2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / doublest.c
1 /* Floating point routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988-2001, 2003-2005, 2007-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Support for converting target fp numbers into host DOUBLEST format. */
22
23 /* XXX - This code should really be in libiberty/floatformat.c,
24 however configuration issues with libiberty made this very
25 difficult to do in the available time. */
26
27 #include "defs.h"
28 #include "doublest.h"
29 #include "floatformat.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdbtypes.h"
33 #include <math.h> /* ldexp */
34
35 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
36 going to bother with trying to muck around with whether it is defined in
37 a system header, what we do if not, etc. */
38 #define FLOATFORMAT_CHAR_BIT 8
39
40 /* The number of bytes that the largest floating-point type that we
41 can convert to doublest will need. */
42 #define FLOATFORMAT_LARGEST_BYTES 16
43
44 /* Extract a field which starts at START and is LEN bytes long. DATA and
45 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
46 static unsigned long
47 get_field (const bfd_byte *data, enum floatformat_byteorders order,
48 unsigned int total_len, unsigned int start, unsigned int len)
49 {
50 unsigned long result;
51 unsigned int cur_byte;
52 int cur_bitshift;
53
54 /* Caller must byte-swap words before calling this routine. */
55 gdb_assert (order == floatformat_little || order == floatformat_big);
56
57 /* Start at the least significant part of the field. */
58 if (order == floatformat_little)
59 {
60 /* We start counting from the other end (i.e, from the high bytes
61 rather than the low bytes). As such, we need to be concerned
62 with what happens if bit 0 doesn't start on a byte boundary.
63 I.e, we need to properly handle the case where total_len is
64 not evenly divisible by 8. So we compute ``excess'' which
65 represents the number of bits from the end of our starting
66 byte needed to get to bit 0. */
67 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
68
69 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
70 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
71 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
72 - FLOATFORMAT_CHAR_BIT;
73 }
74 else
75 {
76 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
77 cur_bitshift =
78 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
79 }
80 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
81 result = *(data + cur_byte) >> (-cur_bitshift);
82 else
83 result = 0;
84 cur_bitshift += FLOATFORMAT_CHAR_BIT;
85 if (order == floatformat_little)
86 ++cur_byte;
87 else
88 --cur_byte;
89
90 /* Move towards the most significant part of the field. */
91 while (cur_bitshift < len)
92 {
93 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
94 cur_bitshift += FLOATFORMAT_CHAR_BIT;
95 switch (order)
96 {
97 case floatformat_little:
98 ++cur_byte;
99 break;
100 case floatformat_big:
101 --cur_byte;
102 break;
103 }
104 }
105 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
106 /* Mask out bits which are not part of the field. */
107 result &= ((1UL << len) - 1);
108 return result;
109 }
110
111 /* Normalize the byte order of FROM into TO. If no normalization is
112 needed then FMT->byteorder is returned and TO is not changed;
113 otherwise the format of the normalized form in TO is returned. */
114
115 static enum floatformat_byteorders
116 floatformat_normalize_byteorder (const struct floatformat *fmt,
117 const void *from, void *to)
118 {
119 const unsigned char *swapin;
120 unsigned char *swapout;
121 int words;
122
123 if (fmt->byteorder == floatformat_little
124 || fmt->byteorder == floatformat_big)
125 return fmt->byteorder;
126
127 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
128 words >>= 2;
129
130 swapout = (unsigned char *)to;
131 swapin = (const unsigned char *)from;
132
133 if (fmt->byteorder == floatformat_vax)
134 {
135 while (words-- > 0)
136 {
137 *swapout++ = swapin[1];
138 *swapout++ = swapin[0];
139 *swapout++ = swapin[3];
140 *swapout++ = swapin[2];
141 swapin += 4;
142 }
143 /* This may look weird, since VAX is little-endian, but it is
144 easier to translate to big-endian than to little-endian. */
145 return floatformat_big;
146 }
147 else
148 {
149 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
150
151 while (words-- > 0)
152 {
153 *swapout++ = swapin[3];
154 *swapout++ = swapin[2];
155 *swapout++ = swapin[1];
156 *swapout++ = swapin[0];
157 swapin += 4;
158 }
159 return floatformat_big;
160 }
161 }
162
163 /* Convert from FMT to a DOUBLEST.
164 FROM is the address of the extended float.
165 Store the DOUBLEST in *TO. */
166
167 static void
168 convert_floatformat_to_doublest (const struct floatformat *fmt,
169 const void *from,
170 DOUBLEST *to)
171 {
172 unsigned char *ufrom = (unsigned char *) from;
173 DOUBLEST dto;
174 long exponent;
175 unsigned long mant;
176 unsigned int mant_bits, mant_off;
177 int mant_bits_left;
178 int special_exponent; /* It's a NaN, denorm or zero. */
179 enum floatformat_byteorders order;
180 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
181 enum float_kind kind;
182
183 gdb_assert (fmt->totalsize
184 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
185
186 /* For non-numbers, reuse libiberty's logic to find the correct
187 format. We do not lose any precision in this case by passing
188 through a double. */
189 kind = floatformat_classify (fmt, from);
190 if (kind == float_infinite || kind == float_nan)
191 {
192 double dto;
193
194 floatformat_to_double (fmt, from, &dto);
195 *to = (DOUBLEST) dto;
196 return;
197 }
198
199 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
200
201 if (order != fmt->byteorder)
202 ufrom = newfrom;
203
204 if (fmt->split_half)
205 {
206 DOUBLEST dtop, dbot;
207
208 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
209 /* Preserve the sign of 0, which is the sign of the top
210 half. */
211 if (dtop == 0.0)
212 {
213 *to = dtop;
214 return;
215 }
216 floatformat_to_doublest (fmt->split_half,
217 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
218 &dbot);
219 *to = dtop + dbot;
220 return;
221 }
222
223 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
224 fmt->exp_len);
225 /* Note that if exponent indicates a NaN, we can't really do anything useful
226 (not knowing if the host has NaN's, or how to build one). So it will
227 end up as an infinity or something close; that is OK. */
228
229 mant_bits_left = fmt->man_len;
230 mant_off = fmt->man_start;
231 dto = 0.0;
232
233 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
234
235 /* Don't bias NaNs. Use minimum exponent for denorms. For
236 simplicity, we don't check for zero as the exponent doesn't matter.
237 Note the cast to int; exp_bias is unsigned, so it's important to
238 make sure the operation is done in signed arithmetic. */
239 if (!special_exponent)
240 exponent -= fmt->exp_bias;
241 else if (exponent == 0)
242 exponent = 1 - fmt->exp_bias;
243
244 /* Build the result algebraically. Might go infinite, underflow, etc;
245 who cares. */
246
247 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
248 increment the exponent by one to account for the integer bit. */
249
250 if (!special_exponent)
251 {
252 if (fmt->intbit == floatformat_intbit_no)
253 dto = ldexp (1.0, exponent);
254 else
255 exponent++;
256 }
257
258 while (mant_bits_left > 0)
259 {
260 mant_bits = min (mant_bits_left, 32);
261
262 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
263
264 dto += ldexp ((double) mant, exponent - mant_bits);
265 exponent -= mant_bits;
266 mant_off += mant_bits;
267 mant_bits_left -= mant_bits;
268 }
269
270 /* Negate it if negative. */
271 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
272 dto = -dto;
273 *to = dto;
274 }
275 \f
276 /* Set a field which starts at START and is LEN bytes long. DATA and
277 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
278 static void
279 put_field (unsigned char *data, enum floatformat_byteorders order,
280 unsigned int total_len, unsigned int start, unsigned int len,
281 unsigned long stuff_to_put)
282 {
283 unsigned int cur_byte;
284 int cur_bitshift;
285
286 /* Caller must byte-swap words before calling this routine. */
287 gdb_assert (order == floatformat_little || order == floatformat_big);
288
289 /* Start at the least significant part of the field. */
290 if (order == floatformat_little)
291 {
292 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
293
294 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
295 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
296 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
297 - FLOATFORMAT_CHAR_BIT;
298 }
299 else
300 {
301 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
302 cur_bitshift =
303 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
304 }
305 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
306 {
307 *(data + cur_byte) &=
308 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
309 << (-cur_bitshift));
310 *(data + cur_byte) |=
311 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
312 }
313 cur_bitshift += FLOATFORMAT_CHAR_BIT;
314 if (order == floatformat_little)
315 ++cur_byte;
316 else
317 --cur_byte;
318
319 /* Move towards the most significant part of the field. */
320 while (cur_bitshift < len)
321 {
322 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
323 {
324 /* This is the last byte. */
325 *(data + cur_byte) &=
326 ~((1 << (len - cur_bitshift)) - 1);
327 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
328 }
329 else
330 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
331 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
332 cur_bitshift += FLOATFORMAT_CHAR_BIT;
333 if (order == floatformat_little)
334 ++cur_byte;
335 else
336 --cur_byte;
337 }
338 }
339
340 #ifdef HAVE_LONG_DOUBLE
341 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
342 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
343 frexp, but operates on the long double data type. */
344
345 static long double ldfrexp (long double value, int *eptr);
346
347 static long double
348 ldfrexp (long double value, int *eptr)
349 {
350 long double tmp;
351 int exp;
352
353 /* Unfortunately, there are no portable functions for extracting the
354 exponent of a long double, so we have to do it iteratively by
355 multiplying or dividing by two until the fraction is between 0.5
356 and 1.0. */
357
358 if (value < 0.0l)
359 value = -value;
360
361 tmp = 1.0l;
362 exp = 0;
363
364 if (value >= tmp) /* Value >= 1.0 */
365 while (value >= tmp)
366 {
367 tmp *= 2.0l;
368 exp++;
369 }
370 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
371 {
372 while (value < tmp)
373 {
374 tmp /= 2.0l;
375 exp--;
376 }
377 tmp *= 2.0l;
378 exp++;
379 }
380
381 *eptr = exp;
382 return value / tmp;
383 }
384 #endif /* HAVE_LONG_DOUBLE */
385
386
387 /* The converse: convert the DOUBLEST *FROM to an extended float and
388 store where TO points. Neither FROM nor TO have any alignment
389 restrictions. */
390
391 static void
392 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
393 const DOUBLEST *from, void *to)
394 {
395 DOUBLEST dfrom;
396 int exponent;
397 DOUBLEST mant;
398 unsigned int mant_bits, mant_off;
399 int mant_bits_left;
400 unsigned char *uto = (unsigned char *) to;
401 enum floatformat_byteorders order = fmt->byteorder;
402 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
403
404 if (order != floatformat_little)
405 order = floatformat_big;
406
407 if (order != fmt->byteorder)
408 uto = newto;
409
410 memcpy (&dfrom, from, sizeof (dfrom));
411 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
412 / FLOATFORMAT_CHAR_BIT);
413
414 if (fmt->split_half)
415 {
416 /* Use static volatile to ensure that any excess precision is
417 removed via storing in memory, and so the top half really is
418 the result of converting to double. */
419 static volatile double dtop, dbot;
420 DOUBLEST dtopnv, dbotnv;
421
422 dtop = (double) dfrom;
423 /* If the rounded top half is Inf, the bottom must be 0 not NaN
424 or Inf. */
425 if (dtop + dtop == dtop && dtop != 0.0)
426 dbot = 0.0;
427 else
428 dbot = (double) (dfrom - (DOUBLEST) dtop);
429 dtopnv = dtop;
430 dbotnv = dbot;
431 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
432 floatformat_from_doublest (fmt->split_half, &dbotnv,
433 (uto
434 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
435 return;
436 }
437
438 if (dfrom == 0)
439 return; /* Result is zero */
440 if (dfrom != dfrom) /* Result is NaN */
441 {
442 /* From is NaN */
443 put_field (uto, order, fmt->totalsize, fmt->exp_start,
444 fmt->exp_len, fmt->exp_nan);
445 /* Be sure it's not infinity, but NaN value is irrel. */
446 put_field (uto, order, fmt->totalsize, fmt->man_start,
447 fmt->man_len, 1);
448 goto finalize_byteorder;
449 }
450
451 /* If negative, set the sign bit. */
452 if (dfrom < 0)
453 {
454 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
455 dfrom = -dfrom;
456 }
457
458 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
459 {
460 /* Infinity exponent is same as NaN's. */
461 put_field (uto, order, fmt->totalsize, fmt->exp_start,
462 fmt->exp_len, fmt->exp_nan);
463 /* Infinity mantissa is all zeroes. */
464 put_field (uto, order, fmt->totalsize, fmt->man_start,
465 fmt->man_len, 0);
466 goto finalize_byteorder;
467 }
468
469 #ifdef HAVE_LONG_DOUBLE
470 mant = ldfrexp (dfrom, &exponent);
471 #else
472 mant = frexp (dfrom, &exponent);
473 #endif
474
475 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
476 exponent + fmt->exp_bias - 1);
477
478 mant_bits_left = fmt->man_len;
479 mant_off = fmt->man_start;
480 while (mant_bits_left > 0)
481 {
482 unsigned long mant_long;
483
484 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
485
486 mant *= 4294967296.0;
487 mant_long = ((unsigned long) mant) & 0xffffffffL;
488 mant -= mant_long;
489
490 /* If the integer bit is implicit, then we need to discard it.
491 If we are discarding a zero, we should be (but are not) creating
492 a denormalized number which means adjusting the exponent
493 (I think). */
494 if (mant_bits_left == fmt->man_len
495 && fmt->intbit == floatformat_intbit_no)
496 {
497 mant_long <<= 1;
498 mant_long &= 0xffffffffL;
499 /* If we are processing the top 32 mantissa bits of a doublest
500 so as to convert to a float value with implied integer bit,
501 we will only be putting 31 of those 32 bits into the
502 final value due to the discarding of the top bit. In the
503 case of a small float value where the number of mantissa
504 bits is less than 32, discarding the top bit does not alter
505 the number of bits we will be adding to the result. */
506 if (mant_bits == 32)
507 mant_bits -= 1;
508 }
509
510 if (mant_bits < 32)
511 {
512 /* The bits we want are in the most significant MANT_BITS bits of
513 mant_long. Move them to the least significant. */
514 mant_long >>= 32 - mant_bits;
515 }
516
517 put_field (uto, order, fmt->totalsize,
518 mant_off, mant_bits, mant_long);
519 mant_off += mant_bits;
520 mant_bits_left -= mant_bits;
521 }
522
523 finalize_byteorder:
524 /* Do we need to byte-swap the words in the result? */
525 if (order != fmt->byteorder)
526 floatformat_normalize_byteorder (fmt, newto, to);
527 }
528
529 /* Check if VAL (which is assumed to be a floating point number whose
530 format is described by FMT) is negative. */
531
532 int
533 floatformat_is_negative (const struct floatformat *fmt,
534 const bfd_byte *uval)
535 {
536 enum floatformat_byteorders order;
537 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
538
539 gdb_assert (fmt != NULL);
540 gdb_assert (fmt->totalsize
541 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
542
543 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
544
545 if (order != fmt->byteorder)
546 uval = newfrom;
547
548 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
549 }
550
551 /* Check if VAL is "not a number" (NaN) for FMT. */
552
553 enum float_kind
554 floatformat_classify (const struct floatformat *fmt,
555 const bfd_byte *uval)
556 {
557 long exponent;
558 unsigned long mant;
559 unsigned int mant_bits, mant_off;
560 int mant_bits_left;
561 enum floatformat_byteorders order;
562 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
563 int mant_zero;
564
565 gdb_assert (fmt != NULL);
566 gdb_assert (fmt->totalsize
567 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
568
569 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
570
571 if (order != fmt->byteorder)
572 uval = newfrom;
573
574 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
575 fmt->exp_len);
576
577 mant_bits_left = fmt->man_len;
578 mant_off = fmt->man_start;
579
580 mant_zero = 1;
581 while (mant_bits_left > 0)
582 {
583 mant_bits = min (mant_bits_left, 32);
584
585 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
586
587 /* If there is an explicit integer bit, mask it off. */
588 if (mant_off == fmt->man_start
589 && fmt->intbit == floatformat_intbit_yes)
590 mant &= ~(1 << (mant_bits - 1));
591
592 if (mant)
593 {
594 mant_zero = 0;
595 break;
596 }
597
598 mant_off += mant_bits;
599 mant_bits_left -= mant_bits;
600 }
601
602 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
603 supported. */
604 if (! fmt->exp_nan)
605 {
606 if (mant_zero)
607 return float_zero;
608 else
609 return float_normal;
610 }
611
612 if (exponent == 0 && !mant_zero)
613 return float_subnormal;
614
615 if (exponent == fmt->exp_nan)
616 {
617 if (mant_zero)
618 return float_infinite;
619 else
620 return float_nan;
621 }
622
623 if (mant_zero)
624 return float_zero;
625
626 return float_normal;
627 }
628
629 /* Convert the mantissa of VAL (which is assumed to be a floating
630 point number whose format is described by FMT) into a hexadecimal
631 and store it in a static string. Return a pointer to that string. */
632
633 const char *
634 floatformat_mantissa (const struct floatformat *fmt,
635 const bfd_byte *val)
636 {
637 unsigned char *uval = (unsigned char *) val;
638 unsigned long mant;
639 unsigned int mant_bits, mant_off;
640 int mant_bits_left;
641 static char res[50];
642 char buf[9];
643 int len;
644 enum floatformat_byteorders order;
645 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
646
647 gdb_assert (fmt != NULL);
648 gdb_assert (fmt->totalsize
649 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
650
651 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
652
653 if (order != fmt->byteorder)
654 uval = newfrom;
655
656 if (! fmt->exp_nan)
657 return 0;
658
659 /* Make sure we have enough room to store the mantissa. */
660 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
661
662 mant_off = fmt->man_start;
663 mant_bits_left = fmt->man_len;
664 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
665
666 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
667
668 len = xsnprintf (res, sizeof res, "%lx", mant);
669
670 mant_off += mant_bits;
671 mant_bits_left -= mant_bits;
672
673 while (mant_bits_left > 0)
674 {
675 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
676
677 xsnprintf (buf, sizeof buf, "%08lx", mant);
678 gdb_assert (len + strlen (buf) <= sizeof res);
679 strcat (res, buf);
680
681 mant_off += 32;
682 mant_bits_left -= 32;
683 }
684
685 return res;
686 }
687
688 \f
689 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
690
691 If the host and target formats agree, we just copy the raw data
692 into the appropriate type of variable and return, letting the host
693 increase precision as necessary. Otherwise, we call the conversion
694 routine and let it do the dirty work. */
695
696 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
697 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
698 static const struct floatformat *host_long_double_format
699 = GDB_HOST_LONG_DOUBLE_FORMAT;
700
701 void
702 floatformat_to_doublest (const struct floatformat *fmt,
703 const void *in, DOUBLEST *out)
704 {
705 gdb_assert (fmt != NULL);
706 if (fmt == host_float_format)
707 {
708 float val;
709
710 memcpy (&val, in, sizeof (val));
711 *out = val;
712 }
713 else if (fmt == host_double_format)
714 {
715 double val;
716
717 memcpy (&val, in, sizeof (val));
718 *out = val;
719 }
720 else if (fmt == host_long_double_format)
721 {
722 long double val;
723
724 memcpy (&val, in, sizeof (val));
725 *out = val;
726 }
727 else
728 convert_floatformat_to_doublest (fmt, in, out);
729 }
730
731 void
732 floatformat_from_doublest (const struct floatformat *fmt,
733 const DOUBLEST *in, void *out)
734 {
735 gdb_assert (fmt != NULL);
736 if (fmt == host_float_format)
737 {
738 float val = *in;
739
740 memcpy (out, &val, sizeof (val));
741 }
742 else if (fmt == host_double_format)
743 {
744 double val = *in;
745
746 memcpy (out, &val, sizeof (val));
747 }
748 else if (fmt == host_long_double_format)
749 {
750 long double val = *in;
751
752 memcpy (out, &val, sizeof (val));
753 }
754 else
755 convert_doublest_to_floatformat (fmt, in, out);
756 }
757
758 \f
759 /* Return a floating-point format for a floating-point variable of
760 length LEN. If no suitable floating-point format is found, an
761 error is thrown.
762
763 We need this functionality since information about the
764 floating-point format of a type is not always available to GDB; the
765 debug information typically only tells us the size of a
766 floating-point type.
767
768 FIXME: kettenis/2001-10-28: In many places, particularly in
769 target-dependent code, the format of floating-point types is known,
770 but not passed on by GDB. This should be fixed. */
771
772 static const struct floatformat *
773 floatformat_from_length (struct gdbarch *gdbarch, int len)
774 {
775 const struct floatformat *format;
776
777 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
778 format = gdbarch_half_format (gdbarch)
779 [gdbarch_byte_order (gdbarch)];
780 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
781 format = gdbarch_float_format (gdbarch)
782 [gdbarch_byte_order (gdbarch)];
783 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
784 format = gdbarch_double_format (gdbarch)
785 [gdbarch_byte_order (gdbarch)];
786 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
787 format = gdbarch_long_double_format (gdbarch)
788 [gdbarch_byte_order (gdbarch)];
789 /* On i386 the 'long double' type takes 96 bits,
790 while the real number of used bits is only 80,
791 both in processor and in memory.
792 The code below accepts the real bit size. */
793 else if ((gdbarch_long_double_format (gdbarch) != NULL)
794 && (len * TARGET_CHAR_BIT
795 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
796 format = gdbarch_long_double_format (gdbarch)
797 [gdbarch_byte_order (gdbarch)];
798 else
799 format = NULL;
800 if (format == NULL)
801 error (_("Unrecognized %d-bit floating-point type."),
802 len * TARGET_CHAR_BIT);
803 return format;
804 }
805
806 const struct floatformat *
807 floatformat_from_type (const struct type *type)
808 {
809 struct gdbarch *gdbarch = get_type_arch (type);
810
811 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
812 if (TYPE_FLOATFORMAT (type) != NULL)
813 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
814 else
815 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
816 }
817
818 /* Extract a floating-point number of type TYPE from a target-order
819 byte-stream at ADDR. Returns the value as type DOUBLEST. */
820
821 DOUBLEST
822 extract_typed_floating (const void *addr, const struct type *type)
823 {
824 const struct floatformat *fmt = floatformat_from_type (type);
825 DOUBLEST retval;
826
827 floatformat_to_doublest (fmt, addr, &retval);
828 return retval;
829 }
830
831 /* Store VAL as a floating-point number of type TYPE to a target-order
832 byte-stream at ADDR. */
833
834 void
835 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
836 {
837 const struct floatformat *fmt = floatformat_from_type (type);
838
839 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
840 zero out any remaining bytes in the target buffer when TYPE is
841 longer than the actual underlying floating-point format. Perhaps
842 we should store a fixed bitpattern in those remaining bytes,
843 instead of zero, or perhaps we shouldn't touch those remaining
844 bytes at all.
845
846 NOTE: cagney/2001-10-28: With the way things currently work, it
847 isn't a good idea to leave the end bits undefined. This is
848 because GDB writes out the entire sizeof(<floating>) bits of the
849 floating-point type even though the value might only be stored
850 in, and the target processor may only refer to, the first N <
851 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
852 initialized, GDB would write undefined data to the target. An
853 errant program, refering to that undefined data, would then
854 become non-deterministic.
855
856 See also the function convert_typed_floating below. */
857 memset (addr, 0, TYPE_LENGTH (type));
858
859 floatformat_from_doublest (fmt, &val, addr);
860 }
861
862 /* Convert a floating-point number of type FROM_TYPE from a
863 target-order byte-stream at FROM to a floating-point number of type
864 TO_TYPE, and store it to a target-order byte-stream at TO. */
865
866 void
867 convert_typed_floating (const void *from, const struct type *from_type,
868 void *to, const struct type *to_type)
869 {
870 const struct floatformat *from_fmt = floatformat_from_type (from_type);
871 const struct floatformat *to_fmt = floatformat_from_type (to_type);
872
873 if (from_fmt == NULL || to_fmt == NULL)
874 {
875 /* If we don't know the floating-point format of FROM_TYPE or
876 TO_TYPE, there's not much we can do. We might make the
877 assumption that if the length of FROM_TYPE and TO_TYPE match,
878 their floating-point format would match too, but that
879 assumption might be wrong on targets that support
880 floating-point types that only differ in endianness for
881 example. So we warn instead, and zero out the target buffer. */
882 warning (_("Can't convert floating-point number to desired type."));
883 memset (to, 0, TYPE_LENGTH (to_type));
884 }
885 else if (from_fmt == to_fmt)
886 {
887 /* We're in business. The floating-point format of FROM_TYPE
888 and TO_TYPE match. However, even though the floating-point
889 format matches, the length of the type might still be
890 different. Make sure we don't overrun any buffers. See
891 comment in store_typed_floating for a discussion about
892 zeroing out remaining bytes in the target buffer. */
893 memset (to, 0, TYPE_LENGTH (to_type));
894 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
895 }
896 else
897 {
898 /* The floating-point types don't match. The best we can do
899 (apart from simulating the target FPU) is converting to the
900 widest floating-point type supported by the host, and then
901 again to the desired type. */
902 DOUBLEST d;
903
904 floatformat_to_doublest (from_fmt, from, &d);
905 floatformat_from_doublest (to_fmt, &d, to);
906 }
907 }
908
909 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
910 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
911 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
912 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
913 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
914
915 extern void _initialize_doublest (void);
916
917 extern void
918 _initialize_doublest (void)
919 {
920 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
921 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
922 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
923 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
924 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
925 = &floatformat_arm_ext_littlebyte_bigword;
926 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
927 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
928 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
929 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
930 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
931 }
This page took 0.049361 seconds and 4 git commands to generate.