1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support for converting target fp numbers into host DOUBLEST format. */
24 /* XXX - This code should really be in libiberty/floatformat.c,
25 however configuration issues with libiberty made this very
26 difficult to do in the available time. */
30 #include "floatformat.h"
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
34 #include <math.h> /* ldexp */
36 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
37 going to bother with trying to muck around with whether it is defined in
38 a system header, what we do if not, etc. */
39 #define FLOATFORMAT_CHAR_BIT 8
41 /* The number of bytes that the largest floating-point type that we
42 can convert to doublest will need. */
43 #define FLOATFORMAT_LARGEST_BYTES 16
45 /* Extract a field which starts at START and is LEN bytes long. DATA and
46 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
48 get_field (const bfd_byte
*data
, enum floatformat_byteorders order
,
49 unsigned int total_len
, unsigned int start
, unsigned int len
)
52 unsigned int cur_byte
;
55 /* Caller must byte-swap words before calling this routine. */
56 gdb_assert (order
== floatformat_little
|| order
== floatformat_big
);
58 /* Start at the least significant part of the field. */
59 if (order
== floatformat_little
)
61 /* We start counting from the other end (i.e, from the high bytes
62 rather than the low bytes). As such, we need to be concerned
63 with what happens if bit 0 doesn't start on a byte boundary.
64 I.e, we need to properly handle the case where total_len is
65 not evenly divisible by 8. So we compute ``excess'' which
66 represents the number of bits from the end of our starting
67 byte needed to get to bit 0. */
68 int excess
= FLOATFORMAT_CHAR_BIT
- (total_len
% FLOATFORMAT_CHAR_BIT
);
69 cur_byte
= (total_len
/ FLOATFORMAT_CHAR_BIT
)
70 - ((start
+ len
+ excess
) / FLOATFORMAT_CHAR_BIT
);
71 cur_bitshift
= ((start
+ len
+ excess
) % FLOATFORMAT_CHAR_BIT
)
72 - FLOATFORMAT_CHAR_BIT
;
76 cur_byte
= (start
+ len
) / FLOATFORMAT_CHAR_BIT
;
78 ((start
+ len
) % FLOATFORMAT_CHAR_BIT
) - FLOATFORMAT_CHAR_BIT
;
80 if (cur_bitshift
> -FLOATFORMAT_CHAR_BIT
)
81 result
= *(data
+ cur_byte
) >> (-cur_bitshift
);
84 cur_bitshift
+= FLOATFORMAT_CHAR_BIT
;
85 if (order
== floatformat_little
)
90 /* Move towards the most significant part of the field. */
91 while (cur_bitshift
< len
)
93 result
|= (unsigned long)*(data
+ cur_byte
) << cur_bitshift
;
94 cur_bitshift
+= FLOATFORMAT_CHAR_BIT
;
97 case floatformat_little
:
100 case floatformat_big
:
105 if (len
< sizeof(result
) * FLOATFORMAT_CHAR_BIT
)
106 /* Mask out bits which are not part of the field */
107 result
&= ((1UL << len
) - 1);
111 /* Normalize the byte order of FROM into TO. If no normalization is
112 needed then FMT->byteorder is returned and TO is not changed;
113 otherwise the format of the normalized form in TO is returned. */
115 static enum floatformat_byteorders
116 floatformat_normalize_byteorder (const struct floatformat
*fmt
,
117 const void *from
, void *to
)
119 const unsigned char *swapin
;
120 unsigned char *swapout
;
123 if (fmt
->byteorder
== floatformat_little
124 || fmt
->byteorder
== floatformat_big
)
125 return fmt
->byteorder
;
127 words
= fmt
->totalsize
/ FLOATFORMAT_CHAR_BIT
;
130 swapout
= (unsigned char *)to
;
131 swapin
= (const unsigned char *)from
;
133 if (fmt
->byteorder
== floatformat_vax
)
137 *swapout
++ = swapin
[1];
138 *swapout
++ = swapin
[0];
139 *swapout
++ = swapin
[3];
140 *swapout
++ = swapin
[2];
143 /* This may look weird, since VAX is little-endian, but it is
144 easier to translate to big-endian than to little-endian. */
145 return floatformat_big
;
149 gdb_assert (fmt
->byteorder
== floatformat_littlebyte_bigword
);
153 *swapout
++ = swapin
[3];
154 *swapout
++ = swapin
[2];
155 *swapout
++ = swapin
[1];
156 *swapout
++ = swapin
[0];
159 return floatformat_big
;
163 /* Convert from FMT to a DOUBLEST.
164 FROM is the address of the extended float.
165 Store the DOUBLEST in *TO. */
168 convert_floatformat_to_doublest (const struct floatformat
*fmt
,
172 unsigned char *ufrom
= (unsigned char *) from
;
176 unsigned int mant_bits
, mant_off
;
178 int special_exponent
; /* It's a NaN, denorm or zero */
179 enum floatformat_byteorders order
;
180 unsigned char newfrom
[FLOATFORMAT_LARGEST_BYTES
];
181 enum float_kind kind
;
183 gdb_assert (fmt
->totalsize
184 <= FLOATFORMAT_LARGEST_BYTES
* FLOATFORMAT_CHAR_BIT
);
186 /* For non-numbers, reuse libiberty's logic to find the correct
187 format. We do not lose any precision in this case by passing
189 kind
= floatformat_classify (fmt
, from
);
190 if (kind
== float_infinite
|| kind
== float_nan
)
193 floatformat_to_double (fmt
, from
, &dto
);
194 *to
= (DOUBLEST
) dto
;
198 order
= floatformat_normalize_byteorder (fmt
, ufrom
, newfrom
);
200 if (order
!= fmt
->byteorder
)
206 floatformat_to_doublest (fmt
->split_half
, ufrom
, &dtop
);
207 /* Preserve the sign of 0, which is the sign of the top
214 floatformat_to_doublest (fmt
->split_half
,
215 ufrom
+ fmt
->totalsize
/ FLOATFORMAT_CHAR_BIT
/ 2,
221 exponent
= get_field (ufrom
, order
, fmt
->totalsize
, fmt
->exp_start
,
223 /* Note that if exponent indicates a NaN, we can't really do anything useful
224 (not knowing if the host has NaN's, or how to build one). So it will
225 end up as an infinity or something close; that is OK. */
227 mant_bits_left
= fmt
->man_len
;
228 mant_off
= fmt
->man_start
;
231 special_exponent
= exponent
== 0 || exponent
== fmt
->exp_nan
;
233 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
234 we don't check for zero as the exponent doesn't matter. Note the cast
235 to int; exp_bias is unsigned, so it's important to make sure the
236 operation is done in signed arithmetic. */
237 if (!special_exponent
)
238 exponent
-= fmt
->exp_bias
;
239 else if (exponent
== 0)
240 exponent
= 1 - fmt
->exp_bias
;
242 /* Build the result algebraically. Might go infinite, underflow, etc;
245 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
246 increment the exponent by one to account for the integer bit. */
248 if (!special_exponent
)
250 if (fmt
->intbit
== floatformat_intbit_no
)
251 dto
= ldexp (1.0, exponent
);
256 while (mant_bits_left
> 0)
258 mant_bits
= min (mant_bits_left
, 32);
260 mant
= get_field (ufrom
, order
, fmt
->totalsize
, mant_off
, mant_bits
);
262 dto
+= ldexp ((double) mant
, exponent
- mant_bits
);
263 exponent
-= mant_bits
;
264 mant_off
+= mant_bits
;
265 mant_bits_left
-= mant_bits
;
268 /* Negate it if negative. */
269 if (get_field (ufrom
, order
, fmt
->totalsize
, fmt
->sign_start
, 1))
274 static void put_field (unsigned char *, enum floatformat_byteorders
,
276 unsigned int, unsigned int, unsigned long);
278 /* Set a field which starts at START and is LEN bytes long. DATA and
279 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
281 put_field (unsigned char *data
, enum floatformat_byteorders order
,
282 unsigned int total_len
, unsigned int start
, unsigned int len
,
283 unsigned long stuff_to_put
)
285 unsigned int cur_byte
;
288 /* Caller must byte-swap words before calling this routine. */
289 gdb_assert (order
== floatformat_little
|| order
== floatformat_big
);
291 /* Start at the least significant part of the field. */
292 if (order
== floatformat_little
)
294 int excess
= FLOATFORMAT_CHAR_BIT
- (total_len
% FLOATFORMAT_CHAR_BIT
);
295 cur_byte
= (total_len
/ FLOATFORMAT_CHAR_BIT
)
296 - ((start
+ len
+ excess
) / FLOATFORMAT_CHAR_BIT
);
297 cur_bitshift
= ((start
+ len
+ excess
) % FLOATFORMAT_CHAR_BIT
)
298 - FLOATFORMAT_CHAR_BIT
;
302 cur_byte
= (start
+ len
) / FLOATFORMAT_CHAR_BIT
;
304 ((start
+ len
) % FLOATFORMAT_CHAR_BIT
) - FLOATFORMAT_CHAR_BIT
;
306 if (cur_bitshift
> -FLOATFORMAT_CHAR_BIT
)
308 *(data
+ cur_byte
) &=
309 ~(((1 << ((start
+ len
) % FLOATFORMAT_CHAR_BIT
)) - 1)
311 *(data
+ cur_byte
) |=
312 (stuff_to_put
& ((1 << FLOATFORMAT_CHAR_BIT
) - 1)) << (-cur_bitshift
);
314 cur_bitshift
+= FLOATFORMAT_CHAR_BIT
;
315 if (order
== floatformat_little
)
320 /* Move towards the most significant part of the field. */
321 while (cur_bitshift
< len
)
323 if (len
- cur_bitshift
< FLOATFORMAT_CHAR_BIT
)
325 /* This is the last byte. */
326 *(data
+ cur_byte
) &=
327 ~((1 << (len
- cur_bitshift
)) - 1);
328 *(data
+ cur_byte
) |= (stuff_to_put
>> cur_bitshift
);
331 *(data
+ cur_byte
) = ((stuff_to_put
>> cur_bitshift
)
332 & ((1 << FLOATFORMAT_CHAR_BIT
) - 1));
333 cur_bitshift
+= FLOATFORMAT_CHAR_BIT
;
334 if (order
== floatformat_little
)
341 #ifdef HAVE_LONG_DOUBLE
342 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
343 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
344 frexp, but operates on the long double data type. */
346 static long double ldfrexp (long double value
, int *eptr
);
349 ldfrexp (long double value
, int *eptr
)
354 /* Unfortunately, there are no portable functions for extracting the exponent
355 of a long double, so we have to do it iteratively by multiplying or dividing
356 by two until the fraction is between 0.5 and 1.0. */
364 if (value
>= tmp
) /* Value >= 1.0 */
370 else if (value
!= 0.0l) /* Value < 1.0 and > 0.0 */
384 #endif /* HAVE_LONG_DOUBLE */
387 /* The converse: convert the DOUBLEST *FROM to an extended float and
388 store where TO points. Neither FROM nor TO have any alignment
392 convert_doublest_to_floatformat (CONST
struct floatformat
*fmt
,
393 const DOUBLEST
*from
, void *to
)
398 unsigned int mant_bits
, mant_off
;
400 unsigned char *uto
= (unsigned char *) to
;
401 enum floatformat_byteorders order
= fmt
->byteorder
;
402 unsigned char newto
[FLOATFORMAT_LARGEST_BYTES
];
404 if (order
!= floatformat_little
)
405 order
= floatformat_big
;
407 if (order
!= fmt
->byteorder
)
410 memcpy (&dfrom
, from
, sizeof (dfrom
));
411 memset (uto
, 0, (fmt
->totalsize
+ FLOATFORMAT_CHAR_BIT
- 1)
412 / FLOATFORMAT_CHAR_BIT
);
416 /* Use static volatile to ensure that any excess precision is
417 removed via storing in memory, and so the top half really is
418 the result of converting to double. */
419 static volatile double dtop
, dbot
;
420 DOUBLEST dtopnv
, dbotnv
;
421 dtop
= (double) dfrom
;
422 /* If the rounded top half is Inf, the bottom must be 0 not NaN
424 if (dtop
+ dtop
== dtop
&& dtop
!= 0.0)
427 dbot
= (double) (dfrom
- (DOUBLEST
) dtop
);
430 floatformat_from_doublest (fmt
->split_half
, &dtopnv
, uto
);
431 floatformat_from_doublest (fmt
->split_half
, &dbotnv
,
433 + fmt
->totalsize
/ FLOATFORMAT_CHAR_BIT
/ 2));
438 return; /* Result is zero */
439 if (dfrom
!= dfrom
) /* Result is NaN */
442 put_field (uto
, order
, fmt
->totalsize
, fmt
->exp_start
,
443 fmt
->exp_len
, fmt
->exp_nan
);
444 /* Be sure it's not infinity, but NaN value is irrel */
445 put_field (uto
, order
, fmt
->totalsize
, fmt
->man_start
,
447 goto finalize_byteorder
;
450 /* If negative, set the sign bit. */
453 put_field (uto
, order
, fmt
->totalsize
, fmt
->sign_start
, 1, 1);
457 if (dfrom
+ dfrom
== dfrom
&& dfrom
!= 0.0) /* Result is Infinity */
459 /* Infinity exponent is same as NaN's. */
460 put_field (uto
, order
, fmt
->totalsize
, fmt
->exp_start
,
461 fmt
->exp_len
, fmt
->exp_nan
);
462 /* Infinity mantissa is all zeroes. */
463 put_field (uto
, order
, fmt
->totalsize
, fmt
->man_start
,
465 goto finalize_byteorder
;
468 #ifdef HAVE_LONG_DOUBLE
469 mant
= ldfrexp (dfrom
, &exponent
);
471 mant
= frexp (dfrom
, &exponent
);
474 put_field (uto
, order
, fmt
->totalsize
, fmt
->exp_start
, fmt
->exp_len
,
475 exponent
+ fmt
->exp_bias
- 1);
477 mant_bits_left
= fmt
->man_len
;
478 mant_off
= fmt
->man_start
;
479 while (mant_bits_left
> 0)
481 unsigned long mant_long
;
482 mant_bits
= mant_bits_left
< 32 ? mant_bits_left
: 32;
484 mant
*= 4294967296.0;
485 mant_long
= ((unsigned long) mant
) & 0xffffffffL
;
488 /* If the integer bit is implicit, then we need to discard it.
489 If we are discarding a zero, we should be (but are not) creating
490 a denormalized number which means adjusting the exponent
492 if (mant_bits_left
== fmt
->man_len
493 && fmt
->intbit
== floatformat_intbit_no
)
496 mant_long
&= 0xffffffffL
;
497 /* If we are processing the top 32 mantissa bits of a doublest
498 so as to convert to a float value with implied integer bit,
499 we will only be putting 31 of those 32 bits into the
500 final value due to the discarding of the top bit. In the
501 case of a small float value where the number of mantissa
502 bits is less than 32, discarding the top bit does not alter
503 the number of bits we will be adding to the result. */
510 /* The bits we want are in the most significant MANT_BITS bits of
511 mant_long. Move them to the least significant. */
512 mant_long
>>= 32 - mant_bits
;
515 put_field (uto
, order
, fmt
->totalsize
,
516 mant_off
, mant_bits
, mant_long
);
517 mant_off
+= mant_bits
;
518 mant_bits_left
-= mant_bits
;
522 /* Do we need to byte-swap the words in the result? */
523 if (order
!= fmt
->byteorder
)
524 floatformat_normalize_byteorder (fmt
, newto
, to
);
527 /* Check if VAL (which is assumed to be a floating point number whose
528 format is described by FMT) is negative. */
531 floatformat_is_negative (const struct floatformat
*fmt
,
532 const bfd_byte
*uval
)
534 enum floatformat_byteorders order
;
535 unsigned char newfrom
[FLOATFORMAT_LARGEST_BYTES
];
537 gdb_assert (fmt
!= NULL
);
538 gdb_assert (fmt
->totalsize
539 <= FLOATFORMAT_LARGEST_BYTES
* FLOATFORMAT_CHAR_BIT
);
541 order
= floatformat_normalize_byteorder (fmt
, uval
, newfrom
);
543 if (order
!= fmt
->byteorder
)
546 return get_field (uval
, order
, fmt
->totalsize
, fmt
->sign_start
, 1);
549 /* Check if VAL is "not a number" (NaN) for FMT. */
552 floatformat_classify (const struct floatformat
*fmt
,
553 const bfd_byte
*uval
)
557 unsigned int mant_bits
, mant_off
;
559 enum floatformat_byteorders order
;
560 unsigned char newfrom
[FLOATFORMAT_LARGEST_BYTES
];
563 gdb_assert (fmt
!= NULL
);
564 gdb_assert (fmt
->totalsize
565 <= FLOATFORMAT_LARGEST_BYTES
* FLOATFORMAT_CHAR_BIT
);
567 order
= floatformat_normalize_byteorder (fmt
, uval
, newfrom
);
569 if (order
!= fmt
->byteorder
)
572 exponent
= get_field (uval
, order
, fmt
->totalsize
, fmt
->exp_start
,
575 mant_bits_left
= fmt
->man_len
;
576 mant_off
= fmt
->man_start
;
579 while (mant_bits_left
> 0)
581 mant_bits
= min (mant_bits_left
, 32);
583 mant
= get_field (uval
, order
, fmt
->totalsize
, mant_off
, mant_bits
);
585 /* If there is an explicit integer bit, mask it off. */
586 if (mant_off
== fmt
->man_start
587 && fmt
->intbit
== floatformat_intbit_yes
)
588 mant
&= ~(1 << (mant_bits
- 1));
596 mant_off
+= mant_bits
;
597 mant_bits_left
-= mant_bits
;
600 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
610 if (exponent
== 0 && !mant_zero
)
611 return float_subnormal
;
613 if (exponent
== fmt
->exp_nan
)
616 return float_infinite
;
627 /* Convert the mantissa of VAL (which is assumed to be a floating
628 point number whose format is described by FMT) into a hexadecimal
629 and store it in a static string. Return a pointer to that string. */
632 floatformat_mantissa (const struct floatformat
*fmt
,
635 unsigned char *uval
= (unsigned char *) val
;
637 unsigned int mant_bits
, mant_off
;
642 enum floatformat_byteorders order
;
643 unsigned char newfrom
[FLOATFORMAT_LARGEST_BYTES
];
645 gdb_assert (fmt
!= NULL
);
646 gdb_assert (fmt
->totalsize
647 <= FLOATFORMAT_LARGEST_BYTES
* FLOATFORMAT_CHAR_BIT
);
649 order
= floatformat_normalize_byteorder (fmt
, uval
, newfrom
);
651 if (order
!= fmt
->byteorder
)
657 /* Make sure we have enough room to store the mantissa. */
658 gdb_assert (sizeof res
> ((fmt
->man_len
+ 7) / 8) * 2);
660 mant_off
= fmt
->man_start
;
661 mant_bits_left
= fmt
->man_len
;
662 mant_bits
= (mant_bits_left
% 32) > 0 ? mant_bits_left
% 32 : 32;
664 mant
= get_field (uval
, order
, fmt
->totalsize
, mant_off
, mant_bits
);
666 len
= xsnprintf (res
, sizeof res
, "%lx", mant
);
668 mant_off
+= mant_bits
;
669 mant_bits_left
-= mant_bits
;
671 while (mant_bits_left
> 0)
673 mant
= get_field (uval
, order
, fmt
->totalsize
, mant_off
, 32);
675 xsnprintf (buf
, sizeof buf
, "%08lx", mant
);
676 gdb_assert (len
+ strlen (buf
) <= sizeof res
);
680 mant_bits_left
-= 32;
687 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
689 If the host and target formats agree, we just copy the raw data
690 into the appropriate type of variable and return, letting the host
691 increase precision as necessary. Otherwise, we call the conversion
692 routine and let it do the dirty work. */
694 static const struct floatformat
*host_float_format
= GDB_HOST_FLOAT_FORMAT
;
695 static const struct floatformat
*host_double_format
= GDB_HOST_DOUBLE_FORMAT
;
696 static const struct floatformat
*host_long_double_format
= GDB_HOST_LONG_DOUBLE_FORMAT
;
699 floatformat_to_doublest (const struct floatformat
*fmt
,
700 const void *in
, DOUBLEST
*out
)
702 gdb_assert (fmt
!= NULL
);
703 if (fmt
== host_float_format
)
706 memcpy (&val
, in
, sizeof (val
));
709 else if (fmt
== host_double_format
)
712 memcpy (&val
, in
, sizeof (val
));
715 else if (fmt
== host_long_double_format
)
718 memcpy (&val
, in
, sizeof (val
));
722 convert_floatformat_to_doublest (fmt
, in
, out
);
726 floatformat_from_doublest (const struct floatformat
*fmt
,
727 const DOUBLEST
*in
, void *out
)
729 gdb_assert (fmt
!= NULL
);
730 if (fmt
== host_float_format
)
733 memcpy (out
, &val
, sizeof (val
));
735 else if (fmt
== host_double_format
)
738 memcpy (out
, &val
, sizeof (val
));
740 else if (fmt
== host_long_double_format
)
742 long double val
= *in
;
743 memcpy (out
, &val
, sizeof (val
));
746 convert_doublest_to_floatformat (fmt
, in
, out
);
750 /* Return a floating-point format for a floating-point variable of
751 length LEN. If no suitable floating-point format is found, an
754 We need this functionality since information about the
755 floating-point format of a type is not always available to GDB; the
756 debug information typically only tells us the size of a
759 FIXME: kettenis/2001-10-28: In many places, particularly in
760 target-dependent code, the format of floating-point types is known,
761 but not passed on by GDB. This should be fixed. */
763 static const struct floatformat
*
764 floatformat_from_length (struct gdbarch
*gdbarch
, int len
)
766 const struct floatformat
*format
;
767 if (len
* TARGET_CHAR_BIT
== gdbarch_float_bit (gdbarch
))
768 format
= gdbarch_float_format (gdbarch
)
769 [gdbarch_byte_order (gdbarch
)];
770 else if (len
* TARGET_CHAR_BIT
== gdbarch_double_bit (gdbarch
))
771 format
= gdbarch_double_format (gdbarch
)
772 [gdbarch_byte_order (gdbarch
)];
773 else if (len
* TARGET_CHAR_BIT
== gdbarch_long_double_bit (gdbarch
))
774 format
= gdbarch_long_double_format (gdbarch
)
775 [gdbarch_byte_order (gdbarch
)];
776 /* On i386 the 'long double' type takes 96 bits,
777 while the real number of used bits is only 80,
778 both in processor and in memory.
779 The code below accepts the real bit size. */
780 else if ((gdbarch_long_double_format (gdbarch
) != NULL
)
781 && (len
* TARGET_CHAR_BIT
==
782 gdbarch_long_double_format (gdbarch
)[0]->totalsize
))
783 format
= gdbarch_long_double_format (gdbarch
)
784 [gdbarch_byte_order (gdbarch
)];
788 error (_("Unrecognized %d-bit floating-point type."),
789 len
* TARGET_CHAR_BIT
);
793 const struct floatformat
*
794 floatformat_from_type (const struct type
*type
)
796 struct gdbarch
*gdbarch
= get_type_arch (type
);
797 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_FLT
);
798 if (TYPE_FLOATFORMAT (type
) != NULL
)
799 return TYPE_FLOATFORMAT (type
)[gdbarch_byte_order (gdbarch
)];
801 return floatformat_from_length (gdbarch
, TYPE_LENGTH (type
));
804 /* Extract a floating-point number of type TYPE from a target-order
805 byte-stream at ADDR. Returns the value as type DOUBLEST. */
808 extract_typed_floating (const void *addr
, const struct type
*type
)
810 const struct floatformat
*fmt
= floatformat_from_type (type
);
813 floatformat_to_doublest (fmt
, addr
, &retval
);
817 /* Store VAL as a floating-point number of type TYPE to a target-order
818 byte-stream at ADDR. */
821 store_typed_floating (void *addr
, const struct type
*type
, DOUBLEST val
)
823 const struct floatformat
*fmt
= floatformat_from_type (type
);
825 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
826 zero out any remaining bytes in the target buffer when TYPE is
827 longer than the actual underlying floating-point format. Perhaps
828 we should store a fixed bitpattern in those remaining bytes,
829 instead of zero, or perhaps we shouldn't touch those remaining
832 NOTE: cagney/2001-10-28: With the way things currently work, it
833 isn't a good idea to leave the end bits undefined. This is
834 because GDB writes out the entire sizeof(<floating>) bits of the
835 floating-point type even though the value might only be stored
836 in, and the target processor may only refer to, the first N <
837 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
838 initialized, GDB would write undefined data to the target. An
839 errant program, refering to that undefined data, would then
840 become non-deterministic.
842 See also the function convert_typed_floating below. */
843 memset (addr
, 0, TYPE_LENGTH (type
));
845 floatformat_from_doublest (fmt
, &val
, addr
);
848 /* Convert a floating-point number of type FROM_TYPE from a
849 target-order byte-stream at FROM to a floating-point number of type
850 TO_TYPE, and store it to a target-order byte-stream at TO. */
853 convert_typed_floating (const void *from
, const struct type
*from_type
,
854 void *to
, const struct type
*to_type
)
856 const struct floatformat
*from_fmt
= floatformat_from_type (from_type
);
857 const struct floatformat
*to_fmt
= floatformat_from_type (to_type
);
859 if (from_fmt
== NULL
|| to_fmt
== NULL
)
861 /* If we don't know the floating-point format of FROM_TYPE or
862 TO_TYPE, there's not much we can do. We might make the
863 assumption that if the length of FROM_TYPE and TO_TYPE match,
864 their floating-point format would match too, but that
865 assumption might be wrong on targets that support
866 floating-point types that only differ in endianness for
867 example. So we warn instead, and zero out the target buffer. */
868 warning (_("Can't convert floating-point number to desired type."));
869 memset (to
, 0, TYPE_LENGTH (to_type
));
871 else if (from_fmt
== to_fmt
)
873 /* We're in business. The floating-point format of FROM_TYPE
874 and TO_TYPE match. However, even though the floating-point
875 format matches, the length of the type might still be
876 different. Make sure we don't overrun any buffers. See
877 comment in store_typed_floating for a discussion about
878 zeroing out remaining bytes in the target buffer. */
879 memset (to
, 0, TYPE_LENGTH (to_type
));
880 memcpy (to
, from
, min (TYPE_LENGTH (from_type
), TYPE_LENGTH (to_type
)));
884 /* The floating-point types don't match. The best we can do
885 (apart from simulating the target FPU) is converting to the
886 widest floating-point type supported by the host, and then
887 again to the desired type. */
890 floatformat_to_doublest (from_fmt
, from
, &d
);
891 floatformat_from_doublest (to_fmt
, &d
, to
);
895 const struct floatformat
*floatformat_ieee_single
[BFD_ENDIAN_UNKNOWN
];
896 const struct floatformat
*floatformat_ieee_double
[BFD_ENDIAN_UNKNOWN
];
897 const struct floatformat
*floatformat_ieee_quad
[BFD_ENDIAN_UNKNOWN
];
898 const struct floatformat
*floatformat_arm_ext
[BFD_ENDIAN_UNKNOWN
];
899 const struct floatformat
*floatformat_ia64_spill
[BFD_ENDIAN_UNKNOWN
];
901 extern void _initialize_doublest (void);
904 _initialize_doublest (void)
906 floatformat_ieee_single
[BFD_ENDIAN_LITTLE
] = &floatformat_ieee_single_little
;
907 floatformat_ieee_single
[BFD_ENDIAN_BIG
] = &floatformat_ieee_single_big
;
908 floatformat_ieee_double
[BFD_ENDIAN_LITTLE
] = &floatformat_ieee_double_little
;
909 floatformat_ieee_double
[BFD_ENDIAN_BIG
] = &floatformat_ieee_double_big
;
910 floatformat_arm_ext
[BFD_ENDIAN_LITTLE
] = &floatformat_arm_ext_littlebyte_bigword
;
911 floatformat_arm_ext
[BFD_ENDIAN_BIG
] = &floatformat_arm_ext_big
;
912 floatformat_ia64_spill
[BFD_ENDIAN_LITTLE
] = &floatformat_ia64_spill_little
;
913 floatformat_ia64_spill
[BFD_ENDIAN_BIG
] = &floatformat_ia64_spill_big
;
914 floatformat_ieee_quad
[BFD_ENDIAN_LITTLE
] = &floatformat_ia64_quad_little
;
915 floatformat_ieee_quad
[BFD_ENDIAN_BIG
] = &floatformat_ia64_quad_big
;