2013-08-07 Raunaq Bathija <raunaq12@in.ibm.com>
[deliverable/binutils-gdb.git] / gdb / doublest.c
1 /* Floating point routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support for converting target fp numbers into host DOUBLEST format. */
21
22 /* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
25
26 #include "defs.h"
27 #include "doublest.h"
28 #include "floatformat.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "gdbtypes.h"
32 #include <math.h> /* ldexp */
33
34 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
35 going to bother with trying to muck around with whether it is defined in
36 a system header, what we do if not, etc. */
37 #define FLOATFORMAT_CHAR_BIT 8
38
39 /* The number of bytes that the largest floating-point type that we
40 can convert to doublest will need. */
41 #define FLOATFORMAT_LARGEST_BYTES 16
42
43 /* Extract a field which starts at START and is LEN bytes long. DATA and
44 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
45 static unsigned long
46 get_field (const bfd_byte *data, enum floatformat_byteorders order,
47 unsigned int total_len, unsigned int start, unsigned int len)
48 {
49 unsigned long result;
50 unsigned int cur_byte;
51 int cur_bitshift;
52
53 /* Caller must byte-swap words before calling this routine. */
54 gdb_assert (order == floatformat_little || order == floatformat_big);
55
56 /* Start at the least significant part of the field. */
57 if (order == floatformat_little)
58 {
59 /* We start counting from the other end (i.e, from the high bytes
60 rather than the low bytes). As such, we need to be concerned
61 with what happens if bit 0 doesn't start on a byte boundary.
62 I.e, we need to properly handle the case where total_len is
63 not evenly divisible by 8. So we compute ``excess'' which
64 represents the number of bits from the end of our starting
65 byte needed to get to bit 0. */
66 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
67
68 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
69 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
70 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
71 - FLOATFORMAT_CHAR_BIT;
72 }
73 else
74 {
75 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
76 cur_bitshift =
77 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
78 }
79 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
80 result = *(data + cur_byte) >> (-cur_bitshift);
81 else
82 result = 0;
83 cur_bitshift += FLOATFORMAT_CHAR_BIT;
84 if (order == floatformat_little)
85 ++cur_byte;
86 else
87 --cur_byte;
88
89 /* Move towards the most significant part of the field. */
90 while (cur_bitshift < len)
91 {
92 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
93 cur_bitshift += FLOATFORMAT_CHAR_BIT;
94 switch (order)
95 {
96 case floatformat_little:
97 ++cur_byte;
98 break;
99 case floatformat_big:
100 --cur_byte;
101 break;
102 }
103 }
104 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
105 /* Mask out bits which are not part of the field. */
106 result &= ((1UL << len) - 1);
107 return result;
108 }
109
110 /* Normalize the byte order of FROM into TO. If no normalization is
111 needed then FMT->byteorder is returned and TO is not changed;
112 otherwise the format of the normalized form in TO is returned. */
113
114 static enum floatformat_byteorders
115 floatformat_normalize_byteorder (const struct floatformat *fmt,
116 const void *from, void *to)
117 {
118 const unsigned char *swapin;
119 unsigned char *swapout;
120 int words;
121
122 if (fmt->byteorder == floatformat_little
123 || fmt->byteorder == floatformat_big)
124 return fmt->byteorder;
125
126 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
127 words >>= 2;
128
129 swapout = (unsigned char *)to;
130 swapin = (const unsigned char *)from;
131
132 if (fmt->byteorder == floatformat_vax)
133 {
134 while (words-- > 0)
135 {
136 *swapout++ = swapin[1];
137 *swapout++ = swapin[0];
138 *swapout++ = swapin[3];
139 *swapout++ = swapin[2];
140 swapin += 4;
141 }
142 /* This may look weird, since VAX is little-endian, but it is
143 easier to translate to big-endian than to little-endian. */
144 return floatformat_big;
145 }
146 else
147 {
148 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
149
150 while (words-- > 0)
151 {
152 *swapout++ = swapin[3];
153 *swapout++ = swapin[2];
154 *swapout++ = swapin[1];
155 *swapout++ = swapin[0];
156 swapin += 4;
157 }
158 return floatformat_big;
159 }
160 }
161
162 /* Convert from FMT to a DOUBLEST.
163 FROM is the address of the extended float.
164 Store the DOUBLEST in *TO. */
165
166 static void
167 convert_floatformat_to_doublest (const struct floatformat *fmt,
168 const void *from,
169 DOUBLEST *to)
170 {
171 unsigned char *ufrom = (unsigned char *) from;
172 DOUBLEST dto;
173 long exponent;
174 unsigned long mant;
175 unsigned int mant_bits, mant_off;
176 int mant_bits_left;
177 int special_exponent; /* It's a NaN, denorm or zero. */
178 enum floatformat_byteorders order;
179 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
180 enum float_kind kind;
181
182 gdb_assert (fmt->totalsize
183 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
184
185 /* For non-numbers, reuse libiberty's logic to find the correct
186 format. We do not lose any precision in this case by passing
187 through a double. */
188 kind = floatformat_classify (fmt, from);
189 if (kind == float_infinite || kind == float_nan)
190 {
191 double dto;
192
193 floatformat_to_double (fmt, from, &dto);
194 *to = (DOUBLEST) dto;
195 return;
196 }
197
198 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
199
200 if (order != fmt->byteorder)
201 ufrom = newfrom;
202
203 if (fmt->split_half)
204 {
205 DOUBLEST dtop, dbot;
206
207 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
208 /* Preserve the sign of 0, which is the sign of the top
209 half. */
210 if (dtop == 0.0)
211 {
212 *to = dtop;
213 return;
214 }
215 floatformat_to_doublest (fmt->split_half,
216 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
217 &dbot);
218 *to = dtop + dbot;
219 return;
220 }
221
222 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
223 fmt->exp_len);
224 /* Note that if exponent indicates a NaN, we can't really do anything useful
225 (not knowing if the host has NaN's, or how to build one). So it will
226 end up as an infinity or something close; that is OK. */
227
228 mant_bits_left = fmt->man_len;
229 mant_off = fmt->man_start;
230 dto = 0.0;
231
232 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
233
234 /* Don't bias NaNs. Use minimum exponent for denorms. For
235 simplicity, we don't check for zero as the exponent doesn't matter.
236 Note the cast to int; exp_bias is unsigned, so it's important to
237 make sure the operation is done in signed arithmetic. */
238 if (!special_exponent)
239 exponent -= fmt->exp_bias;
240 else if (exponent == 0)
241 exponent = 1 - fmt->exp_bias;
242
243 /* Build the result algebraically. Might go infinite, underflow, etc;
244 who cares. */
245
246 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
247 increment the exponent by one to account for the integer bit. */
248
249 if (!special_exponent)
250 {
251 if (fmt->intbit == floatformat_intbit_no)
252 dto = ldexp (1.0, exponent);
253 else
254 exponent++;
255 }
256
257 while (mant_bits_left > 0)
258 {
259 mant_bits = min (mant_bits_left, 32);
260
261 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
262
263 dto += ldexp ((double) mant, exponent - mant_bits);
264 exponent -= mant_bits;
265 mant_off += mant_bits;
266 mant_bits_left -= mant_bits;
267 }
268
269 /* Negate it if negative. */
270 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
271 dto = -dto;
272 *to = dto;
273 }
274 \f
275 /* Set a field which starts at START and is LEN bytes long. DATA and
276 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
277 static void
278 put_field (unsigned char *data, enum floatformat_byteorders order,
279 unsigned int total_len, unsigned int start, unsigned int len,
280 unsigned long stuff_to_put)
281 {
282 unsigned int cur_byte;
283 int cur_bitshift;
284
285 /* Caller must byte-swap words before calling this routine. */
286 gdb_assert (order == floatformat_little || order == floatformat_big);
287
288 /* Start at the least significant part of the field. */
289 if (order == floatformat_little)
290 {
291 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
292
293 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
294 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
295 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
296 - FLOATFORMAT_CHAR_BIT;
297 }
298 else
299 {
300 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
301 cur_bitshift =
302 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
303 }
304 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
305 {
306 *(data + cur_byte) &=
307 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
308 << (-cur_bitshift));
309 *(data + cur_byte) |=
310 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
311 }
312 cur_bitshift += FLOATFORMAT_CHAR_BIT;
313 if (order == floatformat_little)
314 ++cur_byte;
315 else
316 --cur_byte;
317
318 /* Move towards the most significant part of the field. */
319 while (cur_bitshift < len)
320 {
321 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
322 {
323 /* This is the last byte. */
324 *(data + cur_byte) &=
325 ~((1 << (len - cur_bitshift)) - 1);
326 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
327 }
328 else
329 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
330 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
331 cur_bitshift += FLOATFORMAT_CHAR_BIT;
332 if (order == floatformat_little)
333 ++cur_byte;
334 else
335 --cur_byte;
336 }
337 }
338
339 /* The converse: convert the DOUBLEST *FROM to an extended float and
340 store where TO points. Neither FROM nor TO have any alignment
341 restrictions. */
342
343 static void
344 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
345 const DOUBLEST *from, void *to)
346 {
347 DOUBLEST dfrom;
348 int exponent;
349 DOUBLEST mant;
350 unsigned int mant_bits, mant_off;
351 int mant_bits_left;
352 unsigned char *uto = (unsigned char *) to;
353 enum floatformat_byteorders order = fmt->byteorder;
354 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
355
356 if (order != floatformat_little)
357 order = floatformat_big;
358
359 if (order != fmt->byteorder)
360 uto = newto;
361
362 memcpy (&dfrom, from, sizeof (dfrom));
363 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
364 / FLOATFORMAT_CHAR_BIT);
365
366 if (fmt->split_half)
367 {
368 /* Use static volatile to ensure that any excess precision is
369 removed via storing in memory, and so the top half really is
370 the result of converting to double. */
371 static volatile double dtop, dbot;
372 DOUBLEST dtopnv, dbotnv;
373
374 dtop = (double) dfrom;
375 /* If the rounded top half is Inf, the bottom must be 0 not NaN
376 or Inf. */
377 if (dtop + dtop == dtop && dtop != 0.0)
378 dbot = 0.0;
379 else
380 dbot = (double) (dfrom - (DOUBLEST) dtop);
381 dtopnv = dtop;
382 dbotnv = dbot;
383 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
384 floatformat_from_doublest (fmt->split_half, &dbotnv,
385 (uto
386 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
387 return;
388 }
389
390 if (dfrom == 0)
391 return; /* Result is zero */
392 if (dfrom != dfrom) /* Result is NaN */
393 {
394 /* From is NaN */
395 put_field (uto, order, fmt->totalsize, fmt->exp_start,
396 fmt->exp_len, fmt->exp_nan);
397 /* Be sure it's not infinity, but NaN value is irrel. */
398 put_field (uto, order, fmt->totalsize, fmt->man_start,
399 fmt->man_len, 1);
400 goto finalize_byteorder;
401 }
402
403 /* If negative, set the sign bit. */
404 if (dfrom < 0)
405 {
406 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
407 dfrom = -dfrom;
408 }
409
410 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
411 {
412 /* Infinity exponent is same as NaN's. */
413 put_field (uto, order, fmt->totalsize, fmt->exp_start,
414 fmt->exp_len, fmt->exp_nan);
415 /* Infinity mantissa is all zeroes. */
416 put_field (uto, order, fmt->totalsize, fmt->man_start,
417 fmt->man_len, 0);
418 goto finalize_byteorder;
419 }
420
421 #ifdef HAVE_LONG_DOUBLE
422 mant = frexpl (dfrom, &exponent);
423 #else
424 mant = frexp (dfrom, &exponent);
425 #endif
426
427 if (exponent + fmt->exp_bias <= 0)
428 {
429 /* The value is too small to be expressed in the destination
430 type (not enough bits in the exponent. Treat as 0. */
431 put_field (uto, order, fmt->totalsize, fmt->exp_start,
432 fmt->exp_len, 0);
433 put_field (uto, order, fmt->totalsize, fmt->man_start,
434 fmt->man_len, 0);
435 goto finalize_byteorder;
436 }
437
438 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
439 {
440 /* The value is too large to fit into the destination.
441 Treat as infinity. */
442 put_field (uto, order, fmt->totalsize, fmt->exp_start,
443 fmt->exp_len, fmt->exp_nan);
444 put_field (uto, order, fmt->totalsize, fmt->man_start,
445 fmt->man_len, 0);
446 goto finalize_byteorder;
447 }
448
449 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
450 exponent + fmt->exp_bias - 1);
451
452 mant_bits_left = fmt->man_len;
453 mant_off = fmt->man_start;
454 while (mant_bits_left > 0)
455 {
456 unsigned long mant_long;
457
458 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
459
460 mant *= 4294967296.0;
461 mant_long = ((unsigned long) mant) & 0xffffffffL;
462 mant -= mant_long;
463
464 /* If the integer bit is implicit, then we need to discard it.
465 If we are discarding a zero, we should be (but are not) creating
466 a denormalized number which means adjusting the exponent
467 (I think). */
468 if (mant_bits_left == fmt->man_len
469 && fmt->intbit == floatformat_intbit_no)
470 {
471 mant_long <<= 1;
472 mant_long &= 0xffffffffL;
473 /* If we are processing the top 32 mantissa bits of a doublest
474 so as to convert to a float value with implied integer bit,
475 we will only be putting 31 of those 32 bits into the
476 final value due to the discarding of the top bit. In the
477 case of a small float value where the number of mantissa
478 bits is less than 32, discarding the top bit does not alter
479 the number of bits we will be adding to the result. */
480 if (mant_bits == 32)
481 mant_bits -= 1;
482 }
483
484 if (mant_bits < 32)
485 {
486 /* The bits we want are in the most significant MANT_BITS bits of
487 mant_long. Move them to the least significant. */
488 mant_long >>= 32 - mant_bits;
489 }
490
491 put_field (uto, order, fmt->totalsize,
492 mant_off, mant_bits, mant_long);
493 mant_off += mant_bits;
494 mant_bits_left -= mant_bits;
495 }
496
497 finalize_byteorder:
498 /* Do we need to byte-swap the words in the result? */
499 if (order != fmt->byteorder)
500 floatformat_normalize_byteorder (fmt, newto, to);
501 }
502
503 /* Check if VAL (which is assumed to be a floating point number whose
504 format is described by FMT) is negative. */
505
506 int
507 floatformat_is_negative (const struct floatformat *fmt,
508 const bfd_byte *uval)
509 {
510 enum floatformat_byteorders order;
511 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
512
513 gdb_assert (fmt != NULL);
514 gdb_assert (fmt->totalsize
515 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
516
517 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
518
519 if (order != fmt->byteorder)
520 uval = newfrom;
521
522 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
523 }
524
525 /* Check if VAL is "not a number" (NaN) for FMT. */
526
527 enum float_kind
528 floatformat_classify (const struct floatformat *fmt,
529 const bfd_byte *uval)
530 {
531 long exponent;
532 unsigned long mant;
533 unsigned int mant_bits, mant_off;
534 int mant_bits_left;
535 enum floatformat_byteorders order;
536 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
537 int mant_zero;
538
539 gdb_assert (fmt != NULL);
540 gdb_assert (fmt->totalsize
541 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
542
543 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
544
545 if (order != fmt->byteorder)
546 uval = newfrom;
547
548 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
549 fmt->exp_len);
550
551 mant_bits_left = fmt->man_len;
552 mant_off = fmt->man_start;
553
554 mant_zero = 1;
555 while (mant_bits_left > 0)
556 {
557 mant_bits = min (mant_bits_left, 32);
558
559 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
560
561 /* If there is an explicit integer bit, mask it off. */
562 if (mant_off == fmt->man_start
563 && fmt->intbit == floatformat_intbit_yes)
564 mant &= ~(1 << (mant_bits - 1));
565
566 if (mant)
567 {
568 mant_zero = 0;
569 break;
570 }
571
572 mant_off += mant_bits;
573 mant_bits_left -= mant_bits;
574 }
575
576 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
577 supported. */
578 if (! fmt->exp_nan)
579 {
580 if (mant_zero)
581 return float_zero;
582 else
583 return float_normal;
584 }
585
586 if (exponent == 0 && !mant_zero)
587 return float_subnormal;
588
589 if (exponent == fmt->exp_nan)
590 {
591 if (mant_zero)
592 return float_infinite;
593 else
594 return float_nan;
595 }
596
597 if (mant_zero)
598 return float_zero;
599
600 return float_normal;
601 }
602
603 /* Convert the mantissa of VAL (which is assumed to be a floating
604 point number whose format is described by FMT) into a hexadecimal
605 and store it in a static string. Return a pointer to that string. */
606
607 const char *
608 floatformat_mantissa (const struct floatformat *fmt,
609 const bfd_byte *val)
610 {
611 unsigned char *uval = (unsigned char *) val;
612 unsigned long mant;
613 unsigned int mant_bits, mant_off;
614 int mant_bits_left;
615 static char res[50];
616 char buf[9];
617 int len;
618 enum floatformat_byteorders order;
619 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
620
621 gdb_assert (fmt != NULL);
622 gdb_assert (fmt->totalsize
623 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
624
625 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
626
627 if (order != fmt->byteorder)
628 uval = newfrom;
629
630 if (! fmt->exp_nan)
631 return 0;
632
633 /* Make sure we have enough room to store the mantissa. */
634 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
635
636 mant_off = fmt->man_start;
637 mant_bits_left = fmt->man_len;
638 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
639
640 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
641
642 len = xsnprintf (res, sizeof res, "%lx", mant);
643
644 mant_off += mant_bits;
645 mant_bits_left -= mant_bits;
646
647 while (mant_bits_left > 0)
648 {
649 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
650
651 xsnprintf (buf, sizeof buf, "%08lx", mant);
652 gdb_assert (len + strlen (buf) <= sizeof res);
653 strcat (res, buf);
654
655 mant_off += 32;
656 mant_bits_left -= 32;
657 }
658
659 return res;
660 }
661
662 \f
663 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
664
665 If the host and target formats agree, we just copy the raw data
666 into the appropriate type of variable and return, letting the host
667 increase precision as necessary. Otherwise, we call the conversion
668 routine and let it do the dirty work. */
669
670 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
671 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
672 static const struct floatformat *host_long_double_format
673 = GDB_HOST_LONG_DOUBLE_FORMAT;
674
675 void
676 floatformat_to_doublest (const struct floatformat *fmt,
677 const void *in, DOUBLEST *out)
678 {
679 gdb_assert (fmt != NULL);
680 if (fmt == host_float_format)
681 {
682 float val;
683
684 memcpy (&val, in, sizeof (val));
685 *out = val;
686 }
687 else if (fmt == host_double_format)
688 {
689 double val;
690
691 memcpy (&val, in, sizeof (val));
692 *out = val;
693 }
694 else if (fmt == host_long_double_format)
695 {
696 long double val;
697
698 memcpy (&val, in, sizeof (val));
699 *out = val;
700 }
701 else
702 convert_floatformat_to_doublest (fmt, in, out);
703 }
704
705 void
706 floatformat_from_doublest (const struct floatformat *fmt,
707 const DOUBLEST *in, void *out)
708 {
709 gdb_assert (fmt != NULL);
710 if (fmt == host_float_format)
711 {
712 float val = *in;
713
714 memcpy (out, &val, sizeof (val));
715 }
716 else if (fmt == host_double_format)
717 {
718 double val = *in;
719
720 memcpy (out, &val, sizeof (val));
721 }
722 else if (fmt == host_long_double_format)
723 {
724 long double val = *in;
725
726 memcpy (out, &val, sizeof (val));
727 }
728 else
729 convert_doublest_to_floatformat (fmt, in, out);
730 }
731
732 \f
733 /* Return a floating-point format for a floating-point variable of
734 length LEN. If no suitable floating-point format is found, an
735 error is thrown.
736
737 We need this functionality since information about the
738 floating-point format of a type is not always available to GDB; the
739 debug information typically only tells us the size of a
740 floating-point type.
741
742 FIXME: kettenis/2001-10-28: In many places, particularly in
743 target-dependent code, the format of floating-point types is known,
744 but not passed on by GDB. This should be fixed. */
745
746 static const struct floatformat *
747 floatformat_from_length (struct gdbarch *gdbarch, int len)
748 {
749 const struct floatformat *format;
750
751 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
752 format = gdbarch_half_format (gdbarch)
753 [gdbarch_byte_order (gdbarch)];
754 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
755 format = gdbarch_float_format (gdbarch)
756 [gdbarch_byte_order (gdbarch)];
757 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
758 format = gdbarch_double_format (gdbarch)
759 [gdbarch_byte_order (gdbarch)];
760 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
761 format = gdbarch_long_double_format (gdbarch)
762 [gdbarch_byte_order (gdbarch)];
763 /* On i386 the 'long double' type takes 96 bits,
764 while the real number of used bits is only 80,
765 both in processor and in memory.
766 The code below accepts the real bit size. */
767 else if ((gdbarch_long_double_format (gdbarch) != NULL)
768 && (len * TARGET_CHAR_BIT
769 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
770 format = gdbarch_long_double_format (gdbarch)
771 [gdbarch_byte_order (gdbarch)];
772 else
773 format = NULL;
774 if (format == NULL)
775 error (_("Unrecognized %d-bit floating-point type."),
776 len * TARGET_CHAR_BIT);
777 return format;
778 }
779
780 const struct floatformat *
781 floatformat_from_type (const struct type *type)
782 {
783 struct gdbarch *gdbarch = get_type_arch (type);
784
785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
786 if (TYPE_FLOATFORMAT (type) != NULL)
787 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
788 else
789 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
790 }
791
792 /* Extract a floating-point number of type TYPE from a target-order
793 byte-stream at ADDR. Returns the value as type DOUBLEST. */
794
795 DOUBLEST
796 extract_typed_floating (const void *addr, const struct type *type)
797 {
798 const struct floatformat *fmt = floatformat_from_type (type);
799 DOUBLEST retval;
800
801 floatformat_to_doublest (fmt, addr, &retval);
802 return retval;
803 }
804
805 /* Store VAL as a floating-point number of type TYPE to a target-order
806 byte-stream at ADDR. */
807
808 void
809 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
810 {
811 const struct floatformat *fmt = floatformat_from_type (type);
812
813 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
814 zero out any remaining bytes in the target buffer when TYPE is
815 longer than the actual underlying floating-point format. Perhaps
816 we should store a fixed bitpattern in those remaining bytes,
817 instead of zero, or perhaps we shouldn't touch those remaining
818 bytes at all.
819
820 NOTE: cagney/2001-10-28: With the way things currently work, it
821 isn't a good idea to leave the end bits undefined. This is
822 because GDB writes out the entire sizeof(<floating>) bits of the
823 floating-point type even though the value might only be stored
824 in, and the target processor may only refer to, the first N <
825 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
826 initialized, GDB would write undefined data to the target. An
827 errant program, refering to that undefined data, would then
828 become non-deterministic.
829
830 See also the function convert_typed_floating below. */
831 memset (addr, 0, TYPE_LENGTH (type));
832
833 floatformat_from_doublest (fmt, &val, addr);
834 }
835
836 /* Convert a floating-point number of type FROM_TYPE from a
837 target-order byte-stream at FROM to a floating-point number of type
838 TO_TYPE, and store it to a target-order byte-stream at TO. */
839
840 void
841 convert_typed_floating (const void *from, const struct type *from_type,
842 void *to, const struct type *to_type)
843 {
844 const struct floatformat *from_fmt = floatformat_from_type (from_type);
845 const struct floatformat *to_fmt = floatformat_from_type (to_type);
846
847 if (from_fmt == NULL || to_fmt == NULL)
848 {
849 /* If we don't know the floating-point format of FROM_TYPE or
850 TO_TYPE, there's not much we can do. We might make the
851 assumption that if the length of FROM_TYPE and TO_TYPE match,
852 their floating-point format would match too, but that
853 assumption might be wrong on targets that support
854 floating-point types that only differ in endianness for
855 example. So we warn instead, and zero out the target buffer. */
856 warning (_("Can't convert floating-point number to desired type."));
857 memset (to, 0, TYPE_LENGTH (to_type));
858 }
859 else if (from_fmt == to_fmt)
860 {
861 /* We're in business. The floating-point format of FROM_TYPE
862 and TO_TYPE match. However, even though the floating-point
863 format matches, the length of the type might still be
864 different. Make sure we don't overrun any buffers. See
865 comment in store_typed_floating for a discussion about
866 zeroing out remaining bytes in the target buffer. */
867 memset (to, 0, TYPE_LENGTH (to_type));
868 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
869 }
870 else
871 {
872 /* The floating-point types don't match. The best we can do
873 (apart from simulating the target FPU) is converting to the
874 widest floating-point type supported by the host, and then
875 again to the desired type. */
876 DOUBLEST d;
877
878 floatformat_to_doublest (from_fmt, from, &d);
879 floatformat_from_doublest (to_fmt, &d, to);
880 }
881 }
882
883 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
884 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
885 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
886 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
887 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
888
889 extern void _initialize_doublest (void);
890
891 extern void
892 _initialize_doublest (void)
893 {
894 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
895 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
896 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
897 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
898 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
899 = &floatformat_arm_ext_littlebyte_bigword;
900 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
901 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
902 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
903 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
904 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
905 }
This page took 0.049076 seconds and 4 git commands to generate.