2011-10-21 Jan Glauber <jang@linux.vnet.ibm.com>
[deliverable/binutils-gdb.git] / gdb / doublest.c
1 /* Floating point routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
5 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support for converting target fp numbers into host DOUBLEST format. */
23
24 /* XXX - This code should really be in libiberty/floatformat.c,
25 however configuration issues with libiberty made this very
26 difficult to do in the available time. */
27
28 #include "defs.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
33 #include "gdbtypes.h"
34 #include <math.h> /* ldexp */
35
36 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
37 going to bother with trying to muck around with whether it is defined in
38 a system header, what we do if not, etc. */
39 #define FLOATFORMAT_CHAR_BIT 8
40
41 /* The number of bytes that the largest floating-point type that we
42 can convert to doublest will need. */
43 #define FLOATFORMAT_LARGEST_BYTES 16
44
45 /* Extract a field which starts at START and is LEN bytes long. DATA and
46 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
47 static unsigned long
48 get_field (const bfd_byte *data, enum floatformat_byteorders order,
49 unsigned int total_len, unsigned int start, unsigned int len)
50 {
51 unsigned long result;
52 unsigned int cur_byte;
53 int cur_bitshift;
54
55 /* Caller must byte-swap words before calling this routine. */
56 gdb_assert (order == floatformat_little || order == floatformat_big);
57
58 /* Start at the least significant part of the field. */
59 if (order == floatformat_little)
60 {
61 /* We start counting from the other end (i.e, from the high bytes
62 rather than the low bytes). As such, we need to be concerned
63 with what happens if bit 0 doesn't start on a byte boundary.
64 I.e, we need to properly handle the case where total_len is
65 not evenly divisible by 8. So we compute ``excess'' which
66 represents the number of bits from the end of our starting
67 byte needed to get to bit 0. */
68 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
69
70 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
71 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
72 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
73 - FLOATFORMAT_CHAR_BIT;
74 }
75 else
76 {
77 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
78 cur_bitshift =
79 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
80 }
81 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
82 result = *(data + cur_byte) >> (-cur_bitshift);
83 else
84 result = 0;
85 cur_bitshift += FLOATFORMAT_CHAR_BIT;
86 if (order == floatformat_little)
87 ++cur_byte;
88 else
89 --cur_byte;
90
91 /* Move towards the most significant part of the field. */
92 while (cur_bitshift < len)
93 {
94 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
95 cur_bitshift += FLOATFORMAT_CHAR_BIT;
96 switch (order)
97 {
98 case floatformat_little:
99 ++cur_byte;
100 break;
101 case floatformat_big:
102 --cur_byte;
103 break;
104 }
105 }
106 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
107 /* Mask out bits which are not part of the field. */
108 result &= ((1UL << len) - 1);
109 return result;
110 }
111
112 /* Normalize the byte order of FROM into TO. If no normalization is
113 needed then FMT->byteorder is returned and TO is not changed;
114 otherwise the format of the normalized form in TO is returned. */
115
116 static enum floatformat_byteorders
117 floatformat_normalize_byteorder (const struct floatformat *fmt,
118 const void *from, void *to)
119 {
120 const unsigned char *swapin;
121 unsigned char *swapout;
122 int words;
123
124 if (fmt->byteorder == floatformat_little
125 || fmt->byteorder == floatformat_big)
126 return fmt->byteorder;
127
128 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
129 words >>= 2;
130
131 swapout = (unsigned char *)to;
132 swapin = (const unsigned char *)from;
133
134 if (fmt->byteorder == floatformat_vax)
135 {
136 while (words-- > 0)
137 {
138 *swapout++ = swapin[1];
139 *swapout++ = swapin[0];
140 *swapout++ = swapin[3];
141 *swapout++ = swapin[2];
142 swapin += 4;
143 }
144 /* This may look weird, since VAX is little-endian, but it is
145 easier to translate to big-endian than to little-endian. */
146 return floatformat_big;
147 }
148 else
149 {
150 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
151
152 while (words-- > 0)
153 {
154 *swapout++ = swapin[3];
155 *swapout++ = swapin[2];
156 *swapout++ = swapin[1];
157 *swapout++ = swapin[0];
158 swapin += 4;
159 }
160 return floatformat_big;
161 }
162 }
163
164 /* Convert from FMT to a DOUBLEST.
165 FROM is the address of the extended float.
166 Store the DOUBLEST in *TO. */
167
168 static void
169 convert_floatformat_to_doublest (const struct floatformat *fmt,
170 const void *from,
171 DOUBLEST *to)
172 {
173 unsigned char *ufrom = (unsigned char *) from;
174 DOUBLEST dto;
175 long exponent;
176 unsigned long mant;
177 unsigned int mant_bits, mant_off;
178 int mant_bits_left;
179 int special_exponent; /* It's a NaN, denorm or zero. */
180 enum floatformat_byteorders order;
181 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
182 enum float_kind kind;
183
184 gdb_assert (fmt->totalsize
185 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
186
187 /* For non-numbers, reuse libiberty's logic to find the correct
188 format. We do not lose any precision in this case by passing
189 through a double. */
190 kind = floatformat_classify (fmt, from);
191 if (kind == float_infinite || kind == float_nan)
192 {
193 double dto;
194
195 floatformat_to_double (fmt, from, &dto);
196 *to = (DOUBLEST) dto;
197 return;
198 }
199
200 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
201
202 if (order != fmt->byteorder)
203 ufrom = newfrom;
204
205 if (fmt->split_half)
206 {
207 DOUBLEST dtop, dbot;
208
209 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
210 /* Preserve the sign of 0, which is the sign of the top
211 half. */
212 if (dtop == 0.0)
213 {
214 *to = dtop;
215 return;
216 }
217 floatformat_to_doublest (fmt->split_half,
218 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
219 &dbot);
220 *to = dtop + dbot;
221 return;
222 }
223
224 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
225 fmt->exp_len);
226 /* Note that if exponent indicates a NaN, we can't really do anything useful
227 (not knowing if the host has NaN's, or how to build one). So it will
228 end up as an infinity or something close; that is OK. */
229
230 mant_bits_left = fmt->man_len;
231 mant_off = fmt->man_start;
232 dto = 0.0;
233
234 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
235
236 /* Don't bias NaNs. Use minimum exponent for denorms. For
237 simplicity, we don't check for zero as the exponent doesn't matter.
238 Note the cast to int; exp_bias is unsigned, so it's important to
239 make sure the operation is done in signed arithmetic. */
240 if (!special_exponent)
241 exponent -= fmt->exp_bias;
242 else if (exponent == 0)
243 exponent = 1 - fmt->exp_bias;
244
245 /* Build the result algebraically. Might go infinite, underflow, etc;
246 who cares. */
247
248 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
249 increment the exponent by one to account for the integer bit. */
250
251 if (!special_exponent)
252 {
253 if (fmt->intbit == floatformat_intbit_no)
254 dto = ldexp (1.0, exponent);
255 else
256 exponent++;
257 }
258
259 while (mant_bits_left > 0)
260 {
261 mant_bits = min (mant_bits_left, 32);
262
263 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
264
265 dto += ldexp ((double) mant, exponent - mant_bits);
266 exponent -= mant_bits;
267 mant_off += mant_bits;
268 mant_bits_left -= mant_bits;
269 }
270
271 /* Negate it if negative. */
272 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
273 dto = -dto;
274 *to = dto;
275 }
276 \f
277 /* Set a field which starts at START and is LEN bytes long. DATA and
278 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
279 static void
280 put_field (unsigned char *data, enum floatformat_byteorders order,
281 unsigned int total_len, unsigned int start, unsigned int len,
282 unsigned long stuff_to_put)
283 {
284 unsigned int cur_byte;
285 int cur_bitshift;
286
287 /* Caller must byte-swap words before calling this routine. */
288 gdb_assert (order == floatformat_little || order == floatformat_big);
289
290 /* Start at the least significant part of the field. */
291 if (order == floatformat_little)
292 {
293 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
294
295 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
296 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
297 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
298 - FLOATFORMAT_CHAR_BIT;
299 }
300 else
301 {
302 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
303 cur_bitshift =
304 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
305 }
306 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
307 {
308 *(data + cur_byte) &=
309 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
310 << (-cur_bitshift));
311 *(data + cur_byte) |=
312 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
313 }
314 cur_bitshift += FLOATFORMAT_CHAR_BIT;
315 if (order == floatformat_little)
316 ++cur_byte;
317 else
318 --cur_byte;
319
320 /* Move towards the most significant part of the field. */
321 while (cur_bitshift < len)
322 {
323 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
324 {
325 /* This is the last byte. */
326 *(data + cur_byte) &=
327 ~((1 << (len - cur_bitshift)) - 1);
328 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
329 }
330 else
331 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
332 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
333 cur_bitshift += FLOATFORMAT_CHAR_BIT;
334 if (order == floatformat_little)
335 ++cur_byte;
336 else
337 --cur_byte;
338 }
339 }
340
341 #ifdef HAVE_LONG_DOUBLE
342 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
343 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
344 frexp, but operates on the long double data type. */
345
346 static long double ldfrexp (long double value, int *eptr);
347
348 static long double
349 ldfrexp (long double value, int *eptr)
350 {
351 long double tmp;
352 int exp;
353
354 /* Unfortunately, there are no portable functions for extracting the
355 exponent of a long double, so we have to do it iteratively by
356 multiplying or dividing by two until the fraction is between 0.5
357 and 1.0. */
358
359 if (value < 0.0l)
360 value = -value;
361
362 tmp = 1.0l;
363 exp = 0;
364
365 if (value >= tmp) /* Value >= 1.0 */
366 while (value >= tmp)
367 {
368 tmp *= 2.0l;
369 exp++;
370 }
371 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
372 {
373 while (value < tmp)
374 {
375 tmp /= 2.0l;
376 exp--;
377 }
378 tmp *= 2.0l;
379 exp++;
380 }
381
382 *eptr = exp;
383 return value / tmp;
384 }
385 #endif /* HAVE_LONG_DOUBLE */
386
387
388 /* The converse: convert the DOUBLEST *FROM to an extended float and
389 store where TO points. Neither FROM nor TO have any alignment
390 restrictions. */
391
392 static void
393 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
394 const DOUBLEST *from, void *to)
395 {
396 DOUBLEST dfrom;
397 int exponent;
398 DOUBLEST mant;
399 unsigned int mant_bits, mant_off;
400 int mant_bits_left;
401 unsigned char *uto = (unsigned char *) to;
402 enum floatformat_byteorders order = fmt->byteorder;
403 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
404
405 if (order != floatformat_little)
406 order = floatformat_big;
407
408 if (order != fmt->byteorder)
409 uto = newto;
410
411 memcpy (&dfrom, from, sizeof (dfrom));
412 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
413 / FLOATFORMAT_CHAR_BIT);
414
415 if (fmt->split_half)
416 {
417 /* Use static volatile to ensure that any excess precision is
418 removed via storing in memory, and so the top half really is
419 the result of converting to double. */
420 static volatile double dtop, dbot;
421 DOUBLEST dtopnv, dbotnv;
422
423 dtop = (double) dfrom;
424 /* If the rounded top half is Inf, the bottom must be 0 not NaN
425 or Inf. */
426 if (dtop + dtop == dtop && dtop != 0.0)
427 dbot = 0.0;
428 else
429 dbot = (double) (dfrom - (DOUBLEST) dtop);
430 dtopnv = dtop;
431 dbotnv = dbot;
432 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
433 floatformat_from_doublest (fmt->split_half, &dbotnv,
434 (uto
435 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
436 return;
437 }
438
439 if (dfrom == 0)
440 return; /* Result is zero */
441 if (dfrom != dfrom) /* Result is NaN */
442 {
443 /* From is NaN */
444 put_field (uto, order, fmt->totalsize, fmt->exp_start,
445 fmt->exp_len, fmt->exp_nan);
446 /* Be sure it's not infinity, but NaN value is irrel. */
447 put_field (uto, order, fmt->totalsize, fmt->man_start,
448 fmt->man_len, 1);
449 goto finalize_byteorder;
450 }
451
452 /* If negative, set the sign bit. */
453 if (dfrom < 0)
454 {
455 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
456 dfrom = -dfrom;
457 }
458
459 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
460 {
461 /* Infinity exponent is same as NaN's. */
462 put_field (uto, order, fmt->totalsize, fmt->exp_start,
463 fmt->exp_len, fmt->exp_nan);
464 /* Infinity mantissa is all zeroes. */
465 put_field (uto, order, fmt->totalsize, fmt->man_start,
466 fmt->man_len, 0);
467 goto finalize_byteorder;
468 }
469
470 #ifdef HAVE_LONG_DOUBLE
471 mant = ldfrexp (dfrom, &exponent);
472 #else
473 mant = frexp (dfrom, &exponent);
474 #endif
475
476 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
477 exponent + fmt->exp_bias - 1);
478
479 mant_bits_left = fmt->man_len;
480 mant_off = fmt->man_start;
481 while (mant_bits_left > 0)
482 {
483 unsigned long mant_long;
484
485 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
486
487 mant *= 4294967296.0;
488 mant_long = ((unsigned long) mant) & 0xffffffffL;
489 mant -= mant_long;
490
491 /* If the integer bit is implicit, then we need to discard it.
492 If we are discarding a zero, we should be (but are not) creating
493 a denormalized number which means adjusting the exponent
494 (I think). */
495 if (mant_bits_left == fmt->man_len
496 && fmt->intbit == floatformat_intbit_no)
497 {
498 mant_long <<= 1;
499 mant_long &= 0xffffffffL;
500 /* If we are processing the top 32 mantissa bits of a doublest
501 so as to convert to a float value with implied integer bit,
502 we will only be putting 31 of those 32 bits into the
503 final value due to the discarding of the top bit. In the
504 case of a small float value where the number of mantissa
505 bits is less than 32, discarding the top bit does not alter
506 the number of bits we will be adding to the result. */
507 if (mant_bits == 32)
508 mant_bits -= 1;
509 }
510
511 if (mant_bits < 32)
512 {
513 /* The bits we want are in the most significant MANT_BITS bits of
514 mant_long. Move them to the least significant. */
515 mant_long >>= 32 - mant_bits;
516 }
517
518 put_field (uto, order, fmt->totalsize,
519 mant_off, mant_bits, mant_long);
520 mant_off += mant_bits;
521 mant_bits_left -= mant_bits;
522 }
523
524 finalize_byteorder:
525 /* Do we need to byte-swap the words in the result? */
526 if (order != fmt->byteorder)
527 floatformat_normalize_byteorder (fmt, newto, to);
528 }
529
530 /* Check if VAL (which is assumed to be a floating point number whose
531 format is described by FMT) is negative. */
532
533 int
534 floatformat_is_negative (const struct floatformat *fmt,
535 const bfd_byte *uval)
536 {
537 enum floatformat_byteorders order;
538 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
539
540 gdb_assert (fmt != NULL);
541 gdb_assert (fmt->totalsize
542 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
543
544 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
545
546 if (order != fmt->byteorder)
547 uval = newfrom;
548
549 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
550 }
551
552 /* Check if VAL is "not a number" (NaN) for FMT. */
553
554 enum float_kind
555 floatformat_classify (const struct floatformat *fmt,
556 const bfd_byte *uval)
557 {
558 long exponent;
559 unsigned long mant;
560 unsigned int mant_bits, mant_off;
561 int mant_bits_left;
562 enum floatformat_byteorders order;
563 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
564 int mant_zero;
565
566 gdb_assert (fmt != NULL);
567 gdb_assert (fmt->totalsize
568 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
569
570 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
571
572 if (order != fmt->byteorder)
573 uval = newfrom;
574
575 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
576 fmt->exp_len);
577
578 mant_bits_left = fmt->man_len;
579 mant_off = fmt->man_start;
580
581 mant_zero = 1;
582 while (mant_bits_left > 0)
583 {
584 mant_bits = min (mant_bits_left, 32);
585
586 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
587
588 /* If there is an explicit integer bit, mask it off. */
589 if (mant_off == fmt->man_start
590 && fmt->intbit == floatformat_intbit_yes)
591 mant &= ~(1 << (mant_bits - 1));
592
593 if (mant)
594 {
595 mant_zero = 0;
596 break;
597 }
598
599 mant_off += mant_bits;
600 mant_bits_left -= mant_bits;
601 }
602
603 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
604 supported. */
605 if (! fmt->exp_nan)
606 {
607 if (mant_zero)
608 return float_zero;
609 else
610 return float_normal;
611 }
612
613 if (exponent == 0 && !mant_zero)
614 return float_subnormal;
615
616 if (exponent == fmt->exp_nan)
617 {
618 if (mant_zero)
619 return float_infinite;
620 else
621 return float_nan;
622 }
623
624 if (mant_zero)
625 return float_zero;
626
627 return float_normal;
628 }
629
630 /* Convert the mantissa of VAL (which is assumed to be a floating
631 point number whose format is described by FMT) into a hexadecimal
632 and store it in a static string. Return a pointer to that string. */
633
634 const char *
635 floatformat_mantissa (const struct floatformat *fmt,
636 const bfd_byte *val)
637 {
638 unsigned char *uval = (unsigned char *) val;
639 unsigned long mant;
640 unsigned int mant_bits, mant_off;
641 int mant_bits_left;
642 static char res[50];
643 char buf[9];
644 int len;
645 enum floatformat_byteorders order;
646 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
647
648 gdb_assert (fmt != NULL);
649 gdb_assert (fmt->totalsize
650 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
651
652 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
653
654 if (order != fmt->byteorder)
655 uval = newfrom;
656
657 if (! fmt->exp_nan)
658 return 0;
659
660 /* Make sure we have enough room to store the mantissa. */
661 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
662
663 mant_off = fmt->man_start;
664 mant_bits_left = fmt->man_len;
665 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
666
667 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
668
669 len = xsnprintf (res, sizeof res, "%lx", mant);
670
671 mant_off += mant_bits;
672 mant_bits_left -= mant_bits;
673
674 while (mant_bits_left > 0)
675 {
676 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
677
678 xsnprintf (buf, sizeof buf, "%08lx", mant);
679 gdb_assert (len + strlen (buf) <= sizeof res);
680 strcat (res, buf);
681
682 mant_off += 32;
683 mant_bits_left -= 32;
684 }
685
686 return res;
687 }
688
689 \f
690 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
691
692 If the host and target formats agree, we just copy the raw data
693 into the appropriate type of variable and return, letting the host
694 increase precision as necessary. Otherwise, we call the conversion
695 routine and let it do the dirty work. */
696
697 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
698 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
699 static const struct floatformat *host_long_double_format
700 = GDB_HOST_LONG_DOUBLE_FORMAT;
701
702 void
703 floatformat_to_doublest (const struct floatformat *fmt,
704 const void *in, DOUBLEST *out)
705 {
706 gdb_assert (fmt != NULL);
707 if (fmt == host_float_format)
708 {
709 float val;
710
711 memcpy (&val, in, sizeof (val));
712 *out = val;
713 }
714 else if (fmt == host_double_format)
715 {
716 double val;
717
718 memcpy (&val, in, sizeof (val));
719 *out = val;
720 }
721 else if (fmt == host_long_double_format)
722 {
723 long double val;
724
725 memcpy (&val, in, sizeof (val));
726 *out = val;
727 }
728 else
729 convert_floatformat_to_doublest (fmt, in, out);
730 }
731
732 void
733 floatformat_from_doublest (const struct floatformat *fmt,
734 const DOUBLEST *in, void *out)
735 {
736 gdb_assert (fmt != NULL);
737 if (fmt == host_float_format)
738 {
739 float val = *in;
740
741 memcpy (out, &val, sizeof (val));
742 }
743 else if (fmt == host_double_format)
744 {
745 double val = *in;
746
747 memcpy (out, &val, sizeof (val));
748 }
749 else if (fmt == host_long_double_format)
750 {
751 long double val = *in;
752
753 memcpy (out, &val, sizeof (val));
754 }
755 else
756 convert_doublest_to_floatformat (fmt, in, out);
757 }
758
759 \f
760 /* Return a floating-point format for a floating-point variable of
761 length LEN. If no suitable floating-point format is found, an
762 error is thrown.
763
764 We need this functionality since information about the
765 floating-point format of a type is not always available to GDB; the
766 debug information typically only tells us the size of a
767 floating-point type.
768
769 FIXME: kettenis/2001-10-28: In many places, particularly in
770 target-dependent code, the format of floating-point types is known,
771 but not passed on by GDB. This should be fixed. */
772
773 static const struct floatformat *
774 floatformat_from_length (struct gdbarch *gdbarch, int len)
775 {
776 const struct floatformat *format;
777
778 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
779 format = gdbarch_half_format (gdbarch)
780 [gdbarch_byte_order (gdbarch)];
781 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
782 format = gdbarch_float_format (gdbarch)
783 [gdbarch_byte_order (gdbarch)];
784 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
785 format = gdbarch_double_format (gdbarch)
786 [gdbarch_byte_order (gdbarch)];
787 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
788 format = gdbarch_long_double_format (gdbarch)
789 [gdbarch_byte_order (gdbarch)];
790 /* On i386 the 'long double' type takes 96 bits,
791 while the real number of used bits is only 80,
792 both in processor and in memory.
793 The code below accepts the real bit size. */
794 else if ((gdbarch_long_double_format (gdbarch) != NULL)
795 && (len * TARGET_CHAR_BIT
796 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
797 format = gdbarch_long_double_format (gdbarch)
798 [gdbarch_byte_order (gdbarch)];
799 else
800 format = NULL;
801 if (format == NULL)
802 error (_("Unrecognized %d-bit floating-point type."),
803 len * TARGET_CHAR_BIT);
804 return format;
805 }
806
807 const struct floatformat *
808 floatformat_from_type (const struct type *type)
809 {
810 struct gdbarch *gdbarch = get_type_arch (type);
811
812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
813 if (TYPE_FLOATFORMAT (type) != NULL)
814 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
815 else
816 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
817 }
818
819 /* Extract a floating-point number of type TYPE from a target-order
820 byte-stream at ADDR. Returns the value as type DOUBLEST. */
821
822 DOUBLEST
823 extract_typed_floating (const void *addr, const struct type *type)
824 {
825 const struct floatformat *fmt = floatformat_from_type (type);
826 DOUBLEST retval;
827
828 floatformat_to_doublest (fmt, addr, &retval);
829 return retval;
830 }
831
832 /* Store VAL as a floating-point number of type TYPE to a target-order
833 byte-stream at ADDR. */
834
835 void
836 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
837 {
838 const struct floatformat *fmt = floatformat_from_type (type);
839
840 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
841 zero out any remaining bytes in the target buffer when TYPE is
842 longer than the actual underlying floating-point format. Perhaps
843 we should store a fixed bitpattern in those remaining bytes,
844 instead of zero, or perhaps we shouldn't touch those remaining
845 bytes at all.
846
847 NOTE: cagney/2001-10-28: With the way things currently work, it
848 isn't a good idea to leave the end bits undefined. This is
849 because GDB writes out the entire sizeof(<floating>) bits of the
850 floating-point type even though the value might only be stored
851 in, and the target processor may only refer to, the first N <
852 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
853 initialized, GDB would write undefined data to the target. An
854 errant program, refering to that undefined data, would then
855 become non-deterministic.
856
857 See also the function convert_typed_floating below. */
858 memset (addr, 0, TYPE_LENGTH (type));
859
860 floatformat_from_doublest (fmt, &val, addr);
861 }
862
863 /* Convert a floating-point number of type FROM_TYPE from a
864 target-order byte-stream at FROM to a floating-point number of type
865 TO_TYPE, and store it to a target-order byte-stream at TO. */
866
867 void
868 convert_typed_floating (const void *from, const struct type *from_type,
869 void *to, const struct type *to_type)
870 {
871 const struct floatformat *from_fmt = floatformat_from_type (from_type);
872 const struct floatformat *to_fmt = floatformat_from_type (to_type);
873
874 if (from_fmt == NULL || to_fmt == NULL)
875 {
876 /* If we don't know the floating-point format of FROM_TYPE or
877 TO_TYPE, there's not much we can do. We might make the
878 assumption that if the length of FROM_TYPE and TO_TYPE match,
879 their floating-point format would match too, but that
880 assumption might be wrong on targets that support
881 floating-point types that only differ in endianness for
882 example. So we warn instead, and zero out the target buffer. */
883 warning (_("Can't convert floating-point number to desired type."));
884 memset (to, 0, TYPE_LENGTH (to_type));
885 }
886 else if (from_fmt == to_fmt)
887 {
888 /* We're in business. The floating-point format of FROM_TYPE
889 and TO_TYPE match. However, even though the floating-point
890 format matches, the length of the type might still be
891 different. Make sure we don't overrun any buffers. See
892 comment in store_typed_floating for a discussion about
893 zeroing out remaining bytes in the target buffer. */
894 memset (to, 0, TYPE_LENGTH (to_type));
895 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
896 }
897 else
898 {
899 /* The floating-point types don't match. The best we can do
900 (apart from simulating the target FPU) is converting to the
901 widest floating-point type supported by the host, and then
902 again to the desired type. */
903 DOUBLEST d;
904
905 floatformat_to_doublest (from_fmt, from, &d);
906 floatformat_from_doublest (to_fmt, &d, to);
907 }
908 }
909
910 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
911 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
912 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
913 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
914 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
915
916 extern void _initialize_doublest (void);
917
918 extern void
919 _initialize_doublest (void)
920 {
921 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
922 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
923 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
924 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
925 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
926 = &floatformat_arm_ext_littlebyte_bigword;
927 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
928 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
929 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
930 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
931 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
932 }
This page took 0.047998 seconds and 4 git commands to generate.