439b889144b96bf9fbac71802021e155a4e2d413
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2412 objfile_obstack, and constructed with the specified field
2413 values. */
2414
2415 static dwarf2_per_cu_data *
2416 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2417 struct dwarf2_section_info *section,
2418 int is_dwz,
2419 sect_offset sect_off, ULONGEST length)
2420 {
2421 struct objfile *objfile = dwarf2_per_objfile->objfile;
2422 dwarf2_per_cu_data *the_cu
2423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2424 struct dwarf2_per_cu_data);
2425 the_cu->sect_off = sect_off;
2426 the_cu->length = length;
2427 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2428 the_cu->section = section;
2429 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2430 struct dwarf2_per_cu_quick_data);
2431 the_cu->is_dwz = is_dwz;
2432 return the_cu;
2433 }
2434
2435 /* A helper for create_cus_from_index that handles a given list of
2436 CUs. */
2437
2438 static void
2439 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 const gdb_byte *cu_list, offset_type n_elements,
2441 struct dwarf2_section_info *section,
2442 int is_dwz)
2443 {
2444 for (offset_type i = 0; i < n_elements; i += 2)
2445 {
2446 gdb_static_assert (sizeof (ULONGEST) >= 8);
2447
2448 sect_offset sect_off
2449 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2450 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2451 cu_list += 2 * 8;
2452
2453 dwarf2_per_cu_data *per_cu
2454 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2455 sect_off, length);
2456 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2457 }
2458 }
2459
2460 /* Read the CU list from the mapped index, and use it to create all
2461 the CU objects for this objfile. */
2462
2463 static void
2464 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2465 const gdb_byte *cu_list, offset_type cu_list_elements,
2466 const gdb_byte *dwz_list, offset_type dwz_elements)
2467 {
2468 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2469 dwarf2_per_objfile->all_comp_units.reserve
2470 ((cu_list_elements + dwz_elements) / 2);
2471
2472 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2473 &dwarf2_per_objfile->info, 0);
2474
2475 if (dwz_elements == 0)
2476 return;
2477
2478 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2479 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2480 &dwz->info, 1);
2481 }
2482
2483 /* Create the signatured type hash table from the index. */
2484
2485 static void
2486 create_signatured_type_table_from_index
2487 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 struct dwarf2_section_info *section,
2489 const gdb_byte *bytes,
2490 offset_type elements)
2491 {
2492 struct objfile *objfile = dwarf2_per_objfile->objfile;
2493
2494 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2495 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2496
2497 htab_up sig_types_hash = allocate_signatured_type_table ();
2498
2499 for (offset_type i = 0; i < elements; i += 3)
2500 {
2501 struct signatured_type *sig_type;
2502 ULONGEST signature;
2503 void **slot;
2504 cu_offset type_offset_in_tu;
2505
2506 gdb_static_assert (sizeof (ULONGEST) >= 8);
2507 sect_offset sect_off
2508 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2509 type_offset_in_tu
2510 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2511 BFD_ENDIAN_LITTLE);
2512 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2513 bytes += 3 * 8;
2514
2515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2516 struct signatured_type);
2517 sig_type->signature = signature;
2518 sig_type->type_offset_in_tu = type_offset_in_tu;
2519 sig_type->per_cu.is_debug_types = 1;
2520 sig_type->per_cu.section = section;
2521 sig_type->per_cu.sect_off = sect_off;
2522 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2523 sig_type->per_cu.v.quick
2524 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2525 struct dwarf2_per_cu_quick_data);
2526
2527 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2528 *slot = sig_type;
2529
2530 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2531 }
2532
2533 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2534 }
2535
2536 /* Create the signatured type hash table from .debug_names. */
2537
2538 static void
2539 create_signatured_type_table_from_debug_names
2540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2541 const mapped_debug_names &map,
2542 struct dwarf2_section_info *section,
2543 struct dwarf2_section_info *abbrev_section)
2544 {
2545 struct objfile *objfile = dwarf2_per_objfile->objfile;
2546
2547 section->read (objfile);
2548 abbrev_section->read (objfile);
2549
2550 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2551 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2552
2553 htab_up sig_types_hash = allocate_signatured_type_table ();
2554
2555 for (uint32_t i = 0; i < map.tu_count; ++i)
2556 {
2557 struct signatured_type *sig_type;
2558 void **slot;
2559
2560 sect_offset sect_off
2561 = (sect_offset) (extract_unsigned_integer
2562 (map.tu_table_reordered + i * map.offset_size,
2563 map.offset_size,
2564 map.dwarf5_byte_order));
2565
2566 comp_unit_head cu_header;
2567 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2568 abbrev_section,
2569 section->buffer + to_underlying (sect_off),
2570 rcuh_kind::TYPE);
2571
2572 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2573 struct signatured_type);
2574 sig_type->signature = cu_header.signature;
2575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2576 sig_type->per_cu.is_debug_types = 1;
2577 sig_type->per_cu.section = section;
2578 sig_type->per_cu.sect_off = sect_off;
2579 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2580 sig_type->per_cu.v.quick
2581 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2582 struct dwarf2_per_cu_quick_data);
2583
2584 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2585 *slot = sig_type;
2586
2587 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2588 }
2589
2590 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2591 }
2592
2593 /* Read the address map data from the mapped index, and use it to
2594 populate the objfile's psymtabs_addrmap. */
2595
2596 static void
2597 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2598 struct mapped_index *index)
2599 {
2600 struct objfile *objfile = dwarf2_per_objfile->objfile;
2601 struct gdbarch *gdbarch = objfile->arch ();
2602 const gdb_byte *iter, *end;
2603 struct addrmap *mutable_map;
2604 CORE_ADDR baseaddr;
2605
2606 auto_obstack temp_obstack;
2607
2608 mutable_map = addrmap_create_mutable (&temp_obstack);
2609
2610 iter = index->address_table.data ();
2611 end = iter + index->address_table.size ();
2612
2613 baseaddr = objfile->text_section_offset ();
2614
2615 while (iter < end)
2616 {
2617 ULONGEST hi, lo, cu_index;
2618 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2619 iter += 8;
2620 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2621 iter += 8;
2622 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2623 iter += 4;
2624
2625 if (lo > hi)
2626 {
2627 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2628 hex_string (lo), hex_string (hi));
2629 continue;
2630 }
2631
2632 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2633 {
2634 complaint (_(".gdb_index address table has invalid CU number %u"),
2635 (unsigned) cu_index);
2636 continue;
2637 }
2638
2639 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2640 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2641 addrmap_set_empty (mutable_map, lo, hi - 1,
2642 dwarf2_per_objfile->get_cu (cu_index));
2643 }
2644
2645 objfile->partial_symtabs->psymtabs_addrmap
2646 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2647 }
2648
2649 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2650 populate the objfile's psymtabs_addrmap. */
2651
2652 static void
2653 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2654 struct dwarf2_section_info *section)
2655 {
2656 struct objfile *objfile = dwarf2_per_objfile->objfile;
2657 bfd *abfd = objfile->obfd;
2658 struct gdbarch *gdbarch = objfile->arch ();
2659 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2660
2661 auto_obstack temp_obstack;
2662 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2663
2664 std::unordered_map<sect_offset,
2665 dwarf2_per_cu_data *,
2666 gdb::hash_enum<sect_offset>>
2667 debug_info_offset_to_per_cu;
2668 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2669 {
2670 const auto insertpair
2671 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2672 if (!insertpair.second)
2673 {
2674 warning (_("Section .debug_aranges in %s has duplicate "
2675 "debug_info_offset %s, ignoring .debug_aranges."),
2676 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2677 return;
2678 }
2679 }
2680
2681 section->read (objfile);
2682
2683 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2684
2685 const gdb_byte *addr = section->buffer;
2686
2687 while (addr < section->buffer + section->size)
2688 {
2689 const gdb_byte *const entry_addr = addr;
2690 unsigned int bytes_read;
2691
2692 const LONGEST entry_length = read_initial_length (abfd, addr,
2693 &bytes_read);
2694 addr += bytes_read;
2695
2696 const gdb_byte *const entry_end = addr + entry_length;
2697 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2698 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2699 if (addr + entry_length > section->buffer + section->size)
2700 {
2701 warning (_("Section .debug_aranges in %s entry at offset %s "
2702 "length %s exceeds section length %s, "
2703 "ignoring .debug_aranges."),
2704 objfile_name (objfile),
2705 plongest (entry_addr - section->buffer),
2706 plongest (bytes_read + entry_length),
2707 pulongest (section->size));
2708 return;
2709 }
2710
2711 /* The version number. */
2712 const uint16_t version = read_2_bytes (abfd, addr);
2713 addr += 2;
2714 if (version != 2)
2715 {
2716 warning (_("Section .debug_aranges in %s entry at offset %s "
2717 "has unsupported version %d, ignoring .debug_aranges."),
2718 objfile_name (objfile),
2719 plongest (entry_addr - section->buffer), version);
2720 return;
2721 }
2722
2723 const uint64_t debug_info_offset
2724 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2725 addr += offset_size;
2726 const auto per_cu_it
2727 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2728 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2729 {
2730 warning (_("Section .debug_aranges in %s entry at offset %s "
2731 "debug_info_offset %s does not exists, "
2732 "ignoring .debug_aranges."),
2733 objfile_name (objfile),
2734 plongest (entry_addr - section->buffer),
2735 pulongest (debug_info_offset));
2736 return;
2737 }
2738 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2739
2740 const uint8_t address_size = *addr++;
2741 if (address_size < 1 || address_size > 8)
2742 {
2743 warning (_("Section .debug_aranges in %s entry at offset %s "
2744 "address_size %u is invalid, ignoring .debug_aranges."),
2745 objfile_name (objfile),
2746 plongest (entry_addr - section->buffer), address_size);
2747 return;
2748 }
2749
2750 const uint8_t segment_selector_size = *addr++;
2751 if (segment_selector_size != 0)
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "segment_selector_size %u is not supported, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 segment_selector_size);
2759 return;
2760 }
2761
2762 /* Must pad to an alignment boundary that is twice the address
2763 size. It is undocumented by the DWARF standard but GCC does
2764 use it. */
2765 for (size_t padding = ((-(addr - section->buffer))
2766 & (2 * address_size - 1));
2767 padding > 0; padding--)
2768 if (*addr++ != 0)
2769 {
2770 warning (_("Section .debug_aranges in %s entry at offset %s "
2771 "padding is not zero, ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer));
2774 return;
2775 }
2776
2777 for (;;)
2778 {
2779 if (addr + 2 * address_size > entry_end)
2780 {
2781 warning (_("Section .debug_aranges in %s entry at offset %s "
2782 "address list is not properly terminated, "
2783 "ignoring .debug_aranges."),
2784 objfile_name (objfile),
2785 plongest (entry_addr - section->buffer));
2786 return;
2787 }
2788 ULONGEST start = extract_unsigned_integer (addr, address_size,
2789 dwarf5_byte_order);
2790 addr += address_size;
2791 ULONGEST length = extract_unsigned_integer (addr, address_size,
2792 dwarf5_byte_order);
2793 addr += address_size;
2794 if (start == 0 && length == 0)
2795 break;
2796 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2797 {
2798 /* Symbol was eliminated due to a COMDAT group. */
2799 continue;
2800 }
2801 ULONGEST end = start + length;
2802 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2803 - baseaddr);
2804 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2805 - baseaddr);
2806 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2807 }
2808 }
2809
2810 objfile->partial_symtabs->psymtabs_addrmap
2811 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2812 }
2813
2814 /* Find a slot in the mapped index INDEX for the object named NAME.
2815 If NAME is found, set *VEC_OUT to point to the CU vector in the
2816 constant pool and return true. If NAME cannot be found, return
2817 false. */
2818
2819 static bool
2820 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2821 offset_type **vec_out)
2822 {
2823 offset_type hash;
2824 offset_type slot, step;
2825 int (*cmp) (const char *, const char *);
2826
2827 gdb::unique_xmalloc_ptr<char> without_params;
2828 if (current_language->la_language == language_cplus
2829 || current_language->la_language == language_fortran
2830 || current_language->la_language == language_d)
2831 {
2832 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2833 not contain any. */
2834
2835 if (strchr (name, '(') != NULL)
2836 {
2837 without_params = cp_remove_params (name);
2838
2839 if (without_params != NULL)
2840 name = without_params.get ();
2841 }
2842 }
2843
2844 /* Index version 4 did not support case insensitive searches. But the
2845 indices for case insensitive languages are built in lowercase, therefore
2846 simulate our NAME being searched is also lowercased. */
2847 hash = mapped_index_string_hash ((index->version == 4
2848 && case_sensitivity == case_sensitive_off
2849 ? 5 : index->version),
2850 name);
2851
2852 slot = hash & (index->symbol_table.size () - 1);
2853 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2854 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2855
2856 for (;;)
2857 {
2858 const char *str;
2859
2860 const auto &bucket = index->symbol_table[slot];
2861 if (bucket.name == 0 && bucket.vec == 0)
2862 return false;
2863
2864 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2865 if (!cmp (name, str))
2866 {
2867 *vec_out = (offset_type *) (index->constant_pool
2868 + MAYBE_SWAP (bucket.vec));
2869 return true;
2870 }
2871
2872 slot = (slot + step) & (index->symbol_table.size () - 1);
2873 }
2874 }
2875
2876 /* A helper function that reads the .gdb_index from BUFFER and fills
2877 in MAP. FILENAME is the name of the file containing the data;
2878 it is used for error reporting. DEPRECATED_OK is true if it is
2879 ok to use deprecated sections.
2880
2881 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2882 out parameters that are filled in with information about the CU and
2883 TU lists in the section.
2884
2885 Returns true if all went well, false otherwise. */
2886
2887 static bool
2888 read_gdb_index_from_buffer (const char *filename,
2889 bool deprecated_ok,
2890 gdb::array_view<const gdb_byte> buffer,
2891 struct mapped_index *map,
2892 const gdb_byte **cu_list,
2893 offset_type *cu_list_elements,
2894 const gdb_byte **types_list,
2895 offset_type *types_list_elements)
2896 {
2897 const gdb_byte *addr = &buffer[0];
2898
2899 /* Version check. */
2900 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2901 /* Versions earlier than 3 emitted every copy of a psymbol. This
2902 causes the index to behave very poorly for certain requests. Version 3
2903 contained incomplete addrmap. So, it seems better to just ignore such
2904 indices. */
2905 if (version < 4)
2906 {
2907 static int warning_printed = 0;
2908 if (!warning_printed)
2909 {
2910 warning (_("Skipping obsolete .gdb_index section in %s."),
2911 filename);
2912 warning_printed = 1;
2913 }
2914 return 0;
2915 }
2916 /* Index version 4 uses a different hash function than index version
2917 5 and later.
2918
2919 Versions earlier than 6 did not emit psymbols for inlined
2920 functions. Using these files will cause GDB not to be able to
2921 set breakpoints on inlined functions by name, so we ignore these
2922 indices unless the user has done
2923 "set use-deprecated-index-sections on". */
2924 if (version < 6 && !deprecated_ok)
2925 {
2926 static int warning_printed = 0;
2927 if (!warning_printed)
2928 {
2929 warning (_("\
2930 Skipping deprecated .gdb_index section in %s.\n\
2931 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2932 to use the section anyway."),
2933 filename);
2934 warning_printed = 1;
2935 }
2936 return 0;
2937 }
2938 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2939 of the TU (for symbols coming from TUs),
2940 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2941 Plus gold-generated indices can have duplicate entries for global symbols,
2942 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2943 These are just performance bugs, and we can't distinguish gdb-generated
2944 indices from gold-generated ones, so issue no warning here. */
2945
2946 /* Indexes with higher version than the one supported by GDB may be no
2947 longer backward compatible. */
2948 if (version > 8)
2949 return 0;
2950
2951 map->version = version;
2952
2953 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2954
2955 int i = 0;
2956 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2957 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2958 / 8);
2959 ++i;
2960
2961 *types_list = addr + MAYBE_SWAP (metadata[i]);
2962 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2963 - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2968 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2969 map->address_table
2970 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2971 ++i;
2972
2973 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->symbol_table
2976 = gdb::array_view<mapped_index::symbol_table_slot>
2977 ((mapped_index::symbol_table_slot *) symbol_table,
2978 (mapped_index::symbol_table_slot *) symbol_table_end);
2979
2980 ++i;
2981 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2982
2983 return 1;
2984 }
2985
2986 /* Callback types for dwarf2_read_gdb_index. */
2987
2988 typedef gdb::function_view
2989 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2990 get_gdb_index_contents_ftype;
2991 typedef gdb::function_view
2992 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2993 get_gdb_index_contents_dwz_ftype;
2994
2995 /* Read .gdb_index. If everything went ok, initialize the "quick"
2996 elements of all the CUs and return 1. Otherwise, return 0. */
2997
2998 static int
2999 dwarf2_read_gdb_index
3000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 get_gdb_index_contents_ftype get_gdb_index_contents,
3002 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3003 {
3004 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3005 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3006 struct dwz_file *dwz;
3007 struct objfile *objfile = dwarf2_per_objfile->objfile;
3008
3009 gdb::array_view<const gdb_byte> main_index_contents
3010 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3011
3012 if (main_index_contents.empty ())
3013 return 0;
3014
3015 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3016 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3017 use_deprecated_index_sections,
3018 main_index_contents, map.get (), &cu_list,
3019 &cu_list_elements, &types_list,
3020 &types_list_elements))
3021 return 0;
3022
3023 /* Don't use the index if it's empty. */
3024 if (map->symbol_table.empty ())
3025 return 0;
3026
3027 /* If there is a .dwz file, read it so we can get its CU list as
3028 well. */
3029 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3030 if (dwz != NULL)
3031 {
3032 struct mapped_index dwz_map;
3033 const gdb_byte *dwz_types_ignore;
3034 offset_type dwz_types_elements_ignore;
3035
3036 gdb::array_view<const gdb_byte> dwz_index_content
3037 = get_gdb_index_contents_dwz (objfile, dwz);
3038
3039 if (dwz_index_content.empty ())
3040 return 0;
3041
3042 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3043 1, dwz_index_content, &dwz_map,
3044 &dwz_list, &dwz_list_elements,
3045 &dwz_types_ignore,
3046 &dwz_types_elements_ignore))
3047 {
3048 warning (_("could not read '.gdb_index' section from %s; skipping"),
3049 bfd_get_filename (dwz->dwz_bfd.get ()));
3050 return 0;
3051 }
3052 }
3053
3054 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3055 dwz_list, dwz_list_elements);
3056
3057 if (types_list_elements)
3058 {
3059 /* We can only handle a single .debug_types when we have an
3060 index. */
3061 if (dwarf2_per_objfile->types.size () != 1)
3062 return 0;
3063
3064 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3065
3066 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3067 types_list, types_list_elements);
3068 }
3069
3070 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3071
3072 dwarf2_per_objfile->index_table = std::move (map);
3073 dwarf2_per_objfile->using_index = 1;
3074 dwarf2_per_objfile->quick_file_names_table =
3075 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3076
3077 return 1;
3078 }
3079
3080 /* die_reader_func for dw2_get_file_names. */
3081
3082 static void
3083 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3084 const gdb_byte *info_ptr,
3085 struct die_info *comp_unit_die)
3086 {
3087 struct dwarf2_cu *cu = reader->cu;
3088 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3089 struct dwarf2_per_objfile *dwarf2_per_objfile
3090 = cu->per_cu->dwarf2_per_objfile;
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092 struct dwarf2_per_cu_data *lh_cu;
3093 struct attribute *attr;
3094 void **slot;
3095 struct quick_file_names *qfn;
3096
3097 gdb_assert (! this_cu->is_debug_types);
3098
3099 /* Our callers never want to match partial units -- instead they
3100 will match the enclosing full CU. */
3101 if (comp_unit_die->tag == DW_TAG_partial_unit)
3102 {
3103 this_cu->v.quick->no_file_data = 1;
3104 return;
3105 }
3106
3107 lh_cu = this_cu;
3108 slot = NULL;
3109
3110 line_header_up lh;
3111 sect_offset line_offset {};
3112
3113 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3114 if (attr != nullptr)
3115 {
3116 struct quick_file_names find_entry;
3117
3118 line_offset = (sect_offset) DW_UNSND (attr);
3119
3120 /* We may have already read in this line header (TU line header sharing).
3121 If we have we're done. */
3122 find_entry.hash.dwo_unit = cu->dwo_unit;
3123 find_entry.hash.line_sect_off = line_offset;
3124 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3125 &find_entry, INSERT);
3126 if (*slot != NULL)
3127 {
3128 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3129 return;
3130 }
3131
3132 lh = dwarf_decode_line_header (line_offset, cu);
3133 }
3134 if (lh == NULL)
3135 {
3136 lh_cu->v.quick->no_file_data = 1;
3137 return;
3138 }
3139
3140 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3141 qfn->hash.dwo_unit = cu->dwo_unit;
3142 qfn->hash.line_sect_off = line_offset;
3143 gdb_assert (slot != NULL);
3144 *slot = qfn;
3145
3146 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3147
3148 int offset = 0;
3149 if (strcmp (fnd.name, "<unknown>") != 0)
3150 ++offset;
3151
3152 qfn->num_file_names = offset + lh->file_names_size ();
3153 qfn->file_names =
3154 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3155 if (offset != 0)
3156 qfn->file_names[0] = xstrdup (fnd.name);
3157 for (int i = 0; i < lh->file_names_size (); ++i)
3158 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3159 fnd.comp_dir).release ();
3160 qfn->real_names = NULL;
3161
3162 lh_cu->v.quick->file_names = qfn;
3163 }
3164
3165 /* A helper for the "quick" functions which attempts to read the line
3166 table for THIS_CU. */
3167
3168 static struct quick_file_names *
3169 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3170 {
3171 /* This should never be called for TUs. */
3172 gdb_assert (! this_cu->is_debug_types);
3173 /* Nor type unit groups. */
3174 gdb_assert (! this_cu->type_unit_group_p ());
3175
3176 if (this_cu->v.quick->file_names != NULL)
3177 return this_cu->v.quick->file_names;
3178 /* If we know there is no line data, no point in looking again. */
3179 if (this_cu->v.quick->no_file_data)
3180 return NULL;
3181
3182 cutu_reader reader (this_cu);
3183 if (!reader.dummy_p)
3184 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3185
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188 return this_cu->v.quick->file_names;
3189 }
3190
3191 /* A helper for the "quick" functions which computes and caches the
3192 real path for a given file name from the line table. */
3193
3194 static const char *
3195 dw2_get_real_path (struct objfile *objfile,
3196 struct quick_file_names *qfn, int index)
3197 {
3198 if (qfn->real_names == NULL)
3199 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3200 qfn->num_file_names, const char *);
3201
3202 if (qfn->real_names[index] == NULL)
3203 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3204
3205 return qfn->real_names[index];
3206 }
3207
3208 static struct symtab *
3209 dw2_find_last_source_symtab (struct objfile *objfile)
3210 {
3211 struct dwarf2_per_objfile *dwarf2_per_objfile
3212 = get_dwarf2_per_objfile (objfile);
3213 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3214 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3215
3216 if (cust == NULL)
3217 return NULL;
3218
3219 return compunit_primary_filetab (cust);
3220 }
3221
3222 /* Traversal function for dw2_forget_cached_source_info. */
3223
3224 static int
3225 dw2_free_cached_file_names (void **slot, void *info)
3226 {
3227 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3228
3229 if (file_data->real_names)
3230 {
3231 int i;
3232
3233 for (i = 0; i < file_data->num_file_names; ++i)
3234 {
3235 xfree ((void*) file_data->real_names[i]);
3236 file_data->real_names[i] = NULL;
3237 }
3238 }
3239
3240 return 1;
3241 }
3242
3243 static void
3244 dw2_forget_cached_source_info (struct objfile *objfile)
3245 {
3246 struct dwarf2_per_objfile *dwarf2_per_objfile
3247 = get_dwarf2_per_objfile (objfile);
3248
3249 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3250 dw2_free_cached_file_names, NULL);
3251 }
3252
3253 /* Helper function for dw2_map_symtabs_matching_filename that expands
3254 the symtabs and calls the iterator. */
3255
3256 static int
3257 dw2_map_expand_apply (struct objfile *objfile,
3258 struct dwarf2_per_cu_data *per_cu,
3259 const char *name, const char *real_path,
3260 gdb::function_view<bool (symtab *)> callback)
3261 {
3262 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3263
3264 /* Don't visit already-expanded CUs. */
3265 if (per_cu->v.quick->compunit_symtab)
3266 return 0;
3267
3268 /* This may expand more than one symtab, and we want to iterate over
3269 all of them. */
3270 dw2_instantiate_symtab (per_cu, false);
3271
3272 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3273 last_made, callback);
3274 }
3275
3276 /* Implementation of the map_symtabs_matching_filename method. */
3277
3278 static bool
3279 dw2_map_symtabs_matching_filename
3280 (struct objfile *objfile, const char *name, const char *real_path,
3281 gdb::function_view<bool (symtab *)> callback)
3282 {
3283 const char *name_basename = lbasename (name);
3284 struct dwarf2_per_objfile *dwarf2_per_objfile
3285 = get_dwarf2_per_objfile (objfile);
3286
3287 /* The rule is CUs specify all the files, including those used by
3288 any TU, so there's no need to scan TUs here. */
3289
3290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3291 {
3292 /* We only need to look at symtabs not already expanded. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 continue;
3295
3296 quick_file_names *file_data = dw2_get_file_names (per_cu);
3297 if (file_data == NULL)
3298 continue;
3299
3300 for (int j = 0; j < file_data->num_file_names; ++j)
3301 {
3302 const char *this_name = file_data->file_names[j];
3303 const char *this_real_name;
3304
3305 if (compare_filenames_for_search (this_name, name))
3306 {
3307 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3308 callback))
3309 return true;
3310 continue;
3311 }
3312
3313 /* Before we invoke realpath, which can get expensive when many
3314 files are involved, do a quick comparison of the basenames. */
3315 if (! basenames_may_differ
3316 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3317 continue;
3318
3319 this_real_name = dw2_get_real_path (objfile, file_data, j);
3320 if (compare_filenames_for_search (this_real_name, name))
3321 {
3322 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3323 callback))
3324 return true;
3325 continue;
3326 }
3327
3328 if (real_path != NULL)
3329 {
3330 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3331 gdb_assert (IS_ABSOLUTE_PATH (name));
3332 if (this_real_name != NULL
3333 && FILENAME_CMP (real_path, this_real_name) == 0)
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Struct used to manage iterating over all CUs looking for a symbol. */
3348
3349 struct dw2_symtab_iterator
3350 {
3351 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3352 struct dwarf2_per_objfile *dwarf2_per_objfile;
3353 /* If set, only look for symbols that match that block. Valid values are
3354 GLOBAL_BLOCK and STATIC_BLOCK. */
3355 gdb::optional<block_enum> block_index;
3356 /* The kind of symbol we're looking for. */
3357 domain_enum domain;
3358 /* The list of CUs from the index entry of the symbol,
3359 or NULL if not found. */
3360 offset_type *vec;
3361 /* The next element in VEC to look at. */
3362 int next;
3363 /* The number of elements in VEC, or zero if there is no match. */
3364 int length;
3365 /* Have we seen a global version of the symbol?
3366 If so we can ignore all further global instances.
3367 This is to work around gold/15646, inefficient gold-generated
3368 indices. */
3369 int global_seen;
3370 };
3371
3372 /* Initialize the index symtab iterator ITER. */
3373
3374 static void
3375 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3376 struct dwarf2_per_objfile *dwarf2_per_objfile,
3377 gdb::optional<block_enum> block_index,
3378 domain_enum domain,
3379 const char *name)
3380 {
3381 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3382 iter->block_index = block_index;
3383 iter->domain = domain;
3384 iter->next = 0;
3385 iter->global_seen = 0;
3386
3387 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3388
3389 /* index is NULL if OBJF_READNOW. */
3390 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3391 iter->length = MAYBE_SWAP (*iter->vec);
3392 else
3393 {
3394 iter->vec = NULL;
3395 iter->length = 0;
3396 }
3397 }
3398
3399 /* Return the next matching CU or NULL if there are no more. */
3400
3401 static struct dwarf2_per_cu_data *
3402 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3403 {
3404 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3405
3406 for ( ; iter->next < iter->length; ++iter->next)
3407 {
3408 offset_type cu_index_and_attrs =
3409 MAYBE_SWAP (iter->vec[iter->next + 1]);
3410 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3411 gdb_index_symbol_kind symbol_kind =
3412 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3413 /* Only check the symbol attributes if they're present.
3414 Indices prior to version 7 don't record them,
3415 and indices >= 7 may elide them for certain symbols
3416 (gold does this). */
3417 int attrs_valid =
3418 (dwarf2_per_objfile->index_table->version >= 7
3419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3420
3421 /* Don't crash on bad data. */
3422 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3423 + dwarf2_per_objfile->all_type_units.size ()))
3424 {
3425 complaint (_(".gdb_index entry has bad CU index"
3426 " [in module %s]"),
3427 objfile_name (dwarf2_per_objfile->objfile));
3428 continue;
3429 }
3430
3431 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3432
3433 /* Skip if already read in. */
3434 if (per_cu->v.quick->compunit_symtab)
3435 continue;
3436
3437 /* Check static vs global. */
3438 if (attrs_valid)
3439 {
3440 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3441
3442 if (iter->block_index.has_value ())
3443 {
3444 bool want_static = *iter->block_index == STATIC_BLOCK;
3445
3446 if (is_static != want_static)
3447 continue;
3448 }
3449
3450 /* Work around gold/15646. */
3451 if (!is_static && iter->global_seen)
3452 continue;
3453 if (!is_static)
3454 iter->global_seen = 1;
3455 }
3456
3457 /* Only check the symbol's kind if it has one. */
3458 if (attrs_valid)
3459 {
3460 switch (iter->domain)
3461 {
3462 case VAR_DOMAIN:
3463 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3464 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3465 /* Some types are also in VAR_DOMAIN. */
3466 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3467 continue;
3468 break;
3469 case STRUCT_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3471 continue;
3472 break;
3473 case LABEL_DOMAIN:
3474 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3475 continue;
3476 break;
3477 case MODULE_DOMAIN:
3478 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3479 continue;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485
3486 ++iter->next;
3487 return per_cu;
3488 }
3489
3490 return NULL;
3491 }
3492
3493 static struct compunit_symtab *
3494 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3495 const char *name, domain_enum domain)
3496 {
3497 struct compunit_symtab *stab_best = NULL;
3498 struct dwarf2_per_objfile *dwarf2_per_objfile
3499 = get_dwarf2_per_objfile (objfile);
3500
3501 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3502
3503 struct dw2_symtab_iterator iter;
3504 struct dwarf2_per_cu_data *per_cu;
3505
3506 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3507
3508 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3509 {
3510 struct symbol *sym, *with_opaque = NULL;
3511 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3512 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3513 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3514
3515 sym = block_find_symbol (block, name, domain,
3516 block_find_non_opaque_type_preferred,
3517 &with_opaque);
3518
3519 /* Some caution must be observed with overloaded functions
3520 and methods, since the index will not contain any overload
3521 information (but NAME might contain it). */
3522
3523 if (sym != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3525 return stab;
3526 if (with_opaque != NULL
3527 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3528 stab_best = stab;
3529
3530 /* Keep looking through other CUs. */
3531 }
3532
3533 return stab_best;
3534 }
3535
3536 static void
3537 dw2_print_stats (struct objfile *objfile)
3538 {
3539 struct dwarf2_per_objfile *dwarf2_per_objfile
3540 = get_dwarf2_per_objfile (objfile);
3541 int total = (dwarf2_per_objfile->all_comp_units.size ()
3542 + dwarf2_per_objfile->all_type_units.size ());
3543 int count = 0;
3544
3545 for (int i = 0; i < total; ++i)
3546 {
3547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3548
3549 if (!per_cu->v.quick->compunit_symtab)
3550 ++count;
3551 }
3552 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3553 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3554 }
3555
3556 /* This dumps minimal information about the index.
3557 It is called via "mt print objfiles".
3558 One use is to verify .gdb_index has been loaded by the
3559 gdb.dwarf2/gdb-index.exp testcase. */
3560
3561 static void
3562 dw2_dump (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566
3567 gdb_assert (dwarf2_per_objfile->using_index);
3568 printf_filtered (".gdb_index:");
3569 if (dwarf2_per_objfile->index_table != NULL)
3570 {
3571 printf_filtered (" version %d\n",
3572 dwarf2_per_objfile->index_table->version);
3573 }
3574 else
3575 printf_filtered (" faked for \"readnow\"\n");
3576 printf_filtered ("\n");
3577 }
3578
3579 static void
3580 dw2_expand_symtabs_for_function (struct objfile *objfile,
3581 const char *func_name)
3582 {
3583 struct dwarf2_per_objfile *dwarf2_per_objfile
3584 = get_dwarf2_per_objfile (objfile);
3585
3586 struct dw2_symtab_iterator iter;
3587 struct dwarf2_per_cu_data *per_cu;
3588
3589 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3590
3591 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3592 dw2_instantiate_symtab (per_cu, false);
3593
3594 }
3595
3596 static void
3597 dw2_expand_all_symtabs (struct objfile *objfile)
3598 {
3599 struct dwarf2_per_objfile *dwarf2_per_objfile
3600 = get_dwarf2_per_objfile (objfile);
3601 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3602 + dwarf2_per_objfile->all_type_units.size ());
3603
3604 for (int i = 0; i < total_units; ++i)
3605 {
3606 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3607
3608 /* We don't want to directly expand a partial CU, because if we
3609 read it with the wrong language, then assertion failures can
3610 be triggered later on. See PR symtab/23010. So, tell
3611 dw2_instantiate_symtab to skip partial CUs -- any important
3612 partial CU will be read via DW_TAG_imported_unit anyway. */
3613 dw2_instantiate_symtab (per_cu, true);
3614 }
3615 }
3616
3617 static void
3618 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3619 const char *fullname)
3620 {
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = get_dwarf2_per_objfile (objfile);
3623
3624 /* We don't need to consider type units here.
3625 This is only called for examining code, e.g. expand_line_sal.
3626 There can be an order of magnitude (or more) more type units
3627 than comp units, and we avoid them if we can. */
3628
3629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3630 {
3631 /* We only need to look at symtabs not already expanded. */
3632 if (per_cu->v.quick->compunit_symtab)
3633 continue;
3634
3635 quick_file_names *file_data = dw2_get_file_names (per_cu);
3636 if (file_data == NULL)
3637 continue;
3638
3639 for (int j = 0; j < file_data->num_file_names; ++j)
3640 {
3641 const char *this_fullname = file_data->file_names[j];
3642
3643 if (filename_cmp (this_fullname, fullname) == 0)
3644 {
3645 dw2_instantiate_symtab (per_cu, false);
3646 break;
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 dw2_map_matching_symbols
3654 (struct objfile *objfile,
3655 const lookup_name_info &name, domain_enum domain,
3656 int global,
3657 gdb::function_view<symbol_found_callback_ftype> callback,
3658 symbol_compare_ftype *ordered_compare)
3659 {
3660 /* Used for Ada. */
3661 struct dwarf2_per_objfile *dwarf2_per_objfile
3662 = get_dwarf2_per_objfile (objfile);
3663
3664 if (dwarf2_per_objfile->index_table != nullptr)
3665 {
3666 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3667 here though if the current language is Ada for a non-Ada objfile
3668 using GNU index. As Ada does not look for non-Ada symbols this
3669 function should just return. */
3670 return;
3671 }
3672
3673 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3674 inline psym_map_matching_symbols here, assuming all partial symtabs have
3675 been read in. */
3676 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3677
3678 for (compunit_symtab *cust : objfile->compunits ())
3679 {
3680 const struct block *block;
3681
3682 if (cust == NULL)
3683 continue;
3684 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3685 if (!iterate_over_symbols_terminated (block, name,
3686 domain, callback))
3687 return;
3688 }
3689 }
3690
3691 /* Starting from a search name, return the string that finds the upper
3692 bound of all strings that start with SEARCH_NAME in a sorted name
3693 list. Returns the empty string to indicate that the upper bound is
3694 the end of the list. */
3695
3696 static std::string
3697 make_sort_after_prefix_name (const char *search_name)
3698 {
3699 /* When looking to complete "func", we find the upper bound of all
3700 symbols that start with "func" by looking for where we'd insert
3701 the closest string that would follow "func" in lexicographical
3702 order. Usually, that's "func"-with-last-character-incremented,
3703 i.e. "fund". Mind non-ASCII characters, though. Usually those
3704 will be UTF-8 multi-byte sequences, but we can't be certain.
3705 Especially mind the 0xff character, which is a valid character in
3706 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3707 rule out compilers allowing it in identifiers. Note that
3708 conveniently, strcmp/strcasecmp are specified to compare
3709 characters interpreted as unsigned char. So what we do is treat
3710 the whole string as a base 256 number composed of a sequence of
3711 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3712 to 0, and carries 1 to the following more-significant position.
3713 If the very first character in SEARCH_NAME ends up incremented
3714 and carries/overflows, then the upper bound is the end of the
3715 list. The string after the empty string is also the empty
3716 string.
3717
3718 Some examples of this operation:
3719
3720 SEARCH_NAME => "+1" RESULT
3721
3722 "abc" => "abd"
3723 "ab\xff" => "ac"
3724 "\xff" "a" "\xff" => "\xff" "b"
3725 "\xff" => ""
3726 "\xff\xff" => ""
3727 "" => ""
3728
3729 Then, with these symbols for example:
3730
3731 func
3732 func1
3733 fund
3734
3735 completing "func" looks for symbols between "func" and
3736 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3737 which finds "func" and "func1", but not "fund".
3738
3739 And with:
3740
3741 funcÿ (Latin1 'ÿ' [0xff])
3742 funcÿ1
3743 fund
3744
3745 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3746 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3747
3748 And with:
3749
3750 ÿÿ (Latin1 'ÿ' [0xff])
3751 ÿÿ1
3752
3753 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3754 the end of the list.
3755 */
3756 std::string after = search_name;
3757 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 after.pop_back ();
3759 if (!after.empty ())
3760 after.back () = (unsigned char) after.back () + 1;
3761 return after;
3762 }
3763
3764 /* See declaration. */
3765
3766 std::pair<std::vector<name_component>::const_iterator,
3767 std::vector<name_component>::const_iterator>
3768 mapped_index_base::find_name_components_bounds
3769 (const lookup_name_info &lookup_name_without_params, language lang) const
3770 {
3771 auto *name_cmp
3772 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773
3774 const char *lang_name
3775 = lookup_name_without_params.language_lookup_name (lang);
3776
3777 /* Comparison function object for lower_bound that matches against a
3778 given symbol name. */
3779 auto lookup_compare_lower = [&] (const name_component &elem,
3780 const char *name)
3781 {
3782 const char *elem_qualified = this->symbol_name_at (elem.idx);
3783 const char *elem_name = elem_qualified + elem.name_offset;
3784 return name_cmp (elem_name, name) < 0;
3785 };
3786
3787 /* Comparison function object for upper_bound that matches against a
3788 given symbol name. */
3789 auto lookup_compare_upper = [&] (const char *name,
3790 const name_component &elem)
3791 {
3792 const char *elem_qualified = this->symbol_name_at (elem.idx);
3793 const char *elem_name = elem_qualified + elem.name_offset;
3794 return name_cmp (name, elem_name) < 0;
3795 };
3796
3797 auto begin = this->name_components.begin ();
3798 auto end = this->name_components.end ();
3799
3800 /* Find the lower bound. */
3801 auto lower = [&] ()
3802 {
3803 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3804 return begin;
3805 else
3806 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3807 } ();
3808
3809 /* Find the upper bound. */
3810 auto upper = [&] ()
3811 {
3812 if (lookup_name_without_params.completion_mode ())
3813 {
3814 /* In completion mode, we want UPPER to point past all
3815 symbols names that have the same prefix. I.e., with
3816 these symbols, and completing "func":
3817
3818 function << lower bound
3819 function1
3820 other_function << upper bound
3821
3822 We find the upper bound by looking for the insertion
3823 point of "func"-with-last-character-incremented,
3824 i.e. "fund". */
3825 std::string after = make_sort_after_prefix_name (lang_name);
3826 if (after.empty ())
3827 return end;
3828 return std::lower_bound (lower, end, after.c_str (),
3829 lookup_compare_lower);
3830 }
3831 else
3832 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3833 } ();
3834
3835 return {lower, upper};
3836 }
3837
3838 /* See declaration. */
3839
3840 void
3841 mapped_index_base::build_name_components ()
3842 {
3843 if (!this->name_components.empty ())
3844 return;
3845
3846 this->name_components_casing = case_sensitivity;
3847 auto *name_cmp
3848 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849
3850 /* The code below only knows how to break apart components of C++
3851 symbol names (and other languages that use '::' as
3852 namespace/module separator) and Ada symbol names. */
3853 auto count = this->symbol_name_count ();
3854 for (offset_type idx = 0; idx < count; idx++)
3855 {
3856 if (this->symbol_name_slot_invalid (idx))
3857 continue;
3858
3859 const char *name = this->symbol_name_at (idx);
3860
3861 /* Add each name component to the name component table. */
3862 unsigned int previous_len = 0;
3863
3864 if (strstr (name, "::") != nullptr)
3865 {
3866 for (unsigned int current_len = cp_find_first_component (name);
3867 name[current_len] != '\0';
3868 current_len += cp_find_first_component (name + current_len))
3869 {
3870 gdb_assert (name[current_len] == ':');
3871 this->name_components.push_back ({previous_len, idx});
3872 /* Skip the '::'. */
3873 current_len += 2;
3874 previous_len = current_len;
3875 }
3876 }
3877 else
3878 {
3879 /* Handle the Ada encoded (aka mangled) form here. */
3880 for (const char *iter = strstr (name, "__");
3881 iter != nullptr;
3882 iter = strstr (iter, "__"))
3883 {
3884 this->name_components.push_back ({previous_len, idx});
3885 iter += 2;
3886 previous_len = iter - name;
3887 }
3888 }
3889
3890 this->name_components.push_back ({previous_len, idx});
3891 }
3892
3893 /* Sort name_components elements by name. */
3894 auto name_comp_compare = [&] (const name_component &left,
3895 const name_component &right)
3896 {
3897 const char *left_qualified = this->symbol_name_at (left.idx);
3898 const char *right_qualified = this->symbol_name_at (right.idx);
3899
3900 const char *left_name = left_qualified + left.name_offset;
3901 const char *right_name = right_qualified + right.name_offset;
3902
3903 return name_cmp (left_name, right_name) < 0;
3904 };
3905
3906 std::sort (this->name_components.begin (),
3907 this->name_components.end (),
3908 name_comp_compare);
3909 }
3910
3911 /* Helper for dw2_expand_symtabs_matching that works with a
3912 mapped_index_base instead of the containing objfile. This is split
3913 to a separate function in order to be able to unit test the
3914 name_components matching using a mock mapped_index_base. For each
3915 symbol name that matches, calls MATCH_CALLBACK, passing it the
3916 symbol's index in the mapped_index_base symbol table. */
3917
3918 static void
3919 dw2_expand_symtabs_matching_symbol
3920 (mapped_index_base &index,
3921 const lookup_name_info &lookup_name_in,
3922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3923 enum search_domain kind,
3924 gdb::function_view<bool (offset_type)> match_callback)
3925 {
3926 lookup_name_info lookup_name_without_params
3927 = lookup_name_in.make_ignore_params ();
3928
3929 /* Build the symbol name component sorted vector, if we haven't
3930 yet. */
3931 index.build_name_components ();
3932
3933 /* The same symbol may appear more than once in the range though.
3934 E.g., if we're looking for symbols that complete "w", and we have
3935 a symbol named "w1::w2", we'll find the two name components for
3936 that same symbol in the range. To be sure we only call the
3937 callback once per symbol, we first collect the symbol name
3938 indexes that matched in a temporary vector and ignore
3939 duplicates. */
3940 std::vector<offset_type> matches;
3941
3942 struct name_and_matcher
3943 {
3944 symbol_name_matcher_ftype *matcher;
3945 const char *name;
3946
3947 bool operator== (const name_and_matcher &other) const
3948 {
3949 return matcher == other.matcher && strcmp (name, other.name) == 0;
3950 }
3951 };
3952
3953 /* A vector holding all the different symbol name matchers, for all
3954 languages. */
3955 std::vector<name_and_matcher> matchers;
3956
3957 for (int i = 0; i < nr_languages; i++)
3958 {
3959 enum language lang_e = (enum language) i;
3960
3961 const language_defn *lang = language_def (lang_e);
3962 symbol_name_matcher_ftype *name_matcher
3963 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964
3965 name_and_matcher key {
3966 name_matcher,
3967 lookup_name_without_params.language_lookup_name (lang_e)
3968 };
3969
3970 /* Don't insert the same comparison routine more than once.
3971 Note that we do this linear walk. This is not a problem in
3972 practice because the number of supported languages is
3973 low. */
3974 if (std::find (matchers.begin (), matchers.end (), key)
3975 != matchers.end ())
3976 continue;
3977 matchers.push_back (std::move (key));
3978
3979 auto bounds
3980 = index.find_name_components_bounds (lookup_name_without_params,
3981 lang_e);
3982
3983 /* Now for each symbol name in range, check to see if we have a name
3984 match, and if so, call the MATCH_CALLBACK callback. */
3985
3986 for (; bounds.first != bounds.second; ++bounds.first)
3987 {
3988 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989
3990 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3991 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3992 continue;
3993
3994 matches.push_back (bounds.first->idx);
3995 }
3996 }
3997
3998 std::sort (matches.begin (), matches.end ());
3999
4000 /* Finally call the callback, once per match. */
4001 ULONGEST prev = -1;
4002 for (offset_type idx : matches)
4003 {
4004 if (prev != idx)
4005 {
4006 if (!match_callback (idx))
4007 break;
4008 prev = idx;
4009 }
4010 }
4011
4012 /* Above we use a type wider than idx's for 'prev', since 0 and
4013 (offset_type)-1 are both possible values. */
4014 static_assert (sizeof (prev) > sizeof (offset_type), "");
4015 }
4016
4017 #if GDB_SELF_TEST
4018
4019 namespace selftests { namespace dw2_expand_symtabs_matching {
4020
4021 /* A mock .gdb_index/.debug_names-like name index table, enough to
4022 exercise dw2_expand_symtabs_matching_symbol, which works with the
4023 mapped_index_base interface. Builds an index from the symbol list
4024 passed as parameter to the constructor. */
4025 class mock_mapped_index : public mapped_index_base
4026 {
4027 public:
4028 mock_mapped_index (gdb::array_view<const char *> symbols)
4029 : m_symbol_table (symbols)
4030 {}
4031
4032 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033
4034 /* Return the number of names in the symbol table. */
4035 size_t symbol_name_count () const override
4036 {
4037 return m_symbol_table.size ();
4038 }
4039
4040 /* Get the name of the symbol at IDX in the symbol table. */
4041 const char *symbol_name_at (offset_type idx) const override
4042 {
4043 return m_symbol_table[idx];
4044 }
4045
4046 private:
4047 gdb::array_view<const char *> m_symbol_table;
4048 };
4049
4050 /* Convenience function that converts a NULL pointer to a "<null>"
4051 string, to pass to print routines. */
4052
4053 static const char *
4054 string_or_null (const char *str)
4055 {
4056 return str != NULL ? str : "<null>";
4057 }
4058
4059 /* Check if a lookup_name_info built from
4060 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4061 index. EXPECTED_LIST is the list of expected matches, in expected
4062 matching order. If no match expected, then an empty list is
4063 specified. Returns true on success. On failure prints a warning
4064 indicating the file:line that failed, and returns false. */
4065
4066 static bool
4067 check_match (const char *file, int line,
4068 mock_mapped_index &mock_index,
4069 const char *name, symbol_name_match_type match_type,
4070 bool completion_mode,
4071 std::initializer_list<const char *> expected_list)
4072 {
4073 lookup_name_info lookup_name (name, match_type, completion_mode);
4074
4075 bool matched = true;
4076
4077 auto mismatch = [&] (const char *expected_str,
4078 const char *got)
4079 {
4080 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4081 "expected=\"%s\", got=\"%s\"\n"),
4082 file, line,
4083 (match_type == symbol_name_match_type::FULL
4084 ? "FULL" : "WILD"),
4085 name, string_or_null (expected_str), string_or_null (got));
4086 matched = false;
4087 };
4088
4089 auto expected_it = expected_list.begin ();
4090 auto expected_end = expected_list.end ();
4091
4092 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 NULL, ALL_DOMAIN,
4094 [&] (offset_type idx)
4095 {
4096 const char *matched_name = mock_index.symbol_name_at (idx);
4097 const char *expected_str
4098 = expected_it == expected_end ? NULL : *expected_it++;
4099
4100 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4101 mismatch (expected_str, matched_name);
4102 return true;
4103 });
4104
4105 const char *expected_str
4106 = expected_it == expected_end ? NULL : *expected_it++;
4107 if (expected_str != NULL)
4108 mismatch (expected_str, NULL);
4109
4110 return matched;
4111 }
4112
4113 /* The symbols added to the mock mapped_index for testing (in
4114 canonical form). */
4115 static const char *test_symbols[] = {
4116 "function",
4117 "std::bar",
4118 "std::zfunction",
4119 "std::zfunction2",
4120 "w1::w2",
4121 "ns::foo<char*>",
4122 "ns::foo<int>",
4123 "ns::foo<long>",
4124 "ns2::tmpl<int>::foo2",
4125 "(anonymous namespace)::A::B::C",
4126
4127 /* These are used to check that the increment-last-char in the
4128 matching algorithm for completion doesn't match "t1_fund" when
4129 completing "t1_func". */
4130 "t1_func",
4131 "t1_func1",
4132 "t1_fund",
4133 "t1_fund1",
4134
4135 /* A UTF-8 name with multi-byte sequences to make sure that
4136 cp-name-parser understands this as a single identifier ("função"
4137 is "function" in PT). */
4138 u8"u8função",
4139
4140 /* \377 (0xff) is Latin1 'ÿ'. */
4141 "yfunc\377",
4142
4143 /* \377 (0xff) is Latin1 'ÿ'. */
4144 "\377",
4145 "\377\377123",
4146
4147 /* A name with all sorts of complications. Starts with "z" to make
4148 it easier for the completion tests below. */
4149 #define Z_SYM_NAME \
4150 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4151 "::tuple<(anonymous namespace)::ui*, " \
4152 "std::default_delete<(anonymous namespace)::ui>, void>"
4153
4154 Z_SYM_NAME
4155 };
4156
4157 /* Returns true if the mapped_index_base::find_name_component_bounds
4158 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4159 in completion mode. */
4160
4161 static bool
4162 check_find_bounds_finds (mapped_index_base &index,
4163 const char *search_name,
4164 gdb::array_view<const char *> expected_syms)
4165 {
4166 lookup_name_info lookup_name (search_name,
4167 symbol_name_match_type::FULL, true);
4168
4169 auto bounds = index.find_name_components_bounds (lookup_name,
4170 language_cplus);
4171
4172 size_t distance = std::distance (bounds.first, bounds.second);
4173 if (distance != expected_syms.size ())
4174 return false;
4175
4176 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 {
4178 auto nc_elem = bounds.first + exp_elem;
4179 const char *qualified = index.symbol_name_at (nc_elem->idx);
4180 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4181 return false;
4182 }
4183
4184 return true;
4185 }
4186
4187 /* Test the lower-level mapped_index::find_name_component_bounds
4188 method. */
4189
4190 static void
4191 test_mapped_index_find_name_component_bounds ()
4192 {
4193 mock_mapped_index mock_index (test_symbols);
4194
4195 mock_index.build_name_components ();
4196
4197 /* Test the lower-level mapped_index::find_name_component_bounds
4198 method in completion mode. */
4199 {
4200 static const char *expected_syms[] = {
4201 "t1_func",
4202 "t1_func1",
4203 };
4204
4205 SELF_CHECK (check_find_bounds_finds (mock_index,
4206 "t1_func", expected_syms));
4207 }
4208
4209 /* Check that the increment-last-char in the name matching algorithm
4210 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 {
4212 static const char *expected_syms1[] = {
4213 "\377",
4214 "\377\377123",
4215 };
4216 SELF_CHECK (check_find_bounds_finds (mock_index,
4217 "\377", expected_syms1));
4218
4219 static const char *expected_syms2[] = {
4220 "\377\377123",
4221 };
4222 SELF_CHECK (check_find_bounds_finds (mock_index,
4223 "\377\377", expected_syms2));
4224 }
4225 }
4226
4227 /* Test dw2_expand_symtabs_matching_symbol. */
4228
4229 static void
4230 test_dw2_expand_symtabs_matching_symbol ()
4231 {
4232 mock_mapped_index mock_index (test_symbols);
4233
4234 /* We let all tests run until the end even if some fails, for debug
4235 convenience. */
4236 bool any_mismatch = false;
4237
4238 /* Create the expected symbols list (an initializer_list). Needed
4239 because lists have commas, and we need to pass them to CHECK,
4240 which is a macro. */
4241 #define EXPECT(...) { __VA_ARGS__ }
4242
4243 /* Wrapper for check_match that passes down the current
4244 __FILE__/__LINE__. */
4245 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4246 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 mock_index, \
4248 NAME, MATCH_TYPE, COMPLETION_MODE, \
4249 EXPECTED_LIST)
4250
4251 /* Identity checks. */
4252 for (const char *sym : test_symbols)
4253 {
4254 /* Should be able to match all existing symbols. */
4255 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4256 EXPECT (sym));
4257
4258 /* Should be able to match all existing symbols with
4259 parameters. */
4260 std::string with_params = std::string (sym) + "(int)";
4261 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4262 EXPECT (sym));
4263
4264 /* Should be able to match all existing symbols with
4265 parameters and qualifiers. */
4266 with_params = std::string (sym) + " ( int ) const";
4267 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4268 EXPECT (sym));
4269
4270 /* This should really find sym, but cp-name-parser.y doesn't
4271 know about lvalue/rvalue qualifiers yet. */
4272 with_params = std::string (sym) + " ( int ) &&";
4273 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4274 {});
4275 }
4276
4277 /* Check that the name matching algorithm for completion doesn't get
4278 confused with Latin1 'ÿ' / 0xff. */
4279 {
4280 static const char str[] = "\377";
4281 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4282 EXPECT ("\377", "\377\377123"));
4283 }
4284
4285 /* Check that the increment-last-char in the matching algorithm for
4286 completion doesn't match "t1_fund" when completing "t1_func". */
4287 {
4288 static const char str[] = "t1_func";
4289 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4290 EXPECT ("t1_func", "t1_func1"));
4291 }
4292
4293 /* Check that completion mode works at each prefix of the expected
4294 symbol name. */
4295 {
4296 static const char str[] = "function(int)";
4297 size_t len = strlen (str);
4298 std::string lookup;
4299
4300 for (size_t i = 1; i < len; i++)
4301 {
4302 lookup.assign (str, i);
4303 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4304 EXPECT ("function"));
4305 }
4306 }
4307
4308 /* While "w" is a prefix of both components, the match function
4309 should still only be called once. */
4310 {
4311 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 EXPECT ("w1::w2"));
4313 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4314 EXPECT ("w1::w2"));
4315 }
4316
4317 /* Same, with a "complicated" symbol. */
4318 {
4319 static const char str[] = Z_SYM_NAME;
4320 size_t len = strlen (str);
4321 std::string lookup;
4322
4323 for (size_t i = 1; i < len; i++)
4324 {
4325 lookup.assign (str, i);
4326 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4327 EXPECT (Z_SYM_NAME));
4328 }
4329 }
4330
4331 /* In FULL mode, an incomplete symbol doesn't match. */
4332 {
4333 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4334 {});
4335 }
4336
4337 /* A complete symbol with parameters matches any overload, since the
4338 index has no overload info. */
4339 {
4340 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4341 EXPECT ("std::zfunction", "std::zfunction2"));
4342 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 }
4347
4348 /* Check that whitespace is ignored appropriately. A symbol with a
4349 template argument list. */
4350 {
4351 static const char expected[] = "ns::foo<int>";
4352 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 EXPECT (expected));
4354 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4355 EXPECT (expected));
4356 }
4357
4358 /* Check that whitespace is ignored appropriately. A symbol with a
4359 template argument list that includes a pointer. */
4360 {
4361 static const char expected[] = "ns::foo<char*>";
4362 /* Try both completion and non-completion modes. */
4363 static const bool completion_mode[2] = {false, true};
4364 for (size_t i = 0; i < 2; i++)
4365 {
4366 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4367 completion_mode[i], EXPECT (expected));
4368 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4369 completion_mode[i], EXPECT (expected));
4370
4371 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4372 completion_mode[i], EXPECT (expected));
4373 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4374 completion_mode[i], EXPECT (expected));
4375 }
4376 }
4377
4378 {
4379 /* Check method qualifiers are ignored. */
4380 static const char expected[] = "ns::foo<char*>";
4381 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4382 symbol_name_match_type::FULL, true, EXPECT (expected));
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("foo < char * > ( int ) const",
4386 symbol_name_match_type::WILD, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) &&",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 }
4390
4391 /* Test lookup names that don't match anything. */
4392 {
4393 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4394 {});
4395
4396 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4397 {});
4398 }
4399
4400 /* Some wild matching tests, exercising "(anonymous namespace)",
4401 which should not be confused with a parameter list. */
4402 {
4403 static const char *syms[] = {
4404 "A::B::C",
4405 "B::C",
4406 "C",
4407 "A :: B :: C ( int )",
4408 "B :: C ( int )",
4409 "C ( int )",
4410 };
4411
4412 for (const char *s : syms)
4413 {
4414 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4415 EXPECT ("(anonymous namespace)::A::B::C"));
4416 }
4417 }
4418
4419 {
4420 static const char expected[] = "ns2::tmpl<int>::foo2";
4421 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 EXPECT (expected));
4423 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 }
4426
4427 SELF_CHECK (!any_mismatch);
4428
4429 #undef EXPECT
4430 #undef CHECK_MATCH
4431 }
4432
4433 static void
4434 run_test ()
4435 {
4436 test_mapped_index_find_name_component_bounds ();
4437 test_dw2_expand_symtabs_matching_symbol ();
4438 }
4439
4440 }} // namespace selftests::dw2_expand_symtabs_matching
4441
4442 #endif /* GDB_SELF_TEST */
4443
4444 /* If FILE_MATCHER is NULL or if PER_CU has
4445 dwarf2_per_cu_quick_data::MARK set (see
4446 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4447 EXPANSION_NOTIFY on it. */
4448
4449 static void
4450 dw2_expand_symtabs_matching_one
4451 (struct dwarf2_per_cu_data *per_cu,
4452 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4453 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 {
4455 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 {
4457 bool symtab_was_null
4458 = (per_cu->v.quick->compunit_symtab == NULL);
4459
4460 dw2_instantiate_symtab (per_cu, false);
4461
4462 if (expansion_notify != NULL
4463 && symtab_was_null
4464 && per_cu->v.quick->compunit_symtab != NULL)
4465 expansion_notify (per_cu->v.quick->compunit_symtab);
4466 }
4467 }
4468
4469 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4470 matched, to expand corresponding CUs that were marked. IDX is the
4471 index of the symbol name that matched. */
4472
4473 static void
4474 dw2_expand_marked_cus
4475 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4476 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4477 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4478 search_domain kind)
4479 {
4480 offset_type *vec, vec_len, vec_idx;
4481 bool global_seen = false;
4482 mapped_index &index = *dwarf2_per_objfile->index_table;
4483
4484 vec = (offset_type *) (index.constant_pool
4485 + MAYBE_SWAP (index.symbol_table[idx].vec));
4486 vec_len = MAYBE_SWAP (vec[0]);
4487 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 {
4489 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4490 /* This value is only valid for index versions >= 7. */
4491 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4492 gdb_index_symbol_kind symbol_kind =
4493 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4494 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4495 /* Only check the symbol attributes if they're present.
4496 Indices prior to version 7 don't record them,
4497 and indices >= 7 may elide them for certain symbols
4498 (gold does this). */
4499 int attrs_valid =
4500 (index.version >= 7
4501 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502
4503 /* Work around gold/15646. */
4504 if (attrs_valid)
4505 {
4506 if (!is_static && global_seen)
4507 continue;
4508 if (!is_static)
4509 global_seen = true;
4510 }
4511
4512 /* Only check the symbol's kind if it has one. */
4513 if (attrs_valid)
4514 {
4515 switch (kind)
4516 {
4517 case VARIABLES_DOMAIN:
4518 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4519 continue;
4520 break;
4521 case FUNCTIONS_DOMAIN:
4522 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4523 continue;
4524 break;
4525 case TYPES_DOMAIN:
4526 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4527 continue;
4528 break;
4529 case MODULES_DOMAIN:
4530 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4531 continue;
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* Don't crash on bad data. */
4539 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4540 + dwarf2_per_objfile->all_type_units.size ()))
4541 {
4542 complaint (_(".gdb_index entry has bad CU index"
4543 " [in module %s]"),
4544 objfile_name (dwarf2_per_objfile->objfile));
4545 continue;
4546 }
4547
4548 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4549 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4550 expansion_notify);
4551 }
4552 }
4553
4554 /* If FILE_MATCHER is non-NULL, set all the
4555 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4556 that match FILE_MATCHER. */
4557
4558 static void
4559 dw_expand_symtabs_matching_file_matcher
4560 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4561 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 {
4563 if (file_matcher == NULL)
4564 return;
4565
4566 objfile *const objfile = dwarf2_per_objfile->objfile;
4567
4568 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 htab_eq_pointer,
4570 NULL, xcalloc, xfree));
4571 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 htab_eq_pointer,
4573 NULL, xcalloc, xfree));
4574
4575 /* The rule is CUs specify all the files, including those used by
4576 any TU, so there's no need to scan TUs here. */
4577
4578 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4579 {
4580 QUIT;
4581
4582 per_cu->v.quick->mark = 0;
4583
4584 /* We only need to look at symtabs not already expanded. */
4585 if (per_cu->v.quick->compunit_symtab)
4586 continue;
4587
4588 quick_file_names *file_data = dw2_get_file_names (per_cu);
4589 if (file_data == NULL)
4590 continue;
4591
4592 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 continue;
4594 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 {
4596 per_cu->v.quick->mark = 1;
4597 continue;
4598 }
4599
4600 for (int j = 0; j < file_data->num_file_names; ++j)
4601 {
4602 const char *this_real_name;
4603
4604 if (file_matcher (file_data->file_names[j], false))
4605 {
4606 per_cu->v.quick->mark = 1;
4607 break;
4608 }
4609
4610 /* Before we invoke realpath, which can get expensive when many
4611 files are involved, do a quick comparison of the basenames. */
4612 if (!basenames_may_differ
4613 && !file_matcher (lbasename (file_data->file_names[j]),
4614 true))
4615 continue;
4616
4617 this_real_name = dw2_get_real_path (objfile, file_data, j);
4618 if (file_matcher (this_real_name, false))
4619 {
4620 per_cu->v.quick->mark = 1;
4621 break;
4622 }
4623 }
4624
4625 void **slot = htab_find_slot (per_cu->v.quick->mark
4626 ? visited_found.get ()
4627 : visited_not_found.get (),
4628 file_data, INSERT);
4629 *slot = file_data;
4630 }
4631 }
4632
4633 static void
4634 dw2_expand_symtabs_matching
4635 (struct objfile *objfile,
4636 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4637 const lookup_name_info *lookup_name,
4638 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4639 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4640 enum search_domain kind)
4641 {
4642 struct dwarf2_per_objfile *dwarf2_per_objfile
4643 = get_dwarf2_per_objfile (objfile);
4644
4645 /* index_table is NULL if OBJF_READNOW. */
4646 if (!dwarf2_per_objfile->index_table)
4647 return;
4648
4649 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650
4651 if (symbol_matcher == NULL && lookup_name == NULL)
4652 {
4653 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4654 {
4655 QUIT;
4656
4657 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4658 expansion_notify);
4659 }
4660 return;
4661 }
4662
4663 mapped_index &index = *dwarf2_per_objfile->index_table;
4664
4665 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4666 symbol_matcher,
4667 kind, [&] (offset_type idx)
4668 {
4669 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4670 expansion_notify, kind);
4671 return true;
4672 });
4673 }
4674
4675 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4676 symtab. */
4677
4678 static struct compunit_symtab *
4679 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4680 CORE_ADDR pc)
4681 {
4682 int i;
4683
4684 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4685 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4686 return cust;
4687
4688 if (cust->includes == NULL)
4689 return NULL;
4690
4691 for (i = 0; cust->includes[i]; ++i)
4692 {
4693 struct compunit_symtab *s = cust->includes[i];
4694
4695 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4696 if (s != NULL)
4697 return s;
4698 }
4699
4700 return NULL;
4701 }
4702
4703 static struct compunit_symtab *
4704 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4705 struct bound_minimal_symbol msymbol,
4706 CORE_ADDR pc,
4707 struct obj_section *section,
4708 int warn_if_readin)
4709 {
4710 struct dwarf2_per_cu_data *data;
4711 struct compunit_symtab *result;
4712
4713 if (!objfile->partial_symtabs->psymtabs_addrmap)
4714 return NULL;
4715
4716 CORE_ADDR baseaddr = objfile->text_section_offset ();
4717 data = (struct dwarf2_per_cu_data *) addrmap_find
4718 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4719 if (!data)
4720 return NULL;
4721
4722 if (warn_if_readin && data->v.quick->compunit_symtab)
4723 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4724 paddress (objfile->arch (), pc));
4725
4726 result
4727 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4728 false),
4729 pc);
4730 gdb_assert (result != NULL);
4731 return result;
4732 }
4733
4734 static void
4735 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4736 void *data, int need_fullname)
4737 {
4738 struct dwarf2_per_objfile *dwarf2_per_objfile
4739 = get_dwarf2_per_objfile (objfile);
4740
4741 if (!dwarf2_per_objfile->filenames_cache)
4742 {
4743 dwarf2_per_objfile->filenames_cache.emplace ();
4744
4745 htab_up visited (htab_create_alloc (10,
4746 htab_hash_pointer, htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748
4749 /* The rule is CUs specify all the files, including those used
4750 by any TU, so there's no need to scan TUs here. We can
4751 ignore file names coming from already-expanded CUs. */
4752
4753 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 {
4755 if (per_cu->v.quick->compunit_symtab)
4756 {
4757 void **slot = htab_find_slot (visited.get (),
4758 per_cu->v.quick->file_names,
4759 INSERT);
4760
4761 *slot = per_cu->v.quick->file_names;
4762 }
4763 }
4764
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4766 {
4767 /* We only need to look at symtabs not already expanded. */
4768 if (per_cu->v.quick->compunit_symtab)
4769 continue;
4770
4771 quick_file_names *file_data = dw2_get_file_names (per_cu);
4772 if (file_data == NULL)
4773 continue;
4774
4775 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4776 if (*slot)
4777 {
4778 /* Already visited. */
4779 continue;
4780 }
4781 *slot = file_data;
4782
4783 for (int j = 0; j < file_data->num_file_names; ++j)
4784 {
4785 const char *filename = file_data->file_names[j];
4786 dwarf2_per_objfile->filenames_cache->seen (filename);
4787 }
4788 }
4789 }
4790
4791 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4792 {
4793 gdb::unique_xmalloc_ptr<char> this_real_name;
4794
4795 if (need_fullname)
4796 this_real_name = gdb_realpath (filename);
4797 (*fun) (filename, this_real_name.get (), data);
4798 });
4799 }
4800
4801 static int
4802 dw2_has_symbols (struct objfile *objfile)
4803 {
4804 return 1;
4805 }
4806
4807 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4808 {
4809 dw2_has_symbols,
4810 dw2_find_last_source_symtab,
4811 dw2_forget_cached_source_info,
4812 dw2_map_symtabs_matching_filename,
4813 dw2_lookup_symbol,
4814 NULL,
4815 dw2_print_stats,
4816 dw2_dump,
4817 dw2_expand_symtabs_for_function,
4818 dw2_expand_all_symtabs,
4819 dw2_expand_symtabs_with_fullname,
4820 dw2_map_matching_symbols,
4821 dw2_expand_symtabs_matching,
4822 dw2_find_pc_sect_compunit_symtab,
4823 NULL,
4824 dw2_map_symbol_filenames
4825 };
4826
4827 /* DWARF-5 debug_names reader. */
4828
4829 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4830 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4831
4832 /* A helper function that reads the .debug_names section in SECTION
4833 and fills in MAP. FILENAME is the name of the file containing the
4834 section; it is used for error reporting.
4835
4836 Returns true if all went well, false otherwise. */
4837
4838 static bool
4839 read_debug_names_from_section (struct objfile *objfile,
4840 const char *filename,
4841 struct dwarf2_section_info *section,
4842 mapped_debug_names &map)
4843 {
4844 if (section->empty ())
4845 return false;
4846
4847 /* Older elfutils strip versions could keep the section in the main
4848 executable while splitting it for the separate debug info file. */
4849 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4850 return false;
4851
4852 section->read (objfile);
4853
4854 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4855
4856 const gdb_byte *addr = section->buffer;
4857
4858 bfd *const abfd = section->get_bfd_owner ();
4859
4860 unsigned int bytes_read;
4861 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4862 addr += bytes_read;
4863
4864 map.dwarf5_is_dwarf64 = bytes_read != 4;
4865 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4866 if (bytes_read + length != section->size)
4867 {
4868 /* There may be multiple per-CU indices. */
4869 warning (_("Section .debug_names in %s length %s does not match "
4870 "section length %s, ignoring .debug_names."),
4871 filename, plongest (bytes_read + length),
4872 pulongest (section->size));
4873 return false;
4874 }
4875
4876 /* The version number. */
4877 uint16_t version = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (version != 5)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported version %d, "
4882 "ignoring .debug_names."),
4883 filename, version);
4884 return false;
4885 }
4886
4887 /* Padding. */
4888 uint16_t padding = read_2_bytes (abfd, addr);
4889 addr += 2;
4890 if (padding != 0)
4891 {
4892 warning (_("Section .debug_names in %s has unsupported padding %d, "
4893 "ignoring .debug_names."),
4894 filename, padding);
4895 return false;
4896 }
4897
4898 /* comp_unit_count - The number of CUs in the CU list. */
4899 map.cu_count = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* local_type_unit_count - The number of TUs in the local TU
4903 list. */
4904 map.tu_count = read_4_bytes (abfd, addr);
4905 addr += 4;
4906
4907 /* foreign_type_unit_count - The number of TUs in the foreign TU
4908 list. */
4909 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4910 addr += 4;
4911 if (foreign_tu_count != 0)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4914 "ignoring .debug_names."),
4915 filename, static_cast<unsigned long> (foreign_tu_count));
4916 return false;
4917 }
4918
4919 /* bucket_count - The number of hash buckets in the hash lookup
4920 table. */
4921 map.bucket_count = read_4_bytes (abfd, addr);
4922 addr += 4;
4923
4924 /* name_count - The number of unique names in the index. */
4925 map.name_count = read_4_bytes (abfd, addr);
4926 addr += 4;
4927
4928 /* abbrev_table_size - The size in bytes of the abbreviations
4929 table. */
4930 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4931 addr += 4;
4932
4933 /* augmentation_string_size - The size in bytes of the augmentation
4934 string. This value is rounded up to a multiple of 4. */
4935 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4936 addr += 4;
4937 map.augmentation_is_gdb = ((augmentation_string_size
4938 == sizeof (dwarf5_augmentation))
4939 && memcmp (addr, dwarf5_augmentation,
4940 sizeof (dwarf5_augmentation)) == 0);
4941 augmentation_string_size += (-augmentation_string_size) & 3;
4942 addr += augmentation_string_size;
4943
4944 /* List of CUs */
4945 map.cu_table_reordered = addr;
4946 addr += map.cu_count * map.offset_size;
4947
4948 /* List of Local TUs */
4949 map.tu_table_reordered = addr;
4950 addr += map.tu_count * map.offset_size;
4951
4952 /* Hash Lookup Table */
4953 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4954 addr += map.bucket_count * 4;
4955 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4956 addr += map.name_count * 4;
4957
4958 /* Name Table */
4959 map.name_table_string_offs_reordered = addr;
4960 addr += map.name_count * map.offset_size;
4961 map.name_table_entry_offs_reordered = addr;
4962 addr += map.name_count * map.offset_size;
4963
4964 const gdb_byte *abbrev_table_start = addr;
4965 for (;;)
4966 {
4967 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4968 addr += bytes_read;
4969 if (index_num == 0)
4970 break;
4971
4972 const auto insertpair
4973 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4974 if (!insertpair.second)
4975 {
4976 warning (_("Section .debug_names in %s has duplicate index %s, "
4977 "ignoring .debug_names."),
4978 filename, pulongest (index_num));
4979 return false;
4980 }
4981 mapped_debug_names::index_val &indexval = insertpair.first->second;
4982 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4983 addr += bytes_read;
4984
4985 for (;;)
4986 {
4987 mapped_debug_names::index_val::attr attr;
4988 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4989 addr += bytes_read;
4990 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4991 addr += bytes_read;
4992 if (attr.form == DW_FORM_implicit_const)
4993 {
4994 attr.implicit_const = read_signed_leb128 (abfd, addr,
4995 &bytes_read);
4996 addr += bytes_read;
4997 }
4998 if (attr.dw_idx == 0 && attr.form == 0)
4999 break;
5000 indexval.attr_vec.push_back (std::move (attr));
5001 }
5002 }
5003 if (addr != abbrev_table_start + abbrev_table_size)
5004 {
5005 warning (_("Section .debug_names in %s has abbreviation_table "
5006 "of size %s vs. written as %u, ignoring .debug_names."),
5007 filename, plongest (addr - abbrev_table_start),
5008 abbrev_table_size);
5009 return false;
5010 }
5011 map.entry_pool = addr;
5012
5013 return true;
5014 }
5015
5016 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5017 list. */
5018
5019 static void
5020 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5021 const mapped_debug_names &map,
5022 dwarf2_section_info &section,
5023 bool is_dwz)
5024 {
5025 sect_offset sect_off_prev;
5026 for (uint32_t i = 0; i <= map.cu_count; ++i)
5027 {
5028 sect_offset sect_off_next;
5029 if (i < map.cu_count)
5030 {
5031 sect_off_next
5032 = (sect_offset) (extract_unsigned_integer
5033 (map.cu_table_reordered + i * map.offset_size,
5034 map.offset_size,
5035 map.dwarf5_byte_order));
5036 }
5037 else
5038 sect_off_next = (sect_offset) section.size;
5039 if (i >= 1)
5040 {
5041 const ULONGEST length = sect_off_next - sect_off_prev;
5042 dwarf2_per_cu_data *per_cu
5043 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5044 sect_off_prev, length);
5045 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5046 }
5047 sect_off_prev = sect_off_next;
5048 }
5049 }
5050
5051 /* Read the CU list from the mapped index, and use it to create all
5052 the CU objects for this dwarf2_per_objfile. */
5053
5054 static void
5055 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5056 const mapped_debug_names &map,
5057 const mapped_debug_names &dwz_map)
5058 {
5059 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5060 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5061
5062 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5063 dwarf2_per_objfile->info,
5064 false /* is_dwz */);
5065
5066 if (dwz_map.cu_count == 0)
5067 return;
5068
5069 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5070 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5071 true /* is_dwz */);
5072 }
5073
5074 /* Read .debug_names. If everything went ok, initialize the "quick"
5075 elements of all the CUs and return true. Otherwise, return false. */
5076
5077 static bool
5078 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5079 {
5080 std::unique_ptr<mapped_debug_names> map
5081 (new mapped_debug_names (dwarf2_per_objfile));
5082 mapped_debug_names dwz_map (dwarf2_per_objfile);
5083 struct objfile *objfile = dwarf2_per_objfile->objfile;
5084
5085 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5086 &dwarf2_per_objfile->debug_names,
5087 *map))
5088 return false;
5089
5090 /* Don't use the index if it's empty. */
5091 if (map->name_count == 0)
5092 return false;
5093
5094 /* If there is a .dwz file, read it so we can get its CU list as
5095 well. */
5096 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5097 if (dwz != NULL)
5098 {
5099 if (!read_debug_names_from_section (objfile,
5100 bfd_get_filename (dwz->dwz_bfd.get ()),
5101 &dwz->debug_names, dwz_map))
5102 {
5103 warning (_("could not read '.debug_names' section from %s; skipping"),
5104 bfd_get_filename (dwz->dwz_bfd.get ()));
5105 return false;
5106 }
5107 }
5108
5109 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5110
5111 if (map->tu_count != 0)
5112 {
5113 /* We can only handle a single .debug_types when we have an
5114 index. */
5115 if (dwarf2_per_objfile->types.size () != 1)
5116 return false;
5117
5118 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5119
5120 create_signatured_type_table_from_debug_names
5121 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5122 }
5123
5124 create_addrmap_from_aranges (dwarf2_per_objfile,
5125 &dwarf2_per_objfile->debug_aranges);
5126
5127 dwarf2_per_objfile->debug_names_table = std::move (map);
5128 dwarf2_per_objfile->using_index = 1;
5129 dwarf2_per_objfile->quick_file_names_table =
5130 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5131
5132 return true;
5133 }
5134
5135 /* Type used to manage iterating over all CUs looking for a symbol for
5136 .debug_names. */
5137
5138 class dw2_debug_names_iterator
5139 {
5140 public:
5141 dw2_debug_names_iterator (const mapped_debug_names &map,
5142 gdb::optional<block_enum> block_index,
5143 domain_enum domain,
5144 const char *name)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, name))
5147 {}
5148
5149 dw2_debug_names_iterator (const mapped_debug_names &map,
5150 search_domain search, uint32_t namei)
5151 : m_map (map),
5152 m_search (search),
5153 m_addr (find_vec_in_debug_names (map, namei))
5154 {}
5155
5156 dw2_debug_names_iterator (const mapped_debug_names &map,
5157 block_enum block_index, domain_enum domain,
5158 uint32_t namei)
5159 : m_map (map), m_block_index (block_index), m_domain (domain),
5160 m_addr (find_vec_in_debug_names (map, namei))
5161 {}
5162
5163 /* Return the next matching CU or NULL if there are no more. */
5164 dwarf2_per_cu_data *next ();
5165
5166 private:
5167 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5168 const char *name);
5169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5170 uint32_t namei);
5171
5172 /* The internalized form of .debug_names. */
5173 const mapped_debug_names &m_map;
5174
5175 /* If set, only look for symbols that match that block. Valid values are
5176 GLOBAL_BLOCK and STATIC_BLOCK. */
5177 const gdb::optional<block_enum> m_block_index;
5178
5179 /* The kind of symbol we're looking for. */
5180 const domain_enum m_domain = UNDEF_DOMAIN;
5181 const search_domain m_search = ALL_DOMAIN;
5182
5183 /* The list of CUs from the index entry of the symbol, or NULL if
5184 not found. */
5185 const gdb_byte *m_addr;
5186 };
5187
5188 const char *
5189 mapped_debug_names::namei_to_name (uint32_t namei) const
5190 {
5191 const ULONGEST namei_string_offs
5192 = extract_unsigned_integer ((name_table_string_offs_reordered
5193 + namei * offset_size),
5194 offset_size,
5195 dwarf5_byte_order);
5196 return read_indirect_string_at_offset (dwarf2_per_objfile,
5197 namei_string_offs);
5198 }
5199
5200 /* Find a slot in .debug_names for the object named NAME. If NAME is
5201 found, return pointer to its pool data. If NAME cannot be found,
5202 return NULL. */
5203
5204 const gdb_byte *
5205 dw2_debug_names_iterator::find_vec_in_debug_names
5206 (const mapped_debug_names &map, const char *name)
5207 {
5208 int (*cmp) (const char *, const char *);
5209
5210 gdb::unique_xmalloc_ptr<char> without_params;
5211 if (current_language->la_language == language_cplus
5212 || current_language->la_language == language_fortran
5213 || current_language->la_language == language_d)
5214 {
5215 /* NAME is already canonical. Drop any qualifiers as
5216 .debug_names does not contain any. */
5217
5218 if (strchr (name, '(') != NULL)
5219 {
5220 without_params = cp_remove_params (name);
5221 if (without_params != NULL)
5222 name = without_params.get ();
5223 }
5224 }
5225
5226 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5227
5228 const uint32_t full_hash = dwarf5_djb_hash (name);
5229 uint32_t namei
5230 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5231 (map.bucket_table_reordered
5232 + (full_hash % map.bucket_count)), 4,
5233 map.dwarf5_byte_order);
5234 if (namei == 0)
5235 return NULL;
5236 --namei;
5237 if (namei >= map.name_count)
5238 {
5239 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5240 "[in module %s]"),
5241 namei, map.name_count,
5242 objfile_name (map.dwarf2_per_objfile->objfile));
5243 return NULL;
5244 }
5245
5246 for (;;)
5247 {
5248 const uint32_t namei_full_hash
5249 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5250 (map.hash_table_reordered + namei), 4,
5251 map.dwarf5_byte_order);
5252 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5253 return NULL;
5254
5255 if (full_hash == namei_full_hash)
5256 {
5257 const char *const namei_string = map.namei_to_name (namei);
5258
5259 #if 0 /* An expensive sanity check. */
5260 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5261 {
5262 complaint (_("Wrong .debug_names hash for string at index %u "
5263 "[in module %s]"),
5264 namei, objfile_name (dwarf2_per_objfile->objfile));
5265 return NULL;
5266 }
5267 #endif
5268
5269 if (cmp (namei_string, name) == 0)
5270 {
5271 const ULONGEST namei_entry_offs
5272 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5273 + namei * map.offset_size),
5274 map.offset_size, map.dwarf5_byte_order);
5275 return map.entry_pool + namei_entry_offs;
5276 }
5277 }
5278
5279 ++namei;
5280 if (namei >= map.name_count)
5281 return NULL;
5282 }
5283 }
5284
5285 const gdb_byte *
5286 dw2_debug_names_iterator::find_vec_in_debug_names
5287 (const mapped_debug_names &map, uint32_t namei)
5288 {
5289 if (namei >= map.name_count)
5290 {
5291 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5292 "[in module %s]"),
5293 namei, map.name_count,
5294 objfile_name (map.dwarf2_per_objfile->objfile));
5295 return NULL;
5296 }
5297
5298 const ULONGEST namei_entry_offs
5299 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5300 + namei * map.offset_size),
5301 map.offset_size, map.dwarf5_byte_order);
5302 return map.entry_pool + namei_entry_offs;
5303 }
5304
5305 /* See dw2_debug_names_iterator. */
5306
5307 dwarf2_per_cu_data *
5308 dw2_debug_names_iterator::next ()
5309 {
5310 if (m_addr == NULL)
5311 return NULL;
5312
5313 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 bfd *const abfd = objfile->obfd;
5316
5317 again:
5318
5319 unsigned int bytes_read;
5320 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5321 m_addr += bytes_read;
5322 if (abbrev == 0)
5323 return NULL;
5324
5325 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5326 if (indexval_it == m_map.abbrev_map.cend ())
5327 {
5328 complaint (_("Wrong .debug_names undefined abbrev code %s "
5329 "[in module %s]"),
5330 pulongest (abbrev), objfile_name (objfile));
5331 return NULL;
5332 }
5333 const mapped_debug_names::index_val &indexval = indexval_it->second;
5334 enum class symbol_linkage {
5335 unknown,
5336 static_,
5337 extern_,
5338 } symbol_linkage_ = symbol_linkage::unknown;
5339 dwarf2_per_cu_data *per_cu = NULL;
5340 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5341 {
5342 ULONGEST ull;
5343 switch (attr.form)
5344 {
5345 case DW_FORM_implicit_const:
5346 ull = attr.implicit_const;
5347 break;
5348 case DW_FORM_flag_present:
5349 ull = 1;
5350 break;
5351 case DW_FORM_udata:
5352 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5353 m_addr += bytes_read;
5354 break;
5355 default:
5356 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5357 dwarf_form_name (attr.form),
5358 objfile_name (objfile));
5359 return NULL;
5360 }
5361 switch (attr.dw_idx)
5362 {
5363 case DW_IDX_compile_unit:
5364 /* Don't crash on bad data. */
5365 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5366 {
5367 complaint (_(".debug_names entry has bad CU index %s"
5368 " [in module %s]"),
5369 pulongest (ull),
5370 objfile_name (dwarf2_per_objfile->objfile));
5371 continue;
5372 }
5373 per_cu = dwarf2_per_objfile->get_cutu (ull);
5374 break;
5375 case DW_IDX_type_unit:
5376 /* Don't crash on bad data. */
5377 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5378 {
5379 complaint (_(".debug_names entry has bad TU index %s"
5380 " [in module %s]"),
5381 pulongest (ull),
5382 objfile_name (dwarf2_per_objfile->objfile));
5383 continue;
5384 }
5385 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5386 break;
5387 case DW_IDX_GNU_internal:
5388 if (!m_map.augmentation_is_gdb)
5389 break;
5390 symbol_linkage_ = symbol_linkage::static_;
5391 break;
5392 case DW_IDX_GNU_external:
5393 if (!m_map.augmentation_is_gdb)
5394 break;
5395 symbol_linkage_ = symbol_linkage::extern_;
5396 break;
5397 }
5398 }
5399
5400 /* Skip if already read in. */
5401 if (per_cu->v.quick->compunit_symtab)
5402 goto again;
5403
5404 /* Check static vs global. */
5405 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5406 {
5407 const bool want_static = *m_block_index == STATIC_BLOCK;
5408 const bool symbol_is_static =
5409 symbol_linkage_ == symbol_linkage::static_;
5410 if (want_static != symbol_is_static)
5411 goto again;
5412 }
5413
5414 /* Match dw2_symtab_iter_next, symbol_kind
5415 and debug_names::psymbol_tag. */
5416 switch (m_domain)
5417 {
5418 case VAR_DOMAIN:
5419 switch (indexval.dwarf_tag)
5420 {
5421 case DW_TAG_variable:
5422 case DW_TAG_subprogram:
5423 /* Some types are also in VAR_DOMAIN. */
5424 case DW_TAG_typedef:
5425 case DW_TAG_structure_type:
5426 break;
5427 default:
5428 goto again;
5429 }
5430 break;
5431 case STRUCT_DOMAIN:
5432 switch (indexval.dwarf_tag)
5433 {
5434 case DW_TAG_typedef:
5435 case DW_TAG_structure_type:
5436 break;
5437 default:
5438 goto again;
5439 }
5440 break;
5441 case LABEL_DOMAIN:
5442 switch (indexval.dwarf_tag)
5443 {
5444 case 0:
5445 case DW_TAG_variable:
5446 break;
5447 default:
5448 goto again;
5449 }
5450 break;
5451 case MODULE_DOMAIN:
5452 switch (indexval.dwarf_tag)
5453 {
5454 case DW_TAG_module:
5455 break;
5456 default:
5457 goto again;
5458 }
5459 break;
5460 default:
5461 break;
5462 }
5463
5464 /* Match dw2_expand_symtabs_matching, symbol_kind and
5465 debug_names::psymbol_tag. */
5466 switch (m_search)
5467 {
5468 case VARIABLES_DOMAIN:
5469 switch (indexval.dwarf_tag)
5470 {
5471 case DW_TAG_variable:
5472 break;
5473 default:
5474 goto again;
5475 }
5476 break;
5477 case FUNCTIONS_DOMAIN:
5478 switch (indexval.dwarf_tag)
5479 {
5480 case DW_TAG_subprogram:
5481 break;
5482 default:
5483 goto again;
5484 }
5485 break;
5486 case TYPES_DOMAIN:
5487 switch (indexval.dwarf_tag)
5488 {
5489 case DW_TAG_typedef:
5490 case DW_TAG_structure_type:
5491 break;
5492 default:
5493 goto again;
5494 }
5495 break;
5496 case MODULES_DOMAIN:
5497 switch (indexval.dwarf_tag)
5498 {
5499 case DW_TAG_module:
5500 break;
5501 default:
5502 goto again;
5503 }
5504 default:
5505 break;
5506 }
5507
5508 return per_cu;
5509 }
5510
5511 static struct compunit_symtab *
5512 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5513 const char *name, domain_enum domain)
5514 {
5515 struct dwarf2_per_objfile *dwarf2_per_objfile
5516 = get_dwarf2_per_objfile (objfile);
5517
5518 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5519 if (!mapp)
5520 {
5521 /* index is NULL if OBJF_READNOW. */
5522 return NULL;
5523 }
5524 const auto &map = *mapp;
5525
5526 dw2_debug_names_iterator iter (map, block_index, domain, name);
5527
5528 struct compunit_symtab *stab_best = NULL;
5529 struct dwarf2_per_cu_data *per_cu;
5530 while ((per_cu = iter.next ()) != NULL)
5531 {
5532 struct symbol *sym, *with_opaque = NULL;
5533 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5534 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5535 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5536
5537 sym = block_find_symbol (block, name, domain,
5538 block_find_non_opaque_type_preferred,
5539 &with_opaque);
5540
5541 /* Some caution must be observed with overloaded functions and
5542 methods, since the index will not contain any overload
5543 information (but NAME might contain it). */
5544
5545 if (sym != NULL
5546 && strcmp_iw (sym->search_name (), name) == 0)
5547 return stab;
5548 if (with_opaque != NULL
5549 && strcmp_iw (with_opaque->search_name (), name) == 0)
5550 stab_best = stab;
5551
5552 /* Keep looking through other CUs. */
5553 }
5554
5555 return stab_best;
5556 }
5557
5558 /* This dumps minimal information about .debug_names. It is called
5559 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5560 uses this to verify that .debug_names has been loaded. */
5561
5562 static void
5563 dw2_debug_names_dump (struct objfile *objfile)
5564 {
5565 struct dwarf2_per_objfile *dwarf2_per_objfile
5566 = get_dwarf2_per_objfile (objfile);
5567
5568 gdb_assert (dwarf2_per_objfile->using_index);
5569 printf_filtered (".debug_names:");
5570 if (dwarf2_per_objfile->debug_names_table)
5571 printf_filtered (" exists\n");
5572 else
5573 printf_filtered (" faked for \"readnow\"\n");
5574 printf_filtered ("\n");
5575 }
5576
5577 static void
5578 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5579 const char *func_name)
5580 {
5581 struct dwarf2_per_objfile *dwarf2_per_objfile
5582 = get_dwarf2_per_objfile (objfile);
5583
5584 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5585 if (dwarf2_per_objfile->debug_names_table)
5586 {
5587 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5588
5589 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5590
5591 struct dwarf2_per_cu_data *per_cu;
5592 while ((per_cu = iter.next ()) != NULL)
5593 dw2_instantiate_symtab (per_cu, false);
5594 }
5595 }
5596
5597 static void
5598 dw2_debug_names_map_matching_symbols
5599 (struct objfile *objfile,
5600 const lookup_name_info &name, domain_enum domain,
5601 int global,
5602 gdb::function_view<symbol_found_callback_ftype> callback,
5603 symbol_compare_ftype *ordered_compare)
5604 {
5605 struct dwarf2_per_objfile *dwarf2_per_objfile
5606 = get_dwarf2_per_objfile (objfile);
5607
5608 /* debug_names_table is NULL if OBJF_READNOW. */
5609 if (!dwarf2_per_objfile->debug_names_table)
5610 return;
5611
5612 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5613 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5614
5615 const char *match_name = name.ada ().lookup_name ().c_str ();
5616 auto matcher = [&] (const char *symname)
5617 {
5618 if (ordered_compare == nullptr)
5619 return true;
5620 return ordered_compare (symname, match_name) == 0;
5621 };
5622
5623 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5624 [&] (offset_type namei)
5625 {
5626 /* The name was matched, now expand corresponding CUs that were
5627 marked. */
5628 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5629
5630 struct dwarf2_per_cu_data *per_cu;
5631 while ((per_cu = iter.next ()) != NULL)
5632 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5633 return true;
5634 });
5635
5636 /* It's a shame we couldn't do this inside the
5637 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5638 that have already been expanded. Instead, this loop matches what
5639 the psymtab code does. */
5640 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5641 {
5642 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5643 if (cust != nullptr)
5644 {
5645 const struct block *block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5647 if (!iterate_over_symbols_terminated (block, name,
5648 domain, callback))
5649 break;
5650 }
5651 }
5652 }
5653
5654 static void
5655 dw2_debug_names_expand_symtabs_matching
5656 (struct objfile *objfile,
5657 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5658 const lookup_name_info *lookup_name,
5659 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5660 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5661 enum search_domain kind)
5662 {
5663 struct dwarf2_per_objfile *dwarf2_per_objfile
5664 = get_dwarf2_per_objfile (objfile);
5665
5666 /* debug_names_table is NULL if OBJF_READNOW. */
5667 if (!dwarf2_per_objfile->debug_names_table)
5668 return;
5669
5670 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5671
5672 if (symbol_matcher == NULL && lookup_name == NULL)
5673 {
5674 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5675 {
5676 QUIT;
5677
5678 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5679 expansion_notify);
5680 }
5681 return;
5682 }
5683
5684 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5685
5686 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5687 symbol_matcher,
5688 kind, [&] (offset_type namei)
5689 {
5690 /* The name was matched, now expand corresponding CUs that were
5691 marked. */
5692 dw2_debug_names_iterator iter (map, kind, namei);
5693
5694 struct dwarf2_per_cu_data *per_cu;
5695 while ((per_cu = iter.next ()) != NULL)
5696 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5697 expansion_notify);
5698 return true;
5699 });
5700 }
5701
5702 const struct quick_symbol_functions dwarf2_debug_names_functions =
5703 {
5704 dw2_has_symbols,
5705 dw2_find_last_source_symtab,
5706 dw2_forget_cached_source_info,
5707 dw2_map_symtabs_matching_filename,
5708 dw2_debug_names_lookup_symbol,
5709 NULL,
5710 dw2_print_stats,
5711 dw2_debug_names_dump,
5712 dw2_debug_names_expand_symtabs_for_function,
5713 dw2_expand_all_symtabs,
5714 dw2_expand_symtabs_with_fullname,
5715 dw2_debug_names_map_matching_symbols,
5716 dw2_debug_names_expand_symtabs_matching,
5717 dw2_find_pc_sect_compunit_symtab,
5718 NULL,
5719 dw2_map_symbol_filenames
5720 };
5721
5722 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5723 to either a dwarf2_per_objfile or dwz_file object. */
5724
5725 template <typename T>
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5728 {
5729 dwarf2_section_info *section = &section_owner->gdb_index;
5730
5731 if (section->empty ())
5732 return {};
5733
5734 /* Older elfutils strip versions could keep the section in the main
5735 executable while splitting it for the separate debug info file. */
5736 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5737 return {};
5738
5739 section->read (obj);
5740
5741 /* dwarf2_section_info::size is a bfd_size_type, while
5742 gdb::array_view works with size_t. On 32-bit hosts, with
5743 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5744 is 32-bit. So we need an explicit narrowing conversion here.
5745 This is fine, because it's impossible to allocate or mmap an
5746 array/buffer larger than what size_t can represent. */
5747 return gdb::make_array_view (section->buffer, section->size);
5748 }
5749
5750 /* Lookup the index cache for the contents of the index associated to
5751 DWARF2_OBJ. */
5752
5753 static gdb::array_view<const gdb_byte>
5754 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5755 {
5756 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5757 if (build_id == nullptr)
5758 return {};
5759
5760 return global_index_cache.lookup_gdb_index (build_id,
5761 &dwarf2_obj->index_cache_res);
5762 }
5763
5764 /* Same as the above, but for DWZ. */
5765
5766 static gdb::array_view<const gdb_byte>
5767 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5768 {
5769 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5770 if (build_id == nullptr)
5771 return {};
5772
5773 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5774 }
5775
5776 /* See symfile.h. */
5777
5778 bool
5779 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5780 {
5781 struct dwarf2_per_objfile *dwarf2_per_objfile
5782 = get_dwarf2_per_objfile (objfile);
5783
5784 /* If we're about to read full symbols, don't bother with the
5785 indices. In this case we also don't care if some other debug
5786 format is making psymtabs, because they are all about to be
5787 expanded anyway. */
5788 if ((objfile->flags & OBJF_READNOW))
5789 {
5790 dwarf2_per_objfile->using_index = 1;
5791 create_all_comp_units (dwarf2_per_objfile);
5792 create_all_type_units (dwarf2_per_objfile);
5793 dwarf2_per_objfile->quick_file_names_table
5794 = create_quick_file_names_table
5795 (dwarf2_per_objfile->all_comp_units.size ());
5796
5797 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5798 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5799 {
5800 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5801
5802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5803 struct dwarf2_per_cu_quick_data);
5804 }
5805
5806 /* Return 1 so that gdb sees the "quick" functions. However,
5807 these functions will be no-ops because we will have expanded
5808 all symtabs. */
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5814 {
5815 *index_kind = dw_index_kind::DEBUG_NAMES;
5816 return true;
5817 }
5818
5819 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5820 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5821 get_gdb_index_contents_from_section<dwz_file>))
5822 {
5823 *index_kind = dw_index_kind::GDB_INDEX;
5824 return true;
5825 }
5826
5827 /* ... otherwise, try to find the index in the index cache. */
5828 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5829 get_gdb_index_contents_from_cache,
5830 get_gdb_index_contents_from_cache_dwz))
5831 {
5832 global_index_cache.hit ();
5833 *index_kind = dw_index_kind::GDB_INDEX;
5834 return true;
5835 }
5836
5837 global_index_cache.miss ();
5838 return false;
5839 }
5840
5841 \f
5842
5843 /* Build a partial symbol table. */
5844
5845 void
5846 dwarf2_build_psymtabs (struct objfile *objfile)
5847 {
5848 struct dwarf2_per_objfile *dwarf2_per_objfile
5849 = get_dwarf2_per_objfile (objfile);
5850
5851 init_psymbol_list (objfile, 1024);
5852
5853 try
5854 {
5855 /* This isn't really ideal: all the data we allocate on the
5856 objfile's obstack is still uselessly kept around. However,
5857 freeing it seems unsafe. */
5858 psymtab_discarder psymtabs (objfile);
5859 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5860 psymtabs.keep ();
5861
5862 /* (maybe) store an index in the cache. */
5863 global_index_cache.store (dwarf2_per_objfile);
5864 }
5865 catch (const gdb_exception_error &except)
5866 {
5867 exception_print (gdb_stderr, except);
5868 }
5869 }
5870
5871 /* Find the base address of the compilation unit for range lists and
5872 location lists. It will normally be specified by DW_AT_low_pc.
5873 In DWARF-3 draft 4, the base address could be overridden by
5874 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5875 compilation units with discontinuous ranges. */
5876
5877 static void
5878 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5879 {
5880 struct attribute *attr;
5881
5882 cu->base_address.reset ();
5883
5884 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5885 if (attr != nullptr)
5886 cu->base_address = attr->value_as_address ();
5887 else
5888 {
5889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5890 if (attr != nullptr)
5891 cu->base_address = attr->value_as_address ();
5892 }
5893 }
5894
5895 /* Helper function that returns the proper abbrev section for
5896 THIS_CU. */
5897
5898 static struct dwarf2_section_info *
5899 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5900 {
5901 struct dwarf2_section_info *abbrev;
5902 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5903
5904 if (this_cu->is_dwz)
5905 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5906 else
5907 abbrev = &dwarf2_per_objfile->abbrev;
5908
5909 return abbrev;
5910 }
5911
5912 /* Fetch the abbreviation table offset from a comp or type unit header. */
5913
5914 static sect_offset
5915 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5916 struct dwarf2_section_info *section,
5917 sect_offset sect_off)
5918 {
5919 bfd *abfd = section->get_bfd_owner ();
5920 const gdb_byte *info_ptr;
5921 unsigned int initial_length_size, offset_size;
5922 uint16_t version;
5923
5924 section->read (dwarf2_per_objfile->objfile);
5925 info_ptr = section->buffer + to_underlying (sect_off);
5926 read_initial_length (abfd, info_ptr, &initial_length_size);
5927 offset_size = initial_length_size == 4 ? 4 : 8;
5928 info_ptr += initial_length_size;
5929
5930 version = read_2_bytes (abfd, info_ptr);
5931 info_ptr += 2;
5932 if (version >= 5)
5933 {
5934 /* Skip unit type and address size. */
5935 info_ptr += 2;
5936 }
5937
5938 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5939 }
5940
5941 /* A partial symtab that is used only for include files. */
5942 struct dwarf2_include_psymtab : public partial_symtab
5943 {
5944 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5945 : partial_symtab (filename, objfile)
5946 {
5947 }
5948
5949 void read_symtab (struct objfile *objfile) override
5950 {
5951 /* It's an include file, no symbols to read for it.
5952 Everything is in the includer symtab. */
5953
5954 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5955 expansion of the includer psymtab. We use the dependencies[0] field to
5956 model the includer. But if we go the regular route of calling
5957 expand_psymtab here, and having expand_psymtab call expand_dependencies
5958 to expand the includer, we'll only use expand_psymtab on the includer
5959 (making it a non-toplevel psymtab), while if we expand the includer via
5960 another path, we'll use read_symtab (making it a toplevel psymtab).
5961 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5962 psymtab, and trigger read_symtab on the includer here directly. */
5963 includer ()->read_symtab (objfile);
5964 }
5965
5966 void expand_psymtab (struct objfile *objfile) override
5967 {
5968 /* This is not called by read_symtab, and should not be called by any
5969 expand_dependencies. */
5970 gdb_assert (false);
5971 }
5972
5973 bool readin_p () const override
5974 {
5975 return includer ()->readin_p ();
5976 }
5977
5978 struct compunit_symtab *get_compunit_symtab () const override
5979 {
5980 return nullptr;
5981 }
5982
5983 private:
5984 partial_symtab *includer () const
5985 {
5986 /* An include psymtab has exactly one dependency: the psymtab that
5987 includes it. */
5988 gdb_assert (this->number_of_dependencies == 1);
5989 return this->dependencies[0];
5990 }
5991 };
5992
5993 /* Allocate a new partial symtab for file named NAME and mark this new
5994 partial symtab as being an include of PST. */
5995
5996 static void
5997 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5998 struct objfile *objfile)
5999 {
6000 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6001
6002 if (!IS_ABSOLUTE_PATH (subpst->filename))
6003 {
6004 /* It shares objfile->objfile_obstack. */
6005 subpst->dirname = pst->dirname;
6006 }
6007
6008 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6009 subpst->dependencies[0] = pst;
6010 subpst->number_of_dependencies = 1;
6011 }
6012
6013 /* Read the Line Number Program data and extract the list of files
6014 included by the source file represented by PST. Build an include
6015 partial symtab for each of these included files. */
6016
6017 static void
6018 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6019 struct die_info *die,
6020 dwarf2_psymtab *pst)
6021 {
6022 line_header_up lh;
6023 struct attribute *attr;
6024
6025 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6026 if (attr != nullptr)
6027 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6028 if (lh == NULL)
6029 return; /* No linetable, so no includes. */
6030
6031 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6032 that we pass in the raw text_low here; that is ok because we're
6033 only decoding the line table to make include partial symtabs, and
6034 so the addresses aren't really used. */
6035 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6036 pst->raw_text_low (), 1);
6037 }
6038
6039 static hashval_t
6040 hash_signatured_type (const void *item)
6041 {
6042 const struct signatured_type *sig_type
6043 = (const struct signatured_type *) item;
6044
6045 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6046 return sig_type->signature;
6047 }
6048
6049 static int
6050 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6051 {
6052 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6053 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6054
6055 return lhs->signature == rhs->signature;
6056 }
6057
6058 /* Allocate a hash table for signatured types. */
6059
6060 static htab_up
6061 allocate_signatured_type_table ()
6062 {
6063 return htab_up (htab_create_alloc (41,
6064 hash_signatured_type,
6065 eq_signatured_type,
6066 NULL, xcalloc, xfree));
6067 }
6068
6069 /* A helper function to add a signatured type CU to a table. */
6070
6071 static int
6072 add_signatured_type_cu_to_table (void **slot, void *datum)
6073 {
6074 struct signatured_type *sigt = (struct signatured_type *) *slot;
6075 std::vector<signatured_type *> *all_type_units
6076 = (std::vector<signatured_type *> *) datum;
6077
6078 all_type_units->push_back (sigt);
6079
6080 return 1;
6081 }
6082
6083 /* A helper for create_debug_types_hash_table. Read types from SECTION
6084 and fill them into TYPES_HTAB. It will process only type units,
6085 therefore DW_UT_type. */
6086
6087 static void
6088 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6089 struct dwo_file *dwo_file,
6090 dwarf2_section_info *section, htab_up &types_htab,
6091 rcuh_kind section_kind)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_section_info *abbrev_section;
6095 bfd *abfd;
6096 const gdb_byte *info_ptr, *end_ptr;
6097
6098 abbrev_section = (dwo_file != NULL
6099 ? &dwo_file->sections.abbrev
6100 : &dwarf2_per_objfile->abbrev);
6101
6102 if (dwarf_read_debug)
6103 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6104 section->get_name (),
6105 abbrev_section->get_file_name ());
6106
6107 section->read (objfile);
6108 info_ptr = section->buffer;
6109
6110 if (info_ptr == NULL)
6111 return;
6112
6113 /* We can't set abfd until now because the section may be empty or
6114 not present, in which case the bfd is unknown. */
6115 abfd = section->get_bfd_owner ();
6116
6117 /* We don't use cutu_reader here because we don't need to read
6118 any dies: the signature is in the header. */
6119
6120 end_ptr = info_ptr + section->size;
6121 while (info_ptr < end_ptr)
6122 {
6123 struct signatured_type *sig_type;
6124 struct dwo_unit *dwo_tu;
6125 void **slot;
6126 const gdb_byte *ptr = info_ptr;
6127 struct comp_unit_head header;
6128 unsigned int length;
6129
6130 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6131
6132 /* Initialize it due to a false compiler warning. */
6133 header.signature = -1;
6134 header.type_cu_offset_in_tu = (cu_offset) -1;
6135
6136 /* We need to read the type's signature in order to build the hash
6137 table, but we don't need anything else just yet. */
6138
6139 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6140 abbrev_section, ptr, section_kind);
6141
6142 length = header.get_length ();
6143
6144 /* Skip dummy type units. */
6145 if (ptr >= info_ptr + length
6146 || peek_abbrev_code (abfd, ptr) == 0
6147 || header.unit_type != DW_UT_type)
6148 {
6149 info_ptr += length;
6150 continue;
6151 }
6152
6153 if (types_htab == NULL)
6154 {
6155 if (dwo_file)
6156 types_htab = allocate_dwo_unit_table ();
6157 else
6158 types_htab = allocate_signatured_type_table ();
6159 }
6160
6161 if (dwo_file)
6162 {
6163 sig_type = NULL;
6164 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6165 struct dwo_unit);
6166 dwo_tu->dwo_file = dwo_file;
6167 dwo_tu->signature = header.signature;
6168 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6169 dwo_tu->section = section;
6170 dwo_tu->sect_off = sect_off;
6171 dwo_tu->length = length;
6172 }
6173 else
6174 {
6175 /* N.B.: type_offset is not usable if this type uses a DWO file.
6176 The real type_offset is in the DWO file. */
6177 dwo_tu = NULL;
6178 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6179 struct signatured_type);
6180 sig_type->signature = header.signature;
6181 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6182 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6183 sig_type->per_cu.is_debug_types = 1;
6184 sig_type->per_cu.section = section;
6185 sig_type->per_cu.sect_off = sect_off;
6186 sig_type->per_cu.length = length;
6187 }
6188
6189 slot = htab_find_slot (types_htab.get (),
6190 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6191 INSERT);
6192 gdb_assert (slot != NULL);
6193 if (*slot != NULL)
6194 {
6195 sect_offset dup_sect_off;
6196
6197 if (dwo_file)
6198 {
6199 const struct dwo_unit *dup_tu
6200 = (const struct dwo_unit *) *slot;
6201
6202 dup_sect_off = dup_tu->sect_off;
6203 }
6204 else
6205 {
6206 const struct signatured_type *dup_tu
6207 = (const struct signatured_type *) *slot;
6208
6209 dup_sect_off = dup_tu->per_cu.sect_off;
6210 }
6211
6212 complaint (_("debug type entry at offset %s is duplicate to"
6213 " the entry at offset %s, signature %s"),
6214 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6215 hex_string (header.signature));
6216 }
6217 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6218
6219 if (dwarf_read_debug > 1)
6220 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6221 sect_offset_str (sect_off),
6222 hex_string (header.signature));
6223
6224 info_ptr += length;
6225 }
6226 }
6227
6228 /* Create the hash table of all entries in the .debug_types
6229 (or .debug_types.dwo) section(s).
6230 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6231 otherwise it is NULL.
6232
6233 The result is a pointer to the hash table or NULL if there are no types.
6234
6235 Note: This function processes DWO files only, not DWP files. */
6236
6237 static void
6238 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6239 struct dwo_file *dwo_file,
6240 gdb::array_view<dwarf2_section_info> type_sections,
6241 htab_up &types_htab)
6242 {
6243 for (dwarf2_section_info &section : type_sections)
6244 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6245 types_htab, rcuh_kind::TYPE);
6246 }
6247
6248 /* Create the hash table of all entries in the .debug_types section,
6249 and initialize all_type_units.
6250 The result is zero if there is an error (e.g. missing .debug_types section),
6251 otherwise non-zero. */
6252
6253 static int
6254 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6255 {
6256 htab_up types_htab;
6257
6258 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6259 &dwarf2_per_objfile->info, types_htab,
6260 rcuh_kind::COMPILE);
6261 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6262 dwarf2_per_objfile->types, types_htab);
6263 if (types_htab == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types = NULL;
6266 return 0;
6267 }
6268
6269 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6270
6271 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6272 dwarf2_per_objfile->all_type_units.reserve
6273 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6274
6275 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6276 add_signatured_type_cu_to_table,
6277 &dwarf2_per_objfile->all_type_units);
6278
6279 return 1;
6280 }
6281
6282 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6283 If SLOT is non-NULL, it is the entry to use in the hash table.
6284 Otherwise we find one. */
6285
6286 static struct signatured_type *
6287 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6288 void **slot)
6289 {
6290 struct objfile *objfile = dwarf2_per_objfile->objfile;
6291
6292 if (dwarf2_per_objfile->all_type_units.size ()
6293 == dwarf2_per_objfile->all_type_units.capacity ())
6294 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6295
6296 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6297 struct signatured_type);
6298
6299 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6300 sig_type->signature = sig;
6301 sig_type->per_cu.is_debug_types = 1;
6302 if (dwarf2_per_objfile->using_index)
6303 {
6304 sig_type->per_cu.v.quick =
6305 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6306 struct dwarf2_per_cu_quick_data);
6307 }
6308
6309 if (slot == NULL)
6310 {
6311 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6312 sig_type, INSERT);
6313 }
6314 gdb_assert (*slot == NULL);
6315 *slot = sig_type;
6316 /* The rest of sig_type must be filled in by the caller. */
6317 return sig_type;
6318 }
6319
6320 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6321 Fill in SIG_ENTRY with DWO_ENTRY. */
6322
6323 static void
6324 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6325 struct signatured_type *sig_entry,
6326 struct dwo_unit *dwo_entry)
6327 {
6328 /* Make sure we're not clobbering something we don't expect to. */
6329 gdb_assert (! sig_entry->per_cu.queued);
6330 gdb_assert (sig_entry->per_cu.cu == NULL);
6331 if (dwarf2_per_objfile->using_index)
6332 {
6333 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6334 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6335 }
6336 else
6337 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6338 gdb_assert (sig_entry->signature == dwo_entry->signature);
6339 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6340 gdb_assert (sig_entry->type_unit_group == NULL);
6341 gdb_assert (sig_entry->dwo_unit == NULL);
6342
6343 sig_entry->per_cu.section = dwo_entry->section;
6344 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6345 sig_entry->per_cu.length = dwo_entry->length;
6346 sig_entry->per_cu.reading_dwo_directly = 1;
6347 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6348 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6349 sig_entry->dwo_unit = dwo_entry;
6350 }
6351
6352 /* Subroutine of lookup_signatured_type.
6353 If we haven't read the TU yet, create the signatured_type data structure
6354 for a TU to be read in directly from a DWO file, bypassing the stub.
6355 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6356 using .gdb_index, then when reading a CU we want to stay in the DWO file
6357 containing that CU. Otherwise we could end up reading several other DWO
6358 files (due to comdat folding) to process the transitive closure of all the
6359 mentioned TUs, and that can be slow. The current DWO file will have every
6360 type signature that it needs.
6361 We only do this for .gdb_index because in the psymtab case we already have
6362 to read all the DWOs to build the type unit groups. */
6363
6364 static struct signatured_type *
6365 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6366 {
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwo_file *dwo_file;
6370 struct dwo_unit find_dwo_entry, *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6372 void **slot;
6373
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375
6376 /* If TU skeletons have been removed then we may not have read in any
6377 TUs yet. */
6378 if (dwarf2_per_objfile->signatured_types == NULL)
6379 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6380
6381 /* We only ever need to read in one copy of a signatured type.
6382 Use the global signatured_types array to do our own comdat-folding
6383 of types. If this is the first time we're reading this TU, and
6384 the TU has an entry in .gdb_index, replace the recorded data from
6385 .gdb_index with this TU. */
6386
6387 find_sig_entry.signature = sig;
6388 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6389 &find_sig_entry, INSERT);
6390 sig_entry = (struct signatured_type *) *slot;
6391
6392 /* We can get here with the TU already read, *or* in the process of being
6393 read. Don't reassign the global entry to point to this DWO if that's
6394 the case. Also note that if the TU is already being read, it may not
6395 have come from a DWO, the program may be a mix of Fission-compiled
6396 code and non-Fission-compiled code. */
6397
6398 /* Have we already tried to read this TU?
6399 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6400 needn't exist in the global table yet). */
6401 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6402 return sig_entry;
6403
6404 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6405 dwo_unit of the TU itself. */
6406 dwo_file = cu->dwo_unit->dwo_file;
6407
6408 /* Ok, this is the first time we're reading this TU. */
6409 if (dwo_file->tus == NULL)
6410 return NULL;
6411 find_dwo_entry.signature = sig;
6412 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6413 &find_dwo_entry);
6414 if (dwo_entry == NULL)
6415 return NULL;
6416
6417 /* If the global table doesn't have an entry for this TU, add one. */
6418 if (sig_entry == NULL)
6419 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6420
6421 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6422 sig_entry->per_cu.tu_read = 1;
6423 return sig_entry;
6424 }
6425
6426 /* Subroutine of lookup_signatured_type.
6427 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6428 then try the DWP file. If the TU stub (skeleton) has been removed then
6429 it won't be in .gdb_index. */
6430
6431 static struct signatured_type *
6432 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6433 {
6434 struct dwarf2_per_objfile *dwarf2_per_objfile
6435 = cu->per_cu->dwarf2_per_objfile;
6436 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6437 struct dwo_unit *dwo_entry;
6438 struct signatured_type find_sig_entry, *sig_entry;
6439 void **slot;
6440
6441 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6442 gdb_assert (dwp_file != NULL);
6443
6444 /* If TU skeletons have been removed then we may not have read in any
6445 TUs yet. */
6446 if (dwarf2_per_objfile->signatured_types == NULL)
6447 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6448
6449 find_sig_entry.signature = sig;
6450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6451 &find_sig_entry, INSERT);
6452 sig_entry = (struct signatured_type *) *slot;
6453
6454 /* Have we already tried to read this TU?
6455 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6456 needn't exist in the global table yet). */
6457 if (sig_entry != NULL)
6458 return sig_entry;
6459
6460 if (dwp_file->tus == NULL)
6461 return NULL;
6462 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6463 sig, 1 /* is_debug_types */);
6464 if (dwo_entry == NULL)
6465 return NULL;
6466
6467 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6468 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6469
6470 return sig_entry;
6471 }
6472
6473 /* Lookup a signature based type for DW_FORM_ref_sig8.
6474 Returns NULL if signature SIG is not present in the table.
6475 It is up to the caller to complain about this. */
6476
6477 static struct signatured_type *
6478 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6479 {
6480 struct dwarf2_per_objfile *dwarf2_per_objfile
6481 = cu->per_cu->dwarf2_per_objfile;
6482
6483 if (cu->dwo_unit
6484 && dwarf2_per_objfile->using_index)
6485 {
6486 /* We're in a DWO/DWP file, and we're using .gdb_index.
6487 These cases require special processing. */
6488 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6489 return lookup_dwo_signatured_type (cu, sig);
6490 else
6491 return lookup_dwp_signatured_type (cu, sig);
6492 }
6493 else
6494 {
6495 struct signatured_type find_entry, *entry;
6496
6497 if (dwarf2_per_objfile->signatured_types == NULL)
6498 return NULL;
6499 find_entry.signature = sig;
6500 entry = ((struct signatured_type *)
6501 htab_find (dwarf2_per_objfile->signatured_types.get (),
6502 &find_entry));
6503 return entry;
6504 }
6505 }
6506
6507 /* Low level DIE reading support. */
6508
6509 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6510
6511 static void
6512 init_cu_die_reader (struct die_reader_specs *reader,
6513 struct dwarf2_cu *cu,
6514 struct dwarf2_section_info *section,
6515 struct dwo_file *dwo_file,
6516 struct abbrev_table *abbrev_table)
6517 {
6518 gdb_assert (section->readin && section->buffer != NULL);
6519 reader->abfd = section->get_bfd_owner ();
6520 reader->cu = cu;
6521 reader->dwo_file = dwo_file;
6522 reader->die_section = section;
6523 reader->buffer = section->buffer;
6524 reader->buffer_end = section->buffer + section->size;
6525 reader->abbrev_table = abbrev_table;
6526 }
6527
6528 /* Subroutine of cutu_reader to simplify it.
6529 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6530 There's just a lot of work to do, and cutu_reader is big enough
6531 already.
6532
6533 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6534 from it to the DIE in the DWO. If NULL we are skipping the stub.
6535 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6536 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6537 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6538 STUB_COMP_DIR may be non-NULL.
6539 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6540 are filled in with the info of the DIE from the DWO file.
6541 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6542 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6543 kept around for at least as long as *RESULT_READER.
6544
6545 The result is non-zero if a valid (non-dummy) DIE was found. */
6546
6547 static int
6548 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6549 struct dwo_unit *dwo_unit,
6550 struct die_info *stub_comp_unit_die,
6551 const char *stub_comp_dir,
6552 struct die_reader_specs *result_reader,
6553 const gdb_byte **result_info_ptr,
6554 struct die_info **result_comp_unit_die,
6555 abbrev_table_up *result_dwo_abbrev_table)
6556 {
6557 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6558 struct objfile *objfile = dwarf2_per_objfile->objfile;
6559 struct dwarf2_cu *cu = this_cu->cu;
6560 bfd *abfd;
6561 const gdb_byte *begin_info_ptr, *info_ptr;
6562 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6563 int i,num_extra_attrs;
6564 struct dwarf2_section_info *dwo_abbrev_section;
6565 struct die_info *comp_unit_die;
6566
6567 /* At most one of these may be provided. */
6568 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6569
6570 /* These attributes aren't processed until later:
6571 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6572 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6573 referenced later. However, these attributes are found in the stub
6574 which we won't have later. In order to not impose this complication
6575 on the rest of the code, we read them here and copy them to the
6576 DWO CU/TU die. */
6577
6578 stmt_list = NULL;
6579 low_pc = NULL;
6580 high_pc = NULL;
6581 ranges = NULL;
6582 comp_dir = NULL;
6583
6584 if (stub_comp_unit_die != NULL)
6585 {
6586 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6587 DWO file. */
6588 if (! this_cu->is_debug_types)
6589 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6590 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6591 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6592 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6593 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6594
6595 cu->addr_base = stub_comp_unit_die->addr_base ();
6596
6597 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6598 here (if needed). We need the value before we can process
6599 DW_AT_ranges. */
6600 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6601 }
6602 else if (stub_comp_dir != NULL)
6603 {
6604 /* Reconstruct the comp_dir attribute to simplify the code below. */
6605 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6606 comp_dir->name = DW_AT_comp_dir;
6607 comp_dir->form = DW_FORM_string;
6608 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6609 DW_STRING (comp_dir) = stub_comp_dir;
6610 }
6611
6612 /* Set up for reading the DWO CU/TU. */
6613 cu->dwo_unit = dwo_unit;
6614 dwarf2_section_info *section = dwo_unit->section;
6615 section->read (objfile);
6616 abfd = section->get_bfd_owner ();
6617 begin_info_ptr = info_ptr = (section->buffer
6618 + to_underlying (dwo_unit->sect_off));
6619 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6620
6621 if (this_cu->is_debug_types)
6622 {
6623 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6624
6625 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6626 &cu->header, section,
6627 dwo_abbrev_section,
6628 info_ptr, rcuh_kind::TYPE);
6629 /* This is not an assert because it can be caused by bad debug info. */
6630 if (sig_type->signature != cu->header.signature)
6631 {
6632 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6633 " TU at offset %s [in module %s]"),
6634 hex_string (sig_type->signature),
6635 hex_string (cu->header.signature),
6636 sect_offset_str (dwo_unit->sect_off),
6637 bfd_get_filename (abfd));
6638 }
6639 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6640 /* For DWOs coming from DWP files, we don't know the CU length
6641 nor the type's offset in the TU until now. */
6642 dwo_unit->length = cu->header.get_length ();
6643 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6644
6645 /* Establish the type offset that can be used to lookup the type.
6646 For DWO files, we don't know it until now. */
6647 sig_type->type_offset_in_section
6648 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6649 }
6650 else
6651 {
6652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6653 &cu->header, section,
6654 dwo_abbrev_section,
6655 info_ptr, rcuh_kind::COMPILE);
6656 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6657 /* For DWOs coming from DWP files, we don't know the CU length
6658 until now. */
6659 dwo_unit->length = cu->header.get_length ();
6660 }
6661
6662 *result_dwo_abbrev_table
6663 = abbrev_table::read (objfile, dwo_abbrev_section,
6664 cu->header.abbrev_sect_off);
6665 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6666 result_dwo_abbrev_table->get ());
6667
6668 /* Read in the die, but leave space to copy over the attributes
6669 from the stub. This has the benefit of simplifying the rest of
6670 the code - all the work to maintain the illusion of a single
6671 DW_TAG_{compile,type}_unit DIE is done here. */
6672 num_extra_attrs = ((stmt_list != NULL)
6673 + (low_pc != NULL)
6674 + (high_pc != NULL)
6675 + (ranges != NULL)
6676 + (comp_dir != NULL));
6677 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6678 num_extra_attrs);
6679
6680 /* Copy over the attributes from the stub to the DIE we just read in. */
6681 comp_unit_die = *result_comp_unit_die;
6682 i = comp_unit_die->num_attrs;
6683 if (stmt_list != NULL)
6684 comp_unit_die->attrs[i++] = *stmt_list;
6685 if (low_pc != NULL)
6686 comp_unit_die->attrs[i++] = *low_pc;
6687 if (high_pc != NULL)
6688 comp_unit_die->attrs[i++] = *high_pc;
6689 if (ranges != NULL)
6690 comp_unit_die->attrs[i++] = *ranges;
6691 if (comp_dir != NULL)
6692 comp_unit_die->attrs[i++] = *comp_dir;
6693 comp_unit_die->num_attrs += num_extra_attrs;
6694
6695 if (dwarf_die_debug)
6696 {
6697 fprintf_unfiltered (gdb_stdlog,
6698 "Read die from %s@0x%x of %s:\n",
6699 section->get_name (),
6700 (unsigned) (begin_info_ptr - section->buffer),
6701 bfd_get_filename (abfd));
6702 dump_die (comp_unit_die, dwarf_die_debug);
6703 }
6704
6705 /* Skip dummy compilation units. */
6706 if (info_ptr >= begin_info_ptr + dwo_unit->length
6707 || peek_abbrev_code (abfd, info_ptr) == 0)
6708 return 0;
6709
6710 *result_info_ptr = info_ptr;
6711 return 1;
6712 }
6713
6714 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6715 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6716 signature is part of the header. */
6717 static gdb::optional<ULONGEST>
6718 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6719 {
6720 if (cu->header.version >= 5)
6721 return cu->header.signature;
6722 struct attribute *attr;
6723 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6724 if (attr == nullptr)
6725 return gdb::optional<ULONGEST> ();
6726 return DW_UNSND (attr);
6727 }
6728
6729 /* Subroutine of cutu_reader to simplify it.
6730 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6731 Returns NULL if the specified DWO unit cannot be found. */
6732
6733 static struct dwo_unit *
6734 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6735 struct die_info *comp_unit_die,
6736 const char *dwo_name)
6737 {
6738 struct dwarf2_cu *cu = this_cu->cu;
6739 struct dwo_unit *dwo_unit;
6740 const char *comp_dir;
6741
6742 gdb_assert (cu != NULL);
6743
6744 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6745 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6746 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6747
6748 if (this_cu->is_debug_types)
6749 {
6750 struct signatured_type *sig_type;
6751
6752 /* Since this_cu is the first member of struct signatured_type,
6753 we can go from a pointer to one to a pointer to the other. */
6754 sig_type = (struct signatured_type *) this_cu;
6755 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6756 }
6757 else
6758 {
6759 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6760 if (!signature.has_value ())
6761 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6762 " [in module %s]"),
6763 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6764 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6765 *signature);
6766 }
6767
6768 return dwo_unit;
6769 }
6770
6771 /* Subroutine of cutu_reader to simplify it.
6772 See it for a description of the parameters.
6773 Read a TU directly from a DWO file, bypassing the stub. */
6774
6775 void
6776 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6777 int use_existing_cu)
6778 {
6779 struct signatured_type *sig_type;
6780
6781 /* Verify we can do the following downcast, and that we have the
6782 data we need. */
6783 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6784 sig_type = (struct signatured_type *) this_cu;
6785 gdb_assert (sig_type->dwo_unit != NULL);
6786
6787 if (use_existing_cu && this_cu->cu != NULL)
6788 {
6789 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6790 /* There's no need to do the rereading_dwo_cu handling that
6791 cutu_reader does since we don't read the stub. */
6792 }
6793 else
6794 {
6795 /* If !use_existing_cu, this_cu->cu must be NULL. */
6796 gdb_assert (this_cu->cu == NULL);
6797 m_new_cu.reset (new dwarf2_cu (this_cu));
6798 }
6799
6800 /* A future optimization, if needed, would be to use an existing
6801 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6802 could share abbrev tables. */
6803
6804 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6805 NULL /* stub_comp_unit_die */,
6806 sig_type->dwo_unit->dwo_file->comp_dir,
6807 this, &info_ptr,
6808 &comp_unit_die,
6809 &m_dwo_abbrev_table) == 0)
6810 {
6811 /* Dummy die. */
6812 dummy_p = true;
6813 }
6814 }
6815
6816 /* Initialize a CU (or TU) and read its DIEs.
6817 If the CU defers to a DWO file, read the DWO file as well.
6818
6819 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6820 Otherwise the table specified in the comp unit header is read in and used.
6821 This is an optimization for when we already have the abbrev table.
6822
6823 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6824 Otherwise, a new CU is allocated with xmalloc. */
6825
6826 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6827 struct abbrev_table *abbrev_table,
6828 int use_existing_cu,
6829 bool skip_partial)
6830 : die_reader_specs {},
6831 m_this_cu (this_cu)
6832 {
6833 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6834 struct objfile *objfile = dwarf2_per_objfile->objfile;
6835 struct dwarf2_section_info *section = this_cu->section;
6836 bfd *abfd = section->get_bfd_owner ();
6837 struct dwarf2_cu *cu;
6838 const gdb_byte *begin_info_ptr;
6839 struct signatured_type *sig_type = NULL;
6840 struct dwarf2_section_info *abbrev_section;
6841 /* Non-zero if CU currently points to a DWO file and we need to
6842 reread it. When this happens we need to reread the skeleton die
6843 before we can reread the DWO file (this only applies to CUs, not TUs). */
6844 int rereading_dwo_cu = 0;
6845
6846 if (dwarf_die_debug)
6847 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6848 this_cu->is_debug_types ? "type" : "comp",
6849 sect_offset_str (this_cu->sect_off));
6850
6851 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6852 file (instead of going through the stub), short-circuit all of this. */
6853 if (this_cu->reading_dwo_directly)
6854 {
6855 /* Narrow down the scope of possibilities to have to understand. */
6856 gdb_assert (this_cu->is_debug_types);
6857 gdb_assert (abbrev_table == NULL);
6858 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6859 return;
6860 }
6861
6862 /* This is cheap if the section is already read in. */
6863 section->read (objfile);
6864
6865 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6866
6867 abbrev_section = get_abbrev_section_for_cu (this_cu);
6868
6869 if (use_existing_cu && this_cu->cu != NULL)
6870 {
6871 cu = this_cu->cu;
6872 /* If this CU is from a DWO file we need to start over, we need to
6873 refetch the attributes from the skeleton CU.
6874 This could be optimized by retrieving those attributes from when we
6875 were here the first time: the previous comp_unit_die was stored in
6876 comp_unit_obstack. But there's no data yet that we need this
6877 optimization. */
6878 if (cu->dwo_unit != NULL)
6879 rereading_dwo_cu = 1;
6880 }
6881 else
6882 {
6883 /* If !use_existing_cu, this_cu->cu must be NULL. */
6884 gdb_assert (this_cu->cu == NULL);
6885 m_new_cu.reset (new dwarf2_cu (this_cu));
6886 cu = m_new_cu.get ();
6887 }
6888
6889 /* Get the header. */
6890 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6891 {
6892 /* We already have the header, there's no need to read it in again. */
6893 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6894 }
6895 else
6896 {
6897 if (this_cu->is_debug_types)
6898 {
6899 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6900 &cu->header, section,
6901 abbrev_section, info_ptr,
6902 rcuh_kind::TYPE);
6903
6904 /* Since per_cu is the first member of struct signatured_type,
6905 we can go from a pointer to one to a pointer to the other. */
6906 sig_type = (struct signatured_type *) this_cu;
6907 gdb_assert (sig_type->signature == cu->header.signature);
6908 gdb_assert (sig_type->type_offset_in_tu
6909 == cu->header.type_cu_offset_in_tu);
6910 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6911
6912 /* LENGTH has not been set yet for type units if we're
6913 using .gdb_index. */
6914 this_cu->length = cu->header.get_length ();
6915
6916 /* Establish the type offset that can be used to lookup the type. */
6917 sig_type->type_offset_in_section =
6918 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6919
6920 this_cu->dwarf_version = cu->header.version;
6921 }
6922 else
6923 {
6924 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6925 &cu->header, section,
6926 abbrev_section,
6927 info_ptr,
6928 rcuh_kind::COMPILE);
6929
6930 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6931 gdb_assert (this_cu->length == cu->header.get_length ());
6932 this_cu->dwarf_version = cu->header.version;
6933 }
6934 }
6935
6936 /* Skip dummy compilation units. */
6937 if (info_ptr >= begin_info_ptr + this_cu->length
6938 || peek_abbrev_code (abfd, info_ptr) == 0)
6939 {
6940 dummy_p = true;
6941 return;
6942 }
6943
6944 /* If we don't have them yet, read the abbrevs for this compilation unit.
6945 And if we need to read them now, make sure they're freed when we're
6946 done. */
6947 if (abbrev_table != NULL)
6948 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6949 else
6950 {
6951 m_abbrev_table_holder
6952 = abbrev_table::read (objfile, abbrev_section,
6953 cu->header.abbrev_sect_off);
6954 abbrev_table = m_abbrev_table_holder.get ();
6955 }
6956
6957 /* Read the top level CU/TU die. */
6958 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6959 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6960
6961 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6962 {
6963 dummy_p = true;
6964 return;
6965 }
6966
6967 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6968 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6969 table from the DWO file and pass the ownership over to us. It will be
6970 referenced from READER, so we must make sure to free it after we're done
6971 with READER.
6972
6973 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6974 DWO CU, that this test will fail (the attribute will not be present). */
6975 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6976 if (dwo_name != nullptr)
6977 {
6978 struct dwo_unit *dwo_unit;
6979 struct die_info *dwo_comp_unit_die;
6980
6981 if (comp_unit_die->has_children)
6982 {
6983 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6984 " has children (offset %s) [in module %s]"),
6985 sect_offset_str (this_cu->sect_off),
6986 bfd_get_filename (abfd));
6987 }
6988 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6989 if (dwo_unit != NULL)
6990 {
6991 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6992 comp_unit_die, NULL,
6993 this, &info_ptr,
6994 &dwo_comp_unit_die,
6995 &m_dwo_abbrev_table) == 0)
6996 {
6997 /* Dummy die. */
6998 dummy_p = true;
6999 return;
7000 }
7001 comp_unit_die = dwo_comp_unit_die;
7002 }
7003 else
7004 {
7005 /* Yikes, we couldn't find the rest of the DIE, we only have
7006 the stub. A complaint has already been logged. There's
7007 not much more we can do except pass on the stub DIE to
7008 die_reader_func. We don't want to throw an error on bad
7009 debug info. */
7010 }
7011 }
7012 }
7013
7014 void
7015 cutu_reader::keep ()
7016 {
7017 /* Done, clean up. */
7018 gdb_assert (!dummy_p);
7019 if (m_new_cu != NULL)
7020 {
7021 struct dwarf2_per_objfile *dwarf2_per_objfile
7022 = m_this_cu->dwarf2_per_objfile;
7023 /* Link this CU into read_in_chain. */
7024 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7025 dwarf2_per_objfile->read_in_chain = m_this_cu;
7026 /* The chain owns it now. */
7027 m_new_cu.release ();
7028 }
7029 }
7030
7031 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7032 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7033 assumed to have already done the lookup to find the DWO file).
7034
7035 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7036 THIS_CU->is_debug_types, but nothing else.
7037
7038 We fill in THIS_CU->length.
7039
7040 THIS_CU->cu is always freed when done.
7041 This is done in order to not leave THIS_CU->cu in a state where we have
7042 to care whether it refers to the "main" CU or the DWO CU.
7043
7044 When parent_cu is passed, it is used to provide a default value for
7045 str_offsets_base and addr_base from the parent. */
7046
7047 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7048 struct dwarf2_cu *parent_cu,
7049 struct dwo_file *dwo_file)
7050 : die_reader_specs {},
7051 m_this_cu (this_cu)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7054 struct objfile *objfile = dwarf2_per_objfile->objfile;
7055 struct dwarf2_section_info *section = this_cu->section;
7056 bfd *abfd = section->get_bfd_owner ();
7057 struct dwarf2_section_info *abbrev_section;
7058 const gdb_byte *begin_info_ptr, *info_ptr;
7059
7060 if (dwarf_die_debug)
7061 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7062 this_cu->is_debug_types ? "type" : "comp",
7063 sect_offset_str (this_cu->sect_off));
7064
7065 gdb_assert (this_cu->cu == NULL);
7066
7067 abbrev_section = (dwo_file != NULL
7068 ? &dwo_file->sections.abbrev
7069 : get_abbrev_section_for_cu (this_cu));
7070
7071 /* This is cheap if the section is already read in. */
7072 section->read (objfile);
7073
7074 m_new_cu.reset (new dwarf2_cu (this_cu));
7075
7076 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7077 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7078 &m_new_cu->header, section,
7079 abbrev_section, info_ptr,
7080 (this_cu->is_debug_types
7081 ? rcuh_kind::TYPE
7082 : rcuh_kind::COMPILE));
7083
7084 if (parent_cu != nullptr)
7085 {
7086 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7087 m_new_cu->addr_base = parent_cu->addr_base;
7088 }
7089 this_cu->length = m_new_cu->header.get_length ();
7090
7091 /* Skip dummy compilation units. */
7092 if (info_ptr >= begin_info_ptr + this_cu->length
7093 || peek_abbrev_code (abfd, info_ptr) == 0)
7094 {
7095 dummy_p = true;
7096 return;
7097 }
7098
7099 m_abbrev_table_holder
7100 = abbrev_table::read (objfile, abbrev_section,
7101 m_new_cu->header.abbrev_sect_off);
7102
7103 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7104 m_abbrev_table_holder.get ());
7105 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7106 }
7107
7108 \f
7109 /* Type Unit Groups.
7110
7111 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7112 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7113 so that all types coming from the same compilation (.o file) are grouped
7114 together. A future step could be to put the types in the same symtab as
7115 the CU the types ultimately came from. */
7116
7117 static hashval_t
7118 hash_type_unit_group (const void *item)
7119 {
7120 const struct type_unit_group *tu_group
7121 = (const struct type_unit_group *) item;
7122
7123 return hash_stmt_list_entry (&tu_group->hash);
7124 }
7125
7126 static int
7127 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7128 {
7129 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7130 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7131
7132 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7133 }
7134
7135 /* Allocate a hash table for type unit groups. */
7136
7137 static htab_up
7138 allocate_type_unit_groups_table ()
7139 {
7140 return htab_up (htab_create_alloc (3,
7141 hash_type_unit_group,
7142 eq_type_unit_group,
7143 NULL, xcalloc, xfree));
7144 }
7145
7146 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7147 partial symtabs. We combine several TUs per psymtab to not let the size
7148 of any one psymtab grow too big. */
7149 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7150 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7151
7152 /* Helper routine for get_type_unit_group.
7153 Create the type_unit_group object used to hold one or more TUs. */
7154
7155 static struct type_unit_group *
7156 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7157 {
7158 struct dwarf2_per_objfile *dwarf2_per_objfile
7159 = cu->per_cu->dwarf2_per_objfile;
7160 struct objfile *objfile = dwarf2_per_objfile->objfile;
7161 struct dwarf2_per_cu_data *per_cu;
7162 struct type_unit_group *tu_group;
7163
7164 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7165 struct type_unit_group);
7166 per_cu = &tu_group->per_cu;
7167 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7168
7169 if (dwarf2_per_objfile->using_index)
7170 {
7171 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7172 struct dwarf2_per_cu_quick_data);
7173 }
7174 else
7175 {
7176 unsigned int line_offset = to_underlying (line_offset_struct);
7177 dwarf2_psymtab *pst;
7178 std::string name;
7179
7180 /* Give the symtab a useful name for debug purposes. */
7181 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7182 name = string_printf ("<type_units_%d>",
7183 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7184 else
7185 name = string_printf ("<type_units_at_0x%x>", line_offset);
7186
7187 pst = create_partial_symtab (per_cu, name.c_str ());
7188 pst->anonymous = true;
7189 }
7190
7191 tu_group->hash.dwo_unit = cu->dwo_unit;
7192 tu_group->hash.line_sect_off = line_offset_struct;
7193
7194 return tu_group;
7195 }
7196
7197 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7198 STMT_LIST is a DW_AT_stmt_list attribute. */
7199
7200 static struct type_unit_group *
7201 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7202 {
7203 struct dwarf2_per_objfile *dwarf2_per_objfile
7204 = cu->per_cu->dwarf2_per_objfile;
7205 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7206 struct type_unit_group *tu_group;
7207 void **slot;
7208 unsigned int line_offset;
7209 struct type_unit_group type_unit_group_for_lookup;
7210
7211 if (dwarf2_per_objfile->type_unit_groups == NULL)
7212 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7213
7214 /* Do we need to create a new group, or can we use an existing one? */
7215
7216 if (stmt_list)
7217 {
7218 line_offset = DW_UNSND (stmt_list);
7219 ++tu_stats->nr_symtab_sharers;
7220 }
7221 else
7222 {
7223 /* Ugh, no stmt_list. Rare, but we have to handle it.
7224 We can do various things here like create one group per TU or
7225 spread them over multiple groups to split up the expansion work.
7226 To avoid worst case scenarios (too many groups or too large groups)
7227 we, umm, group them in bunches. */
7228 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7229 | (tu_stats->nr_stmt_less_type_units
7230 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7231 ++tu_stats->nr_stmt_less_type_units;
7232 }
7233
7234 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7235 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7236 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7237 &type_unit_group_for_lookup, INSERT);
7238 if (*slot != NULL)
7239 {
7240 tu_group = (struct type_unit_group *) *slot;
7241 gdb_assert (tu_group != NULL);
7242 }
7243 else
7244 {
7245 sect_offset line_offset_struct = (sect_offset) line_offset;
7246 tu_group = create_type_unit_group (cu, line_offset_struct);
7247 *slot = tu_group;
7248 ++tu_stats->nr_symtabs;
7249 }
7250
7251 return tu_group;
7252 }
7253 \f
7254 /* Partial symbol tables. */
7255
7256 /* Create a psymtab named NAME and assign it to PER_CU.
7257
7258 The caller must fill in the following details:
7259 dirname, textlow, texthigh. */
7260
7261 static dwarf2_psymtab *
7262 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7263 {
7264 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7265 dwarf2_psymtab *pst;
7266
7267 pst = new dwarf2_psymtab (name, objfile, per_cu);
7268
7269 pst->psymtabs_addrmap_supported = true;
7270
7271 /* This is the glue that links PST into GDB's symbol API. */
7272 per_cu->v.psymtab = pst;
7273
7274 return pst;
7275 }
7276
7277 /* DIE reader function for process_psymtab_comp_unit. */
7278
7279 static void
7280 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7281 const gdb_byte *info_ptr,
7282 struct die_info *comp_unit_die,
7283 enum language pretend_language)
7284 {
7285 struct dwarf2_cu *cu = reader->cu;
7286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7287 struct gdbarch *gdbarch = objfile->arch ();
7288 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7289 CORE_ADDR baseaddr;
7290 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7291 dwarf2_psymtab *pst;
7292 enum pc_bounds_kind cu_bounds_kind;
7293 const char *filename;
7294
7295 gdb_assert (! per_cu->is_debug_types);
7296
7297 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7298
7299 /* Allocate a new partial symbol table structure. */
7300 gdb::unique_xmalloc_ptr<char> debug_filename;
7301 static const char artificial[] = "<artificial>";
7302 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7303 if (filename == NULL)
7304 filename = "";
7305 else if (strcmp (filename, artificial) == 0)
7306 {
7307 debug_filename.reset (concat (artificial, "@",
7308 sect_offset_str (per_cu->sect_off),
7309 (char *) NULL));
7310 filename = debug_filename.get ();
7311 }
7312
7313 pst = create_partial_symtab (per_cu, filename);
7314
7315 /* This must be done before calling dwarf2_build_include_psymtabs. */
7316 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7317
7318 baseaddr = objfile->text_section_offset ();
7319
7320 dwarf2_find_base_address (comp_unit_die, cu);
7321
7322 /* Possibly set the default values of LOWPC and HIGHPC from
7323 `DW_AT_ranges'. */
7324 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7325 &best_highpc, cu, pst);
7326 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7327 {
7328 CORE_ADDR low
7329 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7330 - baseaddr);
7331 CORE_ADDR high
7332 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7333 - baseaddr - 1);
7334 /* Store the contiguous range if it is not empty; it can be
7335 empty for CUs with no code. */
7336 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7337 low, high, pst);
7338 }
7339
7340 /* Check if comp unit has_children.
7341 If so, read the rest of the partial symbols from this comp unit.
7342 If not, there's no more debug_info for this comp unit. */
7343 if (comp_unit_die->has_children)
7344 {
7345 struct partial_die_info *first_die;
7346 CORE_ADDR lowpc, highpc;
7347
7348 lowpc = ((CORE_ADDR) -1);
7349 highpc = ((CORE_ADDR) 0);
7350
7351 first_die = load_partial_dies (reader, info_ptr, 1);
7352
7353 scan_partial_symbols (first_die, &lowpc, &highpc,
7354 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7355
7356 /* If we didn't find a lowpc, set it to highpc to avoid
7357 complaints from `maint check'. */
7358 if (lowpc == ((CORE_ADDR) -1))
7359 lowpc = highpc;
7360
7361 /* If the compilation unit didn't have an explicit address range,
7362 then use the information extracted from its child dies. */
7363 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7364 {
7365 best_lowpc = lowpc;
7366 best_highpc = highpc;
7367 }
7368 }
7369 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7370 best_lowpc + baseaddr)
7371 - baseaddr);
7372 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7373 best_highpc + baseaddr)
7374 - baseaddr);
7375
7376 end_psymtab_common (objfile, pst);
7377
7378 if (!cu->per_cu->imported_symtabs_empty ())
7379 {
7380 int i;
7381 int len = cu->per_cu->imported_symtabs_size ();
7382
7383 /* Fill in 'dependencies' here; we fill in 'users' in a
7384 post-pass. */
7385 pst->number_of_dependencies = len;
7386 pst->dependencies
7387 = objfile->partial_symtabs->allocate_dependencies (len);
7388 for (i = 0; i < len; ++i)
7389 {
7390 pst->dependencies[i]
7391 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7392 }
7393
7394 cu->per_cu->imported_symtabs_free ();
7395 }
7396
7397 /* Get the list of files included in the current compilation unit,
7398 and build a psymtab for each of them. */
7399 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7400
7401 if (dwarf_read_debug)
7402 fprintf_unfiltered (gdb_stdlog,
7403 "Psymtab for %s unit @%s: %s - %s"
7404 ", %d global, %d static syms\n",
7405 per_cu->is_debug_types ? "type" : "comp",
7406 sect_offset_str (per_cu->sect_off),
7407 paddress (gdbarch, pst->text_low (objfile)),
7408 paddress (gdbarch, pst->text_high (objfile)),
7409 pst->n_global_syms, pst->n_static_syms);
7410 }
7411
7412 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7413 Process compilation unit THIS_CU for a psymtab. */
7414
7415 static void
7416 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7417 bool want_partial_unit,
7418 enum language pretend_language)
7419 {
7420 /* If this compilation unit was already read in, free the
7421 cached copy in order to read it in again. This is
7422 necessary because we skipped some symbols when we first
7423 read in the compilation unit (see load_partial_dies).
7424 This problem could be avoided, but the benefit is unclear. */
7425 if (this_cu->cu != NULL)
7426 free_one_cached_comp_unit (this_cu);
7427
7428 cutu_reader reader (this_cu, NULL, 0, false);
7429
7430 switch (reader.comp_unit_die->tag)
7431 {
7432 case DW_TAG_compile_unit:
7433 this_cu->unit_type = DW_UT_compile;
7434 break;
7435 case DW_TAG_partial_unit:
7436 this_cu->unit_type = DW_UT_partial;
7437 break;
7438 default:
7439 abort ();
7440 }
7441
7442 if (reader.dummy_p)
7443 {
7444 /* Nothing. */
7445 }
7446 else if (this_cu->is_debug_types)
7447 build_type_psymtabs_reader (&reader, reader.info_ptr,
7448 reader.comp_unit_die);
7449 else if (want_partial_unit
7450 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7451 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7452 reader.comp_unit_die,
7453 pretend_language);
7454
7455 this_cu->lang = this_cu->cu->language;
7456
7457 /* Age out any secondary CUs. */
7458 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7459 }
7460
7461 /* Reader function for build_type_psymtabs. */
7462
7463 static void
7464 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7465 const gdb_byte *info_ptr,
7466 struct die_info *type_unit_die)
7467 {
7468 struct dwarf2_per_objfile *dwarf2_per_objfile
7469 = reader->cu->per_cu->dwarf2_per_objfile;
7470 struct objfile *objfile = dwarf2_per_objfile->objfile;
7471 struct dwarf2_cu *cu = reader->cu;
7472 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7473 struct signatured_type *sig_type;
7474 struct type_unit_group *tu_group;
7475 struct attribute *attr;
7476 struct partial_die_info *first_die;
7477 CORE_ADDR lowpc, highpc;
7478 dwarf2_psymtab *pst;
7479
7480 gdb_assert (per_cu->is_debug_types);
7481 sig_type = (struct signatured_type *) per_cu;
7482
7483 if (! type_unit_die->has_children)
7484 return;
7485
7486 attr = type_unit_die->attr (DW_AT_stmt_list);
7487 tu_group = get_type_unit_group (cu, attr);
7488
7489 if (tu_group->tus == nullptr)
7490 tu_group->tus = new std::vector<signatured_type *>;
7491 tu_group->tus->push_back (sig_type);
7492
7493 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7494 pst = create_partial_symtab (per_cu, "");
7495 pst->anonymous = true;
7496
7497 first_die = load_partial_dies (reader, info_ptr, 1);
7498
7499 lowpc = (CORE_ADDR) -1;
7500 highpc = (CORE_ADDR) 0;
7501 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7502
7503 end_psymtab_common (objfile, pst);
7504 }
7505
7506 /* Struct used to sort TUs by their abbreviation table offset. */
7507
7508 struct tu_abbrev_offset
7509 {
7510 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7511 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7512 {}
7513
7514 signatured_type *sig_type;
7515 sect_offset abbrev_offset;
7516 };
7517
7518 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7519
7520 static bool
7521 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7522 const struct tu_abbrev_offset &b)
7523 {
7524 return a.abbrev_offset < b.abbrev_offset;
7525 }
7526
7527 /* Efficiently read all the type units.
7528 This does the bulk of the work for build_type_psymtabs.
7529
7530 The efficiency is because we sort TUs by the abbrev table they use and
7531 only read each abbrev table once. In one program there are 200K TUs
7532 sharing 8K abbrev tables.
7533
7534 The main purpose of this function is to support building the
7535 dwarf2_per_objfile->type_unit_groups table.
7536 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7537 can collapse the search space by grouping them by stmt_list.
7538 The savings can be significant, in the same program from above the 200K TUs
7539 share 8K stmt_list tables.
7540
7541 FUNC is expected to call get_type_unit_group, which will create the
7542 struct type_unit_group if necessary and add it to
7543 dwarf2_per_objfile->type_unit_groups. */
7544
7545 static void
7546 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7547 {
7548 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7549 abbrev_table_up abbrev_table;
7550 sect_offset abbrev_offset;
7551
7552 /* It's up to the caller to not call us multiple times. */
7553 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7554
7555 if (dwarf2_per_objfile->all_type_units.empty ())
7556 return;
7557
7558 /* TUs typically share abbrev tables, and there can be way more TUs than
7559 abbrev tables. Sort by abbrev table to reduce the number of times we
7560 read each abbrev table in.
7561 Alternatives are to punt or to maintain a cache of abbrev tables.
7562 This is simpler and efficient enough for now.
7563
7564 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7565 symtab to use). Typically TUs with the same abbrev offset have the same
7566 stmt_list value too so in practice this should work well.
7567
7568 The basic algorithm here is:
7569
7570 sort TUs by abbrev table
7571 for each TU with same abbrev table:
7572 read abbrev table if first user
7573 read TU top level DIE
7574 [IWBN if DWO skeletons had DW_AT_stmt_list]
7575 call FUNC */
7576
7577 if (dwarf_read_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7579
7580 /* Sort in a separate table to maintain the order of all_type_units
7581 for .gdb_index: TU indices directly index all_type_units. */
7582 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7583 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7584
7585 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7586 sorted_by_abbrev.emplace_back
7587 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7588 sig_type->per_cu.section,
7589 sig_type->per_cu.sect_off));
7590
7591 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7592 sort_tu_by_abbrev_offset);
7593
7594 abbrev_offset = (sect_offset) ~(unsigned) 0;
7595
7596 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7597 {
7598 /* Switch to the next abbrev table if necessary. */
7599 if (abbrev_table == NULL
7600 || tu.abbrev_offset != abbrev_offset)
7601 {
7602 abbrev_offset = tu.abbrev_offset;
7603 abbrev_table =
7604 abbrev_table::read (dwarf2_per_objfile->objfile,
7605 &dwarf2_per_objfile->abbrev,
7606 abbrev_offset);
7607 ++tu_stats->nr_uniq_abbrev_tables;
7608 }
7609
7610 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7611 0, false);
7612 if (!reader.dummy_p)
7613 build_type_psymtabs_reader (&reader, reader.info_ptr,
7614 reader.comp_unit_die);
7615 }
7616 }
7617
7618 /* Print collected type unit statistics. */
7619
7620 static void
7621 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7622 {
7623 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7624
7625 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7626 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7627 dwarf2_per_objfile->all_type_units.size ());
7628 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7629 tu_stats->nr_uniq_abbrev_tables);
7630 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7631 tu_stats->nr_symtabs);
7632 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7633 tu_stats->nr_symtab_sharers);
7634 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7635 tu_stats->nr_stmt_less_type_units);
7636 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7637 tu_stats->nr_all_type_units_reallocs);
7638 }
7639
7640 /* Traversal function for build_type_psymtabs. */
7641
7642 static int
7643 build_type_psymtab_dependencies (void **slot, void *info)
7644 {
7645 struct dwarf2_per_objfile *dwarf2_per_objfile
7646 = (struct dwarf2_per_objfile *) info;
7647 struct objfile *objfile = dwarf2_per_objfile->objfile;
7648 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7649 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7650 dwarf2_psymtab *pst = per_cu->v.psymtab;
7651 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7652 int i;
7653
7654 gdb_assert (len > 0);
7655 gdb_assert (per_cu->type_unit_group_p ());
7656
7657 pst->number_of_dependencies = len;
7658 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7659 for (i = 0; i < len; ++i)
7660 {
7661 struct signatured_type *iter = tu_group->tus->at (i);
7662 gdb_assert (iter->per_cu.is_debug_types);
7663 pst->dependencies[i] = iter->per_cu.v.psymtab;
7664 iter->type_unit_group = tu_group;
7665 }
7666
7667 delete tu_group->tus;
7668 tu_group->tus = nullptr;
7669
7670 return 1;
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Build partial symbol tables for the .debug_types comp-units. */
7675
7676 static void
7677 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7678 {
7679 if (! create_all_type_units (dwarf2_per_objfile))
7680 return;
7681
7682 build_type_psymtabs_1 (dwarf2_per_objfile);
7683 }
7684
7685 /* Traversal function for process_skeletonless_type_unit.
7686 Read a TU in a DWO file and build partial symbols for it. */
7687
7688 static int
7689 process_skeletonless_type_unit (void **slot, void *info)
7690 {
7691 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7692 struct dwarf2_per_objfile *dwarf2_per_objfile
7693 = (struct dwarf2_per_objfile *) info;
7694 struct signatured_type find_entry, *entry;
7695
7696 /* If this TU doesn't exist in the global table, add it and read it in. */
7697
7698 if (dwarf2_per_objfile->signatured_types == NULL)
7699 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7700
7701 find_entry.signature = dwo_unit->signature;
7702 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7703 &find_entry, INSERT);
7704 /* If we've already seen this type there's nothing to do. What's happening
7705 is we're doing our own version of comdat-folding here. */
7706 if (*slot != NULL)
7707 return 1;
7708
7709 /* This does the job that create_all_type_units would have done for
7710 this TU. */
7711 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7712 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7713 *slot = entry;
7714
7715 /* This does the job that build_type_psymtabs_1 would have done. */
7716 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7717 if (!reader.dummy_p)
7718 build_type_psymtabs_reader (&reader, reader.info_ptr,
7719 reader.comp_unit_die);
7720
7721 return 1;
7722 }
7723
7724 /* Traversal function for process_skeletonless_type_units. */
7725
7726 static int
7727 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7728 {
7729 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7730
7731 if (dwo_file->tus != NULL)
7732 htab_traverse_noresize (dwo_file->tus.get (),
7733 process_skeletonless_type_unit, info);
7734
7735 return 1;
7736 }
7737
7738 /* Scan all TUs of DWO files, verifying we've processed them.
7739 This is needed in case a TU was emitted without its skeleton.
7740 Note: This can't be done until we know what all the DWO files are. */
7741
7742 static void
7743 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7744 {
7745 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7746 if (get_dwp_file (dwarf2_per_objfile) == NULL
7747 && dwarf2_per_objfile->dwo_files != NULL)
7748 {
7749 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7750 process_dwo_file_for_skeletonless_type_units,
7751 dwarf2_per_objfile);
7752 }
7753 }
7754
7755 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7756
7757 static void
7758 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7759 {
7760 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7761 {
7762 dwarf2_psymtab *pst = per_cu->v.psymtab;
7763
7764 if (pst == NULL)
7765 continue;
7766
7767 for (int j = 0; j < pst->number_of_dependencies; ++j)
7768 {
7769 /* Set the 'user' field only if it is not already set. */
7770 if (pst->dependencies[j]->user == NULL)
7771 pst->dependencies[j]->user = pst;
7772 }
7773 }
7774 }
7775
7776 /* Build the partial symbol table by doing a quick pass through the
7777 .debug_info and .debug_abbrev sections. */
7778
7779 static void
7780 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783
7784 if (dwarf_read_debug)
7785 {
7786 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7787 objfile_name (objfile));
7788 }
7789
7790 scoped_restore restore_reading_psyms
7791 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7792 true);
7793
7794 dwarf2_per_objfile->info.read (objfile);
7795
7796 /* Any cached compilation units will be linked by the per-objfile
7797 read_in_chain. Make sure to free them when we're done. */
7798 free_cached_comp_units freer (dwarf2_per_objfile);
7799
7800 build_type_psymtabs (dwarf2_per_objfile);
7801
7802 create_all_comp_units (dwarf2_per_objfile);
7803
7804 /* Create a temporary address map on a temporary obstack. We later
7805 copy this to the final obstack. */
7806 auto_obstack temp_obstack;
7807
7808 scoped_restore save_psymtabs_addrmap
7809 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7810 addrmap_create_mutable (&temp_obstack));
7811
7812 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7813 {
7814 if (per_cu->v.psymtab != NULL)
7815 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7816 continue;
7817 process_psymtab_comp_unit (per_cu, false, language_minimal);
7818 }
7819
7820 /* This has to wait until we read the CUs, we need the list of DWOs. */
7821 process_skeletonless_type_units (dwarf2_per_objfile);
7822
7823 /* Now that all TUs have been processed we can fill in the dependencies. */
7824 if (dwarf2_per_objfile->type_unit_groups != NULL)
7825 {
7826 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7827 build_type_psymtab_dependencies, dwarf2_per_objfile);
7828 }
7829
7830 if (dwarf_read_debug)
7831 print_tu_stats (dwarf2_per_objfile);
7832
7833 set_partial_user (dwarf2_per_objfile);
7834
7835 objfile->partial_symtabs->psymtabs_addrmap
7836 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7837 objfile->partial_symtabs->obstack ());
7838 /* At this point we want to keep the address map. */
7839 save_psymtabs_addrmap.release ();
7840
7841 if (dwarf_read_debug)
7842 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7843 objfile_name (objfile));
7844 }
7845
7846 /* Load the partial DIEs for a secondary CU into memory.
7847 This is also used when rereading a primary CU with load_all_dies. */
7848
7849 static void
7850 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7851 {
7852 cutu_reader reader (this_cu, NULL, 1, false);
7853
7854 if (!reader.dummy_p)
7855 {
7856 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7857 language_minimal);
7858
7859 /* Check if comp unit has_children.
7860 If so, read the rest of the partial symbols from this comp unit.
7861 If not, there's no more debug_info for this comp unit. */
7862 if (reader.comp_unit_die->has_children)
7863 load_partial_dies (&reader, reader.info_ptr, 0);
7864
7865 reader.keep ();
7866 }
7867 }
7868
7869 static void
7870 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7871 struct dwarf2_section_info *section,
7872 struct dwarf2_section_info *abbrev_section,
7873 unsigned int is_dwz)
7874 {
7875 const gdb_byte *info_ptr;
7876 struct objfile *objfile = dwarf2_per_objfile->objfile;
7877
7878 if (dwarf_read_debug)
7879 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7880 section->get_name (),
7881 section->get_file_name ());
7882
7883 section->read (objfile);
7884
7885 info_ptr = section->buffer;
7886
7887 while (info_ptr < section->buffer + section->size)
7888 {
7889 struct dwarf2_per_cu_data *this_cu;
7890
7891 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7892
7893 comp_unit_head cu_header;
7894 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7895 abbrev_section, info_ptr,
7896 rcuh_kind::COMPILE);
7897
7898 /* Save the compilation unit for later lookup. */
7899 if (cu_header.unit_type != DW_UT_type)
7900 {
7901 this_cu = XOBNEW (&objfile->objfile_obstack,
7902 struct dwarf2_per_cu_data);
7903 memset (this_cu, 0, sizeof (*this_cu));
7904 }
7905 else
7906 {
7907 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7908 struct signatured_type);
7909 memset (sig_type, 0, sizeof (*sig_type));
7910 sig_type->signature = cu_header.signature;
7911 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7912 this_cu = &sig_type->per_cu;
7913 }
7914 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7915 this_cu->sect_off = sect_off;
7916 this_cu->length = cu_header.length + cu_header.initial_length_size;
7917 this_cu->is_dwz = is_dwz;
7918 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7919 this_cu->section = section;
7920
7921 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7922
7923 info_ptr = info_ptr + this_cu->length;
7924 }
7925 }
7926
7927 /* Create a list of all compilation units in OBJFILE.
7928 This is only done for -readnow and building partial symtabs. */
7929
7930 static void
7931 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7932 {
7933 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7934 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7935 &dwarf2_per_objfile->abbrev, 0);
7936
7937 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7938 if (dwz != NULL)
7939 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7940 1);
7941 }
7942
7943 /* Process all loaded DIEs for compilation unit CU, starting at
7944 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7945 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7946 DW_AT_ranges). See the comments of add_partial_subprogram on how
7947 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7948
7949 static void
7950 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7951 CORE_ADDR *highpc, int set_addrmap,
7952 struct dwarf2_cu *cu)
7953 {
7954 struct partial_die_info *pdi;
7955
7956 /* Now, march along the PDI's, descending into ones which have
7957 interesting children but skipping the children of the other ones,
7958 until we reach the end of the compilation unit. */
7959
7960 pdi = first_die;
7961
7962 while (pdi != NULL)
7963 {
7964 pdi->fixup (cu);
7965
7966 /* Anonymous namespaces or modules have no name but have interesting
7967 children, so we need to look at them. Ditto for anonymous
7968 enums. */
7969
7970 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7971 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7972 || pdi->tag == DW_TAG_imported_unit
7973 || pdi->tag == DW_TAG_inlined_subroutine)
7974 {
7975 switch (pdi->tag)
7976 {
7977 case DW_TAG_subprogram:
7978 case DW_TAG_inlined_subroutine:
7979 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7980 break;
7981 case DW_TAG_constant:
7982 case DW_TAG_variable:
7983 case DW_TAG_typedef:
7984 case DW_TAG_union_type:
7985 if (!pdi->is_declaration
7986 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7987 {
7988 add_partial_symbol (pdi, cu);
7989 }
7990 break;
7991 case DW_TAG_class_type:
7992 case DW_TAG_interface_type:
7993 case DW_TAG_structure_type:
7994 if (!pdi->is_declaration)
7995 {
7996 add_partial_symbol (pdi, cu);
7997 }
7998 if ((cu->language == language_rust
7999 || cu->language == language_cplus) && pdi->has_children)
8000 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8001 set_addrmap, cu);
8002 break;
8003 case DW_TAG_enumeration_type:
8004 if (!pdi->is_declaration)
8005 add_partial_enumeration (pdi, cu);
8006 break;
8007 case DW_TAG_base_type:
8008 case DW_TAG_subrange_type:
8009 /* File scope base type definitions are added to the partial
8010 symbol table. */
8011 add_partial_symbol (pdi, cu);
8012 break;
8013 case DW_TAG_namespace:
8014 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8015 break;
8016 case DW_TAG_module:
8017 if (!pdi->is_declaration)
8018 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8019 break;
8020 case DW_TAG_imported_unit:
8021 {
8022 struct dwarf2_per_cu_data *per_cu;
8023
8024 /* For now we don't handle imported units in type units. */
8025 if (cu->per_cu->is_debug_types)
8026 {
8027 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8028 " supported in type units [in module %s]"),
8029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8030 }
8031
8032 per_cu = dwarf2_find_containing_comp_unit
8033 (pdi->d.sect_off, pdi->is_dwz,
8034 cu->per_cu->dwarf2_per_objfile);
8035
8036 /* Go read the partial unit, if needed. */
8037 if (per_cu->v.psymtab == NULL)
8038 process_psymtab_comp_unit (per_cu, true, cu->language);
8039
8040 cu->per_cu->imported_symtabs_push (per_cu);
8041 }
8042 break;
8043 case DW_TAG_imported_declaration:
8044 add_partial_symbol (pdi, cu);
8045 break;
8046 default:
8047 break;
8048 }
8049 }
8050
8051 /* If the die has a sibling, skip to the sibling. */
8052
8053 pdi = pdi->die_sibling;
8054 }
8055 }
8056
8057 /* Functions used to compute the fully scoped name of a partial DIE.
8058
8059 Normally, this is simple. For C++, the parent DIE's fully scoped
8060 name is concatenated with "::" and the partial DIE's name.
8061 Enumerators are an exception; they use the scope of their parent
8062 enumeration type, i.e. the name of the enumeration type is not
8063 prepended to the enumerator.
8064
8065 There are two complexities. One is DW_AT_specification; in this
8066 case "parent" means the parent of the target of the specification,
8067 instead of the direct parent of the DIE. The other is compilers
8068 which do not emit DW_TAG_namespace; in this case we try to guess
8069 the fully qualified name of structure types from their members'
8070 linkage names. This must be done using the DIE's children rather
8071 than the children of any DW_AT_specification target. We only need
8072 to do this for structures at the top level, i.e. if the target of
8073 any DW_AT_specification (if any; otherwise the DIE itself) does not
8074 have a parent. */
8075
8076 /* Compute the scope prefix associated with PDI's parent, in
8077 compilation unit CU. The result will be allocated on CU's
8078 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8079 field. NULL is returned if no prefix is necessary. */
8080 static const char *
8081 partial_die_parent_scope (struct partial_die_info *pdi,
8082 struct dwarf2_cu *cu)
8083 {
8084 const char *grandparent_scope;
8085 struct partial_die_info *parent, *real_pdi;
8086
8087 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8088 then this means the parent of the specification DIE. */
8089
8090 real_pdi = pdi;
8091 while (real_pdi->has_specification)
8092 {
8093 auto res = find_partial_die (real_pdi->spec_offset,
8094 real_pdi->spec_is_dwz, cu);
8095 real_pdi = res.pdi;
8096 cu = res.cu;
8097 }
8098
8099 parent = real_pdi->die_parent;
8100 if (parent == NULL)
8101 return NULL;
8102
8103 if (parent->scope_set)
8104 return parent->scope;
8105
8106 parent->fixup (cu);
8107
8108 grandparent_scope = partial_die_parent_scope (parent, cu);
8109
8110 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8111 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8112 Work around this problem here. */
8113 if (cu->language == language_cplus
8114 && parent->tag == DW_TAG_namespace
8115 && strcmp (parent->name, "::") == 0
8116 && grandparent_scope == NULL)
8117 {
8118 parent->scope = NULL;
8119 parent->scope_set = 1;
8120 return NULL;
8121 }
8122
8123 /* Nested subroutines in Fortran get a prefix. */
8124 if (pdi->tag == DW_TAG_enumerator)
8125 /* Enumerators should not get the name of the enumeration as a prefix. */
8126 parent->scope = grandparent_scope;
8127 else if (parent->tag == DW_TAG_namespace
8128 || parent->tag == DW_TAG_module
8129 || parent->tag == DW_TAG_structure_type
8130 || parent->tag == DW_TAG_class_type
8131 || parent->tag == DW_TAG_interface_type
8132 || parent->tag == DW_TAG_union_type
8133 || parent->tag == DW_TAG_enumeration_type
8134 || (cu->language == language_fortran
8135 && parent->tag == DW_TAG_subprogram
8136 && pdi->tag == DW_TAG_subprogram))
8137 {
8138 if (grandparent_scope == NULL)
8139 parent->scope = parent->name;
8140 else
8141 parent->scope = typename_concat (&cu->comp_unit_obstack,
8142 grandparent_scope,
8143 parent->name, 0, cu);
8144 }
8145 else
8146 {
8147 /* FIXME drow/2004-04-01: What should we be doing with
8148 function-local names? For partial symbols, we should probably be
8149 ignoring them. */
8150 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8151 dwarf_tag_name (parent->tag),
8152 sect_offset_str (pdi->sect_off));
8153 parent->scope = grandparent_scope;
8154 }
8155
8156 parent->scope_set = 1;
8157 return parent->scope;
8158 }
8159
8160 /* Return the fully scoped name associated with PDI, from compilation unit
8161 CU. The result will be allocated with malloc. */
8162
8163 static gdb::unique_xmalloc_ptr<char>
8164 partial_die_full_name (struct partial_die_info *pdi,
8165 struct dwarf2_cu *cu)
8166 {
8167 const char *parent_scope;
8168
8169 /* If this is a template instantiation, we can not work out the
8170 template arguments from partial DIEs. So, unfortunately, we have
8171 to go through the full DIEs. At least any work we do building
8172 types here will be reused if full symbols are loaded later. */
8173 if (pdi->has_template_arguments)
8174 {
8175 pdi->fixup (cu);
8176
8177 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8178 {
8179 struct die_info *die;
8180 struct attribute attr;
8181 struct dwarf2_cu *ref_cu = cu;
8182
8183 /* DW_FORM_ref_addr is using section offset. */
8184 attr.name = (enum dwarf_attribute) 0;
8185 attr.form = DW_FORM_ref_addr;
8186 attr.u.unsnd = to_underlying (pdi->sect_off);
8187 die = follow_die_ref (NULL, &attr, &ref_cu);
8188
8189 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8190 }
8191 }
8192
8193 parent_scope = partial_die_parent_scope (pdi, cu);
8194 if (parent_scope == NULL)
8195 return NULL;
8196 else
8197 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8198 pdi->name, 0, cu));
8199 }
8200
8201 static void
8202 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8203 {
8204 struct dwarf2_per_objfile *dwarf2_per_objfile
8205 = cu->per_cu->dwarf2_per_objfile;
8206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8207 struct gdbarch *gdbarch = objfile->arch ();
8208 CORE_ADDR addr = 0;
8209 const char *actual_name = NULL;
8210 CORE_ADDR baseaddr;
8211
8212 baseaddr = objfile->text_section_offset ();
8213
8214 gdb::unique_xmalloc_ptr<char> built_actual_name
8215 = partial_die_full_name (pdi, cu);
8216 if (built_actual_name != NULL)
8217 actual_name = built_actual_name.get ();
8218
8219 if (actual_name == NULL)
8220 actual_name = pdi->name;
8221
8222 partial_symbol psymbol;
8223 memset (&psymbol, 0, sizeof (psymbol));
8224 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8225 psymbol.ginfo.section = -1;
8226
8227 /* The code below indicates that the psymbol should be installed by
8228 setting this. */
8229 gdb::optional<psymbol_placement> where;
8230
8231 switch (pdi->tag)
8232 {
8233 case DW_TAG_inlined_subroutine:
8234 case DW_TAG_subprogram:
8235 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8236 - baseaddr);
8237 if (pdi->is_external
8238 || cu->language == language_ada
8239 || (cu->language == language_fortran
8240 && pdi->die_parent != NULL
8241 && pdi->die_parent->tag == DW_TAG_subprogram))
8242 {
8243 /* Normally, only "external" DIEs are part of the global scope.
8244 But in Ada and Fortran, we want to be able to access nested
8245 procedures globally. So all Ada and Fortran subprograms are
8246 stored in the global scope. */
8247 where = psymbol_placement::GLOBAL;
8248 }
8249 else
8250 where = psymbol_placement::STATIC;
8251
8252 psymbol.domain = VAR_DOMAIN;
8253 psymbol.aclass = LOC_BLOCK;
8254 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8255 psymbol.ginfo.value.address = addr;
8256
8257 if (pdi->main_subprogram && actual_name != NULL)
8258 set_objfile_main_name (objfile, actual_name, cu->language);
8259 break;
8260 case DW_TAG_constant:
8261 psymbol.domain = VAR_DOMAIN;
8262 psymbol.aclass = LOC_STATIC;
8263 where = (pdi->is_external
8264 ? psymbol_placement::GLOBAL
8265 : psymbol_placement::STATIC);
8266 break;
8267 case DW_TAG_variable:
8268 if (pdi->d.locdesc)
8269 addr = decode_locdesc (pdi->d.locdesc, cu);
8270
8271 if (pdi->d.locdesc
8272 && addr == 0
8273 && !dwarf2_per_objfile->has_section_at_zero)
8274 {
8275 /* A global or static variable may also have been stripped
8276 out by the linker if unused, in which case its address
8277 will be nullified; do not add such variables into partial
8278 symbol table then. */
8279 }
8280 else if (pdi->is_external)
8281 {
8282 /* Global Variable.
8283 Don't enter into the minimal symbol tables as there is
8284 a minimal symbol table entry from the ELF symbols already.
8285 Enter into partial symbol table if it has a location
8286 descriptor or a type.
8287 If the location descriptor is missing, new_symbol will create
8288 a LOC_UNRESOLVED symbol, the address of the variable will then
8289 be determined from the minimal symbol table whenever the variable
8290 is referenced.
8291 The address for the partial symbol table entry is not
8292 used by GDB, but it comes in handy for debugging partial symbol
8293 table building. */
8294
8295 if (pdi->d.locdesc || pdi->has_type)
8296 {
8297 psymbol.domain = VAR_DOMAIN;
8298 psymbol.aclass = LOC_STATIC;
8299 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8300 psymbol.ginfo.value.address = addr;
8301 where = psymbol_placement::GLOBAL;
8302 }
8303 }
8304 else
8305 {
8306 int has_loc = pdi->d.locdesc != NULL;
8307
8308 /* Static Variable. Skip symbols whose value we cannot know (those
8309 without location descriptors or constant values). */
8310 if (!has_loc && !pdi->has_const_value)
8311 return;
8312
8313 psymbol.domain = VAR_DOMAIN;
8314 psymbol.aclass = LOC_STATIC;
8315 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8316 if (has_loc)
8317 psymbol.ginfo.value.address = addr;
8318 where = psymbol_placement::STATIC;
8319 }
8320 break;
8321 case DW_TAG_typedef:
8322 case DW_TAG_base_type:
8323 case DW_TAG_subrange_type:
8324 psymbol.domain = VAR_DOMAIN;
8325 psymbol.aclass = LOC_TYPEDEF;
8326 where = psymbol_placement::STATIC;
8327 break;
8328 case DW_TAG_imported_declaration:
8329 case DW_TAG_namespace:
8330 psymbol.domain = VAR_DOMAIN;
8331 psymbol.aclass = LOC_TYPEDEF;
8332 where = psymbol_placement::GLOBAL;
8333 break;
8334 case DW_TAG_module:
8335 /* With Fortran 77 there might be a "BLOCK DATA" module
8336 available without any name. If so, we skip the module as it
8337 doesn't bring any value. */
8338 if (actual_name != nullptr)
8339 {
8340 psymbol.domain = MODULE_DOMAIN;
8341 psymbol.aclass = LOC_TYPEDEF;
8342 where = psymbol_placement::GLOBAL;
8343 }
8344 break;
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 /* Skip external references. The DWARF standard says in the section
8351 about "Structure, Union, and Class Type Entries": "An incomplete
8352 structure, union or class type is represented by a structure,
8353 union or class entry that does not have a byte size attribute
8354 and that has a DW_AT_declaration attribute." */
8355 if (!pdi->has_byte_size && pdi->is_declaration)
8356 return;
8357
8358 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8359 static vs. global. */
8360 psymbol.domain = STRUCT_DOMAIN;
8361 psymbol.aclass = LOC_TYPEDEF;
8362 where = (cu->language == language_cplus
8363 ? psymbol_placement::GLOBAL
8364 : psymbol_placement::STATIC);
8365 break;
8366 case DW_TAG_enumerator:
8367 psymbol.domain = VAR_DOMAIN;
8368 psymbol.aclass = LOC_CONST;
8369 where = (cu->language == language_cplus
8370 ? psymbol_placement::GLOBAL
8371 : psymbol_placement::STATIC);
8372 break;
8373 default:
8374 break;
8375 }
8376
8377 if (where.has_value ())
8378 {
8379 if (built_actual_name != nullptr)
8380 actual_name = objfile->intern (actual_name);
8381 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8382 psymbol.ginfo.set_linkage_name (actual_name);
8383 else
8384 {
8385 psymbol.ginfo.set_demangled_name (actual_name,
8386 &objfile->objfile_obstack);
8387 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8388 }
8389 add_psymbol_to_list (psymbol, *where, objfile);
8390 }
8391 }
8392
8393 /* Read a partial die corresponding to a namespace; also, add a symbol
8394 corresponding to that namespace to the symbol table. NAMESPACE is
8395 the name of the enclosing namespace. */
8396
8397 static void
8398 add_partial_namespace (struct partial_die_info *pdi,
8399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8400 int set_addrmap, struct dwarf2_cu *cu)
8401 {
8402 /* Add a symbol for the namespace. */
8403
8404 add_partial_symbol (pdi, cu);
8405
8406 /* Now scan partial symbols in that namespace. */
8407
8408 if (pdi->has_children)
8409 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8410 }
8411
8412 /* Read a partial die corresponding to a Fortran module. */
8413
8414 static void
8415 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8416 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8417 {
8418 /* Add a symbol for the namespace. */
8419
8420 add_partial_symbol (pdi, cu);
8421
8422 /* Now scan partial symbols in that module. */
8423
8424 if (pdi->has_children)
8425 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8426 }
8427
8428 /* Read a partial die corresponding to a subprogram or an inlined
8429 subprogram and create a partial symbol for that subprogram.
8430 When the CU language allows it, this routine also defines a partial
8431 symbol for each nested subprogram that this subprogram contains.
8432 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8433 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8434
8435 PDI may also be a lexical block, in which case we simply search
8436 recursively for subprograms defined inside that lexical block.
8437 Again, this is only performed when the CU language allows this
8438 type of definitions. */
8439
8440 static void
8441 add_partial_subprogram (struct partial_die_info *pdi,
8442 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8443 int set_addrmap, struct dwarf2_cu *cu)
8444 {
8445 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8446 {
8447 if (pdi->has_pc_info)
8448 {
8449 if (pdi->lowpc < *lowpc)
8450 *lowpc = pdi->lowpc;
8451 if (pdi->highpc > *highpc)
8452 *highpc = pdi->highpc;
8453 if (set_addrmap)
8454 {
8455 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8456 struct gdbarch *gdbarch = objfile->arch ();
8457 CORE_ADDR baseaddr;
8458 CORE_ADDR this_highpc;
8459 CORE_ADDR this_lowpc;
8460
8461 baseaddr = objfile->text_section_offset ();
8462 this_lowpc
8463 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8464 pdi->lowpc + baseaddr)
8465 - baseaddr);
8466 this_highpc
8467 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8468 pdi->highpc + baseaddr)
8469 - baseaddr);
8470 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8471 this_lowpc, this_highpc - 1,
8472 cu->per_cu->v.psymtab);
8473 }
8474 }
8475
8476 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8477 {
8478 if (!pdi->is_declaration)
8479 /* Ignore subprogram DIEs that do not have a name, they are
8480 illegal. Do not emit a complaint at this point, we will
8481 do so when we convert this psymtab into a symtab. */
8482 if (pdi->name)
8483 add_partial_symbol (pdi, cu);
8484 }
8485 }
8486
8487 if (! pdi->has_children)
8488 return;
8489
8490 if (cu->language == language_ada || cu->language == language_fortran)
8491 {
8492 pdi = pdi->die_child;
8493 while (pdi != NULL)
8494 {
8495 pdi->fixup (cu);
8496 if (pdi->tag == DW_TAG_subprogram
8497 || pdi->tag == DW_TAG_inlined_subroutine
8498 || pdi->tag == DW_TAG_lexical_block)
8499 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8500 pdi = pdi->die_sibling;
8501 }
8502 }
8503 }
8504
8505 /* Read a partial die corresponding to an enumeration type. */
8506
8507 static void
8508 add_partial_enumeration (struct partial_die_info *enum_pdi,
8509 struct dwarf2_cu *cu)
8510 {
8511 struct partial_die_info *pdi;
8512
8513 if (enum_pdi->name != NULL)
8514 add_partial_symbol (enum_pdi, cu);
8515
8516 pdi = enum_pdi->die_child;
8517 while (pdi)
8518 {
8519 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8520 complaint (_("malformed enumerator DIE ignored"));
8521 else
8522 add_partial_symbol (pdi, cu);
8523 pdi = pdi->die_sibling;
8524 }
8525 }
8526
8527 /* Return the initial uleb128 in the die at INFO_PTR. */
8528
8529 static unsigned int
8530 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8531 {
8532 unsigned int bytes_read;
8533
8534 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8535 }
8536
8537 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8538 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8539
8540 Return the corresponding abbrev, or NULL if the number is zero (indicating
8541 an empty DIE). In either case *BYTES_READ will be set to the length of
8542 the initial number. */
8543
8544 static struct abbrev_info *
8545 peek_die_abbrev (const die_reader_specs &reader,
8546 const gdb_byte *info_ptr, unsigned int *bytes_read)
8547 {
8548 dwarf2_cu *cu = reader.cu;
8549 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8550 unsigned int abbrev_number
8551 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8552
8553 if (abbrev_number == 0)
8554 return NULL;
8555
8556 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8557 if (!abbrev)
8558 {
8559 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8560 " at offset %s [in module %s]"),
8561 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8562 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8563 }
8564
8565 return abbrev;
8566 }
8567
8568 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8569 Returns a pointer to the end of a series of DIEs, terminated by an empty
8570 DIE. Any children of the skipped DIEs will also be skipped. */
8571
8572 static const gdb_byte *
8573 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8574 {
8575 while (1)
8576 {
8577 unsigned int bytes_read;
8578 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8579
8580 if (abbrev == NULL)
8581 return info_ptr + bytes_read;
8582 else
8583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8584 }
8585 }
8586
8587 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8588 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8589 abbrev corresponding to that skipped uleb128 should be passed in
8590 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8591 children. */
8592
8593 static const gdb_byte *
8594 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8595 struct abbrev_info *abbrev)
8596 {
8597 unsigned int bytes_read;
8598 struct attribute attr;
8599 bfd *abfd = reader->abfd;
8600 struct dwarf2_cu *cu = reader->cu;
8601 const gdb_byte *buffer = reader->buffer;
8602 const gdb_byte *buffer_end = reader->buffer_end;
8603 unsigned int form, i;
8604
8605 for (i = 0; i < abbrev->num_attrs; i++)
8606 {
8607 /* The only abbrev we care about is DW_AT_sibling. */
8608 if (abbrev->attrs[i].name == DW_AT_sibling)
8609 {
8610 bool ignored;
8611 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8612 &ignored);
8613 if (attr.form == DW_FORM_ref_addr)
8614 complaint (_("ignoring absolute DW_AT_sibling"));
8615 else
8616 {
8617 sect_offset off = attr.get_ref_die_offset ();
8618 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8619
8620 if (sibling_ptr < info_ptr)
8621 complaint (_("DW_AT_sibling points backwards"));
8622 else if (sibling_ptr > reader->buffer_end)
8623 reader->die_section->overflow_complaint ();
8624 else
8625 return sibling_ptr;
8626 }
8627 }
8628
8629 /* If it isn't DW_AT_sibling, skip this attribute. */
8630 form = abbrev->attrs[i].form;
8631 skip_attribute:
8632 switch (form)
8633 {
8634 case DW_FORM_ref_addr:
8635 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8636 and later it is offset sized. */
8637 if (cu->header.version == 2)
8638 info_ptr += cu->header.addr_size;
8639 else
8640 info_ptr += cu->header.offset_size;
8641 break;
8642 case DW_FORM_GNU_ref_alt:
8643 info_ptr += cu->header.offset_size;
8644 break;
8645 case DW_FORM_addr:
8646 info_ptr += cu->header.addr_size;
8647 break;
8648 case DW_FORM_data1:
8649 case DW_FORM_ref1:
8650 case DW_FORM_flag:
8651 case DW_FORM_strx1:
8652 info_ptr += 1;
8653 break;
8654 case DW_FORM_flag_present:
8655 case DW_FORM_implicit_const:
8656 break;
8657 case DW_FORM_data2:
8658 case DW_FORM_ref2:
8659 case DW_FORM_strx2:
8660 info_ptr += 2;
8661 break;
8662 case DW_FORM_strx3:
8663 info_ptr += 3;
8664 break;
8665 case DW_FORM_data4:
8666 case DW_FORM_ref4:
8667 case DW_FORM_strx4:
8668 info_ptr += 4;
8669 break;
8670 case DW_FORM_data8:
8671 case DW_FORM_ref8:
8672 case DW_FORM_ref_sig8:
8673 info_ptr += 8;
8674 break;
8675 case DW_FORM_data16:
8676 info_ptr += 16;
8677 break;
8678 case DW_FORM_string:
8679 read_direct_string (abfd, info_ptr, &bytes_read);
8680 info_ptr += bytes_read;
8681 break;
8682 case DW_FORM_sec_offset:
8683 case DW_FORM_strp:
8684 case DW_FORM_GNU_strp_alt:
8685 info_ptr += cu->header.offset_size;
8686 break;
8687 case DW_FORM_exprloc:
8688 case DW_FORM_block:
8689 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8690 info_ptr += bytes_read;
8691 break;
8692 case DW_FORM_block1:
8693 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8694 break;
8695 case DW_FORM_block2:
8696 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8697 break;
8698 case DW_FORM_block4:
8699 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8700 break;
8701 case DW_FORM_addrx:
8702 case DW_FORM_strx:
8703 case DW_FORM_sdata:
8704 case DW_FORM_udata:
8705 case DW_FORM_ref_udata:
8706 case DW_FORM_GNU_addr_index:
8707 case DW_FORM_GNU_str_index:
8708 case DW_FORM_rnglistx:
8709 case DW_FORM_loclistx:
8710 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8711 break;
8712 case DW_FORM_indirect:
8713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8714 info_ptr += bytes_read;
8715 /* We need to continue parsing from here, so just go back to
8716 the top. */
8717 goto skip_attribute;
8718
8719 default:
8720 error (_("Dwarf Error: Cannot handle %s "
8721 "in DWARF reader [in module %s]"),
8722 dwarf_form_name (form),
8723 bfd_get_filename (abfd));
8724 }
8725 }
8726
8727 if (abbrev->has_children)
8728 return skip_children (reader, info_ptr);
8729 else
8730 return info_ptr;
8731 }
8732
8733 /* Locate ORIG_PDI's sibling.
8734 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8735
8736 static const gdb_byte *
8737 locate_pdi_sibling (const struct die_reader_specs *reader,
8738 struct partial_die_info *orig_pdi,
8739 const gdb_byte *info_ptr)
8740 {
8741 /* Do we know the sibling already? */
8742
8743 if (orig_pdi->sibling)
8744 return orig_pdi->sibling;
8745
8746 /* Are there any children to deal with? */
8747
8748 if (!orig_pdi->has_children)
8749 return info_ptr;
8750
8751 /* Skip the children the long way. */
8752
8753 return skip_children (reader, info_ptr);
8754 }
8755
8756 /* Expand this partial symbol table into a full symbol table. SELF is
8757 not NULL. */
8758
8759 void
8760 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8761 {
8762 struct dwarf2_per_objfile *dwarf2_per_objfile
8763 = get_dwarf2_per_objfile (objfile);
8764
8765 gdb_assert (!readin);
8766 /* If this psymtab is constructed from a debug-only objfile, the
8767 has_section_at_zero flag will not necessarily be correct. We
8768 can get the correct value for this flag by looking at the data
8769 associated with the (presumably stripped) associated objfile. */
8770 if (objfile->separate_debug_objfile_backlink)
8771 {
8772 struct dwarf2_per_objfile *dpo_backlink
8773 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8774
8775 dwarf2_per_objfile->has_section_at_zero
8776 = dpo_backlink->has_section_at_zero;
8777 }
8778
8779 expand_psymtab (objfile);
8780
8781 process_cu_includes (dwarf2_per_objfile);
8782 }
8783 \f
8784 /* Reading in full CUs. */
8785
8786 /* Add PER_CU to the queue. */
8787
8788 static void
8789 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8790 enum language pretend_language)
8791 {
8792 per_cu->queued = 1;
8793 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8794 }
8795
8796 /* If PER_CU is not yet queued, add it to the queue.
8797 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8798 dependency.
8799 The result is non-zero if PER_CU was queued, otherwise the result is zero
8800 meaning either PER_CU is already queued or it is already loaded.
8801
8802 N.B. There is an invariant here that if a CU is queued then it is loaded.
8803 The caller is required to load PER_CU if we return non-zero. */
8804
8805 static int
8806 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8807 struct dwarf2_per_cu_data *per_cu,
8808 enum language pretend_language)
8809 {
8810 /* We may arrive here during partial symbol reading, if we need full
8811 DIEs to process an unusual case (e.g. template arguments). Do
8812 not queue PER_CU, just tell our caller to load its DIEs. */
8813 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8814 {
8815 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8816 return 1;
8817 return 0;
8818 }
8819
8820 /* Mark the dependence relation so that we don't flush PER_CU
8821 too early. */
8822 if (dependent_cu != NULL)
8823 dwarf2_add_dependence (dependent_cu, per_cu);
8824
8825 /* If it's already on the queue, we have nothing to do. */
8826 if (per_cu->queued)
8827 return 0;
8828
8829 /* If the compilation unit is already loaded, just mark it as
8830 used. */
8831 if (per_cu->cu != NULL)
8832 {
8833 per_cu->cu->last_used = 0;
8834 return 0;
8835 }
8836
8837 /* Add it to the queue. */
8838 queue_comp_unit (per_cu, pretend_language);
8839
8840 return 1;
8841 }
8842
8843 /* Process the queue. */
8844
8845 static void
8846 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8847 {
8848 if (dwarf_read_debug)
8849 {
8850 fprintf_unfiltered (gdb_stdlog,
8851 "Expanding one or more symtabs of objfile %s ...\n",
8852 objfile_name (dwarf2_per_objfile->objfile));
8853 }
8854
8855 /* The queue starts out with one item, but following a DIE reference
8856 may load a new CU, adding it to the end of the queue. */
8857 while (!dwarf2_per_objfile->queue.empty ())
8858 {
8859 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8860
8861 if ((dwarf2_per_objfile->using_index
8862 ? !item.per_cu->v.quick->compunit_symtab
8863 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8864 /* Skip dummy CUs. */
8865 && item.per_cu->cu != NULL)
8866 {
8867 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8868 unsigned int debug_print_threshold;
8869 char buf[100];
8870
8871 if (per_cu->is_debug_types)
8872 {
8873 struct signatured_type *sig_type =
8874 (struct signatured_type *) per_cu;
8875
8876 sprintf (buf, "TU %s at offset %s",
8877 hex_string (sig_type->signature),
8878 sect_offset_str (per_cu->sect_off));
8879 /* There can be 100s of TUs.
8880 Only print them in verbose mode. */
8881 debug_print_threshold = 2;
8882 }
8883 else
8884 {
8885 sprintf (buf, "CU at offset %s",
8886 sect_offset_str (per_cu->sect_off));
8887 debug_print_threshold = 1;
8888 }
8889
8890 if (dwarf_read_debug >= debug_print_threshold)
8891 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8892
8893 if (per_cu->is_debug_types)
8894 process_full_type_unit (per_cu, item.pretend_language);
8895 else
8896 process_full_comp_unit (per_cu, item.pretend_language);
8897
8898 if (dwarf_read_debug >= debug_print_threshold)
8899 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8900 }
8901
8902 item.per_cu->queued = 0;
8903 dwarf2_per_objfile->queue.pop ();
8904 }
8905
8906 if (dwarf_read_debug)
8907 {
8908 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8909 objfile_name (dwarf2_per_objfile->objfile));
8910 }
8911 }
8912
8913 /* Read in full symbols for PST, and anything it depends on. */
8914
8915 void
8916 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8917 {
8918 gdb_assert (!readin);
8919
8920 expand_dependencies (objfile);
8921
8922 dw2_do_instantiate_symtab (per_cu_data, false);
8923 gdb_assert (get_compunit_symtab () != nullptr);
8924 }
8925
8926 /* Trivial hash function for die_info: the hash value of a DIE
8927 is its offset in .debug_info for this objfile. */
8928
8929 static hashval_t
8930 die_hash (const void *item)
8931 {
8932 const struct die_info *die = (const struct die_info *) item;
8933
8934 return to_underlying (die->sect_off);
8935 }
8936
8937 /* Trivial comparison function for die_info structures: two DIEs
8938 are equal if they have the same offset. */
8939
8940 static int
8941 die_eq (const void *item_lhs, const void *item_rhs)
8942 {
8943 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8944 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8945
8946 return die_lhs->sect_off == die_rhs->sect_off;
8947 }
8948
8949 /* Load the DIEs associated with PER_CU into memory. */
8950
8951 static void
8952 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8953 bool skip_partial,
8954 enum language pretend_language)
8955 {
8956 gdb_assert (! this_cu->is_debug_types);
8957
8958 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8959 if (reader.dummy_p)
8960 return;
8961
8962 struct dwarf2_cu *cu = reader.cu;
8963 const gdb_byte *info_ptr = reader.info_ptr;
8964
8965 gdb_assert (cu->die_hash == NULL);
8966 cu->die_hash =
8967 htab_create_alloc_ex (cu->header.length / 12,
8968 die_hash,
8969 die_eq,
8970 NULL,
8971 &cu->comp_unit_obstack,
8972 hashtab_obstack_allocate,
8973 dummy_obstack_deallocate);
8974
8975 if (reader.comp_unit_die->has_children)
8976 reader.comp_unit_die->child
8977 = read_die_and_siblings (&reader, reader.info_ptr,
8978 &info_ptr, reader.comp_unit_die);
8979 cu->dies = reader.comp_unit_die;
8980 /* comp_unit_die is not stored in die_hash, no need. */
8981
8982 /* We try not to read any attributes in this function, because not
8983 all CUs needed for references have been loaded yet, and symbol
8984 table processing isn't initialized. But we have to set the CU language,
8985 or we won't be able to build types correctly.
8986 Similarly, if we do not read the producer, we can not apply
8987 producer-specific interpretation. */
8988 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8989
8990 reader.keep ();
8991 }
8992
8993 /* Add a DIE to the delayed physname list. */
8994
8995 static void
8996 add_to_method_list (struct type *type, int fnfield_index, int index,
8997 const char *name, struct die_info *die,
8998 struct dwarf2_cu *cu)
8999 {
9000 struct delayed_method_info mi;
9001 mi.type = type;
9002 mi.fnfield_index = fnfield_index;
9003 mi.index = index;
9004 mi.name = name;
9005 mi.die = die;
9006 cu->method_list.push_back (mi);
9007 }
9008
9009 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9010 "const" / "volatile". If so, decrements LEN by the length of the
9011 modifier and return true. Otherwise return false. */
9012
9013 template<size_t N>
9014 static bool
9015 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9016 {
9017 size_t mod_len = sizeof (mod) - 1;
9018 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9019 {
9020 len -= mod_len;
9021 return true;
9022 }
9023 return false;
9024 }
9025
9026 /* Compute the physnames of any methods on the CU's method list.
9027
9028 The computation of method physnames is delayed in order to avoid the
9029 (bad) condition that one of the method's formal parameters is of an as yet
9030 incomplete type. */
9031
9032 static void
9033 compute_delayed_physnames (struct dwarf2_cu *cu)
9034 {
9035 /* Only C++ delays computing physnames. */
9036 if (cu->method_list.empty ())
9037 return;
9038 gdb_assert (cu->language == language_cplus);
9039
9040 for (const delayed_method_info &mi : cu->method_list)
9041 {
9042 const char *physname;
9043 struct fn_fieldlist *fn_flp
9044 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9045 physname = dwarf2_physname (mi.name, mi.die, cu);
9046 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9047 = physname ? physname : "";
9048
9049 /* Since there's no tag to indicate whether a method is a
9050 const/volatile overload, extract that information out of the
9051 demangled name. */
9052 if (physname != NULL)
9053 {
9054 size_t len = strlen (physname);
9055
9056 while (1)
9057 {
9058 if (physname[len] == ')') /* shortcut */
9059 break;
9060 else if (check_modifier (physname, len, " const"))
9061 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9062 else if (check_modifier (physname, len, " volatile"))
9063 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9064 else
9065 break;
9066 }
9067 }
9068 }
9069
9070 /* The list is no longer needed. */
9071 cu->method_list.clear ();
9072 }
9073
9074 /* Go objects should be embedded in a DW_TAG_module DIE,
9075 and it's not clear if/how imported objects will appear.
9076 To keep Go support simple until that's worked out,
9077 go back through what we've read and create something usable.
9078 We could do this while processing each DIE, and feels kinda cleaner,
9079 but that way is more invasive.
9080 This is to, for example, allow the user to type "p var" or "b main"
9081 without having to specify the package name, and allow lookups
9082 of module.object to work in contexts that use the expression
9083 parser. */
9084
9085 static void
9086 fixup_go_packaging (struct dwarf2_cu *cu)
9087 {
9088 gdb::unique_xmalloc_ptr<char> package_name;
9089 struct pending *list;
9090 int i;
9091
9092 for (list = *cu->get_builder ()->get_global_symbols ();
9093 list != NULL;
9094 list = list->next)
9095 {
9096 for (i = 0; i < list->nsyms; ++i)
9097 {
9098 struct symbol *sym = list->symbol[i];
9099
9100 if (sym->language () == language_go
9101 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9102 {
9103 gdb::unique_xmalloc_ptr<char> this_package_name
9104 (go_symbol_package_name (sym));
9105
9106 if (this_package_name == NULL)
9107 continue;
9108 if (package_name == NULL)
9109 package_name = std::move (this_package_name);
9110 else
9111 {
9112 struct objfile *objfile
9113 = cu->per_cu->dwarf2_per_objfile->objfile;
9114 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9115 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9116 (symbol_symtab (sym) != NULL
9117 ? symtab_to_filename_for_display
9118 (symbol_symtab (sym))
9119 : objfile_name (objfile)),
9120 this_package_name.get (), package_name.get ());
9121 }
9122 }
9123 }
9124 }
9125
9126 if (package_name != NULL)
9127 {
9128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9129 const char *saved_package_name = objfile->intern (package_name.get ());
9130 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9131 saved_package_name);
9132 struct symbol *sym;
9133
9134 sym = allocate_symbol (objfile);
9135 sym->set_language (language_go, &objfile->objfile_obstack);
9136 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9137 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9138 e.g., "main" finds the "main" module and not C's main(). */
9139 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9141 SYMBOL_TYPE (sym) = type;
9142
9143 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9144 }
9145 }
9146
9147 /* Allocate a fully-qualified name consisting of the two parts on the
9148 obstack. */
9149
9150 static const char *
9151 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9152 {
9153 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9154 }
9155
9156 /* A helper that allocates a variant part to attach to a Rust enum
9157 type. OBSTACK is where the results should be allocated. TYPE is
9158 the type we're processing. DISCRIMINANT_INDEX is the index of the
9159 discriminant. It must be the index of one of the fields of TYPE.
9160 DEFAULT_INDEX is the index of the default field; or -1 if there is
9161 no default. RANGES is indexed by "effective" field number (the
9162 field index, but omitting the discriminant and default fields) and
9163 must hold the discriminant values used by the variants. Note that
9164 RANGES must have a lifetime at least as long as OBSTACK -- either
9165 already allocated on it, or static. */
9166
9167 static void
9168 alloc_rust_variant (struct obstack *obstack, struct type *type,
9169 int discriminant_index, int default_index,
9170 gdb::array_view<discriminant_range> ranges)
9171 {
9172 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9173 must be handled by the caller. */
9174 gdb_assert (discriminant_index >= 0
9175 && discriminant_index < TYPE_NFIELDS (type));
9176 gdb_assert (default_index == -1
9177 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9178
9179 /* We have one variant for each non-discriminant field. */
9180 int n_variants = TYPE_NFIELDS (type) - 1;
9181
9182 variant *variants = new (obstack) variant[n_variants];
9183 int var_idx = 0;
9184 int range_idx = 0;
9185 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9186 {
9187 if (i == discriminant_index)
9188 continue;
9189
9190 variants[var_idx].first_field = i;
9191 variants[var_idx].last_field = i + 1;
9192
9193 /* The default field does not need a range, but other fields do.
9194 We skipped the discriminant above. */
9195 if (i != default_index)
9196 {
9197 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9198 ++range_idx;
9199 }
9200
9201 ++var_idx;
9202 }
9203
9204 gdb_assert (range_idx == ranges.size ());
9205 gdb_assert (var_idx == n_variants);
9206
9207 variant_part *part = new (obstack) variant_part;
9208 part->discriminant_index = discriminant_index;
9209 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9210 discriminant_index));
9211 part->variants = gdb::array_view<variant> (variants, n_variants);
9212
9213 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9214 gdb::array_view<variant_part> *prop_value
9215 = new (storage) gdb::array_view<variant_part> (part, 1);
9216
9217 struct dynamic_prop prop;
9218 prop.kind = PROP_VARIANT_PARTS;
9219 prop.data.variant_parts = prop_value;
9220
9221 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9222 }
9223
9224 /* Some versions of rustc emitted enums in an unusual way.
9225
9226 Ordinary enums were emitted as unions. The first element of each
9227 structure in the union was named "RUST$ENUM$DISR". This element
9228 held the discriminant.
9229
9230 These versions of Rust also implemented the "non-zero"
9231 optimization. When the enum had two values, and one is empty and
9232 the other holds a pointer that cannot be zero, the pointer is used
9233 as the discriminant, with a zero value meaning the empty variant.
9234 Here, the union's first member is of the form
9235 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9236 where the fieldnos are the indices of the fields that should be
9237 traversed in order to find the field (which may be several fields deep)
9238 and the variantname is the name of the variant of the case when the
9239 field is zero.
9240
9241 This function recognizes whether TYPE is of one of these forms,
9242 and, if so, smashes it to be a variant type. */
9243
9244 static void
9245 quirk_rust_enum (struct type *type, struct objfile *objfile)
9246 {
9247 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9248
9249 /* We don't need to deal with empty enums. */
9250 if (TYPE_NFIELDS (type) == 0)
9251 return;
9252
9253 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9254 if (TYPE_NFIELDS (type) == 1
9255 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9256 {
9257 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9258
9259 /* Decode the field name to find the offset of the
9260 discriminant. */
9261 ULONGEST bit_offset = 0;
9262 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9263 while (name[0] >= '0' && name[0] <= '9')
9264 {
9265 char *tail;
9266 unsigned long index = strtoul (name, &tail, 10);
9267 name = tail;
9268 if (*name != '$'
9269 || index >= TYPE_NFIELDS (field_type)
9270 || (TYPE_FIELD_LOC_KIND (field_type, index)
9271 != FIELD_LOC_KIND_BITPOS))
9272 {
9273 complaint (_("Could not parse Rust enum encoding string \"%s\""
9274 "[in module %s]"),
9275 TYPE_FIELD_NAME (type, 0),
9276 objfile_name (objfile));
9277 return;
9278 }
9279 ++name;
9280
9281 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9282 field_type = TYPE_FIELD_TYPE (field_type, index);
9283 }
9284
9285 /* Smash this type to be a structure type. We have to do this
9286 because the type has already been recorded. */
9287 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9288 TYPE_NFIELDS (type) = 3;
9289 /* Save the field we care about. */
9290 struct field saved_field = TYPE_FIELD (type, 0);
9291 TYPE_FIELDS (type)
9292 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9293
9294 /* Put the discriminant at index 0. */
9295 TYPE_FIELD_TYPE (type, 0) = field_type;
9296 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9297 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9298 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), bit_offset);
9299
9300 /* The order of fields doesn't really matter, so put the real
9301 field at index 1 and the data-less field at index 2. */
9302 TYPE_FIELD (type, 1) = saved_field;
9303 TYPE_FIELD_NAME (type, 1)
9304 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, 1)));
9305 TYPE_NAME (TYPE_FIELD_TYPE (type, 1))
9306 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9307 TYPE_FIELD_NAME (type, 1));
9308
9309 const char *dataless_name
9310 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9311 name);
9312 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9313 dataless_name);
9314 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9315 /* NAME points into the original discriminant name, which
9316 already has the correct lifetime. */
9317 TYPE_FIELD_NAME (type, 2) = name;
9318 SET_FIELD_BITPOS (TYPE_FIELD (type, 2), 0);
9319
9320 /* Indicate that this is a variant type. */
9321 static discriminant_range ranges[1] = { { 0, 0 } };
9322 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9323 }
9324 /* A union with a single anonymous field is probably an old-style
9325 univariant enum. */
9326 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9327 {
9328 /* Smash this type to be a structure type. We have to do this
9329 because the type has already been recorded. */
9330 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9331
9332 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9333 const char *variant_name
9334 = rust_last_path_segment (TYPE_NAME (field_type));
9335 TYPE_FIELD_NAME (type, 0) = variant_name;
9336 TYPE_NAME (field_type)
9337 = rust_fully_qualify (&objfile->objfile_obstack,
9338 TYPE_NAME (type), variant_name);
9339 }
9340 else
9341 {
9342 struct type *disr_type = nullptr;
9343 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9344 {
9345 disr_type = TYPE_FIELD_TYPE (type, i);
9346
9347 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9348 {
9349 /* All fields of a true enum will be structs. */
9350 return;
9351 }
9352 else if (TYPE_NFIELDS (disr_type) == 0)
9353 {
9354 /* Could be data-less variant, so keep going. */
9355 disr_type = nullptr;
9356 }
9357 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9358 "RUST$ENUM$DISR") != 0)
9359 {
9360 /* Not a Rust enum. */
9361 return;
9362 }
9363 else
9364 {
9365 /* Found one. */
9366 break;
9367 }
9368 }
9369
9370 /* If we got here without a discriminant, then it's probably
9371 just a union. */
9372 if (disr_type == nullptr)
9373 return;
9374
9375 /* Smash this type to be a structure type. We have to do this
9376 because the type has already been recorded. */
9377 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9378
9379 /* Make space for the discriminant field. */
9380 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9381 field *new_fields
9382 = (struct field *) TYPE_ZALLOC (type, (TYPE_NFIELDS (type)
9383 * sizeof (struct field)));
9384 memcpy (new_fields + 1, TYPE_FIELDS (type),
9385 TYPE_NFIELDS (type) * sizeof (struct field));
9386 TYPE_FIELDS (type) = new_fields;
9387 TYPE_NFIELDS (type) = TYPE_NFIELDS (type) + 1;
9388
9389 /* Install the discriminant at index 0 in the union. */
9390 TYPE_FIELD (type, 0) = *disr_field;
9391 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9392 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9393
9394 /* We need a way to find the correct discriminant given a
9395 variant name. For convenience we build a map here. */
9396 struct type *enum_type = FIELD_TYPE (*disr_field);
9397 std::unordered_map<std::string, ULONGEST> discriminant_map;
9398 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9399 {
9400 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9401 {
9402 const char *name
9403 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9404 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9405 }
9406 }
9407
9408 int n_fields = TYPE_NFIELDS (type);
9409 /* We don't need a range entry for the discriminant, but we do
9410 need one for every other field, as there is no default
9411 variant. */
9412 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9413 discriminant_range,
9414 n_fields - 1);
9415 /* Skip the discriminant here. */
9416 for (int i = 1; i < n_fields; ++i)
9417 {
9418 /* Find the final word in the name of this variant's type.
9419 That name can be used to look up the correct
9420 discriminant. */
9421 const char *variant_name
9422 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, i)));
9423
9424 auto iter = discriminant_map.find (variant_name);
9425 if (iter != discriminant_map.end ())
9426 {
9427 ranges[i].low = iter->second;
9428 ranges[i].high = iter->second;
9429 }
9430
9431 /* Remove the discriminant field, if it exists. */
9432 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9433 if (TYPE_NFIELDS (sub_type) > 0)
9434 {
9435 --TYPE_NFIELDS (sub_type);
9436 ++TYPE_FIELDS (sub_type);
9437 }
9438 TYPE_FIELD_NAME (type, i) = variant_name;
9439 TYPE_NAME (sub_type)
9440 = rust_fully_qualify (&objfile->objfile_obstack,
9441 TYPE_NAME (type), variant_name);
9442 }
9443
9444 /* Indicate that this is a variant type. */
9445 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9446 gdb::array_view<discriminant_range> (ranges,
9447 n_fields - 1));
9448 }
9449 }
9450
9451 /* Rewrite some Rust unions to be structures with variants parts. */
9452
9453 static void
9454 rust_union_quirks (struct dwarf2_cu *cu)
9455 {
9456 gdb_assert (cu->language == language_rust);
9457 for (type *type_ : cu->rust_unions)
9458 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9459 /* We don't need this any more. */
9460 cu->rust_unions.clear ();
9461 }
9462
9463 /* Return the symtab for PER_CU. This works properly regardless of
9464 whether we're using the index or psymtabs. */
9465
9466 static struct compunit_symtab *
9467 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9468 {
9469 return (per_cu->dwarf2_per_objfile->using_index
9470 ? per_cu->v.quick->compunit_symtab
9471 : per_cu->v.psymtab->compunit_symtab);
9472 }
9473
9474 /* A helper function for computing the list of all symbol tables
9475 included by PER_CU. */
9476
9477 static void
9478 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9479 htab_t all_children, htab_t all_type_symtabs,
9480 struct dwarf2_per_cu_data *per_cu,
9481 struct compunit_symtab *immediate_parent)
9482 {
9483 void **slot;
9484 struct compunit_symtab *cust;
9485
9486 slot = htab_find_slot (all_children, per_cu, INSERT);
9487 if (*slot != NULL)
9488 {
9489 /* This inclusion and its children have been processed. */
9490 return;
9491 }
9492
9493 *slot = per_cu;
9494 /* Only add a CU if it has a symbol table. */
9495 cust = get_compunit_symtab (per_cu);
9496 if (cust != NULL)
9497 {
9498 /* If this is a type unit only add its symbol table if we haven't
9499 seen it yet (type unit per_cu's can share symtabs). */
9500 if (per_cu->is_debug_types)
9501 {
9502 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9503 if (*slot == NULL)
9504 {
9505 *slot = cust;
9506 result->push_back (cust);
9507 if (cust->user == NULL)
9508 cust->user = immediate_parent;
9509 }
9510 }
9511 else
9512 {
9513 result->push_back (cust);
9514 if (cust->user == NULL)
9515 cust->user = immediate_parent;
9516 }
9517 }
9518
9519 if (!per_cu->imported_symtabs_empty ())
9520 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9521 {
9522 recursively_compute_inclusions (result, all_children,
9523 all_type_symtabs, ptr, cust);
9524 }
9525 }
9526
9527 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9528 PER_CU. */
9529
9530 static void
9531 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9532 {
9533 gdb_assert (! per_cu->is_debug_types);
9534
9535 if (!per_cu->imported_symtabs_empty ())
9536 {
9537 int len;
9538 std::vector<compunit_symtab *> result_symtabs;
9539 htab_t all_children, all_type_symtabs;
9540 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9541
9542 /* If we don't have a symtab, we can just skip this case. */
9543 if (cust == NULL)
9544 return;
9545
9546 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9547 NULL, xcalloc, xfree);
9548 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9549 NULL, xcalloc, xfree);
9550
9551 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9552 {
9553 recursively_compute_inclusions (&result_symtabs, all_children,
9554 all_type_symtabs, ptr, cust);
9555 }
9556
9557 /* Now we have a transitive closure of all the included symtabs. */
9558 len = result_symtabs.size ();
9559 cust->includes
9560 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9561 struct compunit_symtab *, len + 1);
9562 memcpy (cust->includes, result_symtabs.data (),
9563 len * sizeof (compunit_symtab *));
9564 cust->includes[len] = NULL;
9565
9566 htab_delete (all_children);
9567 htab_delete (all_type_symtabs);
9568 }
9569 }
9570
9571 /* Compute the 'includes' field for the symtabs of all the CUs we just
9572 read. */
9573
9574 static void
9575 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9576 {
9577 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9578 {
9579 if (! iter->is_debug_types)
9580 compute_compunit_symtab_includes (iter);
9581 }
9582
9583 dwarf2_per_objfile->just_read_cus.clear ();
9584 }
9585
9586 /* Generate full symbol information for PER_CU, whose DIEs have
9587 already been loaded into memory. */
9588
9589 static void
9590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9591 enum language pretend_language)
9592 {
9593 struct dwarf2_cu *cu = per_cu->cu;
9594 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9595 struct objfile *objfile = dwarf2_per_objfile->objfile;
9596 struct gdbarch *gdbarch = objfile->arch ();
9597 CORE_ADDR lowpc, highpc;
9598 struct compunit_symtab *cust;
9599 CORE_ADDR baseaddr;
9600 struct block *static_block;
9601 CORE_ADDR addr;
9602
9603 baseaddr = objfile->text_section_offset ();
9604
9605 /* Clear the list here in case something was left over. */
9606 cu->method_list.clear ();
9607
9608 cu->language = pretend_language;
9609 cu->language_defn = language_def (cu->language);
9610
9611 /* Do line number decoding in read_file_scope () */
9612 process_die (cu->dies, cu);
9613
9614 /* For now fudge the Go package. */
9615 if (cu->language == language_go)
9616 fixup_go_packaging (cu);
9617
9618 /* Now that we have processed all the DIEs in the CU, all the types
9619 should be complete, and it should now be safe to compute all of the
9620 physnames. */
9621 compute_delayed_physnames (cu);
9622
9623 if (cu->language == language_rust)
9624 rust_union_quirks (cu);
9625
9626 /* Some compilers don't define a DW_AT_high_pc attribute for the
9627 compilation unit. If the DW_AT_high_pc is missing, synthesize
9628 it, by scanning the DIE's below the compilation unit. */
9629 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9630
9631 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9632 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9633
9634 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9635 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9636 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9637 addrmap to help ensure it has an accurate map of pc values belonging to
9638 this comp unit. */
9639 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9640
9641 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9642 SECT_OFF_TEXT (objfile),
9643 0);
9644
9645 if (cust != NULL)
9646 {
9647 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9648
9649 /* Set symtab language to language from DW_AT_language. If the
9650 compilation is from a C file generated by language preprocessors, do
9651 not set the language if it was already deduced by start_subfile. */
9652 if (!(cu->language == language_c
9653 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9654 COMPUNIT_FILETABS (cust)->language = cu->language;
9655
9656 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9657 produce DW_AT_location with location lists but it can be possibly
9658 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9659 there were bugs in prologue debug info, fixed later in GCC-4.5
9660 by "unwind info for epilogues" patch (which is not directly related).
9661
9662 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9663 needed, it would be wrong due to missing DW_AT_producer there.
9664
9665 Still one can confuse GDB by using non-standard GCC compilation
9666 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9667 */
9668 if (cu->has_loclist && gcc_4_minor >= 5)
9669 cust->locations_valid = 1;
9670
9671 if (gcc_4_minor >= 5)
9672 cust->epilogue_unwind_valid = 1;
9673
9674 cust->call_site_htab = cu->call_site_htab;
9675 }
9676
9677 if (dwarf2_per_objfile->using_index)
9678 per_cu->v.quick->compunit_symtab = cust;
9679 else
9680 {
9681 dwarf2_psymtab *pst = per_cu->v.psymtab;
9682 pst->compunit_symtab = cust;
9683 pst->readin = true;
9684 }
9685
9686 /* Push it for inclusion processing later. */
9687 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9688
9689 /* Not needed any more. */
9690 cu->reset_builder ();
9691 }
9692
9693 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9694 already been loaded into memory. */
9695
9696 static void
9697 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9698 enum language pretend_language)
9699 {
9700 struct dwarf2_cu *cu = per_cu->cu;
9701 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9702 struct objfile *objfile = dwarf2_per_objfile->objfile;
9703 struct compunit_symtab *cust;
9704 struct signatured_type *sig_type;
9705
9706 gdb_assert (per_cu->is_debug_types);
9707 sig_type = (struct signatured_type *) per_cu;
9708
9709 /* Clear the list here in case something was left over. */
9710 cu->method_list.clear ();
9711
9712 cu->language = pretend_language;
9713 cu->language_defn = language_def (cu->language);
9714
9715 /* The symbol tables are set up in read_type_unit_scope. */
9716 process_die (cu->dies, cu);
9717
9718 /* For now fudge the Go package. */
9719 if (cu->language == language_go)
9720 fixup_go_packaging (cu);
9721
9722 /* Now that we have processed all the DIEs in the CU, all the types
9723 should be complete, and it should now be safe to compute all of the
9724 physnames. */
9725 compute_delayed_physnames (cu);
9726
9727 if (cu->language == language_rust)
9728 rust_union_quirks (cu);
9729
9730 /* TUs share symbol tables.
9731 If this is the first TU to use this symtab, complete the construction
9732 of it with end_expandable_symtab. Otherwise, complete the addition of
9733 this TU's symbols to the existing symtab. */
9734 if (sig_type->type_unit_group->compunit_symtab == NULL)
9735 {
9736 buildsym_compunit *builder = cu->get_builder ();
9737 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9738 sig_type->type_unit_group->compunit_symtab = cust;
9739
9740 if (cust != NULL)
9741 {
9742 /* Set symtab language to language from DW_AT_language. If the
9743 compilation is from a C file generated by language preprocessors,
9744 do not set the language if it was already deduced by
9745 start_subfile. */
9746 if (!(cu->language == language_c
9747 && COMPUNIT_FILETABS (cust)->language != language_c))
9748 COMPUNIT_FILETABS (cust)->language = cu->language;
9749 }
9750 }
9751 else
9752 {
9753 cu->get_builder ()->augment_type_symtab ();
9754 cust = sig_type->type_unit_group->compunit_symtab;
9755 }
9756
9757 if (dwarf2_per_objfile->using_index)
9758 per_cu->v.quick->compunit_symtab = cust;
9759 else
9760 {
9761 dwarf2_psymtab *pst = per_cu->v.psymtab;
9762 pst->compunit_symtab = cust;
9763 pst->readin = true;
9764 }
9765
9766 /* Not needed any more. */
9767 cu->reset_builder ();
9768 }
9769
9770 /* Process an imported unit DIE. */
9771
9772 static void
9773 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9774 {
9775 struct attribute *attr;
9776
9777 /* For now we don't handle imported units in type units. */
9778 if (cu->per_cu->is_debug_types)
9779 {
9780 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9781 " supported in type units [in module %s]"),
9782 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9783 }
9784
9785 attr = dwarf2_attr (die, DW_AT_import, cu);
9786 if (attr != NULL)
9787 {
9788 sect_offset sect_off = attr->get_ref_die_offset ();
9789 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9790 dwarf2_per_cu_data *per_cu
9791 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9792 cu->per_cu->dwarf2_per_objfile);
9793
9794 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9795 into another compilation unit, at root level. Regard this as a hint,
9796 and ignore it. */
9797 if (die->parent && die->parent->parent == NULL
9798 && per_cu->unit_type == DW_UT_compile
9799 && per_cu->lang == language_cplus)
9800 return;
9801
9802 /* If necessary, add it to the queue and load its DIEs. */
9803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9804 load_full_comp_unit (per_cu, false, cu->language);
9805
9806 cu->per_cu->imported_symtabs_push (per_cu);
9807 }
9808 }
9809
9810 /* RAII object that represents a process_die scope: i.e.,
9811 starts/finishes processing a DIE. */
9812 class process_die_scope
9813 {
9814 public:
9815 process_die_scope (die_info *die, dwarf2_cu *cu)
9816 : m_die (die), m_cu (cu)
9817 {
9818 /* We should only be processing DIEs not already in process. */
9819 gdb_assert (!m_die->in_process);
9820 m_die->in_process = true;
9821 }
9822
9823 ~process_die_scope ()
9824 {
9825 m_die->in_process = false;
9826
9827 /* If we're done processing the DIE for the CU that owns the line
9828 header, we don't need the line header anymore. */
9829 if (m_cu->line_header_die_owner == m_die)
9830 {
9831 delete m_cu->line_header;
9832 m_cu->line_header = NULL;
9833 m_cu->line_header_die_owner = NULL;
9834 }
9835 }
9836
9837 private:
9838 die_info *m_die;
9839 dwarf2_cu *m_cu;
9840 };
9841
9842 /* Process a die and its children. */
9843
9844 static void
9845 process_die (struct die_info *die, struct dwarf2_cu *cu)
9846 {
9847 process_die_scope scope (die, cu);
9848
9849 switch (die->tag)
9850 {
9851 case DW_TAG_padding:
9852 break;
9853 case DW_TAG_compile_unit:
9854 case DW_TAG_partial_unit:
9855 read_file_scope (die, cu);
9856 break;
9857 case DW_TAG_type_unit:
9858 read_type_unit_scope (die, cu);
9859 break;
9860 case DW_TAG_subprogram:
9861 /* Nested subprograms in Fortran get a prefix. */
9862 if (cu->language == language_fortran
9863 && die->parent != NULL
9864 && die->parent->tag == DW_TAG_subprogram)
9865 cu->processing_has_namespace_info = true;
9866 /* Fall through. */
9867 case DW_TAG_inlined_subroutine:
9868 read_func_scope (die, cu);
9869 break;
9870 case DW_TAG_lexical_block:
9871 case DW_TAG_try_block:
9872 case DW_TAG_catch_block:
9873 read_lexical_block_scope (die, cu);
9874 break;
9875 case DW_TAG_call_site:
9876 case DW_TAG_GNU_call_site:
9877 read_call_site_scope (die, cu);
9878 break;
9879 case DW_TAG_class_type:
9880 case DW_TAG_interface_type:
9881 case DW_TAG_structure_type:
9882 case DW_TAG_union_type:
9883 process_structure_scope (die, cu);
9884 break;
9885 case DW_TAG_enumeration_type:
9886 process_enumeration_scope (die, cu);
9887 break;
9888
9889 /* These dies have a type, but processing them does not create
9890 a symbol or recurse to process the children. Therefore we can
9891 read them on-demand through read_type_die. */
9892 case DW_TAG_subroutine_type:
9893 case DW_TAG_set_type:
9894 case DW_TAG_array_type:
9895 case DW_TAG_pointer_type:
9896 case DW_TAG_ptr_to_member_type:
9897 case DW_TAG_reference_type:
9898 case DW_TAG_rvalue_reference_type:
9899 case DW_TAG_string_type:
9900 break;
9901
9902 case DW_TAG_base_type:
9903 case DW_TAG_subrange_type:
9904 case DW_TAG_typedef:
9905 /* Add a typedef symbol for the type definition, if it has a
9906 DW_AT_name. */
9907 new_symbol (die, read_type_die (die, cu), cu);
9908 break;
9909 case DW_TAG_common_block:
9910 read_common_block (die, cu);
9911 break;
9912 case DW_TAG_common_inclusion:
9913 break;
9914 case DW_TAG_namespace:
9915 cu->processing_has_namespace_info = true;
9916 read_namespace (die, cu);
9917 break;
9918 case DW_TAG_module:
9919 cu->processing_has_namespace_info = true;
9920 read_module (die, cu);
9921 break;
9922 case DW_TAG_imported_declaration:
9923 cu->processing_has_namespace_info = true;
9924 if (read_namespace_alias (die, cu))
9925 break;
9926 /* The declaration is not a global namespace alias. */
9927 /* Fall through. */
9928 case DW_TAG_imported_module:
9929 cu->processing_has_namespace_info = true;
9930 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9931 || cu->language != language_fortran))
9932 complaint (_("Tag '%s' has unexpected children"),
9933 dwarf_tag_name (die->tag));
9934 read_import_statement (die, cu);
9935 break;
9936
9937 case DW_TAG_imported_unit:
9938 process_imported_unit_die (die, cu);
9939 break;
9940
9941 case DW_TAG_variable:
9942 read_variable (die, cu);
9943 break;
9944
9945 default:
9946 new_symbol (die, NULL, cu);
9947 break;
9948 }
9949 }
9950 \f
9951 /* DWARF name computation. */
9952
9953 /* A helper function for dwarf2_compute_name which determines whether DIE
9954 needs to have the name of the scope prepended to the name listed in the
9955 die. */
9956
9957 static int
9958 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9959 {
9960 struct attribute *attr;
9961
9962 switch (die->tag)
9963 {
9964 case DW_TAG_namespace:
9965 case DW_TAG_typedef:
9966 case DW_TAG_class_type:
9967 case DW_TAG_interface_type:
9968 case DW_TAG_structure_type:
9969 case DW_TAG_union_type:
9970 case DW_TAG_enumeration_type:
9971 case DW_TAG_enumerator:
9972 case DW_TAG_subprogram:
9973 case DW_TAG_inlined_subroutine:
9974 case DW_TAG_member:
9975 case DW_TAG_imported_declaration:
9976 return 1;
9977
9978 case DW_TAG_variable:
9979 case DW_TAG_constant:
9980 /* We only need to prefix "globally" visible variables. These include
9981 any variable marked with DW_AT_external or any variable that
9982 lives in a namespace. [Variables in anonymous namespaces
9983 require prefixing, but they are not DW_AT_external.] */
9984
9985 if (dwarf2_attr (die, DW_AT_specification, cu))
9986 {
9987 struct dwarf2_cu *spec_cu = cu;
9988
9989 return die_needs_namespace (die_specification (die, &spec_cu),
9990 spec_cu);
9991 }
9992
9993 attr = dwarf2_attr (die, DW_AT_external, cu);
9994 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9995 && die->parent->tag != DW_TAG_module)
9996 return 0;
9997 /* A variable in a lexical block of some kind does not need a
9998 namespace, even though in C++ such variables may be external
9999 and have a mangled name. */
10000 if (die->parent->tag == DW_TAG_lexical_block
10001 || die->parent->tag == DW_TAG_try_block
10002 || die->parent->tag == DW_TAG_catch_block
10003 || die->parent->tag == DW_TAG_subprogram)
10004 return 0;
10005 return 1;
10006
10007 default:
10008 return 0;
10009 }
10010 }
10011
10012 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10013 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10014 defined for the given DIE. */
10015
10016 static struct attribute *
10017 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10018 {
10019 struct attribute *attr;
10020
10021 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10022 if (attr == NULL)
10023 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10024
10025 return attr;
10026 }
10027
10028 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10029 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10030 defined for the given DIE. */
10031
10032 static const char *
10033 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10034 {
10035 const char *linkage_name;
10036
10037 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10038 if (linkage_name == NULL)
10039 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10040
10041 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10042 See https://github.com/rust-lang/rust/issues/32925. */
10043 if (cu->language == language_rust && linkage_name != NULL
10044 && strchr (linkage_name, '{') != NULL)
10045 linkage_name = NULL;
10046
10047 return linkage_name;
10048 }
10049
10050 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10051 compute the physname for the object, which include a method's:
10052 - formal parameters (C++),
10053 - receiver type (Go),
10054
10055 The term "physname" is a bit confusing.
10056 For C++, for example, it is the demangled name.
10057 For Go, for example, it's the mangled name.
10058
10059 For Ada, return the DIE's linkage name rather than the fully qualified
10060 name. PHYSNAME is ignored..
10061
10062 The result is allocated on the objfile_obstack and canonicalized. */
10063
10064 static const char *
10065 dwarf2_compute_name (const char *name,
10066 struct die_info *die, struct dwarf2_cu *cu,
10067 int physname)
10068 {
10069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10070
10071 if (name == NULL)
10072 name = dwarf2_name (die, cu);
10073
10074 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10075 but otherwise compute it by typename_concat inside GDB.
10076 FIXME: Actually this is not really true, or at least not always true.
10077 It's all very confusing. compute_and_set_names doesn't try to demangle
10078 Fortran names because there is no mangling standard. So new_symbol
10079 will set the demangled name to the result of dwarf2_full_name, and it is
10080 the demangled name that GDB uses if it exists. */
10081 if (cu->language == language_ada
10082 || (cu->language == language_fortran && physname))
10083 {
10084 /* For Ada unit, we prefer the linkage name over the name, as
10085 the former contains the exported name, which the user expects
10086 to be able to reference. Ideally, we want the user to be able
10087 to reference this entity using either natural or linkage name,
10088 but we haven't started looking at this enhancement yet. */
10089 const char *linkage_name = dw2_linkage_name (die, cu);
10090
10091 if (linkage_name != NULL)
10092 return linkage_name;
10093 }
10094
10095 /* These are the only languages we know how to qualify names in. */
10096 if (name != NULL
10097 && (cu->language == language_cplus
10098 || cu->language == language_fortran || cu->language == language_d
10099 || cu->language == language_rust))
10100 {
10101 if (die_needs_namespace (die, cu))
10102 {
10103 const char *prefix;
10104 const char *canonical_name = NULL;
10105
10106 string_file buf;
10107
10108 prefix = determine_prefix (die, cu);
10109 if (*prefix != '\0')
10110 {
10111 gdb::unique_xmalloc_ptr<char> prefixed_name
10112 (typename_concat (NULL, prefix, name, physname, cu));
10113
10114 buf.puts (prefixed_name.get ());
10115 }
10116 else
10117 buf.puts (name);
10118
10119 /* Template parameters may be specified in the DIE's DW_AT_name, or
10120 as children with DW_TAG_template_type_param or
10121 DW_TAG_value_type_param. If the latter, add them to the name
10122 here. If the name already has template parameters, then
10123 skip this step; some versions of GCC emit both, and
10124 it is more efficient to use the pre-computed name.
10125
10126 Something to keep in mind about this process: it is very
10127 unlikely, or in some cases downright impossible, to produce
10128 something that will match the mangled name of a function.
10129 If the definition of the function has the same debug info,
10130 we should be able to match up with it anyway. But fallbacks
10131 using the minimal symbol, for instance to find a method
10132 implemented in a stripped copy of libstdc++, will not work.
10133 If we do not have debug info for the definition, we will have to
10134 match them up some other way.
10135
10136 When we do name matching there is a related problem with function
10137 templates; two instantiated function templates are allowed to
10138 differ only by their return types, which we do not add here. */
10139
10140 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10141 {
10142 struct attribute *attr;
10143 struct die_info *child;
10144 int first = 1;
10145
10146 die->building_fullname = 1;
10147
10148 for (child = die->child; child != NULL; child = child->sibling)
10149 {
10150 struct type *type;
10151 LONGEST value;
10152 const gdb_byte *bytes;
10153 struct dwarf2_locexpr_baton *baton;
10154 struct value *v;
10155
10156 if (child->tag != DW_TAG_template_type_param
10157 && child->tag != DW_TAG_template_value_param)
10158 continue;
10159
10160 if (first)
10161 {
10162 buf.puts ("<");
10163 first = 0;
10164 }
10165 else
10166 buf.puts (", ");
10167
10168 attr = dwarf2_attr (child, DW_AT_type, cu);
10169 if (attr == NULL)
10170 {
10171 complaint (_("template parameter missing DW_AT_type"));
10172 buf.puts ("UNKNOWN_TYPE");
10173 continue;
10174 }
10175 type = die_type (child, cu);
10176
10177 if (child->tag == DW_TAG_template_type_param)
10178 {
10179 c_print_type (type, "", &buf, -1, 0, cu->language,
10180 &type_print_raw_options);
10181 continue;
10182 }
10183
10184 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10185 if (attr == NULL)
10186 {
10187 complaint (_("template parameter missing "
10188 "DW_AT_const_value"));
10189 buf.puts ("UNKNOWN_VALUE");
10190 continue;
10191 }
10192
10193 dwarf2_const_value_attr (attr, type, name,
10194 &cu->comp_unit_obstack, cu,
10195 &value, &bytes, &baton);
10196
10197 if (TYPE_NOSIGN (type))
10198 /* GDB prints characters as NUMBER 'CHAR'. If that's
10199 changed, this can use value_print instead. */
10200 c_printchar (value, type, &buf);
10201 else
10202 {
10203 struct value_print_options opts;
10204
10205 if (baton != NULL)
10206 v = dwarf2_evaluate_loc_desc (type, NULL,
10207 baton->data,
10208 baton->size,
10209 baton->per_cu);
10210 else if (bytes != NULL)
10211 {
10212 v = allocate_value (type);
10213 memcpy (value_contents_writeable (v), bytes,
10214 TYPE_LENGTH (type));
10215 }
10216 else
10217 v = value_from_longest (type, value);
10218
10219 /* Specify decimal so that we do not depend on
10220 the radix. */
10221 get_formatted_print_options (&opts, 'd');
10222 opts.raw = 1;
10223 value_print (v, &buf, &opts);
10224 release_value (v);
10225 }
10226 }
10227
10228 die->building_fullname = 0;
10229
10230 if (!first)
10231 {
10232 /* Close the argument list, with a space if necessary
10233 (nested templates). */
10234 if (!buf.empty () && buf.string ().back () == '>')
10235 buf.puts (" >");
10236 else
10237 buf.puts (">");
10238 }
10239 }
10240
10241 /* For C++ methods, append formal parameter type
10242 information, if PHYSNAME. */
10243
10244 if (physname && die->tag == DW_TAG_subprogram
10245 && cu->language == language_cplus)
10246 {
10247 struct type *type = read_type_die (die, cu);
10248
10249 c_type_print_args (type, &buf, 1, cu->language,
10250 &type_print_raw_options);
10251
10252 if (cu->language == language_cplus)
10253 {
10254 /* Assume that an artificial first parameter is
10255 "this", but do not crash if it is not. RealView
10256 marks unnamed (and thus unused) parameters as
10257 artificial; there is no way to differentiate
10258 the two cases. */
10259 if (TYPE_NFIELDS (type) > 0
10260 && TYPE_FIELD_ARTIFICIAL (type, 0)
10261 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10262 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10263 0))))
10264 buf.puts (" const");
10265 }
10266 }
10267
10268 const std::string &intermediate_name = buf.string ();
10269
10270 if (cu->language == language_cplus)
10271 canonical_name
10272 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10273 objfile);
10274
10275 /* If we only computed INTERMEDIATE_NAME, or if
10276 INTERMEDIATE_NAME is already canonical, then we need to
10277 intern it. */
10278 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10279 name = objfile->intern (intermediate_name);
10280 else
10281 name = canonical_name;
10282 }
10283 }
10284
10285 return name;
10286 }
10287
10288 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10289 If scope qualifiers are appropriate they will be added. The result
10290 will be allocated on the storage_obstack, or NULL if the DIE does
10291 not have a name. NAME may either be from a previous call to
10292 dwarf2_name or NULL.
10293
10294 The output string will be canonicalized (if C++). */
10295
10296 static const char *
10297 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10298 {
10299 return dwarf2_compute_name (name, die, cu, 0);
10300 }
10301
10302 /* Construct a physname for the given DIE in CU. NAME may either be
10303 from a previous call to dwarf2_name or NULL. The result will be
10304 allocated on the objfile_objstack or NULL if the DIE does not have a
10305 name.
10306
10307 The output string will be canonicalized (if C++). */
10308
10309 static const char *
10310 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10311 {
10312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10313 const char *retval, *mangled = NULL, *canon = NULL;
10314 int need_copy = 1;
10315
10316 /* In this case dwarf2_compute_name is just a shortcut not building anything
10317 on its own. */
10318 if (!die_needs_namespace (die, cu))
10319 return dwarf2_compute_name (name, die, cu, 1);
10320
10321 if (cu->language != language_rust)
10322 mangled = dw2_linkage_name (die, cu);
10323
10324 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10325 has computed. */
10326 gdb::unique_xmalloc_ptr<char> demangled;
10327 if (mangled != NULL)
10328 {
10329
10330 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10331 {
10332 /* Do nothing (do not demangle the symbol name). */
10333 }
10334 else if (cu->language == language_go)
10335 {
10336 /* This is a lie, but we already lie to the caller new_symbol.
10337 new_symbol assumes we return the mangled name.
10338 This just undoes that lie until things are cleaned up. */
10339 }
10340 else
10341 {
10342 /* Use DMGL_RET_DROP for C++ template functions to suppress
10343 their return type. It is easier for GDB users to search
10344 for such functions as `name(params)' than `long name(params)'.
10345 In such case the minimal symbol names do not match the full
10346 symbol names but for template functions there is never a need
10347 to look up their definition from their declaration so
10348 the only disadvantage remains the minimal symbol variant
10349 `long name(params)' does not have the proper inferior type. */
10350 demangled.reset (gdb_demangle (mangled,
10351 (DMGL_PARAMS | DMGL_ANSI
10352 | DMGL_RET_DROP)));
10353 }
10354 if (demangled)
10355 canon = demangled.get ();
10356 else
10357 {
10358 canon = mangled;
10359 need_copy = 0;
10360 }
10361 }
10362
10363 if (canon == NULL || check_physname)
10364 {
10365 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10366
10367 if (canon != NULL && strcmp (physname, canon) != 0)
10368 {
10369 /* It may not mean a bug in GDB. The compiler could also
10370 compute DW_AT_linkage_name incorrectly. But in such case
10371 GDB would need to be bug-to-bug compatible. */
10372
10373 complaint (_("Computed physname <%s> does not match demangled <%s> "
10374 "(from linkage <%s>) - DIE at %s [in module %s]"),
10375 physname, canon, mangled, sect_offset_str (die->sect_off),
10376 objfile_name (objfile));
10377
10378 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10379 is available here - over computed PHYSNAME. It is safer
10380 against both buggy GDB and buggy compilers. */
10381
10382 retval = canon;
10383 }
10384 else
10385 {
10386 retval = physname;
10387 need_copy = 0;
10388 }
10389 }
10390 else
10391 retval = canon;
10392
10393 if (need_copy)
10394 retval = objfile->intern (retval);
10395
10396 return retval;
10397 }
10398
10399 /* Inspect DIE in CU for a namespace alias. If one exists, record
10400 a new symbol for it.
10401
10402 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10403
10404 static int
10405 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10406 {
10407 struct attribute *attr;
10408
10409 /* If the die does not have a name, this is not a namespace
10410 alias. */
10411 attr = dwarf2_attr (die, DW_AT_name, cu);
10412 if (attr != NULL)
10413 {
10414 int num;
10415 struct die_info *d = die;
10416 struct dwarf2_cu *imported_cu = cu;
10417
10418 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10419 keep inspecting DIEs until we hit the underlying import. */
10420 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10421 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10422 {
10423 attr = dwarf2_attr (d, DW_AT_import, cu);
10424 if (attr == NULL)
10425 break;
10426
10427 d = follow_die_ref (d, attr, &imported_cu);
10428 if (d->tag != DW_TAG_imported_declaration)
10429 break;
10430 }
10431
10432 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10433 {
10434 complaint (_("DIE at %s has too many recursively imported "
10435 "declarations"), sect_offset_str (d->sect_off));
10436 return 0;
10437 }
10438
10439 if (attr != NULL)
10440 {
10441 struct type *type;
10442 sect_offset sect_off = attr->get_ref_die_offset ();
10443
10444 type = get_die_type_at_offset (sect_off, cu->per_cu);
10445 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10446 {
10447 /* This declaration is a global namespace alias. Add
10448 a symbol for it whose type is the aliased namespace. */
10449 new_symbol (die, type, cu);
10450 return 1;
10451 }
10452 }
10453 }
10454
10455 return 0;
10456 }
10457
10458 /* Return the using directives repository (global or local?) to use in the
10459 current context for CU.
10460
10461 For Ada, imported declarations can materialize renamings, which *may* be
10462 global. However it is impossible (for now?) in DWARF to distinguish
10463 "external" imported declarations and "static" ones. As all imported
10464 declarations seem to be static in all other languages, make them all CU-wide
10465 global only in Ada. */
10466
10467 static struct using_direct **
10468 using_directives (struct dwarf2_cu *cu)
10469 {
10470 if (cu->language == language_ada
10471 && cu->get_builder ()->outermost_context_p ())
10472 return cu->get_builder ()->get_global_using_directives ();
10473 else
10474 return cu->get_builder ()->get_local_using_directives ();
10475 }
10476
10477 /* Read the import statement specified by the given die and record it. */
10478
10479 static void
10480 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10481 {
10482 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10483 struct attribute *import_attr;
10484 struct die_info *imported_die, *child_die;
10485 struct dwarf2_cu *imported_cu;
10486 const char *imported_name;
10487 const char *imported_name_prefix;
10488 const char *canonical_name;
10489 const char *import_alias;
10490 const char *imported_declaration = NULL;
10491 const char *import_prefix;
10492 std::vector<const char *> excludes;
10493
10494 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10495 if (import_attr == NULL)
10496 {
10497 complaint (_("Tag '%s' has no DW_AT_import"),
10498 dwarf_tag_name (die->tag));
10499 return;
10500 }
10501
10502 imported_cu = cu;
10503 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10504 imported_name = dwarf2_name (imported_die, imported_cu);
10505 if (imported_name == NULL)
10506 {
10507 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10508
10509 The import in the following code:
10510 namespace A
10511 {
10512 typedef int B;
10513 }
10514
10515 int main ()
10516 {
10517 using A::B;
10518 B b;
10519 return b;
10520 }
10521
10522 ...
10523 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10524 <52> DW_AT_decl_file : 1
10525 <53> DW_AT_decl_line : 6
10526 <54> DW_AT_import : <0x75>
10527 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10528 <59> DW_AT_name : B
10529 <5b> DW_AT_decl_file : 1
10530 <5c> DW_AT_decl_line : 2
10531 <5d> DW_AT_type : <0x6e>
10532 ...
10533 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10534 <76> DW_AT_byte_size : 4
10535 <77> DW_AT_encoding : 5 (signed)
10536
10537 imports the wrong die ( 0x75 instead of 0x58 ).
10538 This case will be ignored until the gcc bug is fixed. */
10539 return;
10540 }
10541
10542 /* Figure out the local name after import. */
10543 import_alias = dwarf2_name (die, cu);
10544
10545 /* Figure out where the statement is being imported to. */
10546 import_prefix = determine_prefix (die, cu);
10547
10548 /* Figure out what the scope of the imported die is and prepend it
10549 to the name of the imported die. */
10550 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10551
10552 if (imported_die->tag != DW_TAG_namespace
10553 && imported_die->tag != DW_TAG_module)
10554 {
10555 imported_declaration = imported_name;
10556 canonical_name = imported_name_prefix;
10557 }
10558 else if (strlen (imported_name_prefix) > 0)
10559 canonical_name = obconcat (&objfile->objfile_obstack,
10560 imported_name_prefix,
10561 (cu->language == language_d ? "." : "::"),
10562 imported_name, (char *) NULL);
10563 else
10564 canonical_name = imported_name;
10565
10566 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10567 for (child_die = die->child; child_die && child_die->tag;
10568 child_die = child_die->sibling)
10569 {
10570 /* DWARF-4: A Fortran use statement with a “rename list” may be
10571 represented by an imported module entry with an import attribute
10572 referring to the module and owned entries corresponding to those
10573 entities that are renamed as part of being imported. */
10574
10575 if (child_die->tag != DW_TAG_imported_declaration)
10576 {
10577 complaint (_("child DW_TAG_imported_declaration expected "
10578 "- DIE at %s [in module %s]"),
10579 sect_offset_str (child_die->sect_off),
10580 objfile_name (objfile));
10581 continue;
10582 }
10583
10584 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10585 if (import_attr == NULL)
10586 {
10587 complaint (_("Tag '%s' has no DW_AT_import"),
10588 dwarf_tag_name (child_die->tag));
10589 continue;
10590 }
10591
10592 imported_cu = cu;
10593 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10594 &imported_cu);
10595 imported_name = dwarf2_name (imported_die, imported_cu);
10596 if (imported_name == NULL)
10597 {
10598 complaint (_("child DW_TAG_imported_declaration has unknown "
10599 "imported name - DIE at %s [in module %s]"),
10600 sect_offset_str (child_die->sect_off),
10601 objfile_name (objfile));
10602 continue;
10603 }
10604
10605 excludes.push_back (imported_name);
10606
10607 process_die (child_die, cu);
10608 }
10609
10610 add_using_directive (using_directives (cu),
10611 import_prefix,
10612 canonical_name,
10613 import_alias,
10614 imported_declaration,
10615 excludes,
10616 0,
10617 &objfile->objfile_obstack);
10618 }
10619
10620 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10621 types, but gives them a size of zero. Starting with version 14,
10622 ICC is compatible with GCC. */
10623
10624 static bool
10625 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10626 {
10627 if (!cu->checked_producer)
10628 check_producer (cu);
10629
10630 return cu->producer_is_icc_lt_14;
10631 }
10632
10633 /* ICC generates a DW_AT_type for C void functions. This was observed on
10634 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10635 which says that void functions should not have a DW_AT_type. */
10636
10637 static bool
10638 producer_is_icc (struct dwarf2_cu *cu)
10639 {
10640 if (!cu->checked_producer)
10641 check_producer (cu);
10642
10643 return cu->producer_is_icc;
10644 }
10645
10646 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10647 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10648 this, it was first present in GCC release 4.3.0. */
10649
10650 static bool
10651 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10652 {
10653 if (!cu->checked_producer)
10654 check_producer (cu);
10655
10656 return cu->producer_is_gcc_lt_4_3;
10657 }
10658
10659 static file_and_directory
10660 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10661 {
10662 file_and_directory res;
10663
10664 /* Find the filename. Do not use dwarf2_name here, since the filename
10665 is not a source language identifier. */
10666 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10667 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10668
10669 if (res.comp_dir == NULL
10670 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10671 && IS_ABSOLUTE_PATH (res.name))
10672 {
10673 res.comp_dir_storage = ldirname (res.name);
10674 if (!res.comp_dir_storage.empty ())
10675 res.comp_dir = res.comp_dir_storage.c_str ();
10676 }
10677 if (res.comp_dir != NULL)
10678 {
10679 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10680 directory, get rid of it. */
10681 const char *cp = strchr (res.comp_dir, ':');
10682
10683 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10684 res.comp_dir = cp + 1;
10685 }
10686
10687 if (res.name == NULL)
10688 res.name = "<unknown>";
10689
10690 return res;
10691 }
10692
10693 /* Handle DW_AT_stmt_list for a compilation unit.
10694 DIE is the DW_TAG_compile_unit die for CU.
10695 COMP_DIR is the compilation directory. LOWPC is passed to
10696 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10697
10698 static void
10699 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10700 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10701 {
10702 struct dwarf2_per_objfile *dwarf2_per_objfile
10703 = cu->per_cu->dwarf2_per_objfile;
10704 struct attribute *attr;
10705 struct line_header line_header_local;
10706 hashval_t line_header_local_hash;
10707 void **slot;
10708 int decode_mapping;
10709
10710 gdb_assert (! cu->per_cu->is_debug_types);
10711
10712 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10713 if (attr == NULL)
10714 return;
10715
10716 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10717
10718 /* The line header hash table is only created if needed (it exists to
10719 prevent redundant reading of the line table for partial_units).
10720 If we're given a partial_unit, we'll need it. If we're given a
10721 compile_unit, then use the line header hash table if it's already
10722 created, but don't create one just yet. */
10723
10724 if (dwarf2_per_objfile->line_header_hash == NULL
10725 && die->tag == DW_TAG_partial_unit)
10726 {
10727 dwarf2_per_objfile->line_header_hash
10728 .reset (htab_create_alloc (127, line_header_hash_voidp,
10729 line_header_eq_voidp,
10730 free_line_header_voidp,
10731 xcalloc, xfree));
10732 }
10733
10734 line_header_local.sect_off = line_offset;
10735 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10736 line_header_local_hash = line_header_hash (&line_header_local);
10737 if (dwarf2_per_objfile->line_header_hash != NULL)
10738 {
10739 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10740 &line_header_local,
10741 line_header_local_hash, NO_INSERT);
10742
10743 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10744 is not present in *SLOT (since if there is something in *SLOT then
10745 it will be for a partial_unit). */
10746 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10747 {
10748 gdb_assert (*slot != NULL);
10749 cu->line_header = (struct line_header *) *slot;
10750 return;
10751 }
10752 }
10753
10754 /* dwarf_decode_line_header does not yet provide sufficient information.
10755 We always have to call also dwarf_decode_lines for it. */
10756 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10757 if (lh == NULL)
10758 return;
10759
10760 cu->line_header = lh.release ();
10761 cu->line_header_die_owner = die;
10762
10763 if (dwarf2_per_objfile->line_header_hash == NULL)
10764 slot = NULL;
10765 else
10766 {
10767 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10768 &line_header_local,
10769 line_header_local_hash, INSERT);
10770 gdb_assert (slot != NULL);
10771 }
10772 if (slot != NULL && *slot == NULL)
10773 {
10774 /* This newly decoded line number information unit will be owned
10775 by line_header_hash hash table. */
10776 *slot = cu->line_header;
10777 cu->line_header_die_owner = NULL;
10778 }
10779 else
10780 {
10781 /* We cannot free any current entry in (*slot) as that struct line_header
10782 may be already used by multiple CUs. Create only temporary decoded
10783 line_header for this CU - it may happen at most once for each line
10784 number information unit. And if we're not using line_header_hash
10785 then this is what we want as well. */
10786 gdb_assert (die->tag != DW_TAG_partial_unit);
10787 }
10788 decode_mapping = (die->tag != DW_TAG_partial_unit);
10789 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10790 decode_mapping);
10791
10792 }
10793
10794 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10795
10796 static void
10797 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10798 {
10799 struct dwarf2_per_objfile *dwarf2_per_objfile
10800 = cu->per_cu->dwarf2_per_objfile;
10801 struct objfile *objfile = dwarf2_per_objfile->objfile;
10802 struct gdbarch *gdbarch = objfile->arch ();
10803 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10804 CORE_ADDR highpc = ((CORE_ADDR) 0);
10805 struct attribute *attr;
10806 struct die_info *child_die;
10807 CORE_ADDR baseaddr;
10808
10809 prepare_one_comp_unit (cu, die, cu->language);
10810 baseaddr = objfile->text_section_offset ();
10811
10812 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10813
10814 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10815 from finish_block. */
10816 if (lowpc == ((CORE_ADDR) -1))
10817 lowpc = highpc;
10818 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10819
10820 file_and_directory fnd = find_file_and_directory (die, cu);
10821
10822 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10823 standardised yet. As a workaround for the language detection we fall
10824 back to the DW_AT_producer string. */
10825 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10826 cu->language = language_opencl;
10827
10828 /* Similar hack for Go. */
10829 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10830 set_cu_language (DW_LANG_Go, cu);
10831
10832 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10833
10834 /* Decode line number information if present. We do this before
10835 processing child DIEs, so that the line header table is available
10836 for DW_AT_decl_file. */
10837 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10838
10839 /* Process all dies in compilation unit. */
10840 if (die->child != NULL)
10841 {
10842 child_die = die->child;
10843 while (child_die && child_die->tag)
10844 {
10845 process_die (child_die, cu);
10846 child_die = child_die->sibling;
10847 }
10848 }
10849
10850 /* Decode macro information, if present. Dwarf 2 macro information
10851 refers to information in the line number info statement program
10852 header, so we can only read it if we've read the header
10853 successfully. */
10854 attr = dwarf2_attr (die, DW_AT_macros, cu);
10855 if (attr == NULL)
10856 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10857 if (attr && cu->line_header)
10858 {
10859 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10860 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10861
10862 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10863 }
10864 else
10865 {
10866 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10867 if (attr && cu->line_header)
10868 {
10869 unsigned int macro_offset = DW_UNSND (attr);
10870
10871 dwarf_decode_macros (cu, macro_offset, 0);
10872 }
10873 }
10874 }
10875
10876 void
10877 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10878 {
10879 struct type_unit_group *tu_group;
10880 int first_time;
10881 struct attribute *attr;
10882 unsigned int i;
10883 struct signatured_type *sig_type;
10884
10885 gdb_assert (per_cu->is_debug_types);
10886 sig_type = (struct signatured_type *) per_cu;
10887
10888 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10889
10890 /* If we're using .gdb_index (includes -readnow) then
10891 per_cu->type_unit_group may not have been set up yet. */
10892 if (sig_type->type_unit_group == NULL)
10893 sig_type->type_unit_group = get_type_unit_group (this, attr);
10894 tu_group = sig_type->type_unit_group;
10895
10896 /* If we've already processed this stmt_list there's no real need to
10897 do it again, we could fake it and just recreate the part we need
10898 (file name,index -> symtab mapping). If data shows this optimization
10899 is useful we can do it then. */
10900 first_time = tu_group->compunit_symtab == NULL;
10901
10902 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10903 debug info. */
10904 line_header_up lh;
10905 if (attr != NULL)
10906 {
10907 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10908 lh = dwarf_decode_line_header (line_offset, this);
10909 }
10910 if (lh == NULL)
10911 {
10912 if (first_time)
10913 start_symtab ("", NULL, 0);
10914 else
10915 {
10916 gdb_assert (tu_group->symtabs == NULL);
10917 gdb_assert (m_builder == nullptr);
10918 struct compunit_symtab *cust = tu_group->compunit_symtab;
10919 m_builder.reset (new struct buildsym_compunit
10920 (COMPUNIT_OBJFILE (cust), "",
10921 COMPUNIT_DIRNAME (cust),
10922 compunit_language (cust),
10923 0, cust));
10924 list_in_scope = get_builder ()->get_file_symbols ();
10925 }
10926 return;
10927 }
10928
10929 line_header = lh.release ();
10930 line_header_die_owner = die;
10931
10932 if (first_time)
10933 {
10934 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10935
10936 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10937 still initializing it, and our caller (a few levels up)
10938 process_full_type_unit still needs to know if this is the first
10939 time. */
10940
10941 tu_group->symtabs
10942 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10943 struct symtab *, line_header->file_names_size ());
10944
10945 auto &file_names = line_header->file_names ();
10946 for (i = 0; i < file_names.size (); ++i)
10947 {
10948 file_entry &fe = file_names[i];
10949 dwarf2_start_subfile (this, fe.name,
10950 fe.include_dir (line_header));
10951 buildsym_compunit *b = get_builder ();
10952 if (b->get_current_subfile ()->symtab == NULL)
10953 {
10954 /* NOTE: start_subfile will recognize when it's been
10955 passed a file it has already seen. So we can't
10956 assume there's a simple mapping from
10957 cu->line_header->file_names to subfiles, plus
10958 cu->line_header->file_names may contain dups. */
10959 b->get_current_subfile ()->symtab
10960 = allocate_symtab (cust, b->get_current_subfile ()->name);
10961 }
10962
10963 fe.symtab = b->get_current_subfile ()->symtab;
10964 tu_group->symtabs[i] = fe.symtab;
10965 }
10966 }
10967 else
10968 {
10969 gdb_assert (m_builder == nullptr);
10970 struct compunit_symtab *cust = tu_group->compunit_symtab;
10971 m_builder.reset (new struct buildsym_compunit
10972 (COMPUNIT_OBJFILE (cust), "",
10973 COMPUNIT_DIRNAME (cust),
10974 compunit_language (cust),
10975 0, cust));
10976 list_in_scope = get_builder ()->get_file_symbols ();
10977
10978 auto &file_names = line_header->file_names ();
10979 for (i = 0; i < file_names.size (); ++i)
10980 {
10981 file_entry &fe = file_names[i];
10982 fe.symtab = tu_group->symtabs[i];
10983 }
10984 }
10985
10986 /* The main symtab is allocated last. Type units don't have DW_AT_name
10987 so they don't have a "real" (so to speak) symtab anyway.
10988 There is later code that will assign the main symtab to all symbols
10989 that don't have one. We need to handle the case of a symbol with a
10990 missing symtab (DW_AT_decl_file) anyway. */
10991 }
10992
10993 /* Process DW_TAG_type_unit.
10994 For TUs we want to skip the first top level sibling if it's not the
10995 actual type being defined by this TU. In this case the first top
10996 level sibling is there to provide context only. */
10997
10998 static void
10999 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11000 {
11001 struct die_info *child_die;
11002
11003 prepare_one_comp_unit (cu, die, language_minimal);
11004
11005 /* Initialize (or reinitialize) the machinery for building symtabs.
11006 We do this before processing child DIEs, so that the line header table
11007 is available for DW_AT_decl_file. */
11008 cu->setup_type_unit_groups (die);
11009
11010 if (die->child != NULL)
11011 {
11012 child_die = die->child;
11013 while (child_die && child_die->tag)
11014 {
11015 process_die (child_die, cu);
11016 child_die = child_die->sibling;
11017 }
11018 }
11019 }
11020 \f
11021 /* DWO/DWP files.
11022
11023 http://gcc.gnu.org/wiki/DebugFission
11024 http://gcc.gnu.org/wiki/DebugFissionDWP
11025
11026 To simplify handling of both DWO files ("object" files with the DWARF info)
11027 and DWP files (a file with the DWOs packaged up into one file), we treat
11028 DWP files as having a collection of virtual DWO files. */
11029
11030 static hashval_t
11031 hash_dwo_file (const void *item)
11032 {
11033 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11034 hashval_t hash;
11035
11036 hash = htab_hash_string (dwo_file->dwo_name);
11037 if (dwo_file->comp_dir != NULL)
11038 hash += htab_hash_string (dwo_file->comp_dir);
11039 return hash;
11040 }
11041
11042 static int
11043 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11044 {
11045 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11046 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11047
11048 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11049 return 0;
11050 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11051 return lhs->comp_dir == rhs->comp_dir;
11052 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11053 }
11054
11055 /* Allocate a hash table for DWO files. */
11056
11057 static htab_up
11058 allocate_dwo_file_hash_table ()
11059 {
11060 auto delete_dwo_file = [] (void *item)
11061 {
11062 struct dwo_file *dwo_file = (struct dwo_file *) item;
11063
11064 delete dwo_file;
11065 };
11066
11067 return htab_up (htab_create_alloc (41,
11068 hash_dwo_file,
11069 eq_dwo_file,
11070 delete_dwo_file,
11071 xcalloc, xfree));
11072 }
11073
11074 /* Lookup DWO file DWO_NAME. */
11075
11076 static void **
11077 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11078 const char *dwo_name,
11079 const char *comp_dir)
11080 {
11081 struct dwo_file find_entry;
11082 void **slot;
11083
11084 if (dwarf2_per_objfile->dwo_files == NULL)
11085 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11086
11087 find_entry.dwo_name = dwo_name;
11088 find_entry.comp_dir = comp_dir;
11089 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11090 INSERT);
11091
11092 return slot;
11093 }
11094
11095 static hashval_t
11096 hash_dwo_unit (const void *item)
11097 {
11098 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11099
11100 /* This drops the top 32 bits of the id, but is ok for a hash. */
11101 return dwo_unit->signature;
11102 }
11103
11104 static int
11105 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11106 {
11107 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11108 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11109
11110 /* The signature is assumed to be unique within the DWO file.
11111 So while object file CU dwo_id's always have the value zero,
11112 that's OK, assuming each object file DWO file has only one CU,
11113 and that's the rule for now. */
11114 return lhs->signature == rhs->signature;
11115 }
11116
11117 /* Allocate a hash table for DWO CUs,TUs.
11118 There is one of these tables for each of CUs,TUs for each DWO file. */
11119
11120 static htab_up
11121 allocate_dwo_unit_table ()
11122 {
11123 /* Start out with a pretty small number.
11124 Generally DWO files contain only one CU and maybe some TUs. */
11125 return htab_up (htab_create_alloc (3,
11126 hash_dwo_unit,
11127 eq_dwo_unit,
11128 NULL, xcalloc, xfree));
11129 }
11130
11131 /* die_reader_func for create_dwo_cu. */
11132
11133 static void
11134 create_dwo_cu_reader (const struct die_reader_specs *reader,
11135 const gdb_byte *info_ptr,
11136 struct die_info *comp_unit_die,
11137 struct dwo_file *dwo_file,
11138 struct dwo_unit *dwo_unit)
11139 {
11140 struct dwarf2_cu *cu = reader->cu;
11141 sect_offset sect_off = cu->per_cu->sect_off;
11142 struct dwarf2_section_info *section = cu->per_cu->section;
11143
11144 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11145 if (!signature.has_value ())
11146 {
11147 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11148 " its dwo_id [in module %s]"),
11149 sect_offset_str (sect_off), dwo_file->dwo_name);
11150 return;
11151 }
11152
11153 dwo_unit->dwo_file = dwo_file;
11154 dwo_unit->signature = *signature;
11155 dwo_unit->section = section;
11156 dwo_unit->sect_off = sect_off;
11157 dwo_unit->length = cu->per_cu->length;
11158
11159 if (dwarf_read_debug)
11160 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11161 sect_offset_str (sect_off),
11162 hex_string (dwo_unit->signature));
11163 }
11164
11165 /* Create the dwo_units for the CUs in a DWO_FILE.
11166 Note: This function processes DWO files only, not DWP files. */
11167
11168 static void
11169 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11170 dwarf2_cu *cu, struct dwo_file &dwo_file,
11171 dwarf2_section_info &section, htab_up &cus_htab)
11172 {
11173 struct objfile *objfile = dwarf2_per_objfile->objfile;
11174 const gdb_byte *info_ptr, *end_ptr;
11175
11176 section.read (objfile);
11177 info_ptr = section.buffer;
11178
11179 if (info_ptr == NULL)
11180 return;
11181
11182 if (dwarf_read_debug)
11183 {
11184 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11185 section.get_name (),
11186 section.get_file_name ());
11187 }
11188
11189 end_ptr = info_ptr + section.size;
11190 while (info_ptr < end_ptr)
11191 {
11192 struct dwarf2_per_cu_data per_cu;
11193 struct dwo_unit read_unit {};
11194 struct dwo_unit *dwo_unit;
11195 void **slot;
11196 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11197
11198 memset (&per_cu, 0, sizeof (per_cu));
11199 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11200 per_cu.is_debug_types = 0;
11201 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11202 per_cu.section = &section;
11203
11204 cutu_reader reader (&per_cu, cu, &dwo_file);
11205 if (!reader.dummy_p)
11206 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11207 &dwo_file, &read_unit);
11208 info_ptr += per_cu.length;
11209
11210 // If the unit could not be parsed, skip it.
11211 if (read_unit.dwo_file == NULL)
11212 continue;
11213
11214 if (cus_htab == NULL)
11215 cus_htab = allocate_dwo_unit_table ();
11216
11217 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11218 *dwo_unit = read_unit;
11219 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11220 gdb_assert (slot != NULL);
11221 if (*slot != NULL)
11222 {
11223 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11224 sect_offset dup_sect_off = dup_cu->sect_off;
11225
11226 complaint (_("debug cu entry at offset %s is duplicate to"
11227 " the entry at offset %s, signature %s"),
11228 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11229 hex_string (dwo_unit->signature));
11230 }
11231 *slot = (void *)dwo_unit;
11232 }
11233 }
11234
11235 /* DWP file .debug_{cu,tu}_index section format:
11236 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11237
11238 DWP Version 1:
11239
11240 Both index sections have the same format, and serve to map a 64-bit
11241 signature to a set of section numbers. Each section begins with a header,
11242 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11243 indexes, and a pool of 32-bit section numbers. The index sections will be
11244 aligned at 8-byte boundaries in the file.
11245
11246 The index section header consists of:
11247
11248 V, 32 bit version number
11249 -, 32 bits unused
11250 N, 32 bit number of compilation units or type units in the index
11251 M, 32 bit number of slots in the hash table
11252
11253 Numbers are recorded using the byte order of the application binary.
11254
11255 The hash table begins at offset 16 in the section, and consists of an array
11256 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11257 order of the application binary). Unused slots in the hash table are 0.
11258 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11259
11260 The parallel table begins immediately after the hash table
11261 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11262 array of 32-bit indexes (using the byte order of the application binary),
11263 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11264 table contains a 32-bit index into the pool of section numbers. For unused
11265 hash table slots, the corresponding entry in the parallel table will be 0.
11266
11267 The pool of section numbers begins immediately following the hash table
11268 (at offset 16 + 12 * M from the beginning of the section). The pool of
11269 section numbers consists of an array of 32-bit words (using the byte order
11270 of the application binary). Each item in the array is indexed starting
11271 from 0. The hash table entry provides the index of the first section
11272 number in the set. Additional section numbers in the set follow, and the
11273 set is terminated by a 0 entry (section number 0 is not used in ELF).
11274
11275 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11276 section must be the first entry in the set, and the .debug_abbrev.dwo must
11277 be the second entry. Other members of the set may follow in any order.
11278
11279 ---
11280
11281 DWP Version 2:
11282
11283 DWP Version 2 combines all the .debug_info, etc. sections into one,
11284 and the entries in the index tables are now offsets into these sections.
11285 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11286 section.
11287
11288 Index Section Contents:
11289 Header
11290 Hash Table of Signatures dwp_hash_table.hash_table
11291 Parallel Table of Indices dwp_hash_table.unit_table
11292 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11293 Table of Section Sizes dwp_hash_table.v2.sizes
11294
11295 The index section header consists of:
11296
11297 V, 32 bit version number
11298 L, 32 bit number of columns in the table of section offsets
11299 N, 32 bit number of compilation units or type units in the index
11300 M, 32 bit number of slots in the hash table
11301
11302 Numbers are recorded using the byte order of the application binary.
11303
11304 The hash table has the same format as version 1.
11305 The parallel table of indices has the same format as version 1,
11306 except that the entries are origin-1 indices into the table of sections
11307 offsets and the table of section sizes.
11308
11309 The table of offsets begins immediately following the parallel table
11310 (at offset 16 + 12 * M from the beginning of the section). The table is
11311 a two-dimensional array of 32-bit words (using the byte order of the
11312 application binary), with L columns and N+1 rows, in row-major order.
11313 Each row in the array is indexed starting from 0. The first row provides
11314 a key to the remaining rows: each column in this row provides an identifier
11315 for a debug section, and the offsets in the same column of subsequent rows
11316 refer to that section. The section identifiers are:
11317
11318 DW_SECT_INFO 1 .debug_info.dwo
11319 DW_SECT_TYPES 2 .debug_types.dwo
11320 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11321 DW_SECT_LINE 4 .debug_line.dwo
11322 DW_SECT_LOC 5 .debug_loc.dwo
11323 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11324 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11325 DW_SECT_MACRO 8 .debug_macro.dwo
11326
11327 The offsets provided by the CU and TU index sections are the base offsets
11328 for the contributions made by each CU or TU to the corresponding section
11329 in the package file. Each CU and TU header contains an abbrev_offset
11330 field, used to find the abbreviations table for that CU or TU within the
11331 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11332 be interpreted as relative to the base offset given in the index section.
11333 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11334 should be interpreted as relative to the base offset for .debug_line.dwo,
11335 and offsets into other debug sections obtained from DWARF attributes should
11336 also be interpreted as relative to the corresponding base offset.
11337
11338 The table of sizes begins immediately following the table of offsets.
11339 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11340 with L columns and N rows, in row-major order. Each row in the array is
11341 indexed starting from 1 (row 0 is shared by the two tables).
11342
11343 ---
11344
11345 Hash table lookup is handled the same in version 1 and 2:
11346
11347 We assume that N and M will not exceed 2^32 - 1.
11348 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11349
11350 Given a 64-bit compilation unit signature or a type signature S, an entry
11351 in the hash table is located as follows:
11352
11353 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11354 the low-order k bits all set to 1.
11355
11356 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11357
11358 3) If the hash table entry at index H matches the signature, use that
11359 entry. If the hash table entry at index H is unused (all zeroes),
11360 terminate the search: the signature is not present in the table.
11361
11362 4) Let H = (H + H') modulo M. Repeat at Step 3.
11363
11364 Because M > N and H' and M are relatively prime, the search is guaranteed
11365 to stop at an unused slot or find the match. */
11366
11367 /* Create a hash table to map DWO IDs to their CU/TU entry in
11368 .debug_{info,types}.dwo in DWP_FILE.
11369 Returns NULL if there isn't one.
11370 Note: This function processes DWP files only, not DWO files. */
11371
11372 static struct dwp_hash_table *
11373 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11374 struct dwp_file *dwp_file, int is_debug_types)
11375 {
11376 struct objfile *objfile = dwarf2_per_objfile->objfile;
11377 bfd *dbfd = dwp_file->dbfd.get ();
11378 const gdb_byte *index_ptr, *index_end;
11379 struct dwarf2_section_info *index;
11380 uint32_t version, nr_columns, nr_units, nr_slots;
11381 struct dwp_hash_table *htab;
11382
11383 if (is_debug_types)
11384 index = &dwp_file->sections.tu_index;
11385 else
11386 index = &dwp_file->sections.cu_index;
11387
11388 if (index->empty ())
11389 return NULL;
11390 index->read (objfile);
11391
11392 index_ptr = index->buffer;
11393 index_end = index_ptr + index->size;
11394
11395 version = read_4_bytes (dbfd, index_ptr);
11396 index_ptr += 4;
11397 if (version == 2)
11398 nr_columns = read_4_bytes (dbfd, index_ptr);
11399 else
11400 nr_columns = 0;
11401 index_ptr += 4;
11402 nr_units = read_4_bytes (dbfd, index_ptr);
11403 index_ptr += 4;
11404 nr_slots = read_4_bytes (dbfd, index_ptr);
11405 index_ptr += 4;
11406
11407 if (version != 1 && version != 2)
11408 {
11409 error (_("Dwarf Error: unsupported DWP file version (%s)"
11410 " [in module %s]"),
11411 pulongest (version), dwp_file->name);
11412 }
11413 if (nr_slots != (nr_slots & -nr_slots))
11414 {
11415 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11416 " is not power of 2 [in module %s]"),
11417 pulongest (nr_slots), dwp_file->name);
11418 }
11419
11420 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11421 htab->version = version;
11422 htab->nr_columns = nr_columns;
11423 htab->nr_units = nr_units;
11424 htab->nr_slots = nr_slots;
11425 htab->hash_table = index_ptr;
11426 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11427
11428 /* Exit early if the table is empty. */
11429 if (nr_slots == 0 || nr_units == 0
11430 || (version == 2 && nr_columns == 0))
11431 {
11432 /* All must be zero. */
11433 if (nr_slots != 0 || nr_units != 0
11434 || (version == 2 && nr_columns != 0))
11435 {
11436 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11437 " all zero [in modules %s]"),
11438 dwp_file->name);
11439 }
11440 return htab;
11441 }
11442
11443 if (version == 1)
11444 {
11445 htab->section_pool.v1.indices =
11446 htab->unit_table + sizeof (uint32_t) * nr_slots;
11447 /* It's harder to decide whether the section is too small in v1.
11448 V1 is deprecated anyway so we punt. */
11449 }
11450 else
11451 {
11452 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11453 int *ids = htab->section_pool.v2.section_ids;
11454 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11455 /* Reverse map for error checking. */
11456 int ids_seen[DW_SECT_MAX + 1];
11457 int i;
11458
11459 if (nr_columns < 2)
11460 {
11461 error (_("Dwarf Error: bad DWP hash table, too few columns"
11462 " in section table [in module %s]"),
11463 dwp_file->name);
11464 }
11465 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11466 {
11467 error (_("Dwarf Error: bad DWP hash table, too many columns"
11468 " in section table [in module %s]"),
11469 dwp_file->name);
11470 }
11471 memset (ids, 255, sizeof_ids);
11472 memset (ids_seen, 255, sizeof (ids_seen));
11473 for (i = 0; i < nr_columns; ++i)
11474 {
11475 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11476
11477 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11478 {
11479 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11480 " in section table [in module %s]"),
11481 id, dwp_file->name);
11482 }
11483 if (ids_seen[id] != -1)
11484 {
11485 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11486 " id %d in section table [in module %s]"),
11487 id, dwp_file->name);
11488 }
11489 ids_seen[id] = i;
11490 ids[i] = id;
11491 }
11492 /* Must have exactly one info or types section. */
11493 if (((ids_seen[DW_SECT_INFO] != -1)
11494 + (ids_seen[DW_SECT_TYPES] != -1))
11495 != 1)
11496 {
11497 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11498 " DWO info/types section [in module %s]"),
11499 dwp_file->name);
11500 }
11501 /* Must have an abbrev section. */
11502 if (ids_seen[DW_SECT_ABBREV] == -1)
11503 {
11504 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11505 " section [in module %s]"),
11506 dwp_file->name);
11507 }
11508 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11509 htab->section_pool.v2.sizes =
11510 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11511 * nr_units * nr_columns);
11512 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11513 * nr_units * nr_columns))
11514 > index_end)
11515 {
11516 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11517 " [in module %s]"),
11518 dwp_file->name);
11519 }
11520 }
11521
11522 return htab;
11523 }
11524
11525 /* Update SECTIONS with the data from SECTP.
11526
11527 This function is like the other "locate" section routines that are
11528 passed to bfd_map_over_sections, but in this context the sections to
11529 read comes from the DWP V1 hash table, not the full ELF section table.
11530
11531 The result is non-zero for success, or zero if an error was found. */
11532
11533 static int
11534 locate_v1_virtual_dwo_sections (asection *sectp,
11535 struct virtual_v1_dwo_sections *sections)
11536 {
11537 const struct dwop_section_names *names = &dwop_section_names;
11538
11539 if (section_is_p (sectp->name, &names->abbrev_dwo))
11540 {
11541 /* There can be only one. */
11542 if (sections->abbrev.s.section != NULL)
11543 return 0;
11544 sections->abbrev.s.section = sectp;
11545 sections->abbrev.size = bfd_section_size (sectp);
11546 }
11547 else if (section_is_p (sectp->name, &names->info_dwo)
11548 || section_is_p (sectp->name, &names->types_dwo))
11549 {
11550 /* There can be only one. */
11551 if (sections->info_or_types.s.section != NULL)
11552 return 0;
11553 sections->info_or_types.s.section = sectp;
11554 sections->info_or_types.size = bfd_section_size (sectp);
11555 }
11556 else if (section_is_p (sectp->name, &names->line_dwo))
11557 {
11558 /* There can be only one. */
11559 if (sections->line.s.section != NULL)
11560 return 0;
11561 sections->line.s.section = sectp;
11562 sections->line.size = bfd_section_size (sectp);
11563 }
11564 else if (section_is_p (sectp->name, &names->loc_dwo))
11565 {
11566 /* There can be only one. */
11567 if (sections->loc.s.section != NULL)
11568 return 0;
11569 sections->loc.s.section = sectp;
11570 sections->loc.size = bfd_section_size (sectp);
11571 }
11572 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11573 {
11574 /* There can be only one. */
11575 if (sections->macinfo.s.section != NULL)
11576 return 0;
11577 sections->macinfo.s.section = sectp;
11578 sections->macinfo.size = bfd_section_size (sectp);
11579 }
11580 else if (section_is_p (sectp->name, &names->macro_dwo))
11581 {
11582 /* There can be only one. */
11583 if (sections->macro.s.section != NULL)
11584 return 0;
11585 sections->macro.s.section = sectp;
11586 sections->macro.size = bfd_section_size (sectp);
11587 }
11588 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11589 {
11590 /* There can be only one. */
11591 if (sections->str_offsets.s.section != NULL)
11592 return 0;
11593 sections->str_offsets.s.section = sectp;
11594 sections->str_offsets.size = bfd_section_size (sectp);
11595 }
11596 else
11597 {
11598 /* No other kind of section is valid. */
11599 return 0;
11600 }
11601
11602 return 1;
11603 }
11604
11605 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11606 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11607 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11608 This is for DWP version 1 files. */
11609
11610 static struct dwo_unit *
11611 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11612 struct dwp_file *dwp_file,
11613 uint32_t unit_index,
11614 const char *comp_dir,
11615 ULONGEST signature, int is_debug_types)
11616 {
11617 struct objfile *objfile = dwarf2_per_objfile->objfile;
11618 const struct dwp_hash_table *dwp_htab =
11619 is_debug_types ? dwp_file->tus : dwp_file->cus;
11620 bfd *dbfd = dwp_file->dbfd.get ();
11621 const char *kind = is_debug_types ? "TU" : "CU";
11622 struct dwo_file *dwo_file;
11623 struct dwo_unit *dwo_unit;
11624 struct virtual_v1_dwo_sections sections;
11625 void **dwo_file_slot;
11626 int i;
11627
11628 gdb_assert (dwp_file->version == 1);
11629
11630 if (dwarf_read_debug)
11631 {
11632 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11633 kind,
11634 pulongest (unit_index), hex_string (signature),
11635 dwp_file->name);
11636 }
11637
11638 /* Fetch the sections of this DWO unit.
11639 Put a limit on the number of sections we look for so that bad data
11640 doesn't cause us to loop forever. */
11641
11642 #define MAX_NR_V1_DWO_SECTIONS \
11643 (1 /* .debug_info or .debug_types */ \
11644 + 1 /* .debug_abbrev */ \
11645 + 1 /* .debug_line */ \
11646 + 1 /* .debug_loc */ \
11647 + 1 /* .debug_str_offsets */ \
11648 + 1 /* .debug_macro or .debug_macinfo */ \
11649 + 1 /* trailing zero */)
11650
11651 memset (&sections, 0, sizeof (sections));
11652
11653 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11654 {
11655 asection *sectp;
11656 uint32_t section_nr =
11657 read_4_bytes (dbfd,
11658 dwp_htab->section_pool.v1.indices
11659 + (unit_index + i) * sizeof (uint32_t));
11660
11661 if (section_nr == 0)
11662 break;
11663 if (section_nr >= dwp_file->num_sections)
11664 {
11665 error (_("Dwarf Error: bad DWP hash table, section number too large"
11666 " [in module %s]"),
11667 dwp_file->name);
11668 }
11669
11670 sectp = dwp_file->elf_sections[section_nr];
11671 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11672 {
11673 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11674 " [in module %s]"),
11675 dwp_file->name);
11676 }
11677 }
11678
11679 if (i < 2
11680 || sections.info_or_types.empty ()
11681 || sections.abbrev.empty ())
11682 {
11683 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11684 " [in module %s]"),
11685 dwp_file->name);
11686 }
11687 if (i == MAX_NR_V1_DWO_SECTIONS)
11688 {
11689 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11690 " [in module %s]"),
11691 dwp_file->name);
11692 }
11693
11694 /* It's easier for the rest of the code if we fake a struct dwo_file and
11695 have dwo_unit "live" in that. At least for now.
11696
11697 The DWP file can be made up of a random collection of CUs and TUs.
11698 However, for each CU + set of TUs that came from the same original DWO
11699 file, we can combine them back into a virtual DWO file to save space
11700 (fewer struct dwo_file objects to allocate). Remember that for really
11701 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11702
11703 std::string virtual_dwo_name =
11704 string_printf ("virtual-dwo/%d-%d-%d-%d",
11705 sections.abbrev.get_id (),
11706 sections.line.get_id (),
11707 sections.loc.get_id (),
11708 sections.str_offsets.get_id ());
11709 /* Can we use an existing virtual DWO file? */
11710 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11711 virtual_dwo_name.c_str (),
11712 comp_dir);
11713 /* Create one if necessary. */
11714 if (*dwo_file_slot == NULL)
11715 {
11716 if (dwarf_read_debug)
11717 {
11718 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11719 virtual_dwo_name.c_str ());
11720 }
11721 dwo_file = new struct dwo_file;
11722 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11723 dwo_file->comp_dir = comp_dir;
11724 dwo_file->sections.abbrev = sections.abbrev;
11725 dwo_file->sections.line = sections.line;
11726 dwo_file->sections.loc = sections.loc;
11727 dwo_file->sections.macinfo = sections.macinfo;
11728 dwo_file->sections.macro = sections.macro;
11729 dwo_file->sections.str_offsets = sections.str_offsets;
11730 /* The "str" section is global to the entire DWP file. */
11731 dwo_file->sections.str = dwp_file->sections.str;
11732 /* The info or types section is assigned below to dwo_unit,
11733 there's no need to record it in dwo_file.
11734 Also, we can't simply record type sections in dwo_file because
11735 we record a pointer into the vector in dwo_unit. As we collect more
11736 types we'll grow the vector and eventually have to reallocate space
11737 for it, invalidating all copies of pointers into the previous
11738 contents. */
11739 *dwo_file_slot = dwo_file;
11740 }
11741 else
11742 {
11743 if (dwarf_read_debug)
11744 {
11745 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11746 virtual_dwo_name.c_str ());
11747 }
11748 dwo_file = (struct dwo_file *) *dwo_file_slot;
11749 }
11750
11751 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11752 dwo_unit->dwo_file = dwo_file;
11753 dwo_unit->signature = signature;
11754 dwo_unit->section =
11755 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11756 *dwo_unit->section = sections.info_or_types;
11757 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11758
11759 return dwo_unit;
11760 }
11761
11762 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11763 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11764 piece within that section used by a TU/CU, return a virtual section
11765 of just that piece. */
11766
11767 static struct dwarf2_section_info
11768 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11769 struct dwarf2_section_info *section,
11770 bfd_size_type offset, bfd_size_type size)
11771 {
11772 struct dwarf2_section_info result;
11773 asection *sectp;
11774
11775 gdb_assert (section != NULL);
11776 gdb_assert (!section->is_virtual);
11777
11778 memset (&result, 0, sizeof (result));
11779 result.s.containing_section = section;
11780 result.is_virtual = true;
11781
11782 if (size == 0)
11783 return result;
11784
11785 sectp = section->get_bfd_section ();
11786
11787 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11788 bounds of the real section. This is a pretty-rare event, so just
11789 flag an error (easier) instead of a warning and trying to cope. */
11790 if (sectp == NULL
11791 || offset + size > bfd_section_size (sectp))
11792 {
11793 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11794 " in section %s [in module %s]"),
11795 sectp ? bfd_section_name (sectp) : "<unknown>",
11796 objfile_name (dwarf2_per_objfile->objfile));
11797 }
11798
11799 result.virtual_offset = offset;
11800 result.size = size;
11801 return result;
11802 }
11803
11804 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11805 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11806 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11807 This is for DWP version 2 files. */
11808
11809 static struct dwo_unit *
11810 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11811 struct dwp_file *dwp_file,
11812 uint32_t unit_index,
11813 const char *comp_dir,
11814 ULONGEST signature, int is_debug_types)
11815 {
11816 struct objfile *objfile = dwarf2_per_objfile->objfile;
11817 const struct dwp_hash_table *dwp_htab =
11818 is_debug_types ? dwp_file->tus : dwp_file->cus;
11819 bfd *dbfd = dwp_file->dbfd.get ();
11820 const char *kind = is_debug_types ? "TU" : "CU";
11821 struct dwo_file *dwo_file;
11822 struct dwo_unit *dwo_unit;
11823 struct virtual_v2_dwo_sections sections;
11824 void **dwo_file_slot;
11825 int i;
11826
11827 gdb_assert (dwp_file->version == 2);
11828
11829 if (dwarf_read_debug)
11830 {
11831 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11832 kind,
11833 pulongest (unit_index), hex_string (signature),
11834 dwp_file->name);
11835 }
11836
11837 /* Fetch the section offsets of this DWO unit. */
11838
11839 memset (&sections, 0, sizeof (sections));
11840
11841 for (i = 0; i < dwp_htab->nr_columns; ++i)
11842 {
11843 uint32_t offset = read_4_bytes (dbfd,
11844 dwp_htab->section_pool.v2.offsets
11845 + (((unit_index - 1) * dwp_htab->nr_columns
11846 + i)
11847 * sizeof (uint32_t)));
11848 uint32_t size = read_4_bytes (dbfd,
11849 dwp_htab->section_pool.v2.sizes
11850 + (((unit_index - 1) * dwp_htab->nr_columns
11851 + i)
11852 * sizeof (uint32_t)));
11853
11854 switch (dwp_htab->section_pool.v2.section_ids[i])
11855 {
11856 case DW_SECT_INFO:
11857 case DW_SECT_TYPES:
11858 sections.info_or_types_offset = offset;
11859 sections.info_or_types_size = size;
11860 break;
11861 case DW_SECT_ABBREV:
11862 sections.abbrev_offset = offset;
11863 sections.abbrev_size = size;
11864 break;
11865 case DW_SECT_LINE:
11866 sections.line_offset = offset;
11867 sections.line_size = size;
11868 break;
11869 case DW_SECT_LOC:
11870 sections.loc_offset = offset;
11871 sections.loc_size = size;
11872 break;
11873 case DW_SECT_STR_OFFSETS:
11874 sections.str_offsets_offset = offset;
11875 sections.str_offsets_size = size;
11876 break;
11877 case DW_SECT_MACINFO:
11878 sections.macinfo_offset = offset;
11879 sections.macinfo_size = size;
11880 break;
11881 case DW_SECT_MACRO:
11882 sections.macro_offset = offset;
11883 sections.macro_size = size;
11884 break;
11885 }
11886 }
11887
11888 /* It's easier for the rest of the code if we fake a struct dwo_file and
11889 have dwo_unit "live" in that. At least for now.
11890
11891 The DWP file can be made up of a random collection of CUs and TUs.
11892 However, for each CU + set of TUs that came from the same original DWO
11893 file, we can combine them back into a virtual DWO file to save space
11894 (fewer struct dwo_file objects to allocate). Remember that for really
11895 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11896
11897 std::string virtual_dwo_name =
11898 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11899 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11900 (long) (sections.line_size ? sections.line_offset : 0),
11901 (long) (sections.loc_size ? sections.loc_offset : 0),
11902 (long) (sections.str_offsets_size
11903 ? sections.str_offsets_offset : 0));
11904 /* Can we use an existing virtual DWO file? */
11905 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11906 virtual_dwo_name.c_str (),
11907 comp_dir);
11908 /* Create one if necessary. */
11909 if (*dwo_file_slot == NULL)
11910 {
11911 if (dwarf_read_debug)
11912 {
11913 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11914 virtual_dwo_name.c_str ());
11915 }
11916 dwo_file = new struct dwo_file;
11917 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11918 dwo_file->comp_dir = comp_dir;
11919 dwo_file->sections.abbrev =
11920 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11921 sections.abbrev_offset, sections.abbrev_size);
11922 dwo_file->sections.line =
11923 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11924 sections.line_offset, sections.line_size);
11925 dwo_file->sections.loc =
11926 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11927 sections.loc_offset, sections.loc_size);
11928 dwo_file->sections.macinfo =
11929 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11930 sections.macinfo_offset, sections.macinfo_size);
11931 dwo_file->sections.macro =
11932 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11933 sections.macro_offset, sections.macro_size);
11934 dwo_file->sections.str_offsets =
11935 create_dwp_v2_section (dwarf2_per_objfile,
11936 &dwp_file->sections.str_offsets,
11937 sections.str_offsets_offset,
11938 sections.str_offsets_size);
11939 /* The "str" section is global to the entire DWP file. */
11940 dwo_file->sections.str = dwp_file->sections.str;
11941 /* The info or types section is assigned below to dwo_unit,
11942 there's no need to record it in dwo_file.
11943 Also, we can't simply record type sections in dwo_file because
11944 we record a pointer into the vector in dwo_unit. As we collect more
11945 types we'll grow the vector and eventually have to reallocate space
11946 for it, invalidating all copies of pointers into the previous
11947 contents. */
11948 *dwo_file_slot = dwo_file;
11949 }
11950 else
11951 {
11952 if (dwarf_read_debug)
11953 {
11954 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11955 virtual_dwo_name.c_str ());
11956 }
11957 dwo_file = (struct dwo_file *) *dwo_file_slot;
11958 }
11959
11960 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11961 dwo_unit->dwo_file = dwo_file;
11962 dwo_unit->signature = signature;
11963 dwo_unit->section =
11964 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11965 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11966 is_debug_types
11967 ? &dwp_file->sections.types
11968 : &dwp_file->sections.info,
11969 sections.info_or_types_offset,
11970 sections.info_or_types_size);
11971 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11972
11973 return dwo_unit;
11974 }
11975
11976 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11977 Returns NULL if the signature isn't found. */
11978
11979 static struct dwo_unit *
11980 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11981 struct dwp_file *dwp_file, const char *comp_dir,
11982 ULONGEST signature, int is_debug_types)
11983 {
11984 const struct dwp_hash_table *dwp_htab =
11985 is_debug_types ? dwp_file->tus : dwp_file->cus;
11986 bfd *dbfd = dwp_file->dbfd.get ();
11987 uint32_t mask = dwp_htab->nr_slots - 1;
11988 uint32_t hash = signature & mask;
11989 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11990 unsigned int i;
11991 void **slot;
11992 struct dwo_unit find_dwo_cu;
11993
11994 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11995 find_dwo_cu.signature = signature;
11996 slot = htab_find_slot (is_debug_types
11997 ? dwp_file->loaded_tus.get ()
11998 : dwp_file->loaded_cus.get (),
11999 &find_dwo_cu, INSERT);
12000
12001 if (*slot != NULL)
12002 return (struct dwo_unit *) *slot;
12003
12004 /* Use a for loop so that we don't loop forever on bad debug info. */
12005 for (i = 0; i < dwp_htab->nr_slots; ++i)
12006 {
12007 ULONGEST signature_in_table;
12008
12009 signature_in_table =
12010 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12011 if (signature_in_table == signature)
12012 {
12013 uint32_t unit_index =
12014 read_4_bytes (dbfd,
12015 dwp_htab->unit_table + hash * sizeof (uint32_t));
12016
12017 if (dwp_file->version == 1)
12018 {
12019 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12020 dwp_file, unit_index,
12021 comp_dir, signature,
12022 is_debug_types);
12023 }
12024 else
12025 {
12026 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12027 dwp_file, unit_index,
12028 comp_dir, signature,
12029 is_debug_types);
12030 }
12031 return (struct dwo_unit *) *slot;
12032 }
12033 if (signature_in_table == 0)
12034 return NULL;
12035 hash = (hash + hash2) & mask;
12036 }
12037
12038 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12039 " [in module %s]"),
12040 dwp_file->name);
12041 }
12042
12043 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12044 Open the file specified by FILE_NAME and hand it off to BFD for
12045 preliminary analysis. Return a newly initialized bfd *, which
12046 includes a canonicalized copy of FILE_NAME.
12047 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12048 SEARCH_CWD is true if the current directory is to be searched.
12049 It will be searched before debug-file-directory.
12050 If successful, the file is added to the bfd include table of the
12051 objfile's bfd (see gdb_bfd_record_inclusion).
12052 If unable to find/open the file, return NULL.
12053 NOTE: This function is derived from symfile_bfd_open. */
12054
12055 static gdb_bfd_ref_ptr
12056 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12057 const char *file_name, int is_dwp, int search_cwd)
12058 {
12059 int desc;
12060 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12061 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12062 to debug_file_directory. */
12063 const char *search_path;
12064 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12065
12066 gdb::unique_xmalloc_ptr<char> search_path_holder;
12067 if (search_cwd)
12068 {
12069 if (*debug_file_directory != '\0')
12070 {
12071 search_path_holder.reset (concat (".", dirname_separator_string,
12072 debug_file_directory,
12073 (char *) NULL));
12074 search_path = search_path_holder.get ();
12075 }
12076 else
12077 search_path = ".";
12078 }
12079 else
12080 search_path = debug_file_directory;
12081
12082 openp_flags flags = OPF_RETURN_REALPATH;
12083 if (is_dwp)
12084 flags |= OPF_SEARCH_IN_PATH;
12085
12086 gdb::unique_xmalloc_ptr<char> absolute_name;
12087 desc = openp (search_path, flags, file_name,
12088 O_RDONLY | O_BINARY, &absolute_name);
12089 if (desc < 0)
12090 return NULL;
12091
12092 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12093 gnutarget, desc));
12094 if (sym_bfd == NULL)
12095 return NULL;
12096 bfd_set_cacheable (sym_bfd.get (), 1);
12097
12098 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12099 return NULL;
12100
12101 /* Success. Record the bfd as having been included by the objfile's bfd.
12102 This is important because things like demangled_names_hash lives in the
12103 objfile's per_bfd space and may have references to things like symbol
12104 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12105 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12106
12107 return sym_bfd;
12108 }
12109
12110 /* Try to open DWO file FILE_NAME.
12111 COMP_DIR is the DW_AT_comp_dir attribute.
12112 The result is the bfd handle of the file.
12113 If there is a problem finding or opening the file, return NULL.
12114 Upon success, the canonicalized path of the file is stored in the bfd,
12115 same as symfile_bfd_open. */
12116
12117 static gdb_bfd_ref_ptr
12118 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12119 const char *file_name, const char *comp_dir)
12120 {
12121 if (IS_ABSOLUTE_PATH (file_name))
12122 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12123 0 /*is_dwp*/, 0 /*search_cwd*/);
12124
12125 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12126
12127 if (comp_dir != NULL)
12128 {
12129 gdb::unique_xmalloc_ptr<char> path_to_try
12130 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12131
12132 /* NOTE: If comp_dir is a relative path, this will also try the
12133 search path, which seems useful. */
12134 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12135 path_to_try.get (),
12136 0 /*is_dwp*/,
12137 1 /*search_cwd*/));
12138 if (abfd != NULL)
12139 return abfd;
12140 }
12141
12142 /* That didn't work, try debug-file-directory, which, despite its name,
12143 is a list of paths. */
12144
12145 if (*debug_file_directory == '\0')
12146 return NULL;
12147
12148 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12149 0 /*is_dwp*/, 1 /*search_cwd*/);
12150 }
12151
12152 /* This function is mapped across the sections and remembers the offset and
12153 size of each of the DWO debugging sections we are interested in. */
12154
12155 static void
12156 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12157 {
12158 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12159 const struct dwop_section_names *names = &dwop_section_names;
12160
12161 if (section_is_p (sectp->name, &names->abbrev_dwo))
12162 {
12163 dwo_sections->abbrev.s.section = sectp;
12164 dwo_sections->abbrev.size = bfd_section_size (sectp);
12165 }
12166 else if (section_is_p (sectp->name, &names->info_dwo))
12167 {
12168 dwo_sections->info.s.section = sectp;
12169 dwo_sections->info.size = bfd_section_size (sectp);
12170 }
12171 else if (section_is_p (sectp->name, &names->line_dwo))
12172 {
12173 dwo_sections->line.s.section = sectp;
12174 dwo_sections->line.size = bfd_section_size (sectp);
12175 }
12176 else if (section_is_p (sectp->name, &names->loc_dwo))
12177 {
12178 dwo_sections->loc.s.section = sectp;
12179 dwo_sections->loc.size = bfd_section_size (sectp);
12180 }
12181 else if (section_is_p (sectp->name, &names->loclists_dwo))
12182 {
12183 dwo_sections->loclists.s.section = sectp;
12184 dwo_sections->loclists.size = bfd_section_size (sectp);
12185 }
12186 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12187 {
12188 dwo_sections->macinfo.s.section = sectp;
12189 dwo_sections->macinfo.size = bfd_section_size (sectp);
12190 }
12191 else if (section_is_p (sectp->name, &names->macro_dwo))
12192 {
12193 dwo_sections->macro.s.section = sectp;
12194 dwo_sections->macro.size = bfd_section_size (sectp);
12195 }
12196 else if (section_is_p (sectp->name, &names->str_dwo))
12197 {
12198 dwo_sections->str.s.section = sectp;
12199 dwo_sections->str.size = bfd_section_size (sectp);
12200 }
12201 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12202 {
12203 dwo_sections->str_offsets.s.section = sectp;
12204 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12205 }
12206 else if (section_is_p (sectp->name, &names->types_dwo))
12207 {
12208 struct dwarf2_section_info type_section;
12209
12210 memset (&type_section, 0, sizeof (type_section));
12211 type_section.s.section = sectp;
12212 type_section.size = bfd_section_size (sectp);
12213 dwo_sections->types.push_back (type_section);
12214 }
12215 }
12216
12217 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12218 by PER_CU. This is for the non-DWP case.
12219 The result is NULL if DWO_NAME can't be found. */
12220
12221 static struct dwo_file *
12222 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12223 const char *dwo_name, const char *comp_dir)
12224 {
12225 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12226
12227 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12228 if (dbfd == NULL)
12229 {
12230 if (dwarf_read_debug)
12231 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12232 return NULL;
12233 }
12234
12235 dwo_file_up dwo_file (new struct dwo_file);
12236 dwo_file->dwo_name = dwo_name;
12237 dwo_file->comp_dir = comp_dir;
12238 dwo_file->dbfd = std::move (dbfd);
12239
12240 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12241 &dwo_file->sections);
12242
12243 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12244 dwo_file->sections.info, dwo_file->cus);
12245
12246 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12247 dwo_file->sections.types, dwo_file->tus);
12248
12249 if (dwarf_read_debug)
12250 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12251
12252 return dwo_file.release ();
12253 }
12254
12255 /* This function is mapped across the sections and remembers the offset and
12256 size of each of the DWP debugging sections common to version 1 and 2 that
12257 we are interested in. */
12258
12259 static void
12260 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12261 void *dwp_file_ptr)
12262 {
12263 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12264 const struct dwop_section_names *names = &dwop_section_names;
12265 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12266
12267 /* Record the ELF section number for later lookup: this is what the
12268 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12269 gdb_assert (elf_section_nr < dwp_file->num_sections);
12270 dwp_file->elf_sections[elf_section_nr] = sectp;
12271
12272 /* Look for specific sections that we need. */
12273 if (section_is_p (sectp->name, &names->str_dwo))
12274 {
12275 dwp_file->sections.str.s.section = sectp;
12276 dwp_file->sections.str.size = bfd_section_size (sectp);
12277 }
12278 else if (section_is_p (sectp->name, &names->cu_index))
12279 {
12280 dwp_file->sections.cu_index.s.section = sectp;
12281 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12282 }
12283 else if (section_is_p (sectp->name, &names->tu_index))
12284 {
12285 dwp_file->sections.tu_index.s.section = sectp;
12286 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12287 }
12288 }
12289
12290 /* This function is mapped across the sections and remembers the offset and
12291 size of each of the DWP version 2 debugging sections that we are interested
12292 in. This is split into a separate function because we don't know if we
12293 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12294
12295 static void
12296 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12297 {
12298 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12299 const struct dwop_section_names *names = &dwop_section_names;
12300 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12301
12302 /* Record the ELF section number for later lookup: this is what the
12303 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12304 gdb_assert (elf_section_nr < dwp_file->num_sections);
12305 dwp_file->elf_sections[elf_section_nr] = sectp;
12306
12307 /* Look for specific sections that we need. */
12308 if (section_is_p (sectp->name, &names->abbrev_dwo))
12309 {
12310 dwp_file->sections.abbrev.s.section = sectp;
12311 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12312 }
12313 else if (section_is_p (sectp->name, &names->info_dwo))
12314 {
12315 dwp_file->sections.info.s.section = sectp;
12316 dwp_file->sections.info.size = bfd_section_size (sectp);
12317 }
12318 else if (section_is_p (sectp->name, &names->line_dwo))
12319 {
12320 dwp_file->sections.line.s.section = sectp;
12321 dwp_file->sections.line.size = bfd_section_size (sectp);
12322 }
12323 else if (section_is_p (sectp->name, &names->loc_dwo))
12324 {
12325 dwp_file->sections.loc.s.section = sectp;
12326 dwp_file->sections.loc.size = bfd_section_size (sectp);
12327 }
12328 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12329 {
12330 dwp_file->sections.macinfo.s.section = sectp;
12331 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->macro_dwo))
12334 {
12335 dwp_file->sections.macro.s.section = sectp;
12336 dwp_file->sections.macro.size = bfd_section_size (sectp);
12337 }
12338 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12339 {
12340 dwp_file->sections.str_offsets.s.section = sectp;
12341 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12342 }
12343 else if (section_is_p (sectp->name, &names->types_dwo))
12344 {
12345 dwp_file->sections.types.s.section = sectp;
12346 dwp_file->sections.types.size = bfd_section_size (sectp);
12347 }
12348 }
12349
12350 /* Hash function for dwp_file loaded CUs/TUs. */
12351
12352 static hashval_t
12353 hash_dwp_loaded_cutus (const void *item)
12354 {
12355 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12356
12357 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12358 return dwo_unit->signature;
12359 }
12360
12361 /* Equality function for dwp_file loaded CUs/TUs. */
12362
12363 static int
12364 eq_dwp_loaded_cutus (const void *a, const void *b)
12365 {
12366 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12367 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12368
12369 return dua->signature == dub->signature;
12370 }
12371
12372 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12373
12374 static htab_up
12375 allocate_dwp_loaded_cutus_table ()
12376 {
12377 return htab_up (htab_create_alloc (3,
12378 hash_dwp_loaded_cutus,
12379 eq_dwp_loaded_cutus,
12380 NULL, xcalloc, xfree));
12381 }
12382
12383 /* Try to open DWP file FILE_NAME.
12384 The result is the bfd handle of the file.
12385 If there is a problem finding or opening the file, return NULL.
12386 Upon success, the canonicalized path of the file is stored in the bfd,
12387 same as symfile_bfd_open. */
12388
12389 static gdb_bfd_ref_ptr
12390 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12391 const char *file_name)
12392 {
12393 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12394 1 /*is_dwp*/,
12395 1 /*search_cwd*/));
12396 if (abfd != NULL)
12397 return abfd;
12398
12399 /* Work around upstream bug 15652.
12400 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12401 [Whether that's a "bug" is debatable, but it is getting in our way.]
12402 We have no real idea where the dwp file is, because gdb's realpath-ing
12403 of the executable's path may have discarded the needed info.
12404 [IWBN if the dwp file name was recorded in the executable, akin to
12405 .gnu_debuglink, but that doesn't exist yet.]
12406 Strip the directory from FILE_NAME and search again. */
12407 if (*debug_file_directory != '\0')
12408 {
12409 /* Don't implicitly search the current directory here.
12410 If the user wants to search "." to handle this case,
12411 it must be added to debug-file-directory. */
12412 return try_open_dwop_file (dwarf2_per_objfile,
12413 lbasename (file_name), 1 /*is_dwp*/,
12414 0 /*search_cwd*/);
12415 }
12416
12417 return NULL;
12418 }
12419
12420 /* Initialize the use of the DWP file for the current objfile.
12421 By convention the name of the DWP file is ${objfile}.dwp.
12422 The result is NULL if it can't be found. */
12423
12424 static std::unique_ptr<struct dwp_file>
12425 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12426 {
12427 struct objfile *objfile = dwarf2_per_objfile->objfile;
12428
12429 /* Try to find first .dwp for the binary file before any symbolic links
12430 resolving. */
12431
12432 /* If the objfile is a debug file, find the name of the real binary
12433 file and get the name of dwp file from there. */
12434 std::string dwp_name;
12435 if (objfile->separate_debug_objfile_backlink != NULL)
12436 {
12437 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12438 const char *backlink_basename = lbasename (backlink->original_name);
12439
12440 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12441 }
12442 else
12443 dwp_name = objfile->original_name;
12444
12445 dwp_name += ".dwp";
12446
12447 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12448 if (dbfd == NULL
12449 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12450 {
12451 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12452 dwp_name = objfile_name (objfile);
12453 dwp_name += ".dwp";
12454 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12455 }
12456
12457 if (dbfd == NULL)
12458 {
12459 if (dwarf_read_debug)
12460 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12461 return std::unique_ptr<dwp_file> ();
12462 }
12463
12464 const char *name = bfd_get_filename (dbfd.get ());
12465 std::unique_ptr<struct dwp_file> dwp_file
12466 (new struct dwp_file (name, std::move (dbfd)));
12467
12468 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12469 dwp_file->elf_sections =
12470 OBSTACK_CALLOC (&objfile->objfile_obstack,
12471 dwp_file->num_sections, asection *);
12472
12473 bfd_map_over_sections (dwp_file->dbfd.get (),
12474 dwarf2_locate_common_dwp_sections,
12475 dwp_file.get ());
12476
12477 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12478 0);
12479
12480 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12481 1);
12482
12483 /* The DWP file version is stored in the hash table. Oh well. */
12484 if (dwp_file->cus && dwp_file->tus
12485 && dwp_file->cus->version != dwp_file->tus->version)
12486 {
12487 /* Technically speaking, we should try to limp along, but this is
12488 pretty bizarre. We use pulongest here because that's the established
12489 portability solution (e.g, we cannot use %u for uint32_t). */
12490 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12491 " TU version %s [in DWP file %s]"),
12492 pulongest (dwp_file->cus->version),
12493 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12494 }
12495
12496 if (dwp_file->cus)
12497 dwp_file->version = dwp_file->cus->version;
12498 else if (dwp_file->tus)
12499 dwp_file->version = dwp_file->tus->version;
12500 else
12501 dwp_file->version = 2;
12502
12503 if (dwp_file->version == 2)
12504 bfd_map_over_sections (dwp_file->dbfd.get (),
12505 dwarf2_locate_v2_dwp_sections,
12506 dwp_file.get ());
12507
12508 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12509 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12510
12511 if (dwarf_read_debug)
12512 {
12513 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12514 fprintf_unfiltered (gdb_stdlog,
12515 " %s CUs, %s TUs\n",
12516 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12517 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12518 }
12519
12520 return dwp_file;
12521 }
12522
12523 /* Wrapper around open_and_init_dwp_file, only open it once. */
12524
12525 static struct dwp_file *
12526 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12527 {
12528 if (! dwarf2_per_objfile->dwp_checked)
12529 {
12530 dwarf2_per_objfile->dwp_file
12531 = open_and_init_dwp_file (dwarf2_per_objfile);
12532 dwarf2_per_objfile->dwp_checked = 1;
12533 }
12534 return dwarf2_per_objfile->dwp_file.get ();
12535 }
12536
12537 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12538 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12539 or in the DWP file for the objfile, referenced by THIS_UNIT.
12540 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12541 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12542
12543 This is called, for example, when wanting to read a variable with a
12544 complex location. Therefore we don't want to do file i/o for every call.
12545 Therefore we don't want to look for a DWO file on every call.
12546 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12547 then we check if we've already seen DWO_NAME, and only THEN do we check
12548 for a DWO file.
12549
12550 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12551 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12552
12553 static struct dwo_unit *
12554 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12555 const char *dwo_name, const char *comp_dir,
12556 ULONGEST signature, int is_debug_types)
12557 {
12558 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12559 struct objfile *objfile = dwarf2_per_objfile->objfile;
12560 const char *kind = is_debug_types ? "TU" : "CU";
12561 void **dwo_file_slot;
12562 struct dwo_file *dwo_file;
12563 struct dwp_file *dwp_file;
12564
12565 /* First see if there's a DWP file.
12566 If we have a DWP file but didn't find the DWO inside it, don't
12567 look for the original DWO file. It makes gdb behave differently
12568 depending on whether one is debugging in the build tree. */
12569
12570 dwp_file = get_dwp_file (dwarf2_per_objfile);
12571 if (dwp_file != NULL)
12572 {
12573 const struct dwp_hash_table *dwp_htab =
12574 is_debug_types ? dwp_file->tus : dwp_file->cus;
12575
12576 if (dwp_htab != NULL)
12577 {
12578 struct dwo_unit *dwo_cutu =
12579 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12580 signature, is_debug_types);
12581
12582 if (dwo_cutu != NULL)
12583 {
12584 if (dwarf_read_debug)
12585 {
12586 fprintf_unfiltered (gdb_stdlog,
12587 "Virtual DWO %s %s found: @%s\n",
12588 kind, hex_string (signature),
12589 host_address_to_string (dwo_cutu));
12590 }
12591 return dwo_cutu;
12592 }
12593 }
12594 }
12595 else
12596 {
12597 /* No DWP file, look for the DWO file. */
12598
12599 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12600 dwo_name, comp_dir);
12601 if (*dwo_file_slot == NULL)
12602 {
12603 /* Read in the file and build a table of the CUs/TUs it contains. */
12604 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12605 }
12606 /* NOTE: This will be NULL if unable to open the file. */
12607 dwo_file = (struct dwo_file *) *dwo_file_slot;
12608
12609 if (dwo_file != NULL)
12610 {
12611 struct dwo_unit *dwo_cutu = NULL;
12612
12613 if (is_debug_types && dwo_file->tus)
12614 {
12615 struct dwo_unit find_dwo_cutu;
12616
12617 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12618 find_dwo_cutu.signature = signature;
12619 dwo_cutu
12620 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12621 &find_dwo_cutu);
12622 }
12623 else if (!is_debug_types && dwo_file->cus)
12624 {
12625 struct dwo_unit find_dwo_cutu;
12626
12627 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12628 find_dwo_cutu.signature = signature;
12629 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12630 &find_dwo_cutu);
12631 }
12632
12633 if (dwo_cutu != NULL)
12634 {
12635 if (dwarf_read_debug)
12636 {
12637 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12638 kind, dwo_name, hex_string (signature),
12639 host_address_to_string (dwo_cutu));
12640 }
12641 return dwo_cutu;
12642 }
12643 }
12644 }
12645
12646 /* We didn't find it. This could mean a dwo_id mismatch, or
12647 someone deleted the DWO/DWP file, or the search path isn't set up
12648 correctly to find the file. */
12649
12650 if (dwarf_read_debug)
12651 {
12652 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12653 kind, dwo_name, hex_string (signature));
12654 }
12655
12656 /* This is a warning and not a complaint because it can be caused by
12657 pilot error (e.g., user accidentally deleting the DWO). */
12658 {
12659 /* Print the name of the DWP file if we looked there, helps the user
12660 better diagnose the problem. */
12661 std::string dwp_text;
12662
12663 if (dwp_file != NULL)
12664 dwp_text = string_printf (" [in DWP file %s]",
12665 lbasename (dwp_file->name));
12666
12667 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12668 " [in module %s]"),
12669 kind, dwo_name, hex_string (signature),
12670 dwp_text.c_str (),
12671 this_unit->is_debug_types ? "TU" : "CU",
12672 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12673 }
12674 return NULL;
12675 }
12676
12677 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12678 See lookup_dwo_cutu_unit for details. */
12679
12680 static struct dwo_unit *
12681 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12682 const char *dwo_name, const char *comp_dir,
12683 ULONGEST signature)
12684 {
12685 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12686 }
12687
12688 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12689 See lookup_dwo_cutu_unit for details. */
12690
12691 static struct dwo_unit *
12692 lookup_dwo_type_unit (struct signatured_type *this_tu,
12693 const char *dwo_name, const char *comp_dir)
12694 {
12695 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12696 }
12697
12698 /* Traversal function for queue_and_load_all_dwo_tus. */
12699
12700 static int
12701 queue_and_load_dwo_tu (void **slot, void *info)
12702 {
12703 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12704 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12705 ULONGEST signature = dwo_unit->signature;
12706 struct signatured_type *sig_type =
12707 lookup_dwo_signatured_type (per_cu->cu, signature);
12708
12709 if (sig_type != NULL)
12710 {
12711 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12712
12713 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12714 a real dependency of PER_CU on SIG_TYPE. That is detected later
12715 while processing PER_CU. */
12716 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12717 load_full_type_unit (sig_cu);
12718 per_cu->imported_symtabs_push (sig_cu);
12719 }
12720
12721 return 1;
12722 }
12723
12724 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12725 The DWO may have the only definition of the type, though it may not be
12726 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12727 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12728
12729 static void
12730 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12731 {
12732 struct dwo_unit *dwo_unit;
12733 struct dwo_file *dwo_file;
12734
12735 gdb_assert (!per_cu->is_debug_types);
12736 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12737 gdb_assert (per_cu->cu != NULL);
12738
12739 dwo_unit = per_cu->cu->dwo_unit;
12740 gdb_assert (dwo_unit != NULL);
12741
12742 dwo_file = dwo_unit->dwo_file;
12743 if (dwo_file->tus != NULL)
12744 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12745 per_cu);
12746 }
12747
12748 /* Read in various DIEs. */
12749
12750 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12751 Inherit only the children of the DW_AT_abstract_origin DIE not being
12752 already referenced by DW_AT_abstract_origin from the children of the
12753 current DIE. */
12754
12755 static void
12756 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12757 {
12758 struct die_info *child_die;
12759 sect_offset *offsetp;
12760 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12761 struct die_info *origin_die;
12762 /* Iterator of the ORIGIN_DIE children. */
12763 struct die_info *origin_child_die;
12764 struct attribute *attr;
12765 struct dwarf2_cu *origin_cu;
12766 struct pending **origin_previous_list_in_scope;
12767
12768 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12769 if (!attr)
12770 return;
12771
12772 /* Note that following die references may follow to a die in a
12773 different cu. */
12774
12775 origin_cu = cu;
12776 origin_die = follow_die_ref (die, attr, &origin_cu);
12777
12778 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12779 symbols in. */
12780 origin_previous_list_in_scope = origin_cu->list_in_scope;
12781 origin_cu->list_in_scope = cu->list_in_scope;
12782
12783 if (die->tag != origin_die->tag
12784 && !(die->tag == DW_TAG_inlined_subroutine
12785 && origin_die->tag == DW_TAG_subprogram))
12786 complaint (_("DIE %s and its abstract origin %s have different tags"),
12787 sect_offset_str (die->sect_off),
12788 sect_offset_str (origin_die->sect_off));
12789
12790 std::vector<sect_offset> offsets;
12791
12792 for (child_die = die->child;
12793 child_die && child_die->tag;
12794 child_die = child_die->sibling)
12795 {
12796 struct die_info *child_origin_die;
12797 struct dwarf2_cu *child_origin_cu;
12798
12799 /* We are trying to process concrete instance entries:
12800 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12801 it's not relevant to our analysis here. i.e. detecting DIEs that are
12802 present in the abstract instance but not referenced in the concrete
12803 one. */
12804 if (child_die->tag == DW_TAG_call_site
12805 || child_die->tag == DW_TAG_GNU_call_site)
12806 continue;
12807
12808 /* For each CHILD_DIE, find the corresponding child of
12809 ORIGIN_DIE. If there is more than one layer of
12810 DW_AT_abstract_origin, follow them all; there shouldn't be,
12811 but GCC versions at least through 4.4 generate this (GCC PR
12812 40573). */
12813 child_origin_die = child_die;
12814 child_origin_cu = cu;
12815 while (1)
12816 {
12817 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12818 child_origin_cu);
12819 if (attr == NULL)
12820 break;
12821 child_origin_die = follow_die_ref (child_origin_die, attr,
12822 &child_origin_cu);
12823 }
12824
12825 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12826 counterpart may exist. */
12827 if (child_origin_die != child_die)
12828 {
12829 if (child_die->tag != child_origin_die->tag
12830 && !(child_die->tag == DW_TAG_inlined_subroutine
12831 && child_origin_die->tag == DW_TAG_subprogram))
12832 complaint (_("Child DIE %s and its abstract origin %s have "
12833 "different tags"),
12834 sect_offset_str (child_die->sect_off),
12835 sect_offset_str (child_origin_die->sect_off));
12836 if (child_origin_die->parent != origin_die)
12837 complaint (_("Child DIE %s and its abstract origin %s have "
12838 "different parents"),
12839 sect_offset_str (child_die->sect_off),
12840 sect_offset_str (child_origin_die->sect_off));
12841 else
12842 offsets.push_back (child_origin_die->sect_off);
12843 }
12844 }
12845 std::sort (offsets.begin (), offsets.end ());
12846 sect_offset *offsets_end = offsets.data () + offsets.size ();
12847 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12848 if (offsetp[-1] == *offsetp)
12849 complaint (_("Multiple children of DIE %s refer "
12850 "to DIE %s as their abstract origin"),
12851 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12852
12853 offsetp = offsets.data ();
12854 origin_child_die = origin_die->child;
12855 while (origin_child_die && origin_child_die->tag)
12856 {
12857 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12858 while (offsetp < offsets_end
12859 && *offsetp < origin_child_die->sect_off)
12860 offsetp++;
12861 if (offsetp >= offsets_end
12862 || *offsetp > origin_child_die->sect_off)
12863 {
12864 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12865 Check whether we're already processing ORIGIN_CHILD_DIE.
12866 This can happen with mutually referenced abstract_origins.
12867 PR 16581. */
12868 if (!origin_child_die->in_process)
12869 process_die (origin_child_die, origin_cu);
12870 }
12871 origin_child_die = origin_child_die->sibling;
12872 }
12873 origin_cu->list_in_scope = origin_previous_list_in_scope;
12874
12875 if (cu != origin_cu)
12876 compute_delayed_physnames (origin_cu);
12877 }
12878
12879 static void
12880 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12881 {
12882 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12883 struct gdbarch *gdbarch = objfile->arch ();
12884 struct context_stack *newobj;
12885 CORE_ADDR lowpc;
12886 CORE_ADDR highpc;
12887 struct die_info *child_die;
12888 struct attribute *attr, *call_line, *call_file;
12889 const char *name;
12890 CORE_ADDR baseaddr;
12891 struct block *block;
12892 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12893 std::vector<struct symbol *> template_args;
12894 struct template_symbol *templ_func = NULL;
12895
12896 if (inlined_func)
12897 {
12898 /* If we do not have call site information, we can't show the
12899 caller of this inlined function. That's too confusing, so
12900 only use the scope for local variables. */
12901 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12902 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12903 if (call_line == NULL || call_file == NULL)
12904 {
12905 read_lexical_block_scope (die, cu);
12906 return;
12907 }
12908 }
12909
12910 baseaddr = objfile->text_section_offset ();
12911
12912 name = dwarf2_name (die, cu);
12913
12914 /* Ignore functions with missing or empty names. These are actually
12915 illegal according to the DWARF standard. */
12916 if (name == NULL)
12917 {
12918 complaint (_("missing name for subprogram DIE at %s"),
12919 sect_offset_str (die->sect_off));
12920 return;
12921 }
12922
12923 /* Ignore functions with missing or invalid low and high pc attributes. */
12924 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12925 <= PC_BOUNDS_INVALID)
12926 {
12927 attr = dwarf2_attr (die, DW_AT_external, cu);
12928 if (!attr || !DW_UNSND (attr))
12929 complaint (_("cannot get low and high bounds "
12930 "for subprogram DIE at %s"),
12931 sect_offset_str (die->sect_off));
12932 return;
12933 }
12934
12935 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12936 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12937
12938 /* If we have any template arguments, then we must allocate a
12939 different sort of symbol. */
12940 for (child_die = die->child; child_die; child_die = child_die->sibling)
12941 {
12942 if (child_die->tag == DW_TAG_template_type_param
12943 || child_die->tag == DW_TAG_template_value_param)
12944 {
12945 templ_func = allocate_template_symbol (objfile);
12946 templ_func->subclass = SYMBOL_TEMPLATE;
12947 break;
12948 }
12949 }
12950
12951 newobj = cu->get_builder ()->push_context (0, lowpc);
12952 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12953 (struct symbol *) templ_func);
12954
12955 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12956 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12957 cu->language);
12958
12959 /* If there is a location expression for DW_AT_frame_base, record
12960 it. */
12961 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12962 if (attr != nullptr)
12963 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12964
12965 /* If there is a location for the static link, record it. */
12966 newobj->static_link = NULL;
12967 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12968 if (attr != nullptr)
12969 {
12970 newobj->static_link
12971 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12972 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12973 cu->per_cu->addr_type ());
12974 }
12975
12976 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12977
12978 if (die->child != NULL)
12979 {
12980 child_die = die->child;
12981 while (child_die && child_die->tag)
12982 {
12983 if (child_die->tag == DW_TAG_template_type_param
12984 || child_die->tag == DW_TAG_template_value_param)
12985 {
12986 struct symbol *arg = new_symbol (child_die, NULL, cu);
12987
12988 if (arg != NULL)
12989 template_args.push_back (arg);
12990 }
12991 else
12992 process_die (child_die, cu);
12993 child_die = child_die->sibling;
12994 }
12995 }
12996
12997 inherit_abstract_dies (die, cu);
12998
12999 /* If we have a DW_AT_specification, we might need to import using
13000 directives from the context of the specification DIE. See the
13001 comment in determine_prefix. */
13002 if (cu->language == language_cplus
13003 && dwarf2_attr (die, DW_AT_specification, cu))
13004 {
13005 struct dwarf2_cu *spec_cu = cu;
13006 struct die_info *spec_die = die_specification (die, &spec_cu);
13007
13008 while (spec_die)
13009 {
13010 child_die = spec_die->child;
13011 while (child_die && child_die->tag)
13012 {
13013 if (child_die->tag == DW_TAG_imported_module)
13014 process_die (child_die, spec_cu);
13015 child_die = child_die->sibling;
13016 }
13017
13018 /* In some cases, GCC generates specification DIEs that
13019 themselves contain DW_AT_specification attributes. */
13020 spec_die = die_specification (spec_die, &spec_cu);
13021 }
13022 }
13023
13024 struct context_stack cstk = cu->get_builder ()->pop_context ();
13025 /* Make a block for the local symbols within. */
13026 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13027 cstk.static_link, lowpc, highpc);
13028
13029 /* For C++, set the block's scope. */
13030 if ((cu->language == language_cplus
13031 || cu->language == language_fortran
13032 || cu->language == language_d
13033 || cu->language == language_rust)
13034 && cu->processing_has_namespace_info)
13035 block_set_scope (block, determine_prefix (die, cu),
13036 &objfile->objfile_obstack);
13037
13038 /* If we have address ranges, record them. */
13039 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13040
13041 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13042
13043 /* Attach template arguments to function. */
13044 if (!template_args.empty ())
13045 {
13046 gdb_assert (templ_func != NULL);
13047
13048 templ_func->n_template_arguments = template_args.size ();
13049 templ_func->template_arguments
13050 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13051 templ_func->n_template_arguments);
13052 memcpy (templ_func->template_arguments,
13053 template_args.data (),
13054 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13055
13056 /* Make sure that the symtab is set on the new symbols. Even
13057 though they don't appear in this symtab directly, other parts
13058 of gdb assume that symbols do, and this is reasonably
13059 true. */
13060 for (symbol *sym : template_args)
13061 symbol_set_symtab (sym, symbol_symtab (templ_func));
13062 }
13063
13064 /* In C++, we can have functions nested inside functions (e.g., when
13065 a function declares a class that has methods). This means that
13066 when we finish processing a function scope, we may need to go
13067 back to building a containing block's symbol lists. */
13068 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13069 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13070
13071 /* If we've finished processing a top-level function, subsequent
13072 symbols go in the file symbol list. */
13073 if (cu->get_builder ()->outermost_context_p ())
13074 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13075 }
13076
13077 /* Process all the DIES contained within a lexical block scope. Start
13078 a new scope, process the dies, and then close the scope. */
13079
13080 static void
13081 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13082 {
13083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13084 struct gdbarch *gdbarch = objfile->arch ();
13085 CORE_ADDR lowpc, highpc;
13086 struct die_info *child_die;
13087 CORE_ADDR baseaddr;
13088
13089 baseaddr = objfile->text_section_offset ();
13090
13091 /* Ignore blocks with missing or invalid low and high pc attributes. */
13092 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13093 as multiple lexical blocks? Handling children in a sane way would
13094 be nasty. Might be easier to properly extend generic blocks to
13095 describe ranges. */
13096 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13097 {
13098 case PC_BOUNDS_NOT_PRESENT:
13099 /* DW_TAG_lexical_block has no attributes, process its children as if
13100 there was no wrapping by that DW_TAG_lexical_block.
13101 GCC does no longer produces such DWARF since GCC r224161. */
13102 for (child_die = die->child;
13103 child_die != NULL && child_die->tag;
13104 child_die = child_die->sibling)
13105 {
13106 /* We might already be processing this DIE. This can happen
13107 in an unusual circumstance -- where a subroutine A
13108 appears lexically in another subroutine B, but A actually
13109 inlines B. The recursion is broken here, rather than in
13110 inherit_abstract_dies, because it seems better to simply
13111 drop concrete children here. */
13112 if (!child_die->in_process)
13113 process_die (child_die, cu);
13114 }
13115 return;
13116 case PC_BOUNDS_INVALID:
13117 return;
13118 }
13119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13120 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13121
13122 cu->get_builder ()->push_context (0, lowpc);
13123 if (die->child != NULL)
13124 {
13125 child_die = die->child;
13126 while (child_die && child_die->tag)
13127 {
13128 process_die (child_die, cu);
13129 child_die = child_die->sibling;
13130 }
13131 }
13132 inherit_abstract_dies (die, cu);
13133 struct context_stack cstk = cu->get_builder ()->pop_context ();
13134
13135 if (*cu->get_builder ()->get_local_symbols () != NULL
13136 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13137 {
13138 struct block *block
13139 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13140 cstk.start_addr, highpc);
13141
13142 /* Note that recording ranges after traversing children, as we
13143 do here, means that recording a parent's ranges entails
13144 walking across all its children's ranges as they appear in
13145 the address map, which is quadratic behavior.
13146
13147 It would be nicer to record the parent's ranges before
13148 traversing its children, simply overriding whatever you find
13149 there. But since we don't even decide whether to create a
13150 block until after we've traversed its children, that's hard
13151 to do. */
13152 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13153 }
13154 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13155 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13156 }
13157
13158 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13159
13160 static void
13161 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13162 {
13163 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13164 struct gdbarch *gdbarch = objfile->arch ();
13165 CORE_ADDR pc, baseaddr;
13166 struct attribute *attr;
13167 struct call_site *call_site, call_site_local;
13168 void **slot;
13169 int nparams;
13170 struct die_info *child_die;
13171
13172 baseaddr = objfile->text_section_offset ();
13173
13174 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13175 if (attr == NULL)
13176 {
13177 /* This was a pre-DWARF-5 GNU extension alias
13178 for DW_AT_call_return_pc. */
13179 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13180 }
13181 if (!attr)
13182 {
13183 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13184 "DIE %s [in module %s]"),
13185 sect_offset_str (die->sect_off), objfile_name (objfile));
13186 return;
13187 }
13188 pc = attr->value_as_address () + baseaddr;
13189 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13190
13191 if (cu->call_site_htab == NULL)
13192 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13193 NULL, &objfile->objfile_obstack,
13194 hashtab_obstack_allocate, NULL);
13195 call_site_local.pc = pc;
13196 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13197 if (*slot != NULL)
13198 {
13199 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13200 "DIE %s [in module %s]"),
13201 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13202 objfile_name (objfile));
13203 return;
13204 }
13205
13206 /* Count parameters at the caller. */
13207
13208 nparams = 0;
13209 for (child_die = die->child; child_die && child_die->tag;
13210 child_die = child_die->sibling)
13211 {
13212 if (child_die->tag != DW_TAG_call_site_parameter
13213 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13214 {
13215 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13216 "DW_TAG_call_site child DIE %s [in module %s]"),
13217 child_die->tag, sect_offset_str (child_die->sect_off),
13218 objfile_name (objfile));
13219 continue;
13220 }
13221
13222 nparams++;
13223 }
13224
13225 call_site
13226 = ((struct call_site *)
13227 obstack_alloc (&objfile->objfile_obstack,
13228 sizeof (*call_site)
13229 + (sizeof (*call_site->parameter) * (nparams - 1))));
13230 *slot = call_site;
13231 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13232 call_site->pc = pc;
13233
13234 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13235 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13236 {
13237 struct die_info *func_die;
13238
13239 /* Skip also over DW_TAG_inlined_subroutine. */
13240 for (func_die = die->parent;
13241 func_die && func_die->tag != DW_TAG_subprogram
13242 && func_die->tag != DW_TAG_subroutine_type;
13243 func_die = func_die->parent);
13244
13245 /* DW_AT_call_all_calls is a superset
13246 of DW_AT_call_all_tail_calls. */
13247 if (func_die
13248 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13249 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13250 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13251 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13252 {
13253 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13254 not complete. But keep CALL_SITE for look ups via call_site_htab,
13255 both the initial caller containing the real return address PC and
13256 the final callee containing the current PC of a chain of tail
13257 calls do not need to have the tail call list complete. But any
13258 function candidate for a virtual tail call frame searched via
13259 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13260 determined unambiguously. */
13261 }
13262 else
13263 {
13264 struct type *func_type = NULL;
13265
13266 if (func_die)
13267 func_type = get_die_type (func_die, cu);
13268 if (func_type != NULL)
13269 {
13270 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13271
13272 /* Enlist this call site to the function. */
13273 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13274 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13275 }
13276 else
13277 complaint (_("Cannot find function owning DW_TAG_call_site "
13278 "DIE %s [in module %s]"),
13279 sect_offset_str (die->sect_off), objfile_name (objfile));
13280 }
13281 }
13282
13283 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13284 if (attr == NULL)
13285 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13286 if (attr == NULL)
13287 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13288 if (attr == NULL)
13289 {
13290 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13291 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13292 }
13293 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13294 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13295 /* Keep NULL DWARF_BLOCK. */;
13296 else if (attr->form_is_block ())
13297 {
13298 struct dwarf2_locexpr_baton *dlbaton;
13299
13300 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13301 dlbaton->data = DW_BLOCK (attr)->data;
13302 dlbaton->size = DW_BLOCK (attr)->size;
13303 dlbaton->per_cu = cu->per_cu;
13304
13305 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13306 }
13307 else if (attr->form_is_ref ())
13308 {
13309 struct dwarf2_cu *target_cu = cu;
13310 struct die_info *target_die;
13311
13312 target_die = follow_die_ref (die, attr, &target_cu);
13313 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13314 if (die_is_declaration (target_die, target_cu))
13315 {
13316 const char *target_physname;
13317
13318 /* Prefer the mangled name; otherwise compute the demangled one. */
13319 target_physname = dw2_linkage_name (target_die, target_cu);
13320 if (target_physname == NULL)
13321 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13322 if (target_physname == NULL)
13323 complaint (_("DW_AT_call_target target DIE has invalid "
13324 "physname, for referencing DIE %s [in module %s]"),
13325 sect_offset_str (die->sect_off), objfile_name (objfile));
13326 else
13327 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13328 }
13329 else
13330 {
13331 CORE_ADDR lowpc;
13332
13333 /* DW_AT_entry_pc should be preferred. */
13334 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13335 <= PC_BOUNDS_INVALID)
13336 complaint (_("DW_AT_call_target target DIE has invalid "
13337 "low pc, for referencing DIE %s [in module %s]"),
13338 sect_offset_str (die->sect_off), objfile_name (objfile));
13339 else
13340 {
13341 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13342 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13343 }
13344 }
13345 }
13346 else
13347 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13348 "block nor reference, for DIE %s [in module %s]"),
13349 sect_offset_str (die->sect_off), objfile_name (objfile));
13350
13351 call_site->per_cu = cu->per_cu;
13352
13353 for (child_die = die->child;
13354 child_die && child_die->tag;
13355 child_die = child_die->sibling)
13356 {
13357 struct call_site_parameter *parameter;
13358 struct attribute *loc, *origin;
13359
13360 if (child_die->tag != DW_TAG_call_site_parameter
13361 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13362 {
13363 /* Already printed the complaint above. */
13364 continue;
13365 }
13366
13367 gdb_assert (call_site->parameter_count < nparams);
13368 parameter = &call_site->parameter[call_site->parameter_count];
13369
13370 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13371 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13372 register is contained in DW_AT_call_value. */
13373
13374 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13375 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13376 if (origin == NULL)
13377 {
13378 /* This was a pre-DWARF-5 GNU extension alias
13379 for DW_AT_call_parameter. */
13380 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13381 }
13382 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13383 {
13384 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13385
13386 sect_offset sect_off = origin->get_ref_die_offset ();
13387 if (!cu->header.offset_in_cu_p (sect_off))
13388 {
13389 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13390 binding can be done only inside one CU. Such referenced DIE
13391 therefore cannot be even moved to DW_TAG_partial_unit. */
13392 complaint (_("DW_AT_call_parameter offset is not in CU for "
13393 "DW_TAG_call_site child DIE %s [in module %s]"),
13394 sect_offset_str (child_die->sect_off),
13395 objfile_name (objfile));
13396 continue;
13397 }
13398 parameter->u.param_cu_off
13399 = (cu_offset) (sect_off - cu->header.sect_off);
13400 }
13401 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13402 {
13403 complaint (_("No DW_FORM_block* DW_AT_location for "
13404 "DW_TAG_call_site child DIE %s [in module %s]"),
13405 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13406 continue;
13407 }
13408 else
13409 {
13410 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13411 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13412 if (parameter->u.dwarf_reg != -1)
13413 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13414 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13415 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13416 &parameter->u.fb_offset))
13417 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13418 else
13419 {
13420 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13421 "for DW_FORM_block* DW_AT_location is supported for "
13422 "DW_TAG_call_site child DIE %s "
13423 "[in module %s]"),
13424 sect_offset_str (child_die->sect_off),
13425 objfile_name (objfile));
13426 continue;
13427 }
13428 }
13429
13430 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13431 if (attr == NULL)
13432 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13433 if (attr == NULL || !attr->form_is_block ())
13434 {
13435 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13436 "DW_TAG_call_site child DIE %s [in module %s]"),
13437 sect_offset_str (child_die->sect_off),
13438 objfile_name (objfile));
13439 continue;
13440 }
13441 parameter->value = DW_BLOCK (attr)->data;
13442 parameter->value_size = DW_BLOCK (attr)->size;
13443
13444 /* Parameters are not pre-cleared by memset above. */
13445 parameter->data_value = NULL;
13446 parameter->data_value_size = 0;
13447 call_site->parameter_count++;
13448
13449 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13450 if (attr == NULL)
13451 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13452 if (attr != nullptr)
13453 {
13454 if (!attr->form_is_block ())
13455 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13456 "DW_TAG_call_site child DIE %s [in module %s]"),
13457 sect_offset_str (child_die->sect_off),
13458 objfile_name (objfile));
13459 else
13460 {
13461 parameter->data_value = DW_BLOCK (attr)->data;
13462 parameter->data_value_size = DW_BLOCK (attr)->size;
13463 }
13464 }
13465 }
13466 }
13467
13468 /* Helper function for read_variable. If DIE represents a virtual
13469 table, then return the type of the concrete object that is
13470 associated with the virtual table. Otherwise, return NULL. */
13471
13472 static struct type *
13473 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13474 {
13475 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13476 if (attr == NULL)
13477 return NULL;
13478
13479 /* Find the type DIE. */
13480 struct die_info *type_die = NULL;
13481 struct dwarf2_cu *type_cu = cu;
13482
13483 if (attr->form_is_ref ())
13484 type_die = follow_die_ref (die, attr, &type_cu);
13485 if (type_die == NULL)
13486 return NULL;
13487
13488 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13489 return NULL;
13490 return die_containing_type (type_die, type_cu);
13491 }
13492
13493 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13494
13495 static void
13496 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13497 {
13498 struct rust_vtable_symbol *storage = NULL;
13499
13500 if (cu->language == language_rust)
13501 {
13502 struct type *containing_type = rust_containing_type (die, cu);
13503
13504 if (containing_type != NULL)
13505 {
13506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13507
13508 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13509 initialize_objfile_symbol (storage);
13510 storage->concrete_type = containing_type;
13511 storage->subclass = SYMBOL_RUST_VTABLE;
13512 }
13513 }
13514
13515 struct symbol *res = new_symbol (die, NULL, cu, storage);
13516 struct attribute *abstract_origin
13517 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13518 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13519 if (res == NULL && loc && abstract_origin)
13520 {
13521 /* We have a variable without a name, but with a location and an abstract
13522 origin. This may be a concrete instance of an abstract variable
13523 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13524 later. */
13525 struct dwarf2_cu *origin_cu = cu;
13526 struct die_info *origin_die
13527 = follow_die_ref (die, abstract_origin, &origin_cu);
13528 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13529 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13530 }
13531 }
13532
13533 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13534 reading .debug_rnglists.
13535 Callback's type should be:
13536 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13537 Return true if the attributes are present and valid, otherwise,
13538 return false. */
13539
13540 template <typename Callback>
13541 static bool
13542 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13543 Callback &&callback)
13544 {
13545 struct dwarf2_per_objfile *dwarf2_per_objfile
13546 = cu->per_cu->dwarf2_per_objfile;
13547 struct objfile *objfile = dwarf2_per_objfile->objfile;
13548 bfd *obfd = objfile->obfd;
13549 /* Base address selection entry. */
13550 gdb::optional<CORE_ADDR> base;
13551 const gdb_byte *buffer;
13552 CORE_ADDR baseaddr;
13553 bool overflow = false;
13554
13555 base = cu->base_address;
13556
13557 dwarf2_per_objfile->rnglists.read (objfile);
13558 if (offset >= dwarf2_per_objfile->rnglists.size)
13559 {
13560 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13561 offset);
13562 return false;
13563 }
13564 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13565
13566 baseaddr = objfile->text_section_offset ();
13567
13568 while (1)
13569 {
13570 /* Initialize it due to a false compiler warning. */
13571 CORE_ADDR range_beginning = 0, range_end = 0;
13572 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13573 + dwarf2_per_objfile->rnglists.size);
13574 unsigned int bytes_read;
13575
13576 if (buffer == buf_end)
13577 {
13578 overflow = true;
13579 break;
13580 }
13581 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13582 switch (rlet)
13583 {
13584 case DW_RLE_end_of_list:
13585 break;
13586 case DW_RLE_base_address:
13587 if (buffer + cu->header.addr_size > buf_end)
13588 {
13589 overflow = true;
13590 break;
13591 }
13592 base = cu->header.read_address (obfd, buffer, &bytes_read);
13593 buffer += bytes_read;
13594 break;
13595 case DW_RLE_start_length:
13596 if (buffer + cu->header.addr_size > buf_end)
13597 {
13598 overflow = true;
13599 break;
13600 }
13601 range_beginning = cu->header.read_address (obfd, buffer,
13602 &bytes_read);
13603 buffer += bytes_read;
13604 range_end = (range_beginning
13605 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13606 buffer += bytes_read;
13607 if (buffer > buf_end)
13608 {
13609 overflow = true;
13610 break;
13611 }
13612 break;
13613 case DW_RLE_offset_pair:
13614 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13615 buffer += bytes_read;
13616 if (buffer > buf_end)
13617 {
13618 overflow = true;
13619 break;
13620 }
13621 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13622 buffer += bytes_read;
13623 if (buffer > buf_end)
13624 {
13625 overflow = true;
13626 break;
13627 }
13628 break;
13629 case DW_RLE_start_end:
13630 if (buffer + 2 * cu->header.addr_size > buf_end)
13631 {
13632 overflow = true;
13633 break;
13634 }
13635 range_beginning = cu->header.read_address (obfd, buffer,
13636 &bytes_read);
13637 buffer += bytes_read;
13638 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13639 buffer += bytes_read;
13640 break;
13641 default:
13642 complaint (_("Invalid .debug_rnglists data (no base address)"));
13643 return false;
13644 }
13645 if (rlet == DW_RLE_end_of_list || overflow)
13646 break;
13647 if (rlet == DW_RLE_base_address)
13648 continue;
13649
13650 if (!base.has_value ())
13651 {
13652 /* We have no valid base address for the ranges
13653 data. */
13654 complaint (_("Invalid .debug_rnglists data (no base address)"));
13655 return false;
13656 }
13657
13658 if (range_beginning > range_end)
13659 {
13660 /* Inverted range entries are invalid. */
13661 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13662 return false;
13663 }
13664
13665 /* Empty range entries have no effect. */
13666 if (range_beginning == range_end)
13667 continue;
13668
13669 range_beginning += *base;
13670 range_end += *base;
13671
13672 /* A not-uncommon case of bad debug info.
13673 Don't pollute the addrmap with bad data. */
13674 if (range_beginning + baseaddr == 0
13675 && !dwarf2_per_objfile->has_section_at_zero)
13676 {
13677 complaint (_(".debug_rnglists entry has start address of zero"
13678 " [in module %s]"), objfile_name (objfile));
13679 continue;
13680 }
13681
13682 callback (range_beginning, range_end);
13683 }
13684
13685 if (overflow)
13686 {
13687 complaint (_("Offset %d is not terminated "
13688 "for DW_AT_ranges attribute"),
13689 offset);
13690 return false;
13691 }
13692
13693 return true;
13694 }
13695
13696 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13697 Callback's type should be:
13698 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13699 Return 1 if the attributes are present and valid, otherwise, return 0. */
13700
13701 template <typename Callback>
13702 static int
13703 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13704 Callback &&callback)
13705 {
13706 struct dwarf2_per_objfile *dwarf2_per_objfile
13707 = cu->per_cu->dwarf2_per_objfile;
13708 struct objfile *objfile = dwarf2_per_objfile->objfile;
13709 struct comp_unit_head *cu_header = &cu->header;
13710 bfd *obfd = objfile->obfd;
13711 unsigned int addr_size = cu_header->addr_size;
13712 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13713 /* Base address selection entry. */
13714 gdb::optional<CORE_ADDR> base;
13715 unsigned int dummy;
13716 const gdb_byte *buffer;
13717 CORE_ADDR baseaddr;
13718
13719 if (cu_header->version >= 5)
13720 return dwarf2_rnglists_process (offset, cu, callback);
13721
13722 base = cu->base_address;
13723
13724 dwarf2_per_objfile->ranges.read (objfile);
13725 if (offset >= dwarf2_per_objfile->ranges.size)
13726 {
13727 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13728 offset);
13729 return 0;
13730 }
13731 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13732
13733 baseaddr = objfile->text_section_offset ();
13734
13735 while (1)
13736 {
13737 CORE_ADDR range_beginning, range_end;
13738
13739 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13740 buffer += addr_size;
13741 range_end = cu->header.read_address (obfd, buffer, &dummy);
13742 buffer += addr_size;
13743 offset += 2 * addr_size;
13744
13745 /* An end of list marker is a pair of zero addresses. */
13746 if (range_beginning == 0 && range_end == 0)
13747 /* Found the end of list entry. */
13748 break;
13749
13750 /* Each base address selection entry is a pair of 2 values.
13751 The first is the largest possible address, the second is
13752 the base address. Check for a base address here. */
13753 if ((range_beginning & mask) == mask)
13754 {
13755 /* If we found the largest possible address, then we already
13756 have the base address in range_end. */
13757 base = range_end;
13758 continue;
13759 }
13760
13761 if (!base.has_value ())
13762 {
13763 /* We have no valid base address for the ranges
13764 data. */
13765 complaint (_("Invalid .debug_ranges data (no base address)"));
13766 return 0;
13767 }
13768
13769 if (range_beginning > range_end)
13770 {
13771 /* Inverted range entries are invalid. */
13772 complaint (_("Invalid .debug_ranges data (inverted range)"));
13773 return 0;
13774 }
13775
13776 /* Empty range entries have no effect. */
13777 if (range_beginning == range_end)
13778 continue;
13779
13780 range_beginning += *base;
13781 range_end += *base;
13782
13783 /* A not-uncommon case of bad debug info.
13784 Don't pollute the addrmap with bad data. */
13785 if (range_beginning + baseaddr == 0
13786 && !dwarf2_per_objfile->has_section_at_zero)
13787 {
13788 complaint (_(".debug_ranges entry has start address of zero"
13789 " [in module %s]"), objfile_name (objfile));
13790 continue;
13791 }
13792
13793 callback (range_beginning, range_end);
13794 }
13795
13796 return 1;
13797 }
13798
13799 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13800 Return 1 if the attributes are present and valid, otherwise, return 0.
13801 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13802
13803 static int
13804 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13805 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13806 dwarf2_psymtab *ranges_pst)
13807 {
13808 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13809 struct gdbarch *gdbarch = objfile->arch ();
13810 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13811 int low_set = 0;
13812 CORE_ADDR low = 0;
13813 CORE_ADDR high = 0;
13814 int retval;
13815
13816 retval = dwarf2_ranges_process (offset, cu,
13817 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13818 {
13819 if (ranges_pst != NULL)
13820 {
13821 CORE_ADDR lowpc;
13822 CORE_ADDR highpc;
13823
13824 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13825 range_beginning + baseaddr)
13826 - baseaddr);
13827 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13828 range_end + baseaddr)
13829 - baseaddr);
13830 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13831 lowpc, highpc - 1, ranges_pst);
13832 }
13833
13834 /* FIXME: This is recording everything as a low-high
13835 segment of consecutive addresses. We should have a
13836 data structure for discontiguous block ranges
13837 instead. */
13838 if (! low_set)
13839 {
13840 low = range_beginning;
13841 high = range_end;
13842 low_set = 1;
13843 }
13844 else
13845 {
13846 if (range_beginning < low)
13847 low = range_beginning;
13848 if (range_end > high)
13849 high = range_end;
13850 }
13851 });
13852 if (!retval)
13853 return 0;
13854
13855 if (! low_set)
13856 /* If the first entry is an end-of-list marker, the range
13857 describes an empty scope, i.e. no instructions. */
13858 return 0;
13859
13860 if (low_return)
13861 *low_return = low;
13862 if (high_return)
13863 *high_return = high;
13864 return 1;
13865 }
13866
13867 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13868 definition for the return value. *LOWPC and *HIGHPC are set iff
13869 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13870
13871 static enum pc_bounds_kind
13872 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13873 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13874 dwarf2_psymtab *pst)
13875 {
13876 struct dwarf2_per_objfile *dwarf2_per_objfile
13877 = cu->per_cu->dwarf2_per_objfile;
13878 struct attribute *attr;
13879 struct attribute *attr_high;
13880 CORE_ADDR low = 0;
13881 CORE_ADDR high = 0;
13882 enum pc_bounds_kind ret;
13883
13884 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13885 if (attr_high)
13886 {
13887 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13888 if (attr != nullptr)
13889 {
13890 low = attr->value_as_address ();
13891 high = attr_high->value_as_address ();
13892 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13893 high += low;
13894 }
13895 else
13896 /* Found high w/o low attribute. */
13897 return PC_BOUNDS_INVALID;
13898
13899 /* Found consecutive range of addresses. */
13900 ret = PC_BOUNDS_HIGH_LOW;
13901 }
13902 else
13903 {
13904 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13905 if (attr != NULL)
13906 {
13907 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13908 We take advantage of the fact that DW_AT_ranges does not appear
13909 in DW_TAG_compile_unit of DWO files. */
13910 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13911 unsigned int ranges_offset = (DW_UNSND (attr)
13912 + (need_ranges_base
13913 ? cu->ranges_base
13914 : 0));
13915
13916 /* Value of the DW_AT_ranges attribute is the offset in the
13917 .debug_ranges section. */
13918 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13919 return PC_BOUNDS_INVALID;
13920 /* Found discontinuous range of addresses. */
13921 ret = PC_BOUNDS_RANGES;
13922 }
13923 else
13924 return PC_BOUNDS_NOT_PRESENT;
13925 }
13926
13927 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13928 if (high <= low)
13929 return PC_BOUNDS_INVALID;
13930
13931 /* When using the GNU linker, .gnu.linkonce. sections are used to
13932 eliminate duplicate copies of functions and vtables and such.
13933 The linker will arbitrarily choose one and discard the others.
13934 The AT_*_pc values for such functions refer to local labels in
13935 these sections. If the section from that file was discarded, the
13936 labels are not in the output, so the relocs get a value of 0.
13937 If this is a discarded function, mark the pc bounds as invalid,
13938 so that GDB will ignore it. */
13939 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13940 return PC_BOUNDS_INVALID;
13941
13942 *lowpc = low;
13943 if (highpc)
13944 *highpc = high;
13945 return ret;
13946 }
13947
13948 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13949 its low and high PC addresses. Do nothing if these addresses could not
13950 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13951 and HIGHPC to the high address if greater than HIGHPC. */
13952
13953 static void
13954 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13955 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13956 struct dwarf2_cu *cu)
13957 {
13958 CORE_ADDR low, high;
13959 struct die_info *child = die->child;
13960
13961 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13962 {
13963 *lowpc = std::min (*lowpc, low);
13964 *highpc = std::max (*highpc, high);
13965 }
13966
13967 /* If the language does not allow nested subprograms (either inside
13968 subprograms or lexical blocks), we're done. */
13969 if (cu->language != language_ada)
13970 return;
13971
13972 /* Check all the children of the given DIE. If it contains nested
13973 subprograms, then check their pc bounds. Likewise, we need to
13974 check lexical blocks as well, as they may also contain subprogram
13975 definitions. */
13976 while (child && child->tag)
13977 {
13978 if (child->tag == DW_TAG_subprogram
13979 || child->tag == DW_TAG_lexical_block)
13980 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13981 child = child->sibling;
13982 }
13983 }
13984
13985 /* Get the low and high pc's represented by the scope DIE, and store
13986 them in *LOWPC and *HIGHPC. If the correct values can't be
13987 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13988
13989 static void
13990 get_scope_pc_bounds (struct die_info *die,
13991 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13992 struct dwarf2_cu *cu)
13993 {
13994 CORE_ADDR best_low = (CORE_ADDR) -1;
13995 CORE_ADDR best_high = (CORE_ADDR) 0;
13996 CORE_ADDR current_low, current_high;
13997
13998 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13999 >= PC_BOUNDS_RANGES)
14000 {
14001 best_low = current_low;
14002 best_high = current_high;
14003 }
14004 else
14005 {
14006 struct die_info *child = die->child;
14007
14008 while (child && child->tag)
14009 {
14010 switch (child->tag) {
14011 case DW_TAG_subprogram:
14012 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14013 break;
14014 case DW_TAG_namespace:
14015 case DW_TAG_module:
14016 /* FIXME: carlton/2004-01-16: Should we do this for
14017 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14018 that current GCC's always emit the DIEs corresponding
14019 to definitions of methods of classes as children of a
14020 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14021 the DIEs giving the declarations, which could be
14022 anywhere). But I don't see any reason why the
14023 standards says that they have to be there. */
14024 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14025
14026 if (current_low != ((CORE_ADDR) -1))
14027 {
14028 best_low = std::min (best_low, current_low);
14029 best_high = std::max (best_high, current_high);
14030 }
14031 break;
14032 default:
14033 /* Ignore. */
14034 break;
14035 }
14036
14037 child = child->sibling;
14038 }
14039 }
14040
14041 *lowpc = best_low;
14042 *highpc = best_high;
14043 }
14044
14045 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14046 in DIE. */
14047
14048 static void
14049 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14050 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14051 {
14052 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14053 struct gdbarch *gdbarch = objfile->arch ();
14054 struct attribute *attr;
14055 struct attribute *attr_high;
14056
14057 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14058 if (attr_high)
14059 {
14060 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14061 if (attr != nullptr)
14062 {
14063 CORE_ADDR low = attr->value_as_address ();
14064 CORE_ADDR high = attr_high->value_as_address ();
14065
14066 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14067 high += low;
14068
14069 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14070 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14071 cu->get_builder ()->record_block_range (block, low, high - 1);
14072 }
14073 }
14074
14075 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14076 if (attr != nullptr)
14077 {
14078 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14079 We take advantage of the fact that DW_AT_ranges does not appear
14080 in DW_TAG_compile_unit of DWO files. */
14081 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14082
14083 /* The value of the DW_AT_ranges attribute is the offset of the
14084 address range list in the .debug_ranges section. */
14085 unsigned long offset = (DW_UNSND (attr)
14086 + (need_ranges_base ? cu->ranges_base : 0));
14087
14088 std::vector<blockrange> blockvec;
14089 dwarf2_ranges_process (offset, cu,
14090 [&] (CORE_ADDR start, CORE_ADDR end)
14091 {
14092 start += baseaddr;
14093 end += baseaddr;
14094 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14095 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14096 cu->get_builder ()->record_block_range (block, start, end - 1);
14097 blockvec.emplace_back (start, end);
14098 });
14099
14100 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14101 }
14102 }
14103
14104 /* Check whether the producer field indicates either of GCC < 4.6, or the
14105 Intel C/C++ compiler, and cache the result in CU. */
14106
14107 static void
14108 check_producer (struct dwarf2_cu *cu)
14109 {
14110 int major, minor;
14111
14112 if (cu->producer == NULL)
14113 {
14114 /* For unknown compilers expect their behavior is DWARF version
14115 compliant.
14116
14117 GCC started to support .debug_types sections by -gdwarf-4 since
14118 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14119 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14120 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14121 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14122 }
14123 else if (producer_is_gcc (cu->producer, &major, &minor))
14124 {
14125 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14126 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14127 }
14128 else if (producer_is_icc (cu->producer, &major, &minor))
14129 {
14130 cu->producer_is_icc = true;
14131 cu->producer_is_icc_lt_14 = major < 14;
14132 }
14133 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14134 cu->producer_is_codewarrior = true;
14135 else
14136 {
14137 /* For other non-GCC compilers, expect their behavior is DWARF version
14138 compliant. */
14139 }
14140
14141 cu->checked_producer = true;
14142 }
14143
14144 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14145 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14146 during 4.6.0 experimental. */
14147
14148 static bool
14149 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14150 {
14151 if (!cu->checked_producer)
14152 check_producer (cu);
14153
14154 return cu->producer_is_gxx_lt_4_6;
14155 }
14156
14157
14158 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14159 with incorrect is_stmt attributes. */
14160
14161 static bool
14162 producer_is_codewarrior (struct dwarf2_cu *cu)
14163 {
14164 if (!cu->checked_producer)
14165 check_producer (cu);
14166
14167 return cu->producer_is_codewarrior;
14168 }
14169
14170 /* Return the default accessibility type if it is not overridden by
14171 DW_AT_accessibility. */
14172
14173 static enum dwarf_access_attribute
14174 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14175 {
14176 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14177 {
14178 /* The default DWARF 2 accessibility for members is public, the default
14179 accessibility for inheritance is private. */
14180
14181 if (die->tag != DW_TAG_inheritance)
14182 return DW_ACCESS_public;
14183 else
14184 return DW_ACCESS_private;
14185 }
14186 else
14187 {
14188 /* DWARF 3+ defines the default accessibility a different way. The same
14189 rules apply now for DW_TAG_inheritance as for the members and it only
14190 depends on the container kind. */
14191
14192 if (die->parent->tag == DW_TAG_class_type)
14193 return DW_ACCESS_private;
14194 else
14195 return DW_ACCESS_public;
14196 }
14197 }
14198
14199 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14200 offset. If the attribute was not found return 0, otherwise return
14201 1. If it was found but could not properly be handled, set *OFFSET
14202 to 0. */
14203
14204 static int
14205 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14206 LONGEST *offset)
14207 {
14208 struct attribute *attr;
14209
14210 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14211 if (attr != NULL)
14212 {
14213 *offset = 0;
14214
14215 /* Note that we do not check for a section offset first here.
14216 This is because DW_AT_data_member_location is new in DWARF 4,
14217 so if we see it, we can assume that a constant form is really
14218 a constant and not a section offset. */
14219 if (attr->form_is_constant ())
14220 *offset = attr->constant_value (0);
14221 else if (attr->form_is_section_offset ())
14222 dwarf2_complex_location_expr_complaint ();
14223 else if (attr->form_is_block ())
14224 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14225 else
14226 dwarf2_complex_location_expr_complaint ();
14227
14228 return 1;
14229 }
14230
14231 return 0;
14232 }
14233
14234 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14235
14236 static void
14237 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14238 struct field *field)
14239 {
14240 struct attribute *attr;
14241
14242 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14243 if (attr != NULL)
14244 {
14245 if (attr->form_is_constant ())
14246 {
14247 LONGEST offset = attr->constant_value (0);
14248 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14249 }
14250 else if (attr->form_is_section_offset ())
14251 dwarf2_complex_location_expr_complaint ();
14252 else if (attr->form_is_block ())
14253 {
14254 bool handled;
14255 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14256 if (handled)
14257 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14258 else
14259 {
14260 struct objfile *objfile
14261 = cu->per_cu->dwarf2_per_objfile->objfile;
14262 struct dwarf2_locexpr_baton *dlbaton
14263 = XOBNEW (&objfile->objfile_obstack,
14264 struct dwarf2_locexpr_baton);
14265 dlbaton->data = DW_BLOCK (attr)->data;
14266 dlbaton->size = DW_BLOCK (attr)->size;
14267 /* When using this baton, we want to compute the address
14268 of the field, not the value. This is why
14269 is_reference is set to false here. */
14270 dlbaton->is_reference = false;
14271 dlbaton->per_cu = cu->per_cu;
14272
14273 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14274 }
14275 }
14276 else
14277 dwarf2_complex_location_expr_complaint ();
14278 }
14279 }
14280
14281 /* Add an aggregate field to the field list. */
14282
14283 static void
14284 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14285 struct dwarf2_cu *cu)
14286 {
14287 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14288 struct gdbarch *gdbarch = objfile->arch ();
14289 struct nextfield *new_field;
14290 struct attribute *attr;
14291 struct field *fp;
14292 const char *fieldname = "";
14293
14294 if (die->tag == DW_TAG_inheritance)
14295 {
14296 fip->baseclasses.emplace_back ();
14297 new_field = &fip->baseclasses.back ();
14298 }
14299 else
14300 {
14301 fip->fields.emplace_back ();
14302 new_field = &fip->fields.back ();
14303 }
14304
14305 new_field->offset = die->sect_off;
14306
14307 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14308 if (attr != nullptr)
14309 new_field->accessibility = DW_UNSND (attr);
14310 else
14311 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14312 if (new_field->accessibility != DW_ACCESS_public)
14313 fip->non_public_fields = 1;
14314
14315 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14316 if (attr != nullptr)
14317 new_field->virtuality = DW_UNSND (attr);
14318 else
14319 new_field->virtuality = DW_VIRTUALITY_none;
14320
14321 fp = &new_field->field;
14322
14323 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14324 {
14325 /* Data member other than a C++ static data member. */
14326
14327 /* Get type of field. */
14328 fp->type = die_type (die, cu);
14329
14330 SET_FIELD_BITPOS (*fp, 0);
14331
14332 /* Get bit size of field (zero if none). */
14333 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14334 if (attr != nullptr)
14335 {
14336 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14337 }
14338 else
14339 {
14340 FIELD_BITSIZE (*fp) = 0;
14341 }
14342
14343 /* Get bit offset of field. */
14344 handle_data_member_location (die, cu, fp);
14345 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14346 if (attr != nullptr)
14347 {
14348 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14349 {
14350 /* For big endian bits, the DW_AT_bit_offset gives the
14351 additional bit offset from the MSB of the containing
14352 anonymous object to the MSB of the field. We don't
14353 have to do anything special since we don't need to
14354 know the size of the anonymous object. */
14355 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14356 }
14357 else
14358 {
14359 /* For little endian bits, compute the bit offset to the
14360 MSB of the anonymous object, subtract off the number of
14361 bits from the MSB of the field to the MSB of the
14362 object, and then subtract off the number of bits of
14363 the field itself. The result is the bit offset of
14364 the LSB of the field. */
14365 int anonymous_size;
14366 int bit_offset = DW_UNSND (attr);
14367
14368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14369 if (attr != nullptr)
14370 {
14371 /* The size of the anonymous object containing
14372 the bit field is explicit, so use the
14373 indicated size (in bytes). */
14374 anonymous_size = DW_UNSND (attr);
14375 }
14376 else
14377 {
14378 /* The size of the anonymous object containing
14379 the bit field must be inferred from the type
14380 attribute of the data member containing the
14381 bit field. */
14382 anonymous_size = TYPE_LENGTH (fp->type);
14383 }
14384 SET_FIELD_BITPOS (*fp,
14385 (FIELD_BITPOS (*fp)
14386 + anonymous_size * bits_per_byte
14387 - bit_offset - FIELD_BITSIZE (*fp)));
14388 }
14389 }
14390 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14391 if (attr != NULL)
14392 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14393 + attr->constant_value (0)));
14394
14395 /* Get name of field. */
14396 fieldname = dwarf2_name (die, cu);
14397 if (fieldname == NULL)
14398 fieldname = "";
14399
14400 /* The name is already allocated along with this objfile, so we don't
14401 need to duplicate it for the type. */
14402 fp->name = fieldname;
14403
14404 /* Change accessibility for artificial fields (e.g. virtual table
14405 pointer or virtual base class pointer) to private. */
14406 if (dwarf2_attr (die, DW_AT_artificial, cu))
14407 {
14408 FIELD_ARTIFICIAL (*fp) = 1;
14409 new_field->accessibility = DW_ACCESS_private;
14410 fip->non_public_fields = 1;
14411 }
14412 }
14413 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14414 {
14415 /* C++ static member. */
14416
14417 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14418 is a declaration, but all versions of G++ as of this writing
14419 (so through at least 3.2.1) incorrectly generate
14420 DW_TAG_variable tags. */
14421
14422 const char *physname;
14423
14424 /* Get name of field. */
14425 fieldname = dwarf2_name (die, cu);
14426 if (fieldname == NULL)
14427 return;
14428
14429 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14430 if (attr
14431 /* Only create a symbol if this is an external value.
14432 new_symbol checks this and puts the value in the global symbol
14433 table, which we want. If it is not external, new_symbol
14434 will try to put the value in cu->list_in_scope which is wrong. */
14435 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14436 {
14437 /* A static const member, not much different than an enum as far as
14438 we're concerned, except that we can support more types. */
14439 new_symbol (die, NULL, cu);
14440 }
14441
14442 /* Get physical name. */
14443 physname = dwarf2_physname (fieldname, die, cu);
14444
14445 /* The name is already allocated along with this objfile, so we don't
14446 need to duplicate it for the type. */
14447 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14448 FIELD_TYPE (*fp) = die_type (die, cu);
14449 FIELD_NAME (*fp) = fieldname;
14450 }
14451 else if (die->tag == DW_TAG_inheritance)
14452 {
14453 /* C++ base class field. */
14454 handle_data_member_location (die, cu, fp);
14455 FIELD_BITSIZE (*fp) = 0;
14456 FIELD_TYPE (*fp) = die_type (die, cu);
14457 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14458 }
14459 else
14460 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14461 }
14462
14463 /* Can the type given by DIE define another type? */
14464
14465 static bool
14466 type_can_define_types (const struct die_info *die)
14467 {
14468 switch (die->tag)
14469 {
14470 case DW_TAG_typedef:
14471 case DW_TAG_class_type:
14472 case DW_TAG_structure_type:
14473 case DW_TAG_union_type:
14474 case DW_TAG_enumeration_type:
14475 return true;
14476
14477 default:
14478 return false;
14479 }
14480 }
14481
14482 /* Add a type definition defined in the scope of the FIP's class. */
14483
14484 static void
14485 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14486 struct dwarf2_cu *cu)
14487 {
14488 struct decl_field fp;
14489 memset (&fp, 0, sizeof (fp));
14490
14491 gdb_assert (type_can_define_types (die));
14492
14493 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14494 fp.name = dwarf2_name (die, cu);
14495 fp.type = read_type_die (die, cu);
14496
14497 /* Save accessibility. */
14498 enum dwarf_access_attribute accessibility;
14499 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14500 if (attr != NULL)
14501 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14502 else
14503 accessibility = dwarf2_default_access_attribute (die, cu);
14504 switch (accessibility)
14505 {
14506 case DW_ACCESS_public:
14507 /* The assumed value if neither private nor protected. */
14508 break;
14509 case DW_ACCESS_private:
14510 fp.is_private = 1;
14511 break;
14512 case DW_ACCESS_protected:
14513 fp.is_protected = 1;
14514 break;
14515 default:
14516 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14517 }
14518
14519 if (die->tag == DW_TAG_typedef)
14520 fip->typedef_field_list.push_back (fp);
14521 else
14522 fip->nested_types_list.push_back (fp);
14523 }
14524
14525 /* A convenience typedef that's used when finding the discriminant
14526 field for a variant part. */
14527 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14528 offset_map_type;
14529
14530 /* Compute the discriminant range for a given variant. OBSTACK is
14531 where the results will be stored. VARIANT is the variant to
14532 process. IS_UNSIGNED indicates whether the discriminant is signed
14533 or unsigned. */
14534
14535 static const gdb::array_view<discriminant_range>
14536 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14537 bool is_unsigned)
14538 {
14539 std::vector<discriminant_range> ranges;
14540
14541 if (variant.default_branch)
14542 return {};
14543
14544 if (variant.discr_list_data == nullptr)
14545 {
14546 discriminant_range r
14547 = {variant.discriminant_value, variant.discriminant_value};
14548 ranges.push_back (r);
14549 }
14550 else
14551 {
14552 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14553 variant.discr_list_data->size);
14554 while (!data.empty ())
14555 {
14556 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14557 {
14558 complaint (_("invalid discriminant marker: %d"), data[0]);
14559 break;
14560 }
14561 bool is_range = data[0] == DW_DSC_range;
14562 data = data.slice (1);
14563
14564 ULONGEST low, high;
14565 unsigned int bytes_read;
14566
14567 if (data.empty ())
14568 {
14569 complaint (_("DW_AT_discr_list missing low value"));
14570 break;
14571 }
14572 if (is_unsigned)
14573 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14574 else
14575 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14576 &bytes_read);
14577 data = data.slice (bytes_read);
14578
14579 if (is_range)
14580 {
14581 if (data.empty ())
14582 {
14583 complaint (_("DW_AT_discr_list missing high value"));
14584 break;
14585 }
14586 if (is_unsigned)
14587 high = read_unsigned_leb128 (nullptr, data.data (),
14588 &bytes_read);
14589 else
14590 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14591 &bytes_read);
14592 data = data.slice (bytes_read);
14593 }
14594 else
14595 high = low;
14596
14597 ranges.push_back ({ low, high });
14598 }
14599 }
14600
14601 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14602 ranges.size ());
14603 std::copy (ranges.begin (), ranges.end (), result);
14604 return gdb::array_view<discriminant_range> (result, ranges.size ());
14605 }
14606
14607 static const gdb::array_view<variant_part> create_variant_parts
14608 (struct obstack *obstack,
14609 const offset_map_type &offset_map,
14610 struct field_info *fi,
14611 const std::vector<variant_part_builder> &variant_parts);
14612
14613 /* Fill in a "struct variant" for a given variant field. RESULT is
14614 the variant to fill in. OBSTACK is where any needed allocations
14615 will be done. OFFSET_MAP holds the mapping from section offsets to
14616 fields for the type. FI describes the fields of the type we're
14617 processing. FIELD is the variant field we're converting. */
14618
14619 static void
14620 create_one_variant (variant &result, struct obstack *obstack,
14621 const offset_map_type &offset_map,
14622 struct field_info *fi, const variant_field &field)
14623 {
14624 result.discriminants = convert_variant_range (obstack, field, false);
14625 result.first_field = field.first_field + fi->baseclasses.size ();
14626 result.last_field = field.last_field + fi->baseclasses.size ();
14627 result.parts = create_variant_parts (obstack, offset_map, fi,
14628 field.variant_parts);
14629 }
14630
14631 /* Fill in a "struct variant_part" for a given variant part. RESULT
14632 is the variant part to fill in. OBSTACK is where any needed
14633 allocations will be done. OFFSET_MAP holds the mapping from
14634 section offsets to fields for the type. FI describes the fields of
14635 the type we're processing. BUILDER is the variant part to be
14636 converted. */
14637
14638 static void
14639 create_one_variant_part (variant_part &result,
14640 struct obstack *obstack,
14641 const offset_map_type &offset_map,
14642 struct field_info *fi,
14643 const variant_part_builder &builder)
14644 {
14645 auto iter = offset_map.find (builder.discriminant_offset);
14646 if (iter == offset_map.end ())
14647 {
14648 result.discriminant_index = -1;
14649 /* Doesn't matter. */
14650 result.is_unsigned = false;
14651 }
14652 else
14653 {
14654 result.discriminant_index = iter->second;
14655 result.is_unsigned
14656 = TYPE_UNSIGNED (FIELD_TYPE
14657 (fi->fields[result.discriminant_index].field));
14658 }
14659
14660 size_t n = builder.variants.size ();
14661 variant *output = new (obstack) variant[n];
14662 for (size_t i = 0; i < n; ++i)
14663 create_one_variant (output[i], obstack, offset_map, fi,
14664 builder.variants[i]);
14665
14666 result.variants = gdb::array_view<variant> (output, n);
14667 }
14668
14669 /* Create a vector of variant parts that can be attached to a type.
14670 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14671 holds the mapping from section offsets to fields for the type. FI
14672 describes the fields of the type we're processing. VARIANT_PARTS
14673 is the vector to convert. */
14674
14675 static const gdb::array_view<variant_part>
14676 create_variant_parts (struct obstack *obstack,
14677 const offset_map_type &offset_map,
14678 struct field_info *fi,
14679 const std::vector<variant_part_builder> &variant_parts)
14680 {
14681 if (variant_parts.empty ())
14682 return {};
14683
14684 size_t n = variant_parts.size ();
14685 variant_part *result = new (obstack) variant_part[n];
14686 for (size_t i = 0; i < n; ++i)
14687 create_one_variant_part (result[i], obstack, offset_map, fi,
14688 variant_parts[i]);
14689
14690 return gdb::array_view<variant_part> (result, n);
14691 }
14692
14693 /* Compute the variant part vector for FIP, attaching it to TYPE when
14694 done. */
14695
14696 static void
14697 add_variant_property (struct field_info *fip, struct type *type,
14698 struct dwarf2_cu *cu)
14699 {
14700 /* Map section offsets of fields to their field index. Note the
14701 field index here does not take the number of baseclasses into
14702 account. */
14703 offset_map_type offset_map;
14704 for (int i = 0; i < fip->fields.size (); ++i)
14705 offset_map[fip->fields[i].offset] = i;
14706
14707 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14708 gdb::array_view<variant_part> parts
14709 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14710 fip->variant_parts);
14711
14712 struct dynamic_prop prop;
14713 prop.kind = PROP_VARIANT_PARTS;
14714 prop.data.variant_parts
14715 = ((gdb::array_view<variant_part> *)
14716 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14717
14718 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14719 }
14720
14721 /* Create the vector of fields, and attach it to the type. */
14722
14723 static void
14724 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14725 struct dwarf2_cu *cu)
14726 {
14727 int nfields = fip->nfields ();
14728
14729 /* Record the field count, allocate space for the array of fields,
14730 and create blank accessibility bitfields if necessary. */
14731 TYPE_NFIELDS (type) = nfields;
14732 TYPE_FIELDS (type) = (struct field *)
14733 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14734
14735 if (fip->non_public_fields && cu->language != language_ada)
14736 {
14737 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14738
14739 TYPE_FIELD_PRIVATE_BITS (type) =
14740 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14741 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14742
14743 TYPE_FIELD_PROTECTED_BITS (type) =
14744 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14745 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14746
14747 TYPE_FIELD_IGNORE_BITS (type) =
14748 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14749 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14750 }
14751
14752 /* If the type has baseclasses, allocate and clear a bit vector for
14753 TYPE_FIELD_VIRTUAL_BITS. */
14754 if (!fip->baseclasses.empty () && cu->language != language_ada)
14755 {
14756 int num_bytes = B_BYTES (fip->baseclasses.size ());
14757 unsigned char *pointer;
14758
14759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14760 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14761 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14762 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14763 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14764 }
14765
14766 if (!fip->variant_parts.empty ())
14767 add_variant_property (fip, type, cu);
14768
14769 /* Copy the saved-up fields into the field vector. */
14770 for (int i = 0; i < nfields; ++i)
14771 {
14772 struct nextfield &field
14773 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14774 : fip->fields[i - fip->baseclasses.size ()]);
14775
14776 TYPE_FIELD (type, i) = field.field;
14777 switch (field.accessibility)
14778 {
14779 case DW_ACCESS_private:
14780 if (cu->language != language_ada)
14781 SET_TYPE_FIELD_PRIVATE (type, i);
14782 break;
14783
14784 case DW_ACCESS_protected:
14785 if (cu->language != language_ada)
14786 SET_TYPE_FIELD_PROTECTED (type, i);
14787 break;
14788
14789 case DW_ACCESS_public:
14790 break;
14791
14792 default:
14793 /* Unknown accessibility. Complain and treat it as public. */
14794 {
14795 complaint (_("unsupported accessibility %d"),
14796 field.accessibility);
14797 }
14798 break;
14799 }
14800 if (i < fip->baseclasses.size ())
14801 {
14802 switch (field.virtuality)
14803 {
14804 case DW_VIRTUALITY_virtual:
14805 case DW_VIRTUALITY_pure_virtual:
14806 if (cu->language == language_ada)
14807 error (_("unexpected virtuality in component of Ada type"));
14808 SET_TYPE_FIELD_VIRTUAL (type, i);
14809 break;
14810 }
14811 }
14812 }
14813 }
14814
14815 /* Return true if this member function is a constructor, false
14816 otherwise. */
14817
14818 static int
14819 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14820 {
14821 const char *fieldname;
14822 const char *type_name;
14823 int len;
14824
14825 if (die->parent == NULL)
14826 return 0;
14827
14828 if (die->parent->tag != DW_TAG_structure_type
14829 && die->parent->tag != DW_TAG_union_type
14830 && die->parent->tag != DW_TAG_class_type)
14831 return 0;
14832
14833 fieldname = dwarf2_name (die, cu);
14834 type_name = dwarf2_name (die->parent, cu);
14835 if (fieldname == NULL || type_name == NULL)
14836 return 0;
14837
14838 len = strlen (fieldname);
14839 return (strncmp (fieldname, type_name, len) == 0
14840 && (type_name[len] == '\0' || type_name[len] == '<'));
14841 }
14842
14843 /* Check if the given VALUE is a recognized enum
14844 dwarf_defaulted_attribute constant according to DWARF5 spec,
14845 Table 7.24. */
14846
14847 static bool
14848 is_valid_DW_AT_defaulted (ULONGEST value)
14849 {
14850 switch (value)
14851 {
14852 case DW_DEFAULTED_no:
14853 case DW_DEFAULTED_in_class:
14854 case DW_DEFAULTED_out_of_class:
14855 return true;
14856 }
14857
14858 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14859 return false;
14860 }
14861
14862 /* Add a member function to the proper fieldlist. */
14863
14864 static void
14865 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14866 struct type *type, struct dwarf2_cu *cu)
14867 {
14868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14869 struct attribute *attr;
14870 int i;
14871 struct fnfieldlist *flp = nullptr;
14872 struct fn_field *fnp;
14873 const char *fieldname;
14874 struct type *this_type;
14875 enum dwarf_access_attribute accessibility;
14876
14877 if (cu->language == language_ada)
14878 error (_("unexpected member function in Ada type"));
14879
14880 /* Get name of member function. */
14881 fieldname = dwarf2_name (die, cu);
14882 if (fieldname == NULL)
14883 return;
14884
14885 /* Look up member function name in fieldlist. */
14886 for (i = 0; i < fip->fnfieldlists.size (); i++)
14887 {
14888 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14889 {
14890 flp = &fip->fnfieldlists[i];
14891 break;
14892 }
14893 }
14894
14895 /* Create a new fnfieldlist if necessary. */
14896 if (flp == nullptr)
14897 {
14898 fip->fnfieldlists.emplace_back ();
14899 flp = &fip->fnfieldlists.back ();
14900 flp->name = fieldname;
14901 i = fip->fnfieldlists.size () - 1;
14902 }
14903
14904 /* Create a new member function field and add it to the vector of
14905 fnfieldlists. */
14906 flp->fnfields.emplace_back ();
14907 fnp = &flp->fnfields.back ();
14908
14909 /* Delay processing of the physname until later. */
14910 if (cu->language == language_cplus)
14911 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14912 die, cu);
14913 else
14914 {
14915 const char *physname = dwarf2_physname (fieldname, die, cu);
14916 fnp->physname = physname ? physname : "";
14917 }
14918
14919 fnp->type = alloc_type (objfile);
14920 this_type = read_type_die (die, cu);
14921 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14922 {
14923 int nparams = TYPE_NFIELDS (this_type);
14924
14925 /* TYPE is the domain of this method, and THIS_TYPE is the type
14926 of the method itself (TYPE_CODE_METHOD). */
14927 smash_to_method_type (fnp->type, type,
14928 TYPE_TARGET_TYPE (this_type),
14929 TYPE_FIELDS (this_type),
14930 TYPE_NFIELDS (this_type),
14931 TYPE_VARARGS (this_type));
14932
14933 /* Handle static member functions.
14934 Dwarf2 has no clean way to discern C++ static and non-static
14935 member functions. G++ helps GDB by marking the first
14936 parameter for non-static member functions (which is the this
14937 pointer) as artificial. We obtain this information from
14938 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14939 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14940 fnp->voffset = VOFFSET_STATIC;
14941 }
14942 else
14943 complaint (_("member function type missing for '%s'"),
14944 dwarf2_full_name (fieldname, die, cu));
14945
14946 /* Get fcontext from DW_AT_containing_type if present. */
14947 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14948 fnp->fcontext = die_containing_type (die, cu);
14949
14950 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14951 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14952
14953 /* Get accessibility. */
14954 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14955 if (attr != nullptr)
14956 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14957 else
14958 accessibility = dwarf2_default_access_attribute (die, cu);
14959 switch (accessibility)
14960 {
14961 case DW_ACCESS_private:
14962 fnp->is_private = 1;
14963 break;
14964 case DW_ACCESS_protected:
14965 fnp->is_protected = 1;
14966 break;
14967 }
14968
14969 /* Check for artificial methods. */
14970 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14971 if (attr && DW_UNSND (attr) != 0)
14972 fnp->is_artificial = 1;
14973
14974 /* Check for defaulted methods. */
14975 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14976 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14977 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14978
14979 /* Check for deleted methods. */
14980 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14981 if (attr != nullptr && DW_UNSND (attr) != 0)
14982 fnp->is_deleted = 1;
14983
14984 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14985
14986 /* Get index in virtual function table if it is a virtual member
14987 function. For older versions of GCC, this is an offset in the
14988 appropriate virtual table, as specified by DW_AT_containing_type.
14989 For everyone else, it is an expression to be evaluated relative
14990 to the object address. */
14991
14992 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14993 if (attr != nullptr)
14994 {
14995 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14996 {
14997 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14998 {
14999 /* Old-style GCC. */
15000 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15001 }
15002 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15003 || (DW_BLOCK (attr)->size > 1
15004 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15005 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15006 {
15007 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15008 if ((fnp->voffset % cu->header.addr_size) != 0)
15009 dwarf2_complex_location_expr_complaint ();
15010 else
15011 fnp->voffset /= cu->header.addr_size;
15012 fnp->voffset += 2;
15013 }
15014 else
15015 dwarf2_complex_location_expr_complaint ();
15016
15017 if (!fnp->fcontext)
15018 {
15019 /* If there is no `this' field and no DW_AT_containing_type,
15020 we cannot actually find a base class context for the
15021 vtable! */
15022 if (TYPE_NFIELDS (this_type) == 0
15023 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15024 {
15025 complaint (_("cannot determine context for virtual member "
15026 "function \"%s\" (offset %s)"),
15027 fieldname, sect_offset_str (die->sect_off));
15028 }
15029 else
15030 {
15031 fnp->fcontext
15032 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15033 }
15034 }
15035 }
15036 else if (attr->form_is_section_offset ())
15037 {
15038 dwarf2_complex_location_expr_complaint ();
15039 }
15040 else
15041 {
15042 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15043 fieldname);
15044 }
15045 }
15046 else
15047 {
15048 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15049 if (attr && DW_UNSND (attr))
15050 {
15051 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15052 complaint (_("Member function \"%s\" (offset %s) is virtual "
15053 "but the vtable offset is not specified"),
15054 fieldname, sect_offset_str (die->sect_off));
15055 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15056 TYPE_CPLUS_DYNAMIC (type) = 1;
15057 }
15058 }
15059 }
15060
15061 /* Create the vector of member function fields, and attach it to the type. */
15062
15063 static void
15064 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15065 struct dwarf2_cu *cu)
15066 {
15067 if (cu->language == language_ada)
15068 error (_("unexpected member functions in Ada type"));
15069
15070 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15071 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15072 TYPE_ALLOC (type,
15073 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15074
15075 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15076 {
15077 struct fnfieldlist &nf = fip->fnfieldlists[i];
15078 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15079
15080 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15081 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15082 fn_flp->fn_fields = (struct fn_field *)
15083 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15084
15085 for (int k = 0; k < nf.fnfields.size (); ++k)
15086 fn_flp->fn_fields[k] = nf.fnfields[k];
15087 }
15088
15089 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15090 }
15091
15092 /* Returns non-zero if NAME is the name of a vtable member in CU's
15093 language, zero otherwise. */
15094 static int
15095 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15096 {
15097 static const char vptr[] = "_vptr";
15098
15099 /* Look for the C++ form of the vtable. */
15100 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15101 return 1;
15102
15103 return 0;
15104 }
15105
15106 /* GCC outputs unnamed structures that are really pointers to member
15107 functions, with the ABI-specified layout. If TYPE describes
15108 such a structure, smash it into a member function type.
15109
15110 GCC shouldn't do this; it should just output pointer to member DIEs.
15111 This is GCC PR debug/28767. */
15112
15113 static void
15114 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15115 {
15116 struct type *pfn_type, *self_type, *new_type;
15117
15118 /* Check for a structure with no name and two children. */
15119 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15120 return;
15121
15122 /* Check for __pfn and __delta members. */
15123 if (TYPE_FIELD_NAME (type, 0) == NULL
15124 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15125 || TYPE_FIELD_NAME (type, 1) == NULL
15126 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15127 return;
15128
15129 /* Find the type of the method. */
15130 pfn_type = TYPE_FIELD_TYPE (type, 0);
15131 if (pfn_type == NULL
15132 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15133 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15134 return;
15135
15136 /* Look for the "this" argument. */
15137 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15138 if (TYPE_NFIELDS (pfn_type) == 0
15139 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15140 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15141 return;
15142
15143 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15144 new_type = alloc_type (objfile);
15145 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15146 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15147 TYPE_VARARGS (pfn_type));
15148 smash_to_methodptr_type (type, new_type);
15149 }
15150
15151 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15152 appropriate error checking and issuing complaints if there is a
15153 problem. */
15154
15155 static ULONGEST
15156 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15157 {
15158 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15159
15160 if (attr == nullptr)
15161 return 0;
15162
15163 if (!attr->form_is_constant ())
15164 {
15165 complaint (_("DW_AT_alignment must have constant form"
15166 " - DIE at %s [in module %s]"),
15167 sect_offset_str (die->sect_off),
15168 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15169 return 0;
15170 }
15171
15172 ULONGEST align;
15173 if (attr->form == DW_FORM_sdata)
15174 {
15175 LONGEST val = DW_SND (attr);
15176 if (val < 0)
15177 {
15178 complaint (_("DW_AT_alignment value must not be negative"
15179 " - DIE at %s [in module %s]"),
15180 sect_offset_str (die->sect_off),
15181 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15182 return 0;
15183 }
15184 align = val;
15185 }
15186 else
15187 align = DW_UNSND (attr);
15188
15189 if (align == 0)
15190 {
15191 complaint (_("DW_AT_alignment value must not be zero"
15192 " - DIE at %s [in module %s]"),
15193 sect_offset_str (die->sect_off),
15194 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15195 return 0;
15196 }
15197 if ((align & (align - 1)) != 0)
15198 {
15199 complaint (_("DW_AT_alignment value must be a power of 2"
15200 " - DIE at %s [in module %s]"),
15201 sect_offset_str (die->sect_off),
15202 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15203 return 0;
15204 }
15205
15206 return align;
15207 }
15208
15209 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15210 the alignment for TYPE. */
15211
15212 static void
15213 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15214 struct type *type)
15215 {
15216 if (!set_type_align (type, get_alignment (cu, die)))
15217 complaint (_("DW_AT_alignment value too large"
15218 " - DIE at %s [in module %s]"),
15219 sect_offset_str (die->sect_off),
15220 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15221 }
15222
15223 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15224 constant for a type, according to DWARF5 spec, Table 5.5. */
15225
15226 static bool
15227 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15228 {
15229 switch (value)
15230 {
15231 case DW_CC_normal:
15232 case DW_CC_pass_by_reference:
15233 case DW_CC_pass_by_value:
15234 return true;
15235
15236 default:
15237 complaint (_("unrecognized DW_AT_calling_convention value "
15238 "(%s) for a type"), pulongest (value));
15239 return false;
15240 }
15241 }
15242
15243 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15244 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15245 also according to GNU-specific values (see include/dwarf2.h). */
15246
15247 static bool
15248 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15249 {
15250 switch (value)
15251 {
15252 case DW_CC_normal:
15253 case DW_CC_program:
15254 case DW_CC_nocall:
15255 return true;
15256
15257 case DW_CC_GNU_renesas_sh:
15258 case DW_CC_GNU_borland_fastcall_i386:
15259 case DW_CC_GDB_IBM_OpenCL:
15260 return true;
15261
15262 default:
15263 complaint (_("unrecognized DW_AT_calling_convention value "
15264 "(%s) for a subroutine"), pulongest (value));
15265 return false;
15266 }
15267 }
15268
15269 /* Called when we find the DIE that starts a structure or union scope
15270 (definition) to create a type for the structure or union. Fill in
15271 the type's name and general properties; the members will not be
15272 processed until process_structure_scope. A symbol table entry for
15273 the type will also not be done until process_structure_scope (assuming
15274 the type has a name).
15275
15276 NOTE: we need to call these functions regardless of whether or not the
15277 DIE has a DW_AT_name attribute, since it might be an anonymous
15278 structure or union. This gets the type entered into our set of
15279 user defined types. */
15280
15281 static struct type *
15282 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15283 {
15284 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15285 struct type *type;
15286 struct attribute *attr;
15287 const char *name;
15288
15289 /* If the definition of this type lives in .debug_types, read that type.
15290 Don't follow DW_AT_specification though, that will take us back up
15291 the chain and we want to go down. */
15292 attr = die->attr (DW_AT_signature);
15293 if (attr != nullptr)
15294 {
15295 type = get_DW_AT_signature_type (die, attr, cu);
15296
15297 /* The type's CU may not be the same as CU.
15298 Ensure TYPE is recorded with CU in die_type_hash. */
15299 return set_die_type (die, type, cu);
15300 }
15301
15302 type = alloc_type (objfile);
15303 INIT_CPLUS_SPECIFIC (type);
15304
15305 name = dwarf2_name (die, cu);
15306 if (name != NULL)
15307 {
15308 if (cu->language == language_cplus
15309 || cu->language == language_d
15310 || cu->language == language_rust)
15311 {
15312 const char *full_name = dwarf2_full_name (name, die, cu);
15313
15314 /* dwarf2_full_name might have already finished building the DIE's
15315 type. If so, there is no need to continue. */
15316 if (get_die_type (die, cu) != NULL)
15317 return get_die_type (die, cu);
15318
15319 TYPE_NAME (type) = full_name;
15320 }
15321 else
15322 {
15323 /* The name is already allocated along with this objfile, so
15324 we don't need to duplicate it for the type. */
15325 TYPE_NAME (type) = name;
15326 }
15327 }
15328
15329 if (die->tag == DW_TAG_structure_type)
15330 {
15331 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15332 }
15333 else if (die->tag == DW_TAG_union_type)
15334 {
15335 TYPE_CODE (type) = TYPE_CODE_UNION;
15336 }
15337 else
15338 {
15339 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15340 }
15341
15342 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15343 TYPE_DECLARED_CLASS (type) = 1;
15344
15345 /* Store the calling convention in the type if it's available in
15346 the die. Otherwise the calling convention remains set to
15347 the default value DW_CC_normal. */
15348 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15349 if (attr != nullptr
15350 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15351 {
15352 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15353 TYPE_CPLUS_CALLING_CONVENTION (type)
15354 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15355 }
15356
15357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15358 if (attr != nullptr)
15359 {
15360 if (attr->form_is_constant ())
15361 TYPE_LENGTH (type) = DW_UNSND (attr);
15362 else
15363 {
15364 struct dynamic_prop prop;
15365 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15366 cu->per_cu->addr_type ()))
15367 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15368 TYPE_LENGTH (type) = 0;
15369 }
15370 }
15371 else
15372 {
15373 TYPE_LENGTH (type) = 0;
15374 }
15375
15376 maybe_set_alignment (cu, die, type);
15377
15378 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15379 {
15380 /* ICC<14 does not output the required DW_AT_declaration on
15381 incomplete types, but gives them a size of zero. */
15382 TYPE_STUB (type) = 1;
15383 }
15384 else
15385 TYPE_STUB_SUPPORTED (type) = 1;
15386
15387 if (die_is_declaration (die, cu))
15388 TYPE_STUB (type) = 1;
15389 else if (attr == NULL && die->child == NULL
15390 && producer_is_realview (cu->producer))
15391 /* RealView does not output the required DW_AT_declaration
15392 on incomplete types. */
15393 TYPE_STUB (type) = 1;
15394
15395 /* We need to add the type field to the die immediately so we don't
15396 infinitely recurse when dealing with pointers to the structure
15397 type within the structure itself. */
15398 set_die_type (die, type, cu);
15399
15400 /* set_die_type should be already done. */
15401 set_descriptive_type (type, die, cu);
15402
15403 return type;
15404 }
15405
15406 static void handle_struct_member_die
15407 (struct die_info *child_die,
15408 struct type *type,
15409 struct field_info *fi,
15410 std::vector<struct symbol *> *template_args,
15411 struct dwarf2_cu *cu);
15412
15413 /* A helper for handle_struct_member_die that handles
15414 DW_TAG_variant_part. */
15415
15416 static void
15417 handle_variant_part (struct die_info *die, struct type *type,
15418 struct field_info *fi,
15419 std::vector<struct symbol *> *template_args,
15420 struct dwarf2_cu *cu)
15421 {
15422 variant_part_builder *new_part;
15423 if (fi->current_variant_part == nullptr)
15424 {
15425 fi->variant_parts.emplace_back ();
15426 new_part = &fi->variant_parts.back ();
15427 }
15428 else if (!fi->current_variant_part->processing_variant)
15429 {
15430 complaint (_("nested DW_TAG_variant_part seen "
15431 "- DIE at %s [in module %s]"),
15432 sect_offset_str (die->sect_off),
15433 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15434 return;
15435 }
15436 else
15437 {
15438 variant_field &current = fi->current_variant_part->variants.back ();
15439 current.variant_parts.emplace_back ();
15440 new_part = &current.variant_parts.back ();
15441 }
15442
15443 /* When we recurse, we want callees to add to this new variant
15444 part. */
15445 scoped_restore save_current_variant_part
15446 = make_scoped_restore (&fi->current_variant_part, new_part);
15447
15448 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15449 if (discr == NULL)
15450 {
15451 /* It's a univariant form, an extension we support. */
15452 }
15453 else if (discr->form_is_ref ())
15454 {
15455 struct dwarf2_cu *target_cu = cu;
15456 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15457
15458 new_part->discriminant_offset = target_die->sect_off;
15459 }
15460 else
15461 {
15462 complaint (_("DW_AT_discr does not have DIE reference form"
15463 " - DIE at %s [in module %s]"),
15464 sect_offset_str (die->sect_off),
15465 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15466 }
15467
15468 for (die_info *child_die = die->child;
15469 child_die != NULL;
15470 child_die = child_die->sibling)
15471 handle_struct_member_die (child_die, type, fi, template_args, cu);
15472 }
15473
15474 /* A helper for handle_struct_member_die that handles
15475 DW_TAG_variant. */
15476
15477 static void
15478 handle_variant (struct die_info *die, struct type *type,
15479 struct field_info *fi,
15480 std::vector<struct symbol *> *template_args,
15481 struct dwarf2_cu *cu)
15482 {
15483 if (fi->current_variant_part == nullptr)
15484 {
15485 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15486 "- DIE at %s [in module %s]"),
15487 sect_offset_str (die->sect_off),
15488 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15489 return;
15490 }
15491 if (fi->current_variant_part->processing_variant)
15492 {
15493 complaint (_("nested DW_TAG_variant seen "
15494 "- DIE at %s [in module %s]"),
15495 sect_offset_str (die->sect_off),
15496 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15497 return;
15498 }
15499
15500 scoped_restore save_processing_variant
15501 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15502 true);
15503
15504 fi->current_variant_part->variants.emplace_back ();
15505 variant_field &variant = fi->current_variant_part->variants.back ();
15506 variant.first_field = fi->fields.size ();
15507
15508 /* In a variant we want to get the discriminant and also add a
15509 field for our sole member child. */
15510 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15511 if (discr == nullptr)
15512 {
15513 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15514 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15515 variant.default_branch = true;
15516 else
15517 variant.discr_list_data = DW_BLOCK (discr);
15518 }
15519 else
15520 variant.discriminant_value = DW_UNSND (discr);
15521
15522 for (die_info *variant_child = die->child;
15523 variant_child != NULL;
15524 variant_child = variant_child->sibling)
15525 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15526
15527 variant.last_field = fi->fields.size ();
15528 }
15529
15530 /* A helper for process_structure_scope that handles a single member
15531 DIE. */
15532
15533 static void
15534 handle_struct_member_die (struct die_info *child_die, struct type *type,
15535 struct field_info *fi,
15536 std::vector<struct symbol *> *template_args,
15537 struct dwarf2_cu *cu)
15538 {
15539 if (child_die->tag == DW_TAG_member
15540 || child_die->tag == DW_TAG_variable)
15541 {
15542 /* NOTE: carlton/2002-11-05: A C++ static data member
15543 should be a DW_TAG_member that is a declaration, but
15544 all versions of G++ as of this writing (so through at
15545 least 3.2.1) incorrectly generate DW_TAG_variable
15546 tags for them instead. */
15547 dwarf2_add_field (fi, child_die, cu);
15548 }
15549 else if (child_die->tag == DW_TAG_subprogram)
15550 {
15551 /* Rust doesn't have member functions in the C++ sense.
15552 However, it does emit ordinary functions as children
15553 of a struct DIE. */
15554 if (cu->language == language_rust)
15555 read_func_scope (child_die, cu);
15556 else
15557 {
15558 /* C++ member function. */
15559 dwarf2_add_member_fn (fi, child_die, type, cu);
15560 }
15561 }
15562 else if (child_die->tag == DW_TAG_inheritance)
15563 {
15564 /* C++ base class field. */
15565 dwarf2_add_field (fi, child_die, cu);
15566 }
15567 else if (type_can_define_types (child_die))
15568 dwarf2_add_type_defn (fi, child_die, cu);
15569 else if (child_die->tag == DW_TAG_template_type_param
15570 || child_die->tag == DW_TAG_template_value_param)
15571 {
15572 struct symbol *arg = new_symbol (child_die, NULL, cu);
15573
15574 if (arg != NULL)
15575 template_args->push_back (arg);
15576 }
15577 else if (child_die->tag == DW_TAG_variant_part)
15578 handle_variant_part (child_die, type, fi, template_args, cu);
15579 else if (child_die->tag == DW_TAG_variant)
15580 handle_variant (child_die, type, fi, template_args, cu);
15581 }
15582
15583 /* Finish creating a structure or union type, including filling in
15584 its members and creating a symbol for it. */
15585
15586 static void
15587 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15588 {
15589 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15590 struct die_info *child_die;
15591 struct type *type;
15592
15593 type = get_die_type (die, cu);
15594 if (type == NULL)
15595 type = read_structure_type (die, cu);
15596
15597 bool has_template_parameters = false;
15598 if (die->child != NULL && ! die_is_declaration (die, cu))
15599 {
15600 struct field_info fi;
15601 std::vector<struct symbol *> template_args;
15602
15603 child_die = die->child;
15604
15605 while (child_die && child_die->tag)
15606 {
15607 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15608 child_die = child_die->sibling;
15609 }
15610
15611 /* Attach template arguments to type. */
15612 if (!template_args.empty ())
15613 {
15614 has_template_parameters = true;
15615 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15616 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15617 TYPE_TEMPLATE_ARGUMENTS (type)
15618 = XOBNEWVEC (&objfile->objfile_obstack,
15619 struct symbol *,
15620 TYPE_N_TEMPLATE_ARGUMENTS (type));
15621 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15622 template_args.data (),
15623 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15624 * sizeof (struct symbol *)));
15625 }
15626
15627 /* Attach fields and member functions to the type. */
15628 if (fi.nfields () > 0)
15629 dwarf2_attach_fields_to_type (&fi, type, cu);
15630 if (!fi.fnfieldlists.empty ())
15631 {
15632 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15633
15634 /* Get the type which refers to the base class (possibly this
15635 class itself) which contains the vtable pointer for the current
15636 class from the DW_AT_containing_type attribute. This use of
15637 DW_AT_containing_type is a GNU extension. */
15638
15639 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15640 {
15641 struct type *t = die_containing_type (die, cu);
15642
15643 set_type_vptr_basetype (type, t);
15644 if (type == t)
15645 {
15646 int i;
15647
15648 /* Our own class provides vtbl ptr. */
15649 for (i = TYPE_NFIELDS (t) - 1;
15650 i >= TYPE_N_BASECLASSES (t);
15651 --i)
15652 {
15653 const char *fieldname = TYPE_FIELD_NAME (t, i);
15654
15655 if (is_vtable_name (fieldname, cu))
15656 {
15657 set_type_vptr_fieldno (type, i);
15658 break;
15659 }
15660 }
15661
15662 /* Complain if virtual function table field not found. */
15663 if (i < TYPE_N_BASECLASSES (t))
15664 complaint (_("virtual function table pointer "
15665 "not found when defining class '%s'"),
15666 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15667 }
15668 else
15669 {
15670 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15671 }
15672 }
15673 else if (cu->producer
15674 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15675 {
15676 /* The IBM XLC compiler does not provide direct indication
15677 of the containing type, but the vtable pointer is
15678 always named __vfp. */
15679
15680 int i;
15681
15682 for (i = TYPE_NFIELDS (type) - 1;
15683 i >= TYPE_N_BASECLASSES (type);
15684 --i)
15685 {
15686 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15687 {
15688 set_type_vptr_fieldno (type, i);
15689 set_type_vptr_basetype (type, type);
15690 break;
15691 }
15692 }
15693 }
15694 }
15695
15696 /* Copy fi.typedef_field_list linked list elements content into the
15697 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15698 if (!fi.typedef_field_list.empty ())
15699 {
15700 int count = fi.typedef_field_list.size ();
15701
15702 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15703 TYPE_TYPEDEF_FIELD_ARRAY (type)
15704 = ((struct decl_field *)
15705 TYPE_ALLOC (type,
15706 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15707 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15708
15709 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15710 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15711 }
15712
15713 /* Copy fi.nested_types_list linked list elements content into the
15714 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15715 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15716 {
15717 int count = fi.nested_types_list.size ();
15718
15719 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15720 TYPE_NESTED_TYPES_ARRAY (type)
15721 = ((struct decl_field *)
15722 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15723 TYPE_NESTED_TYPES_COUNT (type) = count;
15724
15725 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15726 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15727 }
15728 }
15729
15730 quirk_gcc_member_function_pointer (type, objfile);
15731 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15732 cu->rust_unions.push_back (type);
15733
15734 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15735 snapshots) has been known to create a die giving a declaration
15736 for a class that has, as a child, a die giving a definition for a
15737 nested class. So we have to process our children even if the
15738 current die is a declaration. Normally, of course, a declaration
15739 won't have any children at all. */
15740
15741 child_die = die->child;
15742
15743 while (child_die != NULL && child_die->tag)
15744 {
15745 if (child_die->tag == DW_TAG_member
15746 || child_die->tag == DW_TAG_variable
15747 || child_die->tag == DW_TAG_inheritance
15748 || child_die->tag == DW_TAG_template_value_param
15749 || child_die->tag == DW_TAG_template_type_param)
15750 {
15751 /* Do nothing. */
15752 }
15753 else
15754 process_die (child_die, cu);
15755
15756 child_die = child_die->sibling;
15757 }
15758
15759 /* Do not consider external references. According to the DWARF standard,
15760 these DIEs are identified by the fact that they have no byte_size
15761 attribute, and a declaration attribute. */
15762 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15763 || !die_is_declaration (die, cu)
15764 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15765 {
15766 struct symbol *sym = new_symbol (die, type, cu);
15767
15768 if (has_template_parameters)
15769 {
15770 struct symtab *symtab;
15771 if (sym != nullptr)
15772 symtab = symbol_symtab (sym);
15773 else if (cu->line_header != nullptr)
15774 {
15775 /* Any related symtab will do. */
15776 symtab
15777 = cu->line_header->file_names ()[0].symtab;
15778 }
15779 else
15780 {
15781 symtab = nullptr;
15782 complaint (_("could not find suitable "
15783 "symtab for template parameter"
15784 " - DIE at %s [in module %s]"),
15785 sect_offset_str (die->sect_off),
15786 objfile_name (objfile));
15787 }
15788
15789 if (symtab != nullptr)
15790 {
15791 /* Make sure that the symtab is set on the new symbols.
15792 Even though they don't appear in this symtab directly,
15793 other parts of gdb assume that symbols do, and this is
15794 reasonably true. */
15795 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15796 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15797 }
15798 }
15799 }
15800 }
15801
15802 /* Assuming DIE is an enumeration type, and TYPE is its associated
15803 type, update TYPE using some information only available in DIE's
15804 children. In particular, the fields are computed. */
15805
15806 static void
15807 update_enumeration_type_from_children (struct die_info *die,
15808 struct type *type,
15809 struct dwarf2_cu *cu)
15810 {
15811 struct die_info *child_die;
15812 int unsigned_enum = 1;
15813 int flag_enum = 1;
15814
15815 auto_obstack obstack;
15816 std::vector<struct field> fields;
15817
15818 for (child_die = die->child;
15819 child_die != NULL && child_die->tag;
15820 child_die = child_die->sibling)
15821 {
15822 struct attribute *attr;
15823 LONGEST value;
15824 const gdb_byte *bytes;
15825 struct dwarf2_locexpr_baton *baton;
15826 const char *name;
15827
15828 if (child_die->tag != DW_TAG_enumerator)
15829 continue;
15830
15831 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15832 if (attr == NULL)
15833 continue;
15834
15835 name = dwarf2_name (child_die, cu);
15836 if (name == NULL)
15837 name = "<anonymous enumerator>";
15838
15839 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15840 &value, &bytes, &baton);
15841 if (value < 0)
15842 {
15843 unsigned_enum = 0;
15844 flag_enum = 0;
15845 }
15846 else
15847 {
15848 if (count_one_bits_ll (value) >= 2)
15849 flag_enum = 0;
15850 }
15851
15852 fields.emplace_back ();
15853 struct field &field = fields.back ();
15854 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
15855 SET_FIELD_ENUMVAL (field, value);
15856 }
15857
15858 if (!fields.empty ())
15859 {
15860 TYPE_NFIELDS (type) = fields.size ();
15861 TYPE_FIELDS (type) = (struct field *)
15862 TYPE_ALLOC (type, sizeof (struct field) * fields.size ());
15863 memcpy (TYPE_FIELDS (type), fields.data (),
15864 sizeof (struct field) * fields.size ());
15865 }
15866
15867 if (unsigned_enum)
15868 TYPE_UNSIGNED (type) = 1;
15869 if (flag_enum)
15870 TYPE_FLAG_ENUM (type) = 1;
15871 }
15872
15873 /* Given a DW_AT_enumeration_type die, set its type. We do not
15874 complete the type's fields yet, or create any symbols. */
15875
15876 static struct type *
15877 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15878 {
15879 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15880 struct type *type;
15881 struct attribute *attr;
15882 const char *name;
15883
15884 /* If the definition of this type lives in .debug_types, read that type.
15885 Don't follow DW_AT_specification though, that will take us back up
15886 the chain and we want to go down. */
15887 attr = die->attr (DW_AT_signature);
15888 if (attr != nullptr)
15889 {
15890 type = get_DW_AT_signature_type (die, attr, cu);
15891
15892 /* The type's CU may not be the same as CU.
15893 Ensure TYPE is recorded with CU in die_type_hash. */
15894 return set_die_type (die, type, cu);
15895 }
15896
15897 type = alloc_type (objfile);
15898
15899 TYPE_CODE (type) = TYPE_CODE_ENUM;
15900 name = dwarf2_full_name (NULL, die, cu);
15901 if (name != NULL)
15902 TYPE_NAME (type) = name;
15903
15904 attr = dwarf2_attr (die, DW_AT_type, cu);
15905 if (attr != NULL)
15906 {
15907 struct type *underlying_type = die_type (die, cu);
15908
15909 TYPE_TARGET_TYPE (type) = underlying_type;
15910 }
15911
15912 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15913 if (attr != nullptr)
15914 {
15915 TYPE_LENGTH (type) = DW_UNSND (attr);
15916 }
15917 else
15918 {
15919 TYPE_LENGTH (type) = 0;
15920 }
15921
15922 maybe_set_alignment (cu, die, type);
15923
15924 /* The enumeration DIE can be incomplete. In Ada, any type can be
15925 declared as private in the package spec, and then defined only
15926 inside the package body. Such types are known as Taft Amendment
15927 Types. When another package uses such a type, an incomplete DIE
15928 may be generated by the compiler. */
15929 if (die_is_declaration (die, cu))
15930 TYPE_STUB (type) = 1;
15931
15932 /* If this type has an underlying type that is not a stub, then we
15933 may use its attributes. We always use the "unsigned" attribute
15934 in this situation, because ordinarily we guess whether the type
15935 is unsigned -- but the guess can be wrong and the underlying type
15936 can tell us the reality. However, we defer to a local size
15937 attribute if one exists, because this lets the compiler override
15938 the underlying type if needed. */
15939 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15940 {
15941 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15942 underlying_type = check_typedef (underlying_type);
15943 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15944 if (TYPE_LENGTH (type) == 0)
15945 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15946 if (TYPE_RAW_ALIGN (type) == 0
15947 && TYPE_RAW_ALIGN (underlying_type) != 0)
15948 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15949 }
15950
15951 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15952
15953 set_die_type (die, type, cu);
15954
15955 /* Finish the creation of this type by using the enum's children.
15956 Note that, as usual, this must come after set_die_type to avoid
15957 infinite recursion when trying to compute the names of the
15958 enumerators. */
15959 update_enumeration_type_from_children (die, type, cu);
15960
15961 return type;
15962 }
15963
15964 /* Given a pointer to a die which begins an enumeration, process all
15965 the dies that define the members of the enumeration, and create the
15966 symbol for the enumeration type.
15967
15968 NOTE: We reverse the order of the element list. */
15969
15970 static void
15971 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15972 {
15973 struct type *this_type;
15974
15975 this_type = get_die_type (die, cu);
15976 if (this_type == NULL)
15977 this_type = read_enumeration_type (die, cu);
15978
15979 if (die->child != NULL)
15980 {
15981 struct die_info *child_die;
15982 const char *name;
15983
15984 child_die = die->child;
15985 while (child_die && child_die->tag)
15986 {
15987 if (child_die->tag != DW_TAG_enumerator)
15988 {
15989 process_die (child_die, cu);
15990 }
15991 else
15992 {
15993 name = dwarf2_name (child_die, cu);
15994 if (name)
15995 new_symbol (child_die, this_type, cu);
15996 }
15997
15998 child_die = child_die->sibling;
15999 }
16000 }
16001
16002 /* If we are reading an enum from a .debug_types unit, and the enum
16003 is a declaration, and the enum is not the signatured type in the
16004 unit, then we do not want to add a symbol for it. Adding a
16005 symbol would in some cases obscure the true definition of the
16006 enum, giving users an incomplete type when the definition is
16007 actually available. Note that we do not want to do this for all
16008 enums which are just declarations, because C++0x allows forward
16009 enum declarations. */
16010 if (cu->per_cu->is_debug_types
16011 && die_is_declaration (die, cu))
16012 {
16013 struct signatured_type *sig_type;
16014
16015 sig_type = (struct signatured_type *) cu->per_cu;
16016 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16017 if (sig_type->type_offset_in_section != die->sect_off)
16018 return;
16019 }
16020
16021 new_symbol (die, this_type, cu);
16022 }
16023
16024 /* Extract all information from a DW_TAG_array_type DIE and put it in
16025 the DIE's type field. For now, this only handles one dimensional
16026 arrays. */
16027
16028 static struct type *
16029 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16030 {
16031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16032 struct die_info *child_die;
16033 struct type *type;
16034 struct type *element_type, *range_type, *index_type;
16035 struct attribute *attr;
16036 const char *name;
16037 struct dynamic_prop *byte_stride_prop = NULL;
16038 unsigned int bit_stride = 0;
16039
16040 element_type = die_type (die, cu);
16041
16042 /* The die_type call above may have already set the type for this DIE. */
16043 type = get_die_type (die, cu);
16044 if (type)
16045 return type;
16046
16047 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16048 if (attr != NULL)
16049 {
16050 int stride_ok;
16051 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16052
16053 byte_stride_prop
16054 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16055 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16056 prop_type);
16057 if (!stride_ok)
16058 {
16059 complaint (_("unable to read array DW_AT_byte_stride "
16060 " - DIE at %s [in module %s]"),
16061 sect_offset_str (die->sect_off),
16062 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16063 /* Ignore this attribute. We will likely not be able to print
16064 arrays of this type correctly, but there is little we can do
16065 to help if we cannot read the attribute's value. */
16066 byte_stride_prop = NULL;
16067 }
16068 }
16069
16070 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16071 if (attr != NULL)
16072 bit_stride = DW_UNSND (attr);
16073
16074 /* Irix 6.2 native cc creates array types without children for
16075 arrays with unspecified length. */
16076 if (die->child == NULL)
16077 {
16078 index_type = objfile_type (objfile)->builtin_int;
16079 range_type = create_static_range_type (NULL, index_type, 0, -1);
16080 type = create_array_type_with_stride (NULL, element_type, range_type,
16081 byte_stride_prop, bit_stride);
16082 return set_die_type (die, type, cu);
16083 }
16084
16085 std::vector<struct type *> range_types;
16086 child_die = die->child;
16087 while (child_die && child_die->tag)
16088 {
16089 if (child_die->tag == DW_TAG_subrange_type)
16090 {
16091 struct type *child_type = read_type_die (child_die, cu);
16092
16093 if (child_type != NULL)
16094 {
16095 /* The range type was succesfully read. Save it for the
16096 array type creation. */
16097 range_types.push_back (child_type);
16098 }
16099 }
16100 child_die = child_die->sibling;
16101 }
16102
16103 /* Dwarf2 dimensions are output from left to right, create the
16104 necessary array types in backwards order. */
16105
16106 type = element_type;
16107
16108 if (read_array_order (die, cu) == DW_ORD_col_major)
16109 {
16110 int i = 0;
16111
16112 while (i < range_types.size ())
16113 type = create_array_type_with_stride (NULL, type, range_types[i++],
16114 byte_stride_prop, bit_stride);
16115 }
16116 else
16117 {
16118 size_t ndim = range_types.size ();
16119 while (ndim-- > 0)
16120 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16121 byte_stride_prop, bit_stride);
16122 }
16123
16124 /* Understand Dwarf2 support for vector types (like they occur on
16125 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16126 array type. This is not part of the Dwarf2/3 standard yet, but a
16127 custom vendor extension. The main difference between a regular
16128 array and the vector variant is that vectors are passed by value
16129 to functions. */
16130 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16131 if (attr != nullptr)
16132 make_vector_type (type);
16133
16134 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16135 implementation may choose to implement triple vectors using this
16136 attribute. */
16137 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16138 if (attr != nullptr)
16139 {
16140 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16141 TYPE_LENGTH (type) = DW_UNSND (attr);
16142 else
16143 complaint (_("DW_AT_byte_size for array type smaller "
16144 "than the total size of elements"));
16145 }
16146
16147 name = dwarf2_name (die, cu);
16148 if (name)
16149 TYPE_NAME (type) = name;
16150
16151 maybe_set_alignment (cu, die, type);
16152
16153 /* Install the type in the die. */
16154 set_die_type (die, type, cu);
16155
16156 /* set_die_type should be already done. */
16157 set_descriptive_type (type, die, cu);
16158
16159 return type;
16160 }
16161
16162 static enum dwarf_array_dim_ordering
16163 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16164 {
16165 struct attribute *attr;
16166
16167 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16168
16169 if (attr != nullptr)
16170 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16171
16172 /* GNU F77 is a special case, as at 08/2004 array type info is the
16173 opposite order to the dwarf2 specification, but data is still
16174 laid out as per normal fortran.
16175
16176 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16177 version checking. */
16178
16179 if (cu->language == language_fortran
16180 && cu->producer && strstr (cu->producer, "GNU F77"))
16181 {
16182 return DW_ORD_row_major;
16183 }
16184
16185 switch (cu->language_defn->la_array_ordering)
16186 {
16187 case array_column_major:
16188 return DW_ORD_col_major;
16189 case array_row_major:
16190 default:
16191 return DW_ORD_row_major;
16192 };
16193 }
16194
16195 /* Extract all information from a DW_TAG_set_type DIE and put it in
16196 the DIE's type field. */
16197
16198 static struct type *
16199 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16200 {
16201 struct type *domain_type, *set_type;
16202 struct attribute *attr;
16203
16204 domain_type = die_type (die, cu);
16205
16206 /* The die_type call above may have already set the type for this DIE. */
16207 set_type = get_die_type (die, cu);
16208 if (set_type)
16209 return set_type;
16210
16211 set_type = create_set_type (NULL, domain_type);
16212
16213 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16214 if (attr != nullptr)
16215 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16216
16217 maybe_set_alignment (cu, die, set_type);
16218
16219 return set_die_type (die, set_type, cu);
16220 }
16221
16222 /* A helper for read_common_block that creates a locexpr baton.
16223 SYM is the symbol which we are marking as computed.
16224 COMMON_DIE is the DIE for the common block.
16225 COMMON_LOC is the location expression attribute for the common
16226 block itself.
16227 MEMBER_LOC is the location expression attribute for the particular
16228 member of the common block that we are processing.
16229 CU is the CU from which the above come. */
16230
16231 static void
16232 mark_common_block_symbol_computed (struct symbol *sym,
16233 struct die_info *common_die,
16234 struct attribute *common_loc,
16235 struct attribute *member_loc,
16236 struct dwarf2_cu *cu)
16237 {
16238 struct dwarf2_per_objfile *dwarf2_per_objfile
16239 = cu->per_cu->dwarf2_per_objfile;
16240 struct objfile *objfile = dwarf2_per_objfile->objfile;
16241 struct dwarf2_locexpr_baton *baton;
16242 gdb_byte *ptr;
16243 unsigned int cu_off;
16244 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16245 LONGEST offset = 0;
16246
16247 gdb_assert (common_loc && member_loc);
16248 gdb_assert (common_loc->form_is_block ());
16249 gdb_assert (member_loc->form_is_block ()
16250 || member_loc->form_is_constant ());
16251
16252 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16253 baton->per_cu = cu->per_cu;
16254 gdb_assert (baton->per_cu);
16255
16256 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16257
16258 if (member_loc->form_is_constant ())
16259 {
16260 offset = member_loc->constant_value (0);
16261 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16262 }
16263 else
16264 baton->size += DW_BLOCK (member_loc)->size;
16265
16266 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16267 baton->data = ptr;
16268
16269 *ptr++ = DW_OP_call4;
16270 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16271 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16272 ptr += 4;
16273
16274 if (member_loc->form_is_constant ())
16275 {
16276 *ptr++ = DW_OP_addr;
16277 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16278 ptr += cu->header.addr_size;
16279 }
16280 else
16281 {
16282 /* We have to copy the data here, because DW_OP_call4 will only
16283 use a DW_AT_location attribute. */
16284 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16285 ptr += DW_BLOCK (member_loc)->size;
16286 }
16287
16288 *ptr++ = DW_OP_plus;
16289 gdb_assert (ptr - baton->data == baton->size);
16290
16291 SYMBOL_LOCATION_BATON (sym) = baton;
16292 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16293 }
16294
16295 /* Create appropriate locally-scoped variables for all the
16296 DW_TAG_common_block entries. Also create a struct common_block
16297 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16298 is used to separate the common blocks name namespace from regular
16299 variable names. */
16300
16301 static void
16302 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16303 {
16304 struct attribute *attr;
16305
16306 attr = dwarf2_attr (die, DW_AT_location, cu);
16307 if (attr != nullptr)
16308 {
16309 /* Support the .debug_loc offsets. */
16310 if (attr->form_is_block ())
16311 {
16312 /* Ok. */
16313 }
16314 else if (attr->form_is_section_offset ())
16315 {
16316 dwarf2_complex_location_expr_complaint ();
16317 attr = NULL;
16318 }
16319 else
16320 {
16321 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16322 "common block member");
16323 attr = NULL;
16324 }
16325 }
16326
16327 if (die->child != NULL)
16328 {
16329 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16330 struct die_info *child_die;
16331 size_t n_entries = 0, size;
16332 struct common_block *common_block;
16333 struct symbol *sym;
16334
16335 for (child_die = die->child;
16336 child_die && child_die->tag;
16337 child_die = child_die->sibling)
16338 ++n_entries;
16339
16340 size = (sizeof (struct common_block)
16341 + (n_entries - 1) * sizeof (struct symbol *));
16342 common_block
16343 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16344 size);
16345 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16346 common_block->n_entries = 0;
16347
16348 for (child_die = die->child;
16349 child_die && child_die->tag;
16350 child_die = child_die->sibling)
16351 {
16352 /* Create the symbol in the DW_TAG_common_block block in the current
16353 symbol scope. */
16354 sym = new_symbol (child_die, NULL, cu);
16355 if (sym != NULL)
16356 {
16357 struct attribute *member_loc;
16358
16359 common_block->contents[common_block->n_entries++] = sym;
16360
16361 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16362 cu);
16363 if (member_loc)
16364 {
16365 /* GDB has handled this for a long time, but it is
16366 not specified by DWARF. It seems to have been
16367 emitted by gfortran at least as recently as:
16368 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16369 complaint (_("Variable in common block has "
16370 "DW_AT_data_member_location "
16371 "- DIE at %s [in module %s]"),
16372 sect_offset_str (child_die->sect_off),
16373 objfile_name (objfile));
16374
16375 if (member_loc->form_is_section_offset ())
16376 dwarf2_complex_location_expr_complaint ();
16377 else if (member_loc->form_is_constant ()
16378 || member_loc->form_is_block ())
16379 {
16380 if (attr != nullptr)
16381 mark_common_block_symbol_computed (sym, die, attr,
16382 member_loc, cu);
16383 }
16384 else
16385 dwarf2_complex_location_expr_complaint ();
16386 }
16387 }
16388 }
16389
16390 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16391 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16392 }
16393 }
16394
16395 /* Create a type for a C++ namespace. */
16396
16397 static struct type *
16398 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16399 {
16400 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16401 const char *previous_prefix, *name;
16402 int is_anonymous;
16403 struct type *type;
16404
16405 /* For extensions, reuse the type of the original namespace. */
16406 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16407 {
16408 struct die_info *ext_die;
16409 struct dwarf2_cu *ext_cu = cu;
16410
16411 ext_die = dwarf2_extension (die, &ext_cu);
16412 type = read_type_die (ext_die, ext_cu);
16413
16414 /* EXT_CU may not be the same as CU.
16415 Ensure TYPE is recorded with CU in die_type_hash. */
16416 return set_die_type (die, type, cu);
16417 }
16418
16419 name = namespace_name (die, &is_anonymous, cu);
16420
16421 /* Now build the name of the current namespace. */
16422
16423 previous_prefix = determine_prefix (die, cu);
16424 if (previous_prefix[0] != '\0')
16425 name = typename_concat (&objfile->objfile_obstack,
16426 previous_prefix, name, 0, cu);
16427
16428 /* Create the type. */
16429 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16430
16431 return set_die_type (die, type, cu);
16432 }
16433
16434 /* Read a namespace scope. */
16435
16436 static void
16437 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16438 {
16439 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16440 int is_anonymous;
16441
16442 /* Add a symbol associated to this if we haven't seen the namespace
16443 before. Also, add a using directive if it's an anonymous
16444 namespace. */
16445
16446 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16447 {
16448 struct type *type;
16449
16450 type = read_type_die (die, cu);
16451 new_symbol (die, type, cu);
16452
16453 namespace_name (die, &is_anonymous, cu);
16454 if (is_anonymous)
16455 {
16456 const char *previous_prefix = determine_prefix (die, cu);
16457
16458 std::vector<const char *> excludes;
16459 add_using_directive (using_directives (cu),
16460 previous_prefix, TYPE_NAME (type), NULL,
16461 NULL, excludes, 0, &objfile->objfile_obstack);
16462 }
16463 }
16464
16465 if (die->child != NULL)
16466 {
16467 struct die_info *child_die = die->child;
16468
16469 while (child_die && child_die->tag)
16470 {
16471 process_die (child_die, cu);
16472 child_die = child_die->sibling;
16473 }
16474 }
16475 }
16476
16477 /* Read a Fortran module as type. This DIE can be only a declaration used for
16478 imported module. Still we need that type as local Fortran "use ... only"
16479 declaration imports depend on the created type in determine_prefix. */
16480
16481 static struct type *
16482 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16483 {
16484 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16485 const char *module_name;
16486 struct type *type;
16487
16488 module_name = dwarf2_name (die, cu);
16489 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16490
16491 return set_die_type (die, type, cu);
16492 }
16493
16494 /* Read a Fortran module. */
16495
16496 static void
16497 read_module (struct die_info *die, struct dwarf2_cu *cu)
16498 {
16499 struct die_info *child_die = die->child;
16500 struct type *type;
16501
16502 type = read_type_die (die, cu);
16503 new_symbol (die, type, cu);
16504
16505 while (child_die && child_die->tag)
16506 {
16507 process_die (child_die, cu);
16508 child_die = child_die->sibling;
16509 }
16510 }
16511
16512 /* Return the name of the namespace represented by DIE. Set
16513 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16514 namespace. */
16515
16516 static const char *
16517 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16518 {
16519 struct die_info *current_die;
16520 const char *name = NULL;
16521
16522 /* Loop through the extensions until we find a name. */
16523
16524 for (current_die = die;
16525 current_die != NULL;
16526 current_die = dwarf2_extension (die, &cu))
16527 {
16528 /* We don't use dwarf2_name here so that we can detect the absence
16529 of a name -> anonymous namespace. */
16530 name = dwarf2_string_attr (die, DW_AT_name, cu);
16531
16532 if (name != NULL)
16533 break;
16534 }
16535
16536 /* Is it an anonymous namespace? */
16537
16538 *is_anonymous = (name == NULL);
16539 if (*is_anonymous)
16540 name = CP_ANONYMOUS_NAMESPACE_STR;
16541
16542 return name;
16543 }
16544
16545 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16546 the user defined type vector. */
16547
16548 static struct type *
16549 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16550 {
16551 struct gdbarch *gdbarch
16552 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16553 struct comp_unit_head *cu_header = &cu->header;
16554 struct type *type;
16555 struct attribute *attr_byte_size;
16556 struct attribute *attr_address_class;
16557 int byte_size, addr_class;
16558 struct type *target_type;
16559
16560 target_type = die_type (die, cu);
16561
16562 /* The die_type call above may have already set the type for this DIE. */
16563 type = get_die_type (die, cu);
16564 if (type)
16565 return type;
16566
16567 type = lookup_pointer_type (target_type);
16568
16569 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16570 if (attr_byte_size)
16571 byte_size = DW_UNSND (attr_byte_size);
16572 else
16573 byte_size = cu_header->addr_size;
16574
16575 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16576 if (attr_address_class)
16577 addr_class = DW_UNSND (attr_address_class);
16578 else
16579 addr_class = DW_ADDR_none;
16580
16581 ULONGEST alignment = get_alignment (cu, die);
16582
16583 /* If the pointer size, alignment, or address class is different
16584 than the default, create a type variant marked as such and set
16585 the length accordingly. */
16586 if (TYPE_LENGTH (type) != byte_size
16587 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16588 && alignment != TYPE_RAW_ALIGN (type))
16589 || addr_class != DW_ADDR_none)
16590 {
16591 if (gdbarch_address_class_type_flags_p (gdbarch))
16592 {
16593 int type_flags;
16594
16595 type_flags = gdbarch_address_class_type_flags
16596 (gdbarch, byte_size, addr_class);
16597 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16598 == 0);
16599 type = make_type_with_address_space (type, type_flags);
16600 }
16601 else if (TYPE_LENGTH (type) != byte_size)
16602 {
16603 complaint (_("invalid pointer size %d"), byte_size);
16604 }
16605 else if (TYPE_RAW_ALIGN (type) != alignment)
16606 {
16607 complaint (_("Invalid DW_AT_alignment"
16608 " - DIE at %s [in module %s]"),
16609 sect_offset_str (die->sect_off),
16610 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16611 }
16612 else
16613 {
16614 /* Should we also complain about unhandled address classes? */
16615 }
16616 }
16617
16618 TYPE_LENGTH (type) = byte_size;
16619 set_type_align (type, alignment);
16620 return set_die_type (die, type, cu);
16621 }
16622
16623 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16624 the user defined type vector. */
16625
16626 static struct type *
16627 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16628 {
16629 struct type *type;
16630 struct type *to_type;
16631 struct type *domain;
16632
16633 to_type = die_type (die, cu);
16634 domain = die_containing_type (die, cu);
16635
16636 /* The calls above may have already set the type for this DIE. */
16637 type = get_die_type (die, cu);
16638 if (type)
16639 return type;
16640
16641 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16642 type = lookup_methodptr_type (to_type);
16643 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16644 {
16645 struct type *new_type
16646 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16647
16648 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16649 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16650 TYPE_VARARGS (to_type));
16651 type = lookup_methodptr_type (new_type);
16652 }
16653 else
16654 type = lookup_memberptr_type (to_type, domain);
16655
16656 return set_die_type (die, type, cu);
16657 }
16658
16659 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16660 the user defined type vector. */
16661
16662 static struct type *
16663 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16664 enum type_code refcode)
16665 {
16666 struct comp_unit_head *cu_header = &cu->header;
16667 struct type *type, *target_type;
16668 struct attribute *attr;
16669
16670 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16671
16672 target_type = die_type (die, cu);
16673
16674 /* The die_type call above may have already set the type for this DIE. */
16675 type = get_die_type (die, cu);
16676 if (type)
16677 return type;
16678
16679 type = lookup_reference_type (target_type, refcode);
16680 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16681 if (attr != nullptr)
16682 {
16683 TYPE_LENGTH (type) = DW_UNSND (attr);
16684 }
16685 else
16686 {
16687 TYPE_LENGTH (type) = cu_header->addr_size;
16688 }
16689 maybe_set_alignment (cu, die, type);
16690 return set_die_type (die, type, cu);
16691 }
16692
16693 /* Add the given cv-qualifiers to the element type of the array. GCC
16694 outputs DWARF type qualifiers that apply to an array, not the
16695 element type. But GDB relies on the array element type to carry
16696 the cv-qualifiers. This mimics section 6.7.3 of the C99
16697 specification. */
16698
16699 static struct type *
16700 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16701 struct type *base_type, int cnst, int voltl)
16702 {
16703 struct type *el_type, *inner_array;
16704
16705 base_type = copy_type (base_type);
16706 inner_array = base_type;
16707
16708 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16709 {
16710 TYPE_TARGET_TYPE (inner_array) =
16711 copy_type (TYPE_TARGET_TYPE (inner_array));
16712 inner_array = TYPE_TARGET_TYPE (inner_array);
16713 }
16714
16715 el_type = TYPE_TARGET_TYPE (inner_array);
16716 cnst |= TYPE_CONST (el_type);
16717 voltl |= TYPE_VOLATILE (el_type);
16718 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16719
16720 return set_die_type (die, base_type, cu);
16721 }
16722
16723 static struct type *
16724 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16725 {
16726 struct type *base_type, *cv_type;
16727
16728 base_type = die_type (die, cu);
16729
16730 /* The die_type call above may have already set the type for this DIE. */
16731 cv_type = get_die_type (die, cu);
16732 if (cv_type)
16733 return cv_type;
16734
16735 /* In case the const qualifier is applied to an array type, the element type
16736 is so qualified, not the array type (section 6.7.3 of C99). */
16737 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16738 return add_array_cv_type (die, cu, base_type, 1, 0);
16739
16740 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16741 return set_die_type (die, cv_type, cu);
16742 }
16743
16744 static struct type *
16745 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16746 {
16747 struct type *base_type, *cv_type;
16748
16749 base_type = die_type (die, cu);
16750
16751 /* The die_type call above may have already set the type for this DIE. */
16752 cv_type = get_die_type (die, cu);
16753 if (cv_type)
16754 return cv_type;
16755
16756 /* In case the volatile qualifier is applied to an array type, the
16757 element type is so qualified, not the array type (section 6.7.3
16758 of C99). */
16759 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16760 return add_array_cv_type (die, cu, base_type, 0, 1);
16761
16762 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16763 return set_die_type (die, cv_type, cu);
16764 }
16765
16766 /* Handle DW_TAG_restrict_type. */
16767
16768 static struct type *
16769 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16770 {
16771 struct type *base_type, *cv_type;
16772
16773 base_type = die_type (die, cu);
16774
16775 /* The die_type call above may have already set the type for this DIE. */
16776 cv_type = get_die_type (die, cu);
16777 if (cv_type)
16778 return cv_type;
16779
16780 cv_type = make_restrict_type (base_type);
16781 return set_die_type (die, cv_type, cu);
16782 }
16783
16784 /* Handle DW_TAG_atomic_type. */
16785
16786 static struct type *
16787 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16788 {
16789 struct type *base_type, *cv_type;
16790
16791 base_type = die_type (die, cu);
16792
16793 /* The die_type call above may have already set the type for this DIE. */
16794 cv_type = get_die_type (die, cu);
16795 if (cv_type)
16796 return cv_type;
16797
16798 cv_type = make_atomic_type (base_type);
16799 return set_die_type (die, cv_type, cu);
16800 }
16801
16802 /* Extract all information from a DW_TAG_string_type DIE and add to
16803 the user defined type vector. It isn't really a user defined type,
16804 but it behaves like one, with other DIE's using an AT_user_def_type
16805 attribute to reference it. */
16806
16807 static struct type *
16808 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16809 {
16810 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16811 struct gdbarch *gdbarch = objfile->arch ();
16812 struct type *type, *range_type, *index_type, *char_type;
16813 struct attribute *attr;
16814 struct dynamic_prop prop;
16815 bool length_is_constant = true;
16816 LONGEST length;
16817
16818 /* There are a couple of places where bit sizes might be made use of
16819 when parsing a DW_TAG_string_type, however, no producer that we know
16820 of make use of these. Handling bit sizes that are a multiple of the
16821 byte size is easy enough, but what about other bit sizes? Lets deal
16822 with that problem when we have to. Warn about these attributes being
16823 unsupported, then parse the type and ignore them like we always
16824 have. */
16825 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16826 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16827 {
16828 static bool warning_printed = false;
16829 if (!warning_printed)
16830 {
16831 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16832 "currently supported on DW_TAG_string_type."));
16833 warning_printed = true;
16834 }
16835 }
16836
16837 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16838 if (attr != nullptr && !attr->form_is_constant ())
16839 {
16840 /* The string length describes the location at which the length of
16841 the string can be found. The size of the length field can be
16842 specified with one of the attributes below. */
16843 struct type *prop_type;
16844 struct attribute *len
16845 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16846 if (len == nullptr)
16847 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16848 if (len != nullptr && len->form_is_constant ())
16849 {
16850 /* Pass 0 as the default as we know this attribute is constant
16851 and the default value will not be returned. */
16852 LONGEST sz = len->constant_value (0);
16853 prop_type = cu->per_cu->int_type (sz, true);
16854 }
16855 else
16856 {
16857 /* If the size is not specified then we assume it is the size of
16858 an address on this target. */
16859 prop_type = cu->per_cu->addr_sized_int_type (true);
16860 }
16861
16862 /* Convert the attribute into a dynamic property. */
16863 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16864 length = 1;
16865 else
16866 length_is_constant = false;
16867 }
16868 else if (attr != nullptr)
16869 {
16870 /* This DW_AT_string_length just contains the length with no
16871 indirection. There's no need to create a dynamic property in this
16872 case. Pass 0 for the default value as we know it will not be
16873 returned in this case. */
16874 length = attr->constant_value (0);
16875 }
16876 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16877 {
16878 /* We don't currently support non-constant byte sizes for strings. */
16879 length = attr->constant_value (1);
16880 }
16881 else
16882 {
16883 /* Use 1 as a fallback length if we have nothing else. */
16884 length = 1;
16885 }
16886
16887 index_type = objfile_type (objfile)->builtin_int;
16888 if (length_is_constant)
16889 range_type = create_static_range_type (NULL, index_type, 1, length);
16890 else
16891 {
16892 struct dynamic_prop low_bound;
16893
16894 low_bound.kind = PROP_CONST;
16895 low_bound.data.const_val = 1;
16896 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16897 }
16898 char_type = language_string_char_type (cu->language_defn, gdbarch);
16899 type = create_string_type (NULL, char_type, range_type);
16900
16901 return set_die_type (die, type, cu);
16902 }
16903
16904 /* Assuming that DIE corresponds to a function, returns nonzero
16905 if the function is prototyped. */
16906
16907 static int
16908 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16909 {
16910 struct attribute *attr;
16911
16912 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16913 if (attr && (DW_UNSND (attr) != 0))
16914 return 1;
16915
16916 /* The DWARF standard implies that the DW_AT_prototyped attribute
16917 is only meaningful for C, but the concept also extends to other
16918 languages that allow unprototyped functions (Eg: Objective C).
16919 For all other languages, assume that functions are always
16920 prototyped. */
16921 if (cu->language != language_c
16922 && cu->language != language_objc
16923 && cu->language != language_opencl)
16924 return 1;
16925
16926 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16927 prototyped and unprototyped functions; default to prototyped,
16928 since that is more common in modern code (and RealView warns
16929 about unprototyped functions). */
16930 if (producer_is_realview (cu->producer))
16931 return 1;
16932
16933 return 0;
16934 }
16935
16936 /* Handle DIES due to C code like:
16937
16938 struct foo
16939 {
16940 int (*funcp)(int a, long l);
16941 int b;
16942 };
16943
16944 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16945
16946 static struct type *
16947 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16948 {
16949 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16950 struct type *type; /* Type that this function returns. */
16951 struct type *ftype; /* Function that returns above type. */
16952 struct attribute *attr;
16953
16954 type = die_type (die, cu);
16955
16956 /* The die_type call above may have already set the type for this DIE. */
16957 ftype = get_die_type (die, cu);
16958 if (ftype)
16959 return ftype;
16960
16961 ftype = lookup_function_type (type);
16962
16963 if (prototyped_function_p (die, cu))
16964 TYPE_PROTOTYPED (ftype) = 1;
16965
16966 /* Store the calling convention in the type if it's available in
16967 the subroutine die. Otherwise set the calling convention to
16968 the default value DW_CC_normal. */
16969 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16970 if (attr != nullptr
16971 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16972 TYPE_CALLING_CONVENTION (ftype)
16973 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16974 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16975 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16976 else
16977 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16978
16979 /* Record whether the function returns normally to its caller or not
16980 if the DWARF producer set that information. */
16981 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16982 if (attr && (DW_UNSND (attr) != 0))
16983 TYPE_NO_RETURN (ftype) = 1;
16984
16985 /* We need to add the subroutine type to the die immediately so
16986 we don't infinitely recurse when dealing with parameters
16987 declared as the same subroutine type. */
16988 set_die_type (die, ftype, cu);
16989
16990 if (die->child != NULL)
16991 {
16992 struct type *void_type = objfile_type (objfile)->builtin_void;
16993 struct die_info *child_die;
16994 int nparams, iparams;
16995
16996 /* Count the number of parameters.
16997 FIXME: GDB currently ignores vararg functions, but knows about
16998 vararg member functions. */
16999 nparams = 0;
17000 child_die = die->child;
17001 while (child_die && child_die->tag)
17002 {
17003 if (child_die->tag == DW_TAG_formal_parameter)
17004 nparams++;
17005 else if (child_die->tag == DW_TAG_unspecified_parameters)
17006 TYPE_VARARGS (ftype) = 1;
17007 child_die = child_die->sibling;
17008 }
17009
17010 /* Allocate storage for parameters and fill them in. */
17011 TYPE_NFIELDS (ftype) = nparams;
17012 TYPE_FIELDS (ftype) = (struct field *)
17013 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17014
17015 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17016 even if we error out during the parameters reading below. */
17017 for (iparams = 0; iparams < nparams; iparams++)
17018 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17019
17020 iparams = 0;
17021 child_die = die->child;
17022 while (child_die && child_die->tag)
17023 {
17024 if (child_die->tag == DW_TAG_formal_parameter)
17025 {
17026 struct type *arg_type;
17027
17028 /* DWARF version 2 has no clean way to discern C++
17029 static and non-static member functions. G++ helps
17030 GDB by marking the first parameter for non-static
17031 member functions (which is the this pointer) as
17032 artificial. We pass this information to
17033 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17034
17035 DWARF version 3 added DW_AT_object_pointer, which GCC
17036 4.5 does not yet generate. */
17037 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17038 if (attr != nullptr)
17039 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17040 else
17041 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17042 arg_type = die_type (child_die, cu);
17043
17044 /* RealView does not mark THIS as const, which the testsuite
17045 expects. GCC marks THIS as const in method definitions,
17046 but not in the class specifications (GCC PR 43053). */
17047 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17048 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17049 {
17050 int is_this = 0;
17051 struct dwarf2_cu *arg_cu = cu;
17052 const char *name = dwarf2_name (child_die, cu);
17053
17054 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17055 if (attr != nullptr)
17056 {
17057 /* If the compiler emits this, use it. */
17058 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17059 is_this = 1;
17060 }
17061 else if (name && strcmp (name, "this") == 0)
17062 /* Function definitions will have the argument names. */
17063 is_this = 1;
17064 else if (name == NULL && iparams == 0)
17065 /* Declarations may not have the names, so like
17066 elsewhere in GDB, assume an artificial first
17067 argument is "this". */
17068 is_this = 1;
17069
17070 if (is_this)
17071 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17072 arg_type, 0);
17073 }
17074
17075 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17076 iparams++;
17077 }
17078 child_die = child_die->sibling;
17079 }
17080 }
17081
17082 return ftype;
17083 }
17084
17085 static struct type *
17086 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17087 {
17088 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17089 const char *name = NULL;
17090 struct type *this_type, *target_type;
17091
17092 name = dwarf2_full_name (NULL, die, cu);
17093 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17094 TYPE_TARGET_STUB (this_type) = 1;
17095 set_die_type (die, this_type, cu);
17096 target_type = die_type (die, cu);
17097 if (target_type != this_type)
17098 TYPE_TARGET_TYPE (this_type) = target_type;
17099 else
17100 {
17101 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17102 spec and cause infinite loops in GDB. */
17103 complaint (_("Self-referential DW_TAG_typedef "
17104 "- DIE at %s [in module %s]"),
17105 sect_offset_str (die->sect_off), objfile_name (objfile));
17106 TYPE_TARGET_TYPE (this_type) = NULL;
17107 }
17108 if (name == NULL)
17109 {
17110 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17111 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17112 Handle these by just returning the target type, rather than
17113 constructing an anonymous typedef type and trying to handle this
17114 elsewhere. */
17115 set_die_type (die, target_type, cu);
17116 return target_type;
17117 }
17118 return this_type;
17119 }
17120
17121 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17122 (which may be different from NAME) to the architecture back-end to allow
17123 it to guess the correct format if necessary. */
17124
17125 static struct type *
17126 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17127 const char *name_hint, enum bfd_endian byte_order)
17128 {
17129 struct gdbarch *gdbarch = objfile->arch ();
17130 const struct floatformat **format;
17131 struct type *type;
17132
17133 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17134 if (format)
17135 type = init_float_type (objfile, bits, name, format, byte_order);
17136 else
17137 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17138
17139 return type;
17140 }
17141
17142 /* Allocate an integer type of size BITS and name NAME. */
17143
17144 static struct type *
17145 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17146 int bits, int unsigned_p, const char *name)
17147 {
17148 struct type *type;
17149
17150 /* Versions of Intel's C Compiler generate an integer type called "void"
17151 instead of using DW_TAG_unspecified_type. This has been seen on
17152 at least versions 14, 17, and 18. */
17153 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17154 && strcmp (name, "void") == 0)
17155 type = objfile_type (objfile)->builtin_void;
17156 else
17157 type = init_integer_type (objfile, bits, unsigned_p, name);
17158
17159 return type;
17160 }
17161
17162 /* Initialise and return a floating point type of size BITS suitable for
17163 use as a component of a complex number. The NAME_HINT is passed through
17164 when initialising the floating point type and is the name of the complex
17165 type.
17166
17167 As DWARF doesn't currently provide an explicit name for the components
17168 of a complex number, but it can be helpful to have these components
17169 named, we try to select a suitable name based on the size of the
17170 component. */
17171 static struct type *
17172 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17173 struct objfile *objfile,
17174 int bits, const char *name_hint,
17175 enum bfd_endian byte_order)
17176 {
17177 gdbarch *gdbarch = objfile->arch ();
17178 struct type *tt = nullptr;
17179
17180 /* Try to find a suitable floating point builtin type of size BITS.
17181 We're going to use the name of this type as the name for the complex
17182 target type that we are about to create. */
17183 switch (cu->language)
17184 {
17185 case language_fortran:
17186 switch (bits)
17187 {
17188 case 32:
17189 tt = builtin_f_type (gdbarch)->builtin_real;
17190 break;
17191 case 64:
17192 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17193 break;
17194 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17195 case 128:
17196 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17197 break;
17198 }
17199 break;
17200 default:
17201 switch (bits)
17202 {
17203 case 32:
17204 tt = builtin_type (gdbarch)->builtin_float;
17205 break;
17206 case 64:
17207 tt = builtin_type (gdbarch)->builtin_double;
17208 break;
17209 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17210 case 128:
17211 tt = builtin_type (gdbarch)->builtin_long_double;
17212 break;
17213 }
17214 break;
17215 }
17216
17217 /* If the type we found doesn't match the size we were looking for, then
17218 pretend we didn't find a type at all, the complex target type we
17219 create will then be nameless. */
17220 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17221 tt = nullptr;
17222
17223 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17224 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17225 }
17226
17227 /* Find a representation of a given base type and install
17228 it in the TYPE field of the die. */
17229
17230 static struct type *
17231 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17232 {
17233 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17234 struct type *type;
17235 struct attribute *attr;
17236 int encoding = 0, bits = 0;
17237 const char *name;
17238 gdbarch *arch;
17239
17240 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17241 if (attr != nullptr)
17242 encoding = DW_UNSND (attr);
17243 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17244 if (attr != nullptr)
17245 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17246 name = dwarf2_name (die, cu);
17247 if (!name)
17248 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17249
17250 arch = objfile->arch ();
17251 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17252
17253 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17254 if (attr)
17255 {
17256 int endianity = DW_UNSND (attr);
17257
17258 switch (endianity)
17259 {
17260 case DW_END_big:
17261 byte_order = BFD_ENDIAN_BIG;
17262 break;
17263 case DW_END_little:
17264 byte_order = BFD_ENDIAN_LITTLE;
17265 break;
17266 default:
17267 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17268 break;
17269 }
17270 }
17271
17272 switch (encoding)
17273 {
17274 case DW_ATE_address:
17275 /* Turn DW_ATE_address into a void * pointer. */
17276 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17277 type = init_pointer_type (objfile, bits, name, type);
17278 break;
17279 case DW_ATE_boolean:
17280 type = init_boolean_type (objfile, bits, 1, name);
17281 break;
17282 case DW_ATE_complex_float:
17283 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17284 byte_order);
17285 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
17286 {
17287 if (name == nullptr)
17288 {
17289 struct obstack *obstack
17290 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17291 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17292 nullptr);
17293 }
17294 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17295 }
17296 else
17297 type = init_complex_type (name, type);
17298 break;
17299 case DW_ATE_decimal_float:
17300 type = init_decfloat_type (objfile, bits, name);
17301 break;
17302 case DW_ATE_float:
17303 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17304 break;
17305 case DW_ATE_signed:
17306 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17307 break;
17308 case DW_ATE_unsigned:
17309 if (cu->language == language_fortran
17310 && name
17311 && startswith (name, "character("))
17312 type = init_character_type (objfile, bits, 1, name);
17313 else
17314 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17315 break;
17316 case DW_ATE_signed_char:
17317 if (cu->language == language_ada || cu->language == language_m2
17318 || cu->language == language_pascal
17319 || cu->language == language_fortran)
17320 type = init_character_type (objfile, bits, 0, name);
17321 else
17322 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17323 break;
17324 case DW_ATE_unsigned_char:
17325 if (cu->language == language_ada || cu->language == language_m2
17326 || cu->language == language_pascal
17327 || cu->language == language_fortran
17328 || cu->language == language_rust)
17329 type = init_character_type (objfile, bits, 1, name);
17330 else
17331 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17332 break;
17333 case DW_ATE_UTF:
17334 {
17335 if (bits == 16)
17336 type = builtin_type (arch)->builtin_char16;
17337 else if (bits == 32)
17338 type = builtin_type (arch)->builtin_char32;
17339 else
17340 {
17341 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17342 bits);
17343 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17344 }
17345 return set_die_type (die, type, cu);
17346 }
17347 break;
17348
17349 default:
17350 complaint (_("unsupported DW_AT_encoding: '%s'"),
17351 dwarf_type_encoding_name (encoding));
17352 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17353 break;
17354 }
17355
17356 if (name && strcmp (name, "char") == 0)
17357 TYPE_NOSIGN (type) = 1;
17358
17359 maybe_set_alignment (cu, die, type);
17360
17361 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17362
17363 return set_die_type (die, type, cu);
17364 }
17365
17366 /* Parse dwarf attribute if it's a block, reference or constant and put the
17367 resulting value of the attribute into struct bound_prop.
17368 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17369
17370 static int
17371 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17372 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17373 struct type *default_type)
17374 {
17375 struct dwarf2_property_baton *baton;
17376 struct obstack *obstack
17377 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17378
17379 gdb_assert (default_type != NULL);
17380
17381 if (attr == NULL || prop == NULL)
17382 return 0;
17383
17384 if (attr->form_is_block ())
17385 {
17386 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17387 baton->property_type = default_type;
17388 baton->locexpr.per_cu = cu->per_cu;
17389 baton->locexpr.size = DW_BLOCK (attr)->size;
17390 baton->locexpr.data = DW_BLOCK (attr)->data;
17391 switch (attr->name)
17392 {
17393 case DW_AT_string_length:
17394 baton->locexpr.is_reference = true;
17395 break;
17396 default:
17397 baton->locexpr.is_reference = false;
17398 break;
17399 }
17400 prop->data.baton = baton;
17401 prop->kind = PROP_LOCEXPR;
17402 gdb_assert (prop->data.baton != NULL);
17403 }
17404 else if (attr->form_is_ref ())
17405 {
17406 struct dwarf2_cu *target_cu = cu;
17407 struct die_info *target_die;
17408 struct attribute *target_attr;
17409
17410 target_die = follow_die_ref (die, attr, &target_cu);
17411 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17412 if (target_attr == NULL)
17413 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17414 target_cu);
17415 if (target_attr == NULL)
17416 return 0;
17417
17418 switch (target_attr->name)
17419 {
17420 case DW_AT_location:
17421 if (target_attr->form_is_section_offset ())
17422 {
17423 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17424 baton->property_type = die_type (target_die, target_cu);
17425 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17426 prop->data.baton = baton;
17427 prop->kind = PROP_LOCLIST;
17428 gdb_assert (prop->data.baton != NULL);
17429 }
17430 else if (target_attr->form_is_block ())
17431 {
17432 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17433 baton->property_type = die_type (target_die, target_cu);
17434 baton->locexpr.per_cu = cu->per_cu;
17435 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17436 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17437 baton->locexpr.is_reference = true;
17438 prop->data.baton = baton;
17439 prop->kind = PROP_LOCEXPR;
17440 gdb_assert (prop->data.baton != NULL);
17441 }
17442 else
17443 {
17444 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17445 "dynamic property");
17446 return 0;
17447 }
17448 break;
17449 case DW_AT_data_member_location:
17450 {
17451 LONGEST offset;
17452
17453 if (!handle_data_member_location (target_die, target_cu,
17454 &offset))
17455 return 0;
17456
17457 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17458 baton->property_type = read_type_die (target_die->parent,
17459 target_cu);
17460 baton->offset_info.offset = offset;
17461 baton->offset_info.type = die_type (target_die, target_cu);
17462 prop->data.baton = baton;
17463 prop->kind = PROP_ADDR_OFFSET;
17464 break;
17465 }
17466 }
17467 }
17468 else if (attr->form_is_constant ())
17469 {
17470 prop->data.const_val = attr->constant_value (0);
17471 prop->kind = PROP_CONST;
17472 }
17473 else
17474 {
17475 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17476 dwarf2_name (die, cu));
17477 return 0;
17478 }
17479
17480 return 1;
17481 }
17482
17483 /* See read.h. */
17484
17485 struct type *
17486 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17487 {
17488 struct objfile *objfile = dwarf2_per_objfile->objfile;
17489 struct type *int_type;
17490
17491 /* Helper macro to examine the various builtin types. */
17492 #define TRY_TYPE(F) \
17493 int_type = (unsigned_p \
17494 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17495 : objfile_type (objfile)->builtin_ ## F); \
17496 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17497 return int_type
17498
17499 TRY_TYPE (char);
17500 TRY_TYPE (short);
17501 TRY_TYPE (int);
17502 TRY_TYPE (long);
17503 TRY_TYPE (long_long);
17504
17505 #undef TRY_TYPE
17506
17507 gdb_assert_not_reached ("unable to find suitable integer type");
17508 }
17509
17510 /* See read.h. */
17511
17512 struct type *
17513 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17514 {
17515 int addr_size = this->addr_size ();
17516 return int_type (addr_size, unsigned_p);
17517 }
17518
17519 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17520 present (which is valid) then compute the default type based on the
17521 compilation units address size. */
17522
17523 static struct type *
17524 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17525 {
17526 struct type *index_type = die_type (die, cu);
17527
17528 /* Dwarf-2 specifications explicitly allows to create subrange types
17529 without specifying a base type.
17530 In that case, the base type must be set to the type of
17531 the lower bound, upper bound or count, in that order, if any of these
17532 three attributes references an object that has a type.
17533 If no base type is found, the Dwarf-2 specifications say that
17534 a signed integer type of size equal to the size of an address should
17535 be used.
17536 For the following C code: `extern char gdb_int [];'
17537 GCC produces an empty range DIE.
17538 FIXME: muller/2010-05-28: Possible references to object for low bound,
17539 high bound or count are not yet handled by this code. */
17540 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17541 index_type = cu->per_cu->addr_sized_int_type (false);
17542
17543 return index_type;
17544 }
17545
17546 /* Read the given DW_AT_subrange DIE. */
17547
17548 static struct type *
17549 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17550 {
17551 struct type *base_type, *orig_base_type;
17552 struct type *range_type;
17553 struct attribute *attr;
17554 struct dynamic_prop low, high;
17555 int low_default_is_valid;
17556 int high_bound_is_count = 0;
17557 const char *name;
17558 ULONGEST negative_mask;
17559
17560 orig_base_type = read_subrange_index_type (die, cu);
17561
17562 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17563 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17564 creating the range type, but we use the result of check_typedef
17565 when examining properties of the type. */
17566 base_type = check_typedef (orig_base_type);
17567
17568 /* The die_type call above may have already set the type for this DIE. */
17569 range_type = get_die_type (die, cu);
17570 if (range_type)
17571 return range_type;
17572
17573 low.kind = PROP_CONST;
17574 high.kind = PROP_CONST;
17575 high.data.const_val = 0;
17576
17577 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17578 omitting DW_AT_lower_bound. */
17579 switch (cu->language)
17580 {
17581 case language_c:
17582 case language_cplus:
17583 low.data.const_val = 0;
17584 low_default_is_valid = 1;
17585 break;
17586 case language_fortran:
17587 low.data.const_val = 1;
17588 low_default_is_valid = 1;
17589 break;
17590 case language_d:
17591 case language_objc:
17592 case language_rust:
17593 low.data.const_val = 0;
17594 low_default_is_valid = (cu->header.version >= 4);
17595 break;
17596 case language_ada:
17597 case language_m2:
17598 case language_pascal:
17599 low.data.const_val = 1;
17600 low_default_is_valid = (cu->header.version >= 4);
17601 break;
17602 default:
17603 low.data.const_val = 0;
17604 low_default_is_valid = 0;
17605 break;
17606 }
17607
17608 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17609 if (attr != nullptr)
17610 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17611 else if (!low_default_is_valid)
17612 complaint (_("Missing DW_AT_lower_bound "
17613 "- DIE at %s [in module %s]"),
17614 sect_offset_str (die->sect_off),
17615 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17616
17617 struct attribute *attr_ub, *attr_count;
17618 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17619 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17620 {
17621 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17622 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17623 {
17624 /* If bounds are constant do the final calculation here. */
17625 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17626 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17627 else
17628 high_bound_is_count = 1;
17629 }
17630 else
17631 {
17632 if (attr_ub != NULL)
17633 complaint (_("Unresolved DW_AT_upper_bound "
17634 "- DIE at %s [in module %s]"),
17635 sect_offset_str (die->sect_off),
17636 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17637 if (attr_count != NULL)
17638 complaint (_("Unresolved DW_AT_count "
17639 "- DIE at %s [in module %s]"),
17640 sect_offset_str (die->sect_off),
17641 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17642 }
17643 }
17644
17645 LONGEST bias = 0;
17646 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17647 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17648 bias = bias_attr->constant_value (0);
17649
17650 /* Normally, the DWARF producers are expected to use a signed
17651 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17652 But this is unfortunately not always the case, as witnessed
17653 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17654 is used instead. To work around that ambiguity, we treat
17655 the bounds as signed, and thus sign-extend their values, when
17656 the base type is signed. */
17657 negative_mask =
17658 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17659 if (low.kind == PROP_CONST
17660 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17661 low.data.const_val |= negative_mask;
17662 if (high.kind == PROP_CONST
17663 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17664 high.data.const_val |= negative_mask;
17665
17666 /* Check for bit and byte strides. */
17667 struct dynamic_prop byte_stride_prop;
17668 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17669 if (attr_byte_stride != nullptr)
17670 {
17671 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17672 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17673 prop_type);
17674 }
17675
17676 struct dynamic_prop bit_stride_prop;
17677 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17678 if (attr_bit_stride != nullptr)
17679 {
17680 /* It only makes sense to have either a bit or byte stride. */
17681 if (attr_byte_stride != nullptr)
17682 {
17683 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17684 "- DIE at %s [in module %s]"),
17685 sect_offset_str (die->sect_off),
17686 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17687 attr_bit_stride = nullptr;
17688 }
17689 else
17690 {
17691 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17692 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17693 prop_type);
17694 }
17695 }
17696
17697 if (attr_byte_stride != nullptr
17698 || attr_bit_stride != nullptr)
17699 {
17700 bool byte_stride_p = (attr_byte_stride != nullptr);
17701 struct dynamic_prop *stride
17702 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17703
17704 range_type
17705 = create_range_type_with_stride (NULL, orig_base_type, &low,
17706 &high, bias, stride, byte_stride_p);
17707 }
17708 else
17709 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17710
17711 if (high_bound_is_count)
17712 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17713
17714 /* Ada expects an empty array on no boundary attributes. */
17715 if (attr == NULL && cu->language != language_ada)
17716 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17717
17718 name = dwarf2_name (die, cu);
17719 if (name)
17720 TYPE_NAME (range_type) = name;
17721
17722 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17723 if (attr != nullptr)
17724 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17725
17726 maybe_set_alignment (cu, die, range_type);
17727
17728 set_die_type (die, range_type, cu);
17729
17730 /* set_die_type should be already done. */
17731 set_descriptive_type (range_type, die, cu);
17732
17733 return range_type;
17734 }
17735
17736 static struct type *
17737 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17738 {
17739 struct type *type;
17740
17741 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17742 NULL);
17743 TYPE_NAME (type) = dwarf2_name (die, cu);
17744
17745 /* In Ada, an unspecified type is typically used when the description
17746 of the type is deferred to a different unit. When encountering
17747 such a type, we treat it as a stub, and try to resolve it later on,
17748 when needed. */
17749 if (cu->language == language_ada)
17750 TYPE_STUB (type) = 1;
17751
17752 return set_die_type (die, type, cu);
17753 }
17754
17755 /* Read a single die and all its descendents. Set the die's sibling
17756 field to NULL; set other fields in the die correctly, and set all
17757 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17758 location of the info_ptr after reading all of those dies. PARENT
17759 is the parent of the die in question. */
17760
17761 static struct die_info *
17762 read_die_and_children (const struct die_reader_specs *reader,
17763 const gdb_byte *info_ptr,
17764 const gdb_byte **new_info_ptr,
17765 struct die_info *parent)
17766 {
17767 struct die_info *die;
17768 const gdb_byte *cur_ptr;
17769
17770 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17771 if (die == NULL)
17772 {
17773 *new_info_ptr = cur_ptr;
17774 return NULL;
17775 }
17776 store_in_ref_table (die, reader->cu);
17777
17778 if (die->has_children)
17779 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17780 else
17781 {
17782 die->child = NULL;
17783 *new_info_ptr = cur_ptr;
17784 }
17785
17786 die->sibling = NULL;
17787 die->parent = parent;
17788 return die;
17789 }
17790
17791 /* Read a die, all of its descendents, and all of its siblings; set
17792 all of the fields of all of the dies correctly. Arguments are as
17793 in read_die_and_children. */
17794
17795 static struct die_info *
17796 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17797 const gdb_byte *info_ptr,
17798 const gdb_byte **new_info_ptr,
17799 struct die_info *parent)
17800 {
17801 struct die_info *first_die, *last_sibling;
17802 const gdb_byte *cur_ptr;
17803
17804 cur_ptr = info_ptr;
17805 first_die = last_sibling = NULL;
17806
17807 while (1)
17808 {
17809 struct die_info *die
17810 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17811
17812 if (die == NULL)
17813 {
17814 *new_info_ptr = cur_ptr;
17815 return first_die;
17816 }
17817
17818 if (!first_die)
17819 first_die = die;
17820 else
17821 last_sibling->sibling = die;
17822
17823 last_sibling = die;
17824 }
17825 }
17826
17827 /* Read a die, all of its descendents, and all of its siblings; set
17828 all of the fields of all of the dies correctly. Arguments are as
17829 in read_die_and_children.
17830 This the main entry point for reading a DIE and all its children. */
17831
17832 static struct die_info *
17833 read_die_and_siblings (const struct die_reader_specs *reader,
17834 const gdb_byte *info_ptr,
17835 const gdb_byte **new_info_ptr,
17836 struct die_info *parent)
17837 {
17838 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17839 new_info_ptr, parent);
17840
17841 if (dwarf_die_debug)
17842 {
17843 fprintf_unfiltered (gdb_stdlog,
17844 "Read die from %s@0x%x of %s:\n",
17845 reader->die_section->get_name (),
17846 (unsigned) (info_ptr - reader->die_section->buffer),
17847 bfd_get_filename (reader->abfd));
17848 dump_die (die, dwarf_die_debug);
17849 }
17850
17851 return die;
17852 }
17853
17854 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17855 attributes.
17856 The caller is responsible for filling in the extra attributes
17857 and updating (*DIEP)->num_attrs.
17858 Set DIEP to point to a newly allocated die with its information,
17859 except for its child, sibling, and parent fields. */
17860
17861 static const gdb_byte *
17862 read_full_die_1 (const struct die_reader_specs *reader,
17863 struct die_info **diep, const gdb_byte *info_ptr,
17864 int num_extra_attrs)
17865 {
17866 unsigned int abbrev_number, bytes_read, i;
17867 struct abbrev_info *abbrev;
17868 struct die_info *die;
17869 struct dwarf2_cu *cu = reader->cu;
17870 bfd *abfd = reader->abfd;
17871
17872 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17873 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17874 info_ptr += bytes_read;
17875 if (!abbrev_number)
17876 {
17877 *diep = NULL;
17878 return info_ptr;
17879 }
17880
17881 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17882 if (!abbrev)
17883 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17884 abbrev_number,
17885 bfd_get_filename (abfd));
17886
17887 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17888 die->sect_off = sect_off;
17889 die->tag = abbrev->tag;
17890 die->abbrev = abbrev_number;
17891 die->has_children = abbrev->has_children;
17892
17893 /* Make the result usable.
17894 The caller needs to update num_attrs after adding the extra
17895 attributes. */
17896 die->num_attrs = abbrev->num_attrs;
17897
17898 std::vector<int> indexes_that_need_reprocess;
17899 for (i = 0; i < abbrev->num_attrs; ++i)
17900 {
17901 bool need_reprocess;
17902 info_ptr =
17903 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17904 info_ptr, &need_reprocess);
17905 if (need_reprocess)
17906 indexes_that_need_reprocess.push_back (i);
17907 }
17908
17909 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17910 if (attr != nullptr)
17911 cu->str_offsets_base = DW_UNSND (attr);
17912
17913 attr = die->attr (DW_AT_loclists_base);
17914 if (attr != nullptr)
17915 cu->loclist_base = DW_UNSND (attr);
17916
17917 auto maybe_addr_base = die->addr_base ();
17918 if (maybe_addr_base.has_value ())
17919 cu->addr_base = *maybe_addr_base;
17920 for (int index : indexes_that_need_reprocess)
17921 read_attribute_reprocess (reader, &die->attrs[index]);
17922 *diep = die;
17923 return info_ptr;
17924 }
17925
17926 /* Read a die and all its attributes.
17927 Set DIEP to point to a newly allocated die with its information,
17928 except for its child, sibling, and parent fields. */
17929
17930 static const gdb_byte *
17931 read_full_die (const struct die_reader_specs *reader,
17932 struct die_info **diep, const gdb_byte *info_ptr)
17933 {
17934 const gdb_byte *result;
17935
17936 result = read_full_die_1 (reader, diep, info_ptr, 0);
17937
17938 if (dwarf_die_debug)
17939 {
17940 fprintf_unfiltered (gdb_stdlog,
17941 "Read die from %s@0x%x of %s:\n",
17942 reader->die_section->get_name (),
17943 (unsigned) (info_ptr - reader->die_section->buffer),
17944 bfd_get_filename (reader->abfd));
17945 dump_die (*diep, dwarf_die_debug);
17946 }
17947
17948 return result;
17949 }
17950 \f
17951
17952 /* Returns nonzero if TAG represents a type that we might generate a partial
17953 symbol for. */
17954
17955 static int
17956 is_type_tag_for_partial (int tag)
17957 {
17958 switch (tag)
17959 {
17960 #if 0
17961 /* Some types that would be reasonable to generate partial symbols for,
17962 that we don't at present. */
17963 case DW_TAG_array_type:
17964 case DW_TAG_file_type:
17965 case DW_TAG_ptr_to_member_type:
17966 case DW_TAG_set_type:
17967 case DW_TAG_string_type:
17968 case DW_TAG_subroutine_type:
17969 #endif
17970 case DW_TAG_base_type:
17971 case DW_TAG_class_type:
17972 case DW_TAG_interface_type:
17973 case DW_TAG_enumeration_type:
17974 case DW_TAG_structure_type:
17975 case DW_TAG_subrange_type:
17976 case DW_TAG_typedef:
17977 case DW_TAG_union_type:
17978 return 1;
17979 default:
17980 return 0;
17981 }
17982 }
17983
17984 /* Load all DIEs that are interesting for partial symbols into memory. */
17985
17986 static struct partial_die_info *
17987 load_partial_dies (const struct die_reader_specs *reader,
17988 const gdb_byte *info_ptr, int building_psymtab)
17989 {
17990 struct dwarf2_cu *cu = reader->cu;
17991 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17992 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17993 unsigned int bytes_read;
17994 unsigned int load_all = 0;
17995 int nesting_level = 1;
17996
17997 parent_die = NULL;
17998 last_die = NULL;
17999
18000 gdb_assert (cu->per_cu != NULL);
18001 if (cu->per_cu->load_all_dies)
18002 load_all = 1;
18003
18004 cu->partial_dies
18005 = htab_create_alloc_ex (cu->header.length / 12,
18006 partial_die_hash,
18007 partial_die_eq,
18008 NULL,
18009 &cu->comp_unit_obstack,
18010 hashtab_obstack_allocate,
18011 dummy_obstack_deallocate);
18012
18013 while (1)
18014 {
18015 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18016
18017 /* A NULL abbrev means the end of a series of children. */
18018 if (abbrev == NULL)
18019 {
18020 if (--nesting_level == 0)
18021 return first_die;
18022
18023 info_ptr += bytes_read;
18024 last_die = parent_die;
18025 parent_die = parent_die->die_parent;
18026 continue;
18027 }
18028
18029 /* Check for template arguments. We never save these; if
18030 they're seen, we just mark the parent, and go on our way. */
18031 if (parent_die != NULL
18032 && cu->language == language_cplus
18033 && (abbrev->tag == DW_TAG_template_type_param
18034 || abbrev->tag == DW_TAG_template_value_param))
18035 {
18036 parent_die->has_template_arguments = 1;
18037
18038 if (!load_all)
18039 {
18040 /* We don't need a partial DIE for the template argument. */
18041 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18042 continue;
18043 }
18044 }
18045
18046 /* We only recurse into c++ subprograms looking for template arguments.
18047 Skip their other children. */
18048 if (!load_all
18049 && cu->language == language_cplus
18050 && parent_die != NULL
18051 && parent_die->tag == DW_TAG_subprogram)
18052 {
18053 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18054 continue;
18055 }
18056
18057 /* Check whether this DIE is interesting enough to save. Normally
18058 we would not be interested in members here, but there may be
18059 later variables referencing them via DW_AT_specification (for
18060 static members). */
18061 if (!load_all
18062 && !is_type_tag_for_partial (abbrev->tag)
18063 && abbrev->tag != DW_TAG_constant
18064 && abbrev->tag != DW_TAG_enumerator
18065 && abbrev->tag != DW_TAG_subprogram
18066 && abbrev->tag != DW_TAG_inlined_subroutine
18067 && abbrev->tag != DW_TAG_lexical_block
18068 && abbrev->tag != DW_TAG_variable
18069 && abbrev->tag != DW_TAG_namespace
18070 && abbrev->tag != DW_TAG_module
18071 && abbrev->tag != DW_TAG_member
18072 && abbrev->tag != DW_TAG_imported_unit
18073 && abbrev->tag != DW_TAG_imported_declaration)
18074 {
18075 /* Otherwise we skip to the next sibling, if any. */
18076 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18077 continue;
18078 }
18079
18080 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18081 abbrev);
18082
18083 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18084
18085 /* This two-pass algorithm for processing partial symbols has a
18086 high cost in cache pressure. Thus, handle some simple cases
18087 here which cover the majority of C partial symbols. DIEs
18088 which neither have specification tags in them, nor could have
18089 specification tags elsewhere pointing at them, can simply be
18090 processed and discarded.
18091
18092 This segment is also optional; scan_partial_symbols and
18093 add_partial_symbol will handle these DIEs if we chain
18094 them in normally. When compilers which do not emit large
18095 quantities of duplicate debug information are more common,
18096 this code can probably be removed. */
18097
18098 /* Any complete simple types at the top level (pretty much all
18099 of them, for a language without namespaces), can be processed
18100 directly. */
18101 if (parent_die == NULL
18102 && pdi.has_specification == 0
18103 && pdi.is_declaration == 0
18104 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18105 || pdi.tag == DW_TAG_base_type
18106 || pdi.tag == DW_TAG_subrange_type))
18107 {
18108 if (building_psymtab && pdi.name != NULL)
18109 add_psymbol_to_list (pdi.name, false,
18110 VAR_DOMAIN, LOC_TYPEDEF, -1,
18111 psymbol_placement::STATIC,
18112 0, cu->language, objfile);
18113 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18114 continue;
18115 }
18116
18117 /* The exception for DW_TAG_typedef with has_children above is
18118 a workaround of GCC PR debug/47510. In the case of this complaint
18119 type_name_or_error will error on such types later.
18120
18121 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18122 it could not find the child DIEs referenced later, this is checked
18123 above. In correct DWARF DW_TAG_typedef should have no children. */
18124
18125 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18126 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18127 "- DIE at %s [in module %s]"),
18128 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18129
18130 /* If we're at the second level, and we're an enumerator, and
18131 our parent has no specification (meaning possibly lives in a
18132 namespace elsewhere), then we can add the partial symbol now
18133 instead of queueing it. */
18134 if (pdi.tag == DW_TAG_enumerator
18135 && parent_die != NULL
18136 && parent_die->die_parent == NULL
18137 && parent_die->tag == DW_TAG_enumeration_type
18138 && parent_die->has_specification == 0)
18139 {
18140 if (pdi.name == NULL)
18141 complaint (_("malformed enumerator DIE ignored"));
18142 else if (building_psymtab)
18143 add_psymbol_to_list (pdi.name, false,
18144 VAR_DOMAIN, LOC_CONST, -1,
18145 cu->language == language_cplus
18146 ? psymbol_placement::GLOBAL
18147 : psymbol_placement::STATIC,
18148 0, cu->language, objfile);
18149
18150 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18151 continue;
18152 }
18153
18154 struct partial_die_info *part_die
18155 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18156
18157 /* We'll save this DIE so link it in. */
18158 part_die->die_parent = parent_die;
18159 part_die->die_sibling = NULL;
18160 part_die->die_child = NULL;
18161
18162 if (last_die && last_die == parent_die)
18163 last_die->die_child = part_die;
18164 else if (last_die)
18165 last_die->die_sibling = part_die;
18166
18167 last_die = part_die;
18168
18169 if (first_die == NULL)
18170 first_die = part_die;
18171
18172 /* Maybe add the DIE to the hash table. Not all DIEs that we
18173 find interesting need to be in the hash table, because we
18174 also have the parent/sibling/child chains; only those that we
18175 might refer to by offset later during partial symbol reading.
18176
18177 For now this means things that might have be the target of a
18178 DW_AT_specification, DW_AT_abstract_origin, or
18179 DW_AT_extension. DW_AT_extension will refer only to
18180 namespaces; DW_AT_abstract_origin refers to functions (and
18181 many things under the function DIE, but we do not recurse
18182 into function DIEs during partial symbol reading) and
18183 possibly variables as well; DW_AT_specification refers to
18184 declarations. Declarations ought to have the DW_AT_declaration
18185 flag. It happens that GCC forgets to put it in sometimes, but
18186 only for functions, not for types.
18187
18188 Adding more things than necessary to the hash table is harmless
18189 except for the performance cost. Adding too few will result in
18190 wasted time in find_partial_die, when we reread the compilation
18191 unit with load_all_dies set. */
18192
18193 if (load_all
18194 || abbrev->tag == DW_TAG_constant
18195 || abbrev->tag == DW_TAG_subprogram
18196 || abbrev->tag == DW_TAG_variable
18197 || abbrev->tag == DW_TAG_namespace
18198 || part_die->is_declaration)
18199 {
18200 void **slot;
18201
18202 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18203 to_underlying (part_die->sect_off),
18204 INSERT);
18205 *slot = part_die;
18206 }
18207
18208 /* For some DIEs we want to follow their children (if any). For C
18209 we have no reason to follow the children of structures; for other
18210 languages we have to, so that we can get at method physnames
18211 to infer fully qualified class names, for DW_AT_specification,
18212 and for C++ template arguments. For C++, we also look one level
18213 inside functions to find template arguments (if the name of the
18214 function does not already contain the template arguments).
18215
18216 For Ada and Fortran, we need to scan the children of subprograms
18217 and lexical blocks as well because these languages allow the
18218 definition of nested entities that could be interesting for the
18219 debugger, such as nested subprograms for instance. */
18220 if (last_die->has_children
18221 && (load_all
18222 || last_die->tag == DW_TAG_namespace
18223 || last_die->tag == DW_TAG_module
18224 || last_die->tag == DW_TAG_enumeration_type
18225 || (cu->language == language_cplus
18226 && last_die->tag == DW_TAG_subprogram
18227 && (last_die->name == NULL
18228 || strchr (last_die->name, '<') == NULL))
18229 || (cu->language != language_c
18230 && (last_die->tag == DW_TAG_class_type
18231 || last_die->tag == DW_TAG_interface_type
18232 || last_die->tag == DW_TAG_structure_type
18233 || last_die->tag == DW_TAG_union_type))
18234 || ((cu->language == language_ada
18235 || cu->language == language_fortran)
18236 && (last_die->tag == DW_TAG_subprogram
18237 || last_die->tag == DW_TAG_lexical_block))))
18238 {
18239 nesting_level++;
18240 parent_die = last_die;
18241 continue;
18242 }
18243
18244 /* Otherwise we skip to the next sibling, if any. */
18245 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18246
18247 /* Back to the top, do it again. */
18248 }
18249 }
18250
18251 partial_die_info::partial_die_info (sect_offset sect_off_,
18252 struct abbrev_info *abbrev)
18253 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18254 {
18255 }
18256
18257 /* Read a minimal amount of information into the minimal die structure.
18258 INFO_PTR should point just after the initial uleb128 of a DIE. */
18259
18260 const gdb_byte *
18261 partial_die_info::read (const struct die_reader_specs *reader,
18262 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18263 {
18264 struct dwarf2_cu *cu = reader->cu;
18265 struct dwarf2_per_objfile *dwarf2_per_objfile
18266 = cu->per_cu->dwarf2_per_objfile;
18267 unsigned int i;
18268 int has_low_pc_attr = 0;
18269 int has_high_pc_attr = 0;
18270 int high_pc_relative = 0;
18271
18272 for (i = 0; i < abbrev.num_attrs; ++i)
18273 {
18274 attribute attr;
18275 bool need_reprocess;
18276 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18277 info_ptr, &need_reprocess);
18278 /* String and address offsets that need to do the reprocessing have
18279 already been read at this point, so there is no need to wait until
18280 the loop terminates to do the reprocessing. */
18281 if (need_reprocess)
18282 read_attribute_reprocess (reader, &attr);
18283 /* Store the data if it is of an attribute we want to keep in a
18284 partial symbol table. */
18285 switch (attr.name)
18286 {
18287 case DW_AT_name:
18288 switch (tag)
18289 {
18290 case DW_TAG_compile_unit:
18291 case DW_TAG_partial_unit:
18292 case DW_TAG_type_unit:
18293 /* Compilation units have a DW_AT_name that is a filename, not
18294 a source language identifier. */
18295 case DW_TAG_enumeration_type:
18296 case DW_TAG_enumerator:
18297 /* These tags always have simple identifiers already; no need
18298 to canonicalize them. */
18299 name = DW_STRING (&attr);
18300 break;
18301 default:
18302 {
18303 struct objfile *objfile = dwarf2_per_objfile->objfile;
18304
18305 name
18306 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18307 }
18308 break;
18309 }
18310 break;
18311 case DW_AT_linkage_name:
18312 case DW_AT_MIPS_linkage_name:
18313 /* Note that both forms of linkage name might appear. We
18314 assume they will be the same, and we only store the last
18315 one we see. */
18316 linkage_name = attr.value_as_string ();
18317 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18318 See https://github.com/rust-lang/rust/issues/32925. */
18319 if (cu->language == language_rust && linkage_name != NULL
18320 && strchr (linkage_name, '{') != NULL)
18321 linkage_name = NULL;
18322 break;
18323 case DW_AT_low_pc:
18324 has_low_pc_attr = 1;
18325 lowpc = attr.value_as_address ();
18326 break;
18327 case DW_AT_high_pc:
18328 has_high_pc_attr = 1;
18329 highpc = attr.value_as_address ();
18330 if (cu->header.version >= 4 && attr.form_is_constant ())
18331 high_pc_relative = 1;
18332 break;
18333 case DW_AT_location:
18334 /* Support the .debug_loc offsets. */
18335 if (attr.form_is_block ())
18336 {
18337 d.locdesc = DW_BLOCK (&attr);
18338 }
18339 else if (attr.form_is_section_offset ())
18340 {
18341 dwarf2_complex_location_expr_complaint ();
18342 }
18343 else
18344 {
18345 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18346 "partial symbol information");
18347 }
18348 break;
18349 case DW_AT_external:
18350 is_external = DW_UNSND (&attr);
18351 break;
18352 case DW_AT_declaration:
18353 is_declaration = DW_UNSND (&attr);
18354 break;
18355 case DW_AT_type:
18356 has_type = 1;
18357 break;
18358 case DW_AT_abstract_origin:
18359 case DW_AT_specification:
18360 case DW_AT_extension:
18361 has_specification = 1;
18362 spec_offset = attr.get_ref_die_offset ();
18363 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18364 || cu->per_cu->is_dwz);
18365 break;
18366 case DW_AT_sibling:
18367 /* Ignore absolute siblings, they might point outside of
18368 the current compile unit. */
18369 if (attr.form == DW_FORM_ref_addr)
18370 complaint (_("ignoring absolute DW_AT_sibling"));
18371 else
18372 {
18373 const gdb_byte *buffer = reader->buffer;
18374 sect_offset off = attr.get_ref_die_offset ();
18375 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18376
18377 if (sibling_ptr < info_ptr)
18378 complaint (_("DW_AT_sibling points backwards"));
18379 else if (sibling_ptr > reader->buffer_end)
18380 reader->die_section->overflow_complaint ();
18381 else
18382 sibling = sibling_ptr;
18383 }
18384 break;
18385 case DW_AT_byte_size:
18386 has_byte_size = 1;
18387 break;
18388 case DW_AT_const_value:
18389 has_const_value = 1;
18390 break;
18391 case DW_AT_calling_convention:
18392 /* DWARF doesn't provide a way to identify a program's source-level
18393 entry point. DW_AT_calling_convention attributes are only meant
18394 to describe functions' calling conventions.
18395
18396 However, because it's a necessary piece of information in
18397 Fortran, and before DWARF 4 DW_CC_program was the only
18398 piece of debugging information whose definition refers to
18399 a 'main program' at all, several compilers marked Fortran
18400 main programs with DW_CC_program --- even when those
18401 functions use the standard calling conventions.
18402
18403 Although DWARF now specifies a way to provide this
18404 information, we support this practice for backward
18405 compatibility. */
18406 if (DW_UNSND (&attr) == DW_CC_program
18407 && cu->language == language_fortran)
18408 main_subprogram = 1;
18409 break;
18410 case DW_AT_inline:
18411 if (DW_UNSND (&attr) == DW_INL_inlined
18412 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18413 may_be_inlined = 1;
18414 break;
18415
18416 case DW_AT_import:
18417 if (tag == DW_TAG_imported_unit)
18418 {
18419 d.sect_off = attr.get_ref_die_offset ();
18420 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18421 || cu->per_cu->is_dwz);
18422 }
18423 break;
18424
18425 case DW_AT_main_subprogram:
18426 main_subprogram = DW_UNSND (&attr);
18427 break;
18428
18429 case DW_AT_ranges:
18430 {
18431 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18432 but that requires a full DIE, so instead we just
18433 reimplement it. */
18434 int need_ranges_base = tag != DW_TAG_compile_unit;
18435 unsigned int ranges_offset = (DW_UNSND (&attr)
18436 + (need_ranges_base
18437 ? cu->ranges_base
18438 : 0));
18439
18440 /* Value of the DW_AT_ranges attribute is the offset in the
18441 .debug_ranges section. */
18442 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18443 nullptr))
18444 has_pc_info = 1;
18445 }
18446 break;
18447
18448 default:
18449 break;
18450 }
18451 }
18452
18453 /* For Ada, if both the name and the linkage name appear, we prefer
18454 the latter. This lets "catch exception" work better, regardless
18455 of the order in which the name and linkage name were emitted.
18456 Really, though, this is just a workaround for the fact that gdb
18457 doesn't store both the name and the linkage name. */
18458 if (cu->language == language_ada && linkage_name != nullptr)
18459 name = linkage_name;
18460
18461 if (high_pc_relative)
18462 highpc += lowpc;
18463
18464 if (has_low_pc_attr && has_high_pc_attr)
18465 {
18466 /* When using the GNU linker, .gnu.linkonce. sections are used to
18467 eliminate duplicate copies of functions and vtables and such.
18468 The linker will arbitrarily choose one and discard the others.
18469 The AT_*_pc values for such functions refer to local labels in
18470 these sections. If the section from that file was discarded, the
18471 labels are not in the output, so the relocs get a value of 0.
18472 If this is a discarded function, mark the pc bounds as invalid,
18473 so that GDB will ignore it. */
18474 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18475 {
18476 struct objfile *objfile = dwarf2_per_objfile->objfile;
18477 struct gdbarch *gdbarch = objfile->arch ();
18478
18479 complaint (_("DW_AT_low_pc %s is zero "
18480 "for DIE at %s [in module %s]"),
18481 paddress (gdbarch, lowpc),
18482 sect_offset_str (sect_off),
18483 objfile_name (objfile));
18484 }
18485 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18486 else if (lowpc >= highpc)
18487 {
18488 struct objfile *objfile = dwarf2_per_objfile->objfile;
18489 struct gdbarch *gdbarch = objfile->arch ();
18490
18491 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18492 "for DIE at %s [in module %s]"),
18493 paddress (gdbarch, lowpc),
18494 paddress (gdbarch, highpc),
18495 sect_offset_str (sect_off),
18496 objfile_name (objfile));
18497 }
18498 else
18499 has_pc_info = 1;
18500 }
18501
18502 return info_ptr;
18503 }
18504
18505 /* Find a cached partial DIE at OFFSET in CU. */
18506
18507 struct partial_die_info *
18508 dwarf2_cu::find_partial_die (sect_offset sect_off)
18509 {
18510 struct partial_die_info *lookup_die = NULL;
18511 struct partial_die_info part_die (sect_off);
18512
18513 lookup_die = ((struct partial_die_info *)
18514 htab_find_with_hash (partial_dies, &part_die,
18515 to_underlying (sect_off)));
18516
18517 return lookup_die;
18518 }
18519
18520 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18521 except in the case of .debug_types DIEs which do not reference
18522 outside their CU (they do however referencing other types via
18523 DW_FORM_ref_sig8). */
18524
18525 static const struct cu_partial_die_info
18526 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18527 {
18528 struct dwarf2_per_objfile *dwarf2_per_objfile
18529 = cu->per_cu->dwarf2_per_objfile;
18530 struct objfile *objfile = dwarf2_per_objfile->objfile;
18531 struct dwarf2_per_cu_data *per_cu = NULL;
18532 struct partial_die_info *pd = NULL;
18533
18534 if (offset_in_dwz == cu->per_cu->is_dwz
18535 && cu->header.offset_in_cu_p (sect_off))
18536 {
18537 pd = cu->find_partial_die (sect_off);
18538 if (pd != NULL)
18539 return { cu, pd };
18540 /* We missed recording what we needed.
18541 Load all dies and try again. */
18542 per_cu = cu->per_cu;
18543 }
18544 else
18545 {
18546 /* TUs don't reference other CUs/TUs (except via type signatures). */
18547 if (cu->per_cu->is_debug_types)
18548 {
18549 error (_("Dwarf Error: Type Unit at offset %s contains"
18550 " external reference to offset %s [in module %s].\n"),
18551 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18552 bfd_get_filename (objfile->obfd));
18553 }
18554 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18555 dwarf2_per_objfile);
18556
18557 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18558 load_partial_comp_unit (per_cu);
18559
18560 per_cu->cu->last_used = 0;
18561 pd = per_cu->cu->find_partial_die (sect_off);
18562 }
18563
18564 /* If we didn't find it, and not all dies have been loaded,
18565 load them all and try again. */
18566
18567 if (pd == NULL && per_cu->load_all_dies == 0)
18568 {
18569 per_cu->load_all_dies = 1;
18570
18571 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18572 THIS_CU->cu may already be in use. So we can't just free it and
18573 replace its DIEs with the ones we read in. Instead, we leave those
18574 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18575 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18576 set. */
18577 load_partial_comp_unit (per_cu);
18578
18579 pd = per_cu->cu->find_partial_die (sect_off);
18580 }
18581
18582 if (pd == NULL)
18583 internal_error (__FILE__, __LINE__,
18584 _("could not find partial DIE %s "
18585 "in cache [from module %s]\n"),
18586 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18587 return { per_cu->cu, pd };
18588 }
18589
18590 /* See if we can figure out if the class lives in a namespace. We do
18591 this by looking for a member function; its demangled name will
18592 contain namespace info, if there is any. */
18593
18594 static void
18595 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18596 struct dwarf2_cu *cu)
18597 {
18598 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18599 what template types look like, because the demangler
18600 frequently doesn't give the same name as the debug info. We
18601 could fix this by only using the demangled name to get the
18602 prefix (but see comment in read_structure_type). */
18603
18604 struct partial_die_info *real_pdi;
18605 struct partial_die_info *child_pdi;
18606
18607 /* If this DIE (this DIE's specification, if any) has a parent, then
18608 we should not do this. We'll prepend the parent's fully qualified
18609 name when we create the partial symbol. */
18610
18611 real_pdi = struct_pdi;
18612 while (real_pdi->has_specification)
18613 {
18614 auto res = find_partial_die (real_pdi->spec_offset,
18615 real_pdi->spec_is_dwz, cu);
18616 real_pdi = res.pdi;
18617 cu = res.cu;
18618 }
18619
18620 if (real_pdi->die_parent != NULL)
18621 return;
18622
18623 for (child_pdi = struct_pdi->die_child;
18624 child_pdi != NULL;
18625 child_pdi = child_pdi->die_sibling)
18626 {
18627 if (child_pdi->tag == DW_TAG_subprogram
18628 && child_pdi->linkage_name != NULL)
18629 {
18630 gdb::unique_xmalloc_ptr<char> actual_class_name
18631 (language_class_name_from_physname (cu->language_defn,
18632 child_pdi->linkage_name));
18633 if (actual_class_name != NULL)
18634 {
18635 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18636 struct_pdi->name = objfile->intern (actual_class_name.get ());
18637 }
18638 break;
18639 }
18640 }
18641 }
18642
18643 /* Return true if a DIE with TAG may have the DW_AT_const_value
18644 attribute. */
18645
18646 static bool
18647 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18648 {
18649 switch (tag)
18650 {
18651 case DW_TAG_constant:
18652 case DW_TAG_enumerator:
18653 case DW_TAG_formal_parameter:
18654 case DW_TAG_template_value_param:
18655 case DW_TAG_variable:
18656 return true;
18657 }
18658
18659 return false;
18660 }
18661
18662 void
18663 partial_die_info::fixup (struct dwarf2_cu *cu)
18664 {
18665 /* Once we've fixed up a die, there's no point in doing so again.
18666 This also avoids a memory leak if we were to call
18667 guess_partial_die_structure_name multiple times. */
18668 if (fixup_called)
18669 return;
18670
18671 /* If we found a reference attribute and the DIE has no name, try
18672 to find a name in the referred to DIE. */
18673
18674 if (name == NULL && has_specification)
18675 {
18676 struct partial_die_info *spec_die;
18677
18678 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18679 spec_die = res.pdi;
18680 cu = res.cu;
18681
18682 spec_die->fixup (cu);
18683
18684 if (spec_die->name)
18685 {
18686 name = spec_die->name;
18687
18688 /* Copy DW_AT_external attribute if it is set. */
18689 if (spec_die->is_external)
18690 is_external = spec_die->is_external;
18691 }
18692 }
18693
18694 if (!has_const_value && has_specification
18695 && can_have_DW_AT_const_value_p (tag))
18696 {
18697 struct partial_die_info *spec_die;
18698
18699 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18700 spec_die = res.pdi;
18701 cu = res.cu;
18702
18703 spec_die->fixup (cu);
18704
18705 if (spec_die->has_const_value)
18706 {
18707 /* Copy DW_AT_const_value attribute if it is set. */
18708 has_const_value = spec_die->has_const_value;
18709 }
18710 }
18711
18712 /* Set default names for some unnamed DIEs. */
18713
18714 if (name == NULL && tag == DW_TAG_namespace)
18715 name = CP_ANONYMOUS_NAMESPACE_STR;
18716
18717 /* If there is no parent die to provide a namespace, and there are
18718 children, see if we can determine the namespace from their linkage
18719 name. */
18720 if (cu->language == language_cplus
18721 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18722 && die_parent == NULL
18723 && has_children
18724 && (tag == DW_TAG_class_type
18725 || tag == DW_TAG_structure_type
18726 || tag == DW_TAG_union_type))
18727 guess_partial_die_structure_name (this, cu);
18728
18729 /* GCC might emit a nameless struct or union that has a linkage
18730 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18731 if (name == NULL
18732 && (tag == DW_TAG_class_type
18733 || tag == DW_TAG_interface_type
18734 || tag == DW_TAG_structure_type
18735 || tag == DW_TAG_union_type)
18736 && linkage_name != NULL)
18737 {
18738 gdb::unique_xmalloc_ptr<char> demangled
18739 (gdb_demangle (linkage_name, DMGL_TYPES));
18740 if (demangled != nullptr)
18741 {
18742 const char *base;
18743
18744 /* Strip any leading namespaces/classes, keep only the base name.
18745 DW_AT_name for named DIEs does not contain the prefixes. */
18746 base = strrchr (demangled.get (), ':');
18747 if (base && base > demangled.get () && base[-1] == ':')
18748 base++;
18749 else
18750 base = demangled.get ();
18751
18752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18753 name = objfile->intern (base);
18754 }
18755 }
18756
18757 fixup_called = 1;
18758 }
18759
18760 /* Read the .debug_loclists header contents from the given SECTION in the
18761 HEADER. */
18762 static void
18763 read_loclist_header (struct loclist_header *header,
18764 struct dwarf2_section_info *section)
18765 {
18766 unsigned int bytes_read;
18767 bfd *abfd = section->get_bfd_owner ();
18768 const gdb_byte *info_ptr = section->buffer;
18769 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18770 info_ptr += bytes_read;
18771 header->version = read_2_bytes (abfd, info_ptr);
18772 info_ptr += 2;
18773 header->addr_size = read_1_byte (abfd, info_ptr);
18774 info_ptr += 1;
18775 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18776 info_ptr += 1;
18777 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18778 }
18779
18780 /* Return the DW_AT_loclists_base value for the CU. */
18781 static ULONGEST
18782 lookup_loclist_base (struct dwarf2_cu *cu)
18783 {
18784 /* For the .dwo unit, the loclist_base points to the first offset following
18785 the header. The header consists of the following entities-
18786 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18787 bit format)
18788 2. version (2 bytes)
18789 3. address size (1 byte)
18790 4. segment selector size (1 byte)
18791 5. offset entry count (4 bytes)
18792 These sizes are derived as per the DWARFv5 standard. */
18793 if (cu->dwo_unit != nullptr)
18794 {
18795 if (cu->header.initial_length_size == 4)
18796 return LOCLIST_HEADER_SIZE32;
18797 return LOCLIST_HEADER_SIZE64;
18798 }
18799 return cu->loclist_base;
18800 }
18801
18802 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18803 array of offsets in the .debug_loclists section. */
18804 static CORE_ADDR
18805 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18806 {
18807 struct dwarf2_per_objfile *dwarf2_per_objfile
18808 = cu->per_cu->dwarf2_per_objfile;
18809 struct objfile *objfile = dwarf2_per_objfile->objfile;
18810 bfd *abfd = objfile->obfd;
18811 ULONGEST loclist_base = lookup_loclist_base (cu);
18812 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18813
18814 section->read (objfile);
18815 if (section->buffer == NULL)
18816 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18817 "section [in module %s]"), objfile_name (objfile));
18818 struct loclist_header header;
18819 read_loclist_header (&header, section);
18820 if (loclist_index >= header.offset_entry_count)
18821 complaint (_("DW_FORM_loclistx pointing outside of "
18822 ".debug_loclists offset array [in module %s]"),
18823 objfile_name (objfile));
18824 if (loclist_base + loclist_index * cu->header.offset_size
18825 >= section->size)
18826 complaint (_("DW_FORM_loclistx pointing outside of "
18827 ".debug_loclists section [in module %s]"),
18828 objfile_name (objfile));
18829 const gdb_byte *info_ptr
18830 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18831
18832 if (cu->header.offset_size == 4)
18833 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18834 else
18835 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18836 }
18837
18838 /* Process the attributes that had to be skipped in the first round. These
18839 attributes are the ones that need str_offsets_base or addr_base attributes.
18840 They could not have been processed in the first round, because at the time
18841 the values of str_offsets_base or addr_base may not have been known. */
18842 static void
18843 read_attribute_reprocess (const struct die_reader_specs *reader,
18844 struct attribute *attr)
18845 {
18846 struct dwarf2_cu *cu = reader->cu;
18847 switch (attr->form)
18848 {
18849 case DW_FORM_addrx:
18850 case DW_FORM_GNU_addr_index:
18851 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18852 break;
18853 case DW_FORM_loclistx:
18854 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18855 break;
18856 case DW_FORM_strx:
18857 case DW_FORM_strx1:
18858 case DW_FORM_strx2:
18859 case DW_FORM_strx3:
18860 case DW_FORM_strx4:
18861 case DW_FORM_GNU_str_index:
18862 {
18863 unsigned int str_index = DW_UNSND (attr);
18864 if (reader->dwo_file != NULL)
18865 {
18866 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18867 DW_STRING_IS_CANONICAL (attr) = 0;
18868 }
18869 else
18870 {
18871 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18872 DW_STRING_IS_CANONICAL (attr) = 0;
18873 }
18874 break;
18875 }
18876 default:
18877 gdb_assert_not_reached (_("Unexpected DWARF form."));
18878 }
18879 }
18880
18881 /* Read an attribute value described by an attribute form. */
18882
18883 static const gdb_byte *
18884 read_attribute_value (const struct die_reader_specs *reader,
18885 struct attribute *attr, unsigned form,
18886 LONGEST implicit_const, const gdb_byte *info_ptr,
18887 bool *need_reprocess)
18888 {
18889 struct dwarf2_cu *cu = reader->cu;
18890 struct dwarf2_per_objfile *dwarf2_per_objfile
18891 = cu->per_cu->dwarf2_per_objfile;
18892 struct objfile *objfile = dwarf2_per_objfile->objfile;
18893 bfd *abfd = reader->abfd;
18894 struct comp_unit_head *cu_header = &cu->header;
18895 unsigned int bytes_read;
18896 struct dwarf_block *blk;
18897 *need_reprocess = false;
18898
18899 attr->form = (enum dwarf_form) form;
18900 switch (form)
18901 {
18902 case DW_FORM_ref_addr:
18903 if (cu->header.version == 2)
18904 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18905 &bytes_read);
18906 else
18907 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18908 &bytes_read);
18909 info_ptr += bytes_read;
18910 break;
18911 case DW_FORM_GNU_ref_alt:
18912 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18913 info_ptr += bytes_read;
18914 break;
18915 case DW_FORM_addr:
18916 {
18917 struct gdbarch *gdbarch = objfile->arch ();
18918 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18919 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18920 info_ptr += bytes_read;
18921 }
18922 break;
18923 case DW_FORM_block2:
18924 blk = dwarf_alloc_block (cu);
18925 blk->size = read_2_bytes (abfd, info_ptr);
18926 info_ptr += 2;
18927 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18928 info_ptr += blk->size;
18929 DW_BLOCK (attr) = blk;
18930 break;
18931 case DW_FORM_block4:
18932 blk = dwarf_alloc_block (cu);
18933 blk->size = read_4_bytes (abfd, info_ptr);
18934 info_ptr += 4;
18935 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18936 info_ptr += blk->size;
18937 DW_BLOCK (attr) = blk;
18938 break;
18939 case DW_FORM_data2:
18940 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18941 info_ptr += 2;
18942 break;
18943 case DW_FORM_data4:
18944 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18945 info_ptr += 4;
18946 break;
18947 case DW_FORM_data8:
18948 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18949 info_ptr += 8;
18950 break;
18951 case DW_FORM_data16:
18952 blk = dwarf_alloc_block (cu);
18953 blk->size = 16;
18954 blk->data = read_n_bytes (abfd, info_ptr, 16);
18955 info_ptr += 16;
18956 DW_BLOCK (attr) = blk;
18957 break;
18958 case DW_FORM_sec_offset:
18959 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18960 info_ptr += bytes_read;
18961 break;
18962 case DW_FORM_loclistx:
18963 {
18964 *need_reprocess = true;
18965 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18966 info_ptr += bytes_read;
18967 }
18968 break;
18969 case DW_FORM_string:
18970 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18971 DW_STRING_IS_CANONICAL (attr) = 0;
18972 info_ptr += bytes_read;
18973 break;
18974 case DW_FORM_strp:
18975 if (!cu->per_cu->is_dwz)
18976 {
18977 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18978 abfd, info_ptr, cu_header,
18979 &bytes_read);
18980 DW_STRING_IS_CANONICAL (attr) = 0;
18981 info_ptr += bytes_read;
18982 break;
18983 }
18984 /* FALLTHROUGH */
18985 case DW_FORM_line_strp:
18986 if (!cu->per_cu->is_dwz)
18987 {
18988 DW_STRING (attr)
18989 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18990 &bytes_read);
18991 DW_STRING_IS_CANONICAL (attr) = 0;
18992 info_ptr += bytes_read;
18993 break;
18994 }
18995 /* FALLTHROUGH */
18996 case DW_FORM_GNU_strp_alt:
18997 {
18998 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18999 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19000 &bytes_read);
19001
19002 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
19003 DW_STRING_IS_CANONICAL (attr) = 0;
19004 info_ptr += bytes_read;
19005 }
19006 break;
19007 case DW_FORM_exprloc:
19008 case DW_FORM_block:
19009 blk = dwarf_alloc_block (cu);
19010 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19011 info_ptr += bytes_read;
19012 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19013 info_ptr += blk->size;
19014 DW_BLOCK (attr) = blk;
19015 break;
19016 case DW_FORM_block1:
19017 blk = dwarf_alloc_block (cu);
19018 blk->size = read_1_byte (abfd, info_ptr);
19019 info_ptr += 1;
19020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19021 info_ptr += blk->size;
19022 DW_BLOCK (attr) = blk;
19023 break;
19024 case DW_FORM_data1:
19025 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19026 info_ptr += 1;
19027 break;
19028 case DW_FORM_flag:
19029 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19030 info_ptr += 1;
19031 break;
19032 case DW_FORM_flag_present:
19033 DW_UNSND (attr) = 1;
19034 break;
19035 case DW_FORM_sdata:
19036 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19037 info_ptr += bytes_read;
19038 break;
19039 case DW_FORM_udata:
19040 case DW_FORM_rnglistx:
19041 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19042 info_ptr += bytes_read;
19043 break;
19044 case DW_FORM_ref1:
19045 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19046 + read_1_byte (abfd, info_ptr));
19047 info_ptr += 1;
19048 break;
19049 case DW_FORM_ref2:
19050 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19051 + read_2_bytes (abfd, info_ptr));
19052 info_ptr += 2;
19053 break;
19054 case DW_FORM_ref4:
19055 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19056 + read_4_bytes (abfd, info_ptr));
19057 info_ptr += 4;
19058 break;
19059 case DW_FORM_ref8:
19060 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19061 + read_8_bytes (abfd, info_ptr));
19062 info_ptr += 8;
19063 break;
19064 case DW_FORM_ref_sig8:
19065 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19066 info_ptr += 8;
19067 break;
19068 case DW_FORM_ref_udata:
19069 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19070 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19071 info_ptr += bytes_read;
19072 break;
19073 case DW_FORM_indirect:
19074 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19075 info_ptr += bytes_read;
19076 if (form == DW_FORM_implicit_const)
19077 {
19078 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19079 info_ptr += bytes_read;
19080 }
19081 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19082 info_ptr, need_reprocess);
19083 break;
19084 case DW_FORM_implicit_const:
19085 DW_SND (attr) = implicit_const;
19086 break;
19087 case DW_FORM_addrx:
19088 case DW_FORM_GNU_addr_index:
19089 *need_reprocess = true;
19090 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19091 info_ptr += bytes_read;
19092 break;
19093 case DW_FORM_strx:
19094 case DW_FORM_strx1:
19095 case DW_FORM_strx2:
19096 case DW_FORM_strx3:
19097 case DW_FORM_strx4:
19098 case DW_FORM_GNU_str_index:
19099 {
19100 ULONGEST str_index;
19101 if (form == DW_FORM_strx1)
19102 {
19103 str_index = read_1_byte (abfd, info_ptr);
19104 info_ptr += 1;
19105 }
19106 else if (form == DW_FORM_strx2)
19107 {
19108 str_index = read_2_bytes (abfd, info_ptr);
19109 info_ptr += 2;
19110 }
19111 else if (form == DW_FORM_strx3)
19112 {
19113 str_index = read_3_bytes (abfd, info_ptr);
19114 info_ptr += 3;
19115 }
19116 else if (form == DW_FORM_strx4)
19117 {
19118 str_index = read_4_bytes (abfd, info_ptr);
19119 info_ptr += 4;
19120 }
19121 else
19122 {
19123 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19124 info_ptr += bytes_read;
19125 }
19126 *need_reprocess = true;
19127 DW_UNSND (attr) = str_index;
19128 }
19129 break;
19130 default:
19131 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19132 dwarf_form_name (form),
19133 bfd_get_filename (abfd));
19134 }
19135
19136 /* Super hack. */
19137 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19138 attr->form = DW_FORM_GNU_ref_alt;
19139
19140 /* We have seen instances where the compiler tried to emit a byte
19141 size attribute of -1 which ended up being encoded as an unsigned
19142 0xffffffff. Although 0xffffffff is technically a valid size value,
19143 an object of this size seems pretty unlikely so we can relatively
19144 safely treat these cases as if the size attribute was invalid and
19145 treat them as zero by default. */
19146 if (attr->name == DW_AT_byte_size
19147 && form == DW_FORM_data4
19148 && DW_UNSND (attr) >= 0xffffffff)
19149 {
19150 complaint
19151 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19152 hex_string (DW_UNSND (attr)));
19153 DW_UNSND (attr) = 0;
19154 }
19155
19156 return info_ptr;
19157 }
19158
19159 /* Read an attribute described by an abbreviated attribute. */
19160
19161 static const gdb_byte *
19162 read_attribute (const struct die_reader_specs *reader,
19163 struct attribute *attr, struct attr_abbrev *abbrev,
19164 const gdb_byte *info_ptr, bool *need_reprocess)
19165 {
19166 attr->name = abbrev->name;
19167 return read_attribute_value (reader, attr, abbrev->form,
19168 abbrev->implicit_const, info_ptr,
19169 need_reprocess);
19170 }
19171
19172 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19173
19174 static const char *
19175 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19176 LONGEST str_offset)
19177 {
19178 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19179 str_offset, "DW_FORM_strp");
19180 }
19181
19182 /* Return pointer to string at .debug_str offset as read from BUF.
19183 BUF is assumed to be in a compilation unit described by CU_HEADER.
19184 Return *BYTES_READ_PTR count of bytes read from BUF. */
19185
19186 static const char *
19187 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19188 const gdb_byte *buf,
19189 const struct comp_unit_head *cu_header,
19190 unsigned int *bytes_read_ptr)
19191 {
19192 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19193
19194 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19195 }
19196
19197 /* See read.h. */
19198
19199 const char *
19200 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19201 const struct comp_unit_head *cu_header,
19202 unsigned int *bytes_read_ptr)
19203 {
19204 bfd *abfd = objfile->obfd;
19205 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19206
19207 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19208 }
19209
19210 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19211 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19212 ADDR_SIZE is the size of addresses from the CU header. */
19213
19214 static CORE_ADDR
19215 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19216 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19217 int addr_size)
19218 {
19219 struct objfile *objfile = dwarf2_per_objfile->objfile;
19220 bfd *abfd = objfile->obfd;
19221 const gdb_byte *info_ptr;
19222 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19223
19224 dwarf2_per_objfile->addr.read (objfile);
19225 if (dwarf2_per_objfile->addr.buffer == NULL)
19226 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19227 objfile_name (objfile));
19228 if (addr_base_or_zero + addr_index * addr_size
19229 >= dwarf2_per_objfile->addr.size)
19230 error (_("DW_FORM_addr_index pointing outside of "
19231 ".debug_addr section [in module %s]"),
19232 objfile_name (objfile));
19233 info_ptr = (dwarf2_per_objfile->addr.buffer
19234 + addr_base_or_zero + addr_index * addr_size);
19235 if (addr_size == 4)
19236 return bfd_get_32 (abfd, info_ptr);
19237 else
19238 return bfd_get_64 (abfd, info_ptr);
19239 }
19240
19241 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19242
19243 static CORE_ADDR
19244 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19245 {
19246 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19247 cu->addr_base, cu->header.addr_size);
19248 }
19249
19250 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19251
19252 static CORE_ADDR
19253 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19254 unsigned int *bytes_read)
19255 {
19256 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19257 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19258
19259 return read_addr_index (cu, addr_index);
19260 }
19261
19262 /* See read.h. */
19263
19264 CORE_ADDR
19265 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19266 {
19267 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19268 struct dwarf2_cu *cu = per_cu->cu;
19269 gdb::optional<ULONGEST> addr_base;
19270 int addr_size;
19271
19272 /* We need addr_base and addr_size.
19273 If we don't have PER_CU->cu, we have to get it.
19274 Nasty, but the alternative is storing the needed info in PER_CU,
19275 which at this point doesn't seem justified: it's not clear how frequently
19276 it would get used and it would increase the size of every PER_CU.
19277 Entry points like dwarf2_per_cu_addr_size do a similar thing
19278 so we're not in uncharted territory here.
19279 Alas we need to be a bit more complicated as addr_base is contained
19280 in the DIE.
19281
19282 We don't need to read the entire CU(/TU).
19283 We just need the header and top level die.
19284
19285 IWBN to use the aging mechanism to let us lazily later discard the CU.
19286 For now we skip this optimization. */
19287
19288 if (cu != NULL)
19289 {
19290 addr_base = cu->addr_base;
19291 addr_size = cu->header.addr_size;
19292 }
19293 else
19294 {
19295 cutu_reader reader (per_cu, NULL, 0, false);
19296 addr_base = reader.cu->addr_base;
19297 addr_size = reader.cu->header.addr_size;
19298 }
19299
19300 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19301 addr_size);
19302 }
19303
19304 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19305 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19306 DWO file. */
19307
19308 static const char *
19309 read_str_index (struct dwarf2_cu *cu,
19310 struct dwarf2_section_info *str_section,
19311 struct dwarf2_section_info *str_offsets_section,
19312 ULONGEST str_offsets_base, ULONGEST str_index)
19313 {
19314 struct dwarf2_per_objfile *dwarf2_per_objfile
19315 = cu->per_cu->dwarf2_per_objfile;
19316 struct objfile *objfile = dwarf2_per_objfile->objfile;
19317 const char *objf_name = objfile_name (objfile);
19318 bfd *abfd = objfile->obfd;
19319 const gdb_byte *info_ptr;
19320 ULONGEST str_offset;
19321 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19322
19323 str_section->read (objfile);
19324 str_offsets_section->read (objfile);
19325 if (str_section->buffer == NULL)
19326 error (_("%s used without %s section"
19327 " in CU at offset %s [in module %s]"),
19328 form_name, str_section->get_name (),
19329 sect_offset_str (cu->header.sect_off), objf_name);
19330 if (str_offsets_section->buffer == NULL)
19331 error (_("%s used without %s section"
19332 " in CU at offset %s [in module %s]"),
19333 form_name, str_section->get_name (),
19334 sect_offset_str (cu->header.sect_off), objf_name);
19335 info_ptr = (str_offsets_section->buffer
19336 + str_offsets_base
19337 + str_index * cu->header.offset_size);
19338 if (cu->header.offset_size == 4)
19339 str_offset = bfd_get_32 (abfd, info_ptr);
19340 else
19341 str_offset = bfd_get_64 (abfd, info_ptr);
19342 if (str_offset >= str_section->size)
19343 error (_("Offset from %s pointing outside of"
19344 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19345 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19346 return (const char *) (str_section->buffer + str_offset);
19347 }
19348
19349 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19350
19351 static const char *
19352 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19353 {
19354 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19355 ? reader->cu->header.addr_size : 0;
19356 return read_str_index (reader->cu,
19357 &reader->dwo_file->sections.str,
19358 &reader->dwo_file->sections.str_offsets,
19359 str_offsets_base, str_index);
19360 }
19361
19362 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19363
19364 static const char *
19365 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19366 {
19367 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19368 const char *objf_name = objfile_name (objfile);
19369 static const char form_name[] = "DW_FORM_GNU_str_index";
19370 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19371
19372 if (!cu->str_offsets_base.has_value ())
19373 error (_("%s used in Fission stub without %s"
19374 " in CU at offset 0x%lx [in module %s]"),
19375 form_name, str_offsets_attr_name,
19376 (long) cu->header.offset_size, objf_name);
19377
19378 return read_str_index (cu,
19379 &cu->per_cu->dwarf2_per_objfile->str,
19380 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19381 *cu->str_offsets_base, str_index);
19382 }
19383
19384 /* Return the length of an LEB128 number in BUF. */
19385
19386 static int
19387 leb128_size (const gdb_byte *buf)
19388 {
19389 const gdb_byte *begin = buf;
19390 gdb_byte byte;
19391
19392 while (1)
19393 {
19394 byte = *buf++;
19395 if ((byte & 128) == 0)
19396 return buf - begin;
19397 }
19398 }
19399
19400 static void
19401 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19402 {
19403 switch (lang)
19404 {
19405 case DW_LANG_C89:
19406 case DW_LANG_C99:
19407 case DW_LANG_C11:
19408 case DW_LANG_C:
19409 case DW_LANG_UPC:
19410 cu->language = language_c;
19411 break;
19412 case DW_LANG_Java:
19413 case DW_LANG_C_plus_plus:
19414 case DW_LANG_C_plus_plus_11:
19415 case DW_LANG_C_plus_plus_14:
19416 cu->language = language_cplus;
19417 break;
19418 case DW_LANG_D:
19419 cu->language = language_d;
19420 break;
19421 case DW_LANG_Fortran77:
19422 case DW_LANG_Fortran90:
19423 case DW_LANG_Fortran95:
19424 case DW_LANG_Fortran03:
19425 case DW_LANG_Fortran08:
19426 cu->language = language_fortran;
19427 break;
19428 case DW_LANG_Go:
19429 cu->language = language_go;
19430 break;
19431 case DW_LANG_Mips_Assembler:
19432 cu->language = language_asm;
19433 break;
19434 case DW_LANG_Ada83:
19435 case DW_LANG_Ada95:
19436 cu->language = language_ada;
19437 break;
19438 case DW_LANG_Modula2:
19439 cu->language = language_m2;
19440 break;
19441 case DW_LANG_Pascal83:
19442 cu->language = language_pascal;
19443 break;
19444 case DW_LANG_ObjC:
19445 cu->language = language_objc;
19446 break;
19447 case DW_LANG_Rust:
19448 case DW_LANG_Rust_old:
19449 cu->language = language_rust;
19450 break;
19451 case DW_LANG_Cobol74:
19452 case DW_LANG_Cobol85:
19453 default:
19454 cu->language = language_minimal;
19455 break;
19456 }
19457 cu->language_defn = language_def (cu->language);
19458 }
19459
19460 /* Return the named attribute or NULL if not there. */
19461
19462 static struct attribute *
19463 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19464 {
19465 for (;;)
19466 {
19467 unsigned int i;
19468 struct attribute *spec = NULL;
19469
19470 for (i = 0; i < die->num_attrs; ++i)
19471 {
19472 if (die->attrs[i].name == name)
19473 return &die->attrs[i];
19474 if (die->attrs[i].name == DW_AT_specification
19475 || die->attrs[i].name == DW_AT_abstract_origin)
19476 spec = &die->attrs[i];
19477 }
19478
19479 if (!spec)
19480 break;
19481
19482 die = follow_die_ref (die, spec, &cu);
19483 }
19484
19485 return NULL;
19486 }
19487
19488 /* Return the string associated with a string-typed attribute, or NULL if it
19489 is either not found or is of an incorrect type. */
19490
19491 static const char *
19492 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19493 {
19494 struct attribute *attr;
19495 const char *str = NULL;
19496
19497 attr = dwarf2_attr (die, name, cu);
19498
19499 if (attr != NULL)
19500 {
19501 str = attr->value_as_string ();
19502 if (str == nullptr)
19503 complaint (_("string type expected for attribute %s for "
19504 "DIE at %s in module %s"),
19505 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19506 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19507 }
19508
19509 return str;
19510 }
19511
19512 /* Return the dwo name or NULL if not present. If present, it is in either
19513 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19514 static const char *
19515 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19516 {
19517 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19518 if (dwo_name == nullptr)
19519 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19520 return dwo_name;
19521 }
19522
19523 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19524 and holds a non-zero value. This function should only be used for
19525 DW_FORM_flag or DW_FORM_flag_present attributes. */
19526
19527 static int
19528 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19529 {
19530 struct attribute *attr = dwarf2_attr (die, name, cu);
19531
19532 return (attr && DW_UNSND (attr));
19533 }
19534
19535 static int
19536 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19537 {
19538 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19539 which value is non-zero. However, we have to be careful with
19540 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19541 (via dwarf2_flag_true_p) follows this attribute. So we may
19542 end up accidently finding a declaration attribute that belongs
19543 to a different DIE referenced by the specification attribute,
19544 even though the given DIE does not have a declaration attribute. */
19545 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19546 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19547 }
19548
19549 /* Return the die giving the specification for DIE, if there is
19550 one. *SPEC_CU is the CU containing DIE on input, and the CU
19551 containing the return value on output. If there is no
19552 specification, but there is an abstract origin, that is
19553 returned. */
19554
19555 static struct die_info *
19556 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19557 {
19558 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19559 *spec_cu);
19560
19561 if (spec_attr == NULL)
19562 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19563
19564 if (spec_attr == NULL)
19565 return NULL;
19566 else
19567 return follow_die_ref (die, spec_attr, spec_cu);
19568 }
19569
19570 /* Stub for free_line_header to match void * callback types. */
19571
19572 static void
19573 free_line_header_voidp (void *arg)
19574 {
19575 struct line_header *lh = (struct line_header *) arg;
19576
19577 delete lh;
19578 }
19579
19580 /* A convenience function to find the proper .debug_line section for a CU. */
19581
19582 static struct dwarf2_section_info *
19583 get_debug_line_section (struct dwarf2_cu *cu)
19584 {
19585 struct dwarf2_section_info *section;
19586 struct dwarf2_per_objfile *dwarf2_per_objfile
19587 = cu->per_cu->dwarf2_per_objfile;
19588
19589 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19590 DWO file. */
19591 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19592 section = &cu->dwo_unit->dwo_file->sections.line;
19593 else if (cu->per_cu->is_dwz)
19594 {
19595 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19596
19597 section = &dwz->line;
19598 }
19599 else
19600 section = &dwarf2_per_objfile->line;
19601
19602 return section;
19603 }
19604
19605 /* Read the statement program header starting at OFFSET in
19606 .debug_line, or .debug_line.dwo. Return a pointer
19607 to a struct line_header, allocated using xmalloc.
19608 Returns NULL if there is a problem reading the header, e.g., if it
19609 has a version we don't understand.
19610
19611 NOTE: the strings in the include directory and file name tables of
19612 the returned object point into the dwarf line section buffer,
19613 and must not be freed. */
19614
19615 static line_header_up
19616 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19617 {
19618 struct dwarf2_section_info *section;
19619 struct dwarf2_per_objfile *dwarf2_per_objfile
19620 = cu->per_cu->dwarf2_per_objfile;
19621
19622 section = get_debug_line_section (cu);
19623 section->read (dwarf2_per_objfile->objfile);
19624 if (section->buffer == NULL)
19625 {
19626 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19627 complaint (_("missing .debug_line.dwo section"));
19628 else
19629 complaint (_("missing .debug_line section"));
19630 return 0;
19631 }
19632
19633 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19634 dwarf2_per_objfile, section,
19635 &cu->header);
19636 }
19637
19638 /* Subroutine of dwarf_decode_lines to simplify it.
19639 Return the file name of the psymtab for the given file_entry.
19640 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19641 If space for the result is malloc'd, *NAME_HOLDER will be set.
19642 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19643
19644 static const char *
19645 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19646 const dwarf2_psymtab *pst,
19647 const char *comp_dir,
19648 gdb::unique_xmalloc_ptr<char> *name_holder)
19649 {
19650 const char *include_name = fe.name;
19651 const char *include_name_to_compare = include_name;
19652 const char *pst_filename;
19653 int file_is_pst;
19654
19655 const char *dir_name = fe.include_dir (lh);
19656
19657 gdb::unique_xmalloc_ptr<char> hold_compare;
19658 if (!IS_ABSOLUTE_PATH (include_name)
19659 && (dir_name != NULL || comp_dir != NULL))
19660 {
19661 /* Avoid creating a duplicate psymtab for PST.
19662 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19663 Before we do the comparison, however, we need to account
19664 for DIR_NAME and COMP_DIR.
19665 First prepend dir_name (if non-NULL). If we still don't
19666 have an absolute path prepend comp_dir (if non-NULL).
19667 However, the directory we record in the include-file's
19668 psymtab does not contain COMP_DIR (to match the
19669 corresponding symtab(s)).
19670
19671 Example:
19672
19673 bash$ cd /tmp
19674 bash$ gcc -g ./hello.c
19675 include_name = "hello.c"
19676 dir_name = "."
19677 DW_AT_comp_dir = comp_dir = "/tmp"
19678 DW_AT_name = "./hello.c"
19679
19680 */
19681
19682 if (dir_name != NULL)
19683 {
19684 name_holder->reset (concat (dir_name, SLASH_STRING,
19685 include_name, (char *) NULL));
19686 include_name = name_holder->get ();
19687 include_name_to_compare = include_name;
19688 }
19689 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19690 {
19691 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19692 include_name, (char *) NULL));
19693 include_name_to_compare = hold_compare.get ();
19694 }
19695 }
19696
19697 pst_filename = pst->filename;
19698 gdb::unique_xmalloc_ptr<char> copied_name;
19699 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19700 {
19701 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19702 pst_filename, (char *) NULL));
19703 pst_filename = copied_name.get ();
19704 }
19705
19706 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19707
19708 if (file_is_pst)
19709 return NULL;
19710 return include_name;
19711 }
19712
19713 /* State machine to track the state of the line number program. */
19714
19715 class lnp_state_machine
19716 {
19717 public:
19718 /* Initialize a machine state for the start of a line number
19719 program. */
19720 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19721 bool record_lines_p);
19722
19723 file_entry *current_file ()
19724 {
19725 /* lh->file_names is 0-based, but the file name numbers in the
19726 statement program are 1-based. */
19727 return m_line_header->file_name_at (m_file);
19728 }
19729
19730 /* Record the line in the state machine. END_SEQUENCE is true if
19731 we're processing the end of a sequence. */
19732 void record_line (bool end_sequence);
19733
19734 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19735 nop-out rest of the lines in this sequence. */
19736 void check_line_address (struct dwarf2_cu *cu,
19737 const gdb_byte *line_ptr,
19738 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19739
19740 void handle_set_discriminator (unsigned int discriminator)
19741 {
19742 m_discriminator = discriminator;
19743 m_line_has_non_zero_discriminator |= discriminator != 0;
19744 }
19745
19746 /* Handle DW_LNE_set_address. */
19747 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19748 {
19749 m_op_index = 0;
19750 address += baseaddr;
19751 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19752 }
19753
19754 /* Handle DW_LNS_advance_pc. */
19755 void handle_advance_pc (CORE_ADDR adjust);
19756
19757 /* Handle a special opcode. */
19758 void handle_special_opcode (unsigned char op_code);
19759
19760 /* Handle DW_LNS_advance_line. */
19761 void handle_advance_line (int line_delta)
19762 {
19763 advance_line (line_delta);
19764 }
19765
19766 /* Handle DW_LNS_set_file. */
19767 void handle_set_file (file_name_index file);
19768
19769 /* Handle DW_LNS_negate_stmt. */
19770 void handle_negate_stmt ()
19771 {
19772 m_is_stmt = !m_is_stmt;
19773 }
19774
19775 /* Handle DW_LNS_const_add_pc. */
19776 void handle_const_add_pc ();
19777
19778 /* Handle DW_LNS_fixed_advance_pc. */
19779 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19780 {
19781 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19782 m_op_index = 0;
19783 }
19784
19785 /* Handle DW_LNS_copy. */
19786 void handle_copy ()
19787 {
19788 record_line (false);
19789 m_discriminator = 0;
19790 }
19791
19792 /* Handle DW_LNE_end_sequence. */
19793 void handle_end_sequence ()
19794 {
19795 m_currently_recording_lines = true;
19796 }
19797
19798 private:
19799 /* Advance the line by LINE_DELTA. */
19800 void advance_line (int line_delta)
19801 {
19802 m_line += line_delta;
19803
19804 if (line_delta != 0)
19805 m_line_has_non_zero_discriminator = m_discriminator != 0;
19806 }
19807
19808 struct dwarf2_cu *m_cu;
19809
19810 gdbarch *m_gdbarch;
19811
19812 /* True if we're recording lines.
19813 Otherwise we're building partial symtabs and are just interested in
19814 finding include files mentioned by the line number program. */
19815 bool m_record_lines_p;
19816
19817 /* The line number header. */
19818 line_header *m_line_header;
19819
19820 /* These are part of the standard DWARF line number state machine,
19821 and initialized according to the DWARF spec. */
19822
19823 unsigned char m_op_index = 0;
19824 /* The line table index of the current file. */
19825 file_name_index m_file = 1;
19826 unsigned int m_line = 1;
19827
19828 /* These are initialized in the constructor. */
19829
19830 CORE_ADDR m_address;
19831 bool m_is_stmt;
19832 unsigned int m_discriminator;
19833
19834 /* Additional bits of state we need to track. */
19835
19836 /* The last file that we called dwarf2_start_subfile for.
19837 This is only used for TLLs. */
19838 unsigned int m_last_file = 0;
19839 /* The last file a line number was recorded for. */
19840 struct subfile *m_last_subfile = NULL;
19841
19842 /* When true, record the lines we decode. */
19843 bool m_currently_recording_lines = false;
19844
19845 /* The last line number that was recorded, used to coalesce
19846 consecutive entries for the same line. This can happen, for
19847 example, when discriminators are present. PR 17276. */
19848 unsigned int m_last_line = 0;
19849 bool m_line_has_non_zero_discriminator = false;
19850 };
19851
19852 void
19853 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19854 {
19855 CORE_ADDR addr_adj = (((m_op_index + adjust)
19856 / m_line_header->maximum_ops_per_instruction)
19857 * m_line_header->minimum_instruction_length);
19858 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19859 m_op_index = ((m_op_index + adjust)
19860 % m_line_header->maximum_ops_per_instruction);
19861 }
19862
19863 void
19864 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19865 {
19866 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19867 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19868 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19869 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19870 / m_line_header->maximum_ops_per_instruction)
19871 * m_line_header->minimum_instruction_length);
19872 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19873 m_op_index = ((m_op_index + adj_opcode_d)
19874 % m_line_header->maximum_ops_per_instruction);
19875
19876 int line_delta = m_line_header->line_base + adj_opcode_r;
19877 advance_line (line_delta);
19878 record_line (false);
19879 m_discriminator = 0;
19880 }
19881
19882 void
19883 lnp_state_machine::handle_set_file (file_name_index file)
19884 {
19885 m_file = file;
19886
19887 const file_entry *fe = current_file ();
19888 if (fe == NULL)
19889 dwarf2_debug_line_missing_file_complaint ();
19890 else if (m_record_lines_p)
19891 {
19892 const char *dir = fe->include_dir (m_line_header);
19893
19894 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19895 m_line_has_non_zero_discriminator = m_discriminator != 0;
19896 dwarf2_start_subfile (m_cu, fe->name, dir);
19897 }
19898 }
19899
19900 void
19901 lnp_state_machine::handle_const_add_pc ()
19902 {
19903 CORE_ADDR adjust
19904 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19905
19906 CORE_ADDR addr_adj
19907 = (((m_op_index + adjust)
19908 / m_line_header->maximum_ops_per_instruction)
19909 * m_line_header->minimum_instruction_length);
19910
19911 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19912 m_op_index = ((m_op_index + adjust)
19913 % m_line_header->maximum_ops_per_instruction);
19914 }
19915
19916 /* Return non-zero if we should add LINE to the line number table.
19917 LINE is the line to add, LAST_LINE is the last line that was added,
19918 LAST_SUBFILE is the subfile for LAST_LINE.
19919 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19920 had a non-zero discriminator.
19921
19922 We have to be careful in the presence of discriminators.
19923 E.g., for this line:
19924
19925 for (i = 0; i < 100000; i++);
19926
19927 clang can emit four line number entries for that one line,
19928 each with a different discriminator.
19929 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19930
19931 However, we want gdb to coalesce all four entries into one.
19932 Otherwise the user could stepi into the middle of the line and
19933 gdb would get confused about whether the pc really was in the
19934 middle of the line.
19935
19936 Things are further complicated by the fact that two consecutive
19937 line number entries for the same line is a heuristic used by gcc
19938 to denote the end of the prologue. So we can't just discard duplicate
19939 entries, we have to be selective about it. The heuristic we use is
19940 that we only collapse consecutive entries for the same line if at least
19941 one of those entries has a non-zero discriminator. PR 17276.
19942
19943 Note: Addresses in the line number state machine can never go backwards
19944 within one sequence, thus this coalescing is ok. */
19945
19946 static int
19947 dwarf_record_line_p (struct dwarf2_cu *cu,
19948 unsigned int line, unsigned int last_line,
19949 int line_has_non_zero_discriminator,
19950 struct subfile *last_subfile)
19951 {
19952 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19953 return 1;
19954 if (line != last_line)
19955 return 1;
19956 /* Same line for the same file that we've seen already.
19957 As a last check, for pr 17276, only record the line if the line
19958 has never had a non-zero discriminator. */
19959 if (!line_has_non_zero_discriminator)
19960 return 1;
19961 return 0;
19962 }
19963
19964 /* Use the CU's builder to record line number LINE beginning at
19965 address ADDRESS in the line table of subfile SUBFILE. */
19966
19967 static void
19968 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19969 unsigned int line, CORE_ADDR address, bool is_stmt,
19970 struct dwarf2_cu *cu)
19971 {
19972 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19973
19974 if (dwarf_line_debug)
19975 {
19976 fprintf_unfiltered (gdb_stdlog,
19977 "Recording line %u, file %s, address %s\n",
19978 line, lbasename (subfile->name),
19979 paddress (gdbarch, address));
19980 }
19981
19982 if (cu != nullptr)
19983 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19984 }
19985
19986 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19987 Mark the end of a set of line number records.
19988 The arguments are the same as for dwarf_record_line_1.
19989 If SUBFILE is NULL the request is ignored. */
19990
19991 static void
19992 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19993 CORE_ADDR address, struct dwarf2_cu *cu)
19994 {
19995 if (subfile == NULL)
19996 return;
19997
19998 if (dwarf_line_debug)
19999 {
20000 fprintf_unfiltered (gdb_stdlog,
20001 "Finishing current line, file %s, address %s\n",
20002 lbasename (subfile->name),
20003 paddress (gdbarch, address));
20004 }
20005
20006 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20007 }
20008
20009 void
20010 lnp_state_machine::record_line (bool end_sequence)
20011 {
20012 if (dwarf_line_debug)
20013 {
20014 fprintf_unfiltered (gdb_stdlog,
20015 "Processing actual line %u: file %u,"
20016 " address %s, is_stmt %u, discrim %u%s\n",
20017 m_line, m_file,
20018 paddress (m_gdbarch, m_address),
20019 m_is_stmt, m_discriminator,
20020 (end_sequence ? "\t(end sequence)" : ""));
20021 }
20022
20023 file_entry *fe = current_file ();
20024
20025 if (fe == NULL)
20026 dwarf2_debug_line_missing_file_complaint ();
20027 /* For now we ignore lines not starting on an instruction boundary.
20028 But not when processing end_sequence for compatibility with the
20029 previous version of the code. */
20030 else if (m_op_index == 0 || end_sequence)
20031 {
20032 fe->included_p = 1;
20033 if (m_record_lines_p)
20034 {
20035 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20036 || end_sequence)
20037 {
20038 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20039 m_currently_recording_lines ? m_cu : nullptr);
20040 }
20041
20042 if (!end_sequence)
20043 {
20044 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20045
20046 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20047 m_line_has_non_zero_discriminator,
20048 m_last_subfile))
20049 {
20050 buildsym_compunit *builder = m_cu->get_builder ();
20051 dwarf_record_line_1 (m_gdbarch,
20052 builder->get_current_subfile (),
20053 m_line, m_address, is_stmt,
20054 m_currently_recording_lines ? m_cu : nullptr);
20055 }
20056 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20057 m_last_line = m_line;
20058 }
20059 }
20060 }
20061 }
20062
20063 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20064 line_header *lh, bool record_lines_p)
20065 {
20066 m_cu = cu;
20067 m_gdbarch = arch;
20068 m_record_lines_p = record_lines_p;
20069 m_line_header = lh;
20070
20071 m_currently_recording_lines = true;
20072
20073 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20074 was a line entry for it so that the backend has a chance to adjust it
20075 and also record it in case it needs it. This is currently used by MIPS
20076 code, cf. `mips_adjust_dwarf2_line'. */
20077 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20078 m_is_stmt = lh->default_is_stmt;
20079 m_discriminator = 0;
20080 }
20081
20082 void
20083 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20084 const gdb_byte *line_ptr,
20085 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20086 {
20087 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20088 the pc range of the CU. However, we restrict the test to only ADDRESS
20089 values of zero to preserve GDB's previous behaviour which is to handle
20090 the specific case of a function being GC'd by the linker. */
20091
20092 if (address == 0 && address < unrelocated_lowpc)
20093 {
20094 /* This line table is for a function which has been
20095 GCd by the linker. Ignore it. PR gdb/12528 */
20096
20097 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20098 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20099
20100 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20101 line_offset, objfile_name (objfile));
20102 m_currently_recording_lines = false;
20103 /* Note: m_currently_recording_lines is left as false until we see
20104 DW_LNE_end_sequence. */
20105 }
20106 }
20107
20108 /* Subroutine of dwarf_decode_lines to simplify it.
20109 Process the line number information in LH.
20110 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20111 program in order to set included_p for every referenced header. */
20112
20113 static void
20114 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20115 const int decode_for_pst_p, CORE_ADDR lowpc)
20116 {
20117 const gdb_byte *line_ptr, *extended_end;
20118 const gdb_byte *line_end;
20119 unsigned int bytes_read, extended_len;
20120 unsigned char op_code, extended_op;
20121 CORE_ADDR baseaddr;
20122 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20123 bfd *abfd = objfile->obfd;
20124 struct gdbarch *gdbarch = objfile->arch ();
20125 /* True if we're recording line info (as opposed to building partial
20126 symtabs and just interested in finding include files mentioned by
20127 the line number program). */
20128 bool record_lines_p = !decode_for_pst_p;
20129
20130 baseaddr = objfile->text_section_offset ();
20131
20132 line_ptr = lh->statement_program_start;
20133 line_end = lh->statement_program_end;
20134
20135 /* Read the statement sequences until there's nothing left. */
20136 while (line_ptr < line_end)
20137 {
20138 /* The DWARF line number program state machine. Reset the state
20139 machine at the start of each sequence. */
20140 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20141 bool end_sequence = false;
20142
20143 if (record_lines_p)
20144 {
20145 /* Start a subfile for the current file of the state
20146 machine. */
20147 const file_entry *fe = state_machine.current_file ();
20148
20149 if (fe != NULL)
20150 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20151 }
20152
20153 /* Decode the table. */
20154 while (line_ptr < line_end && !end_sequence)
20155 {
20156 op_code = read_1_byte (abfd, line_ptr);
20157 line_ptr += 1;
20158
20159 if (op_code >= lh->opcode_base)
20160 {
20161 /* Special opcode. */
20162 state_machine.handle_special_opcode (op_code);
20163 }
20164 else switch (op_code)
20165 {
20166 case DW_LNS_extended_op:
20167 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20168 &bytes_read);
20169 line_ptr += bytes_read;
20170 extended_end = line_ptr + extended_len;
20171 extended_op = read_1_byte (abfd, line_ptr);
20172 line_ptr += 1;
20173 switch (extended_op)
20174 {
20175 case DW_LNE_end_sequence:
20176 state_machine.handle_end_sequence ();
20177 end_sequence = true;
20178 break;
20179 case DW_LNE_set_address:
20180 {
20181 CORE_ADDR address
20182 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20183 line_ptr += bytes_read;
20184
20185 state_machine.check_line_address (cu, line_ptr,
20186 lowpc - baseaddr, address);
20187 state_machine.handle_set_address (baseaddr, address);
20188 }
20189 break;
20190 case DW_LNE_define_file:
20191 {
20192 const char *cur_file;
20193 unsigned int mod_time, length;
20194 dir_index dindex;
20195
20196 cur_file = read_direct_string (abfd, line_ptr,
20197 &bytes_read);
20198 line_ptr += bytes_read;
20199 dindex = (dir_index)
20200 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20201 line_ptr += bytes_read;
20202 mod_time =
20203 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20204 line_ptr += bytes_read;
20205 length =
20206 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20207 line_ptr += bytes_read;
20208 lh->add_file_name (cur_file, dindex, mod_time, length);
20209 }
20210 break;
20211 case DW_LNE_set_discriminator:
20212 {
20213 /* The discriminator is not interesting to the
20214 debugger; just ignore it. We still need to
20215 check its value though:
20216 if there are consecutive entries for the same
20217 (non-prologue) line we want to coalesce them.
20218 PR 17276. */
20219 unsigned int discr
20220 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20221 line_ptr += bytes_read;
20222
20223 state_machine.handle_set_discriminator (discr);
20224 }
20225 break;
20226 default:
20227 complaint (_("mangled .debug_line section"));
20228 return;
20229 }
20230 /* Make sure that we parsed the extended op correctly. If e.g.
20231 we expected a different address size than the producer used,
20232 we may have read the wrong number of bytes. */
20233 if (line_ptr != extended_end)
20234 {
20235 complaint (_("mangled .debug_line section"));
20236 return;
20237 }
20238 break;
20239 case DW_LNS_copy:
20240 state_machine.handle_copy ();
20241 break;
20242 case DW_LNS_advance_pc:
20243 {
20244 CORE_ADDR adjust
20245 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20246 line_ptr += bytes_read;
20247
20248 state_machine.handle_advance_pc (adjust);
20249 }
20250 break;
20251 case DW_LNS_advance_line:
20252 {
20253 int line_delta
20254 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20255 line_ptr += bytes_read;
20256
20257 state_machine.handle_advance_line (line_delta);
20258 }
20259 break;
20260 case DW_LNS_set_file:
20261 {
20262 file_name_index file
20263 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20264 &bytes_read);
20265 line_ptr += bytes_read;
20266
20267 state_machine.handle_set_file (file);
20268 }
20269 break;
20270 case DW_LNS_set_column:
20271 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20272 line_ptr += bytes_read;
20273 break;
20274 case DW_LNS_negate_stmt:
20275 state_machine.handle_negate_stmt ();
20276 break;
20277 case DW_LNS_set_basic_block:
20278 break;
20279 /* Add to the address register of the state machine the
20280 address increment value corresponding to special opcode
20281 255. I.e., this value is scaled by the minimum
20282 instruction length since special opcode 255 would have
20283 scaled the increment. */
20284 case DW_LNS_const_add_pc:
20285 state_machine.handle_const_add_pc ();
20286 break;
20287 case DW_LNS_fixed_advance_pc:
20288 {
20289 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20290 line_ptr += 2;
20291
20292 state_machine.handle_fixed_advance_pc (addr_adj);
20293 }
20294 break;
20295 default:
20296 {
20297 /* Unknown standard opcode, ignore it. */
20298 int i;
20299
20300 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20301 {
20302 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20303 line_ptr += bytes_read;
20304 }
20305 }
20306 }
20307 }
20308
20309 if (!end_sequence)
20310 dwarf2_debug_line_missing_end_sequence_complaint ();
20311
20312 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20313 in which case we still finish recording the last line). */
20314 state_machine.record_line (true);
20315 }
20316 }
20317
20318 /* Decode the Line Number Program (LNP) for the given line_header
20319 structure and CU. The actual information extracted and the type
20320 of structures created from the LNP depends on the value of PST.
20321
20322 1. If PST is NULL, then this procedure uses the data from the program
20323 to create all necessary symbol tables, and their linetables.
20324
20325 2. If PST is not NULL, this procedure reads the program to determine
20326 the list of files included by the unit represented by PST, and
20327 builds all the associated partial symbol tables.
20328
20329 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20330 It is used for relative paths in the line table.
20331 NOTE: When processing partial symtabs (pst != NULL),
20332 comp_dir == pst->dirname.
20333
20334 NOTE: It is important that psymtabs have the same file name (via strcmp)
20335 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20336 symtab we don't use it in the name of the psymtabs we create.
20337 E.g. expand_line_sal requires this when finding psymtabs to expand.
20338 A good testcase for this is mb-inline.exp.
20339
20340 LOWPC is the lowest address in CU (or 0 if not known).
20341
20342 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20343 for its PC<->lines mapping information. Otherwise only the filename
20344 table is read in. */
20345
20346 static void
20347 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20348 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20349 CORE_ADDR lowpc, int decode_mapping)
20350 {
20351 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20352 const int decode_for_pst_p = (pst != NULL);
20353
20354 if (decode_mapping)
20355 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20356
20357 if (decode_for_pst_p)
20358 {
20359 /* Now that we're done scanning the Line Header Program, we can
20360 create the psymtab of each included file. */
20361 for (auto &file_entry : lh->file_names ())
20362 if (file_entry.included_p == 1)
20363 {
20364 gdb::unique_xmalloc_ptr<char> name_holder;
20365 const char *include_name =
20366 psymtab_include_file_name (lh, file_entry, pst,
20367 comp_dir, &name_holder);
20368 if (include_name != NULL)
20369 dwarf2_create_include_psymtab (include_name, pst, objfile);
20370 }
20371 }
20372 else
20373 {
20374 /* Make sure a symtab is created for every file, even files
20375 which contain only variables (i.e. no code with associated
20376 line numbers). */
20377 buildsym_compunit *builder = cu->get_builder ();
20378 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20379
20380 for (auto &fe : lh->file_names ())
20381 {
20382 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20383 if (builder->get_current_subfile ()->symtab == NULL)
20384 {
20385 builder->get_current_subfile ()->symtab
20386 = allocate_symtab (cust,
20387 builder->get_current_subfile ()->name);
20388 }
20389 fe.symtab = builder->get_current_subfile ()->symtab;
20390 }
20391 }
20392 }
20393
20394 /* Start a subfile for DWARF. FILENAME is the name of the file and
20395 DIRNAME the name of the source directory which contains FILENAME
20396 or NULL if not known.
20397 This routine tries to keep line numbers from identical absolute and
20398 relative file names in a common subfile.
20399
20400 Using the `list' example from the GDB testsuite, which resides in
20401 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20402 of /srcdir/list0.c yields the following debugging information for list0.c:
20403
20404 DW_AT_name: /srcdir/list0.c
20405 DW_AT_comp_dir: /compdir
20406 files.files[0].name: list0.h
20407 files.files[0].dir: /srcdir
20408 files.files[1].name: list0.c
20409 files.files[1].dir: /srcdir
20410
20411 The line number information for list0.c has to end up in a single
20412 subfile, so that `break /srcdir/list0.c:1' works as expected.
20413 start_subfile will ensure that this happens provided that we pass the
20414 concatenation of files.files[1].dir and files.files[1].name as the
20415 subfile's name. */
20416
20417 static void
20418 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20419 const char *dirname)
20420 {
20421 gdb::unique_xmalloc_ptr<char> copy;
20422
20423 /* In order not to lose the line information directory,
20424 we concatenate it to the filename when it makes sense.
20425 Note that the Dwarf3 standard says (speaking of filenames in line
20426 information): ``The directory index is ignored for file names
20427 that represent full path names''. Thus ignoring dirname in the
20428 `else' branch below isn't an issue. */
20429
20430 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20431 {
20432 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20433 filename = copy.get ();
20434 }
20435
20436 cu->get_builder ()->start_subfile (filename);
20437 }
20438
20439 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20440 buildsym_compunit constructor. */
20441
20442 struct compunit_symtab *
20443 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20444 CORE_ADDR low_pc)
20445 {
20446 gdb_assert (m_builder == nullptr);
20447
20448 m_builder.reset (new struct buildsym_compunit
20449 (per_cu->dwarf2_per_objfile->objfile,
20450 name, comp_dir, language, low_pc));
20451
20452 list_in_scope = get_builder ()->get_file_symbols ();
20453
20454 get_builder ()->record_debugformat ("DWARF 2");
20455 get_builder ()->record_producer (producer);
20456
20457 processing_has_namespace_info = false;
20458
20459 return get_builder ()->get_compunit_symtab ();
20460 }
20461
20462 static void
20463 var_decode_location (struct attribute *attr, struct symbol *sym,
20464 struct dwarf2_cu *cu)
20465 {
20466 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20467 struct comp_unit_head *cu_header = &cu->header;
20468
20469 /* NOTE drow/2003-01-30: There used to be a comment and some special
20470 code here to turn a symbol with DW_AT_external and a
20471 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20472 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20473 with some versions of binutils) where shared libraries could have
20474 relocations against symbols in their debug information - the
20475 minimal symbol would have the right address, but the debug info
20476 would not. It's no longer necessary, because we will explicitly
20477 apply relocations when we read in the debug information now. */
20478
20479 /* A DW_AT_location attribute with no contents indicates that a
20480 variable has been optimized away. */
20481 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20482 {
20483 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20484 return;
20485 }
20486
20487 /* Handle one degenerate form of location expression specially, to
20488 preserve GDB's previous behavior when section offsets are
20489 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20490 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20491
20492 if (attr->form_is_block ()
20493 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20494 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20495 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20496 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20497 && (DW_BLOCK (attr)->size
20498 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20499 {
20500 unsigned int dummy;
20501
20502 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20503 SET_SYMBOL_VALUE_ADDRESS
20504 (sym, cu->header.read_address (objfile->obfd,
20505 DW_BLOCK (attr)->data + 1,
20506 &dummy));
20507 else
20508 SET_SYMBOL_VALUE_ADDRESS
20509 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20510 &dummy));
20511 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20512 fixup_symbol_section (sym, objfile);
20513 SET_SYMBOL_VALUE_ADDRESS
20514 (sym,
20515 SYMBOL_VALUE_ADDRESS (sym)
20516 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20517 return;
20518 }
20519
20520 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20521 expression evaluator, and use LOC_COMPUTED only when necessary
20522 (i.e. when the value of a register or memory location is
20523 referenced, or a thread-local block, etc.). Then again, it might
20524 not be worthwhile. I'm assuming that it isn't unless performance
20525 or memory numbers show me otherwise. */
20526
20527 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20528
20529 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20530 cu->has_loclist = true;
20531 }
20532
20533 /* Given a pointer to a DWARF information entry, figure out if we need
20534 to make a symbol table entry for it, and if so, create a new entry
20535 and return a pointer to it.
20536 If TYPE is NULL, determine symbol type from the die, otherwise
20537 used the passed type.
20538 If SPACE is not NULL, use it to hold the new symbol. If it is
20539 NULL, allocate a new symbol on the objfile's obstack. */
20540
20541 static struct symbol *
20542 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20543 struct symbol *space)
20544 {
20545 struct dwarf2_per_objfile *dwarf2_per_objfile
20546 = cu->per_cu->dwarf2_per_objfile;
20547 struct objfile *objfile = dwarf2_per_objfile->objfile;
20548 struct gdbarch *gdbarch = objfile->arch ();
20549 struct symbol *sym = NULL;
20550 const char *name;
20551 struct attribute *attr = NULL;
20552 struct attribute *attr2 = NULL;
20553 CORE_ADDR baseaddr;
20554 struct pending **list_to_add = NULL;
20555
20556 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20557
20558 baseaddr = objfile->text_section_offset ();
20559
20560 name = dwarf2_name (die, cu);
20561 if (name)
20562 {
20563 int suppress_add = 0;
20564
20565 if (space)
20566 sym = space;
20567 else
20568 sym = allocate_symbol (objfile);
20569 OBJSTAT (objfile, n_syms++);
20570
20571 /* Cache this symbol's name and the name's demangled form (if any). */
20572 sym->set_language (cu->language, &objfile->objfile_obstack);
20573 /* Fortran does not have mangling standard and the mangling does differ
20574 between gfortran, iFort etc. */
20575 const char *physname
20576 = (cu->language == language_fortran
20577 ? dwarf2_full_name (name, die, cu)
20578 : dwarf2_physname (name, die, cu));
20579 const char *linkagename = dw2_linkage_name (die, cu);
20580
20581 if (linkagename == nullptr || cu->language == language_ada)
20582 sym->set_linkage_name (physname);
20583 else
20584 {
20585 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20586 sym->set_linkage_name (linkagename);
20587 }
20588
20589 /* Default assumptions.
20590 Use the passed type or decode it from the die. */
20591 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20592 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20593 if (type != NULL)
20594 SYMBOL_TYPE (sym) = type;
20595 else
20596 SYMBOL_TYPE (sym) = die_type (die, cu);
20597 attr = dwarf2_attr (die,
20598 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20599 cu);
20600 if (attr != nullptr)
20601 {
20602 SYMBOL_LINE (sym) = DW_UNSND (attr);
20603 }
20604
20605 attr = dwarf2_attr (die,
20606 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20607 cu);
20608 if (attr != nullptr)
20609 {
20610 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20611 struct file_entry *fe;
20612
20613 if (cu->line_header != NULL)
20614 fe = cu->line_header->file_name_at (file_index);
20615 else
20616 fe = NULL;
20617
20618 if (fe == NULL)
20619 complaint (_("file index out of range"));
20620 else
20621 symbol_set_symtab (sym, fe->symtab);
20622 }
20623
20624 switch (die->tag)
20625 {
20626 case DW_TAG_label:
20627 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20628 if (attr != nullptr)
20629 {
20630 CORE_ADDR addr;
20631
20632 addr = attr->value_as_address ();
20633 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20634 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20635 }
20636 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20637 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20638 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20639 add_symbol_to_list (sym, cu->list_in_scope);
20640 break;
20641 case DW_TAG_subprogram:
20642 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20643 finish_block. */
20644 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20646 if ((attr2 && (DW_UNSND (attr2) != 0))
20647 || cu->language == language_ada
20648 || cu->language == language_fortran)
20649 {
20650 /* Subprograms marked external are stored as a global symbol.
20651 Ada and Fortran subprograms, whether marked external or
20652 not, are always stored as a global symbol, because we want
20653 to be able to access them globally. For instance, we want
20654 to be able to break on a nested subprogram without having
20655 to specify the context. */
20656 list_to_add = cu->get_builder ()->get_global_symbols ();
20657 }
20658 else
20659 {
20660 list_to_add = cu->list_in_scope;
20661 }
20662 break;
20663 case DW_TAG_inlined_subroutine:
20664 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20665 finish_block. */
20666 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20667 SYMBOL_INLINED (sym) = 1;
20668 list_to_add = cu->list_in_scope;
20669 break;
20670 case DW_TAG_template_value_param:
20671 suppress_add = 1;
20672 /* Fall through. */
20673 case DW_TAG_constant:
20674 case DW_TAG_variable:
20675 case DW_TAG_member:
20676 /* Compilation with minimal debug info may result in
20677 variables with missing type entries. Change the
20678 misleading `void' type to something sensible. */
20679 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20680 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20681
20682 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20683 /* In the case of DW_TAG_member, we should only be called for
20684 static const members. */
20685 if (die->tag == DW_TAG_member)
20686 {
20687 /* dwarf2_add_field uses die_is_declaration,
20688 so we do the same. */
20689 gdb_assert (die_is_declaration (die, cu));
20690 gdb_assert (attr);
20691 }
20692 if (attr != nullptr)
20693 {
20694 dwarf2_const_value (attr, sym, cu);
20695 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20696 if (!suppress_add)
20697 {
20698 if (attr2 && (DW_UNSND (attr2) != 0))
20699 list_to_add = cu->get_builder ()->get_global_symbols ();
20700 else
20701 list_to_add = cu->list_in_scope;
20702 }
20703 break;
20704 }
20705 attr = dwarf2_attr (die, DW_AT_location, cu);
20706 if (attr != nullptr)
20707 {
20708 var_decode_location (attr, sym, cu);
20709 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20710
20711 /* Fortran explicitly imports any global symbols to the local
20712 scope by DW_TAG_common_block. */
20713 if (cu->language == language_fortran && die->parent
20714 && die->parent->tag == DW_TAG_common_block)
20715 attr2 = NULL;
20716
20717 if (SYMBOL_CLASS (sym) == LOC_STATIC
20718 && SYMBOL_VALUE_ADDRESS (sym) == 0
20719 && !dwarf2_per_objfile->has_section_at_zero)
20720 {
20721 /* When a static variable is eliminated by the linker,
20722 the corresponding debug information is not stripped
20723 out, but the variable address is set to null;
20724 do not add such variables into symbol table. */
20725 }
20726 else if (attr2 && (DW_UNSND (attr2) != 0))
20727 {
20728 if (SYMBOL_CLASS (sym) == LOC_STATIC
20729 && (objfile->flags & OBJF_MAINLINE) == 0
20730 && dwarf2_per_objfile->can_copy)
20731 {
20732 /* A global static variable might be subject to
20733 copy relocation. We first check for a local
20734 minsym, though, because maybe the symbol was
20735 marked hidden, in which case this would not
20736 apply. */
20737 bound_minimal_symbol found
20738 = (lookup_minimal_symbol_linkage
20739 (sym->linkage_name (), objfile));
20740 if (found.minsym != nullptr)
20741 sym->maybe_copied = 1;
20742 }
20743
20744 /* A variable with DW_AT_external is never static,
20745 but it may be block-scoped. */
20746 list_to_add
20747 = ((cu->list_in_scope
20748 == cu->get_builder ()->get_file_symbols ())
20749 ? cu->get_builder ()->get_global_symbols ()
20750 : cu->list_in_scope);
20751 }
20752 else
20753 list_to_add = cu->list_in_scope;
20754 }
20755 else
20756 {
20757 /* We do not know the address of this symbol.
20758 If it is an external symbol and we have type information
20759 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20760 The address of the variable will then be determined from
20761 the minimal symbol table whenever the variable is
20762 referenced. */
20763 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20764
20765 /* Fortran explicitly imports any global symbols to the local
20766 scope by DW_TAG_common_block. */
20767 if (cu->language == language_fortran && die->parent
20768 && die->parent->tag == DW_TAG_common_block)
20769 {
20770 /* SYMBOL_CLASS doesn't matter here because
20771 read_common_block is going to reset it. */
20772 if (!suppress_add)
20773 list_to_add = cu->list_in_scope;
20774 }
20775 else if (attr2 && (DW_UNSND (attr2) != 0)
20776 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20777 {
20778 /* A variable with DW_AT_external is never static, but it
20779 may be block-scoped. */
20780 list_to_add
20781 = ((cu->list_in_scope
20782 == cu->get_builder ()->get_file_symbols ())
20783 ? cu->get_builder ()->get_global_symbols ()
20784 : cu->list_in_scope);
20785
20786 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20787 }
20788 else if (!die_is_declaration (die, cu))
20789 {
20790 /* Use the default LOC_OPTIMIZED_OUT class. */
20791 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20792 if (!suppress_add)
20793 list_to_add = cu->list_in_scope;
20794 }
20795 }
20796 break;
20797 case DW_TAG_formal_parameter:
20798 {
20799 /* If we are inside a function, mark this as an argument. If
20800 not, we might be looking at an argument to an inlined function
20801 when we do not have enough information to show inlined frames;
20802 pretend it's a local variable in that case so that the user can
20803 still see it. */
20804 struct context_stack *curr
20805 = cu->get_builder ()->get_current_context_stack ();
20806 if (curr != nullptr && curr->name != nullptr)
20807 SYMBOL_IS_ARGUMENT (sym) = 1;
20808 attr = dwarf2_attr (die, DW_AT_location, cu);
20809 if (attr != nullptr)
20810 {
20811 var_decode_location (attr, sym, cu);
20812 }
20813 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20814 if (attr != nullptr)
20815 {
20816 dwarf2_const_value (attr, sym, cu);
20817 }
20818
20819 list_to_add = cu->list_in_scope;
20820 }
20821 break;
20822 case DW_TAG_unspecified_parameters:
20823 /* From varargs functions; gdb doesn't seem to have any
20824 interest in this information, so just ignore it for now.
20825 (FIXME?) */
20826 break;
20827 case DW_TAG_template_type_param:
20828 suppress_add = 1;
20829 /* Fall through. */
20830 case DW_TAG_class_type:
20831 case DW_TAG_interface_type:
20832 case DW_TAG_structure_type:
20833 case DW_TAG_union_type:
20834 case DW_TAG_set_type:
20835 case DW_TAG_enumeration_type:
20836 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20837 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20838
20839 {
20840 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20841 really ever be static objects: otherwise, if you try
20842 to, say, break of a class's method and you're in a file
20843 which doesn't mention that class, it won't work unless
20844 the check for all static symbols in lookup_symbol_aux
20845 saves you. See the OtherFileClass tests in
20846 gdb.c++/namespace.exp. */
20847
20848 if (!suppress_add)
20849 {
20850 buildsym_compunit *builder = cu->get_builder ();
20851 list_to_add
20852 = (cu->list_in_scope == builder->get_file_symbols ()
20853 && cu->language == language_cplus
20854 ? builder->get_global_symbols ()
20855 : cu->list_in_scope);
20856
20857 /* The semantics of C++ state that "struct foo {
20858 ... }" also defines a typedef for "foo". */
20859 if (cu->language == language_cplus
20860 || cu->language == language_ada
20861 || cu->language == language_d
20862 || cu->language == language_rust)
20863 {
20864 /* The symbol's name is already allocated along
20865 with this objfile, so we don't need to
20866 duplicate it for the type. */
20867 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20868 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20869 }
20870 }
20871 }
20872 break;
20873 case DW_TAG_typedef:
20874 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20875 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20876 list_to_add = cu->list_in_scope;
20877 break;
20878 case DW_TAG_base_type:
20879 case DW_TAG_subrange_type:
20880 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20882 list_to_add = cu->list_in_scope;
20883 break;
20884 case DW_TAG_enumerator:
20885 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20886 if (attr != nullptr)
20887 {
20888 dwarf2_const_value (attr, sym, cu);
20889 }
20890 {
20891 /* NOTE: carlton/2003-11-10: See comment above in the
20892 DW_TAG_class_type, etc. block. */
20893
20894 list_to_add
20895 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20896 && cu->language == language_cplus
20897 ? cu->get_builder ()->get_global_symbols ()
20898 : cu->list_in_scope);
20899 }
20900 break;
20901 case DW_TAG_imported_declaration:
20902 case DW_TAG_namespace:
20903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20904 list_to_add = cu->get_builder ()->get_global_symbols ();
20905 break;
20906 case DW_TAG_module:
20907 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20908 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20909 list_to_add = cu->get_builder ()->get_global_symbols ();
20910 break;
20911 case DW_TAG_common_block:
20912 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20913 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20914 add_symbol_to_list (sym, cu->list_in_scope);
20915 break;
20916 default:
20917 /* Not a tag we recognize. Hopefully we aren't processing
20918 trash data, but since we must specifically ignore things
20919 we don't recognize, there is nothing else we should do at
20920 this point. */
20921 complaint (_("unsupported tag: '%s'"),
20922 dwarf_tag_name (die->tag));
20923 break;
20924 }
20925
20926 if (suppress_add)
20927 {
20928 sym->hash_next = objfile->template_symbols;
20929 objfile->template_symbols = sym;
20930 list_to_add = NULL;
20931 }
20932
20933 if (list_to_add != NULL)
20934 add_symbol_to_list (sym, list_to_add);
20935
20936 /* For the benefit of old versions of GCC, check for anonymous
20937 namespaces based on the demangled name. */
20938 if (!cu->processing_has_namespace_info
20939 && cu->language == language_cplus)
20940 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20941 }
20942 return (sym);
20943 }
20944
20945 /* Given an attr with a DW_FORM_dataN value in host byte order,
20946 zero-extend it as appropriate for the symbol's type. The DWARF
20947 standard (v4) is not entirely clear about the meaning of using
20948 DW_FORM_dataN for a constant with a signed type, where the type is
20949 wider than the data. The conclusion of a discussion on the DWARF
20950 list was that this is unspecified. We choose to always zero-extend
20951 because that is the interpretation long in use by GCC. */
20952
20953 static gdb_byte *
20954 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20955 struct dwarf2_cu *cu, LONGEST *value, int bits)
20956 {
20957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20958 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20959 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20960 LONGEST l = DW_UNSND (attr);
20961
20962 if (bits < sizeof (*value) * 8)
20963 {
20964 l &= ((LONGEST) 1 << bits) - 1;
20965 *value = l;
20966 }
20967 else if (bits == sizeof (*value) * 8)
20968 *value = l;
20969 else
20970 {
20971 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20972 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20973 return bytes;
20974 }
20975
20976 return NULL;
20977 }
20978
20979 /* Read a constant value from an attribute. Either set *VALUE, or if
20980 the value does not fit in *VALUE, set *BYTES - either already
20981 allocated on the objfile obstack, or newly allocated on OBSTACK,
20982 or, set *BATON, if we translated the constant to a location
20983 expression. */
20984
20985 static void
20986 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20987 const char *name, struct obstack *obstack,
20988 struct dwarf2_cu *cu,
20989 LONGEST *value, const gdb_byte **bytes,
20990 struct dwarf2_locexpr_baton **baton)
20991 {
20992 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20993 struct comp_unit_head *cu_header = &cu->header;
20994 struct dwarf_block *blk;
20995 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20996 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20997
20998 *value = 0;
20999 *bytes = NULL;
21000 *baton = NULL;
21001
21002 switch (attr->form)
21003 {
21004 case DW_FORM_addr:
21005 case DW_FORM_addrx:
21006 case DW_FORM_GNU_addr_index:
21007 {
21008 gdb_byte *data;
21009
21010 if (TYPE_LENGTH (type) != cu_header->addr_size)
21011 dwarf2_const_value_length_mismatch_complaint (name,
21012 cu_header->addr_size,
21013 TYPE_LENGTH (type));
21014 /* Symbols of this form are reasonably rare, so we just
21015 piggyback on the existing location code rather than writing
21016 a new implementation of symbol_computed_ops. */
21017 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21018 (*baton)->per_cu = cu->per_cu;
21019 gdb_assert ((*baton)->per_cu);
21020
21021 (*baton)->size = 2 + cu_header->addr_size;
21022 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21023 (*baton)->data = data;
21024
21025 data[0] = DW_OP_addr;
21026 store_unsigned_integer (&data[1], cu_header->addr_size,
21027 byte_order, DW_ADDR (attr));
21028 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21029 }
21030 break;
21031 case DW_FORM_string:
21032 case DW_FORM_strp:
21033 case DW_FORM_strx:
21034 case DW_FORM_GNU_str_index:
21035 case DW_FORM_GNU_strp_alt:
21036 /* DW_STRING is already allocated on the objfile obstack, point
21037 directly to it. */
21038 *bytes = (const gdb_byte *) DW_STRING (attr);
21039 break;
21040 case DW_FORM_block1:
21041 case DW_FORM_block2:
21042 case DW_FORM_block4:
21043 case DW_FORM_block:
21044 case DW_FORM_exprloc:
21045 case DW_FORM_data16:
21046 blk = DW_BLOCK (attr);
21047 if (TYPE_LENGTH (type) != blk->size)
21048 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21049 TYPE_LENGTH (type));
21050 *bytes = blk->data;
21051 break;
21052
21053 /* The DW_AT_const_value attributes are supposed to carry the
21054 symbol's value "represented as it would be on the target
21055 architecture." By the time we get here, it's already been
21056 converted to host endianness, so we just need to sign- or
21057 zero-extend it as appropriate. */
21058 case DW_FORM_data1:
21059 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21060 break;
21061 case DW_FORM_data2:
21062 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21063 break;
21064 case DW_FORM_data4:
21065 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21066 break;
21067 case DW_FORM_data8:
21068 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21069 break;
21070
21071 case DW_FORM_sdata:
21072 case DW_FORM_implicit_const:
21073 *value = DW_SND (attr);
21074 break;
21075
21076 case DW_FORM_udata:
21077 *value = DW_UNSND (attr);
21078 break;
21079
21080 default:
21081 complaint (_("unsupported const value attribute form: '%s'"),
21082 dwarf_form_name (attr->form));
21083 *value = 0;
21084 break;
21085 }
21086 }
21087
21088
21089 /* Copy constant value from an attribute to a symbol. */
21090
21091 static void
21092 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21093 struct dwarf2_cu *cu)
21094 {
21095 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21096 LONGEST value;
21097 const gdb_byte *bytes;
21098 struct dwarf2_locexpr_baton *baton;
21099
21100 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21101 sym->print_name (),
21102 &objfile->objfile_obstack, cu,
21103 &value, &bytes, &baton);
21104
21105 if (baton != NULL)
21106 {
21107 SYMBOL_LOCATION_BATON (sym) = baton;
21108 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21109 }
21110 else if (bytes != NULL)
21111 {
21112 SYMBOL_VALUE_BYTES (sym) = bytes;
21113 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21114 }
21115 else
21116 {
21117 SYMBOL_VALUE (sym) = value;
21118 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21119 }
21120 }
21121
21122 /* Return the type of the die in question using its DW_AT_type attribute. */
21123
21124 static struct type *
21125 die_type (struct die_info *die, struct dwarf2_cu *cu)
21126 {
21127 struct attribute *type_attr;
21128
21129 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21130 if (!type_attr)
21131 {
21132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21133 /* A missing DW_AT_type represents a void type. */
21134 return objfile_type (objfile)->builtin_void;
21135 }
21136
21137 return lookup_die_type (die, type_attr, cu);
21138 }
21139
21140 /* True iff CU's producer generates GNAT Ada auxiliary information
21141 that allows to find parallel types through that information instead
21142 of having to do expensive parallel lookups by type name. */
21143
21144 static int
21145 need_gnat_info (struct dwarf2_cu *cu)
21146 {
21147 /* Assume that the Ada compiler was GNAT, which always produces
21148 the auxiliary information. */
21149 return (cu->language == language_ada);
21150 }
21151
21152 /* Return the auxiliary type of the die in question using its
21153 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21154 attribute is not present. */
21155
21156 static struct type *
21157 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21158 {
21159 struct attribute *type_attr;
21160
21161 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21162 if (!type_attr)
21163 return NULL;
21164
21165 return lookup_die_type (die, type_attr, cu);
21166 }
21167
21168 /* If DIE has a descriptive_type attribute, then set the TYPE's
21169 descriptive type accordingly. */
21170
21171 static void
21172 set_descriptive_type (struct type *type, struct die_info *die,
21173 struct dwarf2_cu *cu)
21174 {
21175 struct type *descriptive_type = die_descriptive_type (die, cu);
21176
21177 if (descriptive_type)
21178 {
21179 ALLOCATE_GNAT_AUX_TYPE (type);
21180 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21181 }
21182 }
21183
21184 /* Return the containing type of the die in question using its
21185 DW_AT_containing_type attribute. */
21186
21187 static struct type *
21188 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21189 {
21190 struct attribute *type_attr;
21191 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21192
21193 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21194 if (!type_attr)
21195 error (_("Dwarf Error: Problem turning containing type into gdb type "
21196 "[in module %s]"), objfile_name (objfile));
21197
21198 return lookup_die_type (die, type_attr, cu);
21199 }
21200
21201 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21202
21203 static struct type *
21204 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21205 {
21206 struct dwarf2_per_objfile *dwarf2_per_objfile
21207 = cu->per_cu->dwarf2_per_objfile;
21208 struct objfile *objfile = dwarf2_per_objfile->objfile;
21209 char *saved;
21210
21211 std::string message
21212 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21213 objfile_name (objfile),
21214 sect_offset_str (cu->header.sect_off),
21215 sect_offset_str (die->sect_off));
21216 saved = obstack_strdup (&objfile->objfile_obstack, message);
21217
21218 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21219 }
21220
21221 /* Look up the type of DIE in CU using its type attribute ATTR.
21222 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21223 DW_AT_containing_type.
21224 If there is no type substitute an error marker. */
21225
21226 static struct type *
21227 lookup_die_type (struct die_info *die, const struct attribute *attr,
21228 struct dwarf2_cu *cu)
21229 {
21230 struct dwarf2_per_objfile *dwarf2_per_objfile
21231 = cu->per_cu->dwarf2_per_objfile;
21232 struct objfile *objfile = dwarf2_per_objfile->objfile;
21233 struct type *this_type;
21234
21235 gdb_assert (attr->name == DW_AT_type
21236 || attr->name == DW_AT_GNAT_descriptive_type
21237 || attr->name == DW_AT_containing_type);
21238
21239 /* First see if we have it cached. */
21240
21241 if (attr->form == DW_FORM_GNU_ref_alt)
21242 {
21243 struct dwarf2_per_cu_data *per_cu;
21244 sect_offset sect_off = attr->get_ref_die_offset ();
21245
21246 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21247 dwarf2_per_objfile);
21248 this_type = get_die_type_at_offset (sect_off, per_cu);
21249 }
21250 else if (attr->form_is_ref ())
21251 {
21252 sect_offset sect_off = attr->get_ref_die_offset ();
21253
21254 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21255 }
21256 else if (attr->form == DW_FORM_ref_sig8)
21257 {
21258 ULONGEST signature = DW_SIGNATURE (attr);
21259
21260 return get_signatured_type (die, signature, cu);
21261 }
21262 else
21263 {
21264 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21265 " at %s [in module %s]"),
21266 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21267 objfile_name (objfile));
21268 return build_error_marker_type (cu, die);
21269 }
21270
21271 /* If not cached we need to read it in. */
21272
21273 if (this_type == NULL)
21274 {
21275 struct die_info *type_die = NULL;
21276 struct dwarf2_cu *type_cu = cu;
21277
21278 if (attr->form_is_ref ())
21279 type_die = follow_die_ref (die, attr, &type_cu);
21280 if (type_die == NULL)
21281 return build_error_marker_type (cu, die);
21282 /* If we find the type now, it's probably because the type came
21283 from an inter-CU reference and the type's CU got expanded before
21284 ours. */
21285 this_type = read_type_die (type_die, type_cu);
21286 }
21287
21288 /* If we still don't have a type use an error marker. */
21289
21290 if (this_type == NULL)
21291 return build_error_marker_type (cu, die);
21292
21293 return this_type;
21294 }
21295
21296 /* Return the type in DIE, CU.
21297 Returns NULL for invalid types.
21298
21299 This first does a lookup in die_type_hash,
21300 and only reads the die in if necessary.
21301
21302 NOTE: This can be called when reading in partial or full symbols. */
21303
21304 static struct type *
21305 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21306 {
21307 struct type *this_type;
21308
21309 this_type = get_die_type (die, cu);
21310 if (this_type)
21311 return this_type;
21312
21313 return read_type_die_1 (die, cu);
21314 }
21315
21316 /* Read the type in DIE, CU.
21317 Returns NULL for invalid types. */
21318
21319 static struct type *
21320 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21321 {
21322 struct type *this_type = NULL;
21323
21324 switch (die->tag)
21325 {
21326 case DW_TAG_class_type:
21327 case DW_TAG_interface_type:
21328 case DW_TAG_structure_type:
21329 case DW_TAG_union_type:
21330 this_type = read_structure_type (die, cu);
21331 break;
21332 case DW_TAG_enumeration_type:
21333 this_type = read_enumeration_type (die, cu);
21334 break;
21335 case DW_TAG_subprogram:
21336 case DW_TAG_subroutine_type:
21337 case DW_TAG_inlined_subroutine:
21338 this_type = read_subroutine_type (die, cu);
21339 break;
21340 case DW_TAG_array_type:
21341 this_type = read_array_type (die, cu);
21342 break;
21343 case DW_TAG_set_type:
21344 this_type = read_set_type (die, cu);
21345 break;
21346 case DW_TAG_pointer_type:
21347 this_type = read_tag_pointer_type (die, cu);
21348 break;
21349 case DW_TAG_ptr_to_member_type:
21350 this_type = read_tag_ptr_to_member_type (die, cu);
21351 break;
21352 case DW_TAG_reference_type:
21353 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21354 break;
21355 case DW_TAG_rvalue_reference_type:
21356 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21357 break;
21358 case DW_TAG_const_type:
21359 this_type = read_tag_const_type (die, cu);
21360 break;
21361 case DW_TAG_volatile_type:
21362 this_type = read_tag_volatile_type (die, cu);
21363 break;
21364 case DW_TAG_restrict_type:
21365 this_type = read_tag_restrict_type (die, cu);
21366 break;
21367 case DW_TAG_string_type:
21368 this_type = read_tag_string_type (die, cu);
21369 break;
21370 case DW_TAG_typedef:
21371 this_type = read_typedef (die, cu);
21372 break;
21373 case DW_TAG_subrange_type:
21374 this_type = read_subrange_type (die, cu);
21375 break;
21376 case DW_TAG_base_type:
21377 this_type = read_base_type (die, cu);
21378 break;
21379 case DW_TAG_unspecified_type:
21380 this_type = read_unspecified_type (die, cu);
21381 break;
21382 case DW_TAG_namespace:
21383 this_type = read_namespace_type (die, cu);
21384 break;
21385 case DW_TAG_module:
21386 this_type = read_module_type (die, cu);
21387 break;
21388 case DW_TAG_atomic_type:
21389 this_type = read_tag_atomic_type (die, cu);
21390 break;
21391 default:
21392 complaint (_("unexpected tag in read_type_die: '%s'"),
21393 dwarf_tag_name (die->tag));
21394 break;
21395 }
21396
21397 return this_type;
21398 }
21399
21400 /* See if we can figure out if the class lives in a namespace. We do
21401 this by looking for a member function; its demangled name will
21402 contain namespace info, if there is any.
21403 Return the computed name or NULL.
21404 Space for the result is allocated on the objfile's obstack.
21405 This is the full-die version of guess_partial_die_structure_name.
21406 In this case we know DIE has no useful parent. */
21407
21408 static const char *
21409 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21410 {
21411 struct die_info *spec_die;
21412 struct dwarf2_cu *spec_cu;
21413 struct die_info *child;
21414 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21415
21416 spec_cu = cu;
21417 spec_die = die_specification (die, &spec_cu);
21418 if (spec_die != NULL)
21419 {
21420 die = spec_die;
21421 cu = spec_cu;
21422 }
21423
21424 for (child = die->child;
21425 child != NULL;
21426 child = child->sibling)
21427 {
21428 if (child->tag == DW_TAG_subprogram)
21429 {
21430 const char *linkage_name = dw2_linkage_name (child, cu);
21431
21432 if (linkage_name != NULL)
21433 {
21434 gdb::unique_xmalloc_ptr<char> actual_name
21435 (language_class_name_from_physname (cu->language_defn,
21436 linkage_name));
21437 const char *name = NULL;
21438
21439 if (actual_name != NULL)
21440 {
21441 const char *die_name = dwarf2_name (die, cu);
21442
21443 if (die_name != NULL
21444 && strcmp (die_name, actual_name.get ()) != 0)
21445 {
21446 /* Strip off the class name from the full name.
21447 We want the prefix. */
21448 int die_name_len = strlen (die_name);
21449 int actual_name_len = strlen (actual_name.get ());
21450 const char *ptr = actual_name.get ();
21451
21452 /* Test for '::' as a sanity check. */
21453 if (actual_name_len > die_name_len + 2
21454 && ptr[actual_name_len - die_name_len - 1] == ':')
21455 name = obstack_strndup (
21456 &objfile->per_bfd->storage_obstack,
21457 ptr, actual_name_len - die_name_len - 2);
21458 }
21459 }
21460 return name;
21461 }
21462 }
21463 }
21464
21465 return NULL;
21466 }
21467
21468 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21469 prefix part in such case. See
21470 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21471
21472 static const char *
21473 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21474 {
21475 struct attribute *attr;
21476 const char *base;
21477
21478 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21479 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21480 return NULL;
21481
21482 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21483 return NULL;
21484
21485 attr = dw2_linkage_name_attr (die, cu);
21486 if (attr == NULL || DW_STRING (attr) == NULL)
21487 return NULL;
21488
21489 /* dwarf2_name had to be already called. */
21490 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21491
21492 /* Strip the base name, keep any leading namespaces/classes. */
21493 base = strrchr (DW_STRING (attr), ':');
21494 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21495 return "";
21496
21497 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21498 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21499 DW_STRING (attr),
21500 &base[-1] - DW_STRING (attr));
21501 }
21502
21503 /* Return the name of the namespace/class that DIE is defined within,
21504 or "" if we can't tell. The caller should not xfree the result.
21505
21506 For example, if we're within the method foo() in the following
21507 code:
21508
21509 namespace N {
21510 class C {
21511 void foo () {
21512 }
21513 };
21514 }
21515
21516 then determine_prefix on foo's die will return "N::C". */
21517
21518 static const char *
21519 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21520 {
21521 struct dwarf2_per_objfile *dwarf2_per_objfile
21522 = cu->per_cu->dwarf2_per_objfile;
21523 struct die_info *parent, *spec_die;
21524 struct dwarf2_cu *spec_cu;
21525 struct type *parent_type;
21526 const char *retval;
21527
21528 if (cu->language != language_cplus
21529 && cu->language != language_fortran && cu->language != language_d
21530 && cu->language != language_rust)
21531 return "";
21532
21533 retval = anonymous_struct_prefix (die, cu);
21534 if (retval)
21535 return retval;
21536
21537 /* We have to be careful in the presence of DW_AT_specification.
21538 For example, with GCC 3.4, given the code
21539
21540 namespace N {
21541 void foo() {
21542 // Definition of N::foo.
21543 }
21544 }
21545
21546 then we'll have a tree of DIEs like this:
21547
21548 1: DW_TAG_compile_unit
21549 2: DW_TAG_namespace // N
21550 3: DW_TAG_subprogram // declaration of N::foo
21551 4: DW_TAG_subprogram // definition of N::foo
21552 DW_AT_specification // refers to die #3
21553
21554 Thus, when processing die #4, we have to pretend that we're in
21555 the context of its DW_AT_specification, namely the contex of die
21556 #3. */
21557 spec_cu = cu;
21558 spec_die = die_specification (die, &spec_cu);
21559 if (spec_die == NULL)
21560 parent = die->parent;
21561 else
21562 {
21563 parent = spec_die->parent;
21564 cu = spec_cu;
21565 }
21566
21567 if (parent == NULL)
21568 return "";
21569 else if (parent->building_fullname)
21570 {
21571 const char *name;
21572 const char *parent_name;
21573
21574 /* It has been seen on RealView 2.2 built binaries,
21575 DW_TAG_template_type_param types actually _defined_ as
21576 children of the parent class:
21577
21578 enum E {};
21579 template class <class Enum> Class{};
21580 Class<enum E> class_e;
21581
21582 1: DW_TAG_class_type (Class)
21583 2: DW_TAG_enumeration_type (E)
21584 3: DW_TAG_enumerator (enum1:0)
21585 3: DW_TAG_enumerator (enum2:1)
21586 ...
21587 2: DW_TAG_template_type_param
21588 DW_AT_type DW_FORM_ref_udata (E)
21589
21590 Besides being broken debug info, it can put GDB into an
21591 infinite loop. Consider:
21592
21593 When we're building the full name for Class<E>, we'll start
21594 at Class, and go look over its template type parameters,
21595 finding E. We'll then try to build the full name of E, and
21596 reach here. We're now trying to build the full name of E,
21597 and look over the parent DIE for containing scope. In the
21598 broken case, if we followed the parent DIE of E, we'd again
21599 find Class, and once again go look at its template type
21600 arguments, etc., etc. Simply don't consider such parent die
21601 as source-level parent of this die (it can't be, the language
21602 doesn't allow it), and break the loop here. */
21603 name = dwarf2_name (die, cu);
21604 parent_name = dwarf2_name (parent, cu);
21605 complaint (_("template param type '%s' defined within parent '%s'"),
21606 name ? name : "<unknown>",
21607 parent_name ? parent_name : "<unknown>");
21608 return "";
21609 }
21610 else
21611 switch (parent->tag)
21612 {
21613 case DW_TAG_namespace:
21614 parent_type = read_type_die (parent, cu);
21615 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21616 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21617 Work around this problem here. */
21618 if (cu->language == language_cplus
21619 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21620 return "";
21621 /* We give a name to even anonymous namespaces. */
21622 return TYPE_NAME (parent_type);
21623 case DW_TAG_class_type:
21624 case DW_TAG_interface_type:
21625 case DW_TAG_structure_type:
21626 case DW_TAG_union_type:
21627 case DW_TAG_module:
21628 parent_type = read_type_die (parent, cu);
21629 if (TYPE_NAME (parent_type) != NULL)
21630 return TYPE_NAME (parent_type);
21631 else
21632 /* An anonymous structure is only allowed non-static data
21633 members; no typedefs, no member functions, et cetera.
21634 So it does not need a prefix. */
21635 return "";
21636 case DW_TAG_compile_unit:
21637 case DW_TAG_partial_unit:
21638 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21639 if (cu->language == language_cplus
21640 && !dwarf2_per_objfile->types.empty ()
21641 && die->child != NULL
21642 && (die->tag == DW_TAG_class_type
21643 || die->tag == DW_TAG_structure_type
21644 || die->tag == DW_TAG_union_type))
21645 {
21646 const char *name = guess_full_die_structure_name (die, cu);
21647 if (name != NULL)
21648 return name;
21649 }
21650 return "";
21651 case DW_TAG_subprogram:
21652 /* Nested subroutines in Fortran get a prefix with the name
21653 of the parent's subroutine. */
21654 if (cu->language == language_fortran)
21655 {
21656 if ((die->tag == DW_TAG_subprogram)
21657 && (dwarf2_name (parent, cu) != NULL))
21658 return dwarf2_name (parent, cu);
21659 }
21660 return determine_prefix (parent, cu);
21661 case DW_TAG_enumeration_type:
21662 parent_type = read_type_die (parent, cu);
21663 if (TYPE_DECLARED_CLASS (parent_type))
21664 {
21665 if (TYPE_NAME (parent_type) != NULL)
21666 return TYPE_NAME (parent_type);
21667 return "";
21668 }
21669 /* Fall through. */
21670 default:
21671 return determine_prefix (parent, cu);
21672 }
21673 }
21674
21675 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21676 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21677 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21678 an obconcat, otherwise allocate storage for the result. The CU argument is
21679 used to determine the language and hence, the appropriate separator. */
21680
21681 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21682
21683 static char *
21684 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21685 int physname, struct dwarf2_cu *cu)
21686 {
21687 const char *lead = "";
21688 const char *sep;
21689
21690 if (suffix == NULL || suffix[0] == '\0'
21691 || prefix == NULL || prefix[0] == '\0')
21692 sep = "";
21693 else if (cu->language == language_d)
21694 {
21695 /* For D, the 'main' function could be defined in any module, but it
21696 should never be prefixed. */
21697 if (strcmp (suffix, "D main") == 0)
21698 {
21699 prefix = "";
21700 sep = "";
21701 }
21702 else
21703 sep = ".";
21704 }
21705 else if (cu->language == language_fortran && physname)
21706 {
21707 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21708 DW_AT_MIPS_linkage_name is preferred and used instead. */
21709
21710 lead = "__";
21711 sep = "_MOD_";
21712 }
21713 else
21714 sep = "::";
21715
21716 if (prefix == NULL)
21717 prefix = "";
21718 if (suffix == NULL)
21719 suffix = "";
21720
21721 if (obs == NULL)
21722 {
21723 char *retval
21724 = ((char *)
21725 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21726
21727 strcpy (retval, lead);
21728 strcat (retval, prefix);
21729 strcat (retval, sep);
21730 strcat (retval, suffix);
21731 return retval;
21732 }
21733 else
21734 {
21735 /* We have an obstack. */
21736 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21737 }
21738 }
21739
21740 /* Get name of a die, return NULL if not found. */
21741
21742 static const char *
21743 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21744 struct objfile *objfile)
21745 {
21746 if (name && cu->language == language_cplus)
21747 {
21748 gdb::unique_xmalloc_ptr<char> canon_name
21749 = cp_canonicalize_string (name);
21750
21751 if (canon_name != nullptr)
21752 name = objfile->intern (canon_name.get ());
21753 }
21754
21755 return name;
21756 }
21757
21758 /* Get name of a die, return NULL if not found.
21759 Anonymous namespaces are converted to their magic string. */
21760
21761 static const char *
21762 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21763 {
21764 struct attribute *attr;
21765 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21766
21767 attr = dwarf2_attr (die, DW_AT_name, cu);
21768 if ((!attr || !DW_STRING (attr))
21769 && die->tag != DW_TAG_namespace
21770 && die->tag != DW_TAG_class_type
21771 && die->tag != DW_TAG_interface_type
21772 && die->tag != DW_TAG_structure_type
21773 && die->tag != DW_TAG_union_type)
21774 return NULL;
21775
21776 switch (die->tag)
21777 {
21778 case DW_TAG_compile_unit:
21779 case DW_TAG_partial_unit:
21780 /* Compilation units have a DW_AT_name that is a filename, not
21781 a source language identifier. */
21782 case DW_TAG_enumeration_type:
21783 case DW_TAG_enumerator:
21784 /* These tags always have simple identifiers already; no need
21785 to canonicalize them. */
21786 return DW_STRING (attr);
21787
21788 case DW_TAG_namespace:
21789 if (attr != NULL && DW_STRING (attr) != NULL)
21790 return DW_STRING (attr);
21791 return CP_ANONYMOUS_NAMESPACE_STR;
21792
21793 case DW_TAG_class_type:
21794 case DW_TAG_interface_type:
21795 case DW_TAG_structure_type:
21796 case DW_TAG_union_type:
21797 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21798 structures or unions. These were of the form "._%d" in GCC 4.1,
21799 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21800 and GCC 4.4. We work around this problem by ignoring these. */
21801 if (attr && DW_STRING (attr)
21802 && (startswith (DW_STRING (attr), "._")
21803 || startswith (DW_STRING (attr), "<anonymous")))
21804 return NULL;
21805
21806 /* GCC might emit a nameless typedef that has a linkage name. See
21807 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21808 if (!attr || DW_STRING (attr) == NULL)
21809 {
21810 attr = dw2_linkage_name_attr (die, cu);
21811 if (attr == NULL || DW_STRING (attr) == NULL)
21812 return NULL;
21813
21814 /* Avoid demangling DW_STRING (attr) the second time on a second
21815 call for the same DIE. */
21816 if (!DW_STRING_IS_CANONICAL (attr))
21817 {
21818 gdb::unique_xmalloc_ptr<char> demangled
21819 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21820 if (demangled == nullptr)
21821 return nullptr;
21822
21823 DW_STRING (attr) = objfile->intern (demangled.get ());
21824 DW_STRING_IS_CANONICAL (attr) = 1;
21825 }
21826
21827 /* Strip any leading namespaces/classes, keep only the base name.
21828 DW_AT_name for named DIEs does not contain the prefixes. */
21829 const char *base = strrchr (DW_STRING (attr), ':');
21830 if (base && base > DW_STRING (attr) && base[-1] == ':')
21831 return &base[1];
21832 else
21833 return DW_STRING (attr);
21834 }
21835 break;
21836
21837 default:
21838 break;
21839 }
21840
21841 if (!DW_STRING_IS_CANONICAL (attr))
21842 {
21843 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21844 objfile);
21845 DW_STRING_IS_CANONICAL (attr) = 1;
21846 }
21847 return DW_STRING (attr);
21848 }
21849
21850 /* Return the die that this die in an extension of, or NULL if there
21851 is none. *EXT_CU is the CU containing DIE on input, and the CU
21852 containing the return value on output. */
21853
21854 static struct die_info *
21855 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21856 {
21857 struct attribute *attr;
21858
21859 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21860 if (attr == NULL)
21861 return NULL;
21862
21863 return follow_die_ref (die, attr, ext_cu);
21864 }
21865
21866 static void
21867 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21868 {
21869 unsigned int i;
21870
21871 print_spaces (indent, f);
21872 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21873 dwarf_tag_name (die->tag), die->abbrev,
21874 sect_offset_str (die->sect_off));
21875
21876 if (die->parent != NULL)
21877 {
21878 print_spaces (indent, f);
21879 fprintf_unfiltered (f, " parent at offset: %s\n",
21880 sect_offset_str (die->parent->sect_off));
21881 }
21882
21883 print_spaces (indent, f);
21884 fprintf_unfiltered (f, " has children: %s\n",
21885 dwarf_bool_name (die->child != NULL));
21886
21887 print_spaces (indent, f);
21888 fprintf_unfiltered (f, " attributes:\n");
21889
21890 for (i = 0; i < die->num_attrs; ++i)
21891 {
21892 print_spaces (indent, f);
21893 fprintf_unfiltered (f, " %s (%s) ",
21894 dwarf_attr_name (die->attrs[i].name),
21895 dwarf_form_name (die->attrs[i].form));
21896
21897 switch (die->attrs[i].form)
21898 {
21899 case DW_FORM_addr:
21900 case DW_FORM_addrx:
21901 case DW_FORM_GNU_addr_index:
21902 fprintf_unfiltered (f, "address: ");
21903 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21904 break;
21905 case DW_FORM_block2:
21906 case DW_FORM_block4:
21907 case DW_FORM_block:
21908 case DW_FORM_block1:
21909 fprintf_unfiltered (f, "block: size %s",
21910 pulongest (DW_BLOCK (&die->attrs[i])->size));
21911 break;
21912 case DW_FORM_exprloc:
21913 fprintf_unfiltered (f, "expression: size %s",
21914 pulongest (DW_BLOCK (&die->attrs[i])->size));
21915 break;
21916 case DW_FORM_data16:
21917 fprintf_unfiltered (f, "constant of 16 bytes");
21918 break;
21919 case DW_FORM_ref_addr:
21920 fprintf_unfiltered (f, "ref address: ");
21921 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21922 break;
21923 case DW_FORM_GNU_ref_alt:
21924 fprintf_unfiltered (f, "alt ref address: ");
21925 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21926 break;
21927 case DW_FORM_ref1:
21928 case DW_FORM_ref2:
21929 case DW_FORM_ref4:
21930 case DW_FORM_ref8:
21931 case DW_FORM_ref_udata:
21932 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21933 (long) (DW_UNSND (&die->attrs[i])));
21934 break;
21935 case DW_FORM_data1:
21936 case DW_FORM_data2:
21937 case DW_FORM_data4:
21938 case DW_FORM_data8:
21939 case DW_FORM_udata:
21940 case DW_FORM_sdata:
21941 fprintf_unfiltered (f, "constant: %s",
21942 pulongest (DW_UNSND (&die->attrs[i])));
21943 break;
21944 case DW_FORM_sec_offset:
21945 fprintf_unfiltered (f, "section offset: %s",
21946 pulongest (DW_UNSND (&die->attrs[i])));
21947 break;
21948 case DW_FORM_ref_sig8:
21949 fprintf_unfiltered (f, "signature: %s",
21950 hex_string (DW_SIGNATURE (&die->attrs[i])));
21951 break;
21952 case DW_FORM_string:
21953 case DW_FORM_strp:
21954 case DW_FORM_line_strp:
21955 case DW_FORM_strx:
21956 case DW_FORM_GNU_str_index:
21957 case DW_FORM_GNU_strp_alt:
21958 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21959 DW_STRING (&die->attrs[i])
21960 ? DW_STRING (&die->attrs[i]) : "",
21961 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21962 break;
21963 case DW_FORM_flag:
21964 if (DW_UNSND (&die->attrs[i]))
21965 fprintf_unfiltered (f, "flag: TRUE");
21966 else
21967 fprintf_unfiltered (f, "flag: FALSE");
21968 break;
21969 case DW_FORM_flag_present:
21970 fprintf_unfiltered (f, "flag: TRUE");
21971 break;
21972 case DW_FORM_indirect:
21973 /* The reader will have reduced the indirect form to
21974 the "base form" so this form should not occur. */
21975 fprintf_unfiltered (f,
21976 "unexpected attribute form: DW_FORM_indirect");
21977 break;
21978 case DW_FORM_implicit_const:
21979 fprintf_unfiltered (f, "constant: %s",
21980 plongest (DW_SND (&die->attrs[i])));
21981 break;
21982 default:
21983 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21984 die->attrs[i].form);
21985 break;
21986 }
21987 fprintf_unfiltered (f, "\n");
21988 }
21989 }
21990
21991 static void
21992 dump_die_for_error (struct die_info *die)
21993 {
21994 dump_die_shallow (gdb_stderr, 0, die);
21995 }
21996
21997 static void
21998 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21999 {
22000 int indent = level * 4;
22001
22002 gdb_assert (die != NULL);
22003
22004 if (level >= max_level)
22005 return;
22006
22007 dump_die_shallow (f, indent, die);
22008
22009 if (die->child != NULL)
22010 {
22011 print_spaces (indent, f);
22012 fprintf_unfiltered (f, " Children:");
22013 if (level + 1 < max_level)
22014 {
22015 fprintf_unfiltered (f, "\n");
22016 dump_die_1 (f, level + 1, max_level, die->child);
22017 }
22018 else
22019 {
22020 fprintf_unfiltered (f,
22021 " [not printed, max nesting level reached]\n");
22022 }
22023 }
22024
22025 if (die->sibling != NULL && level > 0)
22026 {
22027 dump_die_1 (f, level, max_level, die->sibling);
22028 }
22029 }
22030
22031 /* This is called from the pdie macro in gdbinit.in.
22032 It's not static so gcc will keep a copy callable from gdb. */
22033
22034 void
22035 dump_die (struct die_info *die, int max_level)
22036 {
22037 dump_die_1 (gdb_stdlog, 0, max_level, die);
22038 }
22039
22040 static void
22041 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22042 {
22043 void **slot;
22044
22045 slot = htab_find_slot_with_hash (cu->die_hash, die,
22046 to_underlying (die->sect_off),
22047 INSERT);
22048
22049 *slot = die;
22050 }
22051
22052 /* Follow reference or signature attribute ATTR of SRC_DIE.
22053 On entry *REF_CU is the CU of SRC_DIE.
22054 On exit *REF_CU is the CU of the result. */
22055
22056 static struct die_info *
22057 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22058 struct dwarf2_cu **ref_cu)
22059 {
22060 struct die_info *die;
22061
22062 if (attr->form_is_ref ())
22063 die = follow_die_ref (src_die, attr, ref_cu);
22064 else if (attr->form == DW_FORM_ref_sig8)
22065 die = follow_die_sig (src_die, attr, ref_cu);
22066 else
22067 {
22068 dump_die_for_error (src_die);
22069 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22070 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22071 }
22072
22073 return die;
22074 }
22075
22076 /* Follow reference OFFSET.
22077 On entry *REF_CU is the CU of the source die referencing OFFSET.
22078 On exit *REF_CU is the CU of the result.
22079 Returns NULL if OFFSET is invalid. */
22080
22081 static struct die_info *
22082 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22083 struct dwarf2_cu **ref_cu)
22084 {
22085 struct die_info temp_die;
22086 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22087 struct dwarf2_per_objfile *dwarf2_per_objfile
22088 = cu->per_cu->dwarf2_per_objfile;
22089
22090 gdb_assert (cu->per_cu != NULL);
22091
22092 target_cu = cu;
22093
22094 if (cu->per_cu->is_debug_types)
22095 {
22096 /* .debug_types CUs cannot reference anything outside their CU.
22097 If they need to, they have to reference a signatured type via
22098 DW_FORM_ref_sig8. */
22099 if (!cu->header.offset_in_cu_p (sect_off))
22100 return NULL;
22101 }
22102 else if (offset_in_dwz != cu->per_cu->is_dwz
22103 || !cu->header.offset_in_cu_p (sect_off))
22104 {
22105 struct dwarf2_per_cu_data *per_cu;
22106
22107 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22108 dwarf2_per_objfile);
22109
22110 /* If necessary, add it to the queue and load its DIEs. */
22111 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22112 load_full_comp_unit (per_cu, false, cu->language);
22113
22114 target_cu = per_cu->cu;
22115 }
22116 else if (cu->dies == NULL)
22117 {
22118 /* We're loading full DIEs during partial symbol reading. */
22119 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22120 load_full_comp_unit (cu->per_cu, false, language_minimal);
22121 }
22122
22123 *ref_cu = target_cu;
22124 temp_die.sect_off = sect_off;
22125
22126 if (target_cu != cu)
22127 target_cu->ancestor = cu;
22128
22129 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22130 &temp_die,
22131 to_underlying (sect_off));
22132 }
22133
22134 /* Follow reference attribute ATTR of SRC_DIE.
22135 On entry *REF_CU is the CU of SRC_DIE.
22136 On exit *REF_CU is the CU of the result. */
22137
22138 static struct die_info *
22139 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22140 struct dwarf2_cu **ref_cu)
22141 {
22142 sect_offset sect_off = attr->get_ref_die_offset ();
22143 struct dwarf2_cu *cu = *ref_cu;
22144 struct die_info *die;
22145
22146 die = follow_die_offset (sect_off,
22147 (attr->form == DW_FORM_GNU_ref_alt
22148 || cu->per_cu->is_dwz),
22149 ref_cu);
22150 if (!die)
22151 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22152 "at %s [in module %s]"),
22153 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22154 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22155
22156 return die;
22157 }
22158
22159 /* See read.h. */
22160
22161 struct dwarf2_locexpr_baton
22162 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22163 dwarf2_per_cu_data *per_cu,
22164 CORE_ADDR (*get_frame_pc) (void *baton),
22165 void *baton, bool resolve_abstract_p)
22166 {
22167 struct dwarf2_cu *cu;
22168 struct die_info *die;
22169 struct attribute *attr;
22170 struct dwarf2_locexpr_baton retval;
22171 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22172 struct objfile *objfile = dwarf2_per_objfile->objfile;
22173
22174 if (per_cu->cu == NULL)
22175 load_cu (per_cu, false);
22176 cu = per_cu->cu;
22177 if (cu == NULL)
22178 {
22179 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22180 Instead just throw an error, not much else we can do. */
22181 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22182 sect_offset_str (sect_off), objfile_name (objfile));
22183 }
22184
22185 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22186 if (!die)
22187 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22188 sect_offset_str (sect_off), objfile_name (objfile));
22189
22190 attr = dwarf2_attr (die, DW_AT_location, cu);
22191 if (!attr && resolve_abstract_p
22192 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22193 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22194 {
22195 CORE_ADDR pc = (*get_frame_pc) (baton);
22196 CORE_ADDR baseaddr = objfile->text_section_offset ();
22197 struct gdbarch *gdbarch = objfile->arch ();
22198
22199 for (const auto &cand_off
22200 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22201 {
22202 struct dwarf2_cu *cand_cu = cu;
22203 struct die_info *cand
22204 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22205 if (!cand
22206 || !cand->parent
22207 || cand->parent->tag != DW_TAG_subprogram)
22208 continue;
22209
22210 CORE_ADDR pc_low, pc_high;
22211 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22212 if (pc_low == ((CORE_ADDR) -1))
22213 continue;
22214 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22215 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22216 if (!(pc_low <= pc && pc < pc_high))
22217 continue;
22218
22219 die = cand;
22220 attr = dwarf2_attr (die, DW_AT_location, cu);
22221 break;
22222 }
22223 }
22224
22225 if (!attr)
22226 {
22227 /* DWARF: "If there is no such attribute, then there is no effect.".
22228 DATA is ignored if SIZE is 0. */
22229
22230 retval.data = NULL;
22231 retval.size = 0;
22232 }
22233 else if (attr->form_is_section_offset ())
22234 {
22235 struct dwarf2_loclist_baton loclist_baton;
22236 CORE_ADDR pc = (*get_frame_pc) (baton);
22237 size_t size;
22238
22239 fill_in_loclist_baton (cu, &loclist_baton, attr);
22240
22241 retval.data = dwarf2_find_location_expression (&loclist_baton,
22242 &size, pc);
22243 retval.size = size;
22244 }
22245 else
22246 {
22247 if (!attr->form_is_block ())
22248 error (_("Dwarf Error: DIE at %s referenced in module %s "
22249 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22250 sect_offset_str (sect_off), objfile_name (objfile));
22251
22252 retval.data = DW_BLOCK (attr)->data;
22253 retval.size = DW_BLOCK (attr)->size;
22254 }
22255 retval.per_cu = cu->per_cu;
22256
22257 age_cached_comp_units (dwarf2_per_objfile);
22258
22259 return retval;
22260 }
22261
22262 /* See read.h. */
22263
22264 struct dwarf2_locexpr_baton
22265 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22266 dwarf2_per_cu_data *per_cu,
22267 CORE_ADDR (*get_frame_pc) (void *baton),
22268 void *baton)
22269 {
22270 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22271
22272 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22273 }
22274
22275 /* Write a constant of a given type as target-ordered bytes into
22276 OBSTACK. */
22277
22278 static const gdb_byte *
22279 write_constant_as_bytes (struct obstack *obstack,
22280 enum bfd_endian byte_order,
22281 struct type *type,
22282 ULONGEST value,
22283 LONGEST *len)
22284 {
22285 gdb_byte *result;
22286
22287 *len = TYPE_LENGTH (type);
22288 result = (gdb_byte *) obstack_alloc (obstack, *len);
22289 store_unsigned_integer (result, *len, byte_order, value);
22290
22291 return result;
22292 }
22293
22294 /* See read.h. */
22295
22296 const gdb_byte *
22297 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22298 dwarf2_per_cu_data *per_cu,
22299 obstack *obstack,
22300 LONGEST *len)
22301 {
22302 struct dwarf2_cu *cu;
22303 struct die_info *die;
22304 struct attribute *attr;
22305 const gdb_byte *result = NULL;
22306 struct type *type;
22307 LONGEST value;
22308 enum bfd_endian byte_order;
22309 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22310
22311 if (per_cu->cu == NULL)
22312 load_cu (per_cu, false);
22313 cu = per_cu->cu;
22314 if (cu == NULL)
22315 {
22316 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22317 Instead just throw an error, not much else we can do. */
22318 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22319 sect_offset_str (sect_off), objfile_name (objfile));
22320 }
22321
22322 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22323 if (!die)
22324 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22325 sect_offset_str (sect_off), objfile_name (objfile));
22326
22327 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22328 if (attr == NULL)
22329 return NULL;
22330
22331 byte_order = (bfd_big_endian (objfile->obfd)
22332 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22333
22334 switch (attr->form)
22335 {
22336 case DW_FORM_addr:
22337 case DW_FORM_addrx:
22338 case DW_FORM_GNU_addr_index:
22339 {
22340 gdb_byte *tem;
22341
22342 *len = cu->header.addr_size;
22343 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22344 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22345 result = tem;
22346 }
22347 break;
22348 case DW_FORM_string:
22349 case DW_FORM_strp:
22350 case DW_FORM_strx:
22351 case DW_FORM_GNU_str_index:
22352 case DW_FORM_GNU_strp_alt:
22353 /* DW_STRING is already allocated on the objfile obstack, point
22354 directly to it. */
22355 result = (const gdb_byte *) DW_STRING (attr);
22356 *len = strlen (DW_STRING (attr));
22357 break;
22358 case DW_FORM_block1:
22359 case DW_FORM_block2:
22360 case DW_FORM_block4:
22361 case DW_FORM_block:
22362 case DW_FORM_exprloc:
22363 case DW_FORM_data16:
22364 result = DW_BLOCK (attr)->data;
22365 *len = DW_BLOCK (attr)->size;
22366 break;
22367
22368 /* The DW_AT_const_value attributes are supposed to carry the
22369 symbol's value "represented as it would be on the target
22370 architecture." By the time we get here, it's already been
22371 converted to host endianness, so we just need to sign- or
22372 zero-extend it as appropriate. */
22373 case DW_FORM_data1:
22374 type = die_type (die, cu);
22375 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22376 if (result == NULL)
22377 result = write_constant_as_bytes (obstack, byte_order,
22378 type, value, len);
22379 break;
22380 case DW_FORM_data2:
22381 type = die_type (die, cu);
22382 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22383 if (result == NULL)
22384 result = write_constant_as_bytes (obstack, byte_order,
22385 type, value, len);
22386 break;
22387 case DW_FORM_data4:
22388 type = die_type (die, cu);
22389 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22390 if (result == NULL)
22391 result = write_constant_as_bytes (obstack, byte_order,
22392 type, value, len);
22393 break;
22394 case DW_FORM_data8:
22395 type = die_type (die, cu);
22396 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22397 if (result == NULL)
22398 result = write_constant_as_bytes (obstack, byte_order,
22399 type, value, len);
22400 break;
22401
22402 case DW_FORM_sdata:
22403 case DW_FORM_implicit_const:
22404 type = die_type (die, cu);
22405 result = write_constant_as_bytes (obstack, byte_order,
22406 type, DW_SND (attr), len);
22407 break;
22408
22409 case DW_FORM_udata:
22410 type = die_type (die, cu);
22411 result = write_constant_as_bytes (obstack, byte_order,
22412 type, DW_UNSND (attr), len);
22413 break;
22414
22415 default:
22416 complaint (_("unsupported const value attribute form: '%s'"),
22417 dwarf_form_name (attr->form));
22418 break;
22419 }
22420
22421 return result;
22422 }
22423
22424 /* See read.h. */
22425
22426 struct type *
22427 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22428 dwarf2_per_cu_data *per_cu)
22429 {
22430 struct dwarf2_cu *cu;
22431 struct die_info *die;
22432
22433 if (per_cu->cu == NULL)
22434 load_cu (per_cu, false);
22435 cu = per_cu->cu;
22436 if (!cu)
22437 return NULL;
22438
22439 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22440 if (!die)
22441 return NULL;
22442
22443 return die_type (die, cu);
22444 }
22445
22446 /* See read.h. */
22447
22448 struct type *
22449 dwarf2_get_die_type (cu_offset die_offset,
22450 struct dwarf2_per_cu_data *per_cu)
22451 {
22452 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22453 return get_die_type_at_offset (die_offset_sect, per_cu);
22454 }
22455
22456 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22457 On entry *REF_CU is the CU of SRC_DIE.
22458 On exit *REF_CU is the CU of the result.
22459 Returns NULL if the referenced DIE isn't found. */
22460
22461 static struct die_info *
22462 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22463 struct dwarf2_cu **ref_cu)
22464 {
22465 struct die_info temp_die;
22466 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22467 struct die_info *die;
22468
22469 /* While it might be nice to assert sig_type->type == NULL here,
22470 we can get here for DW_AT_imported_declaration where we need
22471 the DIE not the type. */
22472
22473 /* If necessary, add it to the queue and load its DIEs. */
22474
22475 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22476 read_signatured_type (sig_type);
22477
22478 sig_cu = sig_type->per_cu.cu;
22479 gdb_assert (sig_cu != NULL);
22480 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22481 temp_die.sect_off = sig_type->type_offset_in_section;
22482 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22483 to_underlying (temp_die.sect_off));
22484 if (die)
22485 {
22486 struct dwarf2_per_objfile *dwarf2_per_objfile
22487 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22488
22489 /* For .gdb_index version 7 keep track of included TUs.
22490 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22491 if (dwarf2_per_objfile->index_table != NULL
22492 && dwarf2_per_objfile->index_table->version <= 7)
22493 {
22494 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22495 }
22496
22497 *ref_cu = sig_cu;
22498 if (sig_cu != cu)
22499 sig_cu->ancestor = cu;
22500
22501 return die;
22502 }
22503
22504 return NULL;
22505 }
22506
22507 /* Follow signatured type referenced by ATTR in SRC_DIE.
22508 On entry *REF_CU is the CU of SRC_DIE.
22509 On exit *REF_CU is the CU of the result.
22510 The result is the DIE of the type.
22511 If the referenced type cannot be found an error is thrown. */
22512
22513 static struct die_info *
22514 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22515 struct dwarf2_cu **ref_cu)
22516 {
22517 ULONGEST signature = DW_SIGNATURE (attr);
22518 struct signatured_type *sig_type;
22519 struct die_info *die;
22520
22521 gdb_assert (attr->form == DW_FORM_ref_sig8);
22522
22523 sig_type = lookup_signatured_type (*ref_cu, signature);
22524 /* sig_type will be NULL if the signatured type is missing from
22525 the debug info. */
22526 if (sig_type == NULL)
22527 {
22528 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22529 " from DIE at %s [in module %s]"),
22530 hex_string (signature), sect_offset_str (src_die->sect_off),
22531 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22532 }
22533
22534 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22535 if (die == NULL)
22536 {
22537 dump_die_for_error (src_die);
22538 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22539 " from DIE at %s [in module %s]"),
22540 hex_string (signature), sect_offset_str (src_die->sect_off),
22541 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22542 }
22543
22544 return die;
22545 }
22546
22547 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22548 reading in and processing the type unit if necessary. */
22549
22550 static struct type *
22551 get_signatured_type (struct die_info *die, ULONGEST signature,
22552 struct dwarf2_cu *cu)
22553 {
22554 struct dwarf2_per_objfile *dwarf2_per_objfile
22555 = cu->per_cu->dwarf2_per_objfile;
22556 struct signatured_type *sig_type;
22557 struct dwarf2_cu *type_cu;
22558 struct die_info *type_die;
22559 struct type *type;
22560
22561 sig_type = lookup_signatured_type (cu, signature);
22562 /* sig_type will be NULL if the signatured type is missing from
22563 the debug info. */
22564 if (sig_type == NULL)
22565 {
22566 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22567 " from DIE at %s [in module %s]"),
22568 hex_string (signature), sect_offset_str (die->sect_off),
22569 objfile_name (dwarf2_per_objfile->objfile));
22570 return build_error_marker_type (cu, die);
22571 }
22572
22573 /* If we already know the type we're done. */
22574 if (sig_type->type != NULL)
22575 return sig_type->type;
22576
22577 type_cu = cu;
22578 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22579 if (type_die != NULL)
22580 {
22581 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22582 is created. This is important, for example, because for c++ classes
22583 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22584 type = read_type_die (type_die, type_cu);
22585 if (type == NULL)
22586 {
22587 complaint (_("Dwarf Error: Cannot build signatured type %s"
22588 " referenced from DIE at %s [in module %s]"),
22589 hex_string (signature), sect_offset_str (die->sect_off),
22590 objfile_name (dwarf2_per_objfile->objfile));
22591 type = build_error_marker_type (cu, die);
22592 }
22593 }
22594 else
22595 {
22596 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22597 " from DIE at %s [in module %s]"),
22598 hex_string (signature), sect_offset_str (die->sect_off),
22599 objfile_name (dwarf2_per_objfile->objfile));
22600 type = build_error_marker_type (cu, die);
22601 }
22602 sig_type->type = type;
22603
22604 return type;
22605 }
22606
22607 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22608 reading in and processing the type unit if necessary. */
22609
22610 static struct type *
22611 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22612 struct dwarf2_cu *cu) /* ARI: editCase function */
22613 {
22614 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22615 if (attr->form_is_ref ())
22616 {
22617 struct dwarf2_cu *type_cu = cu;
22618 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22619
22620 return read_type_die (type_die, type_cu);
22621 }
22622 else if (attr->form == DW_FORM_ref_sig8)
22623 {
22624 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22625 }
22626 else
22627 {
22628 struct dwarf2_per_objfile *dwarf2_per_objfile
22629 = cu->per_cu->dwarf2_per_objfile;
22630
22631 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22632 " at %s [in module %s]"),
22633 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22634 objfile_name (dwarf2_per_objfile->objfile));
22635 return build_error_marker_type (cu, die);
22636 }
22637 }
22638
22639 /* Load the DIEs associated with type unit PER_CU into memory. */
22640
22641 static void
22642 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22643 {
22644 struct signatured_type *sig_type;
22645
22646 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22647 gdb_assert (! per_cu->type_unit_group_p ());
22648
22649 /* We have the per_cu, but we need the signatured_type.
22650 Fortunately this is an easy translation. */
22651 gdb_assert (per_cu->is_debug_types);
22652 sig_type = (struct signatured_type *) per_cu;
22653
22654 gdb_assert (per_cu->cu == NULL);
22655
22656 read_signatured_type (sig_type);
22657
22658 gdb_assert (per_cu->cu != NULL);
22659 }
22660
22661 /* Read in a signatured type and build its CU and DIEs.
22662 If the type is a stub for the real type in a DWO file,
22663 read in the real type from the DWO file as well. */
22664
22665 static void
22666 read_signatured_type (struct signatured_type *sig_type)
22667 {
22668 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22669
22670 gdb_assert (per_cu->is_debug_types);
22671 gdb_assert (per_cu->cu == NULL);
22672
22673 cutu_reader reader (per_cu, NULL, 0, false);
22674
22675 if (!reader.dummy_p)
22676 {
22677 struct dwarf2_cu *cu = reader.cu;
22678 const gdb_byte *info_ptr = reader.info_ptr;
22679
22680 gdb_assert (cu->die_hash == NULL);
22681 cu->die_hash =
22682 htab_create_alloc_ex (cu->header.length / 12,
22683 die_hash,
22684 die_eq,
22685 NULL,
22686 &cu->comp_unit_obstack,
22687 hashtab_obstack_allocate,
22688 dummy_obstack_deallocate);
22689
22690 if (reader.comp_unit_die->has_children)
22691 reader.comp_unit_die->child
22692 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22693 reader.comp_unit_die);
22694 cu->dies = reader.comp_unit_die;
22695 /* comp_unit_die is not stored in die_hash, no need. */
22696
22697 /* We try not to read any attributes in this function, because
22698 not all CUs needed for references have been loaded yet, and
22699 symbol table processing isn't initialized. But we have to
22700 set the CU language, or we won't be able to build types
22701 correctly. Similarly, if we do not read the producer, we can
22702 not apply producer-specific interpretation. */
22703 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22704
22705 reader.keep ();
22706 }
22707
22708 sig_type->per_cu.tu_read = 1;
22709 }
22710
22711 /* Decode simple location descriptions.
22712 Given a pointer to a dwarf block that defines a location, compute
22713 the location and return the value. If COMPUTED is non-null, it is
22714 set to true to indicate that decoding was successful, and false
22715 otherwise. If COMPUTED is null, then this function may emit a
22716 complaint. */
22717
22718 static CORE_ADDR
22719 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22720 {
22721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22722 size_t i;
22723 size_t size = blk->size;
22724 const gdb_byte *data = blk->data;
22725 CORE_ADDR stack[64];
22726 int stacki;
22727 unsigned int bytes_read, unsnd;
22728 gdb_byte op;
22729
22730 if (computed != nullptr)
22731 *computed = false;
22732
22733 i = 0;
22734 stacki = 0;
22735 stack[stacki] = 0;
22736 stack[++stacki] = 0;
22737
22738 while (i < size)
22739 {
22740 op = data[i++];
22741 switch (op)
22742 {
22743 case DW_OP_lit0:
22744 case DW_OP_lit1:
22745 case DW_OP_lit2:
22746 case DW_OP_lit3:
22747 case DW_OP_lit4:
22748 case DW_OP_lit5:
22749 case DW_OP_lit6:
22750 case DW_OP_lit7:
22751 case DW_OP_lit8:
22752 case DW_OP_lit9:
22753 case DW_OP_lit10:
22754 case DW_OP_lit11:
22755 case DW_OP_lit12:
22756 case DW_OP_lit13:
22757 case DW_OP_lit14:
22758 case DW_OP_lit15:
22759 case DW_OP_lit16:
22760 case DW_OP_lit17:
22761 case DW_OP_lit18:
22762 case DW_OP_lit19:
22763 case DW_OP_lit20:
22764 case DW_OP_lit21:
22765 case DW_OP_lit22:
22766 case DW_OP_lit23:
22767 case DW_OP_lit24:
22768 case DW_OP_lit25:
22769 case DW_OP_lit26:
22770 case DW_OP_lit27:
22771 case DW_OP_lit28:
22772 case DW_OP_lit29:
22773 case DW_OP_lit30:
22774 case DW_OP_lit31:
22775 stack[++stacki] = op - DW_OP_lit0;
22776 break;
22777
22778 case DW_OP_reg0:
22779 case DW_OP_reg1:
22780 case DW_OP_reg2:
22781 case DW_OP_reg3:
22782 case DW_OP_reg4:
22783 case DW_OP_reg5:
22784 case DW_OP_reg6:
22785 case DW_OP_reg7:
22786 case DW_OP_reg8:
22787 case DW_OP_reg9:
22788 case DW_OP_reg10:
22789 case DW_OP_reg11:
22790 case DW_OP_reg12:
22791 case DW_OP_reg13:
22792 case DW_OP_reg14:
22793 case DW_OP_reg15:
22794 case DW_OP_reg16:
22795 case DW_OP_reg17:
22796 case DW_OP_reg18:
22797 case DW_OP_reg19:
22798 case DW_OP_reg20:
22799 case DW_OP_reg21:
22800 case DW_OP_reg22:
22801 case DW_OP_reg23:
22802 case DW_OP_reg24:
22803 case DW_OP_reg25:
22804 case DW_OP_reg26:
22805 case DW_OP_reg27:
22806 case DW_OP_reg28:
22807 case DW_OP_reg29:
22808 case DW_OP_reg30:
22809 case DW_OP_reg31:
22810 stack[++stacki] = op - DW_OP_reg0;
22811 if (i < size)
22812 {
22813 if (computed == nullptr)
22814 dwarf2_complex_location_expr_complaint ();
22815 else
22816 return 0;
22817 }
22818 break;
22819
22820 case DW_OP_regx:
22821 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22822 i += bytes_read;
22823 stack[++stacki] = unsnd;
22824 if (i < size)
22825 {
22826 if (computed == nullptr)
22827 dwarf2_complex_location_expr_complaint ();
22828 else
22829 return 0;
22830 }
22831 break;
22832
22833 case DW_OP_addr:
22834 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22835 &bytes_read);
22836 i += bytes_read;
22837 break;
22838
22839 case DW_OP_const1u:
22840 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22841 i += 1;
22842 break;
22843
22844 case DW_OP_const1s:
22845 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22846 i += 1;
22847 break;
22848
22849 case DW_OP_const2u:
22850 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22851 i += 2;
22852 break;
22853
22854 case DW_OP_const2s:
22855 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22856 i += 2;
22857 break;
22858
22859 case DW_OP_const4u:
22860 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22861 i += 4;
22862 break;
22863
22864 case DW_OP_const4s:
22865 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22866 i += 4;
22867 break;
22868
22869 case DW_OP_const8u:
22870 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22871 i += 8;
22872 break;
22873
22874 case DW_OP_constu:
22875 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22876 &bytes_read);
22877 i += bytes_read;
22878 break;
22879
22880 case DW_OP_consts:
22881 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22882 i += bytes_read;
22883 break;
22884
22885 case DW_OP_dup:
22886 stack[stacki + 1] = stack[stacki];
22887 stacki++;
22888 break;
22889
22890 case DW_OP_plus:
22891 stack[stacki - 1] += stack[stacki];
22892 stacki--;
22893 break;
22894
22895 case DW_OP_plus_uconst:
22896 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22897 &bytes_read);
22898 i += bytes_read;
22899 break;
22900
22901 case DW_OP_minus:
22902 stack[stacki - 1] -= stack[stacki];
22903 stacki--;
22904 break;
22905
22906 case DW_OP_deref:
22907 /* If we're not the last op, then we definitely can't encode
22908 this using GDB's address_class enum. This is valid for partial
22909 global symbols, although the variable's address will be bogus
22910 in the psymtab. */
22911 if (i < size)
22912 {
22913 if (computed == nullptr)
22914 dwarf2_complex_location_expr_complaint ();
22915 else
22916 return 0;
22917 }
22918 break;
22919
22920 case DW_OP_GNU_push_tls_address:
22921 case DW_OP_form_tls_address:
22922 /* The top of the stack has the offset from the beginning
22923 of the thread control block at which the variable is located. */
22924 /* Nothing should follow this operator, so the top of stack would
22925 be returned. */
22926 /* This is valid for partial global symbols, but the variable's
22927 address will be bogus in the psymtab. Make it always at least
22928 non-zero to not look as a variable garbage collected by linker
22929 which have DW_OP_addr 0. */
22930 if (i < size)
22931 {
22932 if (computed == nullptr)
22933 dwarf2_complex_location_expr_complaint ();
22934 else
22935 return 0;
22936 }
22937 stack[stacki]++;
22938 break;
22939
22940 case DW_OP_GNU_uninit:
22941 if (computed != nullptr)
22942 return 0;
22943 break;
22944
22945 case DW_OP_addrx:
22946 case DW_OP_GNU_addr_index:
22947 case DW_OP_GNU_const_index:
22948 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22949 &bytes_read);
22950 i += bytes_read;
22951 break;
22952
22953 default:
22954 if (computed == nullptr)
22955 {
22956 const char *name = get_DW_OP_name (op);
22957
22958 if (name)
22959 complaint (_("unsupported stack op: '%s'"),
22960 name);
22961 else
22962 complaint (_("unsupported stack op: '%02x'"),
22963 op);
22964 }
22965
22966 return (stack[stacki]);
22967 }
22968
22969 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22970 outside of the allocated space. Also enforce minimum>0. */
22971 if (stacki >= ARRAY_SIZE (stack) - 1)
22972 {
22973 if (computed == nullptr)
22974 complaint (_("location description stack overflow"));
22975 return 0;
22976 }
22977
22978 if (stacki <= 0)
22979 {
22980 if (computed == nullptr)
22981 complaint (_("location description stack underflow"));
22982 return 0;
22983 }
22984 }
22985
22986 if (computed != nullptr)
22987 *computed = true;
22988 return (stack[stacki]);
22989 }
22990
22991 /* memory allocation interface */
22992
22993 static struct dwarf_block *
22994 dwarf_alloc_block (struct dwarf2_cu *cu)
22995 {
22996 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22997 }
22998
22999 static struct die_info *
23000 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23001 {
23002 struct die_info *die;
23003 size_t size = sizeof (struct die_info);
23004
23005 if (num_attrs > 1)
23006 size += (num_attrs - 1) * sizeof (struct attribute);
23007
23008 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23009 memset (die, 0, sizeof (struct die_info));
23010 return (die);
23011 }
23012
23013 \f
23014
23015 /* Macro support. */
23016
23017 /* An overload of dwarf_decode_macros that finds the correct section
23018 and ensures it is read in before calling the other overload. */
23019
23020 static void
23021 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23022 int section_is_gnu)
23023 {
23024 struct dwarf2_per_objfile *dwarf2_per_objfile
23025 = cu->per_cu->dwarf2_per_objfile;
23026 struct objfile *objfile = dwarf2_per_objfile->objfile;
23027 const struct line_header *lh = cu->line_header;
23028 unsigned int offset_size = cu->header.offset_size;
23029 struct dwarf2_section_info *section;
23030 const char *section_name;
23031
23032 if (cu->dwo_unit != nullptr)
23033 {
23034 if (section_is_gnu)
23035 {
23036 section = &cu->dwo_unit->dwo_file->sections.macro;
23037 section_name = ".debug_macro.dwo";
23038 }
23039 else
23040 {
23041 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23042 section_name = ".debug_macinfo.dwo";
23043 }
23044 }
23045 else
23046 {
23047 if (section_is_gnu)
23048 {
23049 section = &dwarf2_per_objfile->macro;
23050 section_name = ".debug_macro";
23051 }
23052 else
23053 {
23054 section = &dwarf2_per_objfile->macinfo;
23055 section_name = ".debug_macinfo";
23056 }
23057 }
23058
23059 section->read (objfile);
23060 if (section->buffer == nullptr)
23061 {
23062 complaint (_("missing %s section"), section_name);
23063 return;
23064 }
23065
23066 buildsym_compunit *builder = cu->get_builder ();
23067
23068 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23069 offset_size, offset, section_is_gnu);
23070 }
23071
23072 /* Return the .debug_loc section to use for CU.
23073 For DWO files use .debug_loc.dwo. */
23074
23075 static struct dwarf2_section_info *
23076 cu_debug_loc_section (struct dwarf2_cu *cu)
23077 {
23078 struct dwarf2_per_objfile *dwarf2_per_objfile
23079 = cu->per_cu->dwarf2_per_objfile;
23080
23081 if (cu->dwo_unit)
23082 {
23083 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23084
23085 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23086 }
23087 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23088 : &dwarf2_per_objfile->loc);
23089 }
23090
23091 /* A helper function that fills in a dwarf2_loclist_baton. */
23092
23093 static void
23094 fill_in_loclist_baton (struct dwarf2_cu *cu,
23095 struct dwarf2_loclist_baton *baton,
23096 const struct attribute *attr)
23097 {
23098 struct dwarf2_per_objfile *dwarf2_per_objfile
23099 = cu->per_cu->dwarf2_per_objfile;
23100 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23101
23102 section->read (dwarf2_per_objfile->objfile);
23103
23104 baton->per_cu = cu->per_cu;
23105 gdb_assert (baton->per_cu);
23106 /* We don't know how long the location list is, but make sure we
23107 don't run off the edge of the section. */
23108 baton->size = section->size - DW_UNSND (attr);
23109 baton->data = section->buffer + DW_UNSND (attr);
23110 if (cu->base_address.has_value ())
23111 baton->base_address = *cu->base_address;
23112 else
23113 baton->base_address = 0;
23114 baton->from_dwo = cu->dwo_unit != NULL;
23115 }
23116
23117 static void
23118 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23119 struct dwarf2_cu *cu, int is_block)
23120 {
23121 struct dwarf2_per_objfile *dwarf2_per_objfile
23122 = cu->per_cu->dwarf2_per_objfile;
23123 struct objfile *objfile = dwarf2_per_objfile->objfile;
23124 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23125
23126 if (attr->form_is_section_offset ()
23127 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23128 the section. If so, fall through to the complaint in the
23129 other branch. */
23130 && DW_UNSND (attr) < section->get_size (objfile))
23131 {
23132 struct dwarf2_loclist_baton *baton;
23133
23134 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23135
23136 fill_in_loclist_baton (cu, baton, attr);
23137
23138 if (!cu->base_address.has_value ())
23139 complaint (_("Location list used without "
23140 "specifying the CU base address."));
23141
23142 SYMBOL_ACLASS_INDEX (sym) = (is_block
23143 ? dwarf2_loclist_block_index
23144 : dwarf2_loclist_index);
23145 SYMBOL_LOCATION_BATON (sym) = baton;
23146 }
23147 else
23148 {
23149 struct dwarf2_locexpr_baton *baton;
23150
23151 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23152 baton->per_cu = cu->per_cu;
23153 gdb_assert (baton->per_cu);
23154
23155 if (attr->form_is_block ())
23156 {
23157 /* Note that we're just copying the block's data pointer
23158 here, not the actual data. We're still pointing into the
23159 info_buffer for SYM's objfile; right now we never release
23160 that buffer, but when we do clean up properly this may
23161 need to change. */
23162 baton->size = DW_BLOCK (attr)->size;
23163 baton->data = DW_BLOCK (attr)->data;
23164 }
23165 else
23166 {
23167 dwarf2_invalid_attrib_class_complaint ("location description",
23168 sym->natural_name ());
23169 baton->size = 0;
23170 }
23171
23172 SYMBOL_ACLASS_INDEX (sym) = (is_block
23173 ? dwarf2_locexpr_block_index
23174 : dwarf2_locexpr_index);
23175 SYMBOL_LOCATION_BATON (sym) = baton;
23176 }
23177 }
23178
23179 /* See read.h. */
23180
23181 struct objfile *
23182 dwarf2_per_cu_data::objfile () const
23183 {
23184 struct objfile *objfile = dwarf2_per_objfile->objfile;
23185
23186 /* Return the master objfile, so that we can report and look up the
23187 correct file containing this variable. */
23188 if (objfile->separate_debug_objfile_backlink)
23189 objfile = objfile->separate_debug_objfile_backlink;
23190
23191 return objfile;
23192 }
23193
23194 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23195 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23196 CU_HEADERP first. */
23197
23198 static const struct comp_unit_head *
23199 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23200 const struct dwarf2_per_cu_data *per_cu)
23201 {
23202 const gdb_byte *info_ptr;
23203
23204 if (per_cu->cu)
23205 return &per_cu->cu->header;
23206
23207 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23208
23209 memset (cu_headerp, 0, sizeof (*cu_headerp));
23210 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23211 rcuh_kind::COMPILE);
23212
23213 return cu_headerp;
23214 }
23215
23216 /* See read.h. */
23217
23218 int
23219 dwarf2_per_cu_data::addr_size () const
23220 {
23221 struct comp_unit_head cu_header_local;
23222 const struct comp_unit_head *cu_headerp;
23223
23224 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23225
23226 return cu_headerp->addr_size;
23227 }
23228
23229 /* See read.h. */
23230
23231 int
23232 dwarf2_per_cu_data::offset_size () const
23233 {
23234 struct comp_unit_head cu_header_local;
23235 const struct comp_unit_head *cu_headerp;
23236
23237 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23238
23239 return cu_headerp->offset_size;
23240 }
23241
23242 /* See read.h. */
23243
23244 int
23245 dwarf2_per_cu_data::ref_addr_size () const
23246 {
23247 struct comp_unit_head cu_header_local;
23248 const struct comp_unit_head *cu_headerp;
23249
23250 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23251
23252 if (cu_headerp->version == 2)
23253 return cu_headerp->addr_size;
23254 else
23255 return cu_headerp->offset_size;
23256 }
23257
23258 /* See read.h. */
23259
23260 CORE_ADDR
23261 dwarf2_per_cu_data::text_offset () const
23262 {
23263 struct objfile *objfile = dwarf2_per_objfile->objfile;
23264
23265 return objfile->text_section_offset ();
23266 }
23267
23268 /* See read.h. */
23269
23270 struct type *
23271 dwarf2_per_cu_data::addr_type () const
23272 {
23273 struct objfile *objfile = dwarf2_per_objfile->objfile;
23274 struct type *void_type = objfile_type (objfile)->builtin_void;
23275 struct type *addr_type = lookup_pointer_type (void_type);
23276 int addr_size = this->addr_size ();
23277
23278 if (TYPE_LENGTH (addr_type) == addr_size)
23279 return addr_type;
23280
23281 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23282 return addr_type;
23283 }
23284
23285 /* A helper function for dwarf2_find_containing_comp_unit that returns
23286 the index of the result, and that searches a vector. It will
23287 return a result even if the offset in question does not actually
23288 occur in any CU. This is separate so that it can be unit
23289 tested. */
23290
23291 static int
23292 dwarf2_find_containing_comp_unit
23293 (sect_offset sect_off,
23294 unsigned int offset_in_dwz,
23295 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23296 {
23297 int low, high;
23298
23299 low = 0;
23300 high = all_comp_units.size () - 1;
23301 while (high > low)
23302 {
23303 struct dwarf2_per_cu_data *mid_cu;
23304 int mid = low + (high - low) / 2;
23305
23306 mid_cu = all_comp_units[mid];
23307 if (mid_cu->is_dwz > offset_in_dwz
23308 || (mid_cu->is_dwz == offset_in_dwz
23309 && mid_cu->sect_off + mid_cu->length > sect_off))
23310 high = mid;
23311 else
23312 low = mid + 1;
23313 }
23314 gdb_assert (low == high);
23315 return low;
23316 }
23317
23318 /* Locate the .debug_info compilation unit from CU's objfile which contains
23319 the DIE at OFFSET. Raises an error on failure. */
23320
23321 static struct dwarf2_per_cu_data *
23322 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23323 unsigned int offset_in_dwz,
23324 struct dwarf2_per_objfile *dwarf2_per_objfile)
23325 {
23326 int low
23327 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23328 dwarf2_per_objfile->all_comp_units);
23329 struct dwarf2_per_cu_data *this_cu
23330 = dwarf2_per_objfile->all_comp_units[low];
23331
23332 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23333 {
23334 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23335 error (_("Dwarf Error: could not find partial DIE containing "
23336 "offset %s [in module %s]"),
23337 sect_offset_str (sect_off),
23338 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23339
23340 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23341 <= sect_off);
23342 return dwarf2_per_objfile->all_comp_units[low-1];
23343 }
23344 else
23345 {
23346 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23347 && sect_off >= this_cu->sect_off + this_cu->length)
23348 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23349 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23350 return this_cu;
23351 }
23352 }
23353
23354 #if GDB_SELF_TEST
23355
23356 namespace selftests {
23357 namespace find_containing_comp_unit {
23358
23359 static void
23360 run_test ()
23361 {
23362 struct dwarf2_per_cu_data one {};
23363 struct dwarf2_per_cu_data two {};
23364 struct dwarf2_per_cu_data three {};
23365 struct dwarf2_per_cu_data four {};
23366
23367 one.length = 5;
23368 two.sect_off = sect_offset (one.length);
23369 two.length = 7;
23370
23371 three.length = 5;
23372 three.is_dwz = 1;
23373 four.sect_off = sect_offset (three.length);
23374 four.length = 7;
23375 four.is_dwz = 1;
23376
23377 std::vector<dwarf2_per_cu_data *> units;
23378 units.push_back (&one);
23379 units.push_back (&two);
23380 units.push_back (&three);
23381 units.push_back (&four);
23382
23383 int result;
23384
23385 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23386 SELF_CHECK (units[result] == &one);
23387 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23388 SELF_CHECK (units[result] == &one);
23389 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23390 SELF_CHECK (units[result] == &two);
23391
23392 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23393 SELF_CHECK (units[result] == &three);
23394 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23395 SELF_CHECK (units[result] == &three);
23396 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23397 SELF_CHECK (units[result] == &four);
23398 }
23399
23400 }
23401 }
23402
23403 #endif /* GDB_SELF_TEST */
23404
23405 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23406
23407 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23408 : per_cu (per_cu_),
23409 mark (false),
23410 has_loclist (false),
23411 checked_producer (false),
23412 producer_is_gxx_lt_4_6 (false),
23413 producer_is_gcc_lt_4_3 (false),
23414 producer_is_icc (false),
23415 producer_is_icc_lt_14 (false),
23416 producer_is_codewarrior (false),
23417 processing_has_namespace_info (false)
23418 {
23419 per_cu->cu = this;
23420 }
23421
23422 /* Destroy a dwarf2_cu. */
23423
23424 dwarf2_cu::~dwarf2_cu ()
23425 {
23426 per_cu->cu = NULL;
23427 }
23428
23429 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23430
23431 static void
23432 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23433 enum language pretend_language)
23434 {
23435 struct attribute *attr;
23436
23437 /* Set the language we're debugging. */
23438 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23439 if (attr != nullptr)
23440 set_cu_language (DW_UNSND (attr), cu);
23441 else
23442 {
23443 cu->language = pretend_language;
23444 cu->language_defn = language_def (cu->language);
23445 }
23446
23447 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23448 }
23449
23450 /* Increase the age counter on each cached compilation unit, and free
23451 any that are too old. */
23452
23453 static void
23454 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23455 {
23456 struct dwarf2_per_cu_data *per_cu, **last_chain;
23457
23458 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23459 per_cu = dwarf2_per_objfile->read_in_chain;
23460 while (per_cu != NULL)
23461 {
23462 per_cu->cu->last_used ++;
23463 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23464 dwarf2_mark (per_cu->cu);
23465 per_cu = per_cu->cu->read_in_chain;
23466 }
23467
23468 per_cu = dwarf2_per_objfile->read_in_chain;
23469 last_chain = &dwarf2_per_objfile->read_in_chain;
23470 while (per_cu != NULL)
23471 {
23472 struct dwarf2_per_cu_data *next_cu;
23473
23474 next_cu = per_cu->cu->read_in_chain;
23475
23476 if (!per_cu->cu->mark)
23477 {
23478 delete per_cu->cu;
23479 *last_chain = next_cu;
23480 }
23481 else
23482 last_chain = &per_cu->cu->read_in_chain;
23483
23484 per_cu = next_cu;
23485 }
23486 }
23487
23488 /* Remove a single compilation unit from the cache. */
23489
23490 static void
23491 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23492 {
23493 struct dwarf2_per_cu_data *per_cu, **last_chain;
23494 struct dwarf2_per_objfile *dwarf2_per_objfile
23495 = target_per_cu->dwarf2_per_objfile;
23496
23497 per_cu = dwarf2_per_objfile->read_in_chain;
23498 last_chain = &dwarf2_per_objfile->read_in_chain;
23499 while (per_cu != NULL)
23500 {
23501 struct dwarf2_per_cu_data *next_cu;
23502
23503 next_cu = per_cu->cu->read_in_chain;
23504
23505 if (per_cu == target_per_cu)
23506 {
23507 delete per_cu->cu;
23508 per_cu->cu = NULL;
23509 *last_chain = next_cu;
23510 break;
23511 }
23512 else
23513 last_chain = &per_cu->cu->read_in_chain;
23514
23515 per_cu = next_cu;
23516 }
23517 }
23518
23519 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23520 We store these in a hash table separate from the DIEs, and preserve them
23521 when the DIEs are flushed out of cache.
23522
23523 The CU "per_cu" pointer is needed because offset alone is not enough to
23524 uniquely identify the type. A file may have multiple .debug_types sections,
23525 or the type may come from a DWO file. Furthermore, while it's more logical
23526 to use per_cu->section+offset, with Fission the section with the data is in
23527 the DWO file but we don't know that section at the point we need it.
23528 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23529 because we can enter the lookup routine, get_die_type_at_offset, from
23530 outside this file, and thus won't necessarily have PER_CU->cu.
23531 Fortunately, PER_CU is stable for the life of the objfile. */
23532
23533 struct dwarf2_per_cu_offset_and_type
23534 {
23535 const struct dwarf2_per_cu_data *per_cu;
23536 sect_offset sect_off;
23537 struct type *type;
23538 };
23539
23540 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23541
23542 static hashval_t
23543 per_cu_offset_and_type_hash (const void *item)
23544 {
23545 const struct dwarf2_per_cu_offset_and_type *ofs
23546 = (const struct dwarf2_per_cu_offset_and_type *) item;
23547
23548 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23549 }
23550
23551 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23552
23553 static int
23554 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23555 {
23556 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23557 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23558 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23559 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23560
23561 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23562 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23563 }
23564
23565 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23566 table if necessary. For convenience, return TYPE.
23567
23568 The DIEs reading must have careful ordering to:
23569 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23570 reading current DIE.
23571 * Not trying to dereference contents of still incompletely read in types
23572 while reading in other DIEs.
23573 * Enable referencing still incompletely read in types just by a pointer to
23574 the type without accessing its fields.
23575
23576 Therefore caller should follow these rules:
23577 * Try to fetch any prerequisite types we may need to build this DIE type
23578 before building the type and calling set_die_type.
23579 * After building type call set_die_type for current DIE as soon as
23580 possible before fetching more types to complete the current type.
23581 * Make the type as complete as possible before fetching more types. */
23582
23583 static struct type *
23584 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23585 {
23586 struct dwarf2_per_objfile *dwarf2_per_objfile
23587 = cu->per_cu->dwarf2_per_objfile;
23588 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23589 struct objfile *objfile = dwarf2_per_objfile->objfile;
23590 struct attribute *attr;
23591 struct dynamic_prop prop;
23592
23593 /* For Ada types, make sure that the gnat-specific data is always
23594 initialized (if not already set). There are a few types where
23595 we should not be doing so, because the type-specific area is
23596 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23597 where the type-specific area is used to store the floatformat).
23598 But this is not a problem, because the gnat-specific information
23599 is actually not needed for these types. */
23600 if (need_gnat_info (cu)
23601 && TYPE_CODE (type) != TYPE_CODE_FUNC
23602 && TYPE_CODE (type) != TYPE_CODE_FLT
23603 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23604 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23605 && TYPE_CODE (type) != TYPE_CODE_METHOD
23606 && !HAVE_GNAT_AUX_INFO (type))
23607 INIT_GNAT_SPECIFIC (type);
23608
23609 /* Read DW_AT_allocated and set in type. */
23610 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23611 if (attr != NULL && attr->form_is_block ())
23612 {
23613 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23614 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23615 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
23616 }
23617 else if (attr != NULL)
23618 {
23619 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23620 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23621 sect_offset_str (die->sect_off));
23622 }
23623
23624 /* Read DW_AT_associated and set in type. */
23625 attr = dwarf2_attr (die, DW_AT_associated, cu);
23626 if (attr != NULL && attr->form_is_block ())
23627 {
23628 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23629 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23630 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
23631 }
23632 else if (attr != NULL)
23633 {
23634 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23635 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23636 sect_offset_str (die->sect_off));
23637 }
23638
23639 /* Read DW_AT_data_location and set in type. */
23640 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23641 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23642 cu->per_cu->addr_type ()))
23643 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
23644
23645 if (dwarf2_per_objfile->die_type_hash == NULL)
23646 dwarf2_per_objfile->die_type_hash
23647 = htab_up (htab_create_alloc (127,
23648 per_cu_offset_and_type_hash,
23649 per_cu_offset_and_type_eq,
23650 NULL, xcalloc, xfree));
23651
23652 ofs.per_cu = cu->per_cu;
23653 ofs.sect_off = die->sect_off;
23654 ofs.type = type;
23655 slot = (struct dwarf2_per_cu_offset_and_type **)
23656 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23657 if (*slot)
23658 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23659 sect_offset_str (die->sect_off));
23660 *slot = XOBNEW (&objfile->objfile_obstack,
23661 struct dwarf2_per_cu_offset_and_type);
23662 **slot = ofs;
23663 return type;
23664 }
23665
23666 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23667 or return NULL if the die does not have a saved type. */
23668
23669 static struct type *
23670 get_die_type_at_offset (sect_offset sect_off,
23671 struct dwarf2_per_cu_data *per_cu)
23672 {
23673 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23674 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23675
23676 if (dwarf2_per_objfile->die_type_hash == NULL)
23677 return NULL;
23678
23679 ofs.per_cu = per_cu;
23680 ofs.sect_off = sect_off;
23681 slot = ((struct dwarf2_per_cu_offset_and_type *)
23682 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23683 if (slot)
23684 return slot->type;
23685 else
23686 return NULL;
23687 }
23688
23689 /* Look up the type for DIE in CU in die_type_hash,
23690 or return NULL if DIE does not have a saved type. */
23691
23692 static struct type *
23693 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23694 {
23695 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23696 }
23697
23698 /* Add a dependence relationship from CU to REF_PER_CU. */
23699
23700 static void
23701 dwarf2_add_dependence (struct dwarf2_cu *cu,
23702 struct dwarf2_per_cu_data *ref_per_cu)
23703 {
23704 void **slot;
23705
23706 if (cu->dependencies == NULL)
23707 cu->dependencies
23708 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23709 NULL, &cu->comp_unit_obstack,
23710 hashtab_obstack_allocate,
23711 dummy_obstack_deallocate);
23712
23713 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23714 if (*slot == NULL)
23715 *slot = ref_per_cu;
23716 }
23717
23718 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23719 Set the mark field in every compilation unit in the
23720 cache that we must keep because we are keeping CU. */
23721
23722 static int
23723 dwarf2_mark_helper (void **slot, void *data)
23724 {
23725 struct dwarf2_per_cu_data *per_cu;
23726
23727 per_cu = (struct dwarf2_per_cu_data *) *slot;
23728
23729 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23730 reading of the chain. As such dependencies remain valid it is not much
23731 useful to track and undo them during QUIT cleanups. */
23732 if (per_cu->cu == NULL)
23733 return 1;
23734
23735 if (per_cu->cu->mark)
23736 return 1;
23737 per_cu->cu->mark = true;
23738
23739 if (per_cu->cu->dependencies != NULL)
23740 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23741
23742 return 1;
23743 }
23744
23745 /* Set the mark field in CU and in every other compilation unit in the
23746 cache that we must keep because we are keeping CU. */
23747
23748 static void
23749 dwarf2_mark (struct dwarf2_cu *cu)
23750 {
23751 if (cu->mark)
23752 return;
23753 cu->mark = true;
23754 if (cu->dependencies != NULL)
23755 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23756 }
23757
23758 static void
23759 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23760 {
23761 while (per_cu)
23762 {
23763 per_cu->cu->mark = false;
23764 per_cu = per_cu->cu->read_in_chain;
23765 }
23766 }
23767
23768 /* Trivial hash function for partial_die_info: the hash value of a DIE
23769 is its offset in .debug_info for this objfile. */
23770
23771 static hashval_t
23772 partial_die_hash (const void *item)
23773 {
23774 const struct partial_die_info *part_die
23775 = (const struct partial_die_info *) item;
23776
23777 return to_underlying (part_die->sect_off);
23778 }
23779
23780 /* Trivial comparison function for partial_die_info structures: two DIEs
23781 are equal if they have the same offset. */
23782
23783 static int
23784 partial_die_eq (const void *item_lhs, const void *item_rhs)
23785 {
23786 const struct partial_die_info *part_die_lhs
23787 = (const struct partial_die_info *) item_lhs;
23788 const struct partial_die_info *part_die_rhs
23789 = (const struct partial_die_info *) item_rhs;
23790
23791 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23792 }
23793
23794 struct cmd_list_element *set_dwarf_cmdlist;
23795 struct cmd_list_element *show_dwarf_cmdlist;
23796
23797 static void
23798 show_check_physname (struct ui_file *file, int from_tty,
23799 struct cmd_list_element *c, const char *value)
23800 {
23801 fprintf_filtered (file,
23802 _("Whether to check \"physname\" is %s.\n"),
23803 value);
23804 }
23805
23806 void _initialize_dwarf2_read ();
23807 void
23808 _initialize_dwarf2_read ()
23809 {
23810 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23811 Set DWARF specific variables.\n\
23812 Configure DWARF variables such as the cache size."),
23813 &set_dwarf_cmdlist, "maintenance set dwarf ",
23814 0/*allow-unknown*/, &maintenance_set_cmdlist);
23815
23816 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23817 Show DWARF specific variables.\n\
23818 Show DWARF variables such as the cache size."),
23819 &show_dwarf_cmdlist, "maintenance show dwarf ",
23820 0/*allow-unknown*/, &maintenance_show_cmdlist);
23821
23822 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23823 &dwarf_max_cache_age, _("\
23824 Set the upper bound on the age of cached DWARF compilation units."), _("\
23825 Show the upper bound on the age of cached DWARF compilation units."), _("\
23826 A higher limit means that cached compilation units will be stored\n\
23827 in memory longer, and more total memory will be used. Zero disables\n\
23828 caching, which can slow down startup."),
23829 NULL,
23830 show_dwarf_max_cache_age,
23831 &set_dwarf_cmdlist,
23832 &show_dwarf_cmdlist);
23833
23834 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23835 Set debugging of the DWARF reader."), _("\
23836 Show debugging of the DWARF reader."), _("\
23837 When enabled (non-zero), debugging messages are printed during DWARF\n\
23838 reading and symtab expansion. A value of 1 (one) provides basic\n\
23839 information. A value greater than 1 provides more verbose information."),
23840 NULL,
23841 NULL,
23842 &setdebuglist, &showdebuglist);
23843
23844 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23845 Set debugging of the DWARF DIE reader."), _("\
23846 Show debugging of the DWARF DIE reader."), _("\
23847 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23848 The value is the maximum depth to print."),
23849 NULL,
23850 NULL,
23851 &setdebuglist, &showdebuglist);
23852
23853 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23854 Set debugging of the dwarf line reader."), _("\
23855 Show debugging of the dwarf line reader."), _("\
23856 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23857 A value of 1 (one) provides basic information.\n\
23858 A value greater than 1 provides more verbose information."),
23859 NULL,
23860 NULL,
23861 &setdebuglist, &showdebuglist);
23862
23863 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23864 Set cross-checking of \"physname\" code against demangler."), _("\
23865 Show cross-checking of \"physname\" code against demangler."), _("\
23866 When enabled, GDB's internal \"physname\" code is checked against\n\
23867 the demangler."),
23868 NULL, show_check_physname,
23869 &setdebuglist, &showdebuglist);
23870
23871 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23872 no_class, &use_deprecated_index_sections, _("\
23873 Set whether to use deprecated gdb_index sections."), _("\
23874 Show whether to use deprecated gdb_index sections."), _("\
23875 When enabled, deprecated .gdb_index sections are used anyway.\n\
23876 Normally they are ignored either because of a missing feature or\n\
23877 performance issue.\n\
23878 Warning: This option must be enabled before gdb reads the file."),
23879 NULL,
23880 NULL,
23881 &setlist, &showlist);
23882
23883 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23884 &dwarf2_locexpr_funcs);
23885 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23886 &dwarf2_loclist_funcs);
23887
23888 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23889 &dwarf2_block_frame_base_locexpr_funcs);
23890 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23891 &dwarf2_block_frame_base_loclist_funcs);
23892
23893 #if GDB_SELF_TEST
23894 selftests::register_test ("dw2_expand_symtabs_matching",
23895 selftests::dw2_expand_symtabs_matching::run_test);
23896 selftests::register_test ("dwarf2_find_containing_comp_unit",
23897 selftests::find_containing_comp_unit::run_test);
23898 #endif
23899 }
This page took 0.525036 seconds and 3 git commands to generate.