732
1733 /*
1734 * Special case to speed up readin.
1735 */
1736 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1737
1738 SWAP_SYMBOL (bufp);
1739
1740 /* Ok. There is a lot of code duplicated in the rest of this
1741 switch statement (for efficiency reasons). Since I don't
1742 like duplicating code, I will do my penance here, and
1743 describe the code which is duplicated:
1744
1745 *) The assignment to namestring.
1746 *) The call to strchr.
1747 *) The addition of a partial symbol the the two partial
1748 symbol lists. This last is a large section of code, so
1749 I've imbedded it in the following macro.
1750 */
1751
1752 /* Set namestring based on bufp. If the string table index is invalid,
1753 give a fake name, and print a single error message per symbol file read,
1754 rather than abort the symbol reading or flood the user with messages. */
1755 #define SET_NAMESTRING()\
1756 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1757 complain (&string_table_offset_complaint, symnum); \
1758 namestring = "foo"; \
1759 } else \
1760 namestring = bufp->n_un.n_strx + stringtab
1761
1762 /* Add a symbol with an integer value to a psymtab. */
1763 /* This is a macro unless we're debugging. See above this function. */
1764 #ifndef DEBUG
1765 # define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1766 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1767 SYMBOL_VALUE)
1768 #endif /* DEBUG */
1769
1770 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1771 #define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1772 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1773 SYMBOL_VALUE_ADDRESS)
1774
1775 /* Add any kind of symbol to a psymtab. */
1776 #define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1777 do { \
1778 if ((LIST).next >= \
1779 (LIST).list + (LIST).size) \
1780 { \
1781 (LIST).list = (struct partial_symbol *) \
1782 xrealloc ((LIST).list, \
1783 ((LIST).size * 2 \
1784 * sizeof (struct partial_symbol))); \
1785 /* Next assumes we only went one over. Should be good if \
1786 program works correctly */ \
1787 (LIST).next = \
1788 (LIST).list + (LIST).size; \
1789 (LIST).size *= 2; \
1790 } \
1791 psym = (LIST).next++; \
1792 \
1793 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1794 (NAMELENGTH) + 1); \
1795 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1796 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1797 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1798 SYMBOL_CLASS (psym) = (CLASS); \
1799 VT (psym) = (VALUE); \
1800 } while (0);
1801
1802 /* End of macro definitions, now let's handle them symbols! */
1803
1804 switch (bufp->n_type)
1805 {
1806 /*
1807 * Standard, external, non-debugger, symbols
1808 */
1809
1810 case N_TEXT | N_EXT:
1811 case N_NBTEXT | N_EXT:
1812 case N_NBDATA | N_EXT:
1813 case N_NBBSS | N_EXT:
1814 case N_SETV | N_EXT:
1815 case N_ABS | N_EXT:
1816 case N_DATA | N_EXT:
1817 case N_BSS | N_EXT:
1818
1819 bufp->n_value += addr; /* Relocate */
1820
1821 SET_NAMESTRING();
1822
1823 bss_ext_symbol:
1824 record_misc_function (namestring, bufp->n_value,
1825 bufp->n_type); /* Always */
1826
1827 continue;
1828
1829 /* Standard, local, non-debugger, symbols */
1830
1831 case N_NBTEXT:
1832
1833 /* We need to be able to deal with both N_FN or N_TEXT,
1834 because we have no way of knowing whether the sys-supplied ld
1835 or GNU ld was used to make the executable. */
1836 #if ! (N_FN & N_EXT)
1837 case N_FN:
1838 #endif
1839 case N_FN | N_EXT:
1840 case N_TEXT:
1841 bufp->n_value += addr; /* Relocate */
1842 SET_NAMESTRING();
1843 if ((namestring[0] == '-' && namestring[1] == 'l')
1844 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1845 && namestring [nsl - 2] == '.'))
1846 {
1847 if (entry_point < bufp->n_value
1848 && entry_point >= last_o_file_start
1849 && addr == 0) /* FIXME nogood nomore */
1850 {
1851 startup_file_start = last_o_file_start;
1852 startup_file_end = bufp->n_value;
1853 }
1854 if (past_first_source_file && pst
1855 /* The gould NP1 uses low values for .o and -l symbols
1856 which are not the address. */
1857 && bufp->n_value > pst->textlow)
1858 {
1859 end_psymtab (pst, psymtab_include_list, includes_used,
1860 symnum * sizeof (struct nlist), bufp->n_value,
1861 dependency_list, dependencies_used,
1862 global_psymbols.next, static_psymbols.next);
1863 pst = (struct partial_symtab *) 0;
1864 includes_used = 0;
1865 dependencies_used = 0;
1866 }
1867 else
1868 past_first_source_file = 1;
1869 last_o_file_start = bufp->n_value;
1870 }
1871 continue;
1872
1873 case N_DATA:
1874 bufp->n_value += addr; /* Relocate */
1875 SET_NAMESTRING ();
1876 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1877 Record it even if it's local, not global, so we can find it.
1878 Same with virtual function tables, both global and static. */
1879 if ((namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1880 || VTBL_PREFIX_P ((namestring+HASH_OFFSET)))
1881 {
1882 /* Not really a function here, but... */
1883 record_misc_function (namestring, bufp->n_value,
1884 bufp->n_type); /* Always */
1885 }
1886 continue;
1887
1888 case N_UNDF | N_EXT:
1889 if (bufp->n_value != 0) {
1890 /* This is a "Fortran COMMON" symbol. See if the target
1891 environment knows where it has been relocated to. */
1892
1893 CORE_ADDR reladdr;
1894
1895 SET_NAMESTRING();
1896 if (target_lookup_symbol (namestring, &reladdr)) {
1897 continue; /* Error in lookup; ignore symbol for now. */
1898 }
1899 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1900 bufp->n_value = reladdr;
1901 goto bss_ext_symbol;
1902 }
1903 continue; /* Just undefined, not COMMON */
1904
1905 /* Lots of symbol types we can just ignore. */
1906
1907 case N_UNDF:
1908 case N_ABS:
1909 case N_BSS:
1910 case N_NBDATA:
1911 case N_NBBSS:
1912 continue;
1913
1914 /* Keep going . . .*/
1915
1916 /*
1917 * Special symbol types for GNU
1918 */
1919 case N_INDR:
1920 case N_INDR | N_EXT:
1921 case N_SETA:
1922 case N_SETA | N_EXT:
1923 case N_SETT:
1924 case N_SETT | N_EXT:
1925 case N_SETD:
1926 case N_SETD | N_EXT:
1927 case N_SETB:
1928 case N_SETB | N_EXT:
1929 case N_SETV:
1930 continue;
1931
1932 /*
1933 * Debugger symbols
1934 */
1935
1936 case N_SO: {
1937 unsigned long valu = bufp->n_value;
1938 /* Symbol number of the first symbol of this file (i.e. the N_SO
1939 if there is just one, or the first if we have a pair). */
1940 int first_symnum = symnum;
1941
1942 /* End the current partial symtab and start a new one */
1943
1944 SET_NAMESTRING();
1945
1946 /* Peek at the next symbol. If it is also an N_SO, the
1947 first one just indicates the directory. */
1948 if (symbuf_idx == symbuf_end)
1949 fill_symbuf ();
1950 bufp = &symbuf[symbuf_idx];
1951 /* n_type is only a char, so swapping swapping is irrelevant. */
1952 if (bufp->n_type == (unsigned char)N_SO)
1953 {
1954 SWAP_SYMBOL (bufp);
1955 SET_NAMESTRING ();
1956 valu = bufp->n_value;
1957 symbuf_idx++;
1958 symnum++;
1959 }
1960 valu += addr; /* Relocate */
1961
1962 if (pst && past_first_source_file)
1963 {
1964 end_psymtab (pst, psymtab_include_list, includes_used,
1965 first_symnum * sizeof (struct nlist), valu,
1966 dependency_list, dependencies_used,
1967 global_psymbols.next, static_psymbols.next);
1968 pst = (struct partial_symtab *) 0;
1969 includes_used = 0;
1970 dependencies_used = 0;
1971 }
1972 else
1973 past_first_source_file = 1;
1974
1975 pst = start_psymtab (symfile_name, addr,
1976 namestring, valu,
1977 first_symnum * sizeof (struct nlist),
1978 global_psymbols.next, static_psymbols.next);
1979
1980 continue;
1981 }
1982
1983 case N_BINCL:
1984 /* Add this bincl to the bincl_list for future EXCLs. No
1985 need to save the string; it'll be around until
1986 read_dbx_symtab function returns */
1987
1988 SET_NAMESTRING();
1989
1990 add_bincl_to_list (pst, namestring, bufp->n_value);
1991
1992 /* Mark down an include file in the current psymtab */
1993
1994 psymtab_include_list[includes_used++] = namestring;
1995 if (includes_used >= includes_allocated)
1996 {
1997 char **orig = psymtab_include_list;
1998
1999 psymtab_include_list = (char **)
2000 alloca ((includes_allocated *= 2) *
2001 sizeof (char *));
2002 bcopy (orig, psymtab_include_list,
2003 includes_used * sizeof (char *));
2004 }
2005
2006 continue;
2007
2008 case N_SOL:
2009 /* Mark down an include file in the current psymtab */
2010
2011 SET_NAMESTRING();
2012
2013 /* In C++, one may expect the same filename to come round many
2014 times, when code is coming alternately from the main file
2015 and from inline functions in other files. So I check to see
2016 if this is a file we've seen before -- either the main
2017 source file, or a previously included file.
2018
2019 This seems to be a lot of time to be spending on N_SOL, but
2020 things like "break expread.y:435" need to work (I
2021 suppose the psymtab_include_list could be hashed or put
2022 in a binary tree, if profiling shows this is a major hog). */
2023 if (!strcmp (namestring, pst->filename))
2024 continue;
2025 {
2026 register int i;
2027 for (i = 0; i < includes_used; i++)
2028 if (!strcmp (namestring, psymtab_include_list[i]))
2029 {
2030 i = -1;
2031 break;
2032 }
2033 if (i == -1)
2034 continue;
2035 }
2036
2037 psymtab_include_list[includes_used++] = namestring;
2038 if (includes_used >= includes_allocated)
2039 {
2040 char **orig = psymtab_include_list;
2041
2042 psymtab_include_list = (char **)
2043 alloca ((includes_allocated *= 2) *
2044 sizeof (char *));
2045 bcopy (orig, psymtab_include_list,
2046 includes_used * sizeof (char *));
2047 }
2048 continue;
2049
2050 case N_LSYM: /* Typedef or automatic variable. */
2051 SET_NAMESTRING();
2052
2053 p = (char *) strchr (namestring, ':');
2054
2055 /* Skip if there is no :. */
2056 if (!p) continue;
2057
2058 switch (p[1])
2059 {
2060 case 'T':
2061 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2062 STRUCT_NAMESPACE, LOC_TYPEDEF,
2063 static_psymbols, bufp->n_value);
2064 if (p[2] == 't')
2065 {
2066 /* Also a typedef with the same name. */
2067 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2068 VAR_NAMESPACE, LOC_TYPEDEF,
2069 static_psymbols, bufp->n_value);
2070 p += 1;
2071 }
2072 goto check_enum;
2073 case 't':
2074 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2075 VAR_NAMESPACE, LOC_TYPEDEF,
2076 static_psymbols, bufp->n_value);
2077 check_enum:
2078 /* If this is an enumerated type, we need to
2079 add all the enum constants to the partial symbol
2080 table. This does not cover enums without names, e.g.
2081 "enum {a, b} c;" in C, but fortunately those are
2082 rare. There is no way for GDB to find those from the
2083 enum type without spending too much time on it. Thus
2084 to solve this problem, the compiler needs to put out separate
2085 constant symbols ('c' N_LSYMS) for enum constants in
2086 enums without names, or put out a dummy type. */
2087
2088 /* We are looking for something of the form
2089 <name> ":" ("t" | "T") [<number> "="] "e"
2090 {<constant> ":" <value> ","} ";". */
2091
2092 /* Skip over the colon and the 't' or 'T'. */
2093 p += 2;
2094 /* This type may be given a number. Skip over it. */
2095 while ((*p >= '0' && *p <= '9')
2096 || *p == '=')
2097 p++;
2098
2099 if (*p++ == 'e')
2100 {
2101 /* We have found an enumerated type. */
2102 /* According to comments in read_enum_type
2103 a comma could end it instead of a semicolon.
2104 I don't know where that happens.
2105 Accept either. */
2106 while (*p && *p != ';' && *p != ',')
2107 {
2108 char *q;
2109
2110 /* Check for and handle cretinous dbx symbol name
2111 continuation! */
2112 if (*p == '\\')
2113 p = next_symbol_text ();
2114
2115 /* Point to the character after the name
2116 of the enum constant. */
2117 for (q = p; *q && *q != ':'; q++)
2118 ;
2119 /* Note that the value doesn't matter for
2120 enum constants in psymtabs, just in symtabs. */
2121 ADD_PSYMBOL_TO_LIST (p, q - p,
2122 VAR_NAMESPACE, LOC_CONST,
2123 static_psymbols, 0);
2124 /* Point past the name. */
2125 p = q;
2126 /* Skip over the value. */
2127 while (*p && *p != ',')
2128 p++;
2129 /* Advance past the comma. */
2130 if (*p)
2131 p++;
2132 }
2133 }
2134
2135 continue;
2136 case 'c':
2137 /* Constant, e.g. from "const" in Pascal. */
2138 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2139 VAR_NAMESPACE, LOC_CONST,
2140 static_psymbols, bufp->n_value);
2141 continue;
2142 default:
2143 /* Skip if the thing following the : is
2144 not a letter (which indicates declaration of a local
2145 variable, which we aren't interested in). */
2146 continue;
2147 }
2148
2149 case N_FUN:
2150 case N_GSYM: /* Global (extern) variable; can be
2151 data or bss (sigh). */
2152 case N_STSYM: /* Data seg var -- static */
2153 case N_LCSYM: /* BSS " */
2154
2155 case N_NBSTS: /* Gould nobase. */
2156 case N_NBLCS: /* symbols. */
2157
2158 /* Following may probably be ignored; I'll leave them here
2159 for now (until I do Pascal and Modula 2 extensions). */
2160
2161 case N_PC: /* I may or may not need this; I
2162 suspect not. */
2163 case N_M2C: /* I suspect that I can ignore this here. */
2164 case N_SCOPE: /* Same. */
2165
2166 SET_NAMESTRING();
2167
2168 p = (char *) strchr (namestring, ':');
2169 if (!p)
2170 continue; /* Not a debugging symbol. */
2171
2172
2173
2174 /* Main processing section for debugging symbols which
2175 the initial read through the symbol tables needs to worry
2176 about. If we reach this point, the symbol which we are
2177 considering is definitely one we are interested in.
2178 p must also contain the (valid) index into the namestring
2179 which indicates the debugging type symbol. */
2180
2181 switch (p[1])
2182 {
2183 case 'c':
2184 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2185 VAR_NAMESPACE, LOC_CONST,
2186 static_psymbols, bufp->n_value);
2187 continue;
2188 case 'S':
2189 bufp->n_value += addr; /* Relocate */
2190 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2191 VAR_NAMESPACE, LOC_STATIC,
2192 static_psymbols, bufp->n_value);
2193 continue;
2194 case 'G':
2195 bufp->n_value += addr; /* Relocate */
2196 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2197 VAR_NAMESPACE, LOC_EXTERNAL,
2198 global_psymbols, bufp->n_value);
2199 continue;
2200
2201 case 't':
2202 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2203 VAR_NAMESPACE, LOC_TYPEDEF,
2204 global_psymbols, bufp->n_value);
2205 continue;
2206
2207 case 'f':
2208 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2209 VAR_NAMESPACE, LOC_BLOCK,
2210 static_psymbols, bufp->n_value);
2211 continue;
2212
2213 /* Global functions were ignored here, but now they
2214 are put into the global psymtab like one would expect.
2215 They're also in the misc fn vector...
2216 FIXME, why did it used to ignore these? That broke
2217 "i fun" on these functions. */
2218 case 'F':
2219 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2220 VAR_NAMESPACE, LOC_BLOCK,
2221 global_psymbols, bufp->n_value);
2222 continue;
2223
2224 /* Two things show up here (hopefully); static symbols of
2225 local scope (static used inside braces) or extensions
2226 of structure symbols. We can ignore both. */
2227 case 'V':
2228 case '(':
2229 case '0':
2230 case '1':
2231 case '2':
2232 case '3':
2233 case '4':
2234 case '5':
2235 case '6':
2236 case '7':
2237 case '8':
2238 case '9':
2239 continue;
2240
2241 default:
2242 /* Unexpected symbol. Ignore it; perhaps it is an extension
2243 that we don't know about.
2244
2245 Someone says sun cc puts out symbols like
2246 /foo/baz/maclib::/usr/local/bin/maclib,
2247 which would get here with a symbol type of ':'. */
2248 continue;
2249 }
2250
2251 case N_EXCL:
2252
2253 SET_NAMESTRING();
2254
2255 /* Find the corresponding bincl and mark that psymtab on the
2256 psymtab dependency list */
2257 {
2258 struct partial_symtab *needed_pst =
2259 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2260
2261 /* If this include file was defined earlier in this file,
2262 leave it alone. */
2263 if (needed_pst == pst) continue;
2264
2265 if (needed_pst)
2266 {
2267 int i;
2268 int found = 0;
2269
2270 for (i = 0; i < dependencies_used; i++)
2271 if (dependency_list[i] == needed_pst)
2272 {
2273 found = 1;
2274 break;
2275 }
2276
2277 /* If it's already in the list, skip the rest. */
2278 if (found) continue;
2279
2280 dependency_list[dependencies_used++] = needed_pst;
2281 if (dependencies_used >= dependencies_allocated)
2282 {
2283 struct partial_symtab **orig = dependency_list;
2284 dependency_list =
2285 (struct partial_symtab **)
2286 alloca ((dependencies_allocated *= 2)
2287 * sizeof (struct partial_symtab *));
2288 bcopy (orig, dependency_list,
2289 (dependencies_used
2290 * sizeof (struct partial_symtab *)));
2291 #ifdef DEBUG_INFO
2292 fprintf (stderr, "Had to reallocate dependency list.\n");
2293 fprintf (stderr, "New dependencies allocated: %d\n",
2294 dependencies_allocated);
2295 #endif
2296 }
2297 }
2298 else
2299 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2300 symnum);
2301 }
2302 continue;
2303
2304 case N_EINCL:
2305 case N_DSLINE:
2306 case N_BSLINE:
2307 case N_SSYM: /* Claim: Structure or union element.
2308 Hopefully, I can ignore this. */
2309 case N_ENTRY: /* Alternate entry point; can ignore. */
2310 case N_MAIN: /* Can definitely ignore this. */
2311 case N_CATCH: /* These are GNU C++ extensions */
2312 case N_EHDECL: /* that can safely be ignored here. */
2313 case N_LENG:
2314 case N_BCOMM:
2315 case N_ECOMM:
2316 case N_ECOML:
2317 case N_FNAME:
2318 case N_SLINE:
2319 case N_RSYM:
2320 case N_PSYM:
2321 case N_LBRAC:
2322 case N_RBRAC:
2323 case N_NSYMS: /* Ultrix 4.0: symbol count */
2324 /* These symbols aren't interesting; don't worry about them */
2325
2326 continue;
2327
2328 default:
2329 /* If we haven't found it yet, ignore it. It's probably some
2330 new type we don't know about yet. */
2331 complain (&unknown_symtype_complaint, bufp->n_type);
2332 continue;
2333 }
2334 }
2335
2336 /* If there's stuff to be cleaned up, clean it up. */
2337 if (entry_point < bufp->n_value
2338 && entry_point >= last_o_file_start)
2339 {
2340 startup_file_start = last_o_file_start;
2341 startup_file_end = bufp->n_value;
2342 }
2343
2344 if (pst)
2345 {
2346 end_psymtab (pst, psymtab_include_list, includes_used,
2347 symnum * sizeof (struct nlist), end_of_text_addr,
2348 dependency_list, dependencies_used,
2349 global_psymbols.next, static_psymbols.next);
2350 includes_used = 0;
2351 dependencies_used = 0;
2352 pst = (struct partial_symtab *) 0;
2353 }
2354
2355 free_bincl_list ();
2356 discard_cleanups (old_chain);
2357 }
2358
2359 /*
2360 * Allocate and partially fill a partial symtab. It will be
2361 * completely filled at the end of the symbol list.
2362
2363 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2364 is the address relative to which its symbols are (incremental) or 0
2365 (normal). */
2366 static struct partial_symtab *
2367 start_psymtab (symfile_name, addr,
2368 filename, textlow, ldsymoff, global_syms, static_syms)
2369 char *symfile_name;
2370 CORE_ADDR addr;
2371 char *filename;
2372 CORE_ADDR textlow;
2373 int ldsymoff;
2374 struct partial_symbol *global_syms;
2375 struct partial_symbol *static_syms;
2376 {
2377 struct partial_symtab *result =
2378 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2379 sizeof (struct partial_symtab));
2380
2381 result->addr = addr;
2382
2383 result->symfile_name =
2384 (char *) obstack_alloc (psymbol_obstack,
2385 strlen (symfile_name) + 1);
2386 strcpy (result->symfile_name, symfile_name);
2387
2388 result->filename =
2389 (char *) obstack_alloc (psymbol_obstack,
2390 strlen (filename) + 1);
2391 strcpy (result->filename, filename);
2392
2393 result->textlow = textlow;
2394 result->ldsymoff = ldsymoff;
2395
2396 result->readin = 0;
2397 result->symtab = 0;
2398 result->read_symtab = dbx_psymtab_to_symtab;
2399
2400 result->globals_offset = global_syms - global_psymbols.list;
2401 result->statics_offset = static_syms - static_psymbols.list;
2402
2403 result->n_global_syms = 0;
2404 result->n_static_syms = 0;
2405
2406
2407 return result;
2408 }
2409
2410 static int
2411 compare_psymbols (s1, s2)
2412 register struct partial_symbol *s1, *s2;
2413 {
2414 register char
2415 *st1 = SYMBOL_NAME (s1),
2416 *st2 = SYMBOL_NAME (s2);
2417
2418 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2419 strcmp (st1 + 1, st2 + 1));
2420 }
2421
2422
2423 /* Close off the current usage of a partial_symbol table entry. This
2424 involves setting the correct number of includes (with a realloc),
2425 setting the high text mark, setting the symbol length in the
2426 executable, and setting the length of the global and static lists
2427 of psymbols.
2428
2429 The global symbols and static symbols are then seperately sorted.
2430
2431 Then the partial symtab is put on the global list.
2432 *** List variables and peculiarities of same. ***
2433 */
2434 static void
2435 end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2436 capping_text, dependency_list, number_dependencies,
2437 capping_global, capping_static)
2438 struct partial_symtab *pst;
2439 char **include_list;
2440 int num_includes;
2441 int capping_symbol_offset;
2442 CORE_ADDR capping_text;
2443 struct partial_symtab **dependency_list;
2444 int number_dependencies;
2445 struct partial_symbol *capping_global, *capping_static;
2446 {
2447 int i;
2448
2449 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2450 pst->texthigh = capping_text;
2451
2452 pst->n_global_syms =
2453 capping_global - (global_psymbols.list + pst->globals_offset);
2454 pst->n_static_syms =
2455 capping_static - (static_psymbols.list + pst->statics_offset);
2456
2457 pst->number_of_dependencies = number_dependencies;
2458 if (number_dependencies)
2459 {
2460 pst->dependencies = (struct partial_symtab **)
2461 obstack_alloc (psymbol_obstack,
2462 number_dependencies * sizeof (struct partial_symtab *));
2463 bcopy (dependency_list, pst->dependencies,
2464 number_dependencies * sizeof (struct partial_symtab *));
2465 }
2466 else
2467 pst->dependencies = 0;
2468
2469 for (i = 0; i < num_includes; i++)
2470 {
2471 /* Eventually, put this on obstack */
2472 struct partial_symtab *subpst =
2473 (struct partial_symtab *)
2474 obstack_alloc (psymbol_obstack,
2475 sizeof (struct partial_symtab));
2476
2477 subpst->filename =
2478 (char *) obstack_alloc (psymbol_obstack,
2479 strlen (include_list[i]) + 1);
2480 strcpy (subpst->filename, include_list[i]);
2481
2482 subpst->symfile_name = pst->symfile_name;
2483 subpst->addr = pst->addr;
2484 subpst->ldsymoff =
2485 subpst->ldsymlen =
2486 subpst->textlow =
2487 subpst->texthigh = 0;
2488
2489 /* We could save slight bits of space by only making one of these,
2490 shared by the entire set of include files. FIXME-someday. */
2491 subpst->dependencies = (struct partial_symtab **)
2492 obstack_alloc (psymbol_obstack,
2493 sizeof (struct partial_symtab *));
2494 subpst->dependencies[0] = pst;
2495 subpst->number_of_dependencies = 1;
2496
2497 subpst->globals_offset =
2498 subpst->n_global_syms =
2499 subpst->statics_offset =
2500 subpst->n_static_syms = 0;
2501
2502 subpst->readin = 0;
2503 subpst->symtab = 0;
2504 subpst->read_symtab = dbx_psymtab_to_symtab;
2505
2506 subpst->next = partial_symtab_list;
2507 partial_symtab_list = subpst;
2508 }
2509
2510 /* Sort the global list; don't sort the static list */
2511 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2512 sizeof (struct partial_symbol), compare_psymbols);
2513
2514 /* If there is already a psymtab or symtab for a file of this name, remove it.
2515 (If there is a symtab, more drastic things also happen.)
2516 This happens in VxWorks. */
2517 free_named_symtabs (pst->filename);
2518
2519 /* Put the psymtab on the psymtab list */
2520 pst->next = partial_symtab_list;
2521 partial_symtab_list = pst;
2522 }
2523 \f
2524 static void
2525 psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2526 struct partial_symtab *pst;
2527 int desc;
2528 char *stringtab;
2529 int stringtab_size;
2530 int sym_offset;
2531 {
2532 struct cleanup *old_chain;
2533 int i;
2534
2535 if (!pst)
2536 return;
2537
2538 if (pst->readin)
2539 {
2540 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2541 pst->filename);
2542 return;
2543 }
2544
2545 /* Read in all partial symbtabs on which this one is dependent */
2546 for (i = 0; i < pst->number_of_dependencies; i++)
2547 if (!pst->dependencies[i]->readin)
2548 {
2549 /* Inform about additional files that need to be read in. */
2550 if (info_verbose)
2551 {
2552 fputs_filtered (" ", stdout);
2553 wrap_here ("");
2554 fputs_filtered ("and ", stdout);
2555 wrap_here ("");
2556 printf_filtered ("%s...", pst->dependencies[i]->filename);
2557 wrap_here (""); /* Flush output */
2558 fflush (stdout);
2559 }
2560 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2561 stringtab, stringtab_size, sym_offset);
2562 }
2563
2564 if (pst->ldsymlen) /* Otherwise it's a dummy */
2565 {
2566 /* Init stuff necessary for reading in symbols */
2567 free_pendings = 0;
2568 pending_blocks = 0;
2569 file_symbols = 0;
2570 global_symbols = 0;
2571 old_chain = make_cleanup (really_free_pendings, 0);
2572
2573 /* Read in this files symbols */
2574 lseek (desc, sym_offset, L_SET);
2575 read_ofile_symtab (desc, stringtab, stringtab_size,
2576 pst->ldsymoff,
2577 pst->ldsymlen, pst->textlow,
2578 pst->texthigh - pst->textlow, pst->addr);
2579 sort_symtab_syms (symtab_list); /* At beginning since just added */
2580
2581 do_cleanups (old_chain);
2582 }
2583
2584 pst->readin = 1;
2585 }
2586
2587 /*
2588 * Read in all of the symbols for a given psymtab for real.
2589 * Be verbose about it if the user wants that.
2590 */
2591 static void
2592 dbx_psymtab_to_symtab (pst)
2593 struct partial_symtab *pst;
2594 {
2595 int desc;
2596 char *stringtab;
2597 int stsize, val;
2598 struct stat statbuf;
2599 struct cleanup *old_chain;
2600 bfd *sym_bfd;
2601 long st_temp;
2602
2603 if (!pst)
2604 return;
2605
2606 if (pst->readin)
2607 {
2608 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2609 pst->filename);
2610 return;
2611 }
2612
2613 if (pst->ldsymlen || pst->number_of_dependencies)
2614 {
2615 /* Print the message now, before reading the string table,
2616 to avoid disconcerting pauses. */
2617 if (info_verbose)
2618 {
2619 printf_filtered ("Reading in symbols for %s...", pst->filename);
2620 fflush (stdout);
2621 }
2622
2623 /* Open symbol file and read in string table. Symbol_file_command
2624 guarantees that the symbol file name will be absolute, so there is
2625 no need for openp. */
2626 desc = open(pst->symfile_name, O_RDONLY, 0);
2627
2628 if (desc < 0)
2629 perror_with_name (pst->symfile_name);
2630
2631 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2632 if (!sym_bfd)
2633 {
2634 (void)close (desc);
2635 error ("Could not open `%s' to read symbols: %s",
2636 pst->symfile_name, bfd_errmsg (bfd_error));
2637 }
2638 old_chain = make_cleanup (bfd_close, sym_bfd);
2639 if (!bfd_check_format (sym_bfd, bfd_object))
2640 error ("\"%s\": can't read symbols: %s.",
2641 pst->symfile_name, bfd_errmsg (bfd_error));
2642
2643 /* We keep the string table for symfile resident in memory, but
2644 not the string table for any other symbol files. */
2645 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
2646 {
2647 /* Read in the string table */
2648
2649 /* FIXME, this uses internal BFD variables. See above in
2650 dbx_symbol_file_open where the macro is defined! */
2651 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2652
2653 val = myread (desc, &st_temp, sizeof st_temp);
2654 if (val < 0)
2655 perror_with_name (pst->symfile_name);
2656 stsize = bfd_h_getlong (sym_bfd, (unsigned char *)&st_temp);
2657 if (fstat (desc, &statbuf) < 0)
2658 perror_with_name (pst->symfile_name);
2659
2660 if (stsize >= 0 && stsize < statbuf.st_size)
2661 {
2662 #ifdef BROKEN_LARGE_ALLOCA
2663 stringtab = (char *) xmalloc (stsize);
2664 make_cleanup (free, stringtab);
2665 #else
2666 stringtab = (char *) alloca (stsize);
2667 #endif
2668 }
2669 else
2670 stringtab = NULL;
2671 if (stringtab == NULL && stsize != 0)
2672 error ("ridiculous string table size: %d bytes", stsize);
2673
2674 /* FIXME, this uses internal BFD variables. See above in
2675 dbx_symbol_file_open where the macro is defined! */
2676 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2677 if (val < 0)
2678 perror_with_name (pst->symfile_name);
2679 val = myread (desc, stringtab, stsize);
2680 if (val < 0)
2681 perror_with_name (pst->symfile_name);
2682 }
2683 else
2684 {
2685 stringtab = symfile_string_table;
2686 stsize = symfile_string_table_size;
2687 }
2688
2689 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2690
2691 /* FIXME, this uses internal BFD variables. See above in
2692 dbx_symbol_file_open where the macro is defined! */
2693 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2694 SYMBOL_TABLE_OFFSET);
2695
2696 /* Match with global symbols. This only needs to be done once,
2697 after all of the symtabs and dependencies have been read in. */
2698 scan_file_globals ();
2699
2700 do_cleanups (old_chain);
2701
2702 /* Finish up the debug error message. */
2703 if (info_verbose)
2704 printf_filtered ("done.\n");
2705 }
2706 }
2707
2708 /*
2709 * Scan through all of the global symbols defined in the object file,
2710 * assigning values to the debugging symbols that need to be assigned
2711 * to. Get these symbols from the misc function list.
2712 */
2713 static void
2714 scan_file_globals ()
2715 {
2716 int hash;
2717 int mf;
2718
2719 for (mf = 0; mf < misc_function_count; mf++)
2720 {
2721 char *namestring = misc_function_vector[mf].name;
2722 struct symbol *sym, *prev;
2723
2724 QUIT;
2725
2726 prev = (struct symbol *) 0;
2727
2728 /* Get the hash index and check all the symbols
2729 under that hash index. */
2730
2731 hash = hashname (namestring);
2732
2733 for (sym = global_sym_chain[hash]; sym;)
2734 {
2735 if (*namestring == SYMBOL_NAME (sym)[0]
2736 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2737 {
2738 /* Splice this symbol out of the hash chain and
2739 assign the value we have to it. */
2740 if (prev)
2741 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2742 else
2743 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2744
2745 /* Check to see whether we need to fix up a common block. */
2746 /* Note: this code might be executed several times for
2747 the same symbol if there are multiple references. */
2748 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2749 fix_common_block (sym, misc_function_vector[mf].address);
2750 else
2751 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2752
2753 if (prev)
2754 sym = SYMBOL_VALUE_CHAIN (prev);
2755 else
2756 sym = global_sym_chain[hash];
2757 }
2758 else
2759 {
2760 prev = sym;
2761 sym = SYMBOL_VALUE_CHAIN (sym);
2762 }
2763 }
2764 }
2765 }
2766
2767 /* Process a pair of symbols. Currently they must both be N_SO's. */
2768 static void
2769 process_symbol_pair (type1, desc1, value1, name1,
2770 type2, desc2, value2, name2)
2771 int type1;
2772 int desc1;
2773 CORE_ADDR value1;
2774 char *name1;
2775 int type2;
2776 int desc2;
2777 CORE_ADDR value2;
2778 char *name2;
2779 {
2780 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2781 broken PCC's don't put out N_SO pairs. */
2782 if (last_source_file)
2783 end_symtab (value2);
2784 start_symtab (name2, name1, value2);
2785 }
2786
2787 /*
2788 * Read in a defined section of a specific object file's symbols.
2789 *
2790 * DESC is the file descriptor for the file, positioned at the
2791 * beginning of the symtab
2792 * STRINGTAB is a pointer to the files string
2793 * table, already read in
2794 * SYM_OFFSET is the offset within the file of
2795 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2796 * number of symbols to read
2797 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2798 * TEXT_SIZE is the size of the text segment read in.
2799 * OFFSET is a relocation offset which gets added to each symbol
2800 */
2801
2802 static void
2803 read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2804 sym_size, text_offset, text_size, offset)
2805 int desc;
2806 register char *stringtab;
2807 unsigned int stringtab_size;
2808 int sym_offset;
2809 int sym_size;
2810 CORE_ADDR text_offset;
2811 int text_size;
2812 int offset;
2813 {
2814 register char *namestring;
2815 struct nlist *bufp;
2816 unsigned char type;
2817 subfile_stack = 0;
2818
2819 stringtab_global = stringtab;
2820 last_source_file = 0;
2821
2822 symtab_input_desc = desc;
2823 symbuf_end = symbuf_idx = 0;
2824
2825 /* It is necessary to actually read one symbol *before* the start
2826 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2827 occurs before the N_SO symbol.
2828
2829 Detecting this in read_dbx_symtab
2830 would slow down initial readin, so we look for it here instead. */
2831 if (sym_offset >= (int)sizeof (struct nlist))
2832 {
2833 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2834 fill_symbuf ();
2835 bufp = &symbuf[symbuf_idx++];
2836 SWAP_SYMBOL (bufp);
2837
2838 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2839 error ("Invalid symbol data: bad string table offset: %d",
2840 bufp->n_un.n_strx);
2841 namestring = bufp->n_un.n_strx + stringtab;
2842
2843 processing_gcc_compilation =
2844 (bufp->n_type == N_TEXT
2845 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2846 }
2847 else
2848 {
2849 /* The N_SO starting this symtab is the first symbol, so we
2850 better not check the symbol before it. I'm not this can
2851 happen, but it doesn't hurt to check for it. */
2852 lseek(desc, sym_offset, L_INCR);
2853 processing_gcc_compilation = 0;
2854 }
2855
2856 if (symbuf_idx == symbuf_end)
2857 fill_symbuf();
2858 bufp = &symbuf[symbuf_idx];
2859 if (bufp->n_type != (unsigned char)N_SO)
2860 error("First symbol in segment of executable not a source symbol");
2861
2862 for (symnum = 0;
2863 symnum < sym_size / sizeof(struct nlist);
2864 symnum++)
2865 {
2866 QUIT; /* Allow this to be interruptable */
2867 if (symbuf_idx == symbuf_end)
2868 fill_symbuf();
2869 bufp = &symbuf[symbuf_idx++];
2870 SWAP_SYMBOL (bufp);
2871
2872 type = bufp->n_type & N_TYPE;
2873 if (type == (unsigned char)N_CATCH)
2874 {
2875 /* N_CATCH is not fixed up by the linker, and unfortunately,
2876 there's no other place to put it in the .stab map. */
2877 bufp->n_value += text_offset + offset;
2878 }
2879 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2880 bufp->n_value += offset;
2881
2882 type = bufp->n_type;
2883 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2884 error ("Invalid symbol data: bad string table offset: %d",
2885 bufp->n_un.n_strx);
2886 namestring = bufp->n_un.n_strx + stringtab;
2887
2888 if (type & N_STAB)
2889 {
2890 short desc = bufp->n_desc;
2891 unsigned long valu = bufp->n_value;
2892
2893 /* Check for a pair of N_SO symbols. */
2894 if (type == (unsigned char)N_SO)
2895 {
2896 if (symbuf_idx == symbuf_end)
2897 fill_symbuf ();
2898 bufp = &symbuf[symbuf_idx];
2899 if (bufp->n_type == (unsigned char)N_SO)
2900 {
2901 char *namestring2;
2902
2903 SWAP_SYMBOL (bufp);
2904 bufp->n_value += offset; /* Relocate */
2905 symbuf_idx++;
2906 symnum++;
2907
2908 if (bufp->n_un.n_strx < 0
2909 || bufp->n_un.n_strx >= stringtab_size)
2910 error ("Invalid symbol data: bad string table offset: %d",
2911 bufp->n_un.n_strx);
2912 namestring2 = bufp->n_un.n_strx + stringtab;
2913
2914 process_symbol_pair (N_SO, desc, valu, namestring,
2915 N_SO, bufp->n_desc, bufp->n_value,
2916 namestring2);
2917 }
2918 else
2919 process_one_symbol(type, desc, valu, namestring);
2920 }
2921 else
2922 process_one_symbol (type, desc, valu, namestring);
2923 }
2924 /* We skip checking for a new .o or -l file; that should never
2925 happen in this routine. */
2926 else if (type == N_TEXT
2927 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2928 /* I don't think this code will ever be executed, because
2929 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2930 the N_SO symbol which starts this source file.
2931 However, there is no reason not to accept
2932 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2933 processing_gcc_compilation = 1;
2934 else if (type & N_EXT || type == (unsigned char)N_TEXT
2935 || type == (unsigned char)N_NBTEXT
2936 )
2937 /* Global symbol: see if we came across a dbx defintion for
2938 a corresponding symbol. If so, store the value. Remove
2939 syms from the chain when their values are stored, but
2940 search the whole chain, as there may be several syms from
2941 different files with the same name. */
2942 /* This is probably not true. Since the files will be read
2943 in one at a time, each reference to a global symbol will
2944 be satisfied in each file as it appears. So we skip this
2945 section. */
2946 ;
2947 }
2948 end_symtab (text_offset + text_size);
2949 }
2950 \f
2951 static int
2952 hashname (name)
2953 char *name;
2954 {
2955 register char *p = name;
2956 register int total = p[0];
2957 register int c;
2958
2959 c = p[1];
2960 total += c << 2;
2961 if (c)
2962 {
2963 c = p[2];
2964 total += c << 4;
2965 if (c)
2966 total += p[3] << 6;
2967 }
2968
2969 /* Ensure result is positive. */
2970 if (total < 0) total += (1000 << 6);
2971 return total % HASHSIZE;
2972 }
2973
2974 \f
2975 static void
2976 process_one_symbol (type, desc, valu, name)
2977 int type, desc;
2978 CORE_ADDR valu;
2979 char *name;
2980 {
2981 #ifndef SUN_FIXED_LBRAC_BUG
2982 /* This records the last pc address we've seen. We depend on their being
2983 an SLINE or FUN or SO before the first LBRAC, since the variable does
2984 not get reset in between reads of different symbol files. */
2985 static CORE_ADDR last_pc_address;
2986 #endif
2987 register struct context_stack *new;
2988 char *colon_pos;
2989
2990 /* Something is wrong if we see real data before
2991 seeing a source file name. */
2992
2993 if (last_source_file == 0 && type != (unsigned char)N_SO)
2994 {
2995 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2996 where that code is defined. */
2997 if (IGNORE_SYMBOL (type))
2998 return;
2999
3000 /* FIXME, this should not be an error, since it precludes extending
3001 the symbol table information in this way... */
3002 error ("Invalid symbol data: does not start by identifying a source file.");
3003 }
3004
3005 switch (type)
3006 {
3007 case N_FUN:
3008 case N_FNAME:
3009 /* Either of these types of symbols indicates the start of
3010 a new function. We must process its "name" normally for dbx,
3011 but also record the start of a new lexical context, and possibly
3012 also the end of the lexical context for the previous function. */
3013 /* This is not always true. This type of symbol may indicate a
3014 text segment variable. */
3015
3016 #ifndef SUN_FIXED_LBRAC_BUG
3017 last_pc_address = valu; /* Save for SunOS bug circumcision */
3018 #endif
3019
3020 colon_pos = strchr (name, ':');
3021 if (!colon_pos++
3022 || (*colon_pos != 'f' && *colon_pos != 'F'))
3023 {
3024 define_symbol (valu, name, desc, type);
3025 break;
3026 }
3027
3028 within_function = 1;
3029 if (context_stack_depth > 0)
3030 {
3031 new = &context_stack[--context_stack_depth];
3032 /* Make a block for the local symbols within. */
3033 finish_block (new->name, &local_symbols, new->old_blocks,
3034 new->start_addr, valu);
3035 }
3036 /* Stack must be empty now. */
3037 if (context_stack_depth != 0)
3038 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3039 symnum);
3040
3041 new = &context_stack[context_stack_depth++];
3042 new->old_blocks = pending_blocks;
3043 new->start_addr = valu;
3044 new->name = define_symbol (valu, name, desc, type);
3045 local_symbols = 0;
3046 break;
3047
3048 case N_CATCH:
3049 /* Record the address at which this catch takes place. */
3050 define_symbol (valu, name, desc, type);
3051 break;
3052
3053 case N_EHDECL:
3054 /* Don't know what to do with these yet. */
3055 error ("action uncertain for eh extensions");
3056 break;
3057
3058 case N_LBRAC:
3059 /* This "symbol" just indicates the start of an inner lexical
3060 context within a function. */
3061
3062 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3063 /* On most machines, the block addresses are relative to the
3064 N_SO, the linker did not relocate them (sigh). */
3065 valu += last_source_start_addr;
3066 #endif
3067
3068 #ifndef SUN_FIXED_LBRAC_BUG
3069 if (valu < last_pc_address) {
3070 /* Patch current LBRAC pc value to match last handy pc value */
3071 complain (&lbrac_complaint, 0);
3072 valu = last_pc_address;
3073 }
3074 #endif
3075 if (context_stack_depth == context_stack_size)
3076 {
3077 context_stack_size *= 2;
3078 context_stack = (struct context_stack *)
3079 xrealloc (context_stack,
3080 (context_stack_size
3081 * sizeof (struct context_stack)));
3082 }
3083
3084 new = &context_stack[context_stack_depth++];
3085 new->depth = desc;
3086 new->locals = local_symbols;
3087 new->old_blocks = pending_blocks;
3088 new->start_addr = valu;
3089 new->name = 0;
3090 local_symbols = 0;
3091 break;
3092
3093 case N_RBRAC:
3094 /* This "symbol" just indicates the end of an inner lexical
3095 context that was started with N_LBRAC. */
3096
3097 #if !defined (BLOCK_ADDRESS_ABSOLUTE)
3098 /* On most machines, the block addresses are relative to the
3099 N_SO, the linker did not relocate them (sigh). */
3100 valu += last_source_start_addr;
3101 #endif
3102
3103 new = &context_stack[--context_stack_depth];
3104 if (desc != new->depth)
3105 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3106
3107 /* Some compilers put the variable decls inside of an
3108 LBRAC/RBRAC block. This macro should be nonzero if this
3109 is true. DESC is N_DESC from the N_RBRAC symbol.
3110 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3111 #if !defined (VARIABLES_INSIDE_BLOCK)
3112 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3113 #endif
3114
3115 /* Can only use new->locals as local symbols here if we're in
3116 gcc or on a machine that puts them before the lbrack. */
3117 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3118 local_symbols = new->locals;
3119
3120 /* If this is not the outermost LBRAC...RBRAC pair in the
3121 function, its local symbols preceded it, and are the ones
3122 just recovered from the context stack. Defined the block for them.
3123
3124 If this is the outermost LBRAC...RBRAC pair, there is no
3125 need to do anything; leave the symbols that preceded it
3126 to be attached to the function's own block. However, if
3127 it is so, we need to indicate that we just moved outside
3128 of the function. */
3129 if (local_symbols
3130 && (context_stack_depth
3131 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3132 {
3133 /* FIXME Muzzle a compiler bug that makes end < start. */
3134 if (new->start_addr > valu)
3135 {
3136 complain(&lbrac_rbrac_complaint, 0);
3137 new->start_addr = valu;
3138 }
3139 /* Make a block for the local symbols within. */
3140 finish_block (0, &local_symbols, new->old_blocks,
3141 new->start_addr, valu);
3142 }
3143 else
3144 {
3145 within_function = 0;
3146 }
3147 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3148 /* Now pop locals of block just finished. */
3149 local_symbols = new->locals;
3150 break;
3151
3152 case N_FN | N_EXT:
3153 /* This kind of symbol supposedly indicates the start
3154 of an object file. In fact this type does not appear. */
3155 break;
3156
3157 case N_SO:
3158 /* This type of symbol indicates the start of data
3159 for one source file.
3160 Finish the symbol table of the previous source file
3161 (if any) and start accumulating a new symbol table. */
3162 #ifndef SUN_FIXED_LBRAC_BUG
3163 last_pc_address = valu; /* Save for SunOS bug circumcision */
3164 #endif
3165
3166 #ifdef PCC_SOL_BROKEN
3167 /* pcc bug, occasionally puts out SO for SOL. */
3168 if (context_stack_depth > 0)
3169 {
3170 start_subfile (name, NULL);
3171 break;
3172 }
3173 #endif
3174 if (last_source_file)
3175 end_symtab (valu);
3176 start_symtab (name, NULL, valu);
3177 break;
3178
3179 case N_SOL:
3180 /* This type of symbol indicates the start of data for
3181 a sub-source-file, one whose contents were copied or
3182 included in the compilation of the main source file
3183 (whose name was given in the N_SO symbol.) */
3184 start_subfile (name, NULL);
3185 break;
3186
3187 case N_BINCL:
3188 push_subfile ();
3189 add_new_header_file (name, valu);
3190 start_subfile (name, NULL);
3191 break;
3192
3193 case N_EINCL:
3194 start_subfile (pop_subfile (), NULL);
3195 break;
3196
3197 case N_EXCL:
3198 add_old_header_file (name, valu);
3199 break;
3200
3201 case N_SLINE:
3202 /* This type of "symbol" really just records
3203 one line-number -- core-address correspondence.
3204 Enter it in the line list for this symbol table. */
3205 #ifndef SUN_FIXED_LBRAC_BUG
3206 last_pc_address = valu; /* Save for SunOS bug circumcision */
3207 #endif
3208 record_line (desc, valu);
3209 break;
3210
3211 case N_BCOMM:
3212 if (common_block)
3213 error ("Invalid symbol data: common within common at symtab pos %d",
3214 symnum);
3215 common_block = local_symbols;
3216 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3217 break;
3218
3219 case N_ECOMM:
3220 /* Symbols declared since the BCOMM are to have the common block
3221 start address added in when we know it. common_block points to
3222 the first symbol after the BCOMM in the local_symbols list;
3223 copy the list and hang it off the symbol for the common block name
3224 for later fixup. */
3225 {
3226 int i;
3227 struct symbol *sym =
3228 (struct symbol *) xmalloc (sizeof (struct symbol));
3229 bzero (sym, sizeof *sym);
3230 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3231 SYMBOL_CLASS (sym) = LOC_BLOCK;
3232 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3233 copy_pending (local_symbols, common_block_i, common_block));
3234 i = hashname (SYMBOL_NAME (sym));
3235 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3236 global_sym_chain[i] = sym;
3237 common_block = 0;
3238 break;
3239 }
3240
3241 case N_ECOML:
3242 case N_LENG:
3243 break;
3244
3245 default:
3246 if (name)
3247 define_symbol (valu, name, desc, type);
3248 }
3249 }
3250 \f
3251 /* Read a number by which a type is referred to in dbx data,
3252 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3253 Just a single number N is equivalent to (0,N).
3254 Return the two numbers by storing them in the vector TYPENUMS.
3255 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3256
3257 static void
3258 read_type_number (pp, typenums)
3259 register char **pp;
3260 register int *typenums;
3261 {
3262 if (**pp == '(')
3263 {
3264 (*pp)++;
3265 typenums[0] = read_number (pp, ',');
3266 typenums[1] = read_number (pp, ')');
3267 }
3268 else
3269 {
3270 typenums[0] = 0;
3271 typenums[1] = read_number (pp, 0);
3272 }
3273 }
3274 \f
3275 /* To handle GNU C++ typename abbreviation, we need to be able to
3276 fill in a type's name as soon as space for that type is allocated.
3277 `type_synonym_name' is the name of the type being allocated.
3278 It is cleared as soon as it is used (lest all allocated types
3279 get this name). */
3280 static char *type_synonym_name;
3281
3282 static struct symbol *
3283 define_symbol (valu, string, desc, type)
3284 unsigned int valu;
3285 char *string;
3286 int desc;
3287 int type;
3288 {
3289 register struct symbol *sym;
3290 char *p = (char *) strchr (string, ':');
3291 int deftype;
3292 int synonym = 0;
3293 register int i;
3294
3295 /* Ignore syms with empty names. */
3296 if (string[0] == 0)
3297 return 0;
3298
3299 /* Ignore old-style symbols from cc -go */
3300 if (p == 0)
3301 return 0;
3302
3303 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3304
3305 if (processing_gcc_compilation) {
3306 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3307 number of bytes occupied by a type or object, which we ignore. */
3308 SYMBOL_LINE(sym) = desc;
3309 } else {
3310 SYMBOL_LINE(sym) = 0; /* unknown */
3311 }
3312
3313 if (string[0] == CPLUS_MARKER)
3314 {
3315 /* Special GNU C++ names. */
3316 switch (string[1])
3317 {
3318 case 't':
3319 SYMBOL_NAME (sym) = "this";
3320 break;
3321 case 'v': /* $vtbl_ptr_type */
3322 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3323 goto normal;
3324 case 'e':
3325 SYMBOL_NAME (sym) = "eh_throw";
3326 break;
3327
3328 case '_':
3329 /* This was an anonymous type that was never fixed up. */
3330 goto normal;
3331
3332 default:
3333 abort ();
3334 }
3335 }
3336 else
3337 {
3338 normal:
3339 SYMBOL_NAME (sym)
3340 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3341 /* Open-coded bcopy--saves function call time. */
3342 {
3343 register char *p1 = string;
3344 register char *p2 = SYMBOL_NAME (sym);
3345 while (p1 != p)
3346 *p2++ = *p1++;
3347 *p2++ = '\0';
3348 }
3349 }
3350 p++;
3351 /* Determine the type of name being defined. */
3352 /* The Acorn RISC machine's compiler can put out locals that don't
3353 start with "234=" or "(3,4)=", so assume anything other than the
3354 deftypes we know how to handle is a local. */
3355 /* (Peter Watkins @ Computervision)
3356 Handle Sun-style local fortran array types 'ar...' .
3357 (gnu@cygnus.com) -- this strchr() handles them properly?
3358 (tiemann@cygnus.com) -- 'C' is for catch. */
3359 if (!strchr ("cfFGpPrStTvVXC", *p))
3360 deftype = 'l';
3361 else
3362 deftype = *p++;
3363
3364 /* c is a special case, not followed by a type-number.
3365 SYMBOL:c=iVALUE for an integer constant symbol.
3366 SYMBOL:c=rVALUE for a floating constant symbol.
3367 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3368 e.g. "b:c=e6,0" for "const b = blob1"
3369 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3370 if (deftype == 'c')
3371 {
3372 if (*p++ != '=')
3373 error ("Invalid symbol data at symtab pos %d.", symnum);
3374 switch (*p++)
3375 {
3376 case 'r':
3377 {
3378 double d = atof (p);
3379 char *valu;
3380
3381 SYMBOL_TYPE (sym) = builtin_type_double;
3382 valu = (char *) obstack_alloc (symbol_obstack, sizeof (double));
3383 bcopy (&d, valu, sizeof (double));
3384 SWAP_TARGET_AND_HOST (valu, sizeof (double));
3385 SYMBOL_VALUE_BYTES (sym) = valu;
3386 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3387 }
3388 break;
3389 case 'i':
3390 {
3391 SYMBOL_TYPE (sym) = builtin_type_int;
3392 SYMBOL_VALUE (sym) = atoi (p);
3393 SYMBOL_CLASS (sym) = LOC_CONST;
3394 }
3395 break;
3396 case 'e':
3397 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3398 e.g. "b:c=e6,0" for "const b = blob1"
3399 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3400 {
3401 int typenums[2];
3402
3403 read_type_number (&p, typenums);
3404 if (*p++ != ',')
3405 error ("Invalid symbol data: no comma in enum const symbol");
3406
3407 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3408 SYMBOL_VALUE (sym) = atoi (p);
3409 SYMBOL_CLASS (sym) = LOC_CONST;
3410 }
3411 break;
3412 default:
3413 error ("Invalid symbol data at symtab pos %d.", symnum);
3414 }
3415 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3416 add_symbol_to_list (sym, &file_symbols);
3417 return sym;
3418 }
3419
3420 /* Now usually comes a number that says which data type,
3421 and possibly more stuff to define the type
3422 (all of which is handled by read_type) */
3423
3424 if (deftype == 'p' && *p == 'F')
3425 /* pF is a two-letter code that means a function parameter in Fortran.
3426 The type-number specifies the type of the return value.
3427 Translate it into a pointer-to-function type. */
3428 {
3429 p++;
3430 SYMBOL_TYPE (sym)
3431 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3432 }
3433 else
3434 {
3435 struct type *type;
3436 synonym = *p == 't';
3437
3438 if (synonym)
3439 {
3440 p += 1;
3441 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3442 strlen (SYMBOL_NAME (sym)));
3443 }
3444
3445 type = read_type (&p);
3446
3447 if ((deftype == 'F' || deftype == 'f')
3448 && TYPE_CODE (type) != TYPE_CODE_FUNC)
3449 SYMBOL_TYPE (sym) = lookup_function_type (type);
3450 else
3451 SYMBOL_TYPE (sym) = type;
3452 }
3453
3454 switch (deftype)
3455 {
3456 case 'C':
3457 /* The name of a caught exception. */
3458 SYMBOL_CLASS (sym) = LOC_LABEL;
3459 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3460 SYMBOL_VALUE_ADDRESS (sym) = valu;
3461 add_symbol_to_list (sym, &local_symbols);
3462 break;
3463
3464 case 'f':
3465 SYMBOL_CLASS (sym) = LOC_BLOCK;
3466 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3467 add_symbol_to_list (sym, &file_symbols);
3468 break;
3469
3470 case 'F':
3471 SYMBOL_CLASS (sym) = LOC_BLOCK;
3472 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3473 add_symbol_to_list (sym, &global_symbols);
3474 break;
3475
3476 case 'G':
3477 /* For a class G (global) symbol, it appears that the
3478 value is not correct. It is necessary to search for the
3479 corresponding linker definition to find the value.
3480 These definitions appear at the end of the namelist. */
3481 i = hashname (SYMBOL_NAME (sym));
3482 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3483 global_sym_chain[i] = sym;
3484 SYMBOL_CLASS (sym) = LOC_STATIC;
3485 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3486 add_symbol_to_list (sym, &global_symbols);
3487 break;
3488
3489 /* This case is faked by a conditional above,
3490 when there is no code letter in the dbx data.
3491 Dbx data never actually contains 'l'. */
3492 case 'l':
3493 SYMBOL_CLASS (sym) = LOC_LOCAL;
3494 SYMBOL_VALUE (sym) = valu;
3495 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3496 add_symbol_to_list (sym, &local_symbols);
3497 break;
3498
3499 case 'p':
3500 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3501 can also be a LOC_LOCAL_ARG depending on symbol type. */
3502 #ifndef DBX_PARM_SYMBOL_CLASS
3503 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3504 #endif
3505 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3506 SYMBOL_VALUE (sym) = valu;
3507 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3508 add_symbol_to_list (sym, &local_symbols);
3509
3510 /* If it's gcc-compiled, if it says `short', believe it. */
3511 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3512 break;
3513
3514 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
3515 /* This macro is defined on machines (e.g. sparc) where
3516 we should believe the type of a PCC 'short' argument,
3517 but shouldn't believe the address (the address is
3518 the address of the corresponding int). Note that
3519 this is only different from the BELIEVE_PCC_PROMOTION
3520 case on big-endian machines.
3521
3522 My guess is that this correction, as opposed to changing
3523 the parameter to an 'int' (as done below, for PCC
3524 on most machines), is the right thing to do
3525 on all machines, but I don't want to risk breaking
3526 something that already works. On most PCC machines,
3527 the sparc problem doesn't come up because the calling
3528 function has to zero the top bytes (not knowing whether
3529 the called function wants an int or a short), so there
3530 is no practical difference between an int and a short
3531 (except perhaps what happens when the GDB user types
3532 "print short_arg = 0x10000;").
3533
3534 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3535 actually produces the correct address (we don't need to fix it
3536 up). I made this code adapt so that it will offset the symbol
3537 if it was pointing at an int-aligned location and not
3538 otherwise. This way you can use the same gdb for 4.0.x and
3539 4.1 systems. */
3540
3541 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3542 {
3543 if (SYMBOL_TYPE (sym) == builtin_type_char
3544 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3545 SYMBOL_VALUE (sym) += 3;
3546 else if (SYMBOL_TYPE (sym) == builtin_type_short
3547 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3548 SYMBOL_VALUE (sym) += 2;
3549 }
3550 break;
3551
3552 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3553
3554 /* If PCC says a parameter is a short or a char,
3555 it is really an int. */
3556 if (SYMBOL_TYPE (sym) == builtin_type_char
3557 || SYMBOL_TYPE (sym) == builtin_type_short)
3558 SYMBOL_TYPE (sym) = builtin_type_int;
3559 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3560 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3561 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3562 break;
3563
3564 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3565
3566 case 'P':
3567 SYMBOL_CLASS (sym) = LOC_REGPARM;
3568 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3569 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3570 add_symbol_to_list (sym, &local_symbols);
3571 break;
3572
3573 case 'r':
3574 SYMBOL_CLASS (sym) = LOC_REGISTER;
3575 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3576 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3577 add_symbol_to_list (sym, &local_symbols);
3578 break;
3579
3580 case 'S':
3581 /* Static symbol at top level of file */
3582 SYMBOL_CLASS (sym) = LOC_STATIC;
3583 SYMBOL_VALUE_ADDRESS (sym) = valu;
3584 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3585 add_symbol_to_list (sym, &file_symbols);
3586 break;
3587
3588 case 't':
3589 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3590 SYMBOL_VALUE (sym) = valu;
3591 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3592 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3593 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3594 TYPE_NAME (SYMBOL_TYPE (sym)) =
3595 obsavestring (SYMBOL_NAME (sym),
3596 strlen (SYMBOL_NAME (sym)));
3597 /* C++ vagaries: we may have a type which is derived from
3598 a base type which did not have its name defined when the
3599 derived class was output. We fill in the derived class's
3600 base part member's name here in that case. */
3601 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3602 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3603 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3604 {
3605 int i;
3606 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3607 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3608 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3609 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3610 }
3611
3612 add_symbol_to_list (sym, &file_symbols);
3613 break;
3614
3615 case 'T':
3616 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3617 SYMBOL_VALUE (sym) = valu;
3618 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3619 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3620 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3621 TYPE_NAME (SYMBOL_TYPE (sym))
3622 = obconcat ("",
3623 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3624 ? "enum "
3625 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3626 ? "struct " : "union ")),
3627 SYMBOL_NAME (sym));
3628 add_symbol_to_list (sym, &file_symbols);
3629
3630 if (synonym)
3631 {
3632 register struct symbol *typedef_sym
3633 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3634 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3635 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3636
3637 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3638 SYMBOL_VALUE (typedef_sym) = valu;
3639 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3640 add_symbol_to_list (typedef_sym, &file_symbols);
3641 }
3642 break;
3643
3644 case 'V':
3645 /* Static symbol of local scope */
3646 SYMBOL_CLASS (sym) = LOC_STATIC;
3647 SYMBOL_VALUE_ADDRESS (sym) = valu;
3648 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3649 add_symbol_to_list (sym, &local_symbols);
3650 break;
3651
3652 case 'v':
3653 /* Reference parameter */
3654 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3655 SYMBOL_VALUE (sym) = valu;
3656 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3657 add_symbol_to_list (sym, &local_symbols);
3658 break;
3659
3660 case 'X':
3661 /* This is used by Sun FORTRAN for "function result value".
3662 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3663 that Pascal uses it too, but when I tried it Pascal used
3664 "x:3" (local symbol) instead. */
3665 SYMBOL_CLASS (sym) = LOC_LOCAL;
3666 SYMBOL_VALUE (sym) = valu;
3667 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3668 add_symbol_to_list (sym, &local_symbols);
3669 break;
3670
3671 default:
3672 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3673 }
3674 return sym;
3675 }
3676 \f
3677 /* What about types defined as forward references inside of a small lexical
3678 scope? */
3679 /* Add a type to the list of undefined types to be checked through
3680 once this file has been read in. */
3681 static void
3682 add_undefined_type (type)
3683 struct type *type;
3684 {
3685 if (undef_types_length == undef_types_allocated)
3686 {
3687 undef_types_allocated *= 2;
3688 undef_types = (struct type **)
3689 xrealloc (undef_types,
3690 undef_types_allocated * sizeof (struct type *));
3691 }
3692 undef_types[undef_types_length++] = type;
3693 }
3694
3695 /* Add here something to go through each undefined type, see if it's
3696 still undefined, and do a full lookup if so. */
3697 static void
3698 cleanup_undefined_types ()
3699 {
3700 struct type **type;
3701
3702 for (type = undef_types; type < undef_types + undef_types_length; type++)
3703 {
3704 /* Reasonable test to see if it's been defined since. */
3705 if (TYPE_NFIELDS (*type) == 0)
3706 {
3707 struct pending *ppt;
3708 int i;
3709 /* Name of the type, without "struct" or "union" */
3710 char *typename = TYPE_NAME (*type);
3711
3712 if (!strncmp (typename, "struct ", 7))
3713 typename += 7;
3714 if (!strncmp (typename, "union ", 6))
3715 typename += 6;
3716
3717 for (ppt = file_symbols; ppt; ppt = ppt->next)
3718 for (i = 0; i < ppt->nsyms; i++)
3719 {
3720 struct symbol *sym = ppt->symbol[i];
3721
3722 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3723 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3724 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3725 TYPE_CODE (*type))
3726 && !strcmp (SYMBOL_NAME (sym), typename))
3727 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3728 }
3729 }
3730 else
3731 /* It has been defined; don't mark it as a stub. */
3732 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3733 }
3734 undef_types_length = 0;
3735 }
3736
3737 /* Skip rest of this symbol and return an error type.
3738
3739 General notes on error recovery: error_type always skips to the
3740 end of the symbol (modulo cretinous dbx symbol name continuation).
3741 Thus code like this:
3742
3743 if (*(*pp)++ != ';')
3744 return error_type (pp);
3745
3746 is wrong because if *pp starts out pointing at '\0' (typically as the
3747 result of an earlier error), it will be incremented to point to the
3748 start of the next symbol, which might produce strange results, at least
3749 if you run off the end of the string table. Instead use
3750
3751 if (**pp != ';')
3752 return error_type (pp);
3753 ++*pp;
3754
3755 or
3756
3757 if (**pp != ';')
3758 foo = error_type (pp);
3759 else
3760 ++*pp;
3761
3762 And in case it isn't obvious, the point of all this hair is so the compiler
3763 can define new types and new syntaxes, and old versions of the
3764 debugger will be able to read the new symbol tables. */
3765
3766 static struct type *
3767 error_type (pp)
3768 char **pp;
3769 {
3770 complain (&error_type_complaint, 0);
3771 while (1)
3772 {
3773 /* Skip to end of symbol. */
3774 while (**pp != '\0')
3775 (*pp)++;
3776
3777 /* Check for and handle cretinous dbx symbol name continuation! */
3778 if ((*pp)[-1] == '\\')
3779 *pp = next_symbol_text ();
3780 else
3781 break;
3782 }
3783 return builtin_type_error;
3784 }
3785 \f
3786 /* Read a dbx type reference or definition;
3787 return the type that is meant.
3788 This can be just a number, in which case it references
3789 a type already defined and placed in type_vector.
3790 Or the number can be followed by an =, in which case
3791 it means to define a new type according to the text that
3792 follows the =. */
3793
3794 static
3795 struct type *
3796 read_type (pp)
3797 register char **pp;
3798 {
3799 register struct type *type = 0;
3800 struct type *type1;
3801 int typenums[2];
3802 int xtypenums[2];
3803
3804 /* Read type number if present. The type number may be omitted.
3805 for instance in a two-dimensional array declared with type
3806 "ar1;1;10;ar1;1;10;4". */
3807 if ((**pp >= '0' && **pp <= '9')
3808 || **pp == '(')
3809 {
3810 read_type_number (pp, typenums);
3811
3812 /* Detect random reference to type not yet defined.
3813 Allocate a type object but leave it zeroed. */
3814 if (**pp != '=')
3815 return dbx_alloc_type (typenums);
3816
3817 *pp += 2;
3818 }
3819 else
3820 {
3821 /* 'typenums=' not present, type is anonymous. Read and return
3822 the definition, but don't put it in the type vector. */
3823 typenums[0] = typenums[1] = -1;
3824 *pp += 1;
3825 }
3826
3827 switch ((*pp)[-1])
3828 {
3829 case 'x':
3830 {
3831 enum type_code code;
3832
3833 /* Used to index through file_symbols. */
3834 struct pending *ppt;
3835 int i;
3836
3837 /* Name including "struct", etc. */
3838 char *type_name;
3839
3840 /* Name without "struct", etc. */
3841 char *type_name_only;
3842
3843 {
3844 char *prefix;
3845 char *from, *to;
3846
3847 /* Set the type code according to the following letter. */
3848 switch ((*pp)[0])
3849 {
3850 case 's':
3851 code = TYPE_CODE_STRUCT;
3852 prefix = "struct ";
3853 break;
3854 case 'u':
3855 code = TYPE_CODE_UNION;
3856 prefix = "union ";
3857 break;
3858 case 'e':
3859 code = TYPE_CODE_ENUM;
3860 prefix = "enum ";
3861 break;
3862 default:
3863 return error_type (pp);
3864 }
3865
3866 to = type_name = (char *)
3867 obstack_alloc (symbol_obstack,
3868 (strlen (prefix) +
3869 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3870
3871 /* Copy the prefix. */
3872 from = prefix;
3873 while (*to++ = *from++)
3874 ;
3875 to--;
3876
3877 type_name_only = to;
3878
3879 /* Copy the name. */
3880 from = *pp + 1;
3881 while ((*to++ = *from++) != ':')
3882 ;
3883 *--to = '\0';
3884
3885 /* Set the pointer ahead of the name which we just read. */
3886 *pp = from;
3887
3888 #if 0
3889 /* The following hack is clearly wrong, because it doesn't
3890 check whether we are in a baseclass. I tried to reproduce
3891 the case that it is trying to fix, but I couldn't get
3892 g++ to put out a cross reference to a basetype. Perhaps
3893 it doesn't do it anymore. */
3894 /* Note: for C++, the cross reference may be to a base type which
3895 has not yet been seen. In this case, we skip to the comma,
3896 which will mark the end of the base class name. (The ':'
3897 at the end of the base class name will be skipped as well.)
3898 But sometimes (ie. when the cross ref is the last thing on
3899 the line) there will be no ','. */
3900 from = (char *) strchr (*pp, ',');
3901 if (from)
3902 *pp = from;
3903 #endif /* 0 */
3904 }
3905
3906 /* Now check to see whether the type has already been declared. */
3907 /* This is necessary at least in the case where the
3908 program says something like
3909 struct foo bar[5];
3910 The compiler puts out a cross-reference; we better find
3911 set the length of the structure correctly so we can
3912 set the length of the array. */
3913 for (ppt = file_symbols; ppt; ppt = ppt->next)
3914 for (i = 0; i < ppt->nsyms; i++)
3915 {
3916 struct symbol *sym = ppt->symbol[i];
3917
3918 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3919 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3920 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3921 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3922 {
3923 obstack_free (symbol_obstack, type_name);
3924 type = SYMBOL_TYPE (sym);
3925 return type;
3926 }
3927 }
3928
3929 /* Didn't find the type to which this refers, so we must
3930 be dealing with a forward reference. Allocate a type
3931 structure for it, and keep track of it so we can
3932 fill in the rest of the fields when we get the full
3933 type. */
3934 type = dbx_alloc_type (typenums);
3935 TYPE_CODE (type) = code;
3936 TYPE_NAME (type) = type_name;
3937
3938 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3939
3940 add_undefined_type (type);
3941 return type;
3942 }
3943
3944 case '0':
3945 case '1':
3946 case '2':
3947 case '3':
3948 case '4':
3949 case '5':
3950 case '6':
3951 case '7':
3952 case '8':
3953 case '9':
3954 case '(':
3955 (*pp)--;
3956 read_type_number (pp, xtypenums);
3957 type = *dbx_lookup_type (xtypenums);
3958 if (type == 0)
3959 type = builtin_type_void;
3960 if (typenums[0] != -1)
3961 *dbx_lookup_type (typenums) = type;
3962 break;
3963
3964 case '*':
3965 type1 = read_type (pp);
3966 type = lookup_pointer_type (type1);
3967 if (typenums[0] != -1)
3968 *dbx_lookup_type (typenums) = type;
3969 break;
3970
3971 case '@':
3972 {
3973 struct type *domain = read_type (pp);
3974 struct type *memtype;
3975
3976 if (**pp != ',')
3977 /* Invalid member type data format. */
3978 return error_type (pp);
3979 ++*pp;
3980
3981 memtype = read_type (pp);
3982 type = dbx_alloc_type (typenums);
3983 smash_to_member_type (type, domain, memtype);
3984 }
3985 break;
3986
3987 case '#':
3988 if ((*pp)[0] == '#')
3989 {
3990 /* We'll get the parameter types from the name. */
3991 struct type *return_type;
3992
3993 *pp += 1;
3994 return_type = read_type (pp);
3995 if (*(*pp)++ != ';')
3996 complain (&invalid_member_complaint, symnum);
3997 type = allocate_stub_method (return_type);
3998 if (typenums[0] != -1)
3999 *dbx_lookup_type (typenums) = type;
4000 }
4001 else
4002 {
4003 struct type *domain = read_type (pp);
4004 struct type *return_type;
4005 struct type **args;
4006
4007 if (*(*pp)++ != ',')
4008 error ("invalid member type data format, at symtab pos %d.",
4009 symnum);
4010
4011 return_type = read_type (pp);
4012 args = read_args (pp, ';');
4013 type = dbx_alloc_type (typenums);
4014 smash_to_method_type (type, domain, return_type, args);
4015 }
4016 break;
4017
4018 case '&':
4019 type1 = read_type (pp);
4020 type = lookup_reference_type (type1);
4021 if (typenums[0] != -1)
4022 *dbx_lookup_type (typenums) = type;
4023 break;
4024
4025 case 'f':
4026 type1 = read_type (pp);
4027 type = lookup_function_type (type1);
4028 if (typenums[0] != -1)
4029 *dbx_lookup_type (typenums) = type;
4030 break;
4031
4032 case 'r':
4033 type = read_range_type (pp, typenums);
4034 if (typenums[0] != -1)
4035 *dbx_lookup_type (typenums) = type;
4036 break;
4037
4038 case 'e':
4039 type = dbx_alloc_type (typenums);
4040 type = read_enum_type (pp, type);
4041 *dbx_lookup_type (typenums) = type;
4042 break;
4043
4044 case 's':
4045 type = dbx_alloc_type (typenums);
4046 TYPE_NAME (type) = type_synonym_name;
4047 type_synonym_name = 0;
4048 type = read_struct_type (pp, type);
4049 break;
4050
4051 case 'u':
4052 type = dbx_alloc_type (typenums);
4053 TYPE_NAME (type) = type_synonym_name;
4054 type_synonym_name = 0;
4055 type = read_struct_type (pp, type);
4056 TYPE_CODE (type) = TYPE_CODE_UNION;
4057 break;
4058
4059 case 'a':
4060 if (**pp != 'r')
4061 return error_type (pp);
4062 ++*pp;
4063
4064 type = dbx_alloc_type (typenums);
4065 type = read_array_type (pp, type);
4066 break;
4067
4068 default:
4069 return error_type (pp);
4070 }
4071
4072 if (type == 0)
4073 abort ();
4074
4075 #if 0
4076 /* If this is an overriding temporary alteration for a header file's
4077 contents, and this type number is unknown in the global definition,
4078 put this type into the global definition at this type number. */
4079 if (header_file_prev_index >= 0)
4080 {
4081 register struct type **tp
4082 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4083 if (*tp == 0)
4084 *tp = type;
4085 }
4086 #endif
4087 return type;
4088 }
4089 \f
4090 #if 0
4091 /* This would be a good idea, but it doesn't really work. The problem
4092 is that in order to get the virtual context for a particular type,
4093 you need to know the virtual info from all of its basetypes,
4094 and you need to have processed its methods. Since GDB reads
4095 symbols on a file-by-file basis, this means processing the symbols
4096 of all the files that are needed for each baseclass, which
4097 means potentially reading in all the debugging info just to fill
4098 in information we may never need. */
4099
4100 /* This page contains subroutines of read_type. */
4101
4102 /* FOR_TYPE is a struct type defining a virtual function NAME with type
4103 FN_TYPE. The `virtual context' for this virtual function is the
4104 first base class of FOR_TYPE in which NAME is defined with signature
4105 matching FN_TYPE. OFFSET serves as a hash on matches here.
4106
4107 TYPE is the current type in which we are searching. */
4108
4109 static struct type *
4110 virtual_context (for_type, type, name, fn_type, offset)
4111 struct type *for_type, *type;
4112 char *name;
4113 struct type *fn_type;
4114 int offset;
4115 {
4116 struct type *basetype = 0;
4117 int i;
4118
4119 if (for_type != type)
4120 {
4121 /* Check the methods of TYPE. */
4122 /* Need to do a check_stub_type here, but that breaks
4123 things because we can get infinite regress. */
4124 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4125 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4126 break;
4127 if (i >= 0)
4128 {
4129 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4130 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4131
4132 while (--j >= 0)
4133 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4134 return TYPE_FN_FIELD_FCONTEXT (f, j);
4135 }
4136 }
4137 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
4138 {
4139 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4140 fn_type, offset);
4141 if (basetype != for_type)
4142 return basetype;
4143 }
4144 return for_type;
4145 }
4146 #endif
4147
4148 /* Read the description of a structure (or union type)
4149 and return an object describing the type. */
4150
4151 static struct type *
4152 read_struct_type (pp, type)
4153 char **pp;
4154 register struct type *type;
4155 {
4156 /* Total number of methods defined in this class.
4157 If the class defines two `f' methods, and one `g' method,
4158 then this will have the value 3. */
4159 int total_length = 0;
4160
4161 struct nextfield
4162 {
4163 struct nextfield *next;
4164 int visibility; /* 0=public, 1=protected, 2=public */
4165 struct field field;
4166 };
4167
4168 struct next_fnfield
4169 {
4170 struct next_fnfield *next;
4171 int visibility; /* 0=public, 1=protected, 2=public */
4172 struct fn_field fn_field;
4173 };
4174
4175 struct next_fnfieldlist
4176 {
4177 struct next_fnfieldlist *next;
4178 struct fn_fieldlist fn_fieldlist;
4179 };
4180
4181 register struct nextfield *list = 0;
4182 struct nextfield *new;
4183 register char *p;
4184 int nfields = 0;
4185 register int n;
4186
4187 register struct next_fnfieldlist *mainlist = 0;
4188 int nfn_fields = 0;
4189
4190 if (TYPE_MAIN_VARIANT (type) == 0)
4191 {
4192 TYPE_MAIN_VARIANT (type) = type;
4193 }
4194
4195 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4196
4197 /* First comes the total size in bytes. */
4198
4199 TYPE_LENGTH (type) = read_number (pp, 0);
4200
4201 /* C++: Now, if the class is a derived class, then the next character
4202 will be a '!', followed by the number of base classes derived from.
4203 Each element in the list contains visibility information,
4204 the offset of this base class in the derived structure,
4205 and then the base type. */
4206 if (**pp == '!')
4207 {
4208 int i, n_baseclasses, offset;
4209 struct type *baseclass;
4210 int via_public;
4211
4212 /* Nonzero if it is a virtual baseclass, i.e.,
4213
4214 struct A{};
4215 struct B{};
4216 struct C : public B, public virtual A {};
4217
4218 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4219 2.0 language feature. */
4220 int via_virtual;
4221
4222 *pp += 1;
4223
4224 n_baseclasses = read_number (pp, ',');
4225 TYPE_FIELD_VIRTUAL_BITS (type) =
4226 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4227 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4228
4229 for (i = 0; i < n_baseclasses; i++)
4230 {
4231 if (**pp == '\\')
4232 *pp = next_symbol_text ();
4233
4234 switch (**pp)
4235 {
4236 case '0':
4237 via_virtual = 0;
4238 break;
4239 case '1':
4240 via_virtual = 1;
4241 break;
4242 default:
4243 /* Bad visibility format. */
4244 return error_type (pp);
4245 }
4246 ++*pp;
4247
4248 switch (**pp)
4249 {
4250 case '0':
4251 via_public = 0;
4252 break;
4253 case '2':
4254 via_public = 2;
4255 break;
4256 default:
4257 /* Bad visibility format. */
4258 return error_type (pp);
4259 }
4260 if (via_virtual)
4261 SET_TYPE_FIELD_VIRTUAL (type, i);
4262 ++*pp;
4263
4264 /* Offset of the portion of the object corresponding to
4265 this baseclass. Always zero in the absence of
4266 multiple inheritance. */
4267 offset = read_number (pp, ',');
4268 baseclass = read_type (pp);
4269 *pp += 1; /* skip trailing ';' */
4270
4271 #if 0
4272 /* One's understanding improves, grasshopper... */
4273 if (offset != 0)
4274 {
4275 static int error_printed = 0;
4276
4277 if (!error_printed)
4278 {
4279 fprintf (stderr,
4280 "\nWarning: GDB has limited understanding of multiple inheritance...");
4281 if (!info_verbose)
4282 fprintf(stderr, "\n");
4283 error_printed = 1;
4284 }
4285 }
4286 #endif
4287
4288 /* Make this baseclass visible for structure-printing purposes. */
4289 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4290 new->next = list;
4291 list = new;
4292 list->visibility = via_public;
4293 list->field.type = baseclass;
4294 list->field.name = type_name_no_tag (baseclass);
4295 list->field.bitpos = offset;
4296 list->field.bitsize = 0; /* this should be an unpacked field! */
4297 nfields++;
4298 }
4299 TYPE_N_BASECLASSES (type) = n_baseclasses;
4300 }
4301
4302 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4303 At the end, we see a semicolon instead of a field.
4304
4305 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4306 a static field.
4307
4308 The `?' is a placeholder for one of '/2' (public visibility),
4309 '/1' (protected visibility), '/0' (private visibility), or nothing
4310 (C style symbol table, public visibility). */
4311
4312 /* We better set p right now, in case there are no fields at all... */
4313 p = *pp;
4314
4315 while (**pp != ';')
4316 {
4317 /* Check for and handle cretinous dbx symbol name continuation! */
4318 if (**pp == '\\') *pp = next_symbol_text ();
4319
4320 /* Get space to record the next field's data. */
4321 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4322 new->next = list;
4323 list = new;
4324
4325 /* Get the field name. */
4326 p = *pp;
4327 if (*p == CPLUS_MARKER)
4328 {
4329 /* Special GNU C++ name. */
4330 if (*++p == 'v')
4331 {
4332 char *prefix, *name = 0;
4333 struct type *context;
4334
4335 switch (*++p)
4336 {
4337 case 'f':
4338 prefix = vptr_name;
4339 break;
4340 case 'b':
4341 prefix = vb_name;
4342 break;
4343 default:
4344 error ("invalid abbreviation at symtab pos %d.", symnum);
4345 }
4346 *pp = p + 1;
4347 context = read_type (pp);
4348 if (type_name_no_tag (context) == 0)
4349 {
4350 if (name == 0)
4351 error ("type name unknown at symtab pos %d.", symnum);
4352 /* FIXME-tiemann: when is `name' ever non-0? */
4353 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4354 }
4355 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4356 p = ++(*pp);
4357 if (p[-1] != ':')
4358 error ("invalid abbreviation at symtab pos %d.", symnum);
4359 list->field.type = read_type (pp);
4360 (*pp)++; /* Skip the comma. */
4361 list->field.bitpos = read_number (pp, ';');
4362 /* This field is unpacked. */
4363 list->field.bitsize = 0;
4364 }
4365 else
4366 error ("invalid abbreviation at symtab pos %d.", symnum);
4367
4368 nfields++;
4369 continue;
4370 }
4371
4372 while (*p != ':') p++;
4373 list->field.name = obsavestring (*pp, p - *pp);
4374
4375 /* C++: Check to see if we have hit the methods yet. */
4376 if (p[1] == ':')
4377 break;
4378
4379 *pp = p + 1;
4380
4381 /* This means we have a visibility for a field coming. */
4382 if (**pp == '/')
4383 {
4384 switch (*++*pp)
4385 {
4386 case '0':
4387 list->visibility = 0; /* private */
4388 *pp += 1;
4389 break;
4390
4391 case '1':
4392 list->visibility = 1; /* protected */
4393 *pp += 1;
4394 break;
4395
4396 case '2':
4397 list->visibility = 2; /* public */
4398 *pp += 1;
4399 break;
4400 }
4401 }
4402 else /* normal dbx-style format. */
4403 list->visibility = 2; /* public */
4404
4405 list->field.type = read_type (pp);
4406 if (**pp == ':')
4407 {
4408 /* Static class member. */
4409 list->field.bitpos = (long)-1;
4410 p = ++(*pp);
4411 while (*p != ';') p++;
4412 list->field.bitsize = (long) savestring (*pp, p - *pp);
4413 *pp = p + 1;
4414 nfields++;
4415 continue;
4416 }
4417 else if (**pp != ',')
4418 /* Bad structure-type format. */
4419 return error_type (pp);
4420
4421 (*pp)++; /* Skip the comma. */
4422 list->field.bitpos = read_number (pp, ',');
4423 list->field.bitsize = read_number (pp, ';');
4424
4425 #if 0
4426 /* FIXME-tiemann: Can't the compiler put out something which
4427 lets us distinguish these? (or maybe just not put out anything
4428 for the field). What is the story here? What does the compiler
4429 really do? Also, patch gdb.texinfo for this case; I document
4430 it as a possible problem there. Search for "DBX-style". */
4431
4432 /* This is wrong because this is identical to the symbols
4433 produced for GCC 0-size arrays. For example:
4434 typedef union {
4435 int num;
4436 char str[0];
4437 } foo;
4438 The code which dumped core in such circumstances should be
4439 fixed not to dump core. */
4440
4441 /* g++ -g0 can put out bitpos & bitsize zero for a static
4442 field. This does not give us any way of getting its
4443 class, so we can't know its name. But we can just
4444 ignore the field so we don't dump core and other nasty
4445 stuff. */
4446 if (list->field.bitpos == 0
4447 && list->field.bitsize == 0)
4448 {
4449 complain (&dbx_class_complaint, 0);
4450 /* Ignore this field. */
4451 list = list->next;
4452 }
4453 else
4454 #endif /* 0 */
4455 {
4456 /* Detect an unpacked field and mark it as such.
4457 dbx gives a bit size for all fields.
4458 Note that forward refs cannot be packed,
4459 and treat enums as if they had the width of ints. */
4460 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4461 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4462 list->field.bitsize = 0;
4463 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4464 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4465 && (list->field.bitsize
4466 == 8 * TYPE_LENGTH (builtin_type_int))
4467 )
4468 )
4469 &&
4470 list->field.bitpos % 8 == 0)
4471 list->field.bitsize = 0;
4472 nfields++;
4473 }
4474 }
4475
4476 if (p[1] == ':')
4477 /* chill the list of fields: the last entry (at the head)
4478 is a partially constructed entry which we now scrub. */
4479 list = list->next;
4480
4481 /* Now create the vector of fields, and record how big it is.
4482 We need this info to record proper virtual function table information
4483 for this class's virtual functions. */
4484
4485 TYPE_NFIELDS (type) = nfields;
4486 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4487 sizeof (struct field) * nfields);
4488
4489 TYPE_FIELD_PRIVATE_BITS (type) =
4490 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4491 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4492
4493 TYPE_FIELD_PROTECTED_BITS (type) =
4494 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4495 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4496
4497 /* Copy the saved-up fields into the field vector. */
4498
4499 for (n = nfields; list; list = list->next)
4500 {
4501 n -= 1;
4502 TYPE_FIELD (type, n) = list->field;
4503 if (list->visibility == 0)
4504 SET_TYPE_FIELD_PRIVATE (type, n);
4505 else if (list->visibility == 1)
4506 SET_TYPE_FIELD_PROTECTED (type, n);
4507 }
4508
4509 /* Now come the method fields, as NAME::methods
4510 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4511 At the end, we see a semicolon instead of a field.
4512
4513 For the case of overloaded operators, the format is
4514 OPERATOR::*.methods, where OPERATOR is the string "operator",
4515 `*' holds the place for an operator name (such as `+=')
4516 and `.' marks the end of the operator name. */
4517 if (p[1] == ':')
4518 {
4519 /* Now, read in the methods. To simplify matters, we
4520 "unread" the name that has been read, so that we can
4521 start from the top. */
4522
4523 /* For each list of method lists... */
4524 do
4525 {
4526 int i;
4527 struct next_fnfield *sublist = 0;
4528 int length = 0;
4529 struct next_fnfieldlist *new_mainlist =
4530 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4531 char *main_fn_name;
4532
4533 p = *pp;
4534
4535 /* read in the name. */
4536 while (*p != ':') p++;
4537 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4538 {
4539 /* This lets the user type "break operator+".
4540 We could just put in "+" as the name, but that wouldn't
4541 work for "*". */
4542 static char opname[32] = {'o', 'p', CPLUS_MARKER};
4543 char *o = opname + 3;
4544
4545 /* Skip past '::'. */
4546 p += 2;
4547 while (*p != '.')
4548 *o++ = *p++;
4549 main_fn_name = savestring (opname, o - opname);
4550 /* Skip past '.' */
4551 *pp = p + 1;
4552 }
4553 else
4554 {
4555 i = 0;
4556 main_fn_name = savestring (*pp, p - *pp);
4557 /* Skip past '::'. */
4558 *pp = p + 2;
4559 }
4560 new_mainlist->fn_fieldlist.name = main_fn_name;
4561
4562 do
4563 {
4564 struct next_fnfield *new_sublist =
4565 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4566
4567 /* Check for and handle cretinous dbx symbol name continuation! */
4568 if (**pp == '\\') *pp = next_symbol_text ();
4569
4570 new_sublist->fn_field.type = read_type (pp);
4571 if (**pp != ':')
4572 /* Invalid symtab info for method. */
4573 return error_type (pp);
4574
4575 *pp += 1;
4576 p = *pp;
4577 while (*p != ';') p++;
4578 /* If this is just a stub, then we don't have the
4579 real name here. */
4580 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4581 *pp = p + 1;
4582 new_sublist->visibility = *(*pp)++ - '0';
4583 if (**pp == '\\') *pp = next_symbol_text ();
4584 /* FIXME-tiemann: need to add const/volatile info
4585 to the methods. For now, just skip the char.
4586 In future, here's what we need to implement:
4587
4588 A for normal functions.
4589 B for `const' member functions.
4590 C for `volatile' member functions.
4591 D for `const volatile' member functions. */
4592 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4593 (*pp)++;
4594 #if 0
4595 /* This probably just means we're processing a file compiled
4596 with g++ version 1. */
4597 else
4598 complain(&const_vol_complaint, **pp);
4599 #endif /* 0 */
4600
4601 switch (*(*pp)++)
4602 {
4603 case '*':
4604 /* virtual member function, followed by index. */
4605 /* The sign bit is set to distinguish pointers-to-methods
4606 from virtual function indicies. Since the array is
4607 in words, the quantity must be shifted left by 1
4608 on 16 bit machine, and by 2 on 32 bit machine, forcing
4609 the sign bit out, and usable as a valid index into
4610 the array. Remove the sign bit here. */
4611 new_sublist->fn_field.voffset =
4612 (0x7fffffff & read_number (pp, ';')) + 1;
4613
4614 if (**pp == ';' || **pp == '\0')
4615 /* Must be g++ version 1. */
4616 new_sublist->fn_field.fcontext = 0;
4617 else
4618 {
4619 /* Figure out from whence this virtual function came.
4620 It may belong to virtual function table of
4621 one of its baseclasses. */
4622 new_sublist->fn_field.fcontext = read_type (pp);
4623 if (**pp != ';')
4624 return error_type (pp);
4625 else
4626 ++*pp;
4627 }
4628 break;
4629
4630 case '?':
4631 /* static member function. */
4632 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4633 break;
4634 default:
4635 /* **pp == '.'. */
4636 /* normal member function. */
4637 new_sublist->fn_field.voffset = 0;
4638 new_sublist->fn_field.fcontext = 0;
4639 break;
4640 }
4641
4642 new_sublist->next = sublist;
4643 sublist = new_sublist;
4644 length++;
4645 }
4646 while (**pp != ';' && **pp != '\0');
4647
4648 *pp += 1;
4649
4650 new_mainlist->fn_fieldlist.fn_fields =
4651 (struct fn_field *) obstack_alloc (symbol_obstack,
4652 sizeof (struct fn_field) * length);
4653 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4654 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4655 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4656
4657 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4658 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4659 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4660
4661 for (i = length; (i--, sublist); sublist = sublist->next)
4662 {
4663 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4664 if (sublist->visibility == 0)
4665 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4666 else if (sublist->visibility == 1)
4667 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4668 }
4669
4670 new_mainlist->fn_fieldlist.length = length;
4671 new_mainlist->next = mainlist;
4672 mainlist = new_mainlist;
4673 nfn_fields++;
4674 total_length += length;
4675 }
4676 while (**pp != ';');
4677 }
4678
4679 *pp += 1;
4680
4681 TYPE_FN_FIELDLISTS (type) =
4682 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4683 sizeof (struct fn_fieldlist) * nfn_fields);
4684
4685 TYPE_NFN_FIELDS (type) = nfn_fields;
4686 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4687
4688 {
4689 int i;
4690 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4691 TYPE_NFN_FIELDS_TOTAL (type) +=
4692 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4693 }
4694
4695 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4696 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4697
4698 if (**pp == '~')
4699 {
4700 *pp += 1;
4701
4702 if (**pp == '=')
4703 {
4704 TYPE_FLAGS (type)
4705 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4706 *pp += 1;
4707 }
4708 else if (**pp == '+')
4709 {
4710 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4711 *pp += 1;
4712 }
4713 else if (**pp == '-')
4714 {
4715 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4716 *pp += 1;
4717 }
4718
4719 /* Read either a '%' or the final ';'. */
4720 if (*(*pp)++ == '%')
4721 {
4722 /* Now we must record the virtual function table pointer's
4723 field information. */
4724
4725 struct type *t;
4726 int i;
4727
4728 t = read_type (pp);
4729 p = (*pp)++;
4730 while (*p != '\0' && *p != ';')
4731 p++;
4732 if (*p == '\0')
4733 /* Premature end of symbol. */
4734 return error_type (pp);
4735
4736 TYPE_VPTR_BASETYPE (type) = t;
4737 if (type == t)
4738 {
4739 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4740 {
4741 /* FIXME-tiemann: what's this? */
4742 #if 0
4743 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4744 #else
4745 error_type (pp);
4746 #endif
4747 }
4748 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4749 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4750 sizeof (vptr_name) -1))
4751 {
4752 TYPE_VPTR_FIELDNO (type) = i;
4753 break;
4754 }
4755 if (i < 0)
4756 /* Virtual function table field not found. */
4757 return error_type (pp);
4758 }
4759 else
4760 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4761 *pp = p + 1;
4762 }
4763 }
4764
4765 return type;
4766 }
4767
4768 /* Read a definition of an array type,
4769 and create and return a suitable type object.
4770 Also creates a range type which represents the bounds of that
4771 array. */
4772 static struct type *
4773 read_array_type (pp, type)
4774 register char **pp;
4775 register struct type *type;
4776 {
4777 struct type *index_type, *element_type, *range_type;
4778 int lower, upper;
4779 int adjustable = 0;
4780
4781 /* Format of an array type:
4782 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4783 to handle this.
4784
4785 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4786 for these, produce a type like float[][]. */
4787
4788 index_type = read_type (pp);
4789 if (**pp != ';')
4790 /* Improper format of array type decl. */
4791 return error_type (pp);
4792 ++*pp;
4793
4794 if (!(**pp >= '0' && **pp <= '9'))
4795 {
4796 *pp += 1;
4797 adjustable = 1;
4798 }
4799 lower = read_number (pp, ';');
4800
4801 if (!(**pp >= '0' && **pp <= '9'))
4802 {
4803 *pp += 1;
4804 adjustable = 1;
4805 }
4806 upper = read_number (pp, ';');
4807
4808 element_type = read_type (pp);
4809
4810 if (adjustable)
4811 {
4812 lower = 0;
4813 upper = -1;
4814 }
4815
4816 {
4817 /* Create range type. */
4818 range_type = (struct type *) obstack_alloc (symbol_obstack,
4819 sizeof (struct type));
4820 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4821 TYPE_TARGET_TYPE (range_type) = index_type;
4822
4823 /* This should never be needed. */
4824 TYPE_LENGTH (range_type) = sizeof (int);
4825
4826 TYPE_NFIELDS (range_type) = 2;
4827 TYPE_FIELDS (range_type) =
4828 (struct field *) obstack_alloc (symbol_obstack,
4829 2 * sizeof (struct field));
4830 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4831 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4832 }
4833
4834 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4835 TYPE_TARGET_TYPE (type) = element_type;
4836 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4837 TYPE_NFIELDS (type) = 1;
4838 TYPE_FIELDS (type) =
4839 (struct field *) obstack_alloc (symbol_obstack,
4840 sizeof (struct field));
4841 TYPE_FIELD_TYPE (type, 0) = range_type;
4842
4843 return type;
4844 }
4845
4846
4847 /* Read a definition of an enumeration type,
4848 and create and return a suitable type object.
4849 Also defines the symbols that represent the values of the type. */
4850
4851 static struct type *
4852 read_enum_type (pp, type)
4853 register char **pp;
4854 register struct type *type;
4855 {
4856 register char *p;
4857 char *name;
4858 register long n;
4859 register struct symbol *sym;
4860 int nsyms = 0;
4861 struct pending **symlist;
4862 struct pending *osyms, *syms;
4863 int o_nsyms;
4864
4865 if (within_function)
4866 symlist = &local_symbols;
4867 else
4868 symlist = &file_symbols;
4869 osyms = *symlist;
4870 o_nsyms = osyms ? osyms->nsyms : 0;
4871
4872 /* Read the value-names and their values.
4873 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4874 A semicolon or comman instead of a NAME means the end. */
4875 while (**pp && **pp != ';' && **pp != ',')
4876 {
4877 /* Check for and handle cretinous dbx symbol name continuation! */
4878 if (**pp == '\\') *pp = next_symbol_text ();
4879
4880 p = *pp;
4881 while (*p != ':') p++;
4882 name = obsavestring (*pp, p - *pp);
4883 *pp = p + 1;
4884 n = read_number (pp, ',');
4885
4886 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4887 bzero (sym, sizeof (struct symbol));
4888 SYMBOL_NAME (sym) = name;
4889 SYMBOL_CLASS (sym) = LOC_CONST;
4890 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4891 SYMBOL_VALUE (sym) = n;
4892 add_symbol_to_list (sym, symlist);
4893 nsyms++;
4894 }
4895
4896 if (**pp == ';')
4897 (*pp)++; /* Skip the semicolon. */
4898
4899 /* Now fill in the fields of the type-structure. */
4900
4901 TYPE_LENGTH (type) = sizeof (int);
4902 TYPE_CODE (type) = TYPE_CODE_ENUM;
4903 TYPE_NFIELDS (type) = nsyms;
4904 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4905
4906 /* Find the symbols for the values and put them into the type.
4907 The symbols can be found in the symlist that we put them on
4908 to cause them to be defined. osyms contains the old value
4909 of that symlist; everything up to there was defined by us. */
4910 /* Note that we preserve the order of the enum constants, so
4911 that in something like "enum {FOO, LAST_THING=FOO}" we print
4912 FOO, not LAST_THING. */
4913
4914 for (syms = *symlist, n = 0; syms; syms = syms->next)
4915 {
4916 int j = 0;
4917 if (syms == osyms)
4918 j = o_nsyms;
4919 for (; j < syms->nsyms; j++,n++)
4920 {
4921 struct symbol *sym = syms->symbol[j];
4922 SYMBOL_TYPE (sym) = type;
4923 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4924 TYPE_FIELD_VALUE (type, n) = 0;
4925 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4926 TYPE_FIELD_BITSIZE (type, n) = 0;
4927 }
4928 if (syms == osyms)
4929 break;
4930 }
4931
4932 return type;
4933 }
4934
4935 /* Read a number from the string pointed to by *PP.
4936 The value of *PP is advanced over the number.
4937 If END is nonzero, the character that ends the
4938 number must match END, or an error happens;
4939 and that character is skipped if it does match.
4940 If END is zero, *PP is left pointing to that character.
4941
4942 If the number fits in a long, set *VALUE and set *BITS to 0.
4943 If not, set *BITS to be the number of bits in the number.
4944
4945 If encounter garbage, set *BITS to -1. */
4946
4947 static void
4948 read_huge_number (pp, end, valu, bits)
4949 char **pp;
4950 int end;
4951 long *valu;
4952 int *bits;
4953 {
4954 char *p = *pp;
4955 int sign = 1;
4956 long n = 0;
4957 int radix = 10;
4958 char overflow = 0;
4959 int nbits = 0;
4960 int c;
4961
4962 if (*p == '-')
4963 {
4964 sign = -1;
4965 p++;
4966 }
4967
4968 /* Leading zero means octal. GCC uses this to output values larger
4969 than an int (because that would be hard in decimal). */
4970 if (*p == '0')
4971 {
4972 radix = 8;
4973 p++;
4974 }
4975
4976 while ((c = *p++) >= '0' && c <= ('0' + radix))
4977 {
4978 if (n <= LONG_MAX / radix)
4979 {
4980 n *= radix;
4981 n += c - '0'; /* FIXME this overflows anyway */
4982 }
4983 else
4984 overflow = 1;
4985
4986 /* This depends on large values being output in octal, which is
4987 what GCC does. */
4988 if (radix == 8)
4989 {
4990 if (nbits == 0)
4991 {
4992 if (c == '0')
4993 /* Ignore leading zeroes. */
4994 ;
4995 else if (c == '1')
4996 nbits = 1;
4997 else if (c == '2' || c == '3')
4998 nbits = 2;
4999 else
5000 nbits = 3;
5001 }
5002 else
5003 nbits += 3;
5004 }
5005 }
5006 if (end)
5007 {
5008 if (c && c != end)
5009 {
5010 if (bits != NULL)
5011 *bits = -1;
5012 return;
5013 }
5014 }
5015 else
5016 --p;
5017
5018 *pp = p;
5019 if (overflow)
5020 {
5021 if (nbits == 0)
5022 {
5023 /* Large decimal constants are an error (because it is hard to
5024 count how many bits are in them). */
5025 if (bits != NULL)
5026 *bits = -1;
5027 return;
5028 }
5029
5030 /* -0x7f is the same as 0x80. So deal with it by adding one to
5031 the number of bits. */
5032 if (sign == -1)
5033 ++nbits;
5034 if (bits)
5035 *bits = nbits;
5036 }
5037 else
5038 {
5039 if (valu)
5040 *valu = n * sign;
5041 if (bits)
5042 *bits = 0;
5043 }
5044 }
5045
5046 #define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5047 #define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5048
5049 static struct type *
5050 read_range_type (pp, typenums)
5051 char **pp;
5052 int typenums[2];
5053 {
5054 int rangenums[2];
5055 long n2, n3;
5056 int n2bits, n3bits;
5057 int self_subrange;
5058 struct type *result_type;
5059
5060 /* First comes a type we are a subrange of.
5061 In C it is usually 0, 1 or the type being defined. */
5062 read_type_number (pp, rangenums);
5063 self_subrange = (rangenums[0] == typenums[0] &&
5064 rangenums[1] == typenums[1]);
5065
5066 /* A semicolon should now follow; skip it. */
5067 if (**pp == ';')
5068 (*pp)++;
5069
5070 /* The remaining two operands are usually lower and upper bounds
5071 of the range. But in some special cases they mean something else. */
5072 read_huge_number (pp, ';', &n2, &n2bits);
5073 read_huge_number (pp, ';', &n3, &n3bits);
5074
5075 if (n2bits == -1 || n3bits == -1)
5076 return error_type (pp);
5077
5078 /* If limits are huge, must be large integral type. */
5079 if (n2bits != 0 || n3bits != 0)
5080 {
5081 char got_signed = 0;
5082 char got_unsigned = 0;
5083 /* Number of bits in the type. */
5084 int nbits;
5085
5086 /* Range from 0 to <large number> is an unsigned large integral type. */
5087 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5088 {
5089 got_unsigned = 1;
5090 nbits = n3bits;
5091 }
5092 /* Range from <large number> to <large number>-1 is a large signed
5093 integral type. */
5094 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5095 {
5096 got_signed = 1;
5097 nbits = n2bits;
5098 }
5099
5100 /* Check for "long long". */
5101 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
5102 return builtin_type_long_long;
5103 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
5104 return builtin_type_unsigned_long_long;
5105
5106 if (got_signed || got_unsigned)
5107 {
5108 result_type = (struct type *) obstack_alloc (symbol_obstack,
5109 sizeof (struct type));
5110 bzero (result_type, sizeof (struct type));
5111 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5112 TYPE_MAIN_VARIANT (result_type) = result_type;
5113 TYPE_CODE (result_type) = TYPE_CODE_INT;
5114 if (got_unsigned)
5115 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5116 return result_type;
5117 }
5118 else
5119 return error_type (pp);
5120 }
5121
5122 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5123 if (self_subrange && n2 == 0 && n3 == 0)
5124 return builtin_type_void;
5125
5126 /* If n3 is zero and n2 is not, we want a floating type,
5127 and n2 is the width in bytes.
5128
5129 Fortran programs appear to use this for complex types also,
5130 and they give no way to distinguish between double and single-complex!
5131 We don't have complex types, so we would lose on all fortran files!
5132 So return type `double' for all of those. It won't work right
5133 for the complex values, but at least it makes the file loadable. */
5134
5135 if (n3 == 0 && n2 > 0)
5136 {
5137 if (n2 == sizeof (float))
5138 return builtin_type_float;
5139 return builtin_type_double;
5140 }
5141
5142 /* If the upper bound is -1, it must really be an unsigned int. */
5143
5144 else if (n2 == 0 && n3 == -1)
5145 {
5146 if (sizeof (int) == sizeof (long))
5147 return builtin_type_unsigned_int;
5148 else
5149 return builtin_type_unsigned_long;
5150 }
5151
5152 /* Special case: char is defined (Who knows why) as a subrange of
5153 itself with range 0-127. */
5154 else if (self_subrange && n2 == 0 && n3 == 127)
5155 return builtin_type_char;
5156
5157 /* Assumptions made here: Subrange of self is equivalent to subrange
5158 of int. */
5159 else if (n2 == 0
5160 && (self_subrange ||
5161 *dbx_lookup_type (rangenums) == builtin_type_int))
5162 {
5163 /* an unsigned type */
5164 #ifdef LONG_LONG
5165 if (n3 == - sizeof (long long))
5166 return builtin_type_unsigned_long_long;
5167 #endif
5168 if (n3 == (unsigned int)~0L)
5169 return builtin_type_unsigned_int;
5170 if (n3 == (unsigned long)~0L)
5171 return builtin_type_unsigned_long;
5172 if (n3 == (unsigned short)~0L)
5173 return builtin_type_unsigned_short;
5174 if (n3 == (unsigned char)~0L)
5175 return builtin_type_unsigned_char;
5176 }
5177 #ifdef LONG_LONG
5178 else if (n3 == 0 && n2 == -sizeof (long long))
5179 return builtin_type_long_long;
5180 #endif
5181 else if (n2 == -n3 -1)
5182 {
5183 /* a signed type */
5184 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5185 return builtin_type_int;
5186 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5187 return builtin_type_long;
5188 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5189 return builtin_type_short;
5190 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5191 return builtin_type_char;
5192 }
5193
5194 /* We have a real range type on our hands. Allocate space and
5195 return a real pointer. */
5196
5197 /* At this point I don't have the faintest idea how to deal with
5198 a self_subrange type; I'm going to assume that this is used
5199 as an idiom, and that all of them are special cases. So . . . */
5200 if (self_subrange)
5201 return error_type (pp);
5202
5203 result_type = (struct type *) obstack_alloc (symbol_obstack,
5204 sizeof (struct type));
5205 bzero (result_type, sizeof (struct type));
5206
5207 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5208 builtin_type_int :
5209 *dbx_lookup_type(rangenums));
5210
5211 /* We have to figure out how many bytes it takes to hold this
5212 range type. I'm going to assume that anything that is pushing
5213 the bounds of a long was taken care of above. */
5214 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5215 TYPE_LENGTH (result_type) = 1;
5216 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5217 TYPE_LENGTH (result_type) = sizeof (short);
5218 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5219 TYPE_LENGTH (result_type) = sizeof (int);
5220 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5221 TYPE_LENGTH (result_type) = sizeof (long);
5222 else
5223 /* Ranged type doesn't fit within known sizes. */
5224 return error_type (pp);
5225
5226 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5227 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5228 TYPE_NFIELDS (result_type) = 2;
5229 TYPE_FIELDS (result_type) =
5230 (struct field *) obstack_alloc (symbol_obstack,
5231 2 * sizeof (struct field));
5232 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5233 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5234 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5235
5236 return result_type;
5237 }
5238
5239 /* Read a number from the string pointed to by *PP.
5240 The value of *PP is advanced over the number.
5241 If END is nonzero, the character that ends the
5242 number must match END, or an error happens;
5243 and that character is skipped if it does match.
5244 If END is zero, *PP is left pointing to that character. */
5245
5246 static long
5247 read_number (pp, end)
5248 char **pp;
5249 int end;
5250 {
5251 register char *p = *pp;
5252 register long n = 0;
5253 register int c;
5254 int sign = 1;
5255
5256 /* Handle an optional leading minus sign. */
5257
5258 if (*p == '-')
5259 {
5260 sign = -1;
5261 p++;
5262 }
5263
5264 /* Read the digits, as far as they go. */
5265
5266 while ((c = *p++) >= '0' && c <= '9')
5267 {
5268 n *= 10;
5269 n += c - '0';
5270 }
5271 if (end)
5272 {
5273 if (c && c != end)
5274 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5275 }
5276 else
5277 --p;
5278
5279 *pp = p;
5280 return n * sign;
5281 }
5282
5283 /* Read in an argument list. This is a list of types, separated by commas
5284 and terminated with END. Return the list of types read in, or (struct type
5285 **)-1 if there is an error. */
5286 static struct type **
5287 read_args (pp, end)
5288 char **pp;
5289 int end;
5290 {
5291 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5292 int n = 0;
5293
5294 while (**pp != end)
5295 {
5296 if (**pp != ',')
5297 /* Invalid argument list: no ','. */
5298 return (struct type **)-1;
5299 *pp += 1;
5300
5301 /* Check for and handle cretinous dbx symbol name continuation! */
5302 if (**pp == '\\')
5303 *pp = next_symbol_text ();
5304
5305 types[n++] = read_type (pp);
5306 }
5307 *pp += 1; /* get past `end' (the ':' character) */
5308
5309 if (n == 1)
5310 {
5311 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5312 }
5313 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5314 {
5315 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5316 bzero (rval + n, sizeof (struct type *));
5317 }
5318 else
5319 {
5320 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5321 }
5322 bcopy (types, rval, n * sizeof (struct type *));
5323 return rval;
5324 }
5325 \f
5326 /* Copy a pending list, used to record the contents of a common
5327 block for later fixup. */
5328 static struct pending *
5329 copy_pending (beg, begi, end)
5330 struct pending *beg, *end;
5331 int begi;
5332 {
5333 struct pending *new = 0;
5334 struct pending *next;
5335
5336 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5337 next = next->next, begi = 0)
5338 {
5339 register int j;
5340 for (j = begi; j < next->nsyms; j++)
5341 add_symbol_to_list (next->symbol[j], &new);
5342 }
5343 return new;
5344 }
5345
5346 /* Add a common block's start address to the offset of each symbol
5347 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5348 the common block name). */
5349
5350 static void
5351 fix_common_block (sym, valu)
5352 struct symbol *sym;
5353 int valu;
5354 {
5355 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5356 for ( ; next; next = next->next)
5357 {
5358 register int j;
5359 for (j = next->nsyms - 1; j >= 0; j--)
5360 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5361 }
5362 }
5363 \f
5364 /* Register our willingness to decode symbols for SunOS and a.out and
5365 b.out files handled by BFD... */
5366 static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5367 dbx_new_init, dbx_symfile_init,
5368 dbx_symfile_read, dbx_symfile_discard};
5369
5370 static struct sym_fns aout_sym_fns = {"a.out", 5,
5371 dbx_new_init, dbx_symfile_init,
5372 dbx_symfile_read, dbx_symfile_discard};
5373
5374 static struct sym_fns bout_sym_fns = {"b.out", 5,
5375 dbx_new_init, dbx_symfile_init,
5376 dbx_symfile_read, dbx_symfile_discard};
5377
5378 void
5379 _initialize_dbxread ()
5380 {
5381 add_symtab_fns(&sunos_sym_fns);
5382 add_symtab_fns(&aout_sym_fns);
5383 add_symtab_fns(&bout_sym_fns);
5384
5385 undef_types_allocated = 20;
5386 undef_types_length = 0;
5387 undef_types = (struct type **) xmalloc (undef_types_allocated *
5388 sizeof (struct type *));
5389
5390 dbx_new_init ();
5391 }
This page took 0.136581 seconds and 5 git commands to generate.