5c6755a3bb0f29d6774baa62d0ebf2e602d09776
[deliverable/binutils-gdb.git] / gdb / dve3900-rom.c
1 /* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
3 Copyright 1997 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "monitor.h"
26 #include "serial.h"
27 #include "inferior.h"
28 #include "command.h"
29 #include "gdb_string.h"
30 #include <time.h>
31
32 /* Type of function passed to bfd_map_over_sections. */
33
34 typedef void (*section_map_func) (bfd * abfd, asection * sect, PTR obj);
35
36 /* Packet escape character used by Densan monitor. */
37
38 #define PESC 0xdc
39
40 /* Maximum packet size. This is actually smaller than necessary
41 just to be safe. */
42
43 #define MAXPSIZE 1024
44
45 /* External functions. */
46
47 extern void report_transfer_performance (unsigned long, time_t, time_t);
48
49 /* Certain registers are "bitmapped", in that the monitor can only display
50 them or let the user modify them as a series of named bitfields.
51 This structure describes a field in a bitmapped register. */
52
53 struct bit_field
54 {
55 char *prefix; /* string appearing before the value */
56 char *suffix; /* string appearing after the value */
57 char *user_name; /* name used by human when entering field value */
58 int length; /* number of bits in the field */
59 int start; /* starting (least significant) bit number of field */
60 };
61
62 /* Local functions for register manipulation. */
63
64 static void r3900_supply_register (char *regname, int regnamelen,
65 char *val, int vallen);
66 static void fetch_bad_vaddr (void);
67 static unsigned long fetch_fields (struct bit_field *bf);
68 static void fetch_bitmapped_register (int regno, struct bit_field *bf);
69 static void r3900_fetch_registers (int regno);
70 static void store_bitmapped_register (int regno, struct bit_field *bf);
71 static void r3900_store_registers (int regno);
72
73 /* Local functions for fast binary loading. */
74
75 static void write_long (char *buf, long n);
76 static void write_long_le (char *buf, long n);
77 static int debug_readchar (int hex);
78 static void debug_write (unsigned char *buf, int buflen);
79 static void ignore_packet (void);
80 static void send_packet (char type, unsigned char *buf, int buflen, int seq);
81 static void process_read_request (unsigned char *buf, int buflen);
82 static void count_section (bfd * abfd, asection * s,
83 unsigned int *section_count);
84 static void load_section (bfd * abfd, asection * s, unsigned int *data_count);
85 static void r3900_load (char *filename, int from_tty);
86
87 /* Miscellaneous local functions. */
88
89 static void r3900_open (char *args, int from_tty);
90
91
92 /* Pointers to static functions in monitor.c for fetching and storing
93 registers. We can't use these function in certain cases where the Densan
94 monitor acts perversely: for registers that it displays in bit-map
95 format, and those that can't be modified at all. In those cases
96 we have to use our own functions to fetch and store their values. */
97
98 static void (*orig_monitor_fetch_registers) (int regno);
99 static void (*orig_monitor_store_registers) (int regno);
100
101 /* Pointer to static function in monitor. for loading programs.
102 We use this function for loading S-records via the serial link. */
103
104 static void (*orig_monitor_load) (char *file, int from_tty);
105
106 /* This flag is set if a fast ethernet download should be used. */
107
108 static int ethernet = 0;
109
110 /* This array of registers needs to match the indexes used by GDB. The
111 whole reason this exists is because the various ROM monitors use
112 different names than GDB does, and don't support all the registers
113 either. */
114
115 static char *r3900_regnames[NUM_REGS] =
116 {
117 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
118 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
119 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
120 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
121
122 "S", /* PS_REGNUM */
123 "l", /* LO_REGNUM */
124 "h", /* HI_REGNUM */
125 "B", /* BADVADDR_REGNUM */
126 "Pcause", /* CAUSE_REGNUM */
127 "p" /* PC_REGNUM */
128 };
129
130
131 /* Table of register names produced by monitor's register dump command. */
132
133 static struct reg_entry
134 {
135 char *name;
136 int regno;
137 }
138 reg_table[] =
139 {
140 {
141 "r0_zero", 0
142 }
143 ,
144 {
145 "r1_at", 1
146 }
147 ,
148 {
149 "r2_v0", 2
150 }
151 ,
152 {
153 "r3_v1", 3
154 }
155 ,
156 {
157 "r4_a0", 4
158 }
159 ,
160 {
161 "r5_a1", 5
162 }
163 ,
164 {
165 "r6_a2", 6
166 }
167 ,
168 {
169 "r7_a3", 7
170 }
171 ,
172 {
173 "r8_t0", 8
174 }
175 ,
176 {
177 "r9_t1", 9
178 }
179 ,
180 {
181 "r10_t2", 10
182 }
183 ,
184 {
185 "r11_t3", 11
186 }
187 ,
188 {
189 "r12_t4", 12
190 }
191 ,
192 {
193 "r13_t5", 13
194 }
195 ,
196 {
197 "r14_t6", 14
198 }
199 ,
200 {
201 "r15_t7", 15
202 }
203 ,
204 {
205 "r16_s0", 16
206 }
207 ,
208 {
209 "r17_s1", 17
210 }
211 ,
212 {
213 "r18_s2", 18
214 }
215 ,
216 {
217 "r19_s3", 19
218 }
219 ,
220 {
221 "r20_s4", 20
222 }
223 ,
224 {
225 "r21_s5", 21
226 }
227 ,
228 {
229 "r22_s6", 22
230 }
231 ,
232 {
233 "r23_s7", 23
234 }
235 ,
236 {
237 "r24_t8", 24
238 }
239 ,
240 {
241 "r25_t9", 25
242 }
243 ,
244 {
245 "r26_k0", 26
246 }
247 ,
248 {
249 "r27_k1", 27
250 }
251 ,
252 {
253 "r28_gp", 28
254 }
255 ,
256 {
257 "r29_sp", 29
258 }
259 ,
260 {
261 "r30_fp", 30
262 }
263 ,
264 {
265 "r31_ra", 31
266 }
267 ,
268 {
269 "HI", HI_REGNUM
270 }
271 ,
272 {
273 "LO", LO_REGNUM
274 }
275 ,
276 {
277 "PC", PC_REGNUM
278 }
279 ,
280 {
281 "BadV", BADVADDR_REGNUM
282 }
283 ,
284 {
285 NULL, 0
286 }
287 };
288
289
290 /* The monitor displays the cache register along with the status register,
291 as if they were a single register. So when we want to fetch the
292 status register, parse but otherwise ignore the fields of the
293 cache register that the monitor displays. Register fields that should
294 be ignored have a length of zero in the tables below. */
295
296 static struct bit_field status_fields[] =
297 {
298 /* Status register portion */
299 {"SR[<CU=", " ", "cu", 4, 28},
300 {"RE=", " ", "re", 1, 25},
301 {"BEV=", " ", "bev", 1, 22},
302 {"TS=", " ", "ts", 1, 21},
303 {"Nmi=", " ", "nmi", 1, 20},
304 {"INT=", " ", "int", 6, 10},
305 {"SW=", ">]", "sw", 2, 8},
306 {"[<KUO=", " ", "kuo", 1, 5},
307 {"IEO=", " ", "ieo", 1, 4},
308 {"KUP=", " ", "kup", 1, 3},
309 {"IEP=", " ", "iep", 1, 2},
310 {"KUC=", " ", "kuc", 1, 1},
311 {"IEC=", ">]", "iec", 1, 0},
312
313 /* Cache register portion (dummy for parsing only) */
314 {"CR[<IalO=", " ", "ialo", 0, 13},
315 {"DalO=", " ", "dalo", 0, 12},
316 {"IalP=", " ", "ialp", 0, 11},
317 {"DalP=", " ", "dalp", 0, 10},
318 {"IalC=", " ", "ialc", 0, 9},
319 {"DalC=", ">] ", "dalc", 0, 8},
320
321 {NULL, NULL, 0, 0} /* end of table marker */
322 };
323
324
325 #if 0 /* FIXME: Enable when we add support for modifying cache register. */
326 static struct bit_field cache_fields[] =
327 {
328 /* Status register portion (dummy for parsing only) */
329 {"SR[<CU=", " ", "cu", 0, 28},
330 {"RE=", " ", "re", 0, 25},
331 {"BEV=", " ", "bev", 0, 22},
332 {"TS=", " ", "ts", 0, 21},
333 {"Nmi=", " ", "nmi", 0, 20},
334 {"INT=", " ", "int", 0, 10},
335 {"SW=", ">]", "sw", 0, 8},
336 {"[<KUO=", " ", "kuo", 0, 5},
337 {"IEO=", " ", "ieo", 0, 4},
338 {"KUP=", " ", "kup", 0, 3},
339 {"IEP=", " ", "iep", 0, 2},
340 {"KUC=", " ", "kuc", 0, 1},
341 {"IEC=", ">]", "iec", 0, 0},
342
343 /* Cache register portion */
344 {"CR[<IalO=", " ", "ialo", 1, 13},
345 {"DalO=", " ", "dalo", 1, 12},
346 {"IalP=", " ", "ialp", 1, 11},
347 {"DalP=", " ", "dalp", 1, 10},
348 {"IalC=", " ", "ialc", 1, 9},
349 {"DalC=", ">] ", "dalc", 1, 8},
350
351 {NULL, NULL, NULL, 0, 0} /* end of table marker */
352 };
353 #endif
354
355
356 static struct bit_field cause_fields[] =
357 {
358 {"<BD=", " ", "bd", 1, 31},
359 {"CE=", " ", "ce", 2, 28},
360 {"IP=", " ", "ip", 6, 10},
361 {"SW=", " ", "sw", 2, 8},
362 {"EC=", ">]", "ec", 5, 2},
363
364 {NULL, NULL, NULL, 0, 0} /* end of table marker */
365 };
366
367
368 /* The monitor prints register values in the form
369
370 regname = xxxx xxxx
371
372 We look up the register name in a table, and remove the embedded space in
373 the hex value before passing it to monitor_supply_register. */
374
375 static void
376 r3900_supply_register (char *regname, int regnamelen, char *val, int vallen)
377 {
378 int regno = -1;
379 int i;
380 char valbuf[10];
381 char *p;
382
383 /* Perform some sanity checks on the register name and value. */
384 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
385 return;
386
387 /* Look up the register name. */
388 for (i = 0; reg_table[i].name != NULL; i++)
389 {
390 int rlen = strlen (reg_table[i].name);
391 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
392 {
393 regno = reg_table[i].regno;
394 break;
395 }
396 }
397 if (regno == -1)
398 return;
399
400 /* Copy the hex value to a buffer and eliminate the embedded space. */
401 for (i = 0, p = valbuf; i < vallen; i++)
402 if (val[i] != ' ')
403 *p++ = val[i];
404 *p = '\0';
405
406 monitor_supply_register (regno, valbuf);
407 }
408
409
410 /* Fetch the BadVaddr register. Unlike the other registers, this
411 one can't be modified, and the monitor won't even prompt to let
412 you modify it. */
413
414 static void
415 fetch_bad_vaddr (void)
416 {
417 char buf[20];
418
419 monitor_printf ("xB\r");
420 monitor_expect ("BadV=", NULL, 0);
421 monitor_expect_prompt (buf, sizeof (buf));
422 monitor_supply_register (BADVADDR_REGNUM, buf);
423 }
424
425
426 /* Read a series of bit fields from the monitor, and return their
427 combined binary value. */
428
429 static unsigned long
430 fetch_fields (struct bit_field *bf)
431 {
432 char buf[20];
433 unsigned long val = 0;
434 unsigned long bits;
435
436 for (; bf->prefix != NULL; bf++)
437 {
438 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
439 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
440 if (bf->length != 0)
441 {
442 bits = strtoul (buf, NULL, 16); /* get field value */
443 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
444 val |= bits << bf->start; /* insert into register */
445 }
446
447 }
448
449 return val;
450 }
451
452
453 static void
454 fetch_bitmapped_register (int regno, struct bit_field *bf)
455 {
456 unsigned long val;
457 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
458
459 monitor_printf ("x%s\r", r3900_regnames[regno]);
460 val = fetch_fields (bf);
461 monitor_printf (".\r");
462 monitor_expect_prompt (NULL, 0);
463
464 /* supply register stores in target byte order, so swap here */
465
466 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
467 supply_register (regno, regbuf);
468
469 }
470
471
472 /* Fetch all registers (if regno is -1), or one register from the
473 monitor. For most registers, we can use the generic monitor_
474 monitor_fetch_registers function. But others are displayed in
475 a very unusual fashion by the monitor, and must be handled specially. */
476
477 static void
478 r3900_fetch_registers (int regno)
479 {
480 switch (regno)
481 {
482 case BADVADDR_REGNUM:
483 fetch_bad_vaddr ();
484 return;
485 case PS_REGNUM:
486 fetch_bitmapped_register (PS_REGNUM, status_fields);
487 return;
488 case CAUSE_REGNUM:
489 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
490 return;
491 default:
492 orig_monitor_fetch_registers (regno);
493 }
494 }
495
496
497 /* Write the new value of the bitmapped register to the monitor. */
498
499 static void
500 store_bitmapped_register (int regno, struct bit_field *bf)
501 {
502 unsigned long oldval, newval;
503
504 /* Fetch the current value of the register. */
505 monitor_printf ("x%s\r", r3900_regnames[regno]);
506 oldval = fetch_fields (bf);
507 newval = read_register (regno);
508
509 /* To save time, write just the fields that have changed. */
510 for (; bf->prefix != NULL; bf++)
511 {
512 if (bf->length != 0)
513 {
514 unsigned long oldbits, newbits, mask;
515
516 mask = (1 << bf->length) - 1;
517 oldbits = (oldval >> bf->start) & mask;
518 newbits = (newval >> bf->start) & mask;
519 if (oldbits != newbits)
520 monitor_printf ("%s %lx ", bf->user_name, newbits);
521 }
522 }
523
524 monitor_printf (".\r");
525 monitor_expect_prompt (NULL, 0);
526 }
527
528
529 static void
530 r3900_store_registers (int regno)
531 {
532 switch (regno)
533 {
534 case PS_REGNUM:
535 store_bitmapped_register (PS_REGNUM, status_fields);
536 return;
537 case CAUSE_REGNUM:
538 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
539 return;
540 default:
541 orig_monitor_store_registers (regno);
542 }
543 }
544
545
546 /* Write a 4-byte integer to the buffer in big-endian order. */
547
548 static void
549 write_long (char *buf, long n)
550 {
551 buf[0] = (n >> 24) & 0xff;
552 buf[1] = (n >> 16) & 0xff;
553 buf[2] = (n >> 8) & 0xff;
554 buf[3] = n & 0xff;
555 }
556
557
558 /* Write a 4-byte integer to the buffer in little-endian order. */
559
560 static void
561 write_long_le (char *buf, long n)
562 {
563 buf[0] = n & 0xff;
564 buf[1] = (n >> 8) & 0xff;
565 buf[2] = (n >> 16) & 0xff;
566 buf[3] = (n >> 24) & 0xff;
567 }
568
569
570 /* Read a character from the monitor. If remote debugging is on,
571 print the received character. If HEX is non-zero, print the
572 character in hexadecimal; otherwise, print it in ASCII. */
573
574 static int
575 debug_readchar (int hex)
576 {
577 char buf[10];
578 int c = monitor_readchar ();
579
580 if (remote_debug > 0)
581 {
582 if (hex)
583 sprintf (buf, "[%02x]", c & 0xff);
584 else if (c == '\0')
585 strcpy (buf, "\\0");
586 else
587 {
588 buf[0] = c;
589 buf[1] = '\0';
590 }
591 puts_debug ("Read -->", buf, "<--");
592 }
593 return c;
594 }
595
596
597 /* Send a buffer of characters to the monitor. If remote debugging is on,
598 print the sent buffer in hex. */
599
600 static void
601 debug_write (unsigned char *buf, int buflen)
602 {
603 char s[10];
604
605 monitor_write (buf, buflen);
606
607 if (remote_debug > 0)
608 {
609 while (buflen-- > 0)
610 {
611 sprintf (s, "[%02x]", *buf & 0xff);
612 puts_debug ("Sent -->", s, "<--");
613 buf++;
614 }
615 }
616 }
617
618
619 /* Ignore a packet sent to us by the monitor. It send packets
620 when its console is in "communications interface" mode. A packet
621 is of this form:
622
623 start of packet flag (one byte: 0xdc)
624 packet type (one byte)
625 length (low byte)
626 length (high byte)
627 data (length bytes)
628
629 The last two bytes of the data field are a checksum, but we don't
630 bother to verify it.
631 */
632
633 static void
634 ignore_packet (void)
635 {
636 int c;
637 int len;
638
639 /* Ignore lots of trash (messages about section addresses, for example)
640 until we see the start of a packet. */
641 for (len = 0; len < 256; len++)
642 {
643 c = debug_readchar (0);
644 if (c == PESC)
645 break;
646 }
647 if (len == 8)
648 error ("Packet header byte not found; %02x seen instead.", c);
649
650 /* Read the packet type and length. */
651 c = debug_readchar (1); /* type */
652
653 c = debug_readchar (1); /* low byte of length */
654 len = c & 0xff;
655
656 c = debug_readchar (1); /* high byte of length */
657 len += (c & 0xff) << 8;
658
659 /* Ignore the rest of the packet. */
660 while (len-- > 0)
661 c = debug_readchar (1);
662 }
663
664
665 /* Encapsulate some data into a packet and send it to the monitor.
666
667 The 'p' packet is a special case. This is a packet we send
668 in response to a read ('r') packet from the monitor. This function
669 appends a one-byte sequence number to the data field of such a packet.
670 */
671
672 static void
673 send_packet (char type, unsigned char *buf, int buflen, int seq)
674 {
675 unsigned char hdr[4];
676 int len = buflen;
677 int sum, i;
678
679 /* If this is a 'p' packet, add one byte for a sequence number. */
680 if (type == 'p')
681 len++;
682
683 /* If the buffer has a non-zero length, add two bytes for a checksum. */
684 if (len > 0)
685 len += 2;
686
687 /* Write the packet header. */
688 hdr[0] = PESC;
689 hdr[1] = type;
690 hdr[2] = len & 0xff;
691 hdr[3] = (len >> 8) & 0xff;
692 debug_write (hdr, sizeof (hdr));
693
694 if (len)
695 {
696 /* Write the packet data. */
697 debug_write (buf, buflen);
698
699 /* Write the sequence number if this is a 'p' packet. */
700 if (type == 'p')
701 {
702 hdr[0] = seq;
703 debug_write (hdr, 1);
704 }
705
706 /* Write the checksum. */
707 sum = 0;
708 for (i = 0; i < buflen; i++)
709 {
710 int tmp = (buf[i] & 0xff);
711 if (i & 1)
712 sum += tmp;
713 else
714 sum += tmp << 8;
715 }
716 if (type == 'p')
717 {
718 if (buflen & 1)
719 sum += (seq & 0xff);
720 else
721 sum += (seq & 0xff) << 8;
722 }
723 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
724 sum += (sum >> 16) & 1;
725 sum = ~sum;
726
727 hdr[0] = (sum >> 8) & 0xff;
728 hdr[1] = sum & 0xff;
729 debug_write (hdr, 2);
730 }
731 }
732
733
734 /* Respond to an expected read request from the monitor by sending
735 data in chunks. Handle all acknowledgements and handshaking packets.
736
737 The monitor expects a response consisting of a one or more 'p' packets,
738 each followed by a portion of the data requested. The 'p' packet
739 contains only a four-byte integer, the value of which is the number
740 of bytes of data we are about to send. Following the 'p' packet,
741 the monitor expects the data bytes themselves in raw, unpacketized,
742 form, without even a checksum.
743 */
744
745 static void
746 process_read_request (unsigned char *buf, int buflen)
747 {
748 unsigned char len[4];
749 int i, chunk;
750 unsigned char seq;
751
752 /* Discard the read request. FIXME: we have to hope it's for
753 the exact number of bytes we want to send; should check for this. */
754 ignore_packet ();
755
756 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
757 {
758 /* Don't send more than MAXPSIZE bytes at a time. */
759 chunk = buflen - i;
760 if (chunk > MAXPSIZE)
761 chunk = MAXPSIZE;
762
763 /* Write a packet containing the number of bytes we are sending. */
764 write_long_le (len, chunk);
765 send_packet ('p', len, sizeof (len), seq);
766
767 /* Write the data in raw form following the packet. */
768 debug_write (&buf[i], chunk);
769
770 /* Discard the ACK packet. */
771 ignore_packet ();
772 }
773
774 /* Send an "end of data" packet. */
775 send_packet ('e', "", 0, 0);
776 }
777
778
779 /* Count loadable sections (helper function for r3900_load). */
780
781 static void
782 count_section (bfd *abfd, asection *s, unsigned int *section_count)
783 {
784 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
785 (*section_count)++;
786 }
787
788
789 /* Load a single BFD section (helper function for r3900_load).
790
791 WARNING: this code is filled with assumptions about how
792 the Densan monitor loads programs. The monitor issues
793 packets containing read requests, but rather than respond
794 to them in an general way, we expect them to following
795 a certain pattern.
796
797 For example, we know that the monitor will start loading by
798 issuing an 8-byte read request for the binary file header.
799 We know this is coming and ignore the actual contents
800 of the read request packet.
801 */
802
803 static void
804 load_section (bfd *abfd, asection *s, unsigned int *data_count)
805 {
806 if (s->flags & SEC_LOAD)
807 {
808 bfd_size_type section_size = bfd_section_size (abfd, s);
809 bfd_vma section_base = bfd_section_lma (abfd, s);
810 unsigned char *buffer;
811 unsigned char header[8];
812
813 /* Don't output zero-length sections. */
814 if (section_size == 0)
815 return;
816 if (data_count)
817 *data_count += section_size;
818
819 /* Print some fluff about the section being loaded. */
820 printf_filtered ("Loading section %s, size 0x%lx lma ",
821 bfd_section_name (abfd, s), (long) section_size);
822 print_address_numeric (section_base, 1, gdb_stdout);
823 printf_filtered ("\n");
824 gdb_flush (gdb_stdout);
825
826 /* Write the section header (location and size). */
827 write_long (&header[0], (long) section_base);
828 write_long (&header[4], (long) section_size);
829 process_read_request (header, sizeof (header));
830
831 /* Read the section contents into a buffer, write it out,
832 then free the buffer. */
833 buffer = (unsigned char *) xmalloc (section_size);
834 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
835 process_read_request (buffer, section_size);
836 xfree (buffer);
837 }
838 }
839
840
841 /* When the ethernet is used as the console port on the Densan board,
842 we can use the "Rm" command to do a fast binary load. The format
843 of the download data is:
844
845 number of sections (4 bytes)
846 starting address (4 bytes)
847 repeat for each section:
848 location address (4 bytes)
849 section size (4 bytes)
850 binary data
851
852 The 4-byte fields are all in big-endian order.
853
854 Using this command is tricky because we have to put the monitor
855 into a special funky "communications interface" mode, in which
856 it sends and receives packets of data along with the normal prompt.
857 */
858
859 static void
860 r3900_load (char *filename, int from_tty)
861 {
862 bfd *abfd;
863 unsigned int data_count = 0;
864 time_t start_time, end_time; /* for timing of download */
865 int section_count = 0;
866 unsigned char buffer[8];
867
868 /* If we are not using the ethernet, use the normal monitor load,
869 which sends S-records over the serial link. */
870 if (!ethernet)
871 {
872 orig_monitor_load (filename, from_tty);
873 return;
874 }
875
876 /* Open the file. */
877 if (filename == NULL || filename[0] == 0)
878 filename = get_exec_file (1);
879 abfd = bfd_openr (filename, 0);
880 if (!abfd)
881 error ("Unable to open file %s\n", filename);
882 if (bfd_check_format (abfd, bfd_object) == 0)
883 error ("File is not an object file\n");
884
885 /* Output the "vconsi" command to get the monitor in the communication
886 state where it will accept a load command. This will cause
887 the monitor to emit a packet before each prompt, so ignore the packet. */
888 monitor_printf ("vconsi\r");
889 ignore_packet ();
890 monitor_expect_prompt (NULL, 0);
891
892 /* Output the "Rm" (load) command and respond to the subsequent "open"
893 packet by sending an ACK packet. */
894 monitor_printf ("Rm\r");
895 ignore_packet ();
896 send_packet ('a', "", 0, 0);
897
898 /* Output the fast load header (number of sections and starting address). */
899 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
900 &section_count);
901 write_long (&buffer[0], (long) section_count);
902 if (exec_bfd)
903 write_long (&buffer[4], (long) bfd_get_start_address (exec_bfd));
904 else
905 write_long (&buffer[4], 0);
906 process_read_request (buffer, sizeof (buffer));
907
908 /* Output the section data. */
909 start_time = time (NULL);
910 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
911 end_time = time (NULL);
912
913 /* Acknowledge the close packet and put the monitor back into
914 "normal" mode so it won't send packets any more. */
915 ignore_packet ();
916 send_packet ('a', "", 0, 0);
917 monitor_expect_prompt (NULL, 0);
918 monitor_printf ("vconsx\r");
919 monitor_expect_prompt (NULL, 0);
920
921 /* Print start address and download performance information. */
922 printf_filtered ("Start address 0x%lx\n", (long) bfd_get_start_address (abfd));
923 report_transfer_performance (data_count, start_time, end_time);
924
925 /* Finally, make the PC point at the start address */
926 if (exec_bfd)
927 write_pc (bfd_get_start_address (exec_bfd));
928
929 inferior_pid = 0; /* No process now */
930
931 /* This is necessary because many things were based on the PC at the
932 time that we attached to the monitor, which is no longer valid
933 now that we have loaded new code (and just changed the PC).
934 Another way to do this might be to call normal_stop, except that
935 the stack may not be valid, and things would get horribly
936 confused... */
937 clear_symtab_users ();
938 }
939
940
941 /* Commands to send to the monitor when first connecting:
942 * The bare carriage return forces a prompt from the monitor
943 (monitor doesn't prompt immediately after a reset).
944 * The "vconsx" switches the monitor back to interactive mode
945 in case an aborted download had left it in packet mode.
946 * The "Xtr" command causes subsequent "t" (trace) commands to display
947 the general registers only.
948 * The "Xxr" command does the same thing for the "x" (examine
949 registers) command.
950 * The "bx" command clears all breakpoints.
951 */
952
953 static char *r3900_inits[] =
954 {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
955 static char *dummy_inits[] =
956 {NULL};
957
958 static struct target_ops r3900_ops;
959 static struct monitor_ops r3900_cmds;
960
961 static void
962 r3900_open (char *args, int from_tty)
963 {
964 char buf[64];
965 int i;
966
967 monitor_open (args, &r3900_cmds, from_tty);
968
969 /* We have to handle sending the init strings ourselves, because
970 the first two strings we send (carriage returns) may not be echoed
971 by the monitor, but the rest will be. */
972 monitor_printf_noecho ("\r\r");
973 for (i = 0; r3900_inits[i] != NULL; i++)
974 {
975 monitor_printf (r3900_inits[i]);
976 monitor_expect_prompt (NULL, 0);
977 }
978
979 /* Attempt to determine whether the console device is ethernet or serial.
980 This will tell us which kind of load to use (S-records over a serial
981 link, or the Densan fast binary multi-section format over the net). */
982
983 ethernet = 0;
984 monitor_printf ("v\r");
985 if (monitor_expect ("console device :", NULL, 0) != -1)
986 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
987 if (strstr (buf, "ethernet") != NULL)
988 ethernet = 1;
989 monitor_expect_prompt (NULL, 0);
990 }
991
992 void
993 _initialize_r3900_rom (void)
994 {
995 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
996 MO_ADDR_BITS_REMOVE |
997 MO_CLR_BREAK_USES_ADDR |
998 MO_GETMEM_READ_SINGLE |
999 MO_PRINT_PROGRAM_OUTPUT;
1000
1001 r3900_cmds.init = dummy_inits;
1002 r3900_cmds.cont = "g\r";
1003 r3900_cmds.step = "t\r";
1004 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
1005 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
1006 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
1007
1008 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
1009 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
1010 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
1011
1012 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
1013 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
1014 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
1015 r3900_cmds.getmem.resp_delim = " : ";
1016 r3900_cmds.getmem.term = " ";
1017 r3900_cmds.getmem.term_cmd = ".\r";
1018
1019 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
1020
1021 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
1022 r3900_cmds.getreg.resp_delim = "=";
1023 r3900_cmds.getreg.term = " ";
1024 r3900_cmds.getreg.term_cmd = ".\r";
1025
1026 r3900_cmds.dump_registers = "x\r";
1027 r3900_cmds.register_pattern =
1028 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
1029 r3900_cmds.supply_register = r3900_supply_register;
1030 /* S-record download, via "keyboard port". */
1031 r3900_cmds.load = "r0\r";
1032 r3900_cmds.prompt = "#";
1033 r3900_cmds.line_term = "\r";
1034 r3900_cmds.target = &r3900_ops;
1035 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
1036 r3900_cmds.regnames = r3900_regnames;
1037 r3900_cmds.magic = MONITOR_OPS_MAGIC;
1038
1039 init_monitor_ops (&r3900_ops);
1040
1041 r3900_ops.to_shortname = "r3900";
1042 r3900_ops.to_longname = "R3900 monitor";
1043 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
1044 Specify the serial device it is connected to (e.g. /dev/ttya).";
1045 r3900_ops.to_open = r3900_open;
1046
1047 /* Override the functions to fetch and store registers. But save the
1048 addresses of the default functions, because we will use those functions
1049 for "normal" registers. */
1050
1051 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
1052 orig_monitor_store_registers = r3900_ops.to_store_registers;
1053 r3900_ops.to_fetch_registers = r3900_fetch_registers;
1054 r3900_ops.to_store_registers = r3900_store_registers;
1055
1056 /* Override the load function, but save the address of the default
1057 function to use when loading S-records over a serial link. */
1058 orig_monitor_load = r3900_ops.to_load;
1059 r3900_ops.to_load = r3900_load;
1060
1061 add_target (&r3900_ops);
1062 }
This page took 0.051516 seconds and 4 git commands to generate.