gdb: remove TYPE_CODE macro
[deliverable/binutils-gdb.git] / gdb / dwarf2 / frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2/expr.h"
24 #include "dwarf2.h"
25 #include "dwarf2/leb.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35 #include "record.h"
36
37 #include "complaints.h"
38 #include "dwarf2/frame.h"
39 #include "dwarf2/read.h"
40 #include "ax.h"
41 #include "dwarf2/loc.h"
42 #include "dwarf2/frame-tailcall.h"
43 #include "gdbsupport/gdb_binary_search.h"
44 #if GDB_SELF_TEST
45 #include "gdbsupport/selftest.h"
46 #include "selftest-arch.h"
47 #endif
48 #include <unordered_map>
49
50 #include <algorithm>
51
52 struct comp_unit;
53
54 /* Call Frame Information (CFI). */
55
56 /* Common Information Entry (CIE). */
57
58 struct dwarf2_cie
59 {
60 /* Computation Unit for this CIE. */
61 struct comp_unit *unit;
62
63 /* Offset into the .debug_frame section where this CIE was found.
64 Used to identify this CIE. */
65 ULONGEST cie_pointer;
66
67 /* Constant that is factored out of all advance location
68 instructions. */
69 ULONGEST code_alignment_factor;
70
71 /* Constants that is factored out of all offset instructions. */
72 LONGEST data_alignment_factor;
73
74 /* Return address column. */
75 ULONGEST return_address_register;
76
77 /* Instruction sequence to initialize a register set. */
78 const gdb_byte *initial_instructions;
79 const gdb_byte *end;
80
81 /* Saved augmentation, in case it's needed later. */
82 char *augmentation;
83
84 /* Encoding of addresses. */
85 gdb_byte encoding;
86
87 /* Target address size in bytes. */
88 int addr_size;
89
90 /* Target pointer size in bytes. */
91 int ptr_size;
92
93 /* True if a 'z' augmentation existed. */
94 unsigned char saw_z_augmentation;
95
96 /* True if an 'S' augmentation existed. */
97 unsigned char signal_frame;
98
99 /* The version recorded in the CIE. */
100 unsigned char version;
101
102 /* The segment size. */
103 unsigned char segment_size;
104 };
105
106 /* The CIE table is used to find CIEs during parsing, but then
107 discarded. It maps from the CIE's offset to the CIE. */
108 typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table;
109
110 /* Frame Description Entry (FDE). */
111
112 struct dwarf2_fde
113 {
114 /* CIE for this FDE. */
115 struct dwarf2_cie *cie;
116
117 /* First location associated with this FDE. */
118 CORE_ADDR initial_location;
119
120 /* Number of bytes of program instructions described by this FDE. */
121 CORE_ADDR address_range;
122
123 /* Instruction sequence. */
124 const gdb_byte *instructions;
125 const gdb_byte *end;
126
127 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
128 section. */
129 unsigned char eh_frame_p;
130 };
131
132 typedef std::vector<dwarf2_fde *> dwarf2_fde_table;
133
134 /* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
136
137 struct comp_unit
138 {
139 comp_unit (struct objfile *objf)
140 : abfd (objf->obfd)
141 {
142 }
143
144 /* Keep the bfd convenient. */
145 bfd *abfd;
146
147 /* Pointer to the .debug_frame section loaded into memory. */
148 const gdb_byte *dwarf_frame_buffer = nullptr;
149
150 /* Length of the loaded .debug_frame section. */
151 bfd_size_type dwarf_frame_size = 0;
152
153 /* Pointer to the .debug_frame section. */
154 asection *dwarf_frame_section = nullptr;
155
156 /* Base for DW_EH_PE_datarel encodings. */
157 bfd_vma dbase = 0;
158
159 /* Base for DW_EH_PE_textrel encodings. */
160 bfd_vma tbase = 0;
161
162 /* The FDE table. */
163 dwarf2_fde_table fde_table;
164
165 /* Hold data used by this module. */
166 auto_obstack obstack;
167 };
168
169 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
170 CORE_ADDR *out_offset);
171
172 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
173 int eh_frame_p);
174
175 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
176 int ptr_len, const gdb_byte *buf,
177 unsigned int *bytes_read_ptr,
178 CORE_ADDR func_base);
179 \f
180
181 /* See dwarf2-frame.h. */
182 bool dwarf2_frame_unwinders_enabled_p = true;
183
184 /* Store the length the expression for the CFA in the `cfa_reg' field,
185 which is unused in that case. */
186 #define cfa_exp_len cfa_reg
187
188 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
189 : pc (pc_), data_align (cie->data_alignment_factor),
190 code_align (cie->code_alignment_factor),
191 retaddr_column (cie->return_address_register)
192 {
193 }
194 \f
195
196 /* Helper functions for execute_stack_op. */
197
198 static CORE_ADDR
199 read_addr_from_reg (struct frame_info *this_frame, int reg)
200 {
201 struct gdbarch *gdbarch = get_frame_arch (this_frame);
202 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
203
204 return address_from_register (regnum, this_frame);
205 }
206
207 /* Execute the required actions for both the DW_CFA_restore and
208 DW_CFA_restore_extended instructions. */
209 static void
210 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
211 struct dwarf2_frame_state *fs, int eh_frame_p)
212 {
213 ULONGEST reg;
214
215 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
216 fs->regs.alloc_regs (reg + 1);
217
218 /* Check if this register was explicitly initialized in the
219 CIE initial instructions. If not, default the rule to
220 UNSPECIFIED. */
221 if (reg < fs->initial.reg.size ())
222 fs->regs.reg[reg] = fs->initial.reg[reg];
223 else
224 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
225
226 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
227 {
228 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
229
230 complaint (_("\
231 incomplete CFI data; DW_CFA_restore unspecified\n\
232 register %s (#%d) at %s"),
233 gdbarch_register_name (gdbarch, regnum), regnum,
234 paddress (gdbarch, fs->pc));
235 }
236 }
237
238 class dwarf_expr_executor : public dwarf_expr_context
239 {
240 public:
241
242 struct frame_info *this_frame;
243
244 CORE_ADDR read_addr_from_reg (int reg) override
245 {
246 return ::read_addr_from_reg (this_frame, reg);
247 }
248
249 struct value *get_reg_value (struct type *type, int reg) override
250 {
251 struct gdbarch *gdbarch = get_frame_arch (this_frame);
252 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
253
254 return value_from_register (type, regnum, this_frame);
255 }
256
257 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
258 {
259 read_memory (addr, buf, len);
260 }
261
262 void get_frame_base (const gdb_byte **start, size_t *length) override
263 {
264 invalid ("DW_OP_fbreg");
265 }
266
267 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
268 union call_site_parameter_u kind_u,
269 int deref_size) override
270 {
271 invalid ("DW_OP_entry_value");
272 }
273
274 CORE_ADDR get_object_address () override
275 {
276 invalid ("DW_OP_push_object_address");
277 }
278
279 CORE_ADDR get_frame_cfa () override
280 {
281 invalid ("DW_OP_call_frame_cfa");
282 }
283
284 CORE_ADDR get_tls_address (CORE_ADDR offset) override
285 {
286 invalid ("DW_OP_form_tls_address");
287 }
288
289 void dwarf_call (cu_offset die_offset) override
290 {
291 invalid ("DW_OP_call*");
292 }
293
294 struct value *dwarf_variable_value (sect_offset sect_off) override
295 {
296 invalid ("DW_OP_GNU_variable_value");
297 }
298
299 CORE_ADDR get_addr_index (unsigned int index) override
300 {
301 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
302 }
303
304 private:
305
306 void invalid (const char *op) ATTRIBUTE_NORETURN
307 {
308 error (_("%s is invalid in this context"), op);
309 }
310 };
311
312 static CORE_ADDR
313 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
314 CORE_ADDR offset, struct frame_info *this_frame,
315 CORE_ADDR initial, int initial_in_stack_memory)
316 {
317 CORE_ADDR result;
318
319 dwarf_expr_executor ctx;
320 scoped_value_mark free_values;
321
322 ctx.this_frame = this_frame;
323 ctx.gdbarch = get_frame_arch (this_frame);
324 ctx.addr_size = addr_size;
325 ctx.ref_addr_size = -1;
326 ctx.offset = offset;
327
328 ctx.push_address (initial, initial_in_stack_memory);
329 ctx.eval (exp, len);
330
331 if (ctx.location == DWARF_VALUE_MEMORY)
332 result = ctx.fetch_address (0);
333 else if (ctx.location == DWARF_VALUE_REGISTER)
334 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
335 else
336 {
337 /* This is actually invalid DWARF, but if we ever do run across
338 it somehow, we might as well support it. So, instead, report
339 it as unimplemented. */
340 error (_("\
341 Not implemented: computing unwound register using explicit value operator"));
342 }
343
344 return result;
345 }
346 \f
347
348 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
349 PC. Modify FS state accordingly. Return current INSN_PTR where the
350 execution has stopped, one can resume it on the next call. */
351
352 static const gdb_byte *
353 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
354 const gdb_byte *insn_end, struct gdbarch *gdbarch,
355 CORE_ADDR pc, struct dwarf2_frame_state *fs,
356 CORE_ADDR text_offset)
357 {
358 int eh_frame_p = fde->eh_frame_p;
359 unsigned int bytes_read;
360 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
361
362 while (insn_ptr < insn_end && fs->pc <= pc)
363 {
364 gdb_byte insn = *insn_ptr++;
365 uint64_t utmp, reg;
366 int64_t offset;
367
368 if ((insn & 0xc0) == DW_CFA_advance_loc)
369 fs->pc += (insn & 0x3f) * fs->code_align;
370 else if ((insn & 0xc0) == DW_CFA_offset)
371 {
372 reg = insn & 0x3f;
373 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
374 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
375 offset = utmp * fs->data_align;
376 fs->regs.alloc_regs (reg + 1);
377 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
378 fs->regs.reg[reg].loc.offset = offset;
379 }
380 else if ((insn & 0xc0) == DW_CFA_restore)
381 {
382 reg = insn & 0x3f;
383 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
384 }
385 else
386 {
387 switch (insn)
388 {
389 case DW_CFA_set_loc:
390 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
391 fde->cie->ptr_size, insn_ptr,
392 &bytes_read, fde->initial_location);
393 /* Apply the text offset for relocatable objects. */
394 fs->pc += text_offset;
395 insn_ptr += bytes_read;
396 break;
397
398 case DW_CFA_advance_loc1:
399 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
400 fs->pc += utmp * fs->code_align;
401 insn_ptr++;
402 break;
403 case DW_CFA_advance_loc2:
404 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
405 fs->pc += utmp * fs->code_align;
406 insn_ptr += 2;
407 break;
408 case DW_CFA_advance_loc4:
409 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
410 fs->pc += utmp * fs->code_align;
411 insn_ptr += 4;
412 break;
413
414 case DW_CFA_offset_extended:
415 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
416 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
417 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
418 offset = utmp * fs->data_align;
419 fs->regs.alloc_regs (reg + 1);
420 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
421 fs->regs.reg[reg].loc.offset = offset;
422 break;
423
424 case DW_CFA_restore_extended:
425 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
426 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
427 break;
428
429 case DW_CFA_undefined:
430 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
431 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
432 fs->regs.alloc_regs (reg + 1);
433 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
434 break;
435
436 case DW_CFA_same_value:
437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
438 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
439 fs->regs.alloc_regs (reg + 1);
440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
441 break;
442
443 case DW_CFA_register:
444 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
445 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
446 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
447 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
448 fs->regs.alloc_regs (reg + 1);
449 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
450 fs->regs.reg[reg].loc.reg = utmp;
451 break;
452
453 case DW_CFA_remember_state:
454 {
455 struct dwarf2_frame_state_reg_info *new_rs;
456
457 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
458 fs->regs.prev = new_rs;
459 }
460 break;
461
462 case DW_CFA_restore_state:
463 {
464 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
465
466 if (old_rs == NULL)
467 {
468 complaint (_("\
469 bad CFI data; mismatched DW_CFA_restore_state at %s"),
470 paddress (gdbarch, fs->pc));
471 }
472 else
473 fs->regs = std::move (*old_rs);
474 }
475 break;
476
477 case DW_CFA_def_cfa:
478 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
479 fs->regs.cfa_reg = reg;
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
481
482 if (fs->armcc_cfa_offsets_sf)
483 utmp *= fs->data_align;
484
485 fs->regs.cfa_offset = utmp;
486 fs->regs.cfa_how = CFA_REG_OFFSET;
487 break;
488
489 case DW_CFA_def_cfa_register:
490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
491 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
492 eh_frame_p);
493 fs->regs.cfa_how = CFA_REG_OFFSET;
494 break;
495
496 case DW_CFA_def_cfa_offset:
497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
498
499 if (fs->armcc_cfa_offsets_sf)
500 utmp *= fs->data_align;
501
502 fs->regs.cfa_offset = utmp;
503 /* cfa_how deliberately not set. */
504 break;
505
506 case DW_CFA_nop:
507 break;
508
509 case DW_CFA_def_cfa_expression:
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
511 fs->regs.cfa_exp_len = utmp;
512 fs->regs.cfa_exp = insn_ptr;
513 fs->regs.cfa_how = CFA_EXP;
514 insn_ptr += fs->regs.cfa_exp_len;
515 break;
516
517 case DW_CFA_expression:
518 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
519 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
520 fs->regs.alloc_regs (reg + 1);
521 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
522 fs->regs.reg[reg].loc.exp.start = insn_ptr;
523 fs->regs.reg[reg].loc.exp.len = utmp;
524 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
525 insn_ptr += utmp;
526 break;
527
528 case DW_CFA_offset_extended_sf:
529 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
530 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
531 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
532 offset *= fs->data_align;
533 fs->regs.alloc_regs (reg + 1);
534 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
535 fs->regs.reg[reg].loc.offset = offset;
536 break;
537
538 case DW_CFA_val_offset:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.alloc_regs (reg + 1);
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542 offset = utmp * fs->data_align;
543 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
544 fs->regs.reg[reg].loc.offset = offset;
545 break;
546
547 case DW_CFA_val_offset_sf:
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.alloc_regs (reg + 1);
550 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
551 offset *= fs->data_align;
552 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
553 fs->regs.reg[reg].loc.offset = offset;
554 break;
555
556 case DW_CFA_val_expression:
557 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
558 fs->regs.alloc_regs (reg + 1);
559 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
560 fs->regs.reg[reg].loc.exp.start = insn_ptr;
561 fs->regs.reg[reg].loc.exp.len = utmp;
562 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
563 insn_ptr += utmp;
564 break;
565
566 case DW_CFA_def_cfa_sf:
567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
568 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
569 eh_frame_p);
570 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
571 fs->regs.cfa_offset = offset * fs->data_align;
572 fs->regs.cfa_how = CFA_REG_OFFSET;
573 break;
574
575 case DW_CFA_def_cfa_offset_sf:
576 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
577 fs->regs.cfa_offset = offset * fs->data_align;
578 /* cfa_how deliberately not set. */
579 break;
580
581 case DW_CFA_GNU_args_size:
582 /* Ignored. */
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
584 break;
585
586 case DW_CFA_GNU_negative_offset_extended:
587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
588 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
589 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
590 offset = utmp * fs->data_align;
591 fs->regs.alloc_regs (reg + 1);
592 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
593 fs->regs.reg[reg].loc.offset = -offset;
594 break;
595
596 default:
597 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
598 {
599 /* Handle vendor-specific CFI for different architectures. */
600 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
601 error (_("Call Frame Instruction op %d in vendor extension "
602 "space is not handled on this architecture."),
603 insn);
604 }
605 else
606 internal_error (__FILE__, __LINE__,
607 _("Unknown CFI encountered."));
608 }
609 }
610 }
611
612 if (fs->initial.reg.empty ())
613 {
614 /* Don't allow remember/restore between CIE and FDE programs. */
615 delete fs->regs.prev;
616 fs->regs.prev = NULL;
617 }
618
619 return insn_ptr;
620 }
621
622 #if GDB_SELF_TEST
623
624 namespace selftests {
625
626 /* Unit test to function execute_cfa_program. */
627
628 static void
629 execute_cfa_program_test (struct gdbarch *gdbarch)
630 {
631 struct dwarf2_fde fde;
632 struct dwarf2_cie cie;
633
634 memset (&fde, 0, sizeof fde);
635 memset (&cie, 0, sizeof cie);
636
637 cie.data_alignment_factor = -4;
638 cie.code_alignment_factor = 2;
639 fde.cie = &cie;
640
641 dwarf2_frame_state fs (0, fde.cie);
642
643 gdb_byte insns[] =
644 {
645 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
646 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
647 DW_CFA_remember_state,
648 DW_CFA_restore_state,
649 };
650
651 const gdb_byte *insn_end = insns + sizeof (insns);
652 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
653 0, &fs, 0);
654
655 SELF_CHECK (out == insn_end);
656 SELF_CHECK (fs.pc == 0);
657
658 /* The instructions above only use r1 and r2, but the register numbers
659 used are adjusted by dwarf2_frame_adjust_regnum. */
660 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
661 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
662
663 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
664
665 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
666 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
667
668 for (auto i = 0; i < fs.regs.reg.size (); i++)
669 if (i != r2)
670 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
671
672 SELF_CHECK (fs.regs.cfa_reg == 1);
673 SELF_CHECK (fs.regs.cfa_offset == 4);
674 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
675 SELF_CHECK (fs.regs.cfa_exp == NULL);
676 SELF_CHECK (fs.regs.prev == NULL);
677 }
678
679 } // namespace selftests
680 #endif /* GDB_SELF_TEST */
681
682 \f
683
684 /* Architecture-specific operations. */
685
686 /* Per-architecture data key. */
687 static struct gdbarch_data *dwarf2_frame_data;
688
689 struct dwarf2_frame_ops
690 {
691 /* Pre-initialize the register state REG for register REGNUM. */
692 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
693 struct frame_info *);
694
695 /* Check whether the THIS_FRAME is a signal trampoline. */
696 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
697
698 /* Convert .eh_frame register number to DWARF register number, or
699 adjust .debug_frame register number. */
700 int (*adjust_regnum) (struct gdbarch *, int, int);
701 };
702
703 /* Default architecture-specific register state initialization
704 function. */
705
706 static void
707 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
708 struct dwarf2_frame_state_reg *reg,
709 struct frame_info *this_frame)
710 {
711 /* If we have a register that acts as a program counter, mark it as
712 a destination for the return address. If we have a register that
713 serves as the stack pointer, arrange for it to be filled with the
714 call frame address (CFA). The other registers are marked as
715 unspecified.
716
717 We copy the return address to the program counter, since many
718 parts in GDB assume that it is possible to get the return address
719 by unwinding the program counter register. However, on ISA's
720 with a dedicated return address register, the CFI usually only
721 contains information to unwind that return address register.
722
723 The reason we're treating the stack pointer special here is
724 because in many cases GCC doesn't emit CFI for the stack pointer
725 and implicitly assumes that it is equal to the CFA. This makes
726 some sense since the DWARF specification (version 3, draft 8,
727 p. 102) says that:
728
729 "Typically, the CFA is defined to be the value of the stack
730 pointer at the call site in the previous frame (which may be
731 different from its value on entry to the current frame)."
732
733 However, this isn't true for all platforms supported by GCC
734 (e.g. IBM S/390 and zSeries). Those architectures should provide
735 their own architecture-specific initialization function. */
736
737 if (regnum == gdbarch_pc_regnum (gdbarch))
738 reg->how = DWARF2_FRAME_REG_RA;
739 else if (regnum == gdbarch_sp_regnum (gdbarch))
740 reg->how = DWARF2_FRAME_REG_CFA;
741 }
742
743 /* Return a default for the architecture-specific operations. */
744
745 static void *
746 dwarf2_frame_init (struct obstack *obstack)
747 {
748 struct dwarf2_frame_ops *ops;
749
750 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
751 ops->init_reg = dwarf2_frame_default_init_reg;
752 return ops;
753 }
754
755 /* Set the architecture-specific register state initialization
756 function for GDBARCH to INIT_REG. */
757
758 void
759 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
760 void (*init_reg) (struct gdbarch *, int,
761 struct dwarf2_frame_state_reg *,
762 struct frame_info *))
763 {
764 struct dwarf2_frame_ops *ops
765 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
766
767 ops->init_reg = init_reg;
768 }
769
770 /* Pre-initialize the register state REG for register REGNUM. */
771
772 static void
773 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
774 struct dwarf2_frame_state_reg *reg,
775 struct frame_info *this_frame)
776 {
777 struct dwarf2_frame_ops *ops
778 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
779
780 ops->init_reg (gdbarch, regnum, reg, this_frame);
781 }
782
783 /* Set the architecture-specific signal trampoline recognition
784 function for GDBARCH to SIGNAL_FRAME_P. */
785
786 void
787 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
788 int (*signal_frame_p) (struct gdbarch *,
789 struct frame_info *))
790 {
791 struct dwarf2_frame_ops *ops
792 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->signal_frame_p = signal_frame_p;
795 }
796
797 /* Query the architecture-specific signal frame recognizer for
798 THIS_FRAME. */
799
800 static int
801 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
802 struct frame_info *this_frame)
803 {
804 struct dwarf2_frame_ops *ops
805 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 if (ops->signal_frame_p == NULL)
808 return 0;
809 return ops->signal_frame_p (gdbarch, this_frame);
810 }
811
812 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
813 register numbers. */
814
815 void
816 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
817 int (*adjust_regnum) (struct gdbarch *,
818 int, int))
819 {
820 struct dwarf2_frame_ops *ops
821 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
822
823 ops->adjust_regnum = adjust_regnum;
824 }
825
826 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
827 register. */
828
829 static int
830 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
831 int regnum, int eh_frame_p)
832 {
833 struct dwarf2_frame_ops *ops
834 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
835
836 if (ops->adjust_regnum == NULL)
837 return regnum;
838 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
839 }
840
841 static void
842 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
843 struct dwarf2_fde *fde)
844 {
845 struct compunit_symtab *cust;
846
847 cust = find_pc_compunit_symtab (fs->pc);
848 if (cust == NULL)
849 return;
850
851 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
852 {
853 if (fde->cie->version == 1)
854 fs->armcc_cfa_offsets_sf = 1;
855
856 if (fde->cie->version == 1)
857 fs->armcc_cfa_offsets_reversed = 1;
858
859 /* The reversed offset problem is present in some compilers
860 using DWARF3, but it was eventually fixed. Check the ARM
861 defined augmentations, which are in the format "armcc" followed
862 by a list of one-character options. The "+" option means
863 this problem is fixed (no quirk needed). If the armcc
864 augmentation is missing, the quirk is needed. */
865 if (fde->cie->version == 3
866 && (!startswith (fde->cie->augmentation, "armcc")
867 || strchr (fde->cie->augmentation + 5, '+') == NULL))
868 fs->armcc_cfa_offsets_reversed = 1;
869
870 return;
871 }
872 }
873 \f
874
875 /* See dwarf2-frame.h. */
876
877 int
878 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
879 struct dwarf2_per_cu_data *data,
880 int *regnum_out, LONGEST *offset_out,
881 CORE_ADDR *text_offset_out,
882 const gdb_byte **cfa_start_out,
883 const gdb_byte **cfa_end_out)
884 {
885 struct dwarf2_fde *fde;
886 CORE_ADDR text_offset;
887 CORE_ADDR pc1 = pc;
888
889 /* Find the correct FDE. */
890 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
891 if (fde == NULL)
892 error (_("Could not compute CFA; needed to translate this expression"));
893
894 dwarf2_frame_state fs (pc1, fde->cie);
895
896 /* Check for "quirks" - known bugs in producers. */
897 dwarf2_frame_find_quirks (&fs, fde);
898
899 /* First decode all the insns in the CIE. */
900 execute_cfa_program (fde, fde->cie->initial_instructions,
901 fde->cie->end, gdbarch, pc, &fs, text_offset);
902
903 /* Save the initialized register set. */
904 fs.initial = fs.regs;
905
906 /* Then decode the insns in the FDE up to our target PC. */
907 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs,
908 text_offset);
909
910 /* Calculate the CFA. */
911 switch (fs.regs.cfa_how)
912 {
913 case CFA_REG_OFFSET:
914 {
915 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
916
917 *regnum_out = regnum;
918 if (fs.armcc_cfa_offsets_reversed)
919 *offset_out = -fs.regs.cfa_offset;
920 else
921 *offset_out = fs.regs.cfa_offset;
922 return 1;
923 }
924
925 case CFA_EXP:
926 *text_offset_out = text_offset;
927 *cfa_start_out = fs.regs.cfa_exp;
928 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
929 return 0;
930
931 default:
932 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
933 }
934 }
935
936 \f
937 struct dwarf2_frame_cache
938 {
939 /* DWARF Call Frame Address. */
940 CORE_ADDR cfa;
941
942 /* Set if the return address column was marked as unavailable
943 (required non-collected memory or registers to compute). */
944 int unavailable_retaddr;
945
946 /* Set if the return address column was marked as undefined. */
947 int undefined_retaddr;
948
949 /* Saved registers, indexed by GDB register number, not by DWARF
950 register number. */
951 struct dwarf2_frame_state_reg *reg;
952
953 /* Return address register. */
954 struct dwarf2_frame_state_reg retaddr_reg;
955
956 /* Target address size in bytes. */
957 int addr_size;
958
959 /* The .text offset. */
960 CORE_ADDR text_offset;
961
962 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
963 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
964 involved. Non-bottom frames of a virtual tail call frames chain use
965 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
966 them. */
967 void *tailcall_cache;
968 };
969
970 static struct dwarf2_frame_cache *
971 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
972 {
973 struct gdbarch *gdbarch = get_frame_arch (this_frame);
974 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
975 struct dwarf2_frame_cache *cache;
976 struct dwarf2_fde *fde;
977 CORE_ADDR entry_pc;
978 const gdb_byte *instr;
979
980 if (*this_cache)
981 return (struct dwarf2_frame_cache *) *this_cache;
982
983 /* Allocate a new cache. */
984 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
985 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
986 *this_cache = cache;
987
988 /* Unwind the PC.
989
990 Note that if the next frame is never supposed to return (i.e. a call
991 to abort), the compiler might optimize away the instruction at
992 its return address. As a result the return address will
993 point at some random instruction, and the CFI for that
994 instruction is probably worthless to us. GCC's unwinder solves
995 this problem by substracting 1 from the return address to get an
996 address in the middle of a presumed call instruction (or the
997 instruction in the associated delay slot). This should only be
998 done for "normal" frames and not for resume-type frames (signal
999 handlers, sentinel frames, dummy frames). The function
1000 get_frame_address_in_block does just this. It's not clear how
1001 reliable the method is though; there is the potential for the
1002 register state pre-call being different to that on return. */
1003 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1004
1005 /* Find the correct FDE. */
1006 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1007 gdb_assert (fde != NULL);
1008
1009 /* Allocate and initialize the frame state. */
1010 struct dwarf2_frame_state fs (pc1, fde->cie);
1011
1012 cache->addr_size = fde->cie->addr_size;
1013
1014 /* Check for "quirks" - known bugs in producers. */
1015 dwarf2_frame_find_quirks (&fs, fde);
1016
1017 /* First decode all the insns in the CIE. */
1018 execute_cfa_program (fde, fde->cie->initial_instructions,
1019 fde->cie->end, gdbarch,
1020 get_frame_address_in_block (this_frame), &fs,
1021 cache->text_offset);
1022
1023 /* Save the initialized register set. */
1024 fs.initial = fs.regs;
1025
1026 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1027 in an address that's within the range of FDE locations. This
1028 is due to the possibility of the function occupying non-contiguous
1029 ranges. */
1030 LONGEST entry_cfa_sp_offset;
1031 int entry_cfa_sp_offset_p = 0;
1032 if (get_frame_func_if_available (this_frame, &entry_pc)
1033 && fde->initial_location <= entry_pc
1034 && entry_pc < fde->initial_location + fde->address_range)
1035 {
1036 /* Decode the insns in the FDE up to the entry PC. */
1037 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1038 entry_pc, &fs, cache->text_offset);
1039
1040 if (fs.regs.cfa_how == CFA_REG_OFFSET
1041 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1042 == gdbarch_sp_regnum (gdbarch)))
1043 {
1044 entry_cfa_sp_offset = fs.regs.cfa_offset;
1045 entry_cfa_sp_offset_p = 1;
1046 }
1047 }
1048 else
1049 instr = fde->instructions;
1050
1051 /* Then decode the insns in the FDE up to our target PC. */
1052 execute_cfa_program (fde, instr, fde->end, gdbarch,
1053 get_frame_address_in_block (this_frame), &fs,
1054 cache->text_offset);
1055
1056 try
1057 {
1058 /* Calculate the CFA. */
1059 switch (fs.regs.cfa_how)
1060 {
1061 case CFA_REG_OFFSET:
1062 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1063 if (fs.armcc_cfa_offsets_reversed)
1064 cache->cfa -= fs.regs.cfa_offset;
1065 else
1066 cache->cfa += fs.regs.cfa_offset;
1067 break;
1068
1069 case CFA_EXP:
1070 cache->cfa =
1071 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1072 cache->addr_size, cache->text_offset,
1073 this_frame, 0, 0);
1074 break;
1075
1076 default:
1077 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1078 }
1079 }
1080 catch (const gdb_exception_error &ex)
1081 {
1082 if (ex.error == NOT_AVAILABLE_ERROR)
1083 {
1084 cache->unavailable_retaddr = 1;
1085 return cache;
1086 }
1087
1088 throw;
1089 }
1090
1091 /* Initialize the register state. */
1092 {
1093 int regnum;
1094
1095 for (regnum = 0; regnum < num_regs; regnum++)
1096 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1097 }
1098
1099 /* Go through the DWARF2 CFI generated table and save its register
1100 location information in the cache. Note that we don't skip the
1101 return address column; it's perfectly all right for it to
1102 correspond to a real register. */
1103 {
1104 int column; /* CFI speak for "register number". */
1105
1106 for (column = 0; column < fs.regs.reg.size (); column++)
1107 {
1108 /* Use the GDB register number as the destination index. */
1109 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1110
1111 /* Protect against a target returning a bad register. */
1112 if (regnum < 0 || regnum >= num_regs)
1113 continue;
1114
1115 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1116 of all debug info registers. If it doesn't, complain (but
1117 not too loudly). It turns out that GCC assumes that an
1118 unspecified register implies "same value" when CFI (draft
1119 7) specifies nothing at all. Such a register could equally
1120 be interpreted as "undefined". Also note that this check
1121 isn't sufficient; it only checks that all registers in the
1122 range [0 .. max column] are specified, and won't detect
1123 problems when a debug info register falls outside of the
1124 table. We need a way of iterating through all the valid
1125 DWARF2 register numbers. */
1126 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1127 {
1128 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1129 complaint (_("\
1130 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1131 gdbarch_register_name (gdbarch, regnum),
1132 paddress (gdbarch, fs.pc));
1133 }
1134 else
1135 cache->reg[regnum] = fs.regs.reg[column];
1136 }
1137 }
1138
1139 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1140 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1141 {
1142 int regnum;
1143
1144 for (regnum = 0; regnum < num_regs; regnum++)
1145 {
1146 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1147 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1148 {
1149 const std::vector<struct dwarf2_frame_state_reg> &regs
1150 = fs.regs.reg;
1151 ULONGEST retaddr_column = fs.retaddr_column;
1152
1153 /* It seems rather bizarre to specify an "empty" column as
1154 the return adress column. However, this is exactly
1155 what GCC does on some targets. It turns out that GCC
1156 assumes that the return address can be found in the
1157 register corresponding to the return address column.
1158 Incidentally, that's how we should treat a return
1159 address column specifying "same value" too. */
1160 if (fs.retaddr_column < fs.regs.reg.size ()
1161 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1162 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1163 {
1164 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1165 cache->reg[regnum] = regs[retaddr_column];
1166 else
1167 cache->retaddr_reg = regs[retaddr_column];
1168 }
1169 else
1170 {
1171 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1172 {
1173 cache->reg[regnum].loc.reg = fs.retaddr_column;
1174 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1175 }
1176 else
1177 {
1178 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1179 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1180 }
1181 }
1182 }
1183 }
1184 }
1185
1186 if (fs.retaddr_column < fs.regs.reg.size ()
1187 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1188 cache->undefined_retaddr = 1;
1189
1190 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1191 (entry_cfa_sp_offset_p
1192 ? &entry_cfa_sp_offset : NULL));
1193
1194 return cache;
1195 }
1196
1197 static enum unwind_stop_reason
1198 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1199 void **this_cache)
1200 {
1201 struct dwarf2_frame_cache *cache
1202 = dwarf2_frame_cache (this_frame, this_cache);
1203
1204 if (cache->unavailable_retaddr)
1205 return UNWIND_UNAVAILABLE;
1206
1207 if (cache->undefined_retaddr)
1208 return UNWIND_OUTERMOST;
1209
1210 return UNWIND_NO_REASON;
1211 }
1212
1213 static void
1214 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1215 struct frame_id *this_id)
1216 {
1217 struct dwarf2_frame_cache *cache =
1218 dwarf2_frame_cache (this_frame, this_cache);
1219
1220 if (cache->unavailable_retaddr)
1221 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1222 else if (cache->undefined_retaddr)
1223 return;
1224 else
1225 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1226 }
1227
1228 static struct value *
1229 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1230 int regnum)
1231 {
1232 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1233 struct dwarf2_frame_cache *cache =
1234 dwarf2_frame_cache (this_frame, this_cache);
1235 CORE_ADDR addr;
1236 int realnum;
1237
1238 /* Non-bottom frames of a virtual tail call frames chain use
1239 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1240 them. If dwarf2_tailcall_prev_register_first does not have specific value
1241 unwind the register, tail call frames are assumed to have the register set
1242 of the top caller. */
1243 if (cache->tailcall_cache)
1244 {
1245 struct value *val;
1246
1247 val = dwarf2_tailcall_prev_register_first (this_frame,
1248 &cache->tailcall_cache,
1249 regnum);
1250 if (val)
1251 return val;
1252 }
1253
1254 switch (cache->reg[regnum].how)
1255 {
1256 case DWARF2_FRAME_REG_UNDEFINED:
1257 /* If CFI explicitly specified that the value isn't defined,
1258 mark it as optimized away; the value isn't available. */
1259 return frame_unwind_got_optimized (this_frame, regnum);
1260
1261 case DWARF2_FRAME_REG_SAVED_OFFSET:
1262 addr = cache->cfa + cache->reg[regnum].loc.offset;
1263 return frame_unwind_got_memory (this_frame, regnum, addr);
1264
1265 case DWARF2_FRAME_REG_SAVED_REG:
1266 realnum = dwarf_reg_to_regnum_or_error
1267 (gdbarch, cache->reg[regnum].loc.reg);
1268 return frame_unwind_got_register (this_frame, regnum, realnum);
1269
1270 case DWARF2_FRAME_REG_SAVED_EXP:
1271 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1272 cache->reg[regnum].loc.exp.len,
1273 cache->addr_size, cache->text_offset,
1274 this_frame, cache->cfa, 1);
1275 return frame_unwind_got_memory (this_frame, regnum, addr);
1276
1277 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1278 addr = cache->cfa + cache->reg[regnum].loc.offset;
1279 return frame_unwind_got_constant (this_frame, regnum, addr);
1280
1281 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1282 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1283 cache->reg[regnum].loc.exp.len,
1284 cache->addr_size, cache->text_offset,
1285 this_frame, cache->cfa, 1);
1286 return frame_unwind_got_constant (this_frame, regnum, addr);
1287
1288 case DWARF2_FRAME_REG_UNSPECIFIED:
1289 /* GCC, in its infinite wisdom decided to not provide unwind
1290 information for registers that are "same value". Since
1291 DWARF2 (3 draft 7) doesn't define such behavior, said
1292 registers are actually undefined (which is different to CFI
1293 "undefined"). Code above issues a complaint about this.
1294 Here just fudge the books, assume GCC, and that the value is
1295 more inner on the stack. */
1296 return frame_unwind_got_register (this_frame, regnum, regnum);
1297
1298 case DWARF2_FRAME_REG_SAME_VALUE:
1299 return frame_unwind_got_register (this_frame, regnum, regnum);
1300
1301 case DWARF2_FRAME_REG_CFA:
1302 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1303
1304 case DWARF2_FRAME_REG_CFA_OFFSET:
1305 addr = cache->cfa + cache->reg[regnum].loc.offset;
1306 return frame_unwind_got_address (this_frame, regnum, addr);
1307
1308 case DWARF2_FRAME_REG_RA_OFFSET:
1309 addr = cache->reg[regnum].loc.offset;
1310 regnum = dwarf_reg_to_regnum_or_error
1311 (gdbarch, cache->retaddr_reg.loc.reg);
1312 addr += get_frame_register_unsigned (this_frame, regnum);
1313 return frame_unwind_got_address (this_frame, regnum, addr);
1314
1315 case DWARF2_FRAME_REG_FN:
1316 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1317
1318 default:
1319 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1320 }
1321 }
1322
1323 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1324 call frames chain. */
1325
1326 static void
1327 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1328 {
1329 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1330
1331 if (cache->tailcall_cache)
1332 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1333 }
1334
1335 static int
1336 dwarf2_frame_sniffer (const struct frame_unwind *self,
1337 struct frame_info *this_frame, void **this_cache)
1338 {
1339 if (!dwarf2_frame_unwinders_enabled_p)
1340 return 0;
1341
1342 /* Grab an address that is guaranteed to reside somewhere within the
1343 function. get_frame_pc(), with a no-return next function, can
1344 end up returning something past the end of this function's body.
1345 If the frame we're sniffing for is a signal frame whose start
1346 address is placed on the stack by the OS, its FDE must
1347 extend one byte before its start address or we could potentially
1348 select the FDE of the previous function. */
1349 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1350 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1351
1352 if (!fde)
1353 return 0;
1354
1355 /* On some targets, signal trampolines may have unwind information.
1356 We need to recognize them so that we set the frame type
1357 correctly. */
1358
1359 if (fde->cie->signal_frame
1360 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1361 this_frame))
1362 return self->type == SIGTRAMP_FRAME;
1363
1364 if (self->type != NORMAL_FRAME)
1365 return 0;
1366
1367 return 1;
1368 }
1369
1370 static const struct frame_unwind dwarf2_frame_unwind =
1371 {
1372 NORMAL_FRAME,
1373 dwarf2_frame_unwind_stop_reason,
1374 dwarf2_frame_this_id,
1375 dwarf2_frame_prev_register,
1376 NULL,
1377 dwarf2_frame_sniffer,
1378 dwarf2_frame_dealloc_cache
1379 };
1380
1381 static const struct frame_unwind dwarf2_signal_frame_unwind =
1382 {
1383 SIGTRAMP_FRAME,
1384 dwarf2_frame_unwind_stop_reason,
1385 dwarf2_frame_this_id,
1386 dwarf2_frame_prev_register,
1387 NULL,
1388 dwarf2_frame_sniffer,
1389
1390 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1391 NULL
1392 };
1393
1394 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1395
1396 void
1397 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1398 {
1399 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1400 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1401 }
1402 \f
1403
1404 /* There is no explicitly defined relationship between the CFA and the
1405 location of frame's local variables and arguments/parameters.
1406 Therefore, frame base methods on this page should probably only be
1407 used as a last resort, just to avoid printing total garbage as a
1408 response to the "info frame" command. */
1409
1410 static CORE_ADDR
1411 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1412 {
1413 struct dwarf2_frame_cache *cache =
1414 dwarf2_frame_cache (this_frame, this_cache);
1415
1416 return cache->cfa;
1417 }
1418
1419 static const struct frame_base dwarf2_frame_base =
1420 {
1421 &dwarf2_frame_unwind,
1422 dwarf2_frame_base_address,
1423 dwarf2_frame_base_address,
1424 dwarf2_frame_base_address
1425 };
1426
1427 const struct frame_base *
1428 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1429 {
1430 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1431
1432 if (dwarf2_frame_find_fde (&block_addr, NULL))
1433 return &dwarf2_frame_base;
1434
1435 return NULL;
1436 }
1437
1438 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1439 the DWARF unwinder. This is used to implement
1440 DW_OP_call_frame_cfa. */
1441
1442 CORE_ADDR
1443 dwarf2_frame_cfa (struct frame_info *this_frame)
1444 {
1445 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1446 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1447 throw_error (NOT_AVAILABLE_ERROR,
1448 _("cfa not available for record btrace target"));
1449
1450 while (get_frame_type (this_frame) == INLINE_FRAME)
1451 this_frame = get_prev_frame (this_frame);
1452 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1453 throw_error (NOT_AVAILABLE_ERROR,
1454 _("can't compute CFA for this frame: "
1455 "required registers or memory are unavailable"));
1456
1457 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1458 throw_error (NOT_AVAILABLE_ERROR,
1459 _("can't compute CFA for this frame: "
1460 "frame base not available"));
1461
1462 return get_frame_base (this_frame);
1463 }
1464 \f
1465 /* We store the frame data on the BFD. This is only done if it is
1466 independent of the address space and so can be shared. */
1467 static const struct bfd_key<comp_unit> dwarf2_frame_bfd_data;
1468
1469 /* If any BFD sections require relocations (note; really should be if
1470 any debug info requires relocations), then we store the frame data
1471 on the objfile instead, and do not share it. */
1472 const struct objfile_key<comp_unit> dwarf2_frame_objfile_data;
1473 \f
1474
1475 /* Pointer encoding helper functions. */
1476
1477 /* GCC supports exception handling based on DWARF2 CFI. However, for
1478 technical reasons, it encodes addresses in its FDE's in a different
1479 way. Several "pointer encodings" are supported. The encoding
1480 that's used for a particular FDE is determined by the 'R'
1481 augmentation in the associated CIE. The argument of this
1482 augmentation is a single byte.
1483
1484 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1485 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1486 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1487 address should be interpreted (absolute, relative to the current
1488 position in the FDE, ...). Bit 7, indicates that the address
1489 should be dereferenced. */
1490
1491 static gdb_byte
1492 encoding_for_size (unsigned int size)
1493 {
1494 switch (size)
1495 {
1496 case 2:
1497 return DW_EH_PE_udata2;
1498 case 4:
1499 return DW_EH_PE_udata4;
1500 case 8:
1501 return DW_EH_PE_udata8;
1502 default:
1503 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1504 }
1505 }
1506
1507 static CORE_ADDR
1508 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1509 int ptr_len, const gdb_byte *buf,
1510 unsigned int *bytes_read_ptr,
1511 CORE_ADDR func_base)
1512 {
1513 ptrdiff_t offset;
1514 CORE_ADDR base;
1515
1516 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1517 FDE's. */
1518 if (encoding & DW_EH_PE_indirect)
1519 internal_error (__FILE__, __LINE__,
1520 _("Unsupported encoding: DW_EH_PE_indirect"));
1521
1522 *bytes_read_ptr = 0;
1523
1524 switch (encoding & 0x70)
1525 {
1526 case DW_EH_PE_absptr:
1527 base = 0;
1528 break;
1529 case DW_EH_PE_pcrel:
1530 base = bfd_section_vma (unit->dwarf_frame_section);
1531 base += (buf - unit->dwarf_frame_buffer);
1532 break;
1533 case DW_EH_PE_datarel:
1534 base = unit->dbase;
1535 break;
1536 case DW_EH_PE_textrel:
1537 base = unit->tbase;
1538 break;
1539 case DW_EH_PE_funcrel:
1540 base = func_base;
1541 break;
1542 case DW_EH_PE_aligned:
1543 base = 0;
1544 offset = buf - unit->dwarf_frame_buffer;
1545 if ((offset % ptr_len) != 0)
1546 {
1547 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1548 buf += *bytes_read_ptr;
1549 }
1550 break;
1551 default:
1552 internal_error (__FILE__, __LINE__,
1553 _("Invalid or unsupported encoding"));
1554 }
1555
1556 if ((encoding & 0x07) == 0x00)
1557 {
1558 encoding |= encoding_for_size (ptr_len);
1559 if (bfd_get_sign_extend_vma (unit->abfd))
1560 encoding |= DW_EH_PE_signed;
1561 }
1562
1563 switch (encoding & 0x0f)
1564 {
1565 case DW_EH_PE_uleb128:
1566 {
1567 uint64_t value;
1568 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1569
1570 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1571 return base + value;
1572 }
1573 case DW_EH_PE_udata2:
1574 *bytes_read_ptr += 2;
1575 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1576 case DW_EH_PE_udata4:
1577 *bytes_read_ptr += 4;
1578 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1579 case DW_EH_PE_udata8:
1580 *bytes_read_ptr += 8;
1581 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1582 case DW_EH_PE_sleb128:
1583 {
1584 int64_t value;
1585 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1586
1587 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1588 return base + value;
1589 }
1590 case DW_EH_PE_sdata2:
1591 *bytes_read_ptr += 2;
1592 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1593 case DW_EH_PE_sdata4:
1594 *bytes_read_ptr += 4;
1595 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1596 case DW_EH_PE_sdata8:
1597 *bytes_read_ptr += 8;
1598 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1599 default:
1600 internal_error (__FILE__, __LINE__,
1601 _("Invalid or unsupported encoding"));
1602 }
1603 }
1604 \f
1605
1606 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1607 static struct dwarf2_cie *
1608 find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer)
1609 {
1610 auto iter = cie_table.find (cie_pointer);
1611 if (iter != cie_table.end ())
1612 return iter->second;
1613 return NULL;
1614 }
1615
1616 static inline int
1617 bsearch_fde_cmp (const dwarf2_fde *fde, CORE_ADDR seek_pc)
1618 {
1619 if (fde->initial_location + fde->address_range <= seek_pc)
1620 return -1;
1621 if (fde->initial_location <= seek_pc)
1622 return 0;
1623 return 1;
1624 }
1625
1626 /* Find an existing comp_unit for an objfile, if any. */
1627
1628 static comp_unit *
1629 find_comp_unit (struct objfile *objfile)
1630 {
1631 bfd *abfd = objfile->obfd;
1632 if (gdb_bfd_requires_relocations (abfd))
1633 return dwarf2_frame_bfd_data.get (abfd);
1634 return dwarf2_frame_objfile_data.get (objfile);
1635 }
1636
1637 /* Store the comp_unit on OBJFILE, or the corresponding BFD, as
1638 appropriate. */
1639
1640 static void
1641 set_comp_unit (struct objfile *objfile, struct comp_unit *unit)
1642 {
1643 bfd *abfd = objfile->obfd;
1644 if (gdb_bfd_requires_relocations (abfd))
1645 return dwarf2_frame_bfd_data.set (abfd, unit);
1646 return dwarf2_frame_objfile_data.set (objfile, unit);
1647 }
1648
1649 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1650 initial location associated with it into *PC. */
1651
1652 static struct dwarf2_fde *
1653 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1654 {
1655 for (objfile *objfile : current_program_space->objfiles ())
1656 {
1657 CORE_ADDR offset;
1658 CORE_ADDR seek_pc;
1659
1660 comp_unit *unit = find_comp_unit (objfile);
1661 if (unit == NULL)
1662 {
1663 dwarf2_build_frame_info (objfile);
1664 unit = find_comp_unit (objfile);
1665 }
1666 gdb_assert (unit != NULL);
1667
1668 dwarf2_fde_table *fde_table = &unit->fde_table;
1669 if (fde_table->empty ())
1670 continue;
1671
1672 gdb_assert (!objfile->section_offsets.empty ());
1673 offset = objfile->text_section_offset ();
1674
1675 gdb_assert (!fde_table->empty ());
1676 if (*pc < offset + (*fde_table)[0]->initial_location)
1677 continue;
1678
1679 seek_pc = *pc - offset;
1680 auto it = gdb::binary_search (fde_table->begin (), fde_table->end (),
1681 seek_pc, bsearch_fde_cmp);
1682 if (it != fde_table->end ())
1683 {
1684 *pc = (*it)->initial_location + offset;
1685 if (out_offset)
1686 *out_offset = offset;
1687 return *it;
1688 }
1689 }
1690 return NULL;
1691 }
1692
1693 /* Add FDE to FDE_TABLE. */
1694 static void
1695 add_fde (dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1696 {
1697 if (fde->address_range == 0)
1698 /* Discard useless FDEs. */
1699 return;
1700
1701 fde_table->push_back (fde);
1702 }
1703
1704 #define DW64_CIE_ID 0xffffffffffffffffULL
1705
1706 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1707 or any of them. */
1708
1709 enum eh_frame_type
1710 {
1711 EH_CIE_TYPE_ID = 1 << 0,
1712 EH_FDE_TYPE_ID = 1 << 1,
1713 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1714 };
1715
1716 static const gdb_byte *decode_frame_entry (struct gdbarch *gdbarch,
1717 struct comp_unit *unit,
1718 const gdb_byte *start,
1719 int eh_frame_p,
1720 dwarf2_cie_table &cie_table,
1721 dwarf2_fde_table *fde_table,
1722 enum eh_frame_type entry_type);
1723
1724 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1725 Return NULL if invalid input, otherwise the next byte to be processed. */
1726
1727 static const gdb_byte *
1728 decode_frame_entry_1 (struct gdbarch *gdbarch,
1729 struct comp_unit *unit, const gdb_byte *start,
1730 int eh_frame_p,
1731 dwarf2_cie_table &cie_table,
1732 dwarf2_fde_table *fde_table,
1733 enum eh_frame_type entry_type)
1734 {
1735 const gdb_byte *buf, *end;
1736 ULONGEST length;
1737 unsigned int bytes_read;
1738 int dwarf64_p;
1739 ULONGEST cie_id;
1740 ULONGEST cie_pointer;
1741 int64_t sleb128;
1742 uint64_t uleb128;
1743
1744 buf = start;
1745 length = read_initial_length (unit->abfd, buf, &bytes_read, false);
1746 buf += bytes_read;
1747 end = buf + (size_t) length;
1748
1749 if (length == 0)
1750 return end;
1751
1752 /* Are we still within the section? */
1753 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1754 return NULL;
1755
1756 /* Distinguish between 32 and 64-bit encoded frame info. */
1757 dwarf64_p = (bytes_read == 12);
1758
1759 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1760 if (eh_frame_p)
1761 cie_id = 0;
1762 else if (dwarf64_p)
1763 cie_id = DW64_CIE_ID;
1764 else
1765 cie_id = DW_CIE_ID;
1766
1767 if (dwarf64_p)
1768 {
1769 cie_pointer = read_8_bytes (unit->abfd, buf);
1770 buf += 8;
1771 }
1772 else
1773 {
1774 cie_pointer = read_4_bytes (unit->abfd, buf);
1775 buf += 4;
1776 }
1777
1778 if (cie_pointer == cie_id)
1779 {
1780 /* This is a CIE. */
1781 struct dwarf2_cie *cie;
1782 char *augmentation;
1783 unsigned int cie_version;
1784
1785 /* Check that a CIE was expected. */
1786 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1787 error (_("Found a CIE when not expecting it."));
1788
1789 /* Record the offset into the .debug_frame section of this CIE. */
1790 cie_pointer = start - unit->dwarf_frame_buffer;
1791
1792 /* Check whether we've already read it. */
1793 if (find_cie (cie_table, cie_pointer))
1794 return end;
1795
1796 cie = XOBNEW (&unit->obstack, struct dwarf2_cie);
1797 cie->initial_instructions = NULL;
1798 cie->cie_pointer = cie_pointer;
1799
1800 /* The encoding for FDE's in a normal .debug_frame section
1801 depends on the target address size. */
1802 cie->encoding = DW_EH_PE_absptr;
1803
1804 /* We'll determine the final value later, but we need to
1805 initialize it conservatively. */
1806 cie->signal_frame = 0;
1807
1808 /* Check version number. */
1809 cie_version = read_1_byte (unit->abfd, buf);
1810 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1811 return NULL;
1812 cie->version = cie_version;
1813 buf += 1;
1814
1815 /* Interpret the interesting bits of the augmentation. */
1816 cie->augmentation = augmentation = (char *) buf;
1817 buf += (strlen (augmentation) + 1);
1818
1819 /* Ignore armcc augmentations. We only use them for quirks,
1820 and that doesn't happen until later. */
1821 if (startswith (augmentation, "armcc"))
1822 augmentation += strlen (augmentation);
1823
1824 /* The GCC 2.x "eh" augmentation has a pointer immediately
1825 following the augmentation string, so it must be handled
1826 first. */
1827 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1828 {
1829 /* Skip. */
1830 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1831 augmentation += 2;
1832 }
1833
1834 if (cie->version >= 4)
1835 {
1836 /* FIXME: check that this is the same as from the CU header. */
1837 cie->addr_size = read_1_byte (unit->abfd, buf);
1838 ++buf;
1839 cie->segment_size = read_1_byte (unit->abfd, buf);
1840 ++buf;
1841 }
1842 else
1843 {
1844 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1845 cie->segment_size = 0;
1846 }
1847 /* Address values in .eh_frame sections are defined to have the
1848 target's pointer size. Watchout: This breaks frame info for
1849 targets with pointer size < address size, unless a .debug_frame
1850 section exists as well. */
1851 if (eh_frame_p)
1852 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1853 else
1854 cie->ptr_size = cie->addr_size;
1855
1856 buf = gdb_read_uleb128 (buf, end, &uleb128);
1857 if (buf == NULL)
1858 return NULL;
1859 cie->code_alignment_factor = uleb128;
1860
1861 buf = gdb_read_sleb128 (buf, end, &sleb128);
1862 if (buf == NULL)
1863 return NULL;
1864 cie->data_alignment_factor = sleb128;
1865
1866 if (cie_version == 1)
1867 {
1868 cie->return_address_register = read_1_byte (unit->abfd, buf);
1869 ++buf;
1870 }
1871 else
1872 {
1873 buf = gdb_read_uleb128 (buf, end, &uleb128);
1874 if (buf == NULL)
1875 return NULL;
1876 cie->return_address_register = uleb128;
1877 }
1878
1879 cie->return_address_register
1880 = dwarf2_frame_adjust_regnum (gdbarch,
1881 cie->return_address_register,
1882 eh_frame_p);
1883
1884 cie->saw_z_augmentation = (*augmentation == 'z');
1885 if (cie->saw_z_augmentation)
1886 {
1887 uint64_t uleb_length;
1888
1889 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1890 if (buf == NULL)
1891 return NULL;
1892 cie->initial_instructions = buf + uleb_length;
1893 augmentation++;
1894 }
1895
1896 while (*augmentation)
1897 {
1898 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1899 if (*augmentation == 'L')
1900 {
1901 /* Skip. */
1902 buf++;
1903 augmentation++;
1904 }
1905
1906 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1907 else if (*augmentation == 'R')
1908 {
1909 cie->encoding = *buf++;
1910 augmentation++;
1911 }
1912
1913 /* "P" indicates a personality routine in the CIE augmentation. */
1914 else if (*augmentation == 'P')
1915 {
1916 /* Skip. Avoid indirection since we throw away the result. */
1917 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1918 read_encoded_value (unit, encoding, cie->ptr_size,
1919 buf, &bytes_read, 0);
1920 buf += bytes_read;
1921 augmentation++;
1922 }
1923
1924 /* "S" indicates a signal frame, such that the return
1925 address must not be decremented to locate the call frame
1926 info for the previous frame; it might even be the first
1927 instruction of a function, so decrementing it would take
1928 us to a different function. */
1929 else if (*augmentation == 'S')
1930 {
1931 cie->signal_frame = 1;
1932 augmentation++;
1933 }
1934
1935 /* Otherwise we have an unknown augmentation. Assume that either
1936 there is no augmentation data, or we saw a 'z' prefix. */
1937 else
1938 {
1939 if (cie->initial_instructions)
1940 buf = cie->initial_instructions;
1941 break;
1942 }
1943 }
1944
1945 cie->initial_instructions = buf;
1946 cie->end = end;
1947 cie->unit = unit;
1948
1949 cie_table[cie->cie_pointer] = cie;
1950 }
1951 else
1952 {
1953 /* This is a FDE. */
1954 struct dwarf2_fde *fde;
1955 CORE_ADDR addr;
1956
1957 /* Check that an FDE was expected. */
1958 if ((entry_type & EH_FDE_TYPE_ID) == 0)
1959 error (_("Found an FDE when not expecting it."));
1960
1961 /* In an .eh_frame section, the CIE pointer is the delta between the
1962 address within the FDE where the CIE pointer is stored and the
1963 address of the CIE. Convert it to an offset into the .eh_frame
1964 section. */
1965 if (eh_frame_p)
1966 {
1967 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1968 cie_pointer -= (dwarf64_p ? 8 : 4);
1969 }
1970
1971 /* In either case, validate the result is still within the section. */
1972 if (cie_pointer >= unit->dwarf_frame_size)
1973 return NULL;
1974
1975 fde = XOBNEW (&unit->obstack, struct dwarf2_fde);
1976 fde->cie = find_cie (cie_table, cie_pointer);
1977 if (fde->cie == NULL)
1978 {
1979 decode_frame_entry (gdbarch, unit,
1980 unit->dwarf_frame_buffer + cie_pointer,
1981 eh_frame_p, cie_table, fde_table,
1982 EH_CIE_TYPE_ID);
1983 fde->cie = find_cie (cie_table, cie_pointer);
1984 }
1985
1986 gdb_assert (fde->cie != NULL);
1987
1988 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
1989 buf, &bytes_read, 0);
1990 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
1991 buf += bytes_read;
1992
1993 fde->address_range =
1994 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1995 fde->cie->ptr_size, buf, &bytes_read, 0);
1996 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
1997 fde->address_range = addr - fde->initial_location;
1998 buf += bytes_read;
1999
2000 /* A 'z' augmentation in the CIE implies the presence of an
2001 augmentation field in the FDE as well. The only thing known
2002 to be in here at present is the LSDA entry for EH. So we
2003 can skip the whole thing. */
2004 if (fde->cie->saw_z_augmentation)
2005 {
2006 uint64_t uleb_length;
2007
2008 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2009 if (buf == NULL)
2010 return NULL;
2011 buf += uleb_length;
2012 if (buf > end)
2013 return NULL;
2014 }
2015
2016 fde->instructions = buf;
2017 fde->end = end;
2018
2019 fde->eh_frame_p = eh_frame_p;
2020
2021 add_fde (fde_table, fde);
2022 }
2023
2024 return end;
2025 }
2026
2027 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2028 expect an FDE or a CIE. */
2029
2030 static const gdb_byte *
2031 decode_frame_entry (struct gdbarch *gdbarch,
2032 struct comp_unit *unit, const gdb_byte *start,
2033 int eh_frame_p,
2034 dwarf2_cie_table &cie_table,
2035 dwarf2_fde_table *fde_table,
2036 enum eh_frame_type entry_type)
2037 {
2038 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2039 const gdb_byte *ret;
2040 ptrdiff_t start_offset;
2041
2042 while (1)
2043 {
2044 ret = decode_frame_entry_1 (gdbarch, unit, start, eh_frame_p,
2045 cie_table, fde_table, entry_type);
2046 if (ret != NULL)
2047 break;
2048
2049 /* We have corrupt input data of some form. */
2050
2051 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2052 and mismatches wrt padding and alignment of debug sections. */
2053 /* Note that there is no requirement in the standard for any
2054 alignment at all in the frame unwind sections. Testing for
2055 alignment before trying to interpret data would be incorrect.
2056
2057 However, GCC traditionally arranged for frame sections to be
2058 sized such that the FDE length and CIE fields happen to be
2059 aligned (in theory, for performance). This, unfortunately,
2060 was done with .align directives, which had the side effect of
2061 forcing the section to be aligned by the linker.
2062
2063 This becomes a problem when you have some other producer that
2064 creates frame sections that are not as strictly aligned. That
2065 produces a hole in the frame info that gets filled by the
2066 linker with zeros.
2067
2068 The GCC behaviour is arguably a bug, but it's effectively now
2069 part of the ABI, so we're now stuck with it, at least at the
2070 object file level. A smart linker may decide, in the process
2071 of compressing duplicate CIE information, that it can rewrite
2072 the entire output section without this extra padding. */
2073
2074 start_offset = start - unit->dwarf_frame_buffer;
2075 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2076 {
2077 start += 4 - (start_offset & 3);
2078 workaround = ALIGN4;
2079 continue;
2080 }
2081 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2082 {
2083 start += 8 - (start_offset & 7);
2084 workaround = ALIGN8;
2085 continue;
2086 }
2087
2088 /* Nothing left to try. Arrange to return as if we've consumed
2089 the entire input section. Hopefully we'll get valid info from
2090 the other of .debug_frame/.eh_frame. */
2091 workaround = FAIL;
2092 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2093 break;
2094 }
2095
2096 switch (workaround)
2097 {
2098 case NONE:
2099 break;
2100
2101 case ALIGN4:
2102 complaint (_("\
2103 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2104 unit->dwarf_frame_section->owner->filename,
2105 unit->dwarf_frame_section->name);
2106 break;
2107
2108 case ALIGN8:
2109 complaint (_("\
2110 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2111 unit->dwarf_frame_section->owner->filename,
2112 unit->dwarf_frame_section->name);
2113 break;
2114
2115 default:
2116 complaint (_("Corrupt data in %s:%s"),
2117 unit->dwarf_frame_section->owner->filename,
2118 unit->dwarf_frame_section->name);
2119 break;
2120 }
2121
2122 return ret;
2123 }
2124 \f
2125 static bool
2126 fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
2127 {
2128 if (aa->initial_location == bb->initial_location)
2129 {
2130 if (aa->address_range != bb->address_range
2131 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2132 /* Linker bug, e.g. gold/10400.
2133 Work around it by keeping stable sort order. */
2134 return aa < bb;
2135 else
2136 /* Put eh_frame entries after debug_frame ones. */
2137 return aa->eh_frame_p < bb->eh_frame_p;
2138 }
2139
2140 return aa->initial_location < bb->initial_location;
2141 }
2142
2143 void
2144 dwarf2_build_frame_info (struct objfile *objfile)
2145 {
2146 const gdb_byte *frame_ptr;
2147 dwarf2_cie_table cie_table;
2148 dwarf2_fde_table fde_table;
2149
2150 struct gdbarch *gdbarch = objfile->arch ();
2151
2152 /* Build a minimal decoding of the DWARF2 compilation unit. */
2153 std::unique_ptr<comp_unit> unit (new comp_unit (objfile));
2154
2155 if (objfile->separate_debug_objfile_backlink == NULL)
2156 {
2157 /* Do not read .eh_frame from separate file as they must be also
2158 present in the main file. */
2159 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2160 &unit->dwarf_frame_section,
2161 &unit->dwarf_frame_buffer,
2162 &unit->dwarf_frame_size);
2163 if (unit->dwarf_frame_size)
2164 {
2165 asection *got, *txt;
2166
2167 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2168 that is used for the i386/amd64 target, which currently is
2169 the only target in GCC that supports/uses the
2170 DW_EH_PE_datarel encoding. */
2171 got = bfd_get_section_by_name (unit->abfd, ".got");
2172 if (got)
2173 unit->dbase = got->vma;
2174
2175 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2176 so far. */
2177 txt = bfd_get_section_by_name (unit->abfd, ".text");
2178 if (txt)
2179 unit->tbase = txt->vma;
2180
2181 try
2182 {
2183 frame_ptr = unit->dwarf_frame_buffer;
2184 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2185 frame_ptr = decode_frame_entry (gdbarch, unit.get (),
2186 frame_ptr, 1,
2187 cie_table, &fde_table,
2188 EH_CIE_OR_FDE_TYPE_ID);
2189 }
2190
2191 catch (const gdb_exception_error &e)
2192 {
2193 warning (_("skipping .eh_frame info of %s: %s"),
2194 objfile_name (objfile), e.what ());
2195
2196 fde_table.clear ();
2197 /* The cie_table is discarded below. */
2198 }
2199
2200 cie_table.clear ();
2201 }
2202 }
2203
2204 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2205 &unit->dwarf_frame_section,
2206 &unit->dwarf_frame_buffer,
2207 &unit->dwarf_frame_size);
2208 if (unit->dwarf_frame_size)
2209 {
2210 size_t num_old_fde_entries = fde_table.size ();
2211
2212 try
2213 {
2214 frame_ptr = unit->dwarf_frame_buffer;
2215 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2216 frame_ptr = decode_frame_entry (gdbarch, unit.get (), frame_ptr, 0,
2217 cie_table, &fde_table,
2218 EH_CIE_OR_FDE_TYPE_ID);
2219 }
2220 catch (const gdb_exception_error &e)
2221 {
2222 warning (_("skipping .debug_frame info of %s: %s"),
2223 objfile_name (objfile), e.what ());
2224
2225 fde_table.resize (num_old_fde_entries);
2226 }
2227 }
2228
2229 struct dwarf2_fde *fde_prev = NULL;
2230 struct dwarf2_fde *first_non_zero_fde = NULL;
2231
2232 /* Prepare FDE table for lookups. */
2233 std::sort (fde_table.begin (), fde_table.end (), fde_is_less_than);
2234
2235 /* Check for leftovers from --gc-sections. The GNU linker sets
2236 the relevant symbols to zero, but doesn't zero the FDE *end*
2237 ranges because there's no relocation there. It's (offset,
2238 length), not (start, end). On targets where address zero is
2239 just another valid address this can be a problem, since the
2240 FDEs appear to be non-empty in the output --- we could pick
2241 out the wrong FDE. To work around this, when overlaps are
2242 detected, we prefer FDEs that do not start at zero.
2243
2244 Start by finding the first FDE with non-zero start. Below
2245 we'll discard all FDEs that start at zero and overlap this
2246 one. */
2247 for (struct dwarf2_fde *fde : fde_table)
2248 {
2249 if (fde->initial_location != 0)
2250 {
2251 first_non_zero_fde = fde;
2252 break;
2253 }
2254 }
2255
2256 /* Since we'll be doing bsearch, squeeze out identical (except
2257 for eh_frame_p) fde entries so bsearch result is predictable.
2258 Also discard leftovers from --gc-sections. */
2259 for (struct dwarf2_fde *fde : fde_table)
2260 {
2261 if (fde->initial_location == 0
2262 && first_non_zero_fde != NULL
2263 && (first_non_zero_fde->initial_location
2264 < fde->initial_location + fde->address_range))
2265 continue;
2266
2267 if (fde_prev != NULL
2268 && fde_prev->initial_location == fde->initial_location)
2269 continue;
2270
2271 unit->fde_table.push_back (fde);
2272 fde_prev = fde;
2273 }
2274 unit->fde_table.shrink_to_fit ();
2275
2276 set_comp_unit (objfile, unit.release ());
2277 }
2278
2279 /* Handle 'maintenance show dwarf unwinders'. */
2280
2281 static void
2282 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2283 struct cmd_list_element *c,
2284 const char *value)
2285 {
2286 fprintf_filtered (file,
2287 _("The DWARF stack unwinders are currently %s.\n"),
2288 value);
2289 }
2290
2291 void _initialize_dwarf2_frame ();
2292 void
2293 _initialize_dwarf2_frame ()
2294 {
2295 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2296
2297 add_setshow_boolean_cmd ("unwinders", class_obscure,
2298 &dwarf2_frame_unwinders_enabled_p , _("\
2299 Set whether the DWARF stack frame unwinders are used."), _("\
2300 Show whether the DWARF stack frame unwinders are used."), _("\
2301 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2302 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2303 architecture that doesn't support them will have no effect."),
2304 NULL,
2305 show_dwarf_unwinders_enabled_p,
2306 &set_dwarf_cmdlist,
2307 &show_dwarf_cmdlist);
2308
2309 #if GDB_SELF_TEST
2310 selftests::register_test_foreach_arch ("execute_cfa_program",
2311 selftests::execute_cfa_program_test);
2312 #endif
2313 }
This page took 0.076914 seconds and 4 git commands to generate.