Remove DWARF queue-related globals
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/index-cache.h"
36 #include "dwarf2/index-common.h"
37 #include "dwarf2/leb.h"
38 #include "bfd.h"
39 #include "elf-bfd.h"
40 #include "symtab.h"
41 #include "gdbtypes.h"
42 #include "objfiles.h"
43 #include "dwarf2.h"
44 #include "buildsym.h"
45 #include "demangle.h"
46 #include "gdb-demangle.h"
47 #include "filenames.h" /* for DOSish file names */
48 #include "macrotab.h"
49 #include "language.h"
50 #include "complaints.h"
51 #include "dwarf2/expr.h"
52 #include "dwarf2/loc.h"
53 #include "cp-support.h"
54 #include "hashtab.h"
55 #include "command.h"
56 #include "gdbcmd.h"
57 #include "block.h"
58 #include "addrmap.h"
59 #include "typeprint.h"
60 #include "psympriv.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "build-id.h"
70 #include "namespace.h"
71 #include "gdbsupport/function-view.h"
72 #include "gdbsupport/gdb_optional.h"
73 #include "gdbsupport/underlying.h"
74 #include "gdbsupport/hash_enum.h"
75 #include "filename-seen-cache.h"
76 #include "producer.h"
77 #include <fcntl.h>
78 #include <algorithm>
79 #include <unordered_map>
80 #include "gdbsupport/selftest.h"
81 #include "rust-lang.h"
82 #include "gdbsupport/pathstuff.h"
83
84 /* When == 1, print basic high level tracing messages.
85 When > 1, be more verbose.
86 This is in contrast to the low level DIE reading of dwarf_die_debug. */
87 static unsigned int dwarf_read_debug = 0;
88
89 /* When non-zero, dump DIEs after they are read in. */
90 static unsigned int dwarf_die_debug = 0;
91
92 /* When non-zero, dump line number entries as they are read in. */
93 static unsigned int dwarf_line_debug = 0;
94
95 /* When true, cross-check physname against demangler. */
96 static bool check_physname = false;
97
98 /* When true, do not reject deprecated .gdb_index sections. */
99 static bool use_deprecated_index_sections = false;
100
101 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
102
103 /* The "aclass" indices for various kinds of computed DWARF symbols. */
104
105 static int dwarf2_locexpr_index;
106 static int dwarf2_loclist_index;
107 static int dwarf2_locexpr_block_index;
108 static int dwarf2_loclist_block_index;
109
110 /* An index into a (C++) symbol name component in a symbol name as
111 recorded in the mapped_index's symbol table. For each C++ symbol
112 in the symbol table, we record one entry for the start of each
113 component in the symbol in a table of name components, and then
114 sort the table, in order to be able to binary search symbol names,
115 ignoring leading namespaces, both completion and regular look up.
116 For example, for symbol "A::B::C", we'll have an entry that points
117 to "A::B::C", another that points to "B::C", and another for "C".
118 Note that function symbols in GDB index have no parameter
119 information, just the function/method names. You can convert a
120 name_component to a "const char *" using the
121 'mapped_index::symbol_name_at(offset_type)' method. */
122
123 struct name_component
124 {
125 /* Offset in the symbol name where the component starts. Stored as
126 a (32-bit) offset instead of a pointer to save memory and improve
127 locality on 64-bit architectures. */
128 offset_type name_offset;
129
130 /* The symbol's index in the symbol and constant pool tables of a
131 mapped_index. */
132 offset_type idx;
133 };
134
135 /* Base class containing bits shared by both .gdb_index and
136 .debug_name indexes. */
137
138 struct mapped_index_base
139 {
140 mapped_index_base () = default;
141 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
142
143 /* The name_component table (a sorted vector). See name_component's
144 description above. */
145 std::vector<name_component> name_components;
146
147 /* How NAME_COMPONENTS is sorted. */
148 enum case_sensitivity name_components_casing;
149
150 /* Return the number of names in the symbol table. */
151 virtual size_t symbol_name_count () const = 0;
152
153 /* Get the name of the symbol at IDX in the symbol table. */
154 virtual const char *symbol_name_at (offset_type idx) const = 0;
155
156 /* Return whether the name at IDX in the symbol table should be
157 ignored. */
158 virtual bool symbol_name_slot_invalid (offset_type idx) const
159 {
160 return false;
161 }
162
163 /* Build the symbol name component sorted vector, if we haven't
164 yet. */
165 void build_name_components ();
166
167 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
168 possible matches for LN_NO_PARAMS in the name component
169 vector. */
170 std::pair<std::vector<name_component>::const_iterator,
171 std::vector<name_component>::const_iterator>
172 find_name_components_bounds (const lookup_name_info &ln_no_params,
173 enum language lang) const;
174
175 /* Prevent deleting/destroying via a base class pointer. */
176 protected:
177 ~mapped_index_base() = default;
178 };
179
180 /* A description of the mapped index. The file format is described in
181 a comment by the code that writes the index. */
182 struct mapped_index final : public mapped_index_base
183 {
184 /* A slot/bucket in the symbol table hash. */
185 struct symbol_table_slot
186 {
187 const offset_type name;
188 const offset_type vec;
189 };
190
191 /* Index data format version. */
192 int version = 0;
193
194 /* The address table data. */
195 gdb::array_view<const gdb_byte> address_table;
196
197 /* The symbol table, implemented as a hash table. */
198 gdb::array_view<symbol_table_slot> symbol_table;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool = nullptr;
202
203 bool symbol_name_slot_invalid (offset_type idx) const override
204 {
205 const auto &bucket = this->symbol_table[idx];
206 return bucket.name == 0 && bucket.vec == 0;
207 }
208
209 /* Convenience method to get at the name of the symbol at IDX in the
210 symbol table. */
211 const char *symbol_name_at (offset_type idx) const override
212 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
213
214 size_t symbol_name_count () const override
215 { return this->symbol_table.size (); }
216 };
217
218 /* A description of the mapped .debug_names.
219 Uninitialized map has CU_COUNT 0. */
220 struct mapped_debug_names final : public mapped_index_base
221 {
222 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
223 : dwarf2_per_objfile (dwarf2_per_objfile_)
224 {}
225
226 struct dwarf2_per_objfile *dwarf2_per_objfile;
227 bfd_endian dwarf5_byte_order;
228 bool dwarf5_is_dwarf64;
229 bool augmentation_is_gdb;
230 uint8_t offset_size;
231 uint32_t cu_count = 0;
232 uint32_t tu_count, bucket_count, name_count;
233 const gdb_byte *cu_table_reordered, *tu_table_reordered;
234 const uint32_t *bucket_table_reordered, *hash_table_reordered;
235 const gdb_byte *name_table_string_offs_reordered;
236 const gdb_byte *name_table_entry_offs_reordered;
237 const gdb_byte *entry_pool;
238
239 struct index_val
240 {
241 ULONGEST dwarf_tag;
242 struct attr
243 {
244 /* Attribute name DW_IDX_*. */
245 ULONGEST dw_idx;
246
247 /* Attribute form DW_FORM_*. */
248 ULONGEST form;
249
250 /* Value if FORM is DW_FORM_implicit_const. */
251 LONGEST implicit_const;
252 };
253 std::vector<attr> attr_vec;
254 };
255
256 std::unordered_map<ULONGEST, index_val> abbrev_map;
257
258 const char *namei_to_name (uint32_t namei) const;
259
260 /* Implementation of the mapped_index_base virtual interface, for
261 the name_components cache. */
262
263 const char *symbol_name_at (offset_type idx) const override
264 { return namei_to_name (idx); }
265
266 size_t symbol_name_count () const override
267 { return this->name_count; }
268 };
269
270 /* See dwarf2read.h. */
271
272 dwarf2_per_objfile *
273 get_dwarf2_per_objfile (struct objfile *objfile)
274 {
275 return dwarf2_objfile_data_key.get (objfile);
276 }
277
278 /* Default names of the debugging sections. */
279
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
282
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
284 {
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_loclists", ".zdebug_loclists" },
290 { ".debug_macinfo", ".zdebug_macinfo" },
291 { ".debug_macro", ".zdebug_macro" },
292 { ".debug_str", ".zdebug_str" },
293 { ".debug_str_offsets", ".zdebug_str_offsets" },
294 { ".debug_line_str", ".zdebug_line_str" },
295 { ".debug_ranges", ".zdebug_ranges" },
296 { ".debug_rnglists", ".zdebug_rnglists" },
297 { ".debug_types", ".zdebug_types" },
298 { ".debug_addr", ".zdebug_addr" },
299 { ".debug_frame", ".zdebug_frame" },
300 { ".eh_frame", NULL },
301 { ".gdb_index", ".zgdb_index" },
302 { ".debug_names", ".zdebug_names" },
303 { ".debug_aranges", ".zdebug_aranges" },
304 23
305 };
306
307 /* List of DWO/DWP sections. */
308
309 static const struct dwop_section_names
310 {
311 struct dwarf2_section_names abbrev_dwo;
312 struct dwarf2_section_names info_dwo;
313 struct dwarf2_section_names line_dwo;
314 struct dwarf2_section_names loc_dwo;
315 struct dwarf2_section_names loclists_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
323 }
324 dwop_section_names =
325 {
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
338 };
339
340 /* local data types */
341
342 /* The data in a compilation unit header, after target2host
343 translation, looks like this. */
344 struct comp_unit_head
345 {
346 unsigned int length;
347 short version;
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
350 sect_offset abbrev_sect_off;
351
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
354
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
357
358 enum dwarf_unit_type unit_type;
359
360 /* Offset to the first byte of this compilation unit header in the
361 .debug_info section, for resolving relative reference dies. */
362 sect_offset sect_off;
363
364 /* Offset to first die in this cu from the start of the cu.
365 This will be the first byte following the compilation unit header. */
366 cu_offset first_die_cu_offset;
367
368
369 /* 64-bit signature of this unit. For type units, it denotes the signature of
370 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
371 Also used in DWARF 5, to denote the dwo id when the unit type is
372 DW_UT_skeleton or DW_UT_split_compile. */
373 ULONGEST signature;
374
375 /* For types, offset in the type's DIE of the type defined by this TU. */
376 cu_offset type_cu_offset_in_tu;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 private:
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> m_builder;
442
443 public:
444 /* The generic symbol table building routines have separate lists for
445 file scope symbols and all all other scopes (local scopes). So
446 we need to select the right one to pass to add_symbol_to_list().
447 We do it by keeping a pointer to the correct list in list_in_scope.
448
449 FIXME: The original dwarf code just treated the file scope as the
450 first local scope, and all other local scopes as nested local
451 scopes, and worked fine. Check to see if we really need to
452 distinguish these in buildsym.c. */
453 struct pending **list_in_scope = nullptr;
454
455 /* Hash table holding all the loaded partial DIEs
456 with partial_die->offset.SECT_OFF as hash. */
457 htab_t partial_dies = nullptr;
458
459 /* Storage for things with the same lifetime as this read-in compilation
460 unit, including partial DIEs. */
461 auto_obstack comp_unit_obstack;
462
463 /* When multiple dwarf2_cu structures are living in memory, this field
464 chains them all together, so that they can be released efficiently.
465 We will probably also want a generation counter so that most-recently-used
466 compilation units are cached... */
467 struct dwarf2_per_cu_data *read_in_chain = nullptr;
468
469 /* Backlink to our per_cu entry. */
470 struct dwarf2_per_cu_data *per_cu;
471
472 /* How many compilation units ago was this CU last referenced? */
473 int last_used = 0;
474
475 /* A hash table of DIE cu_offset for following references with
476 die_info->offset.sect_off as hash. */
477 htab_t die_hash = nullptr;
478
479 /* Full DIEs if read in. */
480 struct die_info *dies = nullptr;
481
482 /* A set of pointers to dwarf2_per_cu_data objects for compilation
483 units referenced by this one. Only set during full symbol processing;
484 partial symbol tables do not have dependencies. */
485 htab_t dependencies = nullptr;
486
487 /* Header data from the line table, during full symbol processing. */
488 struct line_header *line_header = nullptr;
489 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
490 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
491 this is the DW_TAG_compile_unit die for this CU. We'll hold on
492 to the line header as long as this DIE is being processed. See
493 process_die_scope. */
494 die_info *line_header_die_owner = nullptr;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 std::vector<delayed_method_info> method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab = nullptr;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit = nullptr;
513
514 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 gdb::optional<ULONGEST> addr_base;
517
518 /* The DW_AT_rnglists_base attribute if present.
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab.
611 This PER_CU is recognized by having no section. */
612 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
613 struct dwarf2_per_cu_data per_cu;
614
615 /* The TUs that share this DW_AT_stmt_list entry.
616 This is added to while parsing type units to build partial symtabs,
617 and is deleted afterwards and not used again. */
618 std::vector<signatured_type *> *tus;
619
620 /* The compunit symtab.
621 Type units in a group needn't all be defined in the same source file,
622 so we create an essentially anonymous symtab as the compunit symtab. */
623 struct compunit_symtab *compunit_symtab;
624
625 /* The data used to construct the hash key. */
626 struct stmt_list_hash hash;
627
628 /* The number of symtabs from the line header.
629 The value here must match line_header.num_file_names. */
630 unsigned int num_symtabs;
631
632 /* The symbol tables for this TU (obtained from the files listed in
633 DW_AT_stmt_list).
634 WARNING: The order of entries here must match the order of entries
635 in the line header. After the first TU using this type_unit_group, the
636 line header for the subsequent TUs is recreated from this. This is done
637 because we need to use the same symtabs for each TU using the same
638 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
639 there's no guarantee the line header doesn't have duplicate entries. */
640 struct symtab **symtabs;
641 };
642
643 /* These sections are what may appear in a (real or virtual) DWO file. */
644
645 struct dwo_sections
646 {
647 struct dwarf2_section_info abbrev;
648 struct dwarf2_section_info line;
649 struct dwarf2_section_info loc;
650 struct dwarf2_section_info loclists;
651 struct dwarf2_section_info macinfo;
652 struct dwarf2_section_info macro;
653 struct dwarf2_section_info str;
654 struct dwarf2_section_info str_offsets;
655 /* In the case of a virtual DWO file, these two are unused. */
656 struct dwarf2_section_info info;
657 std::vector<dwarf2_section_info> types;
658 };
659
660 /* CUs/TUs in DWP/DWO files. */
661
662 struct dwo_unit
663 {
664 /* Backlink to the containing struct dwo_file. */
665 struct dwo_file *dwo_file;
666
667 /* The "id" that distinguishes this CU/TU.
668 .debug_info calls this "dwo_id", .debug_types calls this "signature".
669 Since signatures came first, we stick with it for consistency. */
670 ULONGEST signature;
671
672 /* The section this CU/TU lives in, in the DWO file. */
673 struct dwarf2_section_info *section;
674
675 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
676 sect_offset sect_off;
677 unsigned int length;
678
679 /* For types, offset in the type's DIE of the type defined by this TU. */
680 cu_offset type_offset_in_tu;
681 };
682
683 /* include/dwarf2.h defines the DWP section codes.
684 It defines a max value but it doesn't define a min value, which we
685 use for error checking, so provide one. */
686
687 enum dwp_v2_section_ids
688 {
689 DW_SECT_MIN = 1
690 };
691
692 /* Data for one DWO file.
693
694 This includes virtual DWO files (a virtual DWO file is a DWO file as it
695 appears in a DWP file). DWP files don't really have DWO files per se -
696 comdat folding of types "loses" the DWO file they came from, and from
697 a high level view DWP files appear to contain a mass of random types.
698 However, to maintain consistency with the non-DWP case we pretend DWP
699 files contain virtual DWO files, and we assign each TU with one virtual
700 DWO file (generally based on the line and abbrev section offsets -
701 a heuristic that seems to work in practice). */
702
703 struct dwo_file
704 {
705 dwo_file () = default;
706 DISABLE_COPY_AND_ASSIGN (dwo_file);
707
708 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
709 For virtual DWO files the name is constructed from the section offsets
710 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
711 from related CU+TUs. */
712 const char *dwo_name = nullptr;
713
714 /* The DW_AT_comp_dir attribute. */
715 const char *comp_dir = nullptr;
716
717 /* The bfd, when the file is open. Otherwise this is NULL.
718 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
719 gdb_bfd_ref_ptr dbfd;
720
721 /* The sections that make up this DWO file.
722 Remember that for virtual DWO files in DWP V2, these are virtual
723 sections (for lack of a better name). */
724 struct dwo_sections sections {};
725
726 /* The CUs in the file.
727 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
728 an extension to handle LLVM's Link Time Optimization output (where
729 multiple source files may be compiled into a single object/dwo pair). */
730 htab_t cus {};
731
732 /* Table of TUs in the file.
733 Each element is a struct dwo_unit. */
734 htab_t tus {};
735 };
736
737 /* These sections are what may appear in a DWP file. */
738
739 struct dwp_sections
740 {
741 /* These are used by both DWP version 1 and 2. */
742 struct dwarf2_section_info str;
743 struct dwarf2_section_info cu_index;
744 struct dwarf2_section_info tu_index;
745
746 /* These are only used by DWP version 2 files.
747 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
748 sections are referenced by section number, and are not recorded here.
749 In DWP version 2 there is at most one copy of all these sections, each
750 section being (effectively) comprised of the concatenation of all of the
751 individual sections that exist in the version 1 format.
752 To keep the code simple we treat each of these concatenated pieces as a
753 section itself (a virtual section?). */
754 struct dwarf2_section_info abbrev;
755 struct dwarf2_section_info info;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str_offsets;
761 struct dwarf2_section_info types;
762 };
763
764 /* These sections are what may appear in a virtual DWO file in DWP version 1.
765 A virtual DWO file is a DWO file as it appears in a DWP file. */
766
767 struct virtual_v1_dwo_sections
768 {
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.section. */
777 struct dwarf2_section_info info_or_types;
778 };
779
780 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
781 In version 2, the sections of the DWO files are concatenated together
782 and stored in one section of that name. Thus each ELF section contains
783 several "virtual" sections. */
784
785 struct virtual_v2_dwo_sections
786 {
787 bfd_size_type abbrev_offset;
788 bfd_size_type abbrev_size;
789
790 bfd_size_type line_offset;
791 bfd_size_type line_size;
792
793 bfd_size_type loc_offset;
794 bfd_size_type loc_size;
795
796 bfd_size_type macinfo_offset;
797 bfd_size_type macinfo_size;
798
799 bfd_size_type macro_offset;
800 bfd_size_type macro_size;
801
802 bfd_size_type str_offsets_offset;
803 bfd_size_type str_offsets_size;
804
805 /* Each DWP hash table entry records one CU or one TU.
806 That is recorded here, and copied to dwo_unit.section. */
807 bfd_size_type info_or_types_offset;
808 bfd_size_type info_or_types_size;
809 };
810
811 /* Contents of DWP hash tables. */
812
813 struct dwp_hash_table
814 {
815 uint32_t version, nr_columns;
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table;
818 union
819 {
820 struct
821 {
822 const gdb_byte *indices;
823 } v1;
824 struct
825 {
826 /* This is indexed by column number and gives the id of the section
827 in that column. */
828 #define MAX_NR_V2_DWO_SECTIONS \
829 (1 /* .debug_info or .debug_types */ \
830 + 1 /* .debug_abbrev */ \
831 + 1 /* .debug_line */ \
832 + 1 /* .debug_loc */ \
833 + 1 /* .debug_str_offsets */ \
834 + 1 /* .debug_macro or .debug_macinfo */)
835 int section_ids[MAX_NR_V2_DWO_SECTIONS];
836 const gdb_byte *offsets;
837 const gdb_byte *sizes;
838 } v2;
839 } section_pool;
840 };
841
842 /* Data for one DWP file. */
843
844 struct dwp_file
845 {
846 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
847 : name (name_),
848 dbfd (std::move (abfd))
849 {
850 }
851
852 /* Name of the file. */
853 const char *name;
854
855 /* File format version. */
856 int version = 0;
857
858 /* The bfd. */
859 gdb_bfd_ref_ptr dbfd;
860
861 /* Section info for this file. */
862 struct dwp_sections sections {};
863
864 /* Table of CUs in the file. */
865 const struct dwp_hash_table *cus = nullptr;
866
867 /* Table of TUs in the file. */
868 const struct dwp_hash_table *tus = nullptr;
869
870 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
871 htab_t loaded_cus {};
872 htab_t loaded_tus {};
873
874 /* Table to map ELF section numbers to their sections.
875 This is only needed for the DWP V1 file format. */
876 unsigned int num_sections = 0;
877 asection **elf_sections = nullptr;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The abbreviation table to use when reading the DIEs. */
907 struct abbrev_table *abbrev_table;
908 };
909
910 /* A subclass of die_reader_specs that holds storage and has complex
911 constructor and destructor behavior. */
912
913 class cutu_reader : public die_reader_specs
914 {
915 public:
916
917 cutu_reader (struct dwarf2_per_cu_data *this_cu,
918 struct abbrev_table *abbrev_table,
919 int use_existing_cu, int keep,
920 bool skip_partial);
921
922 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
923 struct dwarf2_cu *parent_cu = nullptr,
924 struct dwo_file *dwo_file = nullptr);
925
926 ~cutu_reader ();
927
928 DISABLE_COPY_AND_ASSIGN (cutu_reader);
929
930 const gdb_byte *info_ptr = nullptr;
931 struct die_info *comp_unit_die = nullptr;
932 bool dummy_p = false;
933
934 private:
935 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
936 int use_existing_cu, int keep);
937
938 struct dwarf2_per_cu_data *m_this_cu;
939 int m_keep = 0;
940 std::unique_ptr<dwarf2_cu> m_new_cu;
941
942 /* The ordinary abbreviation table. */
943 abbrev_table_up m_abbrev_table_holder;
944
945 /* The DWO abbreviation table. */
946 abbrev_table_up m_dwo_abbrev_table;
947 };
948
949 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
950 later. */
951 typedef int dir_index;
952
953 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
954 and later. */
955 typedef int file_name_index;
956
957 struct file_entry
958 {
959 file_entry () = default;
960
961 file_entry (const char *name_, dir_index d_index_,
962 unsigned int mod_time_, unsigned int length_)
963 : name (name_),
964 d_index (d_index_),
965 mod_time (mod_time_),
966 length (length_)
967 {}
968
969 /* Return the include directory at D_INDEX stored in LH. Returns
970 NULL if D_INDEX is out of bounds. */
971 const char *include_dir (const line_header *lh) const;
972
973 /* The file name. Note this is an observing pointer. The memory is
974 owned by debug_line_buffer. */
975 const char *name {};
976
977 /* The directory index (1-based). */
978 dir_index d_index {};
979
980 unsigned int mod_time {};
981
982 unsigned int length {};
983
984 /* True if referenced by the Line Number Program. */
985 bool included_p {};
986
987 /* The associated symbol table, if any. */
988 struct symtab *symtab {};
989 };
990
991 /* The line number information for a compilation unit (found in the
992 .debug_line section) begins with a "statement program header",
993 which contains the following information. */
994 struct line_header
995 {
996 line_header ()
997 : offset_in_dwz {}
998 {}
999
1000 /* Add an entry to the include directory table. */
1001 void add_include_dir (const char *include_dir);
1002
1003 /* Add an entry to the file name table. */
1004 void add_file_name (const char *name, dir_index d_index,
1005 unsigned int mod_time, unsigned int length);
1006
1007 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
1008 Returns NULL if INDEX is out of bounds. */
1009 const char *include_dir_at (dir_index index) const
1010 {
1011 int vec_index;
1012 if (version >= 5)
1013 vec_index = index;
1014 else
1015 vec_index = index - 1;
1016 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
1017 return NULL;
1018 return m_include_dirs[vec_index];
1019 }
1020
1021 bool is_valid_file_index (int file_index)
1022 {
1023 if (version >= 5)
1024 return 0 <= file_index && file_index < file_names_size ();
1025 return 1 <= file_index && file_index <= file_names_size ();
1026 }
1027
1028 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
1029 Returns NULL if INDEX is out of bounds. */
1030 file_entry *file_name_at (file_name_index index)
1031 {
1032 int vec_index;
1033 if (version >= 5)
1034 vec_index = index;
1035 else
1036 vec_index = index - 1;
1037 if (vec_index < 0 || vec_index >= m_file_names.size ())
1038 return NULL;
1039 return &m_file_names[vec_index];
1040 }
1041
1042 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1043 this method should only be used to iterate through all file entries in an
1044 index-agnostic manner. */
1045 std::vector<file_entry> &file_names ()
1046 { return m_file_names; }
1047
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1050
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1053
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1060 int line_base {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1063
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1069
1070 int file_names_size ()
1071 { return m_file_names.size(); }
1072
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start {}, *statement_program_end {};
1076
1077 private:
1078 /* The include_directories table. Note these are observing
1079 pointers. The memory is owned by debug_line_buffer. */
1080 std::vector<const char *> m_include_dirs;
1081
1082 /* The file_names table. This is private because the meaning of indexes
1083 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1084 before, and is 0 in DWARF 5 and later). So the client should use
1085 file_name_at method for access. */
1086 std::vector<file_entry> m_file_names;
1087 };
1088
1089 typedef std::unique_ptr<line_header> line_header_up;
1090
1091 const char *
1092 file_entry::include_dir (const line_header *lh) const
1093 {
1094 return lh->include_dir_at (d_index);
1095 }
1096
1097 /* When we construct a partial symbol table entry we only
1098 need this much information. */
1099 struct partial_die_info : public allocate_on_obstack
1100 {
1101 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1102
1103 /* Disable assign but still keep copy ctor, which is needed
1104 load_partial_dies. */
1105 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1106
1107 /* Adjust the partial die before generating a symbol for it. This
1108 function may set the is_external flag or change the DIE's
1109 name. */
1110 void fixup (struct dwarf2_cu *cu);
1111
1112 /* Read a minimal amount of information into the minimal die
1113 structure. */
1114 const gdb_byte *read (const struct die_reader_specs *reader,
1115 const struct abbrev_info &abbrev,
1116 const gdb_byte *info_ptr);
1117
1118 /* Offset of this DIE. */
1119 const sect_offset sect_off;
1120
1121 /* DWARF-2 tag for this DIE. */
1122 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1123
1124 /* Assorted flags describing the data found in this DIE. */
1125 const unsigned int has_children : 1;
1126
1127 unsigned int is_external : 1;
1128 unsigned int is_declaration : 1;
1129 unsigned int has_type : 1;
1130 unsigned int has_specification : 1;
1131 unsigned int has_pc_info : 1;
1132 unsigned int may_be_inlined : 1;
1133
1134 /* This DIE has been marked DW_AT_main_subprogram. */
1135 unsigned int main_subprogram : 1;
1136
1137 /* Flag set if the SCOPE field of this structure has been
1138 computed. */
1139 unsigned int scope_set : 1;
1140
1141 /* Flag set if the DIE has a byte_size attribute. */
1142 unsigned int has_byte_size : 1;
1143
1144 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1145 unsigned int has_const_value : 1;
1146
1147 /* Flag set if any of the DIE's children are template arguments. */
1148 unsigned int has_template_arguments : 1;
1149
1150 /* Flag set if fixup has been called on this die. */
1151 unsigned int fixup_called : 1;
1152
1153 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1154 unsigned int is_dwz : 1;
1155
1156 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1157 unsigned int spec_is_dwz : 1;
1158
1159 /* The name of this DIE. Normally the value of DW_AT_name, but
1160 sometimes a default name for unnamed DIEs. */
1161 const char *name = nullptr;
1162
1163 /* The linkage name, if present. */
1164 const char *linkage_name = nullptr;
1165
1166 /* The scope to prepend to our children. This is generally
1167 allocated on the comp_unit_obstack, so will disappear
1168 when this compilation unit leaves the cache. */
1169 const char *scope = nullptr;
1170
1171 /* Some data associated with the partial DIE. The tag determines
1172 which field is live. */
1173 union
1174 {
1175 /* The location description associated with this DIE, if any. */
1176 struct dwarf_block *locdesc;
1177 /* The offset of an import, for DW_TAG_imported_unit. */
1178 sect_offset sect_off;
1179 } d {};
1180
1181 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1182 CORE_ADDR lowpc = 0;
1183 CORE_ADDR highpc = 0;
1184
1185 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1186 DW_AT_sibling, if any. */
1187 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1188 could return DW_AT_sibling values to its caller load_partial_dies. */
1189 const gdb_byte *sibling = nullptr;
1190
1191 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1192 DW_AT_specification (or DW_AT_abstract_origin or
1193 DW_AT_extension). */
1194 sect_offset spec_offset {};
1195
1196 /* Pointers to this DIE's parent, first child, and next sibling,
1197 if any. */
1198 struct partial_die_info *die_parent = nullptr;
1199 struct partial_die_info *die_child = nullptr;
1200 struct partial_die_info *die_sibling = nullptr;
1201
1202 friend struct partial_die_info *
1203 dwarf2_cu::find_partial_die (sect_offset sect_off);
1204
1205 private:
1206 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1207 partial_die_info (sect_offset sect_off)
1208 : partial_die_info (sect_off, DW_TAG_padding, 0)
1209 {
1210 }
1211
1212 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1213 int has_children_)
1214 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1215 {
1216 is_external = 0;
1217 is_declaration = 0;
1218 has_type = 0;
1219 has_specification = 0;
1220 has_pc_info = 0;
1221 may_be_inlined = 0;
1222 main_subprogram = 0;
1223 scope_set = 0;
1224 has_byte_size = 0;
1225 has_const_value = 0;
1226 has_template_arguments = 0;
1227 fixup_called = 0;
1228 is_dwz = 0;
1229 spec_is_dwz = 0;
1230 }
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* True if this DIE has children. */
1250 unsigned char has_children : 1;
1251
1252 /* Abbrev number */
1253 unsigned int abbrev;
1254
1255 /* Offset in .debug_info or .debug_types section. */
1256 sect_offset sect_off;
1257
1258 /* The dies in a compilation unit form an n-ary tree. PARENT
1259 points to this die's parent; CHILD points to the first child of
1260 this node; and all the children of a given node are chained
1261 together via their SIBLING fields. */
1262 struct die_info *child; /* Its first child, if any. */
1263 struct die_info *sibling; /* Its next sibling, if any. */
1264 struct die_info *parent; /* Its parent, if any. */
1265
1266 /* An array of attributes, with NUM_ATTRS elements. There may be
1267 zero, but it's not common and zero-sized arrays are not
1268 sufficiently portable C. */
1269 struct attribute attrs[1];
1270 };
1271
1272 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1273 but this would require a corresponding change in unpack_field_as_long
1274 and friends. */
1275 static int bits_per_byte = 8;
1276
1277 /* When reading a variant or variant part, we track a bit more
1278 information about the field, and store it in an object of this
1279 type. */
1280
1281 struct variant_field
1282 {
1283 /* If we see a DW_TAG_variant, then this will be the discriminant
1284 value. */
1285 ULONGEST discriminant_value;
1286 /* If we see a DW_TAG_variant, then this will be set if this is the
1287 default branch. */
1288 bool default_branch;
1289 /* While reading a DW_TAG_variant_part, this will be set if this
1290 field is the discriminant. */
1291 bool is_discriminant;
1292 };
1293
1294 struct nextfield
1295 {
1296 int accessibility = 0;
1297 int virtuality = 0;
1298 /* Extra information to describe a variant or variant part. */
1299 struct variant_field variant {};
1300 struct field field {};
1301 };
1302
1303 struct fnfieldlist
1304 {
1305 const char *name = nullptr;
1306 std::vector<struct fn_field> fnfields;
1307 };
1308
1309 /* The routines that read and process dies for a C struct or C++ class
1310 pass lists of data member fields and lists of member function fields
1311 in an instance of a field_info structure, as defined below. */
1312 struct field_info
1313 {
1314 /* List of data member and baseclasses fields. */
1315 std::vector<struct nextfield> fields;
1316 std::vector<struct nextfield> baseclasses;
1317
1318 /* Number of fields (including baseclasses). */
1319 int nfields = 0;
1320
1321 /* Set if the accessibility of one of the fields is not public. */
1322 int non_public_fields = 0;
1323
1324 /* Member function fieldlist array, contains name of possibly overloaded
1325 member function, number of overloaded member functions and a pointer
1326 to the head of the member function field chain. */
1327 std::vector<struct fnfieldlist> fnfieldlists;
1328
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 std::vector<struct decl_field> typedef_field_list;
1332
1333 /* Nested types defined by this class and the number of elements in this
1334 list. */
1335 std::vector<struct decl_field> nested_types_list;
1336 };
1337
1338 /* Loaded secondary compilation units are kept in memory until they
1339 have not been referenced for the processing of this many
1340 compilation units. Set this to zero to disable caching. Cache
1341 sizes of up to at least twenty will improve startup time for
1342 typical inter-CU-reference binaries, at an obvious memory cost. */
1343 static int dwarf_max_cache_age = 5;
1344 static void
1345 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1347 {
1348 fprintf_filtered (file, _("The upper bound on the age of cached "
1349 "DWARF compilation units is %s.\n"),
1350 value);
1351 }
1352 \f
1353 /* local function prototypes */
1354
1355 static void dwarf2_find_base_address (struct die_info *die,
1356 struct dwarf2_cu *cu);
1357
1358 static dwarf2_psymtab *create_partial_symtab
1359 (struct dwarf2_per_cu_data *per_cu, const char *name);
1360
1361 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1362 const gdb_byte *info_ptr,
1363 struct die_info *type_unit_die);
1364
1365 static void dwarf2_build_psymtabs_hard
1366 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1367
1368 static void scan_partial_symbols (struct partial_die_info *,
1369 CORE_ADDR *, CORE_ADDR *,
1370 int, struct dwarf2_cu *);
1371
1372 static void add_partial_symbol (struct partial_die_info *,
1373 struct dwarf2_cu *);
1374
1375 static void add_partial_namespace (struct partial_die_info *pdi,
1376 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1377 int set_addrmap, struct dwarf2_cu *cu);
1378
1379 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1380 CORE_ADDR *highpc, int set_addrmap,
1381 struct dwarf2_cu *cu);
1382
1383 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1384 struct dwarf2_cu *cu);
1385
1386 static void add_partial_subprogram (struct partial_die_info *pdi,
1387 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1388 int need_pc, struct dwarf2_cu *cu);
1389
1390 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1391
1392 static struct partial_die_info *load_partial_dies
1393 (const struct die_reader_specs *, const gdb_byte *, int);
1394
1395 /* A pair of partial_die_info and compilation unit. */
1396 struct cu_partial_die_info
1397 {
1398 /* The compilation unit of the partial_die_info. */
1399 struct dwarf2_cu *cu;
1400 /* A partial_die_info. */
1401 struct partial_die_info *pdi;
1402
1403 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1404 : cu (cu),
1405 pdi (pdi)
1406 { /* Nothing. */ }
1407
1408 private:
1409 cu_partial_die_info () = delete;
1410 };
1411
1412 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1413 struct dwarf2_cu *);
1414
1415 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1416 struct attribute *, struct attr_abbrev *,
1417 const gdb_byte *, bool *need_reprocess);
1418
1419 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1420 struct attribute *attr);
1421
1422 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1423
1424 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1425 unsigned int *);
1426
1427 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1428
1429 static LONGEST read_checked_initial_length_and_offset
1430 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1431 unsigned int *, unsigned int *);
1432
1433 static LONGEST read_offset (bfd *, const gdb_byte *,
1434 const struct comp_unit_head *,
1435 unsigned int *);
1436
1437 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1438
1439 static sect_offset read_abbrev_offset
1440 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1441 struct dwarf2_section_info *, sect_offset);
1442
1443 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1444
1445 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1446
1447 static const char *read_indirect_string
1448 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1449 const struct comp_unit_head *, unsigned int *);
1450
1451 static const char *read_indirect_line_string
1452 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1453 const struct comp_unit_head *, unsigned int *);
1454
1455 static const char *read_indirect_string_at_offset
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1457 LONGEST str_offset);
1458
1459 static const char *read_indirect_string_from_dwz
1460 (struct objfile *objfile, struct dwz_file *, LONGEST);
1461
1462 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1463 const gdb_byte *,
1464 unsigned int *);
1465
1466 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1467 ULONGEST str_index);
1468
1469 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1470 ULONGEST str_index);
1471
1472 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1473
1474 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1475 struct dwarf2_cu *);
1476
1477 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1478 unsigned int);
1479
1480 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1481 struct dwarf2_cu *cu);
1482
1483 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1484
1485 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1486 struct dwarf2_cu *cu);
1487
1488 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1489
1490 static struct die_info *die_specification (struct die_info *die,
1491 struct dwarf2_cu **);
1492
1493 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1494 struct dwarf2_cu *cu);
1495
1496 static void dwarf_decode_lines (struct line_header *, const char *,
1497 struct dwarf2_cu *, dwarf2_psymtab *,
1498 CORE_ADDR, int decode_mapping);
1499
1500 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1501 const char *);
1502
1503 static struct symbol *new_symbol (struct die_info *, struct type *,
1504 struct dwarf2_cu *, struct symbol * = NULL);
1505
1506 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1507 struct dwarf2_cu *);
1508
1509 static void dwarf2_const_value_attr (const struct attribute *attr,
1510 struct type *type,
1511 const char *name,
1512 struct obstack *obstack,
1513 struct dwarf2_cu *cu, LONGEST *value,
1514 const gdb_byte **bytes,
1515 struct dwarf2_locexpr_baton **baton);
1516
1517 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1518
1519 static int need_gnat_info (struct dwarf2_cu *);
1520
1521 static struct type *die_descriptive_type (struct die_info *,
1522 struct dwarf2_cu *);
1523
1524 static void set_descriptive_type (struct type *, struct die_info *,
1525 struct dwarf2_cu *);
1526
1527 static struct type *die_containing_type (struct die_info *,
1528 struct dwarf2_cu *);
1529
1530 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1531 struct dwarf2_cu *);
1532
1533 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1534
1535 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1536
1537 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1538
1539 static char *typename_concat (struct obstack *obs, const char *prefix,
1540 const char *suffix, int physname,
1541 struct dwarf2_cu *cu);
1542
1543 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1544
1545 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1546
1547 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1548
1549 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1550
1551 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1552
1553 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1554
1555 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1556 struct dwarf2_cu *, dwarf2_psymtab *);
1557
1558 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1559 values. Keep the items ordered with increasing constraints compliance. */
1560 enum pc_bounds_kind
1561 {
1562 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1563 PC_BOUNDS_NOT_PRESENT,
1564
1565 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1566 were present but they do not form a valid range of PC addresses. */
1567 PC_BOUNDS_INVALID,
1568
1569 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1570 PC_BOUNDS_RANGES,
1571
1572 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1573 PC_BOUNDS_HIGH_LOW,
1574 };
1575
1576 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1577 CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *,
1579 dwarf2_psymtab *);
1580
1581 static void get_scope_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1586 CORE_ADDR, struct dwarf2_cu *);
1587
1588 static void dwarf2_add_field (struct field_info *, struct die_info *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_attach_fields_to_type (struct field_info *,
1592 struct type *, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_member_fn (struct field_info *,
1595 struct die_info *, struct type *,
1596 struct dwarf2_cu *);
1597
1598 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1599 struct type *,
1600 struct dwarf2_cu *);
1601
1602 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1607
1608 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1609
1610 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_unit_type_name (int unit_type);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static const char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 static int attr_to_dynamic_prop (const struct attribute *attr,
1716 struct die_info *die, struct dwarf2_cu *cu,
1717 struct dynamic_prop *prop, struct type *type);
1718
1719 /* memory allocation interface */
1720
1721 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1722
1723 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1724
1725 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1726
1727 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1728 struct dwarf2_loclist_baton *baton,
1729 const struct attribute *attr);
1730
1731 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1732 struct symbol *sym,
1733 struct dwarf2_cu *cu,
1734 int is_block);
1735
1736 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1737 const gdb_byte *info_ptr,
1738 struct abbrev_info *abbrev);
1739
1740 static hashval_t partial_die_hash (const void *item);
1741
1742 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1743
1744 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1745 (sect_offset sect_off, unsigned int offset_in_dwz,
1746 struct dwarf2_per_objfile *dwarf2_per_objfile);
1747
1748 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1749 struct die_info *comp_unit_die,
1750 enum language pretend_language);
1751
1752 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1753
1754 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1755
1756 static struct type *set_die_type (struct die_info *, struct type *,
1757 struct dwarf2_cu *);
1758
1759 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1760
1761 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1762
1763 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1764 enum language);
1765
1766 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1767 enum language);
1768
1769 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1770 enum language);
1771
1772 static void dwarf2_add_dependence (struct dwarf2_cu *,
1773 struct dwarf2_per_cu_data *);
1774
1775 static void dwarf2_mark (struct dwarf2_cu *);
1776
1777 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1778
1779 static struct type *get_die_type_at_offset (sect_offset,
1780 struct dwarf2_per_cu_data *);
1781
1782 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1783
1784 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1785 enum language pretend_language);
1786
1787 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1788
1789 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1790 static struct type *dwarf2_per_cu_addr_sized_int_type
1791 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1792 static struct type *dwarf2_per_cu_int_type
1793 (struct dwarf2_per_cu_data *per_cu, int size_in_bytes,
1794 bool unsigned_p);
1795
1796 /* Class, the destructor of which frees all allocated queue entries. This
1797 will only have work to do if an error was thrown while processing the
1798 dwarf. If no error was thrown then the queue entries should have all
1799 been processed, and freed, as we went along. */
1800
1801 class dwarf2_queue_guard
1802 {
1803 public:
1804 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1805 : m_per_objfile (per_objfile)
1806 {
1807 }
1808
1809 /* Free any entries remaining on the queue. There should only be
1810 entries left if we hit an error while processing the dwarf. */
1811 ~dwarf2_queue_guard ()
1812 {
1813 /* Ensure that no memory is allocated by the queue. */
1814 std::queue<dwarf2_queue_item> empty;
1815 std::swap (m_per_objfile->queue, empty);
1816 }
1817
1818 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1819
1820 private:
1821 dwarf2_per_objfile *m_per_objfile;
1822 };
1823
1824 dwarf2_queue_item::~dwarf2_queue_item ()
1825 {
1826 /* Anything still marked queued is likely to be in an
1827 inconsistent state, so discard it. */
1828 if (per_cu->queued)
1829 {
1830 if (per_cu->cu != NULL)
1831 free_one_cached_comp_unit (per_cu);
1832 per_cu->queued = 0;
1833 }
1834 }
1835
1836 /* The return type of find_file_and_directory. Note, the enclosed
1837 string pointers are only valid while this object is valid. */
1838
1839 struct file_and_directory
1840 {
1841 /* The filename. This is never NULL. */
1842 const char *name;
1843
1844 /* The compilation directory. NULL if not known. If we needed to
1845 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1846 points directly to the DW_AT_comp_dir string attribute owned by
1847 the obstack that owns the DIE. */
1848 const char *comp_dir;
1849
1850 /* If we needed to build a new string for comp_dir, this is what
1851 owns the storage. */
1852 std::string comp_dir_storage;
1853 };
1854
1855 static file_and_directory find_file_and_directory (struct die_info *die,
1856 struct dwarf2_cu *cu);
1857
1858 static char *file_full_name (int file, struct line_header *lh,
1859 const char *comp_dir);
1860
1861 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1862 enum class rcuh_kind { COMPILE, TYPE };
1863
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1866 struct comp_unit_head *header,
1867 struct dwarf2_section_info *section,
1868 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1869 rcuh_kind section_kind);
1870
1871 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1872
1873 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1874
1875 static struct dwo_unit *lookup_dwo_unit_in_dwp
1876 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1877 struct dwp_file *dwp_file, const char *comp_dir,
1878 ULONGEST signature, int is_debug_types);
1879
1880 static struct dwp_file *get_dwp_file
1881 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882
1883 static struct dwo_unit *lookup_dwo_comp_unit
1884 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1885
1886 static struct dwo_unit *lookup_dwo_type_unit
1887 (struct signatured_type *, const char *, const char *);
1888
1889 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1890
1891 /* A unique pointer to a dwo_file. */
1892
1893 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1894
1895 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1896
1897 static void check_producer (struct dwarf2_cu *cu);
1898
1899 static void free_line_header_voidp (void *arg);
1900 \f
1901 /* Various complaints about symbol reading that don't abort the process. */
1902
1903 static void
1904 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1905 {
1906 complaint (_("statement list doesn't fit in .debug_line section"));
1907 }
1908
1909 static void
1910 dwarf2_debug_line_missing_file_complaint (void)
1911 {
1912 complaint (_(".debug_line section has line data without a file"));
1913 }
1914
1915 static void
1916 dwarf2_debug_line_missing_end_sequence_complaint (void)
1917 {
1918 complaint (_(".debug_line section has line "
1919 "program sequence without an end"));
1920 }
1921
1922 static void
1923 dwarf2_complex_location_expr_complaint (void)
1924 {
1925 complaint (_("location expression too complex"));
1926 }
1927
1928 static void
1929 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1930 int arg3)
1931 {
1932 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1933 arg1, arg2, arg3);
1934 }
1935
1936 static void
1937 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1938 {
1939 complaint (_("debug info runs off end of %s section"
1940 " [in module %s]"),
1941 section->get_name (),
1942 section->get_file_name ());
1943 }
1944
1945 static void
1946 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1947 {
1948 complaint (_("macro debug info contains a "
1949 "malformed macro definition:\n`%s'"),
1950 arg1);
1951 }
1952
1953 static void
1954 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1955 {
1956 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1957 arg1, arg2);
1958 }
1959
1960 /* Hash function for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash (const struct line_header *ofs)
1964 {
1965 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1966 }
1967
1968 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1969
1970 static hashval_t
1971 line_header_hash_voidp (const void *item)
1972 {
1973 const struct line_header *ofs = (const struct line_header *) item;
1974
1975 return line_header_hash (ofs);
1976 }
1977
1978 /* Equality function for line_header_hash. */
1979
1980 static int
1981 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1982 {
1983 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1984 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1985
1986 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1987 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1988 }
1989
1990 \f
1991
1992 /* See declaration. */
1993
1994 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1995 const dwarf2_debug_sections *names,
1996 bool can_copy_)
1997 : objfile (objfile_),
1998 can_copy (can_copy_)
1999 {
2000 if (names == NULL)
2001 names = &dwarf2_elf_names;
2002
2003 bfd *obfd = objfile->obfd;
2004
2005 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2006 locate_sections (obfd, sec, *names);
2007 }
2008
2009 dwarf2_per_objfile::~dwarf2_per_objfile ()
2010 {
2011 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2012 free_cached_comp_units ();
2013
2014 if (quick_file_names_table)
2015 htab_delete (quick_file_names_table);
2016
2017 if (line_header_hash)
2018 htab_delete (line_header_hash);
2019
2020 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2021 per_cu->imported_symtabs_free ();
2022
2023 for (signatured_type *sig_type : all_type_units)
2024 sig_type->per_cu.imported_symtabs_free ();
2025
2026 /* Everything else should be on the objfile obstack. */
2027 }
2028
2029 /* See declaration. */
2030
2031 void
2032 dwarf2_per_objfile::free_cached_comp_units ()
2033 {
2034 dwarf2_per_cu_data *per_cu = read_in_chain;
2035 dwarf2_per_cu_data **last_chain = &read_in_chain;
2036 while (per_cu != NULL)
2037 {
2038 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2039
2040 delete per_cu->cu;
2041 *last_chain = next_cu;
2042 per_cu = next_cu;
2043 }
2044 }
2045
2046 /* A helper class that calls free_cached_comp_units on
2047 destruction. */
2048
2049 class free_cached_comp_units
2050 {
2051 public:
2052
2053 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2054 : m_per_objfile (per_objfile)
2055 {
2056 }
2057
2058 ~free_cached_comp_units ()
2059 {
2060 m_per_objfile->free_cached_comp_units ();
2061 }
2062
2063 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2064
2065 private:
2066
2067 dwarf2_per_objfile *m_per_objfile;
2068 };
2069
2070 /* Try to locate the sections we need for DWARF 2 debugging
2071 information and return true if we have enough to do something.
2072 NAMES points to the dwarf2 section names, or is NULL if the standard
2073 ELF names are used. CAN_COPY is true for formats where symbol
2074 interposition is possible and so symbol values must follow copy
2075 relocation rules. */
2076
2077 int
2078 dwarf2_has_info (struct objfile *objfile,
2079 const struct dwarf2_debug_sections *names,
2080 bool can_copy)
2081 {
2082 if (objfile->flags & OBJF_READNEVER)
2083 return 0;
2084
2085 struct dwarf2_per_objfile *dwarf2_per_objfile
2086 = get_dwarf2_per_objfile (objfile);
2087
2088 if (dwarf2_per_objfile == NULL)
2089 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2090 names,
2091 can_copy);
2092
2093 return (!dwarf2_per_objfile->info.is_virtual
2094 && dwarf2_per_objfile->info.s.section != NULL
2095 && !dwarf2_per_objfile->abbrev.is_virtual
2096 && dwarf2_per_objfile->abbrev.s.section != NULL);
2097 }
2098
2099 /* When loading sections, we look either for uncompressed section or for
2100 compressed section names. */
2101
2102 static int
2103 section_is_p (const char *section_name,
2104 const struct dwarf2_section_names *names)
2105 {
2106 if (names->normal != NULL
2107 && strcmp (section_name, names->normal) == 0)
2108 return 1;
2109 if (names->compressed != NULL
2110 && strcmp (section_name, names->compressed) == 0)
2111 return 1;
2112 return 0;
2113 }
2114
2115 /* See declaration. */
2116
2117 void
2118 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2119 const dwarf2_debug_sections &names)
2120 {
2121 flagword aflag = bfd_section_flags (sectp);
2122
2123 if ((aflag & SEC_HAS_CONTENTS) == 0)
2124 {
2125 }
2126 else if (elf_section_data (sectp)->this_hdr.sh_size
2127 > bfd_get_file_size (abfd))
2128 {
2129 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2130 warning (_("Discarding section %s which has a section size (%s"
2131 ") larger than the file size [in module %s]"),
2132 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2133 bfd_get_filename (abfd));
2134 }
2135 else if (section_is_p (sectp->name, &names.info))
2136 {
2137 this->info.s.section = sectp;
2138 this->info.size = bfd_section_size (sectp);
2139 }
2140 else if (section_is_p (sectp->name, &names.abbrev))
2141 {
2142 this->abbrev.s.section = sectp;
2143 this->abbrev.size = bfd_section_size (sectp);
2144 }
2145 else if (section_is_p (sectp->name, &names.line))
2146 {
2147 this->line.s.section = sectp;
2148 this->line.size = bfd_section_size (sectp);
2149 }
2150 else if (section_is_p (sectp->name, &names.loc))
2151 {
2152 this->loc.s.section = sectp;
2153 this->loc.size = bfd_section_size (sectp);
2154 }
2155 else if (section_is_p (sectp->name, &names.loclists))
2156 {
2157 this->loclists.s.section = sectp;
2158 this->loclists.size = bfd_section_size (sectp);
2159 }
2160 else if (section_is_p (sectp->name, &names.macinfo))
2161 {
2162 this->macinfo.s.section = sectp;
2163 this->macinfo.size = bfd_section_size (sectp);
2164 }
2165 else if (section_is_p (sectp->name, &names.macro))
2166 {
2167 this->macro.s.section = sectp;
2168 this->macro.size = bfd_section_size (sectp);
2169 }
2170 else if (section_is_p (sectp->name, &names.str))
2171 {
2172 this->str.s.section = sectp;
2173 this->str.size = bfd_section_size (sectp);
2174 }
2175 else if (section_is_p (sectp->name, &names.str_offsets))
2176 {
2177 this->str_offsets.s.section = sectp;
2178 this->str_offsets.size = bfd_section_size (sectp);
2179 }
2180 else if (section_is_p (sectp->name, &names.line_str))
2181 {
2182 this->line_str.s.section = sectp;
2183 this->line_str.size = bfd_section_size (sectp);
2184 }
2185 else if (section_is_p (sectp->name, &names.addr))
2186 {
2187 this->addr.s.section = sectp;
2188 this->addr.size = bfd_section_size (sectp);
2189 }
2190 else if (section_is_p (sectp->name, &names.frame))
2191 {
2192 this->frame.s.section = sectp;
2193 this->frame.size = bfd_section_size (sectp);
2194 }
2195 else if (section_is_p (sectp->name, &names.eh_frame))
2196 {
2197 this->eh_frame.s.section = sectp;
2198 this->eh_frame.size = bfd_section_size (sectp);
2199 }
2200 else if (section_is_p (sectp->name, &names.ranges))
2201 {
2202 this->ranges.s.section = sectp;
2203 this->ranges.size = bfd_section_size (sectp);
2204 }
2205 else if (section_is_p (sectp->name, &names.rnglists))
2206 {
2207 this->rnglists.s.section = sectp;
2208 this->rnglists.size = bfd_section_size (sectp);
2209 }
2210 else if (section_is_p (sectp->name, &names.types))
2211 {
2212 struct dwarf2_section_info type_section;
2213
2214 memset (&type_section, 0, sizeof (type_section));
2215 type_section.s.section = sectp;
2216 type_section.size = bfd_section_size (sectp);
2217
2218 this->types.push_back (type_section);
2219 }
2220 else if (section_is_p (sectp->name, &names.gdb_index))
2221 {
2222 this->gdb_index.s.section = sectp;
2223 this->gdb_index.size = bfd_section_size (sectp);
2224 }
2225 else if (section_is_p (sectp->name, &names.debug_names))
2226 {
2227 this->debug_names.s.section = sectp;
2228 this->debug_names.size = bfd_section_size (sectp);
2229 }
2230 else if (section_is_p (sectp->name, &names.debug_aranges))
2231 {
2232 this->debug_aranges.s.section = sectp;
2233 this->debug_aranges.size = bfd_section_size (sectp);
2234 }
2235
2236 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2237 && bfd_section_vma (sectp) == 0)
2238 this->has_section_at_zero = true;
2239 }
2240
2241 /* A helper function that returns the size of a section in a safe way.
2242 If you are positive that the section has been read before using the
2243 size, then it is safe to refer to the dwarf2_section_info object's
2244 "size" field directly. In other cases, you must call this
2245 function, because for compressed sections the size field is not set
2246 correctly until the section has been read. */
2247
2248 static bfd_size_type
2249 dwarf2_section_size (struct objfile *objfile,
2250 struct dwarf2_section_info *info)
2251 {
2252 if (!info->readin)
2253 info->read (objfile);
2254 return info->size;
2255 }
2256
2257 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2258 SECTION_NAME. */
2259
2260 void
2261 dwarf2_get_section_info (struct objfile *objfile,
2262 enum dwarf2_section_enum sect,
2263 asection **sectp, const gdb_byte **bufp,
2264 bfd_size_type *sizep)
2265 {
2266 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2267 struct dwarf2_section_info *info;
2268
2269 /* We may see an objfile without any DWARF, in which case we just
2270 return nothing. */
2271 if (data == NULL)
2272 {
2273 *sectp = NULL;
2274 *bufp = NULL;
2275 *sizep = 0;
2276 return;
2277 }
2278 switch (sect)
2279 {
2280 case DWARF2_DEBUG_FRAME:
2281 info = &data->frame;
2282 break;
2283 case DWARF2_EH_FRAME:
2284 info = &data->eh_frame;
2285 break;
2286 default:
2287 gdb_assert_not_reached ("unexpected section");
2288 }
2289
2290 info->read (objfile);
2291
2292 *sectp = info->get_bfd_section ();
2293 *bufp = info->buffer;
2294 *sizep = info->size;
2295 }
2296
2297 /* A helper function to find the sections for a .dwz file. */
2298
2299 static void
2300 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2301 {
2302 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2303
2304 /* Note that we only support the standard ELF names, because .dwz
2305 is ELF-only (at the time of writing). */
2306 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2307 {
2308 dwz_file->abbrev.s.section = sectp;
2309 dwz_file->abbrev.size = bfd_section_size (sectp);
2310 }
2311 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2312 {
2313 dwz_file->info.s.section = sectp;
2314 dwz_file->info.size = bfd_section_size (sectp);
2315 }
2316 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2317 {
2318 dwz_file->str.s.section = sectp;
2319 dwz_file->str.size = bfd_section_size (sectp);
2320 }
2321 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2322 {
2323 dwz_file->line.s.section = sectp;
2324 dwz_file->line.size = bfd_section_size (sectp);
2325 }
2326 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2327 {
2328 dwz_file->macro.s.section = sectp;
2329 dwz_file->macro.size = bfd_section_size (sectp);
2330 }
2331 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2332 {
2333 dwz_file->gdb_index.s.section = sectp;
2334 dwz_file->gdb_index.size = bfd_section_size (sectp);
2335 }
2336 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2337 {
2338 dwz_file->debug_names.s.section = sectp;
2339 dwz_file->debug_names.size = bfd_section_size (sectp);
2340 }
2341 }
2342
2343 /* See dwarf2read.h. */
2344
2345 struct dwz_file *
2346 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2347 {
2348 const char *filename;
2349 bfd_size_type buildid_len_arg;
2350 size_t buildid_len;
2351 bfd_byte *buildid;
2352
2353 if (dwarf2_per_objfile->dwz_file != NULL)
2354 return dwarf2_per_objfile->dwz_file.get ();
2355
2356 bfd_set_error (bfd_error_no_error);
2357 gdb::unique_xmalloc_ptr<char> data
2358 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2359 &buildid_len_arg, &buildid));
2360 if (data == NULL)
2361 {
2362 if (bfd_get_error () == bfd_error_no_error)
2363 return NULL;
2364 error (_("could not read '.gnu_debugaltlink' section: %s"),
2365 bfd_errmsg (bfd_get_error ()));
2366 }
2367
2368 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2369
2370 buildid_len = (size_t) buildid_len_arg;
2371
2372 filename = data.get ();
2373
2374 std::string abs_storage;
2375 if (!IS_ABSOLUTE_PATH (filename))
2376 {
2377 gdb::unique_xmalloc_ptr<char> abs
2378 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2379
2380 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2381 filename = abs_storage.c_str ();
2382 }
2383
2384 /* First try the file name given in the section. If that doesn't
2385 work, try to use the build-id instead. */
2386 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2387 if (dwz_bfd != NULL)
2388 {
2389 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2390 dwz_bfd.reset (nullptr);
2391 }
2392
2393 if (dwz_bfd == NULL)
2394 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2395
2396 if (dwz_bfd == NULL)
2397 error (_("could not find '.gnu_debugaltlink' file for %s"),
2398 objfile_name (dwarf2_per_objfile->objfile));
2399
2400 std::unique_ptr<struct dwz_file> result
2401 (new struct dwz_file (std::move (dwz_bfd)));
2402
2403 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2404 result.get ());
2405
2406 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2407 result->dwz_bfd.get ());
2408 dwarf2_per_objfile->dwz_file = std::move (result);
2409 return dwarf2_per_objfile->dwz_file.get ();
2410 }
2411 \f
2412 /* DWARF quick_symbols_functions support. */
2413
2414 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2415 unique line tables, so we maintain a separate table of all .debug_line
2416 derived entries to support the sharing.
2417 All the quick functions need is the list of file names. We discard the
2418 line_header when we're done and don't need to record it here. */
2419 struct quick_file_names
2420 {
2421 /* The data used to construct the hash key. */
2422 struct stmt_list_hash hash;
2423
2424 /* The number of entries in file_names, real_names. */
2425 unsigned int num_file_names;
2426
2427 /* The file names from the line table, after being run through
2428 file_full_name. */
2429 const char **file_names;
2430
2431 /* The file names from the line table after being run through
2432 gdb_realpath. These are computed lazily. */
2433 const char **real_names;
2434 };
2435
2436 /* When using the index (and thus not using psymtabs), each CU has an
2437 object of this type. This is used to hold information needed by
2438 the various "quick" methods. */
2439 struct dwarf2_per_cu_quick_data
2440 {
2441 /* The file table. This can be NULL if there was no file table
2442 or it's currently not read in.
2443 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2444 struct quick_file_names *file_names;
2445
2446 /* The corresponding symbol table. This is NULL if symbols for this
2447 CU have not yet been read. */
2448 struct compunit_symtab *compunit_symtab;
2449
2450 /* A temporary mark bit used when iterating over all CUs in
2451 expand_symtabs_matching. */
2452 unsigned int mark : 1;
2453
2454 /* True if we've tried to read the file table and found there isn't one.
2455 There will be no point in trying to read it again next time. */
2456 unsigned int no_file_data : 1;
2457 };
2458
2459 /* Utility hash function for a stmt_list_hash. */
2460
2461 static hashval_t
2462 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2463 {
2464 hashval_t v = 0;
2465
2466 if (stmt_list_hash->dwo_unit != NULL)
2467 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2468 v += to_underlying (stmt_list_hash->line_sect_off);
2469 return v;
2470 }
2471
2472 /* Utility equality function for a stmt_list_hash. */
2473
2474 static int
2475 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2476 const struct stmt_list_hash *rhs)
2477 {
2478 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2479 return 0;
2480 if (lhs->dwo_unit != NULL
2481 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2482 return 0;
2483
2484 return lhs->line_sect_off == rhs->line_sect_off;
2485 }
2486
2487 /* Hash function for a quick_file_names. */
2488
2489 static hashval_t
2490 hash_file_name_entry (const void *e)
2491 {
2492 const struct quick_file_names *file_data
2493 = (const struct quick_file_names *) e;
2494
2495 return hash_stmt_list_entry (&file_data->hash);
2496 }
2497
2498 /* Equality function for a quick_file_names. */
2499
2500 static int
2501 eq_file_name_entry (const void *a, const void *b)
2502 {
2503 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2504 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2505
2506 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2507 }
2508
2509 /* Delete function for a quick_file_names. */
2510
2511 static void
2512 delete_file_name_entry (void *e)
2513 {
2514 struct quick_file_names *file_data = (struct quick_file_names *) e;
2515 int i;
2516
2517 for (i = 0; i < file_data->num_file_names; ++i)
2518 {
2519 xfree ((void*) file_data->file_names[i]);
2520 if (file_data->real_names)
2521 xfree ((void*) file_data->real_names[i]);
2522 }
2523
2524 /* The space for the struct itself lives on objfile_obstack,
2525 so we don't free it here. */
2526 }
2527
2528 /* Create a quick_file_names hash table. */
2529
2530 static htab_t
2531 create_quick_file_names_table (unsigned int nr_initial_entries)
2532 {
2533 return htab_create_alloc (nr_initial_entries,
2534 hash_file_name_entry, eq_file_name_entry,
2535 delete_file_name_entry, xcalloc, xfree);
2536 }
2537
2538 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2539 have to be created afterwards. You should call age_cached_comp_units after
2540 processing PER_CU->CU. dw2_setup must have been already called. */
2541
2542 static void
2543 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2544 {
2545 if (per_cu->is_debug_types)
2546 load_full_type_unit (per_cu);
2547 else
2548 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2549
2550 if (per_cu->cu == NULL)
2551 return; /* Dummy CU. */
2552
2553 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2554 }
2555
2556 /* Read in the symbols for PER_CU. */
2557
2558 static void
2559 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2560 {
2561 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2562
2563 /* Skip type_unit_groups, reading the type units they contain
2564 is handled elsewhere. */
2565 if (IS_TYPE_UNIT_GROUP (per_cu))
2566 return;
2567
2568 /* The destructor of dwarf2_queue_guard frees any entries left on
2569 the queue. After this point we're guaranteed to leave this function
2570 with the dwarf queue empty. */
2571 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2572
2573 if (dwarf2_per_objfile->using_index
2574 ? per_cu->v.quick->compunit_symtab == NULL
2575 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2576 {
2577 queue_comp_unit (per_cu, language_minimal);
2578 load_cu (per_cu, skip_partial);
2579
2580 /* If we just loaded a CU from a DWO, and we're working with an index
2581 that may badly handle TUs, load all the TUs in that DWO as well.
2582 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2583 if (!per_cu->is_debug_types
2584 && per_cu->cu != NULL
2585 && per_cu->cu->dwo_unit != NULL
2586 && dwarf2_per_objfile->index_table != NULL
2587 && dwarf2_per_objfile->index_table->version <= 7
2588 /* DWP files aren't supported yet. */
2589 && get_dwp_file (dwarf2_per_objfile) == NULL)
2590 queue_and_load_all_dwo_tus (per_cu);
2591 }
2592
2593 process_queue (dwarf2_per_objfile);
2594
2595 /* Age the cache, releasing compilation units that have not
2596 been used recently. */
2597 age_cached_comp_units (dwarf2_per_objfile);
2598 }
2599
2600 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2601 the objfile from which this CU came. Returns the resulting symbol
2602 table. */
2603
2604 static struct compunit_symtab *
2605 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2606 {
2607 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2608
2609 gdb_assert (dwarf2_per_objfile->using_index);
2610 if (!per_cu->v.quick->compunit_symtab)
2611 {
2612 free_cached_comp_units freer (dwarf2_per_objfile);
2613 scoped_restore decrementer = increment_reading_symtab ();
2614 dw2_do_instantiate_symtab (per_cu, skip_partial);
2615 process_cu_includes (dwarf2_per_objfile);
2616 }
2617
2618 return per_cu->v.quick->compunit_symtab;
2619 }
2620
2621 /* See declaration. */
2622
2623 dwarf2_per_cu_data *
2624 dwarf2_per_objfile::get_cutu (int index)
2625 {
2626 if (index >= this->all_comp_units.size ())
2627 {
2628 index -= this->all_comp_units.size ();
2629 gdb_assert (index < this->all_type_units.size ());
2630 return &this->all_type_units[index]->per_cu;
2631 }
2632
2633 return this->all_comp_units[index];
2634 }
2635
2636 /* See declaration. */
2637
2638 dwarf2_per_cu_data *
2639 dwarf2_per_objfile::get_cu (int index)
2640 {
2641 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2642
2643 return this->all_comp_units[index];
2644 }
2645
2646 /* See declaration. */
2647
2648 signatured_type *
2649 dwarf2_per_objfile::get_tu (int index)
2650 {
2651 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2652
2653 return this->all_type_units[index];
2654 }
2655
2656 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2657 objfile_obstack, and constructed with the specified field
2658 values. */
2659
2660 static dwarf2_per_cu_data *
2661 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2662 struct dwarf2_section_info *section,
2663 int is_dwz,
2664 sect_offset sect_off, ULONGEST length)
2665 {
2666 struct objfile *objfile = dwarf2_per_objfile->objfile;
2667 dwarf2_per_cu_data *the_cu
2668 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2669 struct dwarf2_per_cu_data);
2670 the_cu->sect_off = sect_off;
2671 the_cu->length = length;
2672 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2673 the_cu->section = section;
2674 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2675 struct dwarf2_per_cu_quick_data);
2676 the_cu->is_dwz = is_dwz;
2677 return the_cu;
2678 }
2679
2680 /* A helper for create_cus_from_index that handles a given list of
2681 CUs. */
2682
2683 static void
2684 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2685 const gdb_byte *cu_list, offset_type n_elements,
2686 struct dwarf2_section_info *section,
2687 int is_dwz)
2688 {
2689 for (offset_type i = 0; i < n_elements; i += 2)
2690 {
2691 gdb_static_assert (sizeof (ULONGEST) >= 8);
2692
2693 sect_offset sect_off
2694 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2695 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2696 cu_list += 2 * 8;
2697
2698 dwarf2_per_cu_data *per_cu
2699 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2700 sect_off, length);
2701 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2702 }
2703 }
2704
2705 /* Read the CU list from the mapped index, and use it to create all
2706 the CU objects for this objfile. */
2707
2708 static void
2709 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2710 const gdb_byte *cu_list, offset_type cu_list_elements,
2711 const gdb_byte *dwz_list, offset_type dwz_elements)
2712 {
2713 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2714 dwarf2_per_objfile->all_comp_units.reserve
2715 ((cu_list_elements + dwz_elements) / 2);
2716
2717 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2718 &dwarf2_per_objfile->info, 0);
2719
2720 if (dwz_elements == 0)
2721 return;
2722
2723 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2724 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2725 &dwz->info, 1);
2726 }
2727
2728 /* Create the signatured type hash table from the index. */
2729
2730 static void
2731 create_signatured_type_table_from_index
2732 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2733 struct dwarf2_section_info *section,
2734 const gdb_byte *bytes,
2735 offset_type elements)
2736 {
2737 struct objfile *objfile = dwarf2_per_objfile->objfile;
2738
2739 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2740 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2741
2742 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
2743
2744 for (offset_type i = 0; i < elements; i += 3)
2745 {
2746 struct signatured_type *sig_type;
2747 ULONGEST signature;
2748 void **slot;
2749 cu_offset type_offset_in_tu;
2750
2751 gdb_static_assert (sizeof (ULONGEST) >= 8);
2752 sect_offset sect_off
2753 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2754 type_offset_in_tu
2755 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2756 BFD_ENDIAN_LITTLE);
2757 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2758 bytes += 3 * 8;
2759
2760 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2761 struct signatured_type);
2762 sig_type->signature = signature;
2763 sig_type->type_offset_in_tu = type_offset_in_tu;
2764 sig_type->per_cu.is_debug_types = 1;
2765 sig_type->per_cu.section = section;
2766 sig_type->per_cu.sect_off = sect_off;
2767 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2768 sig_type->per_cu.v.quick
2769 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2770 struct dwarf2_per_cu_quick_data);
2771
2772 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2773 *slot = sig_type;
2774
2775 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2776 }
2777
2778 dwarf2_per_objfile->signatured_types = sig_types_hash;
2779 }
2780
2781 /* Create the signatured type hash table from .debug_names. */
2782
2783 static void
2784 create_signatured_type_table_from_debug_names
2785 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2786 const mapped_debug_names &map,
2787 struct dwarf2_section_info *section,
2788 struct dwarf2_section_info *abbrev_section)
2789 {
2790 struct objfile *objfile = dwarf2_per_objfile->objfile;
2791
2792 section->read (objfile);
2793 abbrev_section->read (objfile);
2794
2795 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2796 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2797
2798 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
2799
2800 for (uint32_t i = 0; i < map.tu_count; ++i)
2801 {
2802 struct signatured_type *sig_type;
2803 void **slot;
2804
2805 sect_offset sect_off
2806 = (sect_offset) (extract_unsigned_integer
2807 (map.tu_table_reordered + i * map.offset_size,
2808 map.offset_size,
2809 map.dwarf5_byte_order));
2810
2811 comp_unit_head cu_header;
2812 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2813 abbrev_section,
2814 section->buffer + to_underlying (sect_off),
2815 rcuh_kind::TYPE);
2816
2817 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2818 struct signatured_type);
2819 sig_type->signature = cu_header.signature;
2820 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2821 sig_type->per_cu.is_debug_types = 1;
2822 sig_type->per_cu.section = section;
2823 sig_type->per_cu.sect_off = sect_off;
2824 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2825 sig_type->per_cu.v.quick
2826 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828
2829 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2830 *slot = sig_type;
2831
2832 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2833 }
2834
2835 dwarf2_per_objfile->signatured_types = sig_types_hash;
2836 }
2837
2838 /* Read the address map data from the mapped index, and use it to
2839 populate the objfile's psymtabs_addrmap. */
2840
2841 static void
2842 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2843 struct mapped_index *index)
2844 {
2845 struct objfile *objfile = dwarf2_per_objfile->objfile;
2846 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2847 const gdb_byte *iter, *end;
2848 struct addrmap *mutable_map;
2849 CORE_ADDR baseaddr;
2850
2851 auto_obstack temp_obstack;
2852
2853 mutable_map = addrmap_create_mutable (&temp_obstack);
2854
2855 iter = index->address_table.data ();
2856 end = iter + index->address_table.size ();
2857
2858 baseaddr = objfile->text_section_offset ();
2859
2860 while (iter < end)
2861 {
2862 ULONGEST hi, lo, cu_index;
2863 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2864 iter += 8;
2865 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2866 iter += 8;
2867 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2868 iter += 4;
2869
2870 if (lo > hi)
2871 {
2872 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2873 hex_string (lo), hex_string (hi));
2874 continue;
2875 }
2876
2877 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2878 {
2879 complaint (_(".gdb_index address table has invalid CU number %u"),
2880 (unsigned) cu_index);
2881 continue;
2882 }
2883
2884 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2885 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2886 addrmap_set_empty (mutable_map, lo, hi - 1,
2887 dwarf2_per_objfile->get_cu (cu_index));
2888 }
2889
2890 objfile->partial_symtabs->psymtabs_addrmap
2891 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2892 }
2893
2894 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2895 populate the objfile's psymtabs_addrmap. */
2896
2897 static void
2898 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2899 struct dwarf2_section_info *section)
2900 {
2901 struct objfile *objfile = dwarf2_per_objfile->objfile;
2902 bfd *abfd = objfile->obfd;
2903 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2904 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2905
2906 auto_obstack temp_obstack;
2907 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2908
2909 std::unordered_map<sect_offset,
2910 dwarf2_per_cu_data *,
2911 gdb::hash_enum<sect_offset>>
2912 debug_info_offset_to_per_cu;
2913 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2914 {
2915 const auto insertpair
2916 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2917 if (!insertpair.second)
2918 {
2919 warning (_("Section .debug_aranges in %s has duplicate "
2920 "debug_info_offset %s, ignoring .debug_aranges."),
2921 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2922 return;
2923 }
2924 }
2925
2926 section->read (objfile);
2927
2928 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2929
2930 const gdb_byte *addr = section->buffer;
2931
2932 while (addr < section->buffer + section->size)
2933 {
2934 const gdb_byte *const entry_addr = addr;
2935 unsigned int bytes_read;
2936
2937 const LONGEST entry_length = read_initial_length (abfd, addr,
2938 &bytes_read);
2939 addr += bytes_read;
2940
2941 const gdb_byte *const entry_end = addr + entry_length;
2942 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2943 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2944 if (addr + entry_length > section->buffer + section->size)
2945 {
2946 warning (_("Section .debug_aranges in %s entry at offset %s "
2947 "length %s exceeds section length %s, "
2948 "ignoring .debug_aranges."),
2949 objfile_name (objfile),
2950 plongest (entry_addr - section->buffer),
2951 plongest (bytes_read + entry_length),
2952 pulongest (section->size));
2953 return;
2954 }
2955
2956 /* The version number. */
2957 const uint16_t version = read_2_bytes (abfd, addr);
2958 addr += 2;
2959 if (version != 2)
2960 {
2961 warning (_("Section .debug_aranges in %s entry at offset %s "
2962 "has unsupported version %d, ignoring .debug_aranges."),
2963 objfile_name (objfile),
2964 plongest (entry_addr - section->buffer), version);
2965 return;
2966 }
2967
2968 const uint64_t debug_info_offset
2969 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2970 addr += offset_size;
2971 const auto per_cu_it
2972 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2973 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2974 {
2975 warning (_("Section .debug_aranges in %s entry at offset %s "
2976 "debug_info_offset %s does not exists, "
2977 "ignoring .debug_aranges."),
2978 objfile_name (objfile),
2979 plongest (entry_addr - section->buffer),
2980 pulongest (debug_info_offset));
2981 return;
2982 }
2983 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2984
2985 const uint8_t address_size = *addr++;
2986 if (address_size < 1 || address_size > 8)
2987 {
2988 warning (_("Section .debug_aranges in %s entry at offset %s "
2989 "address_size %u is invalid, ignoring .debug_aranges."),
2990 objfile_name (objfile),
2991 plongest (entry_addr - section->buffer), address_size);
2992 return;
2993 }
2994
2995 const uint8_t segment_selector_size = *addr++;
2996 if (segment_selector_size != 0)
2997 {
2998 warning (_("Section .debug_aranges in %s entry at offset %s "
2999 "segment_selector_size %u is not supported, "
3000 "ignoring .debug_aranges."),
3001 objfile_name (objfile),
3002 plongest (entry_addr - section->buffer),
3003 segment_selector_size);
3004 return;
3005 }
3006
3007 /* Must pad to an alignment boundary that is twice the address
3008 size. It is undocumented by the DWARF standard but GCC does
3009 use it. */
3010 for (size_t padding = ((-(addr - section->buffer))
3011 & (2 * address_size - 1));
3012 padding > 0; padding--)
3013 if (*addr++ != 0)
3014 {
3015 warning (_("Section .debug_aranges in %s entry at offset %s "
3016 "padding is not zero, ignoring .debug_aranges."),
3017 objfile_name (objfile),
3018 plongest (entry_addr - section->buffer));
3019 return;
3020 }
3021
3022 for (;;)
3023 {
3024 if (addr + 2 * address_size > entry_end)
3025 {
3026 warning (_("Section .debug_aranges in %s entry at offset %s "
3027 "address list is not properly terminated, "
3028 "ignoring .debug_aranges."),
3029 objfile_name (objfile),
3030 plongest (entry_addr - section->buffer));
3031 return;
3032 }
3033 ULONGEST start = extract_unsigned_integer (addr, address_size,
3034 dwarf5_byte_order);
3035 addr += address_size;
3036 ULONGEST length = extract_unsigned_integer (addr, address_size,
3037 dwarf5_byte_order);
3038 addr += address_size;
3039 if (start == 0 && length == 0)
3040 break;
3041 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3042 {
3043 /* Symbol was eliminated due to a COMDAT group. */
3044 continue;
3045 }
3046 ULONGEST end = start + length;
3047 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3048 - baseaddr);
3049 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3050 - baseaddr);
3051 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3052 }
3053 }
3054
3055 objfile->partial_symtabs->psymtabs_addrmap
3056 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3057 }
3058
3059 /* Find a slot in the mapped index INDEX for the object named NAME.
3060 If NAME is found, set *VEC_OUT to point to the CU vector in the
3061 constant pool and return true. If NAME cannot be found, return
3062 false. */
3063
3064 static bool
3065 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3066 offset_type **vec_out)
3067 {
3068 offset_type hash;
3069 offset_type slot, step;
3070 int (*cmp) (const char *, const char *);
3071
3072 gdb::unique_xmalloc_ptr<char> without_params;
3073 if (current_language->la_language == language_cplus
3074 || current_language->la_language == language_fortran
3075 || current_language->la_language == language_d)
3076 {
3077 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3078 not contain any. */
3079
3080 if (strchr (name, '(') != NULL)
3081 {
3082 without_params = cp_remove_params (name);
3083
3084 if (without_params != NULL)
3085 name = without_params.get ();
3086 }
3087 }
3088
3089 /* Index version 4 did not support case insensitive searches. But the
3090 indices for case insensitive languages are built in lowercase, therefore
3091 simulate our NAME being searched is also lowercased. */
3092 hash = mapped_index_string_hash ((index->version == 4
3093 && case_sensitivity == case_sensitive_off
3094 ? 5 : index->version),
3095 name);
3096
3097 slot = hash & (index->symbol_table.size () - 1);
3098 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3099 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3100
3101 for (;;)
3102 {
3103 const char *str;
3104
3105 const auto &bucket = index->symbol_table[slot];
3106 if (bucket.name == 0 && bucket.vec == 0)
3107 return false;
3108
3109 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3110 if (!cmp (name, str))
3111 {
3112 *vec_out = (offset_type *) (index->constant_pool
3113 + MAYBE_SWAP (bucket.vec));
3114 return true;
3115 }
3116
3117 slot = (slot + step) & (index->symbol_table.size () - 1);
3118 }
3119 }
3120
3121 /* A helper function that reads the .gdb_index from BUFFER and fills
3122 in MAP. FILENAME is the name of the file containing the data;
3123 it is used for error reporting. DEPRECATED_OK is true if it is
3124 ok to use deprecated sections.
3125
3126 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3127 out parameters that are filled in with information about the CU and
3128 TU lists in the section.
3129
3130 Returns true if all went well, false otherwise. */
3131
3132 static bool
3133 read_gdb_index_from_buffer (struct objfile *objfile,
3134 const char *filename,
3135 bool deprecated_ok,
3136 gdb::array_view<const gdb_byte> buffer,
3137 struct mapped_index *map,
3138 const gdb_byte **cu_list,
3139 offset_type *cu_list_elements,
3140 const gdb_byte **types_list,
3141 offset_type *types_list_elements)
3142 {
3143 const gdb_byte *addr = &buffer[0];
3144
3145 /* Version check. */
3146 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3147 /* Versions earlier than 3 emitted every copy of a psymbol. This
3148 causes the index to behave very poorly for certain requests. Version 3
3149 contained incomplete addrmap. So, it seems better to just ignore such
3150 indices. */
3151 if (version < 4)
3152 {
3153 static int warning_printed = 0;
3154 if (!warning_printed)
3155 {
3156 warning (_("Skipping obsolete .gdb_index section in %s."),
3157 filename);
3158 warning_printed = 1;
3159 }
3160 return 0;
3161 }
3162 /* Index version 4 uses a different hash function than index version
3163 5 and later.
3164
3165 Versions earlier than 6 did not emit psymbols for inlined
3166 functions. Using these files will cause GDB not to be able to
3167 set breakpoints on inlined functions by name, so we ignore these
3168 indices unless the user has done
3169 "set use-deprecated-index-sections on". */
3170 if (version < 6 && !deprecated_ok)
3171 {
3172 static int warning_printed = 0;
3173 if (!warning_printed)
3174 {
3175 warning (_("\
3176 Skipping deprecated .gdb_index section in %s.\n\
3177 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3178 to use the section anyway."),
3179 filename);
3180 warning_printed = 1;
3181 }
3182 return 0;
3183 }
3184 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3185 of the TU (for symbols coming from TUs),
3186 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3187 Plus gold-generated indices can have duplicate entries for global symbols,
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3189 These are just performance bugs, and we can't distinguish gdb-generated
3190 indices from gold-generated ones, so issue no warning here. */
3191
3192 /* Indexes with higher version than the one supported by GDB may be no
3193 longer backward compatible. */
3194 if (version > 8)
3195 return 0;
3196
3197 map->version = version;
3198
3199 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3200
3201 int i = 0;
3202 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3203 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3204 / 8);
3205 ++i;
3206
3207 *types_list = addr + MAYBE_SWAP (metadata[i]);
3208 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3209 - MAYBE_SWAP (metadata[i]))
3210 / 8);
3211 ++i;
3212
3213 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3214 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3215 map->address_table
3216 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3217 ++i;
3218
3219 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3220 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3221 map->symbol_table
3222 = gdb::array_view<mapped_index::symbol_table_slot>
3223 ((mapped_index::symbol_table_slot *) symbol_table,
3224 (mapped_index::symbol_table_slot *) symbol_table_end);
3225
3226 ++i;
3227 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3228
3229 return 1;
3230 }
3231
3232 /* Callback types for dwarf2_read_gdb_index. */
3233
3234 typedef gdb::function_view
3235 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3236 get_gdb_index_contents_ftype;
3237 typedef gdb::function_view
3238 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3239 get_gdb_index_contents_dwz_ftype;
3240
3241 /* Read .gdb_index. If everything went ok, initialize the "quick"
3242 elements of all the CUs and return 1. Otherwise, return 0. */
3243
3244 static int
3245 dwarf2_read_gdb_index
3246 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3247 get_gdb_index_contents_ftype get_gdb_index_contents,
3248 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3249 {
3250 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3251 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3252 struct dwz_file *dwz;
3253 struct objfile *objfile = dwarf2_per_objfile->objfile;
3254
3255 gdb::array_view<const gdb_byte> main_index_contents
3256 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3257
3258 if (main_index_contents.empty ())
3259 return 0;
3260
3261 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3262 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3263 use_deprecated_index_sections,
3264 main_index_contents, map.get (), &cu_list,
3265 &cu_list_elements, &types_list,
3266 &types_list_elements))
3267 return 0;
3268
3269 /* Don't use the index if it's empty. */
3270 if (map->symbol_table.empty ())
3271 return 0;
3272
3273 /* If there is a .dwz file, read it so we can get its CU list as
3274 well. */
3275 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3276 if (dwz != NULL)
3277 {
3278 struct mapped_index dwz_map;
3279 const gdb_byte *dwz_types_ignore;
3280 offset_type dwz_types_elements_ignore;
3281
3282 gdb::array_view<const gdb_byte> dwz_index_content
3283 = get_gdb_index_contents_dwz (objfile, dwz);
3284
3285 if (dwz_index_content.empty ())
3286 return 0;
3287
3288 if (!read_gdb_index_from_buffer (objfile,
3289 bfd_get_filename (dwz->dwz_bfd.get ()),
3290 1, dwz_index_content, &dwz_map,
3291 &dwz_list, &dwz_list_elements,
3292 &dwz_types_ignore,
3293 &dwz_types_elements_ignore))
3294 {
3295 warning (_("could not read '.gdb_index' section from %s; skipping"),
3296 bfd_get_filename (dwz->dwz_bfd.get ()));
3297 return 0;
3298 }
3299 }
3300
3301 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3302 dwz_list, dwz_list_elements);
3303
3304 if (types_list_elements)
3305 {
3306 /* We can only handle a single .debug_types when we have an
3307 index. */
3308 if (dwarf2_per_objfile->types.size () != 1)
3309 return 0;
3310
3311 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3312
3313 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3314 types_list, types_list_elements);
3315 }
3316
3317 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3318
3319 dwarf2_per_objfile->index_table = std::move (map);
3320 dwarf2_per_objfile->using_index = 1;
3321 dwarf2_per_objfile->quick_file_names_table =
3322 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3323
3324 return 1;
3325 }
3326
3327 /* die_reader_func for dw2_get_file_names. */
3328
3329 static void
3330 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3331 const gdb_byte *info_ptr,
3332 struct die_info *comp_unit_die)
3333 {
3334 struct dwarf2_cu *cu = reader->cu;
3335 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3336 struct dwarf2_per_objfile *dwarf2_per_objfile
3337 = cu->per_cu->dwarf2_per_objfile;
3338 struct objfile *objfile = dwarf2_per_objfile->objfile;
3339 struct dwarf2_per_cu_data *lh_cu;
3340 struct attribute *attr;
3341 void **slot;
3342 struct quick_file_names *qfn;
3343
3344 gdb_assert (! this_cu->is_debug_types);
3345
3346 /* Our callers never want to match partial units -- instead they
3347 will match the enclosing full CU. */
3348 if (comp_unit_die->tag == DW_TAG_partial_unit)
3349 {
3350 this_cu->v.quick->no_file_data = 1;
3351 return;
3352 }
3353
3354 lh_cu = this_cu;
3355 slot = NULL;
3356
3357 line_header_up lh;
3358 sect_offset line_offset {};
3359
3360 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3361 if (attr != nullptr)
3362 {
3363 struct quick_file_names find_entry;
3364
3365 line_offset = (sect_offset) DW_UNSND (attr);
3366
3367 /* We may have already read in this line header (TU line header sharing).
3368 If we have we're done. */
3369 find_entry.hash.dwo_unit = cu->dwo_unit;
3370 find_entry.hash.line_sect_off = line_offset;
3371 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3372 &find_entry, INSERT);
3373 if (*slot != NULL)
3374 {
3375 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3376 return;
3377 }
3378
3379 lh = dwarf_decode_line_header (line_offset, cu);
3380 }
3381 if (lh == NULL)
3382 {
3383 lh_cu->v.quick->no_file_data = 1;
3384 return;
3385 }
3386
3387 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3388 qfn->hash.dwo_unit = cu->dwo_unit;
3389 qfn->hash.line_sect_off = line_offset;
3390 gdb_assert (slot != NULL);
3391 *slot = qfn;
3392
3393 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3394
3395 int offset = 0;
3396 if (strcmp (fnd.name, "<unknown>") != 0)
3397 ++offset;
3398
3399 qfn->num_file_names = offset + lh->file_names_size ();
3400 qfn->file_names =
3401 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3402 if (offset != 0)
3403 qfn->file_names[0] = xstrdup (fnd.name);
3404 for (int i = 0; i < lh->file_names_size (); ++i)
3405 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3406 qfn->real_names = NULL;
3407
3408 lh_cu->v.quick->file_names = qfn;
3409 }
3410
3411 /* A helper for the "quick" functions which attempts to read the line
3412 table for THIS_CU. */
3413
3414 static struct quick_file_names *
3415 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3416 {
3417 /* This should never be called for TUs. */
3418 gdb_assert (! this_cu->is_debug_types);
3419 /* Nor type unit groups. */
3420 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3421
3422 if (this_cu->v.quick->file_names != NULL)
3423 return this_cu->v.quick->file_names;
3424 /* If we know there is no line data, no point in looking again. */
3425 if (this_cu->v.quick->no_file_data)
3426 return NULL;
3427
3428 cutu_reader reader (this_cu);
3429 if (!reader.dummy_p)
3430 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3431
3432 if (this_cu->v.quick->no_file_data)
3433 return NULL;
3434 return this_cu->v.quick->file_names;
3435 }
3436
3437 /* A helper for the "quick" functions which computes and caches the
3438 real path for a given file name from the line table. */
3439
3440 static const char *
3441 dw2_get_real_path (struct objfile *objfile,
3442 struct quick_file_names *qfn, int index)
3443 {
3444 if (qfn->real_names == NULL)
3445 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3446 qfn->num_file_names, const char *);
3447
3448 if (qfn->real_names[index] == NULL)
3449 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3450
3451 return qfn->real_names[index];
3452 }
3453
3454 static struct symtab *
3455 dw2_find_last_source_symtab (struct objfile *objfile)
3456 {
3457 struct dwarf2_per_objfile *dwarf2_per_objfile
3458 = get_dwarf2_per_objfile (objfile);
3459 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3460 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3461
3462 if (cust == NULL)
3463 return NULL;
3464
3465 return compunit_primary_filetab (cust);
3466 }
3467
3468 /* Traversal function for dw2_forget_cached_source_info. */
3469
3470 static int
3471 dw2_free_cached_file_names (void **slot, void *info)
3472 {
3473 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3474
3475 if (file_data->real_names)
3476 {
3477 int i;
3478
3479 for (i = 0; i < file_data->num_file_names; ++i)
3480 {
3481 xfree ((void*) file_data->real_names[i]);
3482 file_data->real_names[i] = NULL;
3483 }
3484 }
3485
3486 return 1;
3487 }
3488
3489 static void
3490 dw2_forget_cached_source_info (struct objfile *objfile)
3491 {
3492 struct dwarf2_per_objfile *dwarf2_per_objfile
3493 = get_dwarf2_per_objfile (objfile);
3494
3495 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3496 dw2_free_cached_file_names, NULL);
3497 }
3498
3499 /* Helper function for dw2_map_symtabs_matching_filename that expands
3500 the symtabs and calls the iterator. */
3501
3502 static int
3503 dw2_map_expand_apply (struct objfile *objfile,
3504 struct dwarf2_per_cu_data *per_cu,
3505 const char *name, const char *real_path,
3506 gdb::function_view<bool (symtab *)> callback)
3507 {
3508 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3509
3510 /* Don't visit already-expanded CUs. */
3511 if (per_cu->v.quick->compunit_symtab)
3512 return 0;
3513
3514 /* This may expand more than one symtab, and we want to iterate over
3515 all of them. */
3516 dw2_instantiate_symtab (per_cu, false);
3517
3518 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3519 last_made, callback);
3520 }
3521
3522 /* Implementation of the map_symtabs_matching_filename method. */
3523
3524 static bool
3525 dw2_map_symtabs_matching_filename
3526 (struct objfile *objfile, const char *name, const char *real_path,
3527 gdb::function_view<bool (symtab *)> callback)
3528 {
3529 const char *name_basename = lbasename (name);
3530 struct dwarf2_per_objfile *dwarf2_per_objfile
3531 = get_dwarf2_per_objfile (objfile);
3532
3533 /* The rule is CUs specify all the files, including those used by
3534 any TU, so there's no need to scan TUs here. */
3535
3536 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3537 {
3538 /* We only need to look at symtabs not already expanded. */
3539 if (per_cu->v.quick->compunit_symtab)
3540 continue;
3541
3542 quick_file_names *file_data = dw2_get_file_names (per_cu);
3543 if (file_data == NULL)
3544 continue;
3545
3546 for (int j = 0; j < file_data->num_file_names; ++j)
3547 {
3548 const char *this_name = file_data->file_names[j];
3549 const char *this_real_name;
3550
3551 if (compare_filenames_for_search (this_name, name))
3552 {
3553 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3554 callback))
3555 return true;
3556 continue;
3557 }
3558
3559 /* Before we invoke realpath, which can get expensive when many
3560 files are involved, do a quick comparison of the basenames. */
3561 if (! basenames_may_differ
3562 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3563 continue;
3564
3565 this_real_name = dw2_get_real_path (objfile, file_data, j);
3566 if (compare_filenames_for_search (this_real_name, name))
3567 {
3568 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3569 callback))
3570 return true;
3571 continue;
3572 }
3573
3574 if (real_path != NULL)
3575 {
3576 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3577 gdb_assert (IS_ABSOLUTE_PATH (name));
3578 if (this_real_name != NULL
3579 && FILENAME_CMP (real_path, this_real_name) == 0)
3580 {
3581 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3582 callback))
3583 return true;
3584 continue;
3585 }
3586 }
3587 }
3588 }
3589
3590 return false;
3591 }
3592
3593 /* Struct used to manage iterating over all CUs looking for a symbol. */
3594
3595 struct dw2_symtab_iterator
3596 {
3597 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3598 struct dwarf2_per_objfile *dwarf2_per_objfile;
3599 /* If set, only look for symbols that match that block. Valid values are
3600 GLOBAL_BLOCK and STATIC_BLOCK. */
3601 gdb::optional<block_enum> block_index;
3602 /* The kind of symbol we're looking for. */
3603 domain_enum domain;
3604 /* The list of CUs from the index entry of the symbol,
3605 or NULL if not found. */
3606 offset_type *vec;
3607 /* The next element in VEC to look at. */
3608 int next;
3609 /* The number of elements in VEC, or zero if there is no match. */
3610 int length;
3611 /* Have we seen a global version of the symbol?
3612 If so we can ignore all further global instances.
3613 This is to work around gold/15646, inefficient gold-generated
3614 indices. */
3615 int global_seen;
3616 };
3617
3618 /* Initialize the index symtab iterator ITER. */
3619
3620 static void
3621 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3622 struct dwarf2_per_objfile *dwarf2_per_objfile,
3623 gdb::optional<block_enum> block_index,
3624 domain_enum domain,
3625 const char *name)
3626 {
3627 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3628 iter->block_index = block_index;
3629 iter->domain = domain;
3630 iter->next = 0;
3631 iter->global_seen = 0;
3632
3633 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3634
3635 /* index is NULL if OBJF_READNOW. */
3636 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3637 iter->length = MAYBE_SWAP (*iter->vec);
3638 else
3639 {
3640 iter->vec = NULL;
3641 iter->length = 0;
3642 }
3643 }
3644
3645 /* Return the next matching CU or NULL if there are no more. */
3646
3647 static struct dwarf2_per_cu_data *
3648 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3649 {
3650 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3651
3652 for ( ; iter->next < iter->length; ++iter->next)
3653 {
3654 offset_type cu_index_and_attrs =
3655 MAYBE_SWAP (iter->vec[iter->next + 1]);
3656 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3657 gdb_index_symbol_kind symbol_kind =
3658 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3659 /* Only check the symbol attributes if they're present.
3660 Indices prior to version 7 don't record them,
3661 and indices >= 7 may elide them for certain symbols
3662 (gold does this). */
3663 int attrs_valid =
3664 (dwarf2_per_objfile->index_table->version >= 7
3665 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3666
3667 /* Don't crash on bad data. */
3668 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3669 + dwarf2_per_objfile->all_type_units.size ()))
3670 {
3671 complaint (_(".gdb_index entry has bad CU index"
3672 " [in module %s]"),
3673 objfile_name (dwarf2_per_objfile->objfile));
3674 continue;
3675 }
3676
3677 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3678
3679 /* Skip if already read in. */
3680 if (per_cu->v.quick->compunit_symtab)
3681 continue;
3682
3683 /* Check static vs global. */
3684 if (attrs_valid)
3685 {
3686 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3687
3688 if (iter->block_index.has_value ())
3689 {
3690 bool want_static = *iter->block_index == STATIC_BLOCK;
3691
3692 if (is_static != want_static)
3693 continue;
3694 }
3695
3696 /* Work around gold/15646. */
3697 if (!is_static && iter->global_seen)
3698 continue;
3699 if (!is_static)
3700 iter->global_seen = 1;
3701 }
3702
3703 /* Only check the symbol's kind if it has one. */
3704 if (attrs_valid)
3705 {
3706 switch (iter->domain)
3707 {
3708 case VAR_DOMAIN:
3709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3710 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3711 /* Some types are also in VAR_DOMAIN. */
3712 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3713 continue;
3714 break;
3715 case STRUCT_DOMAIN:
3716 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3717 continue;
3718 break;
3719 case LABEL_DOMAIN:
3720 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3721 continue;
3722 break;
3723 case MODULE_DOMAIN:
3724 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3725 continue;
3726 break;
3727 default:
3728 break;
3729 }
3730 }
3731
3732 ++iter->next;
3733 return per_cu;
3734 }
3735
3736 return NULL;
3737 }
3738
3739 static struct compunit_symtab *
3740 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3741 const char *name, domain_enum domain)
3742 {
3743 struct compunit_symtab *stab_best = NULL;
3744 struct dwarf2_per_objfile *dwarf2_per_objfile
3745 = get_dwarf2_per_objfile (objfile);
3746
3747 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3748
3749 struct dw2_symtab_iterator iter;
3750 struct dwarf2_per_cu_data *per_cu;
3751
3752 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3753
3754 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3755 {
3756 struct symbol *sym, *with_opaque = NULL;
3757 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3758 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3759 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3760
3761 sym = block_find_symbol (block, name, domain,
3762 block_find_non_opaque_type_preferred,
3763 &with_opaque);
3764
3765 /* Some caution must be observed with overloaded functions
3766 and methods, since the index will not contain any overload
3767 information (but NAME might contain it). */
3768
3769 if (sym != NULL
3770 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3771 return stab;
3772 if (with_opaque != NULL
3773 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3774 stab_best = stab;
3775
3776 /* Keep looking through other CUs. */
3777 }
3778
3779 return stab_best;
3780 }
3781
3782 static void
3783 dw2_print_stats (struct objfile *objfile)
3784 {
3785 struct dwarf2_per_objfile *dwarf2_per_objfile
3786 = get_dwarf2_per_objfile (objfile);
3787 int total = (dwarf2_per_objfile->all_comp_units.size ()
3788 + dwarf2_per_objfile->all_type_units.size ());
3789 int count = 0;
3790
3791 for (int i = 0; i < total; ++i)
3792 {
3793 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3794
3795 if (!per_cu->v.quick->compunit_symtab)
3796 ++count;
3797 }
3798 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3799 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3800 }
3801
3802 /* This dumps minimal information about the index.
3803 It is called via "mt print objfiles".
3804 One use is to verify .gdb_index has been loaded by the
3805 gdb.dwarf2/gdb-index.exp testcase. */
3806
3807 static void
3808 dw2_dump (struct objfile *objfile)
3809 {
3810 struct dwarf2_per_objfile *dwarf2_per_objfile
3811 = get_dwarf2_per_objfile (objfile);
3812
3813 gdb_assert (dwarf2_per_objfile->using_index);
3814 printf_filtered (".gdb_index:");
3815 if (dwarf2_per_objfile->index_table != NULL)
3816 {
3817 printf_filtered (" version %d\n",
3818 dwarf2_per_objfile->index_table->version);
3819 }
3820 else
3821 printf_filtered (" faked for \"readnow\"\n");
3822 printf_filtered ("\n");
3823 }
3824
3825 static void
3826 dw2_expand_symtabs_for_function (struct objfile *objfile,
3827 const char *func_name)
3828 {
3829 struct dwarf2_per_objfile *dwarf2_per_objfile
3830 = get_dwarf2_per_objfile (objfile);
3831
3832 struct dw2_symtab_iterator iter;
3833 struct dwarf2_per_cu_data *per_cu;
3834
3835 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3836
3837 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3838 dw2_instantiate_symtab (per_cu, false);
3839
3840 }
3841
3842 static void
3843 dw2_expand_all_symtabs (struct objfile *objfile)
3844 {
3845 struct dwarf2_per_objfile *dwarf2_per_objfile
3846 = get_dwarf2_per_objfile (objfile);
3847 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3848 + dwarf2_per_objfile->all_type_units.size ());
3849
3850 for (int i = 0; i < total_units; ++i)
3851 {
3852 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3853
3854 /* We don't want to directly expand a partial CU, because if we
3855 read it with the wrong language, then assertion failures can
3856 be triggered later on. See PR symtab/23010. So, tell
3857 dw2_instantiate_symtab to skip partial CUs -- any important
3858 partial CU will be read via DW_TAG_imported_unit anyway. */
3859 dw2_instantiate_symtab (per_cu, true);
3860 }
3861 }
3862
3863 static void
3864 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3865 const char *fullname)
3866 {
3867 struct dwarf2_per_objfile *dwarf2_per_objfile
3868 = get_dwarf2_per_objfile (objfile);
3869
3870 /* We don't need to consider type units here.
3871 This is only called for examining code, e.g. expand_line_sal.
3872 There can be an order of magnitude (or more) more type units
3873 than comp units, and we avoid them if we can. */
3874
3875 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3876 {
3877 /* We only need to look at symtabs not already expanded. */
3878 if (per_cu->v.quick->compunit_symtab)
3879 continue;
3880
3881 quick_file_names *file_data = dw2_get_file_names (per_cu);
3882 if (file_data == NULL)
3883 continue;
3884
3885 for (int j = 0; j < file_data->num_file_names; ++j)
3886 {
3887 const char *this_fullname = file_data->file_names[j];
3888
3889 if (filename_cmp (this_fullname, fullname) == 0)
3890 {
3891 dw2_instantiate_symtab (per_cu, false);
3892 break;
3893 }
3894 }
3895 }
3896 }
3897
3898 static void
3899 dw2_map_matching_symbols
3900 (struct objfile *objfile,
3901 const lookup_name_info &name, domain_enum domain,
3902 int global,
3903 gdb::function_view<symbol_found_callback_ftype> callback,
3904 symbol_compare_ftype *ordered_compare)
3905 {
3906 /* Currently unimplemented; used for Ada. The function can be called if the
3907 current language is Ada for a non-Ada objfile using GNU index. As Ada
3908 does not look for non-Ada symbols this function should just return. */
3909 }
3910
3911 /* Starting from a search name, return the string that finds the upper
3912 bound of all strings that start with SEARCH_NAME in a sorted name
3913 list. Returns the empty string to indicate that the upper bound is
3914 the end of the list. */
3915
3916 static std::string
3917 make_sort_after_prefix_name (const char *search_name)
3918 {
3919 /* When looking to complete "func", we find the upper bound of all
3920 symbols that start with "func" by looking for where we'd insert
3921 the closest string that would follow "func" in lexicographical
3922 order. Usually, that's "func"-with-last-character-incremented,
3923 i.e. "fund". Mind non-ASCII characters, though. Usually those
3924 will be UTF-8 multi-byte sequences, but we can't be certain.
3925 Especially mind the 0xff character, which is a valid character in
3926 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3927 rule out compilers allowing it in identifiers. Note that
3928 conveniently, strcmp/strcasecmp are specified to compare
3929 characters interpreted as unsigned char. So what we do is treat
3930 the whole string as a base 256 number composed of a sequence of
3931 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3932 to 0, and carries 1 to the following more-significant position.
3933 If the very first character in SEARCH_NAME ends up incremented
3934 and carries/overflows, then the upper bound is the end of the
3935 list. The string after the empty string is also the empty
3936 string.
3937
3938 Some examples of this operation:
3939
3940 SEARCH_NAME => "+1" RESULT
3941
3942 "abc" => "abd"
3943 "ab\xff" => "ac"
3944 "\xff" "a" "\xff" => "\xff" "b"
3945 "\xff" => ""
3946 "\xff\xff" => ""
3947 "" => ""
3948
3949 Then, with these symbols for example:
3950
3951 func
3952 func1
3953 fund
3954
3955 completing "func" looks for symbols between "func" and
3956 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3957 which finds "func" and "func1", but not "fund".
3958
3959 And with:
3960
3961 funcÿ (Latin1 'ÿ' [0xff])
3962 funcÿ1
3963 fund
3964
3965 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3966 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3967
3968 And with:
3969
3970 ÿÿ (Latin1 'ÿ' [0xff])
3971 ÿÿ1
3972
3973 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3974 the end of the list.
3975 */
3976 std::string after = search_name;
3977 while (!after.empty () && (unsigned char) after.back () == 0xff)
3978 after.pop_back ();
3979 if (!after.empty ())
3980 after.back () = (unsigned char) after.back () + 1;
3981 return after;
3982 }
3983
3984 /* See declaration. */
3985
3986 std::pair<std::vector<name_component>::const_iterator,
3987 std::vector<name_component>::const_iterator>
3988 mapped_index_base::find_name_components_bounds
3989 (const lookup_name_info &lookup_name_without_params, language lang) const
3990 {
3991 auto *name_cmp
3992 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3993
3994 const char *lang_name
3995 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3996
3997 /* Comparison function object for lower_bound that matches against a
3998 given symbol name. */
3999 auto lookup_compare_lower = [&] (const name_component &elem,
4000 const char *name)
4001 {
4002 const char *elem_qualified = this->symbol_name_at (elem.idx);
4003 const char *elem_name = elem_qualified + elem.name_offset;
4004 return name_cmp (elem_name, name) < 0;
4005 };
4006
4007 /* Comparison function object for upper_bound that matches against a
4008 given symbol name. */
4009 auto lookup_compare_upper = [&] (const char *name,
4010 const name_component &elem)
4011 {
4012 const char *elem_qualified = this->symbol_name_at (elem.idx);
4013 const char *elem_name = elem_qualified + elem.name_offset;
4014 return name_cmp (name, elem_name) < 0;
4015 };
4016
4017 auto begin = this->name_components.begin ();
4018 auto end = this->name_components.end ();
4019
4020 /* Find the lower bound. */
4021 auto lower = [&] ()
4022 {
4023 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4024 return begin;
4025 else
4026 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4027 } ();
4028
4029 /* Find the upper bound. */
4030 auto upper = [&] ()
4031 {
4032 if (lookup_name_without_params.completion_mode ())
4033 {
4034 /* In completion mode, we want UPPER to point past all
4035 symbols names that have the same prefix. I.e., with
4036 these symbols, and completing "func":
4037
4038 function << lower bound
4039 function1
4040 other_function << upper bound
4041
4042 We find the upper bound by looking for the insertion
4043 point of "func"-with-last-character-incremented,
4044 i.e. "fund". */
4045 std::string after = make_sort_after_prefix_name (lang_name);
4046 if (after.empty ())
4047 return end;
4048 return std::lower_bound (lower, end, after.c_str (),
4049 lookup_compare_lower);
4050 }
4051 else
4052 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4053 } ();
4054
4055 return {lower, upper};
4056 }
4057
4058 /* See declaration. */
4059
4060 void
4061 mapped_index_base::build_name_components ()
4062 {
4063 if (!this->name_components.empty ())
4064 return;
4065
4066 this->name_components_casing = case_sensitivity;
4067 auto *name_cmp
4068 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4069
4070 /* The code below only knows how to break apart components of C++
4071 symbol names (and other languages that use '::' as
4072 namespace/module separator) and Ada symbol names. */
4073 auto count = this->symbol_name_count ();
4074 for (offset_type idx = 0; idx < count; idx++)
4075 {
4076 if (this->symbol_name_slot_invalid (idx))
4077 continue;
4078
4079 const char *name = this->symbol_name_at (idx);
4080
4081 /* Add each name component to the name component table. */
4082 unsigned int previous_len = 0;
4083
4084 if (strstr (name, "::") != nullptr)
4085 {
4086 for (unsigned int current_len = cp_find_first_component (name);
4087 name[current_len] != '\0';
4088 current_len += cp_find_first_component (name + current_len))
4089 {
4090 gdb_assert (name[current_len] == ':');
4091 this->name_components.push_back ({previous_len, idx});
4092 /* Skip the '::'. */
4093 current_len += 2;
4094 previous_len = current_len;
4095 }
4096 }
4097 else
4098 {
4099 /* Handle the Ada encoded (aka mangled) form here. */
4100 for (const char *iter = strstr (name, "__");
4101 iter != nullptr;
4102 iter = strstr (iter, "__"))
4103 {
4104 this->name_components.push_back ({previous_len, idx});
4105 iter += 2;
4106 previous_len = iter - name;
4107 }
4108 }
4109
4110 this->name_components.push_back ({previous_len, idx});
4111 }
4112
4113 /* Sort name_components elements by name. */
4114 auto name_comp_compare = [&] (const name_component &left,
4115 const name_component &right)
4116 {
4117 const char *left_qualified = this->symbol_name_at (left.idx);
4118 const char *right_qualified = this->symbol_name_at (right.idx);
4119
4120 const char *left_name = left_qualified + left.name_offset;
4121 const char *right_name = right_qualified + right.name_offset;
4122
4123 return name_cmp (left_name, right_name) < 0;
4124 };
4125
4126 std::sort (this->name_components.begin (),
4127 this->name_components.end (),
4128 name_comp_compare);
4129 }
4130
4131 /* Helper for dw2_expand_symtabs_matching that works with a
4132 mapped_index_base instead of the containing objfile. This is split
4133 to a separate function in order to be able to unit test the
4134 name_components matching using a mock mapped_index_base. For each
4135 symbol name that matches, calls MATCH_CALLBACK, passing it the
4136 symbol's index in the mapped_index_base symbol table. */
4137
4138 static void
4139 dw2_expand_symtabs_matching_symbol
4140 (mapped_index_base &index,
4141 const lookup_name_info &lookup_name_in,
4142 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4143 enum search_domain kind,
4144 gdb::function_view<bool (offset_type)> match_callback)
4145 {
4146 lookup_name_info lookup_name_without_params
4147 = lookup_name_in.make_ignore_params ();
4148
4149 /* Build the symbol name component sorted vector, if we haven't
4150 yet. */
4151 index.build_name_components ();
4152
4153 /* The same symbol may appear more than once in the range though.
4154 E.g., if we're looking for symbols that complete "w", and we have
4155 a symbol named "w1::w2", we'll find the two name components for
4156 that same symbol in the range. To be sure we only call the
4157 callback once per symbol, we first collect the symbol name
4158 indexes that matched in a temporary vector and ignore
4159 duplicates. */
4160 std::vector<offset_type> matches;
4161
4162 struct name_and_matcher
4163 {
4164 symbol_name_matcher_ftype *matcher;
4165 const std::string &name;
4166
4167 bool operator== (const name_and_matcher &other) const
4168 {
4169 return matcher == other.matcher && name == other.name;
4170 }
4171 };
4172
4173 /* A vector holding all the different symbol name matchers, for all
4174 languages. */
4175 std::vector<name_and_matcher> matchers;
4176
4177 for (int i = 0; i < nr_languages; i++)
4178 {
4179 enum language lang_e = (enum language) i;
4180
4181 const language_defn *lang = language_def (lang_e);
4182 symbol_name_matcher_ftype *name_matcher
4183 = get_symbol_name_matcher (lang, lookup_name_without_params);
4184
4185 name_and_matcher key {
4186 name_matcher,
4187 lookup_name_without_params.language_lookup_name (lang_e)
4188 };
4189
4190 /* Don't insert the same comparison routine more than once.
4191 Note that we do this linear walk. This is not a problem in
4192 practice because the number of supported languages is
4193 low. */
4194 if (std::find (matchers.begin (), matchers.end (), key)
4195 != matchers.end ())
4196 continue;
4197 matchers.push_back (std::move (key));
4198
4199 auto bounds
4200 = index.find_name_components_bounds (lookup_name_without_params,
4201 lang_e);
4202
4203 /* Now for each symbol name in range, check to see if we have a name
4204 match, and if so, call the MATCH_CALLBACK callback. */
4205
4206 for (; bounds.first != bounds.second; ++bounds.first)
4207 {
4208 const char *qualified = index.symbol_name_at (bounds.first->idx);
4209
4210 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4211 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4212 continue;
4213
4214 matches.push_back (bounds.first->idx);
4215 }
4216 }
4217
4218 std::sort (matches.begin (), matches.end ());
4219
4220 /* Finally call the callback, once per match. */
4221 ULONGEST prev = -1;
4222 for (offset_type idx : matches)
4223 {
4224 if (prev != idx)
4225 {
4226 if (!match_callback (idx))
4227 break;
4228 prev = idx;
4229 }
4230 }
4231
4232 /* Above we use a type wider than idx's for 'prev', since 0 and
4233 (offset_type)-1 are both possible values. */
4234 static_assert (sizeof (prev) > sizeof (offset_type), "");
4235 }
4236
4237 #if GDB_SELF_TEST
4238
4239 namespace selftests { namespace dw2_expand_symtabs_matching {
4240
4241 /* A mock .gdb_index/.debug_names-like name index table, enough to
4242 exercise dw2_expand_symtabs_matching_symbol, which works with the
4243 mapped_index_base interface. Builds an index from the symbol list
4244 passed as parameter to the constructor. */
4245 class mock_mapped_index : public mapped_index_base
4246 {
4247 public:
4248 mock_mapped_index (gdb::array_view<const char *> symbols)
4249 : m_symbol_table (symbols)
4250 {}
4251
4252 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4253
4254 /* Return the number of names in the symbol table. */
4255 size_t symbol_name_count () const override
4256 {
4257 return m_symbol_table.size ();
4258 }
4259
4260 /* Get the name of the symbol at IDX in the symbol table. */
4261 const char *symbol_name_at (offset_type idx) const override
4262 {
4263 return m_symbol_table[idx];
4264 }
4265
4266 private:
4267 gdb::array_view<const char *> m_symbol_table;
4268 };
4269
4270 /* Convenience function that converts a NULL pointer to a "<null>"
4271 string, to pass to print routines. */
4272
4273 static const char *
4274 string_or_null (const char *str)
4275 {
4276 return str != NULL ? str : "<null>";
4277 }
4278
4279 /* Check if a lookup_name_info built from
4280 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4281 index. EXPECTED_LIST is the list of expected matches, in expected
4282 matching order. If no match expected, then an empty list is
4283 specified. Returns true on success. On failure prints a warning
4284 indicating the file:line that failed, and returns false. */
4285
4286 static bool
4287 check_match (const char *file, int line,
4288 mock_mapped_index &mock_index,
4289 const char *name, symbol_name_match_type match_type,
4290 bool completion_mode,
4291 std::initializer_list<const char *> expected_list)
4292 {
4293 lookup_name_info lookup_name (name, match_type, completion_mode);
4294
4295 bool matched = true;
4296
4297 auto mismatch = [&] (const char *expected_str,
4298 const char *got)
4299 {
4300 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4301 "expected=\"%s\", got=\"%s\"\n"),
4302 file, line,
4303 (match_type == symbol_name_match_type::FULL
4304 ? "FULL" : "WILD"),
4305 name, string_or_null (expected_str), string_or_null (got));
4306 matched = false;
4307 };
4308
4309 auto expected_it = expected_list.begin ();
4310 auto expected_end = expected_list.end ();
4311
4312 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4313 NULL, ALL_DOMAIN,
4314 [&] (offset_type idx)
4315 {
4316 const char *matched_name = mock_index.symbol_name_at (idx);
4317 const char *expected_str
4318 = expected_it == expected_end ? NULL : *expected_it++;
4319
4320 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4321 mismatch (expected_str, matched_name);
4322 return true;
4323 });
4324
4325 const char *expected_str
4326 = expected_it == expected_end ? NULL : *expected_it++;
4327 if (expected_str != NULL)
4328 mismatch (expected_str, NULL);
4329
4330 return matched;
4331 }
4332
4333 /* The symbols added to the mock mapped_index for testing (in
4334 canonical form). */
4335 static const char *test_symbols[] = {
4336 "function",
4337 "std::bar",
4338 "std::zfunction",
4339 "std::zfunction2",
4340 "w1::w2",
4341 "ns::foo<char*>",
4342 "ns::foo<int>",
4343 "ns::foo<long>",
4344 "ns2::tmpl<int>::foo2",
4345 "(anonymous namespace)::A::B::C",
4346
4347 /* These are used to check that the increment-last-char in the
4348 matching algorithm for completion doesn't match "t1_fund" when
4349 completing "t1_func". */
4350 "t1_func",
4351 "t1_func1",
4352 "t1_fund",
4353 "t1_fund1",
4354
4355 /* A UTF-8 name with multi-byte sequences to make sure that
4356 cp-name-parser understands this as a single identifier ("função"
4357 is "function" in PT). */
4358 u8"u8função",
4359
4360 /* \377 (0xff) is Latin1 'ÿ'. */
4361 "yfunc\377",
4362
4363 /* \377 (0xff) is Latin1 'ÿ'. */
4364 "\377",
4365 "\377\377123",
4366
4367 /* A name with all sorts of complications. Starts with "z" to make
4368 it easier for the completion tests below. */
4369 #define Z_SYM_NAME \
4370 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4371 "::tuple<(anonymous namespace)::ui*, " \
4372 "std::default_delete<(anonymous namespace)::ui>, void>"
4373
4374 Z_SYM_NAME
4375 };
4376
4377 /* Returns true if the mapped_index_base::find_name_component_bounds
4378 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4379 in completion mode. */
4380
4381 static bool
4382 check_find_bounds_finds (mapped_index_base &index,
4383 const char *search_name,
4384 gdb::array_view<const char *> expected_syms)
4385 {
4386 lookup_name_info lookup_name (search_name,
4387 symbol_name_match_type::FULL, true);
4388
4389 auto bounds = index.find_name_components_bounds (lookup_name,
4390 language_cplus);
4391
4392 size_t distance = std::distance (bounds.first, bounds.second);
4393 if (distance != expected_syms.size ())
4394 return false;
4395
4396 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4397 {
4398 auto nc_elem = bounds.first + exp_elem;
4399 const char *qualified = index.symbol_name_at (nc_elem->idx);
4400 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4401 return false;
4402 }
4403
4404 return true;
4405 }
4406
4407 /* Test the lower-level mapped_index::find_name_component_bounds
4408 method. */
4409
4410 static void
4411 test_mapped_index_find_name_component_bounds ()
4412 {
4413 mock_mapped_index mock_index (test_symbols);
4414
4415 mock_index.build_name_components ();
4416
4417 /* Test the lower-level mapped_index::find_name_component_bounds
4418 method in completion mode. */
4419 {
4420 static const char *expected_syms[] = {
4421 "t1_func",
4422 "t1_func1",
4423 };
4424
4425 SELF_CHECK (check_find_bounds_finds (mock_index,
4426 "t1_func", expected_syms));
4427 }
4428
4429 /* Check that the increment-last-char in the name matching algorithm
4430 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4431 {
4432 static const char *expected_syms1[] = {
4433 "\377",
4434 "\377\377123",
4435 };
4436 SELF_CHECK (check_find_bounds_finds (mock_index,
4437 "\377", expected_syms1));
4438
4439 static const char *expected_syms2[] = {
4440 "\377\377123",
4441 };
4442 SELF_CHECK (check_find_bounds_finds (mock_index,
4443 "\377\377", expected_syms2));
4444 }
4445 }
4446
4447 /* Test dw2_expand_symtabs_matching_symbol. */
4448
4449 static void
4450 test_dw2_expand_symtabs_matching_symbol ()
4451 {
4452 mock_mapped_index mock_index (test_symbols);
4453
4454 /* We let all tests run until the end even if some fails, for debug
4455 convenience. */
4456 bool any_mismatch = false;
4457
4458 /* Create the expected symbols list (an initializer_list). Needed
4459 because lists have commas, and we need to pass them to CHECK,
4460 which is a macro. */
4461 #define EXPECT(...) { __VA_ARGS__ }
4462
4463 /* Wrapper for check_match that passes down the current
4464 __FILE__/__LINE__. */
4465 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4466 any_mismatch |= !check_match (__FILE__, __LINE__, \
4467 mock_index, \
4468 NAME, MATCH_TYPE, COMPLETION_MODE, \
4469 EXPECTED_LIST)
4470
4471 /* Identity checks. */
4472 for (const char *sym : test_symbols)
4473 {
4474 /* Should be able to match all existing symbols. */
4475 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4476 EXPECT (sym));
4477
4478 /* Should be able to match all existing symbols with
4479 parameters. */
4480 std::string with_params = std::string (sym) + "(int)";
4481 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4482 EXPECT (sym));
4483
4484 /* Should be able to match all existing symbols with
4485 parameters and qualifiers. */
4486 with_params = std::string (sym) + " ( int ) const";
4487 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4488 EXPECT (sym));
4489
4490 /* This should really find sym, but cp-name-parser.y doesn't
4491 know about lvalue/rvalue qualifiers yet. */
4492 with_params = std::string (sym) + " ( int ) &&";
4493 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4494 {});
4495 }
4496
4497 /* Check that the name matching algorithm for completion doesn't get
4498 confused with Latin1 'ÿ' / 0xff. */
4499 {
4500 static const char str[] = "\377";
4501 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4502 EXPECT ("\377", "\377\377123"));
4503 }
4504
4505 /* Check that the increment-last-char in the matching algorithm for
4506 completion doesn't match "t1_fund" when completing "t1_func". */
4507 {
4508 static const char str[] = "t1_func";
4509 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4510 EXPECT ("t1_func", "t1_func1"));
4511 }
4512
4513 /* Check that completion mode works at each prefix of the expected
4514 symbol name. */
4515 {
4516 static const char str[] = "function(int)";
4517 size_t len = strlen (str);
4518 std::string lookup;
4519
4520 for (size_t i = 1; i < len; i++)
4521 {
4522 lookup.assign (str, i);
4523 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4524 EXPECT ("function"));
4525 }
4526 }
4527
4528 /* While "w" is a prefix of both components, the match function
4529 should still only be called once. */
4530 {
4531 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4532 EXPECT ("w1::w2"));
4533 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4534 EXPECT ("w1::w2"));
4535 }
4536
4537 /* Same, with a "complicated" symbol. */
4538 {
4539 static const char str[] = Z_SYM_NAME;
4540 size_t len = strlen (str);
4541 std::string lookup;
4542
4543 for (size_t i = 1; i < len; i++)
4544 {
4545 lookup.assign (str, i);
4546 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4547 EXPECT (Z_SYM_NAME));
4548 }
4549 }
4550
4551 /* In FULL mode, an incomplete symbol doesn't match. */
4552 {
4553 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4554 {});
4555 }
4556
4557 /* A complete symbol with parameters matches any overload, since the
4558 index has no overload info. */
4559 {
4560 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4561 EXPECT ("std::zfunction", "std::zfunction2"));
4562 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4563 EXPECT ("std::zfunction", "std::zfunction2"));
4564 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4565 EXPECT ("std::zfunction", "std::zfunction2"));
4566 }
4567
4568 /* Check that whitespace is ignored appropriately. A symbol with a
4569 template argument list. */
4570 {
4571 static const char expected[] = "ns::foo<int>";
4572 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4573 EXPECT (expected));
4574 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4575 EXPECT (expected));
4576 }
4577
4578 /* Check that whitespace is ignored appropriately. A symbol with a
4579 template argument list that includes a pointer. */
4580 {
4581 static const char expected[] = "ns::foo<char*>";
4582 /* Try both completion and non-completion modes. */
4583 static const bool completion_mode[2] = {false, true};
4584 for (size_t i = 0; i < 2; i++)
4585 {
4586 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4587 completion_mode[i], EXPECT (expected));
4588 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4589 completion_mode[i], EXPECT (expected));
4590
4591 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4592 completion_mode[i], EXPECT (expected));
4593 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4594 completion_mode[i], EXPECT (expected));
4595 }
4596 }
4597
4598 {
4599 /* Check method qualifiers are ignored. */
4600 static const char expected[] = "ns::foo<char*>";
4601 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4602 symbol_name_match_type::FULL, true, EXPECT (expected));
4603 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4604 symbol_name_match_type::FULL, true, EXPECT (expected));
4605 CHECK_MATCH ("foo < char * > ( int ) const",
4606 symbol_name_match_type::WILD, true, EXPECT (expected));
4607 CHECK_MATCH ("foo < char * > ( int ) &&",
4608 symbol_name_match_type::WILD, true, EXPECT (expected));
4609 }
4610
4611 /* Test lookup names that don't match anything. */
4612 {
4613 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4614 {});
4615
4616 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4617 {});
4618 }
4619
4620 /* Some wild matching tests, exercising "(anonymous namespace)",
4621 which should not be confused with a parameter list. */
4622 {
4623 static const char *syms[] = {
4624 "A::B::C",
4625 "B::C",
4626 "C",
4627 "A :: B :: C ( int )",
4628 "B :: C ( int )",
4629 "C ( int )",
4630 };
4631
4632 for (const char *s : syms)
4633 {
4634 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4635 EXPECT ("(anonymous namespace)::A::B::C"));
4636 }
4637 }
4638
4639 {
4640 static const char expected[] = "ns2::tmpl<int>::foo2";
4641 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4642 EXPECT (expected));
4643 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4644 EXPECT (expected));
4645 }
4646
4647 SELF_CHECK (!any_mismatch);
4648
4649 #undef EXPECT
4650 #undef CHECK_MATCH
4651 }
4652
4653 static void
4654 run_test ()
4655 {
4656 test_mapped_index_find_name_component_bounds ();
4657 test_dw2_expand_symtabs_matching_symbol ();
4658 }
4659
4660 }} // namespace selftests::dw2_expand_symtabs_matching
4661
4662 #endif /* GDB_SELF_TEST */
4663
4664 /* If FILE_MATCHER is NULL or if PER_CU has
4665 dwarf2_per_cu_quick_data::MARK set (see
4666 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4667 EXPANSION_NOTIFY on it. */
4668
4669 static void
4670 dw2_expand_symtabs_matching_one
4671 (struct dwarf2_per_cu_data *per_cu,
4672 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4673 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4674 {
4675 if (file_matcher == NULL || per_cu->v.quick->mark)
4676 {
4677 bool symtab_was_null
4678 = (per_cu->v.quick->compunit_symtab == NULL);
4679
4680 dw2_instantiate_symtab (per_cu, false);
4681
4682 if (expansion_notify != NULL
4683 && symtab_was_null
4684 && per_cu->v.quick->compunit_symtab != NULL)
4685 expansion_notify (per_cu->v.quick->compunit_symtab);
4686 }
4687 }
4688
4689 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4690 matched, to expand corresponding CUs that were marked. IDX is the
4691 index of the symbol name that matched. */
4692
4693 static void
4694 dw2_expand_marked_cus
4695 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4696 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4697 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4698 search_domain kind)
4699 {
4700 offset_type *vec, vec_len, vec_idx;
4701 bool global_seen = false;
4702 mapped_index &index = *dwarf2_per_objfile->index_table;
4703
4704 vec = (offset_type *) (index.constant_pool
4705 + MAYBE_SWAP (index.symbol_table[idx].vec));
4706 vec_len = MAYBE_SWAP (vec[0]);
4707 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4708 {
4709 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4710 /* This value is only valid for index versions >= 7. */
4711 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4712 gdb_index_symbol_kind symbol_kind =
4713 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4714 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4715 /* Only check the symbol attributes if they're present.
4716 Indices prior to version 7 don't record them,
4717 and indices >= 7 may elide them for certain symbols
4718 (gold does this). */
4719 int attrs_valid =
4720 (index.version >= 7
4721 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4722
4723 /* Work around gold/15646. */
4724 if (attrs_valid)
4725 {
4726 if (!is_static && global_seen)
4727 continue;
4728 if (!is_static)
4729 global_seen = true;
4730 }
4731
4732 /* Only check the symbol's kind if it has one. */
4733 if (attrs_valid)
4734 {
4735 switch (kind)
4736 {
4737 case VARIABLES_DOMAIN:
4738 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4739 continue;
4740 break;
4741 case FUNCTIONS_DOMAIN:
4742 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4743 continue;
4744 break;
4745 case TYPES_DOMAIN:
4746 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4747 continue;
4748 break;
4749 case MODULES_DOMAIN:
4750 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4751 continue;
4752 break;
4753 default:
4754 break;
4755 }
4756 }
4757
4758 /* Don't crash on bad data. */
4759 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4760 + dwarf2_per_objfile->all_type_units.size ()))
4761 {
4762 complaint (_(".gdb_index entry has bad CU index"
4763 " [in module %s]"),
4764 objfile_name (dwarf2_per_objfile->objfile));
4765 continue;
4766 }
4767
4768 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4769 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4770 expansion_notify);
4771 }
4772 }
4773
4774 /* If FILE_MATCHER is non-NULL, set all the
4775 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4776 that match FILE_MATCHER. */
4777
4778 static void
4779 dw_expand_symtabs_matching_file_matcher
4780 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4781 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4782 {
4783 if (file_matcher == NULL)
4784 return;
4785
4786 objfile *const objfile = dwarf2_per_objfile->objfile;
4787
4788 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4789 htab_eq_pointer,
4790 NULL, xcalloc, xfree));
4791 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4792 htab_eq_pointer,
4793 NULL, xcalloc, xfree));
4794
4795 /* The rule is CUs specify all the files, including those used by
4796 any TU, so there's no need to scan TUs here. */
4797
4798 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4799 {
4800 QUIT;
4801
4802 per_cu->v.quick->mark = 0;
4803
4804 /* We only need to look at symtabs not already expanded. */
4805 if (per_cu->v.quick->compunit_symtab)
4806 continue;
4807
4808 quick_file_names *file_data = dw2_get_file_names (per_cu);
4809 if (file_data == NULL)
4810 continue;
4811
4812 if (htab_find (visited_not_found.get (), file_data) != NULL)
4813 continue;
4814 else if (htab_find (visited_found.get (), file_data) != NULL)
4815 {
4816 per_cu->v.quick->mark = 1;
4817 continue;
4818 }
4819
4820 for (int j = 0; j < file_data->num_file_names; ++j)
4821 {
4822 const char *this_real_name;
4823
4824 if (file_matcher (file_data->file_names[j], false))
4825 {
4826 per_cu->v.quick->mark = 1;
4827 break;
4828 }
4829
4830 /* Before we invoke realpath, which can get expensive when many
4831 files are involved, do a quick comparison of the basenames. */
4832 if (!basenames_may_differ
4833 && !file_matcher (lbasename (file_data->file_names[j]),
4834 true))
4835 continue;
4836
4837 this_real_name = dw2_get_real_path (objfile, file_data, j);
4838 if (file_matcher (this_real_name, false))
4839 {
4840 per_cu->v.quick->mark = 1;
4841 break;
4842 }
4843 }
4844
4845 void **slot = htab_find_slot (per_cu->v.quick->mark
4846 ? visited_found.get ()
4847 : visited_not_found.get (),
4848 file_data, INSERT);
4849 *slot = file_data;
4850 }
4851 }
4852
4853 static void
4854 dw2_expand_symtabs_matching
4855 (struct objfile *objfile,
4856 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4857 const lookup_name_info &lookup_name,
4858 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4859 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4860 enum search_domain kind)
4861 {
4862 struct dwarf2_per_objfile *dwarf2_per_objfile
4863 = get_dwarf2_per_objfile (objfile);
4864
4865 /* index_table is NULL if OBJF_READNOW. */
4866 if (!dwarf2_per_objfile->index_table)
4867 return;
4868
4869 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4870
4871 mapped_index &index = *dwarf2_per_objfile->index_table;
4872
4873 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4874 symbol_matcher,
4875 kind, [&] (offset_type idx)
4876 {
4877 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4878 expansion_notify, kind);
4879 return true;
4880 });
4881 }
4882
4883 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4884 symtab. */
4885
4886 static struct compunit_symtab *
4887 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4888 CORE_ADDR pc)
4889 {
4890 int i;
4891
4892 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4893 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4894 return cust;
4895
4896 if (cust->includes == NULL)
4897 return NULL;
4898
4899 for (i = 0; cust->includes[i]; ++i)
4900 {
4901 struct compunit_symtab *s = cust->includes[i];
4902
4903 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4904 if (s != NULL)
4905 return s;
4906 }
4907
4908 return NULL;
4909 }
4910
4911 static struct compunit_symtab *
4912 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4913 struct bound_minimal_symbol msymbol,
4914 CORE_ADDR pc,
4915 struct obj_section *section,
4916 int warn_if_readin)
4917 {
4918 struct dwarf2_per_cu_data *data;
4919 struct compunit_symtab *result;
4920
4921 if (!objfile->partial_symtabs->psymtabs_addrmap)
4922 return NULL;
4923
4924 CORE_ADDR baseaddr = objfile->text_section_offset ();
4925 data = (struct dwarf2_per_cu_data *) addrmap_find
4926 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4927 if (!data)
4928 return NULL;
4929
4930 if (warn_if_readin && data->v.quick->compunit_symtab)
4931 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4932 paddress (get_objfile_arch (objfile), pc));
4933
4934 result
4935 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4936 false),
4937 pc);
4938 gdb_assert (result != NULL);
4939 return result;
4940 }
4941
4942 static void
4943 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4944 void *data, int need_fullname)
4945 {
4946 struct dwarf2_per_objfile *dwarf2_per_objfile
4947 = get_dwarf2_per_objfile (objfile);
4948
4949 if (!dwarf2_per_objfile->filenames_cache)
4950 {
4951 dwarf2_per_objfile->filenames_cache.emplace ();
4952
4953 htab_up visited (htab_create_alloc (10,
4954 htab_hash_pointer, htab_eq_pointer,
4955 NULL, xcalloc, xfree));
4956
4957 /* The rule is CUs specify all the files, including those used
4958 by any TU, so there's no need to scan TUs here. We can
4959 ignore file names coming from already-expanded CUs. */
4960
4961 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4962 {
4963 if (per_cu->v.quick->compunit_symtab)
4964 {
4965 void **slot = htab_find_slot (visited.get (),
4966 per_cu->v.quick->file_names,
4967 INSERT);
4968
4969 *slot = per_cu->v.quick->file_names;
4970 }
4971 }
4972
4973 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4974 {
4975 /* We only need to look at symtabs not already expanded. */
4976 if (per_cu->v.quick->compunit_symtab)
4977 continue;
4978
4979 quick_file_names *file_data = dw2_get_file_names (per_cu);
4980 if (file_data == NULL)
4981 continue;
4982
4983 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4984 if (*slot)
4985 {
4986 /* Already visited. */
4987 continue;
4988 }
4989 *slot = file_data;
4990
4991 for (int j = 0; j < file_data->num_file_names; ++j)
4992 {
4993 const char *filename = file_data->file_names[j];
4994 dwarf2_per_objfile->filenames_cache->seen (filename);
4995 }
4996 }
4997 }
4998
4999 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5000 {
5001 gdb::unique_xmalloc_ptr<char> this_real_name;
5002
5003 if (need_fullname)
5004 this_real_name = gdb_realpath (filename);
5005 (*fun) (filename, this_real_name.get (), data);
5006 });
5007 }
5008
5009 static int
5010 dw2_has_symbols (struct objfile *objfile)
5011 {
5012 return 1;
5013 }
5014
5015 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5016 {
5017 dw2_has_symbols,
5018 dw2_find_last_source_symtab,
5019 dw2_forget_cached_source_info,
5020 dw2_map_symtabs_matching_filename,
5021 dw2_lookup_symbol,
5022 dw2_print_stats,
5023 dw2_dump,
5024 dw2_expand_symtabs_for_function,
5025 dw2_expand_all_symtabs,
5026 dw2_expand_symtabs_with_fullname,
5027 dw2_map_matching_symbols,
5028 dw2_expand_symtabs_matching,
5029 dw2_find_pc_sect_compunit_symtab,
5030 NULL,
5031 dw2_map_symbol_filenames
5032 };
5033
5034 /* DWARF-5 debug_names reader. */
5035
5036 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5037 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5038
5039 /* A helper function that reads the .debug_names section in SECTION
5040 and fills in MAP. FILENAME is the name of the file containing the
5041 section; it is used for error reporting.
5042
5043 Returns true if all went well, false otherwise. */
5044
5045 static bool
5046 read_debug_names_from_section (struct objfile *objfile,
5047 const char *filename,
5048 struct dwarf2_section_info *section,
5049 mapped_debug_names &map)
5050 {
5051 if (section->empty ())
5052 return false;
5053
5054 /* Older elfutils strip versions could keep the section in the main
5055 executable while splitting it for the separate debug info file. */
5056 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5057 return false;
5058
5059 section->read (objfile);
5060
5061 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5062
5063 const gdb_byte *addr = section->buffer;
5064
5065 bfd *const abfd = section->get_bfd_owner ();
5066
5067 unsigned int bytes_read;
5068 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5069 addr += bytes_read;
5070
5071 map.dwarf5_is_dwarf64 = bytes_read != 4;
5072 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5073 if (bytes_read + length != section->size)
5074 {
5075 /* There may be multiple per-CU indices. */
5076 warning (_("Section .debug_names in %s length %s does not match "
5077 "section length %s, ignoring .debug_names."),
5078 filename, plongest (bytes_read + length),
5079 pulongest (section->size));
5080 return false;
5081 }
5082
5083 /* The version number. */
5084 uint16_t version = read_2_bytes (abfd, addr);
5085 addr += 2;
5086 if (version != 5)
5087 {
5088 warning (_("Section .debug_names in %s has unsupported version %d, "
5089 "ignoring .debug_names."),
5090 filename, version);
5091 return false;
5092 }
5093
5094 /* Padding. */
5095 uint16_t padding = read_2_bytes (abfd, addr);
5096 addr += 2;
5097 if (padding != 0)
5098 {
5099 warning (_("Section .debug_names in %s has unsupported padding %d, "
5100 "ignoring .debug_names."),
5101 filename, padding);
5102 return false;
5103 }
5104
5105 /* comp_unit_count - The number of CUs in the CU list. */
5106 map.cu_count = read_4_bytes (abfd, addr);
5107 addr += 4;
5108
5109 /* local_type_unit_count - The number of TUs in the local TU
5110 list. */
5111 map.tu_count = read_4_bytes (abfd, addr);
5112 addr += 4;
5113
5114 /* foreign_type_unit_count - The number of TUs in the foreign TU
5115 list. */
5116 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5117 addr += 4;
5118 if (foreign_tu_count != 0)
5119 {
5120 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5121 "ignoring .debug_names."),
5122 filename, static_cast<unsigned long> (foreign_tu_count));
5123 return false;
5124 }
5125
5126 /* bucket_count - The number of hash buckets in the hash lookup
5127 table. */
5128 map.bucket_count = read_4_bytes (abfd, addr);
5129 addr += 4;
5130
5131 /* name_count - The number of unique names in the index. */
5132 map.name_count = read_4_bytes (abfd, addr);
5133 addr += 4;
5134
5135 /* abbrev_table_size - The size in bytes of the abbreviations
5136 table. */
5137 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5138 addr += 4;
5139
5140 /* augmentation_string_size - The size in bytes of the augmentation
5141 string. This value is rounded up to a multiple of 4. */
5142 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5143 addr += 4;
5144 map.augmentation_is_gdb = ((augmentation_string_size
5145 == sizeof (dwarf5_augmentation))
5146 && memcmp (addr, dwarf5_augmentation,
5147 sizeof (dwarf5_augmentation)) == 0);
5148 augmentation_string_size += (-augmentation_string_size) & 3;
5149 addr += augmentation_string_size;
5150
5151 /* List of CUs */
5152 map.cu_table_reordered = addr;
5153 addr += map.cu_count * map.offset_size;
5154
5155 /* List of Local TUs */
5156 map.tu_table_reordered = addr;
5157 addr += map.tu_count * map.offset_size;
5158
5159 /* Hash Lookup Table */
5160 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5161 addr += map.bucket_count * 4;
5162 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5163 addr += map.name_count * 4;
5164
5165 /* Name Table */
5166 map.name_table_string_offs_reordered = addr;
5167 addr += map.name_count * map.offset_size;
5168 map.name_table_entry_offs_reordered = addr;
5169 addr += map.name_count * map.offset_size;
5170
5171 const gdb_byte *abbrev_table_start = addr;
5172 for (;;)
5173 {
5174 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5175 addr += bytes_read;
5176 if (index_num == 0)
5177 break;
5178
5179 const auto insertpair
5180 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5181 if (!insertpair.second)
5182 {
5183 warning (_("Section .debug_names in %s has duplicate index %s, "
5184 "ignoring .debug_names."),
5185 filename, pulongest (index_num));
5186 return false;
5187 }
5188 mapped_debug_names::index_val &indexval = insertpair.first->second;
5189 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5190 addr += bytes_read;
5191
5192 for (;;)
5193 {
5194 mapped_debug_names::index_val::attr attr;
5195 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5196 addr += bytes_read;
5197 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5198 addr += bytes_read;
5199 if (attr.form == DW_FORM_implicit_const)
5200 {
5201 attr.implicit_const = read_signed_leb128 (abfd, addr,
5202 &bytes_read);
5203 addr += bytes_read;
5204 }
5205 if (attr.dw_idx == 0 && attr.form == 0)
5206 break;
5207 indexval.attr_vec.push_back (std::move (attr));
5208 }
5209 }
5210 if (addr != abbrev_table_start + abbrev_table_size)
5211 {
5212 warning (_("Section .debug_names in %s has abbreviation_table "
5213 "of size %s vs. written as %u, ignoring .debug_names."),
5214 filename, plongest (addr - abbrev_table_start),
5215 abbrev_table_size);
5216 return false;
5217 }
5218 map.entry_pool = addr;
5219
5220 return true;
5221 }
5222
5223 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5224 list. */
5225
5226 static void
5227 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5228 const mapped_debug_names &map,
5229 dwarf2_section_info &section,
5230 bool is_dwz)
5231 {
5232 sect_offset sect_off_prev;
5233 for (uint32_t i = 0; i <= map.cu_count; ++i)
5234 {
5235 sect_offset sect_off_next;
5236 if (i < map.cu_count)
5237 {
5238 sect_off_next
5239 = (sect_offset) (extract_unsigned_integer
5240 (map.cu_table_reordered + i * map.offset_size,
5241 map.offset_size,
5242 map.dwarf5_byte_order));
5243 }
5244 else
5245 sect_off_next = (sect_offset) section.size;
5246 if (i >= 1)
5247 {
5248 const ULONGEST length = sect_off_next - sect_off_prev;
5249 dwarf2_per_cu_data *per_cu
5250 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5251 sect_off_prev, length);
5252 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5253 }
5254 sect_off_prev = sect_off_next;
5255 }
5256 }
5257
5258 /* Read the CU list from the mapped index, and use it to create all
5259 the CU objects for this dwarf2_per_objfile. */
5260
5261 static void
5262 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5263 const mapped_debug_names &map,
5264 const mapped_debug_names &dwz_map)
5265 {
5266 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5267 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5268
5269 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5270 dwarf2_per_objfile->info,
5271 false /* is_dwz */);
5272
5273 if (dwz_map.cu_count == 0)
5274 return;
5275
5276 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5277 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5278 true /* is_dwz */);
5279 }
5280
5281 /* Read .debug_names. If everything went ok, initialize the "quick"
5282 elements of all the CUs and return true. Otherwise, return false. */
5283
5284 static bool
5285 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5286 {
5287 std::unique_ptr<mapped_debug_names> map
5288 (new mapped_debug_names (dwarf2_per_objfile));
5289 mapped_debug_names dwz_map (dwarf2_per_objfile);
5290 struct objfile *objfile = dwarf2_per_objfile->objfile;
5291
5292 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5293 &dwarf2_per_objfile->debug_names,
5294 *map))
5295 return false;
5296
5297 /* Don't use the index if it's empty. */
5298 if (map->name_count == 0)
5299 return false;
5300
5301 /* If there is a .dwz file, read it so we can get its CU list as
5302 well. */
5303 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5304 if (dwz != NULL)
5305 {
5306 if (!read_debug_names_from_section (objfile,
5307 bfd_get_filename (dwz->dwz_bfd.get ()),
5308 &dwz->debug_names, dwz_map))
5309 {
5310 warning (_("could not read '.debug_names' section from %s; skipping"),
5311 bfd_get_filename (dwz->dwz_bfd.get ()));
5312 return false;
5313 }
5314 }
5315
5316 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5317
5318 if (map->tu_count != 0)
5319 {
5320 /* We can only handle a single .debug_types when we have an
5321 index. */
5322 if (dwarf2_per_objfile->types.size () != 1)
5323 return false;
5324
5325 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5326
5327 create_signatured_type_table_from_debug_names
5328 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5329 }
5330
5331 create_addrmap_from_aranges (dwarf2_per_objfile,
5332 &dwarf2_per_objfile->debug_aranges);
5333
5334 dwarf2_per_objfile->debug_names_table = std::move (map);
5335 dwarf2_per_objfile->using_index = 1;
5336 dwarf2_per_objfile->quick_file_names_table =
5337 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5338
5339 return true;
5340 }
5341
5342 /* Type used to manage iterating over all CUs looking for a symbol for
5343 .debug_names. */
5344
5345 class dw2_debug_names_iterator
5346 {
5347 public:
5348 dw2_debug_names_iterator (const mapped_debug_names &map,
5349 gdb::optional<block_enum> block_index,
5350 domain_enum domain,
5351 const char *name)
5352 : m_map (map), m_block_index (block_index), m_domain (domain),
5353 m_addr (find_vec_in_debug_names (map, name))
5354 {}
5355
5356 dw2_debug_names_iterator (const mapped_debug_names &map,
5357 search_domain search, uint32_t namei)
5358 : m_map (map),
5359 m_search (search),
5360 m_addr (find_vec_in_debug_names (map, namei))
5361 {}
5362
5363 dw2_debug_names_iterator (const mapped_debug_names &map,
5364 block_enum block_index, domain_enum domain,
5365 uint32_t namei)
5366 : m_map (map), m_block_index (block_index), m_domain (domain),
5367 m_addr (find_vec_in_debug_names (map, namei))
5368 {}
5369
5370 /* Return the next matching CU or NULL if there are no more. */
5371 dwarf2_per_cu_data *next ();
5372
5373 private:
5374 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5375 const char *name);
5376 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5377 uint32_t namei);
5378
5379 /* The internalized form of .debug_names. */
5380 const mapped_debug_names &m_map;
5381
5382 /* If set, only look for symbols that match that block. Valid values are
5383 GLOBAL_BLOCK and STATIC_BLOCK. */
5384 const gdb::optional<block_enum> m_block_index;
5385
5386 /* The kind of symbol we're looking for. */
5387 const domain_enum m_domain = UNDEF_DOMAIN;
5388 const search_domain m_search = ALL_DOMAIN;
5389
5390 /* The list of CUs from the index entry of the symbol, or NULL if
5391 not found. */
5392 const gdb_byte *m_addr;
5393 };
5394
5395 const char *
5396 mapped_debug_names::namei_to_name (uint32_t namei) const
5397 {
5398 const ULONGEST namei_string_offs
5399 = extract_unsigned_integer ((name_table_string_offs_reordered
5400 + namei * offset_size),
5401 offset_size,
5402 dwarf5_byte_order);
5403 return read_indirect_string_at_offset
5404 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5405 }
5406
5407 /* Find a slot in .debug_names for the object named NAME. If NAME is
5408 found, return pointer to its pool data. If NAME cannot be found,
5409 return NULL. */
5410
5411 const gdb_byte *
5412 dw2_debug_names_iterator::find_vec_in_debug_names
5413 (const mapped_debug_names &map, const char *name)
5414 {
5415 int (*cmp) (const char *, const char *);
5416
5417 gdb::unique_xmalloc_ptr<char> without_params;
5418 if (current_language->la_language == language_cplus
5419 || current_language->la_language == language_fortran
5420 || current_language->la_language == language_d)
5421 {
5422 /* NAME is already canonical. Drop any qualifiers as
5423 .debug_names does not contain any. */
5424
5425 if (strchr (name, '(') != NULL)
5426 {
5427 without_params = cp_remove_params (name);
5428 if (without_params != NULL)
5429 name = without_params.get ();
5430 }
5431 }
5432
5433 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5434
5435 const uint32_t full_hash = dwarf5_djb_hash (name);
5436 uint32_t namei
5437 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5438 (map.bucket_table_reordered
5439 + (full_hash % map.bucket_count)), 4,
5440 map.dwarf5_byte_order);
5441 if (namei == 0)
5442 return NULL;
5443 --namei;
5444 if (namei >= map.name_count)
5445 {
5446 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5447 "[in module %s]"),
5448 namei, map.name_count,
5449 objfile_name (map.dwarf2_per_objfile->objfile));
5450 return NULL;
5451 }
5452
5453 for (;;)
5454 {
5455 const uint32_t namei_full_hash
5456 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5457 (map.hash_table_reordered + namei), 4,
5458 map.dwarf5_byte_order);
5459 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5460 return NULL;
5461
5462 if (full_hash == namei_full_hash)
5463 {
5464 const char *const namei_string = map.namei_to_name (namei);
5465
5466 #if 0 /* An expensive sanity check. */
5467 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5468 {
5469 complaint (_("Wrong .debug_names hash for string at index %u "
5470 "[in module %s]"),
5471 namei, objfile_name (dwarf2_per_objfile->objfile));
5472 return NULL;
5473 }
5474 #endif
5475
5476 if (cmp (namei_string, name) == 0)
5477 {
5478 const ULONGEST namei_entry_offs
5479 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5480 + namei * map.offset_size),
5481 map.offset_size, map.dwarf5_byte_order);
5482 return map.entry_pool + namei_entry_offs;
5483 }
5484 }
5485
5486 ++namei;
5487 if (namei >= map.name_count)
5488 return NULL;
5489 }
5490 }
5491
5492 const gdb_byte *
5493 dw2_debug_names_iterator::find_vec_in_debug_names
5494 (const mapped_debug_names &map, uint32_t namei)
5495 {
5496 if (namei >= map.name_count)
5497 {
5498 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5499 "[in module %s]"),
5500 namei, map.name_count,
5501 objfile_name (map.dwarf2_per_objfile->objfile));
5502 return NULL;
5503 }
5504
5505 const ULONGEST namei_entry_offs
5506 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5507 + namei * map.offset_size),
5508 map.offset_size, map.dwarf5_byte_order);
5509 return map.entry_pool + namei_entry_offs;
5510 }
5511
5512 /* See dw2_debug_names_iterator. */
5513
5514 dwarf2_per_cu_data *
5515 dw2_debug_names_iterator::next ()
5516 {
5517 if (m_addr == NULL)
5518 return NULL;
5519
5520 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5521 struct objfile *objfile = dwarf2_per_objfile->objfile;
5522 bfd *const abfd = objfile->obfd;
5523
5524 again:
5525
5526 unsigned int bytes_read;
5527 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5528 m_addr += bytes_read;
5529 if (abbrev == 0)
5530 return NULL;
5531
5532 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5533 if (indexval_it == m_map.abbrev_map.cend ())
5534 {
5535 complaint (_("Wrong .debug_names undefined abbrev code %s "
5536 "[in module %s]"),
5537 pulongest (abbrev), objfile_name (objfile));
5538 return NULL;
5539 }
5540 const mapped_debug_names::index_val &indexval = indexval_it->second;
5541 enum class symbol_linkage {
5542 unknown,
5543 static_,
5544 extern_,
5545 } symbol_linkage_ = symbol_linkage::unknown;
5546 dwarf2_per_cu_data *per_cu = NULL;
5547 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5548 {
5549 ULONGEST ull;
5550 switch (attr.form)
5551 {
5552 case DW_FORM_implicit_const:
5553 ull = attr.implicit_const;
5554 break;
5555 case DW_FORM_flag_present:
5556 ull = 1;
5557 break;
5558 case DW_FORM_udata:
5559 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5560 m_addr += bytes_read;
5561 break;
5562 default:
5563 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5564 dwarf_form_name (attr.form),
5565 objfile_name (objfile));
5566 return NULL;
5567 }
5568 switch (attr.dw_idx)
5569 {
5570 case DW_IDX_compile_unit:
5571 /* Don't crash on bad data. */
5572 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5573 {
5574 complaint (_(".debug_names entry has bad CU index %s"
5575 " [in module %s]"),
5576 pulongest (ull),
5577 objfile_name (dwarf2_per_objfile->objfile));
5578 continue;
5579 }
5580 per_cu = dwarf2_per_objfile->get_cutu (ull);
5581 break;
5582 case DW_IDX_type_unit:
5583 /* Don't crash on bad data. */
5584 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5585 {
5586 complaint (_(".debug_names entry has bad TU index %s"
5587 " [in module %s]"),
5588 pulongest (ull),
5589 objfile_name (dwarf2_per_objfile->objfile));
5590 continue;
5591 }
5592 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5593 break;
5594 case DW_IDX_GNU_internal:
5595 if (!m_map.augmentation_is_gdb)
5596 break;
5597 symbol_linkage_ = symbol_linkage::static_;
5598 break;
5599 case DW_IDX_GNU_external:
5600 if (!m_map.augmentation_is_gdb)
5601 break;
5602 symbol_linkage_ = symbol_linkage::extern_;
5603 break;
5604 }
5605 }
5606
5607 /* Skip if already read in. */
5608 if (per_cu->v.quick->compunit_symtab)
5609 goto again;
5610
5611 /* Check static vs global. */
5612 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5613 {
5614 const bool want_static = *m_block_index == STATIC_BLOCK;
5615 const bool symbol_is_static =
5616 symbol_linkage_ == symbol_linkage::static_;
5617 if (want_static != symbol_is_static)
5618 goto again;
5619 }
5620
5621 /* Match dw2_symtab_iter_next, symbol_kind
5622 and debug_names::psymbol_tag. */
5623 switch (m_domain)
5624 {
5625 case VAR_DOMAIN:
5626 switch (indexval.dwarf_tag)
5627 {
5628 case DW_TAG_variable:
5629 case DW_TAG_subprogram:
5630 /* Some types are also in VAR_DOMAIN. */
5631 case DW_TAG_typedef:
5632 case DW_TAG_structure_type:
5633 break;
5634 default:
5635 goto again;
5636 }
5637 break;
5638 case STRUCT_DOMAIN:
5639 switch (indexval.dwarf_tag)
5640 {
5641 case DW_TAG_typedef:
5642 case DW_TAG_structure_type:
5643 break;
5644 default:
5645 goto again;
5646 }
5647 break;
5648 case LABEL_DOMAIN:
5649 switch (indexval.dwarf_tag)
5650 {
5651 case 0:
5652 case DW_TAG_variable:
5653 break;
5654 default:
5655 goto again;
5656 }
5657 break;
5658 case MODULE_DOMAIN:
5659 switch (indexval.dwarf_tag)
5660 {
5661 case DW_TAG_module:
5662 break;
5663 default:
5664 goto again;
5665 }
5666 break;
5667 default:
5668 break;
5669 }
5670
5671 /* Match dw2_expand_symtabs_matching, symbol_kind and
5672 debug_names::psymbol_tag. */
5673 switch (m_search)
5674 {
5675 case VARIABLES_DOMAIN:
5676 switch (indexval.dwarf_tag)
5677 {
5678 case DW_TAG_variable:
5679 break;
5680 default:
5681 goto again;
5682 }
5683 break;
5684 case FUNCTIONS_DOMAIN:
5685 switch (indexval.dwarf_tag)
5686 {
5687 case DW_TAG_subprogram:
5688 break;
5689 default:
5690 goto again;
5691 }
5692 break;
5693 case TYPES_DOMAIN:
5694 switch (indexval.dwarf_tag)
5695 {
5696 case DW_TAG_typedef:
5697 case DW_TAG_structure_type:
5698 break;
5699 default:
5700 goto again;
5701 }
5702 break;
5703 case MODULES_DOMAIN:
5704 switch (indexval.dwarf_tag)
5705 {
5706 case DW_TAG_module:
5707 break;
5708 default:
5709 goto again;
5710 }
5711 default:
5712 break;
5713 }
5714
5715 return per_cu;
5716 }
5717
5718 static struct compunit_symtab *
5719 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5720 const char *name, domain_enum domain)
5721 {
5722 struct dwarf2_per_objfile *dwarf2_per_objfile
5723 = get_dwarf2_per_objfile (objfile);
5724
5725 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5726 if (!mapp)
5727 {
5728 /* index is NULL if OBJF_READNOW. */
5729 return NULL;
5730 }
5731 const auto &map = *mapp;
5732
5733 dw2_debug_names_iterator iter (map, block_index, domain, name);
5734
5735 struct compunit_symtab *stab_best = NULL;
5736 struct dwarf2_per_cu_data *per_cu;
5737 while ((per_cu = iter.next ()) != NULL)
5738 {
5739 struct symbol *sym, *with_opaque = NULL;
5740 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5741 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5742 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5743
5744 sym = block_find_symbol (block, name, domain,
5745 block_find_non_opaque_type_preferred,
5746 &with_opaque);
5747
5748 /* Some caution must be observed with overloaded functions and
5749 methods, since the index will not contain any overload
5750 information (but NAME might contain it). */
5751
5752 if (sym != NULL
5753 && strcmp_iw (sym->search_name (), name) == 0)
5754 return stab;
5755 if (with_opaque != NULL
5756 && strcmp_iw (with_opaque->search_name (), name) == 0)
5757 stab_best = stab;
5758
5759 /* Keep looking through other CUs. */
5760 }
5761
5762 return stab_best;
5763 }
5764
5765 /* This dumps minimal information about .debug_names. It is called
5766 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5767 uses this to verify that .debug_names has been loaded. */
5768
5769 static void
5770 dw2_debug_names_dump (struct objfile *objfile)
5771 {
5772 struct dwarf2_per_objfile *dwarf2_per_objfile
5773 = get_dwarf2_per_objfile (objfile);
5774
5775 gdb_assert (dwarf2_per_objfile->using_index);
5776 printf_filtered (".debug_names:");
5777 if (dwarf2_per_objfile->debug_names_table)
5778 printf_filtered (" exists\n");
5779 else
5780 printf_filtered (" faked for \"readnow\"\n");
5781 printf_filtered ("\n");
5782 }
5783
5784 static void
5785 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5786 const char *func_name)
5787 {
5788 struct dwarf2_per_objfile *dwarf2_per_objfile
5789 = get_dwarf2_per_objfile (objfile);
5790
5791 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5792 if (dwarf2_per_objfile->debug_names_table)
5793 {
5794 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5795
5796 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5797
5798 struct dwarf2_per_cu_data *per_cu;
5799 while ((per_cu = iter.next ()) != NULL)
5800 dw2_instantiate_symtab (per_cu, false);
5801 }
5802 }
5803
5804 static void
5805 dw2_debug_names_map_matching_symbols
5806 (struct objfile *objfile,
5807 const lookup_name_info &name, domain_enum domain,
5808 int global,
5809 gdb::function_view<symbol_found_callback_ftype> callback,
5810 symbol_compare_ftype *ordered_compare)
5811 {
5812 struct dwarf2_per_objfile *dwarf2_per_objfile
5813 = get_dwarf2_per_objfile (objfile);
5814
5815 /* debug_names_table is NULL if OBJF_READNOW. */
5816 if (!dwarf2_per_objfile->debug_names_table)
5817 return;
5818
5819 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5820 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5821
5822 const char *match_name = name.ada ().lookup_name ().c_str ();
5823 auto matcher = [&] (const char *symname)
5824 {
5825 if (ordered_compare == nullptr)
5826 return true;
5827 return ordered_compare (symname, match_name) == 0;
5828 };
5829
5830 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5831 [&] (offset_type namei)
5832 {
5833 /* The name was matched, now expand corresponding CUs that were
5834 marked. */
5835 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5836
5837 struct dwarf2_per_cu_data *per_cu;
5838 while ((per_cu = iter.next ()) != NULL)
5839 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5840 return true;
5841 });
5842
5843 /* It's a shame we couldn't do this inside the
5844 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5845 that have already been expanded. Instead, this loop matches what
5846 the psymtab code does. */
5847 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5848 {
5849 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5850 if (cust != nullptr)
5851 {
5852 const struct block *block
5853 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5854 if (!iterate_over_symbols_terminated (block, name,
5855 domain, callback))
5856 break;
5857 }
5858 }
5859 }
5860
5861 static void
5862 dw2_debug_names_expand_symtabs_matching
5863 (struct objfile *objfile,
5864 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5865 const lookup_name_info &lookup_name,
5866 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5867 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5868 enum search_domain kind)
5869 {
5870 struct dwarf2_per_objfile *dwarf2_per_objfile
5871 = get_dwarf2_per_objfile (objfile);
5872
5873 /* debug_names_table is NULL if OBJF_READNOW. */
5874 if (!dwarf2_per_objfile->debug_names_table)
5875 return;
5876
5877 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5878
5879 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5880
5881 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5882 symbol_matcher,
5883 kind, [&] (offset_type namei)
5884 {
5885 /* The name was matched, now expand corresponding CUs that were
5886 marked. */
5887 dw2_debug_names_iterator iter (map, kind, namei);
5888
5889 struct dwarf2_per_cu_data *per_cu;
5890 while ((per_cu = iter.next ()) != NULL)
5891 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5892 expansion_notify);
5893 return true;
5894 });
5895 }
5896
5897 const struct quick_symbol_functions dwarf2_debug_names_functions =
5898 {
5899 dw2_has_symbols,
5900 dw2_find_last_source_symtab,
5901 dw2_forget_cached_source_info,
5902 dw2_map_symtabs_matching_filename,
5903 dw2_debug_names_lookup_symbol,
5904 dw2_print_stats,
5905 dw2_debug_names_dump,
5906 dw2_debug_names_expand_symtabs_for_function,
5907 dw2_expand_all_symtabs,
5908 dw2_expand_symtabs_with_fullname,
5909 dw2_debug_names_map_matching_symbols,
5910 dw2_debug_names_expand_symtabs_matching,
5911 dw2_find_pc_sect_compunit_symtab,
5912 NULL,
5913 dw2_map_symbol_filenames
5914 };
5915
5916 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5917 to either a dwarf2_per_objfile or dwz_file object. */
5918
5919 template <typename T>
5920 static gdb::array_view<const gdb_byte>
5921 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5922 {
5923 dwarf2_section_info *section = &section_owner->gdb_index;
5924
5925 if (section->empty ())
5926 return {};
5927
5928 /* Older elfutils strip versions could keep the section in the main
5929 executable while splitting it for the separate debug info file. */
5930 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5931 return {};
5932
5933 section->read (obj);
5934
5935 /* dwarf2_section_info::size is a bfd_size_type, while
5936 gdb::array_view works with size_t. On 32-bit hosts, with
5937 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5938 is 32-bit. So we need an explicit narrowing conversion here.
5939 This is fine, because it's impossible to allocate or mmap an
5940 array/buffer larger than what size_t can represent. */
5941 return gdb::make_array_view (section->buffer, section->size);
5942 }
5943
5944 /* Lookup the index cache for the contents of the index associated to
5945 DWARF2_OBJ. */
5946
5947 static gdb::array_view<const gdb_byte>
5948 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5949 {
5950 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5951 if (build_id == nullptr)
5952 return {};
5953
5954 return global_index_cache.lookup_gdb_index (build_id,
5955 &dwarf2_obj->index_cache_res);
5956 }
5957
5958 /* Same as the above, but for DWZ. */
5959
5960 static gdb::array_view<const gdb_byte>
5961 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5962 {
5963 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5964 if (build_id == nullptr)
5965 return {};
5966
5967 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5968 }
5969
5970 /* See symfile.h. */
5971
5972 bool
5973 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5974 {
5975 struct dwarf2_per_objfile *dwarf2_per_objfile
5976 = get_dwarf2_per_objfile (objfile);
5977
5978 /* If we're about to read full symbols, don't bother with the
5979 indices. In this case we also don't care if some other debug
5980 format is making psymtabs, because they are all about to be
5981 expanded anyway. */
5982 if ((objfile->flags & OBJF_READNOW))
5983 {
5984 dwarf2_per_objfile->using_index = 1;
5985 create_all_comp_units (dwarf2_per_objfile);
5986 create_all_type_units (dwarf2_per_objfile);
5987 dwarf2_per_objfile->quick_file_names_table
5988 = create_quick_file_names_table
5989 (dwarf2_per_objfile->all_comp_units.size ());
5990
5991 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5992 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5993 {
5994 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5995
5996 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5997 struct dwarf2_per_cu_quick_data);
5998 }
5999
6000 /* Return 1 so that gdb sees the "quick" functions. However,
6001 these functions will be no-ops because we will have expanded
6002 all symtabs. */
6003 *index_kind = dw_index_kind::GDB_INDEX;
6004 return true;
6005 }
6006
6007 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6008 {
6009 *index_kind = dw_index_kind::DEBUG_NAMES;
6010 return true;
6011 }
6012
6013 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6014 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6015 get_gdb_index_contents_from_section<dwz_file>))
6016 {
6017 *index_kind = dw_index_kind::GDB_INDEX;
6018 return true;
6019 }
6020
6021 /* ... otherwise, try to find the index in the index cache. */
6022 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6023 get_gdb_index_contents_from_cache,
6024 get_gdb_index_contents_from_cache_dwz))
6025 {
6026 global_index_cache.hit ();
6027 *index_kind = dw_index_kind::GDB_INDEX;
6028 return true;
6029 }
6030
6031 global_index_cache.miss ();
6032 return false;
6033 }
6034
6035 \f
6036
6037 /* Build a partial symbol table. */
6038
6039 void
6040 dwarf2_build_psymtabs (struct objfile *objfile)
6041 {
6042 struct dwarf2_per_objfile *dwarf2_per_objfile
6043 = get_dwarf2_per_objfile (objfile);
6044
6045 init_psymbol_list (objfile, 1024);
6046
6047 try
6048 {
6049 /* This isn't really ideal: all the data we allocate on the
6050 objfile's obstack is still uselessly kept around. However,
6051 freeing it seems unsafe. */
6052 psymtab_discarder psymtabs (objfile);
6053 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6054 psymtabs.keep ();
6055
6056 /* (maybe) store an index in the cache. */
6057 global_index_cache.store (dwarf2_per_objfile);
6058 }
6059 catch (const gdb_exception_error &except)
6060 {
6061 exception_print (gdb_stderr, except);
6062 }
6063 }
6064
6065 /* Return the total length of the CU described by HEADER. */
6066
6067 static unsigned int
6068 get_cu_length (const struct comp_unit_head *header)
6069 {
6070 return header->initial_length_size + header->length;
6071 }
6072
6073 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6074
6075 static inline bool
6076 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6077 {
6078 sect_offset bottom = cu_header->sect_off;
6079 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6080
6081 return sect_off >= bottom && sect_off < top;
6082 }
6083
6084 /* Find the base address of the compilation unit for range lists and
6085 location lists. It will normally be specified by DW_AT_low_pc.
6086 In DWARF-3 draft 4, the base address could be overridden by
6087 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6088 compilation units with discontinuous ranges. */
6089
6090 static void
6091 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6092 {
6093 struct attribute *attr;
6094
6095 cu->base_known = 0;
6096 cu->base_address = 0;
6097
6098 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6099 if (attr != nullptr)
6100 {
6101 cu->base_address = attr->value_as_address ();
6102 cu->base_known = 1;
6103 }
6104 else
6105 {
6106 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6107 if (attr != nullptr)
6108 {
6109 cu->base_address = attr->value_as_address ();
6110 cu->base_known = 1;
6111 }
6112 }
6113 }
6114
6115 /* Read in the comp unit header information from the debug_info at info_ptr.
6116 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6117 NOTE: This leaves members offset, first_die_offset to be filled in
6118 by the caller. */
6119
6120 static const gdb_byte *
6121 read_comp_unit_head (struct comp_unit_head *cu_header,
6122 const gdb_byte *info_ptr,
6123 struct dwarf2_section_info *section,
6124 rcuh_kind section_kind)
6125 {
6126 int signed_addr;
6127 unsigned int bytes_read;
6128 const char *filename = section->get_file_name ();
6129 bfd *abfd = section->get_bfd_owner ();
6130
6131 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6132 cu_header->initial_length_size = bytes_read;
6133 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6134 info_ptr += bytes_read;
6135 cu_header->version = read_2_bytes (abfd, info_ptr);
6136 if (cu_header->version < 2 || cu_header->version > 5)
6137 error (_("Dwarf Error: wrong version in compilation unit header "
6138 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6139 cu_header->version, filename);
6140 info_ptr += 2;
6141 if (cu_header->version < 5)
6142 switch (section_kind)
6143 {
6144 case rcuh_kind::COMPILE:
6145 cu_header->unit_type = DW_UT_compile;
6146 break;
6147 case rcuh_kind::TYPE:
6148 cu_header->unit_type = DW_UT_type;
6149 break;
6150 default:
6151 internal_error (__FILE__, __LINE__,
6152 _("read_comp_unit_head: invalid section_kind"));
6153 }
6154 else
6155 {
6156 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6157 (read_1_byte (abfd, info_ptr));
6158 info_ptr += 1;
6159 switch (cu_header->unit_type)
6160 {
6161 case DW_UT_compile:
6162 case DW_UT_partial:
6163 case DW_UT_skeleton:
6164 case DW_UT_split_compile:
6165 if (section_kind != rcuh_kind::COMPILE)
6166 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6167 "(is %s, should be %s) [in module %s]"),
6168 dwarf_unit_type_name (cu_header->unit_type),
6169 dwarf_unit_type_name (DW_UT_type), filename);
6170 break;
6171 case DW_UT_type:
6172 case DW_UT_split_type:
6173 section_kind = rcuh_kind::TYPE;
6174 break;
6175 default:
6176 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6177 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6178 "[in module %s]"), cu_header->unit_type,
6179 dwarf_unit_type_name (DW_UT_compile),
6180 dwarf_unit_type_name (DW_UT_skeleton),
6181 dwarf_unit_type_name (DW_UT_split_compile),
6182 dwarf_unit_type_name (DW_UT_type),
6183 dwarf_unit_type_name (DW_UT_split_type), filename);
6184 }
6185
6186 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6187 info_ptr += 1;
6188 }
6189 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6190 cu_header,
6191 &bytes_read);
6192 info_ptr += bytes_read;
6193 if (cu_header->version < 5)
6194 {
6195 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6196 info_ptr += 1;
6197 }
6198 signed_addr = bfd_get_sign_extend_vma (abfd);
6199 if (signed_addr < 0)
6200 internal_error (__FILE__, __LINE__,
6201 _("read_comp_unit_head: dwarf from non elf file"));
6202 cu_header->signed_addr_p = signed_addr;
6203
6204 bool header_has_signature = section_kind == rcuh_kind::TYPE
6205 || cu_header->unit_type == DW_UT_skeleton
6206 || cu_header->unit_type == DW_UT_split_compile;
6207
6208 if (header_has_signature)
6209 {
6210 cu_header->signature = read_8_bytes (abfd, info_ptr);
6211 info_ptr += 8;
6212 }
6213
6214 if (section_kind == rcuh_kind::TYPE)
6215 {
6216 LONGEST type_offset;
6217 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6218 info_ptr += bytes_read;
6219 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6220 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6221 error (_("Dwarf Error: Too big type_offset in compilation unit "
6222 "header (is %s) [in module %s]"), plongest (type_offset),
6223 filename);
6224 }
6225
6226 return info_ptr;
6227 }
6228
6229 /* Helper function that returns the proper abbrev section for
6230 THIS_CU. */
6231
6232 static struct dwarf2_section_info *
6233 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6234 {
6235 struct dwarf2_section_info *abbrev;
6236 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6237
6238 if (this_cu->is_dwz)
6239 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6240 else
6241 abbrev = &dwarf2_per_objfile->abbrev;
6242
6243 return abbrev;
6244 }
6245
6246 /* Subroutine of read_and_check_comp_unit_head and
6247 read_and_check_type_unit_head to simplify them.
6248 Perform various error checking on the header. */
6249
6250 static void
6251 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6252 struct comp_unit_head *header,
6253 struct dwarf2_section_info *section,
6254 struct dwarf2_section_info *abbrev_section)
6255 {
6256 const char *filename = section->get_file_name ();
6257
6258 if (to_underlying (header->abbrev_sect_off)
6259 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6260 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6261 "(offset %s + 6) [in module %s]"),
6262 sect_offset_str (header->abbrev_sect_off),
6263 sect_offset_str (header->sect_off),
6264 filename);
6265
6266 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6267 avoid potential 32-bit overflow. */
6268 if (((ULONGEST) header->sect_off + get_cu_length (header))
6269 > section->size)
6270 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6271 "(offset %s + 0) [in module %s]"),
6272 header->length, sect_offset_str (header->sect_off),
6273 filename);
6274 }
6275
6276 /* Read in a CU/TU header and perform some basic error checking.
6277 The contents of the header are stored in HEADER.
6278 The result is a pointer to the start of the first DIE. */
6279
6280 static const gdb_byte *
6281 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6282 struct comp_unit_head *header,
6283 struct dwarf2_section_info *section,
6284 struct dwarf2_section_info *abbrev_section,
6285 const gdb_byte *info_ptr,
6286 rcuh_kind section_kind)
6287 {
6288 const gdb_byte *beg_of_comp_unit = info_ptr;
6289
6290 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6291
6292 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6293
6294 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6295
6296 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6297 abbrev_section);
6298
6299 return info_ptr;
6300 }
6301
6302 /* Fetch the abbreviation table offset from a comp or type unit header. */
6303
6304 static sect_offset
6305 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6306 struct dwarf2_section_info *section,
6307 sect_offset sect_off)
6308 {
6309 bfd *abfd = section->get_bfd_owner ();
6310 const gdb_byte *info_ptr;
6311 unsigned int initial_length_size, offset_size;
6312 uint16_t version;
6313
6314 section->read (dwarf2_per_objfile->objfile);
6315 info_ptr = section->buffer + to_underlying (sect_off);
6316 read_initial_length (abfd, info_ptr, &initial_length_size);
6317 offset_size = initial_length_size == 4 ? 4 : 8;
6318 info_ptr += initial_length_size;
6319
6320 version = read_2_bytes (abfd, info_ptr);
6321 info_ptr += 2;
6322 if (version >= 5)
6323 {
6324 /* Skip unit type and address size. */
6325 info_ptr += 2;
6326 }
6327
6328 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6329 }
6330
6331 /* Allocate a new partial symtab for file named NAME and mark this new
6332 partial symtab as being an include of PST. */
6333
6334 static void
6335 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6336 struct objfile *objfile)
6337 {
6338 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
6339
6340 if (!IS_ABSOLUTE_PATH (subpst->filename))
6341 {
6342 /* It shares objfile->objfile_obstack. */
6343 subpst->dirname = pst->dirname;
6344 }
6345
6346 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6347 subpst->dependencies[0] = pst;
6348 subpst->number_of_dependencies = 1;
6349
6350 /* No private part is necessary for include psymtabs. This property
6351 can be used to differentiate between such include psymtabs and
6352 the regular ones. */
6353 subpst->per_cu_data = nullptr;
6354 }
6355
6356 /* Read the Line Number Program data and extract the list of files
6357 included by the source file represented by PST. Build an include
6358 partial symtab for each of these included files. */
6359
6360 static void
6361 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6362 struct die_info *die,
6363 dwarf2_psymtab *pst)
6364 {
6365 line_header_up lh;
6366 struct attribute *attr;
6367
6368 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6369 if (attr != nullptr)
6370 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6371 if (lh == NULL)
6372 return; /* No linetable, so no includes. */
6373
6374 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6375 that we pass in the raw text_low here; that is ok because we're
6376 only decoding the line table to make include partial symtabs, and
6377 so the addresses aren't really used. */
6378 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6379 pst->raw_text_low (), 1);
6380 }
6381
6382 static hashval_t
6383 hash_signatured_type (const void *item)
6384 {
6385 const struct signatured_type *sig_type
6386 = (const struct signatured_type *) item;
6387
6388 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6389 return sig_type->signature;
6390 }
6391
6392 static int
6393 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6394 {
6395 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6396 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6397
6398 return lhs->signature == rhs->signature;
6399 }
6400
6401 /* Allocate a hash table for signatured types. */
6402
6403 static htab_t
6404 allocate_signatured_type_table (struct objfile *objfile)
6405 {
6406 return htab_create_alloc_ex (41,
6407 hash_signatured_type,
6408 eq_signatured_type,
6409 NULL,
6410 &objfile->objfile_obstack,
6411 hashtab_obstack_allocate,
6412 dummy_obstack_deallocate);
6413 }
6414
6415 /* A helper function to add a signatured type CU to a table. */
6416
6417 static int
6418 add_signatured_type_cu_to_table (void **slot, void *datum)
6419 {
6420 struct signatured_type *sigt = (struct signatured_type *) *slot;
6421 std::vector<signatured_type *> *all_type_units
6422 = (std::vector<signatured_type *> *) datum;
6423
6424 all_type_units->push_back (sigt);
6425
6426 return 1;
6427 }
6428
6429 /* A helper for create_debug_types_hash_table. Read types from SECTION
6430 and fill them into TYPES_HTAB. It will process only type units,
6431 therefore DW_UT_type. */
6432
6433 static void
6434 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6435 struct dwo_file *dwo_file,
6436 dwarf2_section_info *section, htab_t &types_htab,
6437 rcuh_kind section_kind)
6438 {
6439 struct objfile *objfile = dwarf2_per_objfile->objfile;
6440 struct dwarf2_section_info *abbrev_section;
6441 bfd *abfd;
6442 const gdb_byte *info_ptr, *end_ptr;
6443
6444 abbrev_section = (dwo_file != NULL
6445 ? &dwo_file->sections.abbrev
6446 : &dwarf2_per_objfile->abbrev);
6447
6448 if (dwarf_read_debug)
6449 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6450 section->get_name (),
6451 abbrev_section->get_file_name ());
6452
6453 section->read (objfile);
6454 info_ptr = section->buffer;
6455
6456 if (info_ptr == NULL)
6457 return;
6458
6459 /* We can't set abfd until now because the section may be empty or
6460 not present, in which case the bfd is unknown. */
6461 abfd = section->get_bfd_owner ();
6462
6463 /* We don't use cutu_reader here because we don't need to read
6464 any dies: the signature is in the header. */
6465
6466 end_ptr = info_ptr + section->size;
6467 while (info_ptr < end_ptr)
6468 {
6469 struct signatured_type *sig_type;
6470 struct dwo_unit *dwo_tu;
6471 void **slot;
6472 const gdb_byte *ptr = info_ptr;
6473 struct comp_unit_head header;
6474 unsigned int length;
6475
6476 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6477
6478 /* Initialize it due to a false compiler warning. */
6479 header.signature = -1;
6480 header.type_cu_offset_in_tu = (cu_offset) -1;
6481
6482 /* We need to read the type's signature in order to build the hash
6483 table, but we don't need anything else just yet. */
6484
6485 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6486 abbrev_section, ptr, section_kind);
6487
6488 length = get_cu_length (&header);
6489
6490 /* Skip dummy type units. */
6491 if (ptr >= info_ptr + length
6492 || peek_abbrev_code (abfd, ptr) == 0
6493 || header.unit_type != DW_UT_type)
6494 {
6495 info_ptr += length;
6496 continue;
6497 }
6498
6499 if (types_htab == NULL)
6500 {
6501 if (dwo_file)
6502 types_htab = allocate_dwo_unit_table (objfile);
6503 else
6504 types_htab = allocate_signatured_type_table (objfile);
6505 }
6506
6507 if (dwo_file)
6508 {
6509 sig_type = NULL;
6510 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6511 struct dwo_unit);
6512 dwo_tu->dwo_file = dwo_file;
6513 dwo_tu->signature = header.signature;
6514 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6515 dwo_tu->section = section;
6516 dwo_tu->sect_off = sect_off;
6517 dwo_tu->length = length;
6518 }
6519 else
6520 {
6521 /* N.B.: type_offset is not usable if this type uses a DWO file.
6522 The real type_offset is in the DWO file. */
6523 dwo_tu = NULL;
6524 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6525 struct signatured_type);
6526 sig_type->signature = header.signature;
6527 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6528 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6529 sig_type->per_cu.is_debug_types = 1;
6530 sig_type->per_cu.section = section;
6531 sig_type->per_cu.sect_off = sect_off;
6532 sig_type->per_cu.length = length;
6533 }
6534
6535 slot = htab_find_slot (types_htab,
6536 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6537 INSERT);
6538 gdb_assert (slot != NULL);
6539 if (*slot != NULL)
6540 {
6541 sect_offset dup_sect_off;
6542
6543 if (dwo_file)
6544 {
6545 const struct dwo_unit *dup_tu
6546 = (const struct dwo_unit *) *slot;
6547
6548 dup_sect_off = dup_tu->sect_off;
6549 }
6550 else
6551 {
6552 const struct signatured_type *dup_tu
6553 = (const struct signatured_type *) *slot;
6554
6555 dup_sect_off = dup_tu->per_cu.sect_off;
6556 }
6557
6558 complaint (_("debug type entry at offset %s is duplicate to"
6559 " the entry at offset %s, signature %s"),
6560 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6561 hex_string (header.signature));
6562 }
6563 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6564
6565 if (dwarf_read_debug > 1)
6566 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6567 sect_offset_str (sect_off),
6568 hex_string (header.signature));
6569
6570 info_ptr += length;
6571 }
6572 }
6573
6574 /* Create the hash table of all entries in the .debug_types
6575 (or .debug_types.dwo) section(s).
6576 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6577 otherwise it is NULL.
6578
6579 The result is a pointer to the hash table or NULL if there are no types.
6580
6581 Note: This function processes DWO files only, not DWP files. */
6582
6583 static void
6584 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6585 struct dwo_file *dwo_file,
6586 gdb::array_view<dwarf2_section_info> type_sections,
6587 htab_t &types_htab)
6588 {
6589 for (dwarf2_section_info &section : type_sections)
6590 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6591 types_htab, rcuh_kind::TYPE);
6592 }
6593
6594 /* Create the hash table of all entries in the .debug_types section,
6595 and initialize all_type_units.
6596 The result is zero if there is an error (e.g. missing .debug_types section),
6597 otherwise non-zero. */
6598
6599 static int
6600 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6601 {
6602 htab_t types_htab = NULL;
6603
6604 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6605 &dwarf2_per_objfile->info, types_htab,
6606 rcuh_kind::COMPILE);
6607 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6608 dwarf2_per_objfile->types, types_htab);
6609 if (types_htab == NULL)
6610 {
6611 dwarf2_per_objfile->signatured_types = NULL;
6612 return 0;
6613 }
6614
6615 dwarf2_per_objfile->signatured_types = types_htab;
6616
6617 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6618 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6619
6620 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6621 &dwarf2_per_objfile->all_type_units);
6622
6623 return 1;
6624 }
6625
6626 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6627 If SLOT is non-NULL, it is the entry to use in the hash table.
6628 Otherwise we find one. */
6629
6630 static struct signatured_type *
6631 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6632 void **slot)
6633 {
6634 struct objfile *objfile = dwarf2_per_objfile->objfile;
6635
6636 if (dwarf2_per_objfile->all_type_units.size ()
6637 == dwarf2_per_objfile->all_type_units.capacity ())
6638 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6639
6640 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6641 struct signatured_type);
6642
6643 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6644 sig_type->signature = sig;
6645 sig_type->per_cu.is_debug_types = 1;
6646 if (dwarf2_per_objfile->using_index)
6647 {
6648 sig_type->per_cu.v.quick =
6649 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6650 struct dwarf2_per_cu_quick_data);
6651 }
6652
6653 if (slot == NULL)
6654 {
6655 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6656 sig_type, INSERT);
6657 }
6658 gdb_assert (*slot == NULL);
6659 *slot = sig_type;
6660 /* The rest of sig_type must be filled in by the caller. */
6661 return sig_type;
6662 }
6663
6664 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6665 Fill in SIG_ENTRY with DWO_ENTRY. */
6666
6667 static void
6668 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6669 struct signatured_type *sig_entry,
6670 struct dwo_unit *dwo_entry)
6671 {
6672 /* Make sure we're not clobbering something we don't expect to. */
6673 gdb_assert (! sig_entry->per_cu.queued);
6674 gdb_assert (sig_entry->per_cu.cu == NULL);
6675 if (dwarf2_per_objfile->using_index)
6676 {
6677 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6678 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6679 }
6680 else
6681 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6682 gdb_assert (sig_entry->signature == dwo_entry->signature);
6683 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6684 gdb_assert (sig_entry->type_unit_group == NULL);
6685 gdb_assert (sig_entry->dwo_unit == NULL);
6686
6687 sig_entry->per_cu.section = dwo_entry->section;
6688 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6689 sig_entry->per_cu.length = dwo_entry->length;
6690 sig_entry->per_cu.reading_dwo_directly = 1;
6691 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6692 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6693 sig_entry->dwo_unit = dwo_entry;
6694 }
6695
6696 /* Subroutine of lookup_signatured_type.
6697 If we haven't read the TU yet, create the signatured_type data structure
6698 for a TU to be read in directly from a DWO file, bypassing the stub.
6699 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6700 using .gdb_index, then when reading a CU we want to stay in the DWO file
6701 containing that CU. Otherwise we could end up reading several other DWO
6702 files (due to comdat folding) to process the transitive closure of all the
6703 mentioned TUs, and that can be slow. The current DWO file will have every
6704 type signature that it needs.
6705 We only do this for .gdb_index because in the psymtab case we already have
6706 to read all the DWOs to build the type unit groups. */
6707
6708 static struct signatured_type *
6709 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6710 {
6711 struct dwarf2_per_objfile *dwarf2_per_objfile
6712 = cu->per_cu->dwarf2_per_objfile;
6713 struct objfile *objfile = dwarf2_per_objfile->objfile;
6714 struct dwo_file *dwo_file;
6715 struct dwo_unit find_dwo_entry, *dwo_entry;
6716 struct signatured_type find_sig_entry, *sig_entry;
6717 void **slot;
6718
6719 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6720
6721 /* If TU skeletons have been removed then we may not have read in any
6722 TUs yet. */
6723 if (dwarf2_per_objfile->signatured_types == NULL)
6724 {
6725 dwarf2_per_objfile->signatured_types
6726 = allocate_signatured_type_table (objfile);
6727 }
6728
6729 /* We only ever need to read in one copy of a signatured type.
6730 Use the global signatured_types array to do our own comdat-folding
6731 of types. If this is the first time we're reading this TU, and
6732 the TU has an entry in .gdb_index, replace the recorded data from
6733 .gdb_index with this TU. */
6734
6735 find_sig_entry.signature = sig;
6736 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6737 &find_sig_entry, INSERT);
6738 sig_entry = (struct signatured_type *) *slot;
6739
6740 /* We can get here with the TU already read, *or* in the process of being
6741 read. Don't reassign the global entry to point to this DWO if that's
6742 the case. Also note that if the TU is already being read, it may not
6743 have come from a DWO, the program may be a mix of Fission-compiled
6744 code and non-Fission-compiled code. */
6745
6746 /* Have we already tried to read this TU?
6747 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6748 needn't exist in the global table yet). */
6749 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6750 return sig_entry;
6751
6752 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6753 dwo_unit of the TU itself. */
6754 dwo_file = cu->dwo_unit->dwo_file;
6755
6756 /* Ok, this is the first time we're reading this TU. */
6757 if (dwo_file->tus == NULL)
6758 return NULL;
6759 find_dwo_entry.signature = sig;
6760 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6761 if (dwo_entry == NULL)
6762 return NULL;
6763
6764 /* If the global table doesn't have an entry for this TU, add one. */
6765 if (sig_entry == NULL)
6766 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6767
6768 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6769 sig_entry->per_cu.tu_read = 1;
6770 return sig_entry;
6771 }
6772
6773 /* Subroutine of lookup_signatured_type.
6774 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6775 then try the DWP file. If the TU stub (skeleton) has been removed then
6776 it won't be in .gdb_index. */
6777
6778 static struct signatured_type *
6779 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6780 {
6781 struct dwarf2_per_objfile *dwarf2_per_objfile
6782 = cu->per_cu->dwarf2_per_objfile;
6783 struct objfile *objfile = dwarf2_per_objfile->objfile;
6784 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6785 struct dwo_unit *dwo_entry;
6786 struct signatured_type find_sig_entry, *sig_entry;
6787 void **slot;
6788
6789 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6790 gdb_assert (dwp_file != NULL);
6791
6792 /* If TU skeletons have been removed then we may not have read in any
6793 TUs yet. */
6794 if (dwarf2_per_objfile->signatured_types == NULL)
6795 {
6796 dwarf2_per_objfile->signatured_types
6797 = allocate_signatured_type_table (objfile);
6798 }
6799
6800 find_sig_entry.signature = sig;
6801 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6802 &find_sig_entry, INSERT);
6803 sig_entry = (struct signatured_type *) *slot;
6804
6805 /* Have we already tried to read this TU?
6806 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6807 needn't exist in the global table yet). */
6808 if (sig_entry != NULL)
6809 return sig_entry;
6810
6811 if (dwp_file->tus == NULL)
6812 return NULL;
6813 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6814 sig, 1 /* is_debug_types */);
6815 if (dwo_entry == NULL)
6816 return NULL;
6817
6818 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6819 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6820
6821 return sig_entry;
6822 }
6823
6824 /* Lookup a signature based type for DW_FORM_ref_sig8.
6825 Returns NULL if signature SIG is not present in the table.
6826 It is up to the caller to complain about this. */
6827
6828 static struct signatured_type *
6829 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6830 {
6831 struct dwarf2_per_objfile *dwarf2_per_objfile
6832 = cu->per_cu->dwarf2_per_objfile;
6833
6834 if (cu->dwo_unit
6835 && dwarf2_per_objfile->using_index)
6836 {
6837 /* We're in a DWO/DWP file, and we're using .gdb_index.
6838 These cases require special processing. */
6839 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6840 return lookup_dwo_signatured_type (cu, sig);
6841 else
6842 return lookup_dwp_signatured_type (cu, sig);
6843 }
6844 else
6845 {
6846 struct signatured_type find_entry, *entry;
6847
6848 if (dwarf2_per_objfile->signatured_types == NULL)
6849 return NULL;
6850 find_entry.signature = sig;
6851 entry = ((struct signatured_type *)
6852 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
6853 return entry;
6854 }
6855 }
6856
6857 /* Return the address base of the compile unit, which, if exists, is stored
6858 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6859 static gdb::optional<ULONGEST>
6860 lookup_addr_base (struct die_info *comp_unit_die)
6861 {
6862 struct attribute *attr;
6863 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6864 if (attr == nullptr)
6865 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6866 if (attr == nullptr)
6867 return gdb::optional<ULONGEST> ();
6868 return DW_UNSND (attr);
6869 }
6870
6871 /* Return range lists base of the compile unit, which, if exists, is stored
6872 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6873 static ULONGEST
6874 lookup_ranges_base (struct die_info *comp_unit_die)
6875 {
6876 struct attribute *attr;
6877 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6878 if (attr == nullptr)
6879 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6880 if (attr == nullptr)
6881 return 0;
6882 return DW_UNSND (attr);
6883 }
6884
6885 /* Low level DIE reading support. */
6886
6887 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6888
6889 static void
6890 init_cu_die_reader (struct die_reader_specs *reader,
6891 struct dwarf2_cu *cu,
6892 struct dwarf2_section_info *section,
6893 struct dwo_file *dwo_file,
6894 struct abbrev_table *abbrev_table)
6895 {
6896 gdb_assert (section->readin && section->buffer != NULL);
6897 reader->abfd = section->get_bfd_owner ();
6898 reader->cu = cu;
6899 reader->dwo_file = dwo_file;
6900 reader->die_section = section;
6901 reader->buffer = section->buffer;
6902 reader->buffer_end = section->buffer + section->size;
6903 reader->abbrev_table = abbrev_table;
6904 }
6905
6906 /* Subroutine of cutu_reader to simplify it.
6907 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6908 There's just a lot of work to do, and cutu_reader is big enough
6909 already.
6910
6911 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6912 from it to the DIE in the DWO. If NULL we are skipping the stub.
6913 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6914 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6915 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6916 STUB_COMP_DIR may be non-NULL.
6917 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6918 are filled in with the info of the DIE from the DWO file.
6919 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6920 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6921 kept around for at least as long as *RESULT_READER.
6922
6923 The result is non-zero if a valid (non-dummy) DIE was found. */
6924
6925 static int
6926 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6927 struct dwo_unit *dwo_unit,
6928 struct die_info *stub_comp_unit_die,
6929 const char *stub_comp_dir,
6930 struct die_reader_specs *result_reader,
6931 const gdb_byte **result_info_ptr,
6932 struct die_info **result_comp_unit_die,
6933 abbrev_table_up *result_dwo_abbrev_table)
6934 {
6935 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6936 struct objfile *objfile = dwarf2_per_objfile->objfile;
6937 struct dwarf2_cu *cu = this_cu->cu;
6938 bfd *abfd;
6939 const gdb_byte *begin_info_ptr, *info_ptr;
6940 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6941 int i,num_extra_attrs;
6942 struct dwarf2_section_info *dwo_abbrev_section;
6943 struct die_info *comp_unit_die;
6944
6945 /* At most one of these may be provided. */
6946 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6947
6948 /* These attributes aren't processed until later:
6949 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6950 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6951 referenced later. However, these attributes are found in the stub
6952 which we won't have later. In order to not impose this complication
6953 on the rest of the code, we read them here and copy them to the
6954 DWO CU/TU die. */
6955
6956 stmt_list = NULL;
6957 low_pc = NULL;
6958 high_pc = NULL;
6959 ranges = NULL;
6960 comp_dir = NULL;
6961
6962 if (stub_comp_unit_die != NULL)
6963 {
6964 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6965 DWO file. */
6966 if (! this_cu->is_debug_types)
6967 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6968 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6969 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6970 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6971 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6972
6973 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6974
6975 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6976 here (if needed). We need the value before we can process
6977 DW_AT_ranges. */
6978 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6979 }
6980 else if (stub_comp_dir != NULL)
6981 {
6982 /* Reconstruct the comp_dir attribute to simplify the code below. */
6983 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6984 comp_dir->name = DW_AT_comp_dir;
6985 comp_dir->form = DW_FORM_string;
6986 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6987 DW_STRING (comp_dir) = stub_comp_dir;
6988 }
6989
6990 /* Set up for reading the DWO CU/TU. */
6991 cu->dwo_unit = dwo_unit;
6992 dwarf2_section_info *section = dwo_unit->section;
6993 section->read (objfile);
6994 abfd = section->get_bfd_owner ();
6995 begin_info_ptr = info_ptr = (section->buffer
6996 + to_underlying (dwo_unit->sect_off));
6997 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6998
6999 if (this_cu->is_debug_types)
7000 {
7001 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7002
7003 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7004 &cu->header, section,
7005 dwo_abbrev_section,
7006 info_ptr, rcuh_kind::TYPE);
7007 /* This is not an assert because it can be caused by bad debug info. */
7008 if (sig_type->signature != cu->header.signature)
7009 {
7010 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7011 " TU at offset %s [in module %s]"),
7012 hex_string (sig_type->signature),
7013 hex_string (cu->header.signature),
7014 sect_offset_str (dwo_unit->sect_off),
7015 bfd_get_filename (abfd));
7016 }
7017 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7018 /* For DWOs coming from DWP files, we don't know the CU length
7019 nor the type's offset in the TU until now. */
7020 dwo_unit->length = get_cu_length (&cu->header);
7021 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7022
7023 /* Establish the type offset that can be used to lookup the type.
7024 For DWO files, we don't know it until now. */
7025 sig_type->type_offset_in_section
7026 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7027 }
7028 else
7029 {
7030 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7031 &cu->header, section,
7032 dwo_abbrev_section,
7033 info_ptr, rcuh_kind::COMPILE);
7034 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7035 /* For DWOs coming from DWP files, we don't know the CU length
7036 until now. */
7037 dwo_unit->length = get_cu_length (&cu->header);
7038 }
7039
7040 *result_dwo_abbrev_table
7041 = abbrev_table_read_table (objfile, dwo_abbrev_section,
7042 cu->header.abbrev_sect_off);
7043 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7044 result_dwo_abbrev_table->get ());
7045
7046 /* Read in the die, but leave space to copy over the attributes
7047 from the stub. This has the benefit of simplifying the rest of
7048 the code - all the work to maintain the illusion of a single
7049 DW_TAG_{compile,type}_unit DIE is done here. */
7050 num_extra_attrs = ((stmt_list != NULL)
7051 + (low_pc != NULL)
7052 + (high_pc != NULL)
7053 + (ranges != NULL)
7054 + (comp_dir != NULL));
7055 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7056 num_extra_attrs);
7057
7058 /* Copy over the attributes from the stub to the DIE we just read in. */
7059 comp_unit_die = *result_comp_unit_die;
7060 i = comp_unit_die->num_attrs;
7061 if (stmt_list != NULL)
7062 comp_unit_die->attrs[i++] = *stmt_list;
7063 if (low_pc != NULL)
7064 comp_unit_die->attrs[i++] = *low_pc;
7065 if (high_pc != NULL)
7066 comp_unit_die->attrs[i++] = *high_pc;
7067 if (ranges != NULL)
7068 comp_unit_die->attrs[i++] = *ranges;
7069 if (comp_dir != NULL)
7070 comp_unit_die->attrs[i++] = *comp_dir;
7071 comp_unit_die->num_attrs += num_extra_attrs;
7072
7073 if (dwarf_die_debug)
7074 {
7075 fprintf_unfiltered (gdb_stdlog,
7076 "Read die from %s@0x%x of %s:\n",
7077 section->get_name (),
7078 (unsigned) (begin_info_ptr - section->buffer),
7079 bfd_get_filename (abfd));
7080 dump_die (comp_unit_die, dwarf_die_debug);
7081 }
7082
7083 /* Skip dummy compilation units. */
7084 if (info_ptr >= begin_info_ptr + dwo_unit->length
7085 || peek_abbrev_code (abfd, info_ptr) == 0)
7086 return 0;
7087
7088 *result_info_ptr = info_ptr;
7089 return 1;
7090 }
7091
7092 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7093 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7094 signature is part of the header. */
7095 static gdb::optional<ULONGEST>
7096 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7097 {
7098 if (cu->header.version >= 5)
7099 return cu->header.signature;
7100 struct attribute *attr;
7101 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7102 if (attr == nullptr)
7103 return gdb::optional<ULONGEST> ();
7104 return DW_UNSND (attr);
7105 }
7106
7107 /* Subroutine of cutu_reader to simplify it.
7108 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7109 Returns NULL if the specified DWO unit cannot be found. */
7110
7111 static struct dwo_unit *
7112 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7113 struct die_info *comp_unit_die,
7114 const char *dwo_name)
7115 {
7116 struct dwarf2_cu *cu = this_cu->cu;
7117 struct dwo_unit *dwo_unit;
7118 const char *comp_dir;
7119
7120 gdb_assert (cu != NULL);
7121
7122 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7123 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7124 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7125
7126 if (this_cu->is_debug_types)
7127 {
7128 struct signatured_type *sig_type;
7129
7130 /* Since this_cu is the first member of struct signatured_type,
7131 we can go from a pointer to one to a pointer to the other. */
7132 sig_type = (struct signatured_type *) this_cu;
7133 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7134 }
7135 else
7136 {
7137 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7138 if (!signature.has_value ())
7139 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7140 " [in module %s]"),
7141 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7142 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7143 *signature);
7144 }
7145
7146 return dwo_unit;
7147 }
7148
7149 /* Subroutine of cutu_reader to simplify it.
7150 See it for a description of the parameters.
7151 Read a TU directly from a DWO file, bypassing the stub. */
7152
7153 void
7154 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7155 int use_existing_cu, int keep)
7156 {
7157 struct signatured_type *sig_type;
7158 struct die_reader_specs reader;
7159
7160 /* Verify we can do the following downcast, and that we have the
7161 data we need. */
7162 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7163 sig_type = (struct signatured_type *) this_cu;
7164 gdb_assert (sig_type->dwo_unit != NULL);
7165
7166 if (use_existing_cu && this_cu->cu != NULL)
7167 {
7168 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7169 /* There's no need to do the rereading_dwo_cu handling that
7170 cutu_reader does since we don't read the stub. */
7171 }
7172 else
7173 {
7174 /* If !use_existing_cu, this_cu->cu must be NULL. */
7175 gdb_assert (this_cu->cu == NULL);
7176 m_new_cu.reset (new dwarf2_cu (this_cu));
7177 }
7178
7179 /* A future optimization, if needed, would be to use an existing
7180 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7181 could share abbrev tables. */
7182
7183 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7184 NULL /* stub_comp_unit_die */,
7185 sig_type->dwo_unit->dwo_file->comp_dir,
7186 &reader, &info_ptr,
7187 &comp_unit_die,
7188 &m_dwo_abbrev_table) == 0)
7189 {
7190 /* Dummy die. */
7191 dummy_p = true;
7192 }
7193 }
7194
7195 /* Initialize a CU (or TU) and read its DIEs.
7196 If the CU defers to a DWO file, read the DWO file as well.
7197
7198 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7199 Otherwise the table specified in the comp unit header is read in and used.
7200 This is an optimization for when we already have the abbrev table.
7201
7202 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7203 Otherwise, a new CU is allocated with xmalloc.
7204
7205 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7206 read_in_chain. Otherwise the dwarf2_cu data is freed at the
7207 end. */
7208
7209 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7210 struct abbrev_table *abbrev_table,
7211 int use_existing_cu, int keep,
7212 bool skip_partial)
7213 : die_reader_specs {},
7214 m_this_cu (this_cu),
7215 m_keep (keep)
7216 {
7217 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7218 struct objfile *objfile = dwarf2_per_objfile->objfile;
7219 struct dwarf2_section_info *section = this_cu->section;
7220 bfd *abfd = section->get_bfd_owner ();
7221 struct dwarf2_cu *cu;
7222 const gdb_byte *begin_info_ptr;
7223 struct signatured_type *sig_type = NULL;
7224 struct dwarf2_section_info *abbrev_section;
7225 /* Non-zero if CU currently points to a DWO file and we need to
7226 reread it. When this happens we need to reread the skeleton die
7227 before we can reread the DWO file (this only applies to CUs, not TUs). */
7228 int rereading_dwo_cu = 0;
7229
7230 if (dwarf_die_debug)
7231 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7232 this_cu->is_debug_types ? "type" : "comp",
7233 sect_offset_str (this_cu->sect_off));
7234
7235 if (use_existing_cu)
7236 gdb_assert (keep);
7237
7238 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7239 file (instead of going through the stub), short-circuit all of this. */
7240 if (this_cu->reading_dwo_directly)
7241 {
7242 /* Narrow down the scope of possibilities to have to understand. */
7243 gdb_assert (this_cu->is_debug_types);
7244 gdb_assert (abbrev_table == NULL);
7245 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep);
7246 return;
7247 }
7248
7249 /* This is cheap if the section is already read in. */
7250 section->read (objfile);
7251
7252 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7253
7254 abbrev_section = get_abbrev_section_for_cu (this_cu);
7255
7256 if (use_existing_cu && this_cu->cu != NULL)
7257 {
7258 cu = this_cu->cu;
7259 /* If this CU is from a DWO file we need to start over, we need to
7260 refetch the attributes from the skeleton CU.
7261 This could be optimized by retrieving those attributes from when we
7262 were here the first time: the previous comp_unit_die was stored in
7263 comp_unit_obstack. But there's no data yet that we need this
7264 optimization. */
7265 if (cu->dwo_unit != NULL)
7266 rereading_dwo_cu = 1;
7267 }
7268 else
7269 {
7270 /* If !use_existing_cu, this_cu->cu must be NULL. */
7271 gdb_assert (this_cu->cu == NULL);
7272 m_new_cu.reset (new dwarf2_cu (this_cu));
7273 cu = m_new_cu.get ();
7274 }
7275
7276 /* Get the header. */
7277 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7278 {
7279 /* We already have the header, there's no need to read it in again. */
7280 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7281 }
7282 else
7283 {
7284 if (this_cu->is_debug_types)
7285 {
7286 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7287 &cu->header, section,
7288 abbrev_section, info_ptr,
7289 rcuh_kind::TYPE);
7290
7291 /* Since per_cu is the first member of struct signatured_type,
7292 we can go from a pointer to one to a pointer to the other. */
7293 sig_type = (struct signatured_type *) this_cu;
7294 gdb_assert (sig_type->signature == cu->header.signature);
7295 gdb_assert (sig_type->type_offset_in_tu
7296 == cu->header.type_cu_offset_in_tu);
7297 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7298
7299 /* LENGTH has not been set yet for type units if we're
7300 using .gdb_index. */
7301 this_cu->length = get_cu_length (&cu->header);
7302
7303 /* Establish the type offset that can be used to lookup the type. */
7304 sig_type->type_offset_in_section =
7305 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7306
7307 this_cu->dwarf_version = cu->header.version;
7308 }
7309 else
7310 {
7311 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7312 &cu->header, section,
7313 abbrev_section,
7314 info_ptr,
7315 rcuh_kind::COMPILE);
7316
7317 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7318 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7319 this_cu->dwarf_version = cu->header.version;
7320 }
7321 }
7322
7323 /* Skip dummy compilation units. */
7324 if (info_ptr >= begin_info_ptr + this_cu->length
7325 || peek_abbrev_code (abfd, info_ptr) == 0)
7326 {
7327 dummy_p = true;
7328 return;
7329 }
7330
7331 /* If we don't have them yet, read the abbrevs for this compilation unit.
7332 And if we need to read them now, make sure they're freed when we're
7333 done. */
7334 if (abbrev_table != NULL)
7335 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7336 else
7337 {
7338 m_abbrev_table_holder
7339 = abbrev_table_read_table (objfile, abbrev_section,
7340 cu->header.abbrev_sect_off);
7341 abbrev_table = m_abbrev_table_holder.get ();
7342 }
7343
7344 /* Read the top level CU/TU die. */
7345 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7346 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7347
7348 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7349 {
7350 dummy_p = true;
7351 return;
7352 }
7353
7354 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7355 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7356 table from the DWO file and pass the ownership over to us. It will be
7357 referenced from READER, so we must make sure to free it after we're done
7358 with READER.
7359
7360 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7361 DWO CU, that this test will fail (the attribute will not be present). */
7362 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7363 if (dwo_name != nullptr)
7364 {
7365 struct dwo_unit *dwo_unit;
7366 struct die_info *dwo_comp_unit_die;
7367
7368 if (comp_unit_die->has_children)
7369 {
7370 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7371 " has children (offset %s) [in module %s]"),
7372 sect_offset_str (this_cu->sect_off),
7373 bfd_get_filename (abfd));
7374 }
7375 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
7376 if (dwo_unit != NULL)
7377 {
7378 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7379 comp_unit_die, NULL,
7380 this, &info_ptr,
7381 &dwo_comp_unit_die,
7382 &m_dwo_abbrev_table) == 0)
7383 {
7384 /* Dummy die. */
7385 dummy_p = true;
7386 return;
7387 }
7388 comp_unit_die = dwo_comp_unit_die;
7389 }
7390 else
7391 {
7392 /* Yikes, we couldn't find the rest of the DIE, we only have
7393 the stub. A complaint has already been logged. There's
7394 not much more we can do except pass on the stub DIE to
7395 die_reader_func. We don't want to throw an error on bad
7396 debug info. */
7397 }
7398 }
7399 }
7400
7401 cutu_reader::~cutu_reader ()
7402 {
7403 /* Done, clean up. */
7404 if (m_new_cu != NULL && m_keep && !dummy_p)
7405 {
7406 struct dwarf2_per_objfile *dwarf2_per_objfile
7407 = m_this_cu->dwarf2_per_objfile;
7408 /* Link this CU into read_in_chain. */
7409 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7410 dwarf2_per_objfile->read_in_chain = m_this_cu;
7411 /* The chain owns it now. */
7412 m_new_cu.release ();
7413 }
7414 }
7415
7416 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7417 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7418 assumed to have already done the lookup to find the DWO file).
7419
7420 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7421 THIS_CU->is_debug_types, but nothing else.
7422
7423 We fill in THIS_CU->length.
7424
7425 THIS_CU->cu is always freed when done.
7426 This is done in order to not leave THIS_CU->cu in a state where we have
7427 to care whether it refers to the "main" CU or the DWO CU.
7428
7429 When parent_cu is passed, it is used to provide a default value for
7430 str_offsets_base and addr_base from the parent. */
7431
7432 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7433 struct dwarf2_cu *parent_cu,
7434 struct dwo_file *dwo_file)
7435 : die_reader_specs {},
7436 m_this_cu (this_cu)
7437 {
7438 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7439 struct objfile *objfile = dwarf2_per_objfile->objfile;
7440 struct dwarf2_section_info *section = this_cu->section;
7441 bfd *abfd = section->get_bfd_owner ();
7442 struct dwarf2_section_info *abbrev_section;
7443 const gdb_byte *begin_info_ptr, *info_ptr;
7444
7445 if (dwarf_die_debug)
7446 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7447 this_cu->is_debug_types ? "type" : "comp",
7448 sect_offset_str (this_cu->sect_off));
7449
7450 gdb_assert (this_cu->cu == NULL);
7451
7452 abbrev_section = (dwo_file != NULL
7453 ? &dwo_file->sections.abbrev
7454 : get_abbrev_section_for_cu (this_cu));
7455
7456 /* This is cheap if the section is already read in. */
7457 section->read (objfile);
7458
7459 m_new_cu.reset (new dwarf2_cu (this_cu));
7460
7461 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7462 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7463 &m_new_cu->header, section,
7464 abbrev_section, info_ptr,
7465 (this_cu->is_debug_types
7466 ? rcuh_kind::TYPE
7467 : rcuh_kind::COMPILE));
7468
7469 if (parent_cu != nullptr)
7470 {
7471 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7472 m_new_cu->addr_base = parent_cu->addr_base;
7473 }
7474 this_cu->length = get_cu_length (&m_new_cu->header);
7475
7476 /* Skip dummy compilation units. */
7477 if (info_ptr >= begin_info_ptr + this_cu->length
7478 || peek_abbrev_code (abfd, info_ptr) == 0)
7479 {
7480 dummy_p = true;
7481 return;
7482 }
7483
7484 m_abbrev_table_holder
7485 = abbrev_table_read_table (objfile, abbrev_section,
7486 m_new_cu->header.abbrev_sect_off);
7487
7488 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7489 m_abbrev_table_holder.get ());
7490 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7491 }
7492
7493 \f
7494 /* Type Unit Groups.
7495
7496 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7497 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7498 so that all types coming from the same compilation (.o file) are grouped
7499 together. A future step could be to put the types in the same symtab as
7500 the CU the types ultimately came from. */
7501
7502 static hashval_t
7503 hash_type_unit_group (const void *item)
7504 {
7505 const struct type_unit_group *tu_group
7506 = (const struct type_unit_group *) item;
7507
7508 return hash_stmt_list_entry (&tu_group->hash);
7509 }
7510
7511 static int
7512 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7513 {
7514 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7515 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7516
7517 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7518 }
7519
7520 /* Allocate a hash table for type unit groups. */
7521
7522 static htab_t
7523 allocate_type_unit_groups_table (struct objfile *objfile)
7524 {
7525 return htab_create_alloc_ex (3,
7526 hash_type_unit_group,
7527 eq_type_unit_group,
7528 NULL,
7529 &objfile->objfile_obstack,
7530 hashtab_obstack_allocate,
7531 dummy_obstack_deallocate);
7532 }
7533
7534 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7535 partial symtabs. We combine several TUs per psymtab to not let the size
7536 of any one psymtab grow too big. */
7537 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7538 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7539
7540 /* Helper routine for get_type_unit_group.
7541 Create the type_unit_group object used to hold one or more TUs. */
7542
7543 static struct type_unit_group *
7544 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7545 {
7546 struct dwarf2_per_objfile *dwarf2_per_objfile
7547 = cu->per_cu->dwarf2_per_objfile;
7548 struct objfile *objfile = dwarf2_per_objfile->objfile;
7549 struct dwarf2_per_cu_data *per_cu;
7550 struct type_unit_group *tu_group;
7551
7552 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7553 struct type_unit_group);
7554 per_cu = &tu_group->per_cu;
7555 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7556
7557 if (dwarf2_per_objfile->using_index)
7558 {
7559 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7560 struct dwarf2_per_cu_quick_data);
7561 }
7562 else
7563 {
7564 unsigned int line_offset = to_underlying (line_offset_struct);
7565 dwarf2_psymtab *pst;
7566 std::string name;
7567
7568 /* Give the symtab a useful name for debug purposes. */
7569 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7570 name = string_printf ("<type_units_%d>",
7571 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7572 else
7573 name = string_printf ("<type_units_at_0x%x>", line_offset);
7574
7575 pst = create_partial_symtab (per_cu, name.c_str ());
7576 pst->anonymous = true;
7577 }
7578
7579 tu_group->hash.dwo_unit = cu->dwo_unit;
7580 tu_group->hash.line_sect_off = line_offset_struct;
7581
7582 return tu_group;
7583 }
7584
7585 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7586 STMT_LIST is a DW_AT_stmt_list attribute. */
7587
7588 static struct type_unit_group *
7589 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7590 {
7591 struct dwarf2_per_objfile *dwarf2_per_objfile
7592 = cu->per_cu->dwarf2_per_objfile;
7593 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7594 struct type_unit_group *tu_group;
7595 void **slot;
7596 unsigned int line_offset;
7597 struct type_unit_group type_unit_group_for_lookup;
7598
7599 if (dwarf2_per_objfile->type_unit_groups == NULL)
7600 {
7601 dwarf2_per_objfile->type_unit_groups =
7602 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7603 }
7604
7605 /* Do we need to create a new group, or can we use an existing one? */
7606
7607 if (stmt_list)
7608 {
7609 line_offset = DW_UNSND (stmt_list);
7610 ++tu_stats->nr_symtab_sharers;
7611 }
7612 else
7613 {
7614 /* Ugh, no stmt_list. Rare, but we have to handle it.
7615 We can do various things here like create one group per TU or
7616 spread them over multiple groups to split up the expansion work.
7617 To avoid worst case scenarios (too many groups or too large groups)
7618 we, umm, group them in bunches. */
7619 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7620 | (tu_stats->nr_stmt_less_type_units
7621 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7622 ++tu_stats->nr_stmt_less_type_units;
7623 }
7624
7625 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7626 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7627 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7628 &type_unit_group_for_lookup, INSERT);
7629 if (*slot != NULL)
7630 {
7631 tu_group = (struct type_unit_group *) *slot;
7632 gdb_assert (tu_group != NULL);
7633 }
7634 else
7635 {
7636 sect_offset line_offset_struct = (sect_offset) line_offset;
7637 tu_group = create_type_unit_group (cu, line_offset_struct);
7638 *slot = tu_group;
7639 ++tu_stats->nr_symtabs;
7640 }
7641
7642 return tu_group;
7643 }
7644 \f
7645 /* Partial symbol tables. */
7646
7647 /* Create a psymtab named NAME and assign it to PER_CU.
7648
7649 The caller must fill in the following details:
7650 dirname, textlow, texthigh. */
7651
7652 static dwarf2_psymtab *
7653 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7654 {
7655 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7656 dwarf2_psymtab *pst;
7657
7658 pst = new dwarf2_psymtab (name, objfile, 0);
7659
7660 pst->psymtabs_addrmap_supported = true;
7661
7662 /* This is the glue that links PST into GDB's symbol API. */
7663 pst->per_cu_data = per_cu;
7664 per_cu->v.psymtab = pst;
7665
7666 return pst;
7667 }
7668
7669 /* DIE reader function for process_psymtab_comp_unit. */
7670
7671 static void
7672 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7673 const gdb_byte *info_ptr,
7674 struct die_info *comp_unit_die,
7675 int want_partial_unit,
7676 enum language pretend_language)
7677 {
7678 struct dwarf2_cu *cu = reader->cu;
7679 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7680 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7681 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7682 CORE_ADDR baseaddr;
7683 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7684 dwarf2_psymtab *pst;
7685 enum pc_bounds_kind cu_bounds_kind;
7686 const char *filename;
7687
7688 if (comp_unit_die->tag == DW_TAG_partial_unit && !want_partial_unit)
7689 return;
7690
7691 gdb_assert (! per_cu->is_debug_types);
7692
7693 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7694
7695 /* Allocate a new partial symbol table structure. */
7696 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7697 if (filename == NULL)
7698 filename = "";
7699
7700 pst = create_partial_symtab (per_cu, filename);
7701
7702 /* This must be done before calling dwarf2_build_include_psymtabs. */
7703 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7704
7705 baseaddr = objfile->text_section_offset ();
7706
7707 dwarf2_find_base_address (comp_unit_die, cu);
7708
7709 /* Possibly set the default values of LOWPC and HIGHPC from
7710 `DW_AT_ranges'. */
7711 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7712 &best_highpc, cu, pst);
7713 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7714 {
7715 CORE_ADDR low
7716 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7717 - baseaddr);
7718 CORE_ADDR high
7719 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7720 - baseaddr - 1);
7721 /* Store the contiguous range if it is not empty; it can be
7722 empty for CUs with no code. */
7723 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7724 low, high, pst);
7725 }
7726
7727 /* Check if comp unit has_children.
7728 If so, read the rest of the partial symbols from this comp unit.
7729 If not, there's no more debug_info for this comp unit. */
7730 if (comp_unit_die->has_children)
7731 {
7732 struct partial_die_info *first_die;
7733 CORE_ADDR lowpc, highpc;
7734
7735 lowpc = ((CORE_ADDR) -1);
7736 highpc = ((CORE_ADDR) 0);
7737
7738 first_die = load_partial_dies (reader, info_ptr, 1);
7739
7740 scan_partial_symbols (first_die, &lowpc, &highpc,
7741 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7742
7743 /* If we didn't find a lowpc, set it to highpc to avoid
7744 complaints from `maint check'. */
7745 if (lowpc == ((CORE_ADDR) -1))
7746 lowpc = highpc;
7747
7748 /* If the compilation unit didn't have an explicit address range,
7749 then use the information extracted from its child dies. */
7750 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7751 {
7752 best_lowpc = lowpc;
7753 best_highpc = highpc;
7754 }
7755 }
7756 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7757 best_lowpc + baseaddr)
7758 - baseaddr);
7759 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7760 best_highpc + baseaddr)
7761 - baseaddr);
7762
7763 end_psymtab_common (objfile, pst);
7764
7765 if (!cu->per_cu->imported_symtabs_empty ())
7766 {
7767 int i;
7768 int len = cu->per_cu->imported_symtabs_size ();
7769
7770 /* Fill in 'dependencies' here; we fill in 'users' in a
7771 post-pass. */
7772 pst->number_of_dependencies = len;
7773 pst->dependencies
7774 = objfile->partial_symtabs->allocate_dependencies (len);
7775 for (i = 0; i < len; ++i)
7776 {
7777 pst->dependencies[i]
7778 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7779 }
7780
7781 cu->per_cu->imported_symtabs_free ();
7782 }
7783
7784 /* Get the list of files included in the current compilation unit,
7785 and build a psymtab for each of them. */
7786 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7787
7788 if (dwarf_read_debug)
7789 fprintf_unfiltered (gdb_stdlog,
7790 "Psymtab for %s unit @%s: %s - %s"
7791 ", %d global, %d static syms\n",
7792 per_cu->is_debug_types ? "type" : "comp",
7793 sect_offset_str (per_cu->sect_off),
7794 paddress (gdbarch, pst->text_low (objfile)),
7795 paddress (gdbarch, pst->text_high (objfile)),
7796 pst->n_global_syms, pst->n_static_syms);
7797 }
7798
7799 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7800 Process compilation unit THIS_CU for a psymtab. */
7801
7802 static void
7803 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7804 int want_partial_unit,
7805 enum language pretend_language)
7806 {
7807 /* If this compilation unit was already read in, free the
7808 cached copy in order to read it in again. This is
7809 necessary because we skipped some symbols when we first
7810 read in the compilation unit (see load_partial_dies).
7811 This problem could be avoided, but the benefit is unclear. */
7812 if (this_cu->cu != NULL)
7813 free_one_cached_comp_unit (this_cu);
7814
7815 cutu_reader reader (this_cu, NULL, 0, 0, false);
7816
7817 if (reader.dummy_p)
7818 {
7819 /* Nothing. */
7820 }
7821 else if (this_cu->is_debug_types)
7822 build_type_psymtabs_reader (&reader, reader.info_ptr,
7823 reader.comp_unit_die);
7824 else
7825 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7826 reader.comp_unit_die,
7827 want_partial_unit,
7828 pretend_language);
7829
7830 /* Age out any secondary CUs. */
7831 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7832 }
7833
7834 /* Reader function for build_type_psymtabs. */
7835
7836 static void
7837 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7838 const gdb_byte *info_ptr,
7839 struct die_info *type_unit_die)
7840 {
7841 struct dwarf2_per_objfile *dwarf2_per_objfile
7842 = reader->cu->per_cu->dwarf2_per_objfile;
7843 struct objfile *objfile = dwarf2_per_objfile->objfile;
7844 struct dwarf2_cu *cu = reader->cu;
7845 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7846 struct signatured_type *sig_type;
7847 struct type_unit_group *tu_group;
7848 struct attribute *attr;
7849 struct partial_die_info *first_die;
7850 CORE_ADDR lowpc, highpc;
7851 dwarf2_psymtab *pst;
7852
7853 gdb_assert (per_cu->is_debug_types);
7854 sig_type = (struct signatured_type *) per_cu;
7855
7856 if (! type_unit_die->has_children)
7857 return;
7858
7859 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7860 tu_group = get_type_unit_group (cu, attr);
7861
7862 if (tu_group->tus == nullptr)
7863 tu_group->tus = new std::vector<signatured_type *>;
7864 tu_group->tus->push_back (sig_type);
7865
7866 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7867 pst = create_partial_symtab (per_cu, "");
7868 pst->anonymous = true;
7869
7870 first_die = load_partial_dies (reader, info_ptr, 1);
7871
7872 lowpc = (CORE_ADDR) -1;
7873 highpc = (CORE_ADDR) 0;
7874 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7875
7876 end_psymtab_common (objfile, pst);
7877 }
7878
7879 /* Struct used to sort TUs by their abbreviation table offset. */
7880
7881 struct tu_abbrev_offset
7882 {
7883 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7884 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7885 {}
7886
7887 signatured_type *sig_type;
7888 sect_offset abbrev_offset;
7889 };
7890
7891 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7892
7893 static bool
7894 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7895 const struct tu_abbrev_offset &b)
7896 {
7897 return a.abbrev_offset < b.abbrev_offset;
7898 }
7899
7900 /* Efficiently read all the type units.
7901 This does the bulk of the work for build_type_psymtabs.
7902
7903 The efficiency is because we sort TUs by the abbrev table they use and
7904 only read each abbrev table once. In one program there are 200K TUs
7905 sharing 8K abbrev tables.
7906
7907 The main purpose of this function is to support building the
7908 dwarf2_per_objfile->type_unit_groups table.
7909 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7910 can collapse the search space by grouping them by stmt_list.
7911 The savings can be significant, in the same program from above the 200K TUs
7912 share 8K stmt_list tables.
7913
7914 FUNC is expected to call get_type_unit_group, which will create the
7915 struct type_unit_group if necessary and add it to
7916 dwarf2_per_objfile->type_unit_groups. */
7917
7918 static void
7919 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7920 {
7921 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7922 abbrev_table_up abbrev_table;
7923 sect_offset abbrev_offset;
7924
7925 /* It's up to the caller to not call us multiple times. */
7926 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7927
7928 if (dwarf2_per_objfile->all_type_units.empty ())
7929 return;
7930
7931 /* TUs typically share abbrev tables, and there can be way more TUs than
7932 abbrev tables. Sort by abbrev table to reduce the number of times we
7933 read each abbrev table in.
7934 Alternatives are to punt or to maintain a cache of abbrev tables.
7935 This is simpler and efficient enough for now.
7936
7937 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7938 symtab to use). Typically TUs with the same abbrev offset have the same
7939 stmt_list value too so in practice this should work well.
7940
7941 The basic algorithm here is:
7942
7943 sort TUs by abbrev table
7944 for each TU with same abbrev table:
7945 read abbrev table if first user
7946 read TU top level DIE
7947 [IWBN if DWO skeletons had DW_AT_stmt_list]
7948 call FUNC */
7949
7950 if (dwarf_read_debug)
7951 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7952
7953 /* Sort in a separate table to maintain the order of all_type_units
7954 for .gdb_index: TU indices directly index all_type_units. */
7955 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7956 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7957
7958 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7959 sorted_by_abbrev.emplace_back
7960 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7961 sig_type->per_cu.section,
7962 sig_type->per_cu.sect_off));
7963
7964 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7965 sort_tu_by_abbrev_offset);
7966
7967 abbrev_offset = (sect_offset) ~(unsigned) 0;
7968
7969 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7970 {
7971 /* Switch to the next abbrev table if necessary. */
7972 if (abbrev_table == NULL
7973 || tu.abbrev_offset != abbrev_offset)
7974 {
7975 abbrev_offset = tu.abbrev_offset;
7976 abbrev_table =
7977 abbrev_table_read_table (dwarf2_per_objfile->objfile,
7978 &dwarf2_per_objfile->abbrev,
7979 abbrev_offset);
7980 ++tu_stats->nr_uniq_abbrev_tables;
7981 }
7982
7983 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7984 0, 0, false);
7985 if (!reader.dummy_p)
7986 build_type_psymtabs_reader (&reader, reader.info_ptr,
7987 reader.comp_unit_die);
7988 }
7989 }
7990
7991 /* Print collected type unit statistics. */
7992
7993 static void
7994 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7995 {
7996 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7997
7998 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7999 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8000 dwarf2_per_objfile->all_type_units.size ());
8001 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8002 tu_stats->nr_uniq_abbrev_tables);
8003 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8004 tu_stats->nr_symtabs);
8005 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8006 tu_stats->nr_symtab_sharers);
8007 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8008 tu_stats->nr_stmt_less_type_units);
8009 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8010 tu_stats->nr_all_type_units_reallocs);
8011 }
8012
8013 /* Traversal function for build_type_psymtabs. */
8014
8015 static int
8016 build_type_psymtab_dependencies (void **slot, void *info)
8017 {
8018 struct dwarf2_per_objfile *dwarf2_per_objfile
8019 = (struct dwarf2_per_objfile *) info;
8020 struct objfile *objfile = dwarf2_per_objfile->objfile;
8021 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8022 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8023 dwarf2_psymtab *pst = per_cu->v.psymtab;
8024 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8025 int i;
8026
8027 gdb_assert (len > 0);
8028 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8029
8030 pst->number_of_dependencies = len;
8031 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8032 for (i = 0; i < len; ++i)
8033 {
8034 struct signatured_type *iter = tu_group->tus->at (i);
8035 gdb_assert (iter->per_cu.is_debug_types);
8036 pst->dependencies[i] = iter->per_cu.v.psymtab;
8037 iter->type_unit_group = tu_group;
8038 }
8039
8040 delete tu_group->tus;
8041 tu_group->tus = nullptr;
8042
8043 return 1;
8044 }
8045
8046 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8047 Build partial symbol tables for the .debug_types comp-units. */
8048
8049 static void
8050 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8051 {
8052 if (! create_all_type_units (dwarf2_per_objfile))
8053 return;
8054
8055 build_type_psymtabs_1 (dwarf2_per_objfile);
8056 }
8057
8058 /* Traversal function for process_skeletonless_type_unit.
8059 Read a TU in a DWO file and build partial symbols for it. */
8060
8061 static int
8062 process_skeletonless_type_unit (void **slot, void *info)
8063 {
8064 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8065 struct dwarf2_per_objfile *dwarf2_per_objfile
8066 = (struct dwarf2_per_objfile *) info;
8067 struct signatured_type find_entry, *entry;
8068
8069 /* If this TU doesn't exist in the global table, add it and read it in. */
8070
8071 if (dwarf2_per_objfile->signatured_types == NULL)
8072 {
8073 dwarf2_per_objfile->signatured_types
8074 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8075 }
8076
8077 find_entry.signature = dwo_unit->signature;
8078 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8079 INSERT);
8080 /* If we've already seen this type there's nothing to do. What's happening
8081 is we're doing our own version of comdat-folding here. */
8082 if (*slot != NULL)
8083 return 1;
8084
8085 /* This does the job that create_all_type_units would have done for
8086 this TU. */
8087 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8088 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8089 *slot = entry;
8090
8091 /* This does the job that build_type_psymtabs_1 would have done. */
8092 cutu_reader reader (&entry->per_cu, NULL, 0, 0, false);
8093 if (!reader.dummy_p)
8094 build_type_psymtabs_reader (&reader, reader.info_ptr,
8095 reader.comp_unit_die);
8096
8097 return 1;
8098 }
8099
8100 /* Traversal function for process_skeletonless_type_units. */
8101
8102 static int
8103 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8104 {
8105 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8106
8107 if (dwo_file->tus != NULL)
8108 {
8109 htab_traverse_noresize (dwo_file->tus,
8110 process_skeletonless_type_unit, info);
8111 }
8112
8113 return 1;
8114 }
8115
8116 /* Scan all TUs of DWO files, verifying we've processed them.
8117 This is needed in case a TU was emitted without its skeleton.
8118 Note: This can't be done until we know what all the DWO files are. */
8119
8120 static void
8121 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8122 {
8123 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8124 if (get_dwp_file (dwarf2_per_objfile) == NULL
8125 && dwarf2_per_objfile->dwo_files != NULL)
8126 {
8127 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8128 process_dwo_file_for_skeletonless_type_units,
8129 dwarf2_per_objfile);
8130 }
8131 }
8132
8133 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8134
8135 static void
8136 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8137 {
8138 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8139 {
8140 dwarf2_psymtab *pst = per_cu->v.psymtab;
8141
8142 if (pst == NULL)
8143 continue;
8144
8145 for (int j = 0; j < pst->number_of_dependencies; ++j)
8146 {
8147 /* Set the 'user' field only if it is not already set. */
8148 if (pst->dependencies[j]->user == NULL)
8149 pst->dependencies[j]->user = pst;
8150 }
8151 }
8152 }
8153
8154 /* Build the partial symbol table by doing a quick pass through the
8155 .debug_info and .debug_abbrev sections. */
8156
8157 static void
8158 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8159 {
8160 struct objfile *objfile = dwarf2_per_objfile->objfile;
8161
8162 if (dwarf_read_debug)
8163 {
8164 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8165 objfile_name (objfile));
8166 }
8167
8168 dwarf2_per_objfile->reading_partial_symbols = 1;
8169
8170 dwarf2_per_objfile->info.read (objfile);
8171
8172 /* Any cached compilation units will be linked by the per-objfile
8173 read_in_chain. Make sure to free them when we're done. */
8174 free_cached_comp_units freer (dwarf2_per_objfile);
8175
8176 build_type_psymtabs (dwarf2_per_objfile);
8177
8178 create_all_comp_units (dwarf2_per_objfile);
8179
8180 /* Create a temporary address map on a temporary obstack. We later
8181 copy this to the final obstack. */
8182 auto_obstack temp_obstack;
8183
8184 scoped_restore save_psymtabs_addrmap
8185 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8186 addrmap_create_mutable (&temp_obstack));
8187
8188 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8189 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8190
8191 /* This has to wait until we read the CUs, we need the list of DWOs. */
8192 process_skeletonless_type_units (dwarf2_per_objfile);
8193
8194 /* Now that all TUs have been processed we can fill in the dependencies. */
8195 if (dwarf2_per_objfile->type_unit_groups != NULL)
8196 {
8197 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8198 build_type_psymtab_dependencies, dwarf2_per_objfile);
8199 }
8200
8201 if (dwarf_read_debug)
8202 print_tu_stats (dwarf2_per_objfile);
8203
8204 set_partial_user (dwarf2_per_objfile);
8205
8206 objfile->partial_symtabs->psymtabs_addrmap
8207 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8208 objfile->partial_symtabs->obstack ());
8209 /* At this point we want to keep the address map. */
8210 save_psymtabs_addrmap.release ();
8211
8212 if (dwarf_read_debug)
8213 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8214 objfile_name (objfile));
8215 }
8216
8217 /* Load the partial DIEs for a secondary CU into memory.
8218 This is also used when rereading a primary CU with load_all_dies. */
8219
8220 static void
8221 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8222 {
8223 cutu_reader reader (this_cu, NULL, 1, 1, false);
8224
8225 if (!reader.dummy_p)
8226 {
8227 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8228 language_minimal);
8229
8230 /* Check if comp unit has_children.
8231 If so, read the rest of the partial symbols from this comp unit.
8232 If not, there's no more debug_info for this comp unit. */
8233 if (reader.comp_unit_die->has_children)
8234 load_partial_dies (&reader, reader.info_ptr, 0);
8235 }
8236 }
8237
8238 static void
8239 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8240 struct dwarf2_section_info *section,
8241 struct dwarf2_section_info *abbrev_section,
8242 unsigned int is_dwz)
8243 {
8244 const gdb_byte *info_ptr;
8245 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246
8247 if (dwarf_read_debug)
8248 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8249 section->get_name (),
8250 section->get_file_name ());
8251
8252 section->read (objfile);
8253
8254 info_ptr = section->buffer;
8255
8256 while (info_ptr < section->buffer + section->size)
8257 {
8258 struct dwarf2_per_cu_data *this_cu;
8259
8260 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8261
8262 comp_unit_head cu_header;
8263 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8264 abbrev_section, info_ptr,
8265 rcuh_kind::COMPILE);
8266
8267 /* Save the compilation unit for later lookup. */
8268 if (cu_header.unit_type != DW_UT_type)
8269 {
8270 this_cu = XOBNEW (&objfile->objfile_obstack,
8271 struct dwarf2_per_cu_data);
8272 memset (this_cu, 0, sizeof (*this_cu));
8273 }
8274 else
8275 {
8276 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8277 struct signatured_type);
8278 memset (sig_type, 0, sizeof (*sig_type));
8279 sig_type->signature = cu_header.signature;
8280 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8281 this_cu = &sig_type->per_cu;
8282 }
8283 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8284 this_cu->sect_off = sect_off;
8285 this_cu->length = cu_header.length + cu_header.initial_length_size;
8286 this_cu->is_dwz = is_dwz;
8287 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8288 this_cu->section = section;
8289
8290 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8291
8292 info_ptr = info_ptr + this_cu->length;
8293 }
8294 }
8295
8296 /* Create a list of all compilation units in OBJFILE.
8297 This is only done for -readnow and building partial symtabs. */
8298
8299 static void
8300 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8301 {
8302 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8303 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8304 &dwarf2_per_objfile->abbrev, 0);
8305
8306 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8307 if (dwz != NULL)
8308 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8309 1);
8310 }
8311
8312 /* Process all loaded DIEs for compilation unit CU, starting at
8313 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8314 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8315 DW_AT_ranges). See the comments of add_partial_subprogram on how
8316 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8317
8318 static void
8319 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8320 CORE_ADDR *highpc, int set_addrmap,
8321 struct dwarf2_cu *cu)
8322 {
8323 struct partial_die_info *pdi;
8324
8325 /* Now, march along the PDI's, descending into ones which have
8326 interesting children but skipping the children of the other ones,
8327 until we reach the end of the compilation unit. */
8328
8329 pdi = first_die;
8330
8331 while (pdi != NULL)
8332 {
8333 pdi->fixup (cu);
8334
8335 /* Anonymous namespaces or modules have no name but have interesting
8336 children, so we need to look at them. Ditto for anonymous
8337 enums. */
8338
8339 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8340 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8341 || pdi->tag == DW_TAG_imported_unit
8342 || pdi->tag == DW_TAG_inlined_subroutine)
8343 {
8344 switch (pdi->tag)
8345 {
8346 case DW_TAG_subprogram:
8347 case DW_TAG_inlined_subroutine:
8348 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8349 break;
8350 case DW_TAG_constant:
8351 case DW_TAG_variable:
8352 case DW_TAG_typedef:
8353 case DW_TAG_union_type:
8354 if (!pdi->is_declaration)
8355 {
8356 add_partial_symbol (pdi, cu);
8357 }
8358 break;
8359 case DW_TAG_class_type:
8360 case DW_TAG_interface_type:
8361 case DW_TAG_structure_type:
8362 if (!pdi->is_declaration)
8363 {
8364 add_partial_symbol (pdi, cu);
8365 }
8366 if ((cu->language == language_rust
8367 || cu->language == language_cplus) && pdi->has_children)
8368 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8369 set_addrmap, cu);
8370 break;
8371 case DW_TAG_enumeration_type:
8372 if (!pdi->is_declaration)
8373 add_partial_enumeration (pdi, cu);
8374 break;
8375 case DW_TAG_base_type:
8376 case DW_TAG_subrange_type:
8377 /* File scope base type definitions are added to the partial
8378 symbol table. */
8379 add_partial_symbol (pdi, cu);
8380 break;
8381 case DW_TAG_namespace:
8382 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8383 break;
8384 case DW_TAG_module:
8385 if (!pdi->is_declaration)
8386 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8387 break;
8388 case DW_TAG_imported_unit:
8389 {
8390 struct dwarf2_per_cu_data *per_cu;
8391
8392 /* For now we don't handle imported units in type units. */
8393 if (cu->per_cu->is_debug_types)
8394 {
8395 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8396 " supported in type units [in module %s]"),
8397 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8398 }
8399
8400 per_cu = dwarf2_find_containing_comp_unit
8401 (pdi->d.sect_off, pdi->is_dwz,
8402 cu->per_cu->dwarf2_per_objfile);
8403
8404 /* Go read the partial unit, if needed. */
8405 if (per_cu->v.psymtab == NULL)
8406 process_psymtab_comp_unit (per_cu, 1, cu->language);
8407
8408 cu->per_cu->imported_symtabs_push (per_cu);
8409 }
8410 break;
8411 case DW_TAG_imported_declaration:
8412 add_partial_symbol (pdi, cu);
8413 break;
8414 default:
8415 break;
8416 }
8417 }
8418
8419 /* If the die has a sibling, skip to the sibling. */
8420
8421 pdi = pdi->die_sibling;
8422 }
8423 }
8424
8425 /* Functions used to compute the fully scoped name of a partial DIE.
8426
8427 Normally, this is simple. For C++, the parent DIE's fully scoped
8428 name is concatenated with "::" and the partial DIE's name.
8429 Enumerators are an exception; they use the scope of their parent
8430 enumeration type, i.e. the name of the enumeration type is not
8431 prepended to the enumerator.
8432
8433 There are two complexities. One is DW_AT_specification; in this
8434 case "parent" means the parent of the target of the specification,
8435 instead of the direct parent of the DIE. The other is compilers
8436 which do not emit DW_TAG_namespace; in this case we try to guess
8437 the fully qualified name of structure types from their members'
8438 linkage names. This must be done using the DIE's children rather
8439 than the children of any DW_AT_specification target. We only need
8440 to do this for structures at the top level, i.e. if the target of
8441 any DW_AT_specification (if any; otherwise the DIE itself) does not
8442 have a parent. */
8443
8444 /* Compute the scope prefix associated with PDI's parent, in
8445 compilation unit CU. The result will be allocated on CU's
8446 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8447 field. NULL is returned if no prefix is necessary. */
8448 static const char *
8449 partial_die_parent_scope (struct partial_die_info *pdi,
8450 struct dwarf2_cu *cu)
8451 {
8452 const char *grandparent_scope;
8453 struct partial_die_info *parent, *real_pdi;
8454
8455 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8456 then this means the parent of the specification DIE. */
8457
8458 real_pdi = pdi;
8459 while (real_pdi->has_specification)
8460 {
8461 auto res = find_partial_die (real_pdi->spec_offset,
8462 real_pdi->spec_is_dwz, cu);
8463 real_pdi = res.pdi;
8464 cu = res.cu;
8465 }
8466
8467 parent = real_pdi->die_parent;
8468 if (parent == NULL)
8469 return NULL;
8470
8471 if (parent->scope_set)
8472 return parent->scope;
8473
8474 parent->fixup (cu);
8475
8476 grandparent_scope = partial_die_parent_scope (parent, cu);
8477
8478 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8479 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8480 Work around this problem here. */
8481 if (cu->language == language_cplus
8482 && parent->tag == DW_TAG_namespace
8483 && strcmp (parent->name, "::") == 0
8484 && grandparent_scope == NULL)
8485 {
8486 parent->scope = NULL;
8487 parent->scope_set = 1;
8488 return NULL;
8489 }
8490
8491 /* Nested subroutines in Fortran get a prefix. */
8492 if (pdi->tag == DW_TAG_enumerator)
8493 /* Enumerators should not get the name of the enumeration as a prefix. */
8494 parent->scope = grandparent_scope;
8495 else if (parent->tag == DW_TAG_namespace
8496 || parent->tag == DW_TAG_module
8497 || parent->tag == DW_TAG_structure_type
8498 || parent->tag == DW_TAG_class_type
8499 || parent->tag == DW_TAG_interface_type
8500 || parent->tag == DW_TAG_union_type
8501 || parent->tag == DW_TAG_enumeration_type
8502 || (cu->language == language_fortran
8503 && parent->tag == DW_TAG_subprogram
8504 && pdi->tag == DW_TAG_subprogram))
8505 {
8506 if (grandparent_scope == NULL)
8507 parent->scope = parent->name;
8508 else
8509 parent->scope = typename_concat (&cu->comp_unit_obstack,
8510 grandparent_scope,
8511 parent->name, 0, cu);
8512 }
8513 else
8514 {
8515 /* FIXME drow/2004-04-01: What should we be doing with
8516 function-local names? For partial symbols, we should probably be
8517 ignoring them. */
8518 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8519 dwarf_tag_name (parent->tag),
8520 sect_offset_str (pdi->sect_off));
8521 parent->scope = grandparent_scope;
8522 }
8523
8524 parent->scope_set = 1;
8525 return parent->scope;
8526 }
8527
8528 /* Return the fully scoped name associated with PDI, from compilation unit
8529 CU. The result will be allocated with malloc. */
8530
8531 static gdb::unique_xmalloc_ptr<char>
8532 partial_die_full_name (struct partial_die_info *pdi,
8533 struct dwarf2_cu *cu)
8534 {
8535 const char *parent_scope;
8536
8537 /* If this is a template instantiation, we can not work out the
8538 template arguments from partial DIEs. So, unfortunately, we have
8539 to go through the full DIEs. At least any work we do building
8540 types here will be reused if full symbols are loaded later. */
8541 if (pdi->has_template_arguments)
8542 {
8543 pdi->fixup (cu);
8544
8545 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8546 {
8547 struct die_info *die;
8548 struct attribute attr;
8549 struct dwarf2_cu *ref_cu = cu;
8550
8551 /* DW_FORM_ref_addr is using section offset. */
8552 attr.name = (enum dwarf_attribute) 0;
8553 attr.form = DW_FORM_ref_addr;
8554 attr.u.unsnd = to_underlying (pdi->sect_off);
8555 die = follow_die_ref (NULL, &attr, &ref_cu);
8556
8557 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8558 }
8559 }
8560
8561 parent_scope = partial_die_parent_scope (pdi, cu);
8562 if (parent_scope == NULL)
8563 return NULL;
8564 else
8565 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8566 pdi->name, 0, cu));
8567 }
8568
8569 static void
8570 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8571 {
8572 struct dwarf2_per_objfile *dwarf2_per_objfile
8573 = cu->per_cu->dwarf2_per_objfile;
8574 struct objfile *objfile = dwarf2_per_objfile->objfile;
8575 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8576 CORE_ADDR addr = 0;
8577 const char *actual_name = NULL;
8578 CORE_ADDR baseaddr;
8579
8580 baseaddr = objfile->text_section_offset ();
8581
8582 gdb::unique_xmalloc_ptr<char> built_actual_name
8583 = partial_die_full_name (pdi, cu);
8584 if (built_actual_name != NULL)
8585 actual_name = built_actual_name.get ();
8586
8587 if (actual_name == NULL)
8588 actual_name = pdi->name;
8589
8590 switch (pdi->tag)
8591 {
8592 case DW_TAG_inlined_subroutine:
8593 case DW_TAG_subprogram:
8594 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8595 - baseaddr);
8596 if (pdi->is_external
8597 || cu->language == language_ada
8598 || (cu->language == language_fortran
8599 && pdi->die_parent != NULL
8600 && pdi->die_parent->tag == DW_TAG_subprogram))
8601 {
8602 /* Normally, only "external" DIEs are part of the global scope.
8603 But in Ada and Fortran, we want to be able to access nested
8604 procedures globally. So all Ada and Fortran subprograms are
8605 stored in the global scope. */
8606 add_psymbol_to_list (actual_name,
8607 built_actual_name != NULL,
8608 VAR_DOMAIN, LOC_BLOCK,
8609 SECT_OFF_TEXT (objfile),
8610 psymbol_placement::GLOBAL,
8611 addr,
8612 cu->language, objfile);
8613 }
8614 else
8615 {
8616 add_psymbol_to_list (actual_name,
8617 built_actual_name != NULL,
8618 VAR_DOMAIN, LOC_BLOCK,
8619 SECT_OFF_TEXT (objfile),
8620 psymbol_placement::STATIC,
8621 addr, cu->language, objfile);
8622 }
8623
8624 if (pdi->main_subprogram && actual_name != NULL)
8625 set_objfile_main_name (objfile, actual_name, cu->language);
8626 break;
8627 case DW_TAG_constant:
8628 add_psymbol_to_list (actual_name,
8629 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8630 -1, (pdi->is_external
8631 ? psymbol_placement::GLOBAL
8632 : psymbol_placement::STATIC),
8633 0, cu->language, objfile);
8634 break;
8635 case DW_TAG_variable:
8636 if (pdi->d.locdesc)
8637 addr = decode_locdesc (pdi->d.locdesc, cu);
8638
8639 if (pdi->d.locdesc
8640 && addr == 0
8641 && !dwarf2_per_objfile->has_section_at_zero)
8642 {
8643 /* A global or static variable may also have been stripped
8644 out by the linker if unused, in which case its address
8645 will be nullified; do not add such variables into partial
8646 symbol table then. */
8647 }
8648 else if (pdi->is_external)
8649 {
8650 /* Global Variable.
8651 Don't enter into the minimal symbol tables as there is
8652 a minimal symbol table entry from the ELF symbols already.
8653 Enter into partial symbol table if it has a location
8654 descriptor or a type.
8655 If the location descriptor is missing, new_symbol will create
8656 a LOC_UNRESOLVED symbol, the address of the variable will then
8657 be determined from the minimal symbol table whenever the variable
8658 is referenced.
8659 The address for the partial symbol table entry is not
8660 used by GDB, but it comes in handy for debugging partial symbol
8661 table building. */
8662
8663 if (pdi->d.locdesc || pdi->has_type)
8664 add_psymbol_to_list (actual_name,
8665 built_actual_name != NULL,
8666 VAR_DOMAIN, LOC_STATIC,
8667 SECT_OFF_TEXT (objfile),
8668 psymbol_placement::GLOBAL,
8669 addr, cu->language, objfile);
8670 }
8671 else
8672 {
8673 int has_loc = pdi->d.locdesc != NULL;
8674
8675 /* Static Variable. Skip symbols whose value we cannot know (those
8676 without location descriptors or constant values). */
8677 if (!has_loc && !pdi->has_const_value)
8678 return;
8679
8680 add_psymbol_to_list (actual_name,
8681 built_actual_name != NULL,
8682 VAR_DOMAIN, LOC_STATIC,
8683 SECT_OFF_TEXT (objfile),
8684 psymbol_placement::STATIC,
8685 has_loc ? addr : 0,
8686 cu->language, objfile);
8687 }
8688 break;
8689 case DW_TAG_typedef:
8690 case DW_TAG_base_type:
8691 case DW_TAG_subrange_type:
8692 add_psymbol_to_list (actual_name,
8693 built_actual_name != NULL,
8694 VAR_DOMAIN, LOC_TYPEDEF, -1,
8695 psymbol_placement::STATIC,
8696 0, cu->language, objfile);
8697 break;
8698 case DW_TAG_imported_declaration:
8699 case DW_TAG_namespace:
8700 add_psymbol_to_list (actual_name,
8701 built_actual_name != NULL,
8702 VAR_DOMAIN, LOC_TYPEDEF, -1,
8703 psymbol_placement::GLOBAL,
8704 0, cu->language, objfile);
8705 break;
8706 case DW_TAG_module:
8707 /* With Fortran 77 there might be a "BLOCK DATA" module
8708 available without any name. If so, we skip the module as it
8709 doesn't bring any value. */
8710 if (actual_name != nullptr)
8711 add_psymbol_to_list (actual_name,
8712 built_actual_name != NULL,
8713 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8714 psymbol_placement::GLOBAL,
8715 0, cu->language, objfile);
8716 break;
8717 case DW_TAG_class_type:
8718 case DW_TAG_interface_type:
8719 case DW_TAG_structure_type:
8720 case DW_TAG_union_type:
8721 case DW_TAG_enumeration_type:
8722 /* Skip external references. The DWARF standard says in the section
8723 about "Structure, Union, and Class Type Entries": "An incomplete
8724 structure, union or class type is represented by a structure,
8725 union or class entry that does not have a byte size attribute
8726 and that has a DW_AT_declaration attribute." */
8727 if (!pdi->has_byte_size && pdi->is_declaration)
8728 return;
8729
8730 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8731 static vs. global. */
8732 add_psymbol_to_list (actual_name,
8733 built_actual_name != NULL,
8734 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8735 cu->language == language_cplus
8736 ? psymbol_placement::GLOBAL
8737 : psymbol_placement::STATIC,
8738 0, cu->language, objfile);
8739
8740 break;
8741 case DW_TAG_enumerator:
8742 add_psymbol_to_list (actual_name,
8743 built_actual_name != NULL,
8744 VAR_DOMAIN, LOC_CONST, -1,
8745 cu->language == language_cplus
8746 ? psymbol_placement::GLOBAL
8747 : psymbol_placement::STATIC,
8748 0, cu->language, objfile);
8749 break;
8750 default:
8751 break;
8752 }
8753 }
8754
8755 /* Read a partial die corresponding to a namespace; also, add a symbol
8756 corresponding to that namespace to the symbol table. NAMESPACE is
8757 the name of the enclosing namespace. */
8758
8759 static void
8760 add_partial_namespace (struct partial_die_info *pdi,
8761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8762 int set_addrmap, struct dwarf2_cu *cu)
8763 {
8764 /* Add a symbol for the namespace. */
8765
8766 add_partial_symbol (pdi, cu);
8767
8768 /* Now scan partial symbols in that namespace. */
8769
8770 if (pdi->has_children)
8771 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8772 }
8773
8774 /* Read a partial die corresponding to a Fortran module. */
8775
8776 static void
8777 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8778 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8779 {
8780 /* Add a symbol for the namespace. */
8781
8782 add_partial_symbol (pdi, cu);
8783
8784 /* Now scan partial symbols in that module. */
8785
8786 if (pdi->has_children)
8787 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8788 }
8789
8790 /* Read a partial die corresponding to a subprogram or an inlined
8791 subprogram and create a partial symbol for that subprogram.
8792 When the CU language allows it, this routine also defines a partial
8793 symbol for each nested subprogram that this subprogram contains.
8794 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8795 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8796
8797 PDI may also be a lexical block, in which case we simply search
8798 recursively for subprograms defined inside that lexical block.
8799 Again, this is only performed when the CU language allows this
8800 type of definitions. */
8801
8802 static void
8803 add_partial_subprogram (struct partial_die_info *pdi,
8804 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8805 int set_addrmap, struct dwarf2_cu *cu)
8806 {
8807 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8808 {
8809 if (pdi->has_pc_info)
8810 {
8811 if (pdi->lowpc < *lowpc)
8812 *lowpc = pdi->lowpc;
8813 if (pdi->highpc > *highpc)
8814 *highpc = pdi->highpc;
8815 if (set_addrmap)
8816 {
8817 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8819 CORE_ADDR baseaddr;
8820 CORE_ADDR this_highpc;
8821 CORE_ADDR this_lowpc;
8822
8823 baseaddr = objfile->text_section_offset ();
8824 this_lowpc
8825 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8826 pdi->lowpc + baseaddr)
8827 - baseaddr);
8828 this_highpc
8829 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8830 pdi->highpc + baseaddr)
8831 - baseaddr);
8832 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8833 this_lowpc, this_highpc - 1,
8834 cu->per_cu->v.psymtab);
8835 }
8836 }
8837
8838 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8839 {
8840 if (!pdi->is_declaration)
8841 /* Ignore subprogram DIEs that do not have a name, they are
8842 illegal. Do not emit a complaint at this point, we will
8843 do so when we convert this psymtab into a symtab. */
8844 if (pdi->name)
8845 add_partial_symbol (pdi, cu);
8846 }
8847 }
8848
8849 if (! pdi->has_children)
8850 return;
8851
8852 if (cu->language == language_ada || cu->language == language_fortran)
8853 {
8854 pdi = pdi->die_child;
8855 while (pdi != NULL)
8856 {
8857 pdi->fixup (cu);
8858 if (pdi->tag == DW_TAG_subprogram
8859 || pdi->tag == DW_TAG_inlined_subroutine
8860 || pdi->tag == DW_TAG_lexical_block)
8861 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8862 pdi = pdi->die_sibling;
8863 }
8864 }
8865 }
8866
8867 /* Read a partial die corresponding to an enumeration type. */
8868
8869 static void
8870 add_partial_enumeration (struct partial_die_info *enum_pdi,
8871 struct dwarf2_cu *cu)
8872 {
8873 struct partial_die_info *pdi;
8874
8875 if (enum_pdi->name != NULL)
8876 add_partial_symbol (enum_pdi, cu);
8877
8878 pdi = enum_pdi->die_child;
8879 while (pdi)
8880 {
8881 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8882 complaint (_("malformed enumerator DIE ignored"));
8883 else
8884 add_partial_symbol (pdi, cu);
8885 pdi = pdi->die_sibling;
8886 }
8887 }
8888
8889 /* Return the initial uleb128 in the die at INFO_PTR. */
8890
8891 static unsigned int
8892 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8893 {
8894 unsigned int bytes_read;
8895
8896 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8897 }
8898
8899 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8900 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8901
8902 Return the corresponding abbrev, or NULL if the number is zero (indicating
8903 an empty DIE). In either case *BYTES_READ will be set to the length of
8904 the initial number. */
8905
8906 static struct abbrev_info *
8907 peek_die_abbrev (const die_reader_specs &reader,
8908 const gdb_byte *info_ptr, unsigned int *bytes_read)
8909 {
8910 dwarf2_cu *cu = reader.cu;
8911 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8912 unsigned int abbrev_number
8913 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8914
8915 if (abbrev_number == 0)
8916 return NULL;
8917
8918 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8919 if (!abbrev)
8920 {
8921 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8922 " at offset %s [in module %s]"),
8923 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8924 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8925 }
8926
8927 return abbrev;
8928 }
8929
8930 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8931 Returns a pointer to the end of a series of DIEs, terminated by an empty
8932 DIE. Any children of the skipped DIEs will also be skipped. */
8933
8934 static const gdb_byte *
8935 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8936 {
8937 while (1)
8938 {
8939 unsigned int bytes_read;
8940 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8941
8942 if (abbrev == NULL)
8943 return info_ptr + bytes_read;
8944 else
8945 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8946 }
8947 }
8948
8949 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8950 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8951 abbrev corresponding to that skipped uleb128 should be passed in
8952 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8953 children. */
8954
8955 static const gdb_byte *
8956 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8957 struct abbrev_info *abbrev)
8958 {
8959 unsigned int bytes_read;
8960 struct attribute attr;
8961 bfd *abfd = reader->abfd;
8962 struct dwarf2_cu *cu = reader->cu;
8963 const gdb_byte *buffer = reader->buffer;
8964 const gdb_byte *buffer_end = reader->buffer_end;
8965 unsigned int form, i;
8966
8967 for (i = 0; i < abbrev->num_attrs; i++)
8968 {
8969 /* The only abbrev we care about is DW_AT_sibling. */
8970 if (abbrev->attrs[i].name == DW_AT_sibling)
8971 {
8972 bool ignored;
8973 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8974 &ignored);
8975 if (attr.form == DW_FORM_ref_addr)
8976 complaint (_("ignoring absolute DW_AT_sibling"));
8977 else
8978 {
8979 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8980 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8981
8982 if (sibling_ptr < info_ptr)
8983 complaint (_("DW_AT_sibling points backwards"));
8984 else if (sibling_ptr > reader->buffer_end)
8985 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8986 else
8987 return sibling_ptr;
8988 }
8989 }
8990
8991 /* If it isn't DW_AT_sibling, skip this attribute. */
8992 form = abbrev->attrs[i].form;
8993 skip_attribute:
8994 switch (form)
8995 {
8996 case DW_FORM_ref_addr:
8997 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8998 and later it is offset sized. */
8999 if (cu->header.version == 2)
9000 info_ptr += cu->header.addr_size;
9001 else
9002 info_ptr += cu->header.offset_size;
9003 break;
9004 case DW_FORM_GNU_ref_alt:
9005 info_ptr += cu->header.offset_size;
9006 break;
9007 case DW_FORM_addr:
9008 info_ptr += cu->header.addr_size;
9009 break;
9010 case DW_FORM_data1:
9011 case DW_FORM_ref1:
9012 case DW_FORM_flag:
9013 case DW_FORM_strx1:
9014 info_ptr += 1;
9015 break;
9016 case DW_FORM_flag_present:
9017 case DW_FORM_implicit_const:
9018 break;
9019 case DW_FORM_data2:
9020 case DW_FORM_ref2:
9021 case DW_FORM_strx2:
9022 info_ptr += 2;
9023 break;
9024 case DW_FORM_strx3:
9025 info_ptr += 3;
9026 break;
9027 case DW_FORM_data4:
9028 case DW_FORM_ref4:
9029 case DW_FORM_strx4:
9030 info_ptr += 4;
9031 break;
9032 case DW_FORM_data8:
9033 case DW_FORM_ref8:
9034 case DW_FORM_ref_sig8:
9035 info_ptr += 8;
9036 break;
9037 case DW_FORM_data16:
9038 info_ptr += 16;
9039 break;
9040 case DW_FORM_string:
9041 read_direct_string (abfd, info_ptr, &bytes_read);
9042 info_ptr += bytes_read;
9043 break;
9044 case DW_FORM_sec_offset:
9045 case DW_FORM_strp:
9046 case DW_FORM_GNU_strp_alt:
9047 info_ptr += cu->header.offset_size;
9048 break;
9049 case DW_FORM_exprloc:
9050 case DW_FORM_block:
9051 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9052 info_ptr += bytes_read;
9053 break;
9054 case DW_FORM_block1:
9055 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9056 break;
9057 case DW_FORM_block2:
9058 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9059 break;
9060 case DW_FORM_block4:
9061 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9062 break;
9063 case DW_FORM_addrx:
9064 case DW_FORM_strx:
9065 case DW_FORM_sdata:
9066 case DW_FORM_udata:
9067 case DW_FORM_ref_udata:
9068 case DW_FORM_GNU_addr_index:
9069 case DW_FORM_GNU_str_index:
9070 case DW_FORM_rnglistx:
9071 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9072 break;
9073 case DW_FORM_indirect:
9074 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9075 info_ptr += bytes_read;
9076 /* We need to continue parsing from here, so just go back to
9077 the top. */
9078 goto skip_attribute;
9079
9080 default:
9081 error (_("Dwarf Error: Cannot handle %s "
9082 "in DWARF reader [in module %s]"),
9083 dwarf_form_name (form),
9084 bfd_get_filename (abfd));
9085 }
9086 }
9087
9088 if (abbrev->has_children)
9089 return skip_children (reader, info_ptr);
9090 else
9091 return info_ptr;
9092 }
9093
9094 /* Locate ORIG_PDI's sibling.
9095 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9096
9097 static const gdb_byte *
9098 locate_pdi_sibling (const struct die_reader_specs *reader,
9099 struct partial_die_info *orig_pdi,
9100 const gdb_byte *info_ptr)
9101 {
9102 /* Do we know the sibling already? */
9103
9104 if (orig_pdi->sibling)
9105 return orig_pdi->sibling;
9106
9107 /* Are there any children to deal with? */
9108
9109 if (!orig_pdi->has_children)
9110 return info_ptr;
9111
9112 /* Skip the children the long way. */
9113
9114 return skip_children (reader, info_ptr);
9115 }
9116
9117 /* Expand this partial symbol table into a full symbol table. SELF is
9118 not NULL. */
9119
9120 void
9121 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9122 {
9123 struct dwarf2_per_objfile *dwarf2_per_objfile
9124 = get_dwarf2_per_objfile (objfile);
9125
9126 gdb_assert (!readin);
9127 /* If this psymtab is constructed from a debug-only objfile, the
9128 has_section_at_zero flag will not necessarily be correct. We
9129 can get the correct value for this flag by looking at the data
9130 associated with the (presumably stripped) associated objfile. */
9131 if (objfile->separate_debug_objfile_backlink)
9132 {
9133 struct dwarf2_per_objfile *dpo_backlink
9134 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9135
9136 dwarf2_per_objfile->has_section_at_zero
9137 = dpo_backlink->has_section_at_zero;
9138 }
9139
9140 dwarf2_per_objfile->reading_partial_symbols = 0;
9141
9142 expand_psymtab (objfile);
9143
9144 process_cu_includes (dwarf2_per_objfile);
9145 }
9146 \f
9147 /* Reading in full CUs. */
9148
9149 /* Add PER_CU to the queue. */
9150
9151 static void
9152 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9153 enum language pretend_language)
9154 {
9155 per_cu->queued = 1;
9156 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
9157 }
9158
9159 /* If PER_CU is not yet queued, add it to the queue.
9160 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9161 dependency.
9162 The result is non-zero if PER_CU was queued, otherwise the result is zero
9163 meaning either PER_CU is already queued or it is already loaded.
9164
9165 N.B. There is an invariant here that if a CU is queued then it is loaded.
9166 The caller is required to load PER_CU if we return non-zero. */
9167
9168 static int
9169 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9170 struct dwarf2_per_cu_data *per_cu,
9171 enum language pretend_language)
9172 {
9173 /* We may arrive here during partial symbol reading, if we need full
9174 DIEs to process an unusual case (e.g. template arguments). Do
9175 not queue PER_CU, just tell our caller to load its DIEs. */
9176 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9177 {
9178 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9179 return 1;
9180 return 0;
9181 }
9182
9183 /* Mark the dependence relation so that we don't flush PER_CU
9184 too early. */
9185 if (dependent_cu != NULL)
9186 dwarf2_add_dependence (dependent_cu, per_cu);
9187
9188 /* If it's already on the queue, we have nothing to do. */
9189 if (per_cu->queued)
9190 return 0;
9191
9192 /* If the compilation unit is already loaded, just mark it as
9193 used. */
9194 if (per_cu->cu != NULL)
9195 {
9196 per_cu->cu->last_used = 0;
9197 return 0;
9198 }
9199
9200 /* Add it to the queue. */
9201 queue_comp_unit (per_cu, pretend_language);
9202
9203 return 1;
9204 }
9205
9206 /* Process the queue. */
9207
9208 static void
9209 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9210 {
9211 if (dwarf_read_debug)
9212 {
9213 fprintf_unfiltered (gdb_stdlog,
9214 "Expanding one or more symtabs of objfile %s ...\n",
9215 objfile_name (dwarf2_per_objfile->objfile));
9216 }
9217
9218 /* The queue starts out with one item, but following a DIE reference
9219 may load a new CU, adding it to the end of the queue. */
9220 while (!dwarf2_per_objfile->queue.empty ())
9221 {
9222 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
9223
9224 if ((dwarf2_per_objfile->using_index
9225 ? !item.per_cu->v.quick->compunit_symtab
9226 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
9227 /* Skip dummy CUs. */
9228 && item.per_cu->cu != NULL)
9229 {
9230 struct dwarf2_per_cu_data *per_cu = item.per_cu;
9231 unsigned int debug_print_threshold;
9232 char buf[100];
9233
9234 if (per_cu->is_debug_types)
9235 {
9236 struct signatured_type *sig_type =
9237 (struct signatured_type *) per_cu;
9238
9239 sprintf (buf, "TU %s at offset %s",
9240 hex_string (sig_type->signature),
9241 sect_offset_str (per_cu->sect_off));
9242 /* There can be 100s of TUs.
9243 Only print them in verbose mode. */
9244 debug_print_threshold = 2;
9245 }
9246 else
9247 {
9248 sprintf (buf, "CU at offset %s",
9249 sect_offset_str (per_cu->sect_off));
9250 debug_print_threshold = 1;
9251 }
9252
9253 if (dwarf_read_debug >= debug_print_threshold)
9254 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9255
9256 if (per_cu->is_debug_types)
9257 process_full_type_unit (per_cu, item.pretend_language);
9258 else
9259 process_full_comp_unit (per_cu, item.pretend_language);
9260
9261 if (dwarf_read_debug >= debug_print_threshold)
9262 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9263 }
9264
9265 item.per_cu->queued = 0;
9266 dwarf2_per_objfile->queue.pop ();
9267 }
9268
9269 if (dwarf_read_debug)
9270 {
9271 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9272 objfile_name (dwarf2_per_objfile->objfile));
9273 }
9274 }
9275
9276 /* Read in full symbols for PST, and anything it depends on. */
9277
9278 void
9279 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9280 {
9281 struct dwarf2_per_cu_data *per_cu;
9282
9283 if (readin)
9284 return;
9285
9286 read_dependencies (objfile);
9287
9288 per_cu = per_cu_data;
9289
9290 if (per_cu == NULL)
9291 {
9292 /* It's an include file, no symbols to read for it.
9293 Everything is in the parent symtab. */
9294 readin = true;
9295 return;
9296 }
9297
9298 dw2_do_instantiate_symtab (per_cu, false);
9299 }
9300
9301 /* Trivial hash function for die_info: the hash value of a DIE
9302 is its offset in .debug_info for this objfile. */
9303
9304 static hashval_t
9305 die_hash (const void *item)
9306 {
9307 const struct die_info *die = (const struct die_info *) item;
9308
9309 return to_underlying (die->sect_off);
9310 }
9311
9312 /* Trivial comparison function for die_info structures: two DIEs
9313 are equal if they have the same offset. */
9314
9315 static int
9316 die_eq (const void *item_lhs, const void *item_rhs)
9317 {
9318 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9319 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9320
9321 return die_lhs->sect_off == die_rhs->sect_off;
9322 }
9323
9324 /* Load the DIEs associated with PER_CU into memory. */
9325
9326 static void
9327 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9328 bool skip_partial,
9329 enum language pretend_language)
9330 {
9331 gdb_assert (! this_cu->is_debug_types);
9332
9333 cutu_reader reader (this_cu, NULL, 1, 1, skip_partial);
9334 if (reader.dummy_p)
9335 return;
9336
9337 struct dwarf2_cu *cu = reader.cu;
9338 const gdb_byte *info_ptr = reader.info_ptr;
9339
9340 gdb_assert (cu->die_hash == NULL);
9341 cu->die_hash =
9342 htab_create_alloc_ex (cu->header.length / 12,
9343 die_hash,
9344 die_eq,
9345 NULL,
9346 &cu->comp_unit_obstack,
9347 hashtab_obstack_allocate,
9348 dummy_obstack_deallocate);
9349
9350 if (reader.comp_unit_die->has_children)
9351 reader.comp_unit_die->child
9352 = read_die_and_siblings (&reader, reader.info_ptr,
9353 &info_ptr, reader.comp_unit_die);
9354 cu->dies = reader.comp_unit_die;
9355 /* comp_unit_die is not stored in die_hash, no need. */
9356
9357 /* We try not to read any attributes in this function, because not
9358 all CUs needed for references have been loaded yet, and symbol
9359 table processing isn't initialized. But we have to set the CU language,
9360 or we won't be able to build types correctly.
9361 Similarly, if we do not read the producer, we can not apply
9362 producer-specific interpretation. */
9363 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9364 }
9365
9366 /* Add a DIE to the delayed physname list. */
9367
9368 static void
9369 add_to_method_list (struct type *type, int fnfield_index, int index,
9370 const char *name, struct die_info *die,
9371 struct dwarf2_cu *cu)
9372 {
9373 struct delayed_method_info mi;
9374 mi.type = type;
9375 mi.fnfield_index = fnfield_index;
9376 mi.index = index;
9377 mi.name = name;
9378 mi.die = die;
9379 cu->method_list.push_back (mi);
9380 }
9381
9382 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9383 "const" / "volatile". If so, decrements LEN by the length of the
9384 modifier and return true. Otherwise return false. */
9385
9386 template<size_t N>
9387 static bool
9388 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9389 {
9390 size_t mod_len = sizeof (mod) - 1;
9391 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9392 {
9393 len -= mod_len;
9394 return true;
9395 }
9396 return false;
9397 }
9398
9399 /* Compute the physnames of any methods on the CU's method list.
9400
9401 The computation of method physnames is delayed in order to avoid the
9402 (bad) condition that one of the method's formal parameters is of an as yet
9403 incomplete type. */
9404
9405 static void
9406 compute_delayed_physnames (struct dwarf2_cu *cu)
9407 {
9408 /* Only C++ delays computing physnames. */
9409 if (cu->method_list.empty ())
9410 return;
9411 gdb_assert (cu->language == language_cplus);
9412
9413 for (const delayed_method_info &mi : cu->method_list)
9414 {
9415 const char *physname;
9416 struct fn_fieldlist *fn_flp
9417 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9418 physname = dwarf2_physname (mi.name, mi.die, cu);
9419 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9420 = physname ? physname : "";
9421
9422 /* Since there's no tag to indicate whether a method is a
9423 const/volatile overload, extract that information out of the
9424 demangled name. */
9425 if (physname != NULL)
9426 {
9427 size_t len = strlen (physname);
9428
9429 while (1)
9430 {
9431 if (physname[len] == ')') /* shortcut */
9432 break;
9433 else if (check_modifier (physname, len, " const"))
9434 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9435 else if (check_modifier (physname, len, " volatile"))
9436 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9437 else
9438 break;
9439 }
9440 }
9441 }
9442
9443 /* The list is no longer needed. */
9444 cu->method_list.clear ();
9445 }
9446
9447 /* Go objects should be embedded in a DW_TAG_module DIE,
9448 and it's not clear if/how imported objects will appear.
9449 To keep Go support simple until that's worked out,
9450 go back through what we've read and create something usable.
9451 We could do this while processing each DIE, and feels kinda cleaner,
9452 but that way is more invasive.
9453 This is to, for example, allow the user to type "p var" or "b main"
9454 without having to specify the package name, and allow lookups
9455 of module.object to work in contexts that use the expression
9456 parser. */
9457
9458 static void
9459 fixup_go_packaging (struct dwarf2_cu *cu)
9460 {
9461 gdb::unique_xmalloc_ptr<char> package_name;
9462 struct pending *list;
9463 int i;
9464
9465 for (list = *cu->get_builder ()->get_global_symbols ();
9466 list != NULL;
9467 list = list->next)
9468 {
9469 for (i = 0; i < list->nsyms; ++i)
9470 {
9471 struct symbol *sym = list->symbol[i];
9472
9473 if (sym->language () == language_go
9474 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9475 {
9476 gdb::unique_xmalloc_ptr<char> this_package_name
9477 (go_symbol_package_name (sym));
9478
9479 if (this_package_name == NULL)
9480 continue;
9481 if (package_name == NULL)
9482 package_name = std::move (this_package_name);
9483 else
9484 {
9485 struct objfile *objfile
9486 = cu->per_cu->dwarf2_per_objfile->objfile;
9487 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9488 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9489 (symbol_symtab (sym) != NULL
9490 ? symtab_to_filename_for_display
9491 (symbol_symtab (sym))
9492 : objfile_name (objfile)),
9493 this_package_name.get (), package_name.get ());
9494 }
9495 }
9496 }
9497 }
9498
9499 if (package_name != NULL)
9500 {
9501 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9502 const char *saved_package_name
9503 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9504 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9505 saved_package_name);
9506 struct symbol *sym;
9507
9508 sym = allocate_symbol (objfile);
9509 sym->set_language (language_go, &objfile->objfile_obstack);
9510 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9511 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9512 e.g., "main" finds the "main" module and not C's main(). */
9513 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9514 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9515 SYMBOL_TYPE (sym) = type;
9516
9517 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9518 }
9519 }
9520
9521 /* Allocate a fully-qualified name consisting of the two parts on the
9522 obstack. */
9523
9524 static const char *
9525 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9526 {
9527 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9528 }
9529
9530 /* A helper that allocates a struct discriminant_info to attach to a
9531 union type. */
9532
9533 static struct discriminant_info *
9534 alloc_discriminant_info (struct type *type, int discriminant_index,
9535 int default_index)
9536 {
9537 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9538 gdb_assert (discriminant_index == -1
9539 || (discriminant_index >= 0
9540 && discriminant_index < TYPE_NFIELDS (type)));
9541 gdb_assert (default_index == -1
9542 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9543
9544 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9545
9546 struct discriminant_info *disc
9547 = ((struct discriminant_info *)
9548 TYPE_ZALLOC (type,
9549 offsetof (struct discriminant_info, discriminants)
9550 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9551 disc->default_index = default_index;
9552 disc->discriminant_index = discriminant_index;
9553
9554 struct dynamic_prop prop;
9555 prop.kind = PROP_UNDEFINED;
9556 prop.data.baton = disc;
9557
9558 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9559
9560 return disc;
9561 }
9562
9563 /* Some versions of rustc emitted enums in an unusual way.
9564
9565 Ordinary enums were emitted as unions. The first element of each
9566 structure in the union was named "RUST$ENUM$DISR". This element
9567 held the discriminant.
9568
9569 These versions of Rust also implemented the "non-zero"
9570 optimization. When the enum had two values, and one is empty and
9571 the other holds a pointer that cannot be zero, the pointer is used
9572 as the discriminant, with a zero value meaning the empty variant.
9573 Here, the union's first member is of the form
9574 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9575 where the fieldnos are the indices of the fields that should be
9576 traversed in order to find the field (which may be several fields deep)
9577 and the variantname is the name of the variant of the case when the
9578 field is zero.
9579
9580 This function recognizes whether TYPE is of one of these forms,
9581 and, if so, smashes it to be a variant type. */
9582
9583 static void
9584 quirk_rust_enum (struct type *type, struct objfile *objfile)
9585 {
9586 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9587
9588 /* We don't need to deal with empty enums. */
9589 if (TYPE_NFIELDS (type) == 0)
9590 return;
9591
9592 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9593 if (TYPE_NFIELDS (type) == 1
9594 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9595 {
9596 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9597
9598 /* Decode the field name to find the offset of the
9599 discriminant. */
9600 ULONGEST bit_offset = 0;
9601 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9602 while (name[0] >= '0' && name[0] <= '9')
9603 {
9604 char *tail;
9605 unsigned long index = strtoul (name, &tail, 10);
9606 name = tail;
9607 if (*name != '$'
9608 || index >= TYPE_NFIELDS (field_type)
9609 || (TYPE_FIELD_LOC_KIND (field_type, index)
9610 != FIELD_LOC_KIND_BITPOS))
9611 {
9612 complaint (_("Could not parse Rust enum encoding string \"%s\""
9613 "[in module %s]"),
9614 TYPE_FIELD_NAME (type, 0),
9615 objfile_name (objfile));
9616 return;
9617 }
9618 ++name;
9619
9620 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9621 field_type = TYPE_FIELD_TYPE (field_type, index);
9622 }
9623
9624 /* Make a union to hold the variants. */
9625 struct type *union_type = alloc_type (objfile);
9626 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9627 TYPE_NFIELDS (union_type) = 3;
9628 TYPE_FIELDS (union_type)
9629 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9630 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9631 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9632
9633 /* Put the discriminant must at index 0. */
9634 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9635 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9636 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9637 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9638
9639 /* The order of fields doesn't really matter, so put the real
9640 field at index 1 and the data-less field at index 2. */
9641 struct discriminant_info *disc
9642 = alloc_discriminant_info (union_type, 0, 1);
9643 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9644 TYPE_FIELD_NAME (union_type, 1)
9645 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9646 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9647 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9648 TYPE_FIELD_NAME (union_type, 1));
9649
9650 const char *dataless_name
9651 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9652 name);
9653 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9654 dataless_name);
9655 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9656 /* NAME points into the original discriminant name, which
9657 already has the correct lifetime. */
9658 TYPE_FIELD_NAME (union_type, 2) = name;
9659 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9660 disc->discriminants[2] = 0;
9661
9662 /* Smash this type to be a structure type. We have to do this
9663 because the type has already been recorded. */
9664 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9665 TYPE_NFIELDS (type) = 1;
9666 TYPE_FIELDS (type)
9667 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9668
9669 /* Install the variant part. */
9670 TYPE_FIELD_TYPE (type, 0) = union_type;
9671 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9672 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9673 }
9674 /* A union with a single anonymous field is probably an old-style
9675 univariant enum. */
9676 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9677 {
9678 /* Smash this type to be a structure type. We have to do this
9679 because the type has already been recorded. */
9680 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9681
9682 /* Make a union to hold the variants. */
9683 struct type *union_type = alloc_type (objfile);
9684 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9685 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9686 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9687 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9688 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9689
9690 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9691 const char *variant_name
9692 = rust_last_path_segment (TYPE_NAME (field_type));
9693 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9694 TYPE_NAME (field_type)
9695 = rust_fully_qualify (&objfile->objfile_obstack,
9696 TYPE_NAME (type), variant_name);
9697
9698 /* Install the union in the outer struct type. */
9699 TYPE_NFIELDS (type) = 1;
9700 TYPE_FIELDS (type)
9701 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9702 TYPE_FIELD_TYPE (type, 0) = union_type;
9703 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9704 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9705
9706 alloc_discriminant_info (union_type, -1, 0);
9707 }
9708 else
9709 {
9710 struct type *disr_type = nullptr;
9711 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9712 {
9713 disr_type = TYPE_FIELD_TYPE (type, i);
9714
9715 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9716 {
9717 /* All fields of a true enum will be structs. */
9718 return;
9719 }
9720 else if (TYPE_NFIELDS (disr_type) == 0)
9721 {
9722 /* Could be data-less variant, so keep going. */
9723 disr_type = nullptr;
9724 }
9725 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9726 "RUST$ENUM$DISR") != 0)
9727 {
9728 /* Not a Rust enum. */
9729 return;
9730 }
9731 else
9732 {
9733 /* Found one. */
9734 break;
9735 }
9736 }
9737
9738 /* If we got here without a discriminant, then it's probably
9739 just a union. */
9740 if (disr_type == nullptr)
9741 return;
9742
9743 /* Smash this type to be a structure type. We have to do this
9744 because the type has already been recorded. */
9745 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9746
9747 /* Make a union to hold the variants. */
9748 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9749 struct type *union_type = alloc_type (objfile);
9750 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9751 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9752 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9753 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9754 TYPE_FIELDS (union_type)
9755 = (struct field *) TYPE_ZALLOC (union_type,
9756 (TYPE_NFIELDS (union_type)
9757 * sizeof (struct field)));
9758
9759 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9760 TYPE_NFIELDS (type) * sizeof (struct field));
9761
9762 /* Install the discriminant at index 0 in the union. */
9763 TYPE_FIELD (union_type, 0) = *disr_field;
9764 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9765 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9766
9767 /* Install the union in the outer struct type. */
9768 TYPE_FIELD_TYPE (type, 0) = union_type;
9769 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9770 TYPE_NFIELDS (type) = 1;
9771
9772 /* Set the size and offset of the union type. */
9773 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9774
9775 /* We need a way to find the correct discriminant given a
9776 variant name. For convenience we build a map here. */
9777 struct type *enum_type = FIELD_TYPE (*disr_field);
9778 std::unordered_map<std::string, ULONGEST> discriminant_map;
9779 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9780 {
9781 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9782 {
9783 const char *name
9784 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9785 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9786 }
9787 }
9788
9789 int n_fields = TYPE_NFIELDS (union_type);
9790 struct discriminant_info *disc
9791 = alloc_discriminant_info (union_type, 0, -1);
9792 /* Skip the discriminant here. */
9793 for (int i = 1; i < n_fields; ++i)
9794 {
9795 /* Find the final word in the name of this variant's type.
9796 That name can be used to look up the correct
9797 discriminant. */
9798 const char *variant_name
9799 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9800 i)));
9801
9802 auto iter = discriminant_map.find (variant_name);
9803 if (iter != discriminant_map.end ())
9804 disc->discriminants[i] = iter->second;
9805
9806 /* Remove the discriminant field, if it exists. */
9807 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9808 if (TYPE_NFIELDS (sub_type) > 0)
9809 {
9810 --TYPE_NFIELDS (sub_type);
9811 ++TYPE_FIELDS (sub_type);
9812 }
9813 TYPE_FIELD_NAME (union_type, i) = variant_name;
9814 TYPE_NAME (sub_type)
9815 = rust_fully_qualify (&objfile->objfile_obstack,
9816 TYPE_NAME (type), variant_name);
9817 }
9818 }
9819 }
9820
9821 /* Rewrite some Rust unions to be structures with variants parts. */
9822
9823 static void
9824 rust_union_quirks (struct dwarf2_cu *cu)
9825 {
9826 gdb_assert (cu->language == language_rust);
9827 for (type *type_ : cu->rust_unions)
9828 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9829 /* We don't need this any more. */
9830 cu->rust_unions.clear ();
9831 }
9832
9833 /* Return the symtab for PER_CU. This works properly regardless of
9834 whether we're using the index or psymtabs. */
9835
9836 static struct compunit_symtab *
9837 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9838 {
9839 return (per_cu->dwarf2_per_objfile->using_index
9840 ? per_cu->v.quick->compunit_symtab
9841 : per_cu->v.psymtab->compunit_symtab);
9842 }
9843
9844 /* A helper function for computing the list of all symbol tables
9845 included by PER_CU. */
9846
9847 static void
9848 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9849 htab_t all_children, htab_t all_type_symtabs,
9850 struct dwarf2_per_cu_data *per_cu,
9851 struct compunit_symtab *immediate_parent)
9852 {
9853 void **slot;
9854 struct compunit_symtab *cust;
9855
9856 slot = htab_find_slot (all_children, per_cu, INSERT);
9857 if (*slot != NULL)
9858 {
9859 /* This inclusion and its children have been processed. */
9860 return;
9861 }
9862
9863 *slot = per_cu;
9864 /* Only add a CU if it has a symbol table. */
9865 cust = get_compunit_symtab (per_cu);
9866 if (cust != NULL)
9867 {
9868 /* If this is a type unit only add its symbol table if we haven't
9869 seen it yet (type unit per_cu's can share symtabs). */
9870 if (per_cu->is_debug_types)
9871 {
9872 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9873 if (*slot == NULL)
9874 {
9875 *slot = cust;
9876 result->push_back (cust);
9877 if (cust->user == NULL)
9878 cust->user = immediate_parent;
9879 }
9880 }
9881 else
9882 {
9883 result->push_back (cust);
9884 if (cust->user == NULL)
9885 cust->user = immediate_parent;
9886 }
9887 }
9888
9889 if (!per_cu->imported_symtabs_empty ())
9890 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9891 {
9892 recursively_compute_inclusions (result, all_children,
9893 all_type_symtabs, ptr, cust);
9894 }
9895 }
9896
9897 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9898 PER_CU. */
9899
9900 static void
9901 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9902 {
9903 gdb_assert (! per_cu->is_debug_types);
9904
9905 if (!per_cu->imported_symtabs_empty ())
9906 {
9907 int len;
9908 std::vector<compunit_symtab *> result_symtabs;
9909 htab_t all_children, all_type_symtabs;
9910 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9911
9912 /* If we don't have a symtab, we can just skip this case. */
9913 if (cust == NULL)
9914 return;
9915
9916 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9917 NULL, xcalloc, xfree);
9918 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9919 NULL, xcalloc, xfree);
9920
9921 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9922 {
9923 recursively_compute_inclusions (&result_symtabs, all_children,
9924 all_type_symtabs, ptr, cust);
9925 }
9926
9927 /* Now we have a transitive closure of all the included symtabs. */
9928 len = result_symtabs.size ();
9929 cust->includes
9930 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9931 struct compunit_symtab *, len + 1);
9932 memcpy (cust->includes, result_symtabs.data (),
9933 len * sizeof (compunit_symtab *));
9934 cust->includes[len] = NULL;
9935
9936 htab_delete (all_children);
9937 htab_delete (all_type_symtabs);
9938 }
9939 }
9940
9941 /* Compute the 'includes' field for the symtabs of all the CUs we just
9942 read. */
9943
9944 static void
9945 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9946 {
9947 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9948 {
9949 if (! iter->is_debug_types)
9950 compute_compunit_symtab_includes (iter);
9951 }
9952
9953 dwarf2_per_objfile->just_read_cus.clear ();
9954 }
9955
9956 /* Generate full symbol information for PER_CU, whose DIEs have
9957 already been loaded into memory. */
9958
9959 static void
9960 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9961 enum language pretend_language)
9962 {
9963 struct dwarf2_cu *cu = per_cu->cu;
9964 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9965 struct objfile *objfile = dwarf2_per_objfile->objfile;
9966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9967 CORE_ADDR lowpc, highpc;
9968 struct compunit_symtab *cust;
9969 CORE_ADDR baseaddr;
9970 struct block *static_block;
9971 CORE_ADDR addr;
9972
9973 baseaddr = objfile->text_section_offset ();
9974
9975 /* Clear the list here in case something was left over. */
9976 cu->method_list.clear ();
9977
9978 cu->language = pretend_language;
9979 cu->language_defn = language_def (cu->language);
9980
9981 /* Do line number decoding in read_file_scope () */
9982 process_die (cu->dies, cu);
9983
9984 /* For now fudge the Go package. */
9985 if (cu->language == language_go)
9986 fixup_go_packaging (cu);
9987
9988 /* Now that we have processed all the DIEs in the CU, all the types
9989 should be complete, and it should now be safe to compute all of the
9990 physnames. */
9991 compute_delayed_physnames (cu);
9992
9993 if (cu->language == language_rust)
9994 rust_union_quirks (cu);
9995
9996 /* Some compilers don't define a DW_AT_high_pc attribute for the
9997 compilation unit. If the DW_AT_high_pc is missing, synthesize
9998 it, by scanning the DIE's below the compilation unit. */
9999 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10000
10001 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10002 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10003
10004 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10005 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10006 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10007 addrmap to help ensure it has an accurate map of pc values belonging to
10008 this comp unit. */
10009 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10010
10011 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10012 SECT_OFF_TEXT (objfile),
10013 0);
10014
10015 if (cust != NULL)
10016 {
10017 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10018
10019 /* Set symtab language to language from DW_AT_language. If the
10020 compilation is from a C file generated by language preprocessors, do
10021 not set the language if it was already deduced by start_subfile. */
10022 if (!(cu->language == language_c
10023 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10024 COMPUNIT_FILETABS (cust)->language = cu->language;
10025
10026 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10027 produce DW_AT_location with location lists but it can be possibly
10028 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10029 there were bugs in prologue debug info, fixed later in GCC-4.5
10030 by "unwind info for epilogues" patch (which is not directly related).
10031
10032 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10033 needed, it would be wrong due to missing DW_AT_producer there.
10034
10035 Still one can confuse GDB by using non-standard GCC compilation
10036 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10037 */
10038 if (cu->has_loclist && gcc_4_minor >= 5)
10039 cust->locations_valid = 1;
10040
10041 if (gcc_4_minor >= 5)
10042 cust->epilogue_unwind_valid = 1;
10043
10044 cust->call_site_htab = cu->call_site_htab;
10045 }
10046
10047 if (dwarf2_per_objfile->using_index)
10048 per_cu->v.quick->compunit_symtab = cust;
10049 else
10050 {
10051 dwarf2_psymtab *pst = per_cu->v.psymtab;
10052 pst->compunit_symtab = cust;
10053 pst->readin = true;
10054 }
10055
10056 /* Push it for inclusion processing later. */
10057 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10058
10059 /* Not needed any more. */
10060 cu->reset_builder ();
10061 }
10062
10063 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10064 already been loaded into memory. */
10065
10066 static void
10067 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10068 enum language pretend_language)
10069 {
10070 struct dwarf2_cu *cu = per_cu->cu;
10071 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10072 struct objfile *objfile = dwarf2_per_objfile->objfile;
10073 struct compunit_symtab *cust;
10074 struct signatured_type *sig_type;
10075
10076 gdb_assert (per_cu->is_debug_types);
10077 sig_type = (struct signatured_type *) per_cu;
10078
10079 /* Clear the list here in case something was left over. */
10080 cu->method_list.clear ();
10081
10082 cu->language = pretend_language;
10083 cu->language_defn = language_def (cu->language);
10084
10085 /* The symbol tables are set up in read_type_unit_scope. */
10086 process_die (cu->dies, cu);
10087
10088 /* For now fudge the Go package. */
10089 if (cu->language == language_go)
10090 fixup_go_packaging (cu);
10091
10092 /* Now that we have processed all the DIEs in the CU, all the types
10093 should be complete, and it should now be safe to compute all of the
10094 physnames. */
10095 compute_delayed_physnames (cu);
10096
10097 if (cu->language == language_rust)
10098 rust_union_quirks (cu);
10099
10100 /* TUs share symbol tables.
10101 If this is the first TU to use this symtab, complete the construction
10102 of it with end_expandable_symtab. Otherwise, complete the addition of
10103 this TU's symbols to the existing symtab. */
10104 if (sig_type->type_unit_group->compunit_symtab == NULL)
10105 {
10106 buildsym_compunit *builder = cu->get_builder ();
10107 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10108 sig_type->type_unit_group->compunit_symtab = cust;
10109
10110 if (cust != NULL)
10111 {
10112 /* Set symtab language to language from DW_AT_language. If the
10113 compilation is from a C file generated by language preprocessors,
10114 do not set the language if it was already deduced by
10115 start_subfile. */
10116 if (!(cu->language == language_c
10117 && COMPUNIT_FILETABS (cust)->language != language_c))
10118 COMPUNIT_FILETABS (cust)->language = cu->language;
10119 }
10120 }
10121 else
10122 {
10123 cu->get_builder ()->augment_type_symtab ();
10124 cust = sig_type->type_unit_group->compunit_symtab;
10125 }
10126
10127 if (dwarf2_per_objfile->using_index)
10128 per_cu->v.quick->compunit_symtab = cust;
10129 else
10130 {
10131 dwarf2_psymtab *pst = per_cu->v.psymtab;
10132 pst->compunit_symtab = cust;
10133 pst->readin = true;
10134 }
10135
10136 /* Not needed any more. */
10137 cu->reset_builder ();
10138 }
10139
10140 /* Process an imported unit DIE. */
10141
10142 static void
10143 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10144 {
10145 struct attribute *attr;
10146
10147 /* For now we don't handle imported units in type units. */
10148 if (cu->per_cu->is_debug_types)
10149 {
10150 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10151 " supported in type units [in module %s]"),
10152 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10153 }
10154
10155 attr = dwarf2_attr (die, DW_AT_import, cu);
10156 if (attr != NULL)
10157 {
10158 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10159 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10160 dwarf2_per_cu_data *per_cu
10161 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10162 cu->per_cu->dwarf2_per_objfile);
10163
10164 /* If necessary, add it to the queue and load its DIEs. */
10165 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10166 load_full_comp_unit (per_cu, false, cu->language);
10167
10168 cu->per_cu->imported_symtabs_push (per_cu);
10169 }
10170 }
10171
10172 /* RAII object that represents a process_die scope: i.e.,
10173 starts/finishes processing a DIE. */
10174 class process_die_scope
10175 {
10176 public:
10177 process_die_scope (die_info *die, dwarf2_cu *cu)
10178 : m_die (die), m_cu (cu)
10179 {
10180 /* We should only be processing DIEs not already in process. */
10181 gdb_assert (!m_die->in_process);
10182 m_die->in_process = true;
10183 }
10184
10185 ~process_die_scope ()
10186 {
10187 m_die->in_process = false;
10188
10189 /* If we're done processing the DIE for the CU that owns the line
10190 header, we don't need the line header anymore. */
10191 if (m_cu->line_header_die_owner == m_die)
10192 {
10193 delete m_cu->line_header;
10194 m_cu->line_header = NULL;
10195 m_cu->line_header_die_owner = NULL;
10196 }
10197 }
10198
10199 private:
10200 die_info *m_die;
10201 dwarf2_cu *m_cu;
10202 };
10203
10204 /* Process a die and its children. */
10205
10206 static void
10207 process_die (struct die_info *die, struct dwarf2_cu *cu)
10208 {
10209 process_die_scope scope (die, cu);
10210
10211 switch (die->tag)
10212 {
10213 case DW_TAG_padding:
10214 break;
10215 case DW_TAG_compile_unit:
10216 case DW_TAG_partial_unit:
10217 read_file_scope (die, cu);
10218 break;
10219 case DW_TAG_type_unit:
10220 read_type_unit_scope (die, cu);
10221 break;
10222 case DW_TAG_subprogram:
10223 /* Nested subprograms in Fortran get a prefix. */
10224 if (cu->language == language_fortran
10225 && die->parent != NULL
10226 && die->parent->tag == DW_TAG_subprogram)
10227 cu->processing_has_namespace_info = true;
10228 /* Fall through. */
10229 case DW_TAG_inlined_subroutine:
10230 read_func_scope (die, cu);
10231 break;
10232 case DW_TAG_lexical_block:
10233 case DW_TAG_try_block:
10234 case DW_TAG_catch_block:
10235 read_lexical_block_scope (die, cu);
10236 break;
10237 case DW_TAG_call_site:
10238 case DW_TAG_GNU_call_site:
10239 read_call_site_scope (die, cu);
10240 break;
10241 case DW_TAG_class_type:
10242 case DW_TAG_interface_type:
10243 case DW_TAG_structure_type:
10244 case DW_TAG_union_type:
10245 process_structure_scope (die, cu);
10246 break;
10247 case DW_TAG_enumeration_type:
10248 process_enumeration_scope (die, cu);
10249 break;
10250
10251 /* These dies have a type, but processing them does not create
10252 a symbol or recurse to process the children. Therefore we can
10253 read them on-demand through read_type_die. */
10254 case DW_TAG_subroutine_type:
10255 case DW_TAG_set_type:
10256 case DW_TAG_array_type:
10257 case DW_TAG_pointer_type:
10258 case DW_TAG_ptr_to_member_type:
10259 case DW_TAG_reference_type:
10260 case DW_TAG_rvalue_reference_type:
10261 case DW_TAG_string_type:
10262 break;
10263
10264 case DW_TAG_base_type:
10265 case DW_TAG_subrange_type:
10266 case DW_TAG_typedef:
10267 /* Add a typedef symbol for the type definition, if it has a
10268 DW_AT_name. */
10269 new_symbol (die, read_type_die (die, cu), cu);
10270 break;
10271 case DW_TAG_common_block:
10272 read_common_block (die, cu);
10273 break;
10274 case DW_TAG_common_inclusion:
10275 break;
10276 case DW_TAG_namespace:
10277 cu->processing_has_namespace_info = true;
10278 read_namespace (die, cu);
10279 break;
10280 case DW_TAG_module:
10281 cu->processing_has_namespace_info = true;
10282 read_module (die, cu);
10283 break;
10284 case DW_TAG_imported_declaration:
10285 cu->processing_has_namespace_info = true;
10286 if (read_namespace_alias (die, cu))
10287 break;
10288 /* The declaration is not a global namespace alias. */
10289 /* Fall through. */
10290 case DW_TAG_imported_module:
10291 cu->processing_has_namespace_info = true;
10292 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10293 || cu->language != language_fortran))
10294 complaint (_("Tag '%s' has unexpected children"),
10295 dwarf_tag_name (die->tag));
10296 read_import_statement (die, cu);
10297 break;
10298
10299 case DW_TAG_imported_unit:
10300 process_imported_unit_die (die, cu);
10301 break;
10302
10303 case DW_TAG_variable:
10304 read_variable (die, cu);
10305 break;
10306
10307 default:
10308 new_symbol (die, NULL, cu);
10309 break;
10310 }
10311 }
10312 \f
10313 /* DWARF name computation. */
10314
10315 /* A helper function for dwarf2_compute_name which determines whether DIE
10316 needs to have the name of the scope prepended to the name listed in the
10317 die. */
10318
10319 static int
10320 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10321 {
10322 struct attribute *attr;
10323
10324 switch (die->tag)
10325 {
10326 case DW_TAG_namespace:
10327 case DW_TAG_typedef:
10328 case DW_TAG_class_type:
10329 case DW_TAG_interface_type:
10330 case DW_TAG_structure_type:
10331 case DW_TAG_union_type:
10332 case DW_TAG_enumeration_type:
10333 case DW_TAG_enumerator:
10334 case DW_TAG_subprogram:
10335 case DW_TAG_inlined_subroutine:
10336 case DW_TAG_member:
10337 case DW_TAG_imported_declaration:
10338 return 1;
10339
10340 case DW_TAG_variable:
10341 case DW_TAG_constant:
10342 /* We only need to prefix "globally" visible variables. These include
10343 any variable marked with DW_AT_external or any variable that
10344 lives in a namespace. [Variables in anonymous namespaces
10345 require prefixing, but they are not DW_AT_external.] */
10346
10347 if (dwarf2_attr (die, DW_AT_specification, cu))
10348 {
10349 struct dwarf2_cu *spec_cu = cu;
10350
10351 return die_needs_namespace (die_specification (die, &spec_cu),
10352 spec_cu);
10353 }
10354
10355 attr = dwarf2_attr (die, DW_AT_external, cu);
10356 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10357 && die->parent->tag != DW_TAG_module)
10358 return 0;
10359 /* A variable in a lexical block of some kind does not need a
10360 namespace, even though in C++ such variables may be external
10361 and have a mangled name. */
10362 if (die->parent->tag == DW_TAG_lexical_block
10363 || die->parent->tag == DW_TAG_try_block
10364 || die->parent->tag == DW_TAG_catch_block
10365 || die->parent->tag == DW_TAG_subprogram)
10366 return 0;
10367 return 1;
10368
10369 default:
10370 return 0;
10371 }
10372 }
10373
10374 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10375 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10376 defined for the given DIE. */
10377
10378 static struct attribute *
10379 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10380 {
10381 struct attribute *attr;
10382
10383 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10384 if (attr == NULL)
10385 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10386
10387 return attr;
10388 }
10389
10390 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10391 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10392 defined for the given DIE. */
10393
10394 static const char *
10395 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10396 {
10397 const char *linkage_name;
10398
10399 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10400 if (linkage_name == NULL)
10401 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10402
10403 return linkage_name;
10404 }
10405
10406 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10407 compute the physname for the object, which include a method's:
10408 - formal parameters (C++),
10409 - receiver type (Go),
10410
10411 The term "physname" is a bit confusing.
10412 For C++, for example, it is the demangled name.
10413 For Go, for example, it's the mangled name.
10414
10415 For Ada, return the DIE's linkage name rather than the fully qualified
10416 name. PHYSNAME is ignored..
10417
10418 The result is allocated on the objfile_obstack and canonicalized. */
10419
10420 static const char *
10421 dwarf2_compute_name (const char *name,
10422 struct die_info *die, struct dwarf2_cu *cu,
10423 int physname)
10424 {
10425 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10426
10427 if (name == NULL)
10428 name = dwarf2_name (die, cu);
10429
10430 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10431 but otherwise compute it by typename_concat inside GDB.
10432 FIXME: Actually this is not really true, or at least not always true.
10433 It's all very confusing. compute_and_set_names doesn't try to demangle
10434 Fortran names because there is no mangling standard. So new_symbol
10435 will set the demangled name to the result of dwarf2_full_name, and it is
10436 the demangled name that GDB uses if it exists. */
10437 if (cu->language == language_ada
10438 || (cu->language == language_fortran && physname))
10439 {
10440 /* For Ada unit, we prefer the linkage name over the name, as
10441 the former contains the exported name, which the user expects
10442 to be able to reference. Ideally, we want the user to be able
10443 to reference this entity using either natural or linkage name,
10444 but we haven't started looking at this enhancement yet. */
10445 const char *linkage_name = dw2_linkage_name (die, cu);
10446
10447 if (linkage_name != NULL)
10448 return linkage_name;
10449 }
10450
10451 /* These are the only languages we know how to qualify names in. */
10452 if (name != NULL
10453 && (cu->language == language_cplus
10454 || cu->language == language_fortran || cu->language == language_d
10455 || cu->language == language_rust))
10456 {
10457 if (die_needs_namespace (die, cu))
10458 {
10459 const char *prefix;
10460 const char *canonical_name = NULL;
10461
10462 string_file buf;
10463
10464 prefix = determine_prefix (die, cu);
10465 if (*prefix != '\0')
10466 {
10467 gdb::unique_xmalloc_ptr<char> prefixed_name
10468 (typename_concat (NULL, prefix, name, physname, cu));
10469
10470 buf.puts (prefixed_name.get ());
10471 }
10472 else
10473 buf.puts (name);
10474
10475 /* Template parameters may be specified in the DIE's DW_AT_name, or
10476 as children with DW_TAG_template_type_param or
10477 DW_TAG_value_type_param. If the latter, add them to the name
10478 here. If the name already has template parameters, then
10479 skip this step; some versions of GCC emit both, and
10480 it is more efficient to use the pre-computed name.
10481
10482 Something to keep in mind about this process: it is very
10483 unlikely, or in some cases downright impossible, to produce
10484 something that will match the mangled name of a function.
10485 If the definition of the function has the same debug info,
10486 we should be able to match up with it anyway. But fallbacks
10487 using the minimal symbol, for instance to find a method
10488 implemented in a stripped copy of libstdc++, will not work.
10489 If we do not have debug info for the definition, we will have to
10490 match them up some other way.
10491
10492 When we do name matching there is a related problem with function
10493 templates; two instantiated function templates are allowed to
10494 differ only by their return types, which we do not add here. */
10495
10496 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10497 {
10498 struct attribute *attr;
10499 struct die_info *child;
10500 int first = 1;
10501
10502 die->building_fullname = 1;
10503
10504 for (child = die->child; child != NULL; child = child->sibling)
10505 {
10506 struct type *type;
10507 LONGEST value;
10508 const gdb_byte *bytes;
10509 struct dwarf2_locexpr_baton *baton;
10510 struct value *v;
10511
10512 if (child->tag != DW_TAG_template_type_param
10513 && child->tag != DW_TAG_template_value_param)
10514 continue;
10515
10516 if (first)
10517 {
10518 buf.puts ("<");
10519 first = 0;
10520 }
10521 else
10522 buf.puts (", ");
10523
10524 attr = dwarf2_attr (child, DW_AT_type, cu);
10525 if (attr == NULL)
10526 {
10527 complaint (_("template parameter missing DW_AT_type"));
10528 buf.puts ("UNKNOWN_TYPE");
10529 continue;
10530 }
10531 type = die_type (child, cu);
10532
10533 if (child->tag == DW_TAG_template_type_param)
10534 {
10535 c_print_type (type, "", &buf, -1, 0, cu->language,
10536 &type_print_raw_options);
10537 continue;
10538 }
10539
10540 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10541 if (attr == NULL)
10542 {
10543 complaint (_("template parameter missing "
10544 "DW_AT_const_value"));
10545 buf.puts ("UNKNOWN_VALUE");
10546 continue;
10547 }
10548
10549 dwarf2_const_value_attr (attr, type, name,
10550 &cu->comp_unit_obstack, cu,
10551 &value, &bytes, &baton);
10552
10553 if (TYPE_NOSIGN (type))
10554 /* GDB prints characters as NUMBER 'CHAR'. If that's
10555 changed, this can use value_print instead. */
10556 c_printchar (value, type, &buf);
10557 else
10558 {
10559 struct value_print_options opts;
10560
10561 if (baton != NULL)
10562 v = dwarf2_evaluate_loc_desc (type, NULL,
10563 baton->data,
10564 baton->size,
10565 baton->per_cu);
10566 else if (bytes != NULL)
10567 {
10568 v = allocate_value (type);
10569 memcpy (value_contents_writeable (v), bytes,
10570 TYPE_LENGTH (type));
10571 }
10572 else
10573 v = value_from_longest (type, value);
10574
10575 /* Specify decimal so that we do not depend on
10576 the radix. */
10577 get_formatted_print_options (&opts, 'd');
10578 opts.raw = 1;
10579 value_print (v, &buf, &opts);
10580 release_value (v);
10581 }
10582 }
10583
10584 die->building_fullname = 0;
10585
10586 if (!first)
10587 {
10588 /* Close the argument list, with a space if necessary
10589 (nested templates). */
10590 if (!buf.empty () && buf.string ().back () == '>')
10591 buf.puts (" >");
10592 else
10593 buf.puts (">");
10594 }
10595 }
10596
10597 /* For C++ methods, append formal parameter type
10598 information, if PHYSNAME. */
10599
10600 if (physname && die->tag == DW_TAG_subprogram
10601 && cu->language == language_cplus)
10602 {
10603 struct type *type = read_type_die (die, cu);
10604
10605 c_type_print_args (type, &buf, 1, cu->language,
10606 &type_print_raw_options);
10607
10608 if (cu->language == language_cplus)
10609 {
10610 /* Assume that an artificial first parameter is
10611 "this", but do not crash if it is not. RealView
10612 marks unnamed (and thus unused) parameters as
10613 artificial; there is no way to differentiate
10614 the two cases. */
10615 if (TYPE_NFIELDS (type) > 0
10616 && TYPE_FIELD_ARTIFICIAL (type, 0)
10617 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10618 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10619 0))))
10620 buf.puts (" const");
10621 }
10622 }
10623
10624 const std::string &intermediate_name = buf.string ();
10625
10626 if (cu->language == language_cplus)
10627 canonical_name
10628 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10629 &objfile->per_bfd->storage_obstack);
10630
10631 /* If we only computed INTERMEDIATE_NAME, or if
10632 INTERMEDIATE_NAME is already canonical, then we need to
10633 copy it to the appropriate obstack. */
10634 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10635 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10636 intermediate_name);
10637 else
10638 name = canonical_name;
10639 }
10640 }
10641
10642 return name;
10643 }
10644
10645 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10646 If scope qualifiers are appropriate they will be added. The result
10647 will be allocated on the storage_obstack, or NULL if the DIE does
10648 not have a name. NAME may either be from a previous call to
10649 dwarf2_name or NULL.
10650
10651 The output string will be canonicalized (if C++). */
10652
10653 static const char *
10654 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10655 {
10656 return dwarf2_compute_name (name, die, cu, 0);
10657 }
10658
10659 /* Construct a physname for the given DIE in CU. NAME may either be
10660 from a previous call to dwarf2_name or NULL. The result will be
10661 allocated on the objfile_objstack or NULL if the DIE does not have a
10662 name.
10663
10664 The output string will be canonicalized (if C++). */
10665
10666 static const char *
10667 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10668 {
10669 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10670 const char *retval, *mangled = NULL, *canon = NULL;
10671 int need_copy = 1;
10672
10673 /* In this case dwarf2_compute_name is just a shortcut not building anything
10674 on its own. */
10675 if (!die_needs_namespace (die, cu))
10676 return dwarf2_compute_name (name, die, cu, 1);
10677
10678 mangled = dw2_linkage_name (die, cu);
10679
10680 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10681 See https://github.com/rust-lang/rust/issues/32925. */
10682 if (cu->language == language_rust && mangled != NULL
10683 && strchr (mangled, '{') != NULL)
10684 mangled = NULL;
10685
10686 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10687 has computed. */
10688 gdb::unique_xmalloc_ptr<char> demangled;
10689 if (mangled != NULL)
10690 {
10691
10692 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10693 {
10694 /* Do nothing (do not demangle the symbol name). */
10695 }
10696 else if (cu->language == language_go)
10697 {
10698 /* This is a lie, but we already lie to the caller new_symbol.
10699 new_symbol assumes we return the mangled name.
10700 This just undoes that lie until things are cleaned up. */
10701 }
10702 else
10703 {
10704 /* Use DMGL_RET_DROP for C++ template functions to suppress
10705 their return type. It is easier for GDB users to search
10706 for such functions as `name(params)' than `long name(params)'.
10707 In such case the minimal symbol names do not match the full
10708 symbol names but for template functions there is never a need
10709 to look up their definition from their declaration so
10710 the only disadvantage remains the minimal symbol variant
10711 `long name(params)' does not have the proper inferior type. */
10712 demangled.reset (gdb_demangle (mangled,
10713 (DMGL_PARAMS | DMGL_ANSI
10714 | DMGL_RET_DROP)));
10715 }
10716 if (demangled)
10717 canon = demangled.get ();
10718 else
10719 {
10720 canon = mangled;
10721 need_copy = 0;
10722 }
10723 }
10724
10725 if (canon == NULL || check_physname)
10726 {
10727 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10728
10729 if (canon != NULL && strcmp (physname, canon) != 0)
10730 {
10731 /* It may not mean a bug in GDB. The compiler could also
10732 compute DW_AT_linkage_name incorrectly. But in such case
10733 GDB would need to be bug-to-bug compatible. */
10734
10735 complaint (_("Computed physname <%s> does not match demangled <%s> "
10736 "(from linkage <%s>) - DIE at %s [in module %s]"),
10737 physname, canon, mangled, sect_offset_str (die->sect_off),
10738 objfile_name (objfile));
10739
10740 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10741 is available here - over computed PHYSNAME. It is safer
10742 against both buggy GDB and buggy compilers. */
10743
10744 retval = canon;
10745 }
10746 else
10747 {
10748 retval = physname;
10749 need_copy = 0;
10750 }
10751 }
10752 else
10753 retval = canon;
10754
10755 if (need_copy)
10756 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10757
10758 return retval;
10759 }
10760
10761 /* Inspect DIE in CU for a namespace alias. If one exists, record
10762 a new symbol for it.
10763
10764 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10765
10766 static int
10767 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10768 {
10769 struct attribute *attr;
10770
10771 /* If the die does not have a name, this is not a namespace
10772 alias. */
10773 attr = dwarf2_attr (die, DW_AT_name, cu);
10774 if (attr != NULL)
10775 {
10776 int num;
10777 struct die_info *d = die;
10778 struct dwarf2_cu *imported_cu = cu;
10779
10780 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10781 keep inspecting DIEs until we hit the underlying import. */
10782 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10783 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10784 {
10785 attr = dwarf2_attr (d, DW_AT_import, cu);
10786 if (attr == NULL)
10787 break;
10788
10789 d = follow_die_ref (d, attr, &imported_cu);
10790 if (d->tag != DW_TAG_imported_declaration)
10791 break;
10792 }
10793
10794 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10795 {
10796 complaint (_("DIE at %s has too many recursively imported "
10797 "declarations"), sect_offset_str (d->sect_off));
10798 return 0;
10799 }
10800
10801 if (attr != NULL)
10802 {
10803 struct type *type;
10804 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10805
10806 type = get_die_type_at_offset (sect_off, cu->per_cu);
10807 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10808 {
10809 /* This declaration is a global namespace alias. Add
10810 a symbol for it whose type is the aliased namespace. */
10811 new_symbol (die, type, cu);
10812 return 1;
10813 }
10814 }
10815 }
10816
10817 return 0;
10818 }
10819
10820 /* Return the using directives repository (global or local?) to use in the
10821 current context for CU.
10822
10823 For Ada, imported declarations can materialize renamings, which *may* be
10824 global. However it is impossible (for now?) in DWARF to distinguish
10825 "external" imported declarations and "static" ones. As all imported
10826 declarations seem to be static in all other languages, make them all CU-wide
10827 global only in Ada. */
10828
10829 static struct using_direct **
10830 using_directives (struct dwarf2_cu *cu)
10831 {
10832 if (cu->language == language_ada
10833 && cu->get_builder ()->outermost_context_p ())
10834 return cu->get_builder ()->get_global_using_directives ();
10835 else
10836 return cu->get_builder ()->get_local_using_directives ();
10837 }
10838
10839 /* Read the import statement specified by the given die and record it. */
10840
10841 static void
10842 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10843 {
10844 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10845 struct attribute *import_attr;
10846 struct die_info *imported_die, *child_die;
10847 struct dwarf2_cu *imported_cu;
10848 const char *imported_name;
10849 const char *imported_name_prefix;
10850 const char *canonical_name;
10851 const char *import_alias;
10852 const char *imported_declaration = NULL;
10853 const char *import_prefix;
10854 std::vector<const char *> excludes;
10855
10856 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10857 if (import_attr == NULL)
10858 {
10859 complaint (_("Tag '%s' has no DW_AT_import"),
10860 dwarf_tag_name (die->tag));
10861 return;
10862 }
10863
10864 imported_cu = cu;
10865 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10866 imported_name = dwarf2_name (imported_die, imported_cu);
10867 if (imported_name == NULL)
10868 {
10869 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10870
10871 The import in the following code:
10872 namespace A
10873 {
10874 typedef int B;
10875 }
10876
10877 int main ()
10878 {
10879 using A::B;
10880 B b;
10881 return b;
10882 }
10883
10884 ...
10885 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10886 <52> DW_AT_decl_file : 1
10887 <53> DW_AT_decl_line : 6
10888 <54> DW_AT_import : <0x75>
10889 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10890 <59> DW_AT_name : B
10891 <5b> DW_AT_decl_file : 1
10892 <5c> DW_AT_decl_line : 2
10893 <5d> DW_AT_type : <0x6e>
10894 ...
10895 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10896 <76> DW_AT_byte_size : 4
10897 <77> DW_AT_encoding : 5 (signed)
10898
10899 imports the wrong die ( 0x75 instead of 0x58 ).
10900 This case will be ignored until the gcc bug is fixed. */
10901 return;
10902 }
10903
10904 /* Figure out the local name after import. */
10905 import_alias = dwarf2_name (die, cu);
10906
10907 /* Figure out where the statement is being imported to. */
10908 import_prefix = determine_prefix (die, cu);
10909
10910 /* Figure out what the scope of the imported die is and prepend it
10911 to the name of the imported die. */
10912 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10913
10914 if (imported_die->tag != DW_TAG_namespace
10915 && imported_die->tag != DW_TAG_module)
10916 {
10917 imported_declaration = imported_name;
10918 canonical_name = imported_name_prefix;
10919 }
10920 else if (strlen (imported_name_prefix) > 0)
10921 canonical_name = obconcat (&objfile->objfile_obstack,
10922 imported_name_prefix,
10923 (cu->language == language_d ? "." : "::"),
10924 imported_name, (char *) NULL);
10925 else
10926 canonical_name = imported_name;
10927
10928 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10929 for (child_die = die->child; child_die && child_die->tag;
10930 child_die = sibling_die (child_die))
10931 {
10932 /* DWARF-4: A Fortran use statement with a “rename list” may be
10933 represented by an imported module entry with an import attribute
10934 referring to the module and owned entries corresponding to those
10935 entities that are renamed as part of being imported. */
10936
10937 if (child_die->tag != DW_TAG_imported_declaration)
10938 {
10939 complaint (_("child DW_TAG_imported_declaration expected "
10940 "- DIE at %s [in module %s]"),
10941 sect_offset_str (child_die->sect_off),
10942 objfile_name (objfile));
10943 continue;
10944 }
10945
10946 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10947 if (import_attr == NULL)
10948 {
10949 complaint (_("Tag '%s' has no DW_AT_import"),
10950 dwarf_tag_name (child_die->tag));
10951 continue;
10952 }
10953
10954 imported_cu = cu;
10955 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10956 &imported_cu);
10957 imported_name = dwarf2_name (imported_die, imported_cu);
10958 if (imported_name == NULL)
10959 {
10960 complaint (_("child DW_TAG_imported_declaration has unknown "
10961 "imported name - DIE at %s [in module %s]"),
10962 sect_offset_str (child_die->sect_off),
10963 objfile_name (objfile));
10964 continue;
10965 }
10966
10967 excludes.push_back (imported_name);
10968
10969 process_die (child_die, cu);
10970 }
10971
10972 add_using_directive (using_directives (cu),
10973 import_prefix,
10974 canonical_name,
10975 import_alias,
10976 imported_declaration,
10977 excludes,
10978 0,
10979 &objfile->objfile_obstack);
10980 }
10981
10982 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10983 types, but gives them a size of zero. Starting with version 14,
10984 ICC is compatible with GCC. */
10985
10986 static bool
10987 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10988 {
10989 if (!cu->checked_producer)
10990 check_producer (cu);
10991
10992 return cu->producer_is_icc_lt_14;
10993 }
10994
10995 /* ICC generates a DW_AT_type for C void functions. This was observed on
10996 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10997 which says that void functions should not have a DW_AT_type. */
10998
10999 static bool
11000 producer_is_icc (struct dwarf2_cu *cu)
11001 {
11002 if (!cu->checked_producer)
11003 check_producer (cu);
11004
11005 return cu->producer_is_icc;
11006 }
11007
11008 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11009 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11010 this, it was first present in GCC release 4.3.0. */
11011
11012 static bool
11013 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11014 {
11015 if (!cu->checked_producer)
11016 check_producer (cu);
11017
11018 return cu->producer_is_gcc_lt_4_3;
11019 }
11020
11021 static file_and_directory
11022 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11023 {
11024 file_and_directory res;
11025
11026 /* Find the filename. Do not use dwarf2_name here, since the filename
11027 is not a source language identifier. */
11028 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11029 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11030
11031 if (res.comp_dir == NULL
11032 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11033 && IS_ABSOLUTE_PATH (res.name))
11034 {
11035 res.comp_dir_storage = ldirname (res.name);
11036 if (!res.comp_dir_storage.empty ())
11037 res.comp_dir = res.comp_dir_storage.c_str ();
11038 }
11039 if (res.comp_dir != NULL)
11040 {
11041 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11042 directory, get rid of it. */
11043 const char *cp = strchr (res.comp_dir, ':');
11044
11045 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11046 res.comp_dir = cp + 1;
11047 }
11048
11049 if (res.name == NULL)
11050 res.name = "<unknown>";
11051
11052 return res;
11053 }
11054
11055 /* Handle DW_AT_stmt_list for a compilation unit.
11056 DIE is the DW_TAG_compile_unit die for CU.
11057 COMP_DIR is the compilation directory. LOWPC is passed to
11058 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11059
11060 static void
11061 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11062 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11063 {
11064 struct dwarf2_per_objfile *dwarf2_per_objfile
11065 = cu->per_cu->dwarf2_per_objfile;
11066 struct objfile *objfile = dwarf2_per_objfile->objfile;
11067 struct attribute *attr;
11068 struct line_header line_header_local;
11069 hashval_t line_header_local_hash;
11070 void **slot;
11071 int decode_mapping;
11072
11073 gdb_assert (! cu->per_cu->is_debug_types);
11074
11075 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11076 if (attr == NULL)
11077 return;
11078
11079 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11080
11081 /* The line header hash table is only created if needed (it exists to
11082 prevent redundant reading of the line table for partial_units).
11083 If we're given a partial_unit, we'll need it. If we're given a
11084 compile_unit, then use the line header hash table if it's already
11085 created, but don't create one just yet. */
11086
11087 if (dwarf2_per_objfile->line_header_hash == NULL
11088 && die->tag == DW_TAG_partial_unit)
11089 {
11090 dwarf2_per_objfile->line_header_hash
11091 = htab_create_alloc_ex (127, line_header_hash_voidp,
11092 line_header_eq_voidp,
11093 free_line_header_voidp,
11094 &objfile->objfile_obstack,
11095 hashtab_obstack_allocate,
11096 dummy_obstack_deallocate);
11097 }
11098
11099 line_header_local.sect_off = line_offset;
11100 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11101 line_header_local_hash = line_header_hash (&line_header_local);
11102 if (dwarf2_per_objfile->line_header_hash != NULL)
11103 {
11104 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11105 &line_header_local,
11106 line_header_local_hash, NO_INSERT);
11107
11108 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11109 is not present in *SLOT (since if there is something in *SLOT then
11110 it will be for a partial_unit). */
11111 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11112 {
11113 gdb_assert (*slot != NULL);
11114 cu->line_header = (struct line_header *) *slot;
11115 return;
11116 }
11117 }
11118
11119 /* dwarf_decode_line_header does not yet provide sufficient information.
11120 We always have to call also dwarf_decode_lines for it. */
11121 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11122 if (lh == NULL)
11123 return;
11124
11125 cu->line_header = lh.release ();
11126 cu->line_header_die_owner = die;
11127
11128 if (dwarf2_per_objfile->line_header_hash == NULL)
11129 slot = NULL;
11130 else
11131 {
11132 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11133 &line_header_local,
11134 line_header_local_hash, INSERT);
11135 gdb_assert (slot != NULL);
11136 }
11137 if (slot != NULL && *slot == NULL)
11138 {
11139 /* This newly decoded line number information unit will be owned
11140 by line_header_hash hash table. */
11141 *slot = cu->line_header;
11142 cu->line_header_die_owner = NULL;
11143 }
11144 else
11145 {
11146 /* We cannot free any current entry in (*slot) as that struct line_header
11147 may be already used by multiple CUs. Create only temporary decoded
11148 line_header for this CU - it may happen at most once for each line
11149 number information unit. And if we're not using line_header_hash
11150 then this is what we want as well. */
11151 gdb_assert (die->tag != DW_TAG_partial_unit);
11152 }
11153 decode_mapping = (die->tag != DW_TAG_partial_unit);
11154 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11155 decode_mapping);
11156
11157 }
11158
11159 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11160
11161 static void
11162 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11163 {
11164 struct dwarf2_per_objfile *dwarf2_per_objfile
11165 = cu->per_cu->dwarf2_per_objfile;
11166 struct objfile *objfile = dwarf2_per_objfile->objfile;
11167 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11168 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11169 CORE_ADDR highpc = ((CORE_ADDR) 0);
11170 struct attribute *attr;
11171 struct die_info *child_die;
11172 CORE_ADDR baseaddr;
11173
11174 prepare_one_comp_unit (cu, die, cu->language);
11175 baseaddr = objfile->text_section_offset ();
11176
11177 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11178
11179 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11180 from finish_block. */
11181 if (lowpc == ((CORE_ADDR) -1))
11182 lowpc = highpc;
11183 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11184
11185 file_and_directory fnd = find_file_and_directory (die, cu);
11186
11187 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11188 standardised yet. As a workaround for the language detection we fall
11189 back to the DW_AT_producer string. */
11190 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11191 cu->language = language_opencl;
11192
11193 /* Similar hack for Go. */
11194 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11195 set_cu_language (DW_LANG_Go, cu);
11196
11197 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11198
11199 /* Decode line number information if present. We do this before
11200 processing child DIEs, so that the line header table is available
11201 for DW_AT_decl_file. */
11202 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11203
11204 /* Process all dies in compilation unit. */
11205 if (die->child != NULL)
11206 {
11207 child_die = die->child;
11208 while (child_die && child_die->tag)
11209 {
11210 process_die (child_die, cu);
11211 child_die = sibling_die (child_die);
11212 }
11213 }
11214
11215 /* Decode macro information, if present. Dwarf 2 macro information
11216 refers to information in the line number info statement program
11217 header, so we can only read it if we've read the header
11218 successfully. */
11219 attr = dwarf2_attr (die, DW_AT_macros, cu);
11220 if (attr == NULL)
11221 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11222 if (attr && cu->line_header)
11223 {
11224 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11225 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11226
11227 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11228 }
11229 else
11230 {
11231 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11232 if (attr && cu->line_header)
11233 {
11234 unsigned int macro_offset = DW_UNSND (attr);
11235
11236 dwarf_decode_macros (cu, macro_offset, 0);
11237 }
11238 }
11239 }
11240
11241 void
11242 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11243 {
11244 struct type_unit_group *tu_group;
11245 int first_time;
11246 struct attribute *attr;
11247 unsigned int i;
11248 struct signatured_type *sig_type;
11249
11250 gdb_assert (per_cu->is_debug_types);
11251 sig_type = (struct signatured_type *) per_cu;
11252
11253 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11254
11255 /* If we're using .gdb_index (includes -readnow) then
11256 per_cu->type_unit_group may not have been set up yet. */
11257 if (sig_type->type_unit_group == NULL)
11258 sig_type->type_unit_group = get_type_unit_group (this, attr);
11259 tu_group = sig_type->type_unit_group;
11260
11261 /* If we've already processed this stmt_list there's no real need to
11262 do it again, we could fake it and just recreate the part we need
11263 (file name,index -> symtab mapping). If data shows this optimization
11264 is useful we can do it then. */
11265 first_time = tu_group->compunit_symtab == NULL;
11266
11267 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11268 debug info. */
11269 line_header_up lh;
11270 if (attr != NULL)
11271 {
11272 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11273 lh = dwarf_decode_line_header (line_offset, this);
11274 }
11275 if (lh == NULL)
11276 {
11277 if (first_time)
11278 start_symtab ("", NULL, 0);
11279 else
11280 {
11281 gdb_assert (tu_group->symtabs == NULL);
11282 gdb_assert (m_builder == nullptr);
11283 struct compunit_symtab *cust = tu_group->compunit_symtab;
11284 m_builder.reset (new struct buildsym_compunit
11285 (COMPUNIT_OBJFILE (cust), "",
11286 COMPUNIT_DIRNAME (cust),
11287 compunit_language (cust),
11288 0, cust));
11289 }
11290 return;
11291 }
11292
11293 line_header = lh.release ();
11294 line_header_die_owner = die;
11295
11296 if (first_time)
11297 {
11298 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11299
11300 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11301 still initializing it, and our caller (a few levels up)
11302 process_full_type_unit still needs to know if this is the first
11303 time. */
11304
11305 tu_group->num_symtabs = line_header->file_names_size ();
11306 tu_group->symtabs = XNEWVEC (struct symtab *,
11307 line_header->file_names_size ());
11308
11309 auto &file_names = line_header->file_names ();
11310 for (i = 0; i < file_names.size (); ++i)
11311 {
11312 file_entry &fe = file_names[i];
11313 dwarf2_start_subfile (this, fe.name,
11314 fe.include_dir (line_header));
11315 buildsym_compunit *b = get_builder ();
11316 if (b->get_current_subfile ()->symtab == NULL)
11317 {
11318 /* NOTE: start_subfile will recognize when it's been
11319 passed a file it has already seen. So we can't
11320 assume there's a simple mapping from
11321 cu->line_header->file_names to subfiles, plus
11322 cu->line_header->file_names may contain dups. */
11323 b->get_current_subfile ()->symtab
11324 = allocate_symtab (cust, b->get_current_subfile ()->name);
11325 }
11326
11327 fe.symtab = b->get_current_subfile ()->symtab;
11328 tu_group->symtabs[i] = fe.symtab;
11329 }
11330 }
11331 else
11332 {
11333 gdb_assert (m_builder == nullptr);
11334 struct compunit_symtab *cust = tu_group->compunit_symtab;
11335 m_builder.reset (new struct buildsym_compunit
11336 (COMPUNIT_OBJFILE (cust), "",
11337 COMPUNIT_DIRNAME (cust),
11338 compunit_language (cust),
11339 0, cust));
11340
11341 auto &file_names = line_header->file_names ();
11342 for (i = 0; i < file_names.size (); ++i)
11343 {
11344 file_entry &fe = file_names[i];
11345 fe.symtab = tu_group->symtabs[i];
11346 }
11347 }
11348
11349 /* The main symtab is allocated last. Type units don't have DW_AT_name
11350 so they don't have a "real" (so to speak) symtab anyway.
11351 There is later code that will assign the main symtab to all symbols
11352 that don't have one. We need to handle the case of a symbol with a
11353 missing symtab (DW_AT_decl_file) anyway. */
11354 }
11355
11356 /* Process DW_TAG_type_unit.
11357 For TUs we want to skip the first top level sibling if it's not the
11358 actual type being defined by this TU. In this case the first top
11359 level sibling is there to provide context only. */
11360
11361 static void
11362 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11363 {
11364 struct die_info *child_die;
11365
11366 prepare_one_comp_unit (cu, die, language_minimal);
11367
11368 /* Initialize (or reinitialize) the machinery for building symtabs.
11369 We do this before processing child DIEs, so that the line header table
11370 is available for DW_AT_decl_file. */
11371 cu->setup_type_unit_groups (die);
11372
11373 if (die->child != NULL)
11374 {
11375 child_die = die->child;
11376 while (child_die && child_die->tag)
11377 {
11378 process_die (child_die, cu);
11379 child_die = sibling_die (child_die);
11380 }
11381 }
11382 }
11383 \f
11384 /* DWO/DWP files.
11385
11386 http://gcc.gnu.org/wiki/DebugFission
11387 http://gcc.gnu.org/wiki/DebugFissionDWP
11388
11389 To simplify handling of both DWO files ("object" files with the DWARF info)
11390 and DWP files (a file with the DWOs packaged up into one file), we treat
11391 DWP files as having a collection of virtual DWO files. */
11392
11393 static hashval_t
11394 hash_dwo_file (const void *item)
11395 {
11396 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11397 hashval_t hash;
11398
11399 hash = htab_hash_string (dwo_file->dwo_name);
11400 if (dwo_file->comp_dir != NULL)
11401 hash += htab_hash_string (dwo_file->comp_dir);
11402 return hash;
11403 }
11404
11405 static int
11406 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11407 {
11408 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11409 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11410
11411 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11412 return 0;
11413 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11414 return lhs->comp_dir == rhs->comp_dir;
11415 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11416 }
11417
11418 /* Allocate a hash table for DWO files. */
11419
11420 static htab_up
11421 allocate_dwo_file_hash_table (struct objfile *objfile)
11422 {
11423 auto delete_dwo_file = [] (void *item)
11424 {
11425 struct dwo_file *dwo_file = (struct dwo_file *) item;
11426
11427 delete dwo_file;
11428 };
11429
11430 return htab_up (htab_create_alloc_ex (41,
11431 hash_dwo_file,
11432 eq_dwo_file,
11433 delete_dwo_file,
11434 &objfile->objfile_obstack,
11435 hashtab_obstack_allocate,
11436 dummy_obstack_deallocate));
11437 }
11438
11439 /* Lookup DWO file DWO_NAME. */
11440
11441 static void **
11442 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11443 const char *dwo_name,
11444 const char *comp_dir)
11445 {
11446 struct dwo_file find_entry;
11447 void **slot;
11448
11449 if (dwarf2_per_objfile->dwo_files == NULL)
11450 dwarf2_per_objfile->dwo_files
11451 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11452
11453 find_entry.dwo_name = dwo_name;
11454 find_entry.comp_dir = comp_dir;
11455 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11456 INSERT);
11457
11458 return slot;
11459 }
11460
11461 static hashval_t
11462 hash_dwo_unit (const void *item)
11463 {
11464 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11465
11466 /* This drops the top 32 bits of the id, but is ok for a hash. */
11467 return dwo_unit->signature;
11468 }
11469
11470 static int
11471 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11472 {
11473 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11474 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11475
11476 /* The signature is assumed to be unique within the DWO file.
11477 So while object file CU dwo_id's always have the value zero,
11478 that's OK, assuming each object file DWO file has only one CU,
11479 and that's the rule for now. */
11480 return lhs->signature == rhs->signature;
11481 }
11482
11483 /* Allocate a hash table for DWO CUs,TUs.
11484 There is one of these tables for each of CUs,TUs for each DWO file. */
11485
11486 static htab_t
11487 allocate_dwo_unit_table (struct objfile *objfile)
11488 {
11489 /* Start out with a pretty small number.
11490 Generally DWO files contain only one CU and maybe some TUs. */
11491 return htab_create_alloc_ex (3,
11492 hash_dwo_unit,
11493 eq_dwo_unit,
11494 NULL,
11495 &objfile->objfile_obstack,
11496 hashtab_obstack_allocate,
11497 dummy_obstack_deallocate);
11498 }
11499
11500 /* die_reader_func for create_dwo_cu. */
11501
11502 static void
11503 create_dwo_cu_reader (const struct die_reader_specs *reader,
11504 const gdb_byte *info_ptr,
11505 struct die_info *comp_unit_die,
11506 struct dwo_file *dwo_file,
11507 struct dwo_unit *dwo_unit)
11508 {
11509 struct dwarf2_cu *cu = reader->cu;
11510 sect_offset sect_off = cu->per_cu->sect_off;
11511 struct dwarf2_section_info *section = cu->per_cu->section;
11512
11513 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11514 if (!signature.has_value ())
11515 {
11516 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11517 " its dwo_id [in module %s]"),
11518 sect_offset_str (sect_off), dwo_file->dwo_name);
11519 return;
11520 }
11521
11522 dwo_unit->dwo_file = dwo_file;
11523 dwo_unit->signature = *signature;
11524 dwo_unit->section = section;
11525 dwo_unit->sect_off = sect_off;
11526 dwo_unit->length = cu->per_cu->length;
11527
11528 if (dwarf_read_debug)
11529 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11530 sect_offset_str (sect_off),
11531 hex_string (dwo_unit->signature));
11532 }
11533
11534 /* Create the dwo_units for the CUs in a DWO_FILE.
11535 Note: This function processes DWO files only, not DWP files. */
11536
11537 static void
11538 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11539 dwarf2_cu *cu, struct dwo_file &dwo_file,
11540 dwarf2_section_info &section, htab_t &cus_htab)
11541 {
11542 struct objfile *objfile = dwarf2_per_objfile->objfile;
11543 const gdb_byte *info_ptr, *end_ptr;
11544
11545 section.read (objfile);
11546 info_ptr = section.buffer;
11547
11548 if (info_ptr == NULL)
11549 return;
11550
11551 if (dwarf_read_debug)
11552 {
11553 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11554 section.get_name (),
11555 section.get_file_name ());
11556 }
11557
11558 end_ptr = info_ptr + section.size;
11559 while (info_ptr < end_ptr)
11560 {
11561 struct dwarf2_per_cu_data per_cu;
11562 struct dwo_unit read_unit {};
11563 struct dwo_unit *dwo_unit;
11564 void **slot;
11565 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11566
11567 memset (&per_cu, 0, sizeof (per_cu));
11568 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11569 per_cu.is_debug_types = 0;
11570 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11571 per_cu.section = &section;
11572
11573 cutu_reader reader (&per_cu, cu, &dwo_file);
11574 if (!reader.dummy_p)
11575 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11576 &dwo_file, &read_unit);
11577 info_ptr += per_cu.length;
11578
11579 // If the unit could not be parsed, skip it.
11580 if (read_unit.dwo_file == NULL)
11581 continue;
11582
11583 if (cus_htab == NULL)
11584 cus_htab = allocate_dwo_unit_table (objfile);
11585
11586 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11587 *dwo_unit = read_unit;
11588 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11589 gdb_assert (slot != NULL);
11590 if (*slot != NULL)
11591 {
11592 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11593 sect_offset dup_sect_off = dup_cu->sect_off;
11594
11595 complaint (_("debug cu entry at offset %s is duplicate to"
11596 " the entry at offset %s, signature %s"),
11597 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11598 hex_string (dwo_unit->signature));
11599 }
11600 *slot = (void *)dwo_unit;
11601 }
11602 }
11603
11604 /* DWP file .debug_{cu,tu}_index section format:
11605 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11606
11607 DWP Version 1:
11608
11609 Both index sections have the same format, and serve to map a 64-bit
11610 signature to a set of section numbers. Each section begins with a header,
11611 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11612 indexes, and a pool of 32-bit section numbers. The index sections will be
11613 aligned at 8-byte boundaries in the file.
11614
11615 The index section header consists of:
11616
11617 V, 32 bit version number
11618 -, 32 bits unused
11619 N, 32 bit number of compilation units or type units in the index
11620 M, 32 bit number of slots in the hash table
11621
11622 Numbers are recorded using the byte order of the application binary.
11623
11624 The hash table begins at offset 16 in the section, and consists of an array
11625 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11626 order of the application binary). Unused slots in the hash table are 0.
11627 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11628
11629 The parallel table begins immediately after the hash table
11630 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11631 array of 32-bit indexes (using the byte order of the application binary),
11632 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11633 table contains a 32-bit index into the pool of section numbers. For unused
11634 hash table slots, the corresponding entry in the parallel table will be 0.
11635
11636 The pool of section numbers begins immediately following the hash table
11637 (at offset 16 + 12 * M from the beginning of the section). The pool of
11638 section numbers consists of an array of 32-bit words (using the byte order
11639 of the application binary). Each item in the array is indexed starting
11640 from 0. The hash table entry provides the index of the first section
11641 number in the set. Additional section numbers in the set follow, and the
11642 set is terminated by a 0 entry (section number 0 is not used in ELF).
11643
11644 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11645 section must be the first entry in the set, and the .debug_abbrev.dwo must
11646 be the second entry. Other members of the set may follow in any order.
11647
11648 ---
11649
11650 DWP Version 2:
11651
11652 DWP Version 2 combines all the .debug_info, etc. sections into one,
11653 and the entries in the index tables are now offsets into these sections.
11654 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11655 section.
11656
11657 Index Section Contents:
11658 Header
11659 Hash Table of Signatures dwp_hash_table.hash_table
11660 Parallel Table of Indices dwp_hash_table.unit_table
11661 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11662 Table of Section Sizes dwp_hash_table.v2.sizes
11663
11664 The index section header consists of:
11665
11666 V, 32 bit version number
11667 L, 32 bit number of columns in the table of section offsets
11668 N, 32 bit number of compilation units or type units in the index
11669 M, 32 bit number of slots in the hash table
11670
11671 Numbers are recorded using the byte order of the application binary.
11672
11673 The hash table has the same format as version 1.
11674 The parallel table of indices has the same format as version 1,
11675 except that the entries are origin-1 indices into the table of sections
11676 offsets and the table of section sizes.
11677
11678 The table of offsets begins immediately following the parallel table
11679 (at offset 16 + 12 * M from the beginning of the section). The table is
11680 a two-dimensional array of 32-bit words (using the byte order of the
11681 application binary), with L columns and N+1 rows, in row-major order.
11682 Each row in the array is indexed starting from 0. The first row provides
11683 a key to the remaining rows: each column in this row provides an identifier
11684 for a debug section, and the offsets in the same column of subsequent rows
11685 refer to that section. The section identifiers are:
11686
11687 DW_SECT_INFO 1 .debug_info.dwo
11688 DW_SECT_TYPES 2 .debug_types.dwo
11689 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11690 DW_SECT_LINE 4 .debug_line.dwo
11691 DW_SECT_LOC 5 .debug_loc.dwo
11692 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11693 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11694 DW_SECT_MACRO 8 .debug_macro.dwo
11695
11696 The offsets provided by the CU and TU index sections are the base offsets
11697 for the contributions made by each CU or TU to the corresponding section
11698 in the package file. Each CU and TU header contains an abbrev_offset
11699 field, used to find the abbreviations table for that CU or TU within the
11700 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11701 be interpreted as relative to the base offset given in the index section.
11702 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11703 should be interpreted as relative to the base offset for .debug_line.dwo,
11704 and offsets into other debug sections obtained from DWARF attributes should
11705 also be interpreted as relative to the corresponding base offset.
11706
11707 The table of sizes begins immediately following the table of offsets.
11708 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11709 with L columns and N rows, in row-major order. Each row in the array is
11710 indexed starting from 1 (row 0 is shared by the two tables).
11711
11712 ---
11713
11714 Hash table lookup is handled the same in version 1 and 2:
11715
11716 We assume that N and M will not exceed 2^32 - 1.
11717 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11718
11719 Given a 64-bit compilation unit signature or a type signature S, an entry
11720 in the hash table is located as follows:
11721
11722 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11723 the low-order k bits all set to 1.
11724
11725 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11726
11727 3) If the hash table entry at index H matches the signature, use that
11728 entry. If the hash table entry at index H is unused (all zeroes),
11729 terminate the search: the signature is not present in the table.
11730
11731 4) Let H = (H + H') modulo M. Repeat at Step 3.
11732
11733 Because M > N and H' and M are relatively prime, the search is guaranteed
11734 to stop at an unused slot or find the match. */
11735
11736 /* Create a hash table to map DWO IDs to their CU/TU entry in
11737 .debug_{info,types}.dwo in DWP_FILE.
11738 Returns NULL if there isn't one.
11739 Note: This function processes DWP files only, not DWO files. */
11740
11741 static struct dwp_hash_table *
11742 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11743 struct dwp_file *dwp_file, int is_debug_types)
11744 {
11745 struct objfile *objfile = dwarf2_per_objfile->objfile;
11746 bfd *dbfd = dwp_file->dbfd.get ();
11747 const gdb_byte *index_ptr, *index_end;
11748 struct dwarf2_section_info *index;
11749 uint32_t version, nr_columns, nr_units, nr_slots;
11750 struct dwp_hash_table *htab;
11751
11752 if (is_debug_types)
11753 index = &dwp_file->sections.tu_index;
11754 else
11755 index = &dwp_file->sections.cu_index;
11756
11757 if (index->empty ())
11758 return NULL;
11759 index->read (objfile);
11760
11761 index_ptr = index->buffer;
11762 index_end = index_ptr + index->size;
11763
11764 version = read_4_bytes (dbfd, index_ptr);
11765 index_ptr += 4;
11766 if (version == 2)
11767 nr_columns = read_4_bytes (dbfd, index_ptr);
11768 else
11769 nr_columns = 0;
11770 index_ptr += 4;
11771 nr_units = read_4_bytes (dbfd, index_ptr);
11772 index_ptr += 4;
11773 nr_slots = read_4_bytes (dbfd, index_ptr);
11774 index_ptr += 4;
11775
11776 if (version != 1 && version != 2)
11777 {
11778 error (_("Dwarf Error: unsupported DWP file version (%s)"
11779 " [in module %s]"),
11780 pulongest (version), dwp_file->name);
11781 }
11782 if (nr_slots != (nr_slots & -nr_slots))
11783 {
11784 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11785 " is not power of 2 [in module %s]"),
11786 pulongest (nr_slots), dwp_file->name);
11787 }
11788
11789 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11790 htab->version = version;
11791 htab->nr_columns = nr_columns;
11792 htab->nr_units = nr_units;
11793 htab->nr_slots = nr_slots;
11794 htab->hash_table = index_ptr;
11795 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11796
11797 /* Exit early if the table is empty. */
11798 if (nr_slots == 0 || nr_units == 0
11799 || (version == 2 && nr_columns == 0))
11800 {
11801 /* All must be zero. */
11802 if (nr_slots != 0 || nr_units != 0
11803 || (version == 2 && nr_columns != 0))
11804 {
11805 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11806 " all zero [in modules %s]"),
11807 dwp_file->name);
11808 }
11809 return htab;
11810 }
11811
11812 if (version == 1)
11813 {
11814 htab->section_pool.v1.indices =
11815 htab->unit_table + sizeof (uint32_t) * nr_slots;
11816 /* It's harder to decide whether the section is too small in v1.
11817 V1 is deprecated anyway so we punt. */
11818 }
11819 else
11820 {
11821 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11822 int *ids = htab->section_pool.v2.section_ids;
11823 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11824 /* Reverse map for error checking. */
11825 int ids_seen[DW_SECT_MAX + 1];
11826 int i;
11827
11828 if (nr_columns < 2)
11829 {
11830 error (_("Dwarf Error: bad DWP hash table, too few columns"
11831 " in section table [in module %s]"),
11832 dwp_file->name);
11833 }
11834 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11835 {
11836 error (_("Dwarf Error: bad DWP hash table, too many columns"
11837 " in section table [in module %s]"),
11838 dwp_file->name);
11839 }
11840 memset (ids, 255, sizeof_ids);
11841 memset (ids_seen, 255, sizeof (ids_seen));
11842 for (i = 0; i < nr_columns; ++i)
11843 {
11844 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11845
11846 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11847 {
11848 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11849 " in section table [in module %s]"),
11850 id, dwp_file->name);
11851 }
11852 if (ids_seen[id] != -1)
11853 {
11854 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11855 " id %d in section table [in module %s]"),
11856 id, dwp_file->name);
11857 }
11858 ids_seen[id] = i;
11859 ids[i] = id;
11860 }
11861 /* Must have exactly one info or types section. */
11862 if (((ids_seen[DW_SECT_INFO] != -1)
11863 + (ids_seen[DW_SECT_TYPES] != -1))
11864 != 1)
11865 {
11866 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11867 " DWO info/types section [in module %s]"),
11868 dwp_file->name);
11869 }
11870 /* Must have an abbrev section. */
11871 if (ids_seen[DW_SECT_ABBREV] == -1)
11872 {
11873 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11874 " section [in module %s]"),
11875 dwp_file->name);
11876 }
11877 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11878 htab->section_pool.v2.sizes =
11879 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11880 * nr_units * nr_columns);
11881 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11882 * nr_units * nr_columns))
11883 > index_end)
11884 {
11885 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11886 " [in module %s]"),
11887 dwp_file->name);
11888 }
11889 }
11890
11891 return htab;
11892 }
11893
11894 /* Update SECTIONS with the data from SECTP.
11895
11896 This function is like the other "locate" section routines that are
11897 passed to bfd_map_over_sections, but in this context the sections to
11898 read comes from the DWP V1 hash table, not the full ELF section table.
11899
11900 The result is non-zero for success, or zero if an error was found. */
11901
11902 static int
11903 locate_v1_virtual_dwo_sections (asection *sectp,
11904 struct virtual_v1_dwo_sections *sections)
11905 {
11906 const struct dwop_section_names *names = &dwop_section_names;
11907
11908 if (section_is_p (sectp->name, &names->abbrev_dwo))
11909 {
11910 /* There can be only one. */
11911 if (sections->abbrev.s.section != NULL)
11912 return 0;
11913 sections->abbrev.s.section = sectp;
11914 sections->abbrev.size = bfd_section_size (sectp);
11915 }
11916 else if (section_is_p (sectp->name, &names->info_dwo)
11917 || section_is_p (sectp->name, &names->types_dwo))
11918 {
11919 /* There can be only one. */
11920 if (sections->info_or_types.s.section != NULL)
11921 return 0;
11922 sections->info_or_types.s.section = sectp;
11923 sections->info_or_types.size = bfd_section_size (sectp);
11924 }
11925 else if (section_is_p (sectp->name, &names->line_dwo))
11926 {
11927 /* There can be only one. */
11928 if (sections->line.s.section != NULL)
11929 return 0;
11930 sections->line.s.section = sectp;
11931 sections->line.size = bfd_section_size (sectp);
11932 }
11933 else if (section_is_p (sectp->name, &names->loc_dwo))
11934 {
11935 /* There can be only one. */
11936 if (sections->loc.s.section != NULL)
11937 return 0;
11938 sections->loc.s.section = sectp;
11939 sections->loc.size = bfd_section_size (sectp);
11940 }
11941 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11942 {
11943 /* There can be only one. */
11944 if (sections->macinfo.s.section != NULL)
11945 return 0;
11946 sections->macinfo.s.section = sectp;
11947 sections->macinfo.size = bfd_section_size (sectp);
11948 }
11949 else if (section_is_p (sectp->name, &names->macro_dwo))
11950 {
11951 /* There can be only one. */
11952 if (sections->macro.s.section != NULL)
11953 return 0;
11954 sections->macro.s.section = sectp;
11955 sections->macro.size = bfd_section_size (sectp);
11956 }
11957 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11958 {
11959 /* There can be only one. */
11960 if (sections->str_offsets.s.section != NULL)
11961 return 0;
11962 sections->str_offsets.s.section = sectp;
11963 sections->str_offsets.size = bfd_section_size (sectp);
11964 }
11965 else
11966 {
11967 /* No other kind of section is valid. */
11968 return 0;
11969 }
11970
11971 return 1;
11972 }
11973
11974 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11975 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11976 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11977 This is for DWP version 1 files. */
11978
11979 static struct dwo_unit *
11980 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11981 struct dwp_file *dwp_file,
11982 uint32_t unit_index,
11983 const char *comp_dir,
11984 ULONGEST signature, int is_debug_types)
11985 {
11986 struct objfile *objfile = dwarf2_per_objfile->objfile;
11987 const struct dwp_hash_table *dwp_htab =
11988 is_debug_types ? dwp_file->tus : dwp_file->cus;
11989 bfd *dbfd = dwp_file->dbfd.get ();
11990 const char *kind = is_debug_types ? "TU" : "CU";
11991 struct dwo_file *dwo_file;
11992 struct dwo_unit *dwo_unit;
11993 struct virtual_v1_dwo_sections sections;
11994 void **dwo_file_slot;
11995 int i;
11996
11997 gdb_assert (dwp_file->version == 1);
11998
11999 if (dwarf_read_debug)
12000 {
12001 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12002 kind,
12003 pulongest (unit_index), hex_string (signature),
12004 dwp_file->name);
12005 }
12006
12007 /* Fetch the sections of this DWO unit.
12008 Put a limit on the number of sections we look for so that bad data
12009 doesn't cause us to loop forever. */
12010
12011 #define MAX_NR_V1_DWO_SECTIONS \
12012 (1 /* .debug_info or .debug_types */ \
12013 + 1 /* .debug_abbrev */ \
12014 + 1 /* .debug_line */ \
12015 + 1 /* .debug_loc */ \
12016 + 1 /* .debug_str_offsets */ \
12017 + 1 /* .debug_macro or .debug_macinfo */ \
12018 + 1 /* trailing zero */)
12019
12020 memset (&sections, 0, sizeof (sections));
12021
12022 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12023 {
12024 asection *sectp;
12025 uint32_t section_nr =
12026 read_4_bytes (dbfd,
12027 dwp_htab->section_pool.v1.indices
12028 + (unit_index + i) * sizeof (uint32_t));
12029
12030 if (section_nr == 0)
12031 break;
12032 if (section_nr >= dwp_file->num_sections)
12033 {
12034 error (_("Dwarf Error: bad DWP hash table, section number too large"
12035 " [in module %s]"),
12036 dwp_file->name);
12037 }
12038
12039 sectp = dwp_file->elf_sections[section_nr];
12040 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12041 {
12042 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12043 " [in module %s]"),
12044 dwp_file->name);
12045 }
12046 }
12047
12048 if (i < 2
12049 || sections.info_or_types.empty ()
12050 || sections.abbrev.empty ())
12051 {
12052 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12053 " [in module %s]"),
12054 dwp_file->name);
12055 }
12056 if (i == MAX_NR_V1_DWO_SECTIONS)
12057 {
12058 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12059 " [in module %s]"),
12060 dwp_file->name);
12061 }
12062
12063 /* It's easier for the rest of the code if we fake a struct dwo_file and
12064 have dwo_unit "live" in that. At least for now.
12065
12066 The DWP file can be made up of a random collection of CUs and TUs.
12067 However, for each CU + set of TUs that came from the same original DWO
12068 file, we can combine them back into a virtual DWO file to save space
12069 (fewer struct dwo_file objects to allocate). Remember that for really
12070 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12071
12072 std::string virtual_dwo_name =
12073 string_printf ("virtual-dwo/%d-%d-%d-%d",
12074 sections.abbrev.get_id (),
12075 sections.line.get_id (),
12076 sections.loc.get_id (),
12077 sections.str_offsets.get_id ());
12078 /* Can we use an existing virtual DWO file? */
12079 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12080 virtual_dwo_name.c_str (),
12081 comp_dir);
12082 /* Create one if necessary. */
12083 if (*dwo_file_slot == NULL)
12084 {
12085 if (dwarf_read_debug)
12086 {
12087 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12088 virtual_dwo_name.c_str ());
12089 }
12090 dwo_file = new struct dwo_file;
12091 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12092 virtual_dwo_name);
12093 dwo_file->comp_dir = comp_dir;
12094 dwo_file->sections.abbrev = sections.abbrev;
12095 dwo_file->sections.line = sections.line;
12096 dwo_file->sections.loc = sections.loc;
12097 dwo_file->sections.macinfo = sections.macinfo;
12098 dwo_file->sections.macro = sections.macro;
12099 dwo_file->sections.str_offsets = sections.str_offsets;
12100 /* The "str" section is global to the entire DWP file. */
12101 dwo_file->sections.str = dwp_file->sections.str;
12102 /* The info or types section is assigned below to dwo_unit,
12103 there's no need to record it in dwo_file.
12104 Also, we can't simply record type sections in dwo_file because
12105 we record a pointer into the vector in dwo_unit. As we collect more
12106 types we'll grow the vector and eventually have to reallocate space
12107 for it, invalidating all copies of pointers into the previous
12108 contents. */
12109 *dwo_file_slot = dwo_file;
12110 }
12111 else
12112 {
12113 if (dwarf_read_debug)
12114 {
12115 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12116 virtual_dwo_name.c_str ());
12117 }
12118 dwo_file = (struct dwo_file *) *dwo_file_slot;
12119 }
12120
12121 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12122 dwo_unit->dwo_file = dwo_file;
12123 dwo_unit->signature = signature;
12124 dwo_unit->section =
12125 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12126 *dwo_unit->section = sections.info_or_types;
12127 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12128
12129 return dwo_unit;
12130 }
12131
12132 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12133 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12134 piece within that section used by a TU/CU, return a virtual section
12135 of just that piece. */
12136
12137 static struct dwarf2_section_info
12138 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12139 struct dwarf2_section_info *section,
12140 bfd_size_type offset, bfd_size_type size)
12141 {
12142 struct dwarf2_section_info result;
12143 asection *sectp;
12144
12145 gdb_assert (section != NULL);
12146 gdb_assert (!section->is_virtual);
12147
12148 memset (&result, 0, sizeof (result));
12149 result.s.containing_section = section;
12150 result.is_virtual = true;
12151
12152 if (size == 0)
12153 return result;
12154
12155 sectp = section->get_bfd_section ();
12156
12157 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12158 bounds of the real section. This is a pretty-rare event, so just
12159 flag an error (easier) instead of a warning and trying to cope. */
12160 if (sectp == NULL
12161 || offset + size > bfd_section_size (sectp))
12162 {
12163 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12164 " in section %s [in module %s]"),
12165 sectp ? bfd_section_name (sectp) : "<unknown>",
12166 objfile_name (dwarf2_per_objfile->objfile));
12167 }
12168
12169 result.virtual_offset = offset;
12170 result.size = size;
12171 return result;
12172 }
12173
12174 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12175 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12176 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12177 This is for DWP version 2 files. */
12178
12179 static struct dwo_unit *
12180 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12181 struct dwp_file *dwp_file,
12182 uint32_t unit_index,
12183 const char *comp_dir,
12184 ULONGEST signature, int is_debug_types)
12185 {
12186 struct objfile *objfile = dwarf2_per_objfile->objfile;
12187 const struct dwp_hash_table *dwp_htab =
12188 is_debug_types ? dwp_file->tus : dwp_file->cus;
12189 bfd *dbfd = dwp_file->dbfd.get ();
12190 const char *kind = is_debug_types ? "TU" : "CU";
12191 struct dwo_file *dwo_file;
12192 struct dwo_unit *dwo_unit;
12193 struct virtual_v2_dwo_sections sections;
12194 void **dwo_file_slot;
12195 int i;
12196
12197 gdb_assert (dwp_file->version == 2);
12198
12199 if (dwarf_read_debug)
12200 {
12201 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12202 kind,
12203 pulongest (unit_index), hex_string (signature),
12204 dwp_file->name);
12205 }
12206
12207 /* Fetch the section offsets of this DWO unit. */
12208
12209 memset (&sections, 0, sizeof (sections));
12210
12211 for (i = 0; i < dwp_htab->nr_columns; ++i)
12212 {
12213 uint32_t offset = read_4_bytes (dbfd,
12214 dwp_htab->section_pool.v2.offsets
12215 + (((unit_index - 1) * dwp_htab->nr_columns
12216 + i)
12217 * sizeof (uint32_t)));
12218 uint32_t size = read_4_bytes (dbfd,
12219 dwp_htab->section_pool.v2.sizes
12220 + (((unit_index - 1) * dwp_htab->nr_columns
12221 + i)
12222 * sizeof (uint32_t)));
12223
12224 switch (dwp_htab->section_pool.v2.section_ids[i])
12225 {
12226 case DW_SECT_INFO:
12227 case DW_SECT_TYPES:
12228 sections.info_or_types_offset = offset;
12229 sections.info_or_types_size = size;
12230 break;
12231 case DW_SECT_ABBREV:
12232 sections.abbrev_offset = offset;
12233 sections.abbrev_size = size;
12234 break;
12235 case DW_SECT_LINE:
12236 sections.line_offset = offset;
12237 sections.line_size = size;
12238 break;
12239 case DW_SECT_LOC:
12240 sections.loc_offset = offset;
12241 sections.loc_size = size;
12242 break;
12243 case DW_SECT_STR_OFFSETS:
12244 sections.str_offsets_offset = offset;
12245 sections.str_offsets_size = size;
12246 break;
12247 case DW_SECT_MACINFO:
12248 sections.macinfo_offset = offset;
12249 sections.macinfo_size = size;
12250 break;
12251 case DW_SECT_MACRO:
12252 sections.macro_offset = offset;
12253 sections.macro_size = size;
12254 break;
12255 }
12256 }
12257
12258 /* It's easier for the rest of the code if we fake a struct dwo_file and
12259 have dwo_unit "live" in that. At least for now.
12260
12261 The DWP file can be made up of a random collection of CUs and TUs.
12262 However, for each CU + set of TUs that came from the same original DWO
12263 file, we can combine them back into a virtual DWO file to save space
12264 (fewer struct dwo_file objects to allocate). Remember that for really
12265 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12266
12267 std::string virtual_dwo_name =
12268 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12269 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12270 (long) (sections.line_size ? sections.line_offset : 0),
12271 (long) (sections.loc_size ? sections.loc_offset : 0),
12272 (long) (sections.str_offsets_size
12273 ? sections.str_offsets_offset : 0));
12274 /* Can we use an existing virtual DWO file? */
12275 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12276 virtual_dwo_name.c_str (),
12277 comp_dir);
12278 /* Create one if necessary. */
12279 if (*dwo_file_slot == NULL)
12280 {
12281 if (dwarf_read_debug)
12282 {
12283 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12284 virtual_dwo_name.c_str ());
12285 }
12286 dwo_file = new struct dwo_file;
12287 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12288 virtual_dwo_name);
12289 dwo_file->comp_dir = comp_dir;
12290 dwo_file->sections.abbrev =
12291 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12292 sections.abbrev_offset, sections.abbrev_size);
12293 dwo_file->sections.line =
12294 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12295 sections.line_offset, sections.line_size);
12296 dwo_file->sections.loc =
12297 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12298 sections.loc_offset, sections.loc_size);
12299 dwo_file->sections.macinfo =
12300 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12301 sections.macinfo_offset, sections.macinfo_size);
12302 dwo_file->sections.macro =
12303 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12304 sections.macro_offset, sections.macro_size);
12305 dwo_file->sections.str_offsets =
12306 create_dwp_v2_section (dwarf2_per_objfile,
12307 &dwp_file->sections.str_offsets,
12308 sections.str_offsets_offset,
12309 sections.str_offsets_size);
12310 /* The "str" section is global to the entire DWP file. */
12311 dwo_file->sections.str = dwp_file->sections.str;
12312 /* The info or types section is assigned below to dwo_unit,
12313 there's no need to record it in dwo_file.
12314 Also, we can't simply record type sections in dwo_file because
12315 we record a pointer into the vector in dwo_unit. As we collect more
12316 types we'll grow the vector and eventually have to reallocate space
12317 for it, invalidating all copies of pointers into the previous
12318 contents. */
12319 *dwo_file_slot = dwo_file;
12320 }
12321 else
12322 {
12323 if (dwarf_read_debug)
12324 {
12325 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12326 virtual_dwo_name.c_str ());
12327 }
12328 dwo_file = (struct dwo_file *) *dwo_file_slot;
12329 }
12330
12331 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12332 dwo_unit->dwo_file = dwo_file;
12333 dwo_unit->signature = signature;
12334 dwo_unit->section =
12335 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12336 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12337 is_debug_types
12338 ? &dwp_file->sections.types
12339 : &dwp_file->sections.info,
12340 sections.info_or_types_offset,
12341 sections.info_or_types_size);
12342 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12343
12344 return dwo_unit;
12345 }
12346
12347 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12348 Returns NULL if the signature isn't found. */
12349
12350 static struct dwo_unit *
12351 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12352 struct dwp_file *dwp_file, const char *comp_dir,
12353 ULONGEST signature, int is_debug_types)
12354 {
12355 const struct dwp_hash_table *dwp_htab =
12356 is_debug_types ? dwp_file->tus : dwp_file->cus;
12357 bfd *dbfd = dwp_file->dbfd.get ();
12358 uint32_t mask = dwp_htab->nr_slots - 1;
12359 uint32_t hash = signature & mask;
12360 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12361 unsigned int i;
12362 void **slot;
12363 struct dwo_unit find_dwo_cu;
12364
12365 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12366 find_dwo_cu.signature = signature;
12367 slot = htab_find_slot (is_debug_types
12368 ? dwp_file->loaded_tus
12369 : dwp_file->loaded_cus,
12370 &find_dwo_cu, INSERT);
12371
12372 if (*slot != NULL)
12373 return (struct dwo_unit *) *slot;
12374
12375 /* Use a for loop so that we don't loop forever on bad debug info. */
12376 for (i = 0; i < dwp_htab->nr_slots; ++i)
12377 {
12378 ULONGEST signature_in_table;
12379
12380 signature_in_table =
12381 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12382 if (signature_in_table == signature)
12383 {
12384 uint32_t unit_index =
12385 read_4_bytes (dbfd,
12386 dwp_htab->unit_table + hash * sizeof (uint32_t));
12387
12388 if (dwp_file->version == 1)
12389 {
12390 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12391 dwp_file, unit_index,
12392 comp_dir, signature,
12393 is_debug_types);
12394 }
12395 else
12396 {
12397 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12398 dwp_file, unit_index,
12399 comp_dir, signature,
12400 is_debug_types);
12401 }
12402 return (struct dwo_unit *) *slot;
12403 }
12404 if (signature_in_table == 0)
12405 return NULL;
12406 hash = (hash + hash2) & mask;
12407 }
12408
12409 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12410 " [in module %s]"),
12411 dwp_file->name);
12412 }
12413
12414 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12415 Open the file specified by FILE_NAME and hand it off to BFD for
12416 preliminary analysis. Return a newly initialized bfd *, which
12417 includes a canonicalized copy of FILE_NAME.
12418 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12419 SEARCH_CWD is true if the current directory is to be searched.
12420 It will be searched before debug-file-directory.
12421 If successful, the file is added to the bfd include table of the
12422 objfile's bfd (see gdb_bfd_record_inclusion).
12423 If unable to find/open the file, return NULL.
12424 NOTE: This function is derived from symfile_bfd_open. */
12425
12426 static gdb_bfd_ref_ptr
12427 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12428 const char *file_name, int is_dwp, int search_cwd)
12429 {
12430 int desc;
12431 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12432 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12433 to debug_file_directory. */
12434 const char *search_path;
12435 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12436
12437 gdb::unique_xmalloc_ptr<char> search_path_holder;
12438 if (search_cwd)
12439 {
12440 if (*debug_file_directory != '\0')
12441 {
12442 search_path_holder.reset (concat (".", dirname_separator_string,
12443 debug_file_directory,
12444 (char *) NULL));
12445 search_path = search_path_holder.get ();
12446 }
12447 else
12448 search_path = ".";
12449 }
12450 else
12451 search_path = debug_file_directory;
12452
12453 openp_flags flags = OPF_RETURN_REALPATH;
12454 if (is_dwp)
12455 flags |= OPF_SEARCH_IN_PATH;
12456
12457 gdb::unique_xmalloc_ptr<char> absolute_name;
12458 desc = openp (search_path, flags, file_name,
12459 O_RDONLY | O_BINARY, &absolute_name);
12460 if (desc < 0)
12461 return NULL;
12462
12463 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12464 gnutarget, desc));
12465 if (sym_bfd == NULL)
12466 return NULL;
12467 bfd_set_cacheable (sym_bfd.get (), 1);
12468
12469 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12470 return NULL;
12471
12472 /* Success. Record the bfd as having been included by the objfile's bfd.
12473 This is important because things like demangled_names_hash lives in the
12474 objfile's per_bfd space and may have references to things like symbol
12475 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12476 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12477
12478 return sym_bfd;
12479 }
12480
12481 /* Try to open DWO file FILE_NAME.
12482 COMP_DIR is the DW_AT_comp_dir attribute.
12483 The result is the bfd handle of the file.
12484 If there is a problem finding or opening the file, return NULL.
12485 Upon success, the canonicalized path of the file is stored in the bfd,
12486 same as symfile_bfd_open. */
12487
12488 static gdb_bfd_ref_ptr
12489 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12490 const char *file_name, const char *comp_dir)
12491 {
12492 if (IS_ABSOLUTE_PATH (file_name))
12493 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12494 0 /*is_dwp*/, 0 /*search_cwd*/);
12495
12496 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12497
12498 if (comp_dir != NULL)
12499 {
12500 gdb::unique_xmalloc_ptr<char> path_to_try
12501 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12502
12503 /* NOTE: If comp_dir is a relative path, this will also try the
12504 search path, which seems useful. */
12505 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12506 path_to_try.get (),
12507 0 /*is_dwp*/,
12508 1 /*search_cwd*/));
12509 if (abfd != NULL)
12510 return abfd;
12511 }
12512
12513 /* That didn't work, try debug-file-directory, which, despite its name,
12514 is a list of paths. */
12515
12516 if (*debug_file_directory == '\0')
12517 return NULL;
12518
12519 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12520 0 /*is_dwp*/, 1 /*search_cwd*/);
12521 }
12522
12523 /* This function is mapped across the sections and remembers the offset and
12524 size of each of the DWO debugging sections we are interested in. */
12525
12526 static void
12527 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12528 {
12529 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12530 const struct dwop_section_names *names = &dwop_section_names;
12531
12532 if (section_is_p (sectp->name, &names->abbrev_dwo))
12533 {
12534 dwo_sections->abbrev.s.section = sectp;
12535 dwo_sections->abbrev.size = bfd_section_size (sectp);
12536 }
12537 else if (section_is_p (sectp->name, &names->info_dwo))
12538 {
12539 dwo_sections->info.s.section = sectp;
12540 dwo_sections->info.size = bfd_section_size (sectp);
12541 }
12542 else if (section_is_p (sectp->name, &names->line_dwo))
12543 {
12544 dwo_sections->line.s.section = sectp;
12545 dwo_sections->line.size = bfd_section_size (sectp);
12546 }
12547 else if (section_is_p (sectp->name, &names->loc_dwo))
12548 {
12549 dwo_sections->loc.s.section = sectp;
12550 dwo_sections->loc.size = bfd_section_size (sectp);
12551 }
12552 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12553 {
12554 dwo_sections->macinfo.s.section = sectp;
12555 dwo_sections->macinfo.size = bfd_section_size (sectp);
12556 }
12557 else if (section_is_p (sectp->name, &names->macro_dwo))
12558 {
12559 dwo_sections->macro.s.section = sectp;
12560 dwo_sections->macro.size = bfd_section_size (sectp);
12561 }
12562 else if (section_is_p (sectp->name, &names->str_dwo))
12563 {
12564 dwo_sections->str.s.section = sectp;
12565 dwo_sections->str.size = bfd_section_size (sectp);
12566 }
12567 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12568 {
12569 dwo_sections->str_offsets.s.section = sectp;
12570 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12571 }
12572 else if (section_is_p (sectp->name, &names->types_dwo))
12573 {
12574 struct dwarf2_section_info type_section;
12575
12576 memset (&type_section, 0, sizeof (type_section));
12577 type_section.s.section = sectp;
12578 type_section.size = bfd_section_size (sectp);
12579 dwo_sections->types.push_back (type_section);
12580 }
12581 }
12582
12583 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12584 by PER_CU. This is for the non-DWP case.
12585 The result is NULL if DWO_NAME can't be found. */
12586
12587 static struct dwo_file *
12588 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12589 const char *dwo_name, const char *comp_dir)
12590 {
12591 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12592
12593 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12594 if (dbfd == NULL)
12595 {
12596 if (dwarf_read_debug)
12597 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12598 return NULL;
12599 }
12600
12601 dwo_file_up dwo_file (new struct dwo_file);
12602 dwo_file->dwo_name = dwo_name;
12603 dwo_file->comp_dir = comp_dir;
12604 dwo_file->dbfd = std::move (dbfd);
12605
12606 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12607 &dwo_file->sections);
12608
12609 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12610 dwo_file->sections.info, dwo_file->cus);
12611
12612 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12613 dwo_file->sections.types, dwo_file->tus);
12614
12615 if (dwarf_read_debug)
12616 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12617
12618 return dwo_file.release ();
12619 }
12620
12621 /* This function is mapped across the sections and remembers the offset and
12622 size of each of the DWP debugging sections common to version 1 and 2 that
12623 we are interested in. */
12624
12625 static void
12626 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12627 void *dwp_file_ptr)
12628 {
12629 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12630 const struct dwop_section_names *names = &dwop_section_names;
12631 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12632
12633 /* Record the ELF section number for later lookup: this is what the
12634 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12635 gdb_assert (elf_section_nr < dwp_file->num_sections);
12636 dwp_file->elf_sections[elf_section_nr] = sectp;
12637
12638 /* Look for specific sections that we need. */
12639 if (section_is_p (sectp->name, &names->str_dwo))
12640 {
12641 dwp_file->sections.str.s.section = sectp;
12642 dwp_file->sections.str.size = bfd_section_size (sectp);
12643 }
12644 else if (section_is_p (sectp->name, &names->cu_index))
12645 {
12646 dwp_file->sections.cu_index.s.section = sectp;
12647 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12648 }
12649 else if (section_is_p (sectp->name, &names->tu_index))
12650 {
12651 dwp_file->sections.tu_index.s.section = sectp;
12652 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12653 }
12654 }
12655
12656 /* This function is mapped across the sections and remembers the offset and
12657 size of each of the DWP version 2 debugging sections that we are interested
12658 in. This is split into a separate function because we don't know if we
12659 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12660
12661 static void
12662 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12663 {
12664 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12665 const struct dwop_section_names *names = &dwop_section_names;
12666 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12667
12668 /* Record the ELF section number for later lookup: this is what the
12669 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12670 gdb_assert (elf_section_nr < dwp_file->num_sections);
12671 dwp_file->elf_sections[elf_section_nr] = sectp;
12672
12673 /* Look for specific sections that we need. */
12674 if (section_is_p (sectp->name, &names->abbrev_dwo))
12675 {
12676 dwp_file->sections.abbrev.s.section = sectp;
12677 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12678 }
12679 else if (section_is_p (sectp->name, &names->info_dwo))
12680 {
12681 dwp_file->sections.info.s.section = sectp;
12682 dwp_file->sections.info.size = bfd_section_size (sectp);
12683 }
12684 else if (section_is_p (sectp->name, &names->line_dwo))
12685 {
12686 dwp_file->sections.line.s.section = sectp;
12687 dwp_file->sections.line.size = bfd_section_size (sectp);
12688 }
12689 else if (section_is_p (sectp->name, &names->loc_dwo))
12690 {
12691 dwp_file->sections.loc.s.section = sectp;
12692 dwp_file->sections.loc.size = bfd_section_size (sectp);
12693 }
12694 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12695 {
12696 dwp_file->sections.macinfo.s.section = sectp;
12697 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12698 }
12699 else if (section_is_p (sectp->name, &names->macro_dwo))
12700 {
12701 dwp_file->sections.macro.s.section = sectp;
12702 dwp_file->sections.macro.size = bfd_section_size (sectp);
12703 }
12704 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12705 {
12706 dwp_file->sections.str_offsets.s.section = sectp;
12707 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12708 }
12709 else if (section_is_p (sectp->name, &names->types_dwo))
12710 {
12711 dwp_file->sections.types.s.section = sectp;
12712 dwp_file->sections.types.size = bfd_section_size (sectp);
12713 }
12714 }
12715
12716 /* Hash function for dwp_file loaded CUs/TUs. */
12717
12718 static hashval_t
12719 hash_dwp_loaded_cutus (const void *item)
12720 {
12721 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12722
12723 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12724 return dwo_unit->signature;
12725 }
12726
12727 /* Equality function for dwp_file loaded CUs/TUs. */
12728
12729 static int
12730 eq_dwp_loaded_cutus (const void *a, const void *b)
12731 {
12732 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12733 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12734
12735 return dua->signature == dub->signature;
12736 }
12737
12738 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12739
12740 static htab_t
12741 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
12742 {
12743 return htab_create_alloc_ex (3,
12744 hash_dwp_loaded_cutus,
12745 eq_dwp_loaded_cutus,
12746 NULL,
12747 &objfile->objfile_obstack,
12748 hashtab_obstack_allocate,
12749 dummy_obstack_deallocate);
12750 }
12751
12752 /* Try to open DWP file FILE_NAME.
12753 The result is the bfd handle of the file.
12754 If there is a problem finding or opening the file, return NULL.
12755 Upon success, the canonicalized path of the file is stored in the bfd,
12756 same as symfile_bfd_open. */
12757
12758 static gdb_bfd_ref_ptr
12759 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12760 const char *file_name)
12761 {
12762 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12763 1 /*is_dwp*/,
12764 1 /*search_cwd*/));
12765 if (abfd != NULL)
12766 return abfd;
12767
12768 /* Work around upstream bug 15652.
12769 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12770 [Whether that's a "bug" is debatable, but it is getting in our way.]
12771 We have no real idea where the dwp file is, because gdb's realpath-ing
12772 of the executable's path may have discarded the needed info.
12773 [IWBN if the dwp file name was recorded in the executable, akin to
12774 .gnu_debuglink, but that doesn't exist yet.]
12775 Strip the directory from FILE_NAME and search again. */
12776 if (*debug_file_directory != '\0')
12777 {
12778 /* Don't implicitly search the current directory here.
12779 If the user wants to search "." to handle this case,
12780 it must be added to debug-file-directory. */
12781 return try_open_dwop_file (dwarf2_per_objfile,
12782 lbasename (file_name), 1 /*is_dwp*/,
12783 0 /*search_cwd*/);
12784 }
12785
12786 return NULL;
12787 }
12788
12789 /* Initialize the use of the DWP file for the current objfile.
12790 By convention the name of the DWP file is ${objfile}.dwp.
12791 The result is NULL if it can't be found. */
12792
12793 static std::unique_ptr<struct dwp_file>
12794 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12795 {
12796 struct objfile *objfile = dwarf2_per_objfile->objfile;
12797
12798 /* Try to find first .dwp for the binary file before any symbolic links
12799 resolving. */
12800
12801 /* If the objfile is a debug file, find the name of the real binary
12802 file and get the name of dwp file from there. */
12803 std::string dwp_name;
12804 if (objfile->separate_debug_objfile_backlink != NULL)
12805 {
12806 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12807 const char *backlink_basename = lbasename (backlink->original_name);
12808
12809 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12810 }
12811 else
12812 dwp_name = objfile->original_name;
12813
12814 dwp_name += ".dwp";
12815
12816 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12817 if (dbfd == NULL
12818 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12819 {
12820 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12821 dwp_name = objfile_name (objfile);
12822 dwp_name += ".dwp";
12823 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12824 }
12825
12826 if (dbfd == NULL)
12827 {
12828 if (dwarf_read_debug)
12829 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12830 return std::unique_ptr<dwp_file> ();
12831 }
12832
12833 const char *name = bfd_get_filename (dbfd.get ());
12834 std::unique_ptr<struct dwp_file> dwp_file
12835 (new struct dwp_file (name, std::move (dbfd)));
12836
12837 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12838 dwp_file->elf_sections =
12839 OBSTACK_CALLOC (&objfile->objfile_obstack,
12840 dwp_file->num_sections, asection *);
12841
12842 bfd_map_over_sections (dwp_file->dbfd.get (),
12843 dwarf2_locate_common_dwp_sections,
12844 dwp_file.get ());
12845
12846 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12847 0);
12848
12849 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12850 1);
12851
12852 /* The DWP file version is stored in the hash table. Oh well. */
12853 if (dwp_file->cus && dwp_file->tus
12854 && dwp_file->cus->version != dwp_file->tus->version)
12855 {
12856 /* Technically speaking, we should try to limp along, but this is
12857 pretty bizarre. We use pulongest here because that's the established
12858 portability solution (e.g, we cannot use %u for uint32_t). */
12859 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12860 " TU version %s [in DWP file %s]"),
12861 pulongest (dwp_file->cus->version),
12862 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12863 }
12864
12865 if (dwp_file->cus)
12866 dwp_file->version = dwp_file->cus->version;
12867 else if (dwp_file->tus)
12868 dwp_file->version = dwp_file->tus->version;
12869 else
12870 dwp_file->version = 2;
12871
12872 if (dwp_file->version == 2)
12873 bfd_map_over_sections (dwp_file->dbfd.get (),
12874 dwarf2_locate_v2_dwp_sections,
12875 dwp_file.get ());
12876
12877 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
12878 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
12879
12880 if (dwarf_read_debug)
12881 {
12882 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12883 fprintf_unfiltered (gdb_stdlog,
12884 " %s CUs, %s TUs\n",
12885 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12886 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12887 }
12888
12889 return dwp_file;
12890 }
12891
12892 /* Wrapper around open_and_init_dwp_file, only open it once. */
12893
12894 static struct dwp_file *
12895 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12896 {
12897 if (! dwarf2_per_objfile->dwp_checked)
12898 {
12899 dwarf2_per_objfile->dwp_file
12900 = open_and_init_dwp_file (dwarf2_per_objfile);
12901 dwarf2_per_objfile->dwp_checked = 1;
12902 }
12903 return dwarf2_per_objfile->dwp_file.get ();
12904 }
12905
12906 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12907 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12908 or in the DWP file for the objfile, referenced by THIS_UNIT.
12909 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12910 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12911
12912 This is called, for example, when wanting to read a variable with a
12913 complex location. Therefore we don't want to do file i/o for every call.
12914 Therefore we don't want to look for a DWO file on every call.
12915 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12916 then we check if we've already seen DWO_NAME, and only THEN do we check
12917 for a DWO file.
12918
12919 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12920 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12921
12922 static struct dwo_unit *
12923 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12924 const char *dwo_name, const char *comp_dir,
12925 ULONGEST signature, int is_debug_types)
12926 {
12927 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12928 struct objfile *objfile = dwarf2_per_objfile->objfile;
12929 const char *kind = is_debug_types ? "TU" : "CU";
12930 void **dwo_file_slot;
12931 struct dwo_file *dwo_file;
12932 struct dwp_file *dwp_file;
12933
12934 /* First see if there's a DWP file.
12935 If we have a DWP file but didn't find the DWO inside it, don't
12936 look for the original DWO file. It makes gdb behave differently
12937 depending on whether one is debugging in the build tree. */
12938
12939 dwp_file = get_dwp_file (dwarf2_per_objfile);
12940 if (dwp_file != NULL)
12941 {
12942 const struct dwp_hash_table *dwp_htab =
12943 is_debug_types ? dwp_file->tus : dwp_file->cus;
12944
12945 if (dwp_htab != NULL)
12946 {
12947 struct dwo_unit *dwo_cutu =
12948 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12949 signature, is_debug_types);
12950
12951 if (dwo_cutu != NULL)
12952 {
12953 if (dwarf_read_debug)
12954 {
12955 fprintf_unfiltered (gdb_stdlog,
12956 "Virtual DWO %s %s found: @%s\n",
12957 kind, hex_string (signature),
12958 host_address_to_string (dwo_cutu));
12959 }
12960 return dwo_cutu;
12961 }
12962 }
12963 }
12964 else
12965 {
12966 /* No DWP file, look for the DWO file. */
12967
12968 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12969 dwo_name, comp_dir);
12970 if (*dwo_file_slot == NULL)
12971 {
12972 /* Read in the file and build a table of the CUs/TUs it contains. */
12973 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12974 }
12975 /* NOTE: This will be NULL if unable to open the file. */
12976 dwo_file = (struct dwo_file *) *dwo_file_slot;
12977
12978 if (dwo_file != NULL)
12979 {
12980 struct dwo_unit *dwo_cutu = NULL;
12981
12982 if (is_debug_types && dwo_file->tus)
12983 {
12984 struct dwo_unit find_dwo_cutu;
12985
12986 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12987 find_dwo_cutu.signature = signature;
12988 dwo_cutu
12989 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
12990 }
12991 else if (!is_debug_types && dwo_file->cus)
12992 {
12993 struct dwo_unit find_dwo_cutu;
12994
12995 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12996 find_dwo_cutu.signature = signature;
12997 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
12998 &find_dwo_cutu);
12999 }
13000
13001 if (dwo_cutu != NULL)
13002 {
13003 if (dwarf_read_debug)
13004 {
13005 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13006 kind, dwo_name, hex_string (signature),
13007 host_address_to_string (dwo_cutu));
13008 }
13009 return dwo_cutu;
13010 }
13011 }
13012 }
13013
13014 /* We didn't find it. This could mean a dwo_id mismatch, or
13015 someone deleted the DWO/DWP file, or the search path isn't set up
13016 correctly to find the file. */
13017
13018 if (dwarf_read_debug)
13019 {
13020 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13021 kind, dwo_name, hex_string (signature));
13022 }
13023
13024 /* This is a warning and not a complaint because it can be caused by
13025 pilot error (e.g., user accidentally deleting the DWO). */
13026 {
13027 /* Print the name of the DWP file if we looked there, helps the user
13028 better diagnose the problem. */
13029 std::string dwp_text;
13030
13031 if (dwp_file != NULL)
13032 dwp_text = string_printf (" [in DWP file %s]",
13033 lbasename (dwp_file->name));
13034
13035 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13036 " [in module %s]"),
13037 kind, dwo_name, hex_string (signature),
13038 dwp_text.c_str (),
13039 this_unit->is_debug_types ? "TU" : "CU",
13040 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13041 }
13042 return NULL;
13043 }
13044
13045 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13046 See lookup_dwo_cutu_unit for details. */
13047
13048 static struct dwo_unit *
13049 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13050 const char *dwo_name, const char *comp_dir,
13051 ULONGEST signature)
13052 {
13053 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13054 }
13055
13056 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13057 See lookup_dwo_cutu_unit for details. */
13058
13059 static struct dwo_unit *
13060 lookup_dwo_type_unit (struct signatured_type *this_tu,
13061 const char *dwo_name, const char *comp_dir)
13062 {
13063 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13064 }
13065
13066 /* Traversal function for queue_and_load_all_dwo_tus. */
13067
13068 static int
13069 queue_and_load_dwo_tu (void **slot, void *info)
13070 {
13071 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13072 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13073 ULONGEST signature = dwo_unit->signature;
13074 struct signatured_type *sig_type =
13075 lookup_dwo_signatured_type (per_cu->cu, signature);
13076
13077 if (sig_type != NULL)
13078 {
13079 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13080
13081 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13082 a real dependency of PER_CU on SIG_TYPE. That is detected later
13083 while processing PER_CU. */
13084 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13085 load_full_type_unit (sig_cu);
13086 per_cu->imported_symtabs_push (sig_cu);
13087 }
13088
13089 return 1;
13090 }
13091
13092 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13093 The DWO may have the only definition of the type, though it may not be
13094 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13095 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13096
13097 static void
13098 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13099 {
13100 struct dwo_unit *dwo_unit;
13101 struct dwo_file *dwo_file;
13102
13103 gdb_assert (!per_cu->is_debug_types);
13104 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13105 gdb_assert (per_cu->cu != NULL);
13106
13107 dwo_unit = per_cu->cu->dwo_unit;
13108 gdb_assert (dwo_unit != NULL);
13109
13110 dwo_file = dwo_unit->dwo_file;
13111 if (dwo_file->tus != NULL)
13112 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13113 }
13114
13115 /* Read in various DIEs. */
13116
13117 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13118 Inherit only the children of the DW_AT_abstract_origin DIE not being
13119 already referenced by DW_AT_abstract_origin from the children of the
13120 current DIE. */
13121
13122 static void
13123 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13124 {
13125 struct die_info *child_die;
13126 sect_offset *offsetp;
13127 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13128 struct die_info *origin_die;
13129 /* Iterator of the ORIGIN_DIE children. */
13130 struct die_info *origin_child_die;
13131 struct attribute *attr;
13132 struct dwarf2_cu *origin_cu;
13133 struct pending **origin_previous_list_in_scope;
13134
13135 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13136 if (!attr)
13137 return;
13138
13139 /* Note that following die references may follow to a die in a
13140 different cu. */
13141
13142 origin_cu = cu;
13143 origin_die = follow_die_ref (die, attr, &origin_cu);
13144
13145 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13146 symbols in. */
13147 origin_previous_list_in_scope = origin_cu->list_in_scope;
13148 origin_cu->list_in_scope = cu->list_in_scope;
13149
13150 if (die->tag != origin_die->tag
13151 && !(die->tag == DW_TAG_inlined_subroutine
13152 && origin_die->tag == DW_TAG_subprogram))
13153 complaint (_("DIE %s and its abstract origin %s have different tags"),
13154 sect_offset_str (die->sect_off),
13155 sect_offset_str (origin_die->sect_off));
13156
13157 std::vector<sect_offset> offsets;
13158
13159 for (child_die = die->child;
13160 child_die && child_die->tag;
13161 child_die = sibling_die (child_die))
13162 {
13163 struct die_info *child_origin_die;
13164 struct dwarf2_cu *child_origin_cu;
13165
13166 /* We are trying to process concrete instance entries:
13167 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13168 it's not relevant to our analysis here. i.e. detecting DIEs that are
13169 present in the abstract instance but not referenced in the concrete
13170 one. */
13171 if (child_die->tag == DW_TAG_call_site
13172 || child_die->tag == DW_TAG_GNU_call_site)
13173 continue;
13174
13175 /* For each CHILD_DIE, find the corresponding child of
13176 ORIGIN_DIE. If there is more than one layer of
13177 DW_AT_abstract_origin, follow them all; there shouldn't be,
13178 but GCC versions at least through 4.4 generate this (GCC PR
13179 40573). */
13180 child_origin_die = child_die;
13181 child_origin_cu = cu;
13182 while (1)
13183 {
13184 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13185 child_origin_cu);
13186 if (attr == NULL)
13187 break;
13188 child_origin_die = follow_die_ref (child_origin_die, attr,
13189 &child_origin_cu);
13190 }
13191
13192 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13193 counterpart may exist. */
13194 if (child_origin_die != child_die)
13195 {
13196 if (child_die->tag != child_origin_die->tag
13197 && !(child_die->tag == DW_TAG_inlined_subroutine
13198 && child_origin_die->tag == DW_TAG_subprogram))
13199 complaint (_("Child DIE %s and its abstract origin %s have "
13200 "different tags"),
13201 sect_offset_str (child_die->sect_off),
13202 sect_offset_str (child_origin_die->sect_off));
13203 if (child_origin_die->parent != origin_die)
13204 complaint (_("Child DIE %s and its abstract origin %s have "
13205 "different parents"),
13206 sect_offset_str (child_die->sect_off),
13207 sect_offset_str (child_origin_die->sect_off));
13208 else
13209 offsets.push_back (child_origin_die->sect_off);
13210 }
13211 }
13212 std::sort (offsets.begin (), offsets.end ());
13213 sect_offset *offsets_end = offsets.data () + offsets.size ();
13214 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13215 if (offsetp[-1] == *offsetp)
13216 complaint (_("Multiple children of DIE %s refer "
13217 "to DIE %s as their abstract origin"),
13218 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13219
13220 offsetp = offsets.data ();
13221 origin_child_die = origin_die->child;
13222 while (origin_child_die && origin_child_die->tag)
13223 {
13224 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13225 while (offsetp < offsets_end
13226 && *offsetp < origin_child_die->sect_off)
13227 offsetp++;
13228 if (offsetp >= offsets_end
13229 || *offsetp > origin_child_die->sect_off)
13230 {
13231 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13232 Check whether we're already processing ORIGIN_CHILD_DIE.
13233 This can happen with mutually referenced abstract_origins.
13234 PR 16581. */
13235 if (!origin_child_die->in_process)
13236 process_die (origin_child_die, origin_cu);
13237 }
13238 origin_child_die = sibling_die (origin_child_die);
13239 }
13240 origin_cu->list_in_scope = origin_previous_list_in_scope;
13241
13242 if (cu != origin_cu)
13243 compute_delayed_physnames (origin_cu);
13244 }
13245
13246 static void
13247 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13248 {
13249 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13251 struct context_stack *newobj;
13252 CORE_ADDR lowpc;
13253 CORE_ADDR highpc;
13254 struct die_info *child_die;
13255 struct attribute *attr, *call_line, *call_file;
13256 const char *name;
13257 CORE_ADDR baseaddr;
13258 struct block *block;
13259 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13260 std::vector<struct symbol *> template_args;
13261 struct template_symbol *templ_func = NULL;
13262
13263 if (inlined_func)
13264 {
13265 /* If we do not have call site information, we can't show the
13266 caller of this inlined function. That's too confusing, so
13267 only use the scope for local variables. */
13268 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13269 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13270 if (call_line == NULL || call_file == NULL)
13271 {
13272 read_lexical_block_scope (die, cu);
13273 return;
13274 }
13275 }
13276
13277 baseaddr = objfile->text_section_offset ();
13278
13279 name = dwarf2_name (die, cu);
13280
13281 /* Ignore functions with missing or empty names. These are actually
13282 illegal according to the DWARF standard. */
13283 if (name == NULL)
13284 {
13285 complaint (_("missing name for subprogram DIE at %s"),
13286 sect_offset_str (die->sect_off));
13287 return;
13288 }
13289
13290 /* Ignore functions with missing or invalid low and high pc attributes. */
13291 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13292 <= PC_BOUNDS_INVALID)
13293 {
13294 attr = dwarf2_attr (die, DW_AT_external, cu);
13295 if (!attr || !DW_UNSND (attr))
13296 complaint (_("cannot get low and high bounds "
13297 "for subprogram DIE at %s"),
13298 sect_offset_str (die->sect_off));
13299 return;
13300 }
13301
13302 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13303 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13304
13305 /* If we have any template arguments, then we must allocate a
13306 different sort of symbol. */
13307 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13308 {
13309 if (child_die->tag == DW_TAG_template_type_param
13310 || child_die->tag == DW_TAG_template_value_param)
13311 {
13312 templ_func = allocate_template_symbol (objfile);
13313 templ_func->subclass = SYMBOL_TEMPLATE;
13314 break;
13315 }
13316 }
13317
13318 newobj = cu->get_builder ()->push_context (0, lowpc);
13319 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13320 (struct symbol *) templ_func);
13321
13322 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13323 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13324 cu->language);
13325
13326 /* If there is a location expression for DW_AT_frame_base, record
13327 it. */
13328 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13329 if (attr != nullptr)
13330 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13331
13332 /* If there is a location for the static link, record it. */
13333 newobj->static_link = NULL;
13334 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13335 if (attr != nullptr)
13336 {
13337 newobj->static_link
13338 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13339 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13340 dwarf2_per_cu_addr_type (cu->per_cu));
13341 }
13342
13343 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13344
13345 if (die->child != NULL)
13346 {
13347 child_die = die->child;
13348 while (child_die && child_die->tag)
13349 {
13350 if (child_die->tag == DW_TAG_template_type_param
13351 || child_die->tag == DW_TAG_template_value_param)
13352 {
13353 struct symbol *arg = new_symbol (child_die, NULL, cu);
13354
13355 if (arg != NULL)
13356 template_args.push_back (arg);
13357 }
13358 else
13359 process_die (child_die, cu);
13360 child_die = sibling_die (child_die);
13361 }
13362 }
13363
13364 inherit_abstract_dies (die, cu);
13365
13366 /* If we have a DW_AT_specification, we might need to import using
13367 directives from the context of the specification DIE. See the
13368 comment in determine_prefix. */
13369 if (cu->language == language_cplus
13370 && dwarf2_attr (die, DW_AT_specification, cu))
13371 {
13372 struct dwarf2_cu *spec_cu = cu;
13373 struct die_info *spec_die = die_specification (die, &spec_cu);
13374
13375 while (spec_die)
13376 {
13377 child_die = spec_die->child;
13378 while (child_die && child_die->tag)
13379 {
13380 if (child_die->tag == DW_TAG_imported_module)
13381 process_die (child_die, spec_cu);
13382 child_die = sibling_die (child_die);
13383 }
13384
13385 /* In some cases, GCC generates specification DIEs that
13386 themselves contain DW_AT_specification attributes. */
13387 spec_die = die_specification (spec_die, &spec_cu);
13388 }
13389 }
13390
13391 struct context_stack cstk = cu->get_builder ()->pop_context ();
13392 /* Make a block for the local symbols within. */
13393 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13394 cstk.static_link, lowpc, highpc);
13395
13396 /* For C++, set the block's scope. */
13397 if ((cu->language == language_cplus
13398 || cu->language == language_fortran
13399 || cu->language == language_d
13400 || cu->language == language_rust)
13401 && cu->processing_has_namespace_info)
13402 block_set_scope (block, determine_prefix (die, cu),
13403 &objfile->objfile_obstack);
13404
13405 /* If we have address ranges, record them. */
13406 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13407
13408 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13409
13410 /* Attach template arguments to function. */
13411 if (!template_args.empty ())
13412 {
13413 gdb_assert (templ_func != NULL);
13414
13415 templ_func->n_template_arguments = template_args.size ();
13416 templ_func->template_arguments
13417 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13418 templ_func->n_template_arguments);
13419 memcpy (templ_func->template_arguments,
13420 template_args.data (),
13421 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13422
13423 /* Make sure that the symtab is set on the new symbols. Even
13424 though they don't appear in this symtab directly, other parts
13425 of gdb assume that symbols do, and this is reasonably
13426 true. */
13427 for (symbol *sym : template_args)
13428 symbol_set_symtab (sym, symbol_symtab (templ_func));
13429 }
13430
13431 /* In C++, we can have functions nested inside functions (e.g., when
13432 a function declares a class that has methods). This means that
13433 when we finish processing a function scope, we may need to go
13434 back to building a containing block's symbol lists. */
13435 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13436 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13437
13438 /* If we've finished processing a top-level function, subsequent
13439 symbols go in the file symbol list. */
13440 if (cu->get_builder ()->outermost_context_p ())
13441 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13442 }
13443
13444 /* Process all the DIES contained within a lexical block scope. Start
13445 a new scope, process the dies, and then close the scope. */
13446
13447 static void
13448 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13449 {
13450 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13451 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13452 CORE_ADDR lowpc, highpc;
13453 struct die_info *child_die;
13454 CORE_ADDR baseaddr;
13455
13456 baseaddr = objfile->text_section_offset ();
13457
13458 /* Ignore blocks with missing or invalid low and high pc attributes. */
13459 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13460 as multiple lexical blocks? Handling children in a sane way would
13461 be nasty. Might be easier to properly extend generic blocks to
13462 describe ranges. */
13463 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13464 {
13465 case PC_BOUNDS_NOT_PRESENT:
13466 /* DW_TAG_lexical_block has no attributes, process its children as if
13467 there was no wrapping by that DW_TAG_lexical_block.
13468 GCC does no longer produces such DWARF since GCC r224161. */
13469 for (child_die = die->child;
13470 child_die != NULL && child_die->tag;
13471 child_die = sibling_die (child_die))
13472 process_die (child_die, cu);
13473 return;
13474 case PC_BOUNDS_INVALID:
13475 return;
13476 }
13477 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13478 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13479
13480 cu->get_builder ()->push_context (0, lowpc);
13481 if (die->child != NULL)
13482 {
13483 child_die = die->child;
13484 while (child_die && child_die->tag)
13485 {
13486 process_die (child_die, cu);
13487 child_die = sibling_die (child_die);
13488 }
13489 }
13490 inherit_abstract_dies (die, cu);
13491 struct context_stack cstk = cu->get_builder ()->pop_context ();
13492
13493 if (*cu->get_builder ()->get_local_symbols () != NULL
13494 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13495 {
13496 struct block *block
13497 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13498 cstk.start_addr, highpc);
13499
13500 /* Note that recording ranges after traversing children, as we
13501 do here, means that recording a parent's ranges entails
13502 walking across all its children's ranges as they appear in
13503 the address map, which is quadratic behavior.
13504
13505 It would be nicer to record the parent's ranges before
13506 traversing its children, simply overriding whatever you find
13507 there. But since we don't even decide whether to create a
13508 block until after we've traversed its children, that's hard
13509 to do. */
13510 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13511 }
13512 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13513 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13514 }
13515
13516 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13517
13518 static void
13519 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13520 {
13521 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13523 CORE_ADDR pc, baseaddr;
13524 struct attribute *attr;
13525 struct call_site *call_site, call_site_local;
13526 void **slot;
13527 int nparams;
13528 struct die_info *child_die;
13529
13530 baseaddr = objfile->text_section_offset ();
13531
13532 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13533 if (attr == NULL)
13534 {
13535 /* This was a pre-DWARF-5 GNU extension alias
13536 for DW_AT_call_return_pc. */
13537 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13538 }
13539 if (!attr)
13540 {
13541 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13542 "DIE %s [in module %s]"),
13543 sect_offset_str (die->sect_off), objfile_name (objfile));
13544 return;
13545 }
13546 pc = attr->value_as_address () + baseaddr;
13547 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13548
13549 if (cu->call_site_htab == NULL)
13550 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13551 NULL, &objfile->objfile_obstack,
13552 hashtab_obstack_allocate, NULL);
13553 call_site_local.pc = pc;
13554 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13555 if (*slot != NULL)
13556 {
13557 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13558 "DIE %s [in module %s]"),
13559 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13560 objfile_name (objfile));
13561 return;
13562 }
13563
13564 /* Count parameters at the caller. */
13565
13566 nparams = 0;
13567 for (child_die = die->child; child_die && child_die->tag;
13568 child_die = sibling_die (child_die))
13569 {
13570 if (child_die->tag != DW_TAG_call_site_parameter
13571 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13572 {
13573 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13574 "DW_TAG_call_site child DIE %s [in module %s]"),
13575 child_die->tag, sect_offset_str (child_die->sect_off),
13576 objfile_name (objfile));
13577 continue;
13578 }
13579
13580 nparams++;
13581 }
13582
13583 call_site
13584 = ((struct call_site *)
13585 obstack_alloc (&objfile->objfile_obstack,
13586 sizeof (*call_site)
13587 + (sizeof (*call_site->parameter) * (nparams - 1))));
13588 *slot = call_site;
13589 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13590 call_site->pc = pc;
13591
13592 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13593 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13594 {
13595 struct die_info *func_die;
13596
13597 /* Skip also over DW_TAG_inlined_subroutine. */
13598 for (func_die = die->parent;
13599 func_die && func_die->tag != DW_TAG_subprogram
13600 && func_die->tag != DW_TAG_subroutine_type;
13601 func_die = func_die->parent);
13602
13603 /* DW_AT_call_all_calls is a superset
13604 of DW_AT_call_all_tail_calls. */
13605 if (func_die
13606 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13607 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13608 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13609 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13610 {
13611 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13612 not complete. But keep CALL_SITE for look ups via call_site_htab,
13613 both the initial caller containing the real return address PC and
13614 the final callee containing the current PC of a chain of tail
13615 calls do not need to have the tail call list complete. But any
13616 function candidate for a virtual tail call frame searched via
13617 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13618 determined unambiguously. */
13619 }
13620 else
13621 {
13622 struct type *func_type = NULL;
13623
13624 if (func_die)
13625 func_type = get_die_type (func_die, cu);
13626 if (func_type != NULL)
13627 {
13628 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13629
13630 /* Enlist this call site to the function. */
13631 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13632 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13633 }
13634 else
13635 complaint (_("Cannot find function owning DW_TAG_call_site "
13636 "DIE %s [in module %s]"),
13637 sect_offset_str (die->sect_off), objfile_name (objfile));
13638 }
13639 }
13640
13641 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13642 if (attr == NULL)
13643 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13644 if (attr == NULL)
13645 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13646 if (attr == NULL)
13647 {
13648 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13649 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13650 }
13651 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13652 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13653 /* Keep NULL DWARF_BLOCK. */;
13654 else if (attr->form_is_block ())
13655 {
13656 struct dwarf2_locexpr_baton *dlbaton;
13657
13658 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13659 dlbaton->data = DW_BLOCK (attr)->data;
13660 dlbaton->size = DW_BLOCK (attr)->size;
13661 dlbaton->per_cu = cu->per_cu;
13662
13663 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13664 }
13665 else if (attr->form_is_ref ())
13666 {
13667 struct dwarf2_cu *target_cu = cu;
13668 struct die_info *target_die;
13669
13670 target_die = follow_die_ref (die, attr, &target_cu);
13671 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13672 if (die_is_declaration (target_die, target_cu))
13673 {
13674 const char *target_physname;
13675
13676 /* Prefer the mangled name; otherwise compute the demangled one. */
13677 target_physname = dw2_linkage_name (target_die, target_cu);
13678 if (target_physname == NULL)
13679 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13680 if (target_physname == NULL)
13681 complaint (_("DW_AT_call_target target DIE has invalid "
13682 "physname, for referencing DIE %s [in module %s]"),
13683 sect_offset_str (die->sect_off), objfile_name (objfile));
13684 else
13685 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13686 }
13687 else
13688 {
13689 CORE_ADDR lowpc;
13690
13691 /* DW_AT_entry_pc should be preferred. */
13692 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13693 <= PC_BOUNDS_INVALID)
13694 complaint (_("DW_AT_call_target target DIE has invalid "
13695 "low pc, for referencing DIE %s [in module %s]"),
13696 sect_offset_str (die->sect_off), objfile_name (objfile));
13697 else
13698 {
13699 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13700 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13701 }
13702 }
13703 }
13704 else
13705 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13706 "block nor reference, for DIE %s [in module %s]"),
13707 sect_offset_str (die->sect_off), objfile_name (objfile));
13708
13709 call_site->per_cu = cu->per_cu;
13710
13711 for (child_die = die->child;
13712 child_die && child_die->tag;
13713 child_die = sibling_die (child_die))
13714 {
13715 struct call_site_parameter *parameter;
13716 struct attribute *loc, *origin;
13717
13718 if (child_die->tag != DW_TAG_call_site_parameter
13719 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13720 {
13721 /* Already printed the complaint above. */
13722 continue;
13723 }
13724
13725 gdb_assert (call_site->parameter_count < nparams);
13726 parameter = &call_site->parameter[call_site->parameter_count];
13727
13728 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13729 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13730 register is contained in DW_AT_call_value. */
13731
13732 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13733 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13734 if (origin == NULL)
13735 {
13736 /* This was a pre-DWARF-5 GNU extension alias
13737 for DW_AT_call_parameter. */
13738 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13739 }
13740 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13741 {
13742 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13743
13744 sect_offset sect_off
13745 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13746 if (!offset_in_cu_p (&cu->header, sect_off))
13747 {
13748 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13749 binding can be done only inside one CU. Such referenced DIE
13750 therefore cannot be even moved to DW_TAG_partial_unit. */
13751 complaint (_("DW_AT_call_parameter offset is not in CU for "
13752 "DW_TAG_call_site child DIE %s [in module %s]"),
13753 sect_offset_str (child_die->sect_off),
13754 objfile_name (objfile));
13755 continue;
13756 }
13757 parameter->u.param_cu_off
13758 = (cu_offset) (sect_off - cu->header.sect_off);
13759 }
13760 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13761 {
13762 complaint (_("No DW_FORM_block* DW_AT_location for "
13763 "DW_TAG_call_site child DIE %s [in module %s]"),
13764 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13765 continue;
13766 }
13767 else
13768 {
13769 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13770 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13771 if (parameter->u.dwarf_reg != -1)
13772 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13773 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13774 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13775 &parameter->u.fb_offset))
13776 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13777 else
13778 {
13779 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13780 "for DW_FORM_block* DW_AT_location is supported for "
13781 "DW_TAG_call_site child DIE %s "
13782 "[in module %s]"),
13783 sect_offset_str (child_die->sect_off),
13784 objfile_name (objfile));
13785 continue;
13786 }
13787 }
13788
13789 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13790 if (attr == NULL)
13791 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13792 if (attr == NULL || !attr->form_is_block ())
13793 {
13794 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13795 "DW_TAG_call_site child DIE %s [in module %s]"),
13796 sect_offset_str (child_die->sect_off),
13797 objfile_name (objfile));
13798 continue;
13799 }
13800 parameter->value = DW_BLOCK (attr)->data;
13801 parameter->value_size = DW_BLOCK (attr)->size;
13802
13803 /* Parameters are not pre-cleared by memset above. */
13804 parameter->data_value = NULL;
13805 parameter->data_value_size = 0;
13806 call_site->parameter_count++;
13807
13808 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13809 if (attr == NULL)
13810 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13811 if (attr != nullptr)
13812 {
13813 if (!attr->form_is_block ())
13814 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13815 "DW_TAG_call_site child DIE %s [in module %s]"),
13816 sect_offset_str (child_die->sect_off),
13817 objfile_name (objfile));
13818 else
13819 {
13820 parameter->data_value = DW_BLOCK (attr)->data;
13821 parameter->data_value_size = DW_BLOCK (attr)->size;
13822 }
13823 }
13824 }
13825 }
13826
13827 /* Helper function for read_variable. If DIE represents a virtual
13828 table, then return the type of the concrete object that is
13829 associated with the virtual table. Otherwise, return NULL. */
13830
13831 static struct type *
13832 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13833 {
13834 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13835 if (attr == NULL)
13836 return NULL;
13837
13838 /* Find the type DIE. */
13839 struct die_info *type_die = NULL;
13840 struct dwarf2_cu *type_cu = cu;
13841
13842 if (attr->form_is_ref ())
13843 type_die = follow_die_ref (die, attr, &type_cu);
13844 if (type_die == NULL)
13845 return NULL;
13846
13847 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13848 return NULL;
13849 return die_containing_type (type_die, type_cu);
13850 }
13851
13852 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13853
13854 static void
13855 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13856 {
13857 struct rust_vtable_symbol *storage = NULL;
13858
13859 if (cu->language == language_rust)
13860 {
13861 struct type *containing_type = rust_containing_type (die, cu);
13862
13863 if (containing_type != NULL)
13864 {
13865 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13866
13867 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13868 initialize_objfile_symbol (storage);
13869 storage->concrete_type = containing_type;
13870 storage->subclass = SYMBOL_RUST_VTABLE;
13871 }
13872 }
13873
13874 struct symbol *res = new_symbol (die, NULL, cu, storage);
13875 struct attribute *abstract_origin
13876 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13877 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13878 if (res == NULL && loc && abstract_origin)
13879 {
13880 /* We have a variable without a name, but with a location and an abstract
13881 origin. This may be a concrete instance of an abstract variable
13882 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13883 later. */
13884 struct dwarf2_cu *origin_cu = cu;
13885 struct die_info *origin_die
13886 = follow_die_ref (die, abstract_origin, &origin_cu);
13887 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13888 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13889 }
13890 }
13891
13892 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13893 reading .debug_rnglists.
13894 Callback's type should be:
13895 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13896 Return true if the attributes are present and valid, otherwise,
13897 return false. */
13898
13899 template <typename Callback>
13900 static bool
13901 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13902 Callback &&callback)
13903 {
13904 struct dwarf2_per_objfile *dwarf2_per_objfile
13905 = cu->per_cu->dwarf2_per_objfile;
13906 struct objfile *objfile = dwarf2_per_objfile->objfile;
13907 bfd *obfd = objfile->obfd;
13908 /* Base address selection entry. */
13909 CORE_ADDR base;
13910 int found_base;
13911 const gdb_byte *buffer;
13912 CORE_ADDR baseaddr;
13913 bool overflow = false;
13914
13915 found_base = cu->base_known;
13916 base = cu->base_address;
13917
13918 dwarf2_per_objfile->rnglists.read (objfile);
13919 if (offset >= dwarf2_per_objfile->rnglists.size)
13920 {
13921 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13922 offset);
13923 return false;
13924 }
13925 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13926
13927 baseaddr = objfile->text_section_offset ();
13928
13929 while (1)
13930 {
13931 /* Initialize it due to a false compiler warning. */
13932 CORE_ADDR range_beginning = 0, range_end = 0;
13933 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13934 + dwarf2_per_objfile->rnglists.size);
13935 unsigned int bytes_read;
13936
13937 if (buffer == buf_end)
13938 {
13939 overflow = true;
13940 break;
13941 }
13942 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13943 switch (rlet)
13944 {
13945 case DW_RLE_end_of_list:
13946 break;
13947 case DW_RLE_base_address:
13948 if (buffer + cu->header.addr_size > buf_end)
13949 {
13950 overflow = true;
13951 break;
13952 }
13953 base = read_address (obfd, buffer, cu, &bytes_read);
13954 found_base = 1;
13955 buffer += bytes_read;
13956 break;
13957 case DW_RLE_start_length:
13958 if (buffer + cu->header.addr_size > buf_end)
13959 {
13960 overflow = true;
13961 break;
13962 }
13963 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13964 buffer += bytes_read;
13965 range_end = (range_beginning
13966 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13967 buffer += bytes_read;
13968 if (buffer > buf_end)
13969 {
13970 overflow = true;
13971 break;
13972 }
13973 break;
13974 case DW_RLE_offset_pair:
13975 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13976 buffer += bytes_read;
13977 if (buffer > buf_end)
13978 {
13979 overflow = true;
13980 break;
13981 }
13982 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13983 buffer += bytes_read;
13984 if (buffer > buf_end)
13985 {
13986 overflow = true;
13987 break;
13988 }
13989 break;
13990 case DW_RLE_start_end:
13991 if (buffer + 2 * cu->header.addr_size > buf_end)
13992 {
13993 overflow = true;
13994 break;
13995 }
13996 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13997 buffer += bytes_read;
13998 range_end = read_address (obfd, buffer, cu, &bytes_read);
13999 buffer += bytes_read;
14000 break;
14001 default:
14002 complaint (_("Invalid .debug_rnglists data (no base address)"));
14003 return false;
14004 }
14005 if (rlet == DW_RLE_end_of_list || overflow)
14006 break;
14007 if (rlet == DW_RLE_base_address)
14008 continue;
14009
14010 if (!found_base)
14011 {
14012 /* We have no valid base address for the ranges
14013 data. */
14014 complaint (_("Invalid .debug_rnglists data (no base address)"));
14015 return false;
14016 }
14017
14018 if (range_beginning > range_end)
14019 {
14020 /* Inverted range entries are invalid. */
14021 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14022 return false;
14023 }
14024
14025 /* Empty range entries have no effect. */
14026 if (range_beginning == range_end)
14027 continue;
14028
14029 range_beginning += base;
14030 range_end += base;
14031
14032 /* A not-uncommon case of bad debug info.
14033 Don't pollute the addrmap with bad data. */
14034 if (range_beginning + baseaddr == 0
14035 && !dwarf2_per_objfile->has_section_at_zero)
14036 {
14037 complaint (_(".debug_rnglists entry has start address of zero"
14038 " [in module %s]"), objfile_name (objfile));
14039 continue;
14040 }
14041
14042 callback (range_beginning, range_end);
14043 }
14044
14045 if (overflow)
14046 {
14047 complaint (_("Offset %d is not terminated "
14048 "for DW_AT_ranges attribute"),
14049 offset);
14050 return false;
14051 }
14052
14053 return true;
14054 }
14055
14056 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14057 Callback's type should be:
14058 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14059 Return 1 if the attributes are present and valid, otherwise, return 0. */
14060
14061 template <typename Callback>
14062 static int
14063 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14064 Callback &&callback)
14065 {
14066 struct dwarf2_per_objfile *dwarf2_per_objfile
14067 = cu->per_cu->dwarf2_per_objfile;
14068 struct objfile *objfile = dwarf2_per_objfile->objfile;
14069 struct comp_unit_head *cu_header = &cu->header;
14070 bfd *obfd = objfile->obfd;
14071 unsigned int addr_size = cu_header->addr_size;
14072 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14073 /* Base address selection entry. */
14074 CORE_ADDR base;
14075 int found_base;
14076 unsigned int dummy;
14077 const gdb_byte *buffer;
14078 CORE_ADDR baseaddr;
14079
14080 if (cu_header->version >= 5)
14081 return dwarf2_rnglists_process (offset, cu, callback);
14082
14083 found_base = cu->base_known;
14084 base = cu->base_address;
14085
14086 dwarf2_per_objfile->ranges.read (objfile);
14087 if (offset >= dwarf2_per_objfile->ranges.size)
14088 {
14089 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14090 offset);
14091 return 0;
14092 }
14093 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14094
14095 baseaddr = objfile->text_section_offset ();
14096
14097 while (1)
14098 {
14099 CORE_ADDR range_beginning, range_end;
14100
14101 range_beginning = read_address (obfd, buffer, cu, &dummy);
14102 buffer += addr_size;
14103 range_end = read_address (obfd, buffer, cu, &dummy);
14104 buffer += addr_size;
14105 offset += 2 * addr_size;
14106
14107 /* An end of list marker is a pair of zero addresses. */
14108 if (range_beginning == 0 && range_end == 0)
14109 /* Found the end of list entry. */
14110 break;
14111
14112 /* Each base address selection entry is a pair of 2 values.
14113 The first is the largest possible address, the second is
14114 the base address. Check for a base address here. */
14115 if ((range_beginning & mask) == mask)
14116 {
14117 /* If we found the largest possible address, then we already
14118 have the base address in range_end. */
14119 base = range_end;
14120 found_base = 1;
14121 continue;
14122 }
14123
14124 if (!found_base)
14125 {
14126 /* We have no valid base address for the ranges
14127 data. */
14128 complaint (_("Invalid .debug_ranges data (no base address)"));
14129 return 0;
14130 }
14131
14132 if (range_beginning > range_end)
14133 {
14134 /* Inverted range entries are invalid. */
14135 complaint (_("Invalid .debug_ranges data (inverted range)"));
14136 return 0;
14137 }
14138
14139 /* Empty range entries have no effect. */
14140 if (range_beginning == range_end)
14141 continue;
14142
14143 range_beginning += base;
14144 range_end += base;
14145
14146 /* A not-uncommon case of bad debug info.
14147 Don't pollute the addrmap with bad data. */
14148 if (range_beginning + baseaddr == 0
14149 && !dwarf2_per_objfile->has_section_at_zero)
14150 {
14151 complaint (_(".debug_ranges entry has start address of zero"
14152 " [in module %s]"), objfile_name (objfile));
14153 continue;
14154 }
14155
14156 callback (range_beginning, range_end);
14157 }
14158
14159 return 1;
14160 }
14161
14162 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14163 Return 1 if the attributes are present and valid, otherwise, return 0.
14164 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14165
14166 static int
14167 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14168 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14169 dwarf2_psymtab *ranges_pst)
14170 {
14171 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14173 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14174 int low_set = 0;
14175 CORE_ADDR low = 0;
14176 CORE_ADDR high = 0;
14177 int retval;
14178
14179 retval = dwarf2_ranges_process (offset, cu,
14180 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14181 {
14182 if (ranges_pst != NULL)
14183 {
14184 CORE_ADDR lowpc;
14185 CORE_ADDR highpc;
14186
14187 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14188 range_beginning + baseaddr)
14189 - baseaddr);
14190 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14191 range_end + baseaddr)
14192 - baseaddr);
14193 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14194 lowpc, highpc - 1, ranges_pst);
14195 }
14196
14197 /* FIXME: This is recording everything as a low-high
14198 segment of consecutive addresses. We should have a
14199 data structure for discontiguous block ranges
14200 instead. */
14201 if (! low_set)
14202 {
14203 low = range_beginning;
14204 high = range_end;
14205 low_set = 1;
14206 }
14207 else
14208 {
14209 if (range_beginning < low)
14210 low = range_beginning;
14211 if (range_end > high)
14212 high = range_end;
14213 }
14214 });
14215 if (!retval)
14216 return 0;
14217
14218 if (! low_set)
14219 /* If the first entry is an end-of-list marker, the range
14220 describes an empty scope, i.e. no instructions. */
14221 return 0;
14222
14223 if (low_return)
14224 *low_return = low;
14225 if (high_return)
14226 *high_return = high;
14227 return 1;
14228 }
14229
14230 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14231 definition for the return value. *LOWPC and *HIGHPC are set iff
14232 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14233
14234 static enum pc_bounds_kind
14235 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14236 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14237 dwarf2_psymtab *pst)
14238 {
14239 struct dwarf2_per_objfile *dwarf2_per_objfile
14240 = cu->per_cu->dwarf2_per_objfile;
14241 struct attribute *attr;
14242 struct attribute *attr_high;
14243 CORE_ADDR low = 0;
14244 CORE_ADDR high = 0;
14245 enum pc_bounds_kind ret;
14246
14247 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14248 if (attr_high)
14249 {
14250 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14251 if (attr != nullptr)
14252 {
14253 low = attr->value_as_address ();
14254 high = attr_high->value_as_address ();
14255 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14256 high += low;
14257 }
14258 else
14259 /* Found high w/o low attribute. */
14260 return PC_BOUNDS_INVALID;
14261
14262 /* Found consecutive range of addresses. */
14263 ret = PC_BOUNDS_HIGH_LOW;
14264 }
14265 else
14266 {
14267 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14268 if (attr != NULL)
14269 {
14270 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14271 We take advantage of the fact that DW_AT_ranges does not appear
14272 in DW_TAG_compile_unit of DWO files. */
14273 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14274 unsigned int ranges_offset = (DW_UNSND (attr)
14275 + (need_ranges_base
14276 ? cu->ranges_base
14277 : 0));
14278
14279 /* Value of the DW_AT_ranges attribute is the offset in the
14280 .debug_ranges section. */
14281 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14282 return PC_BOUNDS_INVALID;
14283 /* Found discontinuous range of addresses. */
14284 ret = PC_BOUNDS_RANGES;
14285 }
14286 else
14287 return PC_BOUNDS_NOT_PRESENT;
14288 }
14289
14290 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14291 if (high <= low)
14292 return PC_BOUNDS_INVALID;
14293
14294 /* When using the GNU linker, .gnu.linkonce. sections are used to
14295 eliminate duplicate copies of functions and vtables and such.
14296 The linker will arbitrarily choose one and discard the others.
14297 The AT_*_pc values for such functions refer to local labels in
14298 these sections. If the section from that file was discarded, the
14299 labels are not in the output, so the relocs get a value of 0.
14300 If this is a discarded function, mark the pc bounds as invalid,
14301 so that GDB will ignore it. */
14302 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14303 return PC_BOUNDS_INVALID;
14304
14305 *lowpc = low;
14306 if (highpc)
14307 *highpc = high;
14308 return ret;
14309 }
14310
14311 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14312 its low and high PC addresses. Do nothing if these addresses could not
14313 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14314 and HIGHPC to the high address if greater than HIGHPC. */
14315
14316 static void
14317 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14318 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14319 struct dwarf2_cu *cu)
14320 {
14321 CORE_ADDR low, high;
14322 struct die_info *child = die->child;
14323
14324 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14325 {
14326 *lowpc = std::min (*lowpc, low);
14327 *highpc = std::max (*highpc, high);
14328 }
14329
14330 /* If the language does not allow nested subprograms (either inside
14331 subprograms or lexical blocks), we're done. */
14332 if (cu->language != language_ada)
14333 return;
14334
14335 /* Check all the children of the given DIE. If it contains nested
14336 subprograms, then check their pc bounds. Likewise, we need to
14337 check lexical blocks as well, as they may also contain subprogram
14338 definitions. */
14339 while (child && child->tag)
14340 {
14341 if (child->tag == DW_TAG_subprogram
14342 || child->tag == DW_TAG_lexical_block)
14343 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14344 child = sibling_die (child);
14345 }
14346 }
14347
14348 /* Get the low and high pc's represented by the scope DIE, and store
14349 them in *LOWPC and *HIGHPC. If the correct values can't be
14350 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14351
14352 static void
14353 get_scope_pc_bounds (struct die_info *die,
14354 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14355 struct dwarf2_cu *cu)
14356 {
14357 CORE_ADDR best_low = (CORE_ADDR) -1;
14358 CORE_ADDR best_high = (CORE_ADDR) 0;
14359 CORE_ADDR current_low, current_high;
14360
14361 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14362 >= PC_BOUNDS_RANGES)
14363 {
14364 best_low = current_low;
14365 best_high = current_high;
14366 }
14367 else
14368 {
14369 struct die_info *child = die->child;
14370
14371 while (child && child->tag)
14372 {
14373 switch (child->tag) {
14374 case DW_TAG_subprogram:
14375 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14376 break;
14377 case DW_TAG_namespace:
14378 case DW_TAG_module:
14379 /* FIXME: carlton/2004-01-16: Should we do this for
14380 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14381 that current GCC's always emit the DIEs corresponding
14382 to definitions of methods of classes as children of a
14383 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14384 the DIEs giving the declarations, which could be
14385 anywhere). But I don't see any reason why the
14386 standards says that they have to be there. */
14387 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14388
14389 if (current_low != ((CORE_ADDR) -1))
14390 {
14391 best_low = std::min (best_low, current_low);
14392 best_high = std::max (best_high, current_high);
14393 }
14394 break;
14395 default:
14396 /* Ignore. */
14397 break;
14398 }
14399
14400 child = sibling_die (child);
14401 }
14402 }
14403
14404 *lowpc = best_low;
14405 *highpc = best_high;
14406 }
14407
14408 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14409 in DIE. */
14410
14411 static void
14412 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14413 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14414 {
14415 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14416 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14417 struct attribute *attr;
14418 struct attribute *attr_high;
14419
14420 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14421 if (attr_high)
14422 {
14423 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14424 if (attr != nullptr)
14425 {
14426 CORE_ADDR low = attr->value_as_address ();
14427 CORE_ADDR high = attr_high->value_as_address ();
14428
14429 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14430 high += low;
14431
14432 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14433 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14434 cu->get_builder ()->record_block_range (block, low, high - 1);
14435 }
14436 }
14437
14438 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14439 if (attr != nullptr)
14440 {
14441 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14442 We take advantage of the fact that DW_AT_ranges does not appear
14443 in DW_TAG_compile_unit of DWO files. */
14444 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14445
14446 /* The value of the DW_AT_ranges attribute is the offset of the
14447 address range list in the .debug_ranges section. */
14448 unsigned long offset = (DW_UNSND (attr)
14449 + (need_ranges_base ? cu->ranges_base : 0));
14450
14451 std::vector<blockrange> blockvec;
14452 dwarf2_ranges_process (offset, cu,
14453 [&] (CORE_ADDR start, CORE_ADDR end)
14454 {
14455 start += baseaddr;
14456 end += baseaddr;
14457 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14458 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14459 cu->get_builder ()->record_block_range (block, start, end - 1);
14460 blockvec.emplace_back (start, end);
14461 });
14462
14463 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14464 }
14465 }
14466
14467 /* Check whether the producer field indicates either of GCC < 4.6, or the
14468 Intel C/C++ compiler, and cache the result in CU. */
14469
14470 static void
14471 check_producer (struct dwarf2_cu *cu)
14472 {
14473 int major, minor;
14474
14475 if (cu->producer == NULL)
14476 {
14477 /* For unknown compilers expect their behavior is DWARF version
14478 compliant.
14479
14480 GCC started to support .debug_types sections by -gdwarf-4 since
14481 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14482 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14483 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14484 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14485 }
14486 else if (producer_is_gcc (cu->producer, &major, &minor))
14487 {
14488 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14489 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14490 }
14491 else if (producer_is_icc (cu->producer, &major, &minor))
14492 {
14493 cu->producer_is_icc = true;
14494 cu->producer_is_icc_lt_14 = major < 14;
14495 }
14496 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14497 cu->producer_is_codewarrior = true;
14498 else
14499 {
14500 /* For other non-GCC compilers, expect their behavior is DWARF version
14501 compliant. */
14502 }
14503
14504 cu->checked_producer = true;
14505 }
14506
14507 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14508 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14509 during 4.6.0 experimental. */
14510
14511 static bool
14512 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14513 {
14514 if (!cu->checked_producer)
14515 check_producer (cu);
14516
14517 return cu->producer_is_gxx_lt_4_6;
14518 }
14519
14520
14521 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14522 with incorrect is_stmt attributes. */
14523
14524 static bool
14525 producer_is_codewarrior (struct dwarf2_cu *cu)
14526 {
14527 if (!cu->checked_producer)
14528 check_producer (cu);
14529
14530 return cu->producer_is_codewarrior;
14531 }
14532
14533 /* Return the default accessibility type if it is not overridden by
14534 DW_AT_accessibility. */
14535
14536 static enum dwarf_access_attribute
14537 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14538 {
14539 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14540 {
14541 /* The default DWARF 2 accessibility for members is public, the default
14542 accessibility for inheritance is private. */
14543
14544 if (die->tag != DW_TAG_inheritance)
14545 return DW_ACCESS_public;
14546 else
14547 return DW_ACCESS_private;
14548 }
14549 else
14550 {
14551 /* DWARF 3+ defines the default accessibility a different way. The same
14552 rules apply now for DW_TAG_inheritance as for the members and it only
14553 depends on the container kind. */
14554
14555 if (die->parent->tag == DW_TAG_class_type)
14556 return DW_ACCESS_private;
14557 else
14558 return DW_ACCESS_public;
14559 }
14560 }
14561
14562 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14563 offset. If the attribute was not found return 0, otherwise return
14564 1. If it was found but could not properly be handled, set *OFFSET
14565 to 0. */
14566
14567 static int
14568 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14569 LONGEST *offset)
14570 {
14571 struct attribute *attr;
14572
14573 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14574 if (attr != NULL)
14575 {
14576 *offset = 0;
14577
14578 /* Note that we do not check for a section offset first here.
14579 This is because DW_AT_data_member_location is new in DWARF 4,
14580 so if we see it, we can assume that a constant form is really
14581 a constant and not a section offset. */
14582 if (attr->form_is_constant ())
14583 *offset = dwarf2_get_attr_constant_value (attr, 0);
14584 else if (attr->form_is_section_offset ())
14585 dwarf2_complex_location_expr_complaint ();
14586 else if (attr->form_is_block ())
14587 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14588 else
14589 dwarf2_complex_location_expr_complaint ();
14590
14591 return 1;
14592 }
14593
14594 return 0;
14595 }
14596
14597 /* Add an aggregate field to the field list. */
14598
14599 static void
14600 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14601 struct dwarf2_cu *cu)
14602 {
14603 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14605 struct nextfield *new_field;
14606 struct attribute *attr;
14607 struct field *fp;
14608 const char *fieldname = "";
14609
14610 if (die->tag == DW_TAG_inheritance)
14611 {
14612 fip->baseclasses.emplace_back ();
14613 new_field = &fip->baseclasses.back ();
14614 }
14615 else
14616 {
14617 fip->fields.emplace_back ();
14618 new_field = &fip->fields.back ();
14619 }
14620
14621 fip->nfields++;
14622
14623 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14624 if (attr != nullptr)
14625 new_field->accessibility = DW_UNSND (attr);
14626 else
14627 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14628 if (new_field->accessibility != DW_ACCESS_public)
14629 fip->non_public_fields = 1;
14630
14631 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14632 if (attr != nullptr)
14633 new_field->virtuality = DW_UNSND (attr);
14634 else
14635 new_field->virtuality = DW_VIRTUALITY_none;
14636
14637 fp = &new_field->field;
14638
14639 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14640 {
14641 LONGEST offset;
14642
14643 /* Data member other than a C++ static data member. */
14644
14645 /* Get type of field. */
14646 fp->type = die_type (die, cu);
14647
14648 SET_FIELD_BITPOS (*fp, 0);
14649
14650 /* Get bit size of field (zero if none). */
14651 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14652 if (attr != nullptr)
14653 {
14654 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14655 }
14656 else
14657 {
14658 FIELD_BITSIZE (*fp) = 0;
14659 }
14660
14661 /* Get bit offset of field. */
14662 if (handle_data_member_location (die, cu, &offset))
14663 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14664 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14665 if (attr != nullptr)
14666 {
14667 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14668 {
14669 /* For big endian bits, the DW_AT_bit_offset gives the
14670 additional bit offset from the MSB of the containing
14671 anonymous object to the MSB of the field. We don't
14672 have to do anything special since we don't need to
14673 know the size of the anonymous object. */
14674 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14675 }
14676 else
14677 {
14678 /* For little endian bits, compute the bit offset to the
14679 MSB of the anonymous object, subtract off the number of
14680 bits from the MSB of the field to the MSB of the
14681 object, and then subtract off the number of bits of
14682 the field itself. The result is the bit offset of
14683 the LSB of the field. */
14684 int anonymous_size;
14685 int bit_offset = DW_UNSND (attr);
14686
14687 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14688 if (attr != nullptr)
14689 {
14690 /* The size of the anonymous object containing
14691 the bit field is explicit, so use the
14692 indicated size (in bytes). */
14693 anonymous_size = DW_UNSND (attr);
14694 }
14695 else
14696 {
14697 /* The size of the anonymous object containing
14698 the bit field must be inferred from the type
14699 attribute of the data member containing the
14700 bit field. */
14701 anonymous_size = TYPE_LENGTH (fp->type);
14702 }
14703 SET_FIELD_BITPOS (*fp,
14704 (FIELD_BITPOS (*fp)
14705 + anonymous_size * bits_per_byte
14706 - bit_offset - FIELD_BITSIZE (*fp)));
14707 }
14708 }
14709 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14710 if (attr != NULL)
14711 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14712 + dwarf2_get_attr_constant_value (attr, 0)));
14713
14714 /* Get name of field. */
14715 fieldname = dwarf2_name (die, cu);
14716 if (fieldname == NULL)
14717 fieldname = "";
14718
14719 /* The name is already allocated along with this objfile, so we don't
14720 need to duplicate it for the type. */
14721 fp->name = fieldname;
14722
14723 /* Change accessibility for artificial fields (e.g. virtual table
14724 pointer or virtual base class pointer) to private. */
14725 if (dwarf2_attr (die, DW_AT_artificial, cu))
14726 {
14727 FIELD_ARTIFICIAL (*fp) = 1;
14728 new_field->accessibility = DW_ACCESS_private;
14729 fip->non_public_fields = 1;
14730 }
14731 }
14732 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14733 {
14734 /* C++ static member. */
14735
14736 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14737 is a declaration, but all versions of G++ as of this writing
14738 (so through at least 3.2.1) incorrectly generate
14739 DW_TAG_variable tags. */
14740
14741 const char *physname;
14742
14743 /* Get name of field. */
14744 fieldname = dwarf2_name (die, cu);
14745 if (fieldname == NULL)
14746 return;
14747
14748 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14749 if (attr
14750 /* Only create a symbol if this is an external value.
14751 new_symbol checks this and puts the value in the global symbol
14752 table, which we want. If it is not external, new_symbol
14753 will try to put the value in cu->list_in_scope which is wrong. */
14754 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14755 {
14756 /* A static const member, not much different than an enum as far as
14757 we're concerned, except that we can support more types. */
14758 new_symbol (die, NULL, cu);
14759 }
14760
14761 /* Get physical name. */
14762 physname = dwarf2_physname (fieldname, die, cu);
14763
14764 /* The name is already allocated along with this objfile, so we don't
14765 need to duplicate it for the type. */
14766 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14767 FIELD_TYPE (*fp) = die_type (die, cu);
14768 FIELD_NAME (*fp) = fieldname;
14769 }
14770 else if (die->tag == DW_TAG_inheritance)
14771 {
14772 LONGEST offset;
14773
14774 /* C++ base class field. */
14775 if (handle_data_member_location (die, cu, &offset))
14776 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14777 FIELD_BITSIZE (*fp) = 0;
14778 FIELD_TYPE (*fp) = die_type (die, cu);
14779 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14780 }
14781 else if (die->tag == DW_TAG_variant_part)
14782 {
14783 /* process_structure_scope will treat this DIE as a union. */
14784 process_structure_scope (die, cu);
14785
14786 /* The variant part is relative to the start of the enclosing
14787 structure. */
14788 SET_FIELD_BITPOS (*fp, 0);
14789 fp->type = get_die_type (die, cu);
14790 fp->artificial = 1;
14791 fp->name = "<<variant>>";
14792
14793 /* Normally a DW_TAG_variant_part won't have a size, but our
14794 representation requires one, so set it to the maximum of the
14795 child sizes, being sure to account for the offset at which
14796 each child is seen. */
14797 if (TYPE_LENGTH (fp->type) == 0)
14798 {
14799 unsigned max = 0;
14800 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14801 {
14802 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14803 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14804 if (len > max)
14805 max = len;
14806 }
14807 TYPE_LENGTH (fp->type) = max;
14808 }
14809 }
14810 else
14811 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14812 }
14813
14814 /* Can the type given by DIE define another type? */
14815
14816 static bool
14817 type_can_define_types (const struct die_info *die)
14818 {
14819 switch (die->tag)
14820 {
14821 case DW_TAG_typedef:
14822 case DW_TAG_class_type:
14823 case DW_TAG_structure_type:
14824 case DW_TAG_union_type:
14825 case DW_TAG_enumeration_type:
14826 return true;
14827
14828 default:
14829 return false;
14830 }
14831 }
14832
14833 /* Add a type definition defined in the scope of the FIP's class. */
14834
14835 static void
14836 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14837 struct dwarf2_cu *cu)
14838 {
14839 struct decl_field fp;
14840 memset (&fp, 0, sizeof (fp));
14841
14842 gdb_assert (type_can_define_types (die));
14843
14844 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14845 fp.name = dwarf2_name (die, cu);
14846 fp.type = read_type_die (die, cu);
14847
14848 /* Save accessibility. */
14849 enum dwarf_access_attribute accessibility;
14850 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14851 if (attr != NULL)
14852 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14853 else
14854 accessibility = dwarf2_default_access_attribute (die, cu);
14855 switch (accessibility)
14856 {
14857 case DW_ACCESS_public:
14858 /* The assumed value if neither private nor protected. */
14859 break;
14860 case DW_ACCESS_private:
14861 fp.is_private = 1;
14862 break;
14863 case DW_ACCESS_protected:
14864 fp.is_protected = 1;
14865 break;
14866 default:
14867 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14868 }
14869
14870 if (die->tag == DW_TAG_typedef)
14871 fip->typedef_field_list.push_back (fp);
14872 else
14873 fip->nested_types_list.push_back (fp);
14874 }
14875
14876 /* Create the vector of fields, and attach it to the type. */
14877
14878 static void
14879 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14880 struct dwarf2_cu *cu)
14881 {
14882 int nfields = fip->nfields;
14883
14884 /* Record the field count, allocate space for the array of fields,
14885 and create blank accessibility bitfields if necessary. */
14886 TYPE_NFIELDS (type) = nfields;
14887 TYPE_FIELDS (type) = (struct field *)
14888 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14889
14890 if (fip->non_public_fields && cu->language != language_ada)
14891 {
14892 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14893
14894 TYPE_FIELD_PRIVATE_BITS (type) =
14895 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14896 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14897
14898 TYPE_FIELD_PROTECTED_BITS (type) =
14899 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14900 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14901
14902 TYPE_FIELD_IGNORE_BITS (type) =
14903 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14904 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14905 }
14906
14907 /* If the type has baseclasses, allocate and clear a bit vector for
14908 TYPE_FIELD_VIRTUAL_BITS. */
14909 if (!fip->baseclasses.empty () && cu->language != language_ada)
14910 {
14911 int num_bytes = B_BYTES (fip->baseclasses.size ());
14912 unsigned char *pointer;
14913
14914 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14915 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14916 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14917 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14918 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14919 }
14920
14921 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14922 {
14923 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14924
14925 for (int index = 0; index < nfields; ++index)
14926 {
14927 struct nextfield &field = fip->fields[index];
14928
14929 if (field.variant.is_discriminant)
14930 di->discriminant_index = index;
14931 else if (field.variant.default_branch)
14932 di->default_index = index;
14933 else
14934 di->discriminants[index] = field.variant.discriminant_value;
14935 }
14936 }
14937
14938 /* Copy the saved-up fields into the field vector. */
14939 for (int i = 0; i < nfields; ++i)
14940 {
14941 struct nextfield &field
14942 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14943 : fip->fields[i - fip->baseclasses.size ()]);
14944
14945 TYPE_FIELD (type, i) = field.field;
14946 switch (field.accessibility)
14947 {
14948 case DW_ACCESS_private:
14949 if (cu->language != language_ada)
14950 SET_TYPE_FIELD_PRIVATE (type, i);
14951 break;
14952
14953 case DW_ACCESS_protected:
14954 if (cu->language != language_ada)
14955 SET_TYPE_FIELD_PROTECTED (type, i);
14956 break;
14957
14958 case DW_ACCESS_public:
14959 break;
14960
14961 default:
14962 /* Unknown accessibility. Complain and treat it as public. */
14963 {
14964 complaint (_("unsupported accessibility %d"),
14965 field.accessibility);
14966 }
14967 break;
14968 }
14969 if (i < fip->baseclasses.size ())
14970 {
14971 switch (field.virtuality)
14972 {
14973 case DW_VIRTUALITY_virtual:
14974 case DW_VIRTUALITY_pure_virtual:
14975 if (cu->language == language_ada)
14976 error (_("unexpected virtuality in component of Ada type"));
14977 SET_TYPE_FIELD_VIRTUAL (type, i);
14978 break;
14979 }
14980 }
14981 }
14982 }
14983
14984 /* Return true if this member function is a constructor, false
14985 otherwise. */
14986
14987 static int
14988 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14989 {
14990 const char *fieldname;
14991 const char *type_name;
14992 int len;
14993
14994 if (die->parent == NULL)
14995 return 0;
14996
14997 if (die->parent->tag != DW_TAG_structure_type
14998 && die->parent->tag != DW_TAG_union_type
14999 && die->parent->tag != DW_TAG_class_type)
15000 return 0;
15001
15002 fieldname = dwarf2_name (die, cu);
15003 type_name = dwarf2_name (die->parent, cu);
15004 if (fieldname == NULL || type_name == NULL)
15005 return 0;
15006
15007 len = strlen (fieldname);
15008 return (strncmp (fieldname, type_name, len) == 0
15009 && (type_name[len] == '\0' || type_name[len] == '<'));
15010 }
15011
15012 /* Check if the given VALUE is a recognized enum
15013 dwarf_defaulted_attribute constant according to DWARF5 spec,
15014 Table 7.24. */
15015
15016 static bool
15017 is_valid_DW_AT_defaulted (ULONGEST value)
15018 {
15019 switch (value)
15020 {
15021 case DW_DEFAULTED_no:
15022 case DW_DEFAULTED_in_class:
15023 case DW_DEFAULTED_out_of_class:
15024 return true;
15025 }
15026
15027 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15028 return false;
15029 }
15030
15031 /* Add a member function to the proper fieldlist. */
15032
15033 static void
15034 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15035 struct type *type, struct dwarf2_cu *cu)
15036 {
15037 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15038 struct attribute *attr;
15039 int i;
15040 struct fnfieldlist *flp = nullptr;
15041 struct fn_field *fnp;
15042 const char *fieldname;
15043 struct type *this_type;
15044 enum dwarf_access_attribute accessibility;
15045
15046 if (cu->language == language_ada)
15047 error (_("unexpected member function in Ada type"));
15048
15049 /* Get name of member function. */
15050 fieldname = dwarf2_name (die, cu);
15051 if (fieldname == NULL)
15052 return;
15053
15054 /* Look up member function name in fieldlist. */
15055 for (i = 0; i < fip->fnfieldlists.size (); i++)
15056 {
15057 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15058 {
15059 flp = &fip->fnfieldlists[i];
15060 break;
15061 }
15062 }
15063
15064 /* Create a new fnfieldlist if necessary. */
15065 if (flp == nullptr)
15066 {
15067 fip->fnfieldlists.emplace_back ();
15068 flp = &fip->fnfieldlists.back ();
15069 flp->name = fieldname;
15070 i = fip->fnfieldlists.size () - 1;
15071 }
15072
15073 /* Create a new member function field and add it to the vector of
15074 fnfieldlists. */
15075 flp->fnfields.emplace_back ();
15076 fnp = &flp->fnfields.back ();
15077
15078 /* Delay processing of the physname until later. */
15079 if (cu->language == language_cplus)
15080 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15081 die, cu);
15082 else
15083 {
15084 const char *physname = dwarf2_physname (fieldname, die, cu);
15085 fnp->physname = physname ? physname : "";
15086 }
15087
15088 fnp->type = alloc_type (objfile);
15089 this_type = read_type_die (die, cu);
15090 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15091 {
15092 int nparams = TYPE_NFIELDS (this_type);
15093
15094 /* TYPE is the domain of this method, and THIS_TYPE is the type
15095 of the method itself (TYPE_CODE_METHOD). */
15096 smash_to_method_type (fnp->type, type,
15097 TYPE_TARGET_TYPE (this_type),
15098 TYPE_FIELDS (this_type),
15099 TYPE_NFIELDS (this_type),
15100 TYPE_VARARGS (this_type));
15101
15102 /* Handle static member functions.
15103 Dwarf2 has no clean way to discern C++ static and non-static
15104 member functions. G++ helps GDB by marking the first
15105 parameter for non-static member functions (which is the this
15106 pointer) as artificial. We obtain this information from
15107 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15108 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15109 fnp->voffset = VOFFSET_STATIC;
15110 }
15111 else
15112 complaint (_("member function type missing for '%s'"),
15113 dwarf2_full_name (fieldname, die, cu));
15114
15115 /* Get fcontext from DW_AT_containing_type if present. */
15116 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15117 fnp->fcontext = die_containing_type (die, cu);
15118
15119 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15120 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15121
15122 /* Get accessibility. */
15123 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15124 if (attr != nullptr)
15125 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15126 else
15127 accessibility = dwarf2_default_access_attribute (die, cu);
15128 switch (accessibility)
15129 {
15130 case DW_ACCESS_private:
15131 fnp->is_private = 1;
15132 break;
15133 case DW_ACCESS_protected:
15134 fnp->is_protected = 1;
15135 break;
15136 }
15137
15138 /* Check for artificial methods. */
15139 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15140 if (attr && DW_UNSND (attr) != 0)
15141 fnp->is_artificial = 1;
15142
15143 /* Check for defaulted methods. */
15144 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15145 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15146 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15147
15148 /* Check for deleted methods. */
15149 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15150 if (attr != nullptr && DW_UNSND (attr) != 0)
15151 fnp->is_deleted = 1;
15152
15153 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15154
15155 /* Get index in virtual function table if it is a virtual member
15156 function. For older versions of GCC, this is an offset in the
15157 appropriate virtual table, as specified by DW_AT_containing_type.
15158 For everyone else, it is an expression to be evaluated relative
15159 to the object address. */
15160
15161 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15162 if (attr != nullptr)
15163 {
15164 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15165 {
15166 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15167 {
15168 /* Old-style GCC. */
15169 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15170 }
15171 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15172 || (DW_BLOCK (attr)->size > 1
15173 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15174 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15175 {
15176 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15177 if ((fnp->voffset % cu->header.addr_size) != 0)
15178 dwarf2_complex_location_expr_complaint ();
15179 else
15180 fnp->voffset /= cu->header.addr_size;
15181 fnp->voffset += 2;
15182 }
15183 else
15184 dwarf2_complex_location_expr_complaint ();
15185
15186 if (!fnp->fcontext)
15187 {
15188 /* If there is no `this' field and no DW_AT_containing_type,
15189 we cannot actually find a base class context for the
15190 vtable! */
15191 if (TYPE_NFIELDS (this_type) == 0
15192 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15193 {
15194 complaint (_("cannot determine context for virtual member "
15195 "function \"%s\" (offset %s)"),
15196 fieldname, sect_offset_str (die->sect_off));
15197 }
15198 else
15199 {
15200 fnp->fcontext
15201 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15202 }
15203 }
15204 }
15205 else if (attr->form_is_section_offset ())
15206 {
15207 dwarf2_complex_location_expr_complaint ();
15208 }
15209 else
15210 {
15211 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15212 fieldname);
15213 }
15214 }
15215 else
15216 {
15217 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15218 if (attr && DW_UNSND (attr))
15219 {
15220 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15221 complaint (_("Member function \"%s\" (offset %s) is virtual "
15222 "but the vtable offset is not specified"),
15223 fieldname, sect_offset_str (die->sect_off));
15224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15225 TYPE_CPLUS_DYNAMIC (type) = 1;
15226 }
15227 }
15228 }
15229
15230 /* Create the vector of member function fields, and attach it to the type. */
15231
15232 static void
15233 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15234 struct dwarf2_cu *cu)
15235 {
15236 if (cu->language == language_ada)
15237 error (_("unexpected member functions in Ada type"));
15238
15239 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15240 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15241 TYPE_ALLOC (type,
15242 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15243
15244 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15245 {
15246 struct fnfieldlist &nf = fip->fnfieldlists[i];
15247 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15248
15249 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15250 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15251 fn_flp->fn_fields = (struct fn_field *)
15252 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15253
15254 for (int k = 0; k < nf.fnfields.size (); ++k)
15255 fn_flp->fn_fields[k] = nf.fnfields[k];
15256 }
15257
15258 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15259 }
15260
15261 /* Returns non-zero if NAME is the name of a vtable member in CU's
15262 language, zero otherwise. */
15263 static int
15264 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15265 {
15266 static const char vptr[] = "_vptr";
15267
15268 /* Look for the C++ form of the vtable. */
15269 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15270 return 1;
15271
15272 return 0;
15273 }
15274
15275 /* GCC outputs unnamed structures that are really pointers to member
15276 functions, with the ABI-specified layout. If TYPE describes
15277 such a structure, smash it into a member function type.
15278
15279 GCC shouldn't do this; it should just output pointer to member DIEs.
15280 This is GCC PR debug/28767. */
15281
15282 static void
15283 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15284 {
15285 struct type *pfn_type, *self_type, *new_type;
15286
15287 /* Check for a structure with no name and two children. */
15288 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15289 return;
15290
15291 /* Check for __pfn and __delta members. */
15292 if (TYPE_FIELD_NAME (type, 0) == NULL
15293 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15294 || TYPE_FIELD_NAME (type, 1) == NULL
15295 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15296 return;
15297
15298 /* Find the type of the method. */
15299 pfn_type = TYPE_FIELD_TYPE (type, 0);
15300 if (pfn_type == NULL
15301 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15302 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15303 return;
15304
15305 /* Look for the "this" argument. */
15306 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15307 if (TYPE_NFIELDS (pfn_type) == 0
15308 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15309 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15310 return;
15311
15312 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15313 new_type = alloc_type (objfile);
15314 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15315 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15316 TYPE_VARARGS (pfn_type));
15317 smash_to_methodptr_type (type, new_type);
15318 }
15319
15320 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15321 appropriate error checking and issuing complaints if there is a
15322 problem. */
15323
15324 static ULONGEST
15325 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15326 {
15327 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15328
15329 if (attr == nullptr)
15330 return 0;
15331
15332 if (!attr->form_is_constant ())
15333 {
15334 complaint (_("DW_AT_alignment must have constant form"
15335 " - DIE at %s [in module %s]"),
15336 sect_offset_str (die->sect_off),
15337 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15338 return 0;
15339 }
15340
15341 ULONGEST align;
15342 if (attr->form == DW_FORM_sdata)
15343 {
15344 LONGEST val = DW_SND (attr);
15345 if (val < 0)
15346 {
15347 complaint (_("DW_AT_alignment value must not be negative"
15348 " - DIE at %s [in module %s]"),
15349 sect_offset_str (die->sect_off),
15350 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15351 return 0;
15352 }
15353 align = val;
15354 }
15355 else
15356 align = DW_UNSND (attr);
15357
15358 if (align == 0)
15359 {
15360 complaint (_("DW_AT_alignment value must not be zero"
15361 " - DIE at %s [in module %s]"),
15362 sect_offset_str (die->sect_off),
15363 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15364 return 0;
15365 }
15366 if ((align & (align - 1)) != 0)
15367 {
15368 complaint (_("DW_AT_alignment value must be a power of 2"
15369 " - DIE at %s [in module %s]"),
15370 sect_offset_str (die->sect_off),
15371 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15372 return 0;
15373 }
15374
15375 return align;
15376 }
15377
15378 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15379 the alignment for TYPE. */
15380
15381 static void
15382 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15383 struct type *type)
15384 {
15385 if (!set_type_align (type, get_alignment (cu, die)))
15386 complaint (_("DW_AT_alignment value too large"
15387 " - DIE at %s [in module %s]"),
15388 sect_offset_str (die->sect_off),
15389 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15390 }
15391
15392 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15393 constant for a type, according to DWARF5 spec, Table 5.5. */
15394
15395 static bool
15396 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15397 {
15398 switch (value)
15399 {
15400 case DW_CC_normal:
15401 case DW_CC_pass_by_reference:
15402 case DW_CC_pass_by_value:
15403 return true;
15404
15405 default:
15406 complaint (_("unrecognized DW_AT_calling_convention value "
15407 "(%s) for a type"), pulongest (value));
15408 return false;
15409 }
15410 }
15411
15412 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15413 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15414 also according to GNU-specific values (see include/dwarf2.h). */
15415
15416 static bool
15417 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15418 {
15419 switch (value)
15420 {
15421 case DW_CC_normal:
15422 case DW_CC_program:
15423 case DW_CC_nocall:
15424 return true;
15425
15426 case DW_CC_GNU_renesas_sh:
15427 case DW_CC_GNU_borland_fastcall_i386:
15428 case DW_CC_GDB_IBM_OpenCL:
15429 return true;
15430
15431 default:
15432 complaint (_("unrecognized DW_AT_calling_convention value "
15433 "(%s) for a subroutine"), pulongest (value));
15434 return false;
15435 }
15436 }
15437
15438 /* Called when we find the DIE that starts a structure or union scope
15439 (definition) to create a type for the structure or union. Fill in
15440 the type's name and general properties; the members will not be
15441 processed until process_structure_scope. A symbol table entry for
15442 the type will also not be done until process_structure_scope (assuming
15443 the type has a name).
15444
15445 NOTE: we need to call these functions regardless of whether or not the
15446 DIE has a DW_AT_name attribute, since it might be an anonymous
15447 structure or union. This gets the type entered into our set of
15448 user defined types. */
15449
15450 static struct type *
15451 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15452 {
15453 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15454 struct type *type;
15455 struct attribute *attr;
15456 const char *name;
15457
15458 /* If the definition of this type lives in .debug_types, read that type.
15459 Don't follow DW_AT_specification though, that will take us back up
15460 the chain and we want to go down. */
15461 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15462 if (attr != nullptr)
15463 {
15464 type = get_DW_AT_signature_type (die, attr, cu);
15465
15466 /* The type's CU may not be the same as CU.
15467 Ensure TYPE is recorded with CU in die_type_hash. */
15468 return set_die_type (die, type, cu);
15469 }
15470
15471 type = alloc_type (objfile);
15472 INIT_CPLUS_SPECIFIC (type);
15473
15474 name = dwarf2_name (die, cu);
15475 if (name != NULL)
15476 {
15477 if (cu->language == language_cplus
15478 || cu->language == language_d
15479 || cu->language == language_rust)
15480 {
15481 const char *full_name = dwarf2_full_name (name, die, cu);
15482
15483 /* dwarf2_full_name might have already finished building the DIE's
15484 type. If so, there is no need to continue. */
15485 if (get_die_type (die, cu) != NULL)
15486 return get_die_type (die, cu);
15487
15488 TYPE_NAME (type) = full_name;
15489 }
15490 else
15491 {
15492 /* The name is already allocated along with this objfile, so
15493 we don't need to duplicate it for the type. */
15494 TYPE_NAME (type) = name;
15495 }
15496 }
15497
15498 if (die->tag == DW_TAG_structure_type)
15499 {
15500 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15501 }
15502 else if (die->tag == DW_TAG_union_type)
15503 {
15504 TYPE_CODE (type) = TYPE_CODE_UNION;
15505 }
15506 else if (die->tag == DW_TAG_variant_part)
15507 {
15508 TYPE_CODE (type) = TYPE_CODE_UNION;
15509 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15510 }
15511 else
15512 {
15513 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15514 }
15515
15516 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15517 TYPE_DECLARED_CLASS (type) = 1;
15518
15519 /* Store the calling convention in the type if it's available in
15520 the die. Otherwise the calling convention remains set to
15521 the default value DW_CC_normal. */
15522 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15523 if (attr != nullptr
15524 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15525 {
15526 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15527 TYPE_CPLUS_CALLING_CONVENTION (type)
15528 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15529 }
15530
15531 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15532 if (attr != nullptr)
15533 {
15534 if (attr->form_is_constant ())
15535 TYPE_LENGTH (type) = DW_UNSND (attr);
15536 else
15537 {
15538 /* For the moment, dynamic type sizes are not supported
15539 by GDB's struct type. The actual size is determined
15540 on-demand when resolving the type of a given object,
15541 so set the type's length to zero for now. Otherwise,
15542 we record an expression as the length, and that expression
15543 could lead to a very large value, which could eventually
15544 lead to us trying to allocate that much memory when creating
15545 a value of that type. */
15546 TYPE_LENGTH (type) = 0;
15547 }
15548 }
15549 else
15550 {
15551 TYPE_LENGTH (type) = 0;
15552 }
15553
15554 maybe_set_alignment (cu, die, type);
15555
15556 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15557 {
15558 /* ICC<14 does not output the required DW_AT_declaration on
15559 incomplete types, but gives them a size of zero. */
15560 TYPE_STUB (type) = 1;
15561 }
15562 else
15563 TYPE_STUB_SUPPORTED (type) = 1;
15564
15565 if (die_is_declaration (die, cu))
15566 TYPE_STUB (type) = 1;
15567 else if (attr == NULL && die->child == NULL
15568 && producer_is_realview (cu->producer))
15569 /* RealView does not output the required DW_AT_declaration
15570 on incomplete types. */
15571 TYPE_STUB (type) = 1;
15572
15573 /* We need to add the type field to the die immediately so we don't
15574 infinitely recurse when dealing with pointers to the structure
15575 type within the structure itself. */
15576 set_die_type (die, type, cu);
15577
15578 /* set_die_type should be already done. */
15579 set_descriptive_type (type, die, cu);
15580
15581 return type;
15582 }
15583
15584 /* A helper for process_structure_scope that handles a single member
15585 DIE. */
15586
15587 static void
15588 handle_struct_member_die (struct die_info *child_die, struct type *type,
15589 struct field_info *fi,
15590 std::vector<struct symbol *> *template_args,
15591 struct dwarf2_cu *cu)
15592 {
15593 if (child_die->tag == DW_TAG_member
15594 || child_die->tag == DW_TAG_variable
15595 || child_die->tag == DW_TAG_variant_part)
15596 {
15597 /* NOTE: carlton/2002-11-05: A C++ static data member
15598 should be a DW_TAG_member that is a declaration, but
15599 all versions of G++ as of this writing (so through at
15600 least 3.2.1) incorrectly generate DW_TAG_variable
15601 tags for them instead. */
15602 dwarf2_add_field (fi, child_die, cu);
15603 }
15604 else if (child_die->tag == DW_TAG_subprogram)
15605 {
15606 /* Rust doesn't have member functions in the C++ sense.
15607 However, it does emit ordinary functions as children
15608 of a struct DIE. */
15609 if (cu->language == language_rust)
15610 read_func_scope (child_die, cu);
15611 else
15612 {
15613 /* C++ member function. */
15614 dwarf2_add_member_fn (fi, child_die, type, cu);
15615 }
15616 }
15617 else if (child_die->tag == DW_TAG_inheritance)
15618 {
15619 /* C++ base class field. */
15620 dwarf2_add_field (fi, child_die, cu);
15621 }
15622 else if (type_can_define_types (child_die))
15623 dwarf2_add_type_defn (fi, child_die, cu);
15624 else if (child_die->tag == DW_TAG_template_type_param
15625 || child_die->tag == DW_TAG_template_value_param)
15626 {
15627 struct symbol *arg = new_symbol (child_die, NULL, cu);
15628
15629 if (arg != NULL)
15630 template_args->push_back (arg);
15631 }
15632 else if (child_die->tag == DW_TAG_variant)
15633 {
15634 /* In a variant we want to get the discriminant and also add a
15635 field for our sole member child. */
15636 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15637
15638 for (die_info *variant_child = child_die->child;
15639 variant_child != NULL;
15640 variant_child = sibling_die (variant_child))
15641 {
15642 if (variant_child->tag == DW_TAG_member)
15643 {
15644 handle_struct_member_die (variant_child, type, fi,
15645 template_args, cu);
15646 /* Only handle the one. */
15647 break;
15648 }
15649 }
15650
15651 /* We don't handle this but we might as well report it if we see
15652 it. */
15653 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15654 complaint (_("DW_AT_discr_list is not supported yet"
15655 " - DIE at %s [in module %s]"),
15656 sect_offset_str (child_die->sect_off),
15657 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15658
15659 /* The first field was just added, so we can stash the
15660 discriminant there. */
15661 gdb_assert (!fi->fields.empty ());
15662 if (discr == NULL)
15663 fi->fields.back ().variant.default_branch = true;
15664 else
15665 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15666 }
15667 }
15668
15669 /* Finish creating a structure or union type, including filling in
15670 its members and creating a symbol for it. */
15671
15672 static void
15673 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15674 {
15675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15676 struct die_info *child_die;
15677 struct type *type;
15678
15679 type = get_die_type (die, cu);
15680 if (type == NULL)
15681 type = read_structure_type (die, cu);
15682
15683 /* When reading a DW_TAG_variant_part, we need to notice when we
15684 read the discriminant member, so we can record it later in the
15685 discriminant_info. */
15686 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15687 sect_offset discr_offset {};
15688 bool has_template_parameters = false;
15689
15690 if (is_variant_part)
15691 {
15692 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15693 if (discr == NULL)
15694 {
15695 /* Maybe it's a univariant form, an extension we support.
15696 In this case arrange not to check the offset. */
15697 is_variant_part = false;
15698 }
15699 else if (discr->form_is_ref ())
15700 {
15701 struct dwarf2_cu *target_cu = cu;
15702 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15703
15704 discr_offset = target_die->sect_off;
15705 }
15706 else
15707 {
15708 complaint (_("DW_AT_discr does not have DIE reference form"
15709 " - DIE at %s [in module %s]"),
15710 sect_offset_str (die->sect_off),
15711 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15712 is_variant_part = false;
15713 }
15714 }
15715
15716 if (die->child != NULL && ! die_is_declaration (die, cu))
15717 {
15718 struct field_info fi;
15719 std::vector<struct symbol *> template_args;
15720
15721 child_die = die->child;
15722
15723 while (child_die && child_die->tag)
15724 {
15725 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15726
15727 if (is_variant_part && discr_offset == child_die->sect_off)
15728 fi.fields.back ().variant.is_discriminant = true;
15729
15730 child_die = sibling_die (child_die);
15731 }
15732
15733 /* Attach template arguments to type. */
15734 if (!template_args.empty ())
15735 {
15736 has_template_parameters = true;
15737 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15738 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15739 TYPE_TEMPLATE_ARGUMENTS (type)
15740 = XOBNEWVEC (&objfile->objfile_obstack,
15741 struct symbol *,
15742 TYPE_N_TEMPLATE_ARGUMENTS (type));
15743 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15744 template_args.data (),
15745 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15746 * sizeof (struct symbol *)));
15747 }
15748
15749 /* Attach fields and member functions to the type. */
15750 if (fi.nfields)
15751 dwarf2_attach_fields_to_type (&fi, type, cu);
15752 if (!fi.fnfieldlists.empty ())
15753 {
15754 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15755
15756 /* Get the type which refers to the base class (possibly this
15757 class itself) which contains the vtable pointer for the current
15758 class from the DW_AT_containing_type attribute. This use of
15759 DW_AT_containing_type is a GNU extension. */
15760
15761 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15762 {
15763 struct type *t = die_containing_type (die, cu);
15764
15765 set_type_vptr_basetype (type, t);
15766 if (type == t)
15767 {
15768 int i;
15769
15770 /* Our own class provides vtbl ptr. */
15771 for (i = TYPE_NFIELDS (t) - 1;
15772 i >= TYPE_N_BASECLASSES (t);
15773 --i)
15774 {
15775 const char *fieldname = TYPE_FIELD_NAME (t, i);
15776
15777 if (is_vtable_name (fieldname, cu))
15778 {
15779 set_type_vptr_fieldno (type, i);
15780 break;
15781 }
15782 }
15783
15784 /* Complain if virtual function table field not found. */
15785 if (i < TYPE_N_BASECLASSES (t))
15786 complaint (_("virtual function table pointer "
15787 "not found when defining class '%s'"),
15788 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15789 }
15790 else
15791 {
15792 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15793 }
15794 }
15795 else if (cu->producer
15796 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15797 {
15798 /* The IBM XLC compiler does not provide direct indication
15799 of the containing type, but the vtable pointer is
15800 always named __vfp. */
15801
15802 int i;
15803
15804 for (i = TYPE_NFIELDS (type) - 1;
15805 i >= TYPE_N_BASECLASSES (type);
15806 --i)
15807 {
15808 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15809 {
15810 set_type_vptr_fieldno (type, i);
15811 set_type_vptr_basetype (type, type);
15812 break;
15813 }
15814 }
15815 }
15816 }
15817
15818 /* Copy fi.typedef_field_list linked list elements content into the
15819 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15820 if (!fi.typedef_field_list.empty ())
15821 {
15822 int count = fi.typedef_field_list.size ();
15823
15824 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15825 TYPE_TYPEDEF_FIELD_ARRAY (type)
15826 = ((struct decl_field *)
15827 TYPE_ALLOC (type,
15828 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15829 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15830
15831 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15832 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15833 }
15834
15835 /* Copy fi.nested_types_list linked list elements content into the
15836 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15837 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15838 {
15839 int count = fi.nested_types_list.size ();
15840
15841 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15842 TYPE_NESTED_TYPES_ARRAY (type)
15843 = ((struct decl_field *)
15844 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15845 TYPE_NESTED_TYPES_COUNT (type) = count;
15846
15847 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15848 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15849 }
15850 }
15851
15852 quirk_gcc_member_function_pointer (type, objfile);
15853 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15854 cu->rust_unions.push_back (type);
15855
15856 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15857 snapshots) has been known to create a die giving a declaration
15858 for a class that has, as a child, a die giving a definition for a
15859 nested class. So we have to process our children even if the
15860 current die is a declaration. Normally, of course, a declaration
15861 won't have any children at all. */
15862
15863 child_die = die->child;
15864
15865 while (child_die != NULL && child_die->tag)
15866 {
15867 if (child_die->tag == DW_TAG_member
15868 || child_die->tag == DW_TAG_variable
15869 || child_die->tag == DW_TAG_inheritance
15870 || child_die->tag == DW_TAG_template_value_param
15871 || child_die->tag == DW_TAG_template_type_param)
15872 {
15873 /* Do nothing. */
15874 }
15875 else
15876 process_die (child_die, cu);
15877
15878 child_die = sibling_die (child_die);
15879 }
15880
15881 /* Do not consider external references. According to the DWARF standard,
15882 these DIEs are identified by the fact that they have no byte_size
15883 attribute, and a declaration attribute. */
15884 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15885 || !die_is_declaration (die, cu))
15886 {
15887 struct symbol *sym = new_symbol (die, type, cu);
15888
15889 if (has_template_parameters)
15890 {
15891 struct symtab *symtab;
15892 if (sym != nullptr)
15893 symtab = symbol_symtab (sym);
15894 else if (cu->line_header != nullptr)
15895 {
15896 /* Any related symtab will do. */
15897 symtab
15898 = cu->line_header->file_names ()[0].symtab;
15899 }
15900 else
15901 {
15902 symtab = nullptr;
15903 complaint (_("could not find suitable "
15904 "symtab for template parameter"
15905 " - DIE at %s [in module %s]"),
15906 sect_offset_str (die->sect_off),
15907 objfile_name (objfile));
15908 }
15909
15910 if (symtab != nullptr)
15911 {
15912 /* Make sure that the symtab is set on the new symbols.
15913 Even though they don't appear in this symtab directly,
15914 other parts of gdb assume that symbols do, and this is
15915 reasonably true. */
15916 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15917 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15918 }
15919 }
15920 }
15921 }
15922
15923 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15924 update TYPE using some information only available in DIE's children. */
15925
15926 static void
15927 update_enumeration_type_from_children (struct die_info *die,
15928 struct type *type,
15929 struct dwarf2_cu *cu)
15930 {
15931 struct die_info *child_die;
15932 int unsigned_enum = 1;
15933 int flag_enum = 1;
15934 ULONGEST mask = 0;
15935
15936 auto_obstack obstack;
15937
15938 for (child_die = die->child;
15939 child_die != NULL && child_die->tag;
15940 child_die = sibling_die (child_die))
15941 {
15942 struct attribute *attr;
15943 LONGEST value;
15944 const gdb_byte *bytes;
15945 struct dwarf2_locexpr_baton *baton;
15946 const char *name;
15947
15948 if (child_die->tag != DW_TAG_enumerator)
15949 continue;
15950
15951 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15952 if (attr == NULL)
15953 continue;
15954
15955 name = dwarf2_name (child_die, cu);
15956 if (name == NULL)
15957 name = "<anonymous enumerator>";
15958
15959 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15960 &value, &bytes, &baton);
15961 if (value < 0)
15962 {
15963 unsigned_enum = 0;
15964 flag_enum = 0;
15965 }
15966 else if ((mask & value) != 0)
15967 flag_enum = 0;
15968 else
15969 mask |= value;
15970
15971 /* If we already know that the enum type is neither unsigned, nor
15972 a flag type, no need to look at the rest of the enumerates. */
15973 if (!unsigned_enum && !flag_enum)
15974 break;
15975 }
15976
15977 if (unsigned_enum)
15978 TYPE_UNSIGNED (type) = 1;
15979 if (flag_enum)
15980 TYPE_FLAG_ENUM (type) = 1;
15981 }
15982
15983 /* Given a DW_AT_enumeration_type die, set its type. We do not
15984 complete the type's fields yet, or create any symbols. */
15985
15986 static struct type *
15987 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15988 {
15989 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15990 struct type *type;
15991 struct attribute *attr;
15992 const char *name;
15993
15994 /* If the definition of this type lives in .debug_types, read that type.
15995 Don't follow DW_AT_specification though, that will take us back up
15996 the chain and we want to go down. */
15997 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15998 if (attr != nullptr)
15999 {
16000 type = get_DW_AT_signature_type (die, attr, cu);
16001
16002 /* The type's CU may not be the same as CU.
16003 Ensure TYPE is recorded with CU in die_type_hash. */
16004 return set_die_type (die, type, cu);
16005 }
16006
16007 type = alloc_type (objfile);
16008
16009 TYPE_CODE (type) = TYPE_CODE_ENUM;
16010 name = dwarf2_full_name (NULL, die, cu);
16011 if (name != NULL)
16012 TYPE_NAME (type) = name;
16013
16014 attr = dwarf2_attr (die, DW_AT_type, cu);
16015 if (attr != NULL)
16016 {
16017 struct type *underlying_type = die_type (die, cu);
16018
16019 TYPE_TARGET_TYPE (type) = underlying_type;
16020 }
16021
16022 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16023 if (attr != nullptr)
16024 {
16025 TYPE_LENGTH (type) = DW_UNSND (attr);
16026 }
16027 else
16028 {
16029 TYPE_LENGTH (type) = 0;
16030 }
16031
16032 maybe_set_alignment (cu, die, type);
16033
16034 /* The enumeration DIE can be incomplete. In Ada, any type can be
16035 declared as private in the package spec, and then defined only
16036 inside the package body. Such types are known as Taft Amendment
16037 Types. When another package uses such a type, an incomplete DIE
16038 may be generated by the compiler. */
16039 if (die_is_declaration (die, cu))
16040 TYPE_STUB (type) = 1;
16041
16042 /* Finish the creation of this type by using the enum's children.
16043 We must call this even when the underlying type has been provided
16044 so that we can determine if we're looking at a "flag" enum. */
16045 update_enumeration_type_from_children (die, type, cu);
16046
16047 /* If this type has an underlying type that is not a stub, then we
16048 may use its attributes. We always use the "unsigned" attribute
16049 in this situation, because ordinarily we guess whether the type
16050 is unsigned -- but the guess can be wrong and the underlying type
16051 can tell us the reality. However, we defer to a local size
16052 attribute if one exists, because this lets the compiler override
16053 the underlying type if needed. */
16054 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16055 {
16056 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16057 if (TYPE_LENGTH (type) == 0)
16058 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16059 if (TYPE_RAW_ALIGN (type) == 0
16060 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16061 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16062 }
16063
16064 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16065
16066 return set_die_type (die, type, cu);
16067 }
16068
16069 /* Given a pointer to a die which begins an enumeration, process all
16070 the dies that define the members of the enumeration, and create the
16071 symbol for the enumeration type.
16072
16073 NOTE: We reverse the order of the element list. */
16074
16075 static void
16076 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16077 {
16078 struct type *this_type;
16079
16080 this_type = get_die_type (die, cu);
16081 if (this_type == NULL)
16082 this_type = read_enumeration_type (die, cu);
16083
16084 if (die->child != NULL)
16085 {
16086 struct die_info *child_die;
16087 struct symbol *sym;
16088 std::vector<struct field> fields;
16089 const char *name;
16090
16091 child_die = die->child;
16092 while (child_die && child_die->tag)
16093 {
16094 if (child_die->tag != DW_TAG_enumerator)
16095 {
16096 process_die (child_die, cu);
16097 }
16098 else
16099 {
16100 name = dwarf2_name (child_die, cu);
16101 if (name)
16102 {
16103 sym = new_symbol (child_die, this_type, cu);
16104
16105 fields.emplace_back ();
16106 struct field &field = fields.back ();
16107
16108 FIELD_NAME (field) = sym->linkage_name ();
16109 FIELD_TYPE (field) = NULL;
16110 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
16111 FIELD_BITSIZE (field) = 0;
16112 }
16113 }
16114
16115 child_die = sibling_die (child_die);
16116 }
16117
16118 if (!fields.empty ())
16119 {
16120 TYPE_NFIELDS (this_type) = fields.size ();
16121 TYPE_FIELDS (this_type) = (struct field *)
16122 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
16123 memcpy (TYPE_FIELDS (this_type), fields.data (),
16124 sizeof (struct field) * fields.size ());
16125 }
16126 }
16127
16128 /* If we are reading an enum from a .debug_types unit, and the enum
16129 is a declaration, and the enum is not the signatured type in the
16130 unit, then we do not want to add a symbol for it. Adding a
16131 symbol would in some cases obscure the true definition of the
16132 enum, giving users an incomplete type when the definition is
16133 actually available. Note that we do not want to do this for all
16134 enums which are just declarations, because C++0x allows forward
16135 enum declarations. */
16136 if (cu->per_cu->is_debug_types
16137 && die_is_declaration (die, cu))
16138 {
16139 struct signatured_type *sig_type;
16140
16141 sig_type = (struct signatured_type *) cu->per_cu;
16142 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16143 if (sig_type->type_offset_in_section != die->sect_off)
16144 return;
16145 }
16146
16147 new_symbol (die, this_type, cu);
16148 }
16149
16150 /* Extract all information from a DW_TAG_array_type DIE and put it in
16151 the DIE's type field. For now, this only handles one dimensional
16152 arrays. */
16153
16154 static struct type *
16155 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16156 {
16157 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16158 struct die_info *child_die;
16159 struct type *type;
16160 struct type *element_type, *range_type, *index_type;
16161 struct attribute *attr;
16162 const char *name;
16163 struct dynamic_prop *byte_stride_prop = NULL;
16164 unsigned int bit_stride = 0;
16165
16166 element_type = die_type (die, cu);
16167
16168 /* The die_type call above may have already set the type for this DIE. */
16169 type = get_die_type (die, cu);
16170 if (type)
16171 return type;
16172
16173 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16174 if (attr != NULL)
16175 {
16176 int stride_ok;
16177 struct type *prop_type
16178 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16179
16180 byte_stride_prop
16181 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16182 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16183 prop_type);
16184 if (!stride_ok)
16185 {
16186 complaint (_("unable to read array DW_AT_byte_stride "
16187 " - DIE at %s [in module %s]"),
16188 sect_offset_str (die->sect_off),
16189 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16190 /* Ignore this attribute. We will likely not be able to print
16191 arrays of this type correctly, but there is little we can do
16192 to help if we cannot read the attribute's value. */
16193 byte_stride_prop = NULL;
16194 }
16195 }
16196
16197 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16198 if (attr != NULL)
16199 bit_stride = DW_UNSND (attr);
16200
16201 /* Irix 6.2 native cc creates array types without children for
16202 arrays with unspecified length. */
16203 if (die->child == NULL)
16204 {
16205 index_type = objfile_type (objfile)->builtin_int;
16206 range_type = create_static_range_type (NULL, index_type, 0, -1);
16207 type = create_array_type_with_stride (NULL, element_type, range_type,
16208 byte_stride_prop, bit_stride);
16209 return set_die_type (die, type, cu);
16210 }
16211
16212 std::vector<struct type *> range_types;
16213 child_die = die->child;
16214 while (child_die && child_die->tag)
16215 {
16216 if (child_die->tag == DW_TAG_subrange_type)
16217 {
16218 struct type *child_type = read_type_die (child_die, cu);
16219
16220 if (child_type != NULL)
16221 {
16222 /* The range type was succesfully read. Save it for the
16223 array type creation. */
16224 range_types.push_back (child_type);
16225 }
16226 }
16227 child_die = sibling_die (child_die);
16228 }
16229
16230 /* Dwarf2 dimensions are output from left to right, create the
16231 necessary array types in backwards order. */
16232
16233 type = element_type;
16234
16235 if (read_array_order (die, cu) == DW_ORD_col_major)
16236 {
16237 int i = 0;
16238
16239 while (i < range_types.size ())
16240 type = create_array_type_with_stride (NULL, type, range_types[i++],
16241 byte_stride_prop, bit_stride);
16242 }
16243 else
16244 {
16245 size_t ndim = range_types.size ();
16246 while (ndim-- > 0)
16247 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16248 byte_stride_prop, bit_stride);
16249 }
16250
16251 /* Understand Dwarf2 support for vector types (like they occur on
16252 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16253 array type. This is not part of the Dwarf2/3 standard yet, but a
16254 custom vendor extension. The main difference between a regular
16255 array and the vector variant is that vectors are passed by value
16256 to functions. */
16257 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16258 if (attr != nullptr)
16259 make_vector_type (type);
16260
16261 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16262 implementation may choose to implement triple vectors using this
16263 attribute. */
16264 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16265 if (attr != nullptr)
16266 {
16267 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16268 TYPE_LENGTH (type) = DW_UNSND (attr);
16269 else
16270 complaint (_("DW_AT_byte_size for array type smaller "
16271 "than the total size of elements"));
16272 }
16273
16274 name = dwarf2_name (die, cu);
16275 if (name)
16276 TYPE_NAME (type) = name;
16277
16278 maybe_set_alignment (cu, die, type);
16279
16280 /* Install the type in the die. */
16281 set_die_type (die, type, cu);
16282
16283 /* set_die_type should be already done. */
16284 set_descriptive_type (type, die, cu);
16285
16286 return type;
16287 }
16288
16289 static enum dwarf_array_dim_ordering
16290 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16291 {
16292 struct attribute *attr;
16293
16294 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16295
16296 if (attr != nullptr)
16297 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16298
16299 /* GNU F77 is a special case, as at 08/2004 array type info is the
16300 opposite order to the dwarf2 specification, but data is still
16301 laid out as per normal fortran.
16302
16303 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16304 version checking. */
16305
16306 if (cu->language == language_fortran
16307 && cu->producer && strstr (cu->producer, "GNU F77"))
16308 {
16309 return DW_ORD_row_major;
16310 }
16311
16312 switch (cu->language_defn->la_array_ordering)
16313 {
16314 case array_column_major:
16315 return DW_ORD_col_major;
16316 case array_row_major:
16317 default:
16318 return DW_ORD_row_major;
16319 };
16320 }
16321
16322 /* Extract all information from a DW_TAG_set_type DIE and put it in
16323 the DIE's type field. */
16324
16325 static struct type *
16326 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16327 {
16328 struct type *domain_type, *set_type;
16329 struct attribute *attr;
16330
16331 domain_type = die_type (die, cu);
16332
16333 /* The die_type call above may have already set the type for this DIE. */
16334 set_type = get_die_type (die, cu);
16335 if (set_type)
16336 return set_type;
16337
16338 set_type = create_set_type (NULL, domain_type);
16339
16340 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16341 if (attr != nullptr)
16342 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16343
16344 maybe_set_alignment (cu, die, set_type);
16345
16346 return set_die_type (die, set_type, cu);
16347 }
16348
16349 /* A helper for read_common_block that creates a locexpr baton.
16350 SYM is the symbol which we are marking as computed.
16351 COMMON_DIE is the DIE for the common block.
16352 COMMON_LOC is the location expression attribute for the common
16353 block itself.
16354 MEMBER_LOC is the location expression attribute for the particular
16355 member of the common block that we are processing.
16356 CU is the CU from which the above come. */
16357
16358 static void
16359 mark_common_block_symbol_computed (struct symbol *sym,
16360 struct die_info *common_die,
16361 struct attribute *common_loc,
16362 struct attribute *member_loc,
16363 struct dwarf2_cu *cu)
16364 {
16365 struct dwarf2_per_objfile *dwarf2_per_objfile
16366 = cu->per_cu->dwarf2_per_objfile;
16367 struct objfile *objfile = dwarf2_per_objfile->objfile;
16368 struct dwarf2_locexpr_baton *baton;
16369 gdb_byte *ptr;
16370 unsigned int cu_off;
16371 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16372 LONGEST offset = 0;
16373
16374 gdb_assert (common_loc && member_loc);
16375 gdb_assert (common_loc->form_is_block ());
16376 gdb_assert (member_loc->form_is_block ()
16377 || member_loc->form_is_constant ());
16378
16379 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16380 baton->per_cu = cu->per_cu;
16381 gdb_assert (baton->per_cu);
16382
16383 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16384
16385 if (member_loc->form_is_constant ())
16386 {
16387 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16388 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16389 }
16390 else
16391 baton->size += DW_BLOCK (member_loc)->size;
16392
16393 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16394 baton->data = ptr;
16395
16396 *ptr++ = DW_OP_call4;
16397 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16398 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16399 ptr += 4;
16400
16401 if (member_loc->form_is_constant ())
16402 {
16403 *ptr++ = DW_OP_addr;
16404 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16405 ptr += cu->header.addr_size;
16406 }
16407 else
16408 {
16409 /* We have to copy the data here, because DW_OP_call4 will only
16410 use a DW_AT_location attribute. */
16411 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16412 ptr += DW_BLOCK (member_loc)->size;
16413 }
16414
16415 *ptr++ = DW_OP_plus;
16416 gdb_assert (ptr - baton->data == baton->size);
16417
16418 SYMBOL_LOCATION_BATON (sym) = baton;
16419 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16420 }
16421
16422 /* Create appropriate locally-scoped variables for all the
16423 DW_TAG_common_block entries. Also create a struct common_block
16424 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16425 is used to separate the common blocks name namespace from regular
16426 variable names. */
16427
16428 static void
16429 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16430 {
16431 struct attribute *attr;
16432
16433 attr = dwarf2_attr (die, DW_AT_location, cu);
16434 if (attr != nullptr)
16435 {
16436 /* Support the .debug_loc offsets. */
16437 if (attr->form_is_block ())
16438 {
16439 /* Ok. */
16440 }
16441 else if (attr->form_is_section_offset ())
16442 {
16443 dwarf2_complex_location_expr_complaint ();
16444 attr = NULL;
16445 }
16446 else
16447 {
16448 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16449 "common block member");
16450 attr = NULL;
16451 }
16452 }
16453
16454 if (die->child != NULL)
16455 {
16456 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16457 struct die_info *child_die;
16458 size_t n_entries = 0, size;
16459 struct common_block *common_block;
16460 struct symbol *sym;
16461
16462 for (child_die = die->child;
16463 child_die && child_die->tag;
16464 child_die = sibling_die (child_die))
16465 ++n_entries;
16466
16467 size = (sizeof (struct common_block)
16468 + (n_entries - 1) * sizeof (struct symbol *));
16469 common_block
16470 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16471 size);
16472 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16473 common_block->n_entries = 0;
16474
16475 for (child_die = die->child;
16476 child_die && child_die->tag;
16477 child_die = sibling_die (child_die))
16478 {
16479 /* Create the symbol in the DW_TAG_common_block block in the current
16480 symbol scope. */
16481 sym = new_symbol (child_die, NULL, cu);
16482 if (sym != NULL)
16483 {
16484 struct attribute *member_loc;
16485
16486 common_block->contents[common_block->n_entries++] = sym;
16487
16488 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16489 cu);
16490 if (member_loc)
16491 {
16492 /* GDB has handled this for a long time, but it is
16493 not specified by DWARF. It seems to have been
16494 emitted by gfortran at least as recently as:
16495 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16496 complaint (_("Variable in common block has "
16497 "DW_AT_data_member_location "
16498 "- DIE at %s [in module %s]"),
16499 sect_offset_str (child_die->sect_off),
16500 objfile_name (objfile));
16501
16502 if (member_loc->form_is_section_offset ())
16503 dwarf2_complex_location_expr_complaint ();
16504 else if (member_loc->form_is_constant ()
16505 || member_loc->form_is_block ())
16506 {
16507 if (attr != nullptr)
16508 mark_common_block_symbol_computed (sym, die, attr,
16509 member_loc, cu);
16510 }
16511 else
16512 dwarf2_complex_location_expr_complaint ();
16513 }
16514 }
16515 }
16516
16517 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16518 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16519 }
16520 }
16521
16522 /* Create a type for a C++ namespace. */
16523
16524 static struct type *
16525 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16526 {
16527 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16528 const char *previous_prefix, *name;
16529 int is_anonymous;
16530 struct type *type;
16531
16532 /* For extensions, reuse the type of the original namespace. */
16533 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16534 {
16535 struct die_info *ext_die;
16536 struct dwarf2_cu *ext_cu = cu;
16537
16538 ext_die = dwarf2_extension (die, &ext_cu);
16539 type = read_type_die (ext_die, ext_cu);
16540
16541 /* EXT_CU may not be the same as CU.
16542 Ensure TYPE is recorded with CU in die_type_hash. */
16543 return set_die_type (die, type, cu);
16544 }
16545
16546 name = namespace_name (die, &is_anonymous, cu);
16547
16548 /* Now build the name of the current namespace. */
16549
16550 previous_prefix = determine_prefix (die, cu);
16551 if (previous_prefix[0] != '\0')
16552 name = typename_concat (&objfile->objfile_obstack,
16553 previous_prefix, name, 0, cu);
16554
16555 /* Create the type. */
16556 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16557
16558 return set_die_type (die, type, cu);
16559 }
16560
16561 /* Read a namespace scope. */
16562
16563 static void
16564 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16565 {
16566 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16567 int is_anonymous;
16568
16569 /* Add a symbol associated to this if we haven't seen the namespace
16570 before. Also, add a using directive if it's an anonymous
16571 namespace. */
16572
16573 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16574 {
16575 struct type *type;
16576
16577 type = read_type_die (die, cu);
16578 new_symbol (die, type, cu);
16579
16580 namespace_name (die, &is_anonymous, cu);
16581 if (is_anonymous)
16582 {
16583 const char *previous_prefix = determine_prefix (die, cu);
16584
16585 std::vector<const char *> excludes;
16586 add_using_directive (using_directives (cu),
16587 previous_prefix, TYPE_NAME (type), NULL,
16588 NULL, excludes, 0, &objfile->objfile_obstack);
16589 }
16590 }
16591
16592 if (die->child != NULL)
16593 {
16594 struct die_info *child_die = die->child;
16595
16596 while (child_die && child_die->tag)
16597 {
16598 process_die (child_die, cu);
16599 child_die = sibling_die (child_die);
16600 }
16601 }
16602 }
16603
16604 /* Read a Fortran module as type. This DIE can be only a declaration used for
16605 imported module. Still we need that type as local Fortran "use ... only"
16606 declaration imports depend on the created type in determine_prefix. */
16607
16608 static struct type *
16609 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16610 {
16611 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16612 const char *module_name;
16613 struct type *type;
16614
16615 module_name = dwarf2_name (die, cu);
16616 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16617
16618 return set_die_type (die, type, cu);
16619 }
16620
16621 /* Read a Fortran module. */
16622
16623 static void
16624 read_module (struct die_info *die, struct dwarf2_cu *cu)
16625 {
16626 struct die_info *child_die = die->child;
16627 struct type *type;
16628
16629 type = read_type_die (die, cu);
16630 new_symbol (die, type, cu);
16631
16632 while (child_die && child_die->tag)
16633 {
16634 process_die (child_die, cu);
16635 child_die = sibling_die (child_die);
16636 }
16637 }
16638
16639 /* Return the name of the namespace represented by DIE. Set
16640 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16641 namespace. */
16642
16643 static const char *
16644 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16645 {
16646 struct die_info *current_die;
16647 const char *name = NULL;
16648
16649 /* Loop through the extensions until we find a name. */
16650
16651 for (current_die = die;
16652 current_die != NULL;
16653 current_die = dwarf2_extension (die, &cu))
16654 {
16655 /* We don't use dwarf2_name here so that we can detect the absence
16656 of a name -> anonymous namespace. */
16657 name = dwarf2_string_attr (die, DW_AT_name, cu);
16658
16659 if (name != NULL)
16660 break;
16661 }
16662
16663 /* Is it an anonymous namespace? */
16664
16665 *is_anonymous = (name == NULL);
16666 if (*is_anonymous)
16667 name = CP_ANONYMOUS_NAMESPACE_STR;
16668
16669 return name;
16670 }
16671
16672 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16673 the user defined type vector. */
16674
16675 static struct type *
16676 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16677 {
16678 struct gdbarch *gdbarch
16679 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16680 struct comp_unit_head *cu_header = &cu->header;
16681 struct type *type;
16682 struct attribute *attr_byte_size;
16683 struct attribute *attr_address_class;
16684 int byte_size, addr_class;
16685 struct type *target_type;
16686
16687 target_type = die_type (die, cu);
16688
16689 /* The die_type call above may have already set the type for this DIE. */
16690 type = get_die_type (die, cu);
16691 if (type)
16692 return type;
16693
16694 type = lookup_pointer_type (target_type);
16695
16696 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16697 if (attr_byte_size)
16698 byte_size = DW_UNSND (attr_byte_size);
16699 else
16700 byte_size = cu_header->addr_size;
16701
16702 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16703 if (attr_address_class)
16704 addr_class = DW_UNSND (attr_address_class);
16705 else
16706 addr_class = DW_ADDR_none;
16707
16708 ULONGEST alignment = get_alignment (cu, die);
16709
16710 /* If the pointer size, alignment, or address class is different
16711 than the default, create a type variant marked as such and set
16712 the length accordingly. */
16713 if (TYPE_LENGTH (type) != byte_size
16714 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16715 && alignment != TYPE_RAW_ALIGN (type))
16716 || addr_class != DW_ADDR_none)
16717 {
16718 if (gdbarch_address_class_type_flags_p (gdbarch))
16719 {
16720 int type_flags;
16721
16722 type_flags = gdbarch_address_class_type_flags
16723 (gdbarch, byte_size, addr_class);
16724 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16725 == 0);
16726 type = make_type_with_address_space (type, type_flags);
16727 }
16728 else if (TYPE_LENGTH (type) != byte_size)
16729 {
16730 complaint (_("invalid pointer size %d"), byte_size);
16731 }
16732 else if (TYPE_RAW_ALIGN (type) != alignment)
16733 {
16734 complaint (_("Invalid DW_AT_alignment"
16735 " - DIE at %s [in module %s]"),
16736 sect_offset_str (die->sect_off),
16737 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16738 }
16739 else
16740 {
16741 /* Should we also complain about unhandled address classes? */
16742 }
16743 }
16744
16745 TYPE_LENGTH (type) = byte_size;
16746 set_type_align (type, alignment);
16747 return set_die_type (die, type, cu);
16748 }
16749
16750 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16751 the user defined type vector. */
16752
16753 static struct type *
16754 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16755 {
16756 struct type *type;
16757 struct type *to_type;
16758 struct type *domain;
16759
16760 to_type = die_type (die, cu);
16761 domain = die_containing_type (die, cu);
16762
16763 /* The calls above may have already set the type for this DIE. */
16764 type = get_die_type (die, cu);
16765 if (type)
16766 return type;
16767
16768 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16769 type = lookup_methodptr_type (to_type);
16770 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16771 {
16772 struct type *new_type
16773 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16774
16775 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16776 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16777 TYPE_VARARGS (to_type));
16778 type = lookup_methodptr_type (new_type);
16779 }
16780 else
16781 type = lookup_memberptr_type (to_type, domain);
16782
16783 return set_die_type (die, type, cu);
16784 }
16785
16786 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16787 the user defined type vector. */
16788
16789 static struct type *
16790 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16791 enum type_code refcode)
16792 {
16793 struct comp_unit_head *cu_header = &cu->header;
16794 struct type *type, *target_type;
16795 struct attribute *attr;
16796
16797 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16798
16799 target_type = die_type (die, cu);
16800
16801 /* The die_type call above may have already set the type for this DIE. */
16802 type = get_die_type (die, cu);
16803 if (type)
16804 return type;
16805
16806 type = lookup_reference_type (target_type, refcode);
16807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16808 if (attr != nullptr)
16809 {
16810 TYPE_LENGTH (type) = DW_UNSND (attr);
16811 }
16812 else
16813 {
16814 TYPE_LENGTH (type) = cu_header->addr_size;
16815 }
16816 maybe_set_alignment (cu, die, type);
16817 return set_die_type (die, type, cu);
16818 }
16819
16820 /* Add the given cv-qualifiers to the element type of the array. GCC
16821 outputs DWARF type qualifiers that apply to an array, not the
16822 element type. But GDB relies on the array element type to carry
16823 the cv-qualifiers. This mimics section 6.7.3 of the C99
16824 specification. */
16825
16826 static struct type *
16827 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16828 struct type *base_type, int cnst, int voltl)
16829 {
16830 struct type *el_type, *inner_array;
16831
16832 base_type = copy_type (base_type);
16833 inner_array = base_type;
16834
16835 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16836 {
16837 TYPE_TARGET_TYPE (inner_array) =
16838 copy_type (TYPE_TARGET_TYPE (inner_array));
16839 inner_array = TYPE_TARGET_TYPE (inner_array);
16840 }
16841
16842 el_type = TYPE_TARGET_TYPE (inner_array);
16843 cnst |= TYPE_CONST (el_type);
16844 voltl |= TYPE_VOLATILE (el_type);
16845 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16846
16847 return set_die_type (die, base_type, cu);
16848 }
16849
16850 static struct type *
16851 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16852 {
16853 struct type *base_type, *cv_type;
16854
16855 base_type = die_type (die, cu);
16856
16857 /* The die_type call above may have already set the type for this DIE. */
16858 cv_type = get_die_type (die, cu);
16859 if (cv_type)
16860 return cv_type;
16861
16862 /* In case the const qualifier is applied to an array type, the element type
16863 is so qualified, not the array type (section 6.7.3 of C99). */
16864 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16865 return add_array_cv_type (die, cu, base_type, 1, 0);
16866
16867 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16868 return set_die_type (die, cv_type, cu);
16869 }
16870
16871 static struct type *
16872 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16873 {
16874 struct type *base_type, *cv_type;
16875
16876 base_type = die_type (die, cu);
16877
16878 /* The die_type call above may have already set the type for this DIE. */
16879 cv_type = get_die_type (die, cu);
16880 if (cv_type)
16881 return cv_type;
16882
16883 /* In case the volatile qualifier is applied to an array type, the
16884 element type is so qualified, not the array type (section 6.7.3
16885 of C99). */
16886 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16887 return add_array_cv_type (die, cu, base_type, 0, 1);
16888
16889 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16890 return set_die_type (die, cv_type, cu);
16891 }
16892
16893 /* Handle DW_TAG_restrict_type. */
16894
16895 static struct type *
16896 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16897 {
16898 struct type *base_type, *cv_type;
16899
16900 base_type = die_type (die, cu);
16901
16902 /* The die_type call above may have already set the type for this DIE. */
16903 cv_type = get_die_type (die, cu);
16904 if (cv_type)
16905 return cv_type;
16906
16907 cv_type = make_restrict_type (base_type);
16908 return set_die_type (die, cv_type, cu);
16909 }
16910
16911 /* Handle DW_TAG_atomic_type. */
16912
16913 static struct type *
16914 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16915 {
16916 struct type *base_type, *cv_type;
16917
16918 base_type = die_type (die, cu);
16919
16920 /* The die_type call above may have already set the type for this DIE. */
16921 cv_type = get_die_type (die, cu);
16922 if (cv_type)
16923 return cv_type;
16924
16925 cv_type = make_atomic_type (base_type);
16926 return set_die_type (die, cv_type, cu);
16927 }
16928
16929 /* Extract all information from a DW_TAG_string_type DIE and add to
16930 the user defined type vector. It isn't really a user defined type,
16931 but it behaves like one, with other DIE's using an AT_user_def_type
16932 attribute to reference it. */
16933
16934 static struct type *
16935 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16936 {
16937 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16938 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16939 struct type *type, *range_type, *index_type, *char_type;
16940 struct attribute *attr;
16941 struct dynamic_prop prop;
16942 bool length_is_constant = true;
16943 LONGEST length;
16944
16945 /* There are a couple of places where bit sizes might be made use of
16946 when parsing a DW_TAG_string_type, however, no producer that we know
16947 of make use of these. Handling bit sizes that are a multiple of the
16948 byte size is easy enough, but what about other bit sizes? Lets deal
16949 with that problem when we have to. Warn about these attributes being
16950 unsupported, then parse the type and ignore them like we always
16951 have. */
16952 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16953 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16954 {
16955 static bool warning_printed = false;
16956 if (!warning_printed)
16957 {
16958 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16959 "currently supported on DW_TAG_string_type."));
16960 warning_printed = true;
16961 }
16962 }
16963
16964 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16965 if (attr != nullptr && !attr->form_is_constant ())
16966 {
16967 /* The string length describes the location at which the length of
16968 the string can be found. The size of the length field can be
16969 specified with one of the attributes below. */
16970 struct type *prop_type;
16971 struct attribute *len
16972 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16973 if (len == nullptr)
16974 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16975 if (len != nullptr && len->form_is_constant ())
16976 {
16977 /* Pass 0 as the default as we know this attribute is constant
16978 and the default value will not be returned. */
16979 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16980 prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true);
16981 }
16982 else
16983 {
16984 /* If the size is not specified then we assume it is the size of
16985 an address on this target. */
16986 prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true);
16987 }
16988
16989 /* Convert the attribute into a dynamic property. */
16990 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16991 length = 1;
16992 else
16993 length_is_constant = false;
16994 }
16995 else if (attr != nullptr)
16996 {
16997 /* This DW_AT_string_length just contains the length with no
16998 indirection. There's no need to create a dynamic property in this
16999 case. Pass 0 for the default value as we know it will not be
17000 returned in this case. */
17001 length = dwarf2_get_attr_constant_value (attr, 0);
17002 }
17003 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17004 {
17005 /* We don't currently support non-constant byte sizes for strings. */
17006 length = dwarf2_get_attr_constant_value (attr, 1);
17007 }
17008 else
17009 {
17010 /* Use 1 as a fallback length if we have nothing else. */
17011 length = 1;
17012 }
17013
17014 index_type = objfile_type (objfile)->builtin_int;
17015 if (length_is_constant)
17016 range_type = create_static_range_type (NULL, index_type, 1, length);
17017 else
17018 {
17019 struct dynamic_prop low_bound;
17020
17021 low_bound.kind = PROP_CONST;
17022 low_bound.data.const_val = 1;
17023 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17024 }
17025 char_type = language_string_char_type (cu->language_defn, gdbarch);
17026 type = create_string_type (NULL, char_type, range_type);
17027
17028 return set_die_type (die, type, cu);
17029 }
17030
17031 /* Assuming that DIE corresponds to a function, returns nonzero
17032 if the function is prototyped. */
17033
17034 static int
17035 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17036 {
17037 struct attribute *attr;
17038
17039 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17040 if (attr && (DW_UNSND (attr) != 0))
17041 return 1;
17042
17043 /* The DWARF standard implies that the DW_AT_prototyped attribute
17044 is only meaningful for C, but the concept also extends to other
17045 languages that allow unprototyped functions (Eg: Objective C).
17046 For all other languages, assume that functions are always
17047 prototyped. */
17048 if (cu->language != language_c
17049 && cu->language != language_objc
17050 && cu->language != language_opencl)
17051 return 1;
17052
17053 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17054 prototyped and unprototyped functions; default to prototyped,
17055 since that is more common in modern code (and RealView warns
17056 about unprototyped functions). */
17057 if (producer_is_realview (cu->producer))
17058 return 1;
17059
17060 return 0;
17061 }
17062
17063 /* Handle DIES due to C code like:
17064
17065 struct foo
17066 {
17067 int (*funcp)(int a, long l);
17068 int b;
17069 };
17070
17071 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17072
17073 static struct type *
17074 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17075 {
17076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17077 struct type *type; /* Type that this function returns. */
17078 struct type *ftype; /* Function that returns above type. */
17079 struct attribute *attr;
17080
17081 type = die_type (die, cu);
17082
17083 /* The die_type call above may have already set the type for this DIE. */
17084 ftype = get_die_type (die, cu);
17085 if (ftype)
17086 return ftype;
17087
17088 ftype = lookup_function_type (type);
17089
17090 if (prototyped_function_p (die, cu))
17091 TYPE_PROTOTYPED (ftype) = 1;
17092
17093 /* Store the calling convention in the type if it's available in
17094 the subroutine die. Otherwise set the calling convention to
17095 the default value DW_CC_normal. */
17096 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17097 if (attr != nullptr
17098 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17099 TYPE_CALLING_CONVENTION (ftype)
17100 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17101 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17102 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17103 else
17104 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17105
17106 /* Record whether the function returns normally to its caller or not
17107 if the DWARF producer set that information. */
17108 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17109 if (attr && (DW_UNSND (attr) != 0))
17110 TYPE_NO_RETURN (ftype) = 1;
17111
17112 /* We need to add the subroutine type to the die immediately so
17113 we don't infinitely recurse when dealing with parameters
17114 declared as the same subroutine type. */
17115 set_die_type (die, ftype, cu);
17116
17117 if (die->child != NULL)
17118 {
17119 struct type *void_type = objfile_type (objfile)->builtin_void;
17120 struct die_info *child_die;
17121 int nparams, iparams;
17122
17123 /* Count the number of parameters.
17124 FIXME: GDB currently ignores vararg functions, but knows about
17125 vararg member functions. */
17126 nparams = 0;
17127 child_die = die->child;
17128 while (child_die && child_die->tag)
17129 {
17130 if (child_die->tag == DW_TAG_formal_parameter)
17131 nparams++;
17132 else if (child_die->tag == DW_TAG_unspecified_parameters)
17133 TYPE_VARARGS (ftype) = 1;
17134 child_die = sibling_die (child_die);
17135 }
17136
17137 /* Allocate storage for parameters and fill them in. */
17138 TYPE_NFIELDS (ftype) = nparams;
17139 TYPE_FIELDS (ftype) = (struct field *)
17140 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17141
17142 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17143 even if we error out during the parameters reading below. */
17144 for (iparams = 0; iparams < nparams; iparams++)
17145 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17146
17147 iparams = 0;
17148 child_die = die->child;
17149 while (child_die && child_die->tag)
17150 {
17151 if (child_die->tag == DW_TAG_formal_parameter)
17152 {
17153 struct type *arg_type;
17154
17155 /* DWARF version 2 has no clean way to discern C++
17156 static and non-static member functions. G++ helps
17157 GDB by marking the first parameter for non-static
17158 member functions (which is the this pointer) as
17159 artificial. We pass this information to
17160 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17161
17162 DWARF version 3 added DW_AT_object_pointer, which GCC
17163 4.5 does not yet generate. */
17164 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17165 if (attr != nullptr)
17166 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17167 else
17168 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17169 arg_type = die_type (child_die, cu);
17170
17171 /* RealView does not mark THIS as const, which the testsuite
17172 expects. GCC marks THIS as const in method definitions,
17173 but not in the class specifications (GCC PR 43053). */
17174 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17175 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17176 {
17177 int is_this = 0;
17178 struct dwarf2_cu *arg_cu = cu;
17179 const char *name = dwarf2_name (child_die, cu);
17180
17181 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17182 if (attr != nullptr)
17183 {
17184 /* If the compiler emits this, use it. */
17185 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17186 is_this = 1;
17187 }
17188 else if (name && strcmp (name, "this") == 0)
17189 /* Function definitions will have the argument names. */
17190 is_this = 1;
17191 else if (name == NULL && iparams == 0)
17192 /* Declarations may not have the names, so like
17193 elsewhere in GDB, assume an artificial first
17194 argument is "this". */
17195 is_this = 1;
17196
17197 if (is_this)
17198 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17199 arg_type, 0);
17200 }
17201
17202 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17203 iparams++;
17204 }
17205 child_die = sibling_die (child_die);
17206 }
17207 }
17208
17209 return ftype;
17210 }
17211
17212 static struct type *
17213 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17214 {
17215 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17216 const char *name = NULL;
17217 struct type *this_type, *target_type;
17218
17219 name = dwarf2_full_name (NULL, die, cu);
17220 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17221 TYPE_TARGET_STUB (this_type) = 1;
17222 set_die_type (die, this_type, cu);
17223 target_type = die_type (die, cu);
17224 if (target_type != this_type)
17225 TYPE_TARGET_TYPE (this_type) = target_type;
17226 else
17227 {
17228 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17229 spec and cause infinite loops in GDB. */
17230 complaint (_("Self-referential DW_TAG_typedef "
17231 "- DIE at %s [in module %s]"),
17232 sect_offset_str (die->sect_off), objfile_name (objfile));
17233 TYPE_TARGET_TYPE (this_type) = NULL;
17234 }
17235 return this_type;
17236 }
17237
17238 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17239 (which may be different from NAME) to the architecture back-end to allow
17240 it to guess the correct format if necessary. */
17241
17242 static struct type *
17243 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17244 const char *name_hint, enum bfd_endian byte_order)
17245 {
17246 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17247 const struct floatformat **format;
17248 struct type *type;
17249
17250 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17251 if (format)
17252 type = init_float_type (objfile, bits, name, format, byte_order);
17253 else
17254 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17255
17256 return type;
17257 }
17258
17259 /* Allocate an integer type of size BITS and name NAME. */
17260
17261 static struct type *
17262 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17263 int bits, int unsigned_p, const char *name)
17264 {
17265 struct type *type;
17266
17267 /* Versions of Intel's C Compiler generate an integer type called "void"
17268 instead of using DW_TAG_unspecified_type. This has been seen on
17269 at least versions 14, 17, and 18. */
17270 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17271 && strcmp (name, "void") == 0)
17272 type = objfile_type (objfile)->builtin_void;
17273 else
17274 type = init_integer_type (objfile, bits, unsigned_p, name);
17275
17276 return type;
17277 }
17278
17279 /* Initialise and return a floating point type of size BITS suitable for
17280 use as a component of a complex number. The NAME_HINT is passed through
17281 when initialising the floating point type and is the name of the complex
17282 type.
17283
17284 As DWARF doesn't currently provide an explicit name for the components
17285 of a complex number, but it can be helpful to have these components
17286 named, we try to select a suitable name based on the size of the
17287 component. */
17288 static struct type *
17289 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17290 struct objfile *objfile,
17291 int bits, const char *name_hint,
17292 enum bfd_endian byte_order)
17293 {
17294 gdbarch *gdbarch = get_objfile_arch (objfile);
17295 struct type *tt = nullptr;
17296
17297 /* Try to find a suitable floating point builtin type of size BITS.
17298 We're going to use the name of this type as the name for the complex
17299 target type that we are about to create. */
17300 switch (cu->language)
17301 {
17302 case language_fortran:
17303 switch (bits)
17304 {
17305 case 32:
17306 tt = builtin_f_type (gdbarch)->builtin_real;
17307 break;
17308 case 64:
17309 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17310 break;
17311 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17312 case 128:
17313 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17314 break;
17315 }
17316 break;
17317 default:
17318 switch (bits)
17319 {
17320 case 32:
17321 tt = builtin_type (gdbarch)->builtin_float;
17322 break;
17323 case 64:
17324 tt = builtin_type (gdbarch)->builtin_double;
17325 break;
17326 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17327 case 128:
17328 tt = builtin_type (gdbarch)->builtin_long_double;
17329 break;
17330 }
17331 break;
17332 }
17333
17334 /* If the type we found doesn't match the size we were looking for, then
17335 pretend we didn't find a type at all, the complex target type we
17336 create will then be nameless. */
17337 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17338 tt = nullptr;
17339
17340 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17341 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17342 }
17343
17344 /* Find a representation of a given base type and install
17345 it in the TYPE field of the die. */
17346
17347 static struct type *
17348 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17349 {
17350 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17351 struct type *type;
17352 struct attribute *attr;
17353 int encoding = 0, bits = 0;
17354 const char *name;
17355 gdbarch *arch;
17356
17357 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17358 if (attr != nullptr)
17359 encoding = DW_UNSND (attr);
17360 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17361 if (attr != nullptr)
17362 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17363 name = dwarf2_name (die, cu);
17364 if (!name)
17365 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17366
17367 arch = get_objfile_arch (objfile);
17368 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17369
17370 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17371 if (attr)
17372 {
17373 int endianity = DW_UNSND (attr);
17374
17375 switch (endianity)
17376 {
17377 case DW_END_big:
17378 byte_order = BFD_ENDIAN_BIG;
17379 break;
17380 case DW_END_little:
17381 byte_order = BFD_ENDIAN_LITTLE;
17382 break;
17383 default:
17384 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17385 break;
17386 }
17387 }
17388
17389 switch (encoding)
17390 {
17391 case DW_ATE_address:
17392 /* Turn DW_ATE_address into a void * pointer. */
17393 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17394 type = init_pointer_type (objfile, bits, name, type);
17395 break;
17396 case DW_ATE_boolean:
17397 type = init_boolean_type (objfile, bits, 1, name);
17398 break;
17399 case DW_ATE_complex_float:
17400 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17401 byte_order);
17402 type = init_complex_type (objfile, name, type);
17403 break;
17404 case DW_ATE_decimal_float:
17405 type = init_decfloat_type (objfile, bits, name);
17406 break;
17407 case DW_ATE_float:
17408 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17409 break;
17410 case DW_ATE_signed:
17411 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17412 break;
17413 case DW_ATE_unsigned:
17414 if (cu->language == language_fortran
17415 && name
17416 && startswith (name, "character("))
17417 type = init_character_type (objfile, bits, 1, name);
17418 else
17419 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17420 break;
17421 case DW_ATE_signed_char:
17422 if (cu->language == language_ada || cu->language == language_m2
17423 || cu->language == language_pascal
17424 || cu->language == language_fortran)
17425 type = init_character_type (objfile, bits, 0, name);
17426 else
17427 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17428 break;
17429 case DW_ATE_unsigned_char:
17430 if (cu->language == language_ada || cu->language == language_m2
17431 || cu->language == language_pascal
17432 || cu->language == language_fortran
17433 || cu->language == language_rust)
17434 type = init_character_type (objfile, bits, 1, name);
17435 else
17436 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17437 break;
17438 case DW_ATE_UTF:
17439 {
17440 if (bits == 16)
17441 type = builtin_type (arch)->builtin_char16;
17442 else if (bits == 32)
17443 type = builtin_type (arch)->builtin_char32;
17444 else
17445 {
17446 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17447 bits);
17448 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17449 }
17450 return set_die_type (die, type, cu);
17451 }
17452 break;
17453
17454 default:
17455 complaint (_("unsupported DW_AT_encoding: '%s'"),
17456 dwarf_type_encoding_name (encoding));
17457 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17458 break;
17459 }
17460
17461 if (name && strcmp (name, "char") == 0)
17462 TYPE_NOSIGN (type) = 1;
17463
17464 maybe_set_alignment (cu, die, type);
17465
17466 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17467
17468 return set_die_type (die, type, cu);
17469 }
17470
17471 /* Parse dwarf attribute if it's a block, reference or constant and put the
17472 resulting value of the attribute into struct bound_prop.
17473 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17474
17475 static int
17476 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17477 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17478 struct type *default_type)
17479 {
17480 struct dwarf2_property_baton *baton;
17481 struct obstack *obstack
17482 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17483
17484 gdb_assert (default_type != NULL);
17485
17486 if (attr == NULL || prop == NULL)
17487 return 0;
17488
17489 if (attr->form_is_block ())
17490 {
17491 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17492 baton->property_type = default_type;
17493 baton->locexpr.per_cu = cu->per_cu;
17494 baton->locexpr.size = DW_BLOCK (attr)->size;
17495 baton->locexpr.data = DW_BLOCK (attr)->data;
17496 switch (attr->name)
17497 {
17498 case DW_AT_string_length:
17499 baton->locexpr.is_reference = true;
17500 break;
17501 default:
17502 baton->locexpr.is_reference = false;
17503 break;
17504 }
17505 prop->data.baton = baton;
17506 prop->kind = PROP_LOCEXPR;
17507 gdb_assert (prop->data.baton != NULL);
17508 }
17509 else if (attr->form_is_ref ())
17510 {
17511 struct dwarf2_cu *target_cu = cu;
17512 struct die_info *target_die;
17513 struct attribute *target_attr;
17514
17515 target_die = follow_die_ref (die, attr, &target_cu);
17516 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17517 if (target_attr == NULL)
17518 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17519 target_cu);
17520 if (target_attr == NULL)
17521 return 0;
17522
17523 switch (target_attr->name)
17524 {
17525 case DW_AT_location:
17526 if (target_attr->form_is_section_offset ())
17527 {
17528 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17529 baton->property_type = die_type (target_die, target_cu);
17530 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17531 prop->data.baton = baton;
17532 prop->kind = PROP_LOCLIST;
17533 gdb_assert (prop->data.baton != NULL);
17534 }
17535 else if (target_attr->form_is_block ())
17536 {
17537 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17538 baton->property_type = die_type (target_die, target_cu);
17539 baton->locexpr.per_cu = cu->per_cu;
17540 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17541 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17542 baton->locexpr.is_reference = true;
17543 prop->data.baton = baton;
17544 prop->kind = PROP_LOCEXPR;
17545 gdb_assert (prop->data.baton != NULL);
17546 }
17547 else
17548 {
17549 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17550 "dynamic property");
17551 return 0;
17552 }
17553 break;
17554 case DW_AT_data_member_location:
17555 {
17556 LONGEST offset;
17557
17558 if (!handle_data_member_location (target_die, target_cu,
17559 &offset))
17560 return 0;
17561
17562 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17563 baton->property_type = read_type_die (target_die->parent,
17564 target_cu);
17565 baton->offset_info.offset = offset;
17566 baton->offset_info.type = die_type (target_die, target_cu);
17567 prop->data.baton = baton;
17568 prop->kind = PROP_ADDR_OFFSET;
17569 break;
17570 }
17571 }
17572 }
17573 else if (attr->form_is_constant ())
17574 {
17575 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17576 prop->kind = PROP_CONST;
17577 }
17578 else
17579 {
17580 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17581 dwarf2_name (die, cu));
17582 return 0;
17583 }
17584
17585 return 1;
17586 }
17587
17588 /* Find an integer type SIZE_IN_BYTES bytes in size and return it.
17589 UNSIGNED_P controls if the integer is unsigned or not. */
17590
17591 static struct type *
17592 dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu,
17593 int size_in_bytes, bool unsigned_p)
17594 {
17595 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17596 struct type *int_type;
17597
17598 /* Helper macro to examine the various builtin types. */
17599 #define TRY_TYPE(F) \
17600 int_type = (unsigned_p \
17601 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17602 : objfile_type (objfile)->builtin_ ## F); \
17603 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17604 return int_type
17605
17606 TRY_TYPE (char);
17607 TRY_TYPE (short);
17608 TRY_TYPE (int);
17609 TRY_TYPE (long);
17610 TRY_TYPE (long_long);
17611
17612 #undef TRY_TYPE
17613
17614 gdb_assert_not_reached ("unable to find suitable integer type");
17615 }
17616
17617 /* Find an integer type the same size as the address size given in the
17618 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17619 is unsigned or not. */
17620
17621 static struct type *
17622 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17623 bool unsigned_p)
17624 {
17625 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17626 return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p);
17627 }
17628
17629 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17630 present (which is valid) then compute the default type based on the
17631 compilation units address size. */
17632
17633 static struct type *
17634 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17635 {
17636 struct type *index_type = die_type (die, cu);
17637
17638 /* Dwarf-2 specifications explicitly allows to create subrange types
17639 without specifying a base type.
17640 In that case, the base type must be set to the type of
17641 the lower bound, upper bound or count, in that order, if any of these
17642 three attributes references an object that has a type.
17643 If no base type is found, the Dwarf-2 specifications say that
17644 a signed integer type of size equal to the size of an address should
17645 be used.
17646 For the following C code: `extern char gdb_int [];'
17647 GCC produces an empty range DIE.
17648 FIXME: muller/2010-05-28: Possible references to object for low bound,
17649 high bound or count are not yet handled by this code. */
17650 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17651 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17652
17653 return index_type;
17654 }
17655
17656 /* Read the given DW_AT_subrange DIE. */
17657
17658 static struct type *
17659 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17660 {
17661 struct type *base_type, *orig_base_type;
17662 struct type *range_type;
17663 struct attribute *attr;
17664 struct dynamic_prop low, high;
17665 int low_default_is_valid;
17666 int high_bound_is_count = 0;
17667 const char *name;
17668 ULONGEST negative_mask;
17669
17670 orig_base_type = read_subrange_index_type (die, cu);
17671
17672 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17673 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17674 creating the range type, but we use the result of check_typedef
17675 when examining properties of the type. */
17676 base_type = check_typedef (orig_base_type);
17677
17678 /* The die_type call above may have already set the type for this DIE. */
17679 range_type = get_die_type (die, cu);
17680 if (range_type)
17681 return range_type;
17682
17683 low.kind = PROP_CONST;
17684 high.kind = PROP_CONST;
17685 high.data.const_val = 0;
17686
17687 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17688 omitting DW_AT_lower_bound. */
17689 switch (cu->language)
17690 {
17691 case language_c:
17692 case language_cplus:
17693 low.data.const_val = 0;
17694 low_default_is_valid = 1;
17695 break;
17696 case language_fortran:
17697 low.data.const_val = 1;
17698 low_default_is_valid = 1;
17699 break;
17700 case language_d:
17701 case language_objc:
17702 case language_rust:
17703 low.data.const_val = 0;
17704 low_default_is_valid = (cu->header.version >= 4);
17705 break;
17706 case language_ada:
17707 case language_m2:
17708 case language_pascal:
17709 low.data.const_val = 1;
17710 low_default_is_valid = (cu->header.version >= 4);
17711 break;
17712 default:
17713 low.data.const_val = 0;
17714 low_default_is_valid = 0;
17715 break;
17716 }
17717
17718 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17719 if (attr != nullptr)
17720 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17721 else if (!low_default_is_valid)
17722 complaint (_("Missing DW_AT_lower_bound "
17723 "- DIE at %s [in module %s]"),
17724 sect_offset_str (die->sect_off),
17725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17726
17727 struct attribute *attr_ub, *attr_count;
17728 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17729 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17730 {
17731 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17732 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17733 {
17734 /* If bounds are constant do the final calculation here. */
17735 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17736 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17737 else
17738 high_bound_is_count = 1;
17739 }
17740 else
17741 {
17742 if (attr_ub != NULL)
17743 complaint (_("Unresolved DW_AT_upper_bound "
17744 "- DIE at %s [in module %s]"),
17745 sect_offset_str (die->sect_off),
17746 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17747 if (attr_count != NULL)
17748 complaint (_("Unresolved DW_AT_count "
17749 "- DIE at %s [in module %s]"),
17750 sect_offset_str (die->sect_off),
17751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17752 }
17753 }
17754
17755 LONGEST bias = 0;
17756 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17757 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17758 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17759
17760 /* Normally, the DWARF producers are expected to use a signed
17761 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17762 But this is unfortunately not always the case, as witnessed
17763 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17764 is used instead. To work around that ambiguity, we treat
17765 the bounds as signed, and thus sign-extend their values, when
17766 the base type is signed. */
17767 negative_mask =
17768 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17769 if (low.kind == PROP_CONST
17770 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17771 low.data.const_val |= negative_mask;
17772 if (high.kind == PROP_CONST
17773 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17774 high.data.const_val |= negative_mask;
17775
17776 /* Check for bit and byte strides. */
17777 struct dynamic_prop byte_stride_prop;
17778 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17779 if (attr_byte_stride != nullptr)
17780 {
17781 struct type *prop_type
17782 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17783 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17784 prop_type);
17785 }
17786
17787 struct dynamic_prop bit_stride_prop;
17788 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17789 if (attr_bit_stride != nullptr)
17790 {
17791 /* It only makes sense to have either a bit or byte stride. */
17792 if (attr_byte_stride != nullptr)
17793 {
17794 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17795 "- DIE at %s [in module %s]"),
17796 sect_offset_str (die->sect_off),
17797 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17798 attr_bit_stride = nullptr;
17799 }
17800 else
17801 {
17802 struct type *prop_type
17803 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17804 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17805 prop_type);
17806 }
17807 }
17808
17809 if (attr_byte_stride != nullptr
17810 || attr_bit_stride != nullptr)
17811 {
17812 bool byte_stride_p = (attr_byte_stride != nullptr);
17813 struct dynamic_prop *stride
17814 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17815
17816 range_type
17817 = create_range_type_with_stride (NULL, orig_base_type, &low,
17818 &high, bias, stride, byte_stride_p);
17819 }
17820 else
17821 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17822
17823 if (high_bound_is_count)
17824 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17825
17826 /* Ada expects an empty array on no boundary attributes. */
17827 if (attr == NULL && cu->language != language_ada)
17828 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17829
17830 name = dwarf2_name (die, cu);
17831 if (name)
17832 TYPE_NAME (range_type) = name;
17833
17834 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17835 if (attr != nullptr)
17836 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17837
17838 maybe_set_alignment (cu, die, range_type);
17839
17840 set_die_type (die, range_type, cu);
17841
17842 /* set_die_type should be already done. */
17843 set_descriptive_type (range_type, die, cu);
17844
17845 return range_type;
17846 }
17847
17848 static struct type *
17849 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17850 {
17851 struct type *type;
17852
17853 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17854 NULL);
17855 TYPE_NAME (type) = dwarf2_name (die, cu);
17856
17857 /* In Ada, an unspecified type is typically used when the description
17858 of the type is deferred to a different unit. When encountering
17859 such a type, we treat it as a stub, and try to resolve it later on,
17860 when needed. */
17861 if (cu->language == language_ada)
17862 TYPE_STUB (type) = 1;
17863
17864 return set_die_type (die, type, cu);
17865 }
17866
17867 /* Read a single die and all its descendents. Set the die's sibling
17868 field to NULL; set other fields in the die correctly, and set all
17869 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17870 location of the info_ptr after reading all of those dies. PARENT
17871 is the parent of the die in question. */
17872
17873 static struct die_info *
17874 read_die_and_children (const struct die_reader_specs *reader,
17875 const gdb_byte *info_ptr,
17876 const gdb_byte **new_info_ptr,
17877 struct die_info *parent)
17878 {
17879 struct die_info *die;
17880 const gdb_byte *cur_ptr;
17881
17882 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17883 if (die == NULL)
17884 {
17885 *new_info_ptr = cur_ptr;
17886 return NULL;
17887 }
17888 store_in_ref_table (die, reader->cu);
17889
17890 if (die->has_children)
17891 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17892 else
17893 {
17894 die->child = NULL;
17895 *new_info_ptr = cur_ptr;
17896 }
17897
17898 die->sibling = NULL;
17899 die->parent = parent;
17900 return die;
17901 }
17902
17903 /* Read a die, all of its descendents, and all of its siblings; set
17904 all of the fields of all of the dies correctly. Arguments are as
17905 in read_die_and_children. */
17906
17907 static struct die_info *
17908 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17909 const gdb_byte *info_ptr,
17910 const gdb_byte **new_info_ptr,
17911 struct die_info *parent)
17912 {
17913 struct die_info *first_die, *last_sibling;
17914 const gdb_byte *cur_ptr;
17915
17916 cur_ptr = info_ptr;
17917 first_die = last_sibling = NULL;
17918
17919 while (1)
17920 {
17921 struct die_info *die
17922 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17923
17924 if (die == NULL)
17925 {
17926 *new_info_ptr = cur_ptr;
17927 return first_die;
17928 }
17929
17930 if (!first_die)
17931 first_die = die;
17932 else
17933 last_sibling->sibling = die;
17934
17935 last_sibling = die;
17936 }
17937 }
17938
17939 /* Read a die, all of its descendents, and all of its siblings; set
17940 all of the fields of all of the dies correctly. Arguments are as
17941 in read_die_and_children.
17942 This the main entry point for reading a DIE and all its children. */
17943
17944 static struct die_info *
17945 read_die_and_siblings (const struct die_reader_specs *reader,
17946 const gdb_byte *info_ptr,
17947 const gdb_byte **new_info_ptr,
17948 struct die_info *parent)
17949 {
17950 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17951 new_info_ptr, parent);
17952
17953 if (dwarf_die_debug)
17954 {
17955 fprintf_unfiltered (gdb_stdlog,
17956 "Read die from %s@0x%x of %s:\n",
17957 reader->die_section->get_name (),
17958 (unsigned) (info_ptr - reader->die_section->buffer),
17959 bfd_get_filename (reader->abfd));
17960 dump_die (die, dwarf_die_debug);
17961 }
17962
17963 return die;
17964 }
17965
17966 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17967 attributes.
17968 The caller is responsible for filling in the extra attributes
17969 and updating (*DIEP)->num_attrs.
17970 Set DIEP to point to a newly allocated die with its information,
17971 except for its child, sibling, and parent fields. */
17972
17973 static const gdb_byte *
17974 read_full_die_1 (const struct die_reader_specs *reader,
17975 struct die_info **diep, const gdb_byte *info_ptr,
17976 int num_extra_attrs)
17977 {
17978 unsigned int abbrev_number, bytes_read, i;
17979 struct abbrev_info *abbrev;
17980 struct die_info *die;
17981 struct dwarf2_cu *cu = reader->cu;
17982 bfd *abfd = reader->abfd;
17983
17984 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17985 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17986 info_ptr += bytes_read;
17987 if (!abbrev_number)
17988 {
17989 *diep = NULL;
17990 return info_ptr;
17991 }
17992
17993 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17994 if (!abbrev)
17995 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17996 abbrev_number,
17997 bfd_get_filename (abfd));
17998
17999 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18000 die->sect_off = sect_off;
18001 die->tag = abbrev->tag;
18002 die->abbrev = abbrev_number;
18003 die->has_children = abbrev->has_children;
18004
18005 /* Make the result usable.
18006 The caller needs to update num_attrs after adding the extra
18007 attributes. */
18008 die->num_attrs = abbrev->num_attrs;
18009
18010 std::vector<int> indexes_that_need_reprocess;
18011 for (i = 0; i < abbrev->num_attrs; ++i)
18012 {
18013 bool need_reprocess;
18014 info_ptr =
18015 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18016 info_ptr, &need_reprocess);
18017 if (need_reprocess)
18018 indexes_that_need_reprocess.push_back (i);
18019 }
18020
18021 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
18022 if (attr != nullptr)
18023 cu->str_offsets_base = DW_UNSND (attr);
18024
18025 auto maybe_addr_base = lookup_addr_base(die);
18026 if (maybe_addr_base.has_value ())
18027 cu->addr_base = *maybe_addr_base;
18028 for (int index : indexes_that_need_reprocess)
18029 read_attribute_reprocess (reader, &die->attrs[index]);
18030 *diep = die;
18031 return info_ptr;
18032 }
18033
18034 /* Read a die and all its attributes.
18035 Set DIEP to point to a newly allocated die with its information,
18036 except for its child, sibling, and parent fields. */
18037
18038 static const gdb_byte *
18039 read_full_die (const struct die_reader_specs *reader,
18040 struct die_info **diep, const gdb_byte *info_ptr)
18041 {
18042 const gdb_byte *result;
18043
18044 result = read_full_die_1 (reader, diep, info_ptr, 0);
18045
18046 if (dwarf_die_debug)
18047 {
18048 fprintf_unfiltered (gdb_stdlog,
18049 "Read die from %s@0x%x of %s:\n",
18050 reader->die_section->get_name (),
18051 (unsigned) (info_ptr - reader->die_section->buffer),
18052 bfd_get_filename (reader->abfd));
18053 dump_die (*diep, dwarf_die_debug);
18054 }
18055
18056 return result;
18057 }
18058 \f
18059
18060 /* Returns nonzero if TAG represents a type that we might generate a partial
18061 symbol for. */
18062
18063 static int
18064 is_type_tag_for_partial (int tag)
18065 {
18066 switch (tag)
18067 {
18068 #if 0
18069 /* Some types that would be reasonable to generate partial symbols for,
18070 that we don't at present. */
18071 case DW_TAG_array_type:
18072 case DW_TAG_file_type:
18073 case DW_TAG_ptr_to_member_type:
18074 case DW_TAG_set_type:
18075 case DW_TAG_string_type:
18076 case DW_TAG_subroutine_type:
18077 #endif
18078 case DW_TAG_base_type:
18079 case DW_TAG_class_type:
18080 case DW_TAG_interface_type:
18081 case DW_TAG_enumeration_type:
18082 case DW_TAG_structure_type:
18083 case DW_TAG_subrange_type:
18084 case DW_TAG_typedef:
18085 case DW_TAG_union_type:
18086 return 1;
18087 default:
18088 return 0;
18089 }
18090 }
18091
18092 /* Load all DIEs that are interesting for partial symbols into memory. */
18093
18094 static struct partial_die_info *
18095 load_partial_dies (const struct die_reader_specs *reader,
18096 const gdb_byte *info_ptr, int building_psymtab)
18097 {
18098 struct dwarf2_cu *cu = reader->cu;
18099 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18100 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18101 unsigned int bytes_read;
18102 unsigned int load_all = 0;
18103 int nesting_level = 1;
18104
18105 parent_die = NULL;
18106 last_die = NULL;
18107
18108 gdb_assert (cu->per_cu != NULL);
18109 if (cu->per_cu->load_all_dies)
18110 load_all = 1;
18111
18112 cu->partial_dies
18113 = htab_create_alloc_ex (cu->header.length / 12,
18114 partial_die_hash,
18115 partial_die_eq,
18116 NULL,
18117 &cu->comp_unit_obstack,
18118 hashtab_obstack_allocate,
18119 dummy_obstack_deallocate);
18120
18121 while (1)
18122 {
18123 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18124
18125 /* A NULL abbrev means the end of a series of children. */
18126 if (abbrev == NULL)
18127 {
18128 if (--nesting_level == 0)
18129 return first_die;
18130
18131 info_ptr += bytes_read;
18132 last_die = parent_die;
18133 parent_die = parent_die->die_parent;
18134 continue;
18135 }
18136
18137 /* Check for template arguments. We never save these; if
18138 they're seen, we just mark the parent, and go on our way. */
18139 if (parent_die != NULL
18140 && cu->language == language_cplus
18141 && (abbrev->tag == DW_TAG_template_type_param
18142 || abbrev->tag == DW_TAG_template_value_param))
18143 {
18144 parent_die->has_template_arguments = 1;
18145
18146 if (!load_all)
18147 {
18148 /* We don't need a partial DIE for the template argument. */
18149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18150 continue;
18151 }
18152 }
18153
18154 /* We only recurse into c++ subprograms looking for template arguments.
18155 Skip their other children. */
18156 if (!load_all
18157 && cu->language == language_cplus
18158 && parent_die != NULL
18159 && parent_die->tag == DW_TAG_subprogram)
18160 {
18161 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18162 continue;
18163 }
18164
18165 /* Check whether this DIE is interesting enough to save. Normally
18166 we would not be interested in members here, but there may be
18167 later variables referencing them via DW_AT_specification (for
18168 static members). */
18169 if (!load_all
18170 && !is_type_tag_for_partial (abbrev->tag)
18171 && abbrev->tag != DW_TAG_constant
18172 && abbrev->tag != DW_TAG_enumerator
18173 && abbrev->tag != DW_TAG_subprogram
18174 && abbrev->tag != DW_TAG_inlined_subroutine
18175 && abbrev->tag != DW_TAG_lexical_block
18176 && abbrev->tag != DW_TAG_variable
18177 && abbrev->tag != DW_TAG_namespace
18178 && abbrev->tag != DW_TAG_module
18179 && abbrev->tag != DW_TAG_member
18180 && abbrev->tag != DW_TAG_imported_unit
18181 && abbrev->tag != DW_TAG_imported_declaration)
18182 {
18183 /* Otherwise we skip to the next sibling, if any. */
18184 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18185 continue;
18186 }
18187
18188 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18189 abbrev);
18190
18191 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18192
18193 /* This two-pass algorithm for processing partial symbols has a
18194 high cost in cache pressure. Thus, handle some simple cases
18195 here which cover the majority of C partial symbols. DIEs
18196 which neither have specification tags in them, nor could have
18197 specification tags elsewhere pointing at them, can simply be
18198 processed and discarded.
18199
18200 This segment is also optional; scan_partial_symbols and
18201 add_partial_symbol will handle these DIEs if we chain
18202 them in normally. When compilers which do not emit large
18203 quantities of duplicate debug information are more common,
18204 this code can probably be removed. */
18205
18206 /* Any complete simple types at the top level (pretty much all
18207 of them, for a language without namespaces), can be processed
18208 directly. */
18209 if (parent_die == NULL
18210 && pdi.has_specification == 0
18211 && pdi.is_declaration == 0
18212 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18213 || pdi.tag == DW_TAG_base_type
18214 || pdi.tag == DW_TAG_subrange_type))
18215 {
18216 if (building_psymtab && pdi.name != NULL)
18217 add_psymbol_to_list (pdi.name, false,
18218 VAR_DOMAIN, LOC_TYPEDEF, -1,
18219 psymbol_placement::STATIC,
18220 0, cu->language, objfile);
18221 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18222 continue;
18223 }
18224
18225 /* The exception for DW_TAG_typedef with has_children above is
18226 a workaround of GCC PR debug/47510. In the case of this complaint
18227 type_name_or_error will error on such types later.
18228
18229 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18230 it could not find the child DIEs referenced later, this is checked
18231 above. In correct DWARF DW_TAG_typedef should have no children. */
18232
18233 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18234 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18235 "- DIE at %s [in module %s]"),
18236 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18237
18238 /* If we're at the second level, and we're an enumerator, and
18239 our parent has no specification (meaning possibly lives in a
18240 namespace elsewhere), then we can add the partial symbol now
18241 instead of queueing it. */
18242 if (pdi.tag == DW_TAG_enumerator
18243 && parent_die != NULL
18244 && parent_die->die_parent == NULL
18245 && parent_die->tag == DW_TAG_enumeration_type
18246 && parent_die->has_specification == 0)
18247 {
18248 if (pdi.name == NULL)
18249 complaint (_("malformed enumerator DIE ignored"));
18250 else if (building_psymtab)
18251 add_psymbol_to_list (pdi.name, false,
18252 VAR_DOMAIN, LOC_CONST, -1,
18253 cu->language == language_cplus
18254 ? psymbol_placement::GLOBAL
18255 : psymbol_placement::STATIC,
18256 0, cu->language, objfile);
18257
18258 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18259 continue;
18260 }
18261
18262 struct partial_die_info *part_die
18263 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18264
18265 /* We'll save this DIE so link it in. */
18266 part_die->die_parent = parent_die;
18267 part_die->die_sibling = NULL;
18268 part_die->die_child = NULL;
18269
18270 if (last_die && last_die == parent_die)
18271 last_die->die_child = part_die;
18272 else if (last_die)
18273 last_die->die_sibling = part_die;
18274
18275 last_die = part_die;
18276
18277 if (first_die == NULL)
18278 first_die = part_die;
18279
18280 /* Maybe add the DIE to the hash table. Not all DIEs that we
18281 find interesting need to be in the hash table, because we
18282 also have the parent/sibling/child chains; only those that we
18283 might refer to by offset later during partial symbol reading.
18284
18285 For now this means things that might have be the target of a
18286 DW_AT_specification, DW_AT_abstract_origin, or
18287 DW_AT_extension. DW_AT_extension will refer only to
18288 namespaces; DW_AT_abstract_origin refers to functions (and
18289 many things under the function DIE, but we do not recurse
18290 into function DIEs during partial symbol reading) and
18291 possibly variables as well; DW_AT_specification refers to
18292 declarations. Declarations ought to have the DW_AT_declaration
18293 flag. It happens that GCC forgets to put it in sometimes, but
18294 only for functions, not for types.
18295
18296 Adding more things than necessary to the hash table is harmless
18297 except for the performance cost. Adding too few will result in
18298 wasted time in find_partial_die, when we reread the compilation
18299 unit with load_all_dies set. */
18300
18301 if (load_all
18302 || abbrev->tag == DW_TAG_constant
18303 || abbrev->tag == DW_TAG_subprogram
18304 || abbrev->tag == DW_TAG_variable
18305 || abbrev->tag == DW_TAG_namespace
18306 || part_die->is_declaration)
18307 {
18308 void **slot;
18309
18310 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18311 to_underlying (part_die->sect_off),
18312 INSERT);
18313 *slot = part_die;
18314 }
18315
18316 /* For some DIEs we want to follow their children (if any). For C
18317 we have no reason to follow the children of structures; for other
18318 languages we have to, so that we can get at method physnames
18319 to infer fully qualified class names, for DW_AT_specification,
18320 and for C++ template arguments. For C++, we also look one level
18321 inside functions to find template arguments (if the name of the
18322 function does not already contain the template arguments).
18323
18324 For Ada and Fortran, we need to scan the children of subprograms
18325 and lexical blocks as well because these languages allow the
18326 definition of nested entities that could be interesting for the
18327 debugger, such as nested subprograms for instance. */
18328 if (last_die->has_children
18329 && (load_all
18330 || last_die->tag == DW_TAG_namespace
18331 || last_die->tag == DW_TAG_module
18332 || last_die->tag == DW_TAG_enumeration_type
18333 || (cu->language == language_cplus
18334 && last_die->tag == DW_TAG_subprogram
18335 && (last_die->name == NULL
18336 || strchr (last_die->name, '<') == NULL))
18337 || (cu->language != language_c
18338 && (last_die->tag == DW_TAG_class_type
18339 || last_die->tag == DW_TAG_interface_type
18340 || last_die->tag == DW_TAG_structure_type
18341 || last_die->tag == DW_TAG_union_type))
18342 || ((cu->language == language_ada
18343 || cu->language == language_fortran)
18344 && (last_die->tag == DW_TAG_subprogram
18345 || last_die->tag == DW_TAG_lexical_block))))
18346 {
18347 nesting_level++;
18348 parent_die = last_die;
18349 continue;
18350 }
18351
18352 /* Otherwise we skip to the next sibling, if any. */
18353 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18354
18355 /* Back to the top, do it again. */
18356 }
18357 }
18358
18359 partial_die_info::partial_die_info (sect_offset sect_off_,
18360 struct abbrev_info *abbrev)
18361 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18362 {
18363 }
18364
18365 /* Read a minimal amount of information into the minimal die structure.
18366 INFO_PTR should point just after the initial uleb128 of a DIE. */
18367
18368 const gdb_byte *
18369 partial_die_info::read (const struct die_reader_specs *reader,
18370 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18371 {
18372 struct dwarf2_cu *cu = reader->cu;
18373 struct dwarf2_per_objfile *dwarf2_per_objfile
18374 = cu->per_cu->dwarf2_per_objfile;
18375 unsigned int i;
18376 int has_low_pc_attr = 0;
18377 int has_high_pc_attr = 0;
18378 int high_pc_relative = 0;
18379
18380 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
18381 for (i = 0; i < abbrev.num_attrs; ++i)
18382 {
18383 bool need_reprocess;
18384 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
18385 info_ptr, &need_reprocess);
18386 /* String and address offsets that need to do the reprocessing have
18387 already been read at this point, so there is no need to wait until
18388 the loop terminates to do the reprocessing. */
18389 if (need_reprocess)
18390 read_attribute_reprocess (reader, &attr_vec[i]);
18391 attribute &attr = attr_vec[i];
18392 /* Store the data if it is of an attribute we want to keep in a
18393 partial symbol table. */
18394 switch (attr.name)
18395 {
18396 case DW_AT_name:
18397 switch (tag)
18398 {
18399 case DW_TAG_compile_unit:
18400 case DW_TAG_partial_unit:
18401 case DW_TAG_type_unit:
18402 /* Compilation units have a DW_AT_name that is a filename, not
18403 a source language identifier. */
18404 case DW_TAG_enumeration_type:
18405 case DW_TAG_enumerator:
18406 /* These tags always have simple identifiers already; no need
18407 to canonicalize them. */
18408 name = DW_STRING (&attr);
18409 break;
18410 default:
18411 {
18412 struct objfile *objfile = dwarf2_per_objfile->objfile;
18413
18414 name
18415 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18416 &objfile->per_bfd->storage_obstack);
18417 }
18418 break;
18419 }
18420 break;
18421 case DW_AT_linkage_name:
18422 case DW_AT_MIPS_linkage_name:
18423 /* Note that both forms of linkage name might appear. We
18424 assume they will be the same, and we only store the last
18425 one we see. */
18426 linkage_name = DW_STRING (&attr);
18427 break;
18428 case DW_AT_low_pc:
18429 has_low_pc_attr = 1;
18430 lowpc = attr.value_as_address ();
18431 break;
18432 case DW_AT_high_pc:
18433 has_high_pc_attr = 1;
18434 highpc = attr.value_as_address ();
18435 if (cu->header.version >= 4 && attr.form_is_constant ())
18436 high_pc_relative = 1;
18437 break;
18438 case DW_AT_location:
18439 /* Support the .debug_loc offsets. */
18440 if (attr.form_is_block ())
18441 {
18442 d.locdesc = DW_BLOCK (&attr);
18443 }
18444 else if (attr.form_is_section_offset ())
18445 {
18446 dwarf2_complex_location_expr_complaint ();
18447 }
18448 else
18449 {
18450 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18451 "partial symbol information");
18452 }
18453 break;
18454 case DW_AT_external:
18455 is_external = DW_UNSND (&attr);
18456 break;
18457 case DW_AT_declaration:
18458 is_declaration = DW_UNSND (&attr);
18459 break;
18460 case DW_AT_type:
18461 has_type = 1;
18462 break;
18463 case DW_AT_abstract_origin:
18464 case DW_AT_specification:
18465 case DW_AT_extension:
18466 has_specification = 1;
18467 spec_offset = dwarf2_get_ref_die_offset (&attr);
18468 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18469 || cu->per_cu->is_dwz);
18470 break;
18471 case DW_AT_sibling:
18472 /* Ignore absolute siblings, they might point outside of
18473 the current compile unit. */
18474 if (attr.form == DW_FORM_ref_addr)
18475 complaint (_("ignoring absolute DW_AT_sibling"));
18476 else
18477 {
18478 const gdb_byte *buffer = reader->buffer;
18479 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18480 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18481
18482 if (sibling_ptr < info_ptr)
18483 complaint (_("DW_AT_sibling points backwards"));
18484 else if (sibling_ptr > reader->buffer_end)
18485 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18486 else
18487 sibling = sibling_ptr;
18488 }
18489 break;
18490 case DW_AT_byte_size:
18491 has_byte_size = 1;
18492 break;
18493 case DW_AT_const_value:
18494 has_const_value = 1;
18495 break;
18496 case DW_AT_calling_convention:
18497 /* DWARF doesn't provide a way to identify a program's source-level
18498 entry point. DW_AT_calling_convention attributes are only meant
18499 to describe functions' calling conventions.
18500
18501 However, because it's a necessary piece of information in
18502 Fortran, and before DWARF 4 DW_CC_program was the only
18503 piece of debugging information whose definition refers to
18504 a 'main program' at all, several compilers marked Fortran
18505 main programs with DW_CC_program --- even when those
18506 functions use the standard calling conventions.
18507
18508 Although DWARF now specifies a way to provide this
18509 information, we support this practice for backward
18510 compatibility. */
18511 if (DW_UNSND (&attr) == DW_CC_program
18512 && cu->language == language_fortran)
18513 main_subprogram = 1;
18514 break;
18515 case DW_AT_inline:
18516 if (DW_UNSND (&attr) == DW_INL_inlined
18517 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18518 may_be_inlined = 1;
18519 break;
18520
18521 case DW_AT_import:
18522 if (tag == DW_TAG_imported_unit)
18523 {
18524 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18525 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18526 || cu->per_cu->is_dwz);
18527 }
18528 break;
18529
18530 case DW_AT_main_subprogram:
18531 main_subprogram = DW_UNSND (&attr);
18532 break;
18533
18534 case DW_AT_ranges:
18535 {
18536 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18537 but that requires a full DIE, so instead we just
18538 reimplement it. */
18539 int need_ranges_base = tag != DW_TAG_compile_unit;
18540 unsigned int ranges_offset = (DW_UNSND (&attr)
18541 + (need_ranges_base
18542 ? cu->ranges_base
18543 : 0));
18544
18545 /* Value of the DW_AT_ranges attribute is the offset in the
18546 .debug_ranges section. */
18547 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18548 nullptr))
18549 has_pc_info = 1;
18550 }
18551 break;
18552
18553 default:
18554 break;
18555 }
18556 }
18557
18558 /* For Ada, if both the name and the linkage name appear, we prefer
18559 the latter. This lets "catch exception" work better, regardless
18560 of the order in which the name and linkage name were emitted.
18561 Really, though, this is just a workaround for the fact that gdb
18562 doesn't store both the name and the linkage name. */
18563 if (cu->language == language_ada && linkage_name != nullptr)
18564 name = linkage_name;
18565
18566 if (high_pc_relative)
18567 highpc += lowpc;
18568
18569 if (has_low_pc_attr && has_high_pc_attr)
18570 {
18571 /* When using the GNU linker, .gnu.linkonce. sections are used to
18572 eliminate duplicate copies of functions and vtables and such.
18573 The linker will arbitrarily choose one and discard the others.
18574 The AT_*_pc values for such functions refer to local labels in
18575 these sections. If the section from that file was discarded, the
18576 labels are not in the output, so the relocs get a value of 0.
18577 If this is a discarded function, mark the pc bounds as invalid,
18578 so that GDB will ignore it. */
18579 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18580 {
18581 struct objfile *objfile = dwarf2_per_objfile->objfile;
18582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18583
18584 complaint (_("DW_AT_low_pc %s is zero "
18585 "for DIE at %s [in module %s]"),
18586 paddress (gdbarch, lowpc),
18587 sect_offset_str (sect_off),
18588 objfile_name (objfile));
18589 }
18590 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18591 else if (lowpc >= highpc)
18592 {
18593 struct objfile *objfile = dwarf2_per_objfile->objfile;
18594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18595
18596 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18597 "for DIE at %s [in module %s]"),
18598 paddress (gdbarch, lowpc),
18599 paddress (gdbarch, highpc),
18600 sect_offset_str (sect_off),
18601 objfile_name (objfile));
18602 }
18603 else
18604 has_pc_info = 1;
18605 }
18606
18607 return info_ptr;
18608 }
18609
18610 /* Find a cached partial DIE at OFFSET in CU. */
18611
18612 struct partial_die_info *
18613 dwarf2_cu::find_partial_die (sect_offset sect_off)
18614 {
18615 struct partial_die_info *lookup_die = NULL;
18616 struct partial_die_info part_die (sect_off);
18617
18618 lookup_die = ((struct partial_die_info *)
18619 htab_find_with_hash (partial_dies, &part_die,
18620 to_underlying (sect_off)));
18621
18622 return lookup_die;
18623 }
18624
18625 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18626 except in the case of .debug_types DIEs which do not reference
18627 outside their CU (they do however referencing other types via
18628 DW_FORM_ref_sig8). */
18629
18630 static const struct cu_partial_die_info
18631 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18632 {
18633 struct dwarf2_per_objfile *dwarf2_per_objfile
18634 = cu->per_cu->dwarf2_per_objfile;
18635 struct objfile *objfile = dwarf2_per_objfile->objfile;
18636 struct dwarf2_per_cu_data *per_cu = NULL;
18637 struct partial_die_info *pd = NULL;
18638
18639 if (offset_in_dwz == cu->per_cu->is_dwz
18640 && offset_in_cu_p (&cu->header, sect_off))
18641 {
18642 pd = cu->find_partial_die (sect_off);
18643 if (pd != NULL)
18644 return { cu, pd };
18645 /* We missed recording what we needed.
18646 Load all dies and try again. */
18647 per_cu = cu->per_cu;
18648 }
18649 else
18650 {
18651 /* TUs don't reference other CUs/TUs (except via type signatures). */
18652 if (cu->per_cu->is_debug_types)
18653 {
18654 error (_("Dwarf Error: Type Unit at offset %s contains"
18655 " external reference to offset %s [in module %s].\n"),
18656 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18657 bfd_get_filename (objfile->obfd));
18658 }
18659 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18660 dwarf2_per_objfile);
18661
18662 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18663 load_partial_comp_unit (per_cu);
18664
18665 per_cu->cu->last_used = 0;
18666 pd = per_cu->cu->find_partial_die (sect_off);
18667 }
18668
18669 /* If we didn't find it, and not all dies have been loaded,
18670 load them all and try again. */
18671
18672 if (pd == NULL && per_cu->load_all_dies == 0)
18673 {
18674 per_cu->load_all_dies = 1;
18675
18676 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18677 THIS_CU->cu may already be in use. So we can't just free it and
18678 replace its DIEs with the ones we read in. Instead, we leave those
18679 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18680 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18681 set. */
18682 load_partial_comp_unit (per_cu);
18683
18684 pd = per_cu->cu->find_partial_die (sect_off);
18685 }
18686
18687 if (pd == NULL)
18688 internal_error (__FILE__, __LINE__,
18689 _("could not find partial DIE %s "
18690 "in cache [from module %s]\n"),
18691 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18692 return { per_cu->cu, pd };
18693 }
18694
18695 /* See if we can figure out if the class lives in a namespace. We do
18696 this by looking for a member function; its demangled name will
18697 contain namespace info, if there is any. */
18698
18699 static void
18700 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18701 struct dwarf2_cu *cu)
18702 {
18703 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18704 what template types look like, because the demangler
18705 frequently doesn't give the same name as the debug info. We
18706 could fix this by only using the demangled name to get the
18707 prefix (but see comment in read_structure_type). */
18708
18709 struct partial_die_info *real_pdi;
18710 struct partial_die_info *child_pdi;
18711
18712 /* If this DIE (this DIE's specification, if any) has a parent, then
18713 we should not do this. We'll prepend the parent's fully qualified
18714 name when we create the partial symbol. */
18715
18716 real_pdi = struct_pdi;
18717 while (real_pdi->has_specification)
18718 {
18719 auto res = find_partial_die (real_pdi->spec_offset,
18720 real_pdi->spec_is_dwz, cu);
18721 real_pdi = res.pdi;
18722 cu = res.cu;
18723 }
18724
18725 if (real_pdi->die_parent != NULL)
18726 return;
18727
18728 for (child_pdi = struct_pdi->die_child;
18729 child_pdi != NULL;
18730 child_pdi = child_pdi->die_sibling)
18731 {
18732 if (child_pdi->tag == DW_TAG_subprogram
18733 && child_pdi->linkage_name != NULL)
18734 {
18735 gdb::unique_xmalloc_ptr<char> actual_class_name
18736 (language_class_name_from_physname (cu->language_defn,
18737 child_pdi->linkage_name));
18738 if (actual_class_name != NULL)
18739 {
18740 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18741 struct_pdi->name
18742 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18743 actual_class_name.get ());
18744 }
18745 break;
18746 }
18747 }
18748 }
18749
18750 void
18751 partial_die_info::fixup (struct dwarf2_cu *cu)
18752 {
18753 /* Once we've fixed up a die, there's no point in doing so again.
18754 This also avoids a memory leak if we were to call
18755 guess_partial_die_structure_name multiple times. */
18756 if (fixup_called)
18757 return;
18758
18759 /* If we found a reference attribute and the DIE has no name, try
18760 to find a name in the referred to DIE. */
18761
18762 if (name == NULL && has_specification)
18763 {
18764 struct partial_die_info *spec_die;
18765
18766 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18767 spec_die = res.pdi;
18768 cu = res.cu;
18769
18770 spec_die->fixup (cu);
18771
18772 if (spec_die->name)
18773 {
18774 name = spec_die->name;
18775
18776 /* Copy DW_AT_external attribute if it is set. */
18777 if (spec_die->is_external)
18778 is_external = spec_die->is_external;
18779 }
18780 }
18781
18782 /* Set default names for some unnamed DIEs. */
18783
18784 if (name == NULL && tag == DW_TAG_namespace)
18785 name = CP_ANONYMOUS_NAMESPACE_STR;
18786
18787 /* If there is no parent die to provide a namespace, and there are
18788 children, see if we can determine the namespace from their linkage
18789 name. */
18790 if (cu->language == language_cplus
18791 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18792 && die_parent == NULL
18793 && has_children
18794 && (tag == DW_TAG_class_type
18795 || tag == DW_TAG_structure_type
18796 || tag == DW_TAG_union_type))
18797 guess_partial_die_structure_name (this, cu);
18798
18799 /* GCC might emit a nameless struct or union that has a linkage
18800 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18801 if (name == NULL
18802 && (tag == DW_TAG_class_type
18803 || tag == DW_TAG_interface_type
18804 || tag == DW_TAG_structure_type
18805 || tag == DW_TAG_union_type)
18806 && linkage_name != NULL)
18807 {
18808 gdb::unique_xmalloc_ptr<char> demangled
18809 (gdb_demangle (linkage_name, DMGL_TYPES));
18810 if (demangled != nullptr)
18811 {
18812 const char *base;
18813
18814 /* Strip any leading namespaces/classes, keep only the base name.
18815 DW_AT_name for named DIEs does not contain the prefixes. */
18816 base = strrchr (demangled.get (), ':');
18817 if (base && base > demangled.get () && base[-1] == ':')
18818 base++;
18819 else
18820 base = demangled.get ();
18821
18822 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18823 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18824 }
18825 }
18826
18827 fixup_called = 1;
18828 }
18829
18830 /* Process the attributes that had to be skipped in the first round. These
18831 attributes are the ones that need str_offsets_base or addr_base attributes.
18832 They could not have been processed in the first round, because at the time
18833 the values of str_offsets_base or addr_base may not have been known. */
18834 void read_attribute_reprocess (const struct die_reader_specs *reader,
18835 struct attribute *attr)
18836 {
18837 struct dwarf2_cu *cu = reader->cu;
18838 switch (attr->form)
18839 {
18840 case DW_FORM_addrx:
18841 case DW_FORM_GNU_addr_index:
18842 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18843 break;
18844 case DW_FORM_strx:
18845 case DW_FORM_strx1:
18846 case DW_FORM_strx2:
18847 case DW_FORM_strx3:
18848 case DW_FORM_strx4:
18849 case DW_FORM_GNU_str_index:
18850 {
18851 unsigned int str_index = DW_UNSND (attr);
18852 if (reader->dwo_file != NULL)
18853 {
18854 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18855 DW_STRING_IS_CANONICAL (attr) = 0;
18856 }
18857 else
18858 {
18859 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18860 DW_STRING_IS_CANONICAL (attr) = 0;
18861 }
18862 break;
18863 }
18864 default:
18865 gdb_assert_not_reached (_("Unexpected DWARF form."));
18866 }
18867 }
18868
18869 /* Read an attribute value described by an attribute form. */
18870
18871 static const gdb_byte *
18872 read_attribute_value (const struct die_reader_specs *reader,
18873 struct attribute *attr, unsigned form,
18874 LONGEST implicit_const, const gdb_byte *info_ptr,
18875 bool *need_reprocess)
18876 {
18877 struct dwarf2_cu *cu = reader->cu;
18878 struct dwarf2_per_objfile *dwarf2_per_objfile
18879 = cu->per_cu->dwarf2_per_objfile;
18880 struct objfile *objfile = dwarf2_per_objfile->objfile;
18881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18882 bfd *abfd = reader->abfd;
18883 struct comp_unit_head *cu_header = &cu->header;
18884 unsigned int bytes_read;
18885 struct dwarf_block *blk;
18886 *need_reprocess = false;
18887
18888 attr->form = (enum dwarf_form) form;
18889 switch (form)
18890 {
18891 case DW_FORM_ref_addr:
18892 if (cu->header.version == 2)
18893 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18894 else
18895 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18896 &cu->header, &bytes_read);
18897 info_ptr += bytes_read;
18898 break;
18899 case DW_FORM_GNU_ref_alt:
18900 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18901 info_ptr += bytes_read;
18902 break;
18903 case DW_FORM_addr:
18904 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18905 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18906 info_ptr += bytes_read;
18907 break;
18908 case DW_FORM_block2:
18909 blk = dwarf_alloc_block (cu);
18910 blk->size = read_2_bytes (abfd, info_ptr);
18911 info_ptr += 2;
18912 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18913 info_ptr += blk->size;
18914 DW_BLOCK (attr) = blk;
18915 break;
18916 case DW_FORM_block4:
18917 blk = dwarf_alloc_block (cu);
18918 blk->size = read_4_bytes (abfd, info_ptr);
18919 info_ptr += 4;
18920 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18921 info_ptr += blk->size;
18922 DW_BLOCK (attr) = blk;
18923 break;
18924 case DW_FORM_data2:
18925 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18926 info_ptr += 2;
18927 break;
18928 case DW_FORM_data4:
18929 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18930 info_ptr += 4;
18931 break;
18932 case DW_FORM_data8:
18933 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18934 info_ptr += 8;
18935 break;
18936 case DW_FORM_data16:
18937 blk = dwarf_alloc_block (cu);
18938 blk->size = 16;
18939 blk->data = read_n_bytes (abfd, info_ptr, 16);
18940 info_ptr += 16;
18941 DW_BLOCK (attr) = blk;
18942 break;
18943 case DW_FORM_sec_offset:
18944 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18945 info_ptr += bytes_read;
18946 break;
18947 case DW_FORM_string:
18948 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18949 DW_STRING_IS_CANONICAL (attr) = 0;
18950 info_ptr += bytes_read;
18951 break;
18952 case DW_FORM_strp:
18953 if (!cu->per_cu->is_dwz)
18954 {
18955 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18956 abfd, info_ptr, cu_header,
18957 &bytes_read);
18958 DW_STRING_IS_CANONICAL (attr) = 0;
18959 info_ptr += bytes_read;
18960 break;
18961 }
18962 /* FALLTHROUGH */
18963 case DW_FORM_line_strp:
18964 if (!cu->per_cu->is_dwz)
18965 {
18966 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18967 abfd, info_ptr,
18968 cu_header, &bytes_read);
18969 DW_STRING_IS_CANONICAL (attr) = 0;
18970 info_ptr += bytes_read;
18971 break;
18972 }
18973 /* FALLTHROUGH */
18974 case DW_FORM_GNU_strp_alt:
18975 {
18976 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18977 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18978 &bytes_read);
18979
18980 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18981 dwz, str_offset);
18982 DW_STRING_IS_CANONICAL (attr) = 0;
18983 info_ptr += bytes_read;
18984 }
18985 break;
18986 case DW_FORM_exprloc:
18987 case DW_FORM_block:
18988 blk = dwarf_alloc_block (cu);
18989 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18990 info_ptr += bytes_read;
18991 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18992 info_ptr += blk->size;
18993 DW_BLOCK (attr) = blk;
18994 break;
18995 case DW_FORM_block1:
18996 blk = dwarf_alloc_block (cu);
18997 blk->size = read_1_byte (abfd, info_ptr);
18998 info_ptr += 1;
18999 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19000 info_ptr += blk->size;
19001 DW_BLOCK (attr) = blk;
19002 break;
19003 case DW_FORM_data1:
19004 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19005 info_ptr += 1;
19006 break;
19007 case DW_FORM_flag:
19008 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19009 info_ptr += 1;
19010 break;
19011 case DW_FORM_flag_present:
19012 DW_UNSND (attr) = 1;
19013 break;
19014 case DW_FORM_sdata:
19015 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19016 info_ptr += bytes_read;
19017 break;
19018 case DW_FORM_udata:
19019 case DW_FORM_rnglistx:
19020 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19021 info_ptr += bytes_read;
19022 break;
19023 case DW_FORM_ref1:
19024 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19025 + read_1_byte (abfd, info_ptr));
19026 info_ptr += 1;
19027 break;
19028 case DW_FORM_ref2:
19029 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19030 + read_2_bytes (abfd, info_ptr));
19031 info_ptr += 2;
19032 break;
19033 case DW_FORM_ref4:
19034 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19035 + read_4_bytes (abfd, info_ptr));
19036 info_ptr += 4;
19037 break;
19038 case DW_FORM_ref8:
19039 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19040 + read_8_bytes (abfd, info_ptr));
19041 info_ptr += 8;
19042 break;
19043 case DW_FORM_ref_sig8:
19044 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19045 info_ptr += 8;
19046 break;
19047 case DW_FORM_ref_udata:
19048 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19049 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19050 info_ptr += bytes_read;
19051 break;
19052 case DW_FORM_indirect:
19053 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19054 info_ptr += bytes_read;
19055 if (form == DW_FORM_implicit_const)
19056 {
19057 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19058 info_ptr += bytes_read;
19059 }
19060 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19061 info_ptr, need_reprocess);
19062 break;
19063 case DW_FORM_implicit_const:
19064 DW_SND (attr) = implicit_const;
19065 break;
19066 case DW_FORM_addrx:
19067 case DW_FORM_GNU_addr_index:
19068 *need_reprocess = true;
19069 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19070 info_ptr += bytes_read;
19071 break;
19072 case DW_FORM_strx:
19073 case DW_FORM_strx1:
19074 case DW_FORM_strx2:
19075 case DW_FORM_strx3:
19076 case DW_FORM_strx4:
19077 case DW_FORM_GNU_str_index:
19078 {
19079 ULONGEST str_index;
19080 if (form == DW_FORM_strx1)
19081 {
19082 str_index = read_1_byte (abfd, info_ptr);
19083 info_ptr += 1;
19084 }
19085 else if (form == DW_FORM_strx2)
19086 {
19087 str_index = read_2_bytes (abfd, info_ptr);
19088 info_ptr += 2;
19089 }
19090 else if (form == DW_FORM_strx3)
19091 {
19092 str_index = read_3_bytes (abfd, info_ptr);
19093 info_ptr += 3;
19094 }
19095 else if (form == DW_FORM_strx4)
19096 {
19097 str_index = read_4_bytes (abfd, info_ptr);
19098 info_ptr += 4;
19099 }
19100 else
19101 {
19102 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19103 info_ptr += bytes_read;
19104 }
19105 *need_reprocess = true;
19106 DW_UNSND (attr) = str_index;
19107 }
19108 break;
19109 default:
19110 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19111 dwarf_form_name (form),
19112 bfd_get_filename (abfd));
19113 }
19114
19115 /* Super hack. */
19116 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19117 attr->form = DW_FORM_GNU_ref_alt;
19118
19119 /* We have seen instances where the compiler tried to emit a byte
19120 size attribute of -1 which ended up being encoded as an unsigned
19121 0xffffffff. Although 0xffffffff is technically a valid size value,
19122 an object of this size seems pretty unlikely so we can relatively
19123 safely treat these cases as if the size attribute was invalid and
19124 treat them as zero by default. */
19125 if (attr->name == DW_AT_byte_size
19126 && form == DW_FORM_data4
19127 && DW_UNSND (attr) >= 0xffffffff)
19128 {
19129 complaint
19130 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19131 hex_string (DW_UNSND (attr)));
19132 DW_UNSND (attr) = 0;
19133 }
19134
19135 return info_ptr;
19136 }
19137
19138 /* Read an attribute described by an abbreviated attribute. */
19139
19140 static const gdb_byte *
19141 read_attribute (const struct die_reader_specs *reader,
19142 struct attribute *attr, struct attr_abbrev *abbrev,
19143 const gdb_byte *info_ptr, bool *need_reprocess)
19144 {
19145 attr->name = abbrev->name;
19146 return read_attribute_value (reader, attr, abbrev->form,
19147 abbrev->implicit_const, info_ptr,
19148 need_reprocess);
19149 }
19150
19151 static CORE_ADDR
19152 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19153 unsigned int *bytes_read)
19154 {
19155 struct comp_unit_head *cu_header = &cu->header;
19156 CORE_ADDR retval = 0;
19157
19158 if (cu_header->signed_addr_p)
19159 {
19160 switch (cu_header->addr_size)
19161 {
19162 case 2:
19163 retval = bfd_get_signed_16 (abfd, buf);
19164 break;
19165 case 4:
19166 retval = bfd_get_signed_32 (abfd, buf);
19167 break;
19168 case 8:
19169 retval = bfd_get_signed_64 (abfd, buf);
19170 break;
19171 default:
19172 internal_error (__FILE__, __LINE__,
19173 _("read_address: bad switch, signed [in module %s]"),
19174 bfd_get_filename (abfd));
19175 }
19176 }
19177 else
19178 {
19179 switch (cu_header->addr_size)
19180 {
19181 case 2:
19182 retval = bfd_get_16 (abfd, buf);
19183 break;
19184 case 4:
19185 retval = bfd_get_32 (abfd, buf);
19186 break;
19187 case 8:
19188 retval = bfd_get_64 (abfd, buf);
19189 break;
19190 default:
19191 internal_error (__FILE__, __LINE__,
19192 _("read_address: bad switch, "
19193 "unsigned [in module %s]"),
19194 bfd_get_filename (abfd));
19195 }
19196 }
19197
19198 *bytes_read = cu_header->addr_size;
19199 return retval;
19200 }
19201
19202 /* Read the initial length from a section. The (draft) DWARF 3
19203 specification allows the initial length to take up either 4 bytes
19204 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19205 bytes describe the length and all offsets will be 8 bytes in length
19206 instead of 4.
19207
19208 An older, non-standard 64-bit format is also handled by this
19209 function. The older format in question stores the initial length
19210 as an 8-byte quantity without an escape value. Lengths greater
19211 than 2^32 aren't very common which means that the initial 4 bytes
19212 is almost always zero. Since a length value of zero doesn't make
19213 sense for the 32-bit format, this initial zero can be considered to
19214 be an escape value which indicates the presence of the older 64-bit
19215 format. As written, the code can't detect (old format) lengths
19216 greater than 4GB. If it becomes necessary to handle lengths
19217 somewhat larger than 4GB, we could allow other small values (such
19218 as the non-sensical values of 1, 2, and 3) to also be used as
19219 escape values indicating the presence of the old format.
19220
19221 The value returned via bytes_read should be used to increment the
19222 relevant pointer after calling read_initial_length().
19223
19224 [ Note: read_initial_length() and read_offset() are based on the
19225 document entitled "DWARF Debugging Information Format", revision
19226 3, draft 8, dated November 19, 2001. This document was obtained
19227 from:
19228
19229 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19230
19231 This document is only a draft and is subject to change. (So beware.)
19232
19233 Details regarding the older, non-standard 64-bit format were
19234 determined empirically by examining 64-bit ELF files produced by
19235 the SGI toolchain on an IRIX 6.5 machine.
19236
19237 - Kevin, July 16, 2002
19238 ] */
19239
19240 static LONGEST
19241 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19242 {
19243 LONGEST length = bfd_get_32 (abfd, buf);
19244
19245 if (length == 0xffffffff)
19246 {
19247 length = bfd_get_64 (abfd, buf + 4);
19248 *bytes_read = 12;
19249 }
19250 else if (length == 0)
19251 {
19252 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19253 length = bfd_get_64 (abfd, buf);
19254 *bytes_read = 8;
19255 }
19256 else
19257 {
19258 *bytes_read = 4;
19259 }
19260
19261 return length;
19262 }
19263
19264 /* Cover function for read_initial_length.
19265 Returns the length of the object at BUF, and stores the size of the
19266 initial length in *BYTES_READ and stores the size that offsets will be in
19267 *OFFSET_SIZE.
19268 If the initial length size is not equivalent to that specified in
19269 CU_HEADER then issue a complaint.
19270 This is useful when reading non-comp-unit headers. */
19271
19272 static LONGEST
19273 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19274 const struct comp_unit_head *cu_header,
19275 unsigned int *bytes_read,
19276 unsigned int *offset_size)
19277 {
19278 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19279
19280 gdb_assert (cu_header->initial_length_size == 4
19281 || cu_header->initial_length_size == 8
19282 || cu_header->initial_length_size == 12);
19283
19284 if (cu_header->initial_length_size != *bytes_read)
19285 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19286
19287 *offset_size = (*bytes_read == 4) ? 4 : 8;
19288 return length;
19289 }
19290
19291 /* Read an offset from the data stream. The size of the offset is
19292 given by cu_header->offset_size. */
19293
19294 static LONGEST
19295 read_offset (bfd *abfd, const gdb_byte *buf,
19296 const struct comp_unit_head *cu_header,
19297 unsigned int *bytes_read)
19298 {
19299 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19300
19301 *bytes_read = cu_header->offset_size;
19302 return offset;
19303 }
19304
19305 /* Read an offset from the data stream. */
19306
19307 static LONGEST
19308 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19309 {
19310 LONGEST retval = 0;
19311
19312 switch (offset_size)
19313 {
19314 case 4:
19315 retval = bfd_get_32 (abfd, buf);
19316 break;
19317 case 8:
19318 retval = bfd_get_64 (abfd, buf);
19319 break;
19320 default:
19321 internal_error (__FILE__, __LINE__,
19322 _("read_offset_1: bad switch [in module %s]"),
19323 bfd_get_filename (abfd));
19324 }
19325
19326 return retval;
19327 }
19328
19329 static const gdb_byte *
19330 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19331 {
19332 /* If the size of a host char is 8 bits, we can return a pointer
19333 to the buffer, otherwise we have to copy the data to a buffer
19334 allocated on the temporary obstack. */
19335 gdb_assert (HOST_CHAR_BIT == 8);
19336 return buf;
19337 }
19338
19339 static const char *
19340 read_direct_string (bfd *abfd, const gdb_byte *buf,
19341 unsigned int *bytes_read_ptr)
19342 {
19343 /* If the size of a host char is 8 bits, we can return a pointer
19344 to the string, otherwise we have to copy the string to a buffer
19345 allocated on the temporary obstack. */
19346 gdb_assert (HOST_CHAR_BIT == 8);
19347 if (*buf == '\0')
19348 {
19349 *bytes_read_ptr = 1;
19350 return NULL;
19351 }
19352 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19353 return (const char *) buf;
19354 }
19355
19356 /* Return pointer to string at section SECT offset STR_OFFSET with error
19357 reporting strings FORM_NAME and SECT_NAME. */
19358
19359 static const char *
19360 read_indirect_string_at_offset_from (struct objfile *objfile,
19361 bfd *abfd, LONGEST str_offset,
19362 struct dwarf2_section_info *sect,
19363 const char *form_name,
19364 const char *sect_name)
19365 {
19366 sect->read (objfile);
19367 if (sect->buffer == NULL)
19368 error (_("%s used without %s section [in module %s]"),
19369 form_name, sect_name, bfd_get_filename (abfd));
19370 if (str_offset >= sect->size)
19371 error (_("%s pointing outside of %s section [in module %s]"),
19372 form_name, sect_name, bfd_get_filename (abfd));
19373 gdb_assert (HOST_CHAR_BIT == 8);
19374 if (sect->buffer[str_offset] == '\0')
19375 return NULL;
19376 return (const char *) (sect->buffer + str_offset);
19377 }
19378
19379 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19380
19381 static const char *
19382 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19383 bfd *abfd, LONGEST str_offset)
19384 {
19385 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19386 abfd, str_offset,
19387 &dwarf2_per_objfile->str,
19388 "DW_FORM_strp", ".debug_str");
19389 }
19390
19391 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19392
19393 static const char *
19394 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19395 bfd *abfd, LONGEST str_offset)
19396 {
19397 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19398 abfd, str_offset,
19399 &dwarf2_per_objfile->line_str,
19400 "DW_FORM_line_strp",
19401 ".debug_line_str");
19402 }
19403
19404 /* Read a string at offset STR_OFFSET in the .debug_str section from
19405 the .dwz file DWZ. Throw an error if the offset is too large. If
19406 the string consists of a single NUL byte, return NULL; otherwise
19407 return a pointer to the string. */
19408
19409 static const char *
19410 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19411 LONGEST str_offset)
19412 {
19413 dwz->str.read (objfile);
19414
19415 if (dwz->str.buffer == NULL)
19416 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19417 "section [in module %s]"),
19418 bfd_get_filename (dwz->dwz_bfd.get ()));
19419 if (str_offset >= dwz->str.size)
19420 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19421 ".debug_str section [in module %s]"),
19422 bfd_get_filename (dwz->dwz_bfd.get ()));
19423 gdb_assert (HOST_CHAR_BIT == 8);
19424 if (dwz->str.buffer[str_offset] == '\0')
19425 return NULL;
19426 return (const char *) (dwz->str.buffer + str_offset);
19427 }
19428
19429 /* Return pointer to string at .debug_str offset as read from BUF.
19430 BUF is assumed to be in a compilation unit described by CU_HEADER.
19431 Return *BYTES_READ_PTR count of bytes read from BUF. */
19432
19433 static const char *
19434 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19435 const gdb_byte *buf,
19436 const struct comp_unit_head *cu_header,
19437 unsigned int *bytes_read_ptr)
19438 {
19439 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19440
19441 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19442 }
19443
19444 /* Return pointer to string at .debug_line_str offset as read from BUF.
19445 BUF is assumed to be in a compilation unit described by CU_HEADER.
19446 Return *BYTES_READ_PTR count of bytes read from BUF. */
19447
19448 static const char *
19449 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19450 bfd *abfd, const gdb_byte *buf,
19451 const struct comp_unit_head *cu_header,
19452 unsigned int *bytes_read_ptr)
19453 {
19454 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19455
19456 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19457 str_offset);
19458 }
19459
19460 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19461 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19462 ADDR_SIZE is the size of addresses from the CU header. */
19463
19464 static CORE_ADDR
19465 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19466 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19467 int addr_size)
19468 {
19469 struct objfile *objfile = dwarf2_per_objfile->objfile;
19470 bfd *abfd = objfile->obfd;
19471 const gdb_byte *info_ptr;
19472 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19473
19474 dwarf2_per_objfile->addr.read (objfile);
19475 if (dwarf2_per_objfile->addr.buffer == NULL)
19476 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19477 objfile_name (objfile));
19478 if (addr_base_or_zero + addr_index * addr_size
19479 >= dwarf2_per_objfile->addr.size)
19480 error (_("DW_FORM_addr_index pointing outside of "
19481 ".debug_addr section [in module %s]"),
19482 objfile_name (objfile));
19483 info_ptr = (dwarf2_per_objfile->addr.buffer
19484 + addr_base_or_zero + addr_index * addr_size);
19485 if (addr_size == 4)
19486 return bfd_get_32 (abfd, info_ptr);
19487 else
19488 return bfd_get_64 (abfd, info_ptr);
19489 }
19490
19491 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19492
19493 static CORE_ADDR
19494 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19495 {
19496 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19497 cu->addr_base, cu->header.addr_size);
19498 }
19499
19500 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19501
19502 static CORE_ADDR
19503 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19504 unsigned int *bytes_read)
19505 {
19506 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19507 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19508
19509 return read_addr_index (cu, addr_index);
19510 }
19511
19512 /* Given an index in .debug_addr, fetch the value.
19513 NOTE: This can be called during dwarf expression evaluation,
19514 long after the debug information has been read, and thus per_cu->cu
19515 may no longer exist. */
19516
19517 CORE_ADDR
19518 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19519 unsigned int addr_index)
19520 {
19521 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19522 struct dwarf2_cu *cu = per_cu->cu;
19523 gdb::optional<ULONGEST> addr_base;
19524 int addr_size;
19525
19526 /* We need addr_base and addr_size.
19527 If we don't have PER_CU->cu, we have to get it.
19528 Nasty, but the alternative is storing the needed info in PER_CU,
19529 which at this point doesn't seem justified: it's not clear how frequently
19530 it would get used and it would increase the size of every PER_CU.
19531 Entry points like dwarf2_per_cu_addr_size do a similar thing
19532 so we're not in uncharted territory here.
19533 Alas we need to be a bit more complicated as addr_base is contained
19534 in the DIE.
19535
19536 We don't need to read the entire CU(/TU).
19537 We just need the header and top level die.
19538
19539 IWBN to use the aging mechanism to let us lazily later discard the CU.
19540 For now we skip this optimization. */
19541
19542 if (cu != NULL)
19543 {
19544 addr_base = cu->addr_base;
19545 addr_size = cu->header.addr_size;
19546 }
19547 else
19548 {
19549 cutu_reader reader (per_cu, NULL, 0, 0, false);
19550 addr_base = reader.cu->addr_base;
19551 addr_size = reader.cu->header.addr_size;
19552 }
19553
19554 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19555 addr_size);
19556 }
19557
19558 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19559 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19560 DWO file. */
19561
19562 static const char *
19563 read_str_index (struct dwarf2_cu *cu,
19564 struct dwarf2_section_info *str_section,
19565 struct dwarf2_section_info *str_offsets_section,
19566 ULONGEST str_offsets_base, ULONGEST str_index)
19567 {
19568 struct dwarf2_per_objfile *dwarf2_per_objfile
19569 = cu->per_cu->dwarf2_per_objfile;
19570 struct objfile *objfile = dwarf2_per_objfile->objfile;
19571 const char *objf_name = objfile_name (objfile);
19572 bfd *abfd = objfile->obfd;
19573 const gdb_byte *info_ptr;
19574 ULONGEST str_offset;
19575 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19576
19577 str_section->read (objfile);
19578 str_offsets_section->read (objfile);
19579 if (str_section->buffer == NULL)
19580 error (_("%s used without %s section"
19581 " in CU at offset %s [in module %s]"),
19582 form_name, str_section->get_name (),
19583 sect_offset_str (cu->header.sect_off), objf_name);
19584 if (str_offsets_section->buffer == NULL)
19585 error (_("%s used without %s section"
19586 " in CU at offset %s [in module %s]"),
19587 form_name, str_section->get_name (),
19588 sect_offset_str (cu->header.sect_off), objf_name);
19589 info_ptr = (str_offsets_section->buffer
19590 + str_offsets_base
19591 + str_index * cu->header.offset_size);
19592 if (cu->header.offset_size == 4)
19593 str_offset = bfd_get_32 (abfd, info_ptr);
19594 else
19595 str_offset = bfd_get_64 (abfd, info_ptr);
19596 if (str_offset >= str_section->size)
19597 error (_("Offset from %s pointing outside of"
19598 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19599 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19600 return (const char *) (str_section->buffer + str_offset);
19601 }
19602
19603 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19604
19605 static const char *
19606 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19607 {
19608 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19609 ? reader->cu->header.addr_size : 0;
19610 return read_str_index (reader->cu,
19611 &reader->dwo_file->sections.str,
19612 &reader->dwo_file->sections.str_offsets,
19613 str_offsets_base, str_index);
19614 }
19615
19616 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19617
19618 static const char *
19619 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19620 {
19621 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19622 const char *objf_name = objfile_name (objfile);
19623 static const char form_name[] = "DW_FORM_GNU_str_index";
19624 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19625
19626 if (!cu->str_offsets_base.has_value ())
19627 error (_("%s used in Fission stub without %s"
19628 " in CU at offset 0x%lx [in module %s]"),
19629 form_name, str_offsets_attr_name,
19630 (long) cu->header.offset_size, objf_name);
19631
19632 return read_str_index (cu,
19633 &cu->per_cu->dwarf2_per_objfile->str,
19634 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19635 *cu->str_offsets_base, str_index);
19636 }
19637
19638 /* Return the length of an LEB128 number in BUF. */
19639
19640 static int
19641 leb128_size (const gdb_byte *buf)
19642 {
19643 const gdb_byte *begin = buf;
19644 gdb_byte byte;
19645
19646 while (1)
19647 {
19648 byte = *buf++;
19649 if ((byte & 128) == 0)
19650 return buf - begin;
19651 }
19652 }
19653
19654 static void
19655 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19656 {
19657 switch (lang)
19658 {
19659 case DW_LANG_C89:
19660 case DW_LANG_C99:
19661 case DW_LANG_C11:
19662 case DW_LANG_C:
19663 case DW_LANG_UPC:
19664 cu->language = language_c;
19665 break;
19666 case DW_LANG_Java:
19667 case DW_LANG_C_plus_plus:
19668 case DW_LANG_C_plus_plus_11:
19669 case DW_LANG_C_plus_plus_14:
19670 cu->language = language_cplus;
19671 break;
19672 case DW_LANG_D:
19673 cu->language = language_d;
19674 break;
19675 case DW_LANG_Fortran77:
19676 case DW_LANG_Fortran90:
19677 case DW_LANG_Fortran95:
19678 case DW_LANG_Fortran03:
19679 case DW_LANG_Fortran08:
19680 cu->language = language_fortran;
19681 break;
19682 case DW_LANG_Go:
19683 cu->language = language_go;
19684 break;
19685 case DW_LANG_Mips_Assembler:
19686 cu->language = language_asm;
19687 break;
19688 case DW_LANG_Ada83:
19689 case DW_LANG_Ada95:
19690 cu->language = language_ada;
19691 break;
19692 case DW_LANG_Modula2:
19693 cu->language = language_m2;
19694 break;
19695 case DW_LANG_Pascal83:
19696 cu->language = language_pascal;
19697 break;
19698 case DW_LANG_ObjC:
19699 cu->language = language_objc;
19700 break;
19701 case DW_LANG_Rust:
19702 case DW_LANG_Rust_old:
19703 cu->language = language_rust;
19704 break;
19705 case DW_LANG_Cobol74:
19706 case DW_LANG_Cobol85:
19707 default:
19708 cu->language = language_minimal;
19709 break;
19710 }
19711 cu->language_defn = language_def (cu->language);
19712 }
19713
19714 /* Return the named attribute or NULL if not there. */
19715
19716 static struct attribute *
19717 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19718 {
19719 for (;;)
19720 {
19721 unsigned int i;
19722 struct attribute *spec = NULL;
19723
19724 for (i = 0; i < die->num_attrs; ++i)
19725 {
19726 if (die->attrs[i].name == name)
19727 return &die->attrs[i];
19728 if (die->attrs[i].name == DW_AT_specification
19729 || die->attrs[i].name == DW_AT_abstract_origin)
19730 spec = &die->attrs[i];
19731 }
19732
19733 if (!spec)
19734 break;
19735
19736 die = follow_die_ref (die, spec, &cu);
19737 }
19738
19739 return NULL;
19740 }
19741
19742 /* Return the named attribute or NULL if not there,
19743 but do not follow DW_AT_specification, etc.
19744 This is for use in contexts where we're reading .debug_types dies.
19745 Following DW_AT_specification, DW_AT_abstract_origin will take us
19746 back up the chain, and we want to go down. */
19747
19748 static struct attribute *
19749 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19750 {
19751 unsigned int i;
19752
19753 for (i = 0; i < die->num_attrs; ++i)
19754 if (die->attrs[i].name == name)
19755 return &die->attrs[i];
19756
19757 return NULL;
19758 }
19759
19760 /* Return the string associated with a string-typed attribute, or NULL if it
19761 is either not found or is of an incorrect type. */
19762
19763 static const char *
19764 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19765 {
19766 struct attribute *attr;
19767 const char *str = NULL;
19768
19769 attr = dwarf2_attr (die, name, cu);
19770
19771 if (attr != NULL)
19772 {
19773 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19774 || attr->form == DW_FORM_string
19775 || attr->form == DW_FORM_strx
19776 || attr->form == DW_FORM_strx1
19777 || attr->form == DW_FORM_strx2
19778 || attr->form == DW_FORM_strx3
19779 || attr->form == DW_FORM_strx4
19780 || attr->form == DW_FORM_GNU_str_index
19781 || attr->form == DW_FORM_GNU_strp_alt)
19782 str = DW_STRING (attr);
19783 else
19784 complaint (_("string type expected for attribute %s for "
19785 "DIE at %s in module %s"),
19786 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19787 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19788 }
19789
19790 return str;
19791 }
19792
19793 /* Return the dwo name or NULL if not present. If present, it is in either
19794 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19795 static const char *
19796 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19797 {
19798 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19799 if (dwo_name == nullptr)
19800 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19801 return dwo_name;
19802 }
19803
19804 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19805 and holds a non-zero value. This function should only be used for
19806 DW_FORM_flag or DW_FORM_flag_present attributes. */
19807
19808 static int
19809 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19810 {
19811 struct attribute *attr = dwarf2_attr (die, name, cu);
19812
19813 return (attr && DW_UNSND (attr));
19814 }
19815
19816 static int
19817 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19818 {
19819 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19820 which value is non-zero. However, we have to be careful with
19821 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19822 (via dwarf2_flag_true_p) follows this attribute. So we may
19823 end up accidently finding a declaration attribute that belongs
19824 to a different DIE referenced by the specification attribute,
19825 even though the given DIE does not have a declaration attribute. */
19826 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19827 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19828 }
19829
19830 /* Return the die giving the specification for DIE, if there is
19831 one. *SPEC_CU is the CU containing DIE on input, and the CU
19832 containing the return value on output. If there is no
19833 specification, but there is an abstract origin, that is
19834 returned. */
19835
19836 static struct die_info *
19837 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19838 {
19839 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19840 *spec_cu);
19841
19842 if (spec_attr == NULL)
19843 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19844
19845 if (spec_attr == NULL)
19846 return NULL;
19847 else
19848 return follow_die_ref (die, spec_attr, spec_cu);
19849 }
19850
19851 /* Stub for free_line_header to match void * callback types. */
19852
19853 static void
19854 free_line_header_voidp (void *arg)
19855 {
19856 struct line_header *lh = (struct line_header *) arg;
19857
19858 delete lh;
19859 }
19860
19861 void
19862 line_header::add_include_dir (const char *include_dir)
19863 {
19864 if (dwarf_line_debug >= 2)
19865 {
19866 size_t new_size;
19867 if (version >= 5)
19868 new_size = m_include_dirs.size ();
19869 else
19870 new_size = m_include_dirs.size () + 1;
19871 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19872 new_size, include_dir);
19873 }
19874 m_include_dirs.push_back (include_dir);
19875 }
19876
19877 void
19878 line_header::add_file_name (const char *name,
19879 dir_index d_index,
19880 unsigned int mod_time,
19881 unsigned int length)
19882 {
19883 if (dwarf_line_debug >= 2)
19884 {
19885 size_t new_size;
19886 if (version >= 5)
19887 new_size = file_names_size ();
19888 else
19889 new_size = file_names_size () + 1;
19890 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
19891 new_size, name);
19892 }
19893 m_file_names.emplace_back (name, d_index, mod_time, length);
19894 }
19895
19896 /* A convenience function to find the proper .debug_line section for a CU. */
19897
19898 static struct dwarf2_section_info *
19899 get_debug_line_section (struct dwarf2_cu *cu)
19900 {
19901 struct dwarf2_section_info *section;
19902 struct dwarf2_per_objfile *dwarf2_per_objfile
19903 = cu->per_cu->dwarf2_per_objfile;
19904
19905 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19906 DWO file. */
19907 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19908 section = &cu->dwo_unit->dwo_file->sections.line;
19909 else if (cu->per_cu->is_dwz)
19910 {
19911 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19912
19913 section = &dwz->line;
19914 }
19915 else
19916 section = &dwarf2_per_objfile->line;
19917
19918 return section;
19919 }
19920
19921 /* Read directory or file name entry format, starting with byte of
19922 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19923 entries count and the entries themselves in the described entry
19924 format. */
19925
19926 static void
19927 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19928 bfd *abfd, const gdb_byte **bufp,
19929 struct line_header *lh,
19930 const struct comp_unit_head *cu_header,
19931 void (*callback) (struct line_header *lh,
19932 const char *name,
19933 dir_index d_index,
19934 unsigned int mod_time,
19935 unsigned int length))
19936 {
19937 gdb_byte format_count, formati;
19938 ULONGEST data_count, datai;
19939 const gdb_byte *buf = *bufp;
19940 const gdb_byte *format_header_data;
19941 unsigned int bytes_read;
19942
19943 format_count = read_1_byte (abfd, buf);
19944 buf += 1;
19945 format_header_data = buf;
19946 for (formati = 0; formati < format_count; formati++)
19947 {
19948 read_unsigned_leb128 (abfd, buf, &bytes_read);
19949 buf += bytes_read;
19950 read_unsigned_leb128 (abfd, buf, &bytes_read);
19951 buf += bytes_read;
19952 }
19953
19954 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19955 buf += bytes_read;
19956 for (datai = 0; datai < data_count; datai++)
19957 {
19958 const gdb_byte *format = format_header_data;
19959 struct file_entry fe;
19960
19961 for (formati = 0; formati < format_count; formati++)
19962 {
19963 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19964 format += bytes_read;
19965
19966 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19967 format += bytes_read;
19968
19969 gdb::optional<const char *> string;
19970 gdb::optional<unsigned int> uint;
19971
19972 switch (form)
19973 {
19974 case DW_FORM_string:
19975 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19976 buf += bytes_read;
19977 break;
19978
19979 case DW_FORM_line_strp:
19980 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19981 abfd, buf,
19982 cu_header,
19983 &bytes_read));
19984 buf += bytes_read;
19985 break;
19986
19987 case DW_FORM_data1:
19988 uint.emplace (read_1_byte (abfd, buf));
19989 buf += 1;
19990 break;
19991
19992 case DW_FORM_data2:
19993 uint.emplace (read_2_bytes (abfd, buf));
19994 buf += 2;
19995 break;
19996
19997 case DW_FORM_data4:
19998 uint.emplace (read_4_bytes (abfd, buf));
19999 buf += 4;
20000 break;
20001
20002 case DW_FORM_data8:
20003 uint.emplace (read_8_bytes (abfd, buf));
20004 buf += 8;
20005 break;
20006
20007 case DW_FORM_data16:
20008 /* This is used for MD5, but file_entry does not record MD5s. */
20009 buf += 16;
20010 break;
20011
20012 case DW_FORM_udata:
20013 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20014 buf += bytes_read;
20015 break;
20016
20017 case DW_FORM_block:
20018 /* It is valid only for DW_LNCT_timestamp which is ignored by
20019 current GDB. */
20020 break;
20021 }
20022
20023 switch (content_type)
20024 {
20025 case DW_LNCT_path:
20026 if (string.has_value ())
20027 fe.name = *string;
20028 break;
20029 case DW_LNCT_directory_index:
20030 if (uint.has_value ())
20031 fe.d_index = (dir_index) *uint;
20032 break;
20033 case DW_LNCT_timestamp:
20034 if (uint.has_value ())
20035 fe.mod_time = *uint;
20036 break;
20037 case DW_LNCT_size:
20038 if (uint.has_value ())
20039 fe.length = *uint;
20040 break;
20041 case DW_LNCT_MD5:
20042 break;
20043 default:
20044 complaint (_("Unknown format content type %s"),
20045 pulongest (content_type));
20046 }
20047 }
20048
20049 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20050 }
20051
20052 *bufp = buf;
20053 }
20054
20055 /* Read the statement program header starting at OFFSET in
20056 .debug_line, or .debug_line.dwo. Return a pointer
20057 to a struct line_header, allocated using xmalloc.
20058 Returns NULL if there is a problem reading the header, e.g., if it
20059 has a version we don't understand.
20060
20061 NOTE: the strings in the include directory and file name tables of
20062 the returned object point into the dwarf line section buffer,
20063 and must not be freed. */
20064
20065 static line_header_up
20066 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20067 {
20068 const gdb_byte *line_ptr;
20069 unsigned int bytes_read, offset_size;
20070 int i;
20071 const char *cur_dir, *cur_file;
20072 struct dwarf2_section_info *section;
20073 bfd *abfd;
20074 struct dwarf2_per_objfile *dwarf2_per_objfile
20075 = cu->per_cu->dwarf2_per_objfile;
20076
20077 section = get_debug_line_section (cu);
20078 section->read (dwarf2_per_objfile->objfile);
20079 if (section->buffer == NULL)
20080 {
20081 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20082 complaint (_("missing .debug_line.dwo section"));
20083 else
20084 complaint (_("missing .debug_line section"));
20085 return 0;
20086 }
20087
20088 /* We can't do this until we know the section is non-empty.
20089 Only then do we know we have such a section. */
20090 abfd = section->get_bfd_owner ();
20091
20092 /* Make sure that at least there's room for the total_length field.
20093 That could be 12 bytes long, but we're just going to fudge that. */
20094 if (to_underlying (sect_off) + 4 >= section->size)
20095 {
20096 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20097 return 0;
20098 }
20099
20100 line_header_up lh (new line_header ());
20101
20102 lh->sect_off = sect_off;
20103 lh->offset_in_dwz = cu->per_cu->is_dwz;
20104
20105 line_ptr = section->buffer + to_underlying (sect_off);
20106
20107 /* Read in the header. */
20108 lh->total_length =
20109 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20110 &bytes_read, &offset_size);
20111 line_ptr += bytes_read;
20112
20113 const gdb_byte *start_here = line_ptr;
20114
20115 if (line_ptr + lh->total_length > (section->buffer + section->size))
20116 {
20117 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20118 return 0;
20119 }
20120 lh->statement_program_end = start_here + lh->total_length;
20121 lh->version = read_2_bytes (abfd, line_ptr);
20122 line_ptr += 2;
20123 if (lh->version > 5)
20124 {
20125 /* This is a version we don't understand. The format could have
20126 changed in ways we don't handle properly so just punt. */
20127 complaint (_("unsupported version in .debug_line section"));
20128 return NULL;
20129 }
20130 if (lh->version >= 5)
20131 {
20132 gdb_byte segment_selector_size;
20133
20134 /* Skip address size. */
20135 read_1_byte (abfd, line_ptr);
20136 line_ptr += 1;
20137
20138 segment_selector_size = read_1_byte (abfd, line_ptr);
20139 line_ptr += 1;
20140 if (segment_selector_size != 0)
20141 {
20142 complaint (_("unsupported segment selector size %u "
20143 "in .debug_line section"),
20144 segment_selector_size);
20145 return NULL;
20146 }
20147 }
20148 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20149 line_ptr += offset_size;
20150 lh->statement_program_start = line_ptr + lh->header_length;
20151 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20152 line_ptr += 1;
20153 if (lh->version >= 4)
20154 {
20155 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20156 line_ptr += 1;
20157 }
20158 else
20159 lh->maximum_ops_per_instruction = 1;
20160
20161 if (lh->maximum_ops_per_instruction == 0)
20162 {
20163 lh->maximum_ops_per_instruction = 1;
20164 complaint (_("invalid maximum_ops_per_instruction "
20165 "in `.debug_line' section"));
20166 }
20167
20168 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20169 line_ptr += 1;
20170 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20171 line_ptr += 1;
20172 lh->line_range = read_1_byte (abfd, line_ptr);
20173 line_ptr += 1;
20174 lh->opcode_base = read_1_byte (abfd, line_ptr);
20175 line_ptr += 1;
20176 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20177
20178 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20179 for (i = 1; i < lh->opcode_base; ++i)
20180 {
20181 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20182 line_ptr += 1;
20183 }
20184
20185 if (lh->version >= 5)
20186 {
20187 /* Read directory table. */
20188 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20189 &cu->header,
20190 [] (struct line_header *header, const char *name,
20191 dir_index d_index, unsigned int mod_time,
20192 unsigned int length)
20193 {
20194 header->add_include_dir (name);
20195 });
20196
20197 /* Read file name table. */
20198 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20199 &cu->header,
20200 [] (struct line_header *header, const char *name,
20201 dir_index d_index, unsigned int mod_time,
20202 unsigned int length)
20203 {
20204 header->add_file_name (name, d_index, mod_time, length);
20205 });
20206 }
20207 else
20208 {
20209 /* Read directory table. */
20210 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20211 {
20212 line_ptr += bytes_read;
20213 lh->add_include_dir (cur_dir);
20214 }
20215 line_ptr += bytes_read;
20216
20217 /* Read file name table. */
20218 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20219 {
20220 unsigned int mod_time, length;
20221 dir_index d_index;
20222
20223 line_ptr += bytes_read;
20224 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20225 line_ptr += bytes_read;
20226 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20227 line_ptr += bytes_read;
20228 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20229 line_ptr += bytes_read;
20230
20231 lh->add_file_name (cur_file, d_index, mod_time, length);
20232 }
20233 line_ptr += bytes_read;
20234 }
20235
20236 if (line_ptr > (section->buffer + section->size))
20237 complaint (_("line number info header doesn't "
20238 "fit in `.debug_line' section"));
20239
20240 return lh;
20241 }
20242
20243 /* Subroutine of dwarf_decode_lines to simplify it.
20244 Return the file name of the psymtab for the given file_entry.
20245 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20246 If space for the result is malloc'd, *NAME_HOLDER will be set.
20247 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20248
20249 static const char *
20250 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20251 const dwarf2_psymtab *pst,
20252 const char *comp_dir,
20253 gdb::unique_xmalloc_ptr<char> *name_holder)
20254 {
20255 const char *include_name = fe.name;
20256 const char *include_name_to_compare = include_name;
20257 const char *pst_filename;
20258 int file_is_pst;
20259
20260 const char *dir_name = fe.include_dir (lh);
20261
20262 gdb::unique_xmalloc_ptr<char> hold_compare;
20263 if (!IS_ABSOLUTE_PATH (include_name)
20264 && (dir_name != NULL || comp_dir != NULL))
20265 {
20266 /* Avoid creating a duplicate psymtab for PST.
20267 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20268 Before we do the comparison, however, we need to account
20269 for DIR_NAME and COMP_DIR.
20270 First prepend dir_name (if non-NULL). If we still don't
20271 have an absolute path prepend comp_dir (if non-NULL).
20272 However, the directory we record in the include-file's
20273 psymtab does not contain COMP_DIR (to match the
20274 corresponding symtab(s)).
20275
20276 Example:
20277
20278 bash$ cd /tmp
20279 bash$ gcc -g ./hello.c
20280 include_name = "hello.c"
20281 dir_name = "."
20282 DW_AT_comp_dir = comp_dir = "/tmp"
20283 DW_AT_name = "./hello.c"
20284
20285 */
20286
20287 if (dir_name != NULL)
20288 {
20289 name_holder->reset (concat (dir_name, SLASH_STRING,
20290 include_name, (char *) NULL));
20291 include_name = name_holder->get ();
20292 include_name_to_compare = include_name;
20293 }
20294 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20295 {
20296 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20297 include_name, (char *) NULL));
20298 include_name_to_compare = hold_compare.get ();
20299 }
20300 }
20301
20302 pst_filename = pst->filename;
20303 gdb::unique_xmalloc_ptr<char> copied_name;
20304 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20305 {
20306 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20307 pst_filename, (char *) NULL));
20308 pst_filename = copied_name.get ();
20309 }
20310
20311 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20312
20313 if (file_is_pst)
20314 return NULL;
20315 return include_name;
20316 }
20317
20318 /* State machine to track the state of the line number program. */
20319
20320 class lnp_state_machine
20321 {
20322 public:
20323 /* Initialize a machine state for the start of a line number
20324 program. */
20325 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20326 bool record_lines_p);
20327
20328 file_entry *current_file ()
20329 {
20330 /* lh->file_names is 0-based, but the file name numbers in the
20331 statement program are 1-based. */
20332 return m_line_header->file_name_at (m_file);
20333 }
20334
20335 /* Record the line in the state machine. END_SEQUENCE is true if
20336 we're processing the end of a sequence. */
20337 void record_line (bool end_sequence);
20338
20339 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20340 nop-out rest of the lines in this sequence. */
20341 void check_line_address (struct dwarf2_cu *cu,
20342 const gdb_byte *line_ptr,
20343 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20344
20345 void handle_set_discriminator (unsigned int discriminator)
20346 {
20347 m_discriminator = discriminator;
20348 m_line_has_non_zero_discriminator |= discriminator != 0;
20349 }
20350
20351 /* Handle DW_LNE_set_address. */
20352 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20353 {
20354 m_op_index = 0;
20355 address += baseaddr;
20356 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20357 }
20358
20359 /* Handle DW_LNS_advance_pc. */
20360 void handle_advance_pc (CORE_ADDR adjust);
20361
20362 /* Handle a special opcode. */
20363 void handle_special_opcode (unsigned char op_code);
20364
20365 /* Handle DW_LNS_advance_line. */
20366 void handle_advance_line (int line_delta)
20367 {
20368 advance_line (line_delta);
20369 }
20370
20371 /* Handle DW_LNS_set_file. */
20372 void handle_set_file (file_name_index file);
20373
20374 /* Handle DW_LNS_negate_stmt. */
20375 void handle_negate_stmt ()
20376 {
20377 m_is_stmt = !m_is_stmt;
20378 }
20379
20380 /* Handle DW_LNS_const_add_pc. */
20381 void handle_const_add_pc ();
20382
20383 /* Handle DW_LNS_fixed_advance_pc. */
20384 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20385 {
20386 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20387 m_op_index = 0;
20388 }
20389
20390 /* Handle DW_LNS_copy. */
20391 void handle_copy ()
20392 {
20393 record_line (false);
20394 m_discriminator = 0;
20395 }
20396
20397 /* Handle DW_LNE_end_sequence. */
20398 void handle_end_sequence ()
20399 {
20400 m_currently_recording_lines = true;
20401 }
20402
20403 private:
20404 /* Advance the line by LINE_DELTA. */
20405 void advance_line (int line_delta)
20406 {
20407 m_line += line_delta;
20408
20409 if (line_delta != 0)
20410 m_line_has_non_zero_discriminator = m_discriminator != 0;
20411 }
20412
20413 struct dwarf2_cu *m_cu;
20414
20415 gdbarch *m_gdbarch;
20416
20417 /* True if we're recording lines.
20418 Otherwise we're building partial symtabs and are just interested in
20419 finding include files mentioned by the line number program. */
20420 bool m_record_lines_p;
20421
20422 /* The line number header. */
20423 line_header *m_line_header;
20424
20425 /* These are part of the standard DWARF line number state machine,
20426 and initialized according to the DWARF spec. */
20427
20428 unsigned char m_op_index = 0;
20429 /* The line table index of the current file. */
20430 file_name_index m_file = 1;
20431 unsigned int m_line = 1;
20432
20433 /* These are initialized in the constructor. */
20434
20435 CORE_ADDR m_address;
20436 bool m_is_stmt;
20437 unsigned int m_discriminator;
20438
20439 /* Additional bits of state we need to track. */
20440
20441 /* The last file that we called dwarf2_start_subfile for.
20442 This is only used for TLLs. */
20443 unsigned int m_last_file = 0;
20444 /* The last file a line number was recorded for. */
20445 struct subfile *m_last_subfile = NULL;
20446
20447 /* When true, record the lines we decode. */
20448 bool m_currently_recording_lines = false;
20449
20450 /* The last line number that was recorded, used to coalesce
20451 consecutive entries for the same line. This can happen, for
20452 example, when discriminators are present. PR 17276. */
20453 unsigned int m_last_line = 0;
20454 bool m_line_has_non_zero_discriminator = false;
20455 };
20456
20457 void
20458 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20459 {
20460 CORE_ADDR addr_adj = (((m_op_index + adjust)
20461 / m_line_header->maximum_ops_per_instruction)
20462 * m_line_header->minimum_instruction_length);
20463 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20464 m_op_index = ((m_op_index + adjust)
20465 % m_line_header->maximum_ops_per_instruction);
20466 }
20467
20468 void
20469 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20470 {
20471 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20472 CORE_ADDR addr_adj = (((m_op_index
20473 + (adj_opcode / m_line_header->line_range))
20474 / m_line_header->maximum_ops_per_instruction)
20475 * m_line_header->minimum_instruction_length);
20476 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20477 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20478 % m_line_header->maximum_ops_per_instruction);
20479
20480 int line_delta = (m_line_header->line_base
20481 + (adj_opcode % m_line_header->line_range));
20482 advance_line (line_delta);
20483 record_line (false);
20484 m_discriminator = 0;
20485 }
20486
20487 void
20488 lnp_state_machine::handle_set_file (file_name_index file)
20489 {
20490 m_file = file;
20491
20492 const file_entry *fe = current_file ();
20493 if (fe == NULL)
20494 dwarf2_debug_line_missing_file_complaint ();
20495 else if (m_record_lines_p)
20496 {
20497 const char *dir = fe->include_dir (m_line_header);
20498
20499 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20500 m_line_has_non_zero_discriminator = m_discriminator != 0;
20501 dwarf2_start_subfile (m_cu, fe->name, dir);
20502 }
20503 }
20504
20505 void
20506 lnp_state_machine::handle_const_add_pc ()
20507 {
20508 CORE_ADDR adjust
20509 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20510
20511 CORE_ADDR addr_adj
20512 = (((m_op_index + adjust)
20513 / m_line_header->maximum_ops_per_instruction)
20514 * m_line_header->minimum_instruction_length);
20515
20516 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20517 m_op_index = ((m_op_index + adjust)
20518 % m_line_header->maximum_ops_per_instruction);
20519 }
20520
20521 /* Return non-zero if we should add LINE to the line number table.
20522 LINE is the line to add, LAST_LINE is the last line that was added,
20523 LAST_SUBFILE is the subfile for LAST_LINE.
20524 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20525 had a non-zero discriminator.
20526
20527 We have to be careful in the presence of discriminators.
20528 E.g., for this line:
20529
20530 for (i = 0; i < 100000; i++);
20531
20532 clang can emit four line number entries for that one line,
20533 each with a different discriminator.
20534 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20535
20536 However, we want gdb to coalesce all four entries into one.
20537 Otherwise the user could stepi into the middle of the line and
20538 gdb would get confused about whether the pc really was in the
20539 middle of the line.
20540
20541 Things are further complicated by the fact that two consecutive
20542 line number entries for the same line is a heuristic used by gcc
20543 to denote the end of the prologue. So we can't just discard duplicate
20544 entries, we have to be selective about it. The heuristic we use is
20545 that we only collapse consecutive entries for the same line if at least
20546 one of those entries has a non-zero discriminator. PR 17276.
20547
20548 Note: Addresses in the line number state machine can never go backwards
20549 within one sequence, thus this coalescing is ok. */
20550
20551 static int
20552 dwarf_record_line_p (struct dwarf2_cu *cu,
20553 unsigned int line, unsigned int last_line,
20554 int line_has_non_zero_discriminator,
20555 struct subfile *last_subfile)
20556 {
20557 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20558 return 1;
20559 if (line != last_line)
20560 return 1;
20561 /* Same line for the same file that we've seen already.
20562 As a last check, for pr 17276, only record the line if the line
20563 has never had a non-zero discriminator. */
20564 if (!line_has_non_zero_discriminator)
20565 return 1;
20566 return 0;
20567 }
20568
20569 /* Use the CU's builder to record line number LINE beginning at
20570 address ADDRESS in the line table of subfile SUBFILE. */
20571
20572 static void
20573 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20574 unsigned int line, CORE_ADDR address,
20575 struct dwarf2_cu *cu)
20576 {
20577 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20578
20579 if (dwarf_line_debug)
20580 {
20581 fprintf_unfiltered (gdb_stdlog,
20582 "Recording line %u, file %s, address %s\n",
20583 line, lbasename (subfile->name),
20584 paddress (gdbarch, address));
20585 }
20586
20587 if (cu != nullptr)
20588 cu->get_builder ()->record_line (subfile, line, addr);
20589 }
20590
20591 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20592 Mark the end of a set of line number records.
20593 The arguments are the same as for dwarf_record_line_1.
20594 If SUBFILE is NULL the request is ignored. */
20595
20596 static void
20597 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20598 CORE_ADDR address, struct dwarf2_cu *cu)
20599 {
20600 if (subfile == NULL)
20601 return;
20602
20603 if (dwarf_line_debug)
20604 {
20605 fprintf_unfiltered (gdb_stdlog,
20606 "Finishing current line, file %s, address %s\n",
20607 lbasename (subfile->name),
20608 paddress (gdbarch, address));
20609 }
20610
20611 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20612 }
20613
20614 void
20615 lnp_state_machine::record_line (bool end_sequence)
20616 {
20617 if (dwarf_line_debug)
20618 {
20619 fprintf_unfiltered (gdb_stdlog,
20620 "Processing actual line %u: file %u,"
20621 " address %s, is_stmt %u, discrim %u%s\n",
20622 m_line, m_file,
20623 paddress (m_gdbarch, m_address),
20624 m_is_stmt, m_discriminator,
20625 (end_sequence ? "\t(end sequence)" : ""));
20626 }
20627
20628 file_entry *fe = current_file ();
20629
20630 if (fe == NULL)
20631 dwarf2_debug_line_missing_file_complaint ();
20632 /* For now we ignore lines not starting on an instruction boundary.
20633 But not when processing end_sequence for compatibility with the
20634 previous version of the code. */
20635 else if (m_op_index == 0 || end_sequence)
20636 {
20637 fe->included_p = 1;
20638 if (m_record_lines_p
20639 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20640 {
20641 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20642 || end_sequence)
20643 {
20644 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20645 m_currently_recording_lines ? m_cu : nullptr);
20646 }
20647
20648 if (!end_sequence)
20649 {
20650 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20651 m_line_has_non_zero_discriminator,
20652 m_last_subfile))
20653 {
20654 buildsym_compunit *builder = m_cu->get_builder ();
20655 dwarf_record_line_1 (m_gdbarch,
20656 builder->get_current_subfile (),
20657 m_line, m_address,
20658 m_currently_recording_lines ? m_cu : nullptr);
20659 }
20660 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20661 m_last_line = m_line;
20662 }
20663 }
20664 }
20665 }
20666
20667 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20668 line_header *lh, bool record_lines_p)
20669 {
20670 m_cu = cu;
20671 m_gdbarch = arch;
20672 m_record_lines_p = record_lines_p;
20673 m_line_header = lh;
20674
20675 m_currently_recording_lines = true;
20676
20677 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20678 was a line entry for it so that the backend has a chance to adjust it
20679 and also record it in case it needs it. This is currently used by MIPS
20680 code, cf. `mips_adjust_dwarf2_line'. */
20681 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20682 m_is_stmt = lh->default_is_stmt;
20683 m_discriminator = 0;
20684 }
20685
20686 void
20687 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20688 const gdb_byte *line_ptr,
20689 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20690 {
20691 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20692 the pc range of the CU. However, we restrict the test to only ADDRESS
20693 values of zero to preserve GDB's previous behaviour which is to handle
20694 the specific case of a function being GC'd by the linker. */
20695
20696 if (address == 0 && address < unrelocated_lowpc)
20697 {
20698 /* This line table is for a function which has been
20699 GCd by the linker. Ignore it. PR gdb/12528 */
20700
20701 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20702 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20703
20704 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20705 line_offset, objfile_name (objfile));
20706 m_currently_recording_lines = false;
20707 /* Note: m_currently_recording_lines is left as false until we see
20708 DW_LNE_end_sequence. */
20709 }
20710 }
20711
20712 /* Subroutine of dwarf_decode_lines to simplify it.
20713 Process the line number information in LH.
20714 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20715 program in order to set included_p for every referenced header. */
20716
20717 static void
20718 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20719 const int decode_for_pst_p, CORE_ADDR lowpc)
20720 {
20721 const gdb_byte *line_ptr, *extended_end;
20722 const gdb_byte *line_end;
20723 unsigned int bytes_read, extended_len;
20724 unsigned char op_code, extended_op;
20725 CORE_ADDR baseaddr;
20726 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20727 bfd *abfd = objfile->obfd;
20728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20729 /* True if we're recording line info (as opposed to building partial
20730 symtabs and just interested in finding include files mentioned by
20731 the line number program). */
20732 bool record_lines_p = !decode_for_pst_p;
20733
20734 baseaddr = objfile->text_section_offset ();
20735
20736 line_ptr = lh->statement_program_start;
20737 line_end = lh->statement_program_end;
20738
20739 /* Read the statement sequences until there's nothing left. */
20740 while (line_ptr < line_end)
20741 {
20742 /* The DWARF line number program state machine. Reset the state
20743 machine at the start of each sequence. */
20744 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20745 bool end_sequence = false;
20746
20747 if (record_lines_p)
20748 {
20749 /* Start a subfile for the current file of the state
20750 machine. */
20751 const file_entry *fe = state_machine.current_file ();
20752
20753 if (fe != NULL)
20754 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20755 }
20756
20757 /* Decode the table. */
20758 while (line_ptr < line_end && !end_sequence)
20759 {
20760 op_code = read_1_byte (abfd, line_ptr);
20761 line_ptr += 1;
20762
20763 if (op_code >= lh->opcode_base)
20764 {
20765 /* Special opcode. */
20766 state_machine.handle_special_opcode (op_code);
20767 }
20768 else switch (op_code)
20769 {
20770 case DW_LNS_extended_op:
20771 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20772 &bytes_read);
20773 line_ptr += bytes_read;
20774 extended_end = line_ptr + extended_len;
20775 extended_op = read_1_byte (abfd, line_ptr);
20776 line_ptr += 1;
20777 switch (extended_op)
20778 {
20779 case DW_LNE_end_sequence:
20780 state_machine.handle_end_sequence ();
20781 end_sequence = true;
20782 break;
20783 case DW_LNE_set_address:
20784 {
20785 CORE_ADDR address
20786 = read_address (abfd, line_ptr, cu, &bytes_read);
20787 line_ptr += bytes_read;
20788
20789 state_machine.check_line_address (cu, line_ptr,
20790 lowpc - baseaddr, address);
20791 state_machine.handle_set_address (baseaddr, address);
20792 }
20793 break;
20794 case DW_LNE_define_file:
20795 {
20796 const char *cur_file;
20797 unsigned int mod_time, length;
20798 dir_index dindex;
20799
20800 cur_file = read_direct_string (abfd, line_ptr,
20801 &bytes_read);
20802 line_ptr += bytes_read;
20803 dindex = (dir_index)
20804 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20805 line_ptr += bytes_read;
20806 mod_time =
20807 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20808 line_ptr += bytes_read;
20809 length =
20810 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20811 line_ptr += bytes_read;
20812 lh->add_file_name (cur_file, dindex, mod_time, length);
20813 }
20814 break;
20815 case DW_LNE_set_discriminator:
20816 {
20817 /* The discriminator is not interesting to the
20818 debugger; just ignore it. We still need to
20819 check its value though:
20820 if there are consecutive entries for the same
20821 (non-prologue) line we want to coalesce them.
20822 PR 17276. */
20823 unsigned int discr
20824 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20825 line_ptr += bytes_read;
20826
20827 state_machine.handle_set_discriminator (discr);
20828 }
20829 break;
20830 default:
20831 complaint (_("mangled .debug_line section"));
20832 return;
20833 }
20834 /* Make sure that we parsed the extended op correctly. If e.g.
20835 we expected a different address size than the producer used,
20836 we may have read the wrong number of bytes. */
20837 if (line_ptr != extended_end)
20838 {
20839 complaint (_("mangled .debug_line section"));
20840 return;
20841 }
20842 break;
20843 case DW_LNS_copy:
20844 state_machine.handle_copy ();
20845 break;
20846 case DW_LNS_advance_pc:
20847 {
20848 CORE_ADDR adjust
20849 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20850 line_ptr += bytes_read;
20851
20852 state_machine.handle_advance_pc (adjust);
20853 }
20854 break;
20855 case DW_LNS_advance_line:
20856 {
20857 int line_delta
20858 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20859 line_ptr += bytes_read;
20860
20861 state_machine.handle_advance_line (line_delta);
20862 }
20863 break;
20864 case DW_LNS_set_file:
20865 {
20866 file_name_index file
20867 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20868 &bytes_read);
20869 line_ptr += bytes_read;
20870
20871 state_machine.handle_set_file (file);
20872 }
20873 break;
20874 case DW_LNS_set_column:
20875 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20876 line_ptr += bytes_read;
20877 break;
20878 case DW_LNS_negate_stmt:
20879 state_machine.handle_negate_stmt ();
20880 break;
20881 case DW_LNS_set_basic_block:
20882 break;
20883 /* Add to the address register of the state machine the
20884 address increment value corresponding to special opcode
20885 255. I.e., this value is scaled by the minimum
20886 instruction length since special opcode 255 would have
20887 scaled the increment. */
20888 case DW_LNS_const_add_pc:
20889 state_machine.handle_const_add_pc ();
20890 break;
20891 case DW_LNS_fixed_advance_pc:
20892 {
20893 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20894 line_ptr += 2;
20895
20896 state_machine.handle_fixed_advance_pc (addr_adj);
20897 }
20898 break;
20899 default:
20900 {
20901 /* Unknown standard opcode, ignore it. */
20902 int i;
20903
20904 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20905 {
20906 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20907 line_ptr += bytes_read;
20908 }
20909 }
20910 }
20911 }
20912
20913 if (!end_sequence)
20914 dwarf2_debug_line_missing_end_sequence_complaint ();
20915
20916 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20917 in which case we still finish recording the last line). */
20918 state_machine.record_line (true);
20919 }
20920 }
20921
20922 /* Decode the Line Number Program (LNP) for the given line_header
20923 structure and CU. The actual information extracted and the type
20924 of structures created from the LNP depends on the value of PST.
20925
20926 1. If PST is NULL, then this procedure uses the data from the program
20927 to create all necessary symbol tables, and their linetables.
20928
20929 2. If PST is not NULL, this procedure reads the program to determine
20930 the list of files included by the unit represented by PST, and
20931 builds all the associated partial symbol tables.
20932
20933 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20934 It is used for relative paths in the line table.
20935 NOTE: When processing partial symtabs (pst != NULL),
20936 comp_dir == pst->dirname.
20937
20938 NOTE: It is important that psymtabs have the same file name (via strcmp)
20939 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20940 symtab we don't use it in the name of the psymtabs we create.
20941 E.g. expand_line_sal requires this when finding psymtabs to expand.
20942 A good testcase for this is mb-inline.exp.
20943
20944 LOWPC is the lowest address in CU (or 0 if not known).
20945
20946 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20947 for its PC<->lines mapping information. Otherwise only the filename
20948 table is read in. */
20949
20950 static void
20951 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20952 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20953 CORE_ADDR lowpc, int decode_mapping)
20954 {
20955 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20956 const int decode_for_pst_p = (pst != NULL);
20957
20958 if (decode_mapping)
20959 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20960
20961 if (decode_for_pst_p)
20962 {
20963 /* Now that we're done scanning the Line Header Program, we can
20964 create the psymtab of each included file. */
20965 for (auto &file_entry : lh->file_names ())
20966 if (file_entry.included_p == 1)
20967 {
20968 gdb::unique_xmalloc_ptr<char> name_holder;
20969 const char *include_name =
20970 psymtab_include_file_name (lh, file_entry, pst,
20971 comp_dir, &name_holder);
20972 if (include_name != NULL)
20973 dwarf2_create_include_psymtab (include_name, pst, objfile);
20974 }
20975 }
20976 else
20977 {
20978 /* Make sure a symtab is created for every file, even files
20979 which contain only variables (i.e. no code with associated
20980 line numbers). */
20981 buildsym_compunit *builder = cu->get_builder ();
20982 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20983
20984 for (auto &fe : lh->file_names ())
20985 {
20986 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20987 if (builder->get_current_subfile ()->symtab == NULL)
20988 {
20989 builder->get_current_subfile ()->symtab
20990 = allocate_symtab (cust,
20991 builder->get_current_subfile ()->name);
20992 }
20993 fe.symtab = builder->get_current_subfile ()->symtab;
20994 }
20995 }
20996 }
20997
20998 /* Start a subfile for DWARF. FILENAME is the name of the file and
20999 DIRNAME the name of the source directory which contains FILENAME
21000 or NULL if not known.
21001 This routine tries to keep line numbers from identical absolute and
21002 relative file names in a common subfile.
21003
21004 Using the `list' example from the GDB testsuite, which resides in
21005 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21006 of /srcdir/list0.c yields the following debugging information for list0.c:
21007
21008 DW_AT_name: /srcdir/list0.c
21009 DW_AT_comp_dir: /compdir
21010 files.files[0].name: list0.h
21011 files.files[0].dir: /srcdir
21012 files.files[1].name: list0.c
21013 files.files[1].dir: /srcdir
21014
21015 The line number information for list0.c has to end up in a single
21016 subfile, so that `break /srcdir/list0.c:1' works as expected.
21017 start_subfile will ensure that this happens provided that we pass the
21018 concatenation of files.files[1].dir and files.files[1].name as the
21019 subfile's name. */
21020
21021 static void
21022 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21023 const char *dirname)
21024 {
21025 gdb::unique_xmalloc_ptr<char> copy;
21026
21027 /* In order not to lose the line information directory,
21028 we concatenate it to the filename when it makes sense.
21029 Note that the Dwarf3 standard says (speaking of filenames in line
21030 information): ``The directory index is ignored for file names
21031 that represent full path names''. Thus ignoring dirname in the
21032 `else' branch below isn't an issue. */
21033
21034 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21035 {
21036 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21037 filename = copy.get ();
21038 }
21039
21040 cu->get_builder ()->start_subfile (filename);
21041 }
21042
21043 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21044 buildsym_compunit constructor. */
21045
21046 struct compunit_symtab *
21047 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21048 CORE_ADDR low_pc)
21049 {
21050 gdb_assert (m_builder == nullptr);
21051
21052 m_builder.reset (new struct buildsym_compunit
21053 (per_cu->dwarf2_per_objfile->objfile,
21054 name, comp_dir, language, low_pc));
21055
21056 list_in_scope = get_builder ()->get_file_symbols ();
21057
21058 get_builder ()->record_debugformat ("DWARF 2");
21059 get_builder ()->record_producer (producer);
21060
21061 processing_has_namespace_info = false;
21062
21063 return get_builder ()->get_compunit_symtab ();
21064 }
21065
21066 static void
21067 var_decode_location (struct attribute *attr, struct symbol *sym,
21068 struct dwarf2_cu *cu)
21069 {
21070 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21071 struct comp_unit_head *cu_header = &cu->header;
21072
21073 /* NOTE drow/2003-01-30: There used to be a comment and some special
21074 code here to turn a symbol with DW_AT_external and a
21075 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21076 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21077 with some versions of binutils) where shared libraries could have
21078 relocations against symbols in their debug information - the
21079 minimal symbol would have the right address, but the debug info
21080 would not. It's no longer necessary, because we will explicitly
21081 apply relocations when we read in the debug information now. */
21082
21083 /* A DW_AT_location attribute with no contents indicates that a
21084 variable has been optimized away. */
21085 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
21086 {
21087 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21088 return;
21089 }
21090
21091 /* Handle one degenerate form of location expression specially, to
21092 preserve GDB's previous behavior when section offsets are
21093 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21094 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21095
21096 if (attr->form_is_block ()
21097 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21098 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21099 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21100 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21101 && (DW_BLOCK (attr)->size
21102 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21103 {
21104 unsigned int dummy;
21105
21106 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21107 SET_SYMBOL_VALUE_ADDRESS (sym,
21108 read_address (objfile->obfd,
21109 DW_BLOCK (attr)->data + 1,
21110 cu, &dummy));
21111 else
21112 SET_SYMBOL_VALUE_ADDRESS
21113 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21114 &dummy));
21115 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21116 fixup_symbol_section (sym, objfile);
21117 SET_SYMBOL_VALUE_ADDRESS
21118 (sym,
21119 SYMBOL_VALUE_ADDRESS (sym)
21120 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21121 return;
21122 }
21123
21124 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21125 expression evaluator, and use LOC_COMPUTED only when necessary
21126 (i.e. when the value of a register or memory location is
21127 referenced, or a thread-local block, etc.). Then again, it might
21128 not be worthwhile. I'm assuming that it isn't unless performance
21129 or memory numbers show me otherwise. */
21130
21131 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21132
21133 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21134 cu->has_loclist = true;
21135 }
21136
21137 /* Given a pointer to a DWARF information entry, figure out if we need
21138 to make a symbol table entry for it, and if so, create a new entry
21139 and return a pointer to it.
21140 If TYPE is NULL, determine symbol type from the die, otherwise
21141 used the passed type.
21142 If SPACE is not NULL, use it to hold the new symbol. If it is
21143 NULL, allocate a new symbol on the objfile's obstack. */
21144
21145 static struct symbol *
21146 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21147 struct symbol *space)
21148 {
21149 struct dwarf2_per_objfile *dwarf2_per_objfile
21150 = cu->per_cu->dwarf2_per_objfile;
21151 struct objfile *objfile = dwarf2_per_objfile->objfile;
21152 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21153 struct symbol *sym = NULL;
21154 const char *name;
21155 struct attribute *attr = NULL;
21156 struct attribute *attr2 = NULL;
21157 CORE_ADDR baseaddr;
21158 struct pending **list_to_add = NULL;
21159
21160 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21161
21162 baseaddr = objfile->text_section_offset ();
21163
21164 name = dwarf2_name (die, cu);
21165 if (name)
21166 {
21167 const char *linkagename;
21168 int suppress_add = 0;
21169
21170 if (space)
21171 sym = space;
21172 else
21173 sym = allocate_symbol (objfile);
21174 OBJSTAT (objfile, n_syms++);
21175
21176 /* Cache this symbol's name and the name's demangled form (if any). */
21177 sym->set_language (cu->language, &objfile->objfile_obstack);
21178 linkagename = dwarf2_physname (name, die, cu);
21179 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
21180
21181 /* Fortran does not have mangling standard and the mangling does differ
21182 between gfortran, iFort etc. */
21183 if (cu->language == language_fortran
21184 && symbol_get_demangled_name (sym) == NULL)
21185 symbol_set_demangled_name (sym,
21186 dwarf2_full_name (name, die, cu),
21187 NULL);
21188
21189 /* Default assumptions.
21190 Use the passed type or decode it from the die. */
21191 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21192 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21193 if (type != NULL)
21194 SYMBOL_TYPE (sym) = type;
21195 else
21196 SYMBOL_TYPE (sym) = die_type (die, cu);
21197 attr = dwarf2_attr (die,
21198 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21199 cu);
21200 if (attr != nullptr)
21201 {
21202 SYMBOL_LINE (sym) = DW_UNSND (attr);
21203 }
21204
21205 attr = dwarf2_attr (die,
21206 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21207 cu);
21208 if (attr != nullptr)
21209 {
21210 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21211 struct file_entry *fe;
21212
21213 if (cu->line_header != NULL)
21214 fe = cu->line_header->file_name_at (file_index);
21215 else
21216 fe = NULL;
21217
21218 if (fe == NULL)
21219 complaint (_("file index out of range"));
21220 else
21221 symbol_set_symtab (sym, fe->symtab);
21222 }
21223
21224 switch (die->tag)
21225 {
21226 case DW_TAG_label:
21227 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21228 if (attr != nullptr)
21229 {
21230 CORE_ADDR addr;
21231
21232 addr = attr->value_as_address ();
21233 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21234 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21235 }
21236 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21237 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21238 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21239 add_symbol_to_list (sym, cu->list_in_scope);
21240 break;
21241 case DW_TAG_subprogram:
21242 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21243 finish_block. */
21244 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21245 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21246 if ((attr2 && (DW_UNSND (attr2) != 0))
21247 || cu->language == language_ada
21248 || cu->language == language_fortran)
21249 {
21250 /* Subprograms marked external are stored as a global symbol.
21251 Ada and Fortran subprograms, whether marked external or
21252 not, are always stored as a global symbol, because we want
21253 to be able to access them globally. For instance, we want
21254 to be able to break on a nested subprogram without having
21255 to specify the context. */
21256 list_to_add = cu->get_builder ()->get_global_symbols ();
21257 }
21258 else
21259 {
21260 list_to_add = cu->list_in_scope;
21261 }
21262 break;
21263 case DW_TAG_inlined_subroutine:
21264 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21265 finish_block. */
21266 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21267 SYMBOL_INLINED (sym) = 1;
21268 list_to_add = cu->list_in_scope;
21269 break;
21270 case DW_TAG_template_value_param:
21271 suppress_add = 1;
21272 /* Fall through. */
21273 case DW_TAG_constant:
21274 case DW_TAG_variable:
21275 case DW_TAG_member:
21276 /* Compilation with minimal debug info may result in
21277 variables with missing type entries. Change the
21278 misleading `void' type to something sensible. */
21279 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21280 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21281
21282 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21283 /* In the case of DW_TAG_member, we should only be called for
21284 static const members. */
21285 if (die->tag == DW_TAG_member)
21286 {
21287 /* dwarf2_add_field uses die_is_declaration,
21288 so we do the same. */
21289 gdb_assert (die_is_declaration (die, cu));
21290 gdb_assert (attr);
21291 }
21292 if (attr != nullptr)
21293 {
21294 dwarf2_const_value (attr, sym, cu);
21295 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21296 if (!suppress_add)
21297 {
21298 if (attr2 && (DW_UNSND (attr2) != 0))
21299 list_to_add = cu->get_builder ()->get_global_symbols ();
21300 else
21301 list_to_add = cu->list_in_scope;
21302 }
21303 break;
21304 }
21305 attr = dwarf2_attr (die, DW_AT_location, cu);
21306 if (attr != nullptr)
21307 {
21308 var_decode_location (attr, sym, cu);
21309 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21310
21311 /* Fortran explicitly imports any global symbols to the local
21312 scope by DW_TAG_common_block. */
21313 if (cu->language == language_fortran && die->parent
21314 && die->parent->tag == DW_TAG_common_block)
21315 attr2 = NULL;
21316
21317 if (SYMBOL_CLASS (sym) == LOC_STATIC
21318 && SYMBOL_VALUE_ADDRESS (sym) == 0
21319 && !dwarf2_per_objfile->has_section_at_zero)
21320 {
21321 /* When a static variable is eliminated by the linker,
21322 the corresponding debug information is not stripped
21323 out, but the variable address is set to null;
21324 do not add such variables into symbol table. */
21325 }
21326 else if (attr2 && (DW_UNSND (attr2) != 0))
21327 {
21328 if (SYMBOL_CLASS (sym) == LOC_STATIC
21329 && (objfile->flags & OBJF_MAINLINE) == 0
21330 && dwarf2_per_objfile->can_copy)
21331 {
21332 /* A global static variable might be subject to
21333 copy relocation. We first check for a local
21334 minsym, though, because maybe the symbol was
21335 marked hidden, in which case this would not
21336 apply. */
21337 bound_minimal_symbol found
21338 = (lookup_minimal_symbol_linkage
21339 (sym->linkage_name (), objfile));
21340 if (found.minsym != nullptr)
21341 sym->maybe_copied = 1;
21342 }
21343
21344 /* A variable with DW_AT_external is never static,
21345 but it may be block-scoped. */
21346 list_to_add
21347 = ((cu->list_in_scope
21348 == cu->get_builder ()->get_file_symbols ())
21349 ? cu->get_builder ()->get_global_symbols ()
21350 : cu->list_in_scope);
21351 }
21352 else
21353 list_to_add = cu->list_in_scope;
21354 }
21355 else
21356 {
21357 /* We do not know the address of this symbol.
21358 If it is an external symbol and we have type information
21359 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21360 The address of the variable will then be determined from
21361 the minimal symbol table whenever the variable is
21362 referenced. */
21363 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21364
21365 /* Fortran explicitly imports any global symbols to the local
21366 scope by DW_TAG_common_block. */
21367 if (cu->language == language_fortran && die->parent
21368 && die->parent->tag == DW_TAG_common_block)
21369 {
21370 /* SYMBOL_CLASS doesn't matter here because
21371 read_common_block is going to reset it. */
21372 if (!suppress_add)
21373 list_to_add = cu->list_in_scope;
21374 }
21375 else if (attr2 && (DW_UNSND (attr2) != 0)
21376 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21377 {
21378 /* A variable with DW_AT_external is never static, but it
21379 may be block-scoped. */
21380 list_to_add
21381 = ((cu->list_in_scope
21382 == cu->get_builder ()->get_file_symbols ())
21383 ? cu->get_builder ()->get_global_symbols ()
21384 : cu->list_in_scope);
21385
21386 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21387 }
21388 else if (!die_is_declaration (die, cu))
21389 {
21390 /* Use the default LOC_OPTIMIZED_OUT class. */
21391 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21392 if (!suppress_add)
21393 list_to_add = cu->list_in_scope;
21394 }
21395 }
21396 break;
21397 case DW_TAG_formal_parameter:
21398 {
21399 /* If we are inside a function, mark this as an argument. If
21400 not, we might be looking at an argument to an inlined function
21401 when we do not have enough information to show inlined frames;
21402 pretend it's a local variable in that case so that the user can
21403 still see it. */
21404 struct context_stack *curr
21405 = cu->get_builder ()->get_current_context_stack ();
21406 if (curr != nullptr && curr->name != nullptr)
21407 SYMBOL_IS_ARGUMENT (sym) = 1;
21408 attr = dwarf2_attr (die, DW_AT_location, cu);
21409 if (attr != nullptr)
21410 {
21411 var_decode_location (attr, sym, cu);
21412 }
21413 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21414 if (attr != nullptr)
21415 {
21416 dwarf2_const_value (attr, sym, cu);
21417 }
21418
21419 list_to_add = cu->list_in_scope;
21420 }
21421 break;
21422 case DW_TAG_unspecified_parameters:
21423 /* From varargs functions; gdb doesn't seem to have any
21424 interest in this information, so just ignore it for now.
21425 (FIXME?) */
21426 break;
21427 case DW_TAG_template_type_param:
21428 suppress_add = 1;
21429 /* Fall through. */
21430 case DW_TAG_class_type:
21431 case DW_TAG_interface_type:
21432 case DW_TAG_structure_type:
21433 case DW_TAG_union_type:
21434 case DW_TAG_set_type:
21435 case DW_TAG_enumeration_type:
21436 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21437 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21438
21439 {
21440 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21441 really ever be static objects: otherwise, if you try
21442 to, say, break of a class's method and you're in a file
21443 which doesn't mention that class, it won't work unless
21444 the check for all static symbols in lookup_symbol_aux
21445 saves you. See the OtherFileClass tests in
21446 gdb.c++/namespace.exp. */
21447
21448 if (!suppress_add)
21449 {
21450 buildsym_compunit *builder = cu->get_builder ();
21451 list_to_add
21452 = (cu->list_in_scope == builder->get_file_symbols ()
21453 && cu->language == language_cplus
21454 ? builder->get_global_symbols ()
21455 : cu->list_in_scope);
21456
21457 /* The semantics of C++ state that "struct foo {
21458 ... }" also defines a typedef for "foo". */
21459 if (cu->language == language_cplus
21460 || cu->language == language_ada
21461 || cu->language == language_d
21462 || cu->language == language_rust)
21463 {
21464 /* The symbol's name is already allocated along
21465 with this objfile, so we don't need to
21466 duplicate it for the type. */
21467 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21468 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
21469 }
21470 }
21471 }
21472 break;
21473 case DW_TAG_typedef:
21474 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21475 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21476 list_to_add = cu->list_in_scope;
21477 break;
21478 case DW_TAG_base_type:
21479 case DW_TAG_subrange_type:
21480 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21481 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21482 list_to_add = cu->list_in_scope;
21483 break;
21484 case DW_TAG_enumerator:
21485 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21486 if (attr != nullptr)
21487 {
21488 dwarf2_const_value (attr, sym, cu);
21489 }
21490 {
21491 /* NOTE: carlton/2003-11-10: See comment above in the
21492 DW_TAG_class_type, etc. block. */
21493
21494 list_to_add
21495 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21496 && cu->language == language_cplus
21497 ? cu->get_builder ()->get_global_symbols ()
21498 : cu->list_in_scope);
21499 }
21500 break;
21501 case DW_TAG_imported_declaration:
21502 case DW_TAG_namespace:
21503 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21504 list_to_add = cu->get_builder ()->get_global_symbols ();
21505 break;
21506 case DW_TAG_module:
21507 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21508 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21509 list_to_add = cu->get_builder ()->get_global_symbols ();
21510 break;
21511 case DW_TAG_common_block:
21512 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21513 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21514 add_symbol_to_list (sym, cu->list_in_scope);
21515 break;
21516 default:
21517 /* Not a tag we recognize. Hopefully we aren't processing
21518 trash data, but since we must specifically ignore things
21519 we don't recognize, there is nothing else we should do at
21520 this point. */
21521 complaint (_("unsupported tag: '%s'"),
21522 dwarf_tag_name (die->tag));
21523 break;
21524 }
21525
21526 if (suppress_add)
21527 {
21528 sym->hash_next = objfile->template_symbols;
21529 objfile->template_symbols = sym;
21530 list_to_add = NULL;
21531 }
21532
21533 if (list_to_add != NULL)
21534 add_symbol_to_list (sym, list_to_add);
21535
21536 /* For the benefit of old versions of GCC, check for anonymous
21537 namespaces based on the demangled name. */
21538 if (!cu->processing_has_namespace_info
21539 && cu->language == language_cplus)
21540 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21541 }
21542 return (sym);
21543 }
21544
21545 /* Given an attr with a DW_FORM_dataN value in host byte order,
21546 zero-extend it as appropriate for the symbol's type. The DWARF
21547 standard (v4) is not entirely clear about the meaning of using
21548 DW_FORM_dataN for a constant with a signed type, where the type is
21549 wider than the data. The conclusion of a discussion on the DWARF
21550 list was that this is unspecified. We choose to always zero-extend
21551 because that is the interpretation long in use by GCC. */
21552
21553 static gdb_byte *
21554 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21555 struct dwarf2_cu *cu, LONGEST *value, int bits)
21556 {
21557 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21558 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21559 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21560 LONGEST l = DW_UNSND (attr);
21561
21562 if (bits < sizeof (*value) * 8)
21563 {
21564 l &= ((LONGEST) 1 << bits) - 1;
21565 *value = l;
21566 }
21567 else if (bits == sizeof (*value) * 8)
21568 *value = l;
21569 else
21570 {
21571 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21572 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21573 return bytes;
21574 }
21575
21576 return NULL;
21577 }
21578
21579 /* Read a constant value from an attribute. Either set *VALUE, or if
21580 the value does not fit in *VALUE, set *BYTES - either already
21581 allocated on the objfile obstack, or newly allocated on OBSTACK,
21582 or, set *BATON, if we translated the constant to a location
21583 expression. */
21584
21585 static void
21586 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21587 const char *name, struct obstack *obstack,
21588 struct dwarf2_cu *cu,
21589 LONGEST *value, const gdb_byte **bytes,
21590 struct dwarf2_locexpr_baton **baton)
21591 {
21592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21593 struct comp_unit_head *cu_header = &cu->header;
21594 struct dwarf_block *blk;
21595 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21596 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21597
21598 *value = 0;
21599 *bytes = NULL;
21600 *baton = NULL;
21601
21602 switch (attr->form)
21603 {
21604 case DW_FORM_addr:
21605 case DW_FORM_addrx:
21606 case DW_FORM_GNU_addr_index:
21607 {
21608 gdb_byte *data;
21609
21610 if (TYPE_LENGTH (type) != cu_header->addr_size)
21611 dwarf2_const_value_length_mismatch_complaint (name,
21612 cu_header->addr_size,
21613 TYPE_LENGTH (type));
21614 /* Symbols of this form are reasonably rare, so we just
21615 piggyback on the existing location code rather than writing
21616 a new implementation of symbol_computed_ops. */
21617 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21618 (*baton)->per_cu = cu->per_cu;
21619 gdb_assert ((*baton)->per_cu);
21620
21621 (*baton)->size = 2 + cu_header->addr_size;
21622 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21623 (*baton)->data = data;
21624
21625 data[0] = DW_OP_addr;
21626 store_unsigned_integer (&data[1], cu_header->addr_size,
21627 byte_order, DW_ADDR (attr));
21628 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21629 }
21630 break;
21631 case DW_FORM_string:
21632 case DW_FORM_strp:
21633 case DW_FORM_strx:
21634 case DW_FORM_GNU_str_index:
21635 case DW_FORM_GNU_strp_alt:
21636 /* DW_STRING is already allocated on the objfile obstack, point
21637 directly to it. */
21638 *bytes = (const gdb_byte *) DW_STRING (attr);
21639 break;
21640 case DW_FORM_block1:
21641 case DW_FORM_block2:
21642 case DW_FORM_block4:
21643 case DW_FORM_block:
21644 case DW_FORM_exprloc:
21645 case DW_FORM_data16:
21646 blk = DW_BLOCK (attr);
21647 if (TYPE_LENGTH (type) != blk->size)
21648 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21649 TYPE_LENGTH (type));
21650 *bytes = blk->data;
21651 break;
21652
21653 /* The DW_AT_const_value attributes are supposed to carry the
21654 symbol's value "represented as it would be on the target
21655 architecture." By the time we get here, it's already been
21656 converted to host endianness, so we just need to sign- or
21657 zero-extend it as appropriate. */
21658 case DW_FORM_data1:
21659 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21660 break;
21661 case DW_FORM_data2:
21662 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21663 break;
21664 case DW_FORM_data4:
21665 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21666 break;
21667 case DW_FORM_data8:
21668 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21669 break;
21670
21671 case DW_FORM_sdata:
21672 case DW_FORM_implicit_const:
21673 *value = DW_SND (attr);
21674 break;
21675
21676 case DW_FORM_udata:
21677 *value = DW_UNSND (attr);
21678 break;
21679
21680 default:
21681 complaint (_("unsupported const value attribute form: '%s'"),
21682 dwarf_form_name (attr->form));
21683 *value = 0;
21684 break;
21685 }
21686 }
21687
21688
21689 /* Copy constant value from an attribute to a symbol. */
21690
21691 static void
21692 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21693 struct dwarf2_cu *cu)
21694 {
21695 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21696 LONGEST value;
21697 const gdb_byte *bytes;
21698 struct dwarf2_locexpr_baton *baton;
21699
21700 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21701 sym->print_name (),
21702 &objfile->objfile_obstack, cu,
21703 &value, &bytes, &baton);
21704
21705 if (baton != NULL)
21706 {
21707 SYMBOL_LOCATION_BATON (sym) = baton;
21708 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21709 }
21710 else if (bytes != NULL)
21711 {
21712 SYMBOL_VALUE_BYTES (sym) = bytes;
21713 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21714 }
21715 else
21716 {
21717 SYMBOL_VALUE (sym) = value;
21718 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21719 }
21720 }
21721
21722 /* Return the type of the die in question using its DW_AT_type attribute. */
21723
21724 static struct type *
21725 die_type (struct die_info *die, struct dwarf2_cu *cu)
21726 {
21727 struct attribute *type_attr;
21728
21729 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21730 if (!type_attr)
21731 {
21732 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21733 /* A missing DW_AT_type represents a void type. */
21734 return objfile_type (objfile)->builtin_void;
21735 }
21736
21737 return lookup_die_type (die, type_attr, cu);
21738 }
21739
21740 /* True iff CU's producer generates GNAT Ada auxiliary information
21741 that allows to find parallel types through that information instead
21742 of having to do expensive parallel lookups by type name. */
21743
21744 static int
21745 need_gnat_info (struct dwarf2_cu *cu)
21746 {
21747 /* Assume that the Ada compiler was GNAT, which always produces
21748 the auxiliary information. */
21749 return (cu->language == language_ada);
21750 }
21751
21752 /* Return the auxiliary type of the die in question using its
21753 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21754 attribute is not present. */
21755
21756 static struct type *
21757 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21758 {
21759 struct attribute *type_attr;
21760
21761 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21762 if (!type_attr)
21763 return NULL;
21764
21765 return lookup_die_type (die, type_attr, cu);
21766 }
21767
21768 /* If DIE has a descriptive_type attribute, then set the TYPE's
21769 descriptive type accordingly. */
21770
21771 static void
21772 set_descriptive_type (struct type *type, struct die_info *die,
21773 struct dwarf2_cu *cu)
21774 {
21775 struct type *descriptive_type = die_descriptive_type (die, cu);
21776
21777 if (descriptive_type)
21778 {
21779 ALLOCATE_GNAT_AUX_TYPE (type);
21780 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21781 }
21782 }
21783
21784 /* Return the containing type of the die in question using its
21785 DW_AT_containing_type attribute. */
21786
21787 static struct type *
21788 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21789 {
21790 struct attribute *type_attr;
21791 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21792
21793 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21794 if (!type_attr)
21795 error (_("Dwarf Error: Problem turning containing type into gdb type "
21796 "[in module %s]"), objfile_name (objfile));
21797
21798 return lookup_die_type (die, type_attr, cu);
21799 }
21800
21801 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21802
21803 static struct type *
21804 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21805 {
21806 struct dwarf2_per_objfile *dwarf2_per_objfile
21807 = cu->per_cu->dwarf2_per_objfile;
21808 struct objfile *objfile = dwarf2_per_objfile->objfile;
21809 char *saved;
21810
21811 std::string message
21812 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21813 objfile_name (objfile),
21814 sect_offset_str (cu->header.sect_off),
21815 sect_offset_str (die->sect_off));
21816 saved = obstack_strdup (&objfile->objfile_obstack, message);
21817
21818 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21819 }
21820
21821 /* Look up the type of DIE in CU using its type attribute ATTR.
21822 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21823 DW_AT_containing_type.
21824 If there is no type substitute an error marker. */
21825
21826 static struct type *
21827 lookup_die_type (struct die_info *die, const struct attribute *attr,
21828 struct dwarf2_cu *cu)
21829 {
21830 struct dwarf2_per_objfile *dwarf2_per_objfile
21831 = cu->per_cu->dwarf2_per_objfile;
21832 struct objfile *objfile = dwarf2_per_objfile->objfile;
21833 struct type *this_type;
21834
21835 gdb_assert (attr->name == DW_AT_type
21836 || attr->name == DW_AT_GNAT_descriptive_type
21837 || attr->name == DW_AT_containing_type);
21838
21839 /* First see if we have it cached. */
21840
21841 if (attr->form == DW_FORM_GNU_ref_alt)
21842 {
21843 struct dwarf2_per_cu_data *per_cu;
21844 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21845
21846 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21847 dwarf2_per_objfile);
21848 this_type = get_die_type_at_offset (sect_off, per_cu);
21849 }
21850 else if (attr->form_is_ref ())
21851 {
21852 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21853
21854 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21855 }
21856 else if (attr->form == DW_FORM_ref_sig8)
21857 {
21858 ULONGEST signature = DW_SIGNATURE (attr);
21859
21860 return get_signatured_type (die, signature, cu);
21861 }
21862 else
21863 {
21864 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21865 " at %s [in module %s]"),
21866 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21867 objfile_name (objfile));
21868 return build_error_marker_type (cu, die);
21869 }
21870
21871 /* If not cached we need to read it in. */
21872
21873 if (this_type == NULL)
21874 {
21875 struct die_info *type_die = NULL;
21876 struct dwarf2_cu *type_cu = cu;
21877
21878 if (attr->form_is_ref ())
21879 type_die = follow_die_ref (die, attr, &type_cu);
21880 if (type_die == NULL)
21881 return build_error_marker_type (cu, die);
21882 /* If we find the type now, it's probably because the type came
21883 from an inter-CU reference and the type's CU got expanded before
21884 ours. */
21885 this_type = read_type_die (type_die, type_cu);
21886 }
21887
21888 /* If we still don't have a type use an error marker. */
21889
21890 if (this_type == NULL)
21891 return build_error_marker_type (cu, die);
21892
21893 return this_type;
21894 }
21895
21896 /* Return the type in DIE, CU.
21897 Returns NULL for invalid types.
21898
21899 This first does a lookup in die_type_hash,
21900 and only reads the die in if necessary.
21901
21902 NOTE: This can be called when reading in partial or full symbols. */
21903
21904 static struct type *
21905 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21906 {
21907 struct type *this_type;
21908
21909 this_type = get_die_type (die, cu);
21910 if (this_type)
21911 return this_type;
21912
21913 return read_type_die_1 (die, cu);
21914 }
21915
21916 /* Read the type in DIE, CU.
21917 Returns NULL for invalid types. */
21918
21919 static struct type *
21920 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21921 {
21922 struct type *this_type = NULL;
21923
21924 switch (die->tag)
21925 {
21926 case DW_TAG_class_type:
21927 case DW_TAG_interface_type:
21928 case DW_TAG_structure_type:
21929 case DW_TAG_union_type:
21930 this_type = read_structure_type (die, cu);
21931 break;
21932 case DW_TAG_enumeration_type:
21933 this_type = read_enumeration_type (die, cu);
21934 break;
21935 case DW_TAG_subprogram:
21936 case DW_TAG_subroutine_type:
21937 case DW_TAG_inlined_subroutine:
21938 this_type = read_subroutine_type (die, cu);
21939 break;
21940 case DW_TAG_array_type:
21941 this_type = read_array_type (die, cu);
21942 break;
21943 case DW_TAG_set_type:
21944 this_type = read_set_type (die, cu);
21945 break;
21946 case DW_TAG_pointer_type:
21947 this_type = read_tag_pointer_type (die, cu);
21948 break;
21949 case DW_TAG_ptr_to_member_type:
21950 this_type = read_tag_ptr_to_member_type (die, cu);
21951 break;
21952 case DW_TAG_reference_type:
21953 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21954 break;
21955 case DW_TAG_rvalue_reference_type:
21956 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21957 break;
21958 case DW_TAG_const_type:
21959 this_type = read_tag_const_type (die, cu);
21960 break;
21961 case DW_TAG_volatile_type:
21962 this_type = read_tag_volatile_type (die, cu);
21963 break;
21964 case DW_TAG_restrict_type:
21965 this_type = read_tag_restrict_type (die, cu);
21966 break;
21967 case DW_TAG_string_type:
21968 this_type = read_tag_string_type (die, cu);
21969 break;
21970 case DW_TAG_typedef:
21971 this_type = read_typedef (die, cu);
21972 break;
21973 case DW_TAG_subrange_type:
21974 this_type = read_subrange_type (die, cu);
21975 break;
21976 case DW_TAG_base_type:
21977 this_type = read_base_type (die, cu);
21978 break;
21979 case DW_TAG_unspecified_type:
21980 this_type = read_unspecified_type (die, cu);
21981 break;
21982 case DW_TAG_namespace:
21983 this_type = read_namespace_type (die, cu);
21984 break;
21985 case DW_TAG_module:
21986 this_type = read_module_type (die, cu);
21987 break;
21988 case DW_TAG_atomic_type:
21989 this_type = read_tag_atomic_type (die, cu);
21990 break;
21991 default:
21992 complaint (_("unexpected tag in read_type_die: '%s'"),
21993 dwarf_tag_name (die->tag));
21994 break;
21995 }
21996
21997 return this_type;
21998 }
21999
22000 /* See if we can figure out if the class lives in a namespace. We do
22001 this by looking for a member function; its demangled name will
22002 contain namespace info, if there is any.
22003 Return the computed name or NULL.
22004 Space for the result is allocated on the objfile's obstack.
22005 This is the full-die version of guess_partial_die_structure_name.
22006 In this case we know DIE has no useful parent. */
22007
22008 static const char *
22009 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22010 {
22011 struct die_info *spec_die;
22012 struct dwarf2_cu *spec_cu;
22013 struct die_info *child;
22014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22015
22016 spec_cu = cu;
22017 spec_die = die_specification (die, &spec_cu);
22018 if (spec_die != NULL)
22019 {
22020 die = spec_die;
22021 cu = spec_cu;
22022 }
22023
22024 for (child = die->child;
22025 child != NULL;
22026 child = child->sibling)
22027 {
22028 if (child->tag == DW_TAG_subprogram)
22029 {
22030 const char *linkage_name = dw2_linkage_name (child, cu);
22031
22032 if (linkage_name != NULL)
22033 {
22034 gdb::unique_xmalloc_ptr<char> actual_name
22035 (language_class_name_from_physname (cu->language_defn,
22036 linkage_name));
22037 const char *name = NULL;
22038
22039 if (actual_name != NULL)
22040 {
22041 const char *die_name = dwarf2_name (die, cu);
22042
22043 if (die_name != NULL
22044 && strcmp (die_name, actual_name.get ()) != 0)
22045 {
22046 /* Strip off the class name from the full name.
22047 We want the prefix. */
22048 int die_name_len = strlen (die_name);
22049 int actual_name_len = strlen (actual_name.get ());
22050 const char *ptr = actual_name.get ();
22051
22052 /* Test for '::' as a sanity check. */
22053 if (actual_name_len > die_name_len + 2
22054 && ptr[actual_name_len - die_name_len - 1] == ':')
22055 name = obstack_strndup (
22056 &objfile->per_bfd->storage_obstack,
22057 ptr, actual_name_len - die_name_len - 2);
22058 }
22059 }
22060 return name;
22061 }
22062 }
22063 }
22064
22065 return NULL;
22066 }
22067
22068 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22069 prefix part in such case. See
22070 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22071
22072 static const char *
22073 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22074 {
22075 struct attribute *attr;
22076 const char *base;
22077
22078 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22079 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22080 return NULL;
22081
22082 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22083 return NULL;
22084
22085 attr = dw2_linkage_name_attr (die, cu);
22086 if (attr == NULL || DW_STRING (attr) == NULL)
22087 return NULL;
22088
22089 /* dwarf2_name had to be already called. */
22090 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22091
22092 /* Strip the base name, keep any leading namespaces/classes. */
22093 base = strrchr (DW_STRING (attr), ':');
22094 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22095 return "";
22096
22097 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22098 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22099 DW_STRING (attr),
22100 &base[-1] - DW_STRING (attr));
22101 }
22102
22103 /* Return the name of the namespace/class that DIE is defined within,
22104 or "" if we can't tell. The caller should not xfree the result.
22105
22106 For example, if we're within the method foo() in the following
22107 code:
22108
22109 namespace N {
22110 class C {
22111 void foo () {
22112 }
22113 };
22114 }
22115
22116 then determine_prefix on foo's die will return "N::C". */
22117
22118 static const char *
22119 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22120 {
22121 struct dwarf2_per_objfile *dwarf2_per_objfile
22122 = cu->per_cu->dwarf2_per_objfile;
22123 struct die_info *parent, *spec_die;
22124 struct dwarf2_cu *spec_cu;
22125 struct type *parent_type;
22126 const char *retval;
22127
22128 if (cu->language != language_cplus
22129 && cu->language != language_fortran && cu->language != language_d
22130 && cu->language != language_rust)
22131 return "";
22132
22133 retval = anonymous_struct_prefix (die, cu);
22134 if (retval)
22135 return retval;
22136
22137 /* We have to be careful in the presence of DW_AT_specification.
22138 For example, with GCC 3.4, given the code
22139
22140 namespace N {
22141 void foo() {
22142 // Definition of N::foo.
22143 }
22144 }
22145
22146 then we'll have a tree of DIEs like this:
22147
22148 1: DW_TAG_compile_unit
22149 2: DW_TAG_namespace // N
22150 3: DW_TAG_subprogram // declaration of N::foo
22151 4: DW_TAG_subprogram // definition of N::foo
22152 DW_AT_specification // refers to die #3
22153
22154 Thus, when processing die #4, we have to pretend that we're in
22155 the context of its DW_AT_specification, namely the contex of die
22156 #3. */
22157 spec_cu = cu;
22158 spec_die = die_specification (die, &spec_cu);
22159 if (spec_die == NULL)
22160 parent = die->parent;
22161 else
22162 {
22163 parent = spec_die->parent;
22164 cu = spec_cu;
22165 }
22166
22167 if (parent == NULL)
22168 return "";
22169 else if (parent->building_fullname)
22170 {
22171 const char *name;
22172 const char *parent_name;
22173
22174 /* It has been seen on RealView 2.2 built binaries,
22175 DW_TAG_template_type_param types actually _defined_ as
22176 children of the parent class:
22177
22178 enum E {};
22179 template class <class Enum> Class{};
22180 Class<enum E> class_e;
22181
22182 1: DW_TAG_class_type (Class)
22183 2: DW_TAG_enumeration_type (E)
22184 3: DW_TAG_enumerator (enum1:0)
22185 3: DW_TAG_enumerator (enum2:1)
22186 ...
22187 2: DW_TAG_template_type_param
22188 DW_AT_type DW_FORM_ref_udata (E)
22189
22190 Besides being broken debug info, it can put GDB into an
22191 infinite loop. Consider:
22192
22193 When we're building the full name for Class<E>, we'll start
22194 at Class, and go look over its template type parameters,
22195 finding E. We'll then try to build the full name of E, and
22196 reach here. We're now trying to build the full name of E,
22197 and look over the parent DIE for containing scope. In the
22198 broken case, if we followed the parent DIE of E, we'd again
22199 find Class, and once again go look at its template type
22200 arguments, etc., etc. Simply don't consider such parent die
22201 as source-level parent of this die (it can't be, the language
22202 doesn't allow it), and break the loop here. */
22203 name = dwarf2_name (die, cu);
22204 parent_name = dwarf2_name (parent, cu);
22205 complaint (_("template param type '%s' defined within parent '%s'"),
22206 name ? name : "<unknown>",
22207 parent_name ? parent_name : "<unknown>");
22208 return "";
22209 }
22210 else
22211 switch (parent->tag)
22212 {
22213 case DW_TAG_namespace:
22214 parent_type = read_type_die (parent, cu);
22215 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22216 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22217 Work around this problem here. */
22218 if (cu->language == language_cplus
22219 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22220 return "";
22221 /* We give a name to even anonymous namespaces. */
22222 return TYPE_NAME (parent_type);
22223 case DW_TAG_class_type:
22224 case DW_TAG_interface_type:
22225 case DW_TAG_structure_type:
22226 case DW_TAG_union_type:
22227 case DW_TAG_module:
22228 parent_type = read_type_die (parent, cu);
22229 if (TYPE_NAME (parent_type) != NULL)
22230 return TYPE_NAME (parent_type);
22231 else
22232 /* An anonymous structure is only allowed non-static data
22233 members; no typedefs, no member functions, et cetera.
22234 So it does not need a prefix. */
22235 return "";
22236 case DW_TAG_compile_unit:
22237 case DW_TAG_partial_unit:
22238 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22239 if (cu->language == language_cplus
22240 && !dwarf2_per_objfile->types.empty ()
22241 && die->child != NULL
22242 && (die->tag == DW_TAG_class_type
22243 || die->tag == DW_TAG_structure_type
22244 || die->tag == DW_TAG_union_type))
22245 {
22246 const char *name = guess_full_die_structure_name (die, cu);
22247 if (name != NULL)
22248 return name;
22249 }
22250 return "";
22251 case DW_TAG_subprogram:
22252 /* Nested subroutines in Fortran get a prefix with the name
22253 of the parent's subroutine. */
22254 if (cu->language == language_fortran)
22255 {
22256 if ((die->tag == DW_TAG_subprogram)
22257 && (dwarf2_name (parent, cu) != NULL))
22258 return dwarf2_name (parent, cu);
22259 }
22260 return determine_prefix (parent, cu);
22261 case DW_TAG_enumeration_type:
22262 parent_type = read_type_die (parent, cu);
22263 if (TYPE_DECLARED_CLASS (parent_type))
22264 {
22265 if (TYPE_NAME (parent_type) != NULL)
22266 return TYPE_NAME (parent_type);
22267 return "";
22268 }
22269 /* Fall through. */
22270 default:
22271 return determine_prefix (parent, cu);
22272 }
22273 }
22274
22275 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22276 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22277 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22278 an obconcat, otherwise allocate storage for the result. The CU argument is
22279 used to determine the language and hence, the appropriate separator. */
22280
22281 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22282
22283 static char *
22284 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22285 int physname, struct dwarf2_cu *cu)
22286 {
22287 const char *lead = "";
22288 const char *sep;
22289
22290 if (suffix == NULL || suffix[0] == '\0'
22291 || prefix == NULL || prefix[0] == '\0')
22292 sep = "";
22293 else if (cu->language == language_d)
22294 {
22295 /* For D, the 'main' function could be defined in any module, but it
22296 should never be prefixed. */
22297 if (strcmp (suffix, "D main") == 0)
22298 {
22299 prefix = "";
22300 sep = "";
22301 }
22302 else
22303 sep = ".";
22304 }
22305 else if (cu->language == language_fortran && physname)
22306 {
22307 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22308 DW_AT_MIPS_linkage_name is preferred and used instead. */
22309
22310 lead = "__";
22311 sep = "_MOD_";
22312 }
22313 else
22314 sep = "::";
22315
22316 if (prefix == NULL)
22317 prefix = "";
22318 if (suffix == NULL)
22319 suffix = "";
22320
22321 if (obs == NULL)
22322 {
22323 char *retval
22324 = ((char *)
22325 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22326
22327 strcpy (retval, lead);
22328 strcat (retval, prefix);
22329 strcat (retval, sep);
22330 strcat (retval, suffix);
22331 return retval;
22332 }
22333 else
22334 {
22335 /* We have an obstack. */
22336 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22337 }
22338 }
22339
22340 /* Return sibling of die, NULL if no sibling. */
22341
22342 static struct die_info *
22343 sibling_die (struct die_info *die)
22344 {
22345 return die->sibling;
22346 }
22347
22348 /* Get name of a die, return NULL if not found. */
22349
22350 static const char *
22351 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22352 struct obstack *obstack)
22353 {
22354 if (name && cu->language == language_cplus)
22355 {
22356 std::string canon_name = cp_canonicalize_string (name);
22357
22358 if (!canon_name.empty ())
22359 {
22360 if (canon_name != name)
22361 name = obstack_strdup (obstack, canon_name);
22362 }
22363 }
22364
22365 return name;
22366 }
22367
22368 /* Get name of a die, return NULL if not found.
22369 Anonymous namespaces are converted to their magic string. */
22370
22371 static const char *
22372 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22373 {
22374 struct attribute *attr;
22375 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22376
22377 attr = dwarf2_attr (die, DW_AT_name, cu);
22378 if ((!attr || !DW_STRING (attr))
22379 && die->tag != DW_TAG_namespace
22380 && die->tag != DW_TAG_class_type
22381 && die->tag != DW_TAG_interface_type
22382 && die->tag != DW_TAG_structure_type
22383 && die->tag != DW_TAG_union_type)
22384 return NULL;
22385
22386 switch (die->tag)
22387 {
22388 case DW_TAG_compile_unit:
22389 case DW_TAG_partial_unit:
22390 /* Compilation units have a DW_AT_name that is a filename, not
22391 a source language identifier. */
22392 case DW_TAG_enumeration_type:
22393 case DW_TAG_enumerator:
22394 /* These tags always have simple identifiers already; no need
22395 to canonicalize them. */
22396 return DW_STRING (attr);
22397
22398 case DW_TAG_namespace:
22399 if (attr != NULL && DW_STRING (attr) != NULL)
22400 return DW_STRING (attr);
22401 return CP_ANONYMOUS_NAMESPACE_STR;
22402
22403 case DW_TAG_class_type:
22404 case DW_TAG_interface_type:
22405 case DW_TAG_structure_type:
22406 case DW_TAG_union_type:
22407 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22408 structures or unions. These were of the form "._%d" in GCC 4.1,
22409 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22410 and GCC 4.4. We work around this problem by ignoring these. */
22411 if (attr && DW_STRING (attr)
22412 && (startswith (DW_STRING (attr), "._")
22413 || startswith (DW_STRING (attr), "<anonymous")))
22414 return NULL;
22415
22416 /* GCC might emit a nameless typedef that has a linkage name. See
22417 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22418 if (!attr || DW_STRING (attr) == NULL)
22419 {
22420 attr = dw2_linkage_name_attr (die, cu);
22421 if (attr == NULL || DW_STRING (attr) == NULL)
22422 return NULL;
22423
22424 /* Avoid demangling DW_STRING (attr) the second time on a second
22425 call for the same DIE. */
22426 if (!DW_STRING_IS_CANONICAL (attr))
22427 {
22428 gdb::unique_xmalloc_ptr<char> demangled
22429 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
22430
22431 const char *base;
22432
22433 /* FIXME: we already did this for the partial symbol... */
22434 DW_STRING (attr)
22435 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22436 demangled.get ());
22437 DW_STRING_IS_CANONICAL (attr) = 1;
22438
22439 /* Strip any leading namespaces/classes, keep only the base name.
22440 DW_AT_name for named DIEs does not contain the prefixes. */
22441 base = strrchr (DW_STRING (attr), ':');
22442 if (base && base > DW_STRING (attr) && base[-1] == ':')
22443 return &base[1];
22444 else
22445 return DW_STRING (attr);
22446 }
22447 }
22448 break;
22449
22450 default:
22451 break;
22452 }
22453
22454 if (!DW_STRING_IS_CANONICAL (attr))
22455 {
22456 DW_STRING (attr)
22457 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22458 &objfile->per_bfd->storage_obstack);
22459 DW_STRING_IS_CANONICAL (attr) = 1;
22460 }
22461 return DW_STRING (attr);
22462 }
22463
22464 /* Return the die that this die in an extension of, or NULL if there
22465 is none. *EXT_CU is the CU containing DIE on input, and the CU
22466 containing the return value on output. */
22467
22468 static struct die_info *
22469 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22470 {
22471 struct attribute *attr;
22472
22473 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22474 if (attr == NULL)
22475 return NULL;
22476
22477 return follow_die_ref (die, attr, ext_cu);
22478 }
22479
22480 /* A convenience function that returns an "unknown" DWARF name,
22481 including the value of V. STR is the name of the entity being
22482 printed, e.g., "TAG". */
22483
22484 static const char *
22485 dwarf_unknown (const char *str, unsigned v)
22486 {
22487 char *cell = get_print_cell ();
22488 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22489 return cell;
22490 }
22491
22492 /* Convert a DIE tag into its string name. */
22493
22494 static const char *
22495 dwarf_tag_name (unsigned tag)
22496 {
22497 const char *name = get_DW_TAG_name (tag);
22498
22499 if (name == NULL)
22500 return dwarf_unknown ("TAG", tag);
22501
22502 return name;
22503 }
22504
22505 /* Convert a DWARF attribute code into its string name. */
22506
22507 static const char *
22508 dwarf_attr_name (unsigned attr)
22509 {
22510 const char *name;
22511
22512 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22513 if (attr == DW_AT_MIPS_fde)
22514 return "DW_AT_MIPS_fde";
22515 #else
22516 if (attr == DW_AT_HP_block_index)
22517 return "DW_AT_HP_block_index";
22518 #endif
22519
22520 name = get_DW_AT_name (attr);
22521
22522 if (name == NULL)
22523 return dwarf_unknown ("AT", attr);
22524
22525 return name;
22526 }
22527
22528 /* Convert a unit type to corresponding DW_UT name. */
22529
22530 static const char *
22531 dwarf_unit_type_name (int unit_type) {
22532 switch (unit_type)
22533 {
22534 case 0x01:
22535 return "DW_UT_compile (0x01)";
22536 case 0x02:
22537 return "DW_UT_type (0x02)";
22538 case 0x03:
22539 return "DW_UT_partial (0x03)";
22540 case 0x04:
22541 return "DW_UT_skeleton (0x04)";
22542 case 0x05:
22543 return "DW_UT_split_compile (0x05)";
22544 case 0x06:
22545 return "DW_UT_split_type (0x06)";
22546 case 0x80:
22547 return "DW_UT_lo_user (0x80)";
22548 case 0xff:
22549 return "DW_UT_hi_user (0xff)";
22550 default:
22551 return nullptr;
22552 }
22553 }
22554
22555 /* Convert a DWARF value form code into its string name. */
22556
22557 static const char *
22558 dwarf_form_name (unsigned form)
22559 {
22560 const char *name = get_DW_FORM_name (form);
22561
22562 if (name == NULL)
22563 return dwarf_unknown ("FORM", form);
22564
22565 return name;
22566 }
22567
22568 static const char *
22569 dwarf_bool_name (unsigned mybool)
22570 {
22571 if (mybool)
22572 return "TRUE";
22573 else
22574 return "FALSE";
22575 }
22576
22577 /* Convert a DWARF type code into its string name. */
22578
22579 static const char *
22580 dwarf_type_encoding_name (unsigned enc)
22581 {
22582 const char *name = get_DW_ATE_name (enc);
22583
22584 if (name == NULL)
22585 return dwarf_unknown ("ATE", enc);
22586
22587 return name;
22588 }
22589
22590 static void
22591 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22592 {
22593 unsigned int i;
22594
22595 print_spaces (indent, f);
22596 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22597 dwarf_tag_name (die->tag), die->abbrev,
22598 sect_offset_str (die->sect_off));
22599
22600 if (die->parent != NULL)
22601 {
22602 print_spaces (indent, f);
22603 fprintf_unfiltered (f, " parent at offset: %s\n",
22604 sect_offset_str (die->parent->sect_off));
22605 }
22606
22607 print_spaces (indent, f);
22608 fprintf_unfiltered (f, " has children: %s\n",
22609 dwarf_bool_name (die->child != NULL));
22610
22611 print_spaces (indent, f);
22612 fprintf_unfiltered (f, " attributes:\n");
22613
22614 for (i = 0; i < die->num_attrs; ++i)
22615 {
22616 print_spaces (indent, f);
22617 fprintf_unfiltered (f, " %s (%s) ",
22618 dwarf_attr_name (die->attrs[i].name),
22619 dwarf_form_name (die->attrs[i].form));
22620
22621 switch (die->attrs[i].form)
22622 {
22623 case DW_FORM_addr:
22624 case DW_FORM_addrx:
22625 case DW_FORM_GNU_addr_index:
22626 fprintf_unfiltered (f, "address: ");
22627 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22628 break;
22629 case DW_FORM_block2:
22630 case DW_FORM_block4:
22631 case DW_FORM_block:
22632 case DW_FORM_block1:
22633 fprintf_unfiltered (f, "block: size %s",
22634 pulongest (DW_BLOCK (&die->attrs[i])->size));
22635 break;
22636 case DW_FORM_exprloc:
22637 fprintf_unfiltered (f, "expression: size %s",
22638 pulongest (DW_BLOCK (&die->attrs[i])->size));
22639 break;
22640 case DW_FORM_data16:
22641 fprintf_unfiltered (f, "constant of 16 bytes");
22642 break;
22643 case DW_FORM_ref_addr:
22644 fprintf_unfiltered (f, "ref address: ");
22645 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22646 break;
22647 case DW_FORM_GNU_ref_alt:
22648 fprintf_unfiltered (f, "alt ref address: ");
22649 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22650 break;
22651 case DW_FORM_ref1:
22652 case DW_FORM_ref2:
22653 case DW_FORM_ref4:
22654 case DW_FORM_ref8:
22655 case DW_FORM_ref_udata:
22656 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22657 (long) (DW_UNSND (&die->attrs[i])));
22658 break;
22659 case DW_FORM_data1:
22660 case DW_FORM_data2:
22661 case DW_FORM_data4:
22662 case DW_FORM_data8:
22663 case DW_FORM_udata:
22664 case DW_FORM_sdata:
22665 fprintf_unfiltered (f, "constant: %s",
22666 pulongest (DW_UNSND (&die->attrs[i])));
22667 break;
22668 case DW_FORM_sec_offset:
22669 fprintf_unfiltered (f, "section offset: %s",
22670 pulongest (DW_UNSND (&die->attrs[i])));
22671 break;
22672 case DW_FORM_ref_sig8:
22673 fprintf_unfiltered (f, "signature: %s",
22674 hex_string (DW_SIGNATURE (&die->attrs[i])));
22675 break;
22676 case DW_FORM_string:
22677 case DW_FORM_strp:
22678 case DW_FORM_line_strp:
22679 case DW_FORM_strx:
22680 case DW_FORM_GNU_str_index:
22681 case DW_FORM_GNU_strp_alt:
22682 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22683 DW_STRING (&die->attrs[i])
22684 ? DW_STRING (&die->attrs[i]) : "",
22685 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22686 break;
22687 case DW_FORM_flag:
22688 if (DW_UNSND (&die->attrs[i]))
22689 fprintf_unfiltered (f, "flag: TRUE");
22690 else
22691 fprintf_unfiltered (f, "flag: FALSE");
22692 break;
22693 case DW_FORM_flag_present:
22694 fprintf_unfiltered (f, "flag: TRUE");
22695 break;
22696 case DW_FORM_indirect:
22697 /* The reader will have reduced the indirect form to
22698 the "base form" so this form should not occur. */
22699 fprintf_unfiltered (f,
22700 "unexpected attribute form: DW_FORM_indirect");
22701 break;
22702 case DW_FORM_implicit_const:
22703 fprintf_unfiltered (f, "constant: %s",
22704 plongest (DW_SND (&die->attrs[i])));
22705 break;
22706 default:
22707 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22708 die->attrs[i].form);
22709 break;
22710 }
22711 fprintf_unfiltered (f, "\n");
22712 }
22713 }
22714
22715 static void
22716 dump_die_for_error (struct die_info *die)
22717 {
22718 dump_die_shallow (gdb_stderr, 0, die);
22719 }
22720
22721 static void
22722 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22723 {
22724 int indent = level * 4;
22725
22726 gdb_assert (die != NULL);
22727
22728 if (level >= max_level)
22729 return;
22730
22731 dump_die_shallow (f, indent, die);
22732
22733 if (die->child != NULL)
22734 {
22735 print_spaces (indent, f);
22736 fprintf_unfiltered (f, " Children:");
22737 if (level + 1 < max_level)
22738 {
22739 fprintf_unfiltered (f, "\n");
22740 dump_die_1 (f, level + 1, max_level, die->child);
22741 }
22742 else
22743 {
22744 fprintf_unfiltered (f,
22745 " [not printed, max nesting level reached]\n");
22746 }
22747 }
22748
22749 if (die->sibling != NULL && level > 0)
22750 {
22751 dump_die_1 (f, level, max_level, die->sibling);
22752 }
22753 }
22754
22755 /* This is called from the pdie macro in gdbinit.in.
22756 It's not static so gcc will keep a copy callable from gdb. */
22757
22758 void
22759 dump_die (struct die_info *die, int max_level)
22760 {
22761 dump_die_1 (gdb_stdlog, 0, max_level, die);
22762 }
22763
22764 static void
22765 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22766 {
22767 void **slot;
22768
22769 slot = htab_find_slot_with_hash (cu->die_hash, die,
22770 to_underlying (die->sect_off),
22771 INSERT);
22772
22773 *slot = die;
22774 }
22775
22776 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22777 required kind. */
22778
22779 static sect_offset
22780 dwarf2_get_ref_die_offset (const struct attribute *attr)
22781 {
22782 if (attr->form_is_ref ())
22783 return (sect_offset) DW_UNSND (attr);
22784
22785 complaint (_("unsupported die ref attribute form: '%s'"),
22786 dwarf_form_name (attr->form));
22787 return {};
22788 }
22789
22790 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22791 * the value held by the attribute is not constant. */
22792
22793 static LONGEST
22794 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22795 {
22796 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22797 return DW_SND (attr);
22798 else if (attr->form == DW_FORM_udata
22799 || attr->form == DW_FORM_data1
22800 || attr->form == DW_FORM_data2
22801 || attr->form == DW_FORM_data4
22802 || attr->form == DW_FORM_data8)
22803 return DW_UNSND (attr);
22804 else
22805 {
22806 /* For DW_FORM_data16 see attribute::form_is_constant. */
22807 complaint (_("Attribute value is not a constant (%s)"),
22808 dwarf_form_name (attr->form));
22809 return default_value;
22810 }
22811 }
22812
22813 /* Follow reference or signature attribute ATTR of SRC_DIE.
22814 On entry *REF_CU is the CU of SRC_DIE.
22815 On exit *REF_CU is the CU of the result. */
22816
22817 static struct die_info *
22818 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22819 struct dwarf2_cu **ref_cu)
22820 {
22821 struct die_info *die;
22822
22823 if (attr->form_is_ref ())
22824 die = follow_die_ref (src_die, attr, ref_cu);
22825 else if (attr->form == DW_FORM_ref_sig8)
22826 die = follow_die_sig (src_die, attr, ref_cu);
22827 else
22828 {
22829 dump_die_for_error (src_die);
22830 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22831 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22832 }
22833
22834 return die;
22835 }
22836
22837 /* Follow reference OFFSET.
22838 On entry *REF_CU is the CU of the source die referencing OFFSET.
22839 On exit *REF_CU is the CU of the result.
22840 Returns NULL if OFFSET is invalid. */
22841
22842 static struct die_info *
22843 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22844 struct dwarf2_cu **ref_cu)
22845 {
22846 struct die_info temp_die;
22847 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22848 struct dwarf2_per_objfile *dwarf2_per_objfile
22849 = cu->per_cu->dwarf2_per_objfile;
22850
22851 gdb_assert (cu->per_cu != NULL);
22852
22853 target_cu = cu;
22854
22855 if (cu->per_cu->is_debug_types)
22856 {
22857 /* .debug_types CUs cannot reference anything outside their CU.
22858 If they need to, they have to reference a signatured type via
22859 DW_FORM_ref_sig8. */
22860 if (!offset_in_cu_p (&cu->header, sect_off))
22861 return NULL;
22862 }
22863 else if (offset_in_dwz != cu->per_cu->is_dwz
22864 || !offset_in_cu_p (&cu->header, sect_off))
22865 {
22866 struct dwarf2_per_cu_data *per_cu;
22867
22868 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22869 dwarf2_per_objfile);
22870
22871 /* If necessary, add it to the queue and load its DIEs. */
22872 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22873 load_full_comp_unit (per_cu, false, cu->language);
22874
22875 target_cu = per_cu->cu;
22876 }
22877 else if (cu->dies == NULL)
22878 {
22879 /* We're loading full DIEs during partial symbol reading. */
22880 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22881 load_full_comp_unit (cu->per_cu, false, language_minimal);
22882 }
22883
22884 *ref_cu = target_cu;
22885 temp_die.sect_off = sect_off;
22886
22887 if (target_cu != cu)
22888 target_cu->ancestor = cu;
22889
22890 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22891 &temp_die,
22892 to_underlying (sect_off));
22893 }
22894
22895 /* Follow reference attribute ATTR of SRC_DIE.
22896 On entry *REF_CU is the CU of SRC_DIE.
22897 On exit *REF_CU is the CU of the result. */
22898
22899 static struct die_info *
22900 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22901 struct dwarf2_cu **ref_cu)
22902 {
22903 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22904 struct dwarf2_cu *cu = *ref_cu;
22905 struct die_info *die;
22906
22907 die = follow_die_offset (sect_off,
22908 (attr->form == DW_FORM_GNU_ref_alt
22909 || cu->per_cu->is_dwz),
22910 ref_cu);
22911 if (!die)
22912 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22913 "at %s [in module %s]"),
22914 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22915 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22916
22917 return die;
22918 }
22919
22920 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22921 Returned value is intended for DW_OP_call*. Returned
22922 dwarf2_locexpr_baton->data has lifetime of
22923 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22924
22925 struct dwarf2_locexpr_baton
22926 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22927 struct dwarf2_per_cu_data *per_cu,
22928 CORE_ADDR (*get_frame_pc) (void *baton),
22929 void *baton, bool resolve_abstract_p)
22930 {
22931 struct dwarf2_cu *cu;
22932 struct die_info *die;
22933 struct attribute *attr;
22934 struct dwarf2_locexpr_baton retval;
22935 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22936 struct objfile *objfile = dwarf2_per_objfile->objfile;
22937
22938 if (per_cu->cu == NULL)
22939 load_cu (per_cu, false);
22940 cu = per_cu->cu;
22941 if (cu == NULL)
22942 {
22943 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22944 Instead just throw an error, not much else we can do. */
22945 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22946 sect_offset_str (sect_off), objfile_name (objfile));
22947 }
22948
22949 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22950 if (!die)
22951 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22952 sect_offset_str (sect_off), objfile_name (objfile));
22953
22954 attr = dwarf2_attr (die, DW_AT_location, cu);
22955 if (!attr && resolve_abstract_p
22956 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22957 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22958 {
22959 CORE_ADDR pc = (*get_frame_pc) (baton);
22960 CORE_ADDR baseaddr = objfile->text_section_offset ();
22961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22962
22963 for (const auto &cand_off
22964 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22965 {
22966 struct dwarf2_cu *cand_cu = cu;
22967 struct die_info *cand
22968 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22969 if (!cand
22970 || !cand->parent
22971 || cand->parent->tag != DW_TAG_subprogram)
22972 continue;
22973
22974 CORE_ADDR pc_low, pc_high;
22975 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22976 if (pc_low == ((CORE_ADDR) -1))
22977 continue;
22978 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22979 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22980 if (!(pc_low <= pc && pc < pc_high))
22981 continue;
22982
22983 die = cand;
22984 attr = dwarf2_attr (die, DW_AT_location, cu);
22985 break;
22986 }
22987 }
22988
22989 if (!attr)
22990 {
22991 /* DWARF: "If there is no such attribute, then there is no effect.".
22992 DATA is ignored if SIZE is 0. */
22993
22994 retval.data = NULL;
22995 retval.size = 0;
22996 }
22997 else if (attr->form_is_section_offset ())
22998 {
22999 struct dwarf2_loclist_baton loclist_baton;
23000 CORE_ADDR pc = (*get_frame_pc) (baton);
23001 size_t size;
23002
23003 fill_in_loclist_baton (cu, &loclist_baton, attr);
23004
23005 retval.data = dwarf2_find_location_expression (&loclist_baton,
23006 &size, pc);
23007 retval.size = size;
23008 }
23009 else
23010 {
23011 if (!attr->form_is_block ())
23012 error (_("Dwarf Error: DIE at %s referenced in module %s "
23013 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23014 sect_offset_str (sect_off), objfile_name (objfile));
23015
23016 retval.data = DW_BLOCK (attr)->data;
23017 retval.size = DW_BLOCK (attr)->size;
23018 }
23019 retval.per_cu = cu->per_cu;
23020
23021 age_cached_comp_units (dwarf2_per_objfile);
23022
23023 return retval;
23024 }
23025
23026 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23027 offset. */
23028
23029 struct dwarf2_locexpr_baton
23030 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23031 struct dwarf2_per_cu_data *per_cu,
23032 CORE_ADDR (*get_frame_pc) (void *baton),
23033 void *baton)
23034 {
23035 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23036
23037 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23038 }
23039
23040 /* Write a constant of a given type as target-ordered bytes into
23041 OBSTACK. */
23042
23043 static const gdb_byte *
23044 write_constant_as_bytes (struct obstack *obstack,
23045 enum bfd_endian byte_order,
23046 struct type *type,
23047 ULONGEST value,
23048 LONGEST *len)
23049 {
23050 gdb_byte *result;
23051
23052 *len = TYPE_LENGTH (type);
23053 result = (gdb_byte *) obstack_alloc (obstack, *len);
23054 store_unsigned_integer (result, *len, byte_order, value);
23055
23056 return result;
23057 }
23058
23059 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23060 pointer to the constant bytes and set LEN to the length of the
23061 data. If memory is needed, allocate it on OBSTACK. If the DIE
23062 does not have a DW_AT_const_value, return NULL. */
23063
23064 const gdb_byte *
23065 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23066 struct dwarf2_per_cu_data *per_cu,
23067 struct obstack *obstack,
23068 LONGEST *len)
23069 {
23070 struct dwarf2_cu *cu;
23071 struct die_info *die;
23072 struct attribute *attr;
23073 const gdb_byte *result = NULL;
23074 struct type *type;
23075 LONGEST value;
23076 enum bfd_endian byte_order;
23077 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23078
23079 if (per_cu->cu == NULL)
23080 load_cu (per_cu, false);
23081 cu = per_cu->cu;
23082 if (cu == NULL)
23083 {
23084 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23085 Instead just throw an error, not much else we can do. */
23086 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23087 sect_offset_str (sect_off), objfile_name (objfile));
23088 }
23089
23090 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23091 if (!die)
23092 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23093 sect_offset_str (sect_off), objfile_name (objfile));
23094
23095 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23096 if (attr == NULL)
23097 return NULL;
23098
23099 byte_order = (bfd_big_endian (objfile->obfd)
23100 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23101
23102 switch (attr->form)
23103 {
23104 case DW_FORM_addr:
23105 case DW_FORM_addrx:
23106 case DW_FORM_GNU_addr_index:
23107 {
23108 gdb_byte *tem;
23109
23110 *len = cu->header.addr_size;
23111 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23112 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23113 result = tem;
23114 }
23115 break;
23116 case DW_FORM_string:
23117 case DW_FORM_strp:
23118 case DW_FORM_strx:
23119 case DW_FORM_GNU_str_index:
23120 case DW_FORM_GNU_strp_alt:
23121 /* DW_STRING is already allocated on the objfile obstack, point
23122 directly to it. */
23123 result = (const gdb_byte *) DW_STRING (attr);
23124 *len = strlen (DW_STRING (attr));
23125 break;
23126 case DW_FORM_block1:
23127 case DW_FORM_block2:
23128 case DW_FORM_block4:
23129 case DW_FORM_block:
23130 case DW_FORM_exprloc:
23131 case DW_FORM_data16:
23132 result = DW_BLOCK (attr)->data;
23133 *len = DW_BLOCK (attr)->size;
23134 break;
23135
23136 /* The DW_AT_const_value attributes are supposed to carry the
23137 symbol's value "represented as it would be on the target
23138 architecture." By the time we get here, it's already been
23139 converted to host endianness, so we just need to sign- or
23140 zero-extend it as appropriate. */
23141 case DW_FORM_data1:
23142 type = die_type (die, cu);
23143 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23144 if (result == NULL)
23145 result = write_constant_as_bytes (obstack, byte_order,
23146 type, value, len);
23147 break;
23148 case DW_FORM_data2:
23149 type = die_type (die, cu);
23150 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23151 if (result == NULL)
23152 result = write_constant_as_bytes (obstack, byte_order,
23153 type, value, len);
23154 break;
23155 case DW_FORM_data4:
23156 type = die_type (die, cu);
23157 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23158 if (result == NULL)
23159 result = write_constant_as_bytes (obstack, byte_order,
23160 type, value, len);
23161 break;
23162 case DW_FORM_data8:
23163 type = die_type (die, cu);
23164 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23165 if (result == NULL)
23166 result = write_constant_as_bytes (obstack, byte_order,
23167 type, value, len);
23168 break;
23169
23170 case DW_FORM_sdata:
23171 case DW_FORM_implicit_const:
23172 type = die_type (die, cu);
23173 result = write_constant_as_bytes (obstack, byte_order,
23174 type, DW_SND (attr), len);
23175 break;
23176
23177 case DW_FORM_udata:
23178 type = die_type (die, cu);
23179 result = write_constant_as_bytes (obstack, byte_order,
23180 type, DW_UNSND (attr), len);
23181 break;
23182
23183 default:
23184 complaint (_("unsupported const value attribute form: '%s'"),
23185 dwarf_form_name (attr->form));
23186 break;
23187 }
23188
23189 return result;
23190 }
23191
23192 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23193 valid type for this die is found. */
23194
23195 struct type *
23196 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23197 struct dwarf2_per_cu_data *per_cu)
23198 {
23199 struct dwarf2_cu *cu;
23200 struct die_info *die;
23201
23202 if (per_cu->cu == NULL)
23203 load_cu (per_cu, false);
23204 cu = per_cu->cu;
23205 if (!cu)
23206 return NULL;
23207
23208 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23209 if (!die)
23210 return NULL;
23211
23212 return die_type (die, cu);
23213 }
23214
23215 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23216 PER_CU. */
23217
23218 struct type *
23219 dwarf2_get_die_type (cu_offset die_offset,
23220 struct dwarf2_per_cu_data *per_cu)
23221 {
23222 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23223 return get_die_type_at_offset (die_offset_sect, per_cu);
23224 }
23225
23226 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23227 On entry *REF_CU is the CU of SRC_DIE.
23228 On exit *REF_CU is the CU of the result.
23229 Returns NULL if the referenced DIE isn't found. */
23230
23231 static struct die_info *
23232 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23233 struct dwarf2_cu **ref_cu)
23234 {
23235 struct die_info temp_die;
23236 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23237 struct die_info *die;
23238
23239 /* While it might be nice to assert sig_type->type == NULL here,
23240 we can get here for DW_AT_imported_declaration where we need
23241 the DIE not the type. */
23242
23243 /* If necessary, add it to the queue and load its DIEs. */
23244
23245 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23246 read_signatured_type (sig_type);
23247
23248 sig_cu = sig_type->per_cu.cu;
23249 gdb_assert (sig_cu != NULL);
23250 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23251 temp_die.sect_off = sig_type->type_offset_in_section;
23252 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23253 to_underlying (temp_die.sect_off));
23254 if (die)
23255 {
23256 struct dwarf2_per_objfile *dwarf2_per_objfile
23257 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23258
23259 /* For .gdb_index version 7 keep track of included TUs.
23260 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23261 if (dwarf2_per_objfile->index_table != NULL
23262 && dwarf2_per_objfile->index_table->version <= 7)
23263 {
23264 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23265 }
23266
23267 *ref_cu = sig_cu;
23268 if (sig_cu != cu)
23269 sig_cu->ancestor = cu;
23270
23271 return die;
23272 }
23273
23274 return NULL;
23275 }
23276
23277 /* Follow signatured type referenced by ATTR in SRC_DIE.
23278 On entry *REF_CU is the CU of SRC_DIE.
23279 On exit *REF_CU is the CU of the result.
23280 The result is the DIE of the type.
23281 If the referenced type cannot be found an error is thrown. */
23282
23283 static struct die_info *
23284 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23285 struct dwarf2_cu **ref_cu)
23286 {
23287 ULONGEST signature = DW_SIGNATURE (attr);
23288 struct signatured_type *sig_type;
23289 struct die_info *die;
23290
23291 gdb_assert (attr->form == DW_FORM_ref_sig8);
23292
23293 sig_type = lookup_signatured_type (*ref_cu, signature);
23294 /* sig_type will be NULL if the signatured type is missing from
23295 the debug info. */
23296 if (sig_type == NULL)
23297 {
23298 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23299 " from DIE at %s [in module %s]"),
23300 hex_string (signature), sect_offset_str (src_die->sect_off),
23301 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23302 }
23303
23304 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23305 if (die == NULL)
23306 {
23307 dump_die_for_error (src_die);
23308 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23309 " from DIE at %s [in module %s]"),
23310 hex_string (signature), sect_offset_str (src_die->sect_off),
23311 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23312 }
23313
23314 return die;
23315 }
23316
23317 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23318 reading in and processing the type unit if necessary. */
23319
23320 static struct type *
23321 get_signatured_type (struct die_info *die, ULONGEST signature,
23322 struct dwarf2_cu *cu)
23323 {
23324 struct dwarf2_per_objfile *dwarf2_per_objfile
23325 = cu->per_cu->dwarf2_per_objfile;
23326 struct signatured_type *sig_type;
23327 struct dwarf2_cu *type_cu;
23328 struct die_info *type_die;
23329 struct type *type;
23330
23331 sig_type = lookup_signatured_type (cu, signature);
23332 /* sig_type will be NULL if the signatured type is missing from
23333 the debug info. */
23334 if (sig_type == NULL)
23335 {
23336 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23337 " from DIE at %s [in module %s]"),
23338 hex_string (signature), sect_offset_str (die->sect_off),
23339 objfile_name (dwarf2_per_objfile->objfile));
23340 return build_error_marker_type (cu, die);
23341 }
23342
23343 /* If we already know the type we're done. */
23344 if (sig_type->type != NULL)
23345 return sig_type->type;
23346
23347 type_cu = cu;
23348 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23349 if (type_die != NULL)
23350 {
23351 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23352 is created. This is important, for example, because for c++ classes
23353 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23354 type = read_type_die (type_die, type_cu);
23355 if (type == NULL)
23356 {
23357 complaint (_("Dwarf Error: Cannot build signatured type %s"
23358 " referenced from DIE at %s [in module %s]"),
23359 hex_string (signature), sect_offset_str (die->sect_off),
23360 objfile_name (dwarf2_per_objfile->objfile));
23361 type = build_error_marker_type (cu, die);
23362 }
23363 }
23364 else
23365 {
23366 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23367 " from DIE at %s [in module %s]"),
23368 hex_string (signature), sect_offset_str (die->sect_off),
23369 objfile_name (dwarf2_per_objfile->objfile));
23370 type = build_error_marker_type (cu, die);
23371 }
23372 sig_type->type = type;
23373
23374 return type;
23375 }
23376
23377 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23378 reading in and processing the type unit if necessary. */
23379
23380 static struct type *
23381 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23382 struct dwarf2_cu *cu) /* ARI: editCase function */
23383 {
23384 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23385 if (attr->form_is_ref ())
23386 {
23387 struct dwarf2_cu *type_cu = cu;
23388 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23389
23390 return read_type_die (type_die, type_cu);
23391 }
23392 else if (attr->form == DW_FORM_ref_sig8)
23393 {
23394 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23395 }
23396 else
23397 {
23398 struct dwarf2_per_objfile *dwarf2_per_objfile
23399 = cu->per_cu->dwarf2_per_objfile;
23400
23401 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23402 " at %s [in module %s]"),
23403 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23404 objfile_name (dwarf2_per_objfile->objfile));
23405 return build_error_marker_type (cu, die);
23406 }
23407 }
23408
23409 /* Load the DIEs associated with type unit PER_CU into memory. */
23410
23411 static void
23412 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23413 {
23414 struct signatured_type *sig_type;
23415
23416 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23417 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23418
23419 /* We have the per_cu, but we need the signatured_type.
23420 Fortunately this is an easy translation. */
23421 gdb_assert (per_cu->is_debug_types);
23422 sig_type = (struct signatured_type *) per_cu;
23423
23424 gdb_assert (per_cu->cu == NULL);
23425
23426 read_signatured_type (sig_type);
23427
23428 gdb_assert (per_cu->cu != NULL);
23429 }
23430
23431 /* Read in a signatured type and build its CU and DIEs.
23432 If the type is a stub for the real type in a DWO file,
23433 read in the real type from the DWO file as well. */
23434
23435 static void
23436 read_signatured_type (struct signatured_type *sig_type)
23437 {
23438 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23439
23440 gdb_assert (per_cu->is_debug_types);
23441 gdb_assert (per_cu->cu == NULL);
23442
23443 cutu_reader reader (per_cu, NULL, 0, 1, false);
23444
23445 if (!reader.dummy_p)
23446 {
23447 struct dwarf2_cu *cu = reader.cu;
23448 const gdb_byte *info_ptr = reader.info_ptr;
23449
23450 gdb_assert (cu->die_hash == NULL);
23451 cu->die_hash =
23452 htab_create_alloc_ex (cu->header.length / 12,
23453 die_hash,
23454 die_eq,
23455 NULL,
23456 &cu->comp_unit_obstack,
23457 hashtab_obstack_allocate,
23458 dummy_obstack_deallocate);
23459
23460 if (reader.comp_unit_die->has_children)
23461 reader.comp_unit_die->child
23462 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23463 reader.comp_unit_die);
23464 cu->dies = reader.comp_unit_die;
23465 /* comp_unit_die is not stored in die_hash, no need. */
23466
23467 /* We try not to read any attributes in this function, because
23468 not all CUs needed for references have been loaded yet, and
23469 symbol table processing isn't initialized. But we have to
23470 set the CU language, or we won't be able to build types
23471 correctly. Similarly, if we do not read the producer, we can
23472 not apply producer-specific interpretation. */
23473 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23474 }
23475
23476 sig_type->per_cu.tu_read = 1;
23477 }
23478
23479 /* Decode simple location descriptions.
23480 Given a pointer to a dwarf block that defines a location, compute
23481 the location and return the value.
23482
23483 NOTE drow/2003-11-18: This function is called in two situations
23484 now: for the address of static or global variables (partial symbols
23485 only) and for offsets into structures which are expected to be
23486 (more or less) constant. The partial symbol case should go away,
23487 and only the constant case should remain. That will let this
23488 function complain more accurately. A few special modes are allowed
23489 without complaint for global variables (for instance, global
23490 register values and thread-local values).
23491
23492 A location description containing no operations indicates that the
23493 object is optimized out. The return value is 0 for that case.
23494 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23495 callers will only want a very basic result and this can become a
23496 complaint.
23497
23498 Note that stack[0] is unused except as a default error return. */
23499
23500 static CORE_ADDR
23501 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23502 {
23503 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23504 size_t i;
23505 size_t size = blk->size;
23506 const gdb_byte *data = blk->data;
23507 CORE_ADDR stack[64];
23508 int stacki;
23509 unsigned int bytes_read, unsnd;
23510 gdb_byte op;
23511
23512 i = 0;
23513 stacki = 0;
23514 stack[stacki] = 0;
23515 stack[++stacki] = 0;
23516
23517 while (i < size)
23518 {
23519 op = data[i++];
23520 switch (op)
23521 {
23522 case DW_OP_lit0:
23523 case DW_OP_lit1:
23524 case DW_OP_lit2:
23525 case DW_OP_lit3:
23526 case DW_OP_lit4:
23527 case DW_OP_lit5:
23528 case DW_OP_lit6:
23529 case DW_OP_lit7:
23530 case DW_OP_lit8:
23531 case DW_OP_lit9:
23532 case DW_OP_lit10:
23533 case DW_OP_lit11:
23534 case DW_OP_lit12:
23535 case DW_OP_lit13:
23536 case DW_OP_lit14:
23537 case DW_OP_lit15:
23538 case DW_OP_lit16:
23539 case DW_OP_lit17:
23540 case DW_OP_lit18:
23541 case DW_OP_lit19:
23542 case DW_OP_lit20:
23543 case DW_OP_lit21:
23544 case DW_OP_lit22:
23545 case DW_OP_lit23:
23546 case DW_OP_lit24:
23547 case DW_OP_lit25:
23548 case DW_OP_lit26:
23549 case DW_OP_lit27:
23550 case DW_OP_lit28:
23551 case DW_OP_lit29:
23552 case DW_OP_lit30:
23553 case DW_OP_lit31:
23554 stack[++stacki] = op - DW_OP_lit0;
23555 break;
23556
23557 case DW_OP_reg0:
23558 case DW_OP_reg1:
23559 case DW_OP_reg2:
23560 case DW_OP_reg3:
23561 case DW_OP_reg4:
23562 case DW_OP_reg5:
23563 case DW_OP_reg6:
23564 case DW_OP_reg7:
23565 case DW_OP_reg8:
23566 case DW_OP_reg9:
23567 case DW_OP_reg10:
23568 case DW_OP_reg11:
23569 case DW_OP_reg12:
23570 case DW_OP_reg13:
23571 case DW_OP_reg14:
23572 case DW_OP_reg15:
23573 case DW_OP_reg16:
23574 case DW_OP_reg17:
23575 case DW_OP_reg18:
23576 case DW_OP_reg19:
23577 case DW_OP_reg20:
23578 case DW_OP_reg21:
23579 case DW_OP_reg22:
23580 case DW_OP_reg23:
23581 case DW_OP_reg24:
23582 case DW_OP_reg25:
23583 case DW_OP_reg26:
23584 case DW_OP_reg27:
23585 case DW_OP_reg28:
23586 case DW_OP_reg29:
23587 case DW_OP_reg30:
23588 case DW_OP_reg31:
23589 stack[++stacki] = op - DW_OP_reg0;
23590 if (i < size)
23591 dwarf2_complex_location_expr_complaint ();
23592 break;
23593
23594 case DW_OP_regx:
23595 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23596 i += bytes_read;
23597 stack[++stacki] = unsnd;
23598 if (i < size)
23599 dwarf2_complex_location_expr_complaint ();
23600 break;
23601
23602 case DW_OP_addr:
23603 stack[++stacki] = read_address (objfile->obfd, &data[i],
23604 cu, &bytes_read);
23605 i += bytes_read;
23606 break;
23607
23608 case DW_OP_const1u:
23609 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23610 i += 1;
23611 break;
23612
23613 case DW_OP_const1s:
23614 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23615 i += 1;
23616 break;
23617
23618 case DW_OP_const2u:
23619 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23620 i += 2;
23621 break;
23622
23623 case DW_OP_const2s:
23624 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23625 i += 2;
23626 break;
23627
23628 case DW_OP_const4u:
23629 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23630 i += 4;
23631 break;
23632
23633 case DW_OP_const4s:
23634 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23635 i += 4;
23636 break;
23637
23638 case DW_OP_const8u:
23639 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23640 i += 8;
23641 break;
23642
23643 case DW_OP_constu:
23644 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23645 &bytes_read);
23646 i += bytes_read;
23647 break;
23648
23649 case DW_OP_consts:
23650 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23651 i += bytes_read;
23652 break;
23653
23654 case DW_OP_dup:
23655 stack[stacki + 1] = stack[stacki];
23656 stacki++;
23657 break;
23658
23659 case DW_OP_plus:
23660 stack[stacki - 1] += stack[stacki];
23661 stacki--;
23662 break;
23663
23664 case DW_OP_plus_uconst:
23665 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23666 &bytes_read);
23667 i += bytes_read;
23668 break;
23669
23670 case DW_OP_minus:
23671 stack[stacki - 1] -= stack[stacki];
23672 stacki--;
23673 break;
23674
23675 case DW_OP_deref:
23676 /* If we're not the last op, then we definitely can't encode
23677 this using GDB's address_class enum. This is valid for partial
23678 global symbols, although the variable's address will be bogus
23679 in the psymtab. */
23680 if (i < size)
23681 dwarf2_complex_location_expr_complaint ();
23682 break;
23683
23684 case DW_OP_GNU_push_tls_address:
23685 case DW_OP_form_tls_address:
23686 /* The top of the stack has the offset from the beginning
23687 of the thread control block at which the variable is located. */
23688 /* Nothing should follow this operator, so the top of stack would
23689 be returned. */
23690 /* This is valid for partial global symbols, but the variable's
23691 address will be bogus in the psymtab. Make it always at least
23692 non-zero to not look as a variable garbage collected by linker
23693 which have DW_OP_addr 0. */
23694 if (i < size)
23695 dwarf2_complex_location_expr_complaint ();
23696 stack[stacki]++;
23697 break;
23698
23699 case DW_OP_GNU_uninit:
23700 break;
23701
23702 case DW_OP_addrx:
23703 case DW_OP_GNU_addr_index:
23704 case DW_OP_GNU_const_index:
23705 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23706 &bytes_read);
23707 i += bytes_read;
23708 break;
23709
23710 default:
23711 {
23712 const char *name = get_DW_OP_name (op);
23713
23714 if (name)
23715 complaint (_("unsupported stack op: '%s'"),
23716 name);
23717 else
23718 complaint (_("unsupported stack op: '%02x'"),
23719 op);
23720 }
23721
23722 return (stack[stacki]);
23723 }
23724
23725 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23726 outside of the allocated space. Also enforce minimum>0. */
23727 if (stacki >= ARRAY_SIZE (stack) - 1)
23728 {
23729 complaint (_("location description stack overflow"));
23730 return 0;
23731 }
23732
23733 if (stacki <= 0)
23734 {
23735 complaint (_("location description stack underflow"));
23736 return 0;
23737 }
23738 }
23739 return (stack[stacki]);
23740 }
23741
23742 /* memory allocation interface */
23743
23744 static struct dwarf_block *
23745 dwarf_alloc_block (struct dwarf2_cu *cu)
23746 {
23747 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23748 }
23749
23750 static struct die_info *
23751 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23752 {
23753 struct die_info *die;
23754 size_t size = sizeof (struct die_info);
23755
23756 if (num_attrs > 1)
23757 size += (num_attrs - 1) * sizeof (struct attribute);
23758
23759 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23760 memset (die, 0, sizeof (struct die_info));
23761 return (die);
23762 }
23763
23764 \f
23765 /* Macro support. */
23766
23767 /* Return file name relative to the compilation directory of file number I in
23768 *LH's file name table. The result is allocated using xmalloc; the caller is
23769 responsible for freeing it. */
23770
23771 static char *
23772 file_file_name (int file, struct line_header *lh)
23773 {
23774 /* Is the file number a valid index into the line header's file name
23775 table? Remember that file numbers start with one, not zero. */
23776 if (lh->is_valid_file_index (file))
23777 {
23778 const file_entry *fe = lh->file_name_at (file);
23779
23780 if (!IS_ABSOLUTE_PATH (fe->name))
23781 {
23782 const char *dir = fe->include_dir (lh);
23783 if (dir != NULL)
23784 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
23785 }
23786 return xstrdup (fe->name);
23787 }
23788 else
23789 {
23790 /* The compiler produced a bogus file number. We can at least
23791 record the macro definitions made in the file, even if we
23792 won't be able to find the file by name. */
23793 char fake_name[80];
23794
23795 xsnprintf (fake_name, sizeof (fake_name),
23796 "<bad macro file number %d>", file);
23797
23798 complaint (_("bad file number in macro information (%d)"),
23799 file);
23800
23801 return xstrdup (fake_name);
23802 }
23803 }
23804
23805 /* Return the full name of file number I in *LH's file name table.
23806 Use COMP_DIR as the name of the current directory of the
23807 compilation. The result is allocated using xmalloc; the caller is
23808 responsible for freeing it. */
23809 static char *
23810 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23811 {
23812 /* Is the file number a valid index into the line header's file name
23813 table? Remember that file numbers start with one, not zero. */
23814 if (lh->is_valid_file_index (file))
23815 {
23816 char *relative = file_file_name (file, lh);
23817
23818 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23819 return relative;
23820 return reconcat (relative, comp_dir, SLASH_STRING,
23821 relative, (char *) NULL);
23822 }
23823 else
23824 return file_file_name (file, lh);
23825 }
23826
23827
23828 static struct macro_source_file *
23829 macro_start_file (struct dwarf2_cu *cu,
23830 int file, int line,
23831 struct macro_source_file *current_file,
23832 struct line_header *lh)
23833 {
23834 /* File name relative to the compilation directory of this source file. */
23835 char *file_name = file_file_name (file, lh);
23836
23837 if (! current_file)
23838 {
23839 /* Note: We don't create a macro table for this compilation unit
23840 at all until we actually get a filename. */
23841 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23842
23843 /* If we have no current file, then this must be the start_file
23844 directive for the compilation unit's main source file. */
23845 current_file = macro_set_main (macro_table, file_name);
23846 macro_define_special (macro_table);
23847 }
23848 else
23849 current_file = macro_include (current_file, line, file_name);
23850
23851 xfree (file_name);
23852
23853 return current_file;
23854 }
23855
23856 static const char *
23857 consume_improper_spaces (const char *p, const char *body)
23858 {
23859 if (*p == ' ')
23860 {
23861 complaint (_("macro definition contains spaces "
23862 "in formal argument list:\n`%s'"),
23863 body);
23864
23865 while (*p == ' ')
23866 p++;
23867 }
23868
23869 return p;
23870 }
23871
23872
23873 static void
23874 parse_macro_definition (struct macro_source_file *file, int line,
23875 const char *body)
23876 {
23877 const char *p;
23878
23879 /* The body string takes one of two forms. For object-like macro
23880 definitions, it should be:
23881
23882 <macro name> " " <definition>
23883
23884 For function-like macro definitions, it should be:
23885
23886 <macro name> "() " <definition>
23887 or
23888 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23889
23890 Spaces may appear only where explicitly indicated, and in the
23891 <definition>.
23892
23893 The Dwarf 2 spec says that an object-like macro's name is always
23894 followed by a space, but versions of GCC around March 2002 omit
23895 the space when the macro's definition is the empty string.
23896
23897 The Dwarf 2 spec says that there should be no spaces between the
23898 formal arguments in a function-like macro's formal argument list,
23899 but versions of GCC around March 2002 include spaces after the
23900 commas. */
23901
23902
23903 /* Find the extent of the macro name. The macro name is terminated
23904 by either a space or null character (for an object-like macro) or
23905 an opening paren (for a function-like macro). */
23906 for (p = body; *p; p++)
23907 if (*p == ' ' || *p == '(')
23908 break;
23909
23910 if (*p == ' ' || *p == '\0')
23911 {
23912 /* It's an object-like macro. */
23913 int name_len = p - body;
23914 std::string name (body, name_len);
23915 const char *replacement;
23916
23917 if (*p == ' ')
23918 replacement = body + name_len + 1;
23919 else
23920 {
23921 dwarf2_macro_malformed_definition_complaint (body);
23922 replacement = body + name_len;
23923 }
23924
23925 macro_define_object (file, line, name.c_str (), replacement);
23926 }
23927 else if (*p == '(')
23928 {
23929 /* It's a function-like macro. */
23930 std::string name (body, p - body);
23931 int argc = 0;
23932 int argv_size = 1;
23933 char **argv = XNEWVEC (char *, argv_size);
23934
23935 p++;
23936
23937 p = consume_improper_spaces (p, body);
23938
23939 /* Parse the formal argument list. */
23940 while (*p && *p != ')')
23941 {
23942 /* Find the extent of the current argument name. */
23943 const char *arg_start = p;
23944
23945 while (*p && *p != ',' && *p != ')' && *p != ' ')
23946 p++;
23947
23948 if (! *p || p == arg_start)
23949 dwarf2_macro_malformed_definition_complaint (body);
23950 else
23951 {
23952 /* Make sure argv has room for the new argument. */
23953 if (argc >= argv_size)
23954 {
23955 argv_size *= 2;
23956 argv = XRESIZEVEC (char *, argv, argv_size);
23957 }
23958
23959 argv[argc++] = savestring (arg_start, p - arg_start);
23960 }
23961
23962 p = consume_improper_spaces (p, body);
23963
23964 /* Consume the comma, if present. */
23965 if (*p == ',')
23966 {
23967 p++;
23968
23969 p = consume_improper_spaces (p, body);
23970 }
23971 }
23972
23973 if (*p == ')')
23974 {
23975 p++;
23976
23977 if (*p == ' ')
23978 /* Perfectly formed definition, no complaints. */
23979 macro_define_function (file, line, name.c_str (),
23980 argc, (const char **) argv,
23981 p + 1);
23982 else if (*p == '\0')
23983 {
23984 /* Complain, but do define it. */
23985 dwarf2_macro_malformed_definition_complaint (body);
23986 macro_define_function (file, line, name.c_str (),
23987 argc, (const char **) argv,
23988 p);
23989 }
23990 else
23991 /* Just complain. */
23992 dwarf2_macro_malformed_definition_complaint (body);
23993 }
23994 else
23995 /* Just complain. */
23996 dwarf2_macro_malformed_definition_complaint (body);
23997
23998 {
23999 int i;
24000
24001 for (i = 0; i < argc; i++)
24002 xfree (argv[i]);
24003 }
24004 xfree (argv);
24005 }
24006 else
24007 dwarf2_macro_malformed_definition_complaint (body);
24008 }
24009
24010 /* Skip some bytes from BYTES according to the form given in FORM.
24011 Returns the new pointer. */
24012
24013 static const gdb_byte *
24014 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24015 enum dwarf_form form,
24016 unsigned int offset_size,
24017 struct dwarf2_section_info *section)
24018 {
24019 unsigned int bytes_read;
24020
24021 switch (form)
24022 {
24023 case DW_FORM_data1:
24024 case DW_FORM_flag:
24025 ++bytes;
24026 break;
24027
24028 case DW_FORM_data2:
24029 bytes += 2;
24030 break;
24031
24032 case DW_FORM_data4:
24033 bytes += 4;
24034 break;
24035
24036 case DW_FORM_data8:
24037 bytes += 8;
24038 break;
24039
24040 case DW_FORM_data16:
24041 bytes += 16;
24042 break;
24043
24044 case DW_FORM_string:
24045 read_direct_string (abfd, bytes, &bytes_read);
24046 bytes += bytes_read;
24047 break;
24048
24049 case DW_FORM_sec_offset:
24050 case DW_FORM_strp:
24051 case DW_FORM_GNU_strp_alt:
24052 bytes += offset_size;
24053 break;
24054
24055 case DW_FORM_block:
24056 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24057 bytes += bytes_read;
24058 break;
24059
24060 case DW_FORM_block1:
24061 bytes += 1 + read_1_byte (abfd, bytes);
24062 break;
24063 case DW_FORM_block2:
24064 bytes += 2 + read_2_bytes (abfd, bytes);
24065 break;
24066 case DW_FORM_block4:
24067 bytes += 4 + read_4_bytes (abfd, bytes);
24068 break;
24069
24070 case DW_FORM_addrx:
24071 case DW_FORM_sdata:
24072 case DW_FORM_strx:
24073 case DW_FORM_udata:
24074 case DW_FORM_GNU_addr_index:
24075 case DW_FORM_GNU_str_index:
24076 bytes = gdb_skip_leb128 (bytes, buffer_end);
24077 if (bytes == NULL)
24078 {
24079 dwarf2_section_buffer_overflow_complaint (section);
24080 return NULL;
24081 }
24082 break;
24083
24084 case DW_FORM_implicit_const:
24085 break;
24086
24087 default:
24088 {
24089 complaint (_("invalid form 0x%x in `%s'"),
24090 form, section->get_name ());
24091 return NULL;
24092 }
24093 }
24094
24095 return bytes;
24096 }
24097
24098 /* A helper for dwarf_decode_macros that handles skipping an unknown
24099 opcode. Returns an updated pointer to the macro data buffer; or,
24100 on error, issues a complaint and returns NULL. */
24101
24102 static const gdb_byte *
24103 skip_unknown_opcode (unsigned int opcode,
24104 const gdb_byte **opcode_definitions,
24105 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24106 bfd *abfd,
24107 unsigned int offset_size,
24108 struct dwarf2_section_info *section)
24109 {
24110 unsigned int bytes_read, i;
24111 unsigned long arg;
24112 const gdb_byte *defn;
24113
24114 if (opcode_definitions[opcode] == NULL)
24115 {
24116 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24117 opcode);
24118 return NULL;
24119 }
24120
24121 defn = opcode_definitions[opcode];
24122 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24123 defn += bytes_read;
24124
24125 for (i = 0; i < arg; ++i)
24126 {
24127 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24128 (enum dwarf_form) defn[i], offset_size,
24129 section);
24130 if (mac_ptr == NULL)
24131 {
24132 /* skip_form_bytes already issued the complaint. */
24133 return NULL;
24134 }
24135 }
24136
24137 return mac_ptr;
24138 }
24139
24140 /* A helper function which parses the header of a macro section.
24141 If the macro section is the extended (for now called "GNU") type,
24142 then this updates *OFFSET_SIZE. Returns a pointer to just after
24143 the header, or issues a complaint and returns NULL on error. */
24144
24145 static const gdb_byte *
24146 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24147 bfd *abfd,
24148 const gdb_byte *mac_ptr,
24149 unsigned int *offset_size,
24150 int section_is_gnu)
24151 {
24152 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24153
24154 if (section_is_gnu)
24155 {
24156 unsigned int version, flags;
24157
24158 version = read_2_bytes (abfd, mac_ptr);
24159 if (version != 4 && version != 5)
24160 {
24161 complaint (_("unrecognized version `%d' in .debug_macro section"),
24162 version);
24163 return NULL;
24164 }
24165 mac_ptr += 2;
24166
24167 flags = read_1_byte (abfd, mac_ptr);
24168 ++mac_ptr;
24169 *offset_size = (flags & 1) ? 8 : 4;
24170
24171 if ((flags & 2) != 0)
24172 /* We don't need the line table offset. */
24173 mac_ptr += *offset_size;
24174
24175 /* Vendor opcode descriptions. */
24176 if ((flags & 4) != 0)
24177 {
24178 unsigned int i, count;
24179
24180 count = read_1_byte (abfd, mac_ptr);
24181 ++mac_ptr;
24182 for (i = 0; i < count; ++i)
24183 {
24184 unsigned int opcode, bytes_read;
24185 unsigned long arg;
24186
24187 opcode = read_1_byte (abfd, mac_ptr);
24188 ++mac_ptr;
24189 opcode_definitions[opcode] = mac_ptr;
24190 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24191 mac_ptr += bytes_read;
24192 mac_ptr += arg;
24193 }
24194 }
24195 }
24196
24197 return mac_ptr;
24198 }
24199
24200 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24201 including DW_MACRO_import. */
24202
24203 static void
24204 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24205 bfd *abfd,
24206 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24207 struct macro_source_file *current_file,
24208 struct line_header *lh,
24209 struct dwarf2_section_info *section,
24210 int section_is_gnu, int section_is_dwz,
24211 unsigned int offset_size,
24212 htab_t include_hash)
24213 {
24214 struct dwarf2_per_objfile *dwarf2_per_objfile
24215 = cu->per_cu->dwarf2_per_objfile;
24216 struct objfile *objfile = dwarf2_per_objfile->objfile;
24217 enum dwarf_macro_record_type macinfo_type;
24218 int at_commandline;
24219 const gdb_byte *opcode_definitions[256];
24220
24221 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24222 &offset_size, section_is_gnu);
24223 if (mac_ptr == NULL)
24224 {
24225 /* We already issued a complaint. */
24226 return;
24227 }
24228
24229 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24230 GDB is still reading the definitions from command line. First
24231 DW_MACINFO_start_file will need to be ignored as it was already executed
24232 to create CURRENT_FILE for the main source holding also the command line
24233 definitions. On first met DW_MACINFO_start_file this flag is reset to
24234 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24235
24236 at_commandline = 1;
24237
24238 do
24239 {
24240 /* Do we at least have room for a macinfo type byte? */
24241 if (mac_ptr >= mac_end)
24242 {
24243 dwarf2_section_buffer_overflow_complaint (section);
24244 break;
24245 }
24246
24247 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24248 mac_ptr++;
24249
24250 /* Note that we rely on the fact that the corresponding GNU and
24251 DWARF constants are the same. */
24252 DIAGNOSTIC_PUSH
24253 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24254 switch (macinfo_type)
24255 {
24256 /* A zero macinfo type indicates the end of the macro
24257 information. */
24258 case 0:
24259 break;
24260
24261 case DW_MACRO_define:
24262 case DW_MACRO_undef:
24263 case DW_MACRO_define_strp:
24264 case DW_MACRO_undef_strp:
24265 case DW_MACRO_define_sup:
24266 case DW_MACRO_undef_sup:
24267 {
24268 unsigned int bytes_read;
24269 int line;
24270 const char *body;
24271 int is_define;
24272
24273 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24274 mac_ptr += bytes_read;
24275
24276 if (macinfo_type == DW_MACRO_define
24277 || macinfo_type == DW_MACRO_undef)
24278 {
24279 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24280 mac_ptr += bytes_read;
24281 }
24282 else
24283 {
24284 LONGEST str_offset;
24285
24286 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24287 mac_ptr += offset_size;
24288
24289 if (macinfo_type == DW_MACRO_define_sup
24290 || macinfo_type == DW_MACRO_undef_sup
24291 || section_is_dwz)
24292 {
24293 struct dwz_file *dwz
24294 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24295
24296 body = read_indirect_string_from_dwz (objfile,
24297 dwz, str_offset);
24298 }
24299 else
24300 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24301 abfd, str_offset);
24302 }
24303
24304 is_define = (macinfo_type == DW_MACRO_define
24305 || macinfo_type == DW_MACRO_define_strp
24306 || macinfo_type == DW_MACRO_define_sup);
24307 if (! current_file)
24308 {
24309 /* DWARF violation as no main source is present. */
24310 complaint (_("debug info with no main source gives macro %s "
24311 "on line %d: %s"),
24312 is_define ? _("definition") : _("undefinition"),
24313 line, body);
24314 break;
24315 }
24316 if ((line == 0 && !at_commandline)
24317 || (line != 0 && at_commandline))
24318 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24319 at_commandline ? _("command-line") : _("in-file"),
24320 is_define ? _("definition") : _("undefinition"),
24321 line == 0 ? _("zero") : _("non-zero"), line, body);
24322
24323 if (body == NULL)
24324 {
24325 /* Fedora's rpm-build's "debugedit" binary
24326 corrupted .debug_macro sections.
24327
24328 For more info, see
24329 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24330 complaint (_("debug info gives %s invalid macro %s "
24331 "without body (corrupted?) at line %d "
24332 "on file %s"),
24333 at_commandline ? _("command-line") : _("in-file"),
24334 is_define ? _("definition") : _("undefinition"),
24335 line, current_file->filename);
24336 }
24337 else if (is_define)
24338 parse_macro_definition (current_file, line, body);
24339 else
24340 {
24341 gdb_assert (macinfo_type == DW_MACRO_undef
24342 || macinfo_type == DW_MACRO_undef_strp
24343 || macinfo_type == DW_MACRO_undef_sup);
24344 macro_undef (current_file, line, body);
24345 }
24346 }
24347 break;
24348
24349 case DW_MACRO_start_file:
24350 {
24351 unsigned int bytes_read;
24352 int line, file;
24353
24354 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24355 mac_ptr += bytes_read;
24356 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24357 mac_ptr += bytes_read;
24358
24359 if ((line == 0 && !at_commandline)
24360 || (line != 0 && at_commandline))
24361 complaint (_("debug info gives source %d included "
24362 "from %s at %s line %d"),
24363 file, at_commandline ? _("command-line") : _("file"),
24364 line == 0 ? _("zero") : _("non-zero"), line);
24365
24366 if (at_commandline)
24367 {
24368 /* This DW_MACRO_start_file was executed in the
24369 pass one. */
24370 at_commandline = 0;
24371 }
24372 else
24373 current_file = macro_start_file (cu, file, line, current_file,
24374 lh);
24375 }
24376 break;
24377
24378 case DW_MACRO_end_file:
24379 if (! current_file)
24380 complaint (_("macro debug info has an unmatched "
24381 "`close_file' directive"));
24382 else
24383 {
24384 current_file = current_file->included_by;
24385 if (! current_file)
24386 {
24387 enum dwarf_macro_record_type next_type;
24388
24389 /* GCC circa March 2002 doesn't produce the zero
24390 type byte marking the end of the compilation
24391 unit. Complain if it's not there, but exit no
24392 matter what. */
24393
24394 /* Do we at least have room for a macinfo type byte? */
24395 if (mac_ptr >= mac_end)
24396 {
24397 dwarf2_section_buffer_overflow_complaint (section);
24398 return;
24399 }
24400
24401 /* We don't increment mac_ptr here, so this is just
24402 a look-ahead. */
24403 next_type
24404 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24405 mac_ptr);
24406 if (next_type != 0)
24407 complaint (_("no terminating 0-type entry for "
24408 "macros in `.debug_macinfo' section"));
24409
24410 return;
24411 }
24412 }
24413 break;
24414
24415 case DW_MACRO_import:
24416 case DW_MACRO_import_sup:
24417 {
24418 LONGEST offset;
24419 void **slot;
24420 bfd *include_bfd = abfd;
24421 struct dwarf2_section_info *include_section = section;
24422 const gdb_byte *include_mac_end = mac_end;
24423 int is_dwz = section_is_dwz;
24424 const gdb_byte *new_mac_ptr;
24425
24426 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24427 mac_ptr += offset_size;
24428
24429 if (macinfo_type == DW_MACRO_import_sup)
24430 {
24431 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24432
24433 dwz->macro.read (objfile);
24434
24435 include_section = &dwz->macro;
24436 include_bfd = include_section->get_bfd_owner ();
24437 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24438 is_dwz = 1;
24439 }
24440
24441 new_mac_ptr = include_section->buffer + offset;
24442 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24443
24444 if (*slot != NULL)
24445 {
24446 /* This has actually happened; see
24447 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24448 complaint (_("recursive DW_MACRO_import in "
24449 ".debug_macro section"));
24450 }
24451 else
24452 {
24453 *slot = (void *) new_mac_ptr;
24454
24455 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24456 include_mac_end, current_file, lh,
24457 section, section_is_gnu, is_dwz,
24458 offset_size, include_hash);
24459
24460 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24461 }
24462 }
24463 break;
24464
24465 case DW_MACINFO_vendor_ext:
24466 if (!section_is_gnu)
24467 {
24468 unsigned int bytes_read;
24469
24470 /* This reads the constant, but since we don't recognize
24471 any vendor extensions, we ignore it. */
24472 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24473 mac_ptr += bytes_read;
24474 read_direct_string (abfd, mac_ptr, &bytes_read);
24475 mac_ptr += bytes_read;
24476
24477 /* We don't recognize any vendor extensions. */
24478 break;
24479 }
24480 /* FALLTHROUGH */
24481
24482 default:
24483 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24484 mac_ptr, mac_end, abfd, offset_size,
24485 section);
24486 if (mac_ptr == NULL)
24487 return;
24488 break;
24489 }
24490 DIAGNOSTIC_POP
24491 } while (macinfo_type != 0);
24492 }
24493
24494 static void
24495 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24496 int section_is_gnu)
24497 {
24498 struct dwarf2_per_objfile *dwarf2_per_objfile
24499 = cu->per_cu->dwarf2_per_objfile;
24500 struct objfile *objfile = dwarf2_per_objfile->objfile;
24501 struct line_header *lh = cu->line_header;
24502 bfd *abfd;
24503 const gdb_byte *mac_ptr, *mac_end;
24504 struct macro_source_file *current_file = 0;
24505 enum dwarf_macro_record_type macinfo_type;
24506 unsigned int offset_size = cu->header.offset_size;
24507 const gdb_byte *opcode_definitions[256];
24508 void **slot;
24509 struct dwarf2_section_info *section;
24510 const char *section_name;
24511
24512 if (cu->dwo_unit != NULL)
24513 {
24514 if (section_is_gnu)
24515 {
24516 section = &cu->dwo_unit->dwo_file->sections.macro;
24517 section_name = ".debug_macro.dwo";
24518 }
24519 else
24520 {
24521 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24522 section_name = ".debug_macinfo.dwo";
24523 }
24524 }
24525 else
24526 {
24527 if (section_is_gnu)
24528 {
24529 section = &dwarf2_per_objfile->macro;
24530 section_name = ".debug_macro";
24531 }
24532 else
24533 {
24534 section = &dwarf2_per_objfile->macinfo;
24535 section_name = ".debug_macinfo";
24536 }
24537 }
24538
24539 section->read (objfile);
24540 if (section->buffer == NULL)
24541 {
24542 complaint (_("missing %s section"), section_name);
24543 return;
24544 }
24545 abfd = section->get_bfd_owner ();
24546
24547 /* First pass: Find the name of the base filename.
24548 This filename is needed in order to process all macros whose definition
24549 (or undefinition) comes from the command line. These macros are defined
24550 before the first DW_MACINFO_start_file entry, and yet still need to be
24551 associated to the base file.
24552
24553 To determine the base file name, we scan the macro definitions until we
24554 reach the first DW_MACINFO_start_file entry. We then initialize
24555 CURRENT_FILE accordingly so that any macro definition found before the
24556 first DW_MACINFO_start_file can still be associated to the base file. */
24557
24558 mac_ptr = section->buffer + offset;
24559 mac_end = section->buffer + section->size;
24560
24561 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24562 &offset_size, section_is_gnu);
24563 if (mac_ptr == NULL)
24564 {
24565 /* We already issued a complaint. */
24566 return;
24567 }
24568
24569 do
24570 {
24571 /* Do we at least have room for a macinfo type byte? */
24572 if (mac_ptr >= mac_end)
24573 {
24574 /* Complaint is printed during the second pass as GDB will probably
24575 stop the first pass earlier upon finding
24576 DW_MACINFO_start_file. */
24577 break;
24578 }
24579
24580 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24581 mac_ptr++;
24582
24583 /* Note that we rely on the fact that the corresponding GNU and
24584 DWARF constants are the same. */
24585 DIAGNOSTIC_PUSH
24586 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24587 switch (macinfo_type)
24588 {
24589 /* A zero macinfo type indicates the end of the macro
24590 information. */
24591 case 0:
24592 break;
24593
24594 case DW_MACRO_define:
24595 case DW_MACRO_undef:
24596 /* Only skip the data by MAC_PTR. */
24597 {
24598 unsigned int bytes_read;
24599
24600 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24601 mac_ptr += bytes_read;
24602 read_direct_string (abfd, mac_ptr, &bytes_read);
24603 mac_ptr += bytes_read;
24604 }
24605 break;
24606
24607 case DW_MACRO_start_file:
24608 {
24609 unsigned int bytes_read;
24610 int line, file;
24611
24612 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24614 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24615 mac_ptr += bytes_read;
24616
24617 current_file = macro_start_file (cu, file, line, current_file, lh);
24618 }
24619 break;
24620
24621 case DW_MACRO_end_file:
24622 /* No data to skip by MAC_PTR. */
24623 break;
24624
24625 case DW_MACRO_define_strp:
24626 case DW_MACRO_undef_strp:
24627 case DW_MACRO_define_sup:
24628 case DW_MACRO_undef_sup:
24629 {
24630 unsigned int bytes_read;
24631
24632 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24633 mac_ptr += bytes_read;
24634 mac_ptr += offset_size;
24635 }
24636 break;
24637
24638 case DW_MACRO_import:
24639 case DW_MACRO_import_sup:
24640 /* Note that, according to the spec, a transparent include
24641 chain cannot call DW_MACRO_start_file. So, we can just
24642 skip this opcode. */
24643 mac_ptr += offset_size;
24644 break;
24645
24646 case DW_MACINFO_vendor_ext:
24647 /* Only skip the data by MAC_PTR. */
24648 if (!section_is_gnu)
24649 {
24650 unsigned int bytes_read;
24651
24652 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24653 mac_ptr += bytes_read;
24654 read_direct_string (abfd, mac_ptr, &bytes_read);
24655 mac_ptr += bytes_read;
24656 }
24657 /* FALLTHROUGH */
24658
24659 default:
24660 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24661 mac_ptr, mac_end, abfd, offset_size,
24662 section);
24663 if (mac_ptr == NULL)
24664 return;
24665 break;
24666 }
24667 DIAGNOSTIC_POP
24668 } while (macinfo_type != 0 && current_file == NULL);
24669
24670 /* Second pass: Process all entries.
24671
24672 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24673 command-line macro definitions/undefinitions. This flag is unset when we
24674 reach the first DW_MACINFO_start_file entry. */
24675
24676 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24677 htab_eq_pointer,
24678 NULL, xcalloc, xfree));
24679 mac_ptr = section->buffer + offset;
24680 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24681 *slot = (void *) mac_ptr;
24682 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24683 current_file, lh, section,
24684 section_is_gnu, 0, offset_size,
24685 include_hash.get ());
24686 }
24687
24688 /* Return the .debug_loc section to use for CU.
24689 For DWO files use .debug_loc.dwo. */
24690
24691 static struct dwarf2_section_info *
24692 cu_debug_loc_section (struct dwarf2_cu *cu)
24693 {
24694 struct dwarf2_per_objfile *dwarf2_per_objfile
24695 = cu->per_cu->dwarf2_per_objfile;
24696
24697 if (cu->dwo_unit)
24698 {
24699 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24700
24701 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24702 }
24703 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24704 : &dwarf2_per_objfile->loc);
24705 }
24706
24707 /* A helper function that fills in a dwarf2_loclist_baton. */
24708
24709 static void
24710 fill_in_loclist_baton (struct dwarf2_cu *cu,
24711 struct dwarf2_loclist_baton *baton,
24712 const struct attribute *attr)
24713 {
24714 struct dwarf2_per_objfile *dwarf2_per_objfile
24715 = cu->per_cu->dwarf2_per_objfile;
24716 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24717
24718 section->read (dwarf2_per_objfile->objfile);
24719
24720 baton->per_cu = cu->per_cu;
24721 gdb_assert (baton->per_cu);
24722 /* We don't know how long the location list is, but make sure we
24723 don't run off the edge of the section. */
24724 baton->size = section->size - DW_UNSND (attr);
24725 baton->data = section->buffer + DW_UNSND (attr);
24726 baton->base_address = cu->base_address;
24727 baton->from_dwo = cu->dwo_unit != NULL;
24728 }
24729
24730 static void
24731 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24732 struct dwarf2_cu *cu, int is_block)
24733 {
24734 struct dwarf2_per_objfile *dwarf2_per_objfile
24735 = cu->per_cu->dwarf2_per_objfile;
24736 struct objfile *objfile = dwarf2_per_objfile->objfile;
24737 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24738
24739 if (attr->form_is_section_offset ()
24740 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24741 the section. If so, fall through to the complaint in the
24742 other branch. */
24743 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24744 {
24745 struct dwarf2_loclist_baton *baton;
24746
24747 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24748
24749 fill_in_loclist_baton (cu, baton, attr);
24750
24751 if (cu->base_known == 0)
24752 complaint (_("Location list used without "
24753 "specifying the CU base address."));
24754
24755 SYMBOL_ACLASS_INDEX (sym) = (is_block
24756 ? dwarf2_loclist_block_index
24757 : dwarf2_loclist_index);
24758 SYMBOL_LOCATION_BATON (sym) = baton;
24759 }
24760 else
24761 {
24762 struct dwarf2_locexpr_baton *baton;
24763
24764 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24765 baton->per_cu = cu->per_cu;
24766 gdb_assert (baton->per_cu);
24767
24768 if (attr->form_is_block ())
24769 {
24770 /* Note that we're just copying the block's data pointer
24771 here, not the actual data. We're still pointing into the
24772 info_buffer for SYM's objfile; right now we never release
24773 that buffer, but when we do clean up properly this may
24774 need to change. */
24775 baton->size = DW_BLOCK (attr)->size;
24776 baton->data = DW_BLOCK (attr)->data;
24777 }
24778 else
24779 {
24780 dwarf2_invalid_attrib_class_complaint ("location description",
24781 sym->natural_name ());
24782 baton->size = 0;
24783 }
24784
24785 SYMBOL_ACLASS_INDEX (sym) = (is_block
24786 ? dwarf2_locexpr_block_index
24787 : dwarf2_locexpr_index);
24788 SYMBOL_LOCATION_BATON (sym) = baton;
24789 }
24790 }
24791
24792 /* Return the OBJFILE associated with the compilation unit CU. If CU
24793 came from a separate debuginfo file, then the master objfile is
24794 returned. */
24795
24796 struct objfile *
24797 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24798 {
24799 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24800
24801 /* Return the master objfile, so that we can report and look up the
24802 correct file containing this variable. */
24803 if (objfile->separate_debug_objfile_backlink)
24804 objfile = objfile->separate_debug_objfile_backlink;
24805
24806 return objfile;
24807 }
24808
24809 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24810 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24811 CU_HEADERP first. */
24812
24813 static const struct comp_unit_head *
24814 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24815 struct dwarf2_per_cu_data *per_cu)
24816 {
24817 const gdb_byte *info_ptr;
24818
24819 if (per_cu->cu)
24820 return &per_cu->cu->header;
24821
24822 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24823
24824 memset (cu_headerp, 0, sizeof (*cu_headerp));
24825 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24826 rcuh_kind::COMPILE);
24827
24828 return cu_headerp;
24829 }
24830
24831 /* Return the address size given in the compilation unit header for CU. */
24832
24833 int
24834 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24835 {
24836 struct comp_unit_head cu_header_local;
24837 const struct comp_unit_head *cu_headerp;
24838
24839 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24840
24841 return cu_headerp->addr_size;
24842 }
24843
24844 /* Return the offset size given in the compilation unit header for CU. */
24845
24846 int
24847 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24848 {
24849 struct comp_unit_head cu_header_local;
24850 const struct comp_unit_head *cu_headerp;
24851
24852 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24853
24854 return cu_headerp->offset_size;
24855 }
24856
24857 /* See its dwarf2loc.h declaration. */
24858
24859 int
24860 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24861 {
24862 struct comp_unit_head cu_header_local;
24863 const struct comp_unit_head *cu_headerp;
24864
24865 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24866
24867 if (cu_headerp->version == 2)
24868 return cu_headerp->addr_size;
24869 else
24870 return cu_headerp->offset_size;
24871 }
24872
24873 /* Return the text offset of the CU. The returned offset comes from
24874 this CU's objfile. If this objfile came from a separate debuginfo
24875 file, then the offset may be different from the corresponding
24876 offset in the parent objfile. */
24877
24878 CORE_ADDR
24879 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24880 {
24881 return per_cu->dwarf2_per_objfile->objfile->text_section_offset ();
24882 }
24883
24884 /* Return a type that is a generic pointer type, the size of which matches
24885 the address size given in the compilation unit header for PER_CU. */
24886 static struct type *
24887 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
24888 {
24889 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24890 struct type *void_type = objfile_type (objfile)->builtin_void;
24891 struct type *addr_type = lookup_pointer_type (void_type);
24892 int addr_size = dwarf2_per_cu_addr_size (per_cu);
24893
24894 if (TYPE_LENGTH (addr_type) == addr_size)
24895 return addr_type;
24896
24897 addr_type
24898 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
24899 return addr_type;
24900 }
24901
24902 /* Return DWARF version number of PER_CU. */
24903
24904 short
24905 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24906 {
24907 return per_cu->dwarf_version;
24908 }
24909
24910 /* Locate the .debug_info compilation unit from CU's objfile which contains
24911 the DIE at OFFSET. Raises an error on failure. */
24912
24913 static struct dwarf2_per_cu_data *
24914 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24915 unsigned int offset_in_dwz,
24916 struct dwarf2_per_objfile *dwarf2_per_objfile)
24917 {
24918 struct dwarf2_per_cu_data *this_cu;
24919 int low, high;
24920
24921 low = 0;
24922 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24923 while (high > low)
24924 {
24925 struct dwarf2_per_cu_data *mid_cu;
24926 int mid = low + (high - low) / 2;
24927
24928 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24929 if (mid_cu->is_dwz > offset_in_dwz
24930 || (mid_cu->is_dwz == offset_in_dwz
24931 && mid_cu->sect_off + mid_cu->length >= sect_off))
24932 high = mid;
24933 else
24934 low = mid + 1;
24935 }
24936 gdb_assert (low == high);
24937 this_cu = dwarf2_per_objfile->all_comp_units[low];
24938 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24939 {
24940 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24941 error (_("Dwarf Error: could not find partial DIE containing "
24942 "offset %s [in module %s]"),
24943 sect_offset_str (sect_off),
24944 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24945
24946 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24947 <= sect_off);
24948 return dwarf2_per_objfile->all_comp_units[low-1];
24949 }
24950 else
24951 {
24952 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24953 && sect_off >= this_cu->sect_off + this_cu->length)
24954 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24955 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24956 return this_cu;
24957 }
24958 }
24959
24960 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24961
24962 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24963 : per_cu (per_cu_),
24964 mark (false),
24965 has_loclist (false),
24966 checked_producer (false),
24967 producer_is_gxx_lt_4_6 (false),
24968 producer_is_gcc_lt_4_3 (false),
24969 producer_is_icc (false),
24970 producer_is_icc_lt_14 (false),
24971 producer_is_codewarrior (false),
24972 processing_has_namespace_info (false)
24973 {
24974 per_cu->cu = this;
24975 }
24976
24977 /* Destroy a dwarf2_cu. */
24978
24979 dwarf2_cu::~dwarf2_cu ()
24980 {
24981 per_cu->cu = NULL;
24982 }
24983
24984 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24985
24986 static void
24987 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24988 enum language pretend_language)
24989 {
24990 struct attribute *attr;
24991
24992 /* Set the language we're debugging. */
24993 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24994 if (attr != nullptr)
24995 set_cu_language (DW_UNSND (attr), cu);
24996 else
24997 {
24998 cu->language = pretend_language;
24999 cu->language_defn = language_def (cu->language);
25000 }
25001
25002 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25003 }
25004
25005 /* Increase the age counter on each cached compilation unit, and free
25006 any that are too old. */
25007
25008 static void
25009 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25010 {
25011 struct dwarf2_per_cu_data *per_cu, **last_chain;
25012
25013 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25014 per_cu = dwarf2_per_objfile->read_in_chain;
25015 while (per_cu != NULL)
25016 {
25017 per_cu->cu->last_used ++;
25018 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25019 dwarf2_mark (per_cu->cu);
25020 per_cu = per_cu->cu->read_in_chain;
25021 }
25022
25023 per_cu = dwarf2_per_objfile->read_in_chain;
25024 last_chain = &dwarf2_per_objfile->read_in_chain;
25025 while (per_cu != NULL)
25026 {
25027 struct dwarf2_per_cu_data *next_cu;
25028
25029 next_cu = per_cu->cu->read_in_chain;
25030
25031 if (!per_cu->cu->mark)
25032 {
25033 delete per_cu->cu;
25034 *last_chain = next_cu;
25035 }
25036 else
25037 last_chain = &per_cu->cu->read_in_chain;
25038
25039 per_cu = next_cu;
25040 }
25041 }
25042
25043 /* Remove a single compilation unit from the cache. */
25044
25045 static void
25046 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25047 {
25048 struct dwarf2_per_cu_data *per_cu, **last_chain;
25049 struct dwarf2_per_objfile *dwarf2_per_objfile
25050 = target_per_cu->dwarf2_per_objfile;
25051
25052 per_cu = dwarf2_per_objfile->read_in_chain;
25053 last_chain = &dwarf2_per_objfile->read_in_chain;
25054 while (per_cu != NULL)
25055 {
25056 struct dwarf2_per_cu_data *next_cu;
25057
25058 next_cu = per_cu->cu->read_in_chain;
25059
25060 if (per_cu == target_per_cu)
25061 {
25062 delete per_cu->cu;
25063 per_cu->cu = NULL;
25064 *last_chain = next_cu;
25065 break;
25066 }
25067 else
25068 last_chain = &per_cu->cu->read_in_chain;
25069
25070 per_cu = next_cu;
25071 }
25072 }
25073
25074 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25075 We store these in a hash table separate from the DIEs, and preserve them
25076 when the DIEs are flushed out of cache.
25077
25078 The CU "per_cu" pointer is needed because offset alone is not enough to
25079 uniquely identify the type. A file may have multiple .debug_types sections,
25080 or the type may come from a DWO file. Furthermore, while it's more logical
25081 to use per_cu->section+offset, with Fission the section with the data is in
25082 the DWO file but we don't know that section at the point we need it.
25083 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25084 because we can enter the lookup routine, get_die_type_at_offset, from
25085 outside this file, and thus won't necessarily have PER_CU->cu.
25086 Fortunately, PER_CU is stable for the life of the objfile. */
25087
25088 struct dwarf2_per_cu_offset_and_type
25089 {
25090 const struct dwarf2_per_cu_data *per_cu;
25091 sect_offset sect_off;
25092 struct type *type;
25093 };
25094
25095 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25096
25097 static hashval_t
25098 per_cu_offset_and_type_hash (const void *item)
25099 {
25100 const struct dwarf2_per_cu_offset_and_type *ofs
25101 = (const struct dwarf2_per_cu_offset_and_type *) item;
25102
25103 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25104 }
25105
25106 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25107
25108 static int
25109 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25110 {
25111 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25112 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25113 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25114 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25115
25116 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25117 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25118 }
25119
25120 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25121 table if necessary. For convenience, return TYPE.
25122
25123 The DIEs reading must have careful ordering to:
25124 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25125 reading current DIE.
25126 * Not trying to dereference contents of still incompletely read in types
25127 while reading in other DIEs.
25128 * Enable referencing still incompletely read in types just by a pointer to
25129 the type without accessing its fields.
25130
25131 Therefore caller should follow these rules:
25132 * Try to fetch any prerequisite types we may need to build this DIE type
25133 before building the type and calling set_die_type.
25134 * After building type call set_die_type for current DIE as soon as
25135 possible before fetching more types to complete the current type.
25136 * Make the type as complete as possible before fetching more types. */
25137
25138 static struct type *
25139 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25140 {
25141 struct dwarf2_per_objfile *dwarf2_per_objfile
25142 = cu->per_cu->dwarf2_per_objfile;
25143 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25144 struct objfile *objfile = dwarf2_per_objfile->objfile;
25145 struct attribute *attr;
25146 struct dynamic_prop prop;
25147
25148 /* For Ada types, make sure that the gnat-specific data is always
25149 initialized (if not already set). There are a few types where
25150 we should not be doing so, because the type-specific area is
25151 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25152 where the type-specific area is used to store the floatformat).
25153 But this is not a problem, because the gnat-specific information
25154 is actually not needed for these types. */
25155 if (need_gnat_info (cu)
25156 && TYPE_CODE (type) != TYPE_CODE_FUNC
25157 && TYPE_CODE (type) != TYPE_CODE_FLT
25158 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25159 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25160 && TYPE_CODE (type) != TYPE_CODE_METHOD
25161 && !HAVE_GNAT_AUX_INFO (type))
25162 INIT_GNAT_SPECIFIC (type);
25163
25164 /* Read DW_AT_allocated and set in type. */
25165 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25166 if (attr != NULL && attr->form_is_block ())
25167 {
25168 struct type *prop_type
25169 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25170 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25171 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25172 }
25173 else if (attr != NULL)
25174 {
25175 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25176 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25177 sect_offset_str (die->sect_off));
25178 }
25179
25180 /* Read DW_AT_associated and set in type. */
25181 attr = dwarf2_attr (die, DW_AT_associated, cu);
25182 if (attr != NULL && attr->form_is_block ())
25183 {
25184 struct type *prop_type
25185 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25186 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25187 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25188 }
25189 else if (attr != NULL)
25190 {
25191 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25192 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25193 sect_offset_str (die->sect_off));
25194 }
25195
25196 /* Read DW_AT_data_location and set in type. */
25197 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25198 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25199 dwarf2_per_cu_addr_type (cu->per_cu)))
25200 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25201
25202 if (dwarf2_per_objfile->die_type_hash == NULL)
25203 {
25204 dwarf2_per_objfile->die_type_hash =
25205 htab_create_alloc_ex (127,
25206 per_cu_offset_and_type_hash,
25207 per_cu_offset_and_type_eq,
25208 NULL,
25209 &objfile->objfile_obstack,
25210 hashtab_obstack_allocate,
25211 dummy_obstack_deallocate);
25212 }
25213
25214 ofs.per_cu = cu->per_cu;
25215 ofs.sect_off = die->sect_off;
25216 ofs.type = type;
25217 slot = (struct dwarf2_per_cu_offset_and_type **)
25218 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25219 if (*slot)
25220 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25221 sect_offset_str (die->sect_off));
25222 *slot = XOBNEW (&objfile->objfile_obstack,
25223 struct dwarf2_per_cu_offset_and_type);
25224 **slot = ofs;
25225 return type;
25226 }
25227
25228 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25229 or return NULL if the die does not have a saved type. */
25230
25231 static struct type *
25232 get_die_type_at_offset (sect_offset sect_off,
25233 struct dwarf2_per_cu_data *per_cu)
25234 {
25235 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25236 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25237
25238 if (dwarf2_per_objfile->die_type_hash == NULL)
25239 return NULL;
25240
25241 ofs.per_cu = per_cu;
25242 ofs.sect_off = sect_off;
25243 slot = ((struct dwarf2_per_cu_offset_and_type *)
25244 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25245 if (slot)
25246 return slot->type;
25247 else
25248 return NULL;
25249 }
25250
25251 /* Look up the type for DIE in CU in die_type_hash,
25252 or return NULL if DIE does not have a saved type. */
25253
25254 static struct type *
25255 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25256 {
25257 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25258 }
25259
25260 /* Add a dependence relationship from CU to REF_PER_CU. */
25261
25262 static void
25263 dwarf2_add_dependence (struct dwarf2_cu *cu,
25264 struct dwarf2_per_cu_data *ref_per_cu)
25265 {
25266 void **slot;
25267
25268 if (cu->dependencies == NULL)
25269 cu->dependencies
25270 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25271 NULL, &cu->comp_unit_obstack,
25272 hashtab_obstack_allocate,
25273 dummy_obstack_deallocate);
25274
25275 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25276 if (*slot == NULL)
25277 *slot = ref_per_cu;
25278 }
25279
25280 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25281 Set the mark field in every compilation unit in the
25282 cache that we must keep because we are keeping CU. */
25283
25284 static int
25285 dwarf2_mark_helper (void **slot, void *data)
25286 {
25287 struct dwarf2_per_cu_data *per_cu;
25288
25289 per_cu = (struct dwarf2_per_cu_data *) *slot;
25290
25291 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25292 reading of the chain. As such dependencies remain valid it is not much
25293 useful to track and undo them during QUIT cleanups. */
25294 if (per_cu->cu == NULL)
25295 return 1;
25296
25297 if (per_cu->cu->mark)
25298 return 1;
25299 per_cu->cu->mark = true;
25300
25301 if (per_cu->cu->dependencies != NULL)
25302 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25303
25304 return 1;
25305 }
25306
25307 /* Set the mark field in CU and in every other compilation unit in the
25308 cache that we must keep because we are keeping CU. */
25309
25310 static void
25311 dwarf2_mark (struct dwarf2_cu *cu)
25312 {
25313 if (cu->mark)
25314 return;
25315 cu->mark = true;
25316 if (cu->dependencies != NULL)
25317 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25318 }
25319
25320 static void
25321 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25322 {
25323 while (per_cu)
25324 {
25325 per_cu->cu->mark = false;
25326 per_cu = per_cu->cu->read_in_chain;
25327 }
25328 }
25329
25330 /* Trivial hash function for partial_die_info: the hash value of a DIE
25331 is its offset in .debug_info for this objfile. */
25332
25333 static hashval_t
25334 partial_die_hash (const void *item)
25335 {
25336 const struct partial_die_info *part_die
25337 = (const struct partial_die_info *) item;
25338
25339 return to_underlying (part_die->sect_off);
25340 }
25341
25342 /* Trivial comparison function for partial_die_info structures: two DIEs
25343 are equal if they have the same offset. */
25344
25345 static int
25346 partial_die_eq (const void *item_lhs, const void *item_rhs)
25347 {
25348 const struct partial_die_info *part_die_lhs
25349 = (const struct partial_die_info *) item_lhs;
25350 const struct partial_die_info *part_die_rhs
25351 = (const struct partial_die_info *) item_rhs;
25352
25353 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25354 }
25355
25356 struct cmd_list_element *set_dwarf_cmdlist;
25357 struct cmd_list_element *show_dwarf_cmdlist;
25358
25359 static void
25360 set_dwarf_cmd (const char *args, int from_tty)
25361 {
25362 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25363 gdb_stdout);
25364 }
25365
25366 static void
25367 show_dwarf_cmd (const char *args, int from_tty)
25368 {
25369 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25370 }
25371
25372 bool dwarf_always_disassemble;
25373
25374 static void
25375 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25376 struct cmd_list_element *c, const char *value)
25377 {
25378 fprintf_filtered (file,
25379 _("Whether to always disassemble "
25380 "DWARF expressions is %s.\n"),
25381 value);
25382 }
25383
25384 static void
25385 show_check_physname (struct ui_file *file, int from_tty,
25386 struct cmd_list_element *c, const char *value)
25387 {
25388 fprintf_filtered (file,
25389 _("Whether to check \"physname\" is %s.\n"),
25390 value);
25391 }
25392
25393 void _initialize_dwarf2_read ();
25394 void
25395 _initialize_dwarf2_read ()
25396 {
25397 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25398 Set DWARF specific variables.\n\
25399 Configure DWARF variables such as the cache size."),
25400 &set_dwarf_cmdlist, "maintenance set dwarf ",
25401 0/*allow-unknown*/, &maintenance_set_cmdlist);
25402
25403 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25404 Show DWARF specific variables.\n\
25405 Show DWARF variables such as the cache size."),
25406 &show_dwarf_cmdlist, "maintenance show dwarf ",
25407 0/*allow-unknown*/, &maintenance_show_cmdlist);
25408
25409 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25410 &dwarf_max_cache_age, _("\
25411 Set the upper bound on the age of cached DWARF compilation units."), _("\
25412 Show the upper bound on the age of cached DWARF compilation units."), _("\
25413 A higher limit means that cached compilation units will be stored\n\
25414 in memory longer, and more total memory will be used. Zero disables\n\
25415 caching, which can slow down startup."),
25416 NULL,
25417 show_dwarf_max_cache_age,
25418 &set_dwarf_cmdlist,
25419 &show_dwarf_cmdlist);
25420
25421 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25422 &dwarf_always_disassemble, _("\
25423 Set whether `info address' always disassembles DWARF expressions."), _("\
25424 Show whether `info address' always disassembles DWARF expressions."), _("\
25425 When enabled, DWARF expressions are always printed in an assembly-like\n\
25426 syntax. When disabled, expressions will be printed in a more\n\
25427 conversational style, when possible."),
25428 NULL,
25429 show_dwarf_always_disassemble,
25430 &set_dwarf_cmdlist,
25431 &show_dwarf_cmdlist);
25432
25433 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25434 Set debugging of the DWARF reader."), _("\
25435 Show debugging of the DWARF reader."), _("\
25436 When enabled (non-zero), debugging messages are printed during DWARF\n\
25437 reading and symtab expansion. A value of 1 (one) provides basic\n\
25438 information. A value greater than 1 provides more verbose information."),
25439 NULL,
25440 NULL,
25441 &setdebuglist, &showdebuglist);
25442
25443 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25444 Set debugging of the DWARF DIE reader."), _("\
25445 Show debugging of the DWARF DIE reader."), _("\
25446 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25447 The value is the maximum depth to print."),
25448 NULL,
25449 NULL,
25450 &setdebuglist, &showdebuglist);
25451
25452 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25453 Set debugging of the dwarf line reader."), _("\
25454 Show debugging of the dwarf line reader."), _("\
25455 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25456 A value of 1 (one) provides basic information.\n\
25457 A value greater than 1 provides more verbose information."),
25458 NULL,
25459 NULL,
25460 &setdebuglist, &showdebuglist);
25461
25462 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25463 Set cross-checking of \"physname\" code against demangler."), _("\
25464 Show cross-checking of \"physname\" code against demangler."), _("\
25465 When enabled, GDB's internal \"physname\" code is checked against\n\
25466 the demangler."),
25467 NULL, show_check_physname,
25468 &setdebuglist, &showdebuglist);
25469
25470 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25471 no_class, &use_deprecated_index_sections, _("\
25472 Set whether to use deprecated gdb_index sections."), _("\
25473 Show whether to use deprecated gdb_index sections."), _("\
25474 When enabled, deprecated .gdb_index sections are used anyway.\n\
25475 Normally they are ignored either because of a missing feature or\n\
25476 performance issue.\n\
25477 Warning: This option must be enabled before gdb reads the file."),
25478 NULL,
25479 NULL,
25480 &setlist, &showlist);
25481
25482 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25483 &dwarf2_locexpr_funcs);
25484 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25485 &dwarf2_loclist_funcs);
25486
25487 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25488 &dwarf2_block_frame_base_locexpr_funcs);
25489 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25490 &dwarf2_block_frame_base_loclist_funcs);
25491
25492 #if GDB_SELF_TEST
25493 selftests::register_test ("dw2_expand_symtabs_matching",
25494 selftests::dw2_expand_symtabs_matching::run_test);
25495 #endif
25496 }
This page took 0.565082 seconds and 4 git commands to generate.