* gdb.dwarf2/dw2-error.exp: Pass test name to "file" test.
[deliverable/binutils-gdb.git] / gdb / doublest.c
1 /* Floating point routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support for converting target fp numbers into host DOUBLEST format. */
21
22 /* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
25
26 #include "defs.h"
27 #include "doublest.h"
28 #include "floatformat.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "gdbtypes.h"
32 #include <math.h> /* ldexp */
33
34 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
35 going to bother with trying to muck around with whether it is defined in
36 a system header, what we do if not, etc. */
37 #define FLOATFORMAT_CHAR_BIT 8
38
39 /* The number of bytes that the largest floating-point type that we
40 can convert to doublest will need. */
41 #define FLOATFORMAT_LARGEST_BYTES 16
42
43 /* Extract a field which starts at START and is LEN bytes long. DATA and
44 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
45 static unsigned long
46 get_field (const bfd_byte *data, enum floatformat_byteorders order,
47 unsigned int total_len, unsigned int start, unsigned int len)
48 {
49 unsigned long result;
50 unsigned int cur_byte;
51 int cur_bitshift;
52
53 /* Caller must byte-swap words before calling this routine. */
54 gdb_assert (order == floatformat_little || order == floatformat_big);
55
56 /* Start at the least significant part of the field. */
57 if (order == floatformat_little)
58 {
59 /* We start counting from the other end (i.e, from the high bytes
60 rather than the low bytes). As such, we need to be concerned
61 with what happens if bit 0 doesn't start on a byte boundary.
62 I.e, we need to properly handle the case where total_len is
63 not evenly divisible by 8. So we compute ``excess'' which
64 represents the number of bits from the end of our starting
65 byte needed to get to bit 0. */
66 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
67
68 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
69 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
70 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
71 - FLOATFORMAT_CHAR_BIT;
72 }
73 else
74 {
75 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
76 cur_bitshift =
77 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
78 }
79 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
80 result = *(data + cur_byte) >> (-cur_bitshift);
81 else
82 result = 0;
83 cur_bitshift += FLOATFORMAT_CHAR_BIT;
84 if (order == floatformat_little)
85 ++cur_byte;
86 else
87 --cur_byte;
88
89 /* Move towards the most significant part of the field. */
90 while (cur_bitshift < len)
91 {
92 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
93 cur_bitshift += FLOATFORMAT_CHAR_BIT;
94 switch (order)
95 {
96 case floatformat_little:
97 ++cur_byte;
98 break;
99 case floatformat_big:
100 --cur_byte;
101 break;
102 }
103 }
104 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
105 /* Mask out bits which are not part of the field. */
106 result &= ((1UL << len) - 1);
107 return result;
108 }
109
110 /* Normalize the byte order of FROM into TO. If no normalization is
111 needed then FMT->byteorder is returned and TO is not changed;
112 otherwise the format of the normalized form in TO is returned. */
113
114 static enum floatformat_byteorders
115 floatformat_normalize_byteorder (const struct floatformat *fmt,
116 const void *from, void *to)
117 {
118 const unsigned char *swapin;
119 unsigned char *swapout;
120 int words;
121
122 if (fmt->byteorder == floatformat_little
123 || fmt->byteorder == floatformat_big)
124 return fmt->byteorder;
125
126 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
127 words >>= 2;
128
129 swapout = (unsigned char *)to;
130 swapin = (const unsigned char *)from;
131
132 if (fmt->byteorder == floatformat_vax)
133 {
134 while (words-- > 0)
135 {
136 *swapout++ = swapin[1];
137 *swapout++ = swapin[0];
138 *swapout++ = swapin[3];
139 *swapout++ = swapin[2];
140 swapin += 4;
141 }
142 /* This may look weird, since VAX is little-endian, but it is
143 easier to translate to big-endian than to little-endian. */
144 return floatformat_big;
145 }
146 else
147 {
148 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
149
150 while (words-- > 0)
151 {
152 *swapout++ = swapin[3];
153 *swapout++ = swapin[2];
154 *swapout++ = swapin[1];
155 *swapout++ = swapin[0];
156 swapin += 4;
157 }
158 return floatformat_big;
159 }
160 }
161
162 /* Convert from FMT to a DOUBLEST.
163 FROM is the address of the extended float.
164 Store the DOUBLEST in *TO. */
165
166 static void
167 convert_floatformat_to_doublest (const struct floatformat *fmt,
168 const void *from,
169 DOUBLEST *to)
170 {
171 unsigned char *ufrom = (unsigned char *) from;
172 DOUBLEST dto;
173 long exponent;
174 unsigned long mant;
175 unsigned int mant_bits, mant_off;
176 int mant_bits_left;
177 int special_exponent; /* It's a NaN, denorm or zero. */
178 enum floatformat_byteorders order;
179 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
180 enum float_kind kind;
181
182 gdb_assert (fmt->totalsize
183 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
184
185 /* For non-numbers, reuse libiberty's logic to find the correct
186 format. We do not lose any precision in this case by passing
187 through a double. */
188 kind = floatformat_classify (fmt, from);
189 if (kind == float_infinite || kind == float_nan)
190 {
191 double dto;
192
193 floatformat_to_double (fmt, from, &dto);
194 *to = (DOUBLEST) dto;
195 return;
196 }
197
198 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
199
200 if (order != fmt->byteorder)
201 ufrom = newfrom;
202
203 if (fmt->split_half)
204 {
205 DOUBLEST dtop, dbot;
206
207 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
208 /* Preserve the sign of 0, which is the sign of the top
209 half. */
210 if (dtop == 0.0)
211 {
212 *to = dtop;
213 return;
214 }
215 floatformat_to_doublest (fmt->split_half,
216 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
217 &dbot);
218 *to = dtop + dbot;
219 return;
220 }
221
222 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
223 fmt->exp_len);
224 /* Note that if exponent indicates a NaN, we can't really do anything useful
225 (not knowing if the host has NaN's, or how to build one). So it will
226 end up as an infinity or something close; that is OK. */
227
228 mant_bits_left = fmt->man_len;
229 mant_off = fmt->man_start;
230 dto = 0.0;
231
232 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
233
234 /* Don't bias NaNs. Use minimum exponent for denorms. For
235 simplicity, we don't check for zero as the exponent doesn't matter.
236 Note the cast to int; exp_bias is unsigned, so it's important to
237 make sure the operation is done in signed arithmetic. */
238 if (!special_exponent)
239 exponent -= fmt->exp_bias;
240 else if (exponent == 0)
241 exponent = 1 - fmt->exp_bias;
242
243 /* Build the result algebraically. Might go infinite, underflow, etc;
244 who cares. */
245
246 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
247 increment the exponent by one to account for the integer bit. */
248
249 if (!special_exponent)
250 {
251 if (fmt->intbit == floatformat_intbit_no)
252 dto = ldexp (1.0, exponent);
253 else
254 exponent++;
255 }
256
257 while (mant_bits_left > 0)
258 {
259 mant_bits = min (mant_bits_left, 32);
260
261 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
262
263 dto += ldexp ((double) mant, exponent - mant_bits);
264 exponent -= mant_bits;
265 mant_off += mant_bits;
266 mant_bits_left -= mant_bits;
267 }
268
269 /* Negate it if negative. */
270 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
271 dto = -dto;
272 *to = dto;
273 }
274 \f
275 /* Set a field which starts at START and is LEN bytes long. DATA and
276 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
277 static void
278 put_field (unsigned char *data, enum floatformat_byteorders order,
279 unsigned int total_len, unsigned int start, unsigned int len,
280 unsigned long stuff_to_put)
281 {
282 unsigned int cur_byte;
283 int cur_bitshift;
284
285 /* Caller must byte-swap words before calling this routine. */
286 gdb_assert (order == floatformat_little || order == floatformat_big);
287
288 /* Start at the least significant part of the field. */
289 if (order == floatformat_little)
290 {
291 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
292
293 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
294 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
295 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
296 - FLOATFORMAT_CHAR_BIT;
297 }
298 else
299 {
300 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
301 cur_bitshift =
302 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
303 }
304 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
305 {
306 *(data + cur_byte) &=
307 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
308 << (-cur_bitshift));
309 *(data + cur_byte) |=
310 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
311 }
312 cur_bitshift += FLOATFORMAT_CHAR_BIT;
313 if (order == floatformat_little)
314 ++cur_byte;
315 else
316 --cur_byte;
317
318 /* Move towards the most significant part of the field. */
319 while (cur_bitshift < len)
320 {
321 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
322 {
323 /* This is the last byte. */
324 *(data + cur_byte) &=
325 ~((1 << (len - cur_bitshift)) - 1);
326 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
327 }
328 else
329 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
330 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
331 cur_bitshift += FLOATFORMAT_CHAR_BIT;
332 if (order == floatformat_little)
333 ++cur_byte;
334 else
335 --cur_byte;
336 }
337 }
338
339 #ifdef HAVE_LONG_DOUBLE
340 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
341 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
342 frexp, but operates on the long double data type. */
343
344 static long double ldfrexp (long double value, int *eptr);
345
346 static long double
347 ldfrexp (long double value, int *eptr)
348 {
349 long double tmp;
350 int exp;
351
352 /* Unfortunately, there are no portable functions for extracting the
353 exponent of a long double, so we have to do it iteratively by
354 multiplying or dividing by two until the fraction is between 0.5
355 and 1.0. */
356
357 if (value < 0.0l)
358 value = -value;
359
360 tmp = 1.0l;
361 exp = 0;
362
363 if (value >= tmp) /* Value >= 1.0 */
364 while (value >= tmp)
365 {
366 tmp *= 2.0l;
367 exp++;
368 }
369 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
370 {
371 while (value < tmp)
372 {
373 tmp /= 2.0l;
374 exp--;
375 }
376 tmp *= 2.0l;
377 exp++;
378 }
379
380 *eptr = exp;
381 return value / tmp;
382 }
383 #endif /* HAVE_LONG_DOUBLE */
384
385
386 /* The converse: convert the DOUBLEST *FROM to an extended float and
387 store where TO points. Neither FROM nor TO have any alignment
388 restrictions. */
389
390 static void
391 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
392 const DOUBLEST *from, void *to)
393 {
394 DOUBLEST dfrom;
395 int exponent;
396 DOUBLEST mant;
397 unsigned int mant_bits, mant_off;
398 int mant_bits_left;
399 unsigned char *uto = (unsigned char *) to;
400 enum floatformat_byteorders order = fmt->byteorder;
401 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
402
403 if (order != floatformat_little)
404 order = floatformat_big;
405
406 if (order != fmt->byteorder)
407 uto = newto;
408
409 memcpy (&dfrom, from, sizeof (dfrom));
410 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
411 / FLOATFORMAT_CHAR_BIT);
412
413 if (fmt->split_half)
414 {
415 /* Use static volatile to ensure that any excess precision is
416 removed via storing in memory, and so the top half really is
417 the result of converting to double. */
418 static volatile double dtop, dbot;
419 DOUBLEST dtopnv, dbotnv;
420
421 dtop = (double) dfrom;
422 /* If the rounded top half is Inf, the bottom must be 0 not NaN
423 or Inf. */
424 if (dtop + dtop == dtop && dtop != 0.0)
425 dbot = 0.0;
426 else
427 dbot = (double) (dfrom - (DOUBLEST) dtop);
428 dtopnv = dtop;
429 dbotnv = dbot;
430 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
431 floatformat_from_doublest (fmt->split_half, &dbotnv,
432 (uto
433 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
434 return;
435 }
436
437 if (dfrom == 0)
438 return; /* Result is zero */
439 if (dfrom != dfrom) /* Result is NaN */
440 {
441 /* From is NaN */
442 put_field (uto, order, fmt->totalsize, fmt->exp_start,
443 fmt->exp_len, fmt->exp_nan);
444 /* Be sure it's not infinity, but NaN value is irrel. */
445 put_field (uto, order, fmt->totalsize, fmt->man_start,
446 fmt->man_len, 1);
447 goto finalize_byteorder;
448 }
449
450 /* If negative, set the sign bit. */
451 if (dfrom < 0)
452 {
453 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
454 dfrom = -dfrom;
455 }
456
457 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
458 {
459 /* Infinity exponent is same as NaN's. */
460 put_field (uto, order, fmt->totalsize, fmt->exp_start,
461 fmt->exp_len, fmt->exp_nan);
462 /* Infinity mantissa is all zeroes. */
463 put_field (uto, order, fmt->totalsize, fmt->man_start,
464 fmt->man_len, 0);
465 goto finalize_byteorder;
466 }
467
468 #ifdef HAVE_LONG_DOUBLE
469 mant = ldfrexp (dfrom, &exponent);
470 #else
471 mant = frexp (dfrom, &exponent);
472 #endif
473
474 if (exponent + fmt->exp_bias <= 0)
475 {
476 /* The value is too small to be expressed in the destination
477 type (not enough bits in the exponent. Treat as 0. */
478 put_field (uto, order, fmt->totalsize, fmt->exp_start,
479 fmt->exp_len, 0);
480 put_field (uto, order, fmt->totalsize, fmt->man_start,
481 fmt->man_len, 0);
482 goto finalize_byteorder;
483 }
484
485 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
486 {
487 /* The value is too large to fit into the destination.
488 Treat as infinity. */
489 put_field (uto, order, fmt->totalsize, fmt->exp_start,
490 fmt->exp_len, fmt->exp_nan);
491 put_field (uto, order, fmt->totalsize, fmt->man_start,
492 fmt->man_len, 0);
493 goto finalize_byteorder;
494 }
495
496 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
497 exponent + fmt->exp_bias - 1);
498
499 mant_bits_left = fmt->man_len;
500 mant_off = fmt->man_start;
501 while (mant_bits_left > 0)
502 {
503 unsigned long mant_long;
504
505 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
506
507 mant *= 4294967296.0;
508 mant_long = ((unsigned long) mant) & 0xffffffffL;
509 mant -= mant_long;
510
511 /* If the integer bit is implicit, then we need to discard it.
512 If we are discarding a zero, we should be (but are not) creating
513 a denormalized number which means adjusting the exponent
514 (I think). */
515 if (mant_bits_left == fmt->man_len
516 && fmt->intbit == floatformat_intbit_no)
517 {
518 mant_long <<= 1;
519 mant_long &= 0xffffffffL;
520 /* If we are processing the top 32 mantissa bits of a doublest
521 so as to convert to a float value with implied integer bit,
522 we will only be putting 31 of those 32 bits into the
523 final value due to the discarding of the top bit. In the
524 case of a small float value where the number of mantissa
525 bits is less than 32, discarding the top bit does not alter
526 the number of bits we will be adding to the result. */
527 if (mant_bits == 32)
528 mant_bits -= 1;
529 }
530
531 if (mant_bits < 32)
532 {
533 /* The bits we want are in the most significant MANT_BITS bits of
534 mant_long. Move them to the least significant. */
535 mant_long >>= 32 - mant_bits;
536 }
537
538 put_field (uto, order, fmt->totalsize,
539 mant_off, mant_bits, mant_long);
540 mant_off += mant_bits;
541 mant_bits_left -= mant_bits;
542 }
543
544 finalize_byteorder:
545 /* Do we need to byte-swap the words in the result? */
546 if (order != fmt->byteorder)
547 floatformat_normalize_byteorder (fmt, newto, to);
548 }
549
550 /* Check if VAL (which is assumed to be a floating point number whose
551 format is described by FMT) is negative. */
552
553 int
554 floatformat_is_negative (const struct floatformat *fmt,
555 const bfd_byte *uval)
556 {
557 enum floatformat_byteorders order;
558 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
559
560 gdb_assert (fmt != NULL);
561 gdb_assert (fmt->totalsize
562 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
563
564 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
565
566 if (order != fmt->byteorder)
567 uval = newfrom;
568
569 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
570 }
571
572 /* Check if VAL is "not a number" (NaN) for FMT. */
573
574 enum float_kind
575 floatformat_classify (const struct floatformat *fmt,
576 const bfd_byte *uval)
577 {
578 long exponent;
579 unsigned long mant;
580 unsigned int mant_bits, mant_off;
581 int mant_bits_left;
582 enum floatformat_byteorders order;
583 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
584 int mant_zero;
585
586 gdb_assert (fmt != NULL);
587 gdb_assert (fmt->totalsize
588 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
589
590 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
591
592 if (order != fmt->byteorder)
593 uval = newfrom;
594
595 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
596 fmt->exp_len);
597
598 mant_bits_left = fmt->man_len;
599 mant_off = fmt->man_start;
600
601 mant_zero = 1;
602 while (mant_bits_left > 0)
603 {
604 mant_bits = min (mant_bits_left, 32);
605
606 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
607
608 /* If there is an explicit integer bit, mask it off. */
609 if (mant_off == fmt->man_start
610 && fmt->intbit == floatformat_intbit_yes)
611 mant &= ~(1 << (mant_bits - 1));
612
613 if (mant)
614 {
615 mant_zero = 0;
616 break;
617 }
618
619 mant_off += mant_bits;
620 mant_bits_left -= mant_bits;
621 }
622
623 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
624 supported. */
625 if (! fmt->exp_nan)
626 {
627 if (mant_zero)
628 return float_zero;
629 else
630 return float_normal;
631 }
632
633 if (exponent == 0 && !mant_zero)
634 return float_subnormal;
635
636 if (exponent == fmt->exp_nan)
637 {
638 if (mant_zero)
639 return float_infinite;
640 else
641 return float_nan;
642 }
643
644 if (mant_zero)
645 return float_zero;
646
647 return float_normal;
648 }
649
650 /* Convert the mantissa of VAL (which is assumed to be a floating
651 point number whose format is described by FMT) into a hexadecimal
652 and store it in a static string. Return a pointer to that string. */
653
654 const char *
655 floatformat_mantissa (const struct floatformat *fmt,
656 const bfd_byte *val)
657 {
658 unsigned char *uval = (unsigned char *) val;
659 unsigned long mant;
660 unsigned int mant_bits, mant_off;
661 int mant_bits_left;
662 static char res[50];
663 char buf[9];
664 int len;
665 enum floatformat_byteorders order;
666 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
667
668 gdb_assert (fmt != NULL);
669 gdb_assert (fmt->totalsize
670 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
671
672 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
673
674 if (order != fmt->byteorder)
675 uval = newfrom;
676
677 if (! fmt->exp_nan)
678 return 0;
679
680 /* Make sure we have enough room to store the mantissa. */
681 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
682
683 mant_off = fmt->man_start;
684 mant_bits_left = fmt->man_len;
685 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
686
687 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
688
689 len = xsnprintf (res, sizeof res, "%lx", mant);
690
691 mant_off += mant_bits;
692 mant_bits_left -= mant_bits;
693
694 while (mant_bits_left > 0)
695 {
696 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
697
698 xsnprintf (buf, sizeof buf, "%08lx", mant);
699 gdb_assert (len + strlen (buf) <= sizeof res);
700 strcat (res, buf);
701
702 mant_off += 32;
703 mant_bits_left -= 32;
704 }
705
706 return res;
707 }
708
709 \f
710 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
711
712 If the host and target formats agree, we just copy the raw data
713 into the appropriate type of variable and return, letting the host
714 increase precision as necessary. Otherwise, we call the conversion
715 routine and let it do the dirty work. */
716
717 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
718 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
719 static const struct floatformat *host_long_double_format
720 = GDB_HOST_LONG_DOUBLE_FORMAT;
721
722 void
723 floatformat_to_doublest (const struct floatformat *fmt,
724 const void *in, DOUBLEST *out)
725 {
726 gdb_assert (fmt != NULL);
727 if (fmt == host_float_format)
728 {
729 float val;
730
731 memcpy (&val, in, sizeof (val));
732 *out = val;
733 }
734 else if (fmt == host_double_format)
735 {
736 double val;
737
738 memcpy (&val, in, sizeof (val));
739 *out = val;
740 }
741 else if (fmt == host_long_double_format)
742 {
743 long double val;
744
745 memcpy (&val, in, sizeof (val));
746 *out = val;
747 }
748 else
749 convert_floatformat_to_doublest (fmt, in, out);
750 }
751
752 void
753 floatformat_from_doublest (const struct floatformat *fmt,
754 const DOUBLEST *in, void *out)
755 {
756 gdb_assert (fmt != NULL);
757 if (fmt == host_float_format)
758 {
759 float val = *in;
760
761 memcpy (out, &val, sizeof (val));
762 }
763 else if (fmt == host_double_format)
764 {
765 double val = *in;
766
767 memcpy (out, &val, sizeof (val));
768 }
769 else if (fmt == host_long_double_format)
770 {
771 long double val = *in;
772
773 memcpy (out, &val, sizeof (val));
774 }
775 else
776 convert_doublest_to_floatformat (fmt, in, out);
777 }
778
779 \f
780 /* Return a floating-point format for a floating-point variable of
781 length LEN. If no suitable floating-point format is found, an
782 error is thrown.
783
784 We need this functionality since information about the
785 floating-point format of a type is not always available to GDB; the
786 debug information typically only tells us the size of a
787 floating-point type.
788
789 FIXME: kettenis/2001-10-28: In many places, particularly in
790 target-dependent code, the format of floating-point types is known,
791 but not passed on by GDB. This should be fixed. */
792
793 static const struct floatformat *
794 floatformat_from_length (struct gdbarch *gdbarch, int len)
795 {
796 const struct floatformat *format;
797
798 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
799 format = gdbarch_half_format (gdbarch)
800 [gdbarch_byte_order (gdbarch)];
801 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
802 format = gdbarch_float_format (gdbarch)
803 [gdbarch_byte_order (gdbarch)];
804 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
805 format = gdbarch_double_format (gdbarch)
806 [gdbarch_byte_order (gdbarch)];
807 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
808 format = gdbarch_long_double_format (gdbarch)
809 [gdbarch_byte_order (gdbarch)];
810 /* On i386 the 'long double' type takes 96 bits,
811 while the real number of used bits is only 80,
812 both in processor and in memory.
813 The code below accepts the real bit size. */
814 else if ((gdbarch_long_double_format (gdbarch) != NULL)
815 && (len * TARGET_CHAR_BIT
816 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
817 format = gdbarch_long_double_format (gdbarch)
818 [gdbarch_byte_order (gdbarch)];
819 else
820 format = NULL;
821 if (format == NULL)
822 error (_("Unrecognized %d-bit floating-point type."),
823 len * TARGET_CHAR_BIT);
824 return format;
825 }
826
827 const struct floatformat *
828 floatformat_from_type (const struct type *type)
829 {
830 struct gdbarch *gdbarch = get_type_arch (type);
831
832 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
833 if (TYPE_FLOATFORMAT (type) != NULL)
834 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
835 else
836 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
837 }
838
839 /* Extract a floating-point number of type TYPE from a target-order
840 byte-stream at ADDR. Returns the value as type DOUBLEST. */
841
842 DOUBLEST
843 extract_typed_floating (const void *addr, const struct type *type)
844 {
845 const struct floatformat *fmt = floatformat_from_type (type);
846 DOUBLEST retval;
847
848 floatformat_to_doublest (fmt, addr, &retval);
849 return retval;
850 }
851
852 /* Store VAL as a floating-point number of type TYPE to a target-order
853 byte-stream at ADDR. */
854
855 void
856 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
857 {
858 const struct floatformat *fmt = floatformat_from_type (type);
859
860 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
861 zero out any remaining bytes in the target buffer when TYPE is
862 longer than the actual underlying floating-point format. Perhaps
863 we should store a fixed bitpattern in those remaining bytes,
864 instead of zero, or perhaps we shouldn't touch those remaining
865 bytes at all.
866
867 NOTE: cagney/2001-10-28: With the way things currently work, it
868 isn't a good idea to leave the end bits undefined. This is
869 because GDB writes out the entire sizeof(<floating>) bits of the
870 floating-point type even though the value might only be stored
871 in, and the target processor may only refer to, the first N <
872 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
873 initialized, GDB would write undefined data to the target. An
874 errant program, refering to that undefined data, would then
875 become non-deterministic.
876
877 See also the function convert_typed_floating below. */
878 memset (addr, 0, TYPE_LENGTH (type));
879
880 floatformat_from_doublest (fmt, &val, addr);
881 }
882
883 /* Convert a floating-point number of type FROM_TYPE from a
884 target-order byte-stream at FROM to a floating-point number of type
885 TO_TYPE, and store it to a target-order byte-stream at TO. */
886
887 void
888 convert_typed_floating (const void *from, const struct type *from_type,
889 void *to, const struct type *to_type)
890 {
891 const struct floatformat *from_fmt = floatformat_from_type (from_type);
892 const struct floatformat *to_fmt = floatformat_from_type (to_type);
893
894 if (from_fmt == NULL || to_fmt == NULL)
895 {
896 /* If we don't know the floating-point format of FROM_TYPE or
897 TO_TYPE, there's not much we can do. We might make the
898 assumption that if the length of FROM_TYPE and TO_TYPE match,
899 their floating-point format would match too, but that
900 assumption might be wrong on targets that support
901 floating-point types that only differ in endianness for
902 example. So we warn instead, and zero out the target buffer. */
903 warning (_("Can't convert floating-point number to desired type."));
904 memset (to, 0, TYPE_LENGTH (to_type));
905 }
906 else if (from_fmt == to_fmt)
907 {
908 /* We're in business. The floating-point format of FROM_TYPE
909 and TO_TYPE match. However, even though the floating-point
910 format matches, the length of the type might still be
911 different. Make sure we don't overrun any buffers. See
912 comment in store_typed_floating for a discussion about
913 zeroing out remaining bytes in the target buffer. */
914 memset (to, 0, TYPE_LENGTH (to_type));
915 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
916 }
917 else
918 {
919 /* The floating-point types don't match. The best we can do
920 (apart from simulating the target FPU) is converting to the
921 widest floating-point type supported by the host, and then
922 again to the desired type. */
923 DOUBLEST d;
924
925 floatformat_to_doublest (from_fmt, from, &d);
926 floatformat_from_doublest (to_fmt, &d, to);
927 }
928 }
929
930 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
931 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
932 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
933 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
934 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
935
936 extern void _initialize_doublest (void);
937
938 extern void
939 _initialize_doublest (void)
940 {
941 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
942 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
943 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
944 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
945 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
946 = &floatformat_arm_ext_littlebyte_bigword;
947 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
948 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
949 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
950 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
951 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
952 }
This page took 0.050576 seconds and 4 git commands to generate.