07cee58c1f013e4e196abd6143652d986597cdf6
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "bfd.h"
41 #include "elf-bfd.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "objfiles.h"
45 #include "dwarf2.h"
46 #include "buildsym.h"
47 #include "demangle.h"
48 #include "gdb-demangle.h"
49 #include "filenames.h" /* for DOSish file names */
50 #include "macrotab.h"
51 #include "language.h"
52 #include "complaints.h"
53 #include "dwarf2/expr.h"
54 #include "dwarf2/loc.h"
55 #include "cp-support.h"
56 #include "hashtab.h"
57 #include "command.h"
58 #include "gdbcmd.h"
59 #include "block.h"
60 #include "addrmap.h"
61 #include "typeprint.h"
62 #include "psympriv.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "build-id.h"
72 #include "namespace.h"
73 #include "gdbsupport/function-view.h"
74 #include "gdbsupport/gdb_optional.h"
75 #include "gdbsupport/underlying.h"
76 #include "gdbsupport/hash_enum.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <algorithm>
81 #include <unordered_map>
82 #include "gdbsupport/selftest.h"
83 #include "rust-lang.h"
84 #include "gdbsupport/pathstuff.h"
85 #include "count-one-bits.h"
86 #include "debuginfod-support.h"
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 unsigned int dwarf_line_debug = 0;
98
99 /* When true, cross-check physname against demangler. */
100 static bool check_physname = false;
101
102 /* When true, do not reject deprecated .gdb_index sections. */
103 static bool use_deprecated_index_sections = false;
104
105 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* An index into a (C++) symbol name component in a symbol name as
115 recorded in the mapped_index's symbol table. For each C++ symbol
116 in the symbol table, we record one entry for the start of each
117 component in the symbol in a table of name components, and then
118 sort the table, in order to be able to binary search symbol names,
119 ignoring leading namespaces, both completion and regular look up.
120 For example, for symbol "A::B::C", we'll have an entry that points
121 to "A::B::C", another that points to "B::C", and another for "C".
122 Note that function symbols in GDB index have no parameter
123 information, just the function/method names. You can convert a
124 name_component to a "const char *" using the
125 'mapped_index::symbol_name_at(offset_type)' method. */
126
127 struct name_component
128 {
129 /* Offset in the symbol name where the component starts. Stored as
130 a (32-bit) offset instead of a pointer to save memory and improve
131 locality on 64-bit architectures. */
132 offset_type name_offset;
133
134 /* The symbol's index in the symbol and constant pool tables of a
135 mapped_index. */
136 offset_type idx;
137 };
138
139 /* Base class containing bits shared by both .gdb_index and
140 .debug_name indexes. */
141
142 struct mapped_index_base
143 {
144 mapped_index_base () = default;
145 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
146
147 /* The name_component table (a sorted vector). See name_component's
148 description above. */
149 std::vector<name_component> name_components;
150
151 /* How NAME_COMPONENTS is sorted. */
152 enum case_sensitivity name_components_casing;
153
154 /* Return the number of names in the symbol table. */
155 virtual size_t symbol_name_count () const = 0;
156
157 /* Get the name of the symbol at IDX in the symbol table. */
158 virtual const char *symbol_name_at (offset_type idx) const = 0;
159
160 /* Return whether the name at IDX in the symbol table should be
161 ignored. */
162 virtual bool symbol_name_slot_invalid (offset_type idx) const
163 {
164 return false;
165 }
166
167 /* Build the symbol name component sorted vector, if we haven't
168 yet. */
169 void build_name_components ();
170
171 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
172 possible matches for LN_NO_PARAMS in the name component
173 vector. */
174 std::pair<std::vector<name_component>::const_iterator,
175 std::vector<name_component>::const_iterator>
176 find_name_components_bounds (const lookup_name_info &ln_no_params,
177 enum language lang) const;
178
179 /* Prevent deleting/destroying via a base class pointer. */
180 protected:
181 ~mapped_index_base() = default;
182 };
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index final : public mapped_index_base
187 {
188 /* A slot/bucket in the symbol table hash. */
189 struct symbol_table_slot
190 {
191 const offset_type name;
192 const offset_type vec;
193 };
194
195 /* Index data format version. */
196 int version = 0;
197
198 /* The address table data. */
199 gdb::array_view<const gdb_byte> address_table;
200
201 /* The symbol table, implemented as a hash table. */
202 gdb::array_view<symbol_table_slot> symbol_table;
203
204 /* A pointer to the constant pool. */
205 const char *constant_pool = nullptr;
206
207 bool symbol_name_slot_invalid (offset_type idx) const override
208 {
209 const auto &bucket = this->symbol_table[idx];
210 return bucket.name == 0 && bucket.vec == 0;
211 }
212
213 /* Convenience method to get at the name of the symbol at IDX in the
214 symbol table. */
215 const char *symbol_name_at (offset_type idx) const override
216 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
217
218 size_t symbol_name_count () const override
219 { return this->symbol_table.size (); }
220 };
221
222 /* A description of the mapped .debug_names.
223 Uninitialized map has CU_COUNT 0. */
224 struct mapped_debug_names final : public mapped_index_base
225 {
226 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
227 : dwarf2_per_objfile (dwarf2_per_objfile_)
228 {}
229
230 struct dwarf2_per_objfile *dwarf2_per_objfile;
231 bfd_endian dwarf5_byte_order;
232 bool dwarf5_is_dwarf64;
233 bool augmentation_is_gdb;
234 uint8_t offset_size;
235 uint32_t cu_count = 0;
236 uint32_t tu_count, bucket_count, name_count;
237 const gdb_byte *cu_table_reordered, *tu_table_reordered;
238 const uint32_t *bucket_table_reordered, *hash_table_reordered;
239 const gdb_byte *name_table_string_offs_reordered;
240 const gdb_byte *name_table_entry_offs_reordered;
241 const gdb_byte *entry_pool;
242
243 struct index_val
244 {
245 ULONGEST dwarf_tag;
246 struct attr
247 {
248 /* Attribute name DW_IDX_*. */
249 ULONGEST dw_idx;
250
251 /* Attribute form DW_FORM_*. */
252 ULONGEST form;
253
254 /* Value if FORM is DW_FORM_implicit_const. */
255 LONGEST implicit_const;
256 };
257 std::vector<attr> attr_vec;
258 };
259
260 std::unordered_map<ULONGEST, index_val> abbrev_map;
261
262 const char *namei_to_name (uint32_t namei) const;
263
264 /* Implementation of the mapped_index_base virtual interface, for
265 the name_components cache. */
266
267 const char *symbol_name_at (offset_type idx) const override
268 { return namei_to_name (idx); }
269
270 size_t symbol_name_count () const override
271 { return this->name_count; }
272 };
273
274 /* See dwarf2read.h. */
275
276 dwarf2_per_objfile *
277 get_dwarf2_per_objfile (struct objfile *objfile)
278 {
279 return dwarf2_objfile_data_key.get (objfile);
280 }
281
282 /* Default names of the debugging sections. */
283
284 /* Note that if the debugging section has been compressed, it might
285 have a name like .zdebug_info. */
286
287 static const struct dwarf2_debug_sections dwarf2_elf_names =
288 {
289 { ".debug_info", ".zdebug_info" },
290 { ".debug_abbrev", ".zdebug_abbrev" },
291 { ".debug_line", ".zdebug_line" },
292 { ".debug_loc", ".zdebug_loc" },
293 { ".debug_loclists", ".zdebug_loclists" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_str_offsets", ".zdebug_str_offsets" },
298 { ".debug_line_str", ".zdebug_line_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_rnglists", ".zdebug_rnglists" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 { ".debug_names", ".zdebug_names" },
307 { ".debug_aranges", ".zdebug_aranges" },
308 23
309 };
310
311 /* List of DWO/DWP sections. */
312
313 static const struct dwop_section_names
314 {
315 struct dwarf2_section_names abbrev_dwo;
316 struct dwarf2_section_names info_dwo;
317 struct dwarf2_section_names line_dwo;
318 struct dwarf2_section_names loc_dwo;
319 struct dwarf2_section_names loclists_dwo;
320 struct dwarf2_section_names macinfo_dwo;
321 struct dwarf2_section_names macro_dwo;
322 struct dwarf2_section_names str_dwo;
323 struct dwarf2_section_names str_offsets_dwo;
324 struct dwarf2_section_names types_dwo;
325 struct dwarf2_section_names cu_index;
326 struct dwarf2_section_names tu_index;
327 }
328 dwop_section_names =
329 {
330 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
331 { ".debug_info.dwo", ".zdebug_info.dwo" },
332 { ".debug_line.dwo", ".zdebug_line.dwo" },
333 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
334 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
335 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
336 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
337 { ".debug_str.dwo", ".zdebug_str.dwo" },
338 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
339 { ".debug_types.dwo", ".zdebug_types.dwo" },
340 { ".debug_cu_index", ".zdebug_cu_index" },
341 { ".debug_tu_index", ".zdebug_tu_index" },
342 };
343
344 /* local data types */
345
346 /* Type used for delaying computation of method physnames.
347 See comments for compute_delayed_physnames. */
348 struct delayed_method_info
349 {
350 /* The type to which the method is attached, i.e., its parent class. */
351 struct type *type;
352
353 /* The index of the method in the type's function fieldlists. */
354 int fnfield_index;
355
356 /* The index of the method in the fieldlist. */
357 int index;
358
359 /* The name of the DIE. */
360 const char *name;
361
362 /* The DIE associated with this method. */
363 struct die_info *die;
364 };
365
366 /* Internal state when decoding a particular compilation unit. */
367 struct dwarf2_cu
368 {
369 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
370 ~dwarf2_cu ();
371
372 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
373
374 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
375 Create the set of symtabs used by this TU, or if this TU is sharing
376 symtabs with another TU and the symtabs have already been created
377 then restore those symtabs in the line header.
378 We don't need the pc/line-number mapping for type units. */
379 void setup_type_unit_groups (struct die_info *die);
380
381 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
382 buildsym_compunit constructor. */
383 struct compunit_symtab *start_symtab (const char *name,
384 const char *comp_dir,
385 CORE_ADDR low_pc);
386
387 /* Reset the builder. */
388 void reset_builder () { m_builder.reset (); }
389
390 /* The header of the compilation unit. */
391 struct comp_unit_head header {};
392
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address = 0;
395
396 /* Non-zero if base_address has been set. */
397 int base_known = 0;
398
399 /* The language we are debugging. */
400 enum language language = language_unknown;
401 const struct language_defn *language_defn = nullptr;
402
403 const char *producer = nullptr;
404
405 private:
406 /* The symtab builder for this CU. This is only non-NULL when full
407 symbols are being read. */
408 std::unique_ptr<buildsym_compunit> m_builder;
409
410 public:
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope = nullptr;
421
422 /* Hash table holding all the loaded partial DIEs
423 with partial_die->offset.SECT_OFF as hash. */
424 htab_t partial_dies = nullptr;
425
426 /* Storage for things with the same lifetime as this read-in compilation
427 unit, including partial DIEs. */
428 auto_obstack comp_unit_obstack;
429
430 /* When multiple dwarf2_cu structures are living in memory, this field
431 chains them all together, so that they can be released efficiently.
432 We will probably also want a generation counter so that most-recently-used
433 compilation units are cached... */
434 struct dwarf2_per_cu_data *read_in_chain = nullptr;
435
436 /* Backlink to our per_cu entry. */
437 struct dwarf2_per_cu_data *per_cu;
438
439 /* How many compilation units ago was this CU last referenced? */
440 int last_used = 0;
441
442 /* A hash table of DIE cu_offset for following references with
443 die_info->offset.sect_off as hash. */
444 htab_t die_hash = nullptr;
445
446 /* Full DIEs if read in. */
447 struct die_info *dies = nullptr;
448
449 /* A set of pointers to dwarf2_per_cu_data objects for compilation
450 units referenced by this one. Only set during full symbol processing;
451 partial symbol tables do not have dependencies. */
452 htab_t dependencies = nullptr;
453
454 /* Header data from the line table, during full symbol processing. */
455 struct line_header *line_header = nullptr;
456 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
457 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
458 this is the DW_TAG_compile_unit die for this CU. We'll hold on
459 to the line header as long as this DIE is being processed. See
460 process_die_scope. */
461 die_info *line_header_die_owner = nullptr;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 std::vector<delayed_method_info> method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab = nullptr;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit = nullptr;
480
481 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
482 Note this value comes from the Fission stub CU/TU's DIE. */
483 gdb::optional<ULONGEST> addr_base;
484
485 /* The DW_AT_rnglists_base attribute if present.
486 Note this value comes from the Fission stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base = 0;
495
496 /* When reading debug info generated by older versions of rustc, we
497 have to rewrite some union types to be struct types with a
498 variant part. This rewriting must be done after the CU is fully
499 read in, because otherwise at the point of rewriting some struct
500 type might not have been fully processed. So, we keep a list of
501 all such types here and process them after expansion. */
502 std::vector<struct type *> rust_unions;
503
504 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
505 files, the value is implicitly zero. For DWARF 5 version DWO files, the
506 value is often implicit and is the size of the header of
507 .debug_str_offsets section (8 or 4, depending on the address size). */
508 gdb::optional<ULONGEST> str_offsets_base;
509
510 /* Mark used when releasing cached dies. */
511 bool mark : 1;
512
513 /* This CU references .debug_loc. See the symtab->locations_valid field.
514 This test is imperfect as there may exist optimized debug code not using
515 any location list and still facing inlining issues if handled as
516 unoptimized code. For a future better test see GCC PR other/32998. */
517 bool has_loclist : 1;
518
519 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
520 if all the producer_is_* fields are valid. This information is cached
521 because profiling CU expansion showed excessive time spent in
522 producer_is_gxx_lt_4_6. */
523 bool checked_producer : 1;
524 bool producer_is_gxx_lt_4_6 : 1;
525 bool producer_is_gcc_lt_4_3 : 1;
526 bool producer_is_icc : 1;
527 bool producer_is_icc_lt_14 : 1;
528 bool producer_is_codewarrior : 1;
529
530 /* When true, the file that we're processing is known to have
531 debugging info for C++ namespaces. GCC 3.3.x did not produce
532 this information, but later versions do. */
533
534 bool processing_has_namespace_info : 1;
535
536 struct partial_die_info *find_partial_die (sect_offset sect_off);
537
538 /* If this CU was inherited by another CU (via specification,
539 abstract_origin, etc), this is the ancestor CU. */
540 dwarf2_cu *ancestor;
541
542 /* Get the buildsym_compunit for this CU. */
543 buildsym_compunit *get_builder ()
544 {
545 /* If this CU has a builder associated with it, use that. */
546 if (m_builder != nullptr)
547 return m_builder.get ();
548
549 /* Otherwise, search ancestors for a valid builder. */
550 if (ancestor != nullptr)
551 return ancestor->get_builder ();
552
553 return nullptr;
554 }
555 };
556
557 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
558 This includes type_unit_group and quick_file_names. */
559
560 struct stmt_list_hash
561 {
562 /* The DWO unit this table is from or NULL if there is none. */
563 struct dwo_unit *dwo_unit;
564
565 /* Offset in .debug_line or .debug_line.dwo. */
566 sect_offset line_sect_off;
567 };
568
569 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
570 an object of this type. */
571
572 struct type_unit_group
573 {
574 /* dwarf2read.c's main "handle" on a TU symtab.
575 To simplify things we create an artificial CU that "includes" all the
576 type units using this stmt_list so that the rest of the code still has
577 a "per_cu" handle on the symtab. */
578 struct dwarf2_per_cu_data per_cu;
579
580 /* The TUs that share this DW_AT_stmt_list entry.
581 This is added to while parsing type units to build partial symtabs,
582 and is deleted afterwards and not used again. */
583 std::vector<signatured_type *> *tus;
584
585 /* The compunit symtab.
586 Type units in a group needn't all be defined in the same source file,
587 so we create an essentially anonymous symtab as the compunit symtab. */
588 struct compunit_symtab *compunit_symtab;
589
590 /* The data used to construct the hash key. */
591 struct stmt_list_hash hash;
592
593 /* The symbol tables for this TU (obtained from the files listed in
594 DW_AT_stmt_list).
595 WARNING: The order of entries here must match the order of entries
596 in the line header. After the first TU using this type_unit_group, the
597 line header for the subsequent TUs is recreated from this. This is done
598 because we need to use the same symtabs for each TU using the same
599 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
600 there's no guarantee the line header doesn't have duplicate entries. */
601 struct symtab **symtabs;
602 };
603
604 /* These sections are what may appear in a (real or virtual) DWO file. */
605
606 struct dwo_sections
607 {
608 struct dwarf2_section_info abbrev;
609 struct dwarf2_section_info line;
610 struct dwarf2_section_info loc;
611 struct dwarf2_section_info loclists;
612 struct dwarf2_section_info macinfo;
613 struct dwarf2_section_info macro;
614 struct dwarf2_section_info str;
615 struct dwarf2_section_info str_offsets;
616 /* In the case of a virtual DWO file, these two are unused. */
617 struct dwarf2_section_info info;
618 std::vector<dwarf2_section_info> types;
619 };
620
621 /* CUs/TUs in DWP/DWO files. */
622
623 struct dwo_unit
624 {
625 /* Backlink to the containing struct dwo_file. */
626 struct dwo_file *dwo_file;
627
628 /* The "id" that distinguishes this CU/TU.
629 .debug_info calls this "dwo_id", .debug_types calls this "signature".
630 Since signatures came first, we stick with it for consistency. */
631 ULONGEST signature;
632
633 /* The section this CU/TU lives in, in the DWO file. */
634 struct dwarf2_section_info *section;
635
636 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
637 sect_offset sect_off;
638 unsigned int length;
639
640 /* For types, offset in the type's DIE of the type defined by this TU. */
641 cu_offset type_offset_in_tu;
642 };
643
644 /* include/dwarf2.h defines the DWP section codes.
645 It defines a max value but it doesn't define a min value, which we
646 use for error checking, so provide one. */
647
648 enum dwp_v2_section_ids
649 {
650 DW_SECT_MIN = 1
651 };
652
653 /* Data for one DWO file.
654
655 This includes virtual DWO files (a virtual DWO file is a DWO file as it
656 appears in a DWP file). DWP files don't really have DWO files per se -
657 comdat folding of types "loses" the DWO file they came from, and from
658 a high level view DWP files appear to contain a mass of random types.
659 However, to maintain consistency with the non-DWP case we pretend DWP
660 files contain virtual DWO files, and we assign each TU with one virtual
661 DWO file (generally based on the line and abbrev section offsets -
662 a heuristic that seems to work in practice). */
663
664 struct dwo_file
665 {
666 dwo_file () = default;
667 DISABLE_COPY_AND_ASSIGN (dwo_file);
668
669 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
670 For virtual DWO files the name is constructed from the section offsets
671 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
672 from related CU+TUs. */
673 const char *dwo_name = nullptr;
674
675 /* The DW_AT_comp_dir attribute. */
676 const char *comp_dir = nullptr;
677
678 /* The bfd, when the file is open. Otherwise this is NULL.
679 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
680 gdb_bfd_ref_ptr dbfd;
681
682 /* The sections that make up this DWO file.
683 Remember that for virtual DWO files in DWP V2, these are virtual
684 sections (for lack of a better name). */
685 struct dwo_sections sections {};
686
687 /* The CUs in the file.
688 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
689 an extension to handle LLVM's Link Time Optimization output (where
690 multiple source files may be compiled into a single object/dwo pair). */
691 htab_up cus;
692
693 /* Table of TUs in the file.
694 Each element is a struct dwo_unit. */
695 htab_up tus;
696 };
697
698 /* These sections are what may appear in a DWP file. */
699
700 struct dwp_sections
701 {
702 /* These are used by both DWP version 1 and 2. */
703 struct dwarf2_section_info str;
704 struct dwarf2_section_info cu_index;
705 struct dwarf2_section_info tu_index;
706
707 /* These are only used by DWP version 2 files.
708 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
709 sections are referenced by section number, and are not recorded here.
710 In DWP version 2 there is at most one copy of all these sections, each
711 section being (effectively) comprised of the concatenation of all of the
712 individual sections that exist in the version 1 format.
713 To keep the code simple we treat each of these concatenated pieces as a
714 section itself (a virtual section?). */
715 struct dwarf2_section_info abbrev;
716 struct dwarf2_section_info info;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str_offsets;
722 struct dwarf2_section_info types;
723 };
724
725 /* These sections are what may appear in a virtual DWO file in DWP version 1.
726 A virtual DWO file is a DWO file as it appears in a DWP file. */
727
728 struct virtual_v1_dwo_sections
729 {
730 struct dwarf2_section_info abbrev;
731 struct dwarf2_section_info line;
732 struct dwarf2_section_info loc;
733 struct dwarf2_section_info macinfo;
734 struct dwarf2_section_info macro;
735 struct dwarf2_section_info str_offsets;
736 /* Each DWP hash table entry records one CU or one TU.
737 That is recorded here, and copied to dwo_unit.section. */
738 struct dwarf2_section_info info_or_types;
739 };
740
741 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
742 In version 2, the sections of the DWO files are concatenated together
743 and stored in one section of that name. Thus each ELF section contains
744 several "virtual" sections. */
745
746 struct virtual_v2_dwo_sections
747 {
748 bfd_size_type abbrev_offset;
749 bfd_size_type abbrev_size;
750
751 bfd_size_type line_offset;
752 bfd_size_type line_size;
753
754 bfd_size_type loc_offset;
755 bfd_size_type loc_size;
756
757 bfd_size_type macinfo_offset;
758 bfd_size_type macinfo_size;
759
760 bfd_size_type macro_offset;
761 bfd_size_type macro_size;
762
763 bfd_size_type str_offsets_offset;
764 bfd_size_type str_offsets_size;
765
766 /* Each DWP hash table entry records one CU or one TU.
767 That is recorded here, and copied to dwo_unit.section. */
768 bfd_size_type info_or_types_offset;
769 bfd_size_type info_or_types_size;
770 };
771
772 /* Contents of DWP hash tables. */
773
774 struct dwp_hash_table
775 {
776 uint32_t version, nr_columns;
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table;
779 union
780 {
781 struct
782 {
783 const gdb_byte *indices;
784 } v1;
785 struct
786 {
787 /* This is indexed by column number and gives the id of the section
788 in that column. */
789 #define MAX_NR_V2_DWO_SECTIONS \
790 (1 /* .debug_info or .debug_types */ \
791 + 1 /* .debug_abbrev */ \
792 + 1 /* .debug_line */ \
793 + 1 /* .debug_loc */ \
794 + 1 /* .debug_str_offsets */ \
795 + 1 /* .debug_macro or .debug_macinfo */)
796 int section_ids[MAX_NR_V2_DWO_SECTIONS];
797 const gdb_byte *offsets;
798 const gdb_byte *sizes;
799 } v2;
800 } section_pool;
801 };
802
803 /* Data for one DWP file. */
804
805 struct dwp_file
806 {
807 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
808 : name (name_),
809 dbfd (std::move (abfd))
810 {
811 }
812
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version = 0;
818
819 /* The bfd. */
820 gdb_bfd_ref_ptr dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections {};
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus = nullptr;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus = nullptr;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_up loaded_cus;
833 htab_up loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections = 0;
838 asection **elf_sections = nullptr;
839 };
840
841 /* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
845
846 struct die_reader_specs
847 {
848 /* The bfd of die_section. */
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
856
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
866
867 /* The abbreviation table to use when reading the DIEs. */
868 struct abbrev_table *abbrev_table;
869 };
870
871 /* A subclass of die_reader_specs that holds storage and has complex
872 constructor and destructor behavior. */
873
874 class cutu_reader : public die_reader_specs
875 {
876 public:
877
878 cutu_reader (struct dwarf2_per_cu_data *this_cu,
879 struct abbrev_table *abbrev_table,
880 int use_existing_cu,
881 bool skip_partial);
882
883 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
884 struct dwarf2_cu *parent_cu = nullptr,
885 struct dwo_file *dwo_file = nullptr);
886
887 DISABLE_COPY_AND_ASSIGN (cutu_reader);
888
889 const gdb_byte *info_ptr = nullptr;
890 struct die_info *comp_unit_die = nullptr;
891 bool dummy_p = false;
892
893 /* Release the new CU, putting it on the chain. This cannot be done
894 for dummy CUs. */
895 void keep ();
896
897 private:
898 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
899 int use_existing_cu);
900
901 struct dwarf2_per_cu_data *m_this_cu;
902 std::unique_ptr<dwarf2_cu> m_new_cu;
903
904 /* The ordinary abbreviation table. */
905 abbrev_table_up m_abbrev_table_holder;
906
907 /* The DWO abbreviation table. */
908 abbrev_table_up m_dwo_abbrev_table;
909 };
910
911 /* When we construct a partial symbol table entry we only
912 need this much information. */
913 struct partial_die_info : public allocate_on_obstack
914 {
915 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
916
917 /* Disable assign but still keep copy ctor, which is needed
918 load_partial_dies. */
919 partial_die_info& operator=(const partial_die_info& rhs) = delete;
920
921 /* Adjust the partial die before generating a symbol for it. This
922 function may set the is_external flag or change the DIE's
923 name. */
924 void fixup (struct dwarf2_cu *cu);
925
926 /* Read a minimal amount of information into the minimal die
927 structure. */
928 const gdb_byte *read (const struct die_reader_specs *reader,
929 const struct abbrev_info &abbrev,
930 const gdb_byte *info_ptr);
931
932 /* Offset of this DIE. */
933 const sect_offset sect_off;
934
935 /* DWARF-2 tag for this DIE. */
936 const ENUM_BITFIELD(dwarf_tag) tag : 16;
937
938 /* Assorted flags describing the data found in this DIE. */
939 const unsigned int has_children : 1;
940
941 unsigned int is_external : 1;
942 unsigned int is_declaration : 1;
943 unsigned int has_type : 1;
944 unsigned int has_specification : 1;
945 unsigned int has_pc_info : 1;
946 unsigned int may_be_inlined : 1;
947
948 /* This DIE has been marked DW_AT_main_subprogram. */
949 unsigned int main_subprogram : 1;
950
951 /* Flag set if the SCOPE field of this structure has been
952 computed. */
953 unsigned int scope_set : 1;
954
955 /* Flag set if the DIE has a byte_size attribute. */
956 unsigned int has_byte_size : 1;
957
958 /* Flag set if the DIE has a DW_AT_const_value attribute. */
959 unsigned int has_const_value : 1;
960
961 /* Flag set if any of the DIE's children are template arguments. */
962 unsigned int has_template_arguments : 1;
963
964 /* Flag set if fixup has been called on this die. */
965 unsigned int fixup_called : 1;
966
967 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
968 unsigned int is_dwz : 1;
969
970 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
971 unsigned int spec_is_dwz : 1;
972
973 /* The name of this DIE. Normally the value of DW_AT_name, but
974 sometimes a default name for unnamed DIEs. */
975 const char *name = nullptr;
976
977 /* The linkage name, if present. */
978 const char *linkage_name = nullptr;
979
980 /* The scope to prepend to our children. This is generally
981 allocated on the comp_unit_obstack, so will disappear
982 when this compilation unit leaves the cache. */
983 const char *scope = nullptr;
984
985 /* Some data associated with the partial DIE. The tag determines
986 which field is live. */
987 union
988 {
989 /* The location description associated with this DIE, if any. */
990 struct dwarf_block *locdesc;
991 /* The offset of an import, for DW_TAG_imported_unit. */
992 sect_offset sect_off;
993 } d {};
994
995 /* If HAS_PC_INFO, the PC range associated with this DIE. */
996 CORE_ADDR lowpc = 0;
997 CORE_ADDR highpc = 0;
998
999 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1000 DW_AT_sibling, if any. */
1001 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1002 could return DW_AT_sibling values to its caller load_partial_dies. */
1003 const gdb_byte *sibling = nullptr;
1004
1005 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1006 DW_AT_specification (or DW_AT_abstract_origin or
1007 DW_AT_extension). */
1008 sect_offset spec_offset {};
1009
1010 /* Pointers to this DIE's parent, first child, and next sibling,
1011 if any. */
1012 struct partial_die_info *die_parent = nullptr;
1013 struct partial_die_info *die_child = nullptr;
1014 struct partial_die_info *die_sibling = nullptr;
1015
1016 friend struct partial_die_info *
1017 dwarf2_cu::find_partial_die (sect_offset sect_off);
1018
1019 private:
1020 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1021 partial_die_info (sect_offset sect_off)
1022 : partial_die_info (sect_off, DW_TAG_padding, 0)
1023 {
1024 }
1025
1026 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1027 int has_children_)
1028 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1029 {
1030 is_external = 0;
1031 is_declaration = 0;
1032 has_type = 0;
1033 has_specification = 0;
1034 has_pc_info = 0;
1035 may_be_inlined = 0;
1036 main_subprogram = 0;
1037 scope_set = 0;
1038 has_byte_size = 0;
1039 has_const_value = 0;
1040 has_template_arguments = 0;
1041 fixup_called = 0;
1042 is_dwz = 0;
1043 spec_is_dwz = 0;
1044 }
1045 };
1046
1047 /* This data structure holds a complete die structure. */
1048 struct die_info
1049 {
1050 /* DWARF-2 tag for this DIE. */
1051 ENUM_BITFIELD(dwarf_tag) tag : 16;
1052
1053 /* Number of attributes */
1054 unsigned char num_attrs;
1055
1056 /* True if we're presently building the full type name for the
1057 type derived from this DIE. */
1058 unsigned char building_fullname : 1;
1059
1060 /* True if this die is in process. PR 16581. */
1061 unsigned char in_process : 1;
1062
1063 /* True if this DIE has children. */
1064 unsigned char has_children : 1;
1065
1066 /* Abbrev number */
1067 unsigned int abbrev;
1068
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset sect_off;
1071
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1079
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1084 };
1085
1086 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1087 but this would require a corresponding change in unpack_field_as_long
1088 and friends. */
1089 static int bits_per_byte = 8;
1090
1091 /* When reading a variant or variant part, we track a bit more
1092 information about the field, and store it in an object of this
1093 type. */
1094
1095 struct variant_field
1096 {
1097 /* If we see a DW_TAG_variant, then this will be the discriminant
1098 value. */
1099 ULONGEST discriminant_value;
1100 /* If we see a DW_TAG_variant, then this will be set if this is the
1101 default branch. */
1102 bool default_branch;
1103 /* While reading a DW_TAG_variant_part, this will be set if this
1104 field is the discriminant. */
1105 bool is_discriminant;
1106 };
1107
1108 struct nextfield
1109 {
1110 int accessibility = 0;
1111 int virtuality = 0;
1112 /* Extra information to describe a variant or variant part. */
1113 struct variant_field variant {};
1114 struct field field {};
1115 };
1116
1117 struct fnfieldlist
1118 {
1119 const char *name = nullptr;
1120 std::vector<struct fn_field> fnfields;
1121 };
1122
1123 /* The routines that read and process dies for a C struct or C++ class
1124 pass lists of data member fields and lists of member function fields
1125 in an instance of a field_info structure, as defined below. */
1126 struct field_info
1127 {
1128 /* List of data member and baseclasses fields. */
1129 std::vector<struct nextfield> fields;
1130 std::vector<struct nextfield> baseclasses;
1131
1132 /* Set if the accessibility of one of the fields is not public. */
1133 int non_public_fields = 0;
1134
1135 /* Member function fieldlist array, contains name of possibly overloaded
1136 member function, number of overloaded member functions and a pointer
1137 to the head of the member function field chain. */
1138 std::vector<struct fnfieldlist> fnfieldlists;
1139
1140 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1141 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1142 std::vector<struct decl_field> typedef_field_list;
1143
1144 /* Nested types defined by this class and the number of elements in this
1145 list. */
1146 std::vector<struct decl_field> nested_types_list;
1147
1148 /* Return the total number of fields (including baseclasses). */
1149 int nfields () const
1150 {
1151 return fields.size () + baseclasses.size ();
1152 }
1153 };
1154
1155 /* Loaded secondary compilation units are kept in memory until they
1156 have not been referenced for the processing of this many
1157 compilation units. Set this to zero to disable caching. Cache
1158 sizes of up to at least twenty will improve startup time for
1159 typical inter-CU-reference binaries, at an obvious memory cost. */
1160 static int dwarf_max_cache_age = 5;
1161 static void
1162 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164 {
1165 fprintf_filtered (file, _("The upper bound on the age of cached "
1166 "DWARF compilation units is %s.\n"),
1167 value);
1168 }
1169 \f
1170 /* local function prototypes */
1171
1172 static void dwarf2_find_base_address (struct die_info *die,
1173 struct dwarf2_cu *cu);
1174
1175 static dwarf2_psymtab *create_partial_symtab
1176 (struct dwarf2_per_cu_data *per_cu, const char *name);
1177
1178 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1179 const gdb_byte *info_ptr,
1180 struct die_info *type_unit_die);
1181
1182 static void dwarf2_build_psymtabs_hard
1183 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1184
1185 static void scan_partial_symbols (struct partial_die_info *,
1186 CORE_ADDR *, CORE_ADDR *,
1187 int, struct dwarf2_cu *);
1188
1189 static void add_partial_symbol (struct partial_die_info *,
1190 struct dwarf2_cu *);
1191
1192 static void add_partial_namespace (struct partial_die_info *pdi,
1193 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1194 int set_addrmap, struct dwarf2_cu *cu);
1195
1196 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1197 CORE_ADDR *highpc, int set_addrmap,
1198 struct dwarf2_cu *cu);
1199
1200 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1201 struct dwarf2_cu *cu);
1202
1203 static void add_partial_subprogram (struct partial_die_info *pdi,
1204 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1205 int need_pc, struct dwarf2_cu *cu);
1206
1207 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1208
1209 static struct partial_die_info *load_partial_dies
1210 (const struct die_reader_specs *, const gdb_byte *, int);
1211
1212 /* A pair of partial_die_info and compilation unit. */
1213 struct cu_partial_die_info
1214 {
1215 /* The compilation unit of the partial_die_info. */
1216 struct dwarf2_cu *cu;
1217 /* A partial_die_info. */
1218 struct partial_die_info *pdi;
1219
1220 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1221 : cu (cu),
1222 pdi (pdi)
1223 { /* Nothing. */ }
1224
1225 private:
1226 cu_partial_die_info () = delete;
1227 };
1228
1229 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1230 struct dwarf2_cu *);
1231
1232 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1233 struct attribute *, struct attr_abbrev *,
1234 const gdb_byte *, bool *need_reprocess);
1235
1236 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1237 struct attribute *attr);
1238
1239 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1240
1241 static LONGEST read_checked_initial_length_and_offset
1242 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1243 unsigned int *, unsigned int *);
1244
1245 static sect_offset read_abbrev_offset
1246 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1247 struct dwarf2_section_info *, sect_offset);
1248
1249 static const char *read_indirect_string
1250 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1251 const struct comp_unit_head *, unsigned int *);
1252
1253 static const char *read_indirect_line_string
1254 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1255 const struct comp_unit_head *, unsigned int *);
1256
1257 static const char *read_indirect_string_at_offset
1258 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1259 LONGEST str_offset);
1260
1261 static const char *read_indirect_string_from_dwz
1262 (struct objfile *objfile, struct dwz_file *, LONGEST);
1263
1264 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1265 const gdb_byte *,
1266 unsigned int *);
1267
1268 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1269 ULONGEST str_index);
1270
1271 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1272 ULONGEST str_index);
1273
1274 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1275
1276 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1277 struct dwarf2_cu *);
1278
1279 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1280 unsigned int);
1281
1282 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1283 struct dwarf2_cu *cu);
1284
1285 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1286
1287 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1288 struct dwarf2_cu *cu);
1289
1290 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1291
1292 static struct die_info *die_specification (struct die_info *die,
1293 struct dwarf2_cu **);
1294
1295 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1296 struct dwarf2_cu *cu);
1297
1298 static void dwarf_decode_lines (struct line_header *, const char *,
1299 struct dwarf2_cu *, dwarf2_psymtab *,
1300 CORE_ADDR, int decode_mapping);
1301
1302 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1303 const char *);
1304
1305 static struct symbol *new_symbol (struct die_info *, struct type *,
1306 struct dwarf2_cu *, struct symbol * = NULL);
1307
1308 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1309 struct dwarf2_cu *);
1310
1311 static void dwarf2_const_value_attr (const struct attribute *attr,
1312 struct type *type,
1313 const char *name,
1314 struct obstack *obstack,
1315 struct dwarf2_cu *cu, LONGEST *value,
1316 const gdb_byte **bytes,
1317 struct dwarf2_locexpr_baton **baton);
1318
1319 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1320
1321 static int need_gnat_info (struct dwarf2_cu *);
1322
1323 static struct type *die_descriptive_type (struct die_info *,
1324 struct dwarf2_cu *);
1325
1326 static void set_descriptive_type (struct type *, struct die_info *,
1327 struct dwarf2_cu *);
1328
1329 static struct type *die_containing_type (struct die_info *,
1330 struct dwarf2_cu *);
1331
1332 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1333 struct dwarf2_cu *);
1334
1335 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1336
1337 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1338
1339 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1340
1341 static char *typename_concat (struct obstack *obs, const char *prefix,
1342 const char *suffix, int physname,
1343 struct dwarf2_cu *cu);
1344
1345 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1346
1347 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1348
1349 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1350
1351 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1352
1353 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1354
1355 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1356
1357 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1358 struct dwarf2_cu *, dwarf2_psymtab *);
1359
1360 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1361 values. Keep the items ordered with increasing constraints compliance. */
1362 enum pc_bounds_kind
1363 {
1364 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1365 PC_BOUNDS_NOT_PRESENT,
1366
1367 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1368 were present but they do not form a valid range of PC addresses. */
1369 PC_BOUNDS_INVALID,
1370
1371 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1372 PC_BOUNDS_RANGES,
1373
1374 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1375 PC_BOUNDS_HIGH_LOW,
1376 };
1377
1378 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1379 CORE_ADDR *, CORE_ADDR *,
1380 struct dwarf2_cu *,
1381 dwarf2_psymtab *);
1382
1383 static void get_scope_pc_bounds (struct die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
1385 struct dwarf2_cu *);
1386
1387 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1388 CORE_ADDR, struct dwarf2_cu *);
1389
1390 static void dwarf2_add_field (struct field_info *, struct die_info *,
1391 struct dwarf2_cu *);
1392
1393 static void dwarf2_attach_fields_to_type (struct field_info *,
1394 struct type *, struct dwarf2_cu *);
1395
1396 static void dwarf2_add_member_fn (struct field_info *,
1397 struct die_info *, struct type *,
1398 struct dwarf2_cu *);
1399
1400 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1401 struct type *,
1402 struct dwarf2_cu *);
1403
1404 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1405
1406 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1407
1408 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1409
1410 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1411
1412 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1413
1414 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1415
1416 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1417
1418 static struct type *read_module_type (struct die_info *die,
1419 struct dwarf2_cu *cu);
1420
1421 static const char *namespace_name (struct die_info *die,
1422 int *is_anonymous, struct dwarf2_cu *);
1423
1424 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1425
1426 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1427
1428 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1429 struct dwarf2_cu *);
1430
1431 static struct die_info *read_die_and_siblings_1
1432 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1433 struct die_info *);
1434
1435 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1436 const gdb_byte *info_ptr,
1437 const gdb_byte **new_info_ptr,
1438 struct die_info *parent);
1439
1440 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1441 struct die_info **, const gdb_byte *,
1442 int);
1443
1444 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1445 struct die_info **, const gdb_byte *);
1446
1447 static void process_die (struct die_info *, struct dwarf2_cu *);
1448
1449 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1450 struct obstack *);
1451
1452 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1453
1454 static const char *dwarf2_full_name (const char *name,
1455 struct die_info *die,
1456 struct dwarf2_cu *cu);
1457
1458 static const char *dwarf2_physname (const char *name, struct die_info *die,
1459 struct dwarf2_cu *cu);
1460
1461 static struct die_info *dwarf2_extension (struct die_info *die,
1462 struct dwarf2_cu **);
1463
1464 static const char *dwarf_tag_name (unsigned int);
1465
1466 static const char *dwarf_attr_name (unsigned int);
1467
1468 static const char *dwarf_form_name (unsigned int);
1469
1470 static const char *dwarf_bool_name (unsigned int);
1471
1472 static const char *dwarf_type_encoding_name (unsigned int);
1473
1474 static struct die_info *sibling_die (struct die_info *);
1475
1476 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1477
1478 static void dump_die_for_error (struct die_info *);
1479
1480 static void dump_die_1 (struct ui_file *, int level, int max_level,
1481 struct die_info *);
1482
1483 /*static*/ void dump_die (struct die_info *, int max_level);
1484
1485 static void store_in_ref_table (struct die_info *,
1486 struct dwarf2_cu *);
1487
1488 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1489
1490 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1491
1492 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1493 const struct attribute *,
1494 struct dwarf2_cu **);
1495
1496 static struct die_info *follow_die_ref (struct die_info *,
1497 const struct attribute *,
1498 struct dwarf2_cu **);
1499
1500 static struct die_info *follow_die_sig (struct die_info *,
1501 const struct attribute *,
1502 struct dwarf2_cu **);
1503
1504 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1505 struct dwarf2_cu *);
1506
1507 static struct type *get_DW_AT_signature_type (struct die_info *,
1508 const struct attribute *,
1509 struct dwarf2_cu *);
1510
1511 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1512
1513 static void read_signatured_type (struct signatured_type *);
1514
1515 static int attr_to_dynamic_prop (const struct attribute *attr,
1516 struct die_info *die, struct dwarf2_cu *cu,
1517 struct dynamic_prop *prop, struct type *type);
1518
1519 /* memory allocation interface */
1520
1521 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1522
1523 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1524
1525 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1526
1527 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1528 struct dwarf2_loclist_baton *baton,
1529 const struct attribute *attr);
1530
1531 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1532 struct symbol *sym,
1533 struct dwarf2_cu *cu,
1534 int is_block);
1535
1536 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1537 const gdb_byte *info_ptr,
1538 struct abbrev_info *abbrev);
1539
1540 static hashval_t partial_die_hash (const void *item);
1541
1542 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1543
1544 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1545 (sect_offset sect_off, unsigned int offset_in_dwz,
1546 struct dwarf2_per_objfile *dwarf2_per_objfile);
1547
1548 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1549 struct die_info *comp_unit_die,
1550 enum language pretend_language);
1551
1552 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1553
1554 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1555
1556 static struct type *set_die_type (struct die_info *, struct type *,
1557 struct dwarf2_cu *);
1558
1559 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1560
1561 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1562
1563 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1564 enum language);
1565
1566 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1570 enum language);
1571
1572 static void dwarf2_add_dependence (struct dwarf2_cu *,
1573 struct dwarf2_per_cu_data *);
1574
1575 static void dwarf2_mark (struct dwarf2_cu *);
1576
1577 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type_at_offset (sect_offset,
1580 struct dwarf2_per_cu_data *);
1581
1582 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1583
1584 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1585 enum language pretend_language);
1586
1587 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1588
1589 /* Class, the destructor of which frees all allocated queue entries. This
1590 will only have work to do if an error was thrown while processing the
1591 dwarf. If no error was thrown then the queue entries should have all
1592 been processed, and freed, as we went along. */
1593
1594 class dwarf2_queue_guard
1595 {
1596 public:
1597 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1598 : m_per_objfile (per_objfile)
1599 {
1600 }
1601
1602 /* Free any entries remaining on the queue. There should only be
1603 entries left if we hit an error while processing the dwarf. */
1604 ~dwarf2_queue_guard ()
1605 {
1606 /* Ensure that no memory is allocated by the queue. */
1607 std::queue<dwarf2_queue_item> empty;
1608 std::swap (m_per_objfile->queue, empty);
1609 }
1610
1611 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1612
1613 private:
1614 dwarf2_per_objfile *m_per_objfile;
1615 };
1616
1617 dwarf2_queue_item::~dwarf2_queue_item ()
1618 {
1619 /* Anything still marked queued is likely to be in an
1620 inconsistent state, so discard it. */
1621 if (per_cu->queued)
1622 {
1623 if (per_cu->cu != NULL)
1624 free_one_cached_comp_unit (per_cu);
1625 per_cu->queued = 0;
1626 }
1627 }
1628
1629 /* The return type of find_file_and_directory. Note, the enclosed
1630 string pointers are only valid while this object is valid. */
1631
1632 struct file_and_directory
1633 {
1634 /* The filename. This is never NULL. */
1635 const char *name;
1636
1637 /* The compilation directory. NULL if not known. If we needed to
1638 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1639 points directly to the DW_AT_comp_dir string attribute owned by
1640 the obstack that owns the DIE. */
1641 const char *comp_dir;
1642
1643 /* If we needed to build a new string for comp_dir, this is what
1644 owns the storage. */
1645 std::string comp_dir_storage;
1646 };
1647
1648 static file_and_directory find_file_and_directory (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static htab_up allocate_signatured_type_table ();
1652
1653 static htab_up allocate_dwo_unit_table ();
1654
1655 static struct dwo_unit *lookup_dwo_unit_in_dwp
1656 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1657 struct dwp_file *dwp_file, const char *comp_dir,
1658 ULONGEST signature, int is_debug_types);
1659
1660 static struct dwp_file *get_dwp_file
1661 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1662
1663 static struct dwo_unit *lookup_dwo_comp_unit
1664 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1665
1666 static struct dwo_unit *lookup_dwo_type_unit
1667 (struct signatured_type *, const char *, const char *);
1668
1669 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1670
1671 /* A unique pointer to a dwo_file. */
1672
1673 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1674
1675 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1676
1677 static void check_producer (struct dwarf2_cu *cu);
1678
1679 static void free_line_header_voidp (void *arg);
1680 \f
1681 /* Various complaints about symbol reading that don't abort the process. */
1682
1683 static void
1684 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1685 {
1686 complaint (_("statement list doesn't fit in .debug_line section"));
1687 }
1688
1689 static void
1690 dwarf2_debug_line_missing_file_complaint (void)
1691 {
1692 complaint (_(".debug_line section has line data without a file"));
1693 }
1694
1695 static void
1696 dwarf2_debug_line_missing_end_sequence_complaint (void)
1697 {
1698 complaint (_(".debug_line section has line "
1699 "program sequence without an end"));
1700 }
1701
1702 static void
1703 dwarf2_complex_location_expr_complaint (void)
1704 {
1705 complaint (_("location expression too complex"));
1706 }
1707
1708 static void
1709 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1710 int arg3)
1711 {
1712 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1713 arg1, arg2, arg3);
1714 }
1715
1716 static void
1717 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1718 {
1719 complaint (_("debug info runs off end of %s section"
1720 " [in module %s]"),
1721 section->get_name (),
1722 section->get_file_name ());
1723 }
1724
1725 static void
1726 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1727 {
1728 complaint (_("macro debug info contains a "
1729 "malformed macro definition:\n`%s'"),
1730 arg1);
1731 }
1732
1733 static void
1734 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1735 {
1736 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1737 arg1, arg2);
1738 }
1739
1740 /* Hash function for line_header_hash. */
1741
1742 static hashval_t
1743 line_header_hash (const struct line_header *ofs)
1744 {
1745 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1746 }
1747
1748 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1749
1750 static hashval_t
1751 line_header_hash_voidp (const void *item)
1752 {
1753 const struct line_header *ofs = (const struct line_header *) item;
1754
1755 return line_header_hash (ofs);
1756 }
1757
1758 /* Equality function for line_header_hash. */
1759
1760 static int
1761 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1762 {
1763 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1764 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1765
1766 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1767 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1768 }
1769
1770 \f
1771
1772 /* See declaration. */
1773
1774 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1775 const dwarf2_debug_sections *names,
1776 bool can_copy_)
1777 : objfile (objfile_),
1778 can_copy (can_copy_)
1779 {
1780 if (names == NULL)
1781 names = &dwarf2_elf_names;
1782
1783 bfd *obfd = objfile->obfd;
1784
1785 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1786 locate_sections (obfd, sec, *names);
1787 }
1788
1789 dwarf2_per_objfile::~dwarf2_per_objfile ()
1790 {
1791 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1792 free_cached_comp_units ();
1793
1794 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1795 per_cu->imported_symtabs_free ();
1796
1797 for (signatured_type *sig_type : all_type_units)
1798 sig_type->per_cu.imported_symtabs_free ();
1799
1800 /* Everything else should be on the objfile obstack. */
1801 }
1802
1803 /* See declaration. */
1804
1805 void
1806 dwarf2_per_objfile::free_cached_comp_units ()
1807 {
1808 dwarf2_per_cu_data *per_cu = read_in_chain;
1809 dwarf2_per_cu_data **last_chain = &read_in_chain;
1810 while (per_cu != NULL)
1811 {
1812 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1813
1814 delete per_cu->cu;
1815 *last_chain = next_cu;
1816 per_cu = next_cu;
1817 }
1818 }
1819
1820 /* A helper class that calls free_cached_comp_units on
1821 destruction. */
1822
1823 class free_cached_comp_units
1824 {
1825 public:
1826
1827 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1828 : m_per_objfile (per_objfile)
1829 {
1830 }
1831
1832 ~free_cached_comp_units ()
1833 {
1834 m_per_objfile->free_cached_comp_units ();
1835 }
1836
1837 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1838
1839 private:
1840
1841 dwarf2_per_objfile *m_per_objfile;
1842 };
1843
1844 /* Try to locate the sections we need for DWARF 2 debugging
1845 information and return true if we have enough to do something.
1846 NAMES points to the dwarf2 section names, or is NULL if the standard
1847 ELF names are used. CAN_COPY is true for formats where symbol
1848 interposition is possible and so symbol values must follow copy
1849 relocation rules. */
1850
1851 int
1852 dwarf2_has_info (struct objfile *objfile,
1853 const struct dwarf2_debug_sections *names,
1854 bool can_copy)
1855 {
1856 if (objfile->flags & OBJF_READNEVER)
1857 return 0;
1858
1859 struct dwarf2_per_objfile *dwarf2_per_objfile
1860 = get_dwarf2_per_objfile (objfile);
1861
1862 if (dwarf2_per_objfile == NULL)
1863 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1864 names,
1865 can_copy);
1866
1867 return (!dwarf2_per_objfile->info.is_virtual
1868 && dwarf2_per_objfile->info.s.section != NULL
1869 && !dwarf2_per_objfile->abbrev.is_virtual
1870 && dwarf2_per_objfile->abbrev.s.section != NULL);
1871 }
1872
1873 /* When loading sections, we look either for uncompressed section or for
1874 compressed section names. */
1875
1876 static int
1877 section_is_p (const char *section_name,
1878 const struct dwarf2_section_names *names)
1879 {
1880 if (names->normal != NULL
1881 && strcmp (section_name, names->normal) == 0)
1882 return 1;
1883 if (names->compressed != NULL
1884 && strcmp (section_name, names->compressed) == 0)
1885 return 1;
1886 return 0;
1887 }
1888
1889 /* See declaration. */
1890
1891 void
1892 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1893 const dwarf2_debug_sections &names)
1894 {
1895 flagword aflag = bfd_section_flags (sectp);
1896
1897 if ((aflag & SEC_HAS_CONTENTS) == 0)
1898 {
1899 }
1900 else if (elf_section_data (sectp)->this_hdr.sh_size
1901 > bfd_get_file_size (abfd))
1902 {
1903 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1904 warning (_("Discarding section %s which has a section size (%s"
1905 ") larger than the file size [in module %s]"),
1906 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1907 bfd_get_filename (abfd));
1908 }
1909 else if (section_is_p (sectp->name, &names.info))
1910 {
1911 this->info.s.section = sectp;
1912 this->info.size = bfd_section_size (sectp);
1913 }
1914 else if (section_is_p (sectp->name, &names.abbrev))
1915 {
1916 this->abbrev.s.section = sectp;
1917 this->abbrev.size = bfd_section_size (sectp);
1918 }
1919 else if (section_is_p (sectp->name, &names.line))
1920 {
1921 this->line.s.section = sectp;
1922 this->line.size = bfd_section_size (sectp);
1923 }
1924 else if (section_is_p (sectp->name, &names.loc))
1925 {
1926 this->loc.s.section = sectp;
1927 this->loc.size = bfd_section_size (sectp);
1928 }
1929 else if (section_is_p (sectp->name, &names.loclists))
1930 {
1931 this->loclists.s.section = sectp;
1932 this->loclists.size = bfd_section_size (sectp);
1933 }
1934 else if (section_is_p (sectp->name, &names.macinfo))
1935 {
1936 this->macinfo.s.section = sectp;
1937 this->macinfo.size = bfd_section_size (sectp);
1938 }
1939 else if (section_is_p (sectp->name, &names.macro))
1940 {
1941 this->macro.s.section = sectp;
1942 this->macro.size = bfd_section_size (sectp);
1943 }
1944 else if (section_is_p (sectp->name, &names.str))
1945 {
1946 this->str.s.section = sectp;
1947 this->str.size = bfd_section_size (sectp);
1948 }
1949 else if (section_is_p (sectp->name, &names.str_offsets))
1950 {
1951 this->str_offsets.s.section = sectp;
1952 this->str_offsets.size = bfd_section_size (sectp);
1953 }
1954 else if (section_is_p (sectp->name, &names.line_str))
1955 {
1956 this->line_str.s.section = sectp;
1957 this->line_str.size = bfd_section_size (sectp);
1958 }
1959 else if (section_is_p (sectp->name, &names.addr))
1960 {
1961 this->addr.s.section = sectp;
1962 this->addr.size = bfd_section_size (sectp);
1963 }
1964 else if (section_is_p (sectp->name, &names.frame))
1965 {
1966 this->frame.s.section = sectp;
1967 this->frame.size = bfd_section_size (sectp);
1968 }
1969 else if (section_is_p (sectp->name, &names.eh_frame))
1970 {
1971 this->eh_frame.s.section = sectp;
1972 this->eh_frame.size = bfd_section_size (sectp);
1973 }
1974 else if (section_is_p (sectp->name, &names.ranges))
1975 {
1976 this->ranges.s.section = sectp;
1977 this->ranges.size = bfd_section_size (sectp);
1978 }
1979 else if (section_is_p (sectp->name, &names.rnglists))
1980 {
1981 this->rnglists.s.section = sectp;
1982 this->rnglists.size = bfd_section_size (sectp);
1983 }
1984 else if (section_is_p (sectp->name, &names.types))
1985 {
1986 struct dwarf2_section_info type_section;
1987
1988 memset (&type_section, 0, sizeof (type_section));
1989 type_section.s.section = sectp;
1990 type_section.size = bfd_section_size (sectp);
1991
1992 this->types.push_back (type_section);
1993 }
1994 else if (section_is_p (sectp->name, &names.gdb_index))
1995 {
1996 this->gdb_index.s.section = sectp;
1997 this->gdb_index.size = bfd_section_size (sectp);
1998 }
1999 else if (section_is_p (sectp->name, &names.debug_names))
2000 {
2001 this->debug_names.s.section = sectp;
2002 this->debug_names.size = bfd_section_size (sectp);
2003 }
2004 else if (section_is_p (sectp->name, &names.debug_aranges))
2005 {
2006 this->debug_aranges.s.section = sectp;
2007 this->debug_aranges.size = bfd_section_size (sectp);
2008 }
2009
2010 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2011 && bfd_section_vma (sectp) == 0)
2012 this->has_section_at_zero = true;
2013 }
2014
2015 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2016 SECTION_NAME. */
2017
2018 void
2019 dwarf2_get_section_info (struct objfile *objfile,
2020 enum dwarf2_section_enum sect,
2021 asection **sectp, const gdb_byte **bufp,
2022 bfd_size_type *sizep)
2023 {
2024 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2025 struct dwarf2_section_info *info;
2026
2027 /* We may see an objfile without any DWARF, in which case we just
2028 return nothing. */
2029 if (data == NULL)
2030 {
2031 *sectp = NULL;
2032 *bufp = NULL;
2033 *sizep = 0;
2034 return;
2035 }
2036 switch (sect)
2037 {
2038 case DWARF2_DEBUG_FRAME:
2039 info = &data->frame;
2040 break;
2041 case DWARF2_EH_FRAME:
2042 info = &data->eh_frame;
2043 break;
2044 default:
2045 gdb_assert_not_reached ("unexpected section");
2046 }
2047
2048 info->read (objfile);
2049
2050 *sectp = info->get_bfd_section ();
2051 *bufp = info->buffer;
2052 *sizep = info->size;
2053 }
2054
2055 /* A helper function to find the sections for a .dwz file. */
2056
2057 static void
2058 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2059 {
2060 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2061
2062 /* Note that we only support the standard ELF names, because .dwz
2063 is ELF-only (at the time of writing). */
2064 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2065 {
2066 dwz_file->abbrev.s.section = sectp;
2067 dwz_file->abbrev.size = bfd_section_size (sectp);
2068 }
2069 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2070 {
2071 dwz_file->info.s.section = sectp;
2072 dwz_file->info.size = bfd_section_size (sectp);
2073 }
2074 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2075 {
2076 dwz_file->str.s.section = sectp;
2077 dwz_file->str.size = bfd_section_size (sectp);
2078 }
2079 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2080 {
2081 dwz_file->line.s.section = sectp;
2082 dwz_file->line.size = bfd_section_size (sectp);
2083 }
2084 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2085 {
2086 dwz_file->macro.s.section = sectp;
2087 dwz_file->macro.size = bfd_section_size (sectp);
2088 }
2089 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2090 {
2091 dwz_file->gdb_index.s.section = sectp;
2092 dwz_file->gdb_index.size = bfd_section_size (sectp);
2093 }
2094 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2095 {
2096 dwz_file->debug_names.s.section = sectp;
2097 dwz_file->debug_names.size = bfd_section_size (sectp);
2098 }
2099 }
2100
2101 /* See dwarf2read.h. */
2102
2103 struct dwz_file *
2104 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2105 {
2106 const char *filename;
2107 bfd_size_type buildid_len_arg;
2108 size_t buildid_len;
2109 bfd_byte *buildid;
2110
2111 if (dwarf2_per_objfile->dwz_file != NULL)
2112 return dwarf2_per_objfile->dwz_file.get ();
2113
2114 bfd_set_error (bfd_error_no_error);
2115 gdb::unique_xmalloc_ptr<char> data
2116 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2117 &buildid_len_arg, &buildid));
2118 if (data == NULL)
2119 {
2120 if (bfd_get_error () == bfd_error_no_error)
2121 return NULL;
2122 error (_("could not read '.gnu_debugaltlink' section: %s"),
2123 bfd_errmsg (bfd_get_error ()));
2124 }
2125
2126 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2127
2128 buildid_len = (size_t) buildid_len_arg;
2129
2130 filename = data.get ();
2131
2132 std::string abs_storage;
2133 if (!IS_ABSOLUTE_PATH (filename))
2134 {
2135 gdb::unique_xmalloc_ptr<char> abs
2136 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2137
2138 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2139 filename = abs_storage.c_str ();
2140 }
2141
2142 /* First try the file name given in the section. If that doesn't
2143 work, try to use the build-id instead. */
2144 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2145 if (dwz_bfd != NULL)
2146 {
2147 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2148 dwz_bfd.reset (nullptr);
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2153
2154 if (dwz_bfd == nullptr)
2155 {
2156 gdb::unique_xmalloc_ptr<char> alt_filename;
2157 const char *origname = dwarf2_per_objfile->objfile->original_name;
2158
2159 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2160 buildid_len,
2161 origname,
2162 &alt_filename));
2163
2164 if (fd.get () >= 0)
2165 {
2166 /* File successfully retrieved from server. */
2167 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2168
2169 if (dwz_bfd == nullptr)
2170 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2171 alt_filename.get ());
2172 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2173 dwz_bfd.reset (nullptr);
2174 }
2175 }
2176
2177 if (dwz_bfd == NULL)
2178 error (_("could not find '.gnu_debugaltlink' file for %s"),
2179 objfile_name (dwarf2_per_objfile->objfile));
2180
2181 std::unique_ptr<struct dwz_file> result
2182 (new struct dwz_file (std::move (dwz_bfd)));
2183
2184 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2185 result.get ());
2186
2187 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2188 result->dwz_bfd.get ());
2189 dwarf2_per_objfile->dwz_file = std::move (result);
2190 return dwarf2_per_objfile->dwz_file.get ();
2191 }
2192 \f
2193 /* DWARF quick_symbols_functions support. */
2194
2195 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2196 unique line tables, so we maintain a separate table of all .debug_line
2197 derived entries to support the sharing.
2198 All the quick functions need is the list of file names. We discard the
2199 line_header when we're done and don't need to record it here. */
2200 struct quick_file_names
2201 {
2202 /* The data used to construct the hash key. */
2203 struct stmt_list_hash hash;
2204
2205 /* The number of entries in file_names, real_names. */
2206 unsigned int num_file_names;
2207
2208 /* The file names from the line table, after being run through
2209 file_full_name. */
2210 const char **file_names;
2211
2212 /* The file names from the line table after being run through
2213 gdb_realpath. These are computed lazily. */
2214 const char **real_names;
2215 };
2216
2217 /* When using the index (and thus not using psymtabs), each CU has an
2218 object of this type. This is used to hold information needed by
2219 the various "quick" methods. */
2220 struct dwarf2_per_cu_quick_data
2221 {
2222 /* The file table. This can be NULL if there was no file table
2223 or it's currently not read in.
2224 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2225 struct quick_file_names *file_names;
2226
2227 /* The corresponding symbol table. This is NULL if symbols for this
2228 CU have not yet been read. */
2229 struct compunit_symtab *compunit_symtab;
2230
2231 /* A temporary mark bit used when iterating over all CUs in
2232 expand_symtabs_matching. */
2233 unsigned int mark : 1;
2234
2235 /* True if we've tried to read the file table and found there isn't one.
2236 There will be no point in trying to read it again next time. */
2237 unsigned int no_file_data : 1;
2238 };
2239
2240 /* Utility hash function for a stmt_list_hash. */
2241
2242 static hashval_t
2243 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2244 {
2245 hashval_t v = 0;
2246
2247 if (stmt_list_hash->dwo_unit != NULL)
2248 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2249 v += to_underlying (stmt_list_hash->line_sect_off);
2250 return v;
2251 }
2252
2253 /* Utility equality function for a stmt_list_hash. */
2254
2255 static int
2256 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2257 const struct stmt_list_hash *rhs)
2258 {
2259 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2260 return 0;
2261 if (lhs->dwo_unit != NULL
2262 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2263 return 0;
2264
2265 return lhs->line_sect_off == rhs->line_sect_off;
2266 }
2267
2268 /* Hash function for a quick_file_names. */
2269
2270 static hashval_t
2271 hash_file_name_entry (const void *e)
2272 {
2273 const struct quick_file_names *file_data
2274 = (const struct quick_file_names *) e;
2275
2276 return hash_stmt_list_entry (&file_data->hash);
2277 }
2278
2279 /* Equality function for a quick_file_names. */
2280
2281 static int
2282 eq_file_name_entry (const void *a, const void *b)
2283 {
2284 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2285 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2286
2287 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2288 }
2289
2290 /* Delete function for a quick_file_names. */
2291
2292 static void
2293 delete_file_name_entry (void *e)
2294 {
2295 struct quick_file_names *file_data = (struct quick_file_names *) e;
2296 int i;
2297
2298 for (i = 0; i < file_data->num_file_names; ++i)
2299 {
2300 xfree ((void*) file_data->file_names[i]);
2301 if (file_data->real_names)
2302 xfree ((void*) file_data->real_names[i]);
2303 }
2304
2305 /* The space for the struct itself lives on objfile_obstack,
2306 so we don't free it here. */
2307 }
2308
2309 /* Create a quick_file_names hash table. */
2310
2311 static htab_up
2312 create_quick_file_names_table (unsigned int nr_initial_entries)
2313 {
2314 return htab_up (htab_create_alloc (nr_initial_entries,
2315 hash_file_name_entry, eq_file_name_entry,
2316 delete_file_name_entry, xcalloc, xfree));
2317 }
2318
2319 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2320 have to be created afterwards. You should call age_cached_comp_units after
2321 processing PER_CU->CU. dw2_setup must have been already called. */
2322
2323 static void
2324 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2325 {
2326 if (per_cu->is_debug_types)
2327 load_full_type_unit (per_cu);
2328 else
2329 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2330
2331 if (per_cu->cu == NULL)
2332 return; /* Dummy CU. */
2333
2334 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2335 }
2336
2337 /* Read in the symbols for PER_CU. */
2338
2339 static void
2340 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2341 {
2342 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2343
2344 /* Skip type_unit_groups, reading the type units they contain
2345 is handled elsewhere. */
2346 if (per_cu->type_unit_group_p ())
2347 return;
2348
2349 /* The destructor of dwarf2_queue_guard frees any entries left on
2350 the queue. After this point we're guaranteed to leave this function
2351 with the dwarf queue empty. */
2352 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2353
2354 if (dwarf2_per_objfile->using_index
2355 ? per_cu->v.quick->compunit_symtab == NULL
2356 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2357 {
2358 queue_comp_unit (per_cu, language_minimal);
2359 load_cu (per_cu, skip_partial);
2360
2361 /* If we just loaded a CU from a DWO, and we're working with an index
2362 that may badly handle TUs, load all the TUs in that DWO as well.
2363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2364 if (!per_cu->is_debug_types
2365 && per_cu->cu != NULL
2366 && per_cu->cu->dwo_unit != NULL
2367 && dwarf2_per_objfile->index_table != NULL
2368 && dwarf2_per_objfile->index_table->version <= 7
2369 /* DWP files aren't supported yet. */
2370 && get_dwp_file (dwarf2_per_objfile) == NULL)
2371 queue_and_load_all_dwo_tus (per_cu);
2372 }
2373
2374 process_queue (dwarf2_per_objfile);
2375
2376 /* Age the cache, releasing compilation units that have not
2377 been used recently. */
2378 age_cached_comp_units (dwarf2_per_objfile);
2379 }
2380
2381 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2382 the objfile from which this CU came. Returns the resulting symbol
2383 table. */
2384
2385 static struct compunit_symtab *
2386 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2387 {
2388 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2389
2390 gdb_assert (dwarf2_per_objfile->using_index);
2391 if (!per_cu->v.quick->compunit_symtab)
2392 {
2393 free_cached_comp_units freer (dwarf2_per_objfile);
2394 scoped_restore decrementer = increment_reading_symtab ();
2395 dw2_do_instantiate_symtab (per_cu, skip_partial);
2396 process_cu_includes (dwarf2_per_objfile);
2397 }
2398
2399 return per_cu->v.quick->compunit_symtab;
2400 }
2401
2402 /* See declaration. */
2403
2404 dwarf2_per_cu_data *
2405 dwarf2_per_objfile::get_cutu (int index)
2406 {
2407 if (index >= this->all_comp_units.size ())
2408 {
2409 index -= this->all_comp_units.size ();
2410 gdb_assert (index < this->all_type_units.size ());
2411 return &this->all_type_units[index]->per_cu;
2412 }
2413
2414 return this->all_comp_units[index];
2415 }
2416
2417 /* See declaration. */
2418
2419 dwarf2_per_cu_data *
2420 dwarf2_per_objfile::get_cu (int index)
2421 {
2422 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2423
2424 return this->all_comp_units[index];
2425 }
2426
2427 /* See declaration. */
2428
2429 signatured_type *
2430 dwarf2_per_objfile::get_tu (int index)
2431 {
2432 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2433
2434 return this->all_type_units[index];
2435 }
2436
2437 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2438 objfile_obstack, and constructed with the specified field
2439 values. */
2440
2441 static dwarf2_per_cu_data *
2442 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2443 struct dwarf2_section_info *section,
2444 int is_dwz,
2445 sect_offset sect_off, ULONGEST length)
2446 {
2447 struct objfile *objfile = dwarf2_per_objfile->objfile;
2448 dwarf2_per_cu_data *the_cu
2449 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2450 struct dwarf2_per_cu_data);
2451 the_cu->sect_off = sect_off;
2452 the_cu->length = length;
2453 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2454 the_cu->section = section;
2455 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2456 struct dwarf2_per_cu_quick_data);
2457 the_cu->is_dwz = is_dwz;
2458 return the_cu;
2459 }
2460
2461 /* A helper for create_cus_from_index that handles a given list of
2462 CUs. */
2463
2464 static void
2465 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2466 const gdb_byte *cu_list, offset_type n_elements,
2467 struct dwarf2_section_info *section,
2468 int is_dwz)
2469 {
2470 for (offset_type i = 0; i < n_elements; i += 2)
2471 {
2472 gdb_static_assert (sizeof (ULONGEST) >= 8);
2473
2474 sect_offset sect_off
2475 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2476 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2477 cu_list += 2 * 8;
2478
2479 dwarf2_per_cu_data *per_cu
2480 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2481 sect_off, length);
2482 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2483 }
2484 }
2485
2486 /* Read the CU list from the mapped index, and use it to create all
2487 the CU objects for this objfile. */
2488
2489 static void
2490 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2491 const gdb_byte *cu_list, offset_type cu_list_elements,
2492 const gdb_byte *dwz_list, offset_type dwz_elements)
2493 {
2494 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2495 dwarf2_per_objfile->all_comp_units.reserve
2496 ((cu_list_elements + dwz_elements) / 2);
2497
2498 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2499 &dwarf2_per_objfile->info, 0);
2500
2501 if (dwz_elements == 0)
2502 return;
2503
2504 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2505 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2506 &dwz->info, 1);
2507 }
2508
2509 /* Create the signatured type hash table from the index. */
2510
2511 static void
2512 create_signatured_type_table_from_index
2513 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2514 struct dwarf2_section_info *section,
2515 const gdb_byte *bytes,
2516 offset_type elements)
2517 {
2518 struct objfile *objfile = dwarf2_per_objfile->objfile;
2519
2520 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2521 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2522
2523 htab_up sig_types_hash = allocate_signatured_type_table ();
2524
2525 for (offset_type i = 0; i < elements; i += 3)
2526 {
2527 struct signatured_type *sig_type;
2528 ULONGEST signature;
2529 void **slot;
2530 cu_offset type_offset_in_tu;
2531
2532 gdb_static_assert (sizeof (ULONGEST) >= 8);
2533 sect_offset sect_off
2534 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2535 type_offset_in_tu
2536 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2537 BFD_ENDIAN_LITTLE);
2538 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2539 bytes += 3 * 8;
2540
2541 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2542 struct signatured_type);
2543 sig_type->signature = signature;
2544 sig_type->type_offset_in_tu = type_offset_in_tu;
2545 sig_type->per_cu.is_debug_types = 1;
2546 sig_type->per_cu.section = section;
2547 sig_type->per_cu.sect_off = sect_off;
2548 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2549 sig_type->per_cu.v.quick
2550 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2551 struct dwarf2_per_cu_quick_data);
2552
2553 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2554 *slot = sig_type;
2555
2556 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2557 }
2558
2559 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2560 }
2561
2562 /* Create the signatured type hash table from .debug_names. */
2563
2564 static void
2565 create_signatured_type_table_from_debug_names
2566 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2567 const mapped_debug_names &map,
2568 struct dwarf2_section_info *section,
2569 struct dwarf2_section_info *abbrev_section)
2570 {
2571 struct objfile *objfile = dwarf2_per_objfile->objfile;
2572
2573 section->read (objfile);
2574 abbrev_section->read (objfile);
2575
2576 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2577 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2578
2579 htab_up sig_types_hash = allocate_signatured_type_table ();
2580
2581 for (uint32_t i = 0; i < map.tu_count; ++i)
2582 {
2583 struct signatured_type *sig_type;
2584 void **slot;
2585
2586 sect_offset sect_off
2587 = (sect_offset) (extract_unsigned_integer
2588 (map.tu_table_reordered + i * map.offset_size,
2589 map.offset_size,
2590 map.dwarf5_byte_order));
2591
2592 comp_unit_head cu_header;
2593 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2594 abbrev_section,
2595 section->buffer + to_underlying (sect_off),
2596 rcuh_kind::TYPE);
2597
2598 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2599 struct signatured_type);
2600 sig_type->signature = cu_header.signature;
2601 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2602 sig_type->per_cu.is_debug_types = 1;
2603 sig_type->per_cu.section = section;
2604 sig_type->per_cu.sect_off = sect_off;
2605 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2606 sig_type->per_cu.v.quick
2607 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2608 struct dwarf2_per_cu_quick_data);
2609
2610 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2611 *slot = sig_type;
2612
2613 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2614 }
2615
2616 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2617 }
2618
2619 /* Read the address map data from the mapped index, and use it to
2620 populate the objfile's psymtabs_addrmap. */
2621
2622 static void
2623 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2624 struct mapped_index *index)
2625 {
2626 struct objfile *objfile = dwarf2_per_objfile->objfile;
2627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2628 const gdb_byte *iter, *end;
2629 struct addrmap *mutable_map;
2630 CORE_ADDR baseaddr;
2631
2632 auto_obstack temp_obstack;
2633
2634 mutable_map = addrmap_create_mutable (&temp_obstack);
2635
2636 iter = index->address_table.data ();
2637 end = iter + index->address_table.size ();
2638
2639 baseaddr = objfile->text_section_offset ();
2640
2641 while (iter < end)
2642 {
2643 ULONGEST hi, lo, cu_index;
2644 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2645 iter += 8;
2646 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2647 iter += 8;
2648 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2649 iter += 4;
2650
2651 if (lo > hi)
2652 {
2653 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2654 hex_string (lo), hex_string (hi));
2655 continue;
2656 }
2657
2658 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2659 {
2660 complaint (_(".gdb_index address table has invalid CU number %u"),
2661 (unsigned) cu_index);
2662 continue;
2663 }
2664
2665 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2666 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2667 addrmap_set_empty (mutable_map, lo, hi - 1,
2668 dwarf2_per_objfile->get_cu (cu_index));
2669 }
2670
2671 objfile->partial_symtabs->psymtabs_addrmap
2672 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2673 }
2674
2675 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2676 populate the objfile's psymtabs_addrmap. */
2677
2678 static void
2679 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2680 struct dwarf2_section_info *section)
2681 {
2682 struct objfile *objfile = dwarf2_per_objfile->objfile;
2683 bfd *abfd = objfile->obfd;
2684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2685 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2686
2687 auto_obstack temp_obstack;
2688 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2689
2690 std::unordered_map<sect_offset,
2691 dwarf2_per_cu_data *,
2692 gdb::hash_enum<sect_offset>>
2693 debug_info_offset_to_per_cu;
2694 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2695 {
2696 const auto insertpair
2697 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2698 if (!insertpair.second)
2699 {
2700 warning (_("Section .debug_aranges in %s has duplicate "
2701 "debug_info_offset %s, ignoring .debug_aranges."),
2702 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2703 return;
2704 }
2705 }
2706
2707 section->read (objfile);
2708
2709 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2710
2711 const gdb_byte *addr = section->buffer;
2712
2713 while (addr < section->buffer + section->size)
2714 {
2715 const gdb_byte *const entry_addr = addr;
2716 unsigned int bytes_read;
2717
2718 const LONGEST entry_length = read_initial_length (abfd, addr,
2719 &bytes_read);
2720 addr += bytes_read;
2721
2722 const gdb_byte *const entry_end = addr + entry_length;
2723 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2724 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2725 if (addr + entry_length > section->buffer + section->size)
2726 {
2727 warning (_("Section .debug_aranges in %s entry at offset %s "
2728 "length %s exceeds section length %s, "
2729 "ignoring .debug_aranges."),
2730 objfile_name (objfile),
2731 plongest (entry_addr - section->buffer),
2732 plongest (bytes_read + entry_length),
2733 pulongest (section->size));
2734 return;
2735 }
2736
2737 /* The version number. */
2738 const uint16_t version = read_2_bytes (abfd, addr);
2739 addr += 2;
2740 if (version != 2)
2741 {
2742 warning (_("Section .debug_aranges in %s entry at offset %s "
2743 "has unsupported version %d, ignoring .debug_aranges."),
2744 objfile_name (objfile),
2745 plongest (entry_addr - section->buffer), version);
2746 return;
2747 }
2748
2749 const uint64_t debug_info_offset
2750 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2751 addr += offset_size;
2752 const auto per_cu_it
2753 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2754 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2755 {
2756 warning (_("Section .debug_aranges in %s entry at offset %s "
2757 "debug_info_offset %s does not exists, "
2758 "ignoring .debug_aranges."),
2759 objfile_name (objfile),
2760 plongest (entry_addr - section->buffer),
2761 pulongest (debug_info_offset));
2762 return;
2763 }
2764 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2765
2766 const uint8_t address_size = *addr++;
2767 if (address_size < 1 || address_size > 8)
2768 {
2769 warning (_("Section .debug_aranges in %s entry at offset %s "
2770 "address_size %u is invalid, ignoring .debug_aranges."),
2771 objfile_name (objfile),
2772 plongest (entry_addr - section->buffer), address_size);
2773 return;
2774 }
2775
2776 const uint8_t segment_selector_size = *addr++;
2777 if (segment_selector_size != 0)
2778 {
2779 warning (_("Section .debug_aranges in %s entry at offset %s "
2780 "segment_selector_size %u is not supported, "
2781 "ignoring .debug_aranges."),
2782 objfile_name (objfile),
2783 plongest (entry_addr - section->buffer),
2784 segment_selector_size);
2785 return;
2786 }
2787
2788 /* Must pad to an alignment boundary that is twice the address
2789 size. It is undocumented by the DWARF standard but GCC does
2790 use it. */
2791 for (size_t padding = ((-(addr - section->buffer))
2792 & (2 * address_size - 1));
2793 padding > 0; padding--)
2794 if (*addr++ != 0)
2795 {
2796 warning (_("Section .debug_aranges in %s entry at offset %s "
2797 "padding is not zero, ignoring .debug_aranges."),
2798 objfile_name (objfile),
2799 plongest (entry_addr - section->buffer));
2800 return;
2801 }
2802
2803 for (;;)
2804 {
2805 if (addr + 2 * address_size > entry_end)
2806 {
2807 warning (_("Section .debug_aranges in %s entry at offset %s "
2808 "address list is not properly terminated, "
2809 "ignoring .debug_aranges."),
2810 objfile_name (objfile),
2811 plongest (entry_addr - section->buffer));
2812 return;
2813 }
2814 ULONGEST start = extract_unsigned_integer (addr, address_size,
2815 dwarf5_byte_order);
2816 addr += address_size;
2817 ULONGEST length = extract_unsigned_integer (addr, address_size,
2818 dwarf5_byte_order);
2819 addr += address_size;
2820 if (start == 0 && length == 0)
2821 break;
2822 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2823 {
2824 /* Symbol was eliminated due to a COMDAT group. */
2825 continue;
2826 }
2827 ULONGEST end = start + length;
2828 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2829 - baseaddr);
2830 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2831 - baseaddr);
2832 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2833 }
2834 }
2835
2836 objfile->partial_symtabs->psymtabs_addrmap
2837 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2838 }
2839
2840 /* Find a slot in the mapped index INDEX for the object named NAME.
2841 If NAME is found, set *VEC_OUT to point to the CU vector in the
2842 constant pool and return true. If NAME cannot be found, return
2843 false. */
2844
2845 static bool
2846 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2847 offset_type **vec_out)
2848 {
2849 offset_type hash;
2850 offset_type slot, step;
2851 int (*cmp) (const char *, const char *);
2852
2853 gdb::unique_xmalloc_ptr<char> without_params;
2854 if (current_language->la_language == language_cplus
2855 || current_language->la_language == language_fortran
2856 || current_language->la_language == language_d)
2857 {
2858 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2859 not contain any. */
2860
2861 if (strchr (name, '(') != NULL)
2862 {
2863 without_params = cp_remove_params (name);
2864
2865 if (without_params != NULL)
2866 name = without_params.get ();
2867 }
2868 }
2869
2870 /* Index version 4 did not support case insensitive searches. But the
2871 indices for case insensitive languages are built in lowercase, therefore
2872 simulate our NAME being searched is also lowercased. */
2873 hash = mapped_index_string_hash ((index->version == 4
2874 && case_sensitivity == case_sensitive_off
2875 ? 5 : index->version),
2876 name);
2877
2878 slot = hash & (index->symbol_table.size () - 1);
2879 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2880 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2881
2882 for (;;)
2883 {
2884 const char *str;
2885
2886 const auto &bucket = index->symbol_table[slot];
2887 if (bucket.name == 0 && bucket.vec == 0)
2888 return false;
2889
2890 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2891 if (!cmp (name, str))
2892 {
2893 *vec_out = (offset_type *) (index->constant_pool
2894 + MAYBE_SWAP (bucket.vec));
2895 return true;
2896 }
2897
2898 slot = (slot + step) & (index->symbol_table.size () - 1);
2899 }
2900 }
2901
2902 /* A helper function that reads the .gdb_index from BUFFER and fills
2903 in MAP. FILENAME is the name of the file containing the data;
2904 it is used for error reporting. DEPRECATED_OK is true if it is
2905 ok to use deprecated sections.
2906
2907 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2908 out parameters that are filled in with information about the CU and
2909 TU lists in the section.
2910
2911 Returns true if all went well, false otherwise. */
2912
2913 static bool
2914 read_gdb_index_from_buffer (struct objfile *objfile,
2915 const char *filename,
2916 bool deprecated_ok,
2917 gdb::array_view<const gdb_byte> buffer,
2918 struct mapped_index *map,
2919 const gdb_byte **cu_list,
2920 offset_type *cu_list_elements,
2921 const gdb_byte **types_list,
2922 offset_type *types_list_elements)
2923 {
2924 const gdb_byte *addr = &buffer[0];
2925
2926 /* Version check. */
2927 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2928 /* Versions earlier than 3 emitted every copy of a psymbol. This
2929 causes the index to behave very poorly for certain requests. Version 3
2930 contained incomplete addrmap. So, it seems better to just ignore such
2931 indices. */
2932 if (version < 4)
2933 {
2934 static int warning_printed = 0;
2935 if (!warning_printed)
2936 {
2937 warning (_("Skipping obsolete .gdb_index section in %s."),
2938 filename);
2939 warning_printed = 1;
2940 }
2941 return 0;
2942 }
2943 /* Index version 4 uses a different hash function than index version
2944 5 and later.
2945
2946 Versions earlier than 6 did not emit psymbols for inlined
2947 functions. Using these files will cause GDB not to be able to
2948 set breakpoints on inlined functions by name, so we ignore these
2949 indices unless the user has done
2950 "set use-deprecated-index-sections on". */
2951 if (version < 6 && !deprecated_ok)
2952 {
2953 static int warning_printed = 0;
2954 if (!warning_printed)
2955 {
2956 warning (_("\
2957 Skipping deprecated .gdb_index section in %s.\n\
2958 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2959 to use the section anyway."),
2960 filename);
2961 warning_printed = 1;
2962 }
2963 return 0;
2964 }
2965 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2966 of the TU (for symbols coming from TUs),
2967 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2968 Plus gold-generated indices can have duplicate entries for global symbols,
2969 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2970 These are just performance bugs, and we can't distinguish gdb-generated
2971 indices from gold-generated ones, so issue no warning here. */
2972
2973 /* Indexes with higher version than the one supported by GDB may be no
2974 longer backward compatible. */
2975 if (version > 8)
2976 return 0;
2977
2978 map->version = version;
2979
2980 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2981
2982 int i = 0;
2983 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2984 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2985 / 8);
2986 ++i;
2987
2988 *types_list = addr + MAYBE_SWAP (metadata[i]);
2989 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2990 - MAYBE_SWAP (metadata[i]))
2991 / 8);
2992 ++i;
2993
2994 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2995 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2996 map->address_table
2997 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2998 ++i;
2999
3000 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3001 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3002 map->symbol_table
3003 = gdb::array_view<mapped_index::symbol_table_slot>
3004 ((mapped_index::symbol_table_slot *) symbol_table,
3005 (mapped_index::symbol_table_slot *) symbol_table_end);
3006
3007 ++i;
3008 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3009
3010 return 1;
3011 }
3012
3013 /* Callback types for dwarf2_read_gdb_index. */
3014
3015 typedef gdb::function_view
3016 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3017 get_gdb_index_contents_ftype;
3018 typedef gdb::function_view
3019 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3020 get_gdb_index_contents_dwz_ftype;
3021
3022 /* Read .gdb_index. If everything went ok, initialize the "quick"
3023 elements of all the CUs and return 1. Otherwise, return 0. */
3024
3025 static int
3026 dwarf2_read_gdb_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 get_gdb_index_contents_ftype get_gdb_index_contents,
3029 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3030 {
3031 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3032 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3033 struct dwz_file *dwz;
3034 struct objfile *objfile = dwarf2_per_objfile->objfile;
3035
3036 gdb::array_view<const gdb_byte> main_index_contents
3037 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3038
3039 if (main_index_contents.empty ())
3040 return 0;
3041
3042 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3043 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3044 use_deprecated_index_sections,
3045 main_index_contents, map.get (), &cu_list,
3046 &cu_list_elements, &types_list,
3047 &types_list_elements))
3048 return 0;
3049
3050 /* Don't use the index if it's empty. */
3051 if (map->symbol_table.empty ())
3052 return 0;
3053
3054 /* If there is a .dwz file, read it so we can get its CU list as
3055 well. */
3056 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3057 if (dwz != NULL)
3058 {
3059 struct mapped_index dwz_map;
3060 const gdb_byte *dwz_types_ignore;
3061 offset_type dwz_types_elements_ignore;
3062
3063 gdb::array_view<const gdb_byte> dwz_index_content
3064 = get_gdb_index_contents_dwz (objfile, dwz);
3065
3066 if (dwz_index_content.empty ())
3067 return 0;
3068
3069 if (!read_gdb_index_from_buffer (objfile,
3070 bfd_get_filename (dwz->dwz_bfd.get ()),
3071 1, dwz_index_content, &dwz_map,
3072 &dwz_list, &dwz_list_elements,
3073 &dwz_types_ignore,
3074 &dwz_types_elements_ignore))
3075 {
3076 warning (_("could not read '.gdb_index' section from %s; skipping"),
3077 bfd_get_filename (dwz->dwz_bfd.get ()));
3078 return 0;
3079 }
3080 }
3081
3082 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3083 dwz_list, dwz_list_elements);
3084
3085 if (types_list_elements)
3086 {
3087 /* We can only handle a single .debug_types when we have an
3088 index. */
3089 if (dwarf2_per_objfile->types.size () != 1)
3090 return 0;
3091
3092 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3093
3094 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3095 types_list, types_list_elements);
3096 }
3097
3098 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3099
3100 dwarf2_per_objfile->index_table = std::move (map);
3101 dwarf2_per_objfile->using_index = 1;
3102 dwarf2_per_objfile->quick_file_names_table =
3103 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3104
3105 return 1;
3106 }
3107
3108 /* die_reader_func for dw2_get_file_names. */
3109
3110 static void
3111 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3112 const gdb_byte *info_ptr,
3113 struct die_info *comp_unit_die)
3114 {
3115 struct dwarf2_cu *cu = reader->cu;
3116 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3117 struct dwarf2_per_objfile *dwarf2_per_objfile
3118 = cu->per_cu->dwarf2_per_objfile;
3119 struct objfile *objfile = dwarf2_per_objfile->objfile;
3120 struct dwarf2_per_cu_data *lh_cu;
3121 struct attribute *attr;
3122 void **slot;
3123 struct quick_file_names *qfn;
3124
3125 gdb_assert (! this_cu->is_debug_types);
3126
3127 /* Our callers never want to match partial units -- instead they
3128 will match the enclosing full CU. */
3129 if (comp_unit_die->tag == DW_TAG_partial_unit)
3130 {
3131 this_cu->v.quick->no_file_data = 1;
3132 return;
3133 }
3134
3135 lh_cu = this_cu;
3136 slot = NULL;
3137
3138 line_header_up lh;
3139 sect_offset line_offset {};
3140
3141 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3142 if (attr != nullptr)
3143 {
3144 struct quick_file_names find_entry;
3145
3146 line_offset = (sect_offset) DW_UNSND (attr);
3147
3148 /* We may have already read in this line header (TU line header sharing).
3149 If we have we're done. */
3150 find_entry.hash.dwo_unit = cu->dwo_unit;
3151 find_entry.hash.line_sect_off = line_offset;
3152 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3153 &find_entry, INSERT);
3154 if (*slot != NULL)
3155 {
3156 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3157 return;
3158 }
3159
3160 lh = dwarf_decode_line_header (line_offset, cu);
3161 }
3162 if (lh == NULL)
3163 {
3164 lh_cu->v.quick->no_file_data = 1;
3165 return;
3166 }
3167
3168 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3169 qfn->hash.dwo_unit = cu->dwo_unit;
3170 qfn->hash.line_sect_off = line_offset;
3171 gdb_assert (slot != NULL);
3172 *slot = qfn;
3173
3174 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3175
3176 int offset = 0;
3177 if (strcmp (fnd.name, "<unknown>") != 0)
3178 ++offset;
3179
3180 qfn->num_file_names = offset + lh->file_names_size ();
3181 qfn->file_names =
3182 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3183 if (offset != 0)
3184 qfn->file_names[0] = xstrdup (fnd.name);
3185 for (int i = 0; i < lh->file_names_size (); ++i)
3186 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3187 fnd.comp_dir).release ();
3188 qfn->real_names = NULL;
3189
3190 lh_cu->v.quick->file_names = qfn;
3191 }
3192
3193 /* A helper for the "quick" functions which attempts to read the line
3194 table for THIS_CU. */
3195
3196 static struct quick_file_names *
3197 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3198 {
3199 /* This should never be called for TUs. */
3200 gdb_assert (! this_cu->is_debug_types);
3201 /* Nor type unit groups. */
3202 gdb_assert (! this_cu->type_unit_group_p ());
3203
3204 if (this_cu->v.quick->file_names != NULL)
3205 return this_cu->v.quick->file_names;
3206 /* If we know there is no line data, no point in looking again. */
3207 if (this_cu->v.quick->no_file_data)
3208 return NULL;
3209
3210 cutu_reader reader (this_cu);
3211 if (!reader.dummy_p)
3212 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3213
3214 if (this_cu->v.quick->no_file_data)
3215 return NULL;
3216 return this_cu->v.quick->file_names;
3217 }
3218
3219 /* A helper for the "quick" functions which computes and caches the
3220 real path for a given file name from the line table. */
3221
3222 static const char *
3223 dw2_get_real_path (struct objfile *objfile,
3224 struct quick_file_names *qfn, int index)
3225 {
3226 if (qfn->real_names == NULL)
3227 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3228 qfn->num_file_names, const char *);
3229
3230 if (qfn->real_names[index] == NULL)
3231 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3232
3233 return qfn->real_names[index];
3234 }
3235
3236 static struct symtab *
3237 dw2_find_last_source_symtab (struct objfile *objfile)
3238 {
3239 struct dwarf2_per_objfile *dwarf2_per_objfile
3240 = get_dwarf2_per_objfile (objfile);
3241 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3242 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3243
3244 if (cust == NULL)
3245 return NULL;
3246
3247 return compunit_primary_filetab (cust);
3248 }
3249
3250 /* Traversal function for dw2_forget_cached_source_info. */
3251
3252 static int
3253 dw2_free_cached_file_names (void **slot, void *info)
3254 {
3255 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3256
3257 if (file_data->real_names)
3258 {
3259 int i;
3260
3261 for (i = 0; i < file_data->num_file_names; ++i)
3262 {
3263 xfree ((void*) file_data->real_names[i]);
3264 file_data->real_names[i] = NULL;
3265 }
3266 }
3267
3268 return 1;
3269 }
3270
3271 static void
3272 dw2_forget_cached_source_info (struct objfile *objfile)
3273 {
3274 struct dwarf2_per_objfile *dwarf2_per_objfile
3275 = get_dwarf2_per_objfile (objfile);
3276
3277 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3278 dw2_free_cached_file_names, NULL);
3279 }
3280
3281 /* Helper function for dw2_map_symtabs_matching_filename that expands
3282 the symtabs and calls the iterator. */
3283
3284 static int
3285 dw2_map_expand_apply (struct objfile *objfile,
3286 struct dwarf2_per_cu_data *per_cu,
3287 const char *name, const char *real_path,
3288 gdb::function_view<bool (symtab *)> callback)
3289 {
3290 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3291
3292 /* Don't visit already-expanded CUs. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 return 0;
3295
3296 /* This may expand more than one symtab, and we want to iterate over
3297 all of them. */
3298 dw2_instantiate_symtab (per_cu, false);
3299
3300 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3301 last_made, callback);
3302 }
3303
3304 /* Implementation of the map_symtabs_matching_filename method. */
3305
3306 static bool
3307 dw2_map_symtabs_matching_filename
3308 (struct objfile *objfile, const char *name, const char *real_path,
3309 gdb::function_view<bool (symtab *)> callback)
3310 {
3311 const char *name_basename = lbasename (name);
3312 struct dwarf2_per_objfile *dwarf2_per_objfile
3313 = get_dwarf2_per_objfile (objfile);
3314
3315 /* The rule is CUs specify all the files, including those used by
3316 any TU, so there's no need to scan TUs here. */
3317
3318 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3319 {
3320 /* We only need to look at symtabs not already expanded. */
3321 if (per_cu->v.quick->compunit_symtab)
3322 continue;
3323
3324 quick_file_names *file_data = dw2_get_file_names (per_cu);
3325 if (file_data == NULL)
3326 continue;
3327
3328 for (int j = 0; j < file_data->num_file_names; ++j)
3329 {
3330 const char *this_name = file_data->file_names[j];
3331 const char *this_real_name;
3332
3333 if (compare_filenames_for_search (this_name, name))
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340
3341 /* Before we invoke realpath, which can get expensive when many
3342 files are involved, do a quick comparison of the basenames. */
3343 if (! basenames_may_differ
3344 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3345 continue;
3346
3347 this_real_name = dw2_get_real_path (objfile, file_data, j);
3348 if (compare_filenames_for_search (this_real_name, name))
3349 {
3350 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3351 callback))
3352 return true;
3353 continue;
3354 }
3355
3356 if (real_path != NULL)
3357 {
3358 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3359 gdb_assert (IS_ABSOLUTE_PATH (name));
3360 if (this_real_name != NULL
3361 && FILENAME_CMP (real_path, this_real_name) == 0)
3362 {
3363 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3364 callback))
3365 return true;
3366 continue;
3367 }
3368 }
3369 }
3370 }
3371
3372 return false;
3373 }
3374
3375 /* Struct used to manage iterating over all CUs looking for a symbol. */
3376
3377 struct dw2_symtab_iterator
3378 {
3379 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3380 struct dwarf2_per_objfile *dwarf2_per_objfile;
3381 /* If set, only look for symbols that match that block. Valid values are
3382 GLOBAL_BLOCK and STATIC_BLOCK. */
3383 gdb::optional<block_enum> block_index;
3384 /* The kind of symbol we're looking for. */
3385 domain_enum domain;
3386 /* The list of CUs from the index entry of the symbol,
3387 or NULL if not found. */
3388 offset_type *vec;
3389 /* The next element in VEC to look at. */
3390 int next;
3391 /* The number of elements in VEC, or zero if there is no match. */
3392 int length;
3393 /* Have we seen a global version of the symbol?
3394 If so we can ignore all further global instances.
3395 This is to work around gold/15646, inefficient gold-generated
3396 indices. */
3397 int global_seen;
3398 };
3399
3400 /* Initialize the index symtab iterator ITER. */
3401
3402 static void
3403 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3404 struct dwarf2_per_objfile *dwarf2_per_objfile,
3405 gdb::optional<block_enum> block_index,
3406 domain_enum domain,
3407 const char *name)
3408 {
3409 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3410 iter->block_index = block_index;
3411 iter->domain = domain;
3412 iter->next = 0;
3413 iter->global_seen = 0;
3414
3415 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3416
3417 /* index is NULL if OBJF_READNOW. */
3418 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3419 iter->length = MAYBE_SWAP (*iter->vec);
3420 else
3421 {
3422 iter->vec = NULL;
3423 iter->length = 0;
3424 }
3425 }
3426
3427 /* Return the next matching CU or NULL if there are no more. */
3428
3429 static struct dwarf2_per_cu_data *
3430 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3431 {
3432 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3433
3434 for ( ; iter->next < iter->length; ++iter->next)
3435 {
3436 offset_type cu_index_and_attrs =
3437 MAYBE_SWAP (iter->vec[iter->next + 1]);
3438 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3439 gdb_index_symbol_kind symbol_kind =
3440 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3441 /* Only check the symbol attributes if they're present.
3442 Indices prior to version 7 don't record them,
3443 and indices >= 7 may elide them for certain symbols
3444 (gold does this). */
3445 int attrs_valid =
3446 (dwarf2_per_objfile->index_table->version >= 7
3447 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3448
3449 /* Don't crash on bad data. */
3450 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3451 + dwarf2_per_objfile->all_type_units.size ()))
3452 {
3453 complaint (_(".gdb_index entry has bad CU index"
3454 " [in module %s]"),
3455 objfile_name (dwarf2_per_objfile->objfile));
3456 continue;
3457 }
3458
3459 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3460
3461 /* Skip if already read in. */
3462 if (per_cu->v.quick->compunit_symtab)
3463 continue;
3464
3465 /* Check static vs global. */
3466 if (attrs_valid)
3467 {
3468 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3469
3470 if (iter->block_index.has_value ())
3471 {
3472 bool want_static = *iter->block_index == STATIC_BLOCK;
3473
3474 if (is_static != want_static)
3475 continue;
3476 }
3477
3478 /* Work around gold/15646. */
3479 if (!is_static && iter->global_seen)
3480 continue;
3481 if (!is_static)
3482 iter->global_seen = 1;
3483 }
3484
3485 /* Only check the symbol's kind if it has one. */
3486 if (attrs_valid)
3487 {
3488 switch (iter->domain)
3489 {
3490 case VAR_DOMAIN:
3491 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3492 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3493 /* Some types are also in VAR_DOMAIN. */
3494 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3495 continue;
3496 break;
3497 case STRUCT_DOMAIN:
3498 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3499 continue;
3500 break;
3501 case LABEL_DOMAIN:
3502 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3503 continue;
3504 break;
3505 case MODULE_DOMAIN:
3506 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3507 continue;
3508 break;
3509 default:
3510 break;
3511 }
3512 }
3513
3514 ++iter->next;
3515 return per_cu;
3516 }
3517
3518 return NULL;
3519 }
3520
3521 static struct compunit_symtab *
3522 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3523 const char *name, domain_enum domain)
3524 {
3525 struct compunit_symtab *stab_best = NULL;
3526 struct dwarf2_per_objfile *dwarf2_per_objfile
3527 = get_dwarf2_per_objfile (objfile);
3528
3529 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3530
3531 struct dw2_symtab_iterator iter;
3532 struct dwarf2_per_cu_data *per_cu;
3533
3534 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3535
3536 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3537 {
3538 struct symbol *sym, *with_opaque = NULL;
3539 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3540 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3541 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3542
3543 sym = block_find_symbol (block, name, domain,
3544 block_find_non_opaque_type_preferred,
3545 &with_opaque);
3546
3547 /* Some caution must be observed with overloaded functions
3548 and methods, since the index will not contain any overload
3549 information (but NAME might contain it). */
3550
3551 if (sym != NULL
3552 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3553 return stab;
3554 if (with_opaque != NULL
3555 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3556 stab_best = stab;
3557
3558 /* Keep looking through other CUs. */
3559 }
3560
3561 return stab_best;
3562 }
3563
3564 static void
3565 dw2_print_stats (struct objfile *objfile)
3566 {
3567 struct dwarf2_per_objfile *dwarf2_per_objfile
3568 = get_dwarf2_per_objfile (objfile);
3569 int total = (dwarf2_per_objfile->all_comp_units.size ()
3570 + dwarf2_per_objfile->all_type_units.size ());
3571 int count = 0;
3572
3573 for (int i = 0; i < total; ++i)
3574 {
3575 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3576
3577 if (!per_cu->v.quick->compunit_symtab)
3578 ++count;
3579 }
3580 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3581 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3582 }
3583
3584 /* This dumps minimal information about the index.
3585 It is called via "mt print objfiles".
3586 One use is to verify .gdb_index has been loaded by the
3587 gdb.dwarf2/gdb-index.exp testcase. */
3588
3589 static void
3590 dw2_dump (struct objfile *objfile)
3591 {
3592 struct dwarf2_per_objfile *dwarf2_per_objfile
3593 = get_dwarf2_per_objfile (objfile);
3594
3595 gdb_assert (dwarf2_per_objfile->using_index);
3596 printf_filtered (".gdb_index:");
3597 if (dwarf2_per_objfile->index_table != NULL)
3598 {
3599 printf_filtered (" version %d\n",
3600 dwarf2_per_objfile->index_table->version);
3601 }
3602 else
3603 printf_filtered (" faked for \"readnow\"\n");
3604 printf_filtered ("\n");
3605 }
3606
3607 static void
3608 dw2_expand_symtabs_for_function (struct objfile *objfile,
3609 const char *func_name)
3610 {
3611 struct dwarf2_per_objfile *dwarf2_per_objfile
3612 = get_dwarf2_per_objfile (objfile);
3613
3614 struct dw2_symtab_iterator iter;
3615 struct dwarf2_per_cu_data *per_cu;
3616
3617 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3618
3619 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3620 dw2_instantiate_symtab (per_cu, false);
3621
3622 }
3623
3624 static void
3625 dw2_expand_all_symtabs (struct objfile *objfile)
3626 {
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = get_dwarf2_per_objfile (objfile);
3629 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3630 + dwarf2_per_objfile->all_type_units.size ());
3631
3632 for (int i = 0; i < total_units; ++i)
3633 {
3634 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3635
3636 /* We don't want to directly expand a partial CU, because if we
3637 read it with the wrong language, then assertion failures can
3638 be triggered later on. See PR symtab/23010. So, tell
3639 dw2_instantiate_symtab to skip partial CUs -- any important
3640 partial CU will be read via DW_TAG_imported_unit anyway. */
3641 dw2_instantiate_symtab (per_cu, true);
3642 }
3643 }
3644
3645 static void
3646 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3647 const char *fullname)
3648 {
3649 struct dwarf2_per_objfile *dwarf2_per_objfile
3650 = get_dwarf2_per_objfile (objfile);
3651
3652 /* We don't need to consider type units here.
3653 This is only called for examining code, e.g. expand_line_sal.
3654 There can be an order of magnitude (or more) more type units
3655 than comp units, and we avoid them if we can. */
3656
3657 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3658 {
3659 /* We only need to look at symtabs not already expanded. */
3660 if (per_cu->v.quick->compunit_symtab)
3661 continue;
3662
3663 quick_file_names *file_data = dw2_get_file_names (per_cu);
3664 if (file_data == NULL)
3665 continue;
3666
3667 for (int j = 0; j < file_data->num_file_names; ++j)
3668 {
3669 const char *this_fullname = file_data->file_names[j];
3670
3671 if (filename_cmp (this_fullname, fullname) == 0)
3672 {
3673 dw2_instantiate_symtab (per_cu, false);
3674 break;
3675 }
3676 }
3677 }
3678 }
3679
3680 static void
3681 dw2_map_matching_symbols
3682 (struct objfile *objfile,
3683 const lookup_name_info &name, domain_enum domain,
3684 int global,
3685 gdb::function_view<symbol_found_callback_ftype> callback,
3686 symbol_compare_ftype *ordered_compare)
3687 {
3688 /* Currently unimplemented; used for Ada. The function can be called if the
3689 current language is Ada for a non-Ada objfile using GNU index. As Ada
3690 does not look for non-Ada symbols this function should just return. */
3691 }
3692
3693 /* Starting from a search name, return the string that finds the upper
3694 bound of all strings that start with SEARCH_NAME in a sorted name
3695 list. Returns the empty string to indicate that the upper bound is
3696 the end of the list. */
3697
3698 static std::string
3699 make_sort_after_prefix_name (const char *search_name)
3700 {
3701 /* When looking to complete "func", we find the upper bound of all
3702 symbols that start with "func" by looking for where we'd insert
3703 the closest string that would follow "func" in lexicographical
3704 order. Usually, that's "func"-with-last-character-incremented,
3705 i.e. "fund". Mind non-ASCII characters, though. Usually those
3706 will be UTF-8 multi-byte sequences, but we can't be certain.
3707 Especially mind the 0xff character, which is a valid character in
3708 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3709 rule out compilers allowing it in identifiers. Note that
3710 conveniently, strcmp/strcasecmp are specified to compare
3711 characters interpreted as unsigned char. So what we do is treat
3712 the whole string as a base 256 number composed of a sequence of
3713 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3714 to 0, and carries 1 to the following more-significant position.
3715 If the very first character in SEARCH_NAME ends up incremented
3716 and carries/overflows, then the upper bound is the end of the
3717 list. The string after the empty string is also the empty
3718 string.
3719
3720 Some examples of this operation:
3721
3722 SEARCH_NAME => "+1" RESULT
3723
3724 "abc" => "abd"
3725 "ab\xff" => "ac"
3726 "\xff" "a" "\xff" => "\xff" "b"
3727 "\xff" => ""
3728 "\xff\xff" => ""
3729 "" => ""
3730
3731 Then, with these symbols for example:
3732
3733 func
3734 func1
3735 fund
3736
3737 completing "func" looks for symbols between "func" and
3738 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3739 which finds "func" and "func1", but not "fund".
3740
3741 And with:
3742
3743 funcÿ (Latin1 'ÿ' [0xff])
3744 funcÿ1
3745 fund
3746
3747 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3748 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3749
3750 And with:
3751
3752 ÿÿ (Latin1 'ÿ' [0xff])
3753 ÿÿ1
3754
3755 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3756 the end of the list.
3757 */
3758 std::string after = search_name;
3759 while (!after.empty () && (unsigned char) after.back () == 0xff)
3760 after.pop_back ();
3761 if (!after.empty ())
3762 after.back () = (unsigned char) after.back () + 1;
3763 return after;
3764 }
3765
3766 /* See declaration. */
3767
3768 std::pair<std::vector<name_component>::const_iterator,
3769 std::vector<name_component>::const_iterator>
3770 mapped_index_base::find_name_components_bounds
3771 (const lookup_name_info &lookup_name_without_params, language lang) const
3772 {
3773 auto *name_cmp
3774 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3775
3776 const char *lang_name
3777 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3778
3779 /* Comparison function object for lower_bound that matches against a
3780 given symbol name. */
3781 auto lookup_compare_lower = [&] (const name_component &elem,
3782 const char *name)
3783 {
3784 const char *elem_qualified = this->symbol_name_at (elem.idx);
3785 const char *elem_name = elem_qualified + elem.name_offset;
3786 return name_cmp (elem_name, name) < 0;
3787 };
3788
3789 /* Comparison function object for upper_bound that matches against a
3790 given symbol name. */
3791 auto lookup_compare_upper = [&] (const char *name,
3792 const name_component &elem)
3793 {
3794 const char *elem_qualified = this->symbol_name_at (elem.idx);
3795 const char *elem_name = elem_qualified + elem.name_offset;
3796 return name_cmp (name, elem_name) < 0;
3797 };
3798
3799 auto begin = this->name_components.begin ();
3800 auto end = this->name_components.end ();
3801
3802 /* Find the lower bound. */
3803 auto lower = [&] ()
3804 {
3805 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3806 return begin;
3807 else
3808 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3809 } ();
3810
3811 /* Find the upper bound. */
3812 auto upper = [&] ()
3813 {
3814 if (lookup_name_without_params.completion_mode ())
3815 {
3816 /* In completion mode, we want UPPER to point past all
3817 symbols names that have the same prefix. I.e., with
3818 these symbols, and completing "func":
3819
3820 function << lower bound
3821 function1
3822 other_function << upper bound
3823
3824 We find the upper bound by looking for the insertion
3825 point of "func"-with-last-character-incremented,
3826 i.e. "fund". */
3827 std::string after = make_sort_after_prefix_name (lang_name);
3828 if (after.empty ())
3829 return end;
3830 return std::lower_bound (lower, end, after.c_str (),
3831 lookup_compare_lower);
3832 }
3833 else
3834 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3835 } ();
3836
3837 return {lower, upper};
3838 }
3839
3840 /* See declaration. */
3841
3842 void
3843 mapped_index_base::build_name_components ()
3844 {
3845 if (!this->name_components.empty ())
3846 return;
3847
3848 this->name_components_casing = case_sensitivity;
3849 auto *name_cmp
3850 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3851
3852 /* The code below only knows how to break apart components of C++
3853 symbol names (and other languages that use '::' as
3854 namespace/module separator) and Ada symbol names. */
3855 auto count = this->symbol_name_count ();
3856 for (offset_type idx = 0; idx < count; idx++)
3857 {
3858 if (this->symbol_name_slot_invalid (idx))
3859 continue;
3860
3861 const char *name = this->symbol_name_at (idx);
3862
3863 /* Add each name component to the name component table. */
3864 unsigned int previous_len = 0;
3865
3866 if (strstr (name, "::") != nullptr)
3867 {
3868 for (unsigned int current_len = cp_find_first_component (name);
3869 name[current_len] != '\0';
3870 current_len += cp_find_first_component (name + current_len))
3871 {
3872 gdb_assert (name[current_len] == ':');
3873 this->name_components.push_back ({previous_len, idx});
3874 /* Skip the '::'. */
3875 current_len += 2;
3876 previous_len = current_len;
3877 }
3878 }
3879 else
3880 {
3881 /* Handle the Ada encoded (aka mangled) form here. */
3882 for (const char *iter = strstr (name, "__");
3883 iter != nullptr;
3884 iter = strstr (iter, "__"))
3885 {
3886 this->name_components.push_back ({previous_len, idx});
3887 iter += 2;
3888 previous_len = iter - name;
3889 }
3890 }
3891
3892 this->name_components.push_back ({previous_len, idx});
3893 }
3894
3895 /* Sort name_components elements by name. */
3896 auto name_comp_compare = [&] (const name_component &left,
3897 const name_component &right)
3898 {
3899 const char *left_qualified = this->symbol_name_at (left.idx);
3900 const char *right_qualified = this->symbol_name_at (right.idx);
3901
3902 const char *left_name = left_qualified + left.name_offset;
3903 const char *right_name = right_qualified + right.name_offset;
3904
3905 return name_cmp (left_name, right_name) < 0;
3906 };
3907
3908 std::sort (this->name_components.begin (),
3909 this->name_components.end (),
3910 name_comp_compare);
3911 }
3912
3913 /* Helper for dw2_expand_symtabs_matching that works with a
3914 mapped_index_base instead of the containing objfile. This is split
3915 to a separate function in order to be able to unit test the
3916 name_components matching using a mock mapped_index_base. For each
3917 symbol name that matches, calls MATCH_CALLBACK, passing it the
3918 symbol's index in the mapped_index_base symbol table. */
3919
3920 static void
3921 dw2_expand_symtabs_matching_symbol
3922 (mapped_index_base &index,
3923 const lookup_name_info &lookup_name_in,
3924 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3925 enum search_domain kind,
3926 gdb::function_view<bool (offset_type)> match_callback)
3927 {
3928 lookup_name_info lookup_name_without_params
3929 = lookup_name_in.make_ignore_params ();
3930
3931 /* Build the symbol name component sorted vector, if we haven't
3932 yet. */
3933 index.build_name_components ();
3934
3935 /* The same symbol may appear more than once in the range though.
3936 E.g., if we're looking for symbols that complete "w", and we have
3937 a symbol named "w1::w2", we'll find the two name components for
3938 that same symbol in the range. To be sure we only call the
3939 callback once per symbol, we first collect the symbol name
3940 indexes that matched in a temporary vector and ignore
3941 duplicates. */
3942 std::vector<offset_type> matches;
3943
3944 struct name_and_matcher
3945 {
3946 symbol_name_matcher_ftype *matcher;
3947 const std::string &name;
3948
3949 bool operator== (const name_and_matcher &other) const
3950 {
3951 return matcher == other.matcher && name == other.name;
3952 }
3953 };
3954
3955 /* A vector holding all the different symbol name matchers, for all
3956 languages. */
3957 std::vector<name_and_matcher> matchers;
3958
3959 for (int i = 0; i < nr_languages; i++)
3960 {
3961 enum language lang_e = (enum language) i;
3962
3963 const language_defn *lang = language_def (lang_e);
3964 symbol_name_matcher_ftype *name_matcher
3965 = get_symbol_name_matcher (lang, lookup_name_without_params);
3966
3967 name_and_matcher key {
3968 name_matcher,
3969 lookup_name_without_params.language_lookup_name (lang_e)
3970 };
3971
3972 /* Don't insert the same comparison routine more than once.
3973 Note that we do this linear walk. This is not a problem in
3974 practice because the number of supported languages is
3975 low. */
3976 if (std::find (matchers.begin (), matchers.end (), key)
3977 != matchers.end ())
3978 continue;
3979 matchers.push_back (std::move (key));
3980
3981 auto bounds
3982 = index.find_name_components_bounds (lookup_name_without_params,
3983 lang_e);
3984
3985 /* Now for each symbol name in range, check to see if we have a name
3986 match, and if so, call the MATCH_CALLBACK callback. */
3987
3988 for (; bounds.first != bounds.second; ++bounds.first)
3989 {
3990 const char *qualified = index.symbol_name_at (bounds.first->idx);
3991
3992 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3993 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3994 continue;
3995
3996 matches.push_back (bounds.first->idx);
3997 }
3998 }
3999
4000 std::sort (matches.begin (), matches.end ());
4001
4002 /* Finally call the callback, once per match. */
4003 ULONGEST prev = -1;
4004 for (offset_type idx : matches)
4005 {
4006 if (prev != idx)
4007 {
4008 if (!match_callback (idx))
4009 break;
4010 prev = idx;
4011 }
4012 }
4013
4014 /* Above we use a type wider than idx's for 'prev', since 0 and
4015 (offset_type)-1 are both possible values. */
4016 static_assert (sizeof (prev) > sizeof (offset_type), "");
4017 }
4018
4019 #if GDB_SELF_TEST
4020
4021 namespace selftests { namespace dw2_expand_symtabs_matching {
4022
4023 /* A mock .gdb_index/.debug_names-like name index table, enough to
4024 exercise dw2_expand_symtabs_matching_symbol, which works with the
4025 mapped_index_base interface. Builds an index from the symbol list
4026 passed as parameter to the constructor. */
4027 class mock_mapped_index : public mapped_index_base
4028 {
4029 public:
4030 mock_mapped_index (gdb::array_view<const char *> symbols)
4031 : m_symbol_table (symbols)
4032 {}
4033
4034 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4035
4036 /* Return the number of names in the symbol table. */
4037 size_t symbol_name_count () const override
4038 {
4039 return m_symbol_table.size ();
4040 }
4041
4042 /* Get the name of the symbol at IDX in the symbol table. */
4043 const char *symbol_name_at (offset_type idx) const override
4044 {
4045 return m_symbol_table[idx];
4046 }
4047
4048 private:
4049 gdb::array_view<const char *> m_symbol_table;
4050 };
4051
4052 /* Convenience function that converts a NULL pointer to a "<null>"
4053 string, to pass to print routines. */
4054
4055 static const char *
4056 string_or_null (const char *str)
4057 {
4058 return str != NULL ? str : "<null>";
4059 }
4060
4061 /* Check if a lookup_name_info built from
4062 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4063 index. EXPECTED_LIST is the list of expected matches, in expected
4064 matching order. If no match expected, then an empty list is
4065 specified. Returns true on success. On failure prints a warning
4066 indicating the file:line that failed, and returns false. */
4067
4068 static bool
4069 check_match (const char *file, int line,
4070 mock_mapped_index &mock_index,
4071 const char *name, symbol_name_match_type match_type,
4072 bool completion_mode,
4073 std::initializer_list<const char *> expected_list)
4074 {
4075 lookup_name_info lookup_name (name, match_type, completion_mode);
4076
4077 bool matched = true;
4078
4079 auto mismatch = [&] (const char *expected_str,
4080 const char *got)
4081 {
4082 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4083 "expected=\"%s\", got=\"%s\"\n"),
4084 file, line,
4085 (match_type == symbol_name_match_type::FULL
4086 ? "FULL" : "WILD"),
4087 name, string_or_null (expected_str), string_or_null (got));
4088 matched = false;
4089 };
4090
4091 auto expected_it = expected_list.begin ();
4092 auto expected_end = expected_list.end ();
4093
4094 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4095 NULL, ALL_DOMAIN,
4096 [&] (offset_type idx)
4097 {
4098 const char *matched_name = mock_index.symbol_name_at (idx);
4099 const char *expected_str
4100 = expected_it == expected_end ? NULL : *expected_it++;
4101
4102 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4103 mismatch (expected_str, matched_name);
4104 return true;
4105 });
4106
4107 const char *expected_str
4108 = expected_it == expected_end ? NULL : *expected_it++;
4109 if (expected_str != NULL)
4110 mismatch (expected_str, NULL);
4111
4112 return matched;
4113 }
4114
4115 /* The symbols added to the mock mapped_index for testing (in
4116 canonical form). */
4117 static const char *test_symbols[] = {
4118 "function",
4119 "std::bar",
4120 "std::zfunction",
4121 "std::zfunction2",
4122 "w1::w2",
4123 "ns::foo<char*>",
4124 "ns::foo<int>",
4125 "ns::foo<long>",
4126 "ns2::tmpl<int>::foo2",
4127 "(anonymous namespace)::A::B::C",
4128
4129 /* These are used to check that the increment-last-char in the
4130 matching algorithm for completion doesn't match "t1_fund" when
4131 completing "t1_func". */
4132 "t1_func",
4133 "t1_func1",
4134 "t1_fund",
4135 "t1_fund1",
4136
4137 /* A UTF-8 name with multi-byte sequences to make sure that
4138 cp-name-parser understands this as a single identifier ("função"
4139 is "function" in PT). */
4140 u8"u8função",
4141
4142 /* \377 (0xff) is Latin1 'ÿ'. */
4143 "yfunc\377",
4144
4145 /* \377 (0xff) is Latin1 'ÿ'. */
4146 "\377",
4147 "\377\377123",
4148
4149 /* A name with all sorts of complications. Starts with "z" to make
4150 it easier for the completion tests below. */
4151 #define Z_SYM_NAME \
4152 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4153 "::tuple<(anonymous namespace)::ui*, " \
4154 "std::default_delete<(anonymous namespace)::ui>, void>"
4155
4156 Z_SYM_NAME
4157 };
4158
4159 /* Returns true if the mapped_index_base::find_name_component_bounds
4160 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4161 in completion mode. */
4162
4163 static bool
4164 check_find_bounds_finds (mapped_index_base &index,
4165 const char *search_name,
4166 gdb::array_view<const char *> expected_syms)
4167 {
4168 lookup_name_info lookup_name (search_name,
4169 symbol_name_match_type::FULL, true);
4170
4171 auto bounds = index.find_name_components_bounds (lookup_name,
4172 language_cplus);
4173
4174 size_t distance = std::distance (bounds.first, bounds.second);
4175 if (distance != expected_syms.size ())
4176 return false;
4177
4178 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4179 {
4180 auto nc_elem = bounds.first + exp_elem;
4181 const char *qualified = index.symbol_name_at (nc_elem->idx);
4182 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4183 return false;
4184 }
4185
4186 return true;
4187 }
4188
4189 /* Test the lower-level mapped_index::find_name_component_bounds
4190 method. */
4191
4192 static void
4193 test_mapped_index_find_name_component_bounds ()
4194 {
4195 mock_mapped_index mock_index (test_symbols);
4196
4197 mock_index.build_name_components ();
4198
4199 /* Test the lower-level mapped_index::find_name_component_bounds
4200 method in completion mode. */
4201 {
4202 static const char *expected_syms[] = {
4203 "t1_func",
4204 "t1_func1",
4205 };
4206
4207 SELF_CHECK (check_find_bounds_finds (mock_index,
4208 "t1_func", expected_syms));
4209 }
4210
4211 /* Check that the increment-last-char in the name matching algorithm
4212 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4213 {
4214 static const char *expected_syms1[] = {
4215 "\377",
4216 "\377\377123",
4217 };
4218 SELF_CHECK (check_find_bounds_finds (mock_index,
4219 "\377", expected_syms1));
4220
4221 static const char *expected_syms2[] = {
4222 "\377\377123",
4223 };
4224 SELF_CHECK (check_find_bounds_finds (mock_index,
4225 "\377\377", expected_syms2));
4226 }
4227 }
4228
4229 /* Test dw2_expand_symtabs_matching_symbol. */
4230
4231 static void
4232 test_dw2_expand_symtabs_matching_symbol ()
4233 {
4234 mock_mapped_index mock_index (test_symbols);
4235
4236 /* We let all tests run until the end even if some fails, for debug
4237 convenience. */
4238 bool any_mismatch = false;
4239
4240 /* Create the expected symbols list (an initializer_list). Needed
4241 because lists have commas, and we need to pass them to CHECK,
4242 which is a macro. */
4243 #define EXPECT(...) { __VA_ARGS__ }
4244
4245 /* Wrapper for check_match that passes down the current
4246 __FILE__/__LINE__. */
4247 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4248 any_mismatch |= !check_match (__FILE__, __LINE__, \
4249 mock_index, \
4250 NAME, MATCH_TYPE, COMPLETION_MODE, \
4251 EXPECTED_LIST)
4252
4253 /* Identity checks. */
4254 for (const char *sym : test_symbols)
4255 {
4256 /* Should be able to match all existing symbols. */
4257 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4258 EXPECT (sym));
4259
4260 /* Should be able to match all existing symbols with
4261 parameters. */
4262 std::string with_params = std::string (sym) + "(int)";
4263 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4264 EXPECT (sym));
4265
4266 /* Should be able to match all existing symbols with
4267 parameters and qualifiers. */
4268 with_params = std::string (sym) + " ( int ) const";
4269 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4270 EXPECT (sym));
4271
4272 /* This should really find sym, but cp-name-parser.y doesn't
4273 know about lvalue/rvalue qualifiers yet. */
4274 with_params = std::string (sym) + " ( int ) &&";
4275 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4276 {});
4277 }
4278
4279 /* Check that the name matching algorithm for completion doesn't get
4280 confused with Latin1 'ÿ' / 0xff. */
4281 {
4282 static const char str[] = "\377";
4283 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4284 EXPECT ("\377", "\377\377123"));
4285 }
4286
4287 /* Check that the increment-last-char in the matching algorithm for
4288 completion doesn't match "t1_fund" when completing "t1_func". */
4289 {
4290 static const char str[] = "t1_func";
4291 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4292 EXPECT ("t1_func", "t1_func1"));
4293 }
4294
4295 /* Check that completion mode works at each prefix of the expected
4296 symbol name. */
4297 {
4298 static const char str[] = "function(int)";
4299 size_t len = strlen (str);
4300 std::string lookup;
4301
4302 for (size_t i = 1; i < len; i++)
4303 {
4304 lookup.assign (str, i);
4305 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4306 EXPECT ("function"));
4307 }
4308 }
4309
4310 /* While "w" is a prefix of both components, the match function
4311 should still only be called once. */
4312 {
4313 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4314 EXPECT ("w1::w2"));
4315 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4316 EXPECT ("w1::w2"));
4317 }
4318
4319 /* Same, with a "complicated" symbol. */
4320 {
4321 static const char str[] = Z_SYM_NAME;
4322 size_t len = strlen (str);
4323 std::string lookup;
4324
4325 for (size_t i = 1; i < len; i++)
4326 {
4327 lookup.assign (str, i);
4328 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4329 EXPECT (Z_SYM_NAME));
4330 }
4331 }
4332
4333 /* In FULL mode, an incomplete symbol doesn't match. */
4334 {
4335 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4336 {});
4337 }
4338
4339 /* A complete symbol with parameters matches any overload, since the
4340 index has no overload info. */
4341 {
4342 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4347 EXPECT ("std::zfunction", "std::zfunction2"));
4348 }
4349
4350 /* Check that whitespace is ignored appropriately. A symbol with a
4351 template argument list. */
4352 {
4353 static const char expected[] = "ns::foo<int>";
4354 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4355 EXPECT (expected));
4356 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4357 EXPECT (expected));
4358 }
4359
4360 /* Check that whitespace is ignored appropriately. A symbol with a
4361 template argument list that includes a pointer. */
4362 {
4363 static const char expected[] = "ns::foo<char*>";
4364 /* Try both completion and non-completion modes. */
4365 static const bool completion_mode[2] = {false, true};
4366 for (size_t i = 0; i < 2; i++)
4367 {
4368 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4369 completion_mode[i], EXPECT (expected));
4370 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4371 completion_mode[i], EXPECT (expected));
4372
4373 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4374 completion_mode[i], EXPECT (expected));
4375 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4376 completion_mode[i], EXPECT (expected));
4377 }
4378 }
4379
4380 {
4381 /* Check method qualifiers are ignored. */
4382 static const char expected[] = "ns::foo<char*>";
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4386 symbol_name_match_type::FULL, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) const",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 CHECK_MATCH ("foo < char * > ( int ) &&",
4390 symbol_name_match_type::WILD, true, EXPECT (expected));
4391 }
4392
4393 /* Test lookup names that don't match anything. */
4394 {
4395 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4396 {});
4397
4398 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4399 {});
4400 }
4401
4402 /* Some wild matching tests, exercising "(anonymous namespace)",
4403 which should not be confused with a parameter list. */
4404 {
4405 static const char *syms[] = {
4406 "A::B::C",
4407 "B::C",
4408 "C",
4409 "A :: B :: C ( int )",
4410 "B :: C ( int )",
4411 "C ( int )",
4412 };
4413
4414 for (const char *s : syms)
4415 {
4416 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4417 EXPECT ("(anonymous namespace)::A::B::C"));
4418 }
4419 }
4420
4421 {
4422 static const char expected[] = "ns2::tmpl<int>::foo2";
4423 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4426 EXPECT (expected));
4427 }
4428
4429 SELF_CHECK (!any_mismatch);
4430
4431 #undef EXPECT
4432 #undef CHECK_MATCH
4433 }
4434
4435 static void
4436 run_test ()
4437 {
4438 test_mapped_index_find_name_component_bounds ();
4439 test_dw2_expand_symtabs_matching_symbol ();
4440 }
4441
4442 }} // namespace selftests::dw2_expand_symtabs_matching
4443
4444 #endif /* GDB_SELF_TEST */
4445
4446 /* If FILE_MATCHER is NULL or if PER_CU has
4447 dwarf2_per_cu_quick_data::MARK set (see
4448 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4449 EXPANSION_NOTIFY on it. */
4450
4451 static void
4452 dw2_expand_symtabs_matching_one
4453 (struct dwarf2_per_cu_data *per_cu,
4454 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4455 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4456 {
4457 if (file_matcher == NULL || per_cu->v.quick->mark)
4458 {
4459 bool symtab_was_null
4460 = (per_cu->v.quick->compunit_symtab == NULL);
4461
4462 dw2_instantiate_symtab (per_cu, false);
4463
4464 if (expansion_notify != NULL
4465 && symtab_was_null
4466 && per_cu->v.quick->compunit_symtab != NULL)
4467 expansion_notify (per_cu->v.quick->compunit_symtab);
4468 }
4469 }
4470
4471 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4472 matched, to expand corresponding CUs that were marked. IDX is the
4473 index of the symbol name that matched. */
4474
4475 static void
4476 dw2_expand_marked_cus
4477 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4478 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4479 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4480 search_domain kind)
4481 {
4482 offset_type *vec, vec_len, vec_idx;
4483 bool global_seen = false;
4484 mapped_index &index = *dwarf2_per_objfile->index_table;
4485
4486 vec = (offset_type *) (index.constant_pool
4487 + MAYBE_SWAP (index.symbol_table[idx].vec));
4488 vec_len = MAYBE_SWAP (vec[0]);
4489 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4490 {
4491 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4492 /* This value is only valid for index versions >= 7. */
4493 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4494 gdb_index_symbol_kind symbol_kind =
4495 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4496 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4497 /* Only check the symbol attributes if they're present.
4498 Indices prior to version 7 don't record them,
4499 and indices >= 7 may elide them for certain symbols
4500 (gold does this). */
4501 int attrs_valid =
4502 (index.version >= 7
4503 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4504
4505 /* Work around gold/15646. */
4506 if (attrs_valid)
4507 {
4508 if (!is_static && global_seen)
4509 continue;
4510 if (!is_static)
4511 global_seen = true;
4512 }
4513
4514 /* Only check the symbol's kind if it has one. */
4515 if (attrs_valid)
4516 {
4517 switch (kind)
4518 {
4519 case VARIABLES_DOMAIN:
4520 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4521 continue;
4522 break;
4523 case FUNCTIONS_DOMAIN:
4524 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4525 continue;
4526 break;
4527 case TYPES_DOMAIN:
4528 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4529 continue;
4530 break;
4531 case MODULES_DOMAIN:
4532 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4533 continue;
4534 break;
4535 default:
4536 break;
4537 }
4538 }
4539
4540 /* Don't crash on bad data. */
4541 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4542 + dwarf2_per_objfile->all_type_units.size ()))
4543 {
4544 complaint (_(".gdb_index entry has bad CU index"
4545 " [in module %s]"),
4546 objfile_name (dwarf2_per_objfile->objfile));
4547 continue;
4548 }
4549
4550 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4551 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4552 expansion_notify);
4553 }
4554 }
4555
4556 /* If FILE_MATCHER is non-NULL, set all the
4557 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4558 that match FILE_MATCHER. */
4559
4560 static void
4561 dw_expand_symtabs_matching_file_matcher
4562 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4563 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4564 {
4565 if (file_matcher == NULL)
4566 return;
4567
4568 objfile *const objfile = dwarf2_per_objfile->objfile;
4569
4570 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4571 htab_eq_pointer,
4572 NULL, xcalloc, xfree));
4573 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4574 htab_eq_pointer,
4575 NULL, xcalloc, xfree));
4576
4577 /* The rule is CUs specify all the files, including those used by
4578 any TU, so there's no need to scan TUs here. */
4579
4580 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4581 {
4582 QUIT;
4583
4584 per_cu->v.quick->mark = 0;
4585
4586 /* We only need to look at symtabs not already expanded. */
4587 if (per_cu->v.quick->compunit_symtab)
4588 continue;
4589
4590 quick_file_names *file_data = dw2_get_file_names (per_cu);
4591 if (file_data == NULL)
4592 continue;
4593
4594 if (htab_find (visited_not_found.get (), file_data) != NULL)
4595 continue;
4596 else if (htab_find (visited_found.get (), file_data) != NULL)
4597 {
4598 per_cu->v.quick->mark = 1;
4599 continue;
4600 }
4601
4602 for (int j = 0; j < file_data->num_file_names; ++j)
4603 {
4604 const char *this_real_name;
4605
4606 if (file_matcher (file_data->file_names[j], false))
4607 {
4608 per_cu->v.quick->mark = 1;
4609 break;
4610 }
4611
4612 /* Before we invoke realpath, which can get expensive when many
4613 files are involved, do a quick comparison of the basenames. */
4614 if (!basenames_may_differ
4615 && !file_matcher (lbasename (file_data->file_names[j]),
4616 true))
4617 continue;
4618
4619 this_real_name = dw2_get_real_path (objfile, file_data, j);
4620 if (file_matcher (this_real_name, false))
4621 {
4622 per_cu->v.quick->mark = 1;
4623 break;
4624 }
4625 }
4626
4627 void **slot = htab_find_slot (per_cu->v.quick->mark
4628 ? visited_found.get ()
4629 : visited_not_found.get (),
4630 file_data, INSERT);
4631 *slot = file_data;
4632 }
4633 }
4634
4635 static void
4636 dw2_expand_symtabs_matching
4637 (struct objfile *objfile,
4638 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4639 const lookup_name_info &lookup_name,
4640 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4641 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4642 enum search_domain kind)
4643 {
4644 struct dwarf2_per_objfile *dwarf2_per_objfile
4645 = get_dwarf2_per_objfile (objfile);
4646
4647 /* index_table is NULL if OBJF_READNOW. */
4648 if (!dwarf2_per_objfile->index_table)
4649 return;
4650
4651 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4652
4653 mapped_index &index = *dwarf2_per_objfile->index_table;
4654
4655 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4656 symbol_matcher,
4657 kind, [&] (offset_type idx)
4658 {
4659 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4660 expansion_notify, kind);
4661 return true;
4662 });
4663 }
4664
4665 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4666 symtab. */
4667
4668 static struct compunit_symtab *
4669 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4670 CORE_ADDR pc)
4671 {
4672 int i;
4673
4674 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4675 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4676 return cust;
4677
4678 if (cust->includes == NULL)
4679 return NULL;
4680
4681 for (i = 0; cust->includes[i]; ++i)
4682 {
4683 struct compunit_symtab *s = cust->includes[i];
4684
4685 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4686 if (s != NULL)
4687 return s;
4688 }
4689
4690 return NULL;
4691 }
4692
4693 static struct compunit_symtab *
4694 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4695 struct bound_minimal_symbol msymbol,
4696 CORE_ADDR pc,
4697 struct obj_section *section,
4698 int warn_if_readin)
4699 {
4700 struct dwarf2_per_cu_data *data;
4701 struct compunit_symtab *result;
4702
4703 if (!objfile->partial_symtabs->psymtabs_addrmap)
4704 return NULL;
4705
4706 CORE_ADDR baseaddr = objfile->text_section_offset ();
4707 data = (struct dwarf2_per_cu_data *) addrmap_find
4708 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4709 if (!data)
4710 return NULL;
4711
4712 if (warn_if_readin && data->v.quick->compunit_symtab)
4713 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4714 paddress (get_objfile_arch (objfile), pc));
4715
4716 result
4717 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4718 false),
4719 pc);
4720 gdb_assert (result != NULL);
4721 return result;
4722 }
4723
4724 static void
4725 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4726 void *data, int need_fullname)
4727 {
4728 struct dwarf2_per_objfile *dwarf2_per_objfile
4729 = get_dwarf2_per_objfile (objfile);
4730
4731 if (!dwarf2_per_objfile->filenames_cache)
4732 {
4733 dwarf2_per_objfile->filenames_cache.emplace ();
4734
4735 htab_up visited (htab_create_alloc (10,
4736 htab_hash_pointer, htab_eq_pointer,
4737 NULL, xcalloc, xfree));
4738
4739 /* The rule is CUs specify all the files, including those used
4740 by any TU, so there's no need to scan TUs here. We can
4741 ignore file names coming from already-expanded CUs. */
4742
4743 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4744 {
4745 if (per_cu->v.quick->compunit_symtab)
4746 {
4747 void **slot = htab_find_slot (visited.get (),
4748 per_cu->v.quick->file_names,
4749 INSERT);
4750
4751 *slot = per_cu->v.quick->file_names;
4752 }
4753 }
4754
4755 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4756 {
4757 /* We only need to look at symtabs not already expanded. */
4758 if (per_cu->v.quick->compunit_symtab)
4759 continue;
4760
4761 quick_file_names *file_data = dw2_get_file_names (per_cu);
4762 if (file_data == NULL)
4763 continue;
4764
4765 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4766 if (*slot)
4767 {
4768 /* Already visited. */
4769 continue;
4770 }
4771 *slot = file_data;
4772
4773 for (int j = 0; j < file_data->num_file_names; ++j)
4774 {
4775 const char *filename = file_data->file_names[j];
4776 dwarf2_per_objfile->filenames_cache->seen (filename);
4777 }
4778 }
4779 }
4780
4781 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4782 {
4783 gdb::unique_xmalloc_ptr<char> this_real_name;
4784
4785 if (need_fullname)
4786 this_real_name = gdb_realpath (filename);
4787 (*fun) (filename, this_real_name.get (), data);
4788 });
4789 }
4790
4791 static int
4792 dw2_has_symbols (struct objfile *objfile)
4793 {
4794 return 1;
4795 }
4796
4797 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4798 {
4799 dw2_has_symbols,
4800 dw2_find_last_source_symtab,
4801 dw2_forget_cached_source_info,
4802 dw2_map_symtabs_matching_filename,
4803 dw2_lookup_symbol,
4804 dw2_print_stats,
4805 dw2_dump,
4806 dw2_expand_symtabs_for_function,
4807 dw2_expand_all_symtabs,
4808 dw2_expand_symtabs_with_fullname,
4809 dw2_map_matching_symbols,
4810 dw2_expand_symtabs_matching,
4811 dw2_find_pc_sect_compunit_symtab,
4812 NULL,
4813 dw2_map_symbol_filenames
4814 };
4815
4816 /* DWARF-5 debug_names reader. */
4817
4818 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4819 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4820
4821 /* A helper function that reads the .debug_names section in SECTION
4822 and fills in MAP. FILENAME is the name of the file containing the
4823 section; it is used for error reporting.
4824
4825 Returns true if all went well, false otherwise. */
4826
4827 static bool
4828 read_debug_names_from_section (struct objfile *objfile,
4829 const char *filename,
4830 struct dwarf2_section_info *section,
4831 mapped_debug_names &map)
4832 {
4833 if (section->empty ())
4834 return false;
4835
4836 /* Older elfutils strip versions could keep the section in the main
4837 executable while splitting it for the separate debug info file. */
4838 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4839 return false;
4840
4841 section->read (objfile);
4842
4843 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
4844
4845 const gdb_byte *addr = section->buffer;
4846
4847 bfd *const abfd = section->get_bfd_owner ();
4848
4849 unsigned int bytes_read;
4850 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4851 addr += bytes_read;
4852
4853 map.dwarf5_is_dwarf64 = bytes_read != 4;
4854 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4855 if (bytes_read + length != section->size)
4856 {
4857 /* There may be multiple per-CU indices. */
4858 warning (_("Section .debug_names in %s length %s does not match "
4859 "section length %s, ignoring .debug_names."),
4860 filename, plongest (bytes_read + length),
4861 pulongest (section->size));
4862 return false;
4863 }
4864
4865 /* The version number. */
4866 uint16_t version = read_2_bytes (abfd, addr);
4867 addr += 2;
4868 if (version != 5)
4869 {
4870 warning (_("Section .debug_names in %s has unsupported version %d, "
4871 "ignoring .debug_names."),
4872 filename, version);
4873 return false;
4874 }
4875
4876 /* Padding. */
4877 uint16_t padding = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (padding != 0)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported padding %d, "
4882 "ignoring .debug_names."),
4883 filename, padding);
4884 return false;
4885 }
4886
4887 /* comp_unit_count - The number of CUs in the CU list. */
4888 map.cu_count = read_4_bytes (abfd, addr);
4889 addr += 4;
4890
4891 /* local_type_unit_count - The number of TUs in the local TU
4892 list. */
4893 map.tu_count = read_4_bytes (abfd, addr);
4894 addr += 4;
4895
4896 /* foreign_type_unit_count - The number of TUs in the foreign TU
4897 list. */
4898 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4899 addr += 4;
4900 if (foreign_tu_count != 0)
4901 {
4902 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4903 "ignoring .debug_names."),
4904 filename, static_cast<unsigned long> (foreign_tu_count));
4905 return false;
4906 }
4907
4908 /* bucket_count - The number of hash buckets in the hash lookup
4909 table. */
4910 map.bucket_count = read_4_bytes (abfd, addr);
4911 addr += 4;
4912
4913 /* name_count - The number of unique names in the index. */
4914 map.name_count = read_4_bytes (abfd, addr);
4915 addr += 4;
4916
4917 /* abbrev_table_size - The size in bytes of the abbreviations
4918 table. */
4919 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4920 addr += 4;
4921
4922 /* augmentation_string_size - The size in bytes of the augmentation
4923 string. This value is rounded up to a multiple of 4. */
4924 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4925 addr += 4;
4926 map.augmentation_is_gdb = ((augmentation_string_size
4927 == sizeof (dwarf5_augmentation))
4928 && memcmp (addr, dwarf5_augmentation,
4929 sizeof (dwarf5_augmentation)) == 0);
4930 augmentation_string_size += (-augmentation_string_size) & 3;
4931 addr += augmentation_string_size;
4932
4933 /* List of CUs */
4934 map.cu_table_reordered = addr;
4935 addr += map.cu_count * map.offset_size;
4936
4937 /* List of Local TUs */
4938 map.tu_table_reordered = addr;
4939 addr += map.tu_count * map.offset_size;
4940
4941 /* Hash Lookup Table */
4942 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4943 addr += map.bucket_count * 4;
4944 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4945 addr += map.name_count * 4;
4946
4947 /* Name Table */
4948 map.name_table_string_offs_reordered = addr;
4949 addr += map.name_count * map.offset_size;
4950 map.name_table_entry_offs_reordered = addr;
4951 addr += map.name_count * map.offset_size;
4952
4953 const gdb_byte *abbrev_table_start = addr;
4954 for (;;)
4955 {
4956 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4957 addr += bytes_read;
4958 if (index_num == 0)
4959 break;
4960
4961 const auto insertpair
4962 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4963 if (!insertpair.second)
4964 {
4965 warning (_("Section .debug_names in %s has duplicate index %s, "
4966 "ignoring .debug_names."),
4967 filename, pulongest (index_num));
4968 return false;
4969 }
4970 mapped_debug_names::index_val &indexval = insertpair.first->second;
4971 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4972 addr += bytes_read;
4973
4974 for (;;)
4975 {
4976 mapped_debug_names::index_val::attr attr;
4977 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4978 addr += bytes_read;
4979 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4980 addr += bytes_read;
4981 if (attr.form == DW_FORM_implicit_const)
4982 {
4983 attr.implicit_const = read_signed_leb128 (abfd, addr,
4984 &bytes_read);
4985 addr += bytes_read;
4986 }
4987 if (attr.dw_idx == 0 && attr.form == 0)
4988 break;
4989 indexval.attr_vec.push_back (std::move (attr));
4990 }
4991 }
4992 if (addr != abbrev_table_start + abbrev_table_size)
4993 {
4994 warning (_("Section .debug_names in %s has abbreviation_table "
4995 "of size %s vs. written as %u, ignoring .debug_names."),
4996 filename, plongest (addr - abbrev_table_start),
4997 abbrev_table_size);
4998 return false;
4999 }
5000 map.entry_pool = addr;
5001
5002 return true;
5003 }
5004
5005 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5006 list. */
5007
5008 static void
5009 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5010 const mapped_debug_names &map,
5011 dwarf2_section_info &section,
5012 bool is_dwz)
5013 {
5014 sect_offset sect_off_prev;
5015 for (uint32_t i = 0; i <= map.cu_count; ++i)
5016 {
5017 sect_offset sect_off_next;
5018 if (i < map.cu_count)
5019 {
5020 sect_off_next
5021 = (sect_offset) (extract_unsigned_integer
5022 (map.cu_table_reordered + i * map.offset_size,
5023 map.offset_size,
5024 map.dwarf5_byte_order));
5025 }
5026 else
5027 sect_off_next = (sect_offset) section.size;
5028 if (i >= 1)
5029 {
5030 const ULONGEST length = sect_off_next - sect_off_prev;
5031 dwarf2_per_cu_data *per_cu
5032 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5033 sect_off_prev, length);
5034 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5035 }
5036 sect_off_prev = sect_off_next;
5037 }
5038 }
5039
5040 /* Read the CU list from the mapped index, and use it to create all
5041 the CU objects for this dwarf2_per_objfile. */
5042
5043 static void
5044 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5045 const mapped_debug_names &map,
5046 const mapped_debug_names &dwz_map)
5047 {
5048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5049 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5050
5051 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5052 dwarf2_per_objfile->info,
5053 false /* is_dwz */);
5054
5055 if (dwz_map.cu_count == 0)
5056 return;
5057
5058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5059 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5060 true /* is_dwz */);
5061 }
5062
5063 /* Read .debug_names. If everything went ok, initialize the "quick"
5064 elements of all the CUs and return true. Otherwise, return false. */
5065
5066 static bool
5067 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5068 {
5069 std::unique_ptr<mapped_debug_names> map
5070 (new mapped_debug_names (dwarf2_per_objfile));
5071 mapped_debug_names dwz_map (dwarf2_per_objfile);
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073
5074 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5075 &dwarf2_per_objfile->debug_names,
5076 *map))
5077 return false;
5078
5079 /* Don't use the index if it's empty. */
5080 if (map->name_count == 0)
5081 return false;
5082
5083 /* If there is a .dwz file, read it so we can get its CU list as
5084 well. */
5085 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5086 if (dwz != NULL)
5087 {
5088 if (!read_debug_names_from_section (objfile,
5089 bfd_get_filename (dwz->dwz_bfd.get ()),
5090 &dwz->debug_names, dwz_map))
5091 {
5092 warning (_("could not read '.debug_names' section from %s; skipping"),
5093 bfd_get_filename (dwz->dwz_bfd.get ()));
5094 return false;
5095 }
5096 }
5097
5098 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5099
5100 if (map->tu_count != 0)
5101 {
5102 /* We can only handle a single .debug_types when we have an
5103 index. */
5104 if (dwarf2_per_objfile->types.size () != 1)
5105 return false;
5106
5107 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5108
5109 create_signatured_type_table_from_debug_names
5110 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5111 }
5112
5113 create_addrmap_from_aranges (dwarf2_per_objfile,
5114 &dwarf2_per_objfile->debug_aranges);
5115
5116 dwarf2_per_objfile->debug_names_table = std::move (map);
5117 dwarf2_per_objfile->using_index = 1;
5118 dwarf2_per_objfile->quick_file_names_table =
5119 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5120
5121 return true;
5122 }
5123
5124 /* Type used to manage iterating over all CUs looking for a symbol for
5125 .debug_names. */
5126
5127 class dw2_debug_names_iterator
5128 {
5129 public:
5130 dw2_debug_names_iterator (const mapped_debug_names &map,
5131 gdb::optional<block_enum> block_index,
5132 domain_enum domain,
5133 const char *name)
5134 : m_map (map), m_block_index (block_index), m_domain (domain),
5135 m_addr (find_vec_in_debug_names (map, name))
5136 {}
5137
5138 dw2_debug_names_iterator (const mapped_debug_names &map,
5139 search_domain search, uint32_t namei)
5140 : m_map (map),
5141 m_search (search),
5142 m_addr (find_vec_in_debug_names (map, namei))
5143 {}
5144
5145 dw2_debug_names_iterator (const mapped_debug_names &map,
5146 block_enum block_index, domain_enum domain,
5147 uint32_t namei)
5148 : m_map (map), m_block_index (block_index), m_domain (domain),
5149 m_addr (find_vec_in_debug_names (map, namei))
5150 {}
5151
5152 /* Return the next matching CU or NULL if there are no more. */
5153 dwarf2_per_cu_data *next ();
5154
5155 private:
5156 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5157 const char *name);
5158 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5159 uint32_t namei);
5160
5161 /* The internalized form of .debug_names. */
5162 const mapped_debug_names &m_map;
5163
5164 /* If set, only look for symbols that match that block. Valid values are
5165 GLOBAL_BLOCK and STATIC_BLOCK. */
5166 const gdb::optional<block_enum> m_block_index;
5167
5168 /* The kind of symbol we're looking for. */
5169 const domain_enum m_domain = UNDEF_DOMAIN;
5170 const search_domain m_search = ALL_DOMAIN;
5171
5172 /* The list of CUs from the index entry of the symbol, or NULL if
5173 not found. */
5174 const gdb_byte *m_addr;
5175 };
5176
5177 const char *
5178 mapped_debug_names::namei_to_name (uint32_t namei) const
5179 {
5180 const ULONGEST namei_string_offs
5181 = extract_unsigned_integer ((name_table_string_offs_reordered
5182 + namei * offset_size),
5183 offset_size,
5184 dwarf5_byte_order);
5185 return read_indirect_string_at_offset
5186 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5187 }
5188
5189 /* Find a slot in .debug_names for the object named NAME. If NAME is
5190 found, return pointer to its pool data. If NAME cannot be found,
5191 return NULL. */
5192
5193 const gdb_byte *
5194 dw2_debug_names_iterator::find_vec_in_debug_names
5195 (const mapped_debug_names &map, const char *name)
5196 {
5197 int (*cmp) (const char *, const char *);
5198
5199 gdb::unique_xmalloc_ptr<char> without_params;
5200 if (current_language->la_language == language_cplus
5201 || current_language->la_language == language_fortran
5202 || current_language->la_language == language_d)
5203 {
5204 /* NAME is already canonical. Drop any qualifiers as
5205 .debug_names does not contain any. */
5206
5207 if (strchr (name, '(') != NULL)
5208 {
5209 without_params = cp_remove_params (name);
5210 if (without_params != NULL)
5211 name = without_params.get ();
5212 }
5213 }
5214
5215 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5216
5217 const uint32_t full_hash = dwarf5_djb_hash (name);
5218 uint32_t namei
5219 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5220 (map.bucket_table_reordered
5221 + (full_hash % map.bucket_count)), 4,
5222 map.dwarf5_byte_order);
5223 if (namei == 0)
5224 return NULL;
5225 --namei;
5226 if (namei >= map.name_count)
5227 {
5228 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5229 "[in module %s]"),
5230 namei, map.name_count,
5231 objfile_name (map.dwarf2_per_objfile->objfile));
5232 return NULL;
5233 }
5234
5235 for (;;)
5236 {
5237 const uint32_t namei_full_hash
5238 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5239 (map.hash_table_reordered + namei), 4,
5240 map.dwarf5_byte_order);
5241 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5242 return NULL;
5243
5244 if (full_hash == namei_full_hash)
5245 {
5246 const char *const namei_string = map.namei_to_name (namei);
5247
5248 #if 0 /* An expensive sanity check. */
5249 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5250 {
5251 complaint (_("Wrong .debug_names hash for string at index %u "
5252 "[in module %s]"),
5253 namei, objfile_name (dwarf2_per_objfile->objfile));
5254 return NULL;
5255 }
5256 #endif
5257
5258 if (cmp (namei_string, name) == 0)
5259 {
5260 const ULONGEST namei_entry_offs
5261 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5262 + namei * map.offset_size),
5263 map.offset_size, map.dwarf5_byte_order);
5264 return map.entry_pool + namei_entry_offs;
5265 }
5266 }
5267
5268 ++namei;
5269 if (namei >= map.name_count)
5270 return NULL;
5271 }
5272 }
5273
5274 const gdb_byte *
5275 dw2_debug_names_iterator::find_vec_in_debug_names
5276 (const mapped_debug_names &map, uint32_t namei)
5277 {
5278 if (namei >= map.name_count)
5279 {
5280 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5281 "[in module %s]"),
5282 namei, map.name_count,
5283 objfile_name (map.dwarf2_per_objfile->objfile));
5284 return NULL;
5285 }
5286
5287 const ULONGEST namei_entry_offs
5288 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5289 + namei * map.offset_size),
5290 map.offset_size, map.dwarf5_byte_order);
5291 return map.entry_pool + namei_entry_offs;
5292 }
5293
5294 /* See dw2_debug_names_iterator. */
5295
5296 dwarf2_per_cu_data *
5297 dw2_debug_names_iterator::next ()
5298 {
5299 if (m_addr == NULL)
5300 return NULL;
5301
5302 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5303 struct objfile *objfile = dwarf2_per_objfile->objfile;
5304 bfd *const abfd = objfile->obfd;
5305
5306 again:
5307
5308 unsigned int bytes_read;
5309 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5310 m_addr += bytes_read;
5311 if (abbrev == 0)
5312 return NULL;
5313
5314 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5315 if (indexval_it == m_map.abbrev_map.cend ())
5316 {
5317 complaint (_("Wrong .debug_names undefined abbrev code %s "
5318 "[in module %s]"),
5319 pulongest (abbrev), objfile_name (objfile));
5320 return NULL;
5321 }
5322 const mapped_debug_names::index_val &indexval = indexval_it->second;
5323 enum class symbol_linkage {
5324 unknown,
5325 static_,
5326 extern_,
5327 } symbol_linkage_ = symbol_linkage::unknown;
5328 dwarf2_per_cu_data *per_cu = NULL;
5329 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5330 {
5331 ULONGEST ull;
5332 switch (attr.form)
5333 {
5334 case DW_FORM_implicit_const:
5335 ull = attr.implicit_const;
5336 break;
5337 case DW_FORM_flag_present:
5338 ull = 1;
5339 break;
5340 case DW_FORM_udata:
5341 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5342 m_addr += bytes_read;
5343 break;
5344 default:
5345 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5346 dwarf_form_name (attr.form),
5347 objfile_name (objfile));
5348 return NULL;
5349 }
5350 switch (attr.dw_idx)
5351 {
5352 case DW_IDX_compile_unit:
5353 /* Don't crash on bad data. */
5354 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5355 {
5356 complaint (_(".debug_names entry has bad CU index %s"
5357 " [in module %s]"),
5358 pulongest (ull),
5359 objfile_name (dwarf2_per_objfile->objfile));
5360 continue;
5361 }
5362 per_cu = dwarf2_per_objfile->get_cutu (ull);
5363 break;
5364 case DW_IDX_type_unit:
5365 /* Don't crash on bad data. */
5366 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5367 {
5368 complaint (_(".debug_names entry has bad TU index %s"
5369 " [in module %s]"),
5370 pulongest (ull),
5371 objfile_name (dwarf2_per_objfile->objfile));
5372 continue;
5373 }
5374 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5375 break;
5376 case DW_IDX_GNU_internal:
5377 if (!m_map.augmentation_is_gdb)
5378 break;
5379 symbol_linkage_ = symbol_linkage::static_;
5380 break;
5381 case DW_IDX_GNU_external:
5382 if (!m_map.augmentation_is_gdb)
5383 break;
5384 symbol_linkage_ = symbol_linkage::extern_;
5385 break;
5386 }
5387 }
5388
5389 /* Skip if already read in. */
5390 if (per_cu->v.quick->compunit_symtab)
5391 goto again;
5392
5393 /* Check static vs global. */
5394 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5395 {
5396 const bool want_static = *m_block_index == STATIC_BLOCK;
5397 const bool symbol_is_static =
5398 symbol_linkage_ == symbol_linkage::static_;
5399 if (want_static != symbol_is_static)
5400 goto again;
5401 }
5402
5403 /* Match dw2_symtab_iter_next, symbol_kind
5404 and debug_names::psymbol_tag. */
5405 switch (m_domain)
5406 {
5407 case VAR_DOMAIN:
5408 switch (indexval.dwarf_tag)
5409 {
5410 case DW_TAG_variable:
5411 case DW_TAG_subprogram:
5412 /* Some types are also in VAR_DOMAIN. */
5413 case DW_TAG_typedef:
5414 case DW_TAG_structure_type:
5415 break;
5416 default:
5417 goto again;
5418 }
5419 break;
5420 case STRUCT_DOMAIN:
5421 switch (indexval.dwarf_tag)
5422 {
5423 case DW_TAG_typedef:
5424 case DW_TAG_structure_type:
5425 break;
5426 default:
5427 goto again;
5428 }
5429 break;
5430 case LABEL_DOMAIN:
5431 switch (indexval.dwarf_tag)
5432 {
5433 case 0:
5434 case DW_TAG_variable:
5435 break;
5436 default:
5437 goto again;
5438 }
5439 break;
5440 case MODULE_DOMAIN:
5441 switch (indexval.dwarf_tag)
5442 {
5443 case DW_TAG_module:
5444 break;
5445 default:
5446 goto again;
5447 }
5448 break;
5449 default:
5450 break;
5451 }
5452
5453 /* Match dw2_expand_symtabs_matching, symbol_kind and
5454 debug_names::psymbol_tag. */
5455 switch (m_search)
5456 {
5457 case VARIABLES_DOMAIN:
5458 switch (indexval.dwarf_tag)
5459 {
5460 case DW_TAG_variable:
5461 break;
5462 default:
5463 goto again;
5464 }
5465 break;
5466 case FUNCTIONS_DOMAIN:
5467 switch (indexval.dwarf_tag)
5468 {
5469 case DW_TAG_subprogram:
5470 break;
5471 default:
5472 goto again;
5473 }
5474 break;
5475 case TYPES_DOMAIN:
5476 switch (indexval.dwarf_tag)
5477 {
5478 case DW_TAG_typedef:
5479 case DW_TAG_structure_type:
5480 break;
5481 default:
5482 goto again;
5483 }
5484 break;
5485 case MODULES_DOMAIN:
5486 switch (indexval.dwarf_tag)
5487 {
5488 case DW_TAG_module:
5489 break;
5490 default:
5491 goto again;
5492 }
5493 default:
5494 break;
5495 }
5496
5497 return per_cu;
5498 }
5499
5500 static struct compunit_symtab *
5501 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5502 const char *name, domain_enum domain)
5503 {
5504 struct dwarf2_per_objfile *dwarf2_per_objfile
5505 = get_dwarf2_per_objfile (objfile);
5506
5507 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5508 if (!mapp)
5509 {
5510 /* index is NULL if OBJF_READNOW. */
5511 return NULL;
5512 }
5513 const auto &map = *mapp;
5514
5515 dw2_debug_names_iterator iter (map, block_index, domain, name);
5516
5517 struct compunit_symtab *stab_best = NULL;
5518 struct dwarf2_per_cu_data *per_cu;
5519 while ((per_cu = iter.next ()) != NULL)
5520 {
5521 struct symbol *sym, *with_opaque = NULL;
5522 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5523 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5524 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5525
5526 sym = block_find_symbol (block, name, domain,
5527 block_find_non_opaque_type_preferred,
5528 &with_opaque);
5529
5530 /* Some caution must be observed with overloaded functions and
5531 methods, since the index will not contain any overload
5532 information (but NAME might contain it). */
5533
5534 if (sym != NULL
5535 && strcmp_iw (sym->search_name (), name) == 0)
5536 return stab;
5537 if (with_opaque != NULL
5538 && strcmp_iw (with_opaque->search_name (), name) == 0)
5539 stab_best = stab;
5540
5541 /* Keep looking through other CUs. */
5542 }
5543
5544 return stab_best;
5545 }
5546
5547 /* This dumps minimal information about .debug_names. It is called
5548 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5549 uses this to verify that .debug_names has been loaded. */
5550
5551 static void
5552 dw2_debug_names_dump (struct objfile *objfile)
5553 {
5554 struct dwarf2_per_objfile *dwarf2_per_objfile
5555 = get_dwarf2_per_objfile (objfile);
5556
5557 gdb_assert (dwarf2_per_objfile->using_index);
5558 printf_filtered (".debug_names:");
5559 if (dwarf2_per_objfile->debug_names_table)
5560 printf_filtered (" exists\n");
5561 else
5562 printf_filtered (" faked for \"readnow\"\n");
5563 printf_filtered ("\n");
5564 }
5565
5566 static void
5567 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5568 const char *func_name)
5569 {
5570 struct dwarf2_per_objfile *dwarf2_per_objfile
5571 = get_dwarf2_per_objfile (objfile);
5572
5573 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5574 if (dwarf2_per_objfile->debug_names_table)
5575 {
5576 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5577
5578 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5579
5580 struct dwarf2_per_cu_data *per_cu;
5581 while ((per_cu = iter.next ()) != NULL)
5582 dw2_instantiate_symtab (per_cu, false);
5583 }
5584 }
5585
5586 static void
5587 dw2_debug_names_map_matching_symbols
5588 (struct objfile *objfile,
5589 const lookup_name_info &name, domain_enum domain,
5590 int global,
5591 gdb::function_view<symbol_found_callback_ftype> callback,
5592 symbol_compare_ftype *ordered_compare)
5593 {
5594 struct dwarf2_per_objfile *dwarf2_per_objfile
5595 = get_dwarf2_per_objfile (objfile);
5596
5597 /* debug_names_table is NULL if OBJF_READNOW. */
5598 if (!dwarf2_per_objfile->debug_names_table)
5599 return;
5600
5601 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5602 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5603
5604 const char *match_name = name.ada ().lookup_name ().c_str ();
5605 auto matcher = [&] (const char *symname)
5606 {
5607 if (ordered_compare == nullptr)
5608 return true;
5609 return ordered_compare (symname, match_name) == 0;
5610 };
5611
5612 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5613 [&] (offset_type namei)
5614 {
5615 /* The name was matched, now expand corresponding CUs that were
5616 marked. */
5617 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5618
5619 struct dwarf2_per_cu_data *per_cu;
5620 while ((per_cu = iter.next ()) != NULL)
5621 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5622 return true;
5623 });
5624
5625 /* It's a shame we couldn't do this inside the
5626 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5627 that have already been expanded. Instead, this loop matches what
5628 the psymtab code does. */
5629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5630 {
5631 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5632 if (cust != nullptr)
5633 {
5634 const struct block *block
5635 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5636 if (!iterate_over_symbols_terminated (block, name,
5637 domain, callback))
5638 break;
5639 }
5640 }
5641 }
5642
5643 static void
5644 dw2_debug_names_expand_symtabs_matching
5645 (struct objfile *objfile,
5646 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5647 const lookup_name_info &lookup_name,
5648 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5649 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5650 enum search_domain kind)
5651 {
5652 struct dwarf2_per_objfile *dwarf2_per_objfile
5653 = get_dwarf2_per_objfile (objfile);
5654
5655 /* debug_names_table is NULL if OBJF_READNOW. */
5656 if (!dwarf2_per_objfile->debug_names_table)
5657 return;
5658
5659 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5660
5661 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5662
5663 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5664 symbol_matcher,
5665 kind, [&] (offset_type namei)
5666 {
5667 /* The name was matched, now expand corresponding CUs that were
5668 marked. */
5669 dw2_debug_names_iterator iter (map, kind, namei);
5670
5671 struct dwarf2_per_cu_data *per_cu;
5672 while ((per_cu = iter.next ()) != NULL)
5673 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5674 expansion_notify);
5675 return true;
5676 });
5677 }
5678
5679 const struct quick_symbol_functions dwarf2_debug_names_functions =
5680 {
5681 dw2_has_symbols,
5682 dw2_find_last_source_symtab,
5683 dw2_forget_cached_source_info,
5684 dw2_map_symtabs_matching_filename,
5685 dw2_debug_names_lookup_symbol,
5686 dw2_print_stats,
5687 dw2_debug_names_dump,
5688 dw2_debug_names_expand_symtabs_for_function,
5689 dw2_expand_all_symtabs,
5690 dw2_expand_symtabs_with_fullname,
5691 dw2_debug_names_map_matching_symbols,
5692 dw2_debug_names_expand_symtabs_matching,
5693 dw2_find_pc_sect_compunit_symtab,
5694 NULL,
5695 dw2_map_symbol_filenames
5696 };
5697
5698 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5699 to either a dwarf2_per_objfile or dwz_file object. */
5700
5701 template <typename T>
5702 static gdb::array_view<const gdb_byte>
5703 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5704 {
5705 dwarf2_section_info *section = &section_owner->gdb_index;
5706
5707 if (section->empty ())
5708 return {};
5709
5710 /* Older elfutils strip versions could keep the section in the main
5711 executable while splitting it for the separate debug info file. */
5712 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5713 return {};
5714
5715 section->read (obj);
5716
5717 /* dwarf2_section_info::size is a bfd_size_type, while
5718 gdb::array_view works with size_t. On 32-bit hosts, with
5719 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5720 is 32-bit. So we need an explicit narrowing conversion here.
5721 This is fine, because it's impossible to allocate or mmap an
5722 array/buffer larger than what size_t can represent. */
5723 return gdb::make_array_view (section->buffer, section->size);
5724 }
5725
5726 /* Lookup the index cache for the contents of the index associated to
5727 DWARF2_OBJ. */
5728
5729 static gdb::array_view<const gdb_byte>
5730 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5731 {
5732 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5733 if (build_id == nullptr)
5734 return {};
5735
5736 return global_index_cache.lookup_gdb_index (build_id,
5737 &dwarf2_obj->index_cache_res);
5738 }
5739
5740 /* Same as the above, but for DWZ. */
5741
5742 static gdb::array_view<const gdb_byte>
5743 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5744 {
5745 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5746 if (build_id == nullptr)
5747 return {};
5748
5749 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5750 }
5751
5752 /* See symfile.h. */
5753
5754 bool
5755 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5756 {
5757 struct dwarf2_per_objfile *dwarf2_per_objfile
5758 = get_dwarf2_per_objfile (objfile);
5759
5760 /* If we're about to read full symbols, don't bother with the
5761 indices. In this case we also don't care if some other debug
5762 format is making psymtabs, because they are all about to be
5763 expanded anyway. */
5764 if ((objfile->flags & OBJF_READNOW))
5765 {
5766 dwarf2_per_objfile->using_index = 1;
5767 create_all_comp_units (dwarf2_per_objfile);
5768 create_all_type_units (dwarf2_per_objfile);
5769 dwarf2_per_objfile->quick_file_names_table
5770 = create_quick_file_names_table
5771 (dwarf2_per_objfile->all_comp_units.size ());
5772
5773 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5774 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5775 {
5776 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5777
5778 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5779 struct dwarf2_per_cu_quick_data);
5780 }
5781
5782 /* Return 1 so that gdb sees the "quick" functions. However,
5783 these functions will be no-ops because we will have expanded
5784 all symtabs. */
5785 *index_kind = dw_index_kind::GDB_INDEX;
5786 return true;
5787 }
5788
5789 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5790 {
5791 *index_kind = dw_index_kind::DEBUG_NAMES;
5792 return true;
5793 }
5794
5795 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5796 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5797 get_gdb_index_contents_from_section<dwz_file>))
5798 {
5799 *index_kind = dw_index_kind::GDB_INDEX;
5800 return true;
5801 }
5802
5803 /* ... otherwise, try to find the index in the index cache. */
5804 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5805 get_gdb_index_contents_from_cache,
5806 get_gdb_index_contents_from_cache_dwz))
5807 {
5808 global_index_cache.hit ();
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 global_index_cache.miss ();
5814 return false;
5815 }
5816
5817 \f
5818
5819 /* Build a partial symbol table. */
5820
5821 void
5822 dwarf2_build_psymtabs (struct objfile *objfile)
5823 {
5824 struct dwarf2_per_objfile *dwarf2_per_objfile
5825 = get_dwarf2_per_objfile (objfile);
5826
5827 init_psymbol_list (objfile, 1024);
5828
5829 try
5830 {
5831 /* This isn't really ideal: all the data we allocate on the
5832 objfile's obstack is still uselessly kept around. However,
5833 freeing it seems unsafe. */
5834 psymtab_discarder psymtabs (objfile);
5835 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5836 psymtabs.keep ();
5837
5838 /* (maybe) store an index in the cache. */
5839 global_index_cache.store (dwarf2_per_objfile);
5840 }
5841 catch (const gdb_exception_error &except)
5842 {
5843 exception_print (gdb_stderr, except);
5844 }
5845 }
5846
5847 /* Find the base address of the compilation unit for range lists and
5848 location lists. It will normally be specified by DW_AT_low_pc.
5849 In DWARF-3 draft 4, the base address could be overridden by
5850 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5851 compilation units with discontinuous ranges. */
5852
5853 static void
5854 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5855 {
5856 struct attribute *attr;
5857
5858 cu->base_known = 0;
5859 cu->base_address = 0;
5860
5861 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5862 if (attr != nullptr)
5863 {
5864 cu->base_address = attr->value_as_address ();
5865 cu->base_known = 1;
5866 }
5867 else
5868 {
5869 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5870 if (attr != nullptr)
5871 {
5872 cu->base_address = attr->value_as_address ();
5873 cu->base_known = 1;
5874 }
5875 }
5876 }
5877
5878 /* Helper function that returns the proper abbrev section for
5879 THIS_CU. */
5880
5881 static struct dwarf2_section_info *
5882 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5883 {
5884 struct dwarf2_section_info *abbrev;
5885 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5886
5887 if (this_cu->is_dwz)
5888 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5889 else
5890 abbrev = &dwarf2_per_objfile->abbrev;
5891
5892 return abbrev;
5893 }
5894
5895 /* Fetch the abbreviation table offset from a comp or type unit header. */
5896
5897 static sect_offset
5898 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5899 struct dwarf2_section_info *section,
5900 sect_offset sect_off)
5901 {
5902 bfd *abfd = section->get_bfd_owner ();
5903 const gdb_byte *info_ptr;
5904 unsigned int initial_length_size, offset_size;
5905 uint16_t version;
5906
5907 section->read (dwarf2_per_objfile->objfile);
5908 info_ptr = section->buffer + to_underlying (sect_off);
5909 read_initial_length (abfd, info_ptr, &initial_length_size);
5910 offset_size = initial_length_size == 4 ? 4 : 8;
5911 info_ptr += initial_length_size;
5912
5913 version = read_2_bytes (abfd, info_ptr);
5914 info_ptr += 2;
5915 if (version >= 5)
5916 {
5917 /* Skip unit type and address size. */
5918 info_ptr += 2;
5919 }
5920
5921 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5922 }
5923
5924 /* A partial symtab that is used only for include files. */
5925 struct dwarf2_include_psymtab : public partial_symtab
5926 {
5927 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5928 : partial_symtab (filename, objfile)
5929 {
5930 }
5931
5932 void read_symtab (struct objfile *objfile) override
5933 {
5934 expand_psymtab (objfile);
5935 }
5936
5937 void expand_psymtab (struct objfile *objfile) override
5938 {
5939 if (m_readin)
5940 return;
5941 /* It's an include file, no symbols to read for it.
5942 Everything is in the parent symtab. */
5943 read_dependencies (objfile);
5944 m_readin = true;
5945 }
5946
5947 bool readin_p () const override
5948 {
5949 return m_readin;
5950 }
5951
5952 struct compunit_symtab *get_compunit_symtab () const override
5953 {
5954 return nullptr;
5955 }
5956
5957 private:
5958
5959 bool m_readin = false;
5960 };
5961
5962 /* Allocate a new partial symtab for file named NAME and mark this new
5963 partial symtab as being an include of PST. */
5964
5965 static void
5966 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5967 struct objfile *objfile)
5968 {
5969 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
5970
5971 if (!IS_ABSOLUTE_PATH (subpst->filename))
5972 {
5973 /* It shares objfile->objfile_obstack. */
5974 subpst->dirname = pst->dirname;
5975 }
5976
5977 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5978 subpst->dependencies[0] = pst;
5979 subpst->number_of_dependencies = 1;
5980 }
5981
5982 /* Read the Line Number Program data and extract the list of files
5983 included by the source file represented by PST. Build an include
5984 partial symtab for each of these included files. */
5985
5986 static void
5987 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5988 struct die_info *die,
5989 dwarf2_psymtab *pst)
5990 {
5991 line_header_up lh;
5992 struct attribute *attr;
5993
5994 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5995 if (attr != nullptr)
5996 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5997 if (lh == NULL)
5998 return; /* No linetable, so no includes. */
5999
6000 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6001 that we pass in the raw text_low here; that is ok because we're
6002 only decoding the line table to make include partial symtabs, and
6003 so the addresses aren't really used. */
6004 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6005 pst->raw_text_low (), 1);
6006 }
6007
6008 static hashval_t
6009 hash_signatured_type (const void *item)
6010 {
6011 const struct signatured_type *sig_type
6012 = (const struct signatured_type *) item;
6013
6014 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6015 return sig_type->signature;
6016 }
6017
6018 static int
6019 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6020 {
6021 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6022 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6023
6024 return lhs->signature == rhs->signature;
6025 }
6026
6027 /* Allocate a hash table for signatured types. */
6028
6029 static htab_up
6030 allocate_signatured_type_table ()
6031 {
6032 return htab_up (htab_create_alloc (41,
6033 hash_signatured_type,
6034 eq_signatured_type,
6035 NULL, xcalloc, xfree));
6036 }
6037
6038 /* A helper function to add a signatured type CU to a table. */
6039
6040 static int
6041 add_signatured_type_cu_to_table (void **slot, void *datum)
6042 {
6043 struct signatured_type *sigt = (struct signatured_type *) *slot;
6044 std::vector<signatured_type *> *all_type_units
6045 = (std::vector<signatured_type *> *) datum;
6046
6047 all_type_units->push_back (sigt);
6048
6049 return 1;
6050 }
6051
6052 /* A helper for create_debug_types_hash_table. Read types from SECTION
6053 and fill them into TYPES_HTAB. It will process only type units,
6054 therefore DW_UT_type. */
6055
6056 static void
6057 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6058 struct dwo_file *dwo_file,
6059 dwarf2_section_info *section, htab_up &types_htab,
6060 rcuh_kind section_kind)
6061 {
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_section_info *abbrev_section;
6064 bfd *abfd;
6065 const gdb_byte *info_ptr, *end_ptr;
6066
6067 abbrev_section = (dwo_file != NULL
6068 ? &dwo_file->sections.abbrev
6069 : &dwarf2_per_objfile->abbrev);
6070
6071 if (dwarf_read_debug)
6072 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6073 section->get_name (),
6074 abbrev_section->get_file_name ());
6075
6076 section->read (objfile);
6077 info_ptr = section->buffer;
6078
6079 if (info_ptr == NULL)
6080 return;
6081
6082 /* We can't set abfd until now because the section may be empty or
6083 not present, in which case the bfd is unknown. */
6084 abfd = section->get_bfd_owner ();
6085
6086 /* We don't use cutu_reader here because we don't need to read
6087 any dies: the signature is in the header. */
6088
6089 end_ptr = info_ptr + section->size;
6090 while (info_ptr < end_ptr)
6091 {
6092 struct signatured_type *sig_type;
6093 struct dwo_unit *dwo_tu;
6094 void **slot;
6095 const gdb_byte *ptr = info_ptr;
6096 struct comp_unit_head header;
6097 unsigned int length;
6098
6099 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6100
6101 /* Initialize it due to a false compiler warning. */
6102 header.signature = -1;
6103 header.type_cu_offset_in_tu = (cu_offset) -1;
6104
6105 /* We need to read the type's signature in order to build the hash
6106 table, but we don't need anything else just yet. */
6107
6108 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6109 abbrev_section, ptr, section_kind);
6110
6111 length = header.get_length ();
6112
6113 /* Skip dummy type units. */
6114 if (ptr >= info_ptr + length
6115 || peek_abbrev_code (abfd, ptr) == 0
6116 || header.unit_type != DW_UT_type)
6117 {
6118 info_ptr += length;
6119 continue;
6120 }
6121
6122 if (types_htab == NULL)
6123 {
6124 if (dwo_file)
6125 types_htab = allocate_dwo_unit_table ();
6126 else
6127 types_htab = allocate_signatured_type_table ();
6128 }
6129
6130 if (dwo_file)
6131 {
6132 sig_type = NULL;
6133 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6134 struct dwo_unit);
6135 dwo_tu->dwo_file = dwo_file;
6136 dwo_tu->signature = header.signature;
6137 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6138 dwo_tu->section = section;
6139 dwo_tu->sect_off = sect_off;
6140 dwo_tu->length = length;
6141 }
6142 else
6143 {
6144 /* N.B.: type_offset is not usable if this type uses a DWO file.
6145 The real type_offset is in the DWO file. */
6146 dwo_tu = NULL;
6147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6148 struct signatured_type);
6149 sig_type->signature = header.signature;
6150 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6151 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6152 sig_type->per_cu.is_debug_types = 1;
6153 sig_type->per_cu.section = section;
6154 sig_type->per_cu.sect_off = sect_off;
6155 sig_type->per_cu.length = length;
6156 }
6157
6158 slot = htab_find_slot (types_htab.get (),
6159 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6160 INSERT);
6161 gdb_assert (slot != NULL);
6162 if (*slot != NULL)
6163 {
6164 sect_offset dup_sect_off;
6165
6166 if (dwo_file)
6167 {
6168 const struct dwo_unit *dup_tu
6169 = (const struct dwo_unit *) *slot;
6170
6171 dup_sect_off = dup_tu->sect_off;
6172 }
6173 else
6174 {
6175 const struct signatured_type *dup_tu
6176 = (const struct signatured_type *) *slot;
6177
6178 dup_sect_off = dup_tu->per_cu.sect_off;
6179 }
6180
6181 complaint (_("debug type entry at offset %s is duplicate to"
6182 " the entry at offset %s, signature %s"),
6183 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6184 hex_string (header.signature));
6185 }
6186 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6187
6188 if (dwarf_read_debug > 1)
6189 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6190 sect_offset_str (sect_off),
6191 hex_string (header.signature));
6192
6193 info_ptr += length;
6194 }
6195 }
6196
6197 /* Create the hash table of all entries in the .debug_types
6198 (or .debug_types.dwo) section(s).
6199 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6200 otherwise it is NULL.
6201
6202 The result is a pointer to the hash table or NULL if there are no types.
6203
6204 Note: This function processes DWO files only, not DWP files. */
6205
6206 static void
6207 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6208 struct dwo_file *dwo_file,
6209 gdb::array_view<dwarf2_section_info> type_sections,
6210 htab_up &types_htab)
6211 {
6212 for (dwarf2_section_info &section : type_sections)
6213 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6214 types_htab, rcuh_kind::TYPE);
6215 }
6216
6217 /* Create the hash table of all entries in the .debug_types section,
6218 and initialize all_type_units.
6219 The result is zero if there is an error (e.g. missing .debug_types section),
6220 otherwise non-zero. */
6221
6222 static int
6223 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6224 {
6225 htab_up types_htab;
6226
6227 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6228 &dwarf2_per_objfile->info, types_htab,
6229 rcuh_kind::COMPILE);
6230 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6231 dwarf2_per_objfile->types, types_htab);
6232 if (types_htab == NULL)
6233 {
6234 dwarf2_per_objfile->signatured_types = NULL;
6235 return 0;
6236 }
6237
6238 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6239
6240 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6241 dwarf2_per_objfile->all_type_units.reserve
6242 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6243
6244 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6245 add_signatured_type_cu_to_table,
6246 &dwarf2_per_objfile->all_type_units);
6247
6248 return 1;
6249 }
6250
6251 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6252 If SLOT is non-NULL, it is the entry to use in the hash table.
6253 Otherwise we find one. */
6254
6255 static struct signatured_type *
6256 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6257 void **slot)
6258 {
6259 struct objfile *objfile = dwarf2_per_objfile->objfile;
6260
6261 if (dwarf2_per_objfile->all_type_units.size ()
6262 == dwarf2_per_objfile->all_type_units.capacity ())
6263 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6264
6265 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6266 struct signatured_type);
6267
6268 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6269 sig_type->signature = sig;
6270 sig_type->per_cu.is_debug_types = 1;
6271 if (dwarf2_per_objfile->using_index)
6272 {
6273 sig_type->per_cu.v.quick =
6274 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6275 struct dwarf2_per_cu_quick_data);
6276 }
6277
6278 if (slot == NULL)
6279 {
6280 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6281 sig_type, INSERT);
6282 }
6283 gdb_assert (*slot == NULL);
6284 *slot = sig_type;
6285 /* The rest of sig_type must be filled in by the caller. */
6286 return sig_type;
6287 }
6288
6289 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6290 Fill in SIG_ENTRY with DWO_ENTRY. */
6291
6292 static void
6293 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6294 struct signatured_type *sig_entry,
6295 struct dwo_unit *dwo_entry)
6296 {
6297 /* Make sure we're not clobbering something we don't expect to. */
6298 gdb_assert (! sig_entry->per_cu.queued);
6299 gdb_assert (sig_entry->per_cu.cu == NULL);
6300 if (dwarf2_per_objfile->using_index)
6301 {
6302 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6303 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6304 }
6305 else
6306 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6307 gdb_assert (sig_entry->signature == dwo_entry->signature);
6308 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6309 gdb_assert (sig_entry->type_unit_group == NULL);
6310 gdb_assert (sig_entry->dwo_unit == NULL);
6311
6312 sig_entry->per_cu.section = dwo_entry->section;
6313 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6314 sig_entry->per_cu.length = dwo_entry->length;
6315 sig_entry->per_cu.reading_dwo_directly = 1;
6316 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6317 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6318 sig_entry->dwo_unit = dwo_entry;
6319 }
6320
6321 /* Subroutine of lookup_signatured_type.
6322 If we haven't read the TU yet, create the signatured_type data structure
6323 for a TU to be read in directly from a DWO file, bypassing the stub.
6324 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6325 using .gdb_index, then when reading a CU we want to stay in the DWO file
6326 containing that CU. Otherwise we could end up reading several other DWO
6327 files (due to comdat folding) to process the transitive closure of all the
6328 mentioned TUs, and that can be slow. The current DWO file will have every
6329 type signature that it needs.
6330 We only do this for .gdb_index because in the psymtab case we already have
6331 to read all the DWOs to build the type unit groups. */
6332
6333 static struct signatured_type *
6334 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6335 {
6336 struct dwarf2_per_objfile *dwarf2_per_objfile
6337 = cu->per_cu->dwarf2_per_objfile;
6338 struct dwo_file *dwo_file;
6339 struct dwo_unit find_dwo_entry, *dwo_entry;
6340 struct signatured_type find_sig_entry, *sig_entry;
6341 void **slot;
6342
6343 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6344
6345 /* If TU skeletons have been removed then we may not have read in any
6346 TUs yet. */
6347 if (dwarf2_per_objfile->signatured_types == NULL)
6348 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6349
6350 /* We only ever need to read in one copy of a signatured type.
6351 Use the global signatured_types array to do our own comdat-folding
6352 of types. If this is the first time we're reading this TU, and
6353 the TU has an entry in .gdb_index, replace the recorded data from
6354 .gdb_index with this TU. */
6355
6356 find_sig_entry.signature = sig;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6358 &find_sig_entry, INSERT);
6359 sig_entry = (struct signatured_type *) *slot;
6360
6361 /* We can get here with the TU already read, *or* in the process of being
6362 read. Don't reassign the global entry to point to this DWO if that's
6363 the case. Also note that if the TU is already being read, it may not
6364 have come from a DWO, the program may be a mix of Fission-compiled
6365 code and non-Fission-compiled code. */
6366
6367 /* Have we already tried to read this TU?
6368 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6369 needn't exist in the global table yet). */
6370 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6371 return sig_entry;
6372
6373 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6374 dwo_unit of the TU itself. */
6375 dwo_file = cu->dwo_unit->dwo_file;
6376
6377 /* Ok, this is the first time we're reading this TU. */
6378 if (dwo_file->tus == NULL)
6379 return NULL;
6380 find_dwo_entry.signature = sig;
6381 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6382 &find_dwo_entry);
6383 if (dwo_entry == NULL)
6384 return NULL;
6385
6386 /* If the global table doesn't have an entry for this TU, add one. */
6387 if (sig_entry == NULL)
6388 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6389
6390 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6391 sig_entry->per_cu.tu_read = 1;
6392 return sig_entry;
6393 }
6394
6395 /* Subroutine of lookup_signatured_type.
6396 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6397 then try the DWP file. If the TU stub (skeleton) has been removed then
6398 it won't be in .gdb_index. */
6399
6400 static struct signatured_type *
6401 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6402 {
6403 struct dwarf2_per_objfile *dwarf2_per_objfile
6404 = cu->per_cu->dwarf2_per_objfile;
6405 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6406 struct dwo_unit *dwo_entry;
6407 struct signatured_type find_sig_entry, *sig_entry;
6408 void **slot;
6409
6410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6411 gdb_assert (dwp_file != NULL);
6412
6413 /* If TU skeletons have been removed then we may not have read in any
6414 TUs yet. */
6415 if (dwarf2_per_objfile->signatured_types == NULL)
6416 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6417
6418 find_sig_entry.signature = sig;
6419 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6420 &find_sig_entry, INSERT);
6421 sig_entry = (struct signatured_type *) *slot;
6422
6423 /* Have we already tried to read this TU?
6424 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6425 needn't exist in the global table yet). */
6426 if (sig_entry != NULL)
6427 return sig_entry;
6428
6429 if (dwp_file->tus == NULL)
6430 return NULL;
6431 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6432 sig, 1 /* is_debug_types */);
6433 if (dwo_entry == NULL)
6434 return NULL;
6435
6436 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6437 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6438
6439 return sig_entry;
6440 }
6441
6442 /* Lookup a signature based type for DW_FORM_ref_sig8.
6443 Returns NULL if signature SIG is not present in the table.
6444 It is up to the caller to complain about this. */
6445
6446 static struct signatured_type *
6447 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6448 {
6449 struct dwarf2_per_objfile *dwarf2_per_objfile
6450 = cu->per_cu->dwarf2_per_objfile;
6451
6452 if (cu->dwo_unit
6453 && dwarf2_per_objfile->using_index)
6454 {
6455 /* We're in a DWO/DWP file, and we're using .gdb_index.
6456 These cases require special processing. */
6457 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6458 return lookup_dwo_signatured_type (cu, sig);
6459 else
6460 return lookup_dwp_signatured_type (cu, sig);
6461 }
6462 else
6463 {
6464 struct signatured_type find_entry, *entry;
6465
6466 if (dwarf2_per_objfile->signatured_types == NULL)
6467 return NULL;
6468 find_entry.signature = sig;
6469 entry = ((struct signatured_type *)
6470 htab_find (dwarf2_per_objfile->signatured_types.get (),
6471 &find_entry));
6472 return entry;
6473 }
6474 }
6475
6476 /* Return the address base of the compile unit, which, if exists, is stored
6477 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6478 static gdb::optional<ULONGEST>
6479 lookup_addr_base (struct die_info *comp_unit_die)
6480 {
6481 struct attribute *attr;
6482 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6483 if (attr == nullptr)
6484 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6485 if (attr == nullptr)
6486 return gdb::optional<ULONGEST> ();
6487 return DW_UNSND (attr);
6488 }
6489
6490 /* Return range lists base of the compile unit, which, if exists, is stored
6491 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6492 static ULONGEST
6493 lookup_ranges_base (struct die_info *comp_unit_die)
6494 {
6495 struct attribute *attr;
6496 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6497 if (attr == nullptr)
6498 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6499 if (attr == nullptr)
6500 return 0;
6501 return DW_UNSND (attr);
6502 }
6503
6504 /* Low level DIE reading support. */
6505
6506 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6507
6508 static void
6509 init_cu_die_reader (struct die_reader_specs *reader,
6510 struct dwarf2_cu *cu,
6511 struct dwarf2_section_info *section,
6512 struct dwo_file *dwo_file,
6513 struct abbrev_table *abbrev_table)
6514 {
6515 gdb_assert (section->readin && section->buffer != NULL);
6516 reader->abfd = section->get_bfd_owner ();
6517 reader->cu = cu;
6518 reader->dwo_file = dwo_file;
6519 reader->die_section = section;
6520 reader->buffer = section->buffer;
6521 reader->buffer_end = section->buffer + section->size;
6522 reader->abbrev_table = abbrev_table;
6523 }
6524
6525 /* Subroutine of cutu_reader to simplify it.
6526 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6527 There's just a lot of work to do, and cutu_reader is big enough
6528 already.
6529
6530 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6531 from it to the DIE in the DWO. If NULL we are skipping the stub.
6532 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6533 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6534 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6535 STUB_COMP_DIR may be non-NULL.
6536 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6537 are filled in with the info of the DIE from the DWO file.
6538 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6539 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6540 kept around for at least as long as *RESULT_READER.
6541
6542 The result is non-zero if a valid (non-dummy) DIE was found. */
6543
6544 static int
6545 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6546 struct dwo_unit *dwo_unit,
6547 struct die_info *stub_comp_unit_die,
6548 const char *stub_comp_dir,
6549 struct die_reader_specs *result_reader,
6550 const gdb_byte **result_info_ptr,
6551 struct die_info **result_comp_unit_die,
6552 abbrev_table_up *result_dwo_abbrev_table)
6553 {
6554 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6555 struct objfile *objfile = dwarf2_per_objfile->objfile;
6556 struct dwarf2_cu *cu = this_cu->cu;
6557 bfd *abfd;
6558 const gdb_byte *begin_info_ptr, *info_ptr;
6559 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6560 int i,num_extra_attrs;
6561 struct dwarf2_section_info *dwo_abbrev_section;
6562 struct die_info *comp_unit_die;
6563
6564 /* At most one of these may be provided. */
6565 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6566
6567 /* These attributes aren't processed until later:
6568 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6569 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6570 referenced later. However, these attributes are found in the stub
6571 which we won't have later. In order to not impose this complication
6572 on the rest of the code, we read them here and copy them to the
6573 DWO CU/TU die. */
6574
6575 stmt_list = NULL;
6576 low_pc = NULL;
6577 high_pc = NULL;
6578 ranges = NULL;
6579 comp_dir = NULL;
6580
6581 if (stub_comp_unit_die != NULL)
6582 {
6583 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6584 DWO file. */
6585 if (! this_cu->is_debug_types)
6586 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6587 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6588 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6589 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6590 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6591
6592 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6593
6594 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6595 here (if needed). We need the value before we can process
6596 DW_AT_ranges. */
6597 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6598 }
6599 else if (stub_comp_dir != NULL)
6600 {
6601 /* Reconstruct the comp_dir attribute to simplify the code below. */
6602 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6603 comp_dir->name = DW_AT_comp_dir;
6604 comp_dir->form = DW_FORM_string;
6605 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6606 DW_STRING (comp_dir) = stub_comp_dir;
6607 }
6608
6609 /* Set up for reading the DWO CU/TU. */
6610 cu->dwo_unit = dwo_unit;
6611 dwarf2_section_info *section = dwo_unit->section;
6612 section->read (objfile);
6613 abfd = section->get_bfd_owner ();
6614 begin_info_ptr = info_ptr = (section->buffer
6615 + to_underlying (dwo_unit->sect_off));
6616 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6617
6618 if (this_cu->is_debug_types)
6619 {
6620 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6621
6622 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6623 &cu->header, section,
6624 dwo_abbrev_section,
6625 info_ptr, rcuh_kind::TYPE);
6626 /* This is not an assert because it can be caused by bad debug info. */
6627 if (sig_type->signature != cu->header.signature)
6628 {
6629 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6630 " TU at offset %s [in module %s]"),
6631 hex_string (sig_type->signature),
6632 hex_string (cu->header.signature),
6633 sect_offset_str (dwo_unit->sect_off),
6634 bfd_get_filename (abfd));
6635 }
6636 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6637 /* For DWOs coming from DWP files, we don't know the CU length
6638 nor the type's offset in the TU until now. */
6639 dwo_unit->length = cu->header.get_length ();
6640 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6641
6642 /* Establish the type offset that can be used to lookup the type.
6643 For DWO files, we don't know it until now. */
6644 sig_type->type_offset_in_section
6645 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6646 }
6647 else
6648 {
6649 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6650 &cu->header, section,
6651 dwo_abbrev_section,
6652 info_ptr, rcuh_kind::COMPILE);
6653 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6654 /* For DWOs coming from DWP files, we don't know the CU length
6655 until now. */
6656 dwo_unit->length = cu->header.get_length ();
6657 }
6658
6659 *result_dwo_abbrev_table
6660 = abbrev_table::read (objfile, dwo_abbrev_section,
6661 cu->header.abbrev_sect_off);
6662 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6663 result_dwo_abbrev_table->get ());
6664
6665 /* Read in the die, but leave space to copy over the attributes
6666 from the stub. This has the benefit of simplifying the rest of
6667 the code - all the work to maintain the illusion of a single
6668 DW_TAG_{compile,type}_unit DIE is done here. */
6669 num_extra_attrs = ((stmt_list != NULL)
6670 + (low_pc != NULL)
6671 + (high_pc != NULL)
6672 + (ranges != NULL)
6673 + (comp_dir != NULL));
6674 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6675 num_extra_attrs);
6676
6677 /* Copy over the attributes from the stub to the DIE we just read in. */
6678 comp_unit_die = *result_comp_unit_die;
6679 i = comp_unit_die->num_attrs;
6680 if (stmt_list != NULL)
6681 comp_unit_die->attrs[i++] = *stmt_list;
6682 if (low_pc != NULL)
6683 comp_unit_die->attrs[i++] = *low_pc;
6684 if (high_pc != NULL)
6685 comp_unit_die->attrs[i++] = *high_pc;
6686 if (ranges != NULL)
6687 comp_unit_die->attrs[i++] = *ranges;
6688 if (comp_dir != NULL)
6689 comp_unit_die->attrs[i++] = *comp_dir;
6690 comp_unit_die->num_attrs += num_extra_attrs;
6691
6692 if (dwarf_die_debug)
6693 {
6694 fprintf_unfiltered (gdb_stdlog,
6695 "Read die from %s@0x%x of %s:\n",
6696 section->get_name (),
6697 (unsigned) (begin_info_ptr - section->buffer),
6698 bfd_get_filename (abfd));
6699 dump_die (comp_unit_die, dwarf_die_debug);
6700 }
6701
6702 /* Skip dummy compilation units. */
6703 if (info_ptr >= begin_info_ptr + dwo_unit->length
6704 || peek_abbrev_code (abfd, info_ptr) == 0)
6705 return 0;
6706
6707 *result_info_ptr = info_ptr;
6708 return 1;
6709 }
6710
6711 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6712 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6713 signature is part of the header. */
6714 static gdb::optional<ULONGEST>
6715 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6716 {
6717 if (cu->header.version >= 5)
6718 return cu->header.signature;
6719 struct attribute *attr;
6720 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6721 if (attr == nullptr)
6722 return gdb::optional<ULONGEST> ();
6723 return DW_UNSND (attr);
6724 }
6725
6726 /* Subroutine of cutu_reader to simplify it.
6727 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6728 Returns NULL if the specified DWO unit cannot be found. */
6729
6730 static struct dwo_unit *
6731 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6732 struct die_info *comp_unit_die,
6733 const char *dwo_name)
6734 {
6735 struct dwarf2_cu *cu = this_cu->cu;
6736 struct dwo_unit *dwo_unit;
6737 const char *comp_dir;
6738
6739 gdb_assert (cu != NULL);
6740
6741 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6742 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6743 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6744
6745 if (this_cu->is_debug_types)
6746 {
6747 struct signatured_type *sig_type;
6748
6749 /* Since this_cu is the first member of struct signatured_type,
6750 we can go from a pointer to one to a pointer to the other. */
6751 sig_type = (struct signatured_type *) this_cu;
6752 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6753 }
6754 else
6755 {
6756 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6757 if (!signature.has_value ())
6758 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6759 " [in module %s]"),
6760 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6761 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6762 *signature);
6763 }
6764
6765 return dwo_unit;
6766 }
6767
6768 /* Subroutine of cutu_reader to simplify it.
6769 See it for a description of the parameters.
6770 Read a TU directly from a DWO file, bypassing the stub. */
6771
6772 void
6773 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6774 int use_existing_cu)
6775 {
6776 struct signatured_type *sig_type;
6777
6778 /* Verify we can do the following downcast, and that we have the
6779 data we need. */
6780 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6781 sig_type = (struct signatured_type *) this_cu;
6782 gdb_assert (sig_type->dwo_unit != NULL);
6783
6784 if (use_existing_cu && this_cu->cu != NULL)
6785 {
6786 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6787 /* There's no need to do the rereading_dwo_cu handling that
6788 cutu_reader does since we don't read the stub. */
6789 }
6790 else
6791 {
6792 /* If !use_existing_cu, this_cu->cu must be NULL. */
6793 gdb_assert (this_cu->cu == NULL);
6794 m_new_cu.reset (new dwarf2_cu (this_cu));
6795 }
6796
6797 /* A future optimization, if needed, would be to use an existing
6798 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6799 could share abbrev tables. */
6800
6801 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6802 NULL /* stub_comp_unit_die */,
6803 sig_type->dwo_unit->dwo_file->comp_dir,
6804 this, &info_ptr,
6805 &comp_unit_die,
6806 &m_dwo_abbrev_table) == 0)
6807 {
6808 /* Dummy die. */
6809 dummy_p = true;
6810 }
6811 }
6812
6813 /* Initialize a CU (or TU) and read its DIEs.
6814 If the CU defers to a DWO file, read the DWO file as well.
6815
6816 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6817 Otherwise the table specified in the comp unit header is read in and used.
6818 This is an optimization for when we already have the abbrev table.
6819
6820 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6821 Otherwise, a new CU is allocated with xmalloc. */
6822
6823 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6824 struct abbrev_table *abbrev_table,
6825 int use_existing_cu,
6826 bool skip_partial)
6827 : die_reader_specs {},
6828 m_this_cu (this_cu)
6829 {
6830 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6831 struct objfile *objfile = dwarf2_per_objfile->objfile;
6832 struct dwarf2_section_info *section = this_cu->section;
6833 bfd *abfd = section->get_bfd_owner ();
6834 struct dwarf2_cu *cu;
6835 const gdb_byte *begin_info_ptr;
6836 struct signatured_type *sig_type = NULL;
6837 struct dwarf2_section_info *abbrev_section;
6838 /* Non-zero if CU currently points to a DWO file and we need to
6839 reread it. When this happens we need to reread the skeleton die
6840 before we can reread the DWO file (this only applies to CUs, not TUs). */
6841 int rereading_dwo_cu = 0;
6842
6843 if (dwarf_die_debug)
6844 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6845 this_cu->is_debug_types ? "type" : "comp",
6846 sect_offset_str (this_cu->sect_off));
6847
6848 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6849 file (instead of going through the stub), short-circuit all of this. */
6850 if (this_cu->reading_dwo_directly)
6851 {
6852 /* Narrow down the scope of possibilities to have to understand. */
6853 gdb_assert (this_cu->is_debug_types);
6854 gdb_assert (abbrev_table == NULL);
6855 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6856 return;
6857 }
6858
6859 /* This is cheap if the section is already read in. */
6860 section->read (objfile);
6861
6862 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6863
6864 abbrev_section = get_abbrev_section_for_cu (this_cu);
6865
6866 if (use_existing_cu && this_cu->cu != NULL)
6867 {
6868 cu = this_cu->cu;
6869 /* If this CU is from a DWO file we need to start over, we need to
6870 refetch the attributes from the skeleton CU.
6871 This could be optimized by retrieving those attributes from when we
6872 were here the first time: the previous comp_unit_die was stored in
6873 comp_unit_obstack. But there's no data yet that we need this
6874 optimization. */
6875 if (cu->dwo_unit != NULL)
6876 rereading_dwo_cu = 1;
6877 }
6878 else
6879 {
6880 /* If !use_existing_cu, this_cu->cu must be NULL. */
6881 gdb_assert (this_cu->cu == NULL);
6882 m_new_cu.reset (new dwarf2_cu (this_cu));
6883 cu = m_new_cu.get ();
6884 }
6885
6886 /* Get the header. */
6887 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6888 {
6889 /* We already have the header, there's no need to read it in again. */
6890 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6891 }
6892 else
6893 {
6894 if (this_cu->is_debug_types)
6895 {
6896 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6897 &cu->header, section,
6898 abbrev_section, info_ptr,
6899 rcuh_kind::TYPE);
6900
6901 /* Since per_cu is the first member of struct signatured_type,
6902 we can go from a pointer to one to a pointer to the other. */
6903 sig_type = (struct signatured_type *) this_cu;
6904 gdb_assert (sig_type->signature == cu->header.signature);
6905 gdb_assert (sig_type->type_offset_in_tu
6906 == cu->header.type_cu_offset_in_tu);
6907 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6908
6909 /* LENGTH has not been set yet for type units if we're
6910 using .gdb_index. */
6911 this_cu->length = cu->header.get_length ();
6912
6913 /* Establish the type offset that can be used to lookup the type. */
6914 sig_type->type_offset_in_section =
6915 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6916
6917 this_cu->dwarf_version = cu->header.version;
6918 }
6919 else
6920 {
6921 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6922 &cu->header, section,
6923 abbrev_section,
6924 info_ptr,
6925 rcuh_kind::COMPILE);
6926
6927 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6928 gdb_assert (this_cu->length == cu->header.get_length ());
6929 this_cu->dwarf_version = cu->header.version;
6930 }
6931 }
6932
6933 /* Skip dummy compilation units. */
6934 if (info_ptr >= begin_info_ptr + this_cu->length
6935 || peek_abbrev_code (abfd, info_ptr) == 0)
6936 {
6937 dummy_p = true;
6938 return;
6939 }
6940
6941 /* If we don't have them yet, read the abbrevs for this compilation unit.
6942 And if we need to read them now, make sure they're freed when we're
6943 done. */
6944 if (abbrev_table != NULL)
6945 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6946 else
6947 {
6948 m_abbrev_table_holder
6949 = abbrev_table::read (objfile, abbrev_section,
6950 cu->header.abbrev_sect_off);
6951 abbrev_table = m_abbrev_table_holder.get ();
6952 }
6953
6954 /* Read the top level CU/TU die. */
6955 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6956 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6957
6958 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6959 {
6960 dummy_p = true;
6961 return;
6962 }
6963
6964 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6965 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6966 table from the DWO file and pass the ownership over to us. It will be
6967 referenced from READER, so we must make sure to free it after we're done
6968 with READER.
6969
6970 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6971 DWO CU, that this test will fail (the attribute will not be present). */
6972 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6973 if (dwo_name != nullptr)
6974 {
6975 struct dwo_unit *dwo_unit;
6976 struct die_info *dwo_comp_unit_die;
6977
6978 if (comp_unit_die->has_children)
6979 {
6980 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6981 " has children (offset %s) [in module %s]"),
6982 sect_offset_str (this_cu->sect_off),
6983 bfd_get_filename (abfd));
6984 }
6985 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6986 if (dwo_unit != NULL)
6987 {
6988 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6989 comp_unit_die, NULL,
6990 this, &info_ptr,
6991 &dwo_comp_unit_die,
6992 &m_dwo_abbrev_table) == 0)
6993 {
6994 /* Dummy die. */
6995 dummy_p = true;
6996 return;
6997 }
6998 comp_unit_die = dwo_comp_unit_die;
6999 }
7000 else
7001 {
7002 /* Yikes, we couldn't find the rest of the DIE, we only have
7003 the stub. A complaint has already been logged. There's
7004 not much more we can do except pass on the stub DIE to
7005 die_reader_func. We don't want to throw an error on bad
7006 debug info. */
7007 }
7008 }
7009 }
7010
7011 void
7012 cutu_reader::keep ()
7013 {
7014 /* Done, clean up. */
7015 gdb_assert (!dummy_p);
7016 if (m_new_cu != NULL)
7017 {
7018 struct dwarf2_per_objfile *dwarf2_per_objfile
7019 = m_this_cu->dwarf2_per_objfile;
7020 /* Link this CU into read_in_chain. */
7021 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7022 dwarf2_per_objfile->read_in_chain = m_this_cu;
7023 /* The chain owns it now. */
7024 m_new_cu.release ();
7025 }
7026 }
7027
7028 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7029 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7030 assumed to have already done the lookup to find the DWO file).
7031
7032 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7033 THIS_CU->is_debug_types, but nothing else.
7034
7035 We fill in THIS_CU->length.
7036
7037 THIS_CU->cu is always freed when done.
7038 This is done in order to not leave THIS_CU->cu in a state where we have
7039 to care whether it refers to the "main" CU or the DWO CU.
7040
7041 When parent_cu is passed, it is used to provide a default value for
7042 str_offsets_base and addr_base from the parent. */
7043
7044 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7045 struct dwarf2_cu *parent_cu,
7046 struct dwo_file *dwo_file)
7047 : die_reader_specs {},
7048 m_this_cu (this_cu)
7049 {
7050 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7051 struct objfile *objfile = dwarf2_per_objfile->objfile;
7052 struct dwarf2_section_info *section = this_cu->section;
7053 bfd *abfd = section->get_bfd_owner ();
7054 struct dwarf2_section_info *abbrev_section;
7055 const gdb_byte *begin_info_ptr, *info_ptr;
7056
7057 if (dwarf_die_debug)
7058 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7059 this_cu->is_debug_types ? "type" : "comp",
7060 sect_offset_str (this_cu->sect_off));
7061
7062 gdb_assert (this_cu->cu == NULL);
7063
7064 abbrev_section = (dwo_file != NULL
7065 ? &dwo_file->sections.abbrev
7066 : get_abbrev_section_for_cu (this_cu));
7067
7068 /* This is cheap if the section is already read in. */
7069 section->read (objfile);
7070
7071 m_new_cu.reset (new dwarf2_cu (this_cu));
7072
7073 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7074 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7075 &m_new_cu->header, section,
7076 abbrev_section, info_ptr,
7077 (this_cu->is_debug_types
7078 ? rcuh_kind::TYPE
7079 : rcuh_kind::COMPILE));
7080
7081 if (parent_cu != nullptr)
7082 {
7083 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7084 m_new_cu->addr_base = parent_cu->addr_base;
7085 }
7086 this_cu->length = m_new_cu->header.get_length ();
7087
7088 /* Skip dummy compilation units. */
7089 if (info_ptr >= begin_info_ptr + this_cu->length
7090 || peek_abbrev_code (abfd, info_ptr) == 0)
7091 {
7092 dummy_p = true;
7093 return;
7094 }
7095
7096 m_abbrev_table_holder
7097 = abbrev_table::read (objfile, abbrev_section,
7098 m_new_cu->header.abbrev_sect_off);
7099
7100 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7101 m_abbrev_table_holder.get ());
7102 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7103 }
7104
7105 \f
7106 /* Type Unit Groups.
7107
7108 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7109 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7110 so that all types coming from the same compilation (.o file) are grouped
7111 together. A future step could be to put the types in the same symtab as
7112 the CU the types ultimately came from. */
7113
7114 static hashval_t
7115 hash_type_unit_group (const void *item)
7116 {
7117 const struct type_unit_group *tu_group
7118 = (const struct type_unit_group *) item;
7119
7120 return hash_stmt_list_entry (&tu_group->hash);
7121 }
7122
7123 static int
7124 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7125 {
7126 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7127 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7128
7129 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7130 }
7131
7132 /* Allocate a hash table for type unit groups. */
7133
7134 static htab_up
7135 allocate_type_unit_groups_table ()
7136 {
7137 return htab_up (htab_create_alloc (3,
7138 hash_type_unit_group,
7139 eq_type_unit_group,
7140 NULL, xcalloc, xfree));
7141 }
7142
7143 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7144 partial symtabs. We combine several TUs per psymtab to not let the size
7145 of any one psymtab grow too big. */
7146 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7147 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7148
7149 /* Helper routine for get_type_unit_group.
7150 Create the type_unit_group object used to hold one or more TUs. */
7151
7152 static struct type_unit_group *
7153 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7154 {
7155 struct dwarf2_per_objfile *dwarf2_per_objfile
7156 = cu->per_cu->dwarf2_per_objfile;
7157 struct objfile *objfile = dwarf2_per_objfile->objfile;
7158 struct dwarf2_per_cu_data *per_cu;
7159 struct type_unit_group *tu_group;
7160
7161 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7162 struct type_unit_group);
7163 per_cu = &tu_group->per_cu;
7164 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7165
7166 if (dwarf2_per_objfile->using_index)
7167 {
7168 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7169 struct dwarf2_per_cu_quick_data);
7170 }
7171 else
7172 {
7173 unsigned int line_offset = to_underlying (line_offset_struct);
7174 dwarf2_psymtab *pst;
7175 std::string name;
7176
7177 /* Give the symtab a useful name for debug purposes. */
7178 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7179 name = string_printf ("<type_units_%d>",
7180 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7181 else
7182 name = string_printf ("<type_units_at_0x%x>", line_offset);
7183
7184 pst = create_partial_symtab (per_cu, name.c_str ());
7185 pst->anonymous = true;
7186 }
7187
7188 tu_group->hash.dwo_unit = cu->dwo_unit;
7189 tu_group->hash.line_sect_off = line_offset_struct;
7190
7191 return tu_group;
7192 }
7193
7194 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7195 STMT_LIST is a DW_AT_stmt_list attribute. */
7196
7197 static struct type_unit_group *
7198 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7199 {
7200 struct dwarf2_per_objfile *dwarf2_per_objfile
7201 = cu->per_cu->dwarf2_per_objfile;
7202 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7203 struct type_unit_group *tu_group;
7204 void **slot;
7205 unsigned int line_offset;
7206 struct type_unit_group type_unit_group_for_lookup;
7207
7208 if (dwarf2_per_objfile->type_unit_groups == NULL)
7209 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7210
7211 /* Do we need to create a new group, or can we use an existing one? */
7212
7213 if (stmt_list)
7214 {
7215 line_offset = DW_UNSND (stmt_list);
7216 ++tu_stats->nr_symtab_sharers;
7217 }
7218 else
7219 {
7220 /* Ugh, no stmt_list. Rare, but we have to handle it.
7221 We can do various things here like create one group per TU or
7222 spread them over multiple groups to split up the expansion work.
7223 To avoid worst case scenarios (too many groups or too large groups)
7224 we, umm, group them in bunches. */
7225 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7226 | (tu_stats->nr_stmt_less_type_units
7227 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7228 ++tu_stats->nr_stmt_less_type_units;
7229 }
7230
7231 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7232 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7233 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7234 &type_unit_group_for_lookup, INSERT);
7235 if (*slot != NULL)
7236 {
7237 tu_group = (struct type_unit_group *) *slot;
7238 gdb_assert (tu_group != NULL);
7239 }
7240 else
7241 {
7242 sect_offset line_offset_struct = (sect_offset) line_offset;
7243 tu_group = create_type_unit_group (cu, line_offset_struct);
7244 *slot = tu_group;
7245 ++tu_stats->nr_symtabs;
7246 }
7247
7248 return tu_group;
7249 }
7250 \f
7251 /* Partial symbol tables. */
7252
7253 /* Create a psymtab named NAME and assign it to PER_CU.
7254
7255 The caller must fill in the following details:
7256 dirname, textlow, texthigh. */
7257
7258 static dwarf2_psymtab *
7259 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7260 {
7261 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7262 dwarf2_psymtab *pst;
7263
7264 pst = new dwarf2_psymtab (name, objfile, 0);
7265
7266 pst->psymtabs_addrmap_supported = true;
7267
7268 /* This is the glue that links PST into GDB's symbol API. */
7269 pst->per_cu_data = per_cu;
7270 per_cu->v.psymtab = pst;
7271
7272 return pst;
7273 }
7274
7275 /* DIE reader function for process_psymtab_comp_unit. */
7276
7277 static void
7278 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7279 const gdb_byte *info_ptr,
7280 struct die_info *comp_unit_die,
7281 enum language pretend_language)
7282 {
7283 struct dwarf2_cu *cu = reader->cu;
7284 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7286 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7287 CORE_ADDR baseaddr;
7288 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7289 dwarf2_psymtab *pst;
7290 enum pc_bounds_kind cu_bounds_kind;
7291 const char *filename;
7292
7293 gdb_assert (! per_cu->is_debug_types);
7294
7295 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7296
7297 /* Allocate a new partial symbol table structure. */
7298 gdb::unique_xmalloc_ptr<char> debug_filename;
7299 static const char artificial[] = "<artificial>";
7300 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7301 if (filename == NULL)
7302 filename = "";
7303 else if (strcmp (filename, artificial) == 0)
7304 {
7305 debug_filename.reset (concat (artificial, "@",
7306 sect_offset_str (per_cu->sect_off),
7307 (char *) NULL));
7308 filename = debug_filename.get ();
7309 }
7310
7311 pst = create_partial_symtab (per_cu, filename);
7312
7313 /* This must be done before calling dwarf2_build_include_psymtabs. */
7314 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7315
7316 baseaddr = objfile->text_section_offset ();
7317
7318 dwarf2_find_base_address (comp_unit_die, cu);
7319
7320 /* Possibly set the default values of LOWPC and HIGHPC from
7321 `DW_AT_ranges'. */
7322 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7323 &best_highpc, cu, pst);
7324 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7325 {
7326 CORE_ADDR low
7327 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7328 - baseaddr);
7329 CORE_ADDR high
7330 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7331 - baseaddr - 1);
7332 /* Store the contiguous range if it is not empty; it can be
7333 empty for CUs with no code. */
7334 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7335 low, high, pst);
7336 }
7337
7338 /* Check if comp unit has_children.
7339 If so, read the rest of the partial symbols from this comp unit.
7340 If not, there's no more debug_info for this comp unit. */
7341 if (comp_unit_die->has_children)
7342 {
7343 struct partial_die_info *first_die;
7344 CORE_ADDR lowpc, highpc;
7345
7346 lowpc = ((CORE_ADDR) -1);
7347 highpc = ((CORE_ADDR) 0);
7348
7349 first_die = load_partial_dies (reader, info_ptr, 1);
7350
7351 scan_partial_symbols (first_die, &lowpc, &highpc,
7352 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7353
7354 /* If we didn't find a lowpc, set it to highpc to avoid
7355 complaints from `maint check'. */
7356 if (lowpc == ((CORE_ADDR) -1))
7357 lowpc = highpc;
7358
7359 /* If the compilation unit didn't have an explicit address range,
7360 then use the information extracted from its child dies. */
7361 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7362 {
7363 best_lowpc = lowpc;
7364 best_highpc = highpc;
7365 }
7366 }
7367 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7368 best_lowpc + baseaddr)
7369 - baseaddr);
7370 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7371 best_highpc + baseaddr)
7372 - baseaddr);
7373
7374 end_psymtab_common (objfile, pst);
7375
7376 if (!cu->per_cu->imported_symtabs_empty ())
7377 {
7378 int i;
7379 int len = cu->per_cu->imported_symtabs_size ();
7380
7381 /* Fill in 'dependencies' here; we fill in 'users' in a
7382 post-pass. */
7383 pst->number_of_dependencies = len;
7384 pst->dependencies
7385 = objfile->partial_symtabs->allocate_dependencies (len);
7386 for (i = 0; i < len; ++i)
7387 {
7388 pst->dependencies[i]
7389 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7390 }
7391
7392 cu->per_cu->imported_symtabs_free ();
7393 }
7394
7395 /* Get the list of files included in the current compilation unit,
7396 and build a psymtab for each of them. */
7397 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7398
7399 if (dwarf_read_debug)
7400 fprintf_unfiltered (gdb_stdlog,
7401 "Psymtab for %s unit @%s: %s - %s"
7402 ", %d global, %d static syms\n",
7403 per_cu->is_debug_types ? "type" : "comp",
7404 sect_offset_str (per_cu->sect_off),
7405 paddress (gdbarch, pst->text_low (objfile)),
7406 paddress (gdbarch, pst->text_high (objfile)),
7407 pst->n_global_syms, pst->n_static_syms);
7408 }
7409
7410 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7411 Process compilation unit THIS_CU for a psymtab. */
7412
7413 static void
7414 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7415 bool want_partial_unit,
7416 enum language pretend_language)
7417 {
7418 /* If this compilation unit was already read in, free the
7419 cached copy in order to read it in again. This is
7420 necessary because we skipped some symbols when we first
7421 read in the compilation unit (see load_partial_dies).
7422 This problem could be avoided, but the benefit is unclear. */
7423 if (this_cu->cu != NULL)
7424 free_one_cached_comp_unit (this_cu);
7425
7426 cutu_reader reader (this_cu, NULL, 0, false);
7427
7428 if (reader.dummy_p)
7429 {
7430 /* Nothing. */
7431 }
7432 else if (this_cu->is_debug_types)
7433 build_type_psymtabs_reader (&reader, reader.info_ptr,
7434 reader.comp_unit_die);
7435 else if (want_partial_unit
7436 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7437 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7438 reader.comp_unit_die,
7439 pretend_language);
7440
7441 /* Age out any secondary CUs. */
7442 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7443 }
7444
7445 /* Reader function for build_type_psymtabs. */
7446
7447 static void
7448 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7449 const gdb_byte *info_ptr,
7450 struct die_info *type_unit_die)
7451 {
7452 struct dwarf2_per_objfile *dwarf2_per_objfile
7453 = reader->cu->per_cu->dwarf2_per_objfile;
7454 struct objfile *objfile = dwarf2_per_objfile->objfile;
7455 struct dwarf2_cu *cu = reader->cu;
7456 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7457 struct signatured_type *sig_type;
7458 struct type_unit_group *tu_group;
7459 struct attribute *attr;
7460 struct partial_die_info *first_die;
7461 CORE_ADDR lowpc, highpc;
7462 dwarf2_psymtab *pst;
7463
7464 gdb_assert (per_cu->is_debug_types);
7465 sig_type = (struct signatured_type *) per_cu;
7466
7467 if (! type_unit_die->has_children)
7468 return;
7469
7470 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7471 tu_group = get_type_unit_group (cu, attr);
7472
7473 if (tu_group->tus == nullptr)
7474 tu_group->tus = new std::vector<signatured_type *>;
7475 tu_group->tus->push_back (sig_type);
7476
7477 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7478 pst = create_partial_symtab (per_cu, "");
7479 pst->anonymous = true;
7480
7481 first_die = load_partial_dies (reader, info_ptr, 1);
7482
7483 lowpc = (CORE_ADDR) -1;
7484 highpc = (CORE_ADDR) 0;
7485 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7486
7487 end_psymtab_common (objfile, pst);
7488 }
7489
7490 /* Struct used to sort TUs by their abbreviation table offset. */
7491
7492 struct tu_abbrev_offset
7493 {
7494 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7495 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7496 {}
7497
7498 signatured_type *sig_type;
7499 sect_offset abbrev_offset;
7500 };
7501
7502 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7503
7504 static bool
7505 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7506 const struct tu_abbrev_offset &b)
7507 {
7508 return a.abbrev_offset < b.abbrev_offset;
7509 }
7510
7511 /* Efficiently read all the type units.
7512 This does the bulk of the work for build_type_psymtabs.
7513
7514 The efficiency is because we sort TUs by the abbrev table they use and
7515 only read each abbrev table once. In one program there are 200K TUs
7516 sharing 8K abbrev tables.
7517
7518 The main purpose of this function is to support building the
7519 dwarf2_per_objfile->type_unit_groups table.
7520 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7521 can collapse the search space by grouping them by stmt_list.
7522 The savings can be significant, in the same program from above the 200K TUs
7523 share 8K stmt_list tables.
7524
7525 FUNC is expected to call get_type_unit_group, which will create the
7526 struct type_unit_group if necessary and add it to
7527 dwarf2_per_objfile->type_unit_groups. */
7528
7529 static void
7530 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7531 {
7532 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7533 abbrev_table_up abbrev_table;
7534 sect_offset abbrev_offset;
7535
7536 /* It's up to the caller to not call us multiple times. */
7537 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7538
7539 if (dwarf2_per_objfile->all_type_units.empty ())
7540 return;
7541
7542 /* TUs typically share abbrev tables, and there can be way more TUs than
7543 abbrev tables. Sort by abbrev table to reduce the number of times we
7544 read each abbrev table in.
7545 Alternatives are to punt or to maintain a cache of abbrev tables.
7546 This is simpler and efficient enough for now.
7547
7548 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7549 symtab to use). Typically TUs with the same abbrev offset have the same
7550 stmt_list value too so in practice this should work well.
7551
7552 The basic algorithm here is:
7553
7554 sort TUs by abbrev table
7555 for each TU with same abbrev table:
7556 read abbrev table if first user
7557 read TU top level DIE
7558 [IWBN if DWO skeletons had DW_AT_stmt_list]
7559 call FUNC */
7560
7561 if (dwarf_read_debug)
7562 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7563
7564 /* Sort in a separate table to maintain the order of all_type_units
7565 for .gdb_index: TU indices directly index all_type_units. */
7566 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7567 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7568
7569 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7570 sorted_by_abbrev.emplace_back
7571 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7572 sig_type->per_cu.section,
7573 sig_type->per_cu.sect_off));
7574
7575 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7576 sort_tu_by_abbrev_offset);
7577
7578 abbrev_offset = (sect_offset) ~(unsigned) 0;
7579
7580 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7581 {
7582 /* Switch to the next abbrev table if necessary. */
7583 if (abbrev_table == NULL
7584 || tu.abbrev_offset != abbrev_offset)
7585 {
7586 abbrev_offset = tu.abbrev_offset;
7587 abbrev_table =
7588 abbrev_table::read (dwarf2_per_objfile->objfile,
7589 &dwarf2_per_objfile->abbrev,
7590 abbrev_offset);
7591 ++tu_stats->nr_uniq_abbrev_tables;
7592 }
7593
7594 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7595 0, false);
7596 if (!reader.dummy_p)
7597 build_type_psymtabs_reader (&reader, reader.info_ptr,
7598 reader.comp_unit_die);
7599 }
7600 }
7601
7602 /* Print collected type unit statistics. */
7603
7604 static void
7605 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7606 {
7607 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7608
7609 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7610 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7611 dwarf2_per_objfile->all_type_units.size ());
7612 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7613 tu_stats->nr_uniq_abbrev_tables);
7614 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7615 tu_stats->nr_symtabs);
7616 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7617 tu_stats->nr_symtab_sharers);
7618 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7619 tu_stats->nr_stmt_less_type_units);
7620 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7621 tu_stats->nr_all_type_units_reallocs);
7622 }
7623
7624 /* Traversal function for build_type_psymtabs. */
7625
7626 static int
7627 build_type_psymtab_dependencies (void **slot, void *info)
7628 {
7629 struct dwarf2_per_objfile *dwarf2_per_objfile
7630 = (struct dwarf2_per_objfile *) info;
7631 struct objfile *objfile = dwarf2_per_objfile->objfile;
7632 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7633 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7634 dwarf2_psymtab *pst = per_cu->v.psymtab;
7635 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7636 int i;
7637
7638 gdb_assert (len > 0);
7639 gdb_assert (per_cu->type_unit_group_p ());
7640
7641 pst->number_of_dependencies = len;
7642 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7643 for (i = 0; i < len; ++i)
7644 {
7645 struct signatured_type *iter = tu_group->tus->at (i);
7646 gdb_assert (iter->per_cu.is_debug_types);
7647 pst->dependencies[i] = iter->per_cu.v.psymtab;
7648 iter->type_unit_group = tu_group;
7649 }
7650
7651 delete tu_group->tus;
7652 tu_group->tus = nullptr;
7653
7654 return 1;
7655 }
7656
7657 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7658 Build partial symbol tables for the .debug_types comp-units. */
7659
7660 static void
7661 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7662 {
7663 if (! create_all_type_units (dwarf2_per_objfile))
7664 return;
7665
7666 build_type_psymtabs_1 (dwarf2_per_objfile);
7667 }
7668
7669 /* Traversal function for process_skeletonless_type_unit.
7670 Read a TU in a DWO file and build partial symbols for it. */
7671
7672 static int
7673 process_skeletonless_type_unit (void **slot, void *info)
7674 {
7675 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7676 struct dwarf2_per_objfile *dwarf2_per_objfile
7677 = (struct dwarf2_per_objfile *) info;
7678 struct signatured_type find_entry, *entry;
7679
7680 /* If this TU doesn't exist in the global table, add it and read it in. */
7681
7682 if (dwarf2_per_objfile->signatured_types == NULL)
7683 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7684
7685 find_entry.signature = dwo_unit->signature;
7686 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7687 &find_entry, INSERT);
7688 /* If we've already seen this type there's nothing to do. What's happening
7689 is we're doing our own version of comdat-folding here. */
7690 if (*slot != NULL)
7691 return 1;
7692
7693 /* This does the job that create_all_type_units would have done for
7694 this TU. */
7695 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7696 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7697 *slot = entry;
7698
7699 /* This does the job that build_type_psymtabs_1 would have done. */
7700 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7701 if (!reader.dummy_p)
7702 build_type_psymtabs_reader (&reader, reader.info_ptr,
7703 reader.comp_unit_die);
7704
7705 return 1;
7706 }
7707
7708 /* Traversal function for process_skeletonless_type_units. */
7709
7710 static int
7711 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7712 {
7713 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7714
7715 if (dwo_file->tus != NULL)
7716 htab_traverse_noresize (dwo_file->tus.get (),
7717 process_skeletonless_type_unit, info);
7718
7719 return 1;
7720 }
7721
7722 /* Scan all TUs of DWO files, verifying we've processed them.
7723 This is needed in case a TU was emitted without its skeleton.
7724 Note: This can't be done until we know what all the DWO files are. */
7725
7726 static void
7727 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7728 {
7729 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7730 if (get_dwp_file (dwarf2_per_objfile) == NULL
7731 && dwarf2_per_objfile->dwo_files != NULL)
7732 {
7733 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7734 process_dwo_file_for_skeletonless_type_units,
7735 dwarf2_per_objfile);
7736 }
7737 }
7738
7739 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7740
7741 static void
7742 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7743 {
7744 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7745 {
7746 dwarf2_psymtab *pst = per_cu->v.psymtab;
7747
7748 if (pst == NULL)
7749 continue;
7750
7751 for (int j = 0; j < pst->number_of_dependencies; ++j)
7752 {
7753 /* Set the 'user' field only if it is not already set. */
7754 if (pst->dependencies[j]->user == NULL)
7755 pst->dependencies[j]->user = pst;
7756 }
7757 }
7758 }
7759
7760 /* Build the partial symbol table by doing a quick pass through the
7761 .debug_info and .debug_abbrev sections. */
7762
7763 static void
7764 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7765 {
7766 struct objfile *objfile = dwarf2_per_objfile->objfile;
7767
7768 if (dwarf_read_debug)
7769 {
7770 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7771 objfile_name (objfile));
7772 }
7773
7774 scoped_restore restore_reading_psyms
7775 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7776 true);
7777
7778 dwarf2_per_objfile->info.read (objfile);
7779
7780 /* Any cached compilation units will be linked by the per-objfile
7781 read_in_chain. Make sure to free them when we're done. */
7782 free_cached_comp_units freer (dwarf2_per_objfile);
7783
7784 build_type_psymtabs (dwarf2_per_objfile);
7785
7786 create_all_comp_units (dwarf2_per_objfile);
7787
7788 /* Create a temporary address map on a temporary obstack. We later
7789 copy this to the final obstack. */
7790 auto_obstack temp_obstack;
7791
7792 scoped_restore save_psymtabs_addrmap
7793 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7794 addrmap_create_mutable (&temp_obstack));
7795
7796 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7797 process_psymtab_comp_unit (per_cu, false, language_minimal);
7798
7799 /* This has to wait until we read the CUs, we need the list of DWOs. */
7800 process_skeletonless_type_units (dwarf2_per_objfile);
7801
7802 /* Now that all TUs have been processed we can fill in the dependencies. */
7803 if (dwarf2_per_objfile->type_unit_groups != NULL)
7804 {
7805 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7806 build_type_psymtab_dependencies, dwarf2_per_objfile);
7807 }
7808
7809 if (dwarf_read_debug)
7810 print_tu_stats (dwarf2_per_objfile);
7811
7812 set_partial_user (dwarf2_per_objfile);
7813
7814 objfile->partial_symtabs->psymtabs_addrmap
7815 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7816 objfile->partial_symtabs->obstack ());
7817 /* At this point we want to keep the address map. */
7818 save_psymtabs_addrmap.release ();
7819
7820 if (dwarf_read_debug)
7821 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7822 objfile_name (objfile));
7823 }
7824
7825 /* Load the partial DIEs for a secondary CU into memory.
7826 This is also used when rereading a primary CU with load_all_dies. */
7827
7828 static void
7829 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7830 {
7831 cutu_reader reader (this_cu, NULL, 1, false);
7832
7833 if (!reader.dummy_p)
7834 {
7835 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7836 language_minimal);
7837
7838 /* Check if comp unit has_children.
7839 If so, read the rest of the partial symbols from this comp unit.
7840 If not, there's no more debug_info for this comp unit. */
7841 if (reader.comp_unit_die->has_children)
7842 load_partial_dies (&reader, reader.info_ptr, 0);
7843
7844 reader.keep ();
7845 }
7846 }
7847
7848 static void
7849 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7850 struct dwarf2_section_info *section,
7851 struct dwarf2_section_info *abbrev_section,
7852 unsigned int is_dwz)
7853 {
7854 const gdb_byte *info_ptr;
7855 struct objfile *objfile = dwarf2_per_objfile->objfile;
7856
7857 if (dwarf_read_debug)
7858 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7859 section->get_name (),
7860 section->get_file_name ());
7861
7862 section->read (objfile);
7863
7864 info_ptr = section->buffer;
7865
7866 while (info_ptr < section->buffer + section->size)
7867 {
7868 struct dwarf2_per_cu_data *this_cu;
7869
7870 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7871
7872 comp_unit_head cu_header;
7873 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7874 abbrev_section, info_ptr,
7875 rcuh_kind::COMPILE);
7876
7877 /* Save the compilation unit for later lookup. */
7878 if (cu_header.unit_type != DW_UT_type)
7879 {
7880 this_cu = XOBNEW (&objfile->objfile_obstack,
7881 struct dwarf2_per_cu_data);
7882 memset (this_cu, 0, sizeof (*this_cu));
7883 }
7884 else
7885 {
7886 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7887 struct signatured_type);
7888 memset (sig_type, 0, sizeof (*sig_type));
7889 sig_type->signature = cu_header.signature;
7890 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7891 this_cu = &sig_type->per_cu;
7892 }
7893 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7894 this_cu->sect_off = sect_off;
7895 this_cu->length = cu_header.length + cu_header.initial_length_size;
7896 this_cu->is_dwz = is_dwz;
7897 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7898 this_cu->section = section;
7899
7900 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7901
7902 info_ptr = info_ptr + this_cu->length;
7903 }
7904 }
7905
7906 /* Create a list of all compilation units in OBJFILE.
7907 This is only done for -readnow and building partial symtabs. */
7908
7909 static void
7910 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7911 {
7912 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7913 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7914 &dwarf2_per_objfile->abbrev, 0);
7915
7916 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7917 if (dwz != NULL)
7918 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7919 1);
7920 }
7921
7922 /* Process all loaded DIEs for compilation unit CU, starting at
7923 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7924 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7925 DW_AT_ranges). See the comments of add_partial_subprogram on how
7926 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7927
7928 static void
7929 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7930 CORE_ADDR *highpc, int set_addrmap,
7931 struct dwarf2_cu *cu)
7932 {
7933 struct partial_die_info *pdi;
7934
7935 /* Now, march along the PDI's, descending into ones which have
7936 interesting children but skipping the children of the other ones,
7937 until we reach the end of the compilation unit. */
7938
7939 pdi = first_die;
7940
7941 while (pdi != NULL)
7942 {
7943 pdi->fixup (cu);
7944
7945 /* Anonymous namespaces or modules have no name but have interesting
7946 children, so we need to look at them. Ditto for anonymous
7947 enums. */
7948
7949 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7950 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7951 || pdi->tag == DW_TAG_imported_unit
7952 || pdi->tag == DW_TAG_inlined_subroutine)
7953 {
7954 switch (pdi->tag)
7955 {
7956 case DW_TAG_subprogram:
7957 case DW_TAG_inlined_subroutine:
7958 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7959 break;
7960 case DW_TAG_constant:
7961 case DW_TAG_variable:
7962 case DW_TAG_typedef:
7963 case DW_TAG_union_type:
7964 if (!pdi->is_declaration)
7965 {
7966 add_partial_symbol (pdi, cu);
7967 }
7968 break;
7969 case DW_TAG_class_type:
7970 case DW_TAG_interface_type:
7971 case DW_TAG_structure_type:
7972 if (!pdi->is_declaration)
7973 {
7974 add_partial_symbol (pdi, cu);
7975 }
7976 if ((cu->language == language_rust
7977 || cu->language == language_cplus) && pdi->has_children)
7978 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7979 set_addrmap, cu);
7980 break;
7981 case DW_TAG_enumeration_type:
7982 if (!pdi->is_declaration)
7983 add_partial_enumeration (pdi, cu);
7984 break;
7985 case DW_TAG_base_type:
7986 case DW_TAG_subrange_type:
7987 /* File scope base type definitions are added to the partial
7988 symbol table. */
7989 add_partial_symbol (pdi, cu);
7990 break;
7991 case DW_TAG_namespace:
7992 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7993 break;
7994 case DW_TAG_module:
7995 if (!pdi->is_declaration)
7996 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7997 break;
7998 case DW_TAG_imported_unit:
7999 {
8000 struct dwarf2_per_cu_data *per_cu;
8001
8002 /* For now we don't handle imported units in type units. */
8003 if (cu->per_cu->is_debug_types)
8004 {
8005 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8006 " supported in type units [in module %s]"),
8007 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8008 }
8009
8010 per_cu = dwarf2_find_containing_comp_unit
8011 (pdi->d.sect_off, pdi->is_dwz,
8012 cu->per_cu->dwarf2_per_objfile);
8013
8014 /* Go read the partial unit, if needed. */
8015 if (per_cu->v.psymtab == NULL)
8016 process_psymtab_comp_unit (per_cu, true, cu->language);
8017
8018 cu->per_cu->imported_symtabs_push (per_cu);
8019 }
8020 break;
8021 case DW_TAG_imported_declaration:
8022 add_partial_symbol (pdi, cu);
8023 break;
8024 default:
8025 break;
8026 }
8027 }
8028
8029 /* If the die has a sibling, skip to the sibling. */
8030
8031 pdi = pdi->die_sibling;
8032 }
8033 }
8034
8035 /* Functions used to compute the fully scoped name of a partial DIE.
8036
8037 Normally, this is simple. For C++, the parent DIE's fully scoped
8038 name is concatenated with "::" and the partial DIE's name.
8039 Enumerators are an exception; they use the scope of their parent
8040 enumeration type, i.e. the name of the enumeration type is not
8041 prepended to the enumerator.
8042
8043 There are two complexities. One is DW_AT_specification; in this
8044 case "parent" means the parent of the target of the specification,
8045 instead of the direct parent of the DIE. The other is compilers
8046 which do not emit DW_TAG_namespace; in this case we try to guess
8047 the fully qualified name of structure types from their members'
8048 linkage names. This must be done using the DIE's children rather
8049 than the children of any DW_AT_specification target. We only need
8050 to do this for structures at the top level, i.e. if the target of
8051 any DW_AT_specification (if any; otherwise the DIE itself) does not
8052 have a parent. */
8053
8054 /* Compute the scope prefix associated with PDI's parent, in
8055 compilation unit CU. The result will be allocated on CU's
8056 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8057 field. NULL is returned if no prefix is necessary. */
8058 static const char *
8059 partial_die_parent_scope (struct partial_die_info *pdi,
8060 struct dwarf2_cu *cu)
8061 {
8062 const char *grandparent_scope;
8063 struct partial_die_info *parent, *real_pdi;
8064
8065 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8066 then this means the parent of the specification DIE. */
8067
8068 real_pdi = pdi;
8069 while (real_pdi->has_specification)
8070 {
8071 auto res = find_partial_die (real_pdi->spec_offset,
8072 real_pdi->spec_is_dwz, cu);
8073 real_pdi = res.pdi;
8074 cu = res.cu;
8075 }
8076
8077 parent = real_pdi->die_parent;
8078 if (parent == NULL)
8079 return NULL;
8080
8081 if (parent->scope_set)
8082 return parent->scope;
8083
8084 parent->fixup (cu);
8085
8086 grandparent_scope = partial_die_parent_scope (parent, cu);
8087
8088 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8089 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8090 Work around this problem here. */
8091 if (cu->language == language_cplus
8092 && parent->tag == DW_TAG_namespace
8093 && strcmp (parent->name, "::") == 0
8094 && grandparent_scope == NULL)
8095 {
8096 parent->scope = NULL;
8097 parent->scope_set = 1;
8098 return NULL;
8099 }
8100
8101 /* Nested subroutines in Fortran get a prefix. */
8102 if (pdi->tag == DW_TAG_enumerator)
8103 /* Enumerators should not get the name of the enumeration as a prefix. */
8104 parent->scope = grandparent_scope;
8105 else if (parent->tag == DW_TAG_namespace
8106 || parent->tag == DW_TAG_module
8107 || parent->tag == DW_TAG_structure_type
8108 || parent->tag == DW_TAG_class_type
8109 || parent->tag == DW_TAG_interface_type
8110 || parent->tag == DW_TAG_union_type
8111 || parent->tag == DW_TAG_enumeration_type
8112 || (cu->language == language_fortran
8113 && parent->tag == DW_TAG_subprogram
8114 && pdi->tag == DW_TAG_subprogram))
8115 {
8116 if (grandparent_scope == NULL)
8117 parent->scope = parent->name;
8118 else
8119 parent->scope = typename_concat (&cu->comp_unit_obstack,
8120 grandparent_scope,
8121 parent->name, 0, cu);
8122 }
8123 else
8124 {
8125 /* FIXME drow/2004-04-01: What should we be doing with
8126 function-local names? For partial symbols, we should probably be
8127 ignoring them. */
8128 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8129 dwarf_tag_name (parent->tag),
8130 sect_offset_str (pdi->sect_off));
8131 parent->scope = grandparent_scope;
8132 }
8133
8134 parent->scope_set = 1;
8135 return parent->scope;
8136 }
8137
8138 /* Return the fully scoped name associated with PDI, from compilation unit
8139 CU. The result will be allocated with malloc. */
8140
8141 static gdb::unique_xmalloc_ptr<char>
8142 partial_die_full_name (struct partial_die_info *pdi,
8143 struct dwarf2_cu *cu)
8144 {
8145 const char *parent_scope;
8146
8147 /* If this is a template instantiation, we can not work out the
8148 template arguments from partial DIEs. So, unfortunately, we have
8149 to go through the full DIEs. At least any work we do building
8150 types here will be reused if full symbols are loaded later. */
8151 if (pdi->has_template_arguments)
8152 {
8153 pdi->fixup (cu);
8154
8155 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8156 {
8157 struct die_info *die;
8158 struct attribute attr;
8159 struct dwarf2_cu *ref_cu = cu;
8160
8161 /* DW_FORM_ref_addr is using section offset. */
8162 attr.name = (enum dwarf_attribute) 0;
8163 attr.form = DW_FORM_ref_addr;
8164 attr.u.unsnd = to_underlying (pdi->sect_off);
8165 die = follow_die_ref (NULL, &attr, &ref_cu);
8166
8167 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8168 }
8169 }
8170
8171 parent_scope = partial_die_parent_scope (pdi, cu);
8172 if (parent_scope == NULL)
8173 return NULL;
8174 else
8175 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8176 pdi->name, 0, cu));
8177 }
8178
8179 static void
8180 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8181 {
8182 struct dwarf2_per_objfile *dwarf2_per_objfile
8183 = cu->per_cu->dwarf2_per_objfile;
8184 struct objfile *objfile = dwarf2_per_objfile->objfile;
8185 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8186 CORE_ADDR addr = 0;
8187 const char *actual_name = NULL;
8188 CORE_ADDR baseaddr;
8189
8190 baseaddr = objfile->text_section_offset ();
8191
8192 gdb::unique_xmalloc_ptr<char> built_actual_name
8193 = partial_die_full_name (pdi, cu);
8194 if (built_actual_name != NULL)
8195 actual_name = built_actual_name.get ();
8196
8197 if (actual_name == NULL)
8198 actual_name = pdi->name;
8199
8200 switch (pdi->tag)
8201 {
8202 case DW_TAG_inlined_subroutine:
8203 case DW_TAG_subprogram:
8204 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8205 - baseaddr);
8206 if (pdi->is_external
8207 || cu->language == language_ada
8208 || (cu->language == language_fortran
8209 && pdi->die_parent != NULL
8210 && pdi->die_parent->tag == DW_TAG_subprogram))
8211 {
8212 /* Normally, only "external" DIEs are part of the global scope.
8213 But in Ada and Fortran, we want to be able to access nested
8214 procedures globally. So all Ada and Fortran subprograms are
8215 stored in the global scope. */
8216 add_psymbol_to_list (actual_name,
8217 built_actual_name != NULL,
8218 VAR_DOMAIN, LOC_BLOCK,
8219 SECT_OFF_TEXT (objfile),
8220 psymbol_placement::GLOBAL,
8221 addr,
8222 cu->language, objfile);
8223 }
8224 else
8225 {
8226 add_psymbol_to_list (actual_name,
8227 built_actual_name != NULL,
8228 VAR_DOMAIN, LOC_BLOCK,
8229 SECT_OFF_TEXT (objfile),
8230 psymbol_placement::STATIC,
8231 addr, cu->language, objfile);
8232 }
8233
8234 if (pdi->main_subprogram && actual_name != NULL)
8235 set_objfile_main_name (objfile, actual_name, cu->language);
8236 break;
8237 case DW_TAG_constant:
8238 add_psymbol_to_list (actual_name,
8239 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8240 -1, (pdi->is_external
8241 ? psymbol_placement::GLOBAL
8242 : psymbol_placement::STATIC),
8243 0, cu->language, objfile);
8244 break;
8245 case DW_TAG_variable:
8246 if (pdi->d.locdesc)
8247 addr = decode_locdesc (pdi->d.locdesc, cu);
8248
8249 if (pdi->d.locdesc
8250 && addr == 0
8251 && !dwarf2_per_objfile->has_section_at_zero)
8252 {
8253 /* A global or static variable may also have been stripped
8254 out by the linker if unused, in which case its address
8255 will be nullified; do not add such variables into partial
8256 symbol table then. */
8257 }
8258 else if (pdi->is_external)
8259 {
8260 /* Global Variable.
8261 Don't enter into the minimal symbol tables as there is
8262 a minimal symbol table entry from the ELF symbols already.
8263 Enter into partial symbol table if it has a location
8264 descriptor or a type.
8265 If the location descriptor is missing, new_symbol will create
8266 a LOC_UNRESOLVED symbol, the address of the variable will then
8267 be determined from the minimal symbol table whenever the variable
8268 is referenced.
8269 The address for the partial symbol table entry is not
8270 used by GDB, but it comes in handy for debugging partial symbol
8271 table building. */
8272
8273 if (pdi->d.locdesc || pdi->has_type)
8274 add_psymbol_to_list (actual_name,
8275 built_actual_name != NULL,
8276 VAR_DOMAIN, LOC_STATIC,
8277 SECT_OFF_TEXT (objfile),
8278 psymbol_placement::GLOBAL,
8279 addr, cu->language, objfile);
8280 }
8281 else
8282 {
8283 int has_loc = pdi->d.locdesc != NULL;
8284
8285 /* Static Variable. Skip symbols whose value we cannot know (those
8286 without location descriptors or constant values). */
8287 if (!has_loc && !pdi->has_const_value)
8288 return;
8289
8290 add_psymbol_to_list (actual_name,
8291 built_actual_name != NULL,
8292 VAR_DOMAIN, LOC_STATIC,
8293 SECT_OFF_TEXT (objfile),
8294 psymbol_placement::STATIC,
8295 has_loc ? addr : 0,
8296 cu->language, objfile);
8297 }
8298 break;
8299 case DW_TAG_typedef:
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 add_psymbol_to_list (actual_name,
8303 built_actual_name != NULL,
8304 VAR_DOMAIN, LOC_TYPEDEF, -1,
8305 psymbol_placement::STATIC,
8306 0, cu->language, objfile);
8307 break;
8308 case DW_TAG_imported_declaration:
8309 case DW_TAG_namespace:
8310 add_psymbol_to_list (actual_name,
8311 built_actual_name != NULL,
8312 VAR_DOMAIN, LOC_TYPEDEF, -1,
8313 psymbol_placement::GLOBAL,
8314 0, cu->language, objfile);
8315 break;
8316 case DW_TAG_module:
8317 /* With Fortran 77 there might be a "BLOCK DATA" module
8318 available without any name. If so, we skip the module as it
8319 doesn't bring any value. */
8320 if (actual_name != nullptr)
8321 add_psymbol_to_list (actual_name,
8322 built_actual_name != NULL,
8323 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8324 psymbol_placement::GLOBAL,
8325 0, cu->language, objfile);
8326 break;
8327 case DW_TAG_class_type:
8328 case DW_TAG_interface_type:
8329 case DW_TAG_structure_type:
8330 case DW_TAG_union_type:
8331 case DW_TAG_enumeration_type:
8332 /* Skip external references. The DWARF standard says in the section
8333 about "Structure, Union, and Class Type Entries": "An incomplete
8334 structure, union or class type is represented by a structure,
8335 union or class entry that does not have a byte size attribute
8336 and that has a DW_AT_declaration attribute." */
8337 if (!pdi->has_byte_size && pdi->is_declaration)
8338 return;
8339
8340 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8341 static vs. global. */
8342 add_psymbol_to_list (actual_name,
8343 built_actual_name != NULL,
8344 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8345 cu->language == language_cplus
8346 ? psymbol_placement::GLOBAL
8347 : psymbol_placement::STATIC,
8348 0, cu->language, objfile);
8349
8350 break;
8351 case DW_TAG_enumerator:
8352 add_psymbol_to_list (actual_name,
8353 built_actual_name != NULL,
8354 VAR_DOMAIN, LOC_CONST, -1,
8355 cu->language == language_cplus
8356 ? psymbol_placement::GLOBAL
8357 : psymbol_placement::STATIC,
8358 0, cu->language, objfile);
8359 break;
8360 default:
8361 break;
8362 }
8363 }
8364
8365 /* Read a partial die corresponding to a namespace; also, add a symbol
8366 corresponding to that namespace to the symbol table. NAMESPACE is
8367 the name of the enclosing namespace. */
8368
8369 static void
8370 add_partial_namespace (struct partial_die_info *pdi,
8371 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8372 int set_addrmap, struct dwarf2_cu *cu)
8373 {
8374 /* Add a symbol for the namespace. */
8375
8376 add_partial_symbol (pdi, cu);
8377
8378 /* Now scan partial symbols in that namespace. */
8379
8380 if (pdi->has_children)
8381 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8382 }
8383
8384 /* Read a partial die corresponding to a Fortran module. */
8385
8386 static void
8387 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8388 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8389 {
8390 /* Add a symbol for the namespace. */
8391
8392 add_partial_symbol (pdi, cu);
8393
8394 /* Now scan partial symbols in that module. */
8395
8396 if (pdi->has_children)
8397 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8398 }
8399
8400 /* Read a partial die corresponding to a subprogram or an inlined
8401 subprogram and create a partial symbol for that subprogram.
8402 When the CU language allows it, this routine also defines a partial
8403 symbol for each nested subprogram that this subprogram contains.
8404 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8405 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8406
8407 PDI may also be a lexical block, in which case we simply search
8408 recursively for subprograms defined inside that lexical block.
8409 Again, this is only performed when the CU language allows this
8410 type of definitions. */
8411
8412 static void
8413 add_partial_subprogram (struct partial_die_info *pdi,
8414 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8415 int set_addrmap, struct dwarf2_cu *cu)
8416 {
8417 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8418 {
8419 if (pdi->has_pc_info)
8420 {
8421 if (pdi->lowpc < *lowpc)
8422 *lowpc = pdi->lowpc;
8423 if (pdi->highpc > *highpc)
8424 *highpc = pdi->highpc;
8425 if (set_addrmap)
8426 {
8427 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8428 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8429 CORE_ADDR baseaddr;
8430 CORE_ADDR this_highpc;
8431 CORE_ADDR this_lowpc;
8432
8433 baseaddr = objfile->text_section_offset ();
8434 this_lowpc
8435 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8436 pdi->lowpc + baseaddr)
8437 - baseaddr);
8438 this_highpc
8439 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8440 pdi->highpc + baseaddr)
8441 - baseaddr);
8442 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8443 this_lowpc, this_highpc - 1,
8444 cu->per_cu->v.psymtab);
8445 }
8446 }
8447
8448 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8449 {
8450 if (!pdi->is_declaration)
8451 /* Ignore subprogram DIEs that do not have a name, they are
8452 illegal. Do not emit a complaint at this point, we will
8453 do so when we convert this psymtab into a symtab. */
8454 if (pdi->name)
8455 add_partial_symbol (pdi, cu);
8456 }
8457 }
8458
8459 if (! pdi->has_children)
8460 return;
8461
8462 if (cu->language == language_ada || cu->language == language_fortran)
8463 {
8464 pdi = pdi->die_child;
8465 while (pdi != NULL)
8466 {
8467 pdi->fixup (cu);
8468 if (pdi->tag == DW_TAG_subprogram
8469 || pdi->tag == DW_TAG_inlined_subroutine
8470 || pdi->tag == DW_TAG_lexical_block)
8471 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8472 pdi = pdi->die_sibling;
8473 }
8474 }
8475 }
8476
8477 /* Read a partial die corresponding to an enumeration type. */
8478
8479 static void
8480 add_partial_enumeration (struct partial_die_info *enum_pdi,
8481 struct dwarf2_cu *cu)
8482 {
8483 struct partial_die_info *pdi;
8484
8485 if (enum_pdi->name != NULL)
8486 add_partial_symbol (enum_pdi, cu);
8487
8488 pdi = enum_pdi->die_child;
8489 while (pdi)
8490 {
8491 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8492 complaint (_("malformed enumerator DIE ignored"));
8493 else
8494 add_partial_symbol (pdi, cu);
8495 pdi = pdi->die_sibling;
8496 }
8497 }
8498
8499 /* Return the initial uleb128 in the die at INFO_PTR. */
8500
8501 static unsigned int
8502 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8503 {
8504 unsigned int bytes_read;
8505
8506 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8507 }
8508
8509 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8510 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8511
8512 Return the corresponding abbrev, or NULL if the number is zero (indicating
8513 an empty DIE). In either case *BYTES_READ will be set to the length of
8514 the initial number. */
8515
8516 static struct abbrev_info *
8517 peek_die_abbrev (const die_reader_specs &reader,
8518 const gdb_byte *info_ptr, unsigned int *bytes_read)
8519 {
8520 dwarf2_cu *cu = reader.cu;
8521 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8522 unsigned int abbrev_number
8523 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8524
8525 if (abbrev_number == 0)
8526 return NULL;
8527
8528 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8529 if (!abbrev)
8530 {
8531 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8532 " at offset %s [in module %s]"),
8533 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8534 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8535 }
8536
8537 return abbrev;
8538 }
8539
8540 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8541 Returns a pointer to the end of a series of DIEs, terminated by an empty
8542 DIE. Any children of the skipped DIEs will also be skipped. */
8543
8544 static const gdb_byte *
8545 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8546 {
8547 while (1)
8548 {
8549 unsigned int bytes_read;
8550 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8551
8552 if (abbrev == NULL)
8553 return info_ptr + bytes_read;
8554 else
8555 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8556 }
8557 }
8558
8559 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8560 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8561 abbrev corresponding to that skipped uleb128 should be passed in
8562 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8563 children. */
8564
8565 static const gdb_byte *
8566 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8567 struct abbrev_info *abbrev)
8568 {
8569 unsigned int bytes_read;
8570 struct attribute attr;
8571 bfd *abfd = reader->abfd;
8572 struct dwarf2_cu *cu = reader->cu;
8573 const gdb_byte *buffer = reader->buffer;
8574 const gdb_byte *buffer_end = reader->buffer_end;
8575 unsigned int form, i;
8576
8577 for (i = 0; i < abbrev->num_attrs; i++)
8578 {
8579 /* The only abbrev we care about is DW_AT_sibling. */
8580 if (abbrev->attrs[i].name == DW_AT_sibling)
8581 {
8582 bool ignored;
8583 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8584 &ignored);
8585 if (attr.form == DW_FORM_ref_addr)
8586 complaint (_("ignoring absolute DW_AT_sibling"));
8587 else
8588 {
8589 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8590 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8591
8592 if (sibling_ptr < info_ptr)
8593 complaint (_("DW_AT_sibling points backwards"));
8594 else if (sibling_ptr > reader->buffer_end)
8595 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8596 else
8597 return sibling_ptr;
8598 }
8599 }
8600
8601 /* If it isn't DW_AT_sibling, skip this attribute. */
8602 form = abbrev->attrs[i].form;
8603 skip_attribute:
8604 switch (form)
8605 {
8606 case DW_FORM_ref_addr:
8607 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8608 and later it is offset sized. */
8609 if (cu->header.version == 2)
8610 info_ptr += cu->header.addr_size;
8611 else
8612 info_ptr += cu->header.offset_size;
8613 break;
8614 case DW_FORM_GNU_ref_alt:
8615 info_ptr += cu->header.offset_size;
8616 break;
8617 case DW_FORM_addr:
8618 info_ptr += cu->header.addr_size;
8619 break;
8620 case DW_FORM_data1:
8621 case DW_FORM_ref1:
8622 case DW_FORM_flag:
8623 case DW_FORM_strx1:
8624 info_ptr += 1;
8625 break;
8626 case DW_FORM_flag_present:
8627 case DW_FORM_implicit_const:
8628 break;
8629 case DW_FORM_data2:
8630 case DW_FORM_ref2:
8631 case DW_FORM_strx2:
8632 info_ptr += 2;
8633 break;
8634 case DW_FORM_strx3:
8635 info_ptr += 3;
8636 break;
8637 case DW_FORM_data4:
8638 case DW_FORM_ref4:
8639 case DW_FORM_strx4:
8640 info_ptr += 4;
8641 break;
8642 case DW_FORM_data8:
8643 case DW_FORM_ref8:
8644 case DW_FORM_ref_sig8:
8645 info_ptr += 8;
8646 break;
8647 case DW_FORM_data16:
8648 info_ptr += 16;
8649 break;
8650 case DW_FORM_string:
8651 read_direct_string (abfd, info_ptr, &bytes_read);
8652 info_ptr += bytes_read;
8653 break;
8654 case DW_FORM_sec_offset:
8655 case DW_FORM_strp:
8656 case DW_FORM_GNU_strp_alt:
8657 info_ptr += cu->header.offset_size;
8658 break;
8659 case DW_FORM_exprloc:
8660 case DW_FORM_block:
8661 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8662 info_ptr += bytes_read;
8663 break;
8664 case DW_FORM_block1:
8665 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8666 break;
8667 case DW_FORM_block2:
8668 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8669 break;
8670 case DW_FORM_block4:
8671 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8672 break;
8673 case DW_FORM_addrx:
8674 case DW_FORM_strx:
8675 case DW_FORM_sdata:
8676 case DW_FORM_udata:
8677 case DW_FORM_ref_udata:
8678 case DW_FORM_GNU_addr_index:
8679 case DW_FORM_GNU_str_index:
8680 case DW_FORM_rnglistx:
8681 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8682 break;
8683 case DW_FORM_indirect:
8684 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8685 info_ptr += bytes_read;
8686 /* We need to continue parsing from here, so just go back to
8687 the top. */
8688 goto skip_attribute;
8689
8690 default:
8691 error (_("Dwarf Error: Cannot handle %s "
8692 "in DWARF reader [in module %s]"),
8693 dwarf_form_name (form),
8694 bfd_get_filename (abfd));
8695 }
8696 }
8697
8698 if (abbrev->has_children)
8699 return skip_children (reader, info_ptr);
8700 else
8701 return info_ptr;
8702 }
8703
8704 /* Locate ORIG_PDI's sibling.
8705 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8706
8707 static const gdb_byte *
8708 locate_pdi_sibling (const struct die_reader_specs *reader,
8709 struct partial_die_info *orig_pdi,
8710 const gdb_byte *info_ptr)
8711 {
8712 /* Do we know the sibling already? */
8713
8714 if (orig_pdi->sibling)
8715 return orig_pdi->sibling;
8716
8717 /* Are there any children to deal with? */
8718
8719 if (!orig_pdi->has_children)
8720 return info_ptr;
8721
8722 /* Skip the children the long way. */
8723
8724 return skip_children (reader, info_ptr);
8725 }
8726
8727 /* Expand this partial symbol table into a full symbol table. SELF is
8728 not NULL. */
8729
8730 void
8731 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8732 {
8733 struct dwarf2_per_objfile *dwarf2_per_objfile
8734 = get_dwarf2_per_objfile (objfile);
8735
8736 gdb_assert (!readin);
8737 /* If this psymtab is constructed from a debug-only objfile, the
8738 has_section_at_zero flag will not necessarily be correct. We
8739 can get the correct value for this flag by looking at the data
8740 associated with the (presumably stripped) associated objfile. */
8741 if (objfile->separate_debug_objfile_backlink)
8742 {
8743 struct dwarf2_per_objfile *dpo_backlink
8744 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8745
8746 dwarf2_per_objfile->has_section_at_zero
8747 = dpo_backlink->has_section_at_zero;
8748 }
8749
8750 expand_psymtab (objfile);
8751
8752 process_cu_includes (dwarf2_per_objfile);
8753 }
8754 \f
8755 /* Reading in full CUs. */
8756
8757 /* Add PER_CU to the queue. */
8758
8759 static void
8760 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8761 enum language pretend_language)
8762 {
8763 per_cu->queued = 1;
8764 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8765 }
8766
8767 /* If PER_CU is not yet queued, add it to the queue.
8768 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8769 dependency.
8770 The result is non-zero if PER_CU was queued, otherwise the result is zero
8771 meaning either PER_CU is already queued or it is already loaded.
8772
8773 N.B. There is an invariant here that if a CU is queued then it is loaded.
8774 The caller is required to load PER_CU if we return non-zero. */
8775
8776 static int
8777 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8778 struct dwarf2_per_cu_data *per_cu,
8779 enum language pretend_language)
8780 {
8781 /* We may arrive here during partial symbol reading, if we need full
8782 DIEs to process an unusual case (e.g. template arguments). Do
8783 not queue PER_CU, just tell our caller to load its DIEs. */
8784 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8785 {
8786 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8787 return 1;
8788 return 0;
8789 }
8790
8791 /* Mark the dependence relation so that we don't flush PER_CU
8792 too early. */
8793 if (dependent_cu != NULL)
8794 dwarf2_add_dependence (dependent_cu, per_cu);
8795
8796 /* If it's already on the queue, we have nothing to do. */
8797 if (per_cu->queued)
8798 return 0;
8799
8800 /* If the compilation unit is already loaded, just mark it as
8801 used. */
8802 if (per_cu->cu != NULL)
8803 {
8804 per_cu->cu->last_used = 0;
8805 return 0;
8806 }
8807
8808 /* Add it to the queue. */
8809 queue_comp_unit (per_cu, pretend_language);
8810
8811 return 1;
8812 }
8813
8814 /* Process the queue. */
8815
8816 static void
8817 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8818 {
8819 if (dwarf_read_debug)
8820 {
8821 fprintf_unfiltered (gdb_stdlog,
8822 "Expanding one or more symtabs of objfile %s ...\n",
8823 objfile_name (dwarf2_per_objfile->objfile));
8824 }
8825
8826 /* The queue starts out with one item, but following a DIE reference
8827 may load a new CU, adding it to the end of the queue. */
8828 while (!dwarf2_per_objfile->queue.empty ())
8829 {
8830 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8831
8832 if ((dwarf2_per_objfile->using_index
8833 ? !item.per_cu->v.quick->compunit_symtab
8834 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8835 /* Skip dummy CUs. */
8836 && item.per_cu->cu != NULL)
8837 {
8838 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8839 unsigned int debug_print_threshold;
8840 char buf[100];
8841
8842 if (per_cu->is_debug_types)
8843 {
8844 struct signatured_type *sig_type =
8845 (struct signatured_type *) per_cu;
8846
8847 sprintf (buf, "TU %s at offset %s",
8848 hex_string (sig_type->signature),
8849 sect_offset_str (per_cu->sect_off));
8850 /* There can be 100s of TUs.
8851 Only print them in verbose mode. */
8852 debug_print_threshold = 2;
8853 }
8854 else
8855 {
8856 sprintf (buf, "CU at offset %s",
8857 sect_offset_str (per_cu->sect_off));
8858 debug_print_threshold = 1;
8859 }
8860
8861 if (dwarf_read_debug >= debug_print_threshold)
8862 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8863
8864 if (per_cu->is_debug_types)
8865 process_full_type_unit (per_cu, item.pretend_language);
8866 else
8867 process_full_comp_unit (per_cu, item.pretend_language);
8868
8869 if (dwarf_read_debug >= debug_print_threshold)
8870 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8871 }
8872
8873 item.per_cu->queued = 0;
8874 dwarf2_per_objfile->queue.pop ();
8875 }
8876
8877 if (dwarf_read_debug)
8878 {
8879 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8880 objfile_name (dwarf2_per_objfile->objfile));
8881 }
8882 }
8883
8884 /* Read in full symbols for PST, and anything it depends on. */
8885
8886 void
8887 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8888 {
8889 if (readin)
8890 return;
8891
8892 read_dependencies (objfile);
8893
8894 dw2_do_instantiate_symtab (per_cu_data, false);
8895 gdb_assert (get_compunit_symtab () != nullptr);
8896 }
8897
8898 /* Trivial hash function for die_info: the hash value of a DIE
8899 is its offset in .debug_info for this objfile. */
8900
8901 static hashval_t
8902 die_hash (const void *item)
8903 {
8904 const struct die_info *die = (const struct die_info *) item;
8905
8906 return to_underlying (die->sect_off);
8907 }
8908
8909 /* Trivial comparison function for die_info structures: two DIEs
8910 are equal if they have the same offset. */
8911
8912 static int
8913 die_eq (const void *item_lhs, const void *item_rhs)
8914 {
8915 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8916 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8917
8918 return die_lhs->sect_off == die_rhs->sect_off;
8919 }
8920
8921 /* Load the DIEs associated with PER_CU into memory. */
8922
8923 static void
8924 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8925 bool skip_partial,
8926 enum language pretend_language)
8927 {
8928 gdb_assert (! this_cu->is_debug_types);
8929
8930 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8931 if (reader.dummy_p)
8932 return;
8933
8934 struct dwarf2_cu *cu = reader.cu;
8935 const gdb_byte *info_ptr = reader.info_ptr;
8936
8937 gdb_assert (cu->die_hash == NULL);
8938 cu->die_hash =
8939 htab_create_alloc_ex (cu->header.length / 12,
8940 die_hash,
8941 die_eq,
8942 NULL,
8943 &cu->comp_unit_obstack,
8944 hashtab_obstack_allocate,
8945 dummy_obstack_deallocate);
8946
8947 if (reader.comp_unit_die->has_children)
8948 reader.comp_unit_die->child
8949 = read_die_and_siblings (&reader, reader.info_ptr,
8950 &info_ptr, reader.comp_unit_die);
8951 cu->dies = reader.comp_unit_die;
8952 /* comp_unit_die is not stored in die_hash, no need. */
8953
8954 /* We try not to read any attributes in this function, because not
8955 all CUs needed for references have been loaded yet, and symbol
8956 table processing isn't initialized. But we have to set the CU language,
8957 or we won't be able to build types correctly.
8958 Similarly, if we do not read the producer, we can not apply
8959 producer-specific interpretation. */
8960 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8961
8962 reader.keep ();
8963 }
8964
8965 /* Add a DIE to the delayed physname list. */
8966
8967 static void
8968 add_to_method_list (struct type *type, int fnfield_index, int index,
8969 const char *name, struct die_info *die,
8970 struct dwarf2_cu *cu)
8971 {
8972 struct delayed_method_info mi;
8973 mi.type = type;
8974 mi.fnfield_index = fnfield_index;
8975 mi.index = index;
8976 mi.name = name;
8977 mi.die = die;
8978 cu->method_list.push_back (mi);
8979 }
8980
8981 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8982 "const" / "volatile". If so, decrements LEN by the length of the
8983 modifier and return true. Otherwise return false. */
8984
8985 template<size_t N>
8986 static bool
8987 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8988 {
8989 size_t mod_len = sizeof (mod) - 1;
8990 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8991 {
8992 len -= mod_len;
8993 return true;
8994 }
8995 return false;
8996 }
8997
8998 /* Compute the physnames of any methods on the CU's method list.
8999
9000 The computation of method physnames is delayed in order to avoid the
9001 (bad) condition that one of the method's formal parameters is of an as yet
9002 incomplete type. */
9003
9004 static void
9005 compute_delayed_physnames (struct dwarf2_cu *cu)
9006 {
9007 /* Only C++ delays computing physnames. */
9008 if (cu->method_list.empty ())
9009 return;
9010 gdb_assert (cu->language == language_cplus);
9011
9012 for (const delayed_method_info &mi : cu->method_list)
9013 {
9014 const char *physname;
9015 struct fn_fieldlist *fn_flp
9016 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9017 physname = dwarf2_physname (mi.name, mi.die, cu);
9018 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9019 = physname ? physname : "";
9020
9021 /* Since there's no tag to indicate whether a method is a
9022 const/volatile overload, extract that information out of the
9023 demangled name. */
9024 if (physname != NULL)
9025 {
9026 size_t len = strlen (physname);
9027
9028 while (1)
9029 {
9030 if (physname[len] == ')') /* shortcut */
9031 break;
9032 else if (check_modifier (physname, len, " const"))
9033 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9034 else if (check_modifier (physname, len, " volatile"))
9035 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9036 else
9037 break;
9038 }
9039 }
9040 }
9041
9042 /* The list is no longer needed. */
9043 cu->method_list.clear ();
9044 }
9045
9046 /* Go objects should be embedded in a DW_TAG_module DIE,
9047 and it's not clear if/how imported objects will appear.
9048 To keep Go support simple until that's worked out,
9049 go back through what we've read and create something usable.
9050 We could do this while processing each DIE, and feels kinda cleaner,
9051 but that way is more invasive.
9052 This is to, for example, allow the user to type "p var" or "b main"
9053 without having to specify the package name, and allow lookups
9054 of module.object to work in contexts that use the expression
9055 parser. */
9056
9057 static void
9058 fixup_go_packaging (struct dwarf2_cu *cu)
9059 {
9060 gdb::unique_xmalloc_ptr<char> package_name;
9061 struct pending *list;
9062 int i;
9063
9064 for (list = *cu->get_builder ()->get_global_symbols ();
9065 list != NULL;
9066 list = list->next)
9067 {
9068 for (i = 0; i < list->nsyms; ++i)
9069 {
9070 struct symbol *sym = list->symbol[i];
9071
9072 if (sym->language () == language_go
9073 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9074 {
9075 gdb::unique_xmalloc_ptr<char> this_package_name
9076 (go_symbol_package_name (sym));
9077
9078 if (this_package_name == NULL)
9079 continue;
9080 if (package_name == NULL)
9081 package_name = std::move (this_package_name);
9082 else
9083 {
9084 struct objfile *objfile
9085 = cu->per_cu->dwarf2_per_objfile->objfile;
9086 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9087 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9088 (symbol_symtab (sym) != NULL
9089 ? symtab_to_filename_for_display
9090 (symbol_symtab (sym))
9091 : objfile_name (objfile)),
9092 this_package_name.get (), package_name.get ());
9093 }
9094 }
9095 }
9096 }
9097
9098 if (package_name != NULL)
9099 {
9100 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9101 const char *saved_package_name
9102 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9103 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9104 saved_package_name);
9105 struct symbol *sym;
9106
9107 sym = allocate_symbol (objfile);
9108 sym->set_language (language_go, &objfile->objfile_obstack);
9109 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9110 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9111 e.g., "main" finds the "main" module and not C's main(). */
9112 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9113 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9114 SYMBOL_TYPE (sym) = type;
9115
9116 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9117 }
9118 }
9119
9120 /* Allocate a fully-qualified name consisting of the two parts on the
9121 obstack. */
9122
9123 static const char *
9124 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9125 {
9126 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9127 }
9128
9129 /* A helper that allocates a struct discriminant_info to attach to a
9130 union type. */
9131
9132 static struct discriminant_info *
9133 alloc_discriminant_info (struct type *type, int discriminant_index,
9134 int default_index)
9135 {
9136 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9137 gdb_assert (discriminant_index == -1
9138 || (discriminant_index >= 0
9139 && discriminant_index < TYPE_NFIELDS (type)));
9140 gdb_assert (default_index == -1
9141 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9142
9143 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9144
9145 struct discriminant_info *disc
9146 = ((struct discriminant_info *)
9147 TYPE_ZALLOC (type,
9148 offsetof (struct discriminant_info, discriminants)
9149 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9150 disc->default_index = default_index;
9151 disc->discriminant_index = discriminant_index;
9152
9153 struct dynamic_prop prop;
9154 prop.kind = PROP_UNDEFINED;
9155 prop.data.baton = disc;
9156
9157 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9158
9159 return disc;
9160 }
9161
9162 /* Some versions of rustc emitted enums in an unusual way.
9163
9164 Ordinary enums were emitted as unions. The first element of each
9165 structure in the union was named "RUST$ENUM$DISR". This element
9166 held the discriminant.
9167
9168 These versions of Rust also implemented the "non-zero"
9169 optimization. When the enum had two values, and one is empty and
9170 the other holds a pointer that cannot be zero, the pointer is used
9171 as the discriminant, with a zero value meaning the empty variant.
9172 Here, the union's first member is of the form
9173 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9174 where the fieldnos are the indices of the fields that should be
9175 traversed in order to find the field (which may be several fields deep)
9176 and the variantname is the name of the variant of the case when the
9177 field is zero.
9178
9179 This function recognizes whether TYPE is of one of these forms,
9180 and, if so, smashes it to be a variant type. */
9181
9182 static void
9183 quirk_rust_enum (struct type *type, struct objfile *objfile)
9184 {
9185 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9186
9187 /* We don't need to deal with empty enums. */
9188 if (TYPE_NFIELDS (type) == 0)
9189 return;
9190
9191 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9192 if (TYPE_NFIELDS (type) == 1
9193 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9194 {
9195 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9196
9197 /* Decode the field name to find the offset of the
9198 discriminant. */
9199 ULONGEST bit_offset = 0;
9200 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9201 while (name[0] >= '0' && name[0] <= '9')
9202 {
9203 char *tail;
9204 unsigned long index = strtoul (name, &tail, 10);
9205 name = tail;
9206 if (*name != '$'
9207 || index >= TYPE_NFIELDS (field_type)
9208 || (TYPE_FIELD_LOC_KIND (field_type, index)
9209 != FIELD_LOC_KIND_BITPOS))
9210 {
9211 complaint (_("Could not parse Rust enum encoding string \"%s\""
9212 "[in module %s]"),
9213 TYPE_FIELD_NAME (type, 0),
9214 objfile_name (objfile));
9215 return;
9216 }
9217 ++name;
9218
9219 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9220 field_type = TYPE_FIELD_TYPE (field_type, index);
9221 }
9222
9223 /* Make a union to hold the variants. */
9224 struct type *union_type = alloc_type (objfile);
9225 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9226 TYPE_NFIELDS (union_type) = 3;
9227 TYPE_FIELDS (union_type)
9228 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9229 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9230 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9231
9232 /* Put the discriminant must at index 0. */
9233 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9234 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9235 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9236 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9237
9238 /* The order of fields doesn't really matter, so put the real
9239 field at index 1 and the data-less field at index 2. */
9240 struct discriminant_info *disc
9241 = alloc_discriminant_info (union_type, 0, 1);
9242 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9243 TYPE_FIELD_NAME (union_type, 1)
9244 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9245 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9246 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9247 TYPE_FIELD_NAME (union_type, 1));
9248
9249 const char *dataless_name
9250 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9251 name);
9252 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9253 dataless_name);
9254 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9255 /* NAME points into the original discriminant name, which
9256 already has the correct lifetime. */
9257 TYPE_FIELD_NAME (union_type, 2) = name;
9258 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9259 disc->discriminants[2] = 0;
9260
9261 /* Smash this type to be a structure type. We have to do this
9262 because the type has already been recorded. */
9263 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9264 TYPE_NFIELDS (type) = 1;
9265 TYPE_FIELDS (type)
9266 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9267
9268 /* Install the variant part. */
9269 TYPE_FIELD_TYPE (type, 0) = union_type;
9270 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9271 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9272 }
9273 /* A union with a single anonymous field is probably an old-style
9274 univariant enum. */
9275 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9276 {
9277 /* Smash this type to be a structure type. We have to do this
9278 because the type has already been recorded. */
9279 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9280
9281 /* Make a union to hold the variants. */
9282 struct type *union_type = alloc_type (objfile);
9283 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9284 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9285 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9286 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9287 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9288
9289 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9290 const char *variant_name
9291 = rust_last_path_segment (TYPE_NAME (field_type));
9292 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9293 TYPE_NAME (field_type)
9294 = rust_fully_qualify (&objfile->objfile_obstack,
9295 TYPE_NAME (type), variant_name);
9296
9297 /* Install the union in the outer struct type. */
9298 TYPE_NFIELDS (type) = 1;
9299 TYPE_FIELDS (type)
9300 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9301 TYPE_FIELD_TYPE (type, 0) = union_type;
9302 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9303 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9304
9305 alloc_discriminant_info (union_type, -1, 0);
9306 }
9307 else
9308 {
9309 struct type *disr_type = nullptr;
9310 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9311 {
9312 disr_type = TYPE_FIELD_TYPE (type, i);
9313
9314 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9315 {
9316 /* All fields of a true enum will be structs. */
9317 return;
9318 }
9319 else if (TYPE_NFIELDS (disr_type) == 0)
9320 {
9321 /* Could be data-less variant, so keep going. */
9322 disr_type = nullptr;
9323 }
9324 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9325 "RUST$ENUM$DISR") != 0)
9326 {
9327 /* Not a Rust enum. */
9328 return;
9329 }
9330 else
9331 {
9332 /* Found one. */
9333 break;
9334 }
9335 }
9336
9337 /* If we got here without a discriminant, then it's probably
9338 just a union. */
9339 if (disr_type == nullptr)
9340 return;
9341
9342 /* Smash this type to be a structure type. We have to do this
9343 because the type has already been recorded. */
9344 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9345
9346 /* Make a union to hold the variants. */
9347 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9348 struct type *union_type = alloc_type (objfile);
9349 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9350 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9351 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9352 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9353 TYPE_FIELDS (union_type)
9354 = (struct field *) TYPE_ZALLOC (union_type,
9355 (TYPE_NFIELDS (union_type)
9356 * sizeof (struct field)));
9357
9358 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9359 TYPE_NFIELDS (type) * sizeof (struct field));
9360
9361 /* Install the discriminant at index 0 in the union. */
9362 TYPE_FIELD (union_type, 0) = *disr_field;
9363 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9364 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9365
9366 /* Install the union in the outer struct type. */
9367 TYPE_FIELD_TYPE (type, 0) = union_type;
9368 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9369 TYPE_NFIELDS (type) = 1;
9370
9371 /* Set the size and offset of the union type. */
9372 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9373
9374 /* We need a way to find the correct discriminant given a
9375 variant name. For convenience we build a map here. */
9376 struct type *enum_type = FIELD_TYPE (*disr_field);
9377 std::unordered_map<std::string, ULONGEST> discriminant_map;
9378 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9379 {
9380 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9381 {
9382 const char *name
9383 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9384 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9385 }
9386 }
9387
9388 int n_fields = TYPE_NFIELDS (union_type);
9389 struct discriminant_info *disc
9390 = alloc_discriminant_info (union_type, 0, -1);
9391 /* Skip the discriminant here. */
9392 for (int i = 1; i < n_fields; ++i)
9393 {
9394 /* Find the final word in the name of this variant's type.
9395 That name can be used to look up the correct
9396 discriminant. */
9397 const char *variant_name
9398 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9399 i)));
9400
9401 auto iter = discriminant_map.find (variant_name);
9402 if (iter != discriminant_map.end ())
9403 disc->discriminants[i] = iter->second;
9404
9405 /* Remove the discriminant field, if it exists. */
9406 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9407 if (TYPE_NFIELDS (sub_type) > 0)
9408 {
9409 --TYPE_NFIELDS (sub_type);
9410 ++TYPE_FIELDS (sub_type);
9411 }
9412 TYPE_FIELD_NAME (union_type, i) = variant_name;
9413 TYPE_NAME (sub_type)
9414 = rust_fully_qualify (&objfile->objfile_obstack,
9415 TYPE_NAME (type), variant_name);
9416 }
9417 }
9418 }
9419
9420 /* Rewrite some Rust unions to be structures with variants parts. */
9421
9422 static void
9423 rust_union_quirks (struct dwarf2_cu *cu)
9424 {
9425 gdb_assert (cu->language == language_rust);
9426 for (type *type_ : cu->rust_unions)
9427 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9428 /* We don't need this any more. */
9429 cu->rust_unions.clear ();
9430 }
9431
9432 /* Return the symtab for PER_CU. This works properly regardless of
9433 whether we're using the index or psymtabs. */
9434
9435 static struct compunit_symtab *
9436 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9437 {
9438 return (per_cu->dwarf2_per_objfile->using_index
9439 ? per_cu->v.quick->compunit_symtab
9440 : per_cu->v.psymtab->compunit_symtab);
9441 }
9442
9443 /* A helper function for computing the list of all symbol tables
9444 included by PER_CU. */
9445
9446 static void
9447 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9448 htab_t all_children, htab_t all_type_symtabs,
9449 struct dwarf2_per_cu_data *per_cu,
9450 struct compunit_symtab *immediate_parent)
9451 {
9452 void **slot;
9453 struct compunit_symtab *cust;
9454
9455 slot = htab_find_slot (all_children, per_cu, INSERT);
9456 if (*slot != NULL)
9457 {
9458 /* This inclusion and its children have been processed. */
9459 return;
9460 }
9461
9462 *slot = per_cu;
9463 /* Only add a CU if it has a symbol table. */
9464 cust = get_compunit_symtab (per_cu);
9465 if (cust != NULL)
9466 {
9467 /* If this is a type unit only add its symbol table if we haven't
9468 seen it yet (type unit per_cu's can share symtabs). */
9469 if (per_cu->is_debug_types)
9470 {
9471 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9472 if (*slot == NULL)
9473 {
9474 *slot = cust;
9475 result->push_back (cust);
9476 if (cust->user == NULL)
9477 cust->user = immediate_parent;
9478 }
9479 }
9480 else
9481 {
9482 result->push_back (cust);
9483 if (cust->user == NULL)
9484 cust->user = immediate_parent;
9485 }
9486 }
9487
9488 if (!per_cu->imported_symtabs_empty ())
9489 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9490 {
9491 recursively_compute_inclusions (result, all_children,
9492 all_type_symtabs, ptr, cust);
9493 }
9494 }
9495
9496 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9497 PER_CU. */
9498
9499 static void
9500 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9501 {
9502 gdb_assert (! per_cu->is_debug_types);
9503
9504 if (!per_cu->imported_symtabs_empty ())
9505 {
9506 int len;
9507 std::vector<compunit_symtab *> result_symtabs;
9508 htab_t all_children, all_type_symtabs;
9509 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9510
9511 /* If we don't have a symtab, we can just skip this case. */
9512 if (cust == NULL)
9513 return;
9514
9515 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9516 NULL, xcalloc, xfree);
9517 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9518 NULL, xcalloc, xfree);
9519
9520 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9521 {
9522 recursively_compute_inclusions (&result_symtabs, all_children,
9523 all_type_symtabs, ptr, cust);
9524 }
9525
9526 /* Now we have a transitive closure of all the included symtabs. */
9527 len = result_symtabs.size ();
9528 cust->includes
9529 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9530 struct compunit_symtab *, len + 1);
9531 memcpy (cust->includes, result_symtabs.data (),
9532 len * sizeof (compunit_symtab *));
9533 cust->includes[len] = NULL;
9534
9535 htab_delete (all_children);
9536 htab_delete (all_type_symtabs);
9537 }
9538 }
9539
9540 /* Compute the 'includes' field for the symtabs of all the CUs we just
9541 read. */
9542
9543 static void
9544 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9545 {
9546 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9547 {
9548 if (! iter->is_debug_types)
9549 compute_compunit_symtab_includes (iter);
9550 }
9551
9552 dwarf2_per_objfile->just_read_cus.clear ();
9553 }
9554
9555 /* Generate full symbol information for PER_CU, whose DIEs have
9556 already been loaded into memory. */
9557
9558 static void
9559 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9560 enum language pretend_language)
9561 {
9562 struct dwarf2_cu *cu = per_cu->cu;
9563 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9564 struct objfile *objfile = dwarf2_per_objfile->objfile;
9565 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9566 CORE_ADDR lowpc, highpc;
9567 struct compunit_symtab *cust;
9568 CORE_ADDR baseaddr;
9569 struct block *static_block;
9570 CORE_ADDR addr;
9571
9572 baseaddr = objfile->text_section_offset ();
9573
9574 /* Clear the list here in case something was left over. */
9575 cu->method_list.clear ();
9576
9577 cu->language = pretend_language;
9578 cu->language_defn = language_def (cu->language);
9579
9580 /* Do line number decoding in read_file_scope () */
9581 process_die (cu->dies, cu);
9582
9583 /* For now fudge the Go package. */
9584 if (cu->language == language_go)
9585 fixup_go_packaging (cu);
9586
9587 /* Now that we have processed all the DIEs in the CU, all the types
9588 should be complete, and it should now be safe to compute all of the
9589 physnames. */
9590 compute_delayed_physnames (cu);
9591
9592 if (cu->language == language_rust)
9593 rust_union_quirks (cu);
9594
9595 /* Some compilers don't define a DW_AT_high_pc attribute for the
9596 compilation unit. If the DW_AT_high_pc is missing, synthesize
9597 it, by scanning the DIE's below the compilation unit. */
9598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9599
9600 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9601 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9602
9603 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9604 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9605 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9606 addrmap to help ensure it has an accurate map of pc values belonging to
9607 this comp unit. */
9608 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9609
9610 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9611 SECT_OFF_TEXT (objfile),
9612 0);
9613
9614 if (cust != NULL)
9615 {
9616 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9617
9618 /* Set symtab language to language from DW_AT_language. If the
9619 compilation is from a C file generated by language preprocessors, do
9620 not set the language if it was already deduced by start_subfile. */
9621 if (!(cu->language == language_c
9622 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9623 COMPUNIT_FILETABS (cust)->language = cu->language;
9624
9625 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9626 produce DW_AT_location with location lists but it can be possibly
9627 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9628 there were bugs in prologue debug info, fixed later in GCC-4.5
9629 by "unwind info for epilogues" patch (which is not directly related).
9630
9631 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9632 needed, it would be wrong due to missing DW_AT_producer there.
9633
9634 Still one can confuse GDB by using non-standard GCC compilation
9635 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9636 */
9637 if (cu->has_loclist && gcc_4_minor >= 5)
9638 cust->locations_valid = 1;
9639
9640 if (gcc_4_minor >= 5)
9641 cust->epilogue_unwind_valid = 1;
9642
9643 cust->call_site_htab = cu->call_site_htab;
9644 }
9645
9646 if (dwarf2_per_objfile->using_index)
9647 per_cu->v.quick->compunit_symtab = cust;
9648 else
9649 {
9650 dwarf2_psymtab *pst = per_cu->v.psymtab;
9651 pst->compunit_symtab = cust;
9652 pst->readin = true;
9653 }
9654
9655 /* Push it for inclusion processing later. */
9656 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9657
9658 /* Not needed any more. */
9659 cu->reset_builder ();
9660 }
9661
9662 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9663 already been loaded into memory. */
9664
9665 static void
9666 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9667 enum language pretend_language)
9668 {
9669 struct dwarf2_cu *cu = per_cu->cu;
9670 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9671 struct objfile *objfile = dwarf2_per_objfile->objfile;
9672 struct compunit_symtab *cust;
9673 struct signatured_type *sig_type;
9674
9675 gdb_assert (per_cu->is_debug_types);
9676 sig_type = (struct signatured_type *) per_cu;
9677
9678 /* Clear the list here in case something was left over. */
9679 cu->method_list.clear ();
9680
9681 cu->language = pretend_language;
9682 cu->language_defn = language_def (cu->language);
9683
9684 /* The symbol tables are set up in read_type_unit_scope. */
9685 process_die (cu->dies, cu);
9686
9687 /* For now fudge the Go package. */
9688 if (cu->language == language_go)
9689 fixup_go_packaging (cu);
9690
9691 /* Now that we have processed all the DIEs in the CU, all the types
9692 should be complete, and it should now be safe to compute all of the
9693 physnames. */
9694 compute_delayed_physnames (cu);
9695
9696 if (cu->language == language_rust)
9697 rust_union_quirks (cu);
9698
9699 /* TUs share symbol tables.
9700 If this is the first TU to use this symtab, complete the construction
9701 of it with end_expandable_symtab. Otherwise, complete the addition of
9702 this TU's symbols to the existing symtab. */
9703 if (sig_type->type_unit_group->compunit_symtab == NULL)
9704 {
9705 buildsym_compunit *builder = cu->get_builder ();
9706 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9707 sig_type->type_unit_group->compunit_symtab = cust;
9708
9709 if (cust != NULL)
9710 {
9711 /* Set symtab language to language from DW_AT_language. If the
9712 compilation is from a C file generated by language preprocessors,
9713 do not set the language if it was already deduced by
9714 start_subfile. */
9715 if (!(cu->language == language_c
9716 && COMPUNIT_FILETABS (cust)->language != language_c))
9717 COMPUNIT_FILETABS (cust)->language = cu->language;
9718 }
9719 }
9720 else
9721 {
9722 cu->get_builder ()->augment_type_symtab ();
9723 cust = sig_type->type_unit_group->compunit_symtab;
9724 }
9725
9726 if (dwarf2_per_objfile->using_index)
9727 per_cu->v.quick->compunit_symtab = cust;
9728 else
9729 {
9730 dwarf2_psymtab *pst = per_cu->v.psymtab;
9731 pst->compunit_symtab = cust;
9732 pst->readin = true;
9733 }
9734
9735 /* Not needed any more. */
9736 cu->reset_builder ();
9737 }
9738
9739 /* Process an imported unit DIE. */
9740
9741 static void
9742 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9743 {
9744 struct attribute *attr;
9745
9746 /* For now we don't handle imported units in type units. */
9747 if (cu->per_cu->is_debug_types)
9748 {
9749 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9750 " supported in type units [in module %s]"),
9751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9752 }
9753
9754 attr = dwarf2_attr (die, DW_AT_import, cu);
9755 if (attr != NULL)
9756 {
9757 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9758 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9759 dwarf2_per_cu_data *per_cu
9760 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9761 cu->per_cu->dwarf2_per_objfile);
9762
9763 /* If necessary, add it to the queue and load its DIEs. */
9764 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9765 load_full_comp_unit (per_cu, false, cu->language);
9766
9767 cu->per_cu->imported_symtabs_push (per_cu);
9768 }
9769 }
9770
9771 /* RAII object that represents a process_die scope: i.e.,
9772 starts/finishes processing a DIE. */
9773 class process_die_scope
9774 {
9775 public:
9776 process_die_scope (die_info *die, dwarf2_cu *cu)
9777 : m_die (die), m_cu (cu)
9778 {
9779 /* We should only be processing DIEs not already in process. */
9780 gdb_assert (!m_die->in_process);
9781 m_die->in_process = true;
9782 }
9783
9784 ~process_die_scope ()
9785 {
9786 m_die->in_process = false;
9787
9788 /* If we're done processing the DIE for the CU that owns the line
9789 header, we don't need the line header anymore. */
9790 if (m_cu->line_header_die_owner == m_die)
9791 {
9792 delete m_cu->line_header;
9793 m_cu->line_header = NULL;
9794 m_cu->line_header_die_owner = NULL;
9795 }
9796 }
9797
9798 private:
9799 die_info *m_die;
9800 dwarf2_cu *m_cu;
9801 };
9802
9803 /* Process a die and its children. */
9804
9805 static void
9806 process_die (struct die_info *die, struct dwarf2_cu *cu)
9807 {
9808 process_die_scope scope (die, cu);
9809
9810 switch (die->tag)
9811 {
9812 case DW_TAG_padding:
9813 break;
9814 case DW_TAG_compile_unit:
9815 case DW_TAG_partial_unit:
9816 read_file_scope (die, cu);
9817 break;
9818 case DW_TAG_type_unit:
9819 read_type_unit_scope (die, cu);
9820 break;
9821 case DW_TAG_subprogram:
9822 /* Nested subprograms in Fortran get a prefix. */
9823 if (cu->language == language_fortran
9824 && die->parent != NULL
9825 && die->parent->tag == DW_TAG_subprogram)
9826 cu->processing_has_namespace_info = true;
9827 /* Fall through. */
9828 case DW_TAG_inlined_subroutine:
9829 read_func_scope (die, cu);
9830 break;
9831 case DW_TAG_lexical_block:
9832 case DW_TAG_try_block:
9833 case DW_TAG_catch_block:
9834 read_lexical_block_scope (die, cu);
9835 break;
9836 case DW_TAG_call_site:
9837 case DW_TAG_GNU_call_site:
9838 read_call_site_scope (die, cu);
9839 break;
9840 case DW_TAG_class_type:
9841 case DW_TAG_interface_type:
9842 case DW_TAG_structure_type:
9843 case DW_TAG_union_type:
9844 process_structure_scope (die, cu);
9845 break;
9846 case DW_TAG_enumeration_type:
9847 process_enumeration_scope (die, cu);
9848 break;
9849
9850 /* These dies have a type, but processing them does not create
9851 a symbol or recurse to process the children. Therefore we can
9852 read them on-demand through read_type_die. */
9853 case DW_TAG_subroutine_type:
9854 case DW_TAG_set_type:
9855 case DW_TAG_array_type:
9856 case DW_TAG_pointer_type:
9857 case DW_TAG_ptr_to_member_type:
9858 case DW_TAG_reference_type:
9859 case DW_TAG_rvalue_reference_type:
9860 case DW_TAG_string_type:
9861 break;
9862
9863 case DW_TAG_base_type:
9864 case DW_TAG_subrange_type:
9865 case DW_TAG_typedef:
9866 /* Add a typedef symbol for the type definition, if it has a
9867 DW_AT_name. */
9868 new_symbol (die, read_type_die (die, cu), cu);
9869 break;
9870 case DW_TAG_common_block:
9871 read_common_block (die, cu);
9872 break;
9873 case DW_TAG_common_inclusion:
9874 break;
9875 case DW_TAG_namespace:
9876 cu->processing_has_namespace_info = true;
9877 read_namespace (die, cu);
9878 break;
9879 case DW_TAG_module:
9880 cu->processing_has_namespace_info = true;
9881 read_module (die, cu);
9882 break;
9883 case DW_TAG_imported_declaration:
9884 cu->processing_has_namespace_info = true;
9885 if (read_namespace_alias (die, cu))
9886 break;
9887 /* The declaration is not a global namespace alias. */
9888 /* Fall through. */
9889 case DW_TAG_imported_module:
9890 cu->processing_has_namespace_info = true;
9891 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9892 || cu->language != language_fortran))
9893 complaint (_("Tag '%s' has unexpected children"),
9894 dwarf_tag_name (die->tag));
9895 read_import_statement (die, cu);
9896 break;
9897
9898 case DW_TAG_imported_unit:
9899 process_imported_unit_die (die, cu);
9900 break;
9901
9902 case DW_TAG_variable:
9903 read_variable (die, cu);
9904 break;
9905
9906 default:
9907 new_symbol (die, NULL, cu);
9908 break;
9909 }
9910 }
9911 \f
9912 /* DWARF name computation. */
9913
9914 /* A helper function for dwarf2_compute_name which determines whether DIE
9915 needs to have the name of the scope prepended to the name listed in the
9916 die. */
9917
9918 static int
9919 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9920 {
9921 struct attribute *attr;
9922
9923 switch (die->tag)
9924 {
9925 case DW_TAG_namespace:
9926 case DW_TAG_typedef:
9927 case DW_TAG_class_type:
9928 case DW_TAG_interface_type:
9929 case DW_TAG_structure_type:
9930 case DW_TAG_union_type:
9931 case DW_TAG_enumeration_type:
9932 case DW_TAG_enumerator:
9933 case DW_TAG_subprogram:
9934 case DW_TAG_inlined_subroutine:
9935 case DW_TAG_member:
9936 case DW_TAG_imported_declaration:
9937 return 1;
9938
9939 case DW_TAG_variable:
9940 case DW_TAG_constant:
9941 /* We only need to prefix "globally" visible variables. These include
9942 any variable marked with DW_AT_external or any variable that
9943 lives in a namespace. [Variables in anonymous namespaces
9944 require prefixing, but they are not DW_AT_external.] */
9945
9946 if (dwarf2_attr (die, DW_AT_specification, cu))
9947 {
9948 struct dwarf2_cu *spec_cu = cu;
9949
9950 return die_needs_namespace (die_specification (die, &spec_cu),
9951 spec_cu);
9952 }
9953
9954 attr = dwarf2_attr (die, DW_AT_external, cu);
9955 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9956 && die->parent->tag != DW_TAG_module)
9957 return 0;
9958 /* A variable in a lexical block of some kind does not need a
9959 namespace, even though in C++ such variables may be external
9960 and have a mangled name. */
9961 if (die->parent->tag == DW_TAG_lexical_block
9962 || die->parent->tag == DW_TAG_try_block
9963 || die->parent->tag == DW_TAG_catch_block
9964 || die->parent->tag == DW_TAG_subprogram)
9965 return 0;
9966 return 1;
9967
9968 default:
9969 return 0;
9970 }
9971 }
9972
9973 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9974 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9975 defined for the given DIE. */
9976
9977 static struct attribute *
9978 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9979 {
9980 struct attribute *attr;
9981
9982 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9983 if (attr == NULL)
9984 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9985
9986 return attr;
9987 }
9988
9989 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9990 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9991 defined for the given DIE. */
9992
9993 static const char *
9994 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9995 {
9996 const char *linkage_name;
9997
9998 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9999 if (linkage_name == NULL)
10000 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10001
10002 return linkage_name;
10003 }
10004
10005 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10006 compute the physname for the object, which include a method's:
10007 - formal parameters (C++),
10008 - receiver type (Go),
10009
10010 The term "physname" is a bit confusing.
10011 For C++, for example, it is the demangled name.
10012 For Go, for example, it's the mangled name.
10013
10014 For Ada, return the DIE's linkage name rather than the fully qualified
10015 name. PHYSNAME is ignored..
10016
10017 The result is allocated on the objfile_obstack and canonicalized. */
10018
10019 static const char *
10020 dwarf2_compute_name (const char *name,
10021 struct die_info *die, struct dwarf2_cu *cu,
10022 int physname)
10023 {
10024 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10025
10026 if (name == NULL)
10027 name = dwarf2_name (die, cu);
10028
10029 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10030 but otherwise compute it by typename_concat inside GDB.
10031 FIXME: Actually this is not really true, or at least not always true.
10032 It's all very confusing. compute_and_set_names doesn't try to demangle
10033 Fortran names because there is no mangling standard. So new_symbol
10034 will set the demangled name to the result of dwarf2_full_name, and it is
10035 the demangled name that GDB uses if it exists. */
10036 if (cu->language == language_ada
10037 || (cu->language == language_fortran && physname))
10038 {
10039 /* For Ada unit, we prefer the linkage name over the name, as
10040 the former contains the exported name, which the user expects
10041 to be able to reference. Ideally, we want the user to be able
10042 to reference this entity using either natural or linkage name,
10043 but we haven't started looking at this enhancement yet. */
10044 const char *linkage_name = dw2_linkage_name (die, cu);
10045
10046 if (linkage_name != NULL)
10047 return linkage_name;
10048 }
10049
10050 /* These are the only languages we know how to qualify names in. */
10051 if (name != NULL
10052 && (cu->language == language_cplus
10053 || cu->language == language_fortran || cu->language == language_d
10054 || cu->language == language_rust))
10055 {
10056 if (die_needs_namespace (die, cu))
10057 {
10058 const char *prefix;
10059 const char *canonical_name = NULL;
10060
10061 string_file buf;
10062
10063 prefix = determine_prefix (die, cu);
10064 if (*prefix != '\0')
10065 {
10066 gdb::unique_xmalloc_ptr<char> prefixed_name
10067 (typename_concat (NULL, prefix, name, physname, cu));
10068
10069 buf.puts (prefixed_name.get ());
10070 }
10071 else
10072 buf.puts (name);
10073
10074 /* Template parameters may be specified in the DIE's DW_AT_name, or
10075 as children with DW_TAG_template_type_param or
10076 DW_TAG_value_type_param. If the latter, add them to the name
10077 here. If the name already has template parameters, then
10078 skip this step; some versions of GCC emit both, and
10079 it is more efficient to use the pre-computed name.
10080
10081 Something to keep in mind about this process: it is very
10082 unlikely, or in some cases downright impossible, to produce
10083 something that will match the mangled name of a function.
10084 If the definition of the function has the same debug info,
10085 we should be able to match up with it anyway. But fallbacks
10086 using the minimal symbol, for instance to find a method
10087 implemented in a stripped copy of libstdc++, will not work.
10088 If we do not have debug info for the definition, we will have to
10089 match them up some other way.
10090
10091 When we do name matching there is a related problem with function
10092 templates; two instantiated function templates are allowed to
10093 differ only by their return types, which we do not add here. */
10094
10095 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10096 {
10097 struct attribute *attr;
10098 struct die_info *child;
10099 int first = 1;
10100
10101 die->building_fullname = 1;
10102
10103 for (child = die->child; child != NULL; child = child->sibling)
10104 {
10105 struct type *type;
10106 LONGEST value;
10107 const gdb_byte *bytes;
10108 struct dwarf2_locexpr_baton *baton;
10109 struct value *v;
10110
10111 if (child->tag != DW_TAG_template_type_param
10112 && child->tag != DW_TAG_template_value_param)
10113 continue;
10114
10115 if (first)
10116 {
10117 buf.puts ("<");
10118 first = 0;
10119 }
10120 else
10121 buf.puts (", ");
10122
10123 attr = dwarf2_attr (child, DW_AT_type, cu);
10124 if (attr == NULL)
10125 {
10126 complaint (_("template parameter missing DW_AT_type"));
10127 buf.puts ("UNKNOWN_TYPE");
10128 continue;
10129 }
10130 type = die_type (child, cu);
10131
10132 if (child->tag == DW_TAG_template_type_param)
10133 {
10134 c_print_type (type, "", &buf, -1, 0, cu->language,
10135 &type_print_raw_options);
10136 continue;
10137 }
10138
10139 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10140 if (attr == NULL)
10141 {
10142 complaint (_("template parameter missing "
10143 "DW_AT_const_value"));
10144 buf.puts ("UNKNOWN_VALUE");
10145 continue;
10146 }
10147
10148 dwarf2_const_value_attr (attr, type, name,
10149 &cu->comp_unit_obstack, cu,
10150 &value, &bytes, &baton);
10151
10152 if (TYPE_NOSIGN (type))
10153 /* GDB prints characters as NUMBER 'CHAR'. If that's
10154 changed, this can use value_print instead. */
10155 c_printchar (value, type, &buf);
10156 else
10157 {
10158 struct value_print_options opts;
10159
10160 if (baton != NULL)
10161 v = dwarf2_evaluate_loc_desc (type, NULL,
10162 baton->data,
10163 baton->size,
10164 baton->per_cu);
10165 else if (bytes != NULL)
10166 {
10167 v = allocate_value (type);
10168 memcpy (value_contents_writeable (v), bytes,
10169 TYPE_LENGTH (type));
10170 }
10171 else
10172 v = value_from_longest (type, value);
10173
10174 /* Specify decimal so that we do not depend on
10175 the radix. */
10176 get_formatted_print_options (&opts, 'd');
10177 opts.raw = 1;
10178 value_print (v, &buf, &opts);
10179 release_value (v);
10180 }
10181 }
10182
10183 die->building_fullname = 0;
10184
10185 if (!first)
10186 {
10187 /* Close the argument list, with a space if necessary
10188 (nested templates). */
10189 if (!buf.empty () && buf.string ().back () == '>')
10190 buf.puts (" >");
10191 else
10192 buf.puts (">");
10193 }
10194 }
10195
10196 /* For C++ methods, append formal parameter type
10197 information, if PHYSNAME. */
10198
10199 if (physname && die->tag == DW_TAG_subprogram
10200 && cu->language == language_cplus)
10201 {
10202 struct type *type = read_type_die (die, cu);
10203
10204 c_type_print_args (type, &buf, 1, cu->language,
10205 &type_print_raw_options);
10206
10207 if (cu->language == language_cplus)
10208 {
10209 /* Assume that an artificial first parameter is
10210 "this", but do not crash if it is not. RealView
10211 marks unnamed (and thus unused) parameters as
10212 artificial; there is no way to differentiate
10213 the two cases. */
10214 if (TYPE_NFIELDS (type) > 0
10215 && TYPE_FIELD_ARTIFICIAL (type, 0)
10216 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10217 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10218 0))))
10219 buf.puts (" const");
10220 }
10221 }
10222
10223 const std::string &intermediate_name = buf.string ();
10224
10225 if (cu->language == language_cplus)
10226 canonical_name
10227 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10228 &objfile->per_bfd->storage_obstack);
10229
10230 /* If we only computed INTERMEDIATE_NAME, or if
10231 INTERMEDIATE_NAME is already canonical, then we need to
10232 copy it to the appropriate obstack. */
10233 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10234 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10235 intermediate_name);
10236 else
10237 name = canonical_name;
10238 }
10239 }
10240
10241 return name;
10242 }
10243
10244 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10245 If scope qualifiers are appropriate they will be added. The result
10246 will be allocated on the storage_obstack, or NULL if the DIE does
10247 not have a name. NAME may either be from a previous call to
10248 dwarf2_name or NULL.
10249
10250 The output string will be canonicalized (if C++). */
10251
10252 static const char *
10253 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10254 {
10255 return dwarf2_compute_name (name, die, cu, 0);
10256 }
10257
10258 /* Construct a physname for the given DIE in CU. NAME may either be
10259 from a previous call to dwarf2_name or NULL. The result will be
10260 allocated on the objfile_objstack or NULL if the DIE does not have a
10261 name.
10262
10263 The output string will be canonicalized (if C++). */
10264
10265 static const char *
10266 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10267 {
10268 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10269 const char *retval, *mangled = NULL, *canon = NULL;
10270 int need_copy = 1;
10271
10272 /* In this case dwarf2_compute_name is just a shortcut not building anything
10273 on its own. */
10274 if (!die_needs_namespace (die, cu))
10275 return dwarf2_compute_name (name, die, cu, 1);
10276
10277 mangled = dw2_linkage_name (die, cu);
10278
10279 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10280 See https://github.com/rust-lang/rust/issues/32925. */
10281 if (cu->language == language_rust && mangled != NULL
10282 && strchr (mangled, '{') != NULL)
10283 mangled = NULL;
10284
10285 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10286 has computed. */
10287 gdb::unique_xmalloc_ptr<char> demangled;
10288 if (mangled != NULL)
10289 {
10290
10291 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10292 {
10293 /* Do nothing (do not demangle the symbol name). */
10294 }
10295 else if (cu->language == language_go)
10296 {
10297 /* This is a lie, but we already lie to the caller new_symbol.
10298 new_symbol assumes we return the mangled name.
10299 This just undoes that lie until things are cleaned up. */
10300 }
10301 else
10302 {
10303 /* Use DMGL_RET_DROP for C++ template functions to suppress
10304 their return type. It is easier for GDB users to search
10305 for such functions as `name(params)' than `long name(params)'.
10306 In such case the minimal symbol names do not match the full
10307 symbol names but for template functions there is never a need
10308 to look up their definition from their declaration so
10309 the only disadvantage remains the minimal symbol variant
10310 `long name(params)' does not have the proper inferior type. */
10311 demangled.reset (gdb_demangle (mangled,
10312 (DMGL_PARAMS | DMGL_ANSI
10313 | DMGL_RET_DROP)));
10314 }
10315 if (demangled)
10316 canon = demangled.get ();
10317 else
10318 {
10319 canon = mangled;
10320 need_copy = 0;
10321 }
10322 }
10323
10324 if (canon == NULL || check_physname)
10325 {
10326 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10327
10328 if (canon != NULL && strcmp (physname, canon) != 0)
10329 {
10330 /* It may not mean a bug in GDB. The compiler could also
10331 compute DW_AT_linkage_name incorrectly. But in such case
10332 GDB would need to be bug-to-bug compatible. */
10333
10334 complaint (_("Computed physname <%s> does not match demangled <%s> "
10335 "(from linkage <%s>) - DIE at %s [in module %s]"),
10336 physname, canon, mangled, sect_offset_str (die->sect_off),
10337 objfile_name (objfile));
10338
10339 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10340 is available here - over computed PHYSNAME. It is safer
10341 against both buggy GDB and buggy compilers. */
10342
10343 retval = canon;
10344 }
10345 else
10346 {
10347 retval = physname;
10348 need_copy = 0;
10349 }
10350 }
10351 else
10352 retval = canon;
10353
10354 if (need_copy)
10355 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10356
10357 return retval;
10358 }
10359
10360 /* Inspect DIE in CU for a namespace alias. If one exists, record
10361 a new symbol for it.
10362
10363 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10364
10365 static int
10366 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10367 {
10368 struct attribute *attr;
10369
10370 /* If the die does not have a name, this is not a namespace
10371 alias. */
10372 attr = dwarf2_attr (die, DW_AT_name, cu);
10373 if (attr != NULL)
10374 {
10375 int num;
10376 struct die_info *d = die;
10377 struct dwarf2_cu *imported_cu = cu;
10378
10379 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10380 keep inspecting DIEs until we hit the underlying import. */
10381 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10382 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10383 {
10384 attr = dwarf2_attr (d, DW_AT_import, cu);
10385 if (attr == NULL)
10386 break;
10387
10388 d = follow_die_ref (d, attr, &imported_cu);
10389 if (d->tag != DW_TAG_imported_declaration)
10390 break;
10391 }
10392
10393 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10394 {
10395 complaint (_("DIE at %s has too many recursively imported "
10396 "declarations"), sect_offset_str (d->sect_off));
10397 return 0;
10398 }
10399
10400 if (attr != NULL)
10401 {
10402 struct type *type;
10403 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10404
10405 type = get_die_type_at_offset (sect_off, cu->per_cu);
10406 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10407 {
10408 /* This declaration is a global namespace alias. Add
10409 a symbol for it whose type is the aliased namespace. */
10410 new_symbol (die, type, cu);
10411 return 1;
10412 }
10413 }
10414 }
10415
10416 return 0;
10417 }
10418
10419 /* Return the using directives repository (global or local?) to use in the
10420 current context for CU.
10421
10422 For Ada, imported declarations can materialize renamings, which *may* be
10423 global. However it is impossible (for now?) in DWARF to distinguish
10424 "external" imported declarations and "static" ones. As all imported
10425 declarations seem to be static in all other languages, make them all CU-wide
10426 global only in Ada. */
10427
10428 static struct using_direct **
10429 using_directives (struct dwarf2_cu *cu)
10430 {
10431 if (cu->language == language_ada
10432 && cu->get_builder ()->outermost_context_p ())
10433 return cu->get_builder ()->get_global_using_directives ();
10434 else
10435 return cu->get_builder ()->get_local_using_directives ();
10436 }
10437
10438 /* Read the import statement specified by the given die and record it. */
10439
10440 static void
10441 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10442 {
10443 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10444 struct attribute *import_attr;
10445 struct die_info *imported_die, *child_die;
10446 struct dwarf2_cu *imported_cu;
10447 const char *imported_name;
10448 const char *imported_name_prefix;
10449 const char *canonical_name;
10450 const char *import_alias;
10451 const char *imported_declaration = NULL;
10452 const char *import_prefix;
10453 std::vector<const char *> excludes;
10454
10455 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10456 if (import_attr == NULL)
10457 {
10458 complaint (_("Tag '%s' has no DW_AT_import"),
10459 dwarf_tag_name (die->tag));
10460 return;
10461 }
10462
10463 imported_cu = cu;
10464 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10465 imported_name = dwarf2_name (imported_die, imported_cu);
10466 if (imported_name == NULL)
10467 {
10468 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10469
10470 The import in the following code:
10471 namespace A
10472 {
10473 typedef int B;
10474 }
10475
10476 int main ()
10477 {
10478 using A::B;
10479 B b;
10480 return b;
10481 }
10482
10483 ...
10484 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10485 <52> DW_AT_decl_file : 1
10486 <53> DW_AT_decl_line : 6
10487 <54> DW_AT_import : <0x75>
10488 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10489 <59> DW_AT_name : B
10490 <5b> DW_AT_decl_file : 1
10491 <5c> DW_AT_decl_line : 2
10492 <5d> DW_AT_type : <0x6e>
10493 ...
10494 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10495 <76> DW_AT_byte_size : 4
10496 <77> DW_AT_encoding : 5 (signed)
10497
10498 imports the wrong die ( 0x75 instead of 0x58 ).
10499 This case will be ignored until the gcc bug is fixed. */
10500 return;
10501 }
10502
10503 /* Figure out the local name after import. */
10504 import_alias = dwarf2_name (die, cu);
10505
10506 /* Figure out where the statement is being imported to. */
10507 import_prefix = determine_prefix (die, cu);
10508
10509 /* Figure out what the scope of the imported die is and prepend it
10510 to the name of the imported die. */
10511 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10512
10513 if (imported_die->tag != DW_TAG_namespace
10514 && imported_die->tag != DW_TAG_module)
10515 {
10516 imported_declaration = imported_name;
10517 canonical_name = imported_name_prefix;
10518 }
10519 else if (strlen (imported_name_prefix) > 0)
10520 canonical_name = obconcat (&objfile->objfile_obstack,
10521 imported_name_prefix,
10522 (cu->language == language_d ? "." : "::"),
10523 imported_name, (char *) NULL);
10524 else
10525 canonical_name = imported_name;
10526
10527 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10528 for (child_die = die->child; child_die && child_die->tag;
10529 child_die = sibling_die (child_die))
10530 {
10531 /* DWARF-4: A Fortran use statement with a “rename list” may be
10532 represented by an imported module entry with an import attribute
10533 referring to the module and owned entries corresponding to those
10534 entities that are renamed as part of being imported. */
10535
10536 if (child_die->tag != DW_TAG_imported_declaration)
10537 {
10538 complaint (_("child DW_TAG_imported_declaration expected "
10539 "- DIE at %s [in module %s]"),
10540 sect_offset_str (child_die->sect_off),
10541 objfile_name (objfile));
10542 continue;
10543 }
10544
10545 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10546 if (import_attr == NULL)
10547 {
10548 complaint (_("Tag '%s' has no DW_AT_import"),
10549 dwarf_tag_name (child_die->tag));
10550 continue;
10551 }
10552
10553 imported_cu = cu;
10554 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10555 &imported_cu);
10556 imported_name = dwarf2_name (imported_die, imported_cu);
10557 if (imported_name == NULL)
10558 {
10559 complaint (_("child DW_TAG_imported_declaration has unknown "
10560 "imported name - DIE at %s [in module %s]"),
10561 sect_offset_str (child_die->sect_off),
10562 objfile_name (objfile));
10563 continue;
10564 }
10565
10566 excludes.push_back (imported_name);
10567
10568 process_die (child_die, cu);
10569 }
10570
10571 add_using_directive (using_directives (cu),
10572 import_prefix,
10573 canonical_name,
10574 import_alias,
10575 imported_declaration,
10576 excludes,
10577 0,
10578 &objfile->objfile_obstack);
10579 }
10580
10581 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10582 types, but gives them a size of zero. Starting with version 14,
10583 ICC is compatible with GCC. */
10584
10585 static bool
10586 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10587 {
10588 if (!cu->checked_producer)
10589 check_producer (cu);
10590
10591 return cu->producer_is_icc_lt_14;
10592 }
10593
10594 /* ICC generates a DW_AT_type for C void functions. This was observed on
10595 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10596 which says that void functions should not have a DW_AT_type. */
10597
10598 static bool
10599 producer_is_icc (struct dwarf2_cu *cu)
10600 {
10601 if (!cu->checked_producer)
10602 check_producer (cu);
10603
10604 return cu->producer_is_icc;
10605 }
10606
10607 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10608 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10609 this, it was first present in GCC release 4.3.0. */
10610
10611 static bool
10612 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10613 {
10614 if (!cu->checked_producer)
10615 check_producer (cu);
10616
10617 return cu->producer_is_gcc_lt_4_3;
10618 }
10619
10620 static file_and_directory
10621 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10622 {
10623 file_and_directory res;
10624
10625 /* Find the filename. Do not use dwarf2_name here, since the filename
10626 is not a source language identifier. */
10627 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10628 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10629
10630 if (res.comp_dir == NULL
10631 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10632 && IS_ABSOLUTE_PATH (res.name))
10633 {
10634 res.comp_dir_storage = ldirname (res.name);
10635 if (!res.comp_dir_storage.empty ())
10636 res.comp_dir = res.comp_dir_storage.c_str ();
10637 }
10638 if (res.comp_dir != NULL)
10639 {
10640 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10641 directory, get rid of it. */
10642 const char *cp = strchr (res.comp_dir, ':');
10643
10644 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10645 res.comp_dir = cp + 1;
10646 }
10647
10648 if (res.name == NULL)
10649 res.name = "<unknown>";
10650
10651 return res;
10652 }
10653
10654 /* Handle DW_AT_stmt_list for a compilation unit.
10655 DIE is the DW_TAG_compile_unit die for CU.
10656 COMP_DIR is the compilation directory. LOWPC is passed to
10657 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10658
10659 static void
10660 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10661 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10662 {
10663 struct dwarf2_per_objfile *dwarf2_per_objfile
10664 = cu->per_cu->dwarf2_per_objfile;
10665 struct attribute *attr;
10666 struct line_header line_header_local;
10667 hashval_t line_header_local_hash;
10668 void **slot;
10669 int decode_mapping;
10670
10671 gdb_assert (! cu->per_cu->is_debug_types);
10672
10673 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10674 if (attr == NULL)
10675 return;
10676
10677 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10678
10679 /* The line header hash table is only created if needed (it exists to
10680 prevent redundant reading of the line table for partial_units).
10681 If we're given a partial_unit, we'll need it. If we're given a
10682 compile_unit, then use the line header hash table if it's already
10683 created, but don't create one just yet. */
10684
10685 if (dwarf2_per_objfile->line_header_hash == NULL
10686 && die->tag == DW_TAG_partial_unit)
10687 {
10688 dwarf2_per_objfile->line_header_hash
10689 .reset (htab_create_alloc (127, line_header_hash_voidp,
10690 line_header_eq_voidp,
10691 free_line_header_voidp,
10692 xcalloc, xfree));
10693 }
10694
10695 line_header_local.sect_off = line_offset;
10696 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10697 line_header_local_hash = line_header_hash (&line_header_local);
10698 if (dwarf2_per_objfile->line_header_hash != NULL)
10699 {
10700 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10701 &line_header_local,
10702 line_header_local_hash, NO_INSERT);
10703
10704 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10705 is not present in *SLOT (since if there is something in *SLOT then
10706 it will be for a partial_unit). */
10707 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10708 {
10709 gdb_assert (*slot != NULL);
10710 cu->line_header = (struct line_header *) *slot;
10711 return;
10712 }
10713 }
10714
10715 /* dwarf_decode_line_header does not yet provide sufficient information.
10716 We always have to call also dwarf_decode_lines for it. */
10717 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10718 if (lh == NULL)
10719 return;
10720
10721 cu->line_header = lh.release ();
10722 cu->line_header_die_owner = die;
10723
10724 if (dwarf2_per_objfile->line_header_hash == NULL)
10725 slot = NULL;
10726 else
10727 {
10728 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10729 &line_header_local,
10730 line_header_local_hash, INSERT);
10731 gdb_assert (slot != NULL);
10732 }
10733 if (slot != NULL && *slot == NULL)
10734 {
10735 /* This newly decoded line number information unit will be owned
10736 by line_header_hash hash table. */
10737 *slot = cu->line_header;
10738 cu->line_header_die_owner = NULL;
10739 }
10740 else
10741 {
10742 /* We cannot free any current entry in (*slot) as that struct line_header
10743 may be already used by multiple CUs. Create only temporary decoded
10744 line_header for this CU - it may happen at most once for each line
10745 number information unit. And if we're not using line_header_hash
10746 then this is what we want as well. */
10747 gdb_assert (die->tag != DW_TAG_partial_unit);
10748 }
10749 decode_mapping = (die->tag != DW_TAG_partial_unit);
10750 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10751 decode_mapping);
10752
10753 }
10754
10755 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10756
10757 static void
10758 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10759 {
10760 struct dwarf2_per_objfile *dwarf2_per_objfile
10761 = cu->per_cu->dwarf2_per_objfile;
10762 struct objfile *objfile = dwarf2_per_objfile->objfile;
10763 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10764 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10765 CORE_ADDR highpc = ((CORE_ADDR) 0);
10766 struct attribute *attr;
10767 struct die_info *child_die;
10768 CORE_ADDR baseaddr;
10769
10770 prepare_one_comp_unit (cu, die, cu->language);
10771 baseaddr = objfile->text_section_offset ();
10772
10773 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10774
10775 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10776 from finish_block. */
10777 if (lowpc == ((CORE_ADDR) -1))
10778 lowpc = highpc;
10779 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10780
10781 file_and_directory fnd = find_file_and_directory (die, cu);
10782
10783 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10784 standardised yet. As a workaround for the language detection we fall
10785 back to the DW_AT_producer string. */
10786 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10787 cu->language = language_opencl;
10788
10789 /* Similar hack for Go. */
10790 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10791 set_cu_language (DW_LANG_Go, cu);
10792
10793 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10794
10795 /* Decode line number information if present. We do this before
10796 processing child DIEs, so that the line header table is available
10797 for DW_AT_decl_file. */
10798 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10799
10800 /* Process all dies in compilation unit. */
10801 if (die->child != NULL)
10802 {
10803 child_die = die->child;
10804 while (child_die && child_die->tag)
10805 {
10806 process_die (child_die, cu);
10807 child_die = sibling_die (child_die);
10808 }
10809 }
10810
10811 /* Decode macro information, if present. Dwarf 2 macro information
10812 refers to information in the line number info statement program
10813 header, so we can only read it if we've read the header
10814 successfully. */
10815 attr = dwarf2_attr (die, DW_AT_macros, cu);
10816 if (attr == NULL)
10817 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10818 if (attr && cu->line_header)
10819 {
10820 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10821 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10822
10823 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10824 }
10825 else
10826 {
10827 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10828 if (attr && cu->line_header)
10829 {
10830 unsigned int macro_offset = DW_UNSND (attr);
10831
10832 dwarf_decode_macros (cu, macro_offset, 0);
10833 }
10834 }
10835 }
10836
10837 void
10838 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10839 {
10840 struct type_unit_group *tu_group;
10841 int first_time;
10842 struct attribute *attr;
10843 unsigned int i;
10844 struct signatured_type *sig_type;
10845
10846 gdb_assert (per_cu->is_debug_types);
10847 sig_type = (struct signatured_type *) per_cu;
10848
10849 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10850
10851 /* If we're using .gdb_index (includes -readnow) then
10852 per_cu->type_unit_group may not have been set up yet. */
10853 if (sig_type->type_unit_group == NULL)
10854 sig_type->type_unit_group = get_type_unit_group (this, attr);
10855 tu_group = sig_type->type_unit_group;
10856
10857 /* If we've already processed this stmt_list there's no real need to
10858 do it again, we could fake it and just recreate the part we need
10859 (file name,index -> symtab mapping). If data shows this optimization
10860 is useful we can do it then. */
10861 first_time = tu_group->compunit_symtab == NULL;
10862
10863 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10864 debug info. */
10865 line_header_up lh;
10866 if (attr != NULL)
10867 {
10868 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10869 lh = dwarf_decode_line_header (line_offset, this);
10870 }
10871 if (lh == NULL)
10872 {
10873 if (first_time)
10874 start_symtab ("", NULL, 0);
10875 else
10876 {
10877 gdb_assert (tu_group->symtabs == NULL);
10878 gdb_assert (m_builder == nullptr);
10879 struct compunit_symtab *cust = tu_group->compunit_symtab;
10880 m_builder.reset (new struct buildsym_compunit
10881 (COMPUNIT_OBJFILE (cust), "",
10882 COMPUNIT_DIRNAME (cust),
10883 compunit_language (cust),
10884 0, cust));
10885 }
10886 return;
10887 }
10888
10889 line_header = lh.release ();
10890 line_header_die_owner = die;
10891
10892 if (first_time)
10893 {
10894 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10895
10896 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10897 still initializing it, and our caller (a few levels up)
10898 process_full_type_unit still needs to know if this is the first
10899 time. */
10900
10901 tu_group->symtabs
10902 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10903 struct symtab *, line_header->file_names_size ());
10904
10905 auto &file_names = line_header->file_names ();
10906 for (i = 0; i < file_names.size (); ++i)
10907 {
10908 file_entry &fe = file_names[i];
10909 dwarf2_start_subfile (this, fe.name,
10910 fe.include_dir (line_header));
10911 buildsym_compunit *b = get_builder ();
10912 if (b->get_current_subfile ()->symtab == NULL)
10913 {
10914 /* NOTE: start_subfile will recognize when it's been
10915 passed a file it has already seen. So we can't
10916 assume there's a simple mapping from
10917 cu->line_header->file_names to subfiles, plus
10918 cu->line_header->file_names may contain dups. */
10919 b->get_current_subfile ()->symtab
10920 = allocate_symtab (cust, b->get_current_subfile ()->name);
10921 }
10922
10923 fe.symtab = b->get_current_subfile ()->symtab;
10924 tu_group->symtabs[i] = fe.symtab;
10925 }
10926 }
10927 else
10928 {
10929 gdb_assert (m_builder == nullptr);
10930 struct compunit_symtab *cust = tu_group->compunit_symtab;
10931 m_builder.reset (new struct buildsym_compunit
10932 (COMPUNIT_OBJFILE (cust), "",
10933 COMPUNIT_DIRNAME (cust),
10934 compunit_language (cust),
10935 0, cust));
10936
10937 auto &file_names = line_header->file_names ();
10938 for (i = 0; i < file_names.size (); ++i)
10939 {
10940 file_entry &fe = file_names[i];
10941 fe.symtab = tu_group->symtabs[i];
10942 }
10943 }
10944
10945 /* The main symtab is allocated last. Type units don't have DW_AT_name
10946 so they don't have a "real" (so to speak) symtab anyway.
10947 There is later code that will assign the main symtab to all symbols
10948 that don't have one. We need to handle the case of a symbol with a
10949 missing symtab (DW_AT_decl_file) anyway. */
10950 }
10951
10952 /* Process DW_TAG_type_unit.
10953 For TUs we want to skip the first top level sibling if it's not the
10954 actual type being defined by this TU. In this case the first top
10955 level sibling is there to provide context only. */
10956
10957 static void
10958 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10959 {
10960 struct die_info *child_die;
10961
10962 prepare_one_comp_unit (cu, die, language_minimal);
10963
10964 /* Initialize (or reinitialize) the machinery for building symtabs.
10965 We do this before processing child DIEs, so that the line header table
10966 is available for DW_AT_decl_file. */
10967 cu->setup_type_unit_groups (die);
10968
10969 if (die->child != NULL)
10970 {
10971 child_die = die->child;
10972 while (child_die && child_die->tag)
10973 {
10974 process_die (child_die, cu);
10975 child_die = sibling_die (child_die);
10976 }
10977 }
10978 }
10979 \f
10980 /* DWO/DWP files.
10981
10982 http://gcc.gnu.org/wiki/DebugFission
10983 http://gcc.gnu.org/wiki/DebugFissionDWP
10984
10985 To simplify handling of both DWO files ("object" files with the DWARF info)
10986 and DWP files (a file with the DWOs packaged up into one file), we treat
10987 DWP files as having a collection of virtual DWO files. */
10988
10989 static hashval_t
10990 hash_dwo_file (const void *item)
10991 {
10992 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10993 hashval_t hash;
10994
10995 hash = htab_hash_string (dwo_file->dwo_name);
10996 if (dwo_file->comp_dir != NULL)
10997 hash += htab_hash_string (dwo_file->comp_dir);
10998 return hash;
10999 }
11000
11001 static int
11002 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11003 {
11004 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11005 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11006
11007 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11008 return 0;
11009 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11010 return lhs->comp_dir == rhs->comp_dir;
11011 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11012 }
11013
11014 /* Allocate a hash table for DWO files. */
11015
11016 static htab_up
11017 allocate_dwo_file_hash_table ()
11018 {
11019 auto delete_dwo_file = [] (void *item)
11020 {
11021 struct dwo_file *dwo_file = (struct dwo_file *) item;
11022
11023 delete dwo_file;
11024 };
11025
11026 return htab_up (htab_create_alloc (41,
11027 hash_dwo_file,
11028 eq_dwo_file,
11029 delete_dwo_file,
11030 xcalloc, xfree));
11031 }
11032
11033 /* Lookup DWO file DWO_NAME. */
11034
11035 static void **
11036 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11037 const char *dwo_name,
11038 const char *comp_dir)
11039 {
11040 struct dwo_file find_entry;
11041 void **slot;
11042
11043 if (dwarf2_per_objfile->dwo_files == NULL)
11044 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11045
11046 find_entry.dwo_name = dwo_name;
11047 find_entry.comp_dir = comp_dir;
11048 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11049 INSERT);
11050
11051 return slot;
11052 }
11053
11054 static hashval_t
11055 hash_dwo_unit (const void *item)
11056 {
11057 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11058
11059 /* This drops the top 32 bits of the id, but is ok for a hash. */
11060 return dwo_unit->signature;
11061 }
11062
11063 static int
11064 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11065 {
11066 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11067 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11068
11069 /* The signature is assumed to be unique within the DWO file.
11070 So while object file CU dwo_id's always have the value zero,
11071 that's OK, assuming each object file DWO file has only one CU,
11072 and that's the rule for now. */
11073 return lhs->signature == rhs->signature;
11074 }
11075
11076 /* Allocate a hash table for DWO CUs,TUs.
11077 There is one of these tables for each of CUs,TUs for each DWO file. */
11078
11079 static htab_up
11080 allocate_dwo_unit_table ()
11081 {
11082 /* Start out with a pretty small number.
11083 Generally DWO files contain only one CU and maybe some TUs. */
11084 return htab_up (htab_create_alloc (3,
11085 hash_dwo_unit,
11086 eq_dwo_unit,
11087 NULL, xcalloc, xfree));
11088 }
11089
11090 /* die_reader_func for create_dwo_cu. */
11091
11092 static void
11093 create_dwo_cu_reader (const struct die_reader_specs *reader,
11094 const gdb_byte *info_ptr,
11095 struct die_info *comp_unit_die,
11096 struct dwo_file *dwo_file,
11097 struct dwo_unit *dwo_unit)
11098 {
11099 struct dwarf2_cu *cu = reader->cu;
11100 sect_offset sect_off = cu->per_cu->sect_off;
11101 struct dwarf2_section_info *section = cu->per_cu->section;
11102
11103 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11104 if (!signature.has_value ())
11105 {
11106 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11107 " its dwo_id [in module %s]"),
11108 sect_offset_str (sect_off), dwo_file->dwo_name);
11109 return;
11110 }
11111
11112 dwo_unit->dwo_file = dwo_file;
11113 dwo_unit->signature = *signature;
11114 dwo_unit->section = section;
11115 dwo_unit->sect_off = sect_off;
11116 dwo_unit->length = cu->per_cu->length;
11117
11118 if (dwarf_read_debug)
11119 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11120 sect_offset_str (sect_off),
11121 hex_string (dwo_unit->signature));
11122 }
11123
11124 /* Create the dwo_units for the CUs in a DWO_FILE.
11125 Note: This function processes DWO files only, not DWP files. */
11126
11127 static void
11128 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11129 dwarf2_cu *cu, struct dwo_file &dwo_file,
11130 dwarf2_section_info &section, htab_up &cus_htab)
11131 {
11132 struct objfile *objfile = dwarf2_per_objfile->objfile;
11133 const gdb_byte *info_ptr, *end_ptr;
11134
11135 section.read (objfile);
11136 info_ptr = section.buffer;
11137
11138 if (info_ptr == NULL)
11139 return;
11140
11141 if (dwarf_read_debug)
11142 {
11143 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11144 section.get_name (),
11145 section.get_file_name ());
11146 }
11147
11148 end_ptr = info_ptr + section.size;
11149 while (info_ptr < end_ptr)
11150 {
11151 struct dwarf2_per_cu_data per_cu;
11152 struct dwo_unit read_unit {};
11153 struct dwo_unit *dwo_unit;
11154 void **slot;
11155 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11156
11157 memset (&per_cu, 0, sizeof (per_cu));
11158 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11159 per_cu.is_debug_types = 0;
11160 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11161 per_cu.section = &section;
11162
11163 cutu_reader reader (&per_cu, cu, &dwo_file);
11164 if (!reader.dummy_p)
11165 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11166 &dwo_file, &read_unit);
11167 info_ptr += per_cu.length;
11168
11169 // If the unit could not be parsed, skip it.
11170 if (read_unit.dwo_file == NULL)
11171 continue;
11172
11173 if (cus_htab == NULL)
11174 cus_htab = allocate_dwo_unit_table ();
11175
11176 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11177 *dwo_unit = read_unit;
11178 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11179 gdb_assert (slot != NULL);
11180 if (*slot != NULL)
11181 {
11182 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11183 sect_offset dup_sect_off = dup_cu->sect_off;
11184
11185 complaint (_("debug cu entry at offset %s is duplicate to"
11186 " the entry at offset %s, signature %s"),
11187 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11188 hex_string (dwo_unit->signature));
11189 }
11190 *slot = (void *)dwo_unit;
11191 }
11192 }
11193
11194 /* DWP file .debug_{cu,tu}_index section format:
11195 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11196
11197 DWP Version 1:
11198
11199 Both index sections have the same format, and serve to map a 64-bit
11200 signature to a set of section numbers. Each section begins with a header,
11201 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11202 indexes, and a pool of 32-bit section numbers. The index sections will be
11203 aligned at 8-byte boundaries in the file.
11204
11205 The index section header consists of:
11206
11207 V, 32 bit version number
11208 -, 32 bits unused
11209 N, 32 bit number of compilation units or type units in the index
11210 M, 32 bit number of slots in the hash table
11211
11212 Numbers are recorded using the byte order of the application binary.
11213
11214 The hash table begins at offset 16 in the section, and consists of an array
11215 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11216 order of the application binary). Unused slots in the hash table are 0.
11217 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11218
11219 The parallel table begins immediately after the hash table
11220 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11221 array of 32-bit indexes (using the byte order of the application binary),
11222 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11223 table contains a 32-bit index into the pool of section numbers. For unused
11224 hash table slots, the corresponding entry in the parallel table will be 0.
11225
11226 The pool of section numbers begins immediately following the hash table
11227 (at offset 16 + 12 * M from the beginning of the section). The pool of
11228 section numbers consists of an array of 32-bit words (using the byte order
11229 of the application binary). Each item in the array is indexed starting
11230 from 0. The hash table entry provides the index of the first section
11231 number in the set. Additional section numbers in the set follow, and the
11232 set is terminated by a 0 entry (section number 0 is not used in ELF).
11233
11234 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11235 section must be the first entry in the set, and the .debug_abbrev.dwo must
11236 be the second entry. Other members of the set may follow in any order.
11237
11238 ---
11239
11240 DWP Version 2:
11241
11242 DWP Version 2 combines all the .debug_info, etc. sections into one,
11243 and the entries in the index tables are now offsets into these sections.
11244 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11245 section.
11246
11247 Index Section Contents:
11248 Header
11249 Hash Table of Signatures dwp_hash_table.hash_table
11250 Parallel Table of Indices dwp_hash_table.unit_table
11251 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11252 Table of Section Sizes dwp_hash_table.v2.sizes
11253
11254 The index section header consists of:
11255
11256 V, 32 bit version number
11257 L, 32 bit number of columns in the table of section offsets
11258 N, 32 bit number of compilation units or type units in the index
11259 M, 32 bit number of slots in the hash table
11260
11261 Numbers are recorded using the byte order of the application binary.
11262
11263 The hash table has the same format as version 1.
11264 The parallel table of indices has the same format as version 1,
11265 except that the entries are origin-1 indices into the table of sections
11266 offsets and the table of section sizes.
11267
11268 The table of offsets begins immediately following the parallel table
11269 (at offset 16 + 12 * M from the beginning of the section). The table is
11270 a two-dimensional array of 32-bit words (using the byte order of the
11271 application binary), with L columns and N+1 rows, in row-major order.
11272 Each row in the array is indexed starting from 0. The first row provides
11273 a key to the remaining rows: each column in this row provides an identifier
11274 for a debug section, and the offsets in the same column of subsequent rows
11275 refer to that section. The section identifiers are:
11276
11277 DW_SECT_INFO 1 .debug_info.dwo
11278 DW_SECT_TYPES 2 .debug_types.dwo
11279 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11280 DW_SECT_LINE 4 .debug_line.dwo
11281 DW_SECT_LOC 5 .debug_loc.dwo
11282 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11283 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11284 DW_SECT_MACRO 8 .debug_macro.dwo
11285
11286 The offsets provided by the CU and TU index sections are the base offsets
11287 for the contributions made by each CU or TU to the corresponding section
11288 in the package file. Each CU and TU header contains an abbrev_offset
11289 field, used to find the abbreviations table for that CU or TU within the
11290 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11291 be interpreted as relative to the base offset given in the index section.
11292 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11293 should be interpreted as relative to the base offset for .debug_line.dwo,
11294 and offsets into other debug sections obtained from DWARF attributes should
11295 also be interpreted as relative to the corresponding base offset.
11296
11297 The table of sizes begins immediately following the table of offsets.
11298 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11299 with L columns and N rows, in row-major order. Each row in the array is
11300 indexed starting from 1 (row 0 is shared by the two tables).
11301
11302 ---
11303
11304 Hash table lookup is handled the same in version 1 and 2:
11305
11306 We assume that N and M will not exceed 2^32 - 1.
11307 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11308
11309 Given a 64-bit compilation unit signature or a type signature S, an entry
11310 in the hash table is located as follows:
11311
11312 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11313 the low-order k bits all set to 1.
11314
11315 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11316
11317 3) If the hash table entry at index H matches the signature, use that
11318 entry. If the hash table entry at index H is unused (all zeroes),
11319 terminate the search: the signature is not present in the table.
11320
11321 4) Let H = (H + H') modulo M. Repeat at Step 3.
11322
11323 Because M > N and H' and M are relatively prime, the search is guaranteed
11324 to stop at an unused slot or find the match. */
11325
11326 /* Create a hash table to map DWO IDs to their CU/TU entry in
11327 .debug_{info,types}.dwo in DWP_FILE.
11328 Returns NULL if there isn't one.
11329 Note: This function processes DWP files only, not DWO files. */
11330
11331 static struct dwp_hash_table *
11332 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11333 struct dwp_file *dwp_file, int is_debug_types)
11334 {
11335 struct objfile *objfile = dwarf2_per_objfile->objfile;
11336 bfd *dbfd = dwp_file->dbfd.get ();
11337 const gdb_byte *index_ptr, *index_end;
11338 struct dwarf2_section_info *index;
11339 uint32_t version, nr_columns, nr_units, nr_slots;
11340 struct dwp_hash_table *htab;
11341
11342 if (is_debug_types)
11343 index = &dwp_file->sections.tu_index;
11344 else
11345 index = &dwp_file->sections.cu_index;
11346
11347 if (index->empty ())
11348 return NULL;
11349 index->read (objfile);
11350
11351 index_ptr = index->buffer;
11352 index_end = index_ptr + index->size;
11353
11354 version = read_4_bytes (dbfd, index_ptr);
11355 index_ptr += 4;
11356 if (version == 2)
11357 nr_columns = read_4_bytes (dbfd, index_ptr);
11358 else
11359 nr_columns = 0;
11360 index_ptr += 4;
11361 nr_units = read_4_bytes (dbfd, index_ptr);
11362 index_ptr += 4;
11363 nr_slots = read_4_bytes (dbfd, index_ptr);
11364 index_ptr += 4;
11365
11366 if (version != 1 && version != 2)
11367 {
11368 error (_("Dwarf Error: unsupported DWP file version (%s)"
11369 " [in module %s]"),
11370 pulongest (version), dwp_file->name);
11371 }
11372 if (nr_slots != (nr_slots & -nr_slots))
11373 {
11374 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11375 " is not power of 2 [in module %s]"),
11376 pulongest (nr_slots), dwp_file->name);
11377 }
11378
11379 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11380 htab->version = version;
11381 htab->nr_columns = nr_columns;
11382 htab->nr_units = nr_units;
11383 htab->nr_slots = nr_slots;
11384 htab->hash_table = index_ptr;
11385 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11386
11387 /* Exit early if the table is empty. */
11388 if (nr_slots == 0 || nr_units == 0
11389 || (version == 2 && nr_columns == 0))
11390 {
11391 /* All must be zero. */
11392 if (nr_slots != 0 || nr_units != 0
11393 || (version == 2 && nr_columns != 0))
11394 {
11395 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11396 " all zero [in modules %s]"),
11397 dwp_file->name);
11398 }
11399 return htab;
11400 }
11401
11402 if (version == 1)
11403 {
11404 htab->section_pool.v1.indices =
11405 htab->unit_table + sizeof (uint32_t) * nr_slots;
11406 /* It's harder to decide whether the section is too small in v1.
11407 V1 is deprecated anyway so we punt. */
11408 }
11409 else
11410 {
11411 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11412 int *ids = htab->section_pool.v2.section_ids;
11413 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11414 /* Reverse map for error checking. */
11415 int ids_seen[DW_SECT_MAX + 1];
11416 int i;
11417
11418 if (nr_columns < 2)
11419 {
11420 error (_("Dwarf Error: bad DWP hash table, too few columns"
11421 " in section table [in module %s]"),
11422 dwp_file->name);
11423 }
11424 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11425 {
11426 error (_("Dwarf Error: bad DWP hash table, too many columns"
11427 " in section table [in module %s]"),
11428 dwp_file->name);
11429 }
11430 memset (ids, 255, sizeof_ids);
11431 memset (ids_seen, 255, sizeof (ids_seen));
11432 for (i = 0; i < nr_columns; ++i)
11433 {
11434 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11435
11436 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11437 {
11438 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11439 " in section table [in module %s]"),
11440 id, dwp_file->name);
11441 }
11442 if (ids_seen[id] != -1)
11443 {
11444 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11445 " id %d in section table [in module %s]"),
11446 id, dwp_file->name);
11447 }
11448 ids_seen[id] = i;
11449 ids[i] = id;
11450 }
11451 /* Must have exactly one info or types section. */
11452 if (((ids_seen[DW_SECT_INFO] != -1)
11453 + (ids_seen[DW_SECT_TYPES] != -1))
11454 != 1)
11455 {
11456 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11457 " DWO info/types section [in module %s]"),
11458 dwp_file->name);
11459 }
11460 /* Must have an abbrev section. */
11461 if (ids_seen[DW_SECT_ABBREV] == -1)
11462 {
11463 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11464 " section [in module %s]"),
11465 dwp_file->name);
11466 }
11467 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11468 htab->section_pool.v2.sizes =
11469 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11470 * nr_units * nr_columns);
11471 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11472 * nr_units * nr_columns))
11473 > index_end)
11474 {
11475 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11476 " [in module %s]"),
11477 dwp_file->name);
11478 }
11479 }
11480
11481 return htab;
11482 }
11483
11484 /* Update SECTIONS with the data from SECTP.
11485
11486 This function is like the other "locate" section routines that are
11487 passed to bfd_map_over_sections, but in this context the sections to
11488 read comes from the DWP V1 hash table, not the full ELF section table.
11489
11490 The result is non-zero for success, or zero if an error was found. */
11491
11492 static int
11493 locate_v1_virtual_dwo_sections (asection *sectp,
11494 struct virtual_v1_dwo_sections *sections)
11495 {
11496 const struct dwop_section_names *names = &dwop_section_names;
11497
11498 if (section_is_p (sectp->name, &names->abbrev_dwo))
11499 {
11500 /* There can be only one. */
11501 if (sections->abbrev.s.section != NULL)
11502 return 0;
11503 sections->abbrev.s.section = sectp;
11504 sections->abbrev.size = bfd_section_size (sectp);
11505 }
11506 else if (section_is_p (sectp->name, &names->info_dwo)
11507 || section_is_p (sectp->name, &names->types_dwo))
11508 {
11509 /* There can be only one. */
11510 if (sections->info_or_types.s.section != NULL)
11511 return 0;
11512 sections->info_or_types.s.section = sectp;
11513 sections->info_or_types.size = bfd_section_size (sectp);
11514 }
11515 else if (section_is_p (sectp->name, &names->line_dwo))
11516 {
11517 /* There can be only one. */
11518 if (sections->line.s.section != NULL)
11519 return 0;
11520 sections->line.s.section = sectp;
11521 sections->line.size = bfd_section_size (sectp);
11522 }
11523 else if (section_is_p (sectp->name, &names->loc_dwo))
11524 {
11525 /* There can be only one. */
11526 if (sections->loc.s.section != NULL)
11527 return 0;
11528 sections->loc.s.section = sectp;
11529 sections->loc.size = bfd_section_size (sectp);
11530 }
11531 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11532 {
11533 /* There can be only one. */
11534 if (sections->macinfo.s.section != NULL)
11535 return 0;
11536 sections->macinfo.s.section = sectp;
11537 sections->macinfo.size = bfd_section_size (sectp);
11538 }
11539 else if (section_is_p (sectp->name, &names->macro_dwo))
11540 {
11541 /* There can be only one. */
11542 if (sections->macro.s.section != NULL)
11543 return 0;
11544 sections->macro.s.section = sectp;
11545 sections->macro.size = bfd_section_size (sectp);
11546 }
11547 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11548 {
11549 /* There can be only one. */
11550 if (sections->str_offsets.s.section != NULL)
11551 return 0;
11552 sections->str_offsets.s.section = sectp;
11553 sections->str_offsets.size = bfd_section_size (sectp);
11554 }
11555 else
11556 {
11557 /* No other kind of section is valid. */
11558 return 0;
11559 }
11560
11561 return 1;
11562 }
11563
11564 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11565 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11566 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11567 This is for DWP version 1 files. */
11568
11569 static struct dwo_unit *
11570 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11571 struct dwp_file *dwp_file,
11572 uint32_t unit_index,
11573 const char *comp_dir,
11574 ULONGEST signature, int is_debug_types)
11575 {
11576 struct objfile *objfile = dwarf2_per_objfile->objfile;
11577 const struct dwp_hash_table *dwp_htab =
11578 is_debug_types ? dwp_file->tus : dwp_file->cus;
11579 bfd *dbfd = dwp_file->dbfd.get ();
11580 const char *kind = is_debug_types ? "TU" : "CU";
11581 struct dwo_file *dwo_file;
11582 struct dwo_unit *dwo_unit;
11583 struct virtual_v1_dwo_sections sections;
11584 void **dwo_file_slot;
11585 int i;
11586
11587 gdb_assert (dwp_file->version == 1);
11588
11589 if (dwarf_read_debug)
11590 {
11591 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11592 kind,
11593 pulongest (unit_index), hex_string (signature),
11594 dwp_file->name);
11595 }
11596
11597 /* Fetch the sections of this DWO unit.
11598 Put a limit on the number of sections we look for so that bad data
11599 doesn't cause us to loop forever. */
11600
11601 #define MAX_NR_V1_DWO_SECTIONS \
11602 (1 /* .debug_info or .debug_types */ \
11603 + 1 /* .debug_abbrev */ \
11604 + 1 /* .debug_line */ \
11605 + 1 /* .debug_loc */ \
11606 + 1 /* .debug_str_offsets */ \
11607 + 1 /* .debug_macro or .debug_macinfo */ \
11608 + 1 /* trailing zero */)
11609
11610 memset (&sections, 0, sizeof (sections));
11611
11612 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11613 {
11614 asection *sectp;
11615 uint32_t section_nr =
11616 read_4_bytes (dbfd,
11617 dwp_htab->section_pool.v1.indices
11618 + (unit_index + i) * sizeof (uint32_t));
11619
11620 if (section_nr == 0)
11621 break;
11622 if (section_nr >= dwp_file->num_sections)
11623 {
11624 error (_("Dwarf Error: bad DWP hash table, section number too large"
11625 " [in module %s]"),
11626 dwp_file->name);
11627 }
11628
11629 sectp = dwp_file->elf_sections[section_nr];
11630 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11631 {
11632 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11633 " [in module %s]"),
11634 dwp_file->name);
11635 }
11636 }
11637
11638 if (i < 2
11639 || sections.info_or_types.empty ()
11640 || sections.abbrev.empty ())
11641 {
11642 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11643 " [in module %s]"),
11644 dwp_file->name);
11645 }
11646 if (i == MAX_NR_V1_DWO_SECTIONS)
11647 {
11648 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11649 " [in module %s]"),
11650 dwp_file->name);
11651 }
11652
11653 /* It's easier for the rest of the code if we fake a struct dwo_file and
11654 have dwo_unit "live" in that. At least for now.
11655
11656 The DWP file can be made up of a random collection of CUs and TUs.
11657 However, for each CU + set of TUs that came from the same original DWO
11658 file, we can combine them back into a virtual DWO file to save space
11659 (fewer struct dwo_file objects to allocate). Remember that for really
11660 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11661
11662 std::string virtual_dwo_name =
11663 string_printf ("virtual-dwo/%d-%d-%d-%d",
11664 sections.abbrev.get_id (),
11665 sections.line.get_id (),
11666 sections.loc.get_id (),
11667 sections.str_offsets.get_id ());
11668 /* Can we use an existing virtual DWO file? */
11669 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11670 virtual_dwo_name.c_str (),
11671 comp_dir);
11672 /* Create one if necessary. */
11673 if (*dwo_file_slot == NULL)
11674 {
11675 if (dwarf_read_debug)
11676 {
11677 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11678 virtual_dwo_name.c_str ());
11679 }
11680 dwo_file = new struct dwo_file;
11681 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11682 virtual_dwo_name);
11683 dwo_file->comp_dir = comp_dir;
11684 dwo_file->sections.abbrev = sections.abbrev;
11685 dwo_file->sections.line = sections.line;
11686 dwo_file->sections.loc = sections.loc;
11687 dwo_file->sections.macinfo = sections.macinfo;
11688 dwo_file->sections.macro = sections.macro;
11689 dwo_file->sections.str_offsets = sections.str_offsets;
11690 /* The "str" section is global to the entire DWP file. */
11691 dwo_file->sections.str = dwp_file->sections.str;
11692 /* The info or types section is assigned below to dwo_unit,
11693 there's no need to record it in dwo_file.
11694 Also, we can't simply record type sections in dwo_file because
11695 we record a pointer into the vector in dwo_unit. As we collect more
11696 types we'll grow the vector and eventually have to reallocate space
11697 for it, invalidating all copies of pointers into the previous
11698 contents. */
11699 *dwo_file_slot = dwo_file;
11700 }
11701 else
11702 {
11703 if (dwarf_read_debug)
11704 {
11705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11706 virtual_dwo_name.c_str ());
11707 }
11708 dwo_file = (struct dwo_file *) *dwo_file_slot;
11709 }
11710
11711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11712 dwo_unit->dwo_file = dwo_file;
11713 dwo_unit->signature = signature;
11714 dwo_unit->section =
11715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11716 *dwo_unit->section = sections.info_or_types;
11717 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11718
11719 return dwo_unit;
11720 }
11721
11722 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11723 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11724 piece within that section used by a TU/CU, return a virtual section
11725 of just that piece. */
11726
11727 static struct dwarf2_section_info
11728 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11729 struct dwarf2_section_info *section,
11730 bfd_size_type offset, bfd_size_type size)
11731 {
11732 struct dwarf2_section_info result;
11733 asection *sectp;
11734
11735 gdb_assert (section != NULL);
11736 gdb_assert (!section->is_virtual);
11737
11738 memset (&result, 0, sizeof (result));
11739 result.s.containing_section = section;
11740 result.is_virtual = true;
11741
11742 if (size == 0)
11743 return result;
11744
11745 sectp = section->get_bfd_section ();
11746
11747 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11748 bounds of the real section. This is a pretty-rare event, so just
11749 flag an error (easier) instead of a warning and trying to cope. */
11750 if (sectp == NULL
11751 || offset + size > bfd_section_size (sectp))
11752 {
11753 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11754 " in section %s [in module %s]"),
11755 sectp ? bfd_section_name (sectp) : "<unknown>",
11756 objfile_name (dwarf2_per_objfile->objfile));
11757 }
11758
11759 result.virtual_offset = offset;
11760 result.size = size;
11761 return result;
11762 }
11763
11764 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11765 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11766 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11767 This is for DWP version 2 files. */
11768
11769 static struct dwo_unit *
11770 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11771 struct dwp_file *dwp_file,
11772 uint32_t unit_index,
11773 const char *comp_dir,
11774 ULONGEST signature, int is_debug_types)
11775 {
11776 struct objfile *objfile = dwarf2_per_objfile->objfile;
11777 const struct dwp_hash_table *dwp_htab =
11778 is_debug_types ? dwp_file->tus : dwp_file->cus;
11779 bfd *dbfd = dwp_file->dbfd.get ();
11780 const char *kind = is_debug_types ? "TU" : "CU";
11781 struct dwo_file *dwo_file;
11782 struct dwo_unit *dwo_unit;
11783 struct virtual_v2_dwo_sections sections;
11784 void **dwo_file_slot;
11785 int i;
11786
11787 gdb_assert (dwp_file->version == 2);
11788
11789 if (dwarf_read_debug)
11790 {
11791 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11792 kind,
11793 pulongest (unit_index), hex_string (signature),
11794 dwp_file->name);
11795 }
11796
11797 /* Fetch the section offsets of this DWO unit. */
11798
11799 memset (&sections, 0, sizeof (sections));
11800
11801 for (i = 0; i < dwp_htab->nr_columns; ++i)
11802 {
11803 uint32_t offset = read_4_bytes (dbfd,
11804 dwp_htab->section_pool.v2.offsets
11805 + (((unit_index - 1) * dwp_htab->nr_columns
11806 + i)
11807 * sizeof (uint32_t)));
11808 uint32_t size = read_4_bytes (dbfd,
11809 dwp_htab->section_pool.v2.sizes
11810 + (((unit_index - 1) * dwp_htab->nr_columns
11811 + i)
11812 * sizeof (uint32_t)));
11813
11814 switch (dwp_htab->section_pool.v2.section_ids[i])
11815 {
11816 case DW_SECT_INFO:
11817 case DW_SECT_TYPES:
11818 sections.info_or_types_offset = offset;
11819 sections.info_or_types_size = size;
11820 break;
11821 case DW_SECT_ABBREV:
11822 sections.abbrev_offset = offset;
11823 sections.abbrev_size = size;
11824 break;
11825 case DW_SECT_LINE:
11826 sections.line_offset = offset;
11827 sections.line_size = size;
11828 break;
11829 case DW_SECT_LOC:
11830 sections.loc_offset = offset;
11831 sections.loc_size = size;
11832 break;
11833 case DW_SECT_STR_OFFSETS:
11834 sections.str_offsets_offset = offset;
11835 sections.str_offsets_size = size;
11836 break;
11837 case DW_SECT_MACINFO:
11838 sections.macinfo_offset = offset;
11839 sections.macinfo_size = size;
11840 break;
11841 case DW_SECT_MACRO:
11842 sections.macro_offset = offset;
11843 sections.macro_size = size;
11844 break;
11845 }
11846 }
11847
11848 /* It's easier for the rest of the code if we fake a struct dwo_file and
11849 have dwo_unit "live" in that. At least for now.
11850
11851 The DWP file can be made up of a random collection of CUs and TUs.
11852 However, for each CU + set of TUs that came from the same original DWO
11853 file, we can combine them back into a virtual DWO file to save space
11854 (fewer struct dwo_file objects to allocate). Remember that for really
11855 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11856
11857 std::string virtual_dwo_name =
11858 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11859 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11860 (long) (sections.line_size ? sections.line_offset : 0),
11861 (long) (sections.loc_size ? sections.loc_offset : 0),
11862 (long) (sections.str_offsets_size
11863 ? sections.str_offsets_offset : 0));
11864 /* Can we use an existing virtual DWO file? */
11865 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11866 virtual_dwo_name.c_str (),
11867 comp_dir);
11868 /* Create one if necessary. */
11869 if (*dwo_file_slot == NULL)
11870 {
11871 if (dwarf_read_debug)
11872 {
11873 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11874 virtual_dwo_name.c_str ());
11875 }
11876 dwo_file = new struct dwo_file;
11877 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11878 virtual_dwo_name);
11879 dwo_file->comp_dir = comp_dir;
11880 dwo_file->sections.abbrev =
11881 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11882 sections.abbrev_offset, sections.abbrev_size);
11883 dwo_file->sections.line =
11884 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11885 sections.line_offset, sections.line_size);
11886 dwo_file->sections.loc =
11887 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11888 sections.loc_offset, sections.loc_size);
11889 dwo_file->sections.macinfo =
11890 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11891 sections.macinfo_offset, sections.macinfo_size);
11892 dwo_file->sections.macro =
11893 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11894 sections.macro_offset, sections.macro_size);
11895 dwo_file->sections.str_offsets =
11896 create_dwp_v2_section (dwarf2_per_objfile,
11897 &dwp_file->sections.str_offsets,
11898 sections.str_offsets_offset,
11899 sections.str_offsets_size);
11900 /* The "str" section is global to the entire DWP file. */
11901 dwo_file->sections.str = dwp_file->sections.str;
11902 /* The info or types section is assigned below to dwo_unit,
11903 there's no need to record it in dwo_file.
11904 Also, we can't simply record type sections in dwo_file because
11905 we record a pointer into the vector in dwo_unit. As we collect more
11906 types we'll grow the vector and eventually have to reallocate space
11907 for it, invalidating all copies of pointers into the previous
11908 contents. */
11909 *dwo_file_slot = dwo_file;
11910 }
11911 else
11912 {
11913 if (dwarf_read_debug)
11914 {
11915 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11916 virtual_dwo_name.c_str ());
11917 }
11918 dwo_file = (struct dwo_file *) *dwo_file_slot;
11919 }
11920
11921 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11922 dwo_unit->dwo_file = dwo_file;
11923 dwo_unit->signature = signature;
11924 dwo_unit->section =
11925 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11926 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11927 is_debug_types
11928 ? &dwp_file->sections.types
11929 : &dwp_file->sections.info,
11930 sections.info_or_types_offset,
11931 sections.info_or_types_size);
11932 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11933
11934 return dwo_unit;
11935 }
11936
11937 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11938 Returns NULL if the signature isn't found. */
11939
11940 static struct dwo_unit *
11941 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11942 struct dwp_file *dwp_file, const char *comp_dir,
11943 ULONGEST signature, int is_debug_types)
11944 {
11945 const struct dwp_hash_table *dwp_htab =
11946 is_debug_types ? dwp_file->tus : dwp_file->cus;
11947 bfd *dbfd = dwp_file->dbfd.get ();
11948 uint32_t mask = dwp_htab->nr_slots - 1;
11949 uint32_t hash = signature & mask;
11950 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11951 unsigned int i;
11952 void **slot;
11953 struct dwo_unit find_dwo_cu;
11954
11955 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11956 find_dwo_cu.signature = signature;
11957 slot = htab_find_slot (is_debug_types
11958 ? dwp_file->loaded_tus.get ()
11959 : dwp_file->loaded_cus.get (),
11960 &find_dwo_cu, INSERT);
11961
11962 if (*slot != NULL)
11963 return (struct dwo_unit *) *slot;
11964
11965 /* Use a for loop so that we don't loop forever on bad debug info. */
11966 for (i = 0; i < dwp_htab->nr_slots; ++i)
11967 {
11968 ULONGEST signature_in_table;
11969
11970 signature_in_table =
11971 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11972 if (signature_in_table == signature)
11973 {
11974 uint32_t unit_index =
11975 read_4_bytes (dbfd,
11976 dwp_htab->unit_table + hash * sizeof (uint32_t));
11977
11978 if (dwp_file->version == 1)
11979 {
11980 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11981 dwp_file, unit_index,
11982 comp_dir, signature,
11983 is_debug_types);
11984 }
11985 else
11986 {
11987 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11988 dwp_file, unit_index,
11989 comp_dir, signature,
11990 is_debug_types);
11991 }
11992 return (struct dwo_unit *) *slot;
11993 }
11994 if (signature_in_table == 0)
11995 return NULL;
11996 hash = (hash + hash2) & mask;
11997 }
11998
11999 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12000 " [in module %s]"),
12001 dwp_file->name);
12002 }
12003
12004 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12005 Open the file specified by FILE_NAME and hand it off to BFD for
12006 preliminary analysis. Return a newly initialized bfd *, which
12007 includes a canonicalized copy of FILE_NAME.
12008 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12009 SEARCH_CWD is true if the current directory is to be searched.
12010 It will be searched before debug-file-directory.
12011 If successful, the file is added to the bfd include table of the
12012 objfile's bfd (see gdb_bfd_record_inclusion).
12013 If unable to find/open the file, return NULL.
12014 NOTE: This function is derived from symfile_bfd_open. */
12015
12016 static gdb_bfd_ref_ptr
12017 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12018 const char *file_name, int is_dwp, int search_cwd)
12019 {
12020 int desc;
12021 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12022 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12023 to debug_file_directory. */
12024 const char *search_path;
12025 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12026
12027 gdb::unique_xmalloc_ptr<char> search_path_holder;
12028 if (search_cwd)
12029 {
12030 if (*debug_file_directory != '\0')
12031 {
12032 search_path_holder.reset (concat (".", dirname_separator_string,
12033 debug_file_directory,
12034 (char *) NULL));
12035 search_path = search_path_holder.get ();
12036 }
12037 else
12038 search_path = ".";
12039 }
12040 else
12041 search_path = debug_file_directory;
12042
12043 openp_flags flags = OPF_RETURN_REALPATH;
12044 if (is_dwp)
12045 flags |= OPF_SEARCH_IN_PATH;
12046
12047 gdb::unique_xmalloc_ptr<char> absolute_name;
12048 desc = openp (search_path, flags, file_name,
12049 O_RDONLY | O_BINARY, &absolute_name);
12050 if (desc < 0)
12051 return NULL;
12052
12053 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12054 gnutarget, desc));
12055 if (sym_bfd == NULL)
12056 return NULL;
12057 bfd_set_cacheable (sym_bfd.get (), 1);
12058
12059 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12060 return NULL;
12061
12062 /* Success. Record the bfd as having been included by the objfile's bfd.
12063 This is important because things like demangled_names_hash lives in the
12064 objfile's per_bfd space and may have references to things like symbol
12065 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12066 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12067
12068 return sym_bfd;
12069 }
12070
12071 /* Try to open DWO file FILE_NAME.
12072 COMP_DIR is the DW_AT_comp_dir attribute.
12073 The result is the bfd handle of the file.
12074 If there is a problem finding or opening the file, return NULL.
12075 Upon success, the canonicalized path of the file is stored in the bfd,
12076 same as symfile_bfd_open. */
12077
12078 static gdb_bfd_ref_ptr
12079 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12080 const char *file_name, const char *comp_dir)
12081 {
12082 if (IS_ABSOLUTE_PATH (file_name))
12083 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12084 0 /*is_dwp*/, 0 /*search_cwd*/);
12085
12086 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12087
12088 if (comp_dir != NULL)
12089 {
12090 gdb::unique_xmalloc_ptr<char> path_to_try
12091 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12092
12093 /* NOTE: If comp_dir is a relative path, this will also try the
12094 search path, which seems useful. */
12095 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12096 path_to_try.get (),
12097 0 /*is_dwp*/,
12098 1 /*search_cwd*/));
12099 if (abfd != NULL)
12100 return abfd;
12101 }
12102
12103 /* That didn't work, try debug-file-directory, which, despite its name,
12104 is a list of paths. */
12105
12106 if (*debug_file_directory == '\0')
12107 return NULL;
12108
12109 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12110 0 /*is_dwp*/, 1 /*search_cwd*/);
12111 }
12112
12113 /* This function is mapped across the sections and remembers the offset and
12114 size of each of the DWO debugging sections we are interested in. */
12115
12116 static void
12117 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12118 {
12119 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12120 const struct dwop_section_names *names = &dwop_section_names;
12121
12122 if (section_is_p (sectp->name, &names->abbrev_dwo))
12123 {
12124 dwo_sections->abbrev.s.section = sectp;
12125 dwo_sections->abbrev.size = bfd_section_size (sectp);
12126 }
12127 else if (section_is_p (sectp->name, &names->info_dwo))
12128 {
12129 dwo_sections->info.s.section = sectp;
12130 dwo_sections->info.size = bfd_section_size (sectp);
12131 }
12132 else if (section_is_p (sectp->name, &names->line_dwo))
12133 {
12134 dwo_sections->line.s.section = sectp;
12135 dwo_sections->line.size = bfd_section_size (sectp);
12136 }
12137 else if (section_is_p (sectp->name, &names->loc_dwo))
12138 {
12139 dwo_sections->loc.s.section = sectp;
12140 dwo_sections->loc.size = bfd_section_size (sectp);
12141 }
12142 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12143 {
12144 dwo_sections->macinfo.s.section = sectp;
12145 dwo_sections->macinfo.size = bfd_section_size (sectp);
12146 }
12147 else if (section_is_p (sectp->name, &names->macro_dwo))
12148 {
12149 dwo_sections->macro.s.section = sectp;
12150 dwo_sections->macro.size = bfd_section_size (sectp);
12151 }
12152 else if (section_is_p (sectp->name, &names->str_dwo))
12153 {
12154 dwo_sections->str.s.section = sectp;
12155 dwo_sections->str.size = bfd_section_size (sectp);
12156 }
12157 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12158 {
12159 dwo_sections->str_offsets.s.section = sectp;
12160 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12161 }
12162 else if (section_is_p (sectp->name, &names->types_dwo))
12163 {
12164 struct dwarf2_section_info type_section;
12165
12166 memset (&type_section, 0, sizeof (type_section));
12167 type_section.s.section = sectp;
12168 type_section.size = bfd_section_size (sectp);
12169 dwo_sections->types.push_back (type_section);
12170 }
12171 }
12172
12173 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12174 by PER_CU. This is for the non-DWP case.
12175 The result is NULL if DWO_NAME can't be found. */
12176
12177 static struct dwo_file *
12178 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12179 const char *dwo_name, const char *comp_dir)
12180 {
12181 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12182
12183 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12184 if (dbfd == NULL)
12185 {
12186 if (dwarf_read_debug)
12187 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12188 return NULL;
12189 }
12190
12191 dwo_file_up dwo_file (new struct dwo_file);
12192 dwo_file->dwo_name = dwo_name;
12193 dwo_file->comp_dir = comp_dir;
12194 dwo_file->dbfd = std::move (dbfd);
12195
12196 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12197 &dwo_file->sections);
12198
12199 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12200 dwo_file->sections.info, dwo_file->cus);
12201
12202 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12203 dwo_file->sections.types, dwo_file->tus);
12204
12205 if (dwarf_read_debug)
12206 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12207
12208 return dwo_file.release ();
12209 }
12210
12211 /* This function is mapped across the sections and remembers the offset and
12212 size of each of the DWP debugging sections common to version 1 and 2 that
12213 we are interested in. */
12214
12215 static void
12216 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12217 void *dwp_file_ptr)
12218 {
12219 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12220 const struct dwop_section_names *names = &dwop_section_names;
12221 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12222
12223 /* Record the ELF section number for later lookup: this is what the
12224 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12225 gdb_assert (elf_section_nr < dwp_file->num_sections);
12226 dwp_file->elf_sections[elf_section_nr] = sectp;
12227
12228 /* Look for specific sections that we need. */
12229 if (section_is_p (sectp->name, &names->str_dwo))
12230 {
12231 dwp_file->sections.str.s.section = sectp;
12232 dwp_file->sections.str.size = bfd_section_size (sectp);
12233 }
12234 else if (section_is_p (sectp->name, &names->cu_index))
12235 {
12236 dwp_file->sections.cu_index.s.section = sectp;
12237 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12238 }
12239 else if (section_is_p (sectp->name, &names->tu_index))
12240 {
12241 dwp_file->sections.tu_index.s.section = sectp;
12242 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12243 }
12244 }
12245
12246 /* This function is mapped across the sections and remembers the offset and
12247 size of each of the DWP version 2 debugging sections that we are interested
12248 in. This is split into a separate function because we don't know if we
12249 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12250
12251 static void
12252 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12253 {
12254 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12255 const struct dwop_section_names *names = &dwop_section_names;
12256 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12257
12258 /* Record the ELF section number for later lookup: this is what the
12259 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12260 gdb_assert (elf_section_nr < dwp_file->num_sections);
12261 dwp_file->elf_sections[elf_section_nr] = sectp;
12262
12263 /* Look for specific sections that we need. */
12264 if (section_is_p (sectp->name, &names->abbrev_dwo))
12265 {
12266 dwp_file->sections.abbrev.s.section = sectp;
12267 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12268 }
12269 else if (section_is_p (sectp->name, &names->info_dwo))
12270 {
12271 dwp_file->sections.info.s.section = sectp;
12272 dwp_file->sections.info.size = bfd_section_size (sectp);
12273 }
12274 else if (section_is_p (sectp->name, &names->line_dwo))
12275 {
12276 dwp_file->sections.line.s.section = sectp;
12277 dwp_file->sections.line.size = bfd_section_size (sectp);
12278 }
12279 else if (section_is_p (sectp->name, &names->loc_dwo))
12280 {
12281 dwp_file->sections.loc.s.section = sectp;
12282 dwp_file->sections.loc.size = bfd_section_size (sectp);
12283 }
12284 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12285 {
12286 dwp_file->sections.macinfo.s.section = sectp;
12287 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->macro_dwo))
12290 {
12291 dwp_file->sections.macro.s.section = sectp;
12292 dwp_file->sections.macro.size = bfd_section_size (sectp);
12293 }
12294 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12295 {
12296 dwp_file->sections.str_offsets.s.section = sectp;
12297 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12298 }
12299 else if (section_is_p (sectp->name, &names->types_dwo))
12300 {
12301 dwp_file->sections.types.s.section = sectp;
12302 dwp_file->sections.types.size = bfd_section_size (sectp);
12303 }
12304 }
12305
12306 /* Hash function for dwp_file loaded CUs/TUs. */
12307
12308 static hashval_t
12309 hash_dwp_loaded_cutus (const void *item)
12310 {
12311 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12312
12313 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12314 return dwo_unit->signature;
12315 }
12316
12317 /* Equality function for dwp_file loaded CUs/TUs. */
12318
12319 static int
12320 eq_dwp_loaded_cutus (const void *a, const void *b)
12321 {
12322 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12323 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12324
12325 return dua->signature == dub->signature;
12326 }
12327
12328 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12329
12330 static htab_up
12331 allocate_dwp_loaded_cutus_table ()
12332 {
12333 return htab_up (htab_create_alloc (3,
12334 hash_dwp_loaded_cutus,
12335 eq_dwp_loaded_cutus,
12336 NULL, xcalloc, xfree));
12337 }
12338
12339 /* Try to open DWP file FILE_NAME.
12340 The result is the bfd handle of the file.
12341 If there is a problem finding or opening the file, return NULL.
12342 Upon success, the canonicalized path of the file is stored in the bfd,
12343 same as symfile_bfd_open. */
12344
12345 static gdb_bfd_ref_ptr
12346 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12347 const char *file_name)
12348 {
12349 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12350 1 /*is_dwp*/,
12351 1 /*search_cwd*/));
12352 if (abfd != NULL)
12353 return abfd;
12354
12355 /* Work around upstream bug 15652.
12356 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12357 [Whether that's a "bug" is debatable, but it is getting in our way.]
12358 We have no real idea where the dwp file is, because gdb's realpath-ing
12359 of the executable's path may have discarded the needed info.
12360 [IWBN if the dwp file name was recorded in the executable, akin to
12361 .gnu_debuglink, but that doesn't exist yet.]
12362 Strip the directory from FILE_NAME and search again. */
12363 if (*debug_file_directory != '\0')
12364 {
12365 /* Don't implicitly search the current directory here.
12366 If the user wants to search "." to handle this case,
12367 it must be added to debug-file-directory. */
12368 return try_open_dwop_file (dwarf2_per_objfile,
12369 lbasename (file_name), 1 /*is_dwp*/,
12370 0 /*search_cwd*/);
12371 }
12372
12373 return NULL;
12374 }
12375
12376 /* Initialize the use of the DWP file for the current objfile.
12377 By convention the name of the DWP file is ${objfile}.dwp.
12378 The result is NULL if it can't be found. */
12379
12380 static std::unique_ptr<struct dwp_file>
12381 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12382 {
12383 struct objfile *objfile = dwarf2_per_objfile->objfile;
12384
12385 /* Try to find first .dwp for the binary file before any symbolic links
12386 resolving. */
12387
12388 /* If the objfile is a debug file, find the name of the real binary
12389 file and get the name of dwp file from there. */
12390 std::string dwp_name;
12391 if (objfile->separate_debug_objfile_backlink != NULL)
12392 {
12393 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12394 const char *backlink_basename = lbasename (backlink->original_name);
12395
12396 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12397 }
12398 else
12399 dwp_name = objfile->original_name;
12400
12401 dwp_name += ".dwp";
12402
12403 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12404 if (dbfd == NULL
12405 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12406 {
12407 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12408 dwp_name = objfile_name (objfile);
12409 dwp_name += ".dwp";
12410 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12411 }
12412
12413 if (dbfd == NULL)
12414 {
12415 if (dwarf_read_debug)
12416 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12417 return std::unique_ptr<dwp_file> ();
12418 }
12419
12420 const char *name = bfd_get_filename (dbfd.get ());
12421 std::unique_ptr<struct dwp_file> dwp_file
12422 (new struct dwp_file (name, std::move (dbfd)));
12423
12424 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12425 dwp_file->elf_sections =
12426 OBSTACK_CALLOC (&objfile->objfile_obstack,
12427 dwp_file->num_sections, asection *);
12428
12429 bfd_map_over_sections (dwp_file->dbfd.get (),
12430 dwarf2_locate_common_dwp_sections,
12431 dwp_file.get ());
12432
12433 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12434 0);
12435
12436 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12437 1);
12438
12439 /* The DWP file version is stored in the hash table. Oh well. */
12440 if (dwp_file->cus && dwp_file->tus
12441 && dwp_file->cus->version != dwp_file->tus->version)
12442 {
12443 /* Technically speaking, we should try to limp along, but this is
12444 pretty bizarre. We use pulongest here because that's the established
12445 portability solution (e.g, we cannot use %u for uint32_t). */
12446 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12447 " TU version %s [in DWP file %s]"),
12448 pulongest (dwp_file->cus->version),
12449 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12450 }
12451
12452 if (dwp_file->cus)
12453 dwp_file->version = dwp_file->cus->version;
12454 else if (dwp_file->tus)
12455 dwp_file->version = dwp_file->tus->version;
12456 else
12457 dwp_file->version = 2;
12458
12459 if (dwp_file->version == 2)
12460 bfd_map_over_sections (dwp_file->dbfd.get (),
12461 dwarf2_locate_v2_dwp_sections,
12462 dwp_file.get ());
12463
12464 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12465 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12466
12467 if (dwarf_read_debug)
12468 {
12469 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12470 fprintf_unfiltered (gdb_stdlog,
12471 " %s CUs, %s TUs\n",
12472 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12473 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12474 }
12475
12476 return dwp_file;
12477 }
12478
12479 /* Wrapper around open_and_init_dwp_file, only open it once. */
12480
12481 static struct dwp_file *
12482 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12483 {
12484 if (! dwarf2_per_objfile->dwp_checked)
12485 {
12486 dwarf2_per_objfile->dwp_file
12487 = open_and_init_dwp_file (dwarf2_per_objfile);
12488 dwarf2_per_objfile->dwp_checked = 1;
12489 }
12490 return dwarf2_per_objfile->dwp_file.get ();
12491 }
12492
12493 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12494 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12495 or in the DWP file for the objfile, referenced by THIS_UNIT.
12496 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12497 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12498
12499 This is called, for example, when wanting to read a variable with a
12500 complex location. Therefore we don't want to do file i/o for every call.
12501 Therefore we don't want to look for a DWO file on every call.
12502 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12503 then we check if we've already seen DWO_NAME, and only THEN do we check
12504 for a DWO file.
12505
12506 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12507 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12508
12509 static struct dwo_unit *
12510 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12511 const char *dwo_name, const char *comp_dir,
12512 ULONGEST signature, int is_debug_types)
12513 {
12514 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12515 struct objfile *objfile = dwarf2_per_objfile->objfile;
12516 const char *kind = is_debug_types ? "TU" : "CU";
12517 void **dwo_file_slot;
12518 struct dwo_file *dwo_file;
12519 struct dwp_file *dwp_file;
12520
12521 /* First see if there's a DWP file.
12522 If we have a DWP file but didn't find the DWO inside it, don't
12523 look for the original DWO file. It makes gdb behave differently
12524 depending on whether one is debugging in the build tree. */
12525
12526 dwp_file = get_dwp_file (dwarf2_per_objfile);
12527 if (dwp_file != NULL)
12528 {
12529 const struct dwp_hash_table *dwp_htab =
12530 is_debug_types ? dwp_file->tus : dwp_file->cus;
12531
12532 if (dwp_htab != NULL)
12533 {
12534 struct dwo_unit *dwo_cutu =
12535 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12536 signature, is_debug_types);
12537
12538 if (dwo_cutu != NULL)
12539 {
12540 if (dwarf_read_debug)
12541 {
12542 fprintf_unfiltered (gdb_stdlog,
12543 "Virtual DWO %s %s found: @%s\n",
12544 kind, hex_string (signature),
12545 host_address_to_string (dwo_cutu));
12546 }
12547 return dwo_cutu;
12548 }
12549 }
12550 }
12551 else
12552 {
12553 /* No DWP file, look for the DWO file. */
12554
12555 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12556 dwo_name, comp_dir);
12557 if (*dwo_file_slot == NULL)
12558 {
12559 /* Read in the file and build a table of the CUs/TUs it contains. */
12560 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12561 }
12562 /* NOTE: This will be NULL if unable to open the file. */
12563 dwo_file = (struct dwo_file *) *dwo_file_slot;
12564
12565 if (dwo_file != NULL)
12566 {
12567 struct dwo_unit *dwo_cutu = NULL;
12568
12569 if (is_debug_types && dwo_file->tus)
12570 {
12571 struct dwo_unit find_dwo_cutu;
12572
12573 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12574 find_dwo_cutu.signature = signature;
12575 dwo_cutu
12576 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12577 &find_dwo_cutu);
12578 }
12579 else if (!is_debug_types && dwo_file->cus)
12580 {
12581 struct dwo_unit find_dwo_cutu;
12582
12583 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12584 find_dwo_cutu.signature = signature;
12585 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12586 &find_dwo_cutu);
12587 }
12588
12589 if (dwo_cutu != NULL)
12590 {
12591 if (dwarf_read_debug)
12592 {
12593 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12594 kind, dwo_name, hex_string (signature),
12595 host_address_to_string (dwo_cutu));
12596 }
12597 return dwo_cutu;
12598 }
12599 }
12600 }
12601
12602 /* We didn't find it. This could mean a dwo_id mismatch, or
12603 someone deleted the DWO/DWP file, or the search path isn't set up
12604 correctly to find the file. */
12605
12606 if (dwarf_read_debug)
12607 {
12608 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12609 kind, dwo_name, hex_string (signature));
12610 }
12611
12612 /* This is a warning and not a complaint because it can be caused by
12613 pilot error (e.g., user accidentally deleting the DWO). */
12614 {
12615 /* Print the name of the DWP file if we looked there, helps the user
12616 better diagnose the problem. */
12617 std::string dwp_text;
12618
12619 if (dwp_file != NULL)
12620 dwp_text = string_printf (" [in DWP file %s]",
12621 lbasename (dwp_file->name));
12622
12623 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12624 " [in module %s]"),
12625 kind, dwo_name, hex_string (signature),
12626 dwp_text.c_str (),
12627 this_unit->is_debug_types ? "TU" : "CU",
12628 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12629 }
12630 return NULL;
12631 }
12632
12633 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12634 See lookup_dwo_cutu_unit for details. */
12635
12636 static struct dwo_unit *
12637 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12638 const char *dwo_name, const char *comp_dir,
12639 ULONGEST signature)
12640 {
12641 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12642 }
12643
12644 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12645 See lookup_dwo_cutu_unit for details. */
12646
12647 static struct dwo_unit *
12648 lookup_dwo_type_unit (struct signatured_type *this_tu,
12649 const char *dwo_name, const char *comp_dir)
12650 {
12651 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12652 }
12653
12654 /* Traversal function for queue_and_load_all_dwo_tus. */
12655
12656 static int
12657 queue_and_load_dwo_tu (void **slot, void *info)
12658 {
12659 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12660 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12661 ULONGEST signature = dwo_unit->signature;
12662 struct signatured_type *sig_type =
12663 lookup_dwo_signatured_type (per_cu->cu, signature);
12664
12665 if (sig_type != NULL)
12666 {
12667 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12668
12669 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12670 a real dependency of PER_CU on SIG_TYPE. That is detected later
12671 while processing PER_CU. */
12672 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12673 load_full_type_unit (sig_cu);
12674 per_cu->imported_symtabs_push (sig_cu);
12675 }
12676
12677 return 1;
12678 }
12679
12680 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12681 The DWO may have the only definition of the type, though it may not be
12682 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12684
12685 static void
12686 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12687 {
12688 struct dwo_unit *dwo_unit;
12689 struct dwo_file *dwo_file;
12690
12691 gdb_assert (!per_cu->is_debug_types);
12692 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12693 gdb_assert (per_cu->cu != NULL);
12694
12695 dwo_unit = per_cu->cu->dwo_unit;
12696 gdb_assert (dwo_unit != NULL);
12697
12698 dwo_file = dwo_unit->dwo_file;
12699 if (dwo_file->tus != NULL)
12700 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12701 per_cu);
12702 }
12703
12704 /* Read in various DIEs. */
12705
12706 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12707 Inherit only the children of the DW_AT_abstract_origin DIE not being
12708 already referenced by DW_AT_abstract_origin from the children of the
12709 current DIE. */
12710
12711 static void
12712 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12713 {
12714 struct die_info *child_die;
12715 sect_offset *offsetp;
12716 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12717 struct die_info *origin_die;
12718 /* Iterator of the ORIGIN_DIE children. */
12719 struct die_info *origin_child_die;
12720 struct attribute *attr;
12721 struct dwarf2_cu *origin_cu;
12722 struct pending **origin_previous_list_in_scope;
12723
12724 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12725 if (!attr)
12726 return;
12727
12728 /* Note that following die references may follow to a die in a
12729 different cu. */
12730
12731 origin_cu = cu;
12732 origin_die = follow_die_ref (die, attr, &origin_cu);
12733
12734 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12735 symbols in. */
12736 origin_previous_list_in_scope = origin_cu->list_in_scope;
12737 origin_cu->list_in_scope = cu->list_in_scope;
12738
12739 if (die->tag != origin_die->tag
12740 && !(die->tag == DW_TAG_inlined_subroutine
12741 && origin_die->tag == DW_TAG_subprogram))
12742 complaint (_("DIE %s and its abstract origin %s have different tags"),
12743 sect_offset_str (die->sect_off),
12744 sect_offset_str (origin_die->sect_off));
12745
12746 std::vector<sect_offset> offsets;
12747
12748 for (child_die = die->child;
12749 child_die && child_die->tag;
12750 child_die = sibling_die (child_die))
12751 {
12752 struct die_info *child_origin_die;
12753 struct dwarf2_cu *child_origin_cu;
12754
12755 /* We are trying to process concrete instance entries:
12756 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12757 it's not relevant to our analysis here. i.e. detecting DIEs that are
12758 present in the abstract instance but not referenced in the concrete
12759 one. */
12760 if (child_die->tag == DW_TAG_call_site
12761 || child_die->tag == DW_TAG_GNU_call_site)
12762 continue;
12763
12764 /* For each CHILD_DIE, find the corresponding child of
12765 ORIGIN_DIE. If there is more than one layer of
12766 DW_AT_abstract_origin, follow them all; there shouldn't be,
12767 but GCC versions at least through 4.4 generate this (GCC PR
12768 40573). */
12769 child_origin_die = child_die;
12770 child_origin_cu = cu;
12771 while (1)
12772 {
12773 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12774 child_origin_cu);
12775 if (attr == NULL)
12776 break;
12777 child_origin_die = follow_die_ref (child_origin_die, attr,
12778 &child_origin_cu);
12779 }
12780
12781 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12782 counterpart may exist. */
12783 if (child_origin_die != child_die)
12784 {
12785 if (child_die->tag != child_origin_die->tag
12786 && !(child_die->tag == DW_TAG_inlined_subroutine
12787 && child_origin_die->tag == DW_TAG_subprogram))
12788 complaint (_("Child DIE %s and its abstract origin %s have "
12789 "different tags"),
12790 sect_offset_str (child_die->sect_off),
12791 sect_offset_str (child_origin_die->sect_off));
12792 if (child_origin_die->parent != origin_die)
12793 complaint (_("Child DIE %s and its abstract origin %s have "
12794 "different parents"),
12795 sect_offset_str (child_die->sect_off),
12796 sect_offset_str (child_origin_die->sect_off));
12797 else
12798 offsets.push_back (child_origin_die->sect_off);
12799 }
12800 }
12801 std::sort (offsets.begin (), offsets.end ());
12802 sect_offset *offsets_end = offsets.data () + offsets.size ();
12803 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12804 if (offsetp[-1] == *offsetp)
12805 complaint (_("Multiple children of DIE %s refer "
12806 "to DIE %s as their abstract origin"),
12807 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12808
12809 offsetp = offsets.data ();
12810 origin_child_die = origin_die->child;
12811 while (origin_child_die && origin_child_die->tag)
12812 {
12813 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12814 while (offsetp < offsets_end
12815 && *offsetp < origin_child_die->sect_off)
12816 offsetp++;
12817 if (offsetp >= offsets_end
12818 || *offsetp > origin_child_die->sect_off)
12819 {
12820 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12821 Check whether we're already processing ORIGIN_CHILD_DIE.
12822 This can happen with mutually referenced abstract_origins.
12823 PR 16581. */
12824 if (!origin_child_die->in_process)
12825 process_die (origin_child_die, origin_cu);
12826 }
12827 origin_child_die = sibling_die (origin_child_die);
12828 }
12829 origin_cu->list_in_scope = origin_previous_list_in_scope;
12830
12831 if (cu != origin_cu)
12832 compute_delayed_physnames (origin_cu);
12833 }
12834
12835 static void
12836 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12837 {
12838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12840 struct context_stack *newobj;
12841 CORE_ADDR lowpc;
12842 CORE_ADDR highpc;
12843 struct die_info *child_die;
12844 struct attribute *attr, *call_line, *call_file;
12845 const char *name;
12846 CORE_ADDR baseaddr;
12847 struct block *block;
12848 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12849 std::vector<struct symbol *> template_args;
12850 struct template_symbol *templ_func = NULL;
12851
12852 if (inlined_func)
12853 {
12854 /* If we do not have call site information, we can't show the
12855 caller of this inlined function. That's too confusing, so
12856 only use the scope for local variables. */
12857 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12858 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12859 if (call_line == NULL || call_file == NULL)
12860 {
12861 read_lexical_block_scope (die, cu);
12862 return;
12863 }
12864 }
12865
12866 baseaddr = objfile->text_section_offset ();
12867
12868 name = dwarf2_name (die, cu);
12869
12870 /* Ignore functions with missing or empty names. These are actually
12871 illegal according to the DWARF standard. */
12872 if (name == NULL)
12873 {
12874 complaint (_("missing name for subprogram DIE at %s"),
12875 sect_offset_str (die->sect_off));
12876 return;
12877 }
12878
12879 /* Ignore functions with missing or invalid low and high pc attributes. */
12880 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12881 <= PC_BOUNDS_INVALID)
12882 {
12883 attr = dwarf2_attr (die, DW_AT_external, cu);
12884 if (!attr || !DW_UNSND (attr))
12885 complaint (_("cannot get low and high bounds "
12886 "for subprogram DIE at %s"),
12887 sect_offset_str (die->sect_off));
12888 return;
12889 }
12890
12891 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12892 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12893
12894 /* If we have any template arguments, then we must allocate a
12895 different sort of symbol. */
12896 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12897 {
12898 if (child_die->tag == DW_TAG_template_type_param
12899 || child_die->tag == DW_TAG_template_value_param)
12900 {
12901 templ_func = allocate_template_symbol (objfile);
12902 templ_func->subclass = SYMBOL_TEMPLATE;
12903 break;
12904 }
12905 }
12906
12907 newobj = cu->get_builder ()->push_context (0, lowpc);
12908 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12909 (struct symbol *) templ_func);
12910
12911 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12912 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12913 cu->language);
12914
12915 /* If there is a location expression for DW_AT_frame_base, record
12916 it. */
12917 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12918 if (attr != nullptr)
12919 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12920
12921 /* If there is a location for the static link, record it. */
12922 newobj->static_link = NULL;
12923 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12924 if (attr != nullptr)
12925 {
12926 newobj->static_link
12927 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12928 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12929 cu->per_cu->addr_type ());
12930 }
12931
12932 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12933
12934 if (die->child != NULL)
12935 {
12936 child_die = die->child;
12937 while (child_die && child_die->tag)
12938 {
12939 if (child_die->tag == DW_TAG_template_type_param
12940 || child_die->tag == DW_TAG_template_value_param)
12941 {
12942 struct symbol *arg = new_symbol (child_die, NULL, cu);
12943
12944 if (arg != NULL)
12945 template_args.push_back (arg);
12946 }
12947 else
12948 process_die (child_die, cu);
12949 child_die = sibling_die (child_die);
12950 }
12951 }
12952
12953 inherit_abstract_dies (die, cu);
12954
12955 /* If we have a DW_AT_specification, we might need to import using
12956 directives from the context of the specification DIE. See the
12957 comment in determine_prefix. */
12958 if (cu->language == language_cplus
12959 && dwarf2_attr (die, DW_AT_specification, cu))
12960 {
12961 struct dwarf2_cu *spec_cu = cu;
12962 struct die_info *spec_die = die_specification (die, &spec_cu);
12963
12964 while (spec_die)
12965 {
12966 child_die = spec_die->child;
12967 while (child_die && child_die->tag)
12968 {
12969 if (child_die->tag == DW_TAG_imported_module)
12970 process_die (child_die, spec_cu);
12971 child_die = sibling_die (child_die);
12972 }
12973
12974 /* In some cases, GCC generates specification DIEs that
12975 themselves contain DW_AT_specification attributes. */
12976 spec_die = die_specification (spec_die, &spec_cu);
12977 }
12978 }
12979
12980 struct context_stack cstk = cu->get_builder ()->pop_context ();
12981 /* Make a block for the local symbols within. */
12982 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12983 cstk.static_link, lowpc, highpc);
12984
12985 /* For C++, set the block's scope. */
12986 if ((cu->language == language_cplus
12987 || cu->language == language_fortran
12988 || cu->language == language_d
12989 || cu->language == language_rust)
12990 && cu->processing_has_namespace_info)
12991 block_set_scope (block, determine_prefix (die, cu),
12992 &objfile->objfile_obstack);
12993
12994 /* If we have address ranges, record them. */
12995 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12996
12997 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12998
12999 /* Attach template arguments to function. */
13000 if (!template_args.empty ())
13001 {
13002 gdb_assert (templ_func != NULL);
13003
13004 templ_func->n_template_arguments = template_args.size ();
13005 templ_func->template_arguments
13006 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13007 templ_func->n_template_arguments);
13008 memcpy (templ_func->template_arguments,
13009 template_args.data (),
13010 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13011
13012 /* Make sure that the symtab is set on the new symbols. Even
13013 though they don't appear in this symtab directly, other parts
13014 of gdb assume that symbols do, and this is reasonably
13015 true. */
13016 for (symbol *sym : template_args)
13017 symbol_set_symtab (sym, symbol_symtab (templ_func));
13018 }
13019
13020 /* In C++, we can have functions nested inside functions (e.g., when
13021 a function declares a class that has methods). This means that
13022 when we finish processing a function scope, we may need to go
13023 back to building a containing block's symbol lists. */
13024 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13025 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13026
13027 /* If we've finished processing a top-level function, subsequent
13028 symbols go in the file symbol list. */
13029 if (cu->get_builder ()->outermost_context_p ())
13030 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13031 }
13032
13033 /* Process all the DIES contained within a lexical block scope. Start
13034 a new scope, process the dies, and then close the scope. */
13035
13036 static void
13037 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13038 {
13039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13040 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13041 CORE_ADDR lowpc, highpc;
13042 struct die_info *child_die;
13043 CORE_ADDR baseaddr;
13044
13045 baseaddr = objfile->text_section_offset ();
13046
13047 /* Ignore blocks with missing or invalid low and high pc attributes. */
13048 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13049 as multiple lexical blocks? Handling children in a sane way would
13050 be nasty. Might be easier to properly extend generic blocks to
13051 describe ranges. */
13052 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13053 {
13054 case PC_BOUNDS_NOT_PRESENT:
13055 /* DW_TAG_lexical_block has no attributes, process its children as if
13056 there was no wrapping by that DW_TAG_lexical_block.
13057 GCC does no longer produces such DWARF since GCC r224161. */
13058 for (child_die = die->child;
13059 child_die != NULL && child_die->tag;
13060 child_die = sibling_die (child_die))
13061 process_die (child_die, cu);
13062 return;
13063 case PC_BOUNDS_INVALID:
13064 return;
13065 }
13066 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13067 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13068
13069 cu->get_builder ()->push_context (0, lowpc);
13070 if (die->child != NULL)
13071 {
13072 child_die = die->child;
13073 while (child_die && child_die->tag)
13074 {
13075 process_die (child_die, cu);
13076 child_die = sibling_die (child_die);
13077 }
13078 }
13079 inherit_abstract_dies (die, cu);
13080 struct context_stack cstk = cu->get_builder ()->pop_context ();
13081
13082 if (*cu->get_builder ()->get_local_symbols () != NULL
13083 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13084 {
13085 struct block *block
13086 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13087 cstk.start_addr, highpc);
13088
13089 /* Note that recording ranges after traversing children, as we
13090 do here, means that recording a parent's ranges entails
13091 walking across all its children's ranges as they appear in
13092 the address map, which is quadratic behavior.
13093
13094 It would be nicer to record the parent's ranges before
13095 traversing its children, simply overriding whatever you find
13096 there. But since we don't even decide whether to create a
13097 block until after we've traversed its children, that's hard
13098 to do. */
13099 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13100 }
13101 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13102 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13103 }
13104
13105 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13106
13107 static void
13108 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13109 {
13110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13111 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13112 CORE_ADDR pc, baseaddr;
13113 struct attribute *attr;
13114 struct call_site *call_site, call_site_local;
13115 void **slot;
13116 int nparams;
13117 struct die_info *child_die;
13118
13119 baseaddr = objfile->text_section_offset ();
13120
13121 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13122 if (attr == NULL)
13123 {
13124 /* This was a pre-DWARF-5 GNU extension alias
13125 for DW_AT_call_return_pc. */
13126 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13127 }
13128 if (!attr)
13129 {
13130 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13131 "DIE %s [in module %s]"),
13132 sect_offset_str (die->sect_off), objfile_name (objfile));
13133 return;
13134 }
13135 pc = attr->value_as_address () + baseaddr;
13136 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13137
13138 if (cu->call_site_htab == NULL)
13139 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13140 NULL, &objfile->objfile_obstack,
13141 hashtab_obstack_allocate, NULL);
13142 call_site_local.pc = pc;
13143 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13144 if (*slot != NULL)
13145 {
13146 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13147 "DIE %s [in module %s]"),
13148 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13149 objfile_name (objfile));
13150 return;
13151 }
13152
13153 /* Count parameters at the caller. */
13154
13155 nparams = 0;
13156 for (child_die = die->child; child_die && child_die->tag;
13157 child_die = sibling_die (child_die))
13158 {
13159 if (child_die->tag != DW_TAG_call_site_parameter
13160 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13161 {
13162 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13163 "DW_TAG_call_site child DIE %s [in module %s]"),
13164 child_die->tag, sect_offset_str (child_die->sect_off),
13165 objfile_name (objfile));
13166 continue;
13167 }
13168
13169 nparams++;
13170 }
13171
13172 call_site
13173 = ((struct call_site *)
13174 obstack_alloc (&objfile->objfile_obstack,
13175 sizeof (*call_site)
13176 + (sizeof (*call_site->parameter) * (nparams - 1))));
13177 *slot = call_site;
13178 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13179 call_site->pc = pc;
13180
13181 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13182 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13183 {
13184 struct die_info *func_die;
13185
13186 /* Skip also over DW_TAG_inlined_subroutine. */
13187 for (func_die = die->parent;
13188 func_die && func_die->tag != DW_TAG_subprogram
13189 && func_die->tag != DW_TAG_subroutine_type;
13190 func_die = func_die->parent);
13191
13192 /* DW_AT_call_all_calls is a superset
13193 of DW_AT_call_all_tail_calls. */
13194 if (func_die
13195 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13196 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13197 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13198 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13199 {
13200 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13201 not complete. But keep CALL_SITE for look ups via call_site_htab,
13202 both the initial caller containing the real return address PC and
13203 the final callee containing the current PC of a chain of tail
13204 calls do not need to have the tail call list complete. But any
13205 function candidate for a virtual tail call frame searched via
13206 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13207 determined unambiguously. */
13208 }
13209 else
13210 {
13211 struct type *func_type = NULL;
13212
13213 if (func_die)
13214 func_type = get_die_type (func_die, cu);
13215 if (func_type != NULL)
13216 {
13217 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13218
13219 /* Enlist this call site to the function. */
13220 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13221 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13222 }
13223 else
13224 complaint (_("Cannot find function owning DW_TAG_call_site "
13225 "DIE %s [in module %s]"),
13226 sect_offset_str (die->sect_off), objfile_name (objfile));
13227 }
13228 }
13229
13230 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13231 if (attr == NULL)
13232 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13233 if (attr == NULL)
13234 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13235 if (attr == NULL)
13236 {
13237 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13238 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13239 }
13240 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13241 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13242 /* Keep NULL DWARF_BLOCK. */;
13243 else if (attr->form_is_block ())
13244 {
13245 struct dwarf2_locexpr_baton *dlbaton;
13246
13247 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13248 dlbaton->data = DW_BLOCK (attr)->data;
13249 dlbaton->size = DW_BLOCK (attr)->size;
13250 dlbaton->per_cu = cu->per_cu;
13251
13252 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13253 }
13254 else if (attr->form_is_ref ())
13255 {
13256 struct dwarf2_cu *target_cu = cu;
13257 struct die_info *target_die;
13258
13259 target_die = follow_die_ref (die, attr, &target_cu);
13260 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13261 if (die_is_declaration (target_die, target_cu))
13262 {
13263 const char *target_physname;
13264
13265 /* Prefer the mangled name; otherwise compute the demangled one. */
13266 target_physname = dw2_linkage_name (target_die, target_cu);
13267 if (target_physname == NULL)
13268 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13269 if (target_physname == NULL)
13270 complaint (_("DW_AT_call_target target DIE has invalid "
13271 "physname, for referencing DIE %s [in module %s]"),
13272 sect_offset_str (die->sect_off), objfile_name (objfile));
13273 else
13274 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13275 }
13276 else
13277 {
13278 CORE_ADDR lowpc;
13279
13280 /* DW_AT_entry_pc should be preferred. */
13281 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13282 <= PC_BOUNDS_INVALID)
13283 complaint (_("DW_AT_call_target target DIE has invalid "
13284 "low pc, for referencing DIE %s [in module %s]"),
13285 sect_offset_str (die->sect_off), objfile_name (objfile));
13286 else
13287 {
13288 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13289 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13290 }
13291 }
13292 }
13293 else
13294 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13295 "block nor reference, for DIE %s [in module %s]"),
13296 sect_offset_str (die->sect_off), objfile_name (objfile));
13297
13298 call_site->per_cu = cu->per_cu;
13299
13300 for (child_die = die->child;
13301 child_die && child_die->tag;
13302 child_die = sibling_die (child_die))
13303 {
13304 struct call_site_parameter *parameter;
13305 struct attribute *loc, *origin;
13306
13307 if (child_die->tag != DW_TAG_call_site_parameter
13308 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13309 {
13310 /* Already printed the complaint above. */
13311 continue;
13312 }
13313
13314 gdb_assert (call_site->parameter_count < nparams);
13315 parameter = &call_site->parameter[call_site->parameter_count];
13316
13317 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13318 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13319 register is contained in DW_AT_call_value. */
13320
13321 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13322 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13323 if (origin == NULL)
13324 {
13325 /* This was a pre-DWARF-5 GNU extension alias
13326 for DW_AT_call_parameter. */
13327 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13328 }
13329 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13330 {
13331 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13332
13333 sect_offset sect_off
13334 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13335 if (!cu->header.offset_in_cu_p (sect_off))
13336 {
13337 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13338 binding can be done only inside one CU. Such referenced DIE
13339 therefore cannot be even moved to DW_TAG_partial_unit. */
13340 complaint (_("DW_AT_call_parameter offset is not in CU for "
13341 "DW_TAG_call_site child DIE %s [in module %s]"),
13342 sect_offset_str (child_die->sect_off),
13343 objfile_name (objfile));
13344 continue;
13345 }
13346 parameter->u.param_cu_off
13347 = (cu_offset) (sect_off - cu->header.sect_off);
13348 }
13349 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13350 {
13351 complaint (_("No DW_FORM_block* DW_AT_location for "
13352 "DW_TAG_call_site child DIE %s [in module %s]"),
13353 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13354 continue;
13355 }
13356 else
13357 {
13358 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13359 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13360 if (parameter->u.dwarf_reg != -1)
13361 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13362 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13363 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13364 &parameter->u.fb_offset))
13365 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13366 else
13367 {
13368 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13369 "for DW_FORM_block* DW_AT_location is supported for "
13370 "DW_TAG_call_site child DIE %s "
13371 "[in module %s]"),
13372 sect_offset_str (child_die->sect_off),
13373 objfile_name (objfile));
13374 continue;
13375 }
13376 }
13377
13378 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13379 if (attr == NULL)
13380 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13381 if (attr == NULL || !attr->form_is_block ())
13382 {
13383 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13384 "DW_TAG_call_site child DIE %s [in module %s]"),
13385 sect_offset_str (child_die->sect_off),
13386 objfile_name (objfile));
13387 continue;
13388 }
13389 parameter->value = DW_BLOCK (attr)->data;
13390 parameter->value_size = DW_BLOCK (attr)->size;
13391
13392 /* Parameters are not pre-cleared by memset above. */
13393 parameter->data_value = NULL;
13394 parameter->data_value_size = 0;
13395 call_site->parameter_count++;
13396
13397 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13398 if (attr == NULL)
13399 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13400 if (attr != nullptr)
13401 {
13402 if (!attr->form_is_block ())
13403 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13404 "DW_TAG_call_site child DIE %s [in module %s]"),
13405 sect_offset_str (child_die->sect_off),
13406 objfile_name (objfile));
13407 else
13408 {
13409 parameter->data_value = DW_BLOCK (attr)->data;
13410 parameter->data_value_size = DW_BLOCK (attr)->size;
13411 }
13412 }
13413 }
13414 }
13415
13416 /* Helper function for read_variable. If DIE represents a virtual
13417 table, then return the type of the concrete object that is
13418 associated with the virtual table. Otherwise, return NULL. */
13419
13420 static struct type *
13421 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13422 {
13423 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13424 if (attr == NULL)
13425 return NULL;
13426
13427 /* Find the type DIE. */
13428 struct die_info *type_die = NULL;
13429 struct dwarf2_cu *type_cu = cu;
13430
13431 if (attr->form_is_ref ())
13432 type_die = follow_die_ref (die, attr, &type_cu);
13433 if (type_die == NULL)
13434 return NULL;
13435
13436 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13437 return NULL;
13438 return die_containing_type (type_die, type_cu);
13439 }
13440
13441 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13442
13443 static void
13444 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13445 {
13446 struct rust_vtable_symbol *storage = NULL;
13447
13448 if (cu->language == language_rust)
13449 {
13450 struct type *containing_type = rust_containing_type (die, cu);
13451
13452 if (containing_type != NULL)
13453 {
13454 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13455
13456 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13457 initialize_objfile_symbol (storage);
13458 storage->concrete_type = containing_type;
13459 storage->subclass = SYMBOL_RUST_VTABLE;
13460 }
13461 }
13462
13463 struct symbol *res = new_symbol (die, NULL, cu, storage);
13464 struct attribute *abstract_origin
13465 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13466 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13467 if (res == NULL && loc && abstract_origin)
13468 {
13469 /* We have a variable without a name, but with a location and an abstract
13470 origin. This may be a concrete instance of an abstract variable
13471 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13472 later. */
13473 struct dwarf2_cu *origin_cu = cu;
13474 struct die_info *origin_die
13475 = follow_die_ref (die, abstract_origin, &origin_cu);
13476 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13477 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13478 }
13479 }
13480
13481 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13482 reading .debug_rnglists.
13483 Callback's type should be:
13484 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13485 Return true if the attributes are present and valid, otherwise,
13486 return false. */
13487
13488 template <typename Callback>
13489 static bool
13490 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13491 Callback &&callback)
13492 {
13493 struct dwarf2_per_objfile *dwarf2_per_objfile
13494 = cu->per_cu->dwarf2_per_objfile;
13495 struct objfile *objfile = dwarf2_per_objfile->objfile;
13496 bfd *obfd = objfile->obfd;
13497 /* Base address selection entry. */
13498 CORE_ADDR base;
13499 int found_base;
13500 const gdb_byte *buffer;
13501 CORE_ADDR baseaddr;
13502 bool overflow = false;
13503
13504 found_base = cu->base_known;
13505 base = cu->base_address;
13506
13507 dwarf2_per_objfile->rnglists.read (objfile);
13508 if (offset >= dwarf2_per_objfile->rnglists.size)
13509 {
13510 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13511 offset);
13512 return false;
13513 }
13514 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13515
13516 baseaddr = objfile->text_section_offset ();
13517
13518 while (1)
13519 {
13520 /* Initialize it due to a false compiler warning. */
13521 CORE_ADDR range_beginning = 0, range_end = 0;
13522 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13523 + dwarf2_per_objfile->rnglists.size);
13524 unsigned int bytes_read;
13525
13526 if (buffer == buf_end)
13527 {
13528 overflow = true;
13529 break;
13530 }
13531 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13532 switch (rlet)
13533 {
13534 case DW_RLE_end_of_list:
13535 break;
13536 case DW_RLE_base_address:
13537 if (buffer + cu->header.addr_size > buf_end)
13538 {
13539 overflow = true;
13540 break;
13541 }
13542 base = cu->header.read_address (obfd, buffer, &bytes_read);
13543 found_base = 1;
13544 buffer += bytes_read;
13545 break;
13546 case DW_RLE_start_length:
13547 if (buffer + cu->header.addr_size > buf_end)
13548 {
13549 overflow = true;
13550 break;
13551 }
13552 range_beginning = cu->header.read_address (obfd, buffer,
13553 &bytes_read);
13554 buffer += bytes_read;
13555 range_end = (range_beginning
13556 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13557 buffer += bytes_read;
13558 if (buffer > buf_end)
13559 {
13560 overflow = true;
13561 break;
13562 }
13563 break;
13564 case DW_RLE_offset_pair:
13565 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13566 buffer += bytes_read;
13567 if (buffer > buf_end)
13568 {
13569 overflow = true;
13570 break;
13571 }
13572 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13573 buffer += bytes_read;
13574 if (buffer > buf_end)
13575 {
13576 overflow = true;
13577 break;
13578 }
13579 break;
13580 case DW_RLE_start_end:
13581 if (buffer + 2 * cu->header.addr_size > buf_end)
13582 {
13583 overflow = true;
13584 break;
13585 }
13586 range_beginning = cu->header.read_address (obfd, buffer,
13587 &bytes_read);
13588 buffer += bytes_read;
13589 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13590 buffer += bytes_read;
13591 break;
13592 default:
13593 complaint (_("Invalid .debug_rnglists data (no base address)"));
13594 return false;
13595 }
13596 if (rlet == DW_RLE_end_of_list || overflow)
13597 break;
13598 if (rlet == DW_RLE_base_address)
13599 continue;
13600
13601 if (!found_base)
13602 {
13603 /* We have no valid base address for the ranges
13604 data. */
13605 complaint (_("Invalid .debug_rnglists data (no base address)"));
13606 return false;
13607 }
13608
13609 if (range_beginning > range_end)
13610 {
13611 /* Inverted range entries are invalid. */
13612 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13613 return false;
13614 }
13615
13616 /* Empty range entries have no effect. */
13617 if (range_beginning == range_end)
13618 continue;
13619
13620 range_beginning += base;
13621 range_end += base;
13622
13623 /* A not-uncommon case of bad debug info.
13624 Don't pollute the addrmap with bad data. */
13625 if (range_beginning + baseaddr == 0
13626 && !dwarf2_per_objfile->has_section_at_zero)
13627 {
13628 complaint (_(".debug_rnglists entry has start address of zero"
13629 " [in module %s]"), objfile_name (objfile));
13630 continue;
13631 }
13632
13633 callback (range_beginning, range_end);
13634 }
13635
13636 if (overflow)
13637 {
13638 complaint (_("Offset %d is not terminated "
13639 "for DW_AT_ranges attribute"),
13640 offset);
13641 return false;
13642 }
13643
13644 return true;
13645 }
13646
13647 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13648 Callback's type should be:
13649 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13650 Return 1 if the attributes are present and valid, otherwise, return 0. */
13651
13652 template <typename Callback>
13653 static int
13654 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13655 Callback &&callback)
13656 {
13657 struct dwarf2_per_objfile *dwarf2_per_objfile
13658 = cu->per_cu->dwarf2_per_objfile;
13659 struct objfile *objfile = dwarf2_per_objfile->objfile;
13660 struct comp_unit_head *cu_header = &cu->header;
13661 bfd *obfd = objfile->obfd;
13662 unsigned int addr_size = cu_header->addr_size;
13663 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13664 /* Base address selection entry. */
13665 CORE_ADDR base;
13666 int found_base;
13667 unsigned int dummy;
13668 const gdb_byte *buffer;
13669 CORE_ADDR baseaddr;
13670
13671 if (cu_header->version >= 5)
13672 return dwarf2_rnglists_process (offset, cu, callback);
13673
13674 found_base = cu->base_known;
13675 base = cu->base_address;
13676
13677 dwarf2_per_objfile->ranges.read (objfile);
13678 if (offset >= dwarf2_per_objfile->ranges.size)
13679 {
13680 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13681 offset);
13682 return 0;
13683 }
13684 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13685
13686 baseaddr = objfile->text_section_offset ();
13687
13688 while (1)
13689 {
13690 CORE_ADDR range_beginning, range_end;
13691
13692 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13693 buffer += addr_size;
13694 range_end = cu->header.read_address (obfd, buffer, &dummy);
13695 buffer += addr_size;
13696 offset += 2 * addr_size;
13697
13698 /* An end of list marker is a pair of zero addresses. */
13699 if (range_beginning == 0 && range_end == 0)
13700 /* Found the end of list entry. */
13701 break;
13702
13703 /* Each base address selection entry is a pair of 2 values.
13704 The first is the largest possible address, the second is
13705 the base address. Check for a base address here. */
13706 if ((range_beginning & mask) == mask)
13707 {
13708 /* If we found the largest possible address, then we already
13709 have the base address in range_end. */
13710 base = range_end;
13711 found_base = 1;
13712 continue;
13713 }
13714
13715 if (!found_base)
13716 {
13717 /* We have no valid base address for the ranges
13718 data. */
13719 complaint (_("Invalid .debug_ranges data (no base address)"));
13720 return 0;
13721 }
13722
13723 if (range_beginning > range_end)
13724 {
13725 /* Inverted range entries are invalid. */
13726 complaint (_("Invalid .debug_ranges data (inverted range)"));
13727 return 0;
13728 }
13729
13730 /* Empty range entries have no effect. */
13731 if (range_beginning == range_end)
13732 continue;
13733
13734 range_beginning += base;
13735 range_end += base;
13736
13737 /* A not-uncommon case of bad debug info.
13738 Don't pollute the addrmap with bad data. */
13739 if (range_beginning + baseaddr == 0
13740 && !dwarf2_per_objfile->has_section_at_zero)
13741 {
13742 complaint (_(".debug_ranges entry has start address of zero"
13743 " [in module %s]"), objfile_name (objfile));
13744 continue;
13745 }
13746
13747 callback (range_beginning, range_end);
13748 }
13749
13750 return 1;
13751 }
13752
13753 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13754 Return 1 if the attributes are present and valid, otherwise, return 0.
13755 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13756
13757 static int
13758 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13759 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13760 dwarf2_psymtab *ranges_pst)
13761 {
13762 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13763 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13764 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13765 int low_set = 0;
13766 CORE_ADDR low = 0;
13767 CORE_ADDR high = 0;
13768 int retval;
13769
13770 retval = dwarf2_ranges_process (offset, cu,
13771 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13772 {
13773 if (ranges_pst != NULL)
13774 {
13775 CORE_ADDR lowpc;
13776 CORE_ADDR highpc;
13777
13778 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13779 range_beginning + baseaddr)
13780 - baseaddr);
13781 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13782 range_end + baseaddr)
13783 - baseaddr);
13784 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13785 lowpc, highpc - 1, ranges_pst);
13786 }
13787
13788 /* FIXME: This is recording everything as a low-high
13789 segment of consecutive addresses. We should have a
13790 data structure for discontiguous block ranges
13791 instead. */
13792 if (! low_set)
13793 {
13794 low = range_beginning;
13795 high = range_end;
13796 low_set = 1;
13797 }
13798 else
13799 {
13800 if (range_beginning < low)
13801 low = range_beginning;
13802 if (range_end > high)
13803 high = range_end;
13804 }
13805 });
13806 if (!retval)
13807 return 0;
13808
13809 if (! low_set)
13810 /* If the first entry is an end-of-list marker, the range
13811 describes an empty scope, i.e. no instructions. */
13812 return 0;
13813
13814 if (low_return)
13815 *low_return = low;
13816 if (high_return)
13817 *high_return = high;
13818 return 1;
13819 }
13820
13821 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13822 definition for the return value. *LOWPC and *HIGHPC are set iff
13823 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13824
13825 static enum pc_bounds_kind
13826 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13827 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13828 dwarf2_psymtab *pst)
13829 {
13830 struct dwarf2_per_objfile *dwarf2_per_objfile
13831 = cu->per_cu->dwarf2_per_objfile;
13832 struct attribute *attr;
13833 struct attribute *attr_high;
13834 CORE_ADDR low = 0;
13835 CORE_ADDR high = 0;
13836 enum pc_bounds_kind ret;
13837
13838 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13839 if (attr_high)
13840 {
13841 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13842 if (attr != nullptr)
13843 {
13844 low = attr->value_as_address ();
13845 high = attr_high->value_as_address ();
13846 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13847 high += low;
13848 }
13849 else
13850 /* Found high w/o low attribute. */
13851 return PC_BOUNDS_INVALID;
13852
13853 /* Found consecutive range of addresses. */
13854 ret = PC_BOUNDS_HIGH_LOW;
13855 }
13856 else
13857 {
13858 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13859 if (attr != NULL)
13860 {
13861 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13862 We take advantage of the fact that DW_AT_ranges does not appear
13863 in DW_TAG_compile_unit of DWO files. */
13864 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13865 unsigned int ranges_offset = (DW_UNSND (attr)
13866 + (need_ranges_base
13867 ? cu->ranges_base
13868 : 0));
13869
13870 /* Value of the DW_AT_ranges attribute is the offset in the
13871 .debug_ranges section. */
13872 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13873 return PC_BOUNDS_INVALID;
13874 /* Found discontinuous range of addresses. */
13875 ret = PC_BOUNDS_RANGES;
13876 }
13877 else
13878 return PC_BOUNDS_NOT_PRESENT;
13879 }
13880
13881 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13882 if (high <= low)
13883 return PC_BOUNDS_INVALID;
13884
13885 /* When using the GNU linker, .gnu.linkonce. sections are used to
13886 eliminate duplicate copies of functions and vtables and such.
13887 The linker will arbitrarily choose one and discard the others.
13888 The AT_*_pc values for such functions refer to local labels in
13889 these sections. If the section from that file was discarded, the
13890 labels are not in the output, so the relocs get a value of 0.
13891 If this is a discarded function, mark the pc bounds as invalid,
13892 so that GDB will ignore it. */
13893 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13894 return PC_BOUNDS_INVALID;
13895
13896 *lowpc = low;
13897 if (highpc)
13898 *highpc = high;
13899 return ret;
13900 }
13901
13902 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13903 its low and high PC addresses. Do nothing if these addresses could not
13904 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13905 and HIGHPC to the high address if greater than HIGHPC. */
13906
13907 static void
13908 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13909 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13910 struct dwarf2_cu *cu)
13911 {
13912 CORE_ADDR low, high;
13913 struct die_info *child = die->child;
13914
13915 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13916 {
13917 *lowpc = std::min (*lowpc, low);
13918 *highpc = std::max (*highpc, high);
13919 }
13920
13921 /* If the language does not allow nested subprograms (either inside
13922 subprograms or lexical blocks), we're done. */
13923 if (cu->language != language_ada)
13924 return;
13925
13926 /* Check all the children of the given DIE. If it contains nested
13927 subprograms, then check their pc bounds. Likewise, we need to
13928 check lexical blocks as well, as they may also contain subprogram
13929 definitions. */
13930 while (child && child->tag)
13931 {
13932 if (child->tag == DW_TAG_subprogram
13933 || child->tag == DW_TAG_lexical_block)
13934 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13935 child = sibling_die (child);
13936 }
13937 }
13938
13939 /* Get the low and high pc's represented by the scope DIE, and store
13940 them in *LOWPC and *HIGHPC. If the correct values can't be
13941 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13942
13943 static void
13944 get_scope_pc_bounds (struct die_info *die,
13945 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13946 struct dwarf2_cu *cu)
13947 {
13948 CORE_ADDR best_low = (CORE_ADDR) -1;
13949 CORE_ADDR best_high = (CORE_ADDR) 0;
13950 CORE_ADDR current_low, current_high;
13951
13952 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13953 >= PC_BOUNDS_RANGES)
13954 {
13955 best_low = current_low;
13956 best_high = current_high;
13957 }
13958 else
13959 {
13960 struct die_info *child = die->child;
13961
13962 while (child && child->tag)
13963 {
13964 switch (child->tag) {
13965 case DW_TAG_subprogram:
13966 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13967 break;
13968 case DW_TAG_namespace:
13969 case DW_TAG_module:
13970 /* FIXME: carlton/2004-01-16: Should we do this for
13971 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13972 that current GCC's always emit the DIEs corresponding
13973 to definitions of methods of classes as children of a
13974 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13975 the DIEs giving the declarations, which could be
13976 anywhere). But I don't see any reason why the
13977 standards says that they have to be there. */
13978 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13979
13980 if (current_low != ((CORE_ADDR) -1))
13981 {
13982 best_low = std::min (best_low, current_low);
13983 best_high = std::max (best_high, current_high);
13984 }
13985 break;
13986 default:
13987 /* Ignore. */
13988 break;
13989 }
13990
13991 child = sibling_die (child);
13992 }
13993 }
13994
13995 *lowpc = best_low;
13996 *highpc = best_high;
13997 }
13998
13999 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14000 in DIE. */
14001
14002 static void
14003 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14004 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14005 {
14006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14007 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14008 struct attribute *attr;
14009 struct attribute *attr_high;
14010
14011 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14012 if (attr_high)
14013 {
14014 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14015 if (attr != nullptr)
14016 {
14017 CORE_ADDR low = attr->value_as_address ();
14018 CORE_ADDR high = attr_high->value_as_address ();
14019
14020 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14021 high += low;
14022
14023 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14024 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14025 cu->get_builder ()->record_block_range (block, low, high - 1);
14026 }
14027 }
14028
14029 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14030 if (attr != nullptr)
14031 {
14032 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14033 We take advantage of the fact that DW_AT_ranges does not appear
14034 in DW_TAG_compile_unit of DWO files. */
14035 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14036
14037 /* The value of the DW_AT_ranges attribute is the offset of the
14038 address range list in the .debug_ranges section. */
14039 unsigned long offset = (DW_UNSND (attr)
14040 + (need_ranges_base ? cu->ranges_base : 0));
14041
14042 std::vector<blockrange> blockvec;
14043 dwarf2_ranges_process (offset, cu,
14044 [&] (CORE_ADDR start, CORE_ADDR end)
14045 {
14046 start += baseaddr;
14047 end += baseaddr;
14048 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14049 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14050 cu->get_builder ()->record_block_range (block, start, end - 1);
14051 blockvec.emplace_back (start, end);
14052 });
14053
14054 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14055 }
14056 }
14057
14058 /* Check whether the producer field indicates either of GCC < 4.6, or the
14059 Intel C/C++ compiler, and cache the result in CU. */
14060
14061 static void
14062 check_producer (struct dwarf2_cu *cu)
14063 {
14064 int major, minor;
14065
14066 if (cu->producer == NULL)
14067 {
14068 /* For unknown compilers expect their behavior is DWARF version
14069 compliant.
14070
14071 GCC started to support .debug_types sections by -gdwarf-4 since
14072 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14073 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14074 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14075 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14076 }
14077 else if (producer_is_gcc (cu->producer, &major, &minor))
14078 {
14079 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14080 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14081 }
14082 else if (producer_is_icc (cu->producer, &major, &minor))
14083 {
14084 cu->producer_is_icc = true;
14085 cu->producer_is_icc_lt_14 = major < 14;
14086 }
14087 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14088 cu->producer_is_codewarrior = true;
14089 else
14090 {
14091 /* For other non-GCC compilers, expect their behavior is DWARF version
14092 compliant. */
14093 }
14094
14095 cu->checked_producer = true;
14096 }
14097
14098 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14099 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14100 during 4.6.0 experimental. */
14101
14102 static bool
14103 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14104 {
14105 if (!cu->checked_producer)
14106 check_producer (cu);
14107
14108 return cu->producer_is_gxx_lt_4_6;
14109 }
14110
14111
14112 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14113 with incorrect is_stmt attributes. */
14114
14115 static bool
14116 producer_is_codewarrior (struct dwarf2_cu *cu)
14117 {
14118 if (!cu->checked_producer)
14119 check_producer (cu);
14120
14121 return cu->producer_is_codewarrior;
14122 }
14123
14124 /* Return the default accessibility type if it is not overridden by
14125 DW_AT_accessibility. */
14126
14127 static enum dwarf_access_attribute
14128 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14129 {
14130 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14131 {
14132 /* The default DWARF 2 accessibility for members is public, the default
14133 accessibility for inheritance is private. */
14134
14135 if (die->tag != DW_TAG_inheritance)
14136 return DW_ACCESS_public;
14137 else
14138 return DW_ACCESS_private;
14139 }
14140 else
14141 {
14142 /* DWARF 3+ defines the default accessibility a different way. The same
14143 rules apply now for DW_TAG_inheritance as for the members and it only
14144 depends on the container kind. */
14145
14146 if (die->parent->tag == DW_TAG_class_type)
14147 return DW_ACCESS_private;
14148 else
14149 return DW_ACCESS_public;
14150 }
14151 }
14152
14153 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14154 offset. If the attribute was not found return 0, otherwise return
14155 1. If it was found but could not properly be handled, set *OFFSET
14156 to 0. */
14157
14158 static int
14159 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14160 LONGEST *offset)
14161 {
14162 struct attribute *attr;
14163
14164 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14165 if (attr != NULL)
14166 {
14167 *offset = 0;
14168
14169 /* Note that we do not check for a section offset first here.
14170 This is because DW_AT_data_member_location is new in DWARF 4,
14171 so if we see it, we can assume that a constant form is really
14172 a constant and not a section offset. */
14173 if (attr->form_is_constant ())
14174 *offset = dwarf2_get_attr_constant_value (attr, 0);
14175 else if (attr->form_is_section_offset ())
14176 dwarf2_complex_location_expr_complaint ();
14177 else if (attr->form_is_block ())
14178 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14179 else
14180 dwarf2_complex_location_expr_complaint ();
14181
14182 return 1;
14183 }
14184
14185 return 0;
14186 }
14187
14188 /* Add an aggregate field to the field list. */
14189
14190 static void
14191 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14192 struct dwarf2_cu *cu)
14193 {
14194 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14195 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14196 struct nextfield *new_field;
14197 struct attribute *attr;
14198 struct field *fp;
14199 const char *fieldname = "";
14200
14201 if (die->tag == DW_TAG_inheritance)
14202 {
14203 fip->baseclasses.emplace_back ();
14204 new_field = &fip->baseclasses.back ();
14205 }
14206 else
14207 {
14208 fip->fields.emplace_back ();
14209 new_field = &fip->fields.back ();
14210 }
14211
14212 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14213 if (attr != nullptr)
14214 new_field->accessibility = DW_UNSND (attr);
14215 else
14216 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14217 if (new_field->accessibility != DW_ACCESS_public)
14218 fip->non_public_fields = 1;
14219
14220 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14221 if (attr != nullptr)
14222 new_field->virtuality = DW_UNSND (attr);
14223 else
14224 new_field->virtuality = DW_VIRTUALITY_none;
14225
14226 fp = &new_field->field;
14227
14228 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14229 {
14230 LONGEST offset;
14231
14232 /* Data member other than a C++ static data member. */
14233
14234 /* Get type of field. */
14235 fp->type = die_type (die, cu);
14236
14237 SET_FIELD_BITPOS (*fp, 0);
14238
14239 /* Get bit size of field (zero if none). */
14240 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14241 if (attr != nullptr)
14242 {
14243 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14244 }
14245 else
14246 {
14247 FIELD_BITSIZE (*fp) = 0;
14248 }
14249
14250 /* Get bit offset of field. */
14251 if (handle_data_member_location (die, cu, &offset))
14252 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14253 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14254 if (attr != nullptr)
14255 {
14256 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14257 {
14258 /* For big endian bits, the DW_AT_bit_offset gives the
14259 additional bit offset from the MSB of the containing
14260 anonymous object to the MSB of the field. We don't
14261 have to do anything special since we don't need to
14262 know the size of the anonymous object. */
14263 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14264 }
14265 else
14266 {
14267 /* For little endian bits, compute the bit offset to the
14268 MSB of the anonymous object, subtract off the number of
14269 bits from the MSB of the field to the MSB of the
14270 object, and then subtract off the number of bits of
14271 the field itself. The result is the bit offset of
14272 the LSB of the field. */
14273 int anonymous_size;
14274 int bit_offset = DW_UNSND (attr);
14275
14276 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14277 if (attr != nullptr)
14278 {
14279 /* The size of the anonymous object containing
14280 the bit field is explicit, so use the
14281 indicated size (in bytes). */
14282 anonymous_size = DW_UNSND (attr);
14283 }
14284 else
14285 {
14286 /* The size of the anonymous object containing
14287 the bit field must be inferred from the type
14288 attribute of the data member containing the
14289 bit field. */
14290 anonymous_size = TYPE_LENGTH (fp->type);
14291 }
14292 SET_FIELD_BITPOS (*fp,
14293 (FIELD_BITPOS (*fp)
14294 + anonymous_size * bits_per_byte
14295 - bit_offset - FIELD_BITSIZE (*fp)));
14296 }
14297 }
14298 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14299 if (attr != NULL)
14300 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14301 + dwarf2_get_attr_constant_value (attr, 0)));
14302
14303 /* Get name of field. */
14304 fieldname = dwarf2_name (die, cu);
14305 if (fieldname == NULL)
14306 fieldname = "";
14307
14308 /* The name is already allocated along with this objfile, so we don't
14309 need to duplicate it for the type. */
14310 fp->name = fieldname;
14311
14312 /* Change accessibility for artificial fields (e.g. virtual table
14313 pointer or virtual base class pointer) to private. */
14314 if (dwarf2_attr (die, DW_AT_artificial, cu))
14315 {
14316 FIELD_ARTIFICIAL (*fp) = 1;
14317 new_field->accessibility = DW_ACCESS_private;
14318 fip->non_public_fields = 1;
14319 }
14320 }
14321 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14322 {
14323 /* C++ static member. */
14324
14325 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14326 is a declaration, but all versions of G++ as of this writing
14327 (so through at least 3.2.1) incorrectly generate
14328 DW_TAG_variable tags. */
14329
14330 const char *physname;
14331
14332 /* Get name of field. */
14333 fieldname = dwarf2_name (die, cu);
14334 if (fieldname == NULL)
14335 return;
14336
14337 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14338 if (attr
14339 /* Only create a symbol if this is an external value.
14340 new_symbol checks this and puts the value in the global symbol
14341 table, which we want. If it is not external, new_symbol
14342 will try to put the value in cu->list_in_scope which is wrong. */
14343 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14344 {
14345 /* A static const member, not much different than an enum as far as
14346 we're concerned, except that we can support more types. */
14347 new_symbol (die, NULL, cu);
14348 }
14349
14350 /* Get physical name. */
14351 physname = dwarf2_physname (fieldname, die, cu);
14352
14353 /* The name is already allocated along with this objfile, so we don't
14354 need to duplicate it for the type. */
14355 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14356 FIELD_TYPE (*fp) = die_type (die, cu);
14357 FIELD_NAME (*fp) = fieldname;
14358 }
14359 else if (die->tag == DW_TAG_inheritance)
14360 {
14361 LONGEST offset;
14362
14363 /* C++ base class field. */
14364 if (handle_data_member_location (die, cu, &offset))
14365 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14366 FIELD_BITSIZE (*fp) = 0;
14367 FIELD_TYPE (*fp) = die_type (die, cu);
14368 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14369 }
14370 else if (die->tag == DW_TAG_variant_part)
14371 {
14372 /* process_structure_scope will treat this DIE as a union. */
14373 process_structure_scope (die, cu);
14374
14375 /* The variant part is relative to the start of the enclosing
14376 structure. */
14377 SET_FIELD_BITPOS (*fp, 0);
14378 fp->type = get_die_type (die, cu);
14379 fp->artificial = 1;
14380 fp->name = "<<variant>>";
14381
14382 /* Normally a DW_TAG_variant_part won't have a size, but our
14383 representation requires one, so set it to the maximum of the
14384 child sizes, being sure to account for the offset at which
14385 each child is seen. */
14386 if (TYPE_LENGTH (fp->type) == 0)
14387 {
14388 unsigned max = 0;
14389 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14390 {
14391 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14392 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14393 if (len > max)
14394 max = len;
14395 }
14396 TYPE_LENGTH (fp->type) = max;
14397 }
14398 }
14399 else
14400 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14401 }
14402
14403 /* Can the type given by DIE define another type? */
14404
14405 static bool
14406 type_can_define_types (const struct die_info *die)
14407 {
14408 switch (die->tag)
14409 {
14410 case DW_TAG_typedef:
14411 case DW_TAG_class_type:
14412 case DW_TAG_structure_type:
14413 case DW_TAG_union_type:
14414 case DW_TAG_enumeration_type:
14415 return true;
14416
14417 default:
14418 return false;
14419 }
14420 }
14421
14422 /* Add a type definition defined in the scope of the FIP's class. */
14423
14424 static void
14425 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14426 struct dwarf2_cu *cu)
14427 {
14428 struct decl_field fp;
14429 memset (&fp, 0, sizeof (fp));
14430
14431 gdb_assert (type_can_define_types (die));
14432
14433 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14434 fp.name = dwarf2_name (die, cu);
14435 fp.type = read_type_die (die, cu);
14436
14437 /* Save accessibility. */
14438 enum dwarf_access_attribute accessibility;
14439 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14440 if (attr != NULL)
14441 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14442 else
14443 accessibility = dwarf2_default_access_attribute (die, cu);
14444 switch (accessibility)
14445 {
14446 case DW_ACCESS_public:
14447 /* The assumed value if neither private nor protected. */
14448 break;
14449 case DW_ACCESS_private:
14450 fp.is_private = 1;
14451 break;
14452 case DW_ACCESS_protected:
14453 fp.is_protected = 1;
14454 break;
14455 default:
14456 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14457 }
14458
14459 if (die->tag == DW_TAG_typedef)
14460 fip->typedef_field_list.push_back (fp);
14461 else
14462 fip->nested_types_list.push_back (fp);
14463 }
14464
14465 /* Create the vector of fields, and attach it to the type. */
14466
14467 static void
14468 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14469 struct dwarf2_cu *cu)
14470 {
14471 int nfields = fip->nfields ();
14472
14473 /* Record the field count, allocate space for the array of fields,
14474 and create blank accessibility bitfields if necessary. */
14475 TYPE_NFIELDS (type) = nfields;
14476 TYPE_FIELDS (type) = (struct field *)
14477 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14478
14479 if (fip->non_public_fields && cu->language != language_ada)
14480 {
14481 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14482
14483 TYPE_FIELD_PRIVATE_BITS (type) =
14484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14485 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14486
14487 TYPE_FIELD_PROTECTED_BITS (type) =
14488 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14489 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14490
14491 TYPE_FIELD_IGNORE_BITS (type) =
14492 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14493 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14494 }
14495
14496 /* If the type has baseclasses, allocate and clear a bit vector for
14497 TYPE_FIELD_VIRTUAL_BITS. */
14498 if (!fip->baseclasses.empty () && cu->language != language_ada)
14499 {
14500 int num_bytes = B_BYTES (fip->baseclasses.size ());
14501 unsigned char *pointer;
14502
14503 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14504 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14505 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14506 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14507 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14508 }
14509
14510 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14511 {
14512 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14513
14514 for (int index = 0; index < nfields; ++index)
14515 {
14516 struct nextfield &field = fip->fields[index];
14517
14518 if (field.variant.is_discriminant)
14519 di->discriminant_index = index;
14520 else if (field.variant.default_branch)
14521 di->default_index = index;
14522 else
14523 di->discriminants[index] = field.variant.discriminant_value;
14524 }
14525 }
14526
14527 /* Copy the saved-up fields into the field vector. */
14528 for (int i = 0; i < nfields; ++i)
14529 {
14530 struct nextfield &field
14531 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14532 : fip->fields[i - fip->baseclasses.size ()]);
14533
14534 TYPE_FIELD (type, i) = field.field;
14535 switch (field.accessibility)
14536 {
14537 case DW_ACCESS_private:
14538 if (cu->language != language_ada)
14539 SET_TYPE_FIELD_PRIVATE (type, i);
14540 break;
14541
14542 case DW_ACCESS_protected:
14543 if (cu->language != language_ada)
14544 SET_TYPE_FIELD_PROTECTED (type, i);
14545 break;
14546
14547 case DW_ACCESS_public:
14548 break;
14549
14550 default:
14551 /* Unknown accessibility. Complain and treat it as public. */
14552 {
14553 complaint (_("unsupported accessibility %d"),
14554 field.accessibility);
14555 }
14556 break;
14557 }
14558 if (i < fip->baseclasses.size ())
14559 {
14560 switch (field.virtuality)
14561 {
14562 case DW_VIRTUALITY_virtual:
14563 case DW_VIRTUALITY_pure_virtual:
14564 if (cu->language == language_ada)
14565 error (_("unexpected virtuality in component of Ada type"));
14566 SET_TYPE_FIELD_VIRTUAL (type, i);
14567 break;
14568 }
14569 }
14570 }
14571 }
14572
14573 /* Return true if this member function is a constructor, false
14574 otherwise. */
14575
14576 static int
14577 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14578 {
14579 const char *fieldname;
14580 const char *type_name;
14581 int len;
14582
14583 if (die->parent == NULL)
14584 return 0;
14585
14586 if (die->parent->tag != DW_TAG_structure_type
14587 && die->parent->tag != DW_TAG_union_type
14588 && die->parent->tag != DW_TAG_class_type)
14589 return 0;
14590
14591 fieldname = dwarf2_name (die, cu);
14592 type_name = dwarf2_name (die->parent, cu);
14593 if (fieldname == NULL || type_name == NULL)
14594 return 0;
14595
14596 len = strlen (fieldname);
14597 return (strncmp (fieldname, type_name, len) == 0
14598 && (type_name[len] == '\0' || type_name[len] == '<'));
14599 }
14600
14601 /* Check if the given VALUE is a recognized enum
14602 dwarf_defaulted_attribute constant according to DWARF5 spec,
14603 Table 7.24. */
14604
14605 static bool
14606 is_valid_DW_AT_defaulted (ULONGEST value)
14607 {
14608 switch (value)
14609 {
14610 case DW_DEFAULTED_no:
14611 case DW_DEFAULTED_in_class:
14612 case DW_DEFAULTED_out_of_class:
14613 return true;
14614 }
14615
14616 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14617 return false;
14618 }
14619
14620 /* Add a member function to the proper fieldlist. */
14621
14622 static void
14623 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14624 struct type *type, struct dwarf2_cu *cu)
14625 {
14626 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14627 struct attribute *attr;
14628 int i;
14629 struct fnfieldlist *flp = nullptr;
14630 struct fn_field *fnp;
14631 const char *fieldname;
14632 struct type *this_type;
14633 enum dwarf_access_attribute accessibility;
14634
14635 if (cu->language == language_ada)
14636 error (_("unexpected member function in Ada type"));
14637
14638 /* Get name of member function. */
14639 fieldname = dwarf2_name (die, cu);
14640 if (fieldname == NULL)
14641 return;
14642
14643 /* Look up member function name in fieldlist. */
14644 for (i = 0; i < fip->fnfieldlists.size (); i++)
14645 {
14646 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14647 {
14648 flp = &fip->fnfieldlists[i];
14649 break;
14650 }
14651 }
14652
14653 /* Create a new fnfieldlist if necessary. */
14654 if (flp == nullptr)
14655 {
14656 fip->fnfieldlists.emplace_back ();
14657 flp = &fip->fnfieldlists.back ();
14658 flp->name = fieldname;
14659 i = fip->fnfieldlists.size () - 1;
14660 }
14661
14662 /* Create a new member function field and add it to the vector of
14663 fnfieldlists. */
14664 flp->fnfields.emplace_back ();
14665 fnp = &flp->fnfields.back ();
14666
14667 /* Delay processing of the physname until later. */
14668 if (cu->language == language_cplus)
14669 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14670 die, cu);
14671 else
14672 {
14673 const char *physname = dwarf2_physname (fieldname, die, cu);
14674 fnp->physname = physname ? physname : "";
14675 }
14676
14677 fnp->type = alloc_type (objfile);
14678 this_type = read_type_die (die, cu);
14679 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14680 {
14681 int nparams = TYPE_NFIELDS (this_type);
14682
14683 /* TYPE is the domain of this method, and THIS_TYPE is the type
14684 of the method itself (TYPE_CODE_METHOD). */
14685 smash_to_method_type (fnp->type, type,
14686 TYPE_TARGET_TYPE (this_type),
14687 TYPE_FIELDS (this_type),
14688 TYPE_NFIELDS (this_type),
14689 TYPE_VARARGS (this_type));
14690
14691 /* Handle static member functions.
14692 Dwarf2 has no clean way to discern C++ static and non-static
14693 member functions. G++ helps GDB by marking the first
14694 parameter for non-static member functions (which is the this
14695 pointer) as artificial. We obtain this information from
14696 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14697 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14698 fnp->voffset = VOFFSET_STATIC;
14699 }
14700 else
14701 complaint (_("member function type missing for '%s'"),
14702 dwarf2_full_name (fieldname, die, cu));
14703
14704 /* Get fcontext from DW_AT_containing_type if present. */
14705 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14706 fnp->fcontext = die_containing_type (die, cu);
14707
14708 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14709 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14710
14711 /* Get accessibility. */
14712 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14713 if (attr != nullptr)
14714 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14715 else
14716 accessibility = dwarf2_default_access_attribute (die, cu);
14717 switch (accessibility)
14718 {
14719 case DW_ACCESS_private:
14720 fnp->is_private = 1;
14721 break;
14722 case DW_ACCESS_protected:
14723 fnp->is_protected = 1;
14724 break;
14725 }
14726
14727 /* Check for artificial methods. */
14728 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14729 if (attr && DW_UNSND (attr) != 0)
14730 fnp->is_artificial = 1;
14731
14732 /* Check for defaulted methods. */
14733 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14734 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14735 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14736
14737 /* Check for deleted methods. */
14738 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14739 if (attr != nullptr && DW_UNSND (attr) != 0)
14740 fnp->is_deleted = 1;
14741
14742 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14743
14744 /* Get index in virtual function table if it is a virtual member
14745 function. For older versions of GCC, this is an offset in the
14746 appropriate virtual table, as specified by DW_AT_containing_type.
14747 For everyone else, it is an expression to be evaluated relative
14748 to the object address. */
14749
14750 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14751 if (attr != nullptr)
14752 {
14753 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14754 {
14755 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14756 {
14757 /* Old-style GCC. */
14758 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14759 }
14760 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14761 || (DW_BLOCK (attr)->size > 1
14762 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14763 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14764 {
14765 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14766 if ((fnp->voffset % cu->header.addr_size) != 0)
14767 dwarf2_complex_location_expr_complaint ();
14768 else
14769 fnp->voffset /= cu->header.addr_size;
14770 fnp->voffset += 2;
14771 }
14772 else
14773 dwarf2_complex_location_expr_complaint ();
14774
14775 if (!fnp->fcontext)
14776 {
14777 /* If there is no `this' field and no DW_AT_containing_type,
14778 we cannot actually find a base class context for the
14779 vtable! */
14780 if (TYPE_NFIELDS (this_type) == 0
14781 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14782 {
14783 complaint (_("cannot determine context for virtual member "
14784 "function \"%s\" (offset %s)"),
14785 fieldname, sect_offset_str (die->sect_off));
14786 }
14787 else
14788 {
14789 fnp->fcontext
14790 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14791 }
14792 }
14793 }
14794 else if (attr->form_is_section_offset ())
14795 {
14796 dwarf2_complex_location_expr_complaint ();
14797 }
14798 else
14799 {
14800 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14801 fieldname);
14802 }
14803 }
14804 else
14805 {
14806 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14807 if (attr && DW_UNSND (attr))
14808 {
14809 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14810 complaint (_("Member function \"%s\" (offset %s) is virtual "
14811 "but the vtable offset is not specified"),
14812 fieldname, sect_offset_str (die->sect_off));
14813 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14814 TYPE_CPLUS_DYNAMIC (type) = 1;
14815 }
14816 }
14817 }
14818
14819 /* Create the vector of member function fields, and attach it to the type. */
14820
14821 static void
14822 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14823 struct dwarf2_cu *cu)
14824 {
14825 if (cu->language == language_ada)
14826 error (_("unexpected member functions in Ada type"));
14827
14828 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14829 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14830 TYPE_ALLOC (type,
14831 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14832
14833 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14834 {
14835 struct fnfieldlist &nf = fip->fnfieldlists[i];
14836 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14837
14838 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14839 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14840 fn_flp->fn_fields = (struct fn_field *)
14841 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14842
14843 for (int k = 0; k < nf.fnfields.size (); ++k)
14844 fn_flp->fn_fields[k] = nf.fnfields[k];
14845 }
14846
14847 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14848 }
14849
14850 /* Returns non-zero if NAME is the name of a vtable member in CU's
14851 language, zero otherwise. */
14852 static int
14853 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14854 {
14855 static const char vptr[] = "_vptr";
14856
14857 /* Look for the C++ form of the vtable. */
14858 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14859 return 1;
14860
14861 return 0;
14862 }
14863
14864 /* GCC outputs unnamed structures that are really pointers to member
14865 functions, with the ABI-specified layout. If TYPE describes
14866 such a structure, smash it into a member function type.
14867
14868 GCC shouldn't do this; it should just output pointer to member DIEs.
14869 This is GCC PR debug/28767. */
14870
14871 static void
14872 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14873 {
14874 struct type *pfn_type, *self_type, *new_type;
14875
14876 /* Check for a structure with no name and two children. */
14877 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14878 return;
14879
14880 /* Check for __pfn and __delta members. */
14881 if (TYPE_FIELD_NAME (type, 0) == NULL
14882 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14883 || TYPE_FIELD_NAME (type, 1) == NULL
14884 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14885 return;
14886
14887 /* Find the type of the method. */
14888 pfn_type = TYPE_FIELD_TYPE (type, 0);
14889 if (pfn_type == NULL
14890 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14891 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14892 return;
14893
14894 /* Look for the "this" argument. */
14895 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14896 if (TYPE_NFIELDS (pfn_type) == 0
14897 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14898 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14899 return;
14900
14901 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14902 new_type = alloc_type (objfile);
14903 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14904 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14905 TYPE_VARARGS (pfn_type));
14906 smash_to_methodptr_type (type, new_type);
14907 }
14908
14909 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14910 appropriate error checking and issuing complaints if there is a
14911 problem. */
14912
14913 static ULONGEST
14914 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14915 {
14916 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14917
14918 if (attr == nullptr)
14919 return 0;
14920
14921 if (!attr->form_is_constant ())
14922 {
14923 complaint (_("DW_AT_alignment must have constant form"
14924 " - DIE at %s [in module %s]"),
14925 sect_offset_str (die->sect_off),
14926 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14927 return 0;
14928 }
14929
14930 ULONGEST align;
14931 if (attr->form == DW_FORM_sdata)
14932 {
14933 LONGEST val = DW_SND (attr);
14934 if (val < 0)
14935 {
14936 complaint (_("DW_AT_alignment value must not be negative"
14937 " - DIE at %s [in module %s]"),
14938 sect_offset_str (die->sect_off),
14939 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14940 return 0;
14941 }
14942 align = val;
14943 }
14944 else
14945 align = DW_UNSND (attr);
14946
14947 if (align == 0)
14948 {
14949 complaint (_("DW_AT_alignment value must not be zero"
14950 " - DIE at %s [in module %s]"),
14951 sect_offset_str (die->sect_off),
14952 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14953 return 0;
14954 }
14955 if ((align & (align - 1)) != 0)
14956 {
14957 complaint (_("DW_AT_alignment value must be a power of 2"
14958 " - DIE at %s [in module %s]"),
14959 sect_offset_str (die->sect_off),
14960 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14961 return 0;
14962 }
14963
14964 return align;
14965 }
14966
14967 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14968 the alignment for TYPE. */
14969
14970 static void
14971 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14972 struct type *type)
14973 {
14974 if (!set_type_align (type, get_alignment (cu, die)))
14975 complaint (_("DW_AT_alignment value too large"
14976 " - DIE at %s [in module %s]"),
14977 sect_offset_str (die->sect_off),
14978 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14979 }
14980
14981 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14982 constant for a type, according to DWARF5 spec, Table 5.5. */
14983
14984 static bool
14985 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14986 {
14987 switch (value)
14988 {
14989 case DW_CC_normal:
14990 case DW_CC_pass_by_reference:
14991 case DW_CC_pass_by_value:
14992 return true;
14993
14994 default:
14995 complaint (_("unrecognized DW_AT_calling_convention value "
14996 "(%s) for a type"), pulongest (value));
14997 return false;
14998 }
14999 }
15000
15001 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15002 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15003 also according to GNU-specific values (see include/dwarf2.h). */
15004
15005 static bool
15006 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15007 {
15008 switch (value)
15009 {
15010 case DW_CC_normal:
15011 case DW_CC_program:
15012 case DW_CC_nocall:
15013 return true;
15014
15015 case DW_CC_GNU_renesas_sh:
15016 case DW_CC_GNU_borland_fastcall_i386:
15017 case DW_CC_GDB_IBM_OpenCL:
15018 return true;
15019
15020 default:
15021 complaint (_("unrecognized DW_AT_calling_convention value "
15022 "(%s) for a subroutine"), pulongest (value));
15023 return false;
15024 }
15025 }
15026
15027 /* Called when we find the DIE that starts a structure or union scope
15028 (definition) to create a type for the structure or union. Fill in
15029 the type's name and general properties; the members will not be
15030 processed until process_structure_scope. A symbol table entry for
15031 the type will also not be done until process_structure_scope (assuming
15032 the type has a name).
15033
15034 NOTE: we need to call these functions regardless of whether or not the
15035 DIE has a DW_AT_name attribute, since it might be an anonymous
15036 structure or union. This gets the type entered into our set of
15037 user defined types. */
15038
15039 static struct type *
15040 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15041 {
15042 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15043 struct type *type;
15044 struct attribute *attr;
15045 const char *name;
15046
15047 /* If the definition of this type lives in .debug_types, read that type.
15048 Don't follow DW_AT_specification though, that will take us back up
15049 the chain and we want to go down. */
15050 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15051 if (attr != nullptr)
15052 {
15053 type = get_DW_AT_signature_type (die, attr, cu);
15054
15055 /* The type's CU may not be the same as CU.
15056 Ensure TYPE is recorded with CU in die_type_hash. */
15057 return set_die_type (die, type, cu);
15058 }
15059
15060 type = alloc_type (objfile);
15061 INIT_CPLUS_SPECIFIC (type);
15062
15063 name = dwarf2_name (die, cu);
15064 if (name != NULL)
15065 {
15066 if (cu->language == language_cplus
15067 || cu->language == language_d
15068 || cu->language == language_rust)
15069 {
15070 const char *full_name = dwarf2_full_name (name, die, cu);
15071
15072 /* dwarf2_full_name might have already finished building the DIE's
15073 type. If so, there is no need to continue. */
15074 if (get_die_type (die, cu) != NULL)
15075 return get_die_type (die, cu);
15076
15077 TYPE_NAME (type) = full_name;
15078 }
15079 else
15080 {
15081 /* The name is already allocated along with this objfile, so
15082 we don't need to duplicate it for the type. */
15083 TYPE_NAME (type) = name;
15084 }
15085 }
15086
15087 if (die->tag == DW_TAG_structure_type)
15088 {
15089 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15090 }
15091 else if (die->tag == DW_TAG_union_type)
15092 {
15093 TYPE_CODE (type) = TYPE_CODE_UNION;
15094 }
15095 else if (die->tag == DW_TAG_variant_part)
15096 {
15097 TYPE_CODE (type) = TYPE_CODE_UNION;
15098 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15099 }
15100 else
15101 {
15102 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15103 }
15104
15105 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15106 TYPE_DECLARED_CLASS (type) = 1;
15107
15108 /* Store the calling convention in the type if it's available in
15109 the die. Otherwise the calling convention remains set to
15110 the default value DW_CC_normal. */
15111 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15112 if (attr != nullptr
15113 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15114 {
15115 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15116 TYPE_CPLUS_CALLING_CONVENTION (type)
15117 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15118 }
15119
15120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15121 if (attr != nullptr)
15122 {
15123 if (attr->form_is_constant ())
15124 TYPE_LENGTH (type) = DW_UNSND (attr);
15125 else
15126 {
15127 /* For the moment, dynamic type sizes are not supported
15128 by GDB's struct type. The actual size is determined
15129 on-demand when resolving the type of a given object,
15130 so set the type's length to zero for now. Otherwise,
15131 we record an expression as the length, and that expression
15132 could lead to a very large value, which could eventually
15133 lead to us trying to allocate that much memory when creating
15134 a value of that type. */
15135 TYPE_LENGTH (type) = 0;
15136 }
15137 }
15138 else
15139 {
15140 TYPE_LENGTH (type) = 0;
15141 }
15142
15143 maybe_set_alignment (cu, die, type);
15144
15145 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15146 {
15147 /* ICC<14 does not output the required DW_AT_declaration on
15148 incomplete types, but gives them a size of zero. */
15149 TYPE_STUB (type) = 1;
15150 }
15151 else
15152 TYPE_STUB_SUPPORTED (type) = 1;
15153
15154 if (die_is_declaration (die, cu))
15155 TYPE_STUB (type) = 1;
15156 else if (attr == NULL && die->child == NULL
15157 && producer_is_realview (cu->producer))
15158 /* RealView does not output the required DW_AT_declaration
15159 on incomplete types. */
15160 TYPE_STUB (type) = 1;
15161
15162 /* We need to add the type field to the die immediately so we don't
15163 infinitely recurse when dealing with pointers to the structure
15164 type within the structure itself. */
15165 set_die_type (die, type, cu);
15166
15167 /* set_die_type should be already done. */
15168 set_descriptive_type (type, die, cu);
15169
15170 return type;
15171 }
15172
15173 /* A helper for process_structure_scope that handles a single member
15174 DIE. */
15175
15176 static void
15177 handle_struct_member_die (struct die_info *child_die, struct type *type,
15178 struct field_info *fi,
15179 std::vector<struct symbol *> *template_args,
15180 struct dwarf2_cu *cu)
15181 {
15182 if (child_die->tag == DW_TAG_member
15183 || child_die->tag == DW_TAG_variable
15184 || child_die->tag == DW_TAG_variant_part)
15185 {
15186 /* NOTE: carlton/2002-11-05: A C++ static data member
15187 should be a DW_TAG_member that is a declaration, but
15188 all versions of G++ as of this writing (so through at
15189 least 3.2.1) incorrectly generate DW_TAG_variable
15190 tags for them instead. */
15191 dwarf2_add_field (fi, child_die, cu);
15192 }
15193 else if (child_die->tag == DW_TAG_subprogram)
15194 {
15195 /* Rust doesn't have member functions in the C++ sense.
15196 However, it does emit ordinary functions as children
15197 of a struct DIE. */
15198 if (cu->language == language_rust)
15199 read_func_scope (child_die, cu);
15200 else
15201 {
15202 /* C++ member function. */
15203 dwarf2_add_member_fn (fi, child_die, type, cu);
15204 }
15205 }
15206 else if (child_die->tag == DW_TAG_inheritance)
15207 {
15208 /* C++ base class field. */
15209 dwarf2_add_field (fi, child_die, cu);
15210 }
15211 else if (type_can_define_types (child_die))
15212 dwarf2_add_type_defn (fi, child_die, cu);
15213 else if (child_die->tag == DW_TAG_template_type_param
15214 || child_die->tag == DW_TAG_template_value_param)
15215 {
15216 struct symbol *arg = new_symbol (child_die, NULL, cu);
15217
15218 if (arg != NULL)
15219 template_args->push_back (arg);
15220 }
15221 else if (child_die->tag == DW_TAG_variant)
15222 {
15223 /* In a variant we want to get the discriminant and also add a
15224 field for our sole member child. */
15225 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15226
15227 for (die_info *variant_child = child_die->child;
15228 variant_child != NULL;
15229 variant_child = sibling_die (variant_child))
15230 {
15231 if (variant_child->tag == DW_TAG_member)
15232 {
15233 handle_struct_member_die (variant_child, type, fi,
15234 template_args, cu);
15235 /* Only handle the one. */
15236 break;
15237 }
15238 }
15239
15240 /* We don't handle this but we might as well report it if we see
15241 it. */
15242 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15243 complaint (_("DW_AT_discr_list is not supported yet"
15244 " - DIE at %s [in module %s]"),
15245 sect_offset_str (child_die->sect_off),
15246 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15247
15248 /* The first field was just added, so we can stash the
15249 discriminant there. */
15250 gdb_assert (!fi->fields.empty ());
15251 if (discr == NULL)
15252 fi->fields.back ().variant.default_branch = true;
15253 else
15254 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15255 }
15256 }
15257
15258 /* Finish creating a structure or union type, including filling in
15259 its members and creating a symbol for it. */
15260
15261 static void
15262 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15263 {
15264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15265 struct die_info *child_die;
15266 struct type *type;
15267
15268 type = get_die_type (die, cu);
15269 if (type == NULL)
15270 type = read_structure_type (die, cu);
15271
15272 /* When reading a DW_TAG_variant_part, we need to notice when we
15273 read the discriminant member, so we can record it later in the
15274 discriminant_info. */
15275 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15276 sect_offset discr_offset {};
15277 bool has_template_parameters = false;
15278
15279 if (is_variant_part)
15280 {
15281 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15282 if (discr == NULL)
15283 {
15284 /* Maybe it's a univariant form, an extension we support.
15285 In this case arrange not to check the offset. */
15286 is_variant_part = false;
15287 }
15288 else if (discr->form_is_ref ())
15289 {
15290 struct dwarf2_cu *target_cu = cu;
15291 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15292
15293 discr_offset = target_die->sect_off;
15294 }
15295 else
15296 {
15297 complaint (_("DW_AT_discr does not have DIE reference form"
15298 " - DIE at %s [in module %s]"),
15299 sect_offset_str (die->sect_off),
15300 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15301 is_variant_part = false;
15302 }
15303 }
15304
15305 if (die->child != NULL && ! die_is_declaration (die, cu))
15306 {
15307 struct field_info fi;
15308 std::vector<struct symbol *> template_args;
15309
15310 child_die = die->child;
15311
15312 while (child_die && child_die->tag)
15313 {
15314 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15315
15316 if (is_variant_part && discr_offset == child_die->sect_off)
15317 fi.fields.back ().variant.is_discriminant = true;
15318
15319 child_die = sibling_die (child_die);
15320 }
15321
15322 /* Attach template arguments to type. */
15323 if (!template_args.empty ())
15324 {
15325 has_template_parameters = true;
15326 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15327 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15328 TYPE_TEMPLATE_ARGUMENTS (type)
15329 = XOBNEWVEC (&objfile->objfile_obstack,
15330 struct symbol *,
15331 TYPE_N_TEMPLATE_ARGUMENTS (type));
15332 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15333 template_args.data (),
15334 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15335 * sizeof (struct symbol *)));
15336 }
15337
15338 /* Attach fields and member functions to the type. */
15339 if (fi.nfields () > 0)
15340 dwarf2_attach_fields_to_type (&fi, type, cu);
15341 if (!fi.fnfieldlists.empty ())
15342 {
15343 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15344
15345 /* Get the type which refers to the base class (possibly this
15346 class itself) which contains the vtable pointer for the current
15347 class from the DW_AT_containing_type attribute. This use of
15348 DW_AT_containing_type is a GNU extension. */
15349
15350 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15351 {
15352 struct type *t = die_containing_type (die, cu);
15353
15354 set_type_vptr_basetype (type, t);
15355 if (type == t)
15356 {
15357 int i;
15358
15359 /* Our own class provides vtbl ptr. */
15360 for (i = TYPE_NFIELDS (t) - 1;
15361 i >= TYPE_N_BASECLASSES (t);
15362 --i)
15363 {
15364 const char *fieldname = TYPE_FIELD_NAME (t, i);
15365
15366 if (is_vtable_name (fieldname, cu))
15367 {
15368 set_type_vptr_fieldno (type, i);
15369 break;
15370 }
15371 }
15372
15373 /* Complain if virtual function table field not found. */
15374 if (i < TYPE_N_BASECLASSES (t))
15375 complaint (_("virtual function table pointer "
15376 "not found when defining class '%s'"),
15377 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15378 }
15379 else
15380 {
15381 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15382 }
15383 }
15384 else if (cu->producer
15385 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15386 {
15387 /* The IBM XLC compiler does not provide direct indication
15388 of the containing type, but the vtable pointer is
15389 always named __vfp. */
15390
15391 int i;
15392
15393 for (i = TYPE_NFIELDS (type) - 1;
15394 i >= TYPE_N_BASECLASSES (type);
15395 --i)
15396 {
15397 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15398 {
15399 set_type_vptr_fieldno (type, i);
15400 set_type_vptr_basetype (type, type);
15401 break;
15402 }
15403 }
15404 }
15405 }
15406
15407 /* Copy fi.typedef_field_list linked list elements content into the
15408 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15409 if (!fi.typedef_field_list.empty ())
15410 {
15411 int count = fi.typedef_field_list.size ();
15412
15413 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15414 TYPE_TYPEDEF_FIELD_ARRAY (type)
15415 = ((struct decl_field *)
15416 TYPE_ALLOC (type,
15417 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15418 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15419
15420 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15421 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15422 }
15423
15424 /* Copy fi.nested_types_list linked list elements content into the
15425 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15426 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15427 {
15428 int count = fi.nested_types_list.size ();
15429
15430 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15431 TYPE_NESTED_TYPES_ARRAY (type)
15432 = ((struct decl_field *)
15433 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15434 TYPE_NESTED_TYPES_COUNT (type) = count;
15435
15436 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15437 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15438 }
15439 }
15440
15441 quirk_gcc_member_function_pointer (type, objfile);
15442 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15443 cu->rust_unions.push_back (type);
15444
15445 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15446 snapshots) has been known to create a die giving a declaration
15447 for a class that has, as a child, a die giving a definition for a
15448 nested class. So we have to process our children even if the
15449 current die is a declaration. Normally, of course, a declaration
15450 won't have any children at all. */
15451
15452 child_die = die->child;
15453
15454 while (child_die != NULL && child_die->tag)
15455 {
15456 if (child_die->tag == DW_TAG_member
15457 || child_die->tag == DW_TAG_variable
15458 || child_die->tag == DW_TAG_inheritance
15459 || child_die->tag == DW_TAG_template_value_param
15460 || child_die->tag == DW_TAG_template_type_param)
15461 {
15462 /* Do nothing. */
15463 }
15464 else
15465 process_die (child_die, cu);
15466
15467 child_die = sibling_die (child_die);
15468 }
15469
15470 /* Do not consider external references. According to the DWARF standard,
15471 these DIEs are identified by the fact that they have no byte_size
15472 attribute, and a declaration attribute. */
15473 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15474 || !die_is_declaration (die, cu))
15475 {
15476 struct symbol *sym = new_symbol (die, type, cu);
15477
15478 if (has_template_parameters)
15479 {
15480 struct symtab *symtab;
15481 if (sym != nullptr)
15482 symtab = symbol_symtab (sym);
15483 else if (cu->line_header != nullptr)
15484 {
15485 /* Any related symtab will do. */
15486 symtab
15487 = cu->line_header->file_names ()[0].symtab;
15488 }
15489 else
15490 {
15491 symtab = nullptr;
15492 complaint (_("could not find suitable "
15493 "symtab for template parameter"
15494 " - DIE at %s [in module %s]"),
15495 sect_offset_str (die->sect_off),
15496 objfile_name (objfile));
15497 }
15498
15499 if (symtab != nullptr)
15500 {
15501 /* Make sure that the symtab is set on the new symbols.
15502 Even though they don't appear in this symtab directly,
15503 other parts of gdb assume that symbols do, and this is
15504 reasonably true. */
15505 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15506 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15507 }
15508 }
15509 }
15510 }
15511
15512 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15513 update TYPE using some information only available in DIE's children. */
15514
15515 static void
15516 update_enumeration_type_from_children (struct die_info *die,
15517 struct type *type,
15518 struct dwarf2_cu *cu)
15519 {
15520 struct die_info *child_die;
15521 int unsigned_enum = 1;
15522 int flag_enum = 1;
15523
15524 auto_obstack obstack;
15525
15526 for (child_die = die->child;
15527 child_die != NULL && child_die->tag;
15528 child_die = sibling_die (child_die))
15529 {
15530 struct attribute *attr;
15531 LONGEST value;
15532 const gdb_byte *bytes;
15533 struct dwarf2_locexpr_baton *baton;
15534 const char *name;
15535
15536 if (child_die->tag != DW_TAG_enumerator)
15537 continue;
15538
15539 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15540 if (attr == NULL)
15541 continue;
15542
15543 name = dwarf2_name (child_die, cu);
15544 if (name == NULL)
15545 name = "<anonymous enumerator>";
15546
15547 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15548 &value, &bytes, &baton);
15549 if (value < 0)
15550 {
15551 unsigned_enum = 0;
15552 flag_enum = 0;
15553 }
15554 else
15555 {
15556 if (count_one_bits_ll (value) >= 2)
15557 flag_enum = 0;
15558 }
15559
15560 /* If we already know that the enum type is neither unsigned, nor
15561 a flag type, no need to look at the rest of the enumerates. */
15562 if (!unsigned_enum && !flag_enum)
15563 break;
15564 }
15565
15566 if (unsigned_enum)
15567 TYPE_UNSIGNED (type) = 1;
15568 if (flag_enum)
15569 TYPE_FLAG_ENUM (type) = 1;
15570 }
15571
15572 /* Given a DW_AT_enumeration_type die, set its type. We do not
15573 complete the type's fields yet, or create any symbols. */
15574
15575 static struct type *
15576 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15577 {
15578 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15579 struct type *type;
15580 struct attribute *attr;
15581 const char *name;
15582
15583 /* If the definition of this type lives in .debug_types, read that type.
15584 Don't follow DW_AT_specification though, that will take us back up
15585 the chain and we want to go down. */
15586 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15587 if (attr != nullptr)
15588 {
15589 type = get_DW_AT_signature_type (die, attr, cu);
15590
15591 /* The type's CU may not be the same as CU.
15592 Ensure TYPE is recorded with CU in die_type_hash. */
15593 return set_die_type (die, type, cu);
15594 }
15595
15596 type = alloc_type (objfile);
15597
15598 TYPE_CODE (type) = TYPE_CODE_ENUM;
15599 name = dwarf2_full_name (NULL, die, cu);
15600 if (name != NULL)
15601 TYPE_NAME (type) = name;
15602
15603 attr = dwarf2_attr (die, DW_AT_type, cu);
15604 if (attr != NULL)
15605 {
15606 struct type *underlying_type = die_type (die, cu);
15607
15608 TYPE_TARGET_TYPE (type) = underlying_type;
15609 }
15610
15611 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15612 if (attr != nullptr)
15613 {
15614 TYPE_LENGTH (type) = DW_UNSND (attr);
15615 }
15616 else
15617 {
15618 TYPE_LENGTH (type) = 0;
15619 }
15620
15621 maybe_set_alignment (cu, die, type);
15622
15623 /* The enumeration DIE can be incomplete. In Ada, any type can be
15624 declared as private in the package spec, and then defined only
15625 inside the package body. Such types are known as Taft Amendment
15626 Types. When another package uses such a type, an incomplete DIE
15627 may be generated by the compiler. */
15628 if (die_is_declaration (die, cu))
15629 TYPE_STUB (type) = 1;
15630
15631 /* Finish the creation of this type by using the enum's children.
15632 We must call this even when the underlying type has been provided
15633 so that we can determine if we're looking at a "flag" enum. */
15634 update_enumeration_type_from_children (die, type, cu);
15635
15636 /* If this type has an underlying type that is not a stub, then we
15637 may use its attributes. We always use the "unsigned" attribute
15638 in this situation, because ordinarily we guess whether the type
15639 is unsigned -- but the guess can be wrong and the underlying type
15640 can tell us the reality. However, we defer to a local size
15641 attribute if one exists, because this lets the compiler override
15642 the underlying type if needed. */
15643 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15644 {
15645 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15646 if (TYPE_LENGTH (type) == 0)
15647 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15648 if (TYPE_RAW_ALIGN (type) == 0
15649 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
15650 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
15651 }
15652
15653 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15654
15655 return set_die_type (die, type, cu);
15656 }
15657
15658 /* Given a pointer to a die which begins an enumeration, process all
15659 the dies that define the members of the enumeration, and create the
15660 symbol for the enumeration type.
15661
15662 NOTE: We reverse the order of the element list. */
15663
15664 static void
15665 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15666 {
15667 struct type *this_type;
15668
15669 this_type = get_die_type (die, cu);
15670 if (this_type == NULL)
15671 this_type = read_enumeration_type (die, cu);
15672
15673 if (die->child != NULL)
15674 {
15675 struct die_info *child_die;
15676 struct symbol *sym;
15677 std::vector<struct field> fields;
15678 const char *name;
15679
15680 child_die = die->child;
15681 while (child_die && child_die->tag)
15682 {
15683 if (child_die->tag != DW_TAG_enumerator)
15684 {
15685 process_die (child_die, cu);
15686 }
15687 else
15688 {
15689 name = dwarf2_name (child_die, cu);
15690 if (name)
15691 {
15692 sym = new_symbol (child_die, this_type, cu);
15693
15694 fields.emplace_back ();
15695 struct field &field = fields.back ();
15696
15697 FIELD_NAME (field) = sym->linkage_name ();
15698 FIELD_TYPE (field) = NULL;
15699 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15700 FIELD_BITSIZE (field) = 0;
15701 }
15702 }
15703
15704 child_die = sibling_die (child_die);
15705 }
15706
15707 if (!fields.empty ())
15708 {
15709 TYPE_NFIELDS (this_type) = fields.size ();
15710 TYPE_FIELDS (this_type) = (struct field *)
15711 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15712 memcpy (TYPE_FIELDS (this_type), fields.data (),
15713 sizeof (struct field) * fields.size ());
15714 }
15715 }
15716
15717 /* If we are reading an enum from a .debug_types unit, and the enum
15718 is a declaration, and the enum is not the signatured type in the
15719 unit, then we do not want to add a symbol for it. Adding a
15720 symbol would in some cases obscure the true definition of the
15721 enum, giving users an incomplete type when the definition is
15722 actually available. Note that we do not want to do this for all
15723 enums which are just declarations, because C++0x allows forward
15724 enum declarations. */
15725 if (cu->per_cu->is_debug_types
15726 && die_is_declaration (die, cu))
15727 {
15728 struct signatured_type *sig_type;
15729
15730 sig_type = (struct signatured_type *) cu->per_cu;
15731 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15732 if (sig_type->type_offset_in_section != die->sect_off)
15733 return;
15734 }
15735
15736 new_symbol (die, this_type, cu);
15737 }
15738
15739 /* Extract all information from a DW_TAG_array_type DIE and put it in
15740 the DIE's type field. For now, this only handles one dimensional
15741 arrays. */
15742
15743 static struct type *
15744 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15745 {
15746 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15747 struct die_info *child_die;
15748 struct type *type;
15749 struct type *element_type, *range_type, *index_type;
15750 struct attribute *attr;
15751 const char *name;
15752 struct dynamic_prop *byte_stride_prop = NULL;
15753 unsigned int bit_stride = 0;
15754
15755 element_type = die_type (die, cu);
15756
15757 /* The die_type call above may have already set the type for this DIE. */
15758 type = get_die_type (die, cu);
15759 if (type)
15760 return type;
15761
15762 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15763 if (attr != NULL)
15764 {
15765 int stride_ok;
15766 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15767
15768 byte_stride_prop
15769 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15770 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15771 prop_type);
15772 if (!stride_ok)
15773 {
15774 complaint (_("unable to read array DW_AT_byte_stride "
15775 " - DIE at %s [in module %s]"),
15776 sect_offset_str (die->sect_off),
15777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15778 /* Ignore this attribute. We will likely not be able to print
15779 arrays of this type correctly, but there is little we can do
15780 to help if we cannot read the attribute's value. */
15781 byte_stride_prop = NULL;
15782 }
15783 }
15784
15785 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15786 if (attr != NULL)
15787 bit_stride = DW_UNSND (attr);
15788
15789 /* Irix 6.2 native cc creates array types without children for
15790 arrays with unspecified length. */
15791 if (die->child == NULL)
15792 {
15793 index_type = objfile_type (objfile)->builtin_int;
15794 range_type = create_static_range_type (NULL, index_type, 0, -1);
15795 type = create_array_type_with_stride (NULL, element_type, range_type,
15796 byte_stride_prop, bit_stride);
15797 return set_die_type (die, type, cu);
15798 }
15799
15800 std::vector<struct type *> range_types;
15801 child_die = die->child;
15802 while (child_die && child_die->tag)
15803 {
15804 if (child_die->tag == DW_TAG_subrange_type)
15805 {
15806 struct type *child_type = read_type_die (child_die, cu);
15807
15808 if (child_type != NULL)
15809 {
15810 /* The range type was succesfully read. Save it for the
15811 array type creation. */
15812 range_types.push_back (child_type);
15813 }
15814 }
15815 child_die = sibling_die (child_die);
15816 }
15817
15818 /* Dwarf2 dimensions are output from left to right, create the
15819 necessary array types in backwards order. */
15820
15821 type = element_type;
15822
15823 if (read_array_order (die, cu) == DW_ORD_col_major)
15824 {
15825 int i = 0;
15826
15827 while (i < range_types.size ())
15828 type = create_array_type_with_stride (NULL, type, range_types[i++],
15829 byte_stride_prop, bit_stride);
15830 }
15831 else
15832 {
15833 size_t ndim = range_types.size ();
15834 while (ndim-- > 0)
15835 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15836 byte_stride_prop, bit_stride);
15837 }
15838
15839 /* Understand Dwarf2 support for vector types (like they occur on
15840 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15841 array type. This is not part of the Dwarf2/3 standard yet, but a
15842 custom vendor extension. The main difference between a regular
15843 array and the vector variant is that vectors are passed by value
15844 to functions. */
15845 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15846 if (attr != nullptr)
15847 make_vector_type (type);
15848
15849 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15850 implementation may choose to implement triple vectors using this
15851 attribute. */
15852 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15853 if (attr != nullptr)
15854 {
15855 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15856 TYPE_LENGTH (type) = DW_UNSND (attr);
15857 else
15858 complaint (_("DW_AT_byte_size for array type smaller "
15859 "than the total size of elements"));
15860 }
15861
15862 name = dwarf2_name (die, cu);
15863 if (name)
15864 TYPE_NAME (type) = name;
15865
15866 maybe_set_alignment (cu, die, type);
15867
15868 /* Install the type in the die. */
15869 set_die_type (die, type, cu);
15870
15871 /* set_die_type should be already done. */
15872 set_descriptive_type (type, die, cu);
15873
15874 return type;
15875 }
15876
15877 static enum dwarf_array_dim_ordering
15878 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15879 {
15880 struct attribute *attr;
15881
15882 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15883
15884 if (attr != nullptr)
15885 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15886
15887 /* GNU F77 is a special case, as at 08/2004 array type info is the
15888 opposite order to the dwarf2 specification, but data is still
15889 laid out as per normal fortran.
15890
15891 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15892 version checking. */
15893
15894 if (cu->language == language_fortran
15895 && cu->producer && strstr (cu->producer, "GNU F77"))
15896 {
15897 return DW_ORD_row_major;
15898 }
15899
15900 switch (cu->language_defn->la_array_ordering)
15901 {
15902 case array_column_major:
15903 return DW_ORD_col_major;
15904 case array_row_major:
15905 default:
15906 return DW_ORD_row_major;
15907 };
15908 }
15909
15910 /* Extract all information from a DW_TAG_set_type DIE and put it in
15911 the DIE's type field. */
15912
15913 static struct type *
15914 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15915 {
15916 struct type *domain_type, *set_type;
15917 struct attribute *attr;
15918
15919 domain_type = die_type (die, cu);
15920
15921 /* The die_type call above may have already set the type for this DIE. */
15922 set_type = get_die_type (die, cu);
15923 if (set_type)
15924 return set_type;
15925
15926 set_type = create_set_type (NULL, domain_type);
15927
15928 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15929 if (attr != nullptr)
15930 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15931
15932 maybe_set_alignment (cu, die, set_type);
15933
15934 return set_die_type (die, set_type, cu);
15935 }
15936
15937 /* A helper for read_common_block that creates a locexpr baton.
15938 SYM is the symbol which we are marking as computed.
15939 COMMON_DIE is the DIE for the common block.
15940 COMMON_LOC is the location expression attribute for the common
15941 block itself.
15942 MEMBER_LOC is the location expression attribute for the particular
15943 member of the common block that we are processing.
15944 CU is the CU from which the above come. */
15945
15946 static void
15947 mark_common_block_symbol_computed (struct symbol *sym,
15948 struct die_info *common_die,
15949 struct attribute *common_loc,
15950 struct attribute *member_loc,
15951 struct dwarf2_cu *cu)
15952 {
15953 struct dwarf2_per_objfile *dwarf2_per_objfile
15954 = cu->per_cu->dwarf2_per_objfile;
15955 struct objfile *objfile = dwarf2_per_objfile->objfile;
15956 struct dwarf2_locexpr_baton *baton;
15957 gdb_byte *ptr;
15958 unsigned int cu_off;
15959 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15960 LONGEST offset = 0;
15961
15962 gdb_assert (common_loc && member_loc);
15963 gdb_assert (common_loc->form_is_block ());
15964 gdb_assert (member_loc->form_is_block ()
15965 || member_loc->form_is_constant ());
15966
15967 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15968 baton->per_cu = cu->per_cu;
15969 gdb_assert (baton->per_cu);
15970
15971 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15972
15973 if (member_loc->form_is_constant ())
15974 {
15975 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15976 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15977 }
15978 else
15979 baton->size += DW_BLOCK (member_loc)->size;
15980
15981 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15982 baton->data = ptr;
15983
15984 *ptr++ = DW_OP_call4;
15985 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15986 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15987 ptr += 4;
15988
15989 if (member_loc->form_is_constant ())
15990 {
15991 *ptr++ = DW_OP_addr;
15992 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15993 ptr += cu->header.addr_size;
15994 }
15995 else
15996 {
15997 /* We have to copy the data here, because DW_OP_call4 will only
15998 use a DW_AT_location attribute. */
15999 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16000 ptr += DW_BLOCK (member_loc)->size;
16001 }
16002
16003 *ptr++ = DW_OP_plus;
16004 gdb_assert (ptr - baton->data == baton->size);
16005
16006 SYMBOL_LOCATION_BATON (sym) = baton;
16007 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16008 }
16009
16010 /* Create appropriate locally-scoped variables for all the
16011 DW_TAG_common_block entries. Also create a struct common_block
16012 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16013 is used to separate the common blocks name namespace from regular
16014 variable names. */
16015
16016 static void
16017 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16018 {
16019 struct attribute *attr;
16020
16021 attr = dwarf2_attr (die, DW_AT_location, cu);
16022 if (attr != nullptr)
16023 {
16024 /* Support the .debug_loc offsets. */
16025 if (attr->form_is_block ())
16026 {
16027 /* Ok. */
16028 }
16029 else if (attr->form_is_section_offset ())
16030 {
16031 dwarf2_complex_location_expr_complaint ();
16032 attr = NULL;
16033 }
16034 else
16035 {
16036 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16037 "common block member");
16038 attr = NULL;
16039 }
16040 }
16041
16042 if (die->child != NULL)
16043 {
16044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16045 struct die_info *child_die;
16046 size_t n_entries = 0, size;
16047 struct common_block *common_block;
16048 struct symbol *sym;
16049
16050 for (child_die = die->child;
16051 child_die && child_die->tag;
16052 child_die = sibling_die (child_die))
16053 ++n_entries;
16054
16055 size = (sizeof (struct common_block)
16056 + (n_entries - 1) * sizeof (struct symbol *));
16057 common_block
16058 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16059 size);
16060 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16061 common_block->n_entries = 0;
16062
16063 for (child_die = die->child;
16064 child_die && child_die->tag;
16065 child_die = sibling_die (child_die))
16066 {
16067 /* Create the symbol in the DW_TAG_common_block block in the current
16068 symbol scope. */
16069 sym = new_symbol (child_die, NULL, cu);
16070 if (sym != NULL)
16071 {
16072 struct attribute *member_loc;
16073
16074 common_block->contents[common_block->n_entries++] = sym;
16075
16076 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16077 cu);
16078 if (member_loc)
16079 {
16080 /* GDB has handled this for a long time, but it is
16081 not specified by DWARF. It seems to have been
16082 emitted by gfortran at least as recently as:
16083 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16084 complaint (_("Variable in common block has "
16085 "DW_AT_data_member_location "
16086 "- DIE at %s [in module %s]"),
16087 sect_offset_str (child_die->sect_off),
16088 objfile_name (objfile));
16089
16090 if (member_loc->form_is_section_offset ())
16091 dwarf2_complex_location_expr_complaint ();
16092 else if (member_loc->form_is_constant ()
16093 || member_loc->form_is_block ())
16094 {
16095 if (attr != nullptr)
16096 mark_common_block_symbol_computed (sym, die, attr,
16097 member_loc, cu);
16098 }
16099 else
16100 dwarf2_complex_location_expr_complaint ();
16101 }
16102 }
16103 }
16104
16105 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16106 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16107 }
16108 }
16109
16110 /* Create a type for a C++ namespace. */
16111
16112 static struct type *
16113 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16114 {
16115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16116 const char *previous_prefix, *name;
16117 int is_anonymous;
16118 struct type *type;
16119
16120 /* For extensions, reuse the type of the original namespace. */
16121 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16122 {
16123 struct die_info *ext_die;
16124 struct dwarf2_cu *ext_cu = cu;
16125
16126 ext_die = dwarf2_extension (die, &ext_cu);
16127 type = read_type_die (ext_die, ext_cu);
16128
16129 /* EXT_CU may not be the same as CU.
16130 Ensure TYPE is recorded with CU in die_type_hash. */
16131 return set_die_type (die, type, cu);
16132 }
16133
16134 name = namespace_name (die, &is_anonymous, cu);
16135
16136 /* Now build the name of the current namespace. */
16137
16138 previous_prefix = determine_prefix (die, cu);
16139 if (previous_prefix[0] != '\0')
16140 name = typename_concat (&objfile->objfile_obstack,
16141 previous_prefix, name, 0, cu);
16142
16143 /* Create the type. */
16144 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16145
16146 return set_die_type (die, type, cu);
16147 }
16148
16149 /* Read a namespace scope. */
16150
16151 static void
16152 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16153 {
16154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16155 int is_anonymous;
16156
16157 /* Add a symbol associated to this if we haven't seen the namespace
16158 before. Also, add a using directive if it's an anonymous
16159 namespace. */
16160
16161 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16162 {
16163 struct type *type;
16164
16165 type = read_type_die (die, cu);
16166 new_symbol (die, type, cu);
16167
16168 namespace_name (die, &is_anonymous, cu);
16169 if (is_anonymous)
16170 {
16171 const char *previous_prefix = determine_prefix (die, cu);
16172
16173 std::vector<const char *> excludes;
16174 add_using_directive (using_directives (cu),
16175 previous_prefix, TYPE_NAME (type), NULL,
16176 NULL, excludes, 0, &objfile->objfile_obstack);
16177 }
16178 }
16179
16180 if (die->child != NULL)
16181 {
16182 struct die_info *child_die = die->child;
16183
16184 while (child_die && child_die->tag)
16185 {
16186 process_die (child_die, cu);
16187 child_die = sibling_die (child_die);
16188 }
16189 }
16190 }
16191
16192 /* Read a Fortran module as type. This DIE can be only a declaration used for
16193 imported module. Still we need that type as local Fortran "use ... only"
16194 declaration imports depend on the created type in determine_prefix. */
16195
16196 static struct type *
16197 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16198 {
16199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16200 const char *module_name;
16201 struct type *type;
16202
16203 module_name = dwarf2_name (die, cu);
16204 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16205
16206 return set_die_type (die, type, cu);
16207 }
16208
16209 /* Read a Fortran module. */
16210
16211 static void
16212 read_module (struct die_info *die, struct dwarf2_cu *cu)
16213 {
16214 struct die_info *child_die = die->child;
16215 struct type *type;
16216
16217 type = read_type_die (die, cu);
16218 new_symbol (die, type, cu);
16219
16220 while (child_die && child_die->tag)
16221 {
16222 process_die (child_die, cu);
16223 child_die = sibling_die (child_die);
16224 }
16225 }
16226
16227 /* Return the name of the namespace represented by DIE. Set
16228 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16229 namespace. */
16230
16231 static const char *
16232 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16233 {
16234 struct die_info *current_die;
16235 const char *name = NULL;
16236
16237 /* Loop through the extensions until we find a name. */
16238
16239 for (current_die = die;
16240 current_die != NULL;
16241 current_die = dwarf2_extension (die, &cu))
16242 {
16243 /* We don't use dwarf2_name here so that we can detect the absence
16244 of a name -> anonymous namespace. */
16245 name = dwarf2_string_attr (die, DW_AT_name, cu);
16246
16247 if (name != NULL)
16248 break;
16249 }
16250
16251 /* Is it an anonymous namespace? */
16252
16253 *is_anonymous = (name == NULL);
16254 if (*is_anonymous)
16255 name = CP_ANONYMOUS_NAMESPACE_STR;
16256
16257 return name;
16258 }
16259
16260 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16261 the user defined type vector. */
16262
16263 static struct type *
16264 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16265 {
16266 struct gdbarch *gdbarch
16267 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16268 struct comp_unit_head *cu_header = &cu->header;
16269 struct type *type;
16270 struct attribute *attr_byte_size;
16271 struct attribute *attr_address_class;
16272 int byte_size, addr_class;
16273 struct type *target_type;
16274
16275 target_type = die_type (die, cu);
16276
16277 /* The die_type call above may have already set the type for this DIE. */
16278 type = get_die_type (die, cu);
16279 if (type)
16280 return type;
16281
16282 type = lookup_pointer_type (target_type);
16283
16284 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16285 if (attr_byte_size)
16286 byte_size = DW_UNSND (attr_byte_size);
16287 else
16288 byte_size = cu_header->addr_size;
16289
16290 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16291 if (attr_address_class)
16292 addr_class = DW_UNSND (attr_address_class);
16293 else
16294 addr_class = DW_ADDR_none;
16295
16296 ULONGEST alignment = get_alignment (cu, die);
16297
16298 /* If the pointer size, alignment, or address class is different
16299 than the default, create a type variant marked as such and set
16300 the length accordingly. */
16301 if (TYPE_LENGTH (type) != byte_size
16302 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16303 && alignment != TYPE_RAW_ALIGN (type))
16304 || addr_class != DW_ADDR_none)
16305 {
16306 if (gdbarch_address_class_type_flags_p (gdbarch))
16307 {
16308 int type_flags;
16309
16310 type_flags = gdbarch_address_class_type_flags
16311 (gdbarch, byte_size, addr_class);
16312 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16313 == 0);
16314 type = make_type_with_address_space (type, type_flags);
16315 }
16316 else if (TYPE_LENGTH (type) != byte_size)
16317 {
16318 complaint (_("invalid pointer size %d"), byte_size);
16319 }
16320 else if (TYPE_RAW_ALIGN (type) != alignment)
16321 {
16322 complaint (_("Invalid DW_AT_alignment"
16323 " - DIE at %s [in module %s]"),
16324 sect_offset_str (die->sect_off),
16325 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16326 }
16327 else
16328 {
16329 /* Should we also complain about unhandled address classes? */
16330 }
16331 }
16332
16333 TYPE_LENGTH (type) = byte_size;
16334 set_type_align (type, alignment);
16335 return set_die_type (die, type, cu);
16336 }
16337
16338 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16339 the user defined type vector. */
16340
16341 static struct type *
16342 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16343 {
16344 struct type *type;
16345 struct type *to_type;
16346 struct type *domain;
16347
16348 to_type = die_type (die, cu);
16349 domain = die_containing_type (die, cu);
16350
16351 /* The calls above may have already set the type for this DIE. */
16352 type = get_die_type (die, cu);
16353 if (type)
16354 return type;
16355
16356 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16357 type = lookup_methodptr_type (to_type);
16358 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16359 {
16360 struct type *new_type
16361 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16362
16363 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16364 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16365 TYPE_VARARGS (to_type));
16366 type = lookup_methodptr_type (new_type);
16367 }
16368 else
16369 type = lookup_memberptr_type (to_type, domain);
16370
16371 return set_die_type (die, type, cu);
16372 }
16373
16374 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16375 the user defined type vector. */
16376
16377 static struct type *
16378 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16379 enum type_code refcode)
16380 {
16381 struct comp_unit_head *cu_header = &cu->header;
16382 struct type *type, *target_type;
16383 struct attribute *attr;
16384
16385 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16386
16387 target_type = die_type (die, cu);
16388
16389 /* The die_type call above may have already set the type for this DIE. */
16390 type = get_die_type (die, cu);
16391 if (type)
16392 return type;
16393
16394 type = lookup_reference_type (target_type, refcode);
16395 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16396 if (attr != nullptr)
16397 {
16398 TYPE_LENGTH (type) = DW_UNSND (attr);
16399 }
16400 else
16401 {
16402 TYPE_LENGTH (type) = cu_header->addr_size;
16403 }
16404 maybe_set_alignment (cu, die, type);
16405 return set_die_type (die, type, cu);
16406 }
16407
16408 /* Add the given cv-qualifiers to the element type of the array. GCC
16409 outputs DWARF type qualifiers that apply to an array, not the
16410 element type. But GDB relies on the array element type to carry
16411 the cv-qualifiers. This mimics section 6.7.3 of the C99
16412 specification. */
16413
16414 static struct type *
16415 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16416 struct type *base_type, int cnst, int voltl)
16417 {
16418 struct type *el_type, *inner_array;
16419
16420 base_type = copy_type (base_type);
16421 inner_array = base_type;
16422
16423 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16424 {
16425 TYPE_TARGET_TYPE (inner_array) =
16426 copy_type (TYPE_TARGET_TYPE (inner_array));
16427 inner_array = TYPE_TARGET_TYPE (inner_array);
16428 }
16429
16430 el_type = TYPE_TARGET_TYPE (inner_array);
16431 cnst |= TYPE_CONST (el_type);
16432 voltl |= TYPE_VOLATILE (el_type);
16433 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16434
16435 return set_die_type (die, base_type, cu);
16436 }
16437
16438 static struct type *
16439 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16440 {
16441 struct type *base_type, *cv_type;
16442
16443 base_type = die_type (die, cu);
16444
16445 /* The die_type call above may have already set the type for this DIE. */
16446 cv_type = get_die_type (die, cu);
16447 if (cv_type)
16448 return cv_type;
16449
16450 /* In case the const qualifier is applied to an array type, the element type
16451 is so qualified, not the array type (section 6.7.3 of C99). */
16452 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16453 return add_array_cv_type (die, cu, base_type, 1, 0);
16454
16455 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16456 return set_die_type (die, cv_type, cu);
16457 }
16458
16459 static struct type *
16460 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16461 {
16462 struct type *base_type, *cv_type;
16463
16464 base_type = die_type (die, cu);
16465
16466 /* The die_type call above may have already set the type for this DIE. */
16467 cv_type = get_die_type (die, cu);
16468 if (cv_type)
16469 return cv_type;
16470
16471 /* In case the volatile qualifier is applied to an array type, the
16472 element type is so qualified, not the array type (section 6.7.3
16473 of C99). */
16474 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16475 return add_array_cv_type (die, cu, base_type, 0, 1);
16476
16477 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16478 return set_die_type (die, cv_type, cu);
16479 }
16480
16481 /* Handle DW_TAG_restrict_type. */
16482
16483 static struct type *
16484 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16485 {
16486 struct type *base_type, *cv_type;
16487
16488 base_type = die_type (die, cu);
16489
16490 /* The die_type call above may have already set the type for this DIE. */
16491 cv_type = get_die_type (die, cu);
16492 if (cv_type)
16493 return cv_type;
16494
16495 cv_type = make_restrict_type (base_type);
16496 return set_die_type (die, cv_type, cu);
16497 }
16498
16499 /* Handle DW_TAG_atomic_type. */
16500
16501 static struct type *
16502 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16503 {
16504 struct type *base_type, *cv_type;
16505
16506 base_type = die_type (die, cu);
16507
16508 /* The die_type call above may have already set the type for this DIE. */
16509 cv_type = get_die_type (die, cu);
16510 if (cv_type)
16511 return cv_type;
16512
16513 cv_type = make_atomic_type (base_type);
16514 return set_die_type (die, cv_type, cu);
16515 }
16516
16517 /* Extract all information from a DW_TAG_string_type DIE and add to
16518 the user defined type vector. It isn't really a user defined type,
16519 but it behaves like one, with other DIE's using an AT_user_def_type
16520 attribute to reference it. */
16521
16522 static struct type *
16523 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16524 {
16525 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16527 struct type *type, *range_type, *index_type, *char_type;
16528 struct attribute *attr;
16529 struct dynamic_prop prop;
16530 bool length_is_constant = true;
16531 LONGEST length;
16532
16533 /* There are a couple of places where bit sizes might be made use of
16534 when parsing a DW_TAG_string_type, however, no producer that we know
16535 of make use of these. Handling bit sizes that are a multiple of the
16536 byte size is easy enough, but what about other bit sizes? Lets deal
16537 with that problem when we have to. Warn about these attributes being
16538 unsupported, then parse the type and ignore them like we always
16539 have. */
16540 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16541 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16542 {
16543 static bool warning_printed = false;
16544 if (!warning_printed)
16545 {
16546 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16547 "currently supported on DW_TAG_string_type."));
16548 warning_printed = true;
16549 }
16550 }
16551
16552 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16553 if (attr != nullptr && !attr->form_is_constant ())
16554 {
16555 /* The string length describes the location at which the length of
16556 the string can be found. The size of the length field can be
16557 specified with one of the attributes below. */
16558 struct type *prop_type;
16559 struct attribute *len
16560 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16561 if (len == nullptr)
16562 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16563 if (len != nullptr && len->form_is_constant ())
16564 {
16565 /* Pass 0 as the default as we know this attribute is constant
16566 and the default value will not be returned. */
16567 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16568 prop_type = cu->per_cu->int_type (sz, true);
16569 }
16570 else
16571 {
16572 /* If the size is not specified then we assume it is the size of
16573 an address on this target. */
16574 prop_type = cu->per_cu->addr_sized_int_type (true);
16575 }
16576
16577 /* Convert the attribute into a dynamic property. */
16578 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16579 length = 1;
16580 else
16581 length_is_constant = false;
16582 }
16583 else if (attr != nullptr)
16584 {
16585 /* This DW_AT_string_length just contains the length with no
16586 indirection. There's no need to create a dynamic property in this
16587 case. Pass 0 for the default value as we know it will not be
16588 returned in this case. */
16589 length = dwarf2_get_attr_constant_value (attr, 0);
16590 }
16591 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16592 {
16593 /* We don't currently support non-constant byte sizes for strings. */
16594 length = dwarf2_get_attr_constant_value (attr, 1);
16595 }
16596 else
16597 {
16598 /* Use 1 as a fallback length if we have nothing else. */
16599 length = 1;
16600 }
16601
16602 index_type = objfile_type (objfile)->builtin_int;
16603 if (length_is_constant)
16604 range_type = create_static_range_type (NULL, index_type, 1, length);
16605 else
16606 {
16607 struct dynamic_prop low_bound;
16608
16609 low_bound.kind = PROP_CONST;
16610 low_bound.data.const_val = 1;
16611 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16612 }
16613 char_type = language_string_char_type (cu->language_defn, gdbarch);
16614 type = create_string_type (NULL, char_type, range_type);
16615
16616 return set_die_type (die, type, cu);
16617 }
16618
16619 /* Assuming that DIE corresponds to a function, returns nonzero
16620 if the function is prototyped. */
16621
16622 static int
16623 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16624 {
16625 struct attribute *attr;
16626
16627 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16628 if (attr && (DW_UNSND (attr) != 0))
16629 return 1;
16630
16631 /* The DWARF standard implies that the DW_AT_prototyped attribute
16632 is only meaningful for C, but the concept also extends to other
16633 languages that allow unprototyped functions (Eg: Objective C).
16634 For all other languages, assume that functions are always
16635 prototyped. */
16636 if (cu->language != language_c
16637 && cu->language != language_objc
16638 && cu->language != language_opencl)
16639 return 1;
16640
16641 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16642 prototyped and unprototyped functions; default to prototyped,
16643 since that is more common in modern code (and RealView warns
16644 about unprototyped functions). */
16645 if (producer_is_realview (cu->producer))
16646 return 1;
16647
16648 return 0;
16649 }
16650
16651 /* Handle DIES due to C code like:
16652
16653 struct foo
16654 {
16655 int (*funcp)(int a, long l);
16656 int b;
16657 };
16658
16659 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16660
16661 static struct type *
16662 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16663 {
16664 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16665 struct type *type; /* Type that this function returns. */
16666 struct type *ftype; /* Function that returns above type. */
16667 struct attribute *attr;
16668
16669 type = die_type (die, cu);
16670
16671 /* The die_type call above may have already set the type for this DIE. */
16672 ftype = get_die_type (die, cu);
16673 if (ftype)
16674 return ftype;
16675
16676 ftype = lookup_function_type (type);
16677
16678 if (prototyped_function_p (die, cu))
16679 TYPE_PROTOTYPED (ftype) = 1;
16680
16681 /* Store the calling convention in the type if it's available in
16682 the subroutine die. Otherwise set the calling convention to
16683 the default value DW_CC_normal. */
16684 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16685 if (attr != nullptr
16686 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16687 TYPE_CALLING_CONVENTION (ftype)
16688 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16689 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16690 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16691 else
16692 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16693
16694 /* Record whether the function returns normally to its caller or not
16695 if the DWARF producer set that information. */
16696 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16697 if (attr && (DW_UNSND (attr) != 0))
16698 TYPE_NO_RETURN (ftype) = 1;
16699
16700 /* We need to add the subroutine type to the die immediately so
16701 we don't infinitely recurse when dealing with parameters
16702 declared as the same subroutine type. */
16703 set_die_type (die, ftype, cu);
16704
16705 if (die->child != NULL)
16706 {
16707 struct type *void_type = objfile_type (objfile)->builtin_void;
16708 struct die_info *child_die;
16709 int nparams, iparams;
16710
16711 /* Count the number of parameters.
16712 FIXME: GDB currently ignores vararg functions, but knows about
16713 vararg member functions. */
16714 nparams = 0;
16715 child_die = die->child;
16716 while (child_die && child_die->tag)
16717 {
16718 if (child_die->tag == DW_TAG_formal_parameter)
16719 nparams++;
16720 else if (child_die->tag == DW_TAG_unspecified_parameters)
16721 TYPE_VARARGS (ftype) = 1;
16722 child_die = sibling_die (child_die);
16723 }
16724
16725 /* Allocate storage for parameters and fill them in. */
16726 TYPE_NFIELDS (ftype) = nparams;
16727 TYPE_FIELDS (ftype) = (struct field *)
16728 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16729
16730 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16731 even if we error out during the parameters reading below. */
16732 for (iparams = 0; iparams < nparams; iparams++)
16733 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16734
16735 iparams = 0;
16736 child_die = die->child;
16737 while (child_die && child_die->tag)
16738 {
16739 if (child_die->tag == DW_TAG_formal_parameter)
16740 {
16741 struct type *arg_type;
16742
16743 /* DWARF version 2 has no clean way to discern C++
16744 static and non-static member functions. G++ helps
16745 GDB by marking the first parameter for non-static
16746 member functions (which is the this pointer) as
16747 artificial. We pass this information to
16748 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16749
16750 DWARF version 3 added DW_AT_object_pointer, which GCC
16751 4.5 does not yet generate. */
16752 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16753 if (attr != nullptr)
16754 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16755 else
16756 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16757 arg_type = die_type (child_die, cu);
16758
16759 /* RealView does not mark THIS as const, which the testsuite
16760 expects. GCC marks THIS as const in method definitions,
16761 but not in the class specifications (GCC PR 43053). */
16762 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16763 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16764 {
16765 int is_this = 0;
16766 struct dwarf2_cu *arg_cu = cu;
16767 const char *name = dwarf2_name (child_die, cu);
16768
16769 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16770 if (attr != nullptr)
16771 {
16772 /* If the compiler emits this, use it. */
16773 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16774 is_this = 1;
16775 }
16776 else if (name && strcmp (name, "this") == 0)
16777 /* Function definitions will have the argument names. */
16778 is_this = 1;
16779 else if (name == NULL && iparams == 0)
16780 /* Declarations may not have the names, so like
16781 elsewhere in GDB, assume an artificial first
16782 argument is "this". */
16783 is_this = 1;
16784
16785 if (is_this)
16786 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16787 arg_type, 0);
16788 }
16789
16790 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16791 iparams++;
16792 }
16793 child_die = sibling_die (child_die);
16794 }
16795 }
16796
16797 return ftype;
16798 }
16799
16800 static struct type *
16801 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16802 {
16803 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16804 const char *name = NULL;
16805 struct type *this_type, *target_type;
16806
16807 name = dwarf2_full_name (NULL, die, cu);
16808 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16809 TYPE_TARGET_STUB (this_type) = 1;
16810 set_die_type (die, this_type, cu);
16811 target_type = die_type (die, cu);
16812 if (target_type != this_type)
16813 TYPE_TARGET_TYPE (this_type) = target_type;
16814 else
16815 {
16816 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16817 spec and cause infinite loops in GDB. */
16818 complaint (_("Self-referential DW_TAG_typedef "
16819 "- DIE at %s [in module %s]"),
16820 sect_offset_str (die->sect_off), objfile_name (objfile));
16821 TYPE_TARGET_TYPE (this_type) = NULL;
16822 }
16823 return this_type;
16824 }
16825
16826 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16827 (which may be different from NAME) to the architecture back-end to allow
16828 it to guess the correct format if necessary. */
16829
16830 static struct type *
16831 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16832 const char *name_hint, enum bfd_endian byte_order)
16833 {
16834 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16835 const struct floatformat **format;
16836 struct type *type;
16837
16838 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16839 if (format)
16840 type = init_float_type (objfile, bits, name, format, byte_order);
16841 else
16842 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16843
16844 return type;
16845 }
16846
16847 /* Allocate an integer type of size BITS and name NAME. */
16848
16849 static struct type *
16850 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16851 int bits, int unsigned_p, const char *name)
16852 {
16853 struct type *type;
16854
16855 /* Versions of Intel's C Compiler generate an integer type called "void"
16856 instead of using DW_TAG_unspecified_type. This has been seen on
16857 at least versions 14, 17, and 18. */
16858 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16859 && strcmp (name, "void") == 0)
16860 type = objfile_type (objfile)->builtin_void;
16861 else
16862 type = init_integer_type (objfile, bits, unsigned_p, name);
16863
16864 return type;
16865 }
16866
16867 /* Initialise and return a floating point type of size BITS suitable for
16868 use as a component of a complex number. The NAME_HINT is passed through
16869 when initialising the floating point type and is the name of the complex
16870 type.
16871
16872 As DWARF doesn't currently provide an explicit name for the components
16873 of a complex number, but it can be helpful to have these components
16874 named, we try to select a suitable name based on the size of the
16875 component. */
16876 static struct type *
16877 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16878 struct objfile *objfile,
16879 int bits, const char *name_hint,
16880 enum bfd_endian byte_order)
16881 {
16882 gdbarch *gdbarch = get_objfile_arch (objfile);
16883 struct type *tt = nullptr;
16884
16885 /* Try to find a suitable floating point builtin type of size BITS.
16886 We're going to use the name of this type as the name for the complex
16887 target type that we are about to create. */
16888 switch (cu->language)
16889 {
16890 case language_fortran:
16891 switch (bits)
16892 {
16893 case 32:
16894 tt = builtin_f_type (gdbarch)->builtin_real;
16895 break;
16896 case 64:
16897 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16898 break;
16899 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16900 case 128:
16901 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16902 break;
16903 }
16904 break;
16905 default:
16906 switch (bits)
16907 {
16908 case 32:
16909 tt = builtin_type (gdbarch)->builtin_float;
16910 break;
16911 case 64:
16912 tt = builtin_type (gdbarch)->builtin_double;
16913 break;
16914 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16915 case 128:
16916 tt = builtin_type (gdbarch)->builtin_long_double;
16917 break;
16918 }
16919 break;
16920 }
16921
16922 /* If the type we found doesn't match the size we were looking for, then
16923 pretend we didn't find a type at all, the complex target type we
16924 create will then be nameless. */
16925 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16926 tt = nullptr;
16927
16928 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16929 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16930 }
16931
16932 /* Find a representation of a given base type and install
16933 it in the TYPE field of the die. */
16934
16935 static struct type *
16936 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16937 {
16938 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16939 struct type *type;
16940 struct attribute *attr;
16941 int encoding = 0, bits = 0;
16942 const char *name;
16943 gdbarch *arch;
16944
16945 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16946 if (attr != nullptr)
16947 encoding = DW_UNSND (attr);
16948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16949 if (attr != nullptr)
16950 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16951 name = dwarf2_name (die, cu);
16952 if (!name)
16953 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16954
16955 arch = get_objfile_arch (objfile);
16956 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16957
16958 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16959 if (attr)
16960 {
16961 int endianity = DW_UNSND (attr);
16962
16963 switch (endianity)
16964 {
16965 case DW_END_big:
16966 byte_order = BFD_ENDIAN_BIG;
16967 break;
16968 case DW_END_little:
16969 byte_order = BFD_ENDIAN_LITTLE;
16970 break;
16971 default:
16972 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16973 break;
16974 }
16975 }
16976
16977 switch (encoding)
16978 {
16979 case DW_ATE_address:
16980 /* Turn DW_ATE_address into a void * pointer. */
16981 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16982 type = init_pointer_type (objfile, bits, name, type);
16983 break;
16984 case DW_ATE_boolean:
16985 type = init_boolean_type (objfile, bits, 1, name);
16986 break;
16987 case DW_ATE_complex_float:
16988 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16989 byte_order);
16990 type = init_complex_type (objfile, name, type);
16991 break;
16992 case DW_ATE_decimal_float:
16993 type = init_decfloat_type (objfile, bits, name);
16994 break;
16995 case DW_ATE_float:
16996 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
16997 break;
16998 case DW_ATE_signed:
16999 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17000 break;
17001 case DW_ATE_unsigned:
17002 if (cu->language == language_fortran
17003 && name
17004 && startswith (name, "character("))
17005 type = init_character_type (objfile, bits, 1, name);
17006 else
17007 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17008 break;
17009 case DW_ATE_signed_char:
17010 if (cu->language == language_ada || cu->language == language_m2
17011 || cu->language == language_pascal
17012 || cu->language == language_fortran)
17013 type = init_character_type (objfile, bits, 0, name);
17014 else
17015 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17016 break;
17017 case DW_ATE_unsigned_char:
17018 if (cu->language == language_ada || cu->language == language_m2
17019 || cu->language == language_pascal
17020 || cu->language == language_fortran
17021 || cu->language == language_rust)
17022 type = init_character_type (objfile, bits, 1, name);
17023 else
17024 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17025 break;
17026 case DW_ATE_UTF:
17027 {
17028 if (bits == 16)
17029 type = builtin_type (arch)->builtin_char16;
17030 else if (bits == 32)
17031 type = builtin_type (arch)->builtin_char32;
17032 else
17033 {
17034 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17035 bits);
17036 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17037 }
17038 return set_die_type (die, type, cu);
17039 }
17040 break;
17041
17042 default:
17043 complaint (_("unsupported DW_AT_encoding: '%s'"),
17044 dwarf_type_encoding_name (encoding));
17045 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17046 break;
17047 }
17048
17049 if (name && strcmp (name, "char") == 0)
17050 TYPE_NOSIGN (type) = 1;
17051
17052 maybe_set_alignment (cu, die, type);
17053
17054 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17055
17056 return set_die_type (die, type, cu);
17057 }
17058
17059 /* Parse dwarf attribute if it's a block, reference or constant and put the
17060 resulting value of the attribute into struct bound_prop.
17061 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17062
17063 static int
17064 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17065 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17066 struct type *default_type)
17067 {
17068 struct dwarf2_property_baton *baton;
17069 struct obstack *obstack
17070 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17071
17072 gdb_assert (default_type != NULL);
17073
17074 if (attr == NULL || prop == NULL)
17075 return 0;
17076
17077 if (attr->form_is_block ())
17078 {
17079 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17080 baton->property_type = default_type;
17081 baton->locexpr.per_cu = cu->per_cu;
17082 baton->locexpr.size = DW_BLOCK (attr)->size;
17083 baton->locexpr.data = DW_BLOCK (attr)->data;
17084 switch (attr->name)
17085 {
17086 case DW_AT_string_length:
17087 baton->locexpr.is_reference = true;
17088 break;
17089 default:
17090 baton->locexpr.is_reference = false;
17091 break;
17092 }
17093 prop->data.baton = baton;
17094 prop->kind = PROP_LOCEXPR;
17095 gdb_assert (prop->data.baton != NULL);
17096 }
17097 else if (attr->form_is_ref ())
17098 {
17099 struct dwarf2_cu *target_cu = cu;
17100 struct die_info *target_die;
17101 struct attribute *target_attr;
17102
17103 target_die = follow_die_ref (die, attr, &target_cu);
17104 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17105 if (target_attr == NULL)
17106 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17107 target_cu);
17108 if (target_attr == NULL)
17109 return 0;
17110
17111 switch (target_attr->name)
17112 {
17113 case DW_AT_location:
17114 if (target_attr->form_is_section_offset ())
17115 {
17116 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17117 baton->property_type = die_type (target_die, target_cu);
17118 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17119 prop->data.baton = baton;
17120 prop->kind = PROP_LOCLIST;
17121 gdb_assert (prop->data.baton != NULL);
17122 }
17123 else if (target_attr->form_is_block ())
17124 {
17125 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17126 baton->property_type = die_type (target_die, target_cu);
17127 baton->locexpr.per_cu = cu->per_cu;
17128 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17129 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17130 baton->locexpr.is_reference = true;
17131 prop->data.baton = baton;
17132 prop->kind = PROP_LOCEXPR;
17133 gdb_assert (prop->data.baton != NULL);
17134 }
17135 else
17136 {
17137 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17138 "dynamic property");
17139 return 0;
17140 }
17141 break;
17142 case DW_AT_data_member_location:
17143 {
17144 LONGEST offset;
17145
17146 if (!handle_data_member_location (target_die, target_cu,
17147 &offset))
17148 return 0;
17149
17150 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17151 baton->property_type = read_type_die (target_die->parent,
17152 target_cu);
17153 baton->offset_info.offset = offset;
17154 baton->offset_info.type = die_type (target_die, target_cu);
17155 prop->data.baton = baton;
17156 prop->kind = PROP_ADDR_OFFSET;
17157 break;
17158 }
17159 }
17160 }
17161 else if (attr->form_is_constant ())
17162 {
17163 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17164 prop->kind = PROP_CONST;
17165 }
17166 else
17167 {
17168 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17169 dwarf2_name (die, cu));
17170 return 0;
17171 }
17172
17173 return 1;
17174 }
17175
17176 /* See read.h. */
17177
17178 struct type *
17179 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17180 {
17181 struct objfile *objfile = dwarf2_per_objfile->objfile;
17182 struct type *int_type;
17183
17184 /* Helper macro to examine the various builtin types. */
17185 #define TRY_TYPE(F) \
17186 int_type = (unsigned_p \
17187 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17188 : objfile_type (objfile)->builtin_ ## F); \
17189 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17190 return int_type
17191
17192 TRY_TYPE (char);
17193 TRY_TYPE (short);
17194 TRY_TYPE (int);
17195 TRY_TYPE (long);
17196 TRY_TYPE (long_long);
17197
17198 #undef TRY_TYPE
17199
17200 gdb_assert_not_reached ("unable to find suitable integer type");
17201 }
17202
17203 /* See read.h. */
17204
17205 struct type *
17206 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17207 {
17208 int addr_size = this->addr_size ();
17209 return int_type (addr_size, unsigned_p);
17210 }
17211
17212 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17213 present (which is valid) then compute the default type based on the
17214 compilation units address size. */
17215
17216 static struct type *
17217 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17218 {
17219 struct type *index_type = die_type (die, cu);
17220
17221 /* Dwarf-2 specifications explicitly allows to create subrange types
17222 without specifying a base type.
17223 In that case, the base type must be set to the type of
17224 the lower bound, upper bound or count, in that order, if any of these
17225 three attributes references an object that has a type.
17226 If no base type is found, the Dwarf-2 specifications say that
17227 a signed integer type of size equal to the size of an address should
17228 be used.
17229 For the following C code: `extern char gdb_int [];'
17230 GCC produces an empty range DIE.
17231 FIXME: muller/2010-05-28: Possible references to object for low bound,
17232 high bound or count are not yet handled by this code. */
17233 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17234 index_type = cu->per_cu->addr_sized_int_type (false);
17235
17236 return index_type;
17237 }
17238
17239 /* Read the given DW_AT_subrange DIE. */
17240
17241 static struct type *
17242 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17243 {
17244 struct type *base_type, *orig_base_type;
17245 struct type *range_type;
17246 struct attribute *attr;
17247 struct dynamic_prop low, high;
17248 int low_default_is_valid;
17249 int high_bound_is_count = 0;
17250 const char *name;
17251 ULONGEST negative_mask;
17252
17253 orig_base_type = read_subrange_index_type (die, cu);
17254
17255 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17256 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17257 creating the range type, but we use the result of check_typedef
17258 when examining properties of the type. */
17259 base_type = check_typedef (orig_base_type);
17260
17261 /* The die_type call above may have already set the type for this DIE. */
17262 range_type = get_die_type (die, cu);
17263 if (range_type)
17264 return range_type;
17265
17266 low.kind = PROP_CONST;
17267 high.kind = PROP_CONST;
17268 high.data.const_val = 0;
17269
17270 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17271 omitting DW_AT_lower_bound. */
17272 switch (cu->language)
17273 {
17274 case language_c:
17275 case language_cplus:
17276 low.data.const_val = 0;
17277 low_default_is_valid = 1;
17278 break;
17279 case language_fortran:
17280 low.data.const_val = 1;
17281 low_default_is_valid = 1;
17282 break;
17283 case language_d:
17284 case language_objc:
17285 case language_rust:
17286 low.data.const_val = 0;
17287 low_default_is_valid = (cu->header.version >= 4);
17288 break;
17289 case language_ada:
17290 case language_m2:
17291 case language_pascal:
17292 low.data.const_val = 1;
17293 low_default_is_valid = (cu->header.version >= 4);
17294 break;
17295 default:
17296 low.data.const_val = 0;
17297 low_default_is_valid = 0;
17298 break;
17299 }
17300
17301 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17302 if (attr != nullptr)
17303 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17304 else if (!low_default_is_valid)
17305 complaint (_("Missing DW_AT_lower_bound "
17306 "- DIE at %s [in module %s]"),
17307 sect_offset_str (die->sect_off),
17308 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17309
17310 struct attribute *attr_ub, *attr_count;
17311 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17312 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17313 {
17314 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17315 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17316 {
17317 /* If bounds are constant do the final calculation here. */
17318 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17319 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17320 else
17321 high_bound_is_count = 1;
17322 }
17323 else
17324 {
17325 if (attr_ub != NULL)
17326 complaint (_("Unresolved DW_AT_upper_bound "
17327 "- DIE at %s [in module %s]"),
17328 sect_offset_str (die->sect_off),
17329 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17330 if (attr_count != NULL)
17331 complaint (_("Unresolved DW_AT_count "
17332 "- DIE at %s [in module %s]"),
17333 sect_offset_str (die->sect_off),
17334 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17335 }
17336 }
17337
17338 LONGEST bias = 0;
17339 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17340 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17341 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17342
17343 /* Normally, the DWARF producers are expected to use a signed
17344 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17345 But this is unfortunately not always the case, as witnessed
17346 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17347 is used instead. To work around that ambiguity, we treat
17348 the bounds as signed, and thus sign-extend their values, when
17349 the base type is signed. */
17350 negative_mask =
17351 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17352 if (low.kind == PROP_CONST
17353 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17354 low.data.const_val |= negative_mask;
17355 if (high.kind == PROP_CONST
17356 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17357 high.data.const_val |= negative_mask;
17358
17359 /* Check for bit and byte strides. */
17360 struct dynamic_prop byte_stride_prop;
17361 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17362 if (attr_byte_stride != nullptr)
17363 {
17364 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17365 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17366 prop_type);
17367 }
17368
17369 struct dynamic_prop bit_stride_prop;
17370 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17371 if (attr_bit_stride != nullptr)
17372 {
17373 /* It only makes sense to have either a bit or byte stride. */
17374 if (attr_byte_stride != nullptr)
17375 {
17376 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17377 "- DIE at %s [in module %s]"),
17378 sect_offset_str (die->sect_off),
17379 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17380 attr_bit_stride = nullptr;
17381 }
17382 else
17383 {
17384 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17385 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17386 prop_type);
17387 }
17388 }
17389
17390 if (attr_byte_stride != nullptr
17391 || attr_bit_stride != nullptr)
17392 {
17393 bool byte_stride_p = (attr_byte_stride != nullptr);
17394 struct dynamic_prop *stride
17395 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17396
17397 range_type
17398 = create_range_type_with_stride (NULL, orig_base_type, &low,
17399 &high, bias, stride, byte_stride_p);
17400 }
17401 else
17402 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17403
17404 if (high_bound_is_count)
17405 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17406
17407 /* Ada expects an empty array on no boundary attributes. */
17408 if (attr == NULL && cu->language != language_ada)
17409 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17410
17411 name = dwarf2_name (die, cu);
17412 if (name)
17413 TYPE_NAME (range_type) = name;
17414
17415 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17416 if (attr != nullptr)
17417 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17418
17419 maybe_set_alignment (cu, die, range_type);
17420
17421 set_die_type (die, range_type, cu);
17422
17423 /* set_die_type should be already done. */
17424 set_descriptive_type (range_type, die, cu);
17425
17426 return range_type;
17427 }
17428
17429 static struct type *
17430 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17431 {
17432 struct type *type;
17433
17434 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17435 NULL);
17436 TYPE_NAME (type) = dwarf2_name (die, cu);
17437
17438 /* In Ada, an unspecified type is typically used when the description
17439 of the type is deferred to a different unit. When encountering
17440 such a type, we treat it as a stub, and try to resolve it later on,
17441 when needed. */
17442 if (cu->language == language_ada)
17443 TYPE_STUB (type) = 1;
17444
17445 return set_die_type (die, type, cu);
17446 }
17447
17448 /* Read a single die and all its descendents. Set the die's sibling
17449 field to NULL; set other fields in the die correctly, and set all
17450 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17451 location of the info_ptr after reading all of those dies. PARENT
17452 is the parent of the die in question. */
17453
17454 static struct die_info *
17455 read_die_and_children (const struct die_reader_specs *reader,
17456 const gdb_byte *info_ptr,
17457 const gdb_byte **new_info_ptr,
17458 struct die_info *parent)
17459 {
17460 struct die_info *die;
17461 const gdb_byte *cur_ptr;
17462
17463 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17464 if (die == NULL)
17465 {
17466 *new_info_ptr = cur_ptr;
17467 return NULL;
17468 }
17469 store_in_ref_table (die, reader->cu);
17470
17471 if (die->has_children)
17472 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17473 else
17474 {
17475 die->child = NULL;
17476 *new_info_ptr = cur_ptr;
17477 }
17478
17479 die->sibling = NULL;
17480 die->parent = parent;
17481 return die;
17482 }
17483
17484 /* Read a die, all of its descendents, and all of its siblings; set
17485 all of the fields of all of the dies correctly. Arguments are as
17486 in read_die_and_children. */
17487
17488 static struct die_info *
17489 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17490 const gdb_byte *info_ptr,
17491 const gdb_byte **new_info_ptr,
17492 struct die_info *parent)
17493 {
17494 struct die_info *first_die, *last_sibling;
17495 const gdb_byte *cur_ptr;
17496
17497 cur_ptr = info_ptr;
17498 first_die = last_sibling = NULL;
17499
17500 while (1)
17501 {
17502 struct die_info *die
17503 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17504
17505 if (die == NULL)
17506 {
17507 *new_info_ptr = cur_ptr;
17508 return first_die;
17509 }
17510
17511 if (!first_die)
17512 first_die = die;
17513 else
17514 last_sibling->sibling = die;
17515
17516 last_sibling = die;
17517 }
17518 }
17519
17520 /* Read a die, all of its descendents, and all of its siblings; set
17521 all of the fields of all of the dies correctly. Arguments are as
17522 in read_die_and_children.
17523 This the main entry point for reading a DIE and all its children. */
17524
17525 static struct die_info *
17526 read_die_and_siblings (const struct die_reader_specs *reader,
17527 const gdb_byte *info_ptr,
17528 const gdb_byte **new_info_ptr,
17529 struct die_info *parent)
17530 {
17531 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17532 new_info_ptr, parent);
17533
17534 if (dwarf_die_debug)
17535 {
17536 fprintf_unfiltered (gdb_stdlog,
17537 "Read die from %s@0x%x of %s:\n",
17538 reader->die_section->get_name (),
17539 (unsigned) (info_ptr - reader->die_section->buffer),
17540 bfd_get_filename (reader->abfd));
17541 dump_die (die, dwarf_die_debug);
17542 }
17543
17544 return die;
17545 }
17546
17547 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17548 attributes.
17549 The caller is responsible for filling in the extra attributes
17550 and updating (*DIEP)->num_attrs.
17551 Set DIEP to point to a newly allocated die with its information,
17552 except for its child, sibling, and parent fields. */
17553
17554 static const gdb_byte *
17555 read_full_die_1 (const struct die_reader_specs *reader,
17556 struct die_info **diep, const gdb_byte *info_ptr,
17557 int num_extra_attrs)
17558 {
17559 unsigned int abbrev_number, bytes_read, i;
17560 struct abbrev_info *abbrev;
17561 struct die_info *die;
17562 struct dwarf2_cu *cu = reader->cu;
17563 bfd *abfd = reader->abfd;
17564
17565 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17566 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17567 info_ptr += bytes_read;
17568 if (!abbrev_number)
17569 {
17570 *diep = NULL;
17571 return info_ptr;
17572 }
17573
17574 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17575 if (!abbrev)
17576 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17577 abbrev_number,
17578 bfd_get_filename (abfd));
17579
17580 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17581 die->sect_off = sect_off;
17582 die->tag = abbrev->tag;
17583 die->abbrev = abbrev_number;
17584 die->has_children = abbrev->has_children;
17585
17586 /* Make the result usable.
17587 The caller needs to update num_attrs after adding the extra
17588 attributes. */
17589 die->num_attrs = abbrev->num_attrs;
17590
17591 std::vector<int> indexes_that_need_reprocess;
17592 for (i = 0; i < abbrev->num_attrs; ++i)
17593 {
17594 bool need_reprocess;
17595 info_ptr =
17596 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17597 info_ptr, &need_reprocess);
17598 if (need_reprocess)
17599 indexes_that_need_reprocess.push_back (i);
17600 }
17601
17602 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
17603 if (attr != nullptr)
17604 cu->str_offsets_base = DW_UNSND (attr);
17605
17606 auto maybe_addr_base = lookup_addr_base(die);
17607 if (maybe_addr_base.has_value ())
17608 cu->addr_base = *maybe_addr_base;
17609 for (int index : indexes_that_need_reprocess)
17610 read_attribute_reprocess (reader, &die->attrs[index]);
17611 *diep = die;
17612 return info_ptr;
17613 }
17614
17615 /* Read a die and all its attributes.
17616 Set DIEP to point to a newly allocated die with its information,
17617 except for its child, sibling, and parent fields. */
17618
17619 static const gdb_byte *
17620 read_full_die (const struct die_reader_specs *reader,
17621 struct die_info **diep, const gdb_byte *info_ptr)
17622 {
17623 const gdb_byte *result;
17624
17625 result = read_full_die_1 (reader, diep, info_ptr, 0);
17626
17627 if (dwarf_die_debug)
17628 {
17629 fprintf_unfiltered (gdb_stdlog,
17630 "Read die from %s@0x%x of %s:\n",
17631 reader->die_section->get_name (),
17632 (unsigned) (info_ptr - reader->die_section->buffer),
17633 bfd_get_filename (reader->abfd));
17634 dump_die (*diep, dwarf_die_debug);
17635 }
17636
17637 return result;
17638 }
17639 \f
17640
17641 /* Returns nonzero if TAG represents a type that we might generate a partial
17642 symbol for. */
17643
17644 static int
17645 is_type_tag_for_partial (int tag)
17646 {
17647 switch (tag)
17648 {
17649 #if 0
17650 /* Some types that would be reasonable to generate partial symbols for,
17651 that we don't at present. */
17652 case DW_TAG_array_type:
17653 case DW_TAG_file_type:
17654 case DW_TAG_ptr_to_member_type:
17655 case DW_TAG_set_type:
17656 case DW_TAG_string_type:
17657 case DW_TAG_subroutine_type:
17658 #endif
17659 case DW_TAG_base_type:
17660 case DW_TAG_class_type:
17661 case DW_TAG_interface_type:
17662 case DW_TAG_enumeration_type:
17663 case DW_TAG_structure_type:
17664 case DW_TAG_subrange_type:
17665 case DW_TAG_typedef:
17666 case DW_TAG_union_type:
17667 return 1;
17668 default:
17669 return 0;
17670 }
17671 }
17672
17673 /* Load all DIEs that are interesting for partial symbols into memory. */
17674
17675 static struct partial_die_info *
17676 load_partial_dies (const struct die_reader_specs *reader,
17677 const gdb_byte *info_ptr, int building_psymtab)
17678 {
17679 struct dwarf2_cu *cu = reader->cu;
17680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17681 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17682 unsigned int bytes_read;
17683 unsigned int load_all = 0;
17684 int nesting_level = 1;
17685
17686 parent_die = NULL;
17687 last_die = NULL;
17688
17689 gdb_assert (cu->per_cu != NULL);
17690 if (cu->per_cu->load_all_dies)
17691 load_all = 1;
17692
17693 cu->partial_dies
17694 = htab_create_alloc_ex (cu->header.length / 12,
17695 partial_die_hash,
17696 partial_die_eq,
17697 NULL,
17698 &cu->comp_unit_obstack,
17699 hashtab_obstack_allocate,
17700 dummy_obstack_deallocate);
17701
17702 while (1)
17703 {
17704 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17705
17706 /* A NULL abbrev means the end of a series of children. */
17707 if (abbrev == NULL)
17708 {
17709 if (--nesting_level == 0)
17710 return first_die;
17711
17712 info_ptr += bytes_read;
17713 last_die = parent_die;
17714 parent_die = parent_die->die_parent;
17715 continue;
17716 }
17717
17718 /* Check for template arguments. We never save these; if
17719 they're seen, we just mark the parent, and go on our way. */
17720 if (parent_die != NULL
17721 && cu->language == language_cplus
17722 && (abbrev->tag == DW_TAG_template_type_param
17723 || abbrev->tag == DW_TAG_template_value_param))
17724 {
17725 parent_die->has_template_arguments = 1;
17726
17727 if (!load_all)
17728 {
17729 /* We don't need a partial DIE for the template argument. */
17730 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17731 continue;
17732 }
17733 }
17734
17735 /* We only recurse into c++ subprograms looking for template arguments.
17736 Skip their other children. */
17737 if (!load_all
17738 && cu->language == language_cplus
17739 && parent_die != NULL
17740 && parent_die->tag == DW_TAG_subprogram)
17741 {
17742 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17743 continue;
17744 }
17745
17746 /* Check whether this DIE is interesting enough to save. Normally
17747 we would not be interested in members here, but there may be
17748 later variables referencing them via DW_AT_specification (for
17749 static members). */
17750 if (!load_all
17751 && !is_type_tag_for_partial (abbrev->tag)
17752 && abbrev->tag != DW_TAG_constant
17753 && abbrev->tag != DW_TAG_enumerator
17754 && abbrev->tag != DW_TAG_subprogram
17755 && abbrev->tag != DW_TAG_inlined_subroutine
17756 && abbrev->tag != DW_TAG_lexical_block
17757 && abbrev->tag != DW_TAG_variable
17758 && abbrev->tag != DW_TAG_namespace
17759 && abbrev->tag != DW_TAG_module
17760 && abbrev->tag != DW_TAG_member
17761 && abbrev->tag != DW_TAG_imported_unit
17762 && abbrev->tag != DW_TAG_imported_declaration)
17763 {
17764 /* Otherwise we skip to the next sibling, if any. */
17765 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17766 continue;
17767 }
17768
17769 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17770 abbrev);
17771
17772 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17773
17774 /* This two-pass algorithm for processing partial symbols has a
17775 high cost in cache pressure. Thus, handle some simple cases
17776 here which cover the majority of C partial symbols. DIEs
17777 which neither have specification tags in them, nor could have
17778 specification tags elsewhere pointing at them, can simply be
17779 processed and discarded.
17780
17781 This segment is also optional; scan_partial_symbols and
17782 add_partial_symbol will handle these DIEs if we chain
17783 them in normally. When compilers which do not emit large
17784 quantities of duplicate debug information are more common,
17785 this code can probably be removed. */
17786
17787 /* Any complete simple types at the top level (pretty much all
17788 of them, for a language without namespaces), can be processed
17789 directly. */
17790 if (parent_die == NULL
17791 && pdi.has_specification == 0
17792 && pdi.is_declaration == 0
17793 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17794 || pdi.tag == DW_TAG_base_type
17795 || pdi.tag == DW_TAG_subrange_type))
17796 {
17797 if (building_psymtab && pdi.name != NULL)
17798 add_psymbol_to_list (pdi.name, false,
17799 VAR_DOMAIN, LOC_TYPEDEF, -1,
17800 psymbol_placement::STATIC,
17801 0, cu->language, objfile);
17802 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17803 continue;
17804 }
17805
17806 /* The exception for DW_TAG_typedef with has_children above is
17807 a workaround of GCC PR debug/47510. In the case of this complaint
17808 type_name_or_error will error on such types later.
17809
17810 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17811 it could not find the child DIEs referenced later, this is checked
17812 above. In correct DWARF DW_TAG_typedef should have no children. */
17813
17814 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17815 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17816 "- DIE at %s [in module %s]"),
17817 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17818
17819 /* If we're at the second level, and we're an enumerator, and
17820 our parent has no specification (meaning possibly lives in a
17821 namespace elsewhere), then we can add the partial symbol now
17822 instead of queueing it. */
17823 if (pdi.tag == DW_TAG_enumerator
17824 && parent_die != NULL
17825 && parent_die->die_parent == NULL
17826 && parent_die->tag == DW_TAG_enumeration_type
17827 && parent_die->has_specification == 0)
17828 {
17829 if (pdi.name == NULL)
17830 complaint (_("malformed enumerator DIE ignored"));
17831 else if (building_psymtab)
17832 add_psymbol_to_list (pdi.name, false,
17833 VAR_DOMAIN, LOC_CONST, -1,
17834 cu->language == language_cplus
17835 ? psymbol_placement::GLOBAL
17836 : psymbol_placement::STATIC,
17837 0, cu->language, objfile);
17838
17839 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17840 continue;
17841 }
17842
17843 struct partial_die_info *part_die
17844 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17845
17846 /* We'll save this DIE so link it in. */
17847 part_die->die_parent = parent_die;
17848 part_die->die_sibling = NULL;
17849 part_die->die_child = NULL;
17850
17851 if (last_die && last_die == parent_die)
17852 last_die->die_child = part_die;
17853 else if (last_die)
17854 last_die->die_sibling = part_die;
17855
17856 last_die = part_die;
17857
17858 if (first_die == NULL)
17859 first_die = part_die;
17860
17861 /* Maybe add the DIE to the hash table. Not all DIEs that we
17862 find interesting need to be in the hash table, because we
17863 also have the parent/sibling/child chains; only those that we
17864 might refer to by offset later during partial symbol reading.
17865
17866 For now this means things that might have be the target of a
17867 DW_AT_specification, DW_AT_abstract_origin, or
17868 DW_AT_extension. DW_AT_extension will refer only to
17869 namespaces; DW_AT_abstract_origin refers to functions (and
17870 many things under the function DIE, but we do not recurse
17871 into function DIEs during partial symbol reading) and
17872 possibly variables as well; DW_AT_specification refers to
17873 declarations. Declarations ought to have the DW_AT_declaration
17874 flag. It happens that GCC forgets to put it in sometimes, but
17875 only for functions, not for types.
17876
17877 Adding more things than necessary to the hash table is harmless
17878 except for the performance cost. Adding too few will result in
17879 wasted time in find_partial_die, when we reread the compilation
17880 unit with load_all_dies set. */
17881
17882 if (load_all
17883 || abbrev->tag == DW_TAG_constant
17884 || abbrev->tag == DW_TAG_subprogram
17885 || abbrev->tag == DW_TAG_variable
17886 || abbrev->tag == DW_TAG_namespace
17887 || part_die->is_declaration)
17888 {
17889 void **slot;
17890
17891 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17892 to_underlying (part_die->sect_off),
17893 INSERT);
17894 *slot = part_die;
17895 }
17896
17897 /* For some DIEs we want to follow their children (if any). For C
17898 we have no reason to follow the children of structures; for other
17899 languages we have to, so that we can get at method physnames
17900 to infer fully qualified class names, for DW_AT_specification,
17901 and for C++ template arguments. For C++, we also look one level
17902 inside functions to find template arguments (if the name of the
17903 function does not already contain the template arguments).
17904
17905 For Ada and Fortran, we need to scan the children of subprograms
17906 and lexical blocks as well because these languages allow the
17907 definition of nested entities that could be interesting for the
17908 debugger, such as nested subprograms for instance. */
17909 if (last_die->has_children
17910 && (load_all
17911 || last_die->tag == DW_TAG_namespace
17912 || last_die->tag == DW_TAG_module
17913 || last_die->tag == DW_TAG_enumeration_type
17914 || (cu->language == language_cplus
17915 && last_die->tag == DW_TAG_subprogram
17916 && (last_die->name == NULL
17917 || strchr (last_die->name, '<') == NULL))
17918 || (cu->language != language_c
17919 && (last_die->tag == DW_TAG_class_type
17920 || last_die->tag == DW_TAG_interface_type
17921 || last_die->tag == DW_TAG_structure_type
17922 || last_die->tag == DW_TAG_union_type))
17923 || ((cu->language == language_ada
17924 || cu->language == language_fortran)
17925 && (last_die->tag == DW_TAG_subprogram
17926 || last_die->tag == DW_TAG_lexical_block))))
17927 {
17928 nesting_level++;
17929 parent_die = last_die;
17930 continue;
17931 }
17932
17933 /* Otherwise we skip to the next sibling, if any. */
17934 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17935
17936 /* Back to the top, do it again. */
17937 }
17938 }
17939
17940 partial_die_info::partial_die_info (sect_offset sect_off_,
17941 struct abbrev_info *abbrev)
17942 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17943 {
17944 }
17945
17946 /* Read a minimal amount of information into the minimal die structure.
17947 INFO_PTR should point just after the initial uleb128 of a DIE. */
17948
17949 const gdb_byte *
17950 partial_die_info::read (const struct die_reader_specs *reader,
17951 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17952 {
17953 struct dwarf2_cu *cu = reader->cu;
17954 struct dwarf2_per_objfile *dwarf2_per_objfile
17955 = cu->per_cu->dwarf2_per_objfile;
17956 unsigned int i;
17957 int has_low_pc_attr = 0;
17958 int has_high_pc_attr = 0;
17959 int high_pc_relative = 0;
17960
17961 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
17962 for (i = 0; i < abbrev.num_attrs; ++i)
17963 {
17964 bool need_reprocess;
17965 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
17966 info_ptr, &need_reprocess);
17967 /* String and address offsets that need to do the reprocessing have
17968 already been read at this point, so there is no need to wait until
17969 the loop terminates to do the reprocessing. */
17970 if (need_reprocess)
17971 read_attribute_reprocess (reader, &attr_vec[i]);
17972 attribute &attr = attr_vec[i];
17973 /* Store the data if it is of an attribute we want to keep in a
17974 partial symbol table. */
17975 switch (attr.name)
17976 {
17977 case DW_AT_name:
17978 switch (tag)
17979 {
17980 case DW_TAG_compile_unit:
17981 case DW_TAG_partial_unit:
17982 case DW_TAG_type_unit:
17983 /* Compilation units have a DW_AT_name that is a filename, not
17984 a source language identifier. */
17985 case DW_TAG_enumeration_type:
17986 case DW_TAG_enumerator:
17987 /* These tags always have simple identifiers already; no need
17988 to canonicalize them. */
17989 name = DW_STRING (&attr);
17990 break;
17991 default:
17992 {
17993 struct objfile *objfile = dwarf2_per_objfile->objfile;
17994
17995 name
17996 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17997 &objfile->per_bfd->storage_obstack);
17998 }
17999 break;
18000 }
18001 break;
18002 case DW_AT_linkage_name:
18003 case DW_AT_MIPS_linkage_name:
18004 /* Note that both forms of linkage name might appear. We
18005 assume they will be the same, and we only store the last
18006 one we see. */
18007 linkage_name = DW_STRING (&attr);
18008 break;
18009 case DW_AT_low_pc:
18010 has_low_pc_attr = 1;
18011 lowpc = attr.value_as_address ();
18012 break;
18013 case DW_AT_high_pc:
18014 has_high_pc_attr = 1;
18015 highpc = attr.value_as_address ();
18016 if (cu->header.version >= 4 && attr.form_is_constant ())
18017 high_pc_relative = 1;
18018 break;
18019 case DW_AT_location:
18020 /* Support the .debug_loc offsets. */
18021 if (attr.form_is_block ())
18022 {
18023 d.locdesc = DW_BLOCK (&attr);
18024 }
18025 else if (attr.form_is_section_offset ())
18026 {
18027 dwarf2_complex_location_expr_complaint ();
18028 }
18029 else
18030 {
18031 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18032 "partial symbol information");
18033 }
18034 break;
18035 case DW_AT_external:
18036 is_external = DW_UNSND (&attr);
18037 break;
18038 case DW_AT_declaration:
18039 is_declaration = DW_UNSND (&attr);
18040 break;
18041 case DW_AT_type:
18042 has_type = 1;
18043 break;
18044 case DW_AT_abstract_origin:
18045 case DW_AT_specification:
18046 case DW_AT_extension:
18047 has_specification = 1;
18048 spec_offset = dwarf2_get_ref_die_offset (&attr);
18049 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18050 || cu->per_cu->is_dwz);
18051 break;
18052 case DW_AT_sibling:
18053 /* Ignore absolute siblings, they might point outside of
18054 the current compile unit. */
18055 if (attr.form == DW_FORM_ref_addr)
18056 complaint (_("ignoring absolute DW_AT_sibling"));
18057 else
18058 {
18059 const gdb_byte *buffer = reader->buffer;
18060 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18061 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18062
18063 if (sibling_ptr < info_ptr)
18064 complaint (_("DW_AT_sibling points backwards"));
18065 else if (sibling_ptr > reader->buffer_end)
18066 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18067 else
18068 sibling = sibling_ptr;
18069 }
18070 break;
18071 case DW_AT_byte_size:
18072 has_byte_size = 1;
18073 break;
18074 case DW_AT_const_value:
18075 has_const_value = 1;
18076 break;
18077 case DW_AT_calling_convention:
18078 /* DWARF doesn't provide a way to identify a program's source-level
18079 entry point. DW_AT_calling_convention attributes are only meant
18080 to describe functions' calling conventions.
18081
18082 However, because it's a necessary piece of information in
18083 Fortran, and before DWARF 4 DW_CC_program was the only
18084 piece of debugging information whose definition refers to
18085 a 'main program' at all, several compilers marked Fortran
18086 main programs with DW_CC_program --- even when those
18087 functions use the standard calling conventions.
18088
18089 Although DWARF now specifies a way to provide this
18090 information, we support this practice for backward
18091 compatibility. */
18092 if (DW_UNSND (&attr) == DW_CC_program
18093 && cu->language == language_fortran)
18094 main_subprogram = 1;
18095 break;
18096 case DW_AT_inline:
18097 if (DW_UNSND (&attr) == DW_INL_inlined
18098 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18099 may_be_inlined = 1;
18100 break;
18101
18102 case DW_AT_import:
18103 if (tag == DW_TAG_imported_unit)
18104 {
18105 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18106 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18107 || cu->per_cu->is_dwz);
18108 }
18109 break;
18110
18111 case DW_AT_main_subprogram:
18112 main_subprogram = DW_UNSND (&attr);
18113 break;
18114
18115 case DW_AT_ranges:
18116 {
18117 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18118 but that requires a full DIE, so instead we just
18119 reimplement it. */
18120 int need_ranges_base = tag != DW_TAG_compile_unit;
18121 unsigned int ranges_offset = (DW_UNSND (&attr)
18122 + (need_ranges_base
18123 ? cu->ranges_base
18124 : 0));
18125
18126 /* Value of the DW_AT_ranges attribute is the offset in the
18127 .debug_ranges section. */
18128 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18129 nullptr))
18130 has_pc_info = 1;
18131 }
18132 break;
18133
18134 default:
18135 break;
18136 }
18137 }
18138
18139 /* For Ada, if both the name and the linkage name appear, we prefer
18140 the latter. This lets "catch exception" work better, regardless
18141 of the order in which the name and linkage name were emitted.
18142 Really, though, this is just a workaround for the fact that gdb
18143 doesn't store both the name and the linkage name. */
18144 if (cu->language == language_ada && linkage_name != nullptr)
18145 name = linkage_name;
18146
18147 if (high_pc_relative)
18148 highpc += lowpc;
18149
18150 if (has_low_pc_attr && has_high_pc_attr)
18151 {
18152 /* When using the GNU linker, .gnu.linkonce. sections are used to
18153 eliminate duplicate copies of functions and vtables and such.
18154 The linker will arbitrarily choose one and discard the others.
18155 The AT_*_pc values for such functions refer to local labels in
18156 these sections. If the section from that file was discarded, the
18157 labels are not in the output, so the relocs get a value of 0.
18158 If this is a discarded function, mark the pc bounds as invalid,
18159 so that GDB will ignore it. */
18160 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18161 {
18162 struct objfile *objfile = dwarf2_per_objfile->objfile;
18163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18164
18165 complaint (_("DW_AT_low_pc %s is zero "
18166 "for DIE at %s [in module %s]"),
18167 paddress (gdbarch, lowpc),
18168 sect_offset_str (sect_off),
18169 objfile_name (objfile));
18170 }
18171 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18172 else if (lowpc >= highpc)
18173 {
18174 struct objfile *objfile = dwarf2_per_objfile->objfile;
18175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18176
18177 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18178 "for DIE at %s [in module %s]"),
18179 paddress (gdbarch, lowpc),
18180 paddress (gdbarch, highpc),
18181 sect_offset_str (sect_off),
18182 objfile_name (objfile));
18183 }
18184 else
18185 has_pc_info = 1;
18186 }
18187
18188 return info_ptr;
18189 }
18190
18191 /* Find a cached partial DIE at OFFSET in CU. */
18192
18193 struct partial_die_info *
18194 dwarf2_cu::find_partial_die (sect_offset sect_off)
18195 {
18196 struct partial_die_info *lookup_die = NULL;
18197 struct partial_die_info part_die (sect_off);
18198
18199 lookup_die = ((struct partial_die_info *)
18200 htab_find_with_hash (partial_dies, &part_die,
18201 to_underlying (sect_off)));
18202
18203 return lookup_die;
18204 }
18205
18206 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18207 except in the case of .debug_types DIEs which do not reference
18208 outside their CU (they do however referencing other types via
18209 DW_FORM_ref_sig8). */
18210
18211 static const struct cu_partial_die_info
18212 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18213 {
18214 struct dwarf2_per_objfile *dwarf2_per_objfile
18215 = cu->per_cu->dwarf2_per_objfile;
18216 struct objfile *objfile = dwarf2_per_objfile->objfile;
18217 struct dwarf2_per_cu_data *per_cu = NULL;
18218 struct partial_die_info *pd = NULL;
18219
18220 if (offset_in_dwz == cu->per_cu->is_dwz
18221 && cu->header.offset_in_cu_p (sect_off))
18222 {
18223 pd = cu->find_partial_die (sect_off);
18224 if (pd != NULL)
18225 return { cu, pd };
18226 /* We missed recording what we needed.
18227 Load all dies and try again. */
18228 per_cu = cu->per_cu;
18229 }
18230 else
18231 {
18232 /* TUs don't reference other CUs/TUs (except via type signatures). */
18233 if (cu->per_cu->is_debug_types)
18234 {
18235 error (_("Dwarf Error: Type Unit at offset %s contains"
18236 " external reference to offset %s [in module %s].\n"),
18237 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18238 bfd_get_filename (objfile->obfd));
18239 }
18240 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18241 dwarf2_per_objfile);
18242
18243 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18244 load_partial_comp_unit (per_cu);
18245
18246 per_cu->cu->last_used = 0;
18247 pd = per_cu->cu->find_partial_die (sect_off);
18248 }
18249
18250 /* If we didn't find it, and not all dies have been loaded,
18251 load them all and try again. */
18252
18253 if (pd == NULL && per_cu->load_all_dies == 0)
18254 {
18255 per_cu->load_all_dies = 1;
18256
18257 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18258 THIS_CU->cu may already be in use. So we can't just free it and
18259 replace its DIEs with the ones we read in. Instead, we leave those
18260 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18261 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18262 set. */
18263 load_partial_comp_unit (per_cu);
18264
18265 pd = per_cu->cu->find_partial_die (sect_off);
18266 }
18267
18268 if (pd == NULL)
18269 internal_error (__FILE__, __LINE__,
18270 _("could not find partial DIE %s "
18271 "in cache [from module %s]\n"),
18272 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18273 return { per_cu->cu, pd };
18274 }
18275
18276 /* See if we can figure out if the class lives in a namespace. We do
18277 this by looking for a member function; its demangled name will
18278 contain namespace info, if there is any. */
18279
18280 static void
18281 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18282 struct dwarf2_cu *cu)
18283 {
18284 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18285 what template types look like, because the demangler
18286 frequently doesn't give the same name as the debug info. We
18287 could fix this by only using the demangled name to get the
18288 prefix (but see comment in read_structure_type). */
18289
18290 struct partial_die_info *real_pdi;
18291 struct partial_die_info *child_pdi;
18292
18293 /* If this DIE (this DIE's specification, if any) has a parent, then
18294 we should not do this. We'll prepend the parent's fully qualified
18295 name when we create the partial symbol. */
18296
18297 real_pdi = struct_pdi;
18298 while (real_pdi->has_specification)
18299 {
18300 auto res = find_partial_die (real_pdi->spec_offset,
18301 real_pdi->spec_is_dwz, cu);
18302 real_pdi = res.pdi;
18303 cu = res.cu;
18304 }
18305
18306 if (real_pdi->die_parent != NULL)
18307 return;
18308
18309 for (child_pdi = struct_pdi->die_child;
18310 child_pdi != NULL;
18311 child_pdi = child_pdi->die_sibling)
18312 {
18313 if (child_pdi->tag == DW_TAG_subprogram
18314 && child_pdi->linkage_name != NULL)
18315 {
18316 gdb::unique_xmalloc_ptr<char> actual_class_name
18317 (language_class_name_from_physname (cu->language_defn,
18318 child_pdi->linkage_name));
18319 if (actual_class_name != NULL)
18320 {
18321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18322 struct_pdi->name
18323 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18324 actual_class_name.get ());
18325 }
18326 break;
18327 }
18328 }
18329 }
18330
18331 void
18332 partial_die_info::fixup (struct dwarf2_cu *cu)
18333 {
18334 /* Once we've fixed up a die, there's no point in doing so again.
18335 This also avoids a memory leak if we were to call
18336 guess_partial_die_structure_name multiple times. */
18337 if (fixup_called)
18338 return;
18339
18340 /* If we found a reference attribute and the DIE has no name, try
18341 to find a name in the referred to DIE. */
18342
18343 if (name == NULL && has_specification)
18344 {
18345 struct partial_die_info *spec_die;
18346
18347 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18348 spec_die = res.pdi;
18349 cu = res.cu;
18350
18351 spec_die->fixup (cu);
18352
18353 if (spec_die->name)
18354 {
18355 name = spec_die->name;
18356
18357 /* Copy DW_AT_external attribute if it is set. */
18358 if (spec_die->is_external)
18359 is_external = spec_die->is_external;
18360 }
18361 }
18362
18363 /* Set default names for some unnamed DIEs. */
18364
18365 if (name == NULL && tag == DW_TAG_namespace)
18366 name = CP_ANONYMOUS_NAMESPACE_STR;
18367
18368 /* If there is no parent die to provide a namespace, and there are
18369 children, see if we can determine the namespace from their linkage
18370 name. */
18371 if (cu->language == language_cplus
18372 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18373 && die_parent == NULL
18374 && has_children
18375 && (tag == DW_TAG_class_type
18376 || tag == DW_TAG_structure_type
18377 || tag == DW_TAG_union_type))
18378 guess_partial_die_structure_name (this, cu);
18379
18380 /* GCC might emit a nameless struct or union that has a linkage
18381 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18382 if (name == NULL
18383 && (tag == DW_TAG_class_type
18384 || tag == DW_TAG_interface_type
18385 || tag == DW_TAG_structure_type
18386 || tag == DW_TAG_union_type)
18387 && linkage_name != NULL)
18388 {
18389 gdb::unique_xmalloc_ptr<char> demangled
18390 (gdb_demangle (linkage_name, DMGL_TYPES));
18391 if (demangled != nullptr)
18392 {
18393 const char *base;
18394
18395 /* Strip any leading namespaces/classes, keep only the base name.
18396 DW_AT_name for named DIEs does not contain the prefixes. */
18397 base = strrchr (demangled.get (), ':');
18398 if (base && base > demangled.get () && base[-1] == ':')
18399 base++;
18400 else
18401 base = demangled.get ();
18402
18403 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18404 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18405 }
18406 }
18407
18408 fixup_called = 1;
18409 }
18410
18411 /* Process the attributes that had to be skipped in the first round. These
18412 attributes are the ones that need str_offsets_base or addr_base attributes.
18413 They could not have been processed in the first round, because at the time
18414 the values of str_offsets_base or addr_base may not have been known. */
18415 void read_attribute_reprocess (const struct die_reader_specs *reader,
18416 struct attribute *attr)
18417 {
18418 struct dwarf2_cu *cu = reader->cu;
18419 switch (attr->form)
18420 {
18421 case DW_FORM_addrx:
18422 case DW_FORM_GNU_addr_index:
18423 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18424 break;
18425 case DW_FORM_strx:
18426 case DW_FORM_strx1:
18427 case DW_FORM_strx2:
18428 case DW_FORM_strx3:
18429 case DW_FORM_strx4:
18430 case DW_FORM_GNU_str_index:
18431 {
18432 unsigned int str_index = DW_UNSND (attr);
18433 if (reader->dwo_file != NULL)
18434 {
18435 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18436 DW_STRING_IS_CANONICAL (attr) = 0;
18437 }
18438 else
18439 {
18440 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18441 DW_STRING_IS_CANONICAL (attr) = 0;
18442 }
18443 break;
18444 }
18445 default:
18446 gdb_assert_not_reached (_("Unexpected DWARF form."));
18447 }
18448 }
18449
18450 /* Read an attribute value described by an attribute form. */
18451
18452 static const gdb_byte *
18453 read_attribute_value (const struct die_reader_specs *reader,
18454 struct attribute *attr, unsigned form,
18455 LONGEST implicit_const, const gdb_byte *info_ptr,
18456 bool *need_reprocess)
18457 {
18458 struct dwarf2_cu *cu = reader->cu;
18459 struct dwarf2_per_objfile *dwarf2_per_objfile
18460 = cu->per_cu->dwarf2_per_objfile;
18461 struct objfile *objfile = dwarf2_per_objfile->objfile;
18462 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18463 bfd *abfd = reader->abfd;
18464 struct comp_unit_head *cu_header = &cu->header;
18465 unsigned int bytes_read;
18466 struct dwarf_block *blk;
18467 *need_reprocess = false;
18468
18469 attr->form = (enum dwarf_form) form;
18470 switch (form)
18471 {
18472 case DW_FORM_ref_addr:
18473 if (cu->header.version == 2)
18474 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18475 &bytes_read);
18476 else
18477 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18478 &bytes_read);
18479 info_ptr += bytes_read;
18480 break;
18481 case DW_FORM_GNU_ref_alt:
18482 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18483 info_ptr += bytes_read;
18484 break;
18485 case DW_FORM_addr:
18486 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18487 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18488 info_ptr += bytes_read;
18489 break;
18490 case DW_FORM_block2:
18491 blk = dwarf_alloc_block (cu);
18492 blk->size = read_2_bytes (abfd, info_ptr);
18493 info_ptr += 2;
18494 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18495 info_ptr += blk->size;
18496 DW_BLOCK (attr) = blk;
18497 break;
18498 case DW_FORM_block4:
18499 blk = dwarf_alloc_block (cu);
18500 blk->size = read_4_bytes (abfd, info_ptr);
18501 info_ptr += 4;
18502 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18503 info_ptr += blk->size;
18504 DW_BLOCK (attr) = blk;
18505 break;
18506 case DW_FORM_data2:
18507 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18508 info_ptr += 2;
18509 break;
18510 case DW_FORM_data4:
18511 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18512 info_ptr += 4;
18513 break;
18514 case DW_FORM_data8:
18515 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18516 info_ptr += 8;
18517 break;
18518 case DW_FORM_data16:
18519 blk = dwarf_alloc_block (cu);
18520 blk->size = 16;
18521 blk->data = read_n_bytes (abfd, info_ptr, 16);
18522 info_ptr += 16;
18523 DW_BLOCK (attr) = blk;
18524 break;
18525 case DW_FORM_sec_offset:
18526 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18527 info_ptr += bytes_read;
18528 break;
18529 case DW_FORM_string:
18530 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18531 DW_STRING_IS_CANONICAL (attr) = 0;
18532 info_ptr += bytes_read;
18533 break;
18534 case DW_FORM_strp:
18535 if (!cu->per_cu->is_dwz)
18536 {
18537 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18538 abfd, info_ptr, cu_header,
18539 &bytes_read);
18540 DW_STRING_IS_CANONICAL (attr) = 0;
18541 info_ptr += bytes_read;
18542 break;
18543 }
18544 /* FALLTHROUGH */
18545 case DW_FORM_line_strp:
18546 if (!cu->per_cu->is_dwz)
18547 {
18548 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18549 abfd, info_ptr,
18550 cu_header, &bytes_read);
18551 DW_STRING_IS_CANONICAL (attr) = 0;
18552 info_ptr += bytes_read;
18553 break;
18554 }
18555 /* FALLTHROUGH */
18556 case DW_FORM_GNU_strp_alt:
18557 {
18558 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18559 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18560 &bytes_read);
18561
18562 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18563 dwz, str_offset);
18564 DW_STRING_IS_CANONICAL (attr) = 0;
18565 info_ptr += bytes_read;
18566 }
18567 break;
18568 case DW_FORM_exprloc:
18569 case DW_FORM_block:
18570 blk = dwarf_alloc_block (cu);
18571 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18572 info_ptr += bytes_read;
18573 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18574 info_ptr += blk->size;
18575 DW_BLOCK (attr) = blk;
18576 break;
18577 case DW_FORM_block1:
18578 blk = dwarf_alloc_block (cu);
18579 blk->size = read_1_byte (abfd, info_ptr);
18580 info_ptr += 1;
18581 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18582 info_ptr += blk->size;
18583 DW_BLOCK (attr) = blk;
18584 break;
18585 case DW_FORM_data1:
18586 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18587 info_ptr += 1;
18588 break;
18589 case DW_FORM_flag:
18590 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18591 info_ptr += 1;
18592 break;
18593 case DW_FORM_flag_present:
18594 DW_UNSND (attr) = 1;
18595 break;
18596 case DW_FORM_sdata:
18597 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18598 info_ptr += bytes_read;
18599 break;
18600 case DW_FORM_udata:
18601 case DW_FORM_rnglistx:
18602 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18603 info_ptr += bytes_read;
18604 break;
18605 case DW_FORM_ref1:
18606 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18607 + read_1_byte (abfd, info_ptr));
18608 info_ptr += 1;
18609 break;
18610 case DW_FORM_ref2:
18611 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18612 + read_2_bytes (abfd, info_ptr));
18613 info_ptr += 2;
18614 break;
18615 case DW_FORM_ref4:
18616 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18617 + read_4_bytes (abfd, info_ptr));
18618 info_ptr += 4;
18619 break;
18620 case DW_FORM_ref8:
18621 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18622 + read_8_bytes (abfd, info_ptr));
18623 info_ptr += 8;
18624 break;
18625 case DW_FORM_ref_sig8:
18626 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18627 info_ptr += 8;
18628 break;
18629 case DW_FORM_ref_udata:
18630 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18631 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18632 info_ptr += bytes_read;
18633 break;
18634 case DW_FORM_indirect:
18635 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18636 info_ptr += bytes_read;
18637 if (form == DW_FORM_implicit_const)
18638 {
18639 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18640 info_ptr += bytes_read;
18641 }
18642 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18643 info_ptr, need_reprocess);
18644 break;
18645 case DW_FORM_implicit_const:
18646 DW_SND (attr) = implicit_const;
18647 break;
18648 case DW_FORM_addrx:
18649 case DW_FORM_GNU_addr_index:
18650 *need_reprocess = true;
18651 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18652 info_ptr += bytes_read;
18653 break;
18654 case DW_FORM_strx:
18655 case DW_FORM_strx1:
18656 case DW_FORM_strx2:
18657 case DW_FORM_strx3:
18658 case DW_FORM_strx4:
18659 case DW_FORM_GNU_str_index:
18660 {
18661 ULONGEST str_index;
18662 if (form == DW_FORM_strx1)
18663 {
18664 str_index = read_1_byte (abfd, info_ptr);
18665 info_ptr += 1;
18666 }
18667 else if (form == DW_FORM_strx2)
18668 {
18669 str_index = read_2_bytes (abfd, info_ptr);
18670 info_ptr += 2;
18671 }
18672 else if (form == DW_FORM_strx3)
18673 {
18674 str_index = read_3_bytes (abfd, info_ptr);
18675 info_ptr += 3;
18676 }
18677 else if (form == DW_FORM_strx4)
18678 {
18679 str_index = read_4_bytes (abfd, info_ptr);
18680 info_ptr += 4;
18681 }
18682 else
18683 {
18684 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18685 info_ptr += bytes_read;
18686 }
18687 *need_reprocess = true;
18688 DW_UNSND (attr) = str_index;
18689 }
18690 break;
18691 default:
18692 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18693 dwarf_form_name (form),
18694 bfd_get_filename (abfd));
18695 }
18696
18697 /* Super hack. */
18698 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18699 attr->form = DW_FORM_GNU_ref_alt;
18700
18701 /* We have seen instances where the compiler tried to emit a byte
18702 size attribute of -1 which ended up being encoded as an unsigned
18703 0xffffffff. Although 0xffffffff is technically a valid size value,
18704 an object of this size seems pretty unlikely so we can relatively
18705 safely treat these cases as if the size attribute was invalid and
18706 treat them as zero by default. */
18707 if (attr->name == DW_AT_byte_size
18708 && form == DW_FORM_data4
18709 && DW_UNSND (attr) >= 0xffffffff)
18710 {
18711 complaint
18712 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18713 hex_string (DW_UNSND (attr)));
18714 DW_UNSND (attr) = 0;
18715 }
18716
18717 return info_ptr;
18718 }
18719
18720 /* Read an attribute described by an abbreviated attribute. */
18721
18722 static const gdb_byte *
18723 read_attribute (const struct die_reader_specs *reader,
18724 struct attribute *attr, struct attr_abbrev *abbrev,
18725 const gdb_byte *info_ptr, bool *need_reprocess)
18726 {
18727 attr->name = abbrev->name;
18728 return read_attribute_value (reader, attr, abbrev->form,
18729 abbrev->implicit_const, info_ptr,
18730 need_reprocess);
18731 }
18732
18733 /* Cover function for read_initial_length.
18734 Returns the length of the object at BUF, and stores the size of the
18735 initial length in *BYTES_READ and stores the size that offsets will be in
18736 *OFFSET_SIZE.
18737 If the initial length size is not equivalent to that specified in
18738 CU_HEADER then issue a complaint.
18739 This is useful when reading non-comp-unit headers. */
18740
18741 static LONGEST
18742 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18743 const struct comp_unit_head *cu_header,
18744 unsigned int *bytes_read,
18745 unsigned int *offset_size)
18746 {
18747 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18748
18749 gdb_assert (cu_header->initial_length_size == 4
18750 || cu_header->initial_length_size == 8
18751 || cu_header->initial_length_size == 12);
18752
18753 if (cu_header->initial_length_size != *bytes_read)
18754 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
18755
18756 *offset_size = (*bytes_read == 4) ? 4 : 8;
18757 return length;
18758 }
18759
18760 /* Return pointer to string at section SECT offset STR_OFFSET with error
18761 reporting strings FORM_NAME and SECT_NAME. */
18762
18763 static const char *
18764 read_indirect_string_at_offset_from (struct objfile *objfile,
18765 bfd *abfd, LONGEST str_offset,
18766 struct dwarf2_section_info *sect,
18767 const char *form_name,
18768 const char *sect_name)
18769 {
18770 sect->read (objfile);
18771 if (sect->buffer == NULL)
18772 error (_("%s used without %s section [in module %s]"),
18773 form_name, sect_name, bfd_get_filename (abfd));
18774 if (str_offset >= sect->size)
18775 error (_("%s pointing outside of %s section [in module %s]"),
18776 form_name, sect_name, bfd_get_filename (abfd));
18777 gdb_assert (HOST_CHAR_BIT == 8);
18778 if (sect->buffer[str_offset] == '\0')
18779 return NULL;
18780 return (const char *) (sect->buffer + str_offset);
18781 }
18782
18783 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18784
18785 static const char *
18786 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18787 bfd *abfd, LONGEST str_offset)
18788 {
18789 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18790 abfd, str_offset,
18791 &dwarf2_per_objfile->str,
18792 "DW_FORM_strp", ".debug_str");
18793 }
18794
18795 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18796
18797 static const char *
18798 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18799 bfd *abfd, LONGEST str_offset)
18800 {
18801 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18802 abfd, str_offset,
18803 &dwarf2_per_objfile->line_str,
18804 "DW_FORM_line_strp",
18805 ".debug_line_str");
18806 }
18807
18808 /* Read a string at offset STR_OFFSET in the .debug_str section from
18809 the .dwz file DWZ. Throw an error if the offset is too large. If
18810 the string consists of a single NUL byte, return NULL; otherwise
18811 return a pointer to the string. */
18812
18813 static const char *
18814 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
18815 LONGEST str_offset)
18816 {
18817 dwz->str.read (objfile);
18818
18819 if (dwz->str.buffer == NULL)
18820 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18821 "section [in module %s]"),
18822 bfd_get_filename (dwz->dwz_bfd.get ()));
18823 if (str_offset >= dwz->str.size)
18824 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18825 ".debug_str section [in module %s]"),
18826 bfd_get_filename (dwz->dwz_bfd.get ()));
18827 gdb_assert (HOST_CHAR_BIT == 8);
18828 if (dwz->str.buffer[str_offset] == '\0')
18829 return NULL;
18830 return (const char *) (dwz->str.buffer + str_offset);
18831 }
18832
18833 /* Return pointer to string at .debug_str offset as read from BUF.
18834 BUF is assumed to be in a compilation unit described by CU_HEADER.
18835 Return *BYTES_READ_PTR count of bytes read from BUF. */
18836
18837 static const char *
18838 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18839 const gdb_byte *buf,
18840 const struct comp_unit_head *cu_header,
18841 unsigned int *bytes_read_ptr)
18842 {
18843 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18844
18845 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
18846 }
18847
18848 /* Return pointer to string at .debug_line_str offset as read from BUF.
18849 BUF is assumed to be in a compilation unit described by CU_HEADER.
18850 Return *BYTES_READ_PTR count of bytes read from BUF. */
18851
18852 static const char *
18853 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
18854 bfd *abfd, const gdb_byte *buf,
18855 const struct comp_unit_head *cu_header,
18856 unsigned int *bytes_read_ptr)
18857 {
18858 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18859
18860 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
18861 str_offset);
18862 }
18863
18864 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18865 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18866 ADDR_SIZE is the size of addresses from the CU header. */
18867
18868 static CORE_ADDR
18869 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18870 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18871 int addr_size)
18872 {
18873 struct objfile *objfile = dwarf2_per_objfile->objfile;
18874 bfd *abfd = objfile->obfd;
18875 const gdb_byte *info_ptr;
18876 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18877
18878 dwarf2_per_objfile->addr.read (objfile);
18879 if (dwarf2_per_objfile->addr.buffer == NULL)
18880 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18881 objfile_name (objfile));
18882 if (addr_base_or_zero + addr_index * addr_size
18883 >= dwarf2_per_objfile->addr.size)
18884 error (_("DW_FORM_addr_index pointing outside of "
18885 ".debug_addr section [in module %s]"),
18886 objfile_name (objfile));
18887 info_ptr = (dwarf2_per_objfile->addr.buffer
18888 + addr_base_or_zero + addr_index * addr_size);
18889 if (addr_size == 4)
18890 return bfd_get_32 (abfd, info_ptr);
18891 else
18892 return bfd_get_64 (abfd, info_ptr);
18893 }
18894
18895 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18896
18897 static CORE_ADDR
18898 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18899 {
18900 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18901 cu->addr_base, cu->header.addr_size);
18902 }
18903
18904 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18905
18906 static CORE_ADDR
18907 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18908 unsigned int *bytes_read)
18909 {
18910 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18911 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18912
18913 return read_addr_index (cu, addr_index);
18914 }
18915
18916 /* See read.h. */
18917
18918 CORE_ADDR
18919 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18920 {
18921 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18922 struct dwarf2_cu *cu = per_cu->cu;
18923 gdb::optional<ULONGEST> addr_base;
18924 int addr_size;
18925
18926 /* We need addr_base and addr_size.
18927 If we don't have PER_CU->cu, we have to get it.
18928 Nasty, but the alternative is storing the needed info in PER_CU,
18929 which at this point doesn't seem justified: it's not clear how frequently
18930 it would get used and it would increase the size of every PER_CU.
18931 Entry points like dwarf2_per_cu_addr_size do a similar thing
18932 so we're not in uncharted territory here.
18933 Alas we need to be a bit more complicated as addr_base is contained
18934 in the DIE.
18935
18936 We don't need to read the entire CU(/TU).
18937 We just need the header and top level die.
18938
18939 IWBN to use the aging mechanism to let us lazily later discard the CU.
18940 For now we skip this optimization. */
18941
18942 if (cu != NULL)
18943 {
18944 addr_base = cu->addr_base;
18945 addr_size = cu->header.addr_size;
18946 }
18947 else
18948 {
18949 cutu_reader reader (per_cu, NULL, 0, false);
18950 addr_base = reader.cu->addr_base;
18951 addr_size = reader.cu->header.addr_size;
18952 }
18953
18954 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
18955 addr_size);
18956 }
18957
18958 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
18959 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
18960 DWO file. */
18961
18962 static const char *
18963 read_str_index (struct dwarf2_cu *cu,
18964 struct dwarf2_section_info *str_section,
18965 struct dwarf2_section_info *str_offsets_section,
18966 ULONGEST str_offsets_base, ULONGEST str_index)
18967 {
18968 struct dwarf2_per_objfile *dwarf2_per_objfile
18969 = cu->per_cu->dwarf2_per_objfile;
18970 struct objfile *objfile = dwarf2_per_objfile->objfile;
18971 const char *objf_name = objfile_name (objfile);
18972 bfd *abfd = objfile->obfd;
18973 const gdb_byte *info_ptr;
18974 ULONGEST str_offset;
18975 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
18976
18977 str_section->read (objfile);
18978 str_offsets_section->read (objfile);
18979 if (str_section->buffer == NULL)
18980 error (_("%s used without %s section"
18981 " in CU at offset %s [in module %s]"),
18982 form_name, str_section->get_name (),
18983 sect_offset_str (cu->header.sect_off), objf_name);
18984 if (str_offsets_section->buffer == NULL)
18985 error (_("%s used without %s section"
18986 " in CU at offset %s [in module %s]"),
18987 form_name, str_section->get_name (),
18988 sect_offset_str (cu->header.sect_off), objf_name);
18989 info_ptr = (str_offsets_section->buffer
18990 + str_offsets_base
18991 + str_index * cu->header.offset_size);
18992 if (cu->header.offset_size == 4)
18993 str_offset = bfd_get_32 (abfd, info_ptr);
18994 else
18995 str_offset = bfd_get_64 (abfd, info_ptr);
18996 if (str_offset >= str_section->size)
18997 error (_("Offset from %s pointing outside of"
18998 " .debug_str.dwo section in CU at offset %s [in module %s]"),
18999 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19000 return (const char *) (str_section->buffer + str_offset);
19001 }
19002
19003 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19004
19005 static const char *
19006 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19007 {
19008 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19009 ? reader->cu->header.addr_size : 0;
19010 return read_str_index (reader->cu,
19011 &reader->dwo_file->sections.str,
19012 &reader->dwo_file->sections.str_offsets,
19013 str_offsets_base, str_index);
19014 }
19015
19016 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19017
19018 static const char *
19019 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19020 {
19021 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19022 const char *objf_name = objfile_name (objfile);
19023 static const char form_name[] = "DW_FORM_GNU_str_index";
19024 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19025
19026 if (!cu->str_offsets_base.has_value ())
19027 error (_("%s used in Fission stub without %s"
19028 " in CU at offset 0x%lx [in module %s]"),
19029 form_name, str_offsets_attr_name,
19030 (long) cu->header.offset_size, objf_name);
19031
19032 return read_str_index (cu,
19033 &cu->per_cu->dwarf2_per_objfile->str,
19034 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19035 *cu->str_offsets_base, str_index);
19036 }
19037
19038 /* Return the length of an LEB128 number in BUF. */
19039
19040 static int
19041 leb128_size (const gdb_byte *buf)
19042 {
19043 const gdb_byte *begin = buf;
19044 gdb_byte byte;
19045
19046 while (1)
19047 {
19048 byte = *buf++;
19049 if ((byte & 128) == 0)
19050 return buf - begin;
19051 }
19052 }
19053
19054 static void
19055 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19056 {
19057 switch (lang)
19058 {
19059 case DW_LANG_C89:
19060 case DW_LANG_C99:
19061 case DW_LANG_C11:
19062 case DW_LANG_C:
19063 case DW_LANG_UPC:
19064 cu->language = language_c;
19065 break;
19066 case DW_LANG_Java:
19067 case DW_LANG_C_plus_plus:
19068 case DW_LANG_C_plus_plus_11:
19069 case DW_LANG_C_plus_plus_14:
19070 cu->language = language_cplus;
19071 break;
19072 case DW_LANG_D:
19073 cu->language = language_d;
19074 break;
19075 case DW_LANG_Fortran77:
19076 case DW_LANG_Fortran90:
19077 case DW_LANG_Fortran95:
19078 case DW_LANG_Fortran03:
19079 case DW_LANG_Fortran08:
19080 cu->language = language_fortran;
19081 break;
19082 case DW_LANG_Go:
19083 cu->language = language_go;
19084 break;
19085 case DW_LANG_Mips_Assembler:
19086 cu->language = language_asm;
19087 break;
19088 case DW_LANG_Ada83:
19089 case DW_LANG_Ada95:
19090 cu->language = language_ada;
19091 break;
19092 case DW_LANG_Modula2:
19093 cu->language = language_m2;
19094 break;
19095 case DW_LANG_Pascal83:
19096 cu->language = language_pascal;
19097 break;
19098 case DW_LANG_ObjC:
19099 cu->language = language_objc;
19100 break;
19101 case DW_LANG_Rust:
19102 case DW_LANG_Rust_old:
19103 cu->language = language_rust;
19104 break;
19105 case DW_LANG_Cobol74:
19106 case DW_LANG_Cobol85:
19107 default:
19108 cu->language = language_minimal;
19109 break;
19110 }
19111 cu->language_defn = language_def (cu->language);
19112 }
19113
19114 /* Return the named attribute or NULL if not there. */
19115
19116 static struct attribute *
19117 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19118 {
19119 for (;;)
19120 {
19121 unsigned int i;
19122 struct attribute *spec = NULL;
19123
19124 for (i = 0; i < die->num_attrs; ++i)
19125 {
19126 if (die->attrs[i].name == name)
19127 return &die->attrs[i];
19128 if (die->attrs[i].name == DW_AT_specification
19129 || die->attrs[i].name == DW_AT_abstract_origin)
19130 spec = &die->attrs[i];
19131 }
19132
19133 if (!spec)
19134 break;
19135
19136 die = follow_die_ref (die, spec, &cu);
19137 }
19138
19139 return NULL;
19140 }
19141
19142 /* Return the named attribute or NULL if not there,
19143 but do not follow DW_AT_specification, etc.
19144 This is for use in contexts where we're reading .debug_types dies.
19145 Following DW_AT_specification, DW_AT_abstract_origin will take us
19146 back up the chain, and we want to go down. */
19147
19148 static struct attribute *
19149 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19150 {
19151 unsigned int i;
19152
19153 for (i = 0; i < die->num_attrs; ++i)
19154 if (die->attrs[i].name == name)
19155 return &die->attrs[i];
19156
19157 return NULL;
19158 }
19159
19160 /* Return the string associated with a string-typed attribute, or NULL if it
19161 is either not found or is of an incorrect type. */
19162
19163 static const char *
19164 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19165 {
19166 struct attribute *attr;
19167 const char *str = NULL;
19168
19169 attr = dwarf2_attr (die, name, cu);
19170
19171 if (attr != NULL)
19172 {
19173 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19174 || attr->form == DW_FORM_string
19175 || attr->form == DW_FORM_strx
19176 || attr->form == DW_FORM_strx1
19177 || attr->form == DW_FORM_strx2
19178 || attr->form == DW_FORM_strx3
19179 || attr->form == DW_FORM_strx4
19180 || attr->form == DW_FORM_GNU_str_index
19181 || attr->form == DW_FORM_GNU_strp_alt)
19182 str = DW_STRING (attr);
19183 else
19184 complaint (_("string type expected for attribute %s for "
19185 "DIE at %s in module %s"),
19186 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19187 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19188 }
19189
19190 return str;
19191 }
19192
19193 /* Return the dwo name or NULL if not present. If present, it is in either
19194 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19195 static const char *
19196 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19197 {
19198 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19199 if (dwo_name == nullptr)
19200 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19201 return dwo_name;
19202 }
19203
19204 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19205 and holds a non-zero value. This function should only be used for
19206 DW_FORM_flag or DW_FORM_flag_present attributes. */
19207
19208 static int
19209 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19210 {
19211 struct attribute *attr = dwarf2_attr (die, name, cu);
19212
19213 return (attr && DW_UNSND (attr));
19214 }
19215
19216 static int
19217 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19218 {
19219 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19220 which value is non-zero. However, we have to be careful with
19221 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19222 (via dwarf2_flag_true_p) follows this attribute. So we may
19223 end up accidently finding a declaration attribute that belongs
19224 to a different DIE referenced by the specification attribute,
19225 even though the given DIE does not have a declaration attribute. */
19226 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19227 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19228 }
19229
19230 /* Return the die giving the specification for DIE, if there is
19231 one. *SPEC_CU is the CU containing DIE on input, and the CU
19232 containing the return value on output. If there is no
19233 specification, but there is an abstract origin, that is
19234 returned. */
19235
19236 static struct die_info *
19237 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19238 {
19239 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19240 *spec_cu);
19241
19242 if (spec_attr == NULL)
19243 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19244
19245 if (spec_attr == NULL)
19246 return NULL;
19247 else
19248 return follow_die_ref (die, spec_attr, spec_cu);
19249 }
19250
19251 /* Stub for free_line_header to match void * callback types. */
19252
19253 static void
19254 free_line_header_voidp (void *arg)
19255 {
19256 struct line_header *lh = (struct line_header *) arg;
19257
19258 delete lh;
19259 }
19260
19261 /* A convenience function to find the proper .debug_line section for a CU. */
19262
19263 static struct dwarf2_section_info *
19264 get_debug_line_section (struct dwarf2_cu *cu)
19265 {
19266 struct dwarf2_section_info *section;
19267 struct dwarf2_per_objfile *dwarf2_per_objfile
19268 = cu->per_cu->dwarf2_per_objfile;
19269
19270 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19271 DWO file. */
19272 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19273 section = &cu->dwo_unit->dwo_file->sections.line;
19274 else if (cu->per_cu->is_dwz)
19275 {
19276 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19277
19278 section = &dwz->line;
19279 }
19280 else
19281 section = &dwarf2_per_objfile->line;
19282
19283 return section;
19284 }
19285
19286 /* Read directory or file name entry format, starting with byte of
19287 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19288 entries count and the entries themselves in the described entry
19289 format. */
19290
19291 static void
19292 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19293 bfd *abfd, const gdb_byte **bufp,
19294 struct line_header *lh,
19295 const struct comp_unit_head *cu_header,
19296 void (*callback) (struct line_header *lh,
19297 const char *name,
19298 dir_index d_index,
19299 unsigned int mod_time,
19300 unsigned int length))
19301 {
19302 gdb_byte format_count, formati;
19303 ULONGEST data_count, datai;
19304 const gdb_byte *buf = *bufp;
19305 const gdb_byte *format_header_data;
19306 unsigned int bytes_read;
19307
19308 format_count = read_1_byte (abfd, buf);
19309 buf += 1;
19310 format_header_data = buf;
19311 for (formati = 0; formati < format_count; formati++)
19312 {
19313 read_unsigned_leb128 (abfd, buf, &bytes_read);
19314 buf += bytes_read;
19315 read_unsigned_leb128 (abfd, buf, &bytes_read);
19316 buf += bytes_read;
19317 }
19318
19319 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19320 buf += bytes_read;
19321 for (datai = 0; datai < data_count; datai++)
19322 {
19323 const gdb_byte *format = format_header_data;
19324 struct file_entry fe;
19325
19326 for (formati = 0; formati < format_count; formati++)
19327 {
19328 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19329 format += bytes_read;
19330
19331 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19332 format += bytes_read;
19333
19334 gdb::optional<const char *> string;
19335 gdb::optional<unsigned int> uint;
19336
19337 switch (form)
19338 {
19339 case DW_FORM_string:
19340 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19341 buf += bytes_read;
19342 break;
19343
19344 case DW_FORM_line_strp:
19345 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19346 abfd, buf,
19347 cu_header,
19348 &bytes_read));
19349 buf += bytes_read;
19350 break;
19351
19352 case DW_FORM_data1:
19353 uint.emplace (read_1_byte (abfd, buf));
19354 buf += 1;
19355 break;
19356
19357 case DW_FORM_data2:
19358 uint.emplace (read_2_bytes (abfd, buf));
19359 buf += 2;
19360 break;
19361
19362 case DW_FORM_data4:
19363 uint.emplace (read_4_bytes (abfd, buf));
19364 buf += 4;
19365 break;
19366
19367 case DW_FORM_data8:
19368 uint.emplace (read_8_bytes (abfd, buf));
19369 buf += 8;
19370 break;
19371
19372 case DW_FORM_data16:
19373 /* This is used for MD5, but file_entry does not record MD5s. */
19374 buf += 16;
19375 break;
19376
19377 case DW_FORM_udata:
19378 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19379 buf += bytes_read;
19380 break;
19381
19382 case DW_FORM_block:
19383 /* It is valid only for DW_LNCT_timestamp which is ignored by
19384 current GDB. */
19385 break;
19386 }
19387
19388 switch (content_type)
19389 {
19390 case DW_LNCT_path:
19391 if (string.has_value ())
19392 fe.name = *string;
19393 break;
19394 case DW_LNCT_directory_index:
19395 if (uint.has_value ())
19396 fe.d_index = (dir_index) *uint;
19397 break;
19398 case DW_LNCT_timestamp:
19399 if (uint.has_value ())
19400 fe.mod_time = *uint;
19401 break;
19402 case DW_LNCT_size:
19403 if (uint.has_value ())
19404 fe.length = *uint;
19405 break;
19406 case DW_LNCT_MD5:
19407 break;
19408 default:
19409 complaint (_("Unknown format content type %s"),
19410 pulongest (content_type));
19411 }
19412 }
19413
19414 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19415 }
19416
19417 *bufp = buf;
19418 }
19419
19420 /* Read the statement program header starting at OFFSET in
19421 .debug_line, or .debug_line.dwo. Return a pointer
19422 to a struct line_header, allocated using xmalloc.
19423 Returns NULL if there is a problem reading the header, e.g., if it
19424 has a version we don't understand.
19425
19426 NOTE: the strings in the include directory and file name tables of
19427 the returned object point into the dwarf line section buffer,
19428 and must not be freed. */
19429
19430 static line_header_up
19431 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19432 {
19433 const gdb_byte *line_ptr;
19434 unsigned int bytes_read, offset_size;
19435 int i;
19436 const char *cur_dir, *cur_file;
19437 struct dwarf2_section_info *section;
19438 bfd *abfd;
19439 struct dwarf2_per_objfile *dwarf2_per_objfile
19440 = cu->per_cu->dwarf2_per_objfile;
19441
19442 section = get_debug_line_section (cu);
19443 section->read (dwarf2_per_objfile->objfile);
19444 if (section->buffer == NULL)
19445 {
19446 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19447 complaint (_("missing .debug_line.dwo section"));
19448 else
19449 complaint (_("missing .debug_line section"));
19450 return 0;
19451 }
19452
19453 /* We can't do this until we know the section is non-empty.
19454 Only then do we know we have such a section. */
19455 abfd = section->get_bfd_owner ();
19456
19457 /* Make sure that at least there's room for the total_length field.
19458 That could be 12 bytes long, but we're just going to fudge that. */
19459 if (to_underlying (sect_off) + 4 >= section->size)
19460 {
19461 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19462 return 0;
19463 }
19464
19465 line_header_up lh (new line_header ());
19466
19467 lh->sect_off = sect_off;
19468 lh->offset_in_dwz = cu->per_cu->is_dwz;
19469
19470 line_ptr = section->buffer + to_underlying (sect_off);
19471
19472 /* Read in the header. */
19473 lh->total_length =
19474 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
19475 &bytes_read, &offset_size);
19476 line_ptr += bytes_read;
19477
19478 const gdb_byte *start_here = line_ptr;
19479
19480 if (line_ptr + lh->total_length > (section->buffer + section->size))
19481 {
19482 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19483 return 0;
19484 }
19485 lh->statement_program_end = start_here + lh->total_length;
19486 lh->version = read_2_bytes (abfd, line_ptr);
19487 line_ptr += 2;
19488 if (lh->version > 5)
19489 {
19490 /* This is a version we don't understand. The format could have
19491 changed in ways we don't handle properly so just punt. */
19492 complaint (_("unsupported version in .debug_line section"));
19493 return NULL;
19494 }
19495 if (lh->version >= 5)
19496 {
19497 gdb_byte segment_selector_size;
19498
19499 /* Skip address size. */
19500 read_1_byte (abfd, line_ptr);
19501 line_ptr += 1;
19502
19503 segment_selector_size = read_1_byte (abfd, line_ptr);
19504 line_ptr += 1;
19505 if (segment_selector_size != 0)
19506 {
19507 complaint (_("unsupported segment selector size %u "
19508 "in .debug_line section"),
19509 segment_selector_size);
19510 return NULL;
19511 }
19512 }
19513 lh->header_length = read_offset (abfd, line_ptr, offset_size);
19514 line_ptr += offset_size;
19515 lh->statement_program_start = line_ptr + lh->header_length;
19516 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
19517 line_ptr += 1;
19518 if (lh->version >= 4)
19519 {
19520 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
19521 line_ptr += 1;
19522 }
19523 else
19524 lh->maximum_ops_per_instruction = 1;
19525
19526 if (lh->maximum_ops_per_instruction == 0)
19527 {
19528 lh->maximum_ops_per_instruction = 1;
19529 complaint (_("invalid maximum_ops_per_instruction "
19530 "in `.debug_line' section"));
19531 }
19532
19533 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
19534 line_ptr += 1;
19535 lh->line_base = read_1_signed_byte (abfd, line_ptr);
19536 line_ptr += 1;
19537 lh->line_range = read_1_byte (abfd, line_ptr);
19538 line_ptr += 1;
19539 lh->opcode_base = read_1_byte (abfd, line_ptr);
19540 line_ptr += 1;
19541 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19542
19543 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19544 for (i = 1; i < lh->opcode_base; ++i)
19545 {
19546 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19547 line_ptr += 1;
19548 }
19549
19550 if (lh->version >= 5)
19551 {
19552 /* Read directory table. */
19553 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19554 &cu->header,
19555 [] (struct line_header *header, const char *name,
19556 dir_index d_index, unsigned int mod_time,
19557 unsigned int length)
19558 {
19559 header->add_include_dir (name);
19560 });
19561
19562 /* Read file name table. */
19563 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19564 &cu->header,
19565 [] (struct line_header *header, const char *name,
19566 dir_index d_index, unsigned int mod_time,
19567 unsigned int length)
19568 {
19569 header->add_file_name (name, d_index, mod_time, length);
19570 });
19571 }
19572 else
19573 {
19574 /* Read directory table. */
19575 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19576 {
19577 line_ptr += bytes_read;
19578 lh->add_include_dir (cur_dir);
19579 }
19580 line_ptr += bytes_read;
19581
19582 /* Read file name table. */
19583 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19584 {
19585 unsigned int mod_time, length;
19586 dir_index d_index;
19587
19588 line_ptr += bytes_read;
19589 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19590 line_ptr += bytes_read;
19591 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19592 line_ptr += bytes_read;
19593 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19594 line_ptr += bytes_read;
19595
19596 lh->add_file_name (cur_file, d_index, mod_time, length);
19597 }
19598 line_ptr += bytes_read;
19599 }
19600
19601 if (line_ptr > (section->buffer + section->size))
19602 complaint (_("line number info header doesn't "
19603 "fit in `.debug_line' section"));
19604
19605 return lh;
19606 }
19607
19608 /* Subroutine of dwarf_decode_lines to simplify it.
19609 Return the file name of the psymtab for the given file_entry.
19610 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19611 If space for the result is malloc'd, *NAME_HOLDER will be set.
19612 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19613
19614 static const char *
19615 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19616 const dwarf2_psymtab *pst,
19617 const char *comp_dir,
19618 gdb::unique_xmalloc_ptr<char> *name_holder)
19619 {
19620 const char *include_name = fe.name;
19621 const char *include_name_to_compare = include_name;
19622 const char *pst_filename;
19623 int file_is_pst;
19624
19625 const char *dir_name = fe.include_dir (lh);
19626
19627 gdb::unique_xmalloc_ptr<char> hold_compare;
19628 if (!IS_ABSOLUTE_PATH (include_name)
19629 && (dir_name != NULL || comp_dir != NULL))
19630 {
19631 /* Avoid creating a duplicate psymtab for PST.
19632 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19633 Before we do the comparison, however, we need to account
19634 for DIR_NAME and COMP_DIR.
19635 First prepend dir_name (if non-NULL). If we still don't
19636 have an absolute path prepend comp_dir (if non-NULL).
19637 However, the directory we record in the include-file's
19638 psymtab does not contain COMP_DIR (to match the
19639 corresponding symtab(s)).
19640
19641 Example:
19642
19643 bash$ cd /tmp
19644 bash$ gcc -g ./hello.c
19645 include_name = "hello.c"
19646 dir_name = "."
19647 DW_AT_comp_dir = comp_dir = "/tmp"
19648 DW_AT_name = "./hello.c"
19649
19650 */
19651
19652 if (dir_name != NULL)
19653 {
19654 name_holder->reset (concat (dir_name, SLASH_STRING,
19655 include_name, (char *) NULL));
19656 include_name = name_holder->get ();
19657 include_name_to_compare = include_name;
19658 }
19659 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19660 {
19661 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19662 include_name, (char *) NULL));
19663 include_name_to_compare = hold_compare.get ();
19664 }
19665 }
19666
19667 pst_filename = pst->filename;
19668 gdb::unique_xmalloc_ptr<char> copied_name;
19669 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19670 {
19671 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19672 pst_filename, (char *) NULL));
19673 pst_filename = copied_name.get ();
19674 }
19675
19676 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19677
19678 if (file_is_pst)
19679 return NULL;
19680 return include_name;
19681 }
19682
19683 /* State machine to track the state of the line number program. */
19684
19685 class lnp_state_machine
19686 {
19687 public:
19688 /* Initialize a machine state for the start of a line number
19689 program. */
19690 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19691 bool record_lines_p);
19692
19693 file_entry *current_file ()
19694 {
19695 /* lh->file_names is 0-based, but the file name numbers in the
19696 statement program are 1-based. */
19697 return m_line_header->file_name_at (m_file);
19698 }
19699
19700 /* Record the line in the state machine. END_SEQUENCE is true if
19701 we're processing the end of a sequence. */
19702 void record_line (bool end_sequence);
19703
19704 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19705 nop-out rest of the lines in this sequence. */
19706 void check_line_address (struct dwarf2_cu *cu,
19707 const gdb_byte *line_ptr,
19708 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19709
19710 void handle_set_discriminator (unsigned int discriminator)
19711 {
19712 m_discriminator = discriminator;
19713 m_line_has_non_zero_discriminator |= discriminator != 0;
19714 }
19715
19716 /* Handle DW_LNE_set_address. */
19717 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19718 {
19719 m_op_index = 0;
19720 address += baseaddr;
19721 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19722 }
19723
19724 /* Handle DW_LNS_advance_pc. */
19725 void handle_advance_pc (CORE_ADDR adjust);
19726
19727 /* Handle a special opcode. */
19728 void handle_special_opcode (unsigned char op_code);
19729
19730 /* Handle DW_LNS_advance_line. */
19731 void handle_advance_line (int line_delta)
19732 {
19733 advance_line (line_delta);
19734 }
19735
19736 /* Handle DW_LNS_set_file. */
19737 void handle_set_file (file_name_index file);
19738
19739 /* Handle DW_LNS_negate_stmt. */
19740 void handle_negate_stmt ()
19741 {
19742 m_is_stmt = !m_is_stmt;
19743 }
19744
19745 /* Handle DW_LNS_const_add_pc. */
19746 void handle_const_add_pc ();
19747
19748 /* Handle DW_LNS_fixed_advance_pc. */
19749 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19750 {
19751 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19752 m_op_index = 0;
19753 }
19754
19755 /* Handle DW_LNS_copy. */
19756 void handle_copy ()
19757 {
19758 record_line (false);
19759 m_discriminator = 0;
19760 }
19761
19762 /* Handle DW_LNE_end_sequence. */
19763 void handle_end_sequence ()
19764 {
19765 m_currently_recording_lines = true;
19766 }
19767
19768 private:
19769 /* Advance the line by LINE_DELTA. */
19770 void advance_line (int line_delta)
19771 {
19772 m_line += line_delta;
19773
19774 if (line_delta != 0)
19775 m_line_has_non_zero_discriminator = m_discriminator != 0;
19776 }
19777
19778 struct dwarf2_cu *m_cu;
19779
19780 gdbarch *m_gdbarch;
19781
19782 /* True if we're recording lines.
19783 Otherwise we're building partial symtabs and are just interested in
19784 finding include files mentioned by the line number program. */
19785 bool m_record_lines_p;
19786
19787 /* The line number header. */
19788 line_header *m_line_header;
19789
19790 /* These are part of the standard DWARF line number state machine,
19791 and initialized according to the DWARF spec. */
19792
19793 unsigned char m_op_index = 0;
19794 /* The line table index of the current file. */
19795 file_name_index m_file = 1;
19796 unsigned int m_line = 1;
19797
19798 /* These are initialized in the constructor. */
19799
19800 CORE_ADDR m_address;
19801 bool m_is_stmt;
19802 unsigned int m_discriminator;
19803
19804 /* Additional bits of state we need to track. */
19805
19806 /* The last file that we called dwarf2_start_subfile for.
19807 This is only used for TLLs. */
19808 unsigned int m_last_file = 0;
19809 /* The last file a line number was recorded for. */
19810 struct subfile *m_last_subfile = NULL;
19811
19812 /* When true, record the lines we decode. */
19813 bool m_currently_recording_lines = false;
19814
19815 /* The last line number that was recorded, used to coalesce
19816 consecutive entries for the same line. This can happen, for
19817 example, when discriminators are present. PR 17276. */
19818 unsigned int m_last_line = 0;
19819 bool m_line_has_non_zero_discriminator = false;
19820 };
19821
19822 void
19823 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19824 {
19825 CORE_ADDR addr_adj = (((m_op_index + adjust)
19826 / m_line_header->maximum_ops_per_instruction)
19827 * m_line_header->minimum_instruction_length);
19828 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19829 m_op_index = ((m_op_index + adjust)
19830 % m_line_header->maximum_ops_per_instruction);
19831 }
19832
19833 void
19834 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19835 {
19836 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19837 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19838 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19839 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19840 / m_line_header->maximum_ops_per_instruction)
19841 * m_line_header->minimum_instruction_length);
19842 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19843 m_op_index = ((m_op_index + adj_opcode_d)
19844 % m_line_header->maximum_ops_per_instruction);
19845
19846 int line_delta = m_line_header->line_base + adj_opcode_r;
19847 advance_line (line_delta);
19848 record_line (false);
19849 m_discriminator = 0;
19850 }
19851
19852 void
19853 lnp_state_machine::handle_set_file (file_name_index file)
19854 {
19855 m_file = file;
19856
19857 const file_entry *fe = current_file ();
19858 if (fe == NULL)
19859 dwarf2_debug_line_missing_file_complaint ();
19860 else if (m_record_lines_p)
19861 {
19862 const char *dir = fe->include_dir (m_line_header);
19863
19864 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19865 m_line_has_non_zero_discriminator = m_discriminator != 0;
19866 dwarf2_start_subfile (m_cu, fe->name, dir);
19867 }
19868 }
19869
19870 void
19871 lnp_state_machine::handle_const_add_pc ()
19872 {
19873 CORE_ADDR adjust
19874 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19875
19876 CORE_ADDR addr_adj
19877 = (((m_op_index + adjust)
19878 / m_line_header->maximum_ops_per_instruction)
19879 * m_line_header->minimum_instruction_length);
19880
19881 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19882 m_op_index = ((m_op_index + adjust)
19883 % m_line_header->maximum_ops_per_instruction);
19884 }
19885
19886 /* Return non-zero if we should add LINE to the line number table.
19887 LINE is the line to add, LAST_LINE is the last line that was added,
19888 LAST_SUBFILE is the subfile for LAST_LINE.
19889 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19890 had a non-zero discriminator.
19891
19892 We have to be careful in the presence of discriminators.
19893 E.g., for this line:
19894
19895 for (i = 0; i < 100000; i++);
19896
19897 clang can emit four line number entries for that one line,
19898 each with a different discriminator.
19899 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19900
19901 However, we want gdb to coalesce all four entries into one.
19902 Otherwise the user could stepi into the middle of the line and
19903 gdb would get confused about whether the pc really was in the
19904 middle of the line.
19905
19906 Things are further complicated by the fact that two consecutive
19907 line number entries for the same line is a heuristic used by gcc
19908 to denote the end of the prologue. So we can't just discard duplicate
19909 entries, we have to be selective about it. The heuristic we use is
19910 that we only collapse consecutive entries for the same line if at least
19911 one of those entries has a non-zero discriminator. PR 17276.
19912
19913 Note: Addresses in the line number state machine can never go backwards
19914 within one sequence, thus this coalescing is ok. */
19915
19916 static int
19917 dwarf_record_line_p (struct dwarf2_cu *cu,
19918 unsigned int line, unsigned int last_line,
19919 int line_has_non_zero_discriminator,
19920 struct subfile *last_subfile)
19921 {
19922 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19923 return 1;
19924 if (line != last_line)
19925 return 1;
19926 /* Same line for the same file that we've seen already.
19927 As a last check, for pr 17276, only record the line if the line
19928 has never had a non-zero discriminator. */
19929 if (!line_has_non_zero_discriminator)
19930 return 1;
19931 return 0;
19932 }
19933
19934 /* Use the CU's builder to record line number LINE beginning at
19935 address ADDRESS in the line table of subfile SUBFILE. */
19936
19937 static void
19938 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19939 unsigned int line, CORE_ADDR address,
19940 struct dwarf2_cu *cu)
19941 {
19942 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19943
19944 if (dwarf_line_debug)
19945 {
19946 fprintf_unfiltered (gdb_stdlog,
19947 "Recording line %u, file %s, address %s\n",
19948 line, lbasename (subfile->name),
19949 paddress (gdbarch, address));
19950 }
19951
19952 if (cu != nullptr)
19953 cu->get_builder ()->record_line (subfile, line, addr);
19954 }
19955
19956 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19957 Mark the end of a set of line number records.
19958 The arguments are the same as for dwarf_record_line_1.
19959 If SUBFILE is NULL the request is ignored. */
19960
19961 static void
19962 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19963 CORE_ADDR address, struct dwarf2_cu *cu)
19964 {
19965 if (subfile == NULL)
19966 return;
19967
19968 if (dwarf_line_debug)
19969 {
19970 fprintf_unfiltered (gdb_stdlog,
19971 "Finishing current line, file %s, address %s\n",
19972 lbasename (subfile->name),
19973 paddress (gdbarch, address));
19974 }
19975
19976 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
19977 }
19978
19979 void
19980 lnp_state_machine::record_line (bool end_sequence)
19981 {
19982 if (dwarf_line_debug)
19983 {
19984 fprintf_unfiltered (gdb_stdlog,
19985 "Processing actual line %u: file %u,"
19986 " address %s, is_stmt %u, discrim %u%s\n",
19987 m_line, m_file,
19988 paddress (m_gdbarch, m_address),
19989 m_is_stmt, m_discriminator,
19990 (end_sequence ? "\t(end sequence)" : ""));
19991 }
19992
19993 file_entry *fe = current_file ();
19994
19995 if (fe == NULL)
19996 dwarf2_debug_line_missing_file_complaint ();
19997 /* For now we ignore lines not starting on an instruction boundary.
19998 But not when processing end_sequence for compatibility with the
19999 previous version of the code. */
20000 else if (m_op_index == 0 || end_sequence)
20001 {
20002 fe->included_p = 1;
20003 if (m_record_lines_p
20004 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20005 {
20006 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20007 || end_sequence)
20008 {
20009 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20010 m_currently_recording_lines ? m_cu : nullptr);
20011 }
20012
20013 if (!end_sequence)
20014 {
20015 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20016 m_line_has_non_zero_discriminator,
20017 m_last_subfile))
20018 {
20019 buildsym_compunit *builder = m_cu->get_builder ();
20020 dwarf_record_line_1 (m_gdbarch,
20021 builder->get_current_subfile (),
20022 m_line, m_address,
20023 m_currently_recording_lines ? m_cu : nullptr);
20024 }
20025 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20026 m_last_line = m_line;
20027 }
20028 }
20029 }
20030 }
20031
20032 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20033 line_header *lh, bool record_lines_p)
20034 {
20035 m_cu = cu;
20036 m_gdbarch = arch;
20037 m_record_lines_p = record_lines_p;
20038 m_line_header = lh;
20039
20040 m_currently_recording_lines = true;
20041
20042 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20043 was a line entry for it so that the backend has a chance to adjust it
20044 and also record it in case it needs it. This is currently used by MIPS
20045 code, cf. `mips_adjust_dwarf2_line'. */
20046 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20047 m_is_stmt = lh->default_is_stmt;
20048 m_discriminator = 0;
20049 }
20050
20051 void
20052 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20053 const gdb_byte *line_ptr,
20054 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20055 {
20056 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20057 the pc range of the CU. However, we restrict the test to only ADDRESS
20058 values of zero to preserve GDB's previous behaviour which is to handle
20059 the specific case of a function being GC'd by the linker. */
20060
20061 if (address == 0 && address < unrelocated_lowpc)
20062 {
20063 /* This line table is for a function which has been
20064 GCd by the linker. Ignore it. PR gdb/12528 */
20065
20066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20067 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20068
20069 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20070 line_offset, objfile_name (objfile));
20071 m_currently_recording_lines = false;
20072 /* Note: m_currently_recording_lines is left as false until we see
20073 DW_LNE_end_sequence. */
20074 }
20075 }
20076
20077 /* Subroutine of dwarf_decode_lines to simplify it.
20078 Process the line number information in LH.
20079 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20080 program in order to set included_p for every referenced header. */
20081
20082 static void
20083 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20084 const int decode_for_pst_p, CORE_ADDR lowpc)
20085 {
20086 const gdb_byte *line_ptr, *extended_end;
20087 const gdb_byte *line_end;
20088 unsigned int bytes_read, extended_len;
20089 unsigned char op_code, extended_op;
20090 CORE_ADDR baseaddr;
20091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20092 bfd *abfd = objfile->obfd;
20093 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20094 /* True if we're recording line info (as opposed to building partial
20095 symtabs and just interested in finding include files mentioned by
20096 the line number program). */
20097 bool record_lines_p = !decode_for_pst_p;
20098
20099 baseaddr = objfile->text_section_offset ();
20100
20101 line_ptr = lh->statement_program_start;
20102 line_end = lh->statement_program_end;
20103
20104 /* Read the statement sequences until there's nothing left. */
20105 while (line_ptr < line_end)
20106 {
20107 /* The DWARF line number program state machine. Reset the state
20108 machine at the start of each sequence. */
20109 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20110 bool end_sequence = false;
20111
20112 if (record_lines_p)
20113 {
20114 /* Start a subfile for the current file of the state
20115 machine. */
20116 const file_entry *fe = state_machine.current_file ();
20117
20118 if (fe != NULL)
20119 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20120 }
20121
20122 /* Decode the table. */
20123 while (line_ptr < line_end && !end_sequence)
20124 {
20125 op_code = read_1_byte (abfd, line_ptr);
20126 line_ptr += 1;
20127
20128 if (op_code >= lh->opcode_base)
20129 {
20130 /* Special opcode. */
20131 state_machine.handle_special_opcode (op_code);
20132 }
20133 else switch (op_code)
20134 {
20135 case DW_LNS_extended_op:
20136 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20137 &bytes_read);
20138 line_ptr += bytes_read;
20139 extended_end = line_ptr + extended_len;
20140 extended_op = read_1_byte (abfd, line_ptr);
20141 line_ptr += 1;
20142 switch (extended_op)
20143 {
20144 case DW_LNE_end_sequence:
20145 state_machine.handle_end_sequence ();
20146 end_sequence = true;
20147 break;
20148 case DW_LNE_set_address:
20149 {
20150 CORE_ADDR address
20151 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20152 line_ptr += bytes_read;
20153
20154 state_machine.check_line_address (cu, line_ptr,
20155 lowpc - baseaddr, address);
20156 state_machine.handle_set_address (baseaddr, address);
20157 }
20158 break;
20159 case DW_LNE_define_file:
20160 {
20161 const char *cur_file;
20162 unsigned int mod_time, length;
20163 dir_index dindex;
20164
20165 cur_file = read_direct_string (abfd, line_ptr,
20166 &bytes_read);
20167 line_ptr += bytes_read;
20168 dindex = (dir_index)
20169 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20170 line_ptr += bytes_read;
20171 mod_time =
20172 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20173 line_ptr += bytes_read;
20174 length =
20175 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20176 line_ptr += bytes_read;
20177 lh->add_file_name (cur_file, dindex, mod_time, length);
20178 }
20179 break;
20180 case DW_LNE_set_discriminator:
20181 {
20182 /* The discriminator is not interesting to the
20183 debugger; just ignore it. We still need to
20184 check its value though:
20185 if there are consecutive entries for the same
20186 (non-prologue) line we want to coalesce them.
20187 PR 17276. */
20188 unsigned int discr
20189 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20190 line_ptr += bytes_read;
20191
20192 state_machine.handle_set_discriminator (discr);
20193 }
20194 break;
20195 default:
20196 complaint (_("mangled .debug_line section"));
20197 return;
20198 }
20199 /* Make sure that we parsed the extended op correctly. If e.g.
20200 we expected a different address size than the producer used,
20201 we may have read the wrong number of bytes. */
20202 if (line_ptr != extended_end)
20203 {
20204 complaint (_("mangled .debug_line section"));
20205 return;
20206 }
20207 break;
20208 case DW_LNS_copy:
20209 state_machine.handle_copy ();
20210 break;
20211 case DW_LNS_advance_pc:
20212 {
20213 CORE_ADDR adjust
20214 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20215 line_ptr += bytes_read;
20216
20217 state_machine.handle_advance_pc (adjust);
20218 }
20219 break;
20220 case DW_LNS_advance_line:
20221 {
20222 int line_delta
20223 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20224 line_ptr += bytes_read;
20225
20226 state_machine.handle_advance_line (line_delta);
20227 }
20228 break;
20229 case DW_LNS_set_file:
20230 {
20231 file_name_index file
20232 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20233 &bytes_read);
20234 line_ptr += bytes_read;
20235
20236 state_machine.handle_set_file (file);
20237 }
20238 break;
20239 case DW_LNS_set_column:
20240 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20241 line_ptr += bytes_read;
20242 break;
20243 case DW_LNS_negate_stmt:
20244 state_machine.handle_negate_stmt ();
20245 break;
20246 case DW_LNS_set_basic_block:
20247 break;
20248 /* Add to the address register of the state machine the
20249 address increment value corresponding to special opcode
20250 255. I.e., this value is scaled by the minimum
20251 instruction length since special opcode 255 would have
20252 scaled the increment. */
20253 case DW_LNS_const_add_pc:
20254 state_machine.handle_const_add_pc ();
20255 break;
20256 case DW_LNS_fixed_advance_pc:
20257 {
20258 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20259 line_ptr += 2;
20260
20261 state_machine.handle_fixed_advance_pc (addr_adj);
20262 }
20263 break;
20264 default:
20265 {
20266 /* Unknown standard opcode, ignore it. */
20267 int i;
20268
20269 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20270 {
20271 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20272 line_ptr += bytes_read;
20273 }
20274 }
20275 }
20276 }
20277
20278 if (!end_sequence)
20279 dwarf2_debug_line_missing_end_sequence_complaint ();
20280
20281 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20282 in which case we still finish recording the last line). */
20283 state_machine.record_line (true);
20284 }
20285 }
20286
20287 /* Decode the Line Number Program (LNP) for the given line_header
20288 structure and CU. The actual information extracted and the type
20289 of structures created from the LNP depends on the value of PST.
20290
20291 1. If PST is NULL, then this procedure uses the data from the program
20292 to create all necessary symbol tables, and their linetables.
20293
20294 2. If PST is not NULL, this procedure reads the program to determine
20295 the list of files included by the unit represented by PST, and
20296 builds all the associated partial symbol tables.
20297
20298 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20299 It is used for relative paths in the line table.
20300 NOTE: When processing partial symtabs (pst != NULL),
20301 comp_dir == pst->dirname.
20302
20303 NOTE: It is important that psymtabs have the same file name (via strcmp)
20304 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20305 symtab we don't use it in the name of the psymtabs we create.
20306 E.g. expand_line_sal requires this when finding psymtabs to expand.
20307 A good testcase for this is mb-inline.exp.
20308
20309 LOWPC is the lowest address in CU (or 0 if not known).
20310
20311 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20312 for its PC<->lines mapping information. Otherwise only the filename
20313 table is read in. */
20314
20315 static void
20316 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20317 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20318 CORE_ADDR lowpc, int decode_mapping)
20319 {
20320 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20321 const int decode_for_pst_p = (pst != NULL);
20322
20323 if (decode_mapping)
20324 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20325
20326 if (decode_for_pst_p)
20327 {
20328 /* Now that we're done scanning the Line Header Program, we can
20329 create the psymtab of each included file. */
20330 for (auto &file_entry : lh->file_names ())
20331 if (file_entry.included_p == 1)
20332 {
20333 gdb::unique_xmalloc_ptr<char> name_holder;
20334 const char *include_name =
20335 psymtab_include_file_name (lh, file_entry, pst,
20336 comp_dir, &name_holder);
20337 if (include_name != NULL)
20338 dwarf2_create_include_psymtab (include_name, pst, objfile);
20339 }
20340 }
20341 else
20342 {
20343 /* Make sure a symtab is created for every file, even files
20344 which contain only variables (i.e. no code with associated
20345 line numbers). */
20346 buildsym_compunit *builder = cu->get_builder ();
20347 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20348
20349 for (auto &fe : lh->file_names ())
20350 {
20351 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20352 if (builder->get_current_subfile ()->symtab == NULL)
20353 {
20354 builder->get_current_subfile ()->symtab
20355 = allocate_symtab (cust,
20356 builder->get_current_subfile ()->name);
20357 }
20358 fe.symtab = builder->get_current_subfile ()->symtab;
20359 }
20360 }
20361 }
20362
20363 /* Start a subfile for DWARF. FILENAME is the name of the file and
20364 DIRNAME the name of the source directory which contains FILENAME
20365 or NULL if not known.
20366 This routine tries to keep line numbers from identical absolute and
20367 relative file names in a common subfile.
20368
20369 Using the `list' example from the GDB testsuite, which resides in
20370 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20371 of /srcdir/list0.c yields the following debugging information for list0.c:
20372
20373 DW_AT_name: /srcdir/list0.c
20374 DW_AT_comp_dir: /compdir
20375 files.files[0].name: list0.h
20376 files.files[0].dir: /srcdir
20377 files.files[1].name: list0.c
20378 files.files[1].dir: /srcdir
20379
20380 The line number information for list0.c has to end up in a single
20381 subfile, so that `break /srcdir/list0.c:1' works as expected.
20382 start_subfile will ensure that this happens provided that we pass the
20383 concatenation of files.files[1].dir and files.files[1].name as the
20384 subfile's name. */
20385
20386 static void
20387 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20388 const char *dirname)
20389 {
20390 gdb::unique_xmalloc_ptr<char> copy;
20391
20392 /* In order not to lose the line information directory,
20393 we concatenate it to the filename when it makes sense.
20394 Note that the Dwarf3 standard says (speaking of filenames in line
20395 information): ``The directory index is ignored for file names
20396 that represent full path names''. Thus ignoring dirname in the
20397 `else' branch below isn't an issue. */
20398
20399 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20400 {
20401 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20402 filename = copy.get ();
20403 }
20404
20405 cu->get_builder ()->start_subfile (filename);
20406 }
20407
20408 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20409 buildsym_compunit constructor. */
20410
20411 struct compunit_symtab *
20412 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20413 CORE_ADDR low_pc)
20414 {
20415 gdb_assert (m_builder == nullptr);
20416
20417 m_builder.reset (new struct buildsym_compunit
20418 (per_cu->dwarf2_per_objfile->objfile,
20419 name, comp_dir, language, low_pc));
20420
20421 list_in_scope = get_builder ()->get_file_symbols ();
20422
20423 get_builder ()->record_debugformat ("DWARF 2");
20424 get_builder ()->record_producer (producer);
20425
20426 processing_has_namespace_info = false;
20427
20428 return get_builder ()->get_compunit_symtab ();
20429 }
20430
20431 static void
20432 var_decode_location (struct attribute *attr, struct symbol *sym,
20433 struct dwarf2_cu *cu)
20434 {
20435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20436 struct comp_unit_head *cu_header = &cu->header;
20437
20438 /* NOTE drow/2003-01-30: There used to be a comment and some special
20439 code here to turn a symbol with DW_AT_external and a
20440 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20441 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20442 with some versions of binutils) where shared libraries could have
20443 relocations against symbols in their debug information - the
20444 minimal symbol would have the right address, but the debug info
20445 would not. It's no longer necessary, because we will explicitly
20446 apply relocations when we read in the debug information now. */
20447
20448 /* A DW_AT_location attribute with no contents indicates that a
20449 variable has been optimized away. */
20450 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20451 {
20452 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20453 return;
20454 }
20455
20456 /* Handle one degenerate form of location expression specially, to
20457 preserve GDB's previous behavior when section offsets are
20458 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20459 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20460
20461 if (attr->form_is_block ()
20462 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20463 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20464 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20465 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20466 && (DW_BLOCK (attr)->size
20467 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20468 {
20469 unsigned int dummy;
20470
20471 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20472 SET_SYMBOL_VALUE_ADDRESS
20473 (sym, cu->header.read_address (objfile->obfd,
20474 DW_BLOCK (attr)->data + 1,
20475 &dummy));
20476 else
20477 SET_SYMBOL_VALUE_ADDRESS
20478 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20479 &dummy));
20480 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20481 fixup_symbol_section (sym, objfile);
20482 SET_SYMBOL_VALUE_ADDRESS
20483 (sym,
20484 SYMBOL_VALUE_ADDRESS (sym)
20485 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20486 return;
20487 }
20488
20489 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20490 expression evaluator, and use LOC_COMPUTED only when necessary
20491 (i.e. when the value of a register or memory location is
20492 referenced, or a thread-local block, etc.). Then again, it might
20493 not be worthwhile. I'm assuming that it isn't unless performance
20494 or memory numbers show me otherwise. */
20495
20496 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20497
20498 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20499 cu->has_loclist = true;
20500 }
20501
20502 /* Given a pointer to a DWARF information entry, figure out if we need
20503 to make a symbol table entry for it, and if so, create a new entry
20504 and return a pointer to it.
20505 If TYPE is NULL, determine symbol type from the die, otherwise
20506 used the passed type.
20507 If SPACE is not NULL, use it to hold the new symbol. If it is
20508 NULL, allocate a new symbol on the objfile's obstack. */
20509
20510 static struct symbol *
20511 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20512 struct symbol *space)
20513 {
20514 struct dwarf2_per_objfile *dwarf2_per_objfile
20515 = cu->per_cu->dwarf2_per_objfile;
20516 struct objfile *objfile = dwarf2_per_objfile->objfile;
20517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20518 struct symbol *sym = NULL;
20519 const char *name;
20520 struct attribute *attr = NULL;
20521 struct attribute *attr2 = NULL;
20522 CORE_ADDR baseaddr;
20523 struct pending **list_to_add = NULL;
20524
20525 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20526
20527 baseaddr = objfile->text_section_offset ();
20528
20529 name = dwarf2_name (die, cu);
20530 if (name)
20531 {
20532 const char *linkagename;
20533 int suppress_add = 0;
20534
20535 if (space)
20536 sym = space;
20537 else
20538 sym = allocate_symbol (objfile);
20539 OBJSTAT (objfile, n_syms++);
20540
20541 /* Cache this symbol's name and the name's demangled form (if any). */
20542 sym->set_language (cu->language, &objfile->objfile_obstack);
20543 linkagename = dwarf2_physname (name, die, cu);
20544 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20545
20546 /* Fortran does not have mangling standard and the mangling does differ
20547 between gfortran, iFort etc. */
20548 if (cu->language == language_fortran
20549 && symbol_get_demangled_name (sym) == NULL)
20550 symbol_set_demangled_name (sym,
20551 dwarf2_full_name (name, die, cu),
20552 NULL);
20553
20554 /* Default assumptions.
20555 Use the passed type or decode it from the die. */
20556 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20557 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20558 if (type != NULL)
20559 SYMBOL_TYPE (sym) = type;
20560 else
20561 SYMBOL_TYPE (sym) = die_type (die, cu);
20562 attr = dwarf2_attr (die,
20563 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20564 cu);
20565 if (attr != nullptr)
20566 {
20567 SYMBOL_LINE (sym) = DW_UNSND (attr);
20568 }
20569
20570 attr = dwarf2_attr (die,
20571 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20572 cu);
20573 if (attr != nullptr)
20574 {
20575 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20576 struct file_entry *fe;
20577
20578 if (cu->line_header != NULL)
20579 fe = cu->line_header->file_name_at (file_index);
20580 else
20581 fe = NULL;
20582
20583 if (fe == NULL)
20584 complaint (_("file index out of range"));
20585 else
20586 symbol_set_symtab (sym, fe->symtab);
20587 }
20588
20589 switch (die->tag)
20590 {
20591 case DW_TAG_label:
20592 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20593 if (attr != nullptr)
20594 {
20595 CORE_ADDR addr;
20596
20597 addr = attr->value_as_address ();
20598 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20599 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20600 }
20601 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20602 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20603 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20604 add_symbol_to_list (sym, cu->list_in_scope);
20605 break;
20606 case DW_TAG_subprogram:
20607 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20608 finish_block. */
20609 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20610 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20611 if ((attr2 && (DW_UNSND (attr2) != 0))
20612 || cu->language == language_ada
20613 || cu->language == language_fortran)
20614 {
20615 /* Subprograms marked external are stored as a global symbol.
20616 Ada and Fortran subprograms, whether marked external or
20617 not, are always stored as a global symbol, because we want
20618 to be able to access them globally. For instance, we want
20619 to be able to break on a nested subprogram without having
20620 to specify the context. */
20621 list_to_add = cu->get_builder ()->get_global_symbols ();
20622 }
20623 else
20624 {
20625 list_to_add = cu->list_in_scope;
20626 }
20627 break;
20628 case DW_TAG_inlined_subroutine:
20629 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20630 finish_block. */
20631 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20632 SYMBOL_INLINED (sym) = 1;
20633 list_to_add = cu->list_in_scope;
20634 break;
20635 case DW_TAG_template_value_param:
20636 suppress_add = 1;
20637 /* Fall through. */
20638 case DW_TAG_constant:
20639 case DW_TAG_variable:
20640 case DW_TAG_member:
20641 /* Compilation with minimal debug info may result in
20642 variables with missing type entries. Change the
20643 misleading `void' type to something sensible. */
20644 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20645 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20646
20647 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20648 /* In the case of DW_TAG_member, we should only be called for
20649 static const members. */
20650 if (die->tag == DW_TAG_member)
20651 {
20652 /* dwarf2_add_field uses die_is_declaration,
20653 so we do the same. */
20654 gdb_assert (die_is_declaration (die, cu));
20655 gdb_assert (attr);
20656 }
20657 if (attr != nullptr)
20658 {
20659 dwarf2_const_value (attr, sym, cu);
20660 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20661 if (!suppress_add)
20662 {
20663 if (attr2 && (DW_UNSND (attr2) != 0))
20664 list_to_add = cu->get_builder ()->get_global_symbols ();
20665 else
20666 list_to_add = cu->list_in_scope;
20667 }
20668 break;
20669 }
20670 attr = dwarf2_attr (die, DW_AT_location, cu);
20671 if (attr != nullptr)
20672 {
20673 var_decode_location (attr, sym, cu);
20674 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20675
20676 /* Fortran explicitly imports any global symbols to the local
20677 scope by DW_TAG_common_block. */
20678 if (cu->language == language_fortran && die->parent
20679 && die->parent->tag == DW_TAG_common_block)
20680 attr2 = NULL;
20681
20682 if (SYMBOL_CLASS (sym) == LOC_STATIC
20683 && SYMBOL_VALUE_ADDRESS (sym) == 0
20684 && !dwarf2_per_objfile->has_section_at_zero)
20685 {
20686 /* When a static variable is eliminated by the linker,
20687 the corresponding debug information is not stripped
20688 out, but the variable address is set to null;
20689 do not add such variables into symbol table. */
20690 }
20691 else if (attr2 && (DW_UNSND (attr2) != 0))
20692 {
20693 if (SYMBOL_CLASS (sym) == LOC_STATIC
20694 && (objfile->flags & OBJF_MAINLINE) == 0
20695 && dwarf2_per_objfile->can_copy)
20696 {
20697 /* A global static variable might be subject to
20698 copy relocation. We first check for a local
20699 minsym, though, because maybe the symbol was
20700 marked hidden, in which case this would not
20701 apply. */
20702 bound_minimal_symbol found
20703 = (lookup_minimal_symbol_linkage
20704 (sym->linkage_name (), objfile));
20705 if (found.minsym != nullptr)
20706 sym->maybe_copied = 1;
20707 }
20708
20709 /* A variable with DW_AT_external is never static,
20710 but it may be block-scoped. */
20711 list_to_add
20712 = ((cu->list_in_scope
20713 == cu->get_builder ()->get_file_symbols ())
20714 ? cu->get_builder ()->get_global_symbols ()
20715 : cu->list_in_scope);
20716 }
20717 else
20718 list_to_add = cu->list_in_scope;
20719 }
20720 else
20721 {
20722 /* We do not know the address of this symbol.
20723 If it is an external symbol and we have type information
20724 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20725 The address of the variable will then be determined from
20726 the minimal symbol table whenever the variable is
20727 referenced. */
20728 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20729
20730 /* Fortran explicitly imports any global symbols to the local
20731 scope by DW_TAG_common_block. */
20732 if (cu->language == language_fortran && die->parent
20733 && die->parent->tag == DW_TAG_common_block)
20734 {
20735 /* SYMBOL_CLASS doesn't matter here because
20736 read_common_block is going to reset it. */
20737 if (!suppress_add)
20738 list_to_add = cu->list_in_scope;
20739 }
20740 else if (attr2 && (DW_UNSND (attr2) != 0)
20741 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20742 {
20743 /* A variable with DW_AT_external is never static, but it
20744 may be block-scoped. */
20745 list_to_add
20746 = ((cu->list_in_scope
20747 == cu->get_builder ()->get_file_symbols ())
20748 ? cu->get_builder ()->get_global_symbols ()
20749 : cu->list_in_scope);
20750
20751 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20752 }
20753 else if (!die_is_declaration (die, cu))
20754 {
20755 /* Use the default LOC_OPTIMIZED_OUT class. */
20756 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20757 if (!suppress_add)
20758 list_to_add = cu->list_in_scope;
20759 }
20760 }
20761 break;
20762 case DW_TAG_formal_parameter:
20763 {
20764 /* If we are inside a function, mark this as an argument. If
20765 not, we might be looking at an argument to an inlined function
20766 when we do not have enough information to show inlined frames;
20767 pretend it's a local variable in that case so that the user can
20768 still see it. */
20769 struct context_stack *curr
20770 = cu->get_builder ()->get_current_context_stack ();
20771 if (curr != nullptr && curr->name != nullptr)
20772 SYMBOL_IS_ARGUMENT (sym) = 1;
20773 attr = dwarf2_attr (die, DW_AT_location, cu);
20774 if (attr != nullptr)
20775 {
20776 var_decode_location (attr, sym, cu);
20777 }
20778 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20779 if (attr != nullptr)
20780 {
20781 dwarf2_const_value (attr, sym, cu);
20782 }
20783
20784 list_to_add = cu->list_in_scope;
20785 }
20786 break;
20787 case DW_TAG_unspecified_parameters:
20788 /* From varargs functions; gdb doesn't seem to have any
20789 interest in this information, so just ignore it for now.
20790 (FIXME?) */
20791 break;
20792 case DW_TAG_template_type_param:
20793 suppress_add = 1;
20794 /* Fall through. */
20795 case DW_TAG_class_type:
20796 case DW_TAG_interface_type:
20797 case DW_TAG_structure_type:
20798 case DW_TAG_union_type:
20799 case DW_TAG_set_type:
20800 case DW_TAG_enumeration_type:
20801 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20802 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20803
20804 {
20805 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20806 really ever be static objects: otherwise, if you try
20807 to, say, break of a class's method and you're in a file
20808 which doesn't mention that class, it won't work unless
20809 the check for all static symbols in lookup_symbol_aux
20810 saves you. See the OtherFileClass tests in
20811 gdb.c++/namespace.exp. */
20812
20813 if (!suppress_add)
20814 {
20815 buildsym_compunit *builder = cu->get_builder ();
20816 list_to_add
20817 = (cu->list_in_scope == builder->get_file_symbols ()
20818 && cu->language == language_cplus
20819 ? builder->get_global_symbols ()
20820 : cu->list_in_scope);
20821
20822 /* The semantics of C++ state that "struct foo {
20823 ... }" also defines a typedef for "foo". */
20824 if (cu->language == language_cplus
20825 || cu->language == language_ada
20826 || cu->language == language_d
20827 || cu->language == language_rust)
20828 {
20829 /* The symbol's name is already allocated along
20830 with this objfile, so we don't need to
20831 duplicate it for the type. */
20832 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20833 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20834 }
20835 }
20836 }
20837 break;
20838 case DW_TAG_typedef:
20839 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20840 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20841 list_to_add = cu->list_in_scope;
20842 break;
20843 case DW_TAG_base_type:
20844 case DW_TAG_subrange_type:
20845 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20846 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20847 list_to_add = cu->list_in_scope;
20848 break;
20849 case DW_TAG_enumerator:
20850 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20851 if (attr != nullptr)
20852 {
20853 dwarf2_const_value (attr, sym, cu);
20854 }
20855 {
20856 /* NOTE: carlton/2003-11-10: See comment above in the
20857 DW_TAG_class_type, etc. block. */
20858
20859 list_to_add
20860 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20861 && cu->language == language_cplus
20862 ? cu->get_builder ()->get_global_symbols ()
20863 : cu->list_in_scope);
20864 }
20865 break;
20866 case DW_TAG_imported_declaration:
20867 case DW_TAG_namespace:
20868 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20869 list_to_add = cu->get_builder ()->get_global_symbols ();
20870 break;
20871 case DW_TAG_module:
20872 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20873 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20874 list_to_add = cu->get_builder ()->get_global_symbols ();
20875 break;
20876 case DW_TAG_common_block:
20877 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20878 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20879 add_symbol_to_list (sym, cu->list_in_scope);
20880 break;
20881 default:
20882 /* Not a tag we recognize. Hopefully we aren't processing
20883 trash data, but since we must specifically ignore things
20884 we don't recognize, there is nothing else we should do at
20885 this point. */
20886 complaint (_("unsupported tag: '%s'"),
20887 dwarf_tag_name (die->tag));
20888 break;
20889 }
20890
20891 if (suppress_add)
20892 {
20893 sym->hash_next = objfile->template_symbols;
20894 objfile->template_symbols = sym;
20895 list_to_add = NULL;
20896 }
20897
20898 if (list_to_add != NULL)
20899 add_symbol_to_list (sym, list_to_add);
20900
20901 /* For the benefit of old versions of GCC, check for anonymous
20902 namespaces based on the demangled name. */
20903 if (!cu->processing_has_namespace_info
20904 && cu->language == language_cplus)
20905 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20906 }
20907 return (sym);
20908 }
20909
20910 /* Given an attr with a DW_FORM_dataN value in host byte order,
20911 zero-extend it as appropriate for the symbol's type. The DWARF
20912 standard (v4) is not entirely clear about the meaning of using
20913 DW_FORM_dataN for a constant with a signed type, where the type is
20914 wider than the data. The conclusion of a discussion on the DWARF
20915 list was that this is unspecified. We choose to always zero-extend
20916 because that is the interpretation long in use by GCC. */
20917
20918 static gdb_byte *
20919 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20920 struct dwarf2_cu *cu, LONGEST *value, int bits)
20921 {
20922 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20923 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20924 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20925 LONGEST l = DW_UNSND (attr);
20926
20927 if (bits < sizeof (*value) * 8)
20928 {
20929 l &= ((LONGEST) 1 << bits) - 1;
20930 *value = l;
20931 }
20932 else if (bits == sizeof (*value) * 8)
20933 *value = l;
20934 else
20935 {
20936 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20937 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20938 return bytes;
20939 }
20940
20941 return NULL;
20942 }
20943
20944 /* Read a constant value from an attribute. Either set *VALUE, or if
20945 the value does not fit in *VALUE, set *BYTES - either already
20946 allocated on the objfile obstack, or newly allocated on OBSTACK,
20947 or, set *BATON, if we translated the constant to a location
20948 expression. */
20949
20950 static void
20951 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20952 const char *name, struct obstack *obstack,
20953 struct dwarf2_cu *cu,
20954 LONGEST *value, const gdb_byte **bytes,
20955 struct dwarf2_locexpr_baton **baton)
20956 {
20957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20958 struct comp_unit_head *cu_header = &cu->header;
20959 struct dwarf_block *blk;
20960 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20961 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20962
20963 *value = 0;
20964 *bytes = NULL;
20965 *baton = NULL;
20966
20967 switch (attr->form)
20968 {
20969 case DW_FORM_addr:
20970 case DW_FORM_addrx:
20971 case DW_FORM_GNU_addr_index:
20972 {
20973 gdb_byte *data;
20974
20975 if (TYPE_LENGTH (type) != cu_header->addr_size)
20976 dwarf2_const_value_length_mismatch_complaint (name,
20977 cu_header->addr_size,
20978 TYPE_LENGTH (type));
20979 /* Symbols of this form are reasonably rare, so we just
20980 piggyback on the existing location code rather than writing
20981 a new implementation of symbol_computed_ops. */
20982 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20983 (*baton)->per_cu = cu->per_cu;
20984 gdb_assert ((*baton)->per_cu);
20985
20986 (*baton)->size = 2 + cu_header->addr_size;
20987 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20988 (*baton)->data = data;
20989
20990 data[0] = DW_OP_addr;
20991 store_unsigned_integer (&data[1], cu_header->addr_size,
20992 byte_order, DW_ADDR (attr));
20993 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20994 }
20995 break;
20996 case DW_FORM_string:
20997 case DW_FORM_strp:
20998 case DW_FORM_strx:
20999 case DW_FORM_GNU_str_index:
21000 case DW_FORM_GNU_strp_alt:
21001 /* DW_STRING is already allocated on the objfile obstack, point
21002 directly to it. */
21003 *bytes = (const gdb_byte *) DW_STRING (attr);
21004 break;
21005 case DW_FORM_block1:
21006 case DW_FORM_block2:
21007 case DW_FORM_block4:
21008 case DW_FORM_block:
21009 case DW_FORM_exprloc:
21010 case DW_FORM_data16:
21011 blk = DW_BLOCK (attr);
21012 if (TYPE_LENGTH (type) != blk->size)
21013 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21014 TYPE_LENGTH (type));
21015 *bytes = blk->data;
21016 break;
21017
21018 /* The DW_AT_const_value attributes are supposed to carry the
21019 symbol's value "represented as it would be on the target
21020 architecture." By the time we get here, it's already been
21021 converted to host endianness, so we just need to sign- or
21022 zero-extend it as appropriate. */
21023 case DW_FORM_data1:
21024 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21025 break;
21026 case DW_FORM_data2:
21027 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21028 break;
21029 case DW_FORM_data4:
21030 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21031 break;
21032 case DW_FORM_data8:
21033 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21034 break;
21035
21036 case DW_FORM_sdata:
21037 case DW_FORM_implicit_const:
21038 *value = DW_SND (attr);
21039 break;
21040
21041 case DW_FORM_udata:
21042 *value = DW_UNSND (attr);
21043 break;
21044
21045 default:
21046 complaint (_("unsupported const value attribute form: '%s'"),
21047 dwarf_form_name (attr->form));
21048 *value = 0;
21049 break;
21050 }
21051 }
21052
21053
21054 /* Copy constant value from an attribute to a symbol. */
21055
21056 static void
21057 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21058 struct dwarf2_cu *cu)
21059 {
21060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21061 LONGEST value;
21062 const gdb_byte *bytes;
21063 struct dwarf2_locexpr_baton *baton;
21064
21065 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21066 sym->print_name (),
21067 &objfile->objfile_obstack, cu,
21068 &value, &bytes, &baton);
21069
21070 if (baton != NULL)
21071 {
21072 SYMBOL_LOCATION_BATON (sym) = baton;
21073 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21074 }
21075 else if (bytes != NULL)
21076 {
21077 SYMBOL_VALUE_BYTES (sym) = bytes;
21078 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21079 }
21080 else
21081 {
21082 SYMBOL_VALUE (sym) = value;
21083 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21084 }
21085 }
21086
21087 /* Return the type of the die in question using its DW_AT_type attribute. */
21088
21089 static struct type *
21090 die_type (struct die_info *die, struct dwarf2_cu *cu)
21091 {
21092 struct attribute *type_attr;
21093
21094 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21095 if (!type_attr)
21096 {
21097 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21098 /* A missing DW_AT_type represents a void type. */
21099 return objfile_type (objfile)->builtin_void;
21100 }
21101
21102 return lookup_die_type (die, type_attr, cu);
21103 }
21104
21105 /* True iff CU's producer generates GNAT Ada auxiliary information
21106 that allows to find parallel types through that information instead
21107 of having to do expensive parallel lookups by type name. */
21108
21109 static int
21110 need_gnat_info (struct dwarf2_cu *cu)
21111 {
21112 /* Assume that the Ada compiler was GNAT, which always produces
21113 the auxiliary information. */
21114 return (cu->language == language_ada);
21115 }
21116
21117 /* Return the auxiliary type of the die in question using its
21118 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21119 attribute is not present. */
21120
21121 static struct type *
21122 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21123 {
21124 struct attribute *type_attr;
21125
21126 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21127 if (!type_attr)
21128 return NULL;
21129
21130 return lookup_die_type (die, type_attr, cu);
21131 }
21132
21133 /* If DIE has a descriptive_type attribute, then set the TYPE's
21134 descriptive type accordingly. */
21135
21136 static void
21137 set_descriptive_type (struct type *type, struct die_info *die,
21138 struct dwarf2_cu *cu)
21139 {
21140 struct type *descriptive_type = die_descriptive_type (die, cu);
21141
21142 if (descriptive_type)
21143 {
21144 ALLOCATE_GNAT_AUX_TYPE (type);
21145 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21146 }
21147 }
21148
21149 /* Return the containing type of the die in question using its
21150 DW_AT_containing_type attribute. */
21151
21152 static struct type *
21153 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21154 {
21155 struct attribute *type_attr;
21156 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21157
21158 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21159 if (!type_attr)
21160 error (_("Dwarf Error: Problem turning containing type into gdb type "
21161 "[in module %s]"), objfile_name (objfile));
21162
21163 return lookup_die_type (die, type_attr, cu);
21164 }
21165
21166 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21167
21168 static struct type *
21169 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21170 {
21171 struct dwarf2_per_objfile *dwarf2_per_objfile
21172 = cu->per_cu->dwarf2_per_objfile;
21173 struct objfile *objfile = dwarf2_per_objfile->objfile;
21174 char *saved;
21175
21176 std::string message
21177 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21178 objfile_name (objfile),
21179 sect_offset_str (cu->header.sect_off),
21180 sect_offset_str (die->sect_off));
21181 saved = obstack_strdup (&objfile->objfile_obstack, message);
21182
21183 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21184 }
21185
21186 /* Look up the type of DIE in CU using its type attribute ATTR.
21187 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21188 DW_AT_containing_type.
21189 If there is no type substitute an error marker. */
21190
21191 static struct type *
21192 lookup_die_type (struct die_info *die, const struct attribute *attr,
21193 struct dwarf2_cu *cu)
21194 {
21195 struct dwarf2_per_objfile *dwarf2_per_objfile
21196 = cu->per_cu->dwarf2_per_objfile;
21197 struct objfile *objfile = dwarf2_per_objfile->objfile;
21198 struct type *this_type;
21199
21200 gdb_assert (attr->name == DW_AT_type
21201 || attr->name == DW_AT_GNAT_descriptive_type
21202 || attr->name == DW_AT_containing_type);
21203
21204 /* First see if we have it cached. */
21205
21206 if (attr->form == DW_FORM_GNU_ref_alt)
21207 {
21208 struct dwarf2_per_cu_data *per_cu;
21209 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21210
21211 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21212 dwarf2_per_objfile);
21213 this_type = get_die_type_at_offset (sect_off, per_cu);
21214 }
21215 else if (attr->form_is_ref ())
21216 {
21217 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21218
21219 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21220 }
21221 else if (attr->form == DW_FORM_ref_sig8)
21222 {
21223 ULONGEST signature = DW_SIGNATURE (attr);
21224
21225 return get_signatured_type (die, signature, cu);
21226 }
21227 else
21228 {
21229 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21230 " at %s [in module %s]"),
21231 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21232 objfile_name (objfile));
21233 return build_error_marker_type (cu, die);
21234 }
21235
21236 /* If not cached we need to read it in. */
21237
21238 if (this_type == NULL)
21239 {
21240 struct die_info *type_die = NULL;
21241 struct dwarf2_cu *type_cu = cu;
21242
21243 if (attr->form_is_ref ())
21244 type_die = follow_die_ref (die, attr, &type_cu);
21245 if (type_die == NULL)
21246 return build_error_marker_type (cu, die);
21247 /* If we find the type now, it's probably because the type came
21248 from an inter-CU reference and the type's CU got expanded before
21249 ours. */
21250 this_type = read_type_die (type_die, type_cu);
21251 }
21252
21253 /* If we still don't have a type use an error marker. */
21254
21255 if (this_type == NULL)
21256 return build_error_marker_type (cu, die);
21257
21258 return this_type;
21259 }
21260
21261 /* Return the type in DIE, CU.
21262 Returns NULL for invalid types.
21263
21264 This first does a lookup in die_type_hash,
21265 and only reads the die in if necessary.
21266
21267 NOTE: This can be called when reading in partial or full symbols. */
21268
21269 static struct type *
21270 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21271 {
21272 struct type *this_type;
21273
21274 this_type = get_die_type (die, cu);
21275 if (this_type)
21276 return this_type;
21277
21278 return read_type_die_1 (die, cu);
21279 }
21280
21281 /* Read the type in DIE, CU.
21282 Returns NULL for invalid types. */
21283
21284 static struct type *
21285 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21286 {
21287 struct type *this_type = NULL;
21288
21289 switch (die->tag)
21290 {
21291 case DW_TAG_class_type:
21292 case DW_TAG_interface_type:
21293 case DW_TAG_structure_type:
21294 case DW_TAG_union_type:
21295 this_type = read_structure_type (die, cu);
21296 break;
21297 case DW_TAG_enumeration_type:
21298 this_type = read_enumeration_type (die, cu);
21299 break;
21300 case DW_TAG_subprogram:
21301 case DW_TAG_subroutine_type:
21302 case DW_TAG_inlined_subroutine:
21303 this_type = read_subroutine_type (die, cu);
21304 break;
21305 case DW_TAG_array_type:
21306 this_type = read_array_type (die, cu);
21307 break;
21308 case DW_TAG_set_type:
21309 this_type = read_set_type (die, cu);
21310 break;
21311 case DW_TAG_pointer_type:
21312 this_type = read_tag_pointer_type (die, cu);
21313 break;
21314 case DW_TAG_ptr_to_member_type:
21315 this_type = read_tag_ptr_to_member_type (die, cu);
21316 break;
21317 case DW_TAG_reference_type:
21318 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21319 break;
21320 case DW_TAG_rvalue_reference_type:
21321 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21322 break;
21323 case DW_TAG_const_type:
21324 this_type = read_tag_const_type (die, cu);
21325 break;
21326 case DW_TAG_volatile_type:
21327 this_type = read_tag_volatile_type (die, cu);
21328 break;
21329 case DW_TAG_restrict_type:
21330 this_type = read_tag_restrict_type (die, cu);
21331 break;
21332 case DW_TAG_string_type:
21333 this_type = read_tag_string_type (die, cu);
21334 break;
21335 case DW_TAG_typedef:
21336 this_type = read_typedef (die, cu);
21337 break;
21338 case DW_TAG_subrange_type:
21339 this_type = read_subrange_type (die, cu);
21340 break;
21341 case DW_TAG_base_type:
21342 this_type = read_base_type (die, cu);
21343 break;
21344 case DW_TAG_unspecified_type:
21345 this_type = read_unspecified_type (die, cu);
21346 break;
21347 case DW_TAG_namespace:
21348 this_type = read_namespace_type (die, cu);
21349 break;
21350 case DW_TAG_module:
21351 this_type = read_module_type (die, cu);
21352 break;
21353 case DW_TAG_atomic_type:
21354 this_type = read_tag_atomic_type (die, cu);
21355 break;
21356 default:
21357 complaint (_("unexpected tag in read_type_die: '%s'"),
21358 dwarf_tag_name (die->tag));
21359 break;
21360 }
21361
21362 return this_type;
21363 }
21364
21365 /* See if we can figure out if the class lives in a namespace. We do
21366 this by looking for a member function; its demangled name will
21367 contain namespace info, if there is any.
21368 Return the computed name or NULL.
21369 Space for the result is allocated on the objfile's obstack.
21370 This is the full-die version of guess_partial_die_structure_name.
21371 In this case we know DIE has no useful parent. */
21372
21373 static const char *
21374 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21375 {
21376 struct die_info *spec_die;
21377 struct dwarf2_cu *spec_cu;
21378 struct die_info *child;
21379 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21380
21381 spec_cu = cu;
21382 spec_die = die_specification (die, &spec_cu);
21383 if (spec_die != NULL)
21384 {
21385 die = spec_die;
21386 cu = spec_cu;
21387 }
21388
21389 for (child = die->child;
21390 child != NULL;
21391 child = child->sibling)
21392 {
21393 if (child->tag == DW_TAG_subprogram)
21394 {
21395 const char *linkage_name = dw2_linkage_name (child, cu);
21396
21397 if (linkage_name != NULL)
21398 {
21399 gdb::unique_xmalloc_ptr<char> actual_name
21400 (language_class_name_from_physname (cu->language_defn,
21401 linkage_name));
21402 const char *name = NULL;
21403
21404 if (actual_name != NULL)
21405 {
21406 const char *die_name = dwarf2_name (die, cu);
21407
21408 if (die_name != NULL
21409 && strcmp (die_name, actual_name.get ()) != 0)
21410 {
21411 /* Strip off the class name from the full name.
21412 We want the prefix. */
21413 int die_name_len = strlen (die_name);
21414 int actual_name_len = strlen (actual_name.get ());
21415 const char *ptr = actual_name.get ();
21416
21417 /* Test for '::' as a sanity check. */
21418 if (actual_name_len > die_name_len + 2
21419 && ptr[actual_name_len - die_name_len - 1] == ':')
21420 name = obstack_strndup (
21421 &objfile->per_bfd->storage_obstack,
21422 ptr, actual_name_len - die_name_len - 2);
21423 }
21424 }
21425 return name;
21426 }
21427 }
21428 }
21429
21430 return NULL;
21431 }
21432
21433 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21434 prefix part in such case. See
21435 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21436
21437 static const char *
21438 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21439 {
21440 struct attribute *attr;
21441 const char *base;
21442
21443 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21444 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21445 return NULL;
21446
21447 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21448 return NULL;
21449
21450 attr = dw2_linkage_name_attr (die, cu);
21451 if (attr == NULL || DW_STRING (attr) == NULL)
21452 return NULL;
21453
21454 /* dwarf2_name had to be already called. */
21455 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21456
21457 /* Strip the base name, keep any leading namespaces/classes. */
21458 base = strrchr (DW_STRING (attr), ':');
21459 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21460 return "";
21461
21462 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21463 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21464 DW_STRING (attr),
21465 &base[-1] - DW_STRING (attr));
21466 }
21467
21468 /* Return the name of the namespace/class that DIE is defined within,
21469 or "" if we can't tell. The caller should not xfree the result.
21470
21471 For example, if we're within the method foo() in the following
21472 code:
21473
21474 namespace N {
21475 class C {
21476 void foo () {
21477 }
21478 };
21479 }
21480
21481 then determine_prefix on foo's die will return "N::C". */
21482
21483 static const char *
21484 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21485 {
21486 struct dwarf2_per_objfile *dwarf2_per_objfile
21487 = cu->per_cu->dwarf2_per_objfile;
21488 struct die_info *parent, *spec_die;
21489 struct dwarf2_cu *spec_cu;
21490 struct type *parent_type;
21491 const char *retval;
21492
21493 if (cu->language != language_cplus
21494 && cu->language != language_fortran && cu->language != language_d
21495 && cu->language != language_rust)
21496 return "";
21497
21498 retval = anonymous_struct_prefix (die, cu);
21499 if (retval)
21500 return retval;
21501
21502 /* We have to be careful in the presence of DW_AT_specification.
21503 For example, with GCC 3.4, given the code
21504
21505 namespace N {
21506 void foo() {
21507 // Definition of N::foo.
21508 }
21509 }
21510
21511 then we'll have a tree of DIEs like this:
21512
21513 1: DW_TAG_compile_unit
21514 2: DW_TAG_namespace // N
21515 3: DW_TAG_subprogram // declaration of N::foo
21516 4: DW_TAG_subprogram // definition of N::foo
21517 DW_AT_specification // refers to die #3
21518
21519 Thus, when processing die #4, we have to pretend that we're in
21520 the context of its DW_AT_specification, namely the contex of die
21521 #3. */
21522 spec_cu = cu;
21523 spec_die = die_specification (die, &spec_cu);
21524 if (spec_die == NULL)
21525 parent = die->parent;
21526 else
21527 {
21528 parent = spec_die->parent;
21529 cu = spec_cu;
21530 }
21531
21532 if (parent == NULL)
21533 return "";
21534 else if (parent->building_fullname)
21535 {
21536 const char *name;
21537 const char *parent_name;
21538
21539 /* It has been seen on RealView 2.2 built binaries,
21540 DW_TAG_template_type_param types actually _defined_ as
21541 children of the parent class:
21542
21543 enum E {};
21544 template class <class Enum> Class{};
21545 Class<enum E> class_e;
21546
21547 1: DW_TAG_class_type (Class)
21548 2: DW_TAG_enumeration_type (E)
21549 3: DW_TAG_enumerator (enum1:0)
21550 3: DW_TAG_enumerator (enum2:1)
21551 ...
21552 2: DW_TAG_template_type_param
21553 DW_AT_type DW_FORM_ref_udata (E)
21554
21555 Besides being broken debug info, it can put GDB into an
21556 infinite loop. Consider:
21557
21558 When we're building the full name for Class<E>, we'll start
21559 at Class, and go look over its template type parameters,
21560 finding E. We'll then try to build the full name of E, and
21561 reach here. We're now trying to build the full name of E,
21562 and look over the parent DIE for containing scope. In the
21563 broken case, if we followed the parent DIE of E, we'd again
21564 find Class, and once again go look at its template type
21565 arguments, etc., etc. Simply don't consider such parent die
21566 as source-level parent of this die (it can't be, the language
21567 doesn't allow it), and break the loop here. */
21568 name = dwarf2_name (die, cu);
21569 parent_name = dwarf2_name (parent, cu);
21570 complaint (_("template param type '%s' defined within parent '%s'"),
21571 name ? name : "<unknown>",
21572 parent_name ? parent_name : "<unknown>");
21573 return "";
21574 }
21575 else
21576 switch (parent->tag)
21577 {
21578 case DW_TAG_namespace:
21579 parent_type = read_type_die (parent, cu);
21580 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21581 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21582 Work around this problem here. */
21583 if (cu->language == language_cplus
21584 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21585 return "";
21586 /* We give a name to even anonymous namespaces. */
21587 return TYPE_NAME (parent_type);
21588 case DW_TAG_class_type:
21589 case DW_TAG_interface_type:
21590 case DW_TAG_structure_type:
21591 case DW_TAG_union_type:
21592 case DW_TAG_module:
21593 parent_type = read_type_die (parent, cu);
21594 if (TYPE_NAME (parent_type) != NULL)
21595 return TYPE_NAME (parent_type);
21596 else
21597 /* An anonymous structure is only allowed non-static data
21598 members; no typedefs, no member functions, et cetera.
21599 So it does not need a prefix. */
21600 return "";
21601 case DW_TAG_compile_unit:
21602 case DW_TAG_partial_unit:
21603 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21604 if (cu->language == language_cplus
21605 && !dwarf2_per_objfile->types.empty ()
21606 && die->child != NULL
21607 && (die->tag == DW_TAG_class_type
21608 || die->tag == DW_TAG_structure_type
21609 || die->tag == DW_TAG_union_type))
21610 {
21611 const char *name = guess_full_die_structure_name (die, cu);
21612 if (name != NULL)
21613 return name;
21614 }
21615 return "";
21616 case DW_TAG_subprogram:
21617 /* Nested subroutines in Fortran get a prefix with the name
21618 of the parent's subroutine. */
21619 if (cu->language == language_fortran)
21620 {
21621 if ((die->tag == DW_TAG_subprogram)
21622 && (dwarf2_name (parent, cu) != NULL))
21623 return dwarf2_name (parent, cu);
21624 }
21625 return determine_prefix (parent, cu);
21626 case DW_TAG_enumeration_type:
21627 parent_type = read_type_die (parent, cu);
21628 if (TYPE_DECLARED_CLASS (parent_type))
21629 {
21630 if (TYPE_NAME (parent_type) != NULL)
21631 return TYPE_NAME (parent_type);
21632 return "";
21633 }
21634 /* Fall through. */
21635 default:
21636 return determine_prefix (parent, cu);
21637 }
21638 }
21639
21640 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21641 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21642 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21643 an obconcat, otherwise allocate storage for the result. The CU argument is
21644 used to determine the language and hence, the appropriate separator. */
21645
21646 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21647
21648 static char *
21649 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21650 int physname, struct dwarf2_cu *cu)
21651 {
21652 const char *lead = "";
21653 const char *sep;
21654
21655 if (suffix == NULL || suffix[0] == '\0'
21656 || prefix == NULL || prefix[0] == '\0')
21657 sep = "";
21658 else if (cu->language == language_d)
21659 {
21660 /* For D, the 'main' function could be defined in any module, but it
21661 should never be prefixed. */
21662 if (strcmp (suffix, "D main") == 0)
21663 {
21664 prefix = "";
21665 sep = "";
21666 }
21667 else
21668 sep = ".";
21669 }
21670 else if (cu->language == language_fortran && physname)
21671 {
21672 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21673 DW_AT_MIPS_linkage_name is preferred and used instead. */
21674
21675 lead = "__";
21676 sep = "_MOD_";
21677 }
21678 else
21679 sep = "::";
21680
21681 if (prefix == NULL)
21682 prefix = "";
21683 if (suffix == NULL)
21684 suffix = "";
21685
21686 if (obs == NULL)
21687 {
21688 char *retval
21689 = ((char *)
21690 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21691
21692 strcpy (retval, lead);
21693 strcat (retval, prefix);
21694 strcat (retval, sep);
21695 strcat (retval, suffix);
21696 return retval;
21697 }
21698 else
21699 {
21700 /* We have an obstack. */
21701 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21702 }
21703 }
21704
21705 /* Return sibling of die, NULL if no sibling. */
21706
21707 static struct die_info *
21708 sibling_die (struct die_info *die)
21709 {
21710 return die->sibling;
21711 }
21712
21713 /* Get name of a die, return NULL if not found. */
21714
21715 static const char *
21716 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21717 struct obstack *obstack)
21718 {
21719 if (name && cu->language == language_cplus)
21720 {
21721 std::string canon_name = cp_canonicalize_string (name);
21722
21723 if (!canon_name.empty ())
21724 {
21725 if (canon_name != name)
21726 name = obstack_strdup (obstack, canon_name);
21727 }
21728 }
21729
21730 return name;
21731 }
21732
21733 /* Get name of a die, return NULL if not found.
21734 Anonymous namespaces are converted to their magic string. */
21735
21736 static const char *
21737 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21738 {
21739 struct attribute *attr;
21740 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21741
21742 attr = dwarf2_attr (die, DW_AT_name, cu);
21743 if ((!attr || !DW_STRING (attr))
21744 && die->tag != DW_TAG_namespace
21745 && die->tag != DW_TAG_class_type
21746 && die->tag != DW_TAG_interface_type
21747 && die->tag != DW_TAG_structure_type
21748 && die->tag != DW_TAG_union_type)
21749 return NULL;
21750
21751 switch (die->tag)
21752 {
21753 case DW_TAG_compile_unit:
21754 case DW_TAG_partial_unit:
21755 /* Compilation units have a DW_AT_name that is a filename, not
21756 a source language identifier. */
21757 case DW_TAG_enumeration_type:
21758 case DW_TAG_enumerator:
21759 /* These tags always have simple identifiers already; no need
21760 to canonicalize them. */
21761 return DW_STRING (attr);
21762
21763 case DW_TAG_namespace:
21764 if (attr != NULL && DW_STRING (attr) != NULL)
21765 return DW_STRING (attr);
21766 return CP_ANONYMOUS_NAMESPACE_STR;
21767
21768 case DW_TAG_class_type:
21769 case DW_TAG_interface_type:
21770 case DW_TAG_structure_type:
21771 case DW_TAG_union_type:
21772 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21773 structures or unions. These were of the form "._%d" in GCC 4.1,
21774 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21775 and GCC 4.4. We work around this problem by ignoring these. */
21776 if (attr && DW_STRING (attr)
21777 && (startswith (DW_STRING (attr), "._")
21778 || startswith (DW_STRING (attr), "<anonymous")))
21779 return NULL;
21780
21781 /* GCC might emit a nameless typedef that has a linkage name. See
21782 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21783 if (!attr || DW_STRING (attr) == NULL)
21784 {
21785 attr = dw2_linkage_name_attr (die, cu);
21786 if (attr == NULL || DW_STRING (attr) == NULL)
21787 return NULL;
21788
21789 /* Avoid demangling DW_STRING (attr) the second time on a second
21790 call for the same DIE. */
21791 if (!DW_STRING_IS_CANONICAL (attr))
21792 {
21793 gdb::unique_xmalloc_ptr<char> demangled
21794 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21795 if (demangled == nullptr)
21796 return nullptr;
21797
21798 const char *base;
21799
21800 /* FIXME: we already did this for the partial symbol... */
21801 DW_STRING (attr)
21802 = obstack_strdup (&objfile->per_bfd->storage_obstack,
21803 demangled.get ());
21804 DW_STRING_IS_CANONICAL (attr) = 1;
21805
21806 /* Strip any leading namespaces/classes, keep only the base name.
21807 DW_AT_name for named DIEs does not contain the prefixes. */
21808 base = strrchr (DW_STRING (attr), ':');
21809 if (base && base > DW_STRING (attr) && base[-1] == ':')
21810 return &base[1];
21811 else
21812 return DW_STRING (attr);
21813 }
21814 }
21815 break;
21816
21817 default:
21818 break;
21819 }
21820
21821 if (!DW_STRING_IS_CANONICAL (attr))
21822 {
21823 DW_STRING (attr)
21824 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21825 &objfile->per_bfd->storage_obstack);
21826 DW_STRING_IS_CANONICAL (attr) = 1;
21827 }
21828 return DW_STRING (attr);
21829 }
21830
21831 /* Return the die that this die in an extension of, or NULL if there
21832 is none. *EXT_CU is the CU containing DIE on input, and the CU
21833 containing the return value on output. */
21834
21835 static struct die_info *
21836 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21837 {
21838 struct attribute *attr;
21839
21840 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21841 if (attr == NULL)
21842 return NULL;
21843
21844 return follow_die_ref (die, attr, ext_cu);
21845 }
21846
21847 /* A convenience function that returns an "unknown" DWARF name,
21848 including the value of V. STR is the name of the entity being
21849 printed, e.g., "TAG". */
21850
21851 static const char *
21852 dwarf_unknown (const char *str, unsigned v)
21853 {
21854 char *cell = get_print_cell ();
21855 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
21856 return cell;
21857 }
21858
21859 /* Convert a DIE tag into its string name. */
21860
21861 static const char *
21862 dwarf_tag_name (unsigned tag)
21863 {
21864 const char *name = get_DW_TAG_name (tag);
21865
21866 if (name == NULL)
21867 return dwarf_unknown ("TAG", tag);
21868
21869 return name;
21870 }
21871
21872 /* Convert a DWARF attribute code into its string name. */
21873
21874 static const char *
21875 dwarf_attr_name (unsigned attr)
21876 {
21877 const char *name;
21878
21879 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21880 if (attr == DW_AT_MIPS_fde)
21881 return "DW_AT_MIPS_fde";
21882 #else
21883 if (attr == DW_AT_HP_block_index)
21884 return "DW_AT_HP_block_index";
21885 #endif
21886
21887 name = get_DW_AT_name (attr);
21888
21889 if (name == NULL)
21890 return dwarf_unknown ("AT", attr);
21891
21892 return name;
21893 }
21894
21895 /* Convert a DWARF value form code into its string name. */
21896
21897 static const char *
21898 dwarf_form_name (unsigned form)
21899 {
21900 const char *name = get_DW_FORM_name (form);
21901
21902 if (name == NULL)
21903 return dwarf_unknown ("FORM", form);
21904
21905 return name;
21906 }
21907
21908 static const char *
21909 dwarf_bool_name (unsigned mybool)
21910 {
21911 if (mybool)
21912 return "TRUE";
21913 else
21914 return "FALSE";
21915 }
21916
21917 /* Convert a DWARF type code into its string name. */
21918
21919 static const char *
21920 dwarf_type_encoding_name (unsigned enc)
21921 {
21922 const char *name = get_DW_ATE_name (enc);
21923
21924 if (name == NULL)
21925 return dwarf_unknown ("ATE", enc);
21926
21927 return name;
21928 }
21929
21930 static void
21931 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21932 {
21933 unsigned int i;
21934
21935 print_spaces (indent, f);
21936 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21937 dwarf_tag_name (die->tag), die->abbrev,
21938 sect_offset_str (die->sect_off));
21939
21940 if (die->parent != NULL)
21941 {
21942 print_spaces (indent, f);
21943 fprintf_unfiltered (f, " parent at offset: %s\n",
21944 sect_offset_str (die->parent->sect_off));
21945 }
21946
21947 print_spaces (indent, f);
21948 fprintf_unfiltered (f, " has children: %s\n",
21949 dwarf_bool_name (die->child != NULL));
21950
21951 print_spaces (indent, f);
21952 fprintf_unfiltered (f, " attributes:\n");
21953
21954 for (i = 0; i < die->num_attrs; ++i)
21955 {
21956 print_spaces (indent, f);
21957 fprintf_unfiltered (f, " %s (%s) ",
21958 dwarf_attr_name (die->attrs[i].name),
21959 dwarf_form_name (die->attrs[i].form));
21960
21961 switch (die->attrs[i].form)
21962 {
21963 case DW_FORM_addr:
21964 case DW_FORM_addrx:
21965 case DW_FORM_GNU_addr_index:
21966 fprintf_unfiltered (f, "address: ");
21967 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21968 break;
21969 case DW_FORM_block2:
21970 case DW_FORM_block4:
21971 case DW_FORM_block:
21972 case DW_FORM_block1:
21973 fprintf_unfiltered (f, "block: size %s",
21974 pulongest (DW_BLOCK (&die->attrs[i])->size));
21975 break;
21976 case DW_FORM_exprloc:
21977 fprintf_unfiltered (f, "expression: size %s",
21978 pulongest (DW_BLOCK (&die->attrs[i])->size));
21979 break;
21980 case DW_FORM_data16:
21981 fprintf_unfiltered (f, "constant of 16 bytes");
21982 break;
21983 case DW_FORM_ref_addr:
21984 fprintf_unfiltered (f, "ref address: ");
21985 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21986 break;
21987 case DW_FORM_GNU_ref_alt:
21988 fprintf_unfiltered (f, "alt ref address: ");
21989 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21990 break;
21991 case DW_FORM_ref1:
21992 case DW_FORM_ref2:
21993 case DW_FORM_ref4:
21994 case DW_FORM_ref8:
21995 case DW_FORM_ref_udata:
21996 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21997 (long) (DW_UNSND (&die->attrs[i])));
21998 break;
21999 case DW_FORM_data1:
22000 case DW_FORM_data2:
22001 case DW_FORM_data4:
22002 case DW_FORM_data8:
22003 case DW_FORM_udata:
22004 case DW_FORM_sdata:
22005 fprintf_unfiltered (f, "constant: %s",
22006 pulongest (DW_UNSND (&die->attrs[i])));
22007 break;
22008 case DW_FORM_sec_offset:
22009 fprintf_unfiltered (f, "section offset: %s",
22010 pulongest (DW_UNSND (&die->attrs[i])));
22011 break;
22012 case DW_FORM_ref_sig8:
22013 fprintf_unfiltered (f, "signature: %s",
22014 hex_string (DW_SIGNATURE (&die->attrs[i])));
22015 break;
22016 case DW_FORM_string:
22017 case DW_FORM_strp:
22018 case DW_FORM_line_strp:
22019 case DW_FORM_strx:
22020 case DW_FORM_GNU_str_index:
22021 case DW_FORM_GNU_strp_alt:
22022 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22023 DW_STRING (&die->attrs[i])
22024 ? DW_STRING (&die->attrs[i]) : "",
22025 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22026 break;
22027 case DW_FORM_flag:
22028 if (DW_UNSND (&die->attrs[i]))
22029 fprintf_unfiltered (f, "flag: TRUE");
22030 else
22031 fprintf_unfiltered (f, "flag: FALSE");
22032 break;
22033 case DW_FORM_flag_present:
22034 fprintf_unfiltered (f, "flag: TRUE");
22035 break;
22036 case DW_FORM_indirect:
22037 /* The reader will have reduced the indirect form to
22038 the "base form" so this form should not occur. */
22039 fprintf_unfiltered (f,
22040 "unexpected attribute form: DW_FORM_indirect");
22041 break;
22042 case DW_FORM_implicit_const:
22043 fprintf_unfiltered (f, "constant: %s",
22044 plongest (DW_SND (&die->attrs[i])));
22045 break;
22046 default:
22047 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22048 die->attrs[i].form);
22049 break;
22050 }
22051 fprintf_unfiltered (f, "\n");
22052 }
22053 }
22054
22055 static void
22056 dump_die_for_error (struct die_info *die)
22057 {
22058 dump_die_shallow (gdb_stderr, 0, die);
22059 }
22060
22061 static void
22062 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22063 {
22064 int indent = level * 4;
22065
22066 gdb_assert (die != NULL);
22067
22068 if (level >= max_level)
22069 return;
22070
22071 dump_die_shallow (f, indent, die);
22072
22073 if (die->child != NULL)
22074 {
22075 print_spaces (indent, f);
22076 fprintf_unfiltered (f, " Children:");
22077 if (level + 1 < max_level)
22078 {
22079 fprintf_unfiltered (f, "\n");
22080 dump_die_1 (f, level + 1, max_level, die->child);
22081 }
22082 else
22083 {
22084 fprintf_unfiltered (f,
22085 " [not printed, max nesting level reached]\n");
22086 }
22087 }
22088
22089 if (die->sibling != NULL && level > 0)
22090 {
22091 dump_die_1 (f, level, max_level, die->sibling);
22092 }
22093 }
22094
22095 /* This is called from the pdie macro in gdbinit.in.
22096 It's not static so gcc will keep a copy callable from gdb. */
22097
22098 void
22099 dump_die (struct die_info *die, int max_level)
22100 {
22101 dump_die_1 (gdb_stdlog, 0, max_level, die);
22102 }
22103
22104 static void
22105 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22106 {
22107 void **slot;
22108
22109 slot = htab_find_slot_with_hash (cu->die_hash, die,
22110 to_underlying (die->sect_off),
22111 INSERT);
22112
22113 *slot = die;
22114 }
22115
22116 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22117 required kind. */
22118
22119 static sect_offset
22120 dwarf2_get_ref_die_offset (const struct attribute *attr)
22121 {
22122 if (attr->form_is_ref ())
22123 return (sect_offset) DW_UNSND (attr);
22124
22125 complaint (_("unsupported die ref attribute form: '%s'"),
22126 dwarf_form_name (attr->form));
22127 return {};
22128 }
22129
22130 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22131 * the value held by the attribute is not constant. */
22132
22133 static LONGEST
22134 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22135 {
22136 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22137 return DW_SND (attr);
22138 else if (attr->form == DW_FORM_udata
22139 || attr->form == DW_FORM_data1
22140 || attr->form == DW_FORM_data2
22141 || attr->form == DW_FORM_data4
22142 || attr->form == DW_FORM_data8)
22143 return DW_UNSND (attr);
22144 else
22145 {
22146 /* For DW_FORM_data16 see attribute::form_is_constant. */
22147 complaint (_("Attribute value is not a constant (%s)"),
22148 dwarf_form_name (attr->form));
22149 return default_value;
22150 }
22151 }
22152
22153 /* Follow reference or signature attribute ATTR of SRC_DIE.
22154 On entry *REF_CU is the CU of SRC_DIE.
22155 On exit *REF_CU is the CU of the result. */
22156
22157 static struct die_info *
22158 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22159 struct dwarf2_cu **ref_cu)
22160 {
22161 struct die_info *die;
22162
22163 if (attr->form_is_ref ())
22164 die = follow_die_ref (src_die, attr, ref_cu);
22165 else if (attr->form == DW_FORM_ref_sig8)
22166 die = follow_die_sig (src_die, attr, ref_cu);
22167 else
22168 {
22169 dump_die_for_error (src_die);
22170 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22171 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22172 }
22173
22174 return die;
22175 }
22176
22177 /* Follow reference OFFSET.
22178 On entry *REF_CU is the CU of the source die referencing OFFSET.
22179 On exit *REF_CU is the CU of the result.
22180 Returns NULL if OFFSET is invalid. */
22181
22182 static struct die_info *
22183 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22184 struct dwarf2_cu **ref_cu)
22185 {
22186 struct die_info temp_die;
22187 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22188 struct dwarf2_per_objfile *dwarf2_per_objfile
22189 = cu->per_cu->dwarf2_per_objfile;
22190
22191 gdb_assert (cu->per_cu != NULL);
22192
22193 target_cu = cu;
22194
22195 if (cu->per_cu->is_debug_types)
22196 {
22197 /* .debug_types CUs cannot reference anything outside their CU.
22198 If they need to, they have to reference a signatured type via
22199 DW_FORM_ref_sig8. */
22200 if (!cu->header.offset_in_cu_p (sect_off))
22201 return NULL;
22202 }
22203 else if (offset_in_dwz != cu->per_cu->is_dwz
22204 || !cu->header.offset_in_cu_p (sect_off))
22205 {
22206 struct dwarf2_per_cu_data *per_cu;
22207
22208 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22209 dwarf2_per_objfile);
22210
22211 /* If necessary, add it to the queue and load its DIEs. */
22212 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22213 load_full_comp_unit (per_cu, false, cu->language);
22214
22215 target_cu = per_cu->cu;
22216 }
22217 else if (cu->dies == NULL)
22218 {
22219 /* We're loading full DIEs during partial symbol reading. */
22220 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22221 load_full_comp_unit (cu->per_cu, false, language_minimal);
22222 }
22223
22224 *ref_cu = target_cu;
22225 temp_die.sect_off = sect_off;
22226
22227 if (target_cu != cu)
22228 target_cu->ancestor = cu;
22229
22230 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22231 &temp_die,
22232 to_underlying (sect_off));
22233 }
22234
22235 /* Follow reference attribute ATTR of SRC_DIE.
22236 On entry *REF_CU is the CU of SRC_DIE.
22237 On exit *REF_CU is the CU of the result. */
22238
22239 static struct die_info *
22240 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22241 struct dwarf2_cu **ref_cu)
22242 {
22243 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22244 struct dwarf2_cu *cu = *ref_cu;
22245 struct die_info *die;
22246
22247 die = follow_die_offset (sect_off,
22248 (attr->form == DW_FORM_GNU_ref_alt
22249 || cu->per_cu->is_dwz),
22250 ref_cu);
22251 if (!die)
22252 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22253 "at %s [in module %s]"),
22254 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22255 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22256
22257 return die;
22258 }
22259
22260 /* See read.h. */
22261
22262 struct dwarf2_locexpr_baton
22263 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22264 dwarf2_per_cu_data *per_cu,
22265 CORE_ADDR (*get_frame_pc) (void *baton),
22266 void *baton, bool resolve_abstract_p)
22267 {
22268 struct dwarf2_cu *cu;
22269 struct die_info *die;
22270 struct attribute *attr;
22271 struct dwarf2_locexpr_baton retval;
22272 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22273 struct objfile *objfile = dwarf2_per_objfile->objfile;
22274
22275 if (per_cu->cu == NULL)
22276 load_cu (per_cu, false);
22277 cu = per_cu->cu;
22278 if (cu == NULL)
22279 {
22280 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22281 Instead just throw an error, not much else we can do. */
22282 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22283 sect_offset_str (sect_off), objfile_name (objfile));
22284 }
22285
22286 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22287 if (!die)
22288 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22289 sect_offset_str (sect_off), objfile_name (objfile));
22290
22291 attr = dwarf2_attr (die, DW_AT_location, cu);
22292 if (!attr && resolve_abstract_p
22293 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22294 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22295 {
22296 CORE_ADDR pc = (*get_frame_pc) (baton);
22297 CORE_ADDR baseaddr = objfile->text_section_offset ();
22298 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22299
22300 for (const auto &cand_off
22301 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22302 {
22303 struct dwarf2_cu *cand_cu = cu;
22304 struct die_info *cand
22305 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22306 if (!cand
22307 || !cand->parent
22308 || cand->parent->tag != DW_TAG_subprogram)
22309 continue;
22310
22311 CORE_ADDR pc_low, pc_high;
22312 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22313 if (pc_low == ((CORE_ADDR) -1))
22314 continue;
22315 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22316 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22317 if (!(pc_low <= pc && pc < pc_high))
22318 continue;
22319
22320 die = cand;
22321 attr = dwarf2_attr (die, DW_AT_location, cu);
22322 break;
22323 }
22324 }
22325
22326 if (!attr)
22327 {
22328 /* DWARF: "If there is no such attribute, then there is no effect.".
22329 DATA is ignored if SIZE is 0. */
22330
22331 retval.data = NULL;
22332 retval.size = 0;
22333 }
22334 else if (attr->form_is_section_offset ())
22335 {
22336 struct dwarf2_loclist_baton loclist_baton;
22337 CORE_ADDR pc = (*get_frame_pc) (baton);
22338 size_t size;
22339
22340 fill_in_loclist_baton (cu, &loclist_baton, attr);
22341
22342 retval.data = dwarf2_find_location_expression (&loclist_baton,
22343 &size, pc);
22344 retval.size = size;
22345 }
22346 else
22347 {
22348 if (!attr->form_is_block ())
22349 error (_("Dwarf Error: DIE at %s referenced in module %s "
22350 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22351 sect_offset_str (sect_off), objfile_name (objfile));
22352
22353 retval.data = DW_BLOCK (attr)->data;
22354 retval.size = DW_BLOCK (attr)->size;
22355 }
22356 retval.per_cu = cu->per_cu;
22357
22358 age_cached_comp_units (dwarf2_per_objfile);
22359
22360 return retval;
22361 }
22362
22363 /* See read.h. */
22364
22365 struct dwarf2_locexpr_baton
22366 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22367 dwarf2_per_cu_data *per_cu,
22368 CORE_ADDR (*get_frame_pc) (void *baton),
22369 void *baton)
22370 {
22371 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22372
22373 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22374 }
22375
22376 /* Write a constant of a given type as target-ordered bytes into
22377 OBSTACK. */
22378
22379 static const gdb_byte *
22380 write_constant_as_bytes (struct obstack *obstack,
22381 enum bfd_endian byte_order,
22382 struct type *type,
22383 ULONGEST value,
22384 LONGEST *len)
22385 {
22386 gdb_byte *result;
22387
22388 *len = TYPE_LENGTH (type);
22389 result = (gdb_byte *) obstack_alloc (obstack, *len);
22390 store_unsigned_integer (result, *len, byte_order, value);
22391
22392 return result;
22393 }
22394
22395 /* See read.h. */
22396
22397 const gdb_byte *
22398 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22399 dwarf2_per_cu_data *per_cu,
22400 obstack *obstack,
22401 LONGEST *len)
22402 {
22403 struct dwarf2_cu *cu;
22404 struct die_info *die;
22405 struct attribute *attr;
22406 const gdb_byte *result = NULL;
22407 struct type *type;
22408 LONGEST value;
22409 enum bfd_endian byte_order;
22410 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22411
22412 if (per_cu->cu == NULL)
22413 load_cu (per_cu, false);
22414 cu = per_cu->cu;
22415 if (cu == NULL)
22416 {
22417 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22418 Instead just throw an error, not much else we can do. */
22419 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22420 sect_offset_str (sect_off), objfile_name (objfile));
22421 }
22422
22423 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22424 if (!die)
22425 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22426 sect_offset_str (sect_off), objfile_name (objfile));
22427
22428 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22429 if (attr == NULL)
22430 return NULL;
22431
22432 byte_order = (bfd_big_endian (objfile->obfd)
22433 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22434
22435 switch (attr->form)
22436 {
22437 case DW_FORM_addr:
22438 case DW_FORM_addrx:
22439 case DW_FORM_GNU_addr_index:
22440 {
22441 gdb_byte *tem;
22442
22443 *len = cu->header.addr_size;
22444 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22445 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22446 result = tem;
22447 }
22448 break;
22449 case DW_FORM_string:
22450 case DW_FORM_strp:
22451 case DW_FORM_strx:
22452 case DW_FORM_GNU_str_index:
22453 case DW_FORM_GNU_strp_alt:
22454 /* DW_STRING is already allocated on the objfile obstack, point
22455 directly to it. */
22456 result = (const gdb_byte *) DW_STRING (attr);
22457 *len = strlen (DW_STRING (attr));
22458 break;
22459 case DW_FORM_block1:
22460 case DW_FORM_block2:
22461 case DW_FORM_block4:
22462 case DW_FORM_block:
22463 case DW_FORM_exprloc:
22464 case DW_FORM_data16:
22465 result = DW_BLOCK (attr)->data;
22466 *len = DW_BLOCK (attr)->size;
22467 break;
22468
22469 /* The DW_AT_const_value attributes are supposed to carry the
22470 symbol's value "represented as it would be on the target
22471 architecture." By the time we get here, it's already been
22472 converted to host endianness, so we just need to sign- or
22473 zero-extend it as appropriate. */
22474 case DW_FORM_data1:
22475 type = die_type (die, cu);
22476 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22477 if (result == NULL)
22478 result = write_constant_as_bytes (obstack, byte_order,
22479 type, value, len);
22480 break;
22481 case DW_FORM_data2:
22482 type = die_type (die, cu);
22483 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22484 if (result == NULL)
22485 result = write_constant_as_bytes (obstack, byte_order,
22486 type, value, len);
22487 break;
22488 case DW_FORM_data4:
22489 type = die_type (die, cu);
22490 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22491 if (result == NULL)
22492 result = write_constant_as_bytes (obstack, byte_order,
22493 type, value, len);
22494 break;
22495 case DW_FORM_data8:
22496 type = die_type (die, cu);
22497 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22498 if (result == NULL)
22499 result = write_constant_as_bytes (obstack, byte_order,
22500 type, value, len);
22501 break;
22502
22503 case DW_FORM_sdata:
22504 case DW_FORM_implicit_const:
22505 type = die_type (die, cu);
22506 result = write_constant_as_bytes (obstack, byte_order,
22507 type, DW_SND (attr), len);
22508 break;
22509
22510 case DW_FORM_udata:
22511 type = die_type (die, cu);
22512 result = write_constant_as_bytes (obstack, byte_order,
22513 type, DW_UNSND (attr), len);
22514 break;
22515
22516 default:
22517 complaint (_("unsupported const value attribute form: '%s'"),
22518 dwarf_form_name (attr->form));
22519 break;
22520 }
22521
22522 return result;
22523 }
22524
22525 /* See read.h. */
22526
22527 struct type *
22528 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22529 dwarf2_per_cu_data *per_cu)
22530 {
22531 struct dwarf2_cu *cu;
22532 struct die_info *die;
22533
22534 if (per_cu->cu == NULL)
22535 load_cu (per_cu, false);
22536 cu = per_cu->cu;
22537 if (!cu)
22538 return NULL;
22539
22540 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22541 if (!die)
22542 return NULL;
22543
22544 return die_type (die, cu);
22545 }
22546
22547 /* See read.h. */
22548
22549 struct type *
22550 dwarf2_get_die_type (cu_offset die_offset,
22551 struct dwarf2_per_cu_data *per_cu)
22552 {
22553 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22554 return get_die_type_at_offset (die_offset_sect, per_cu);
22555 }
22556
22557 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22558 On entry *REF_CU is the CU of SRC_DIE.
22559 On exit *REF_CU is the CU of the result.
22560 Returns NULL if the referenced DIE isn't found. */
22561
22562 static struct die_info *
22563 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22564 struct dwarf2_cu **ref_cu)
22565 {
22566 struct die_info temp_die;
22567 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22568 struct die_info *die;
22569
22570 /* While it might be nice to assert sig_type->type == NULL here,
22571 we can get here for DW_AT_imported_declaration where we need
22572 the DIE not the type. */
22573
22574 /* If necessary, add it to the queue and load its DIEs. */
22575
22576 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22577 read_signatured_type (sig_type);
22578
22579 sig_cu = sig_type->per_cu.cu;
22580 gdb_assert (sig_cu != NULL);
22581 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22582 temp_die.sect_off = sig_type->type_offset_in_section;
22583 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22584 to_underlying (temp_die.sect_off));
22585 if (die)
22586 {
22587 struct dwarf2_per_objfile *dwarf2_per_objfile
22588 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22589
22590 /* For .gdb_index version 7 keep track of included TUs.
22591 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22592 if (dwarf2_per_objfile->index_table != NULL
22593 && dwarf2_per_objfile->index_table->version <= 7)
22594 {
22595 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22596 }
22597
22598 *ref_cu = sig_cu;
22599 if (sig_cu != cu)
22600 sig_cu->ancestor = cu;
22601
22602 return die;
22603 }
22604
22605 return NULL;
22606 }
22607
22608 /* Follow signatured type referenced by ATTR in SRC_DIE.
22609 On entry *REF_CU is the CU of SRC_DIE.
22610 On exit *REF_CU is the CU of the result.
22611 The result is the DIE of the type.
22612 If the referenced type cannot be found an error is thrown. */
22613
22614 static struct die_info *
22615 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22616 struct dwarf2_cu **ref_cu)
22617 {
22618 ULONGEST signature = DW_SIGNATURE (attr);
22619 struct signatured_type *sig_type;
22620 struct die_info *die;
22621
22622 gdb_assert (attr->form == DW_FORM_ref_sig8);
22623
22624 sig_type = lookup_signatured_type (*ref_cu, signature);
22625 /* sig_type will be NULL if the signatured type is missing from
22626 the debug info. */
22627 if (sig_type == NULL)
22628 {
22629 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22630 " from DIE at %s [in module %s]"),
22631 hex_string (signature), sect_offset_str (src_die->sect_off),
22632 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22633 }
22634
22635 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22636 if (die == NULL)
22637 {
22638 dump_die_for_error (src_die);
22639 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22640 " from DIE at %s [in module %s]"),
22641 hex_string (signature), sect_offset_str (src_die->sect_off),
22642 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22643 }
22644
22645 return die;
22646 }
22647
22648 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22649 reading in and processing the type unit if necessary. */
22650
22651 static struct type *
22652 get_signatured_type (struct die_info *die, ULONGEST signature,
22653 struct dwarf2_cu *cu)
22654 {
22655 struct dwarf2_per_objfile *dwarf2_per_objfile
22656 = cu->per_cu->dwarf2_per_objfile;
22657 struct signatured_type *sig_type;
22658 struct dwarf2_cu *type_cu;
22659 struct die_info *type_die;
22660 struct type *type;
22661
22662 sig_type = lookup_signatured_type (cu, signature);
22663 /* sig_type will be NULL if the signatured type is missing from
22664 the debug info. */
22665 if (sig_type == NULL)
22666 {
22667 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22668 " from DIE at %s [in module %s]"),
22669 hex_string (signature), sect_offset_str (die->sect_off),
22670 objfile_name (dwarf2_per_objfile->objfile));
22671 return build_error_marker_type (cu, die);
22672 }
22673
22674 /* If we already know the type we're done. */
22675 if (sig_type->type != NULL)
22676 return sig_type->type;
22677
22678 type_cu = cu;
22679 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22680 if (type_die != NULL)
22681 {
22682 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22683 is created. This is important, for example, because for c++ classes
22684 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22685 type = read_type_die (type_die, type_cu);
22686 if (type == NULL)
22687 {
22688 complaint (_("Dwarf Error: Cannot build signatured type %s"
22689 " referenced from DIE at %s [in module %s]"),
22690 hex_string (signature), sect_offset_str (die->sect_off),
22691 objfile_name (dwarf2_per_objfile->objfile));
22692 type = build_error_marker_type (cu, die);
22693 }
22694 }
22695 else
22696 {
22697 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22698 " from DIE at %s [in module %s]"),
22699 hex_string (signature), sect_offset_str (die->sect_off),
22700 objfile_name (dwarf2_per_objfile->objfile));
22701 type = build_error_marker_type (cu, die);
22702 }
22703 sig_type->type = type;
22704
22705 return type;
22706 }
22707
22708 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22709 reading in and processing the type unit if necessary. */
22710
22711 static struct type *
22712 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22713 struct dwarf2_cu *cu) /* ARI: editCase function */
22714 {
22715 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22716 if (attr->form_is_ref ())
22717 {
22718 struct dwarf2_cu *type_cu = cu;
22719 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22720
22721 return read_type_die (type_die, type_cu);
22722 }
22723 else if (attr->form == DW_FORM_ref_sig8)
22724 {
22725 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22726 }
22727 else
22728 {
22729 struct dwarf2_per_objfile *dwarf2_per_objfile
22730 = cu->per_cu->dwarf2_per_objfile;
22731
22732 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22733 " at %s [in module %s]"),
22734 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22735 objfile_name (dwarf2_per_objfile->objfile));
22736 return build_error_marker_type (cu, die);
22737 }
22738 }
22739
22740 /* Load the DIEs associated with type unit PER_CU into memory. */
22741
22742 static void
22743 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22744 {
22745 struct signatured_type *sig_type;
22746
22747 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22748 gdb_assert (! per_cu->type_unit_group_p ());
22749
22750 /* We have the per_cu, but we need the signatured_type.
22751 Fortunately this is an easy translation. */
22752 gdb_assert (per_cu->is_debug_types);
22753 sig_type = (struct signatured_type *) per_cu;
22754
22755 gdb_assert (per_cu->cu == NULL);
22756
22757 read_signatured_type (sig_type);
22758
22759 gdb_assert (per_cu->cu != NULL);
22760 }
22761
22762 /* Read in a signatured type and build its CU and DIEs.
22763 If the type is a stub for the real type in a DWO file,
22764 read in the real type from the DWO file as well. */
22765
22766 static void
22767 read_signatured_type (struct signatured_type *sig_type)
22768 {
22769 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22770
22771 gdb_assert (per_cu->is_debug_types);
22772 gdb_assert (per_cu->cu == NULL);
22773
22774 cutu_reader reader (per_cu, NULL, 0, false);
22775
22776 if (!reader.dummy_p)
22777 {
22778 struct dwarf2_cu *cu = reader.cu;
22779 const gdb_byte *info_ptr = reader.info_ptr;
22780
22781 gdb_assert (cu->die_hash == NULL);
22782 cu->die_hash =
22783 htab_create_alloc_ex (cu->header.length / 12,
22784 die_hash,
22785 die_eq,
22786 NULL,
22787 &cu->comp_unit_obstack,
22788 hashtab_obstack_allocate,
22789 dummy_obstack_deallocate);
22790
22791 if (reader.comp_unit_die->has_children)
22792 reader.comp_unit_die->child
22793 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22794 reader.comp_unit_die);
22795 cu->dies = reader.comp_unit_die;
22796 /* comp_unit_die is not stored in die_hash, no need. */
22797
22798 /* We try not to read any attributes in this function, because
22799 not all CUs needed for references have been loaded yet, and
22800 symbol table processing isn't initialized. But we have to
22801 set the CU language, or we won't be able to build types
22802 correctly. Similarly, if we do not read the producer, we can
22803 not apply producer-specific interpretation. */
22804 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22805
22806 reader.keep ();
22807 }
22808
22809 sig_type->per_cu.tu_read = 1;
22810 }
22811
22812 /* Decode simple location descriptions.
22813 Given a pointer to a dwarf block that defines a location, compute
22814 the location and return the value.
22815
22816 NOTE drow/2003-11-18: This function is called in two situations
22817 now: for the address of static or global variables (partial symbols
22818 only) and for offsets into structures which are expected to be
22819 (more or less) constant. The partial symbol case should go away,
22820 and only the constant case should remain. That will let this
22821 function complain more accurately. A few special modes are allowed
22822 without complaint for global variables (for instance, global
22823 register values and thread-local values).
22824
22825 A location description containing no operations indicates that the
22826 object is optimized out. The return value is 0 for that case.
22827 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22828 callers will only want a very basic result and this can become a
22829 complaint.
22830
22831 Note that stack[0] is unused except as a default error return. */
22832
22833 static CORE_ADDR
22834 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22835 {
22836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22837 size_t i;
22838 size_t size = blk->size;
22839 const gdb_byte *data = blk->data;
22840 CORE_ADDR stack[64];
22841 int stacki;
22842 unsigned int bytes_read, unsnd;
22843 gdb_byte op;
22844
22845 i = 0;
22846 stacki = 0;
22847 stack[stacki] = 0;
22848 stack[++stacki] = 0;
22849
22850 while (i < size)
22851 {
22852 op = data[i++];
22853 switch (op)
22854 {
22855 case DW_OP_lit0:
22856 case DW_OP_lit1:
22857 case DW_OP_lit2:
22858 case DW_OP_lit3:
22859 case DW_OP_lit4:
22860 case DW_OP_lit5:
22861 case DW_OP_lit6:
22862 case DW_OP_lit7:
22863 case DW_OP_lit8:
22864 case DW_OP_lit9:
22865 case DW_OP_lit10:
22866 case DW_OP_lit11:
22867 case DW_OP_lit12:
22868 case DW_OP_lit13:
22869 case DW_OP_lit14:
22870 case DW_OP_lit15:
22871 case DW_OP_lit16:
22872 case DW_OP_lit17:
22873 case DW_OP_lit18:
22874 case DW_OP_lit19:
22875 case DW_OP_lit20:
22876 case DW_OP_lit21:
22877 case DW_OP_lit22:
22878 case DW_OP_lit23:
22879 case DW_OP_lit24:
22880 case DW_OP_lit25:
22881 case DW_OP_lit26:
22882 case DW_OP_lit27:
22883 case DW_OP_lit28:
22884 case DW_OP_lit29:
22885 case DW_OP_lit30:
22886 case DW_OP_lit31:
22887 stack[++stacki] = op - DW_OP_lit0;
22888 break;
22889
22890 case DW_OP_reg0:
22891 case DW_OP_reg1:
22892 case DW_OP_reg2:
22893 case DW_OP_reg3:
22894 case DW_OP_reg4:
22895 case DW_OP_reg5:
22896 case DW_OP_reg6:
22897 case DW_OP_reg7:
22898 case DW_OP_reg8:
22899 case DW_OP_reg9:
22900 case DW_OP_reg10:
22901 case DW_OP_reg11:
22902 case DW_OP_reg12:
22903 case DW_OP_reg13:
22904 case DW_OP_reg14:
22905 case DW_OP_reg15:
22906 case DW_OP_reg16:
22907 case DW_OP_reg17:
22908 case DW_OP_reg18:
22909 case DW_OP_reg19:
22910 case DW_OP_reg20:
22911 case DW_OP_reg21:
22912 case DW_OP_reg22:
22913 case DW_OP_reg23:
22914 case DW_OP_reg24:
22915 case DW_OP_reg25:
22916 case DW_OP_reg26:
22917 case DW_OP_reg27:
22918 case DW_OP_reg28:
22919 case DW_OP_reg29:
22920 case DW_OP_reg30:
22921 case DW_OP_reg31:
22922 stack[++stacki] = op - DW_OP_reg0;
22923 if (i < size)
22924 dwarf2_complex_location_expr_complaint ();
22925 break;
22926
22927 case DW_OP_regx:
22928 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22929 i += bytes_read;
22930 stack[++stacki] = unsnd;
22931 if (i < size)
22932 dwarf2_complex_location_expr_complaint ();
22933 break;
22934
22935 case DW_OP_addr:
22936 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22937 &bytes_read);
22938 i += bytes_read;
22939 break;
22940
22941 case DW_OP_const1u:
22942 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22943 i += 1;
22944 break;
22945
22946 case DW_OP_const1s:
22947 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22948 i += 1;
22949 break;
22950
22951 case DW_OP_const2u:
22952 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22953 i += 2;
22954 break;
22955
22956 case DW_OP_const2s:
22957 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22958 i += 2;
22959 break;
22960
22961 case DW_OP_const4u:
22962 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22963 i += 4;
22964 break;
22965
22966 case DW_OP_const4s:
22967 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22968 i += 4;
22969 break;
22970
22971 case DW_OP_const8u:
22972 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22973 i += 8;
22974 break;
22975
22976 case DW_OP_constu:
22977 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22978 &bytes_read);
22979 i += bytes_read;
22980 break;
22981
22982 case DW_OP_consts:
22983 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22984 i += bytes_read;
22985 break;
22986
22987 case DW_OP_dup:
22988 stack[stacki + 1] = stack[stacki];
22989 stacki++;
22990 break;
22991
22992 case DW_OP_plus:
22993 stack[stacki - 1] += stack[stacki];
22994 stacki--;
22995 break;
22996
22997 case DW_OP_plus_uconst:
22998 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22999 &bytes_read);
23000 i += bytes_read;
23001 break;
23002
23003 case DW_OP_minus:
23004 stack[stacki - 1] -= stack[stacki];
23005 stacki--;
23006 break;
23007
23008 case DW_OP_deref:
23009 /* If we're not the last op, then we definitely can't encode
23010 this using GDB's address_class enum. This is valid for partial
23011 global symbols, although the variable's address will be bogus
23012 in the psymtab. */
23013 if (i < size)
23014 dwarf2_complex_location_expr_complaint ();
23015 break;
23016
23017 case DW_OP_GNU_push_tls_address:
23018 case DW_OP_form_tls_address:
23019 /* The top of the stack has the offset from the beginning
23020 of the thread control block at which the variable is located. */
23021 /* Nothing should follow this operator, so the top of stack would
23022 be returned. */
23023 /* This is valid for partial global symbols, but the variable's
23024 address will be bogus in the psymtab. Make it always at least
23025 non-zero to not look as a variable garbage collected by linker
23026 which have DW_OP_addr 0. */
23027 if (i < size)
23028 dwarf2_complex_location_expr_complaint ();
23029 stack[stacki]++;
23030 break;
23031
23032 case DW_OP_GNU_uninit:
23033 break;
23034
23035 case DW_OP_addrx:
23036 case DW_OP_GNU_addr_index:
23037 case DW_OP_GNU_const_index:
23038 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23039 &bytes_read);
23040 i += bytes_read;
23041 break;
23042
23043 default:
23044 {
23045 const char *name = get_DW_OP_name (op);
23046
23047 if (name)
23048 complaint (_("unsupported stack op: '%s'"),
23049 name);
23050 else
23051 complaint (_("unsupported stack op: '%02x'"),
23052 op);
23053 }
23054
23055 return (stack[stacki]);
23056 }
23057
23058 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23059 outside of the allocated space. Also enforce minimum>0. */
23060 if (stacki >= ARRAY_SIZE (stack) - 1)
23061 {
23062 complaint (_("location description stack overflow"));
23063 return 0;
23064 }
23065
23066 if (stacki <= 0)
23067 {
23068 complaint (_("location description stack underflow"));
23069 return 0;
23070 }
23071 }
23072 return (stack[stacki]);
23073 }
23074
23075 /* memory allocation interface */
23076
23077 static struct dwarf_block *
23078 dwarf_alloc_block (struct dwarf2_cu *cu)
23079 {
23080 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23081 }
23082
23083 static struct die_info *
23084 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23085 {
23086 struct die_info *die;
23087 size_t size = sizeof (struct die_info);
23088
23089 if (num_attrs > 1)
23090 size += (num_attrs - 1) * sizeof (struct attribute);
23091
23092 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23093 memset (die, 0, sizeof (struct die_info));
23094 return (die);
23095 }
23096
23097 \f
23098 /* Macro support. */
23099
23100 static struct macro_source_file *
23101 macro_start_file (struct dwarf2_cu *cu,
23102 int file, int line,
23103 struct macro_source_file *current_file,
23104 struct line_header *lh)
23105 {
23106 /* File name relative to the compilation directory of this source file. */
23107 gdb::unique_xmalloc_ptr<char> file_name = lh->file_file_name (file);
23108
23109 if (! current_file)
23110 {
23111 /* Note: We don't create a macro table for this compilation unit
23112 at all until we actually get a filename. */
23113 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23114
23115 /* If we have no current file, then this must be the start_file
23116 directive for the compilation unit's main source file. */
23117 current_file = macro_set_main (macro_table, file_name.get ());
23118 macro_define_special (macro_table);
23119 }
23120 else
23121 current_file = macro_include (current_file, line, file_name.get ());
23122
23123 return current_file;
23124 }
23125
23126 static const char *
23127 consume_improper_spaces (const char *p, const char *body)
23128 {
23129 if (*p == ' ')
23130 {
23131 complaint (_("macro definition contains spaces "
23132 "in formal argument list:\n`%s'"),
23133 body);
23134
23135 while (*p == ' ')
23136 p++;
23137 }
23138
23139 return p;
23140 }
23141
23142
23143 static void
23144 parse_macro_definition (struct macro_source_file *file, int line,
23145 const char *body)
23146 {
23147 const char *p;
23148
23149 /* The body string takes one of two forms. For object-like macro
23150 definitions, it should be:
23151
23152 <macro name> " " <definition>
23153
23154 For function-like macro definitions, it should be:
23155
23156 <macro name> "() " <definition>
23157 or
23158 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23159
23160 Spaces may appear only where explicitly indicated, and in the
23161 <definition>.
23162
23163 The Dwarf 2 spec says that an object-like macro's name is always
23164 followed by a space, but versions of GCC around March 2002 omit
23165 the space when the macro's definition is the empty string.
23166
23167 The Dwarf 2 spec says that there should be no spaces between the
23168 formal arguments in a function-like macro's formal argument list,
23169 but versions of GCC around March 2002 include spaces after the
23170 commas. */
23171
23172
23173 /* Find the extent of the macro name. The macro name is terminated
23174 by either a space or null character (for an object-like macro) or
23175 an opening paren (for a function-like macro). */
23176 for (p = body; *p; p++)
23177 if (*p == ' ' || *p == '(')
23178 break;
23179
23180 if (*p == ' ' || *p == '\0')
23181 {
23182 /* It's an object-like macro. */
23183 int name_len = p - body;
23184 std::string name (body, name_len);
23185 const char *replacement;
23186
23187 if (*p == ' ')
23188 replacement = body + name_len + 1;
23189 else
23190 {
23191 dwarf2_macro_malformed_definition_complaint (body);
23192 replacement = body + name_len;
23193 }
23194
23195 macro_define_object (file, line, name.c_str (), replacement);
23196 }
23197 else if (*p == '(')
23198 {
23199 /* It's a function-like macro. */
23200 std::string name (body, p - body);
23201 int argc = 0;
23202 int argv_size = 1;
23203 char **argv = XNEWVEC (char *, argv_size);
23204
23205 p++;
23206
23207 p = consume_improper_spaces (p, body);
23208
23209 /* Parse the formal argument list. */
23210 while (*p && *p != ')')
23211 {
23212 /* Find the extent of the current argument name. */
23213 const char *arg_start = p;
23214
23215 while (*p && *p != ',' && *p != ')' && *p != ' ')
23216 p++;
23217
23218 if (! *p || p == arg_start)
23219 dwarf2_macro_malformed_definition_complaint (body);
23220 else
23221 {
23222 /* Make sure argv has room for the new argument. */
23223 if (argc >= argv_size)
23224 {
23225 argv_size *= 2;
23226 argv = XRESIZEVEC (char *, argv, argv_size);
23227 }
23228
23229 argv[argc++] = savestring (arg_start, p - arg_start);
23230 }
23231
23232 p = consume_improper_spaces (p, body);
23233
23234 /* Consume the comma, if present. */
23235 if (*p == ',')
23236 {
23237 p++;
23238
23239 p = consume_improper_spaces (p, body);
23240 }
23241 }
23242
23243 if (*p == ')')
23244 {
23245 p++;
23246
23247 if (*p == ' ')
23248 /* Perfectly formed definition, no complaints. */
23249 macro_define_function (file, line, name.c_str (),
23250 argc, (const char **) argv,
23251 p + 1);
23252 else if (*p == '\0')
23253 {
23254 /* Complain, but do define it. */
23255 dwarf2_macro_malformed_definition_complaint (body);
23256 macro_define_function (file, line, name.c_str (),
23257 argc, (const char **) argv,
23258 p);
23259 }
23260 else
23261 /* Just complain. */
23262 dwarf2_macro_malformed_definition_complaint (body);
23263 }
23264 else
23265 /* Just complain. */
23266 dwarf2_macro_malformed_definition_complaint (body);
23267
23268 {
23269 int i;
23270
23271 for (i = 0; i < argc; i++)
23272 xfree (argv[i]);
23273 }
23274 xfree (argv);
23275 }
23276 else
23277 dwarf2_macro_malformed_definition_complaint (body);
23278 }
23279
23280 /* Skip some bytes from BYTES according to the form given in FORM.
23281 Returns the new pointer. */
23282
23283 static const gdb_byte *
23284 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23285 enum dwarf_form form,
23286 unsigned int offset_size,
23287 struct dwarf2_section_info *section)
23288 {
23289 unsigned int bytes_read;
23290
23291 switch (form)
23292 {
23293 case DW_FORM_data1:
23294 case DW_FORM_flag:
23295 ++bytes;
23296 break;
23297
23298 case DW_FORM_data2:
23299 bytes += 2;
23300 break;
23301
23302 case DW_FORM_data4:
23303 bytes += 4;
23304 break;
23305
23306 case DW_FORM_data8:
23307 bytes += 8;
23308 break;
23309
23310 case DW_FORM_data16:
23311 bytes += 16;
23312 break;
23313
23314 case DW_FORM_string:
23315 read_direct_string (abfd, bytes, &bytes_read);
23316 bytes += bytes_read;
23317 break;
23318
23319 case DW_FORM_sec_offset:
23320 case DW_FORM_strp:
23321 case DW_FORM_GNU_strp_alt:
23322 bytes += offset_size;
23323 break;
23324
23325 case DW_FORM_block:
23326 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23327 bytes += bytes_read;
23328 break;
23329
23330 case DW_FORM_block1:
23331 bytes += 1 + read_1_byte (abfd, bytes);
23332 break;
23333 case DW_FORM_block2:
23334 bytes += 2 + read_2_bytes (abfd, bytes);
23335 break;
23336 case DW_FORM_block4:
23337 bytes += 4 + read_4_bytes (abfd, bytes);
23338 break;
23339
23340 case DW_FORM_addrx:
23341 case DW_FORM_sdata:
23342 case DW_FORM_strx:
23343 case DW_FORM_udata:
23344 case DW_FORM_GNU_addr_index:
23345 case DW_FORM_GNU_str_index:
23346 bytes = gdb_skip_leb128 (bytes, buffer_end);
23347 if (bytes == NULL)
23348 {
23349 dwarf2_section_buffer_overflow_complaint (section);
23350 return NULL;
23351 }
23352 break;
23353
23354 case DW_FORM_implicit_const:
23355 break;
23356
23357 default:
23358 {
23359 complaint (_("invalid form 0x%x in `%s'"),
23360 form, section->get_name ());
23361 return NULL;
23362 }
23363 }
23364
23365 return bytes;
23366 }
23367
23368 /* A helper for dwarf_decode_macros that handles skipping an unknown
23369 opcode. Returns an updated pointer to the macro data buffer; or,
23370 on error, issues a complaint and returns NULL. */
23371
23372 static const gdb_byte *
23373 skip_unknown_opcode (unsigned int opcode,
23374 const gdb_byte **opcode_definitions,
23375 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23376 bfd *abfd,
23377 unsigned int offset_size,
23378 struct dwarf2_section_info *section)
23379 {
23380 unsigned int bytes_read, i;
23381 unsigned long arg;
23382 const gdb_byte *defn;
23383
23384 if (opcode_definitions[opcode] == NULL)
23385 {
23386 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23387 opcode);
23388 return NULL;
23389 }
23390
23391 defn = opcode_definitions[opcode];
23392 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23393 defn += bytes_read;
23394
23395 for (i = 0; i < arg; ++i)
23396 {
23397 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23398 (enum dwarf_form) defn[i], offset_size,
23399 section);
23400 if (mac_ptr == NULL)
23401 {
23402 /* skip_form_bytes already issued the complaint. */
23403 return NULL;
23404 }
23405 }
23406
23407 return mac_ptr;
23408 }
23409
23410 /* A helper function which parses the header of a macro section.
23411 If the macro section is the extended (for now called "GNU") type,
23412 then this updates *OFFSET_SIZE. Returns a pointer to just after
23413 the header, or issues a complaint and returns NULL on error. */
23414
23415 static const gdb_byte *
23416 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
23417 bfd *abfd,
23418 const gdb_byte *mac_ptr,
23419 unsigned int *offset_size,
23420 int section_is_gnu)
23421 {
23422 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
23423
23424 if (section_is_gnu)
23425 {
23426 unsigned int version, flags;
23427
23428 version = read_2_bytes (abfd, mac_ptr);
23429 if (version != 4 && version != 5)
23430 {
23431 complaint (_("unrecognized version `%d' in .debug_macro section"),
23432 version);
23433 return NULL;
23434 }
23435 mac_ptr += 2;
23436
23437 flags = read_1_byte (abfd, mac_ptr);
23438 ++mac_ptr;
23439 *offset_size = (flags & 1) ? 8 : 4;
23440
23441 if ((flags & 2) != 0)
23442 /* We don't need the line table offset. */
23443 mac_ptr += *offset_size;
23444
23445 /* Vendor opcode descriptions. */
23446 if ((flags & 4) != 0)
23447 {
23448 unsigned int i, count;
23449
23450 count = read_1_byte (abfd, mac_ptr);
23451 ++mac_ptr;
23452 for (i = 0; i < count; ++i)
23453 {
23454 unsigned int opcode, bytes_read;
23455 unsigned long arg;
23456
23457 opcode = read_1_byte (abfd, mac_ptr);
23458 ++mac_ptr;
23459 opcode_definitions[opcode] = mac_ptr;
23460 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23461 mac_ptr += bytes_read;
23462 mac_ptr += arg;
23463 }
23464 }
23465 }
23466
23467 return mac_ptr;
23468 }
23469
23470 /* A helper for dwarf_decode_macros that handles the GNU extensions,
23471 including DW_MACRO_import. */
23472
23473 static void
23474 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
23475 bfd *abfd,
23476 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23477 struct macro_source_file *current_file,
23478 struct line_header *lh,
23479 struct dwarf2_section_info *section,
23480 int section_is_gnu, int section_is_dwz,
23481 unsigned int offset_size,
23482 htab_t include_hash)
23483 {
23484 struct dwarf2_per_objfile *dwarf2_per_objfile
23485 = cu->per_cu->dwarf2_per_objfile;
23486 struct objfile *objfile = dwarf2_per_objfile->objfile;
23487 enum dwarf_macro_record_type macinfo_type;
23488 int at_commandline;
23489 const gdb_byte *opcode_definitions[256];
23490
23491 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23492 &offset_size, section_is_gnu);
23493 if (mac_ptr == NULL)
23494 {
23495 /* We already issued a complaint. */
23496 return;
23497 }
23498
23499 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
23500 GDB is still reading the definitions from command line. First
23501 DW_MACINFO_start_file will need to be ignored as it was already executed
23502 to create CURRENT_FILE for the main source holding also the command line
23503 definitions. On first met DW_MACINFO_start_file this flag is reset to
23504 normally execute all the remaining DW_MACINFO_start_file macinfos. */
23505
23506 at_commandline = 1;
23507
23508 do
23509 {
23510 /* Do we at least have room for a macinfo type byte? */
23511 if (mac_ptr >= mac_end)
23512 {
23513 dwarf2_section_buffer_overflow_complaint (section);
23514 break;
23515 }
23516
23517 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23518 mac_ptr++;
23519
23520 /* Note that we rely on the fact that the corresponding GNU and
23521 DWARF constants are the same. */
23522 DIAGNOSTIC_PUSH
23523 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23524 switch (macinfo_type)
23525 {
23526 /* A zero macinfo type indicates the end of the macro
23527 information. */
23528 case 0:
23529 break;
23530
23531 case DW_MACRO_define:
23532 case DW_MACRO_undef:
23533 case DW_MACRO_define_strp:
23534 case DW_MACRO_undef_strp:
23535 case DW_MACRO_define_sup:
23536 case DW_MACRO_undef_sup:
23537 {
23538 unsigned int bytes_read;
23539 int line;
23540 const char *body;
23541 int is_define;
23542
23543 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23544 mac_ptr += bytes_read;
23545
23546 if (macinfo_type == DW_MACRO_define
23547 || macinfo_type == DW_MACRO_undef)
23548 {
23549 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23550 mac_ptr += bytes_read;
23551 }
23552 else
23553 {
23554 LONGEST str_offset;
23555
23556 str_offset = read_offset (abfd, mac_ptr, offset_size);
23557 mac_ptr += offset_size;
23558
23559 if (macinfo_type == DW_MACRO_define_sup
23560 || macinfo_type == DW_MACRO_undef_sup
23561 || section_is_dwz)
23562 {
23563 struct dwz_file *dwz
23564 = dwarf2_get_dwz_file (dwarf2_per_objfile);
23565
23566 body = read_indirect_string_from_dwz (objfile,
23567 dwz, str_offset);
23568 }
23569 else
23570 body = read_indirect_string_at_offset (dwarf2_per_objfile,
23571 abfd, str_offset);
23572 }
23573
23574 is_define = (macinfo_type == DW_MACRO_define
23575 || macinfo_type == DW_MACRO_define_strp
23576 || macinfo_type == DW_MACRO_define_sup);
23577 if (! current_file)
23578 {
23579 /* DWARF violation as no main source is present. */
23580 complaint (_("debug info with no main source gives macro %s "
23581 "on line %d: %s"),
23582 is_define ? _("definition") : _("undefinition"),
23583 line, body);
23584 break;
23585 }
23586 if ((line == 0 && !at_commandline)
23587 || (line != 0 && at_commandline))
23588 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
23589 at_commandline ? _("command-line") : _("in-file"),
23590 is_define ? _("definition") : _("undefinition"),
23591 line == 0 ? _("zero") : _("non-zero"), line, body);
23592
23593 if (body == NULL)
23594 {
23595 /* Fedora's rpm-build's "debugedit" binary
23596 corrupted .debug_macro sections.
23597
23598 For more info, see
23599 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
23600 complaint (_("debug info gives %s invalid macro %s "
23601 "without body (corrupted?) at line %d "
23602 "on file %s"),
23603 at_commandline ? _("command-line") : _("in-file"),
23604 is_define ? _("definition") : _("undefinition"),
23605 line, current_file->filename);
23606 }
23607 else if (is_define)
23608 parse_macro_definition (current_file, line, body);
23609 else
23610 {
23611 gdb_assert (macinfo_type == DW_MACRO_undef
23612 || macinfo_type == DW_MACRO_undef_strp
23613 || macinfo_type == DW_MACRO_undef_sup);
23614 macro_undef (current_file, line, body);
23615 }
23616 }
23617 break;
23618
23619 case DW_MACRO_start_file:
23620 {
23621 unsigned int bytes_read;
23622 int line, file;
23623
23624 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23625 mac_ptr += bytes_read;
23626 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23627 mac_ptr += bytes_read;
23628
23629 if ((line == 0 && !at_commandline)
23630 || (line != 0 && at_commandline))
23631 complaint (_("debug info gives source %d included "
23632 "from %s at %s line %d"),
23633 file, at_commandline ? _("command-line") : _("file"),
23634 line == 0 ? _("zero") : _("non-zero"), line);
23635
23636 if (at_commandline)
23637 {
23638 /* This DW_MACRO_start_file was executed in the
23639 pass one. */
23640 at_commandline = 0;
23641 }
23642 else
23643 current_file = macro_start_file (cu, file, line, current_file,
23644 lh);
23645 }
23646 break;
23647
23648 case DW_MACRO_end_file:
23649 if (! current_file)
23650 complaint (_("macro debug info has an unmatched "
23651 "`close_file' directive"));
23652 else
23653 {
23654 current_file = current_file->included_by;
23655 if (! current_file)
23656 {
23657 enum dwarf_macro_record_type next_type;
23658
23659 /* GCC circa March 2002 doesn't produce the zero
23660 type byte marking the end of the compilation
23661 unit. Complain if it's not there, but exit no
23662 matter what. */
23663
23664 /* Do we at least have room for a macinfo type byte? */
23665 if (mac_ptr >= mac_end)
23666 {
23667 dwarf2_section_buffer_overflow_complaint (section);
23668 return;
23669 }
23670
23671 /* We don't increment mac_ptr here, so this is just
23672 a look-ahead. */
23673 next_type
23674 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23675 mac_ptr);
23676 if (next_type != 0)
23677 complaint (_("no terminating 0-type entry for "
23678 "macros in `.debug_macinfo' section"));
23679
23680 return;
23681 }
23682 }
23683 break;
23684
23685 case DW_MACRO_import:
23686 case DW_MACRO_import_sup:
23687 {
23688 LONGEST offset;
23689 void **slot;
23690 bfd *include_bfd = abfd;
23691 struct dwarf2_section_info *include_section = section;
23692 const gdb_byte *include_mac_end = mac_end;
23693 int is_dwz = section_is_dwz;
23694 const gdb_byte *new_mac_ptr;
23695
23696 offset = read_offset (abfd, mac_ptr, offset_size);
23697 mac_ptr += offset_size;
23698
23699 if (macinfo_type == DW_MACRO_import_sup)
23700 {
23701 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
23702
23703 dwz->macro.read (objfile);
23704
23705 include_section = &dwz->macro;
23706 include_bfd = include_section->get_bfd_owner ();
23707 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23708 is_dwz = 1;
23709 }
23710
23711 new_mac_ptr = include_section->buffer + offset;
23712 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23713
23714 if (*slot != NULL)
23715 {
23716 /* This has actually happened; see
23717 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23718 complaint (_("recursive DW_MACRO_import in "
23719 ".debug_macro section"));
23720 }
23721 else
23722 {
23723 *slot = (void *) new_mac_ptr;
23724
23725 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
23726 include_mac_end, current_file, lh,
23727 section, section_is_gnu, is_dwz,
23728 offset_size, include_hash);
23729
23730 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23731 }
23732 }
23733 break;
23734
23735 case DW_MACINFO_vendor_ext:
23736 if (!section_is_gnu)
23737 {
23738 unsigned int bytes_read;
23739
23740 /* This reads the constant, but since we don't recognize
23741 any vendor extensions, we ignore it. */
23742 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23743 mac_ptr += bytes_read;
23744 read_direct_string (abfd, mac_ptr, &bytes_read);
23745 mac_ptr += bytes_read;
23746
23747 /* We don't recognize any vendor extensions. */
23748 break;
23749 }
23750 /* FALLTHROUGH */
23751
23752 default:
23753 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23754 mac_ptr, mac_end, abfd, offset_size,
23755 section);
23756 if (mac_ptr == NULL)
23757 return;
23758 break;
23759 }
23760 DIAGNOSTIC_POP
23761 } while (macinfo_type != 0);
23762 }
23763
23764 static void
23765 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23766 int section_is_gnu)
23767 {
23768 struct dwarf2_per_objfile *dwarf2_per_objfile
23769 = cu->per_cu->dwarf2_per_objfile;
23770 struct objfile *objfile = dwarf2_per_objfile->objfile;
23771 struct line_header *lh = cu->line_header;
23772 bfd *abfd;
23773 const gdb_byte *mac_ptr, *mac_end;
23774 struct macro_source_file *current_file = 0;
23775 enum dwarf_macro_record_type macinfo_type;
23776 unsigned int offset_size = cu->header.offset_size;
23777 const gdb_byte *opcode_definitions[256];
23778 void **slot;
23779 struct dwarf2_section_info *section;
23780 const char *section_name;
23781
23782 if (cu->dwo_unit != NULL)
23783 {
23784 if (section_is_gnu)
23785 {
23786 section = &cu->dwo_unit->dwo_file->sections.macro;
23787 section_name = ".debug_macro.dwo";
23788 }
23789 else
23790 {
23791 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23792 section_name = ".debug_macinfo.dwo";
23793 }
23794 }
23795 else
23796 {
23797 if (section_is_gnu)
23798 {
23799 section = &dwarf2_per_objfile->macro;
23800 section_name = ".debug_macro";
23801 }
23802 else
23803 {
23804 section = &dwarf2_per_objfile->macinfo;
23805 section_name = ".debug_macinfo";
23806 }
23807 }
23808
23809 section->read (objfile);
23810 if (section->buffer == NULL)
23811 {
23812 complaint (_("missing %s section"), section_name);
23813 return;
23814 }
23815 abfd = section->get_bfd_owner ();
23816
23817 /* First pass: Find the name of the base filename.
23818 This filename is needed in order to process all macros whose definition
23819 (or undefinition) comes from the command line. These macros are defined
23820 before the first DW_MACINFO_start_file entry, and yet still need to be
23821 associated to the base file.
23822
23823 To determine the base file name, we scan the macro definitions until we
23824 reach the first DW_MACINFO_start_file entry. We then initialize
23825 CURRENT_FILE accordingly so that any macro definition found before the
23826 first DW_MACINFO_start_file can still be associated to the base file. */
23827
23828 mac_ptr = section->buffer + offset;
23829 mac_end = section->buffer + section->size;
23830
23831 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23832 &offset_size, section_is_gnu);
23833 if (mac_ptr == NULL)
23834 {
23835 /* We already issued a complaint. */
23836 return;
23837 }
23838
23839 do
23840 {
23841 /* Do we at least have room for a macinfo type byte? */
23842 if (mac_ptr >= mac_end)
23843 {
23844 /* Complaint is printed during the second pass as GDB will probably
23845 stop the first pass earlier upon finding
23846 DW_MACINFO_start_file. */
23847 break;
23848 }
23849
23850 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23851 mac_ptr++;
23852
23853 /* Note that we rely on the fact that the corresponding GNU and
23854 DWARF constants are the same. */
23855 DIAGNOSTIC_PUSH
23856 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23857 switch (macinfo_type)
23858 {
23859 /* A zero macinfo type indicates the end of the macro
23860 information. */
23861 case 0:
23862 break;
23863
23864 case DW_MACRO_define:
23865 case DW_MACRO_undef:
23866 /* Only skip the data by MAC_PTR. */
23867 {
23868 unsigned int bytes_read;
23869
23870 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23871 mac_ptr += bytes_read;
23872 read_direct_string (abfd, mac_ptr, &bytes_read);
23873 mac_ptr += bytes_read;
23874 }
23875 break;
23876
23877 case DW_MACRO_start_file:
23878 {
23879 unsigned int bytes_read;
23880 int line, file;
23881
23882 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23883 mac_ptr += bytes_read;
23884 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23885 mac_ptr += bytes_read;
23886
23887 current_file = macro_start_file (cu, file, line, current_file, lh);
23888 }
23889 break;
23890
23891 case DW_MACRO_end_file:
23892 /* No data to skip by MAC_PTR. */
23893 break;
23894
23895 case DW_MACRO_define_strp:
23896 case DW_MACRO_undef_strp:
23897 case DW_MACRO_define_sup:
23898 case DW_MACRO_undef_sup:
23899 {
23900 unsigned int bytes_read;
23901
23902 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23903 mac_ptr += bytes_read;
23904 mac_ptr += offset_size;
23905 }
23906 break;
23907
23908 case DW_MACRO_import:
23909 case DW_MACRO_import_sup:
23910 /* Note that, according to the spec, a transparent include
23911 chain cannot call DW_MACRO_start_file. So, we can just
23912 skip this opcode. */
23913 mac_ptr += offset_size;
23914 break;
23915
23916 case DW_MACINFO_vendor_ext:
23917 /* Only skip the data by MAC_PTR. */
23918 if (!section_is_gnu)
23919 {
23920 unsigned int bytes_read;
23921
23922 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23923 mac_ptr += bytes_read;
23924 read_direct_string (abfd, mac_ptr, &bytes_read);
23925 mac_ptr += bytes_read;
23926 }
23927 /* FALLTHROUGH */
23928
23929 default:
23930 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23931 mac_ptr, mac_end, abfd, offset_size,
23932 section);
23933 if (mac_ptr == NULL)
23934 return;
23935 break;
23936 }
23937 DIAGNOSTIC_POP
23938 } while (macinfo_type != 0 && current_file == NULL);
23939
23940 /* Second pass: Process all entries.
23941
23942 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23943 command-line macro definitions/undefinitions. This flag is unset when we
23944 reach the first DW_MACINFO_start_file entry. */
23945
23946 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23947 htab_eq_pointer,
23948 NULL, xcalloc, xfree));
23949 mac_ptr = section->buffer + offset;
23950 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23951 *slot = (void *) mac_ptr;
23952 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
23953 current_file, lh, section,
23954 section_is_gnu, 0, offset_size,
23955 include_hash.get ());
23956 }
23957
23958 /* Return the .debug_loc section to use for CU.
23959 For DWO files use .debug_loc.dwo. */
23960
23961 static struct dwarf2_section_info *
23962 cu_debug_loc_section (struct dwarf2_cu *cu)
23963 {
23964 struct dwarf2_per_objfile *dwarf2_per_objfile
23965 = cu->per_cu->dwarf2_per_objfile;
23966
23967 if (cu->dwo_unit)
23968 {
23969 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23970
23971 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23972 }
23973 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23974 : &dwarf2_per_objfile->loc);
23975 }
23976
23977 /* A helper function that fills in a dwarf2_loclist_baton. */
23978
23979 static void
23980 fill_in_loclist_baton (struct dwarf2_cu *cu,
23981 struct dwarf2_loclist_baton *baton,
23982 const struct attribute *attr)
23983 {
23984 struct dwarf2_per_objfile *dwarf2_per_objfile
23985 = cu->per_cu->dwarf2_per_objfile;
23986 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23987
23988 section->read (dwarf2_per_objfile->objfile);
23989
23990 baton->per_cu = cu->per_cu;
23991 gdb_assert (baton->per_cu);
23992 /* We don't know how long the location list is, but make sure we
23993 don't run off the edge of the section. */
23994 baton->size = section->size - DW_UNSND (attr);
23995 baton->data = section->buffer + DW_UNSND (attr);
23996 baton->base_address = cu->base_address;
23997 baton->from_dwo = cu->dwo_unit != NULL;
23998 }
23999
24000 static void
24001 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24002 struct dwarf2_cu *cu, int is_block)
24003 {
24004 struct dwarf2_per_objfile *dwarf2_per_objfile
24005 = cu->per_cu->dwarf2_per_objfile;
24006 struct objfile *objfile = dwarf2_per_objfile->objfile;
24007 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24008
24009 if (attr->form_is_section_offset ()
24010 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24011 the section. If so, fall through to the complaint in the
24012 other branch. */
24013 && DW_UNSND (attr) < section->get_size (objfile))
24014 {
24015 struct dwarf2_loclist_baton *baton;
24016
24017 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24018
24019 fill_in_loclist_baton (cu, baton, attr);
24020
24021 if (cu->base_known == 0)
24022 complaint (_("Location list used without "
24023 "specifying the CU base address."));
24024
24025 SYMBOL_ACLASS_INDEX (sym) = (is_block
24026 ? dwarf2_loclist_block_index
24027 : dwarf2_loclist_index);
24028 SYMBOL_LOCATION_BATON (sym) = baton;
24029 }
24030 else
24031 {
24032 struct dwarf2_locexpr_baton *baton;
24033
24034 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24035 baton->per_cu = cu->per_cu;
24036 gdb_assert (baton->per_cu);
24037
24038 if (attr->form_is_block ())
24039 {
24040 /* Note that we're just copying the block's data pointer
24041 here, not the actual data. We're still pointing into the
24042 info_buffer for SYM's objfile; right now we never release
24043 that buffer, but when we do clean up properly this may
24044 need to change. */
24045 baton->size = DW_BLOCK (attr)->size;
24046 baton->data = DW_BLOCK (attr)->data;
24047 }
24048 else
24049 {
24050 dwarf2_invalid_attrib_class_complaint ("location description",
24051 sym->natural_name ());
24052 baton->size = 0;
24053 }
24054
24055 SYMBOL_ACLASS_INDEX (sym) = (is_block
24056 ? dwarf2_locexpr_block_index
24057 : dwarf2_locexpr_index);
24058 SYMBOL_LOCATION_BATON (sym) = baton;
24059 }
24060 }
24061
24062 /* See read.h. */
24063
24064 struct objfile *
24065 dwarf2_per_cu_data::objfile () const
24066 {
24067 struct objfile *objfile = dwarf2_per_objfile->objfile;
24068
24069 /* Return the master objfile, so that we can report and look up the
24070 correct file containing this variable. */
24071 if (objfile->separate_debug_objfile_backlink)
24072 objfile = objfile->separate_debug_objfile_backlink;
24073
24074 return objfile;
24075 }
24076
24077 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24078 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24079 CU_HEADERP first. */
24080
24081 static const struct comp_unit_head *
24082 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24083 const struct dwarf2_per_cu_data *per_cu)
24084 {
24085 const gdb_byte *info_ptr;
24086
24087 if (per_cu->cu)
24088 return &per_cu->cu->header;
24089
24090 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24091
24092 memset (cu_headerp, 0, sizeof (*cu_headerp));
24093 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24094 rcuh_kind::COMPILE);
24095
24096 return cu_headerp;
24097 }
24098
24099 /* See read.h. */
24100
24101 int
24102 dwarf2_per_cu_data::addr_size () const
24103 {
24104 struct comp_unit_head cu_header_local;
24105 const struct comp_unit_head *cu_headerp;
24106
24107 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24108
24109 return cu_headerp->addr_size;
24110 }
24111
24112 /* See read.h. */
24113
24114 int
24115 dwarf2_per_cu_data::offset_size () const
24116 {
24117 struct comp_unit_head cu_header_local;
24118 const struct comp_unit_head *cu_headerp;
24119
24120 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24121
24122 return cu_headerp->offset_size;
24123 }
24124
24125 /* See read.h. */
24126
24127 int
24128 dwarf2_per_cu_data::ref_addr_size () const
24129 {
24130 struct comp_unit_head cu_header_local;
24131 const struct comp_unit_head *cu_headerp;
24132
24133 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24134
24135 if (cu_headerp->version == 2)
24136 return cu_headerp->addr_size;
24137 else
24138 return cu_headerp->offset_size;
24139 }
24140
24141 /* See read.h. */
24142
24143 CORE_ADDR
24144 dwarf2_per_cu_data::text_offset () const
24145 {
24146 struct objfile *objfile = dwarf2_per_objfile->objfile;
24147
24148 return objfile->text_section_offset ();
24149 }
24150
24151 /* See read.h. */
24152
24153 struct type *
24154 dwarf2_per_cu_data::addr_type () const
24155 {
24156 struct objfile *objfile = dwarf2_per_objfile->objfile;
24157 struct type *void_type = objfile_type (objfile)->builtin_void;
24158 struct type *addr_type = lookup_pointer_type (void_type);
24159 int addr_size = this->addr_size ();
24160
24161 if (TYPE_LENGTH (addr_type) == addr_size)
24162 return addr_type;
24163
24164 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
24165 return addr_type;
24166 }
24167
24168 /* A helper function for dwarf2_find_containing_comp_unit that returns
24169 the index of the result, and that searches a vector. It will
24170 return a result even if the offset in question does not actually
24171 occur in any CU. This is separate so that it can be unit
24172 tested. */
24173
24174 static int
24175 dwarf2_find_containing_comp_unit
24176 (sect_offset sect_off,
24177 unsigned int offset_in_dwz,
24178 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24179 {
24180 int low, high;
24181
24182 low = 0;
24183 high = all_comp_units.size () - 1;
24184 while (high > low)
24185 {
24186 struct dwarf2_per_cu_data *mid_cu;
24187 int mid = low + (high - low) / 2;
24188
24189 mid_cu = all_comp_units[mid];
24190 if (mid_cu->is_dwz > offset_in_dwz
24191 || (mid_cu->is_dwz == offset_in_dwz
24192 && mid_cu->sect_off + mid_cu->length > sect_off))
24193 high = mid;
24194 else
24195 low = mid + 1;
24196 }
24197 gdb_assert (low == high);
24198 return low;
24199 }
24200
24201 /* Locate the .debug_info compilation unit from CU's objfile which contains
24202 the DIE at OFFSET. Raises an error on failure. */
24203
24204 static struct dwarf2_per_cu_data *
24205 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24206 unsigned int offset_in_dwz,
24207 struct dwarf2_per_objfile *dwarf2_per_objfile)
24208 {
24209 int low
24210 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
24211 dwarf2_per_objfile->all_comp_units);
24212 struct dwarf2_per_cu_data *this_cu
24213 = dwarf2_per_objfile->all_comp_units[low];
24214
24215 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24216 {
24217 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24218 error (_("Dwarf Error: could not find partial DIE containing "
24219 "offset %s [in module %s]"),
24220 sect_offset_str (sect_off),
24221 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24222
24223 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24224 <= sect_off);
24225 return dwarf2_per_objfile->all_comp_units[low-1];
24226 }
24227 else
24228 {
24229 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24230 && sect_off >= this_cu->sect_off + this_cu->length)
24231 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24232 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24233 return this_cu;
24234 }
24235 }
24236
24237 #if GDB_SELF_TEST
24238
24239 namespace selftests {
24240 namespace find_containing_comp_unit {
24241
24242 static void
24243 run_test ()
24244 {
24245 struct dwarf2_per_cu_data one {};
24246 struct dwarf2_per_cu_data two {};
24247 struct dwarf2_per_cu_data three {};
24248 struct dwarf2_per_cu_data four {};
24249
24250 one.length = 5;
24251 two.sect_off = sect_offset (one.length);
24252 two.length = 7;
24253
24254 three.length = 5;
24255 three.is_dwz = 1;
24256 four.sect_off = sect_offset (three.length);
24257 four.length = 7;
24258 four.is_dwz = 1;
24259
24260 std::vector<dwarf2_per_cu_data *> units;
24261 units.push_back (&one);
24262 units.push_back (&two);
24263 units.push_back (&three);
24264 units.push_back (&four);
24265
24266 int result;
24267
24268 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24269 SELF_CHECK (units[result] == &one);
24270 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24271 SELF_CHECK (units[result] == &one);
24272 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24273 SELF_CHECK (units[result] == &two);
24274
24275 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24276 SELF_CHECK (units[result] == &three);
24277 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24278 SELF_CHECK (units[result] == &three);
24279 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24280 SELF_CHECK (units[result] == &four);
24281 }
24282
24283 }
24284 }
24285
24286 #endif /* GDB_SELF_TEST */
24287
24288 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24289
24290 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24291 : per_cu (per_cu_),
24292 mark (false),
24293 has_loclist (false),
24294 checked_producer (false),
24295 producer_is_gxx_lt_4_6 (false),
24296 producer_is_gcc_lt_4_3 (false),
24297 producer_is_icc (false),
24298 producer_is_icc_lt_14 (false),
24299 producer_is_codewarrior (false),
24300 processing_has_namespace_info (false)
24301 {
24302 per_cu->cu = this;
24303 }
24304
24305 /* Destroy a dwarf2_cu. */
24306
24307 dwarf2_cu::~dwarf2_cu ()
24308 {
24309 per_cu->cu = NULL;
24310 }
24311
24312 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24313
24314 static void
24315 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24316 enum language pretend_language)
24317 {
24318 struct attribute *attr;
24319
24320 /* Set the language we're debugging. */
24321 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24322 if (attr != nullptr)
24323 set_cu_language (DW_UNSND (attr), cu);
24324 else
24325 {
24326 cu->language = pretend_language;
24327 cu->language_defn = language_def (cu->language);
24328 }
24329
24330 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24331 }
24332
24333 /* Increase the age counter on each cached compilation unit, and free
24334 any that are too old. */
24335
24336 static void
24337 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24338 {
24339 struct dwarf2_per_cu_data *per_cu, **last_chain;
24340
24341 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24342 per_cu = dwarf2_per_objfile->read_in_chain;
24343 while (per_cu != NULL)
24344 {
24345 per_cu->cu->last_used ++;
24346 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24347 dwarf2_mark (per_cu->cu);
24348 per_cu = per_cu->cu->read_in_chain;
24349 }
24350
24351 per_cu = dwarf2_per_objfile->read_in_chain;
24352 last_chain = &dwarf2_per_objfile->read_in_chain;
24353 while (per_cu != NULL)
24354 {
24355 struct dwarf2_per_cu_data *next_cu;
24356
24357 next_cu = per_cu->cu->read_in_chain;
24358
24359 if (!per_cu->cu->mark)
24360 {
24361 delete per_cu->cu;
24362 *last_chain = next_cu;
24363 }
24364 else
24365 last_chain = &per_cu->cu->read_in_chain;
24366
24367 per_cu = next_cu;
24368 }
24369 }
24370
24371 /* Remove a single compilation unit from the cache. */
24372
24373 static void
24374 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24375 {
24376 struct dwarf2_per_cu_data *per_cu, **last_chain;
24377 struct dwarf2_per_objfile *dwarf2_per_objfile
24378 = target_per_cu->dwarf2_per_objfile;
24379
24380 per_cu = dwarf2_per_objfile->read_in_chain;
24381 last_chain = &dwarf2_per_objfile->read_in_chain;
24382 while (per_cu != NULL)
24383 {
24384 struct dwarf2_per_cu_data *next_cu;
24385
24386 next_cu = per_cu->cu->read_in_chain;
24387
24388 if (per_cu == target_per_cu)
24389 {
24390 delete per_cu->cu;
24391 per_cu->cu = NULL;
24392 *last_chain = next_cu;
24393 break;
24394 }
24395 else
24396 last_chain = &per_cu->cu->read_in_chain;
24397
24398 per_cu = next_cu;
24399 }
24400 }
24401
24402 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24403 We store these in a hash table separate from the DIEs, and preserve them
24404 when the DIEs are flushed out of cache.
24405
24406 The CU "per_cu" pointer is needed because offset alone is not enough to
24407 uniquely identify the type. A file may have multiple .debug_types sections,
24408 or the type may come from a DWO file. Furthermore, while it's more logical
24409 to use per_cu->section+offset, with Fission the section with the data is in
24410 the DWO file but we don't know that section at the point we need it.
24411 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24412 because we can enter the lookup routine, get_die_type_at_offset, from
24413 outside this file, and thus won't necessarily have PER_CU->cu.
24414 Fortunately, PER_CU is stable for the life of the objfile. */
24415
24416 struct dwarf2_per_cu_offset_and_type
24417 {
24418 const struct dwarf2_per_cu_data *per_cu;
24419 sect_offset sect_off;
24420 struct type *type;
24421 };
24422
24423 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24424
24425 static hashval_t
24426 per_cu_offset_and_type_hash (const void *item)
24427 {
24428 const struct dwarf2_per_cu_offset_and_type *ofs
24429 = (const struct dwarf2_per_cu_offset_and_type *) item;
24430
24431 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24432 }
24433
24434 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24435
24436 static int
24437 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24438 {
24439 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24440 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24441 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24442 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24443
24444 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24445 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24446 }
24447
24448 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24449 table if necessary. For convenience, return TYPE.
24450
24451 The DIEs reading must have careful ordering to:
24452 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24453 reading current DIE.
24454 * Not trying to dereference contents of still incompletely read in types
24455 while reading in other DIEs.
24456 * Enable referencing still incompletely read in types just by a pointer to
24457 the type without accessing its fields.
24458
24459 Therefore caller should follow these rules:
24460 * Try to fetch any prerequisite types we may need to build this DIE type
24461 before building the type and calling set_die_type.
24462 * After building type call set_die_type for current DIE as soon as
24463 possible before fetching more types to complete the current type.
24464 * Make the type as complete as possible before fetching more types. */
24465
24466 static struct type *
24467 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24468 {
24469 struct dwarf2_per_objfile *dwarf2_per_objfile
24470 = cu->per_cu->dwarf2_per_objfile;
24471 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24472 struct objfile *objfile = dwarf2_per_objfile->objfile;
24473 struct attribute *attr;
24474 struct dynamic_prop prop;
24475
24476 /* For Ada types, make sure that the gnat-specific data is always
24477 initialized (if not already set). There are a few types where
24478 we should not be doing so, because the type-specific area is
24479 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24480 where the type-specific area is used to store the floatformat).
24481 But this is not a problem, because the gnat-specific information
24482 is actually not needed for these types. */
24483 if (need_gnat_info (cu)
24484 && TYPE_CODE (type) != TYPE_CODE_FUNC
24485 && TYPE_CODE (type) != TYPE_CODE_FLT
24486 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
24487 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
24488 && TYPE_CODE (type) != TYPE_CODE_METHOD
24489 && !HAVE_GNAT_AUX_INFO (type))
24490 INIT_GNAT_SPECIFIC (type);
24491
24492 /* Read DW_AT_allocated and set in type. */
24493 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24494 if (attr != NULL && attr->form_is_block ())
24495 {
24496 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24497 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24498 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
24499 }
24500 else if (attr != NULL)
24501 {
24502 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
24503 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24504 sect_offset_str (die->sect_off));
24505 }
24506
24507 /* Read DW_AT_associated and set in type. */
24508 attr = dwarf2_attr (die, DW_AT_associated, cu);
24509 if (attr != NULL && attr->form_is_block ())
24510 {
24511 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24512 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24513 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
24514 }
24515 else if (attr != NULL)
24516 {
24517 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
24518 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24519 sect_offset_str (die->sect_off));
24520 }
24521
24522 /* Read DW_AT_data_location and set in type. */
24523 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24524 if (attr_to_dynamic_prop (attr, die, cu, &prop,
24525 cu->per_cu->addr_type ()))
24526 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
24527
24528 if (dwarf2_per_objfile->die_type_hash == NULL)
24529 dwarf2_per_objfile->die_type_hash
24530 = htab_up (htab_create_alloc (127,
24531 per_cu_offset_and_type_hash,
24532 per_cu_offset_and_type_eq,
24533 NULL, xcalloc, xfree));
24534
24535 ofs.per_cu = cu->per_cu;
24536 ofs.sect_off = die->sect_off;
24537 ofs.type = type;
24538 slot = (struct dwarf2_per_cu_offset_and_type **)
24539 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
24540 if (*slot)
24541 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24542 sect_offset_str (die->sect_off));
24543 *slot = XOBNEW (&objfile->objfile_obstack,
24544 struct dwarf2_per_cu_offset_and_type);
24545 **slot = ofs;
24546 return type;
24547 }
24548
24549 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24550 or return NULL if the die does not have a saved type. */
24551
24552 static struct type *
24553 get_die_type_at_offset (sect_offset sect_off,
24554 struct dwarf2_per_cu_data *per_cu)
24555 {
24556 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24557 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
24558
24559 if (dwarf2_per_objfile->die_type_hash == NULL)
24560 return NULL;
24561
24562 ofs.per_cu = per_cu;
24563 ofs.sect_off = sect_off;
24564 slot = ((struct dwarf2_per_cu_offset_and_type *)
24565 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
24566 if (slot)
24567 return slot->type;
24568 else
24569 return NULL;
24570 }
24571
24572 /* Look up the type for DIE in CU in die_type_hash,
24573 or return NULL if DIE does not have a saved type. */
24574
24575 static struct type *
24576 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24577 {
24578 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24579 }
24580
24581 /* Add a dependence relationship from CU to REF_PER_CU. */
24582
24583 static void
24584 dwarf2_add_dependence (struct dwarf2_cu *cu,
24585 struct dwarf2_per_cu_data *ref_per_cu)
24586 {
24587 void **slot;
24588
24589 if (cu->dependencies == NULL)
24590 cu->dependencies
24591 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24592 NULL, &cu->comp_unit_obstack,
24593 hashtab_obstack_allocate,
24594 dummy_obstack_deallocate);
24595
24596 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24597 if (*slot == NULL)
24598 *slot = ref_per_cu;
24599 }
24600
24601 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24602 Set the mark field in every compilation unit in the
24603 cache that we must keep because we are keeping CU. */
24604
24605 static int
24606 dwarf2_mark_helper (void **slot, void *data)
24607 {
24608 struct dwarf2_per_cu_data *per_cu;
24609
24610 per_cu = (struct dwarf2_per_cu_data *) *slot;
24611
24612 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24613 reading of the chain. As such dependencies remain valid it is not much
24614 useful to track and undo them during QUIT cleanups. */
24615 if (per_cu->cu == NULL)
24616 return 1;
24617
24618 if (per_cu->cu->mark)
24619 return 1;
24620 per_cu->cu->mark = true;
24621
24622 if (per_cu->cu->dependencies != NULL)
24623 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24624
24625 return 1;
24626 }
24627
24628 /* Set the mark field in CU and in every other compilation unit in the
24629 cache that we must keep because we are keeping CU. */
24630
24631 static void
24632 dwarf2_mark (struct dwarf2_cu *cu)
24633 {
24634 if (cu->mark)
24635 return;
24636 cu->mark = true;
24637 if (cu->dependencies != NULL)
24638 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24639 }
24640
24641 static void
24642 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24643 {
24644 while (per_cu)
24645 {
24646 per_cu->cu->mark = false;
24647 per_cu = per_cu->cu->read_in_chain;
24648 }
24649 }
24650
24651 /* Trivial hash function for partial_die_info: the hash value of a DIE
24652 is its offset in .debug_info for this objfile. */
24653
24654 static hashval_t
24655 partial_die_hash (const void *item)
24656 {
24657 const struct partial_die_info *part_die
24658 = (const struct partial_die_info *) item;
24659
24660 return to_underlying (part_die->sect_off);
24661 }
24662
24663 /* Trivial comparison function for partial_die_info structures: two DIEs
24664 are equal if they have the same offset. */
24665
24666 static int
24667 partial_die_eq (const void *item_lhs, const void *item_rhs)
24668 {
24669 const struct partial_die_info *part_die_lhs
24670 = (const struct partial_die_info *) item_lhs;
24671 const struct partial_die_info *part_die_rhs
24672 = (const struct partial_die_info *) item_rhs;
24673
24674 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24675 }
24676
24677 struct cmd_list_element *set_dwarf_cmdlist;
24678 struct cmd_list_element *show_dwarf_cmdlist;
24679
24680 static void
24681 set_dwarf_cmd (const char *args, int from_tty)
24682 {
24683 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24684 gdb_stdout);
24685 }
24686
24687 static void
24688 show_dwarf_cmd (const char *args, int from_tty)
24689 {
24690 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24691 }
24692
24693 static void
24694 show_check_physname (struct ui_file *file, int from_tty,
24695 struct cmd_list_element *c, const char *value)
24696 {
24697 fprintf_filtered (file,
24698 _("Whether to check \"physname\" is %s.\n"),
24699 value);
24700 }
24701
24702 void _initialize_dwarf2_read ();
24703 void
24704 _initialize_dwarf2_read ()
24705 {
24706 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24707 Set DWARF specific variables.\n\
24708 Configure DWARF variables such as the cache size."),
24709 &set_dwarf_cmdlist, "maintenance set dwarf ",
24710 0/*allow-unknown*/, &maintenance_set_cmdlist);
24711
24712 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24713 Show DWARF specific variables.\n\
24714 Show DWARF variables such as the cache size."),
24715 &show_dwarf_cmdlist, "maintenance show dwarf ",
24716 0/*allow-unknown*/, &maintenance_show_cmdlist);
24717
24718 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24719 &dwarf_max_cache_age, _("\
24720 Set the upper bound on the age of cached DWARF compilation units."), _("\
24721 Show the upper bound on the age of cached DWARF compilation units."), _("\
24722 A higher limit means that cached compilation units will be stored\n\
24723 in memory longer, and more total memory will be used. Zero disables\n\
24724 caching, which can slow down startup."),
24725 NULL,
24726 show_dwarf_max_cache_age,
24727 &set_dwarf_cmdlist,
24728 &show_dwarf_cmdlist);
24729
24730 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24731 Set debugging of the DWARF reader."), _("\
24732 Show debugging of the DWARF reader."), _("\
24733 When enabled (non-zero), debugging messages are printed during DWARF\n\
24734 reading and symtab expansion. A value of 1 (one) provides basic\n\
24735 information. A value greater than 1 provides more verbose information."),
24736 NULL,
24737 NULL,
24738 &setdebuglist, &showdebuglist);
24739
24740 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24741 Set debugging of the DWARF DIE reader."), _("\
24742 Show debugging of the DWARF DIE reader."), _("\
24743 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24744 The value is the maximum depth to print."),
24745 NULL,
24746 NULL,
24747 &setdebuglist, &showdebuglist);
24748
24749 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24750 Set debugging of the dwarf line reader."), _("\
24751 Show debugging of the dwarf line reader."), _("\
24752 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24753 A value of 1 (one) provides basic information.\n\
24754 A value greater than 1 provides more verbose information."),
24755 NULL,
24756 NULL,
24757 &setdebuglist, &showdebuglist);
24758
24759 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24760 Set cross-checking of \"physname\" code against demangler."), _("\
24761 Show cross-checking of \"physname\" code against demangler."), _("\
24762 When enabled, GDB's internal \"physname\" code is checked against\n\
24763 the demangler."),
24764 NULL, show_check_physname,
24765 &setdebuglist, &showdebuglist);
24766
24767 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24768 no_class, &use_deprecated_index_sections, _("\
24769 Set whether to use deprecated gdb_index sections."), _("\
24770 Show whether to use deprecated gdb_index sections."), _("\
24771 When enabled, deprecated .gdb_index sections are used anyway.\n\
24772 Normally they are ignored either because of a missing feature or\n\
24773 performance issue.\n\
24774 Warning: This option must be enabled before gdb reads the file."),
24775 NULL,
24776 NULL,
24777 &setlist, &showlist);
24778
24779 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24780 &dwarf2_locexpr_funcs);
24781 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24782 &dwarf2_loclist_funcs);
24783
24784 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24785 &dwarf2_block_frame_base_locexpr_funcs);
24786 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24787 &dwarf2_block_frame_base_loclist_funcs);
24788
24789 #if GDB_SELF_TEST
24790 selftests::register_test ("dw2_expand_symtabs_matching",
24791 selftests::dw2_expand_symtabs_matching::run_test);
24792 selftests::register_test ("dwarf2_find_containing_comp_unit",
24793 selftests::find_containing_comp_unit::run_test);
24794 #endif
24795 }
This page took 0.518022 seconds and 3 git commands to generate.