daily update
[deliverable/binutils-gdb.git] / gdb / dve3900-rom.c
1 /* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
3 Copyright 1997, 1998, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "monitor.h"
26 #include "serial.h"
27 #include "inferior.h"
28 #include "command.h"
29 #include "gdb_string.h"
30 #include <time.h>
31 #include "regcache.h"
32
33 /* Type of function passed to bfd_map_over_sections. */
34
35 typedef void (*section_map_func) (bfd * abfd, asection * sect, void *obj);
36
37 /* Packet escape character used by Densan monitor. */
38
39 #define PESC 0xdc
40
41 /* Maximum packet size. This is actually smaller than necessary
42 just to be safe. */
43
44 #define MAXPSIZE 1024
45
46 /* External functions. */
47
48 extern void report_transfer_performance (unsigned long, time_t, time_t);
49
50 /* Certain registers are "bitmapped", in that the monitor can only display
51 them or let the user modify them as a series of named bitfields.
52 This structure describes a field in a bitmapped register. */
53
54 struct bit_field
55 {
56 char *prefix; /* string appearing before the value */
57 char *suffix; /* string appearing after the value */
58 char *user_name; /* name used by human when entering field value */
59 int length; /* number of bits in the field */
60 int start; /* starting (least significant) bit number of field */
61 };
62
63 /* Local functions for register manipulation. */
64
65 static void r3900_supply_register (char *regname, int regnamelen,
66 char *val, int vallen);
67 static void fetch_bad_vaddr (void);
68 static unsigned long fetch_fields (struct bit_field *bf);
69 static void fetch_bitmapped_register (int regno, struct bit_field *bf);
70 static void r3900_fetch_registers (int regno);
71 static void store_bitmapped_register (int regno, struct bit_field *bf);
72 static void r3900_store_registers (int regno);
73
74 /* Local functions for fast binary loading. */
75
76 static void write_long (char *buf, long n);
77 static void write_long_le (char *buf, long n);
78 static int debug_readchar (int hex);
79 static void debug_write (unsigned char *buf, int buflen);
80 static void ignore_packet (void);
81 static void send_packet (char type, unsigned char *buf, int buflen, int seq);
82 static void process_read_request (unsigned char *buf, int buflen);
83 static void count_section (bfd * abfd, asection * s,
84 unsigned int *section_count);
85 static void load_section (bfd * abfd, asection * s, unsigned int *data_count);
86 static void r3900_load (char *filename, int from_tty);
87
88 /* Miscellaneous local functions. */
89
90 static void r3900_open (char *args, int from_tty);
91
92
93 /* Pointers to static functions in monitor.c for fetching and storing
94 registers. We can't use these function in certain cases where the Densan
95 monitor acts perversely: for registers that it displays in bit-map
96 format, and those that can't be modified at all. In those cases
97 we have to use our own functions to fetch and store their values. */
98
99 static void (*orig_monitor_fetch_registers) (int regno);
100 static void (*orig_monitor_store_registers) (int regno);
101
102 /* Pointer to static function in monitor. for loading programs.
103 We use this function for loading S-records via the serial link. */
104
105 static void (*orig_monitor_load) (char *file, int from_tty);
106
107 /* This flag is set if a fast ethernet download should be used. */
108
109 static int ethernet = 0;
110
111 /* This array of registers needs to match the indexes used by GDB. The
112 whole reason this exists is because the various ROM monitors use
113 different names than GDB does, and don't support all the registers
114 either. */
115
116 static char *r3900_regnames[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122
123 "S", /* PS_REGNUM */
124 "l", /* LO_REGNUM */
125 "h", /* HI_REGNUM */
126 "B", /* BADVADDR_REGNUM */
127 "Pcause", /* CAUSE_REGNUM */
128 "p" /* PC_REGNUM */
129 };
130
131
132 /* Table of register names produced by monitor's register dump command. */
133
134 static struct reg_entry
135 {
136 char *name;
137 int regno;
138 }
139 reg_table[] =
140 {
141 {
142 "r0_zero", 0
143 }
144 ,
145 {
146 "r1_at", 1
147 }
148 ,
149 {
150 "r2_v0", 2
151 }
152 ,
153 {
154 "r3_v1", 3
155 }
156 ,
157 {
158 "r4_a0", 4
159 }
160 ,
161 {
162 "r5_a1", 5
163 }
164 ,
165 {
166 "r6_a2", 6
167 }
168 ,
169 {
170 "r7_a3", 7
171 }
172 ,
173 {
174 "r8_t0", 8
175 }
176 ,
177 {
178 "r9_t1", 9
179 }
180 ,
181 {
182 "r10_t2", 10
183 }
184 ,
185 {
186 "r11_t3", 11
187 }
188 ,
189 {
190 "r12_t4", 12
191 }
192 ,
193 {
194 "r13_t5", 13
195 }
196 ,
197 {
198 "r14_t6", 14
199 }
200 ,
201 {
202 "r15_t7", 15
203 }
204 ,
205 {
206 "r16_s0", 16
207 }
208 ,
209 {
210 "r17_s1", 17
211 }
212 ,
213 {
214 "r18_s2", 18
215 }
216 ,
217 {
218 "r19_s3", 19
219 }
220 ,
221 {
222 "r20_s4", 20
223 }
224 ,
225 {
226 "r21_s5", 21
227 }
228 ,
229 {
230 "r22_s6", 22
231 }
232 ,
233 {
234 "r23_s7", 23
235 }
236 ,
237 {
238 "r24_t8", 24
239 }
240 ,
241 {
242 "r25_t9", 25
243 }
244 ,
245 {
246 "r26_k0", 26
247 }
248 ,
249 {
250 "r27_k1", 27
251 }
252 ,
253 {
254 "r28_gp", 28
255 }
256 ,
257 {
258 "r29_sp", 29
259 }
260 ,
261 {
262 "r30_fp", 30
263 }
264 ,
265 {
266 "r31_ra", 31
267 }
268 ,
269 {
270 "HI", HI_REGNUM
271 }
272 ,
273 {
274 "LO", LO_REGNUM
275 }
276 ,
277 {
278 "PC", PC_REGNUM
279 }
280 ,
281 {
282 "BadV", BADVADDR_REGNUM
283 }
284 ,
285 {
286 NULL, 0
287 }
288 };
289
290
291 /* The monitor displays the cache register along with the status register,
292 as if they were a single register. So when we want to fetch the
293 status register, parse but otherwise ignore the fields of the
294 cache register that the monitor displays. Register fields that should
295 be ignored have a length of zero in the tables below. */
296
297 static struct bit_field status_fields[] =
298 {
299 /* Status register portion */
300 {"SR[<CU=", " ", "cu", 4, 28},
301 {"RE=", " ", "re", 1, 25},
302 {"BEV=", " ", "bev", 1, 22},
303 {"TS=", " ", "ts", 1, 21},
304 {"Nmi=", " ", "nmi", 1, 20},
305 {"INT=", " ", "int", 6, 10},
306 {"SW=", ">]", "sw", 2, 8},
307 {"[<KUO=", " ", "kuo", 1, 5},
308 {"IEO=", " ", "ieo", 1, 4},
309 {"KUP=", " ", "kup", 1, 3},
310 {"IEP=", " ", "iep", 1, 2},
311 {"KUC=", " ", "kuc", 1, 1},
312 {"IEC=", ">]", "iec", 1, 0},
313
314 /* Cache register portion (dummy for parsing only) */
315 {"CR[<IalO=", " ", "ialo", 0, 13},
316 {"DalO=", " ", "dalo", 0, 12},
317 {"IalP=", " ", "ialp", 0, 11},
318 {"DalP=", " ", "dalp", 0, 10},
319 {"IalC=", " ", "ialc", 0, 9},
320 {"DalC=", ">] ", "dalc", 0, 8},
321
322 {NULL, NULL, 0, 0} /* end of table marker */
323 };
324
325
326 #if 0 /* FIXME: Enable when we add support for modifying cache register. */
327 static struct bit_field cache_fields[] =
328 {
329 /* Status register portion (dummy for parsing only) */
330 {"SR[<CU=", " ", "cu", 0, 28},
331 {"RE=", " ", "re", 0, 25},
332 {"BEV=", " ", "bev", 0, 22},
333 {"TS=", " ", "ts", 0, 21},
334 {"Nmi=", " ", "nmi", 0, 20},
335 {"INT=", " ", "int", 0, 10},
336 {"SW=", ">]", "sw", 0, 8},
337 {"[<KUO=", " ", "kuo", 0, 5},
338 {"IEO=", " ", "ieo", 0, 4},
339 {"KUP=", " ", "kup", 0, 3},
340 {"IEP=", " ", "iep", 0, 2},
341 {"KUC=", " ", "kuc", 0, 1},
342 {"IEC=", ">]", "iec", 0, 0},
343
344 /* Cache register portion */
345 {"CR[<IalO=", " ", "ialo", 1, 13},
346 {"DalO=", " ", "dalo", 1, 12},
347 {"IalP=", " ", "ialp", 1, 11},
348 {"DalP=", " ", "dalp", 1, 10},
349 {"IalC=", " ", "ialc", 1, 9},
350 {"DalC=", ">] ", "dalc", 1, 8},
351
352 {NULL, NULL, NULL, 0, 0} /* end of table marker */
353 };
354 #endif
355
356
357 static struct bit_field cause_fields[] =
358 {
359 {"<BD=", " ", "bd", 1, 31},
360 {"CE=", " ", "ce", 2, 28},
361 {"IP=", " ", "ip", 6, 10},
362 {"SW=", " ", "sw", 2, 8},
363 {"EC=", ">]", "ec", 5, 2},
364
365 {NULL, NULL, NULL, 0, 0} /* end of table marker */
366 };
367
368
369 /* The monitor prints register values in the form
370
371 regname = xxxx xxxx
372
373 We look up the register name in a table, and remove the embedded space in
374 the hex value before passing it to monitor_supply_register. */
375
376 static void
377 r3900_supply_register (char *regname, int regnamelen, char *val, int vallen)
378 {
379 int regno = -1;
380 int i;
381 char valbuf[10];
382 char *p;
383
384 /* Perform some sanity checks on the register name and value. */
385 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
386 return;
387
388 /* Look up the register name. */
389 for (i = 0; reg_table[i].name != NULL; i++)
390 {
391 int rlen = strlen (reg_table[i].name);
392 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
393 {
394 regno = reg_table[i].regno;
395 break;
396 }
397 }
398 if (regno == -1)
399 return;
400
401 /* Copy the hex value to a buffer and eliminate the embedded space. */
402 for (i = 0, p = valbuf; i < vallen; i++)
403 if (val[i] != ' ')
404 *p++ = val[i];
405 *p = '\0';
406
407 monitor_supply_register (regno, valbuf);
408 }
409
410
411 /* Fetch the BadVaddr register. Unlike the other registers, this
412 one can't be modified, and the monitor won't even prompt to let
413 you modify it. */
414
415 static void
416 fetch_bad_vaddr (void)
417 {
418 char buf[20];
419
420 monitor_printf ("xB\r");
421 monitor_expect ("BadV=", NULL, 0);
422 monitor_expect_prompt (buf, sizeof (buf));
423 monitor_supply_register (BADVADDR_REGNUM, buf);
424 }
425
426
427 /* Read a series of bit fields from the monitor, and return their
428 combined binary value. */
429
430 static unsigned long
431 fetch_fields (struct bit_field *bf)
432 {
433 char buf[20];
434 unsigned long val = 0;
435 unsigned long bits;
436
437 for (; bf->prefix != NULL; bf++)
438 {
439 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
440 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
441 if (bf->length != 0)
442 {
443 bits = strtoul (buf, NULL, 16); /* get field value */
444 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
445 val |= bits << bf->start; /* insert into register */
446 }
447
448 }
449
450 return val;
451 }
452
453
454 static void
455 fetch_bitmapped_register (int regno, struct bit_field *bf)
456 {
457 unsigned long val;
458 unsigned char regbuf[MAX_REGISTER_SIZE];
459 char *regname = NULL;
460
461 if (regno >= sizeof (r3900_regnames) / sizeof (r3900_regnames[0]))
462 internal_error (__FILE__, __LINE__,
463 "fetch_bitmapped_register: regno out of bounds");
464 else
465 regname = r3900_regnames[regno];
466
467 monitor_printf ("x%s\r", regname);
468 val = fetch_fields (bf);
469 monitor_printf (".\r");
470 monitor_expect_prompt (NULL, 0);
471
472 /* supply register stores in target byte order, so swap here */
473
474 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
475 supply_register (regno, regbuf);
476
477 }
478
479
480 /* Fetch all registers (if regno is -1), or one register from the
481 monitor. For most registers, we can use the generic monitor_
482 monitor_fetch_registers function. But others are displayed in
483 a very unusual fashion by the monitor, and must be handled specially. */
484
485 static void
486 r3900_fetch_registers (int regno)
487 {
488 switch (regno)
489 {
490 case BADVADDR_REGNUM:
491 fetch_bad_vaddr ();
492 return;
493 case PS_REGNUM:
494 fetch_bitmapped_register (PS_REGNUM, status_fields);
495 return;
496 case CAUSE_REGNUM:
497 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
498 return;
499 default:
500 orig_monitor_fetch_registers (regno);
501 }
502 }
503
504
505 /* Write the new value of the bitmapped register to the monitor. */
506
507 static void
508 store_bitmapped_register (int regno, struct bit_field *bf)
509 {
510 unsigned long oldval, newval;
511 char *regname = NULL;
512
513 if (regno >= sizeof (r3900_regnames) / sizeof (r3900_regnames[0]))
514 internal_error (__FILE__, __LINE__,
515 "fetch_bitmapped_register: regno out of bounds");
516 else
517 regname = r3900_regnames[regno];
518
519 /* Fetch the current value of the register. */
520 monitor_printf ("x%s\r", regname);
521 oldval = fetch_fields (bf);
522 newval = read_register (regno);
523
524 /* To save time, write just the fields that have changed. */
525 for (; bf->prefix != NULL; bf++)
526 {
527 if (bf->length != 0)
528 {
529 unsigned long oldbits, newbits, mask;
530
531 mask = (1 << bf->length) - 1;
532 oldbits = (oldval >> bf->start) & mask;
533 newbits = (newval >> bf->start) & mask;
534 if (oldbits != newbits)
535 monitor_printf ("%s %lx ", bf->user_name, newbits);
536 }
537 }
538
539 monitor_printf (".\r");
540 monitor_expect_prompt (NULL, 0);
541 }
542
543
544 static void
545 r3900_store_registers (int regno)
546 {
547 switch (regno)
548 {
549 case PS_REGNUM:
550 store_bitmapped_register (PS_REGNUM, status_fields);
551 return;
552 case CAUSE_REGNUM:
553 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
554 return;
555 default:
556 orig_monitor_store_registers (regno);
557 }
558 }
559
560
561 /* Write a 4-byte integer to the buffer in big-endian order. */
562
563 static void
564 write_long (char *buf, long n)
565 {
566 buf[0] = (n >> 24) & 0xff;
567 buf[1] = (n >> 16) & 0xff;
568 buf[2] = (n >> 8) & 0xff;
569 buf[3] = n & 0xff;
570 }
571
572
573 /* Write a 4-byte integer to the buffer in little-endian order. */
574
575 static void
576 write_long_le (char *buf, long n)
577 {
578 buf[0] = n & 0xff;
579 buf[1] = (n >> 8) & 0xff;
580 buf[2] = (n >> 16) & 0xff;
581 buf[3] = (n >> 24) & 0xff;
582 }
583
584
585 /* Read a character from the monitor. If remote debugging is on,
586 print the received character. If HEX is non-zero, print the
587 character in hexadecimal; otherwise, print it in ASCII. */
588
589 static int
590 debug_readchar (int hex)
591 {
592 char buf[10];
593 int c = monitor_readchar ();
594
595 if (remote_debug > 0)
596 {
597 if (hex)
598 sprintf (buf, "[%02x]", c & 0xff);
599 else if (c == '\0')
600 strcpy (buf, "\\0");
601 else
602 {
603 buf[0] = c;
604 buf[1] = '\0';
605 }
606 puts_debug ("Read -->", buf, "<--");
607 }
608 return c;
609 }
610
611
612 /* Send a buffer of characters to the monitor. If remote debugging is on,
613 print the sent buffer in hex. */
614
615 static void
616 debug_write (unsigned char *buf, int buflen)
617 {
618 char s[10];
619
620 monitor_write (buf, buflen);
621
622 if (remote_debug > 0)
623 {
624 while (buflen-- > 0)
625 {
626 sprintf (s, "[%02x]", *buf & 0xff);
627 puts_debug ("Sent -->", s, "<--");
628 buf++;
629 }
630 }
631 }
632
633
634 /* Ignore a packet sent to us by the monitor. It send packets
635 when its console is in "communications interface" mode. A packet
636 is of this form:
637
638 start of packet flag (one byte: 0xdc)
639 packet type (one byte)
640 length (low byte)
641 length (high byte)
642 data (length bytes)
643
644 The last two bytes of the data field are a checksum, but we don't
645 bother to verify it.
646 */
647
648 static void
649 ignore_packet (void)
650 {
651 int c;
652 int len;
653
654 /* Ignore lots of trash (messages about section addresses, for example)
655 until we see the start of a packet. */
656 for (len = 0; len < 256; len++)
657 {
658 c = debug_readchar (0);
659 if (c == PESC)
660 break;
661 }
662 if (len == 8)
663 error ("Packet header byte not found; %02x seen instead.", c);
664
665 /* Read the packet type and length. */
666 c = debug_readchar (1); /* type */
667
668 c = debug_readchar (1); /* low byte of length */
669 len = c & 0xff;
670
671 c = debug_readchar (1); /* high byte of length */
672 len += (c & 0xff) << 8;
673
674 /* Ignore the rest of the packet. */
675 while (len-- > 0)
676 c = debug_readchar (1);
677 }
678
679
680 /* Encapsulate some data into a packet and send it to the monitor.
681
682 The 'p' packet is a special case. This is a packet we send
683 in response to a read ('r') packet from the monitor. This function
684 appends a one-byte sequence number to the data field of such a packet.
685 */
686
687 static void
688 send_packet (char type, unsigned char *buf, int buflen, int seq)
689 {
690 unsigned char hdr[4];
691 int len = buflen;
692 int sum, i;
693
694 /* If this is a 'p' packet, add one byte for a sequence number. */
695 if (type == 'p')
696 len++;
697
698 /* If the buffer has a non-zero length, add two bytes for a checksum. */
699 if (len > 0)
700 len += 2;
701
702 /* Write the packet header. */
703 hdr[0] = PESC;
704 hdr[1] = type;
705 hdr[2] = len & 0xff;
706 hdr[3] = (len >> 8) & 0xff;
707 debug_write (hdr, sizeof (hdr));
708
709 if (len)
710 {
711 /* Write the packet data. */
712 debug_write (buf, buflen);
713
714 /* Write the sequence number if this is a 'p' packet. */
715 if (type == 'p')
716 {
717 hdr[0] = seq;
718 debug_write (hdr, 1);
719 }
720
721 /* Write the checksum. */
722 sum = 0;
723 for (i = 0; i < buflen; i++)
724 {
725 int tmp = (buf[i] & 0xff);
726 if (i & 1)
727 sum += tmp;
728 else
729 sum += tmp << 8;
730 }
731 if (type == 'p')
732 {
733 if (buflen & 1)
734 sum += (seq & 0xff);
735 else
736 sum += (seq & 0xff) << 8;
737 }
738 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
739 sum += (sum >> 16) & 1;
740 sum = ~sum;
741
742 hdr[0] = (sum >> 8) & 0xff;
743 hdr[1] = sum & 0xff;
744 debug_write (hdr, 2);
745 }
746 }
747
748
749 /* Respond to an expected read request from the monitor by sending
750 data in chunks. Handle all acknowledgements and handshaking packets.
751
752 The monitor expects a response consisting of a one or more 'p' packets,
753 each followed by a portion of the data requested. The 'p' packet
754 contains only a four-byte integer, the value of which is the number
755 of bytes of data we are about to send. Following the 'p' packet,
756 the monitor expects the data bytes themselves in raw, unpacketized,
757 form, without even a checksum.
758 */
759
760 static void
761 process_read_request (unsigned char *buf, int buflen)
762 {
763 unsigned char len[4];
764 int i, chunk;
765 unsigned char seq;
766
767 /* Discard the read request. FIXME: we have to hope it's for
768 the exact number of bytes we want to send; should check for this. */
769 ignore_packet ();
770
771 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
772 {
773 /* Don't send more than MAXPSIZE bytes at a time. */
774 chunk = buflen - i;
775 if (chunk > MAXPSIZE)
776 chunk = MAXPSIZE;
777
778 /* Write a packet containing the number of bytes we are sending. */
779 write_long_le (len, chunk);
780 send_packet ('p', len, sizeof (len), seq);
781
782 /* Write the data in raw form following the packet. */
783 debug_write (&buf[i], chunk);
784
785 /* Discard the ACK packet. */
786 ignore_packet ();
787 }
788
789 /* Send an "end of data" packet. */
790 send_packet ('e', "", 0, 0);
791 }
792
793
794 /* Count loadable sections (helper function for r3900_load). */
795
796 static void
797 count_section (bfd *abfd, asection *s, unsigned int *section_count)
798 {
799 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
800 (*section_count)++;
801 }
802
803
804 /* Load a single BFD section (helper function for r3900_load).
805
806 WARNING: this code is filled with assumptions about how
807 the Densan monitor loads programs. The monitor issues
808 packets containing read requests, but rather than respond
809 to them in an general way, we expect them to following
810 a certain pattern.
811
812 For example, we know that the monitor will start loading by
813 issuing an 8-byte read request for the binary file header.
814 We know this is coming and ignore the actual contents
815 of the read request packet.
816 */
817
818 static void
819 load_section (bfd *abfd, asection *s, unsigned int *data_count)
820 {
821 if (s->flags & SEC_LOAD)
822 {
823 bfd_size_type section_size = bfd_section_size (abfd, s);
824 bfd_vma section_base = bfd_section_lma (abfd, s);
825 unsigned char *buffer;
826 unsigned char header[8];
827
828 /* Don't output zero-length sections. */
829 if (section_size == 0)
830 return;
831 if (data_count)
832 *data_count += section_size;
833
834 /* Print some fluff about the section being loaded. */
835 printf_filtered ("Loading section %s, size 0x%lx lma ",
836 bfd_section_name (abfd, s), (long) section_size);
837 print_address_numeric (section_base, 1, gdb_stdout);
838 printf_filtered ("\n");
839 gdb_flush (gdb_stdout);
840
841 /* Write the section header (location and size). */
842 write_long (&header[0], (long) section_base);
843 write_long (&header[4], (long) section_size);
844 process_read_request (header, sizeof (header));
845
846 /* Read the section contents into a buffer, write it out,
847 then free the buffer. */
848 buffer = (unsigned char *) xmalloc (section_size);
849 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
850 process_read_request (buffer, section_size);
851 xfree (buffer);
852 }
853 }
854
855
856 /* When the ethernet is used as the console port on the Densan board,
857 we can use the "Rm" command to do a fast binary load. The format
858 of the download data is:
859
860 number of sections (4 bytes)
861 starting address (4 bytes)
862 repeat for each section:
863 location address (4 bytes)
864 section size (4 bytes)
865 binary data
866
867 The 4-byte fields are all in big-endian order.
868
869 Using this command is tricky because we have to put the monitor
870 into a special funky "communications interface" mode, in which
871 it sends and receives packets of data along with the normal prompt.
872 */
873
874 static void
875 r3900_load (char *filename, int from_tty)
876 {
877 bfd *abfd;
878 unsigned int data_count = 0;
879 time_t start_time, end_time; /* for timing of download */
880 int section_count = 0;
881 unsigned char buffer[8];
882
883 /* If we are not using the ethernet, use the normal monitor load,
884 which sends S-records over the serial link. */
885 if (!ethernet)
886 {
887 orig_monitor_load (filename, from_tty);
888 return;
889 }
890
891 /* Open the file. */
892 if (filename == NULL || filename[0] == 0)
893 filename = get_exec_file (1);
894 abfd = bfd_openr (filename, 0);
895 if (!abfd)
896 error ("Unable to open file %s\n", filename);
897 if (bfd_check_format (abfd, bfd_object) == 0)
898 error ("File is not an object file\n");
899
900 /* Output the "vconsi" command to get the monitor in the communication
901 state where it will accept a load command. This will cause
902 the monitor to emit a packet before each prompt, so ignore the packet. */
903 monitor_printf ("vconsi\r");
904 ignore_packet ();
905 monitor_expect_prompt (NULL, 0);
906
907 /* Output the "Rm" (load) command and respond to the subsequent "open"
908 packet by sending an ACK packet. */
909 monitor_printf ("Rm\r");
910 ignore_packet ();
911 send_packet ('a', "", 0, 0);
912
913 /* Output the fast load header (number of sections and starting address). */
914 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
915 &section_count);
916 write_long (&buffer[0], (long) section_count);
917 if (exec_bfd)
918 write_long (&buffer[4], (long) bfd_get_start_address (exec_bfd));
919 else
920 write_long (&buffer[4], 0);
921 process_read_request (buffer, sizeof (buffer));
922
923 /* Output the section data. */
924 start_time = time (NULL);
925 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
926 end_time = time (NULL);
927
928 /* Acknowledge the close packet and put the monitor back into
929 "normal" mode so it won't send packets any more. */
930 ignore_packet ();
931 send_packet ('a', "", 0, 0);
932 monitor_expect_prompt (NULL, 0);
933 monitor_printf ("vconsx\r");
934 monitor_expect_prompt (NULL, 0);
935
936 /* Print start address and download performance information. */
937 printf_filtered ("Start address 0x%lx\n", (long) bfd_get_start_address (abfd));
938 report_transfer_performance (data_count, start_time, end_time);
939
940 /* Finally, make the PC point at the start address */
941 if (exec_bfd)
942 write_pc (bfd_get_start_address (exec_bfd));
943
944 inferior_ptid = null_ptid; /* No process now */
945
946 /* This is necessary because many things were based on the PC at the
947 time that we attached to the monitor, which is no longer valid
948 now that we have loaded new code (and just changed the PC).
949 Another way to do this might be to call normal_stop, except that
950 the stack may not be valid, and things would get horribly
951 confused... */
952 clear_symtab_users ();
953 }
954
955
956 /* Commands to send to the monitor when first connecting:
957 * The bare carriage return forces a prompt from the monitor
958 (monitor doesn't prompt immediately after a reset).
959 * The "vconsx" switches the monitor back to interactive mode
960 in case an aborted download had left it in packet mode.
961 * The "Xtr" command causes subsequent "t" (trace) commands to display
962 the general registers only.
963 * The "Xxr" command does the same thing for the "x" (examine
964 registers) command.
965 * The "bx" command clears all breakpoints.
966 */
967
968 static char *r3900_inits[] =
969 {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
970 static char *dummy_inits[] =
971 {NULL};
972
973 static struct target_ops r3900_ops;
974 static struct monitor_ops r3900_cmds;
975
976 static void
977 r3900_open (char *args, int from_tty)
978 {
979 char buf[64];
980 int i;
981
982 monitor_open (args, &r3900_cmds, from_tty);
983
984 /* We have to handle sending the init strings ourselves, because
985 the first two strings we send (carriage returns) may not be echoed
986 by the monitor, but the rest will be. */
987 monitor_printf_noecho ("\r\r");
988 for (i = 0; r3900_inits[i] != NULL; i++)
989 {
990 monitor_printf (r3900_inits[i]);
991 monitor_expect_prompt (NULL, 0);
992 }
993
994 /* Attempt to determine whether the console device is ethernet or serial.
995 This will tell us which kind of load to use (S-records over a serial
996 link, or the Densan fast binary multi-section format over the net). */
997
998 ethernet = 0;
999 monitor_printf ("v\r");
1000 if (monitor_expect ("console device :", NULL, 0) != -1)
1001 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
1002 if (strstr (buf, "ethernet") != NULL)
1003 ethernet = 1;
1004 monitor_expect_prompt (NULL, 0);
1005 }
1006
1007 void
1008 _initialize_r3900_rom (void)
1009 {
1010 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
1011 MO_ADDR_BITS_REMOVE |
1012 MO_CLR_BREAK_USES_ADDR |
1013 MO_GETMEM_READ_SINGLE |
1014 MO_PRINT_PROGRAM_OUTPUT;
1015
1016 r3900_cmds.init = dummy_inits;
1017 r3900_cmds.cont = "g\r";
1018 r3900_cmds.step = "t\r";
1019 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
1020 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
1021 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
1022
1023 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
1024 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
1025 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
1026
1027 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
1028 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
1029 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
1030 r3900_cmds.getmem.resp_delim = " : ";
1031 r3900_cmds.getmem.term = " ";
1032 r3900_cmds.getmem.term_cmd = ".\r";
1033
1034 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
1035
1036 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
1037 r3900_cmds.getreg.resp_delim = "=";
1038 r3900_cmds.getreg.term = " ";
1039 r3900_cmds.getreg.term_cmd = ".\r";
1040
1041 r3900_cmds.dump_registers = "x\r";
1042 r3900_cmds.register_pattern =
1043 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
1044 r3900_cmds.supply_register = r3900_supply_register;
1045 /* S-record download, via "keyboard port". */
1046 r3900_cmds.load = "r0\r";
1047 r3900_cmds.prompt = "#";
1048 r3900_cmds.line_term = "\r";
1049 r3900_cmds.target = &r3900_ops;
1050 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
1051 r3900_cmds.regnames = r3900_regnames;
1052 r3900_cmds.magic = MONITOR_OPS_MAGIC;
1053
1054 init_monitor_ops (&r3900_ops);
1055
1056 r3900_ops.to_shortname = "r3900";
1057 r3900_ops.to_longname = "R3900 monitor";
1058 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
1059 Specify the serial device it is connected to (e.g. /dev/ttya).";
1060 r3900_ops.to_open = r3900_open;
1061
1062 /* Override the functions to fetch and store registers. But save the
1063 addresses of the default functions, because we will use those functions
1064 for "normal" registers. */
1065
1066 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
1067 orig_monitor_store_registers = r3900_ops.to_store_registers;
1068 r3900_ops.to_fetch_registers = r3900_fetch_registers;
1069 r3900_ops.to_store_registers = r3900_store_registers;
1070
1071 /* Override the load function, but save the address of the default
1072 function to use when loading S-records over a serial link. */
1073 orig_monitor_load = r3900_ops.to_load;
1074 r3900_ops.to_load = r3900_load;
1075
1076 add_target (&r3900_ops);
1077 }
This page took 0.053167 seconds and 4 git commands to generate.