Improve MSP430 section placement.
[deliverable/binutils-gdb.git] / gdb / doublest.c
1 /* Floating point routines for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support for converting target fp numbers into host DOUBLEST format. */
21
22 /* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
25
26 #include "defs.h"
27 #include "doublest.h"
28 #include "floatformat.h"
29 #include "gdbtypes.h"
30 #include <math.h> /* ldexp */
31 #include <algorithm>
32
33 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
34 going to bother with trying to muck around with whether it is defined in
35 a system header, what we do if not, etc. */
36 #define FLOATFORMAT_CHAR_BIT 8
37
38 /* The number of bytes that the largest floating-point type that we
39 can convert to doublest will need. */
40 #define FLOATFORMAT_LARGEST_BYTES 16
41
42 /* Extract a field which starts at START and is LEN bytes long. DATA and
43 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
44 static unsigned long
45 get_field (const bfd_byte *data, enum floatformat_byteorders order,
46 unsigned int total_len, unsigned int start, unsigned int len)
47 {
48 unsigned long result;
49 unsigned int cur_byte;
50 int cur_bitshift;
51
52 /* Caller must byte-swap words before calling this routine. */
53 gdb_assert (order == floatformat_little || order == floatformat_big);
54
55 /* Start at the least significant part of the field. */
56 if (order == floatformat_little)
57 {
58 /* We start counting from the other end (i.e, from the high bytes
59 rather than the low bytes). As such, we need to be concerned
60 with what happens if bit 0 doesn't start on a byte boundary.
61 I.e, we need to properly handle the case where total_len is
62 not evenly divisible by 8. So we compute ``excess'' which
63 represents the number of bits from the end of our starting
64 byte needed to get to bit 0. */
65 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
66
67 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
68 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
69 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
70 - FLOATFORMAT_CHAR_BIT;
71 }
72 else
73 {
74 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
75 cur_bitshift =
76 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
77 }
78 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
79 result = *(data + cur_byte) >> (-cur_bitshift);
80 else
81 result = 0;
82 cur_bitshift += FLOATFORMAT_CHAR_BIT;
83 if (order == floatformat_little)
84 ++cur_byte;
85 else
86 --cur_byte;
87
88 /* Move towards the most significant part of the field. */
89 while (cur_bitshift < len)
90 {
91 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
92 cur_bitshift += FLOATFORMAT_CHAR_BIT;
93 switch (order)
94 {
95 case floatformat_little:
96 ++cur_byte;
97 break;
98 case floatformat_big:
99 --cur_byte;
100 break;
101 }
102 }
103 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
104 /* Mask out bits which are not part of the field. */
105 result &= ((1UL << len) - 1);
106 return result;
107 }
108
109 /* Normalize the byte order of FROM into TO. If no normalization is
110 needed then FMT->byteorder is returned and TO is not changed;
111 otherwise the format of the normalized form in TO is returned. */
112
113 static enum floatformat_byteorders
114 floatformat_normalize_byteorder (const struct floatformat *fmt,
115 const void *from, void *to)
116 {
117 const unsigned char *swapin;
118 unsigned char *swapout;
119 int words;
120
121 if (fmt->byteorder == floatformat_little
122 || fmt->byteorder == floatformat_big)
123 return fmt->byteorder;
124
125 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
126 words >>= 2;
127
128 swapout = (unsigned char *)to;
129 swapin = (const unsigned char *)from;
130
131 if (fmt->byteorder == floatformat_vax)
132 {
133 while (words-- > 0)
134 {
135 *swapout++ = swapin[1];
136 *swapout++ = swapin[0];
137 *swapout++ = swapin[3];
138 *swapout++ = swapin[2];
139 swapin += 4;
140 }
141 /* This may look weird, since VAX is little-endian, but it is
142 easier to translate to big-endian than to little-endian. */
143 return floatformat_big;
144 }
145 else
146 {
147 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
148
149 while (words-- > 0)
150 {
151 *swapout++ = swapin[3];
152 *swapout++ = swapin[2];
153 *swapout++ = swapin[1];
154 *swapout++ = swapin[0];
155 swapin += 4;
156 }
157 return floatformat_big;
158 }
159 }
160
161 /* Convert from FMT to a DOUBLEST.
162 FROM is the address of the extended float.
163 Store the DOUBLEST in *TO. */
164
165 static void
166 convert_floatformat_to_doublest (const struct floatformat *fmt,
167 const void *from,
168 DOUBLEST *to)
169 {
170 unsigned char *ufrom = (unsigned char *) from;
171 DOUBLEST dto;
172 long exponent;
173 unsigned long mant;
174 unsigned int mant_bits, mant_off;
175 int mant_bits_left;
176 int special_exponent; /* It's a NaN, denorm or zero. */
177 enum floatformat_byteorders order;
178 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
179 enum float_kind kind;
180
181 gdb_assert (fmt->totalsize
182 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
183
184 /* For non-numbers, reuse libiberty's logic to find the correct
185 format. We do not lose any precision in this case by passing
186 through a double. */
187 kind = floatformat_classify (fmt, (const bfd_byte *) from);
188 if (kind == float_infinite || kind == float_nan)
189 {
190 double dto;
191
192 floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
193 from, &dto);
194 *to = (DOUBLEST) dto;
195 return;
196 }
197
198 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
199
200 if (order != fmt->byteorder)
201 ufrom = newfrom;
202
203 if (fmt->split_half)
204 {
205 DOUBLEST dtop, dbot;
206
207 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
208 /* Preserve the sign of 0, which is the sign of the top
209 half. */
210 if (dtop == 0.0)
211 {
212 *to = dtop;
213 return;
214 }
215 floatformat_to_doublest (fmt->split_half,
216 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
217 &dbot);
218 *to = dtop + dbot;
219 return;
220 }
221
222 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
223 fmt->exp_len);
224 /* Note that if exponent indicates a NaN, we can't really do anything useful
225 (not knowing if the host has NaN's, or how to build one). So it will
226 end up as an infinity or something close; that is OK. */
227
228 mant_bits_left = fmt->man_len;
229 mant_off = fmt->man_start;
230 dto = 0.0;
231
232 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
233
234 /* Don't bias NaNs. Use minimum exponent for denorms. For
235 simplicity, we don't check for zero as the exponent doesn't matter.
236 Note the cast to int; exp_bias is unsigned, so it's important to
237 make sure the operation is done in signed arithmetic. */
238 if (!special_exponent)
239 exponent -= fmt->exp_bias;
240 else if (exponent == 0)
241 exponent = 1 - fmt->exp_bias;
242
243 /* Build the result algebraically. Might go infinite, underflow, etc;
244 who cares. */
245
246 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
247 increment the exponent by one to account for the integer bit. */
248
249 if (!special_exponent)
250 {
251 if (fmt->intbit == floatformat_intbit_no)
252 dto = ldexp (1.0, exponent);
253 else
254 exponent++;
255 }
256
257 while (mant_bits_left > 0)
258 {
259 mant_bits = std::min (mant_bits_left, 32);
260
261 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
262
263 dto += ldexp ((double) mant, exponent - mant_bits);
264 exponent -= mant_bits;
265 mant_off += mant_bits;
266 mant_bits_left -= mant_bits;
267 }
268
269 /* Negate it if negative. */
270 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
271 dto = -dto;
272 *to = dto;
273 }
274 \f
275 /* Set a field which starts at START and is LEN bytes long. DATA and
276 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
277 static void
278 put_field (unsigned char *data, enum floatformat_byteorders order,
279 unsigned int total_len, unsigned int start, unsigned int len,
280 unsigned long stuff_to_put)
281 {
282 unsigned int cur_byte;
283 int cur_bitshift;
284
285 /* Caller must byte-swap words before calling this routine. */
286 gdb_assert (order == floatformat_little || order == floatformat_big);
287
288 /* Start at the least significant part of the field. */
289 if (order == floatformat_little)
290 {
291 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
292
293 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
294 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
295 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
296 - FLOATFORMAT_CHAR_BIT;
297 }
298 else
299 {
300 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
301 cur_bitshift =
302 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
303 }
304 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
305 {
306 *(data + cur_byte) &=
307 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
308 << (-cur_bitshift));
309 *(data + cur_byte) |=
310 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
311 }
312 cur_bitshift += FLOATFORMAT_CHAR_BIT;
313 if (order == floatformat_little)
314 ++cur_byte;
315 else
316 --cur_byte;
317
318 /* Move towards the most significant part of the field. */
319 while (cur_bitshift < len)
320 {
321 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
322 {
323 /* This is the last byte. */
324 *(data + cur_byte) &=
325 ~((1 << (len - cur_bitshift)) - 1);
326 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
327 }
328 else
329 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
330 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
331 cur_bitshift += FLOATFORMAT_CHAR_BIT;
332 if (order == floatformat_little)
333 ++cur_byte;
334 else
335 --cur_byte;
336 }
337 }
338
339 /* The converse: convert the DOUBLEST *FROM to an extended float and
340 store where TO points. Neither FROM nor TO have any alignment
341 restrictions. */
342
343 static void
344 convert_doublest_to_floatformat (const struct floatformat *fmt,
345 const DOUBLEST *from, void *to)
346 {
347 DOUBLEST dfrom;
348 int exponent;
349 DOUBLEST mant;
350 unsigned int mant_bits, mant_off;
351 int mant_bits_left;
352 unsigned char *uto = (unsigned char *) to;
353 enum floatformat_byteorders order = fmt->byteorder;
354 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
355
356 if (order != floatformat_little)
357 order = floatformat_big;
358
359 if (order != fmt->byteorder)
360 uto = newto;
361
362 memcpy (&dfrom, from, sizeof (dfrom));
363 memset (uto, 0, floatformat_totalsize_bytes (fmt));
364
365 if (fmt->split_half)
366 {
367 /* Use static volatile to ensure that any excess precision is
368 removed via storing in memory, and so the top half really is
369 the result of converting to double. */
370 static volatile double dtop, dbot;
371 DOUBLEST dtopnv, dbotnv;
372
373 dtop = (double) dfrom;
374 /* If the rounded top half is Inf, the bottom must be 0 not NaN
375 or Inf. */
376 if (dtop + dtop == dtop && dtop != 0.0)
377 dbot = 0.0;
378 else
379 dbot = (double) (dfrom - (DOUBLEST) dtop);
380 dtopnv = dtop;
381 dbotnv = dbot;
382 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
383 floatformat_from_doublest (fmt->split_half, &dbotnv,
384 (uto
385 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
386 return;
387 }
388
389 if (dfrom == 0)
390 return; /* Result is zero */
391 if (dfrom != dfrom) /* Result is NaN */
392 {
393 /* From is NaN */
394 put_field (uto, order, fmt->totalsize, fmt->exp_start,
395 fmt->exp_len, fmt->exp_nan);
396 /* Be sure it's not infinity, but NaN value is irrel. */
397 put_field (uto, order, fmt->totalsize, fmt->man_start,
398 fmt->man_len, 1);
399 goto finalize_byteorder;
400 }
401
402 /* If negative, set the sign bit. */
403 if (dfrom < 0)
404 {
405 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
406 dfrom = -dfrom;
407 }
408
409 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
410 {
411 /* Infinity exponent is same as NaN's. */
412 put_field (uto, order, fmt->totalsize, fmt->exp_start,
413 fmt->exp_len, fmt->exp_nan);
414 /* Infinity mantissa is all zeroes. */
415 put_field (uto, order, fmt->totalsize, fmt->man_start,
416 fmt->man_len, 0);
417 goto finalize_byteorder;
418 }
419
420 #ifdef HAVE_LONG_DOUBLE
421 mant = frexpl (dfrom, &exponent);
422 #else
423 mant = frexp (dfrom, &exponent);
424 #endif
425
426 if (exponent + fmt->exp_bias <= 0)
427 {
428 /* The value is too small to be expressed in the destination
429 type (not enough bits in the exponent. Treat as 0. */
430 put_field (uto, order, fmt->totalsize, fmt->exp_start,
431 fmt->exp_len, 0);
432 put_field (uto, order, fmt->totalsize, fmt->man_start,
433 fmt->man_len, 0);
434 goto finalize_byteorder;
435 }
436
437 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
438 {
439 /* The value is too large to fit into the destination.
440 Treat as infinity. */
441 put_field (uto, order, fmt->totalsize, fmt->exp_start,
442 fmt->exp_len, fmt->exp_nan);
443 put_field (uto, order, fmt->totalsize, fmt->man_start,
444 fmt->man_len, 0);
445 goto finalize_byteorder;
446 }
447
448 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
449 exponent + fmt->exp_bias - 1);
450
451 mant_bits_left = fmt->man_len;
452 mant_off = fmt->man_start;
453 while (mant_bits_left > 0)
454 {
455 unsigned long mant_long;
456
457 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
458
459 mant *= 4294967296.0;
460 mant_long = ((unsigned long) mant) & 0xffffffffL;
461 mant -= mant_long;
462
463 /* If the integer bit is implicit, then we need to discard it.
464 If we are discarding a zero, we should be (but are not) creating
465 a denormalized number which means adjusting the exponent
466 (I think). */
467 if (mant_bits_left == fmt->man_len
468 && fmt->intbit == floatformat_intbit_no)
469 {
470 mant_long <<= 1;
471 mant_long &= 0xffffffffL;
472 /* If we are processing the top 32 mantissa bits of a doublest
473 so as to convert to a float value with implied integer bit,
474 we will only be putting 31 of those 32 bits into the
475 final value due to the discarding of the top bit. In the
476 case of a small float value where the number of mantissa
477 bits is less than 32, discarding the top bit does not alter
478 the number of bits we will be adding to the result. */
479 if (mant_bits == 32)
480 mant_bits -= 1;
481 }
482
483 if (mant_bits < 32)
484 {
485 /* The bits we want are in the most significant MANT_BITS bits of
486 mant_long. Move them to the least significant. */
487 mant_long >>= 32 - mant_bits;
488 }
489
490 put_field (uto, order, fmt->totalsize,
491 mant_off, mant_bits, mant_long);
492 mant_off += mant_bits;
493 mant_bits_left -= mant_bits;
494 }
495
496 finalize_byteorder:
497 /* Do we need to byte-swap the words in the result? */
498 if (order != fmt->byteorder)
499 floatformat_normalize_byteorder (fmt, newto, to);
500 }
501
502 /* Check if VAL (which is assumed to be a floating point number whose
503 format is described by FMT) is negative. */
504
505 int
506 floatformat_is_negative (const struct floatformat *fmt,
507 const bfd_byte *uval)
508 {
509 enum floatformat_byteorders order;
510 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
511
512 gdb_assert (fmt != NULL);
513 gdb_assert (fmt->totalsize
514 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
515
516 /* An IBM long double (a two element array of double) always takes the
517 sign of the first double. */
518 if (fmt->split_half)
519 fmt = fmt->split_half;
520
521 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
522
523 if (order != fmt->byteorder)
524 uval = newfrom;
525
526 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
527 }
528
529 /* Check if VAL is "not a number" (NaN) for FMT. */
530
531 enum float_kind
532 floatformat_classify (const struct floatformat *fmt,
533 const bfd_byte *uval)
534 {
535 long exponent;
536 unsigned long mant;
537 unsigned int mant_bits, mant_off;
538 int mant_bits_left;
539 enum floatformat_byteorders order;
540 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
541 int mant_zero;
542
543 gdb_assert (fmt != NULL);
544 gdb_assert (fmt->totalsize
545 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
546
547 /* An IBM long double (a two element array of double) can be classified
548 by looking at the first double. inf and nan are specified as
549 ignoring the second double. zero and subnormal will always have
550 the second double 0.0 if the long double is correctly rounded. */
551 if (fmt->split_half)
552 fmt = fmt->split_half;
553
554 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
555
556 if (order != fmt->byteorder)
557 uval = newfrom;
558
559 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
560 fmt->exp_len);
561
562 mant_bits_left = fmt->man_len;
563 mant_off = fmt->man_start;
564
565 mant_zero = 1;
566 while (mant_bits_left > 0)
567 {
568 mant_bits = std::min (mant_bits_left, 32);
569
570 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
571
572 /* If there is an explicit integer bit, mask it off. */
573 if (mant_off == fmt->man_start
574 && fmt->intbit == floatformat_intbit_yes)
575 mant &= ~(1 << (mant_bits - 1));
576
577 if (mant)
578 {
579 mant_zero = 0;
580 break;
581 }
582
583 mant_off += mant_bits;
584 mant_bits_left -= mant_bits;
585 }
586
587 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
588 supported. */
589 if (! fmt->exp_nan)
590 {
591 if (mant_zero)
592 return float_zero;
593 else
594 return float_normal;
595 }
596
597 if (exponent == 0 && !mant_zero)
598 return float_subnormal;
599
600 if (exponent == fmt->exp_nan)
601 {
602 if (mant_zero)
603 return float_infinite;
604 else
605 return float_nan;
606 }
607
608 if (mant_zero)
609 return float_zero;
610
611 return float_normal;
612 }
613
614 /* Convert the mantissa of VAL (which is assumed to be a floating
615 point number whose format is described by FMT) into a hexadecimal
616 and store it in a static string. Return a pointer to that string. */
617
618 const char *
619 floatformat_mantissa (const struct floatformat *fmt,
620 const bfd_byte *val)
621 {
622 unsigned char *uval = (unsigned char *) val;
623 unsigned long mant;
624 unsigned int mant_bits, mant_off;
625 int mant_bits_left;
626 static char res[50];
627 char buf[9];
628 int len;
629 enum floatformat_byteorders order;
630 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
631
632 gdb_assert (fmt != NULL);
633 gdb_assert (fmt->totalsize
634 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
635
636 /* For IBM long double (a two element array of double), return the
637 mantissa of the first double. The problem with returning the
638 actual mantissa from both doubles is that there can be an
639 arbitrary number of implied 0's or 1's between the mantissas
640 of the first and second double. In any case, this function
641 is only used for dumping out nans, and a nan is specified to
642 ignore the value in the second double. */
643 if (fmt->split_half)
644 fmt = fmt->split_half;
645
646 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
647
648 if (order != fmt->byteorder)
649 uval = newfrom;
650
651 if (! fmt->exp_nan)
652 return 0;
653
654 /* Make sure we have enough room to store the mantissa. */
655 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
656
657 mant_off = fmt->man_start;
658 mant_bits_left = fmt->man_len;
659 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
660
661 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
662
663 len = xsnprintf (res, sizeof res, "%lx", mant);
664
665 mant_off += mant_bits;
666 mant_bits_left -= mant_bits;
667
668 while (mant_bits_left > 0)
669 {
670 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
671
672 xsnprintf (buf, sizeof buf, "%08lx", mant);
673 gdb_assert (len + strlen (buf) <= sizeof res);
674 strcat (res, buf);
675
676 mant_off += 32;
677 mant_bits_left -= 32;
678 }
679
680 return res;
681 }
682
683 \f
684 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
685
686 If the host and target formats agree, we just copy the raw data
687 into the appropriate type of variable and return, letting the host
688 increase precision as necessary. Otherwise, we call the conversion
689 routine and let it do the dirty work. Note that even if the target
690 and host floating-point formats match, the length of the types
691 might still be different, so the conversion routines must make sure
692 to not overrun any buffers. For example, on x86, long double is
693 the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
694 but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
695 64-bit, for alignment reasons. See comment in store_typed_floating
696 for a discussion about zeroing out remaining bytes in the target
697 buffer. */
698
699 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
700 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
701 static const struct floatformat *host_long_double_format
702 = GDB_HOST_LONG_DOUBLE_FORMAT;
703
704 /* See doublest.h. */
705
706 size_t
707 floatformat_totalsize_bytes (const struct floatformat *fmt)
708 {
709 return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
710 / FLOATFORMAT_CHAR_BIT);
711 }
712
713 void
714 floatformat_to_doublest (const struct floatformat *fmt,
715 const void *in, DOUBLEST *out)
716 {
717 gdb_assert (fmt != NULL);
718
719 if (fmt == host_float_format)
720 {
721 float val = 0;
722
723 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
724 *out = val;
725 }
726 else if (fmt == host_double_format)
727 {
728 double val = 0;
729
730 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
731 *out = val;
732 }
733 else if (fmt == host_long_double_format)
734 {
735 long double val = 0;
736
737 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
738 *out = val;
739 }
740 else
741 convert_floatformat_to_doublest (fmt, in, out);
742 }
743
744 void
745 floatformat_from_doublest (const struct floatformat *fmt,
746 const DOUBLEST *in, void *out)
747 {
748 gdb_assert (fmt != NULL);
749
750 if (fmt == host_float_format)
751 {
752 float val = *in;
753
754 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
755 }
756 else if (fmt == host_double_format)
757 {
758 double val = *in;
759
760 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
761 }
762 else if (fmt == host_long_double_format)
763 {
764 long double val = *in;
765
766 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
767 }
768 else
769 convert_doublest_to_floatformat (fmt, in, out);
770 }
771
772 \f
773 /* Return the floating-point format for a floating-point variable of
774 type TYPE. */
775
776 const struct floatformat *
777 floatformat_from_type (const struct type *type)
778 {
779 struct gdbarch *gdbarch = get_type_arch (type);
780 const struct floatformat *fmt;
781
782 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
783 gdb_assert (TYPE_FLOATFORMAT (type));
784 fmt = TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
785 gdb_assert (TYPE_LENGTH (type) >= floatformat_totalsize_bytes (fmt));
786 return fmt;
787 }
788
789 /* Extract a floating-point number of type TYPE from a target-order
790 byte-stream at ADDR. Returns the value as type DOUBLEST. */
791
792 DOUBLEST
793 extract_typed_floating (const void *addr, const struct type *type)
794 {
795 const struct floatformat *fmt = floatformat_from_type (type);
796 DOUBLEST retval;
797
798 floatformat_to_doublest (fmt, addr, &retval);
799 return retval;
800 }
801
802 /* Store VAL as a floating-point number of type TYPE to a target-order
803 byte-stream at ADDR. */
804
805 void
806 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
807 {
808 const struct floatformat *fmt = floatformat_from_type (type);
809
810 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
811 zero out any remaining bytes in the target buffer when TYPE is
812 longer than the actual underlying floating-point format. Perhaps
813 we should store a fixed bitpattern in those remaining bytes,
814 instead of zero, or perhaps we shouldn't touch those remaining
815 bytes at all.
816
817 NOTE: cagney/2001-10-28: With the way things currently work, it
818 isn't a good idea to leave the end bits undefined. This is
819 because GDB writes out the entire sizeof(<floating>) bits of the
820 floating-point type even though the value might only be stored
821 in, and the target processor may only refer to, the first N <
822 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
823 initialized, GDB would write undefined data to the target. An
824 errant program, refering to that undefined data, would then
825 become non-deterministic.
826
827 See also the function convert_typed_floating below. */
828 memset (addr, 0, TYPE_LENGTH (type));
829
830 floatformat_from_doublest (fmt, &val, addr);
831 }
832
833 /* Convert a floating-point number of type FROM_TYPE from a
834 target-order byte-stream at FROM to a floating-point number of type
835 TO_TYPE, and store it to a target-order byte-stream at TO. */
836
837 void
838 convert_typed_floating (const void *from, const struct type *from_type,
839 void *to, const struct type *to_type)
840 {
841 const struct floatformat *from_fmt = floatformat_from_type (from_type);
842 const struct floatformat *to_fmt = floatformat_from_type (to_type);
843
844 if (from_fmt == NULL || to_fmt == NULL)
845 {
846 /* If we don't know the floating-point format of FROM_TYPE or
847 TO_TYPE, there's not much we can do. We might make the
848 assumption that if the length of FROM_TYPE and TO_TYPE match,
849 their floating-point format would match too, but that
850 assumption might be wrong on targets that support
851 floating-point types that only differ in endianness for
852 example. So we warn instead, and zero out the target buffer. */
853 warning (_("Can't convert floating-point number to desired type."));
854 memset (to, 0, TYPE_LENGTH (to_type));
855 }
856 else if (from_fmt == to_fmt)
857 {
858 /* We're in business. The floating-point format of FROM_TYPE
859 and TO_TYPE match. However, even though the floating-point
860 format matches, the length of the type might still be
861 different. Make sure we don't overrun any buffers. See
862 comment in store_typed_floating for a discussion about
863 zeroing out remaining bytes in the target buffer. */
864 memset (to, 0, TYPE_LENGTH (to_type));
865 memcpy (to, from, std::min (TYPE_LENGTH (from_type),
866 TYPE_LENGTH (to_type)));
867 }
868 else
869 {
870 /* The floating-point types don't match. The best we can do
871 (apart from simulating the target FPU) is converting to the
872 widest floating-point type supported by the host, and then
873 again to the desired type. */
874 DOUBLEST d;
875
876 floatformat_to_doublest (from_fmt, from, &d);
877 floatformat_from_doublest (to_fmt, &d, to);
878 }
879 }
This page took 0.052456 seconds and 4 git commands to generate.