973a375641e8b7d064899d187841750dd3b7634d
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 /* This is used to store the data that is always per objfile. */
109 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
110
111 /* These are used to store the dwarf2_per_bfd objects.
112
113 objfiles having the same BFD, which doesn't require relocations, are going to
114 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
115
116 Other objfiles are not going to share a dwarf2_per_bfd with any other
117 objfiles, so they'll have their own version kept in the _objfile_data_key
118 version. */
119 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
120 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
121
122 /* The "aclass" indices for various kinds of computed DWARF symbols. */
123
124 static int dwarf2_locexpr_index;
125 static int dwarf2_loclist_index;
126 static int dwarf2_locexpr_block_index;
127 static int dwarf2_loclist_block_index;
128
129 /* Size of .debug_loclists section header for 32-bit DWARF format. */
130 #define LOCLIST_HEADER_SIZE32 12
131
132 /* Size of .debug_loclists section header for 64-bit DWARF format. */
133 #define LOCLIST_HEADER_SIZE64 20
134
135 /* Size of .debug_rnglists section header for 32-bit DWARF format. */
136 #define RNGLIST_HEADER_SIZE32 12
137
138 /* Size of .debug_rnglists section header for 64-bit DWARF format. */
139 #define RNGLIST_HEADER_SIZE64 20
140
141 /* An index into a (C++) symbol name component in a symbol name as
142 recorded in the mapped_index's symbol table. For each C++ symbol
143 in the symbol table, we record one entry for the start of each
144 component in the symbol in a table of name components, and then
145 sort the table, in order to be able to binary search symbol names,
146 ignoring leading namespaces, both completion and regular look up.
147 For example, for symbol "A::B::C", we'll have an entry that points
148 to "A::B::C", another that points to "B::C", and another for "C".
149 Note that function symbols in GDB index have no parameter
150 information, just the function/method names. You can convert a
151 name_component to a "const char *" using the
152 'mapped_index::symbol_name_at(offset_type)' method. */
153
154 struct name_component
155 {
156 /* Offset in the symbol name where the component starts. Stored as
157 a (32-bit) offset instead of a pointer to save memory and improve
158 locality on 64-bit architectures. */
159 offset_type name_offset;
160
161 /* The symbol's index in the symbol and constant pool tables of a
162 mapped_index. */
163 offset_type idx;
164 };
165
166 /* Base class containing bits shared by both .gdb_index and
167 .debug_name indexes. */
168
169 struct mapped_index_base
170 {
171 mapped_index_base () = default;
172 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
173
174 /* The name_component table (a sorted vector). See name_component's
175 description above. */
176 std::vector<name_component> name_components;
177
178 /* How NAME_COMPONENTS is sorted. */
179 enum case_sensitivity name_components_casing;
180
181 /* Return the number of names in the symbol table. */
182 virtual size_t symbol_name_count () const = 0;
183
184 /* Get the name of the symbol at IDX in the symbol table. */
185 virtual const char *symbol_name_at
186 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
187
188 /* Return whether the name at IDX in the symbol table should be
189 ignored. */
190 virtual bool symbol_name_slot_invalid (offset_type idx) const
191 {
192 return false;
193 }
194
195 /* Build the symbol name component sorted vector, if we haven't
196 yet. */
197 void build_name_components (dwarf2_per_objfile *per_objfile);
198
199 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
200 possible matches for LN_NO_PARAMS in the name component
201 vector. */
202 std::pair<std::vector<name_component>::const_iterator,
203 std::vector<name_component>::const_iterator>
204 find_name_components_bounds (const lookup_name_info &ln_no_params,
205 enum language lang,
206 dwarf2_per_objfile *per_objfile) const;
207
208 /* Prevent deleting/destroying via a base class pointer. */
209 protected:
210 ~mapped_index_base() = default;
211 };
212
213 /* A description of the mapped index. The file format is described in
214 a comment by the code that writes the index. */
215 struct mapped_index final : public mapped_index_base
216 {
217 /* A slot/bucket in the symbol table hash. */
218 struct symbol_table_slot
219 {
220 const offset_type name;
221 const offset_type vec;
222 };
223
224 /* Index data format version. */
225 int version = 0;
226
227 /* The address table data. */
228 gdb::array_view<const gdb_byte> address_table;
229
230 /* The symbol table, implemented as a hash table. */
231 gdb::array_view<symbol_table_slot> symbol_table;
232
233 /* A pointer to the constant pool. */
234 const char *constant_pool = nullptr;
235
236 bool symbol_name_slot_invalid (offset_type idx) const override
237 {
238 const auto &bucket = this->symbol_table[idx];
239 return bucket.name == 0 && bucket.vec == 0;
240 }
241
242 /* Convenience method to get at the name of the symbol at IDX in the
243 symbol table. */
244 const char *symbol_name_at
245 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
246 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
247
248 size_t symbol_name_count () const override
249 { return this->symbol_table.size (); }
250 };
251
252 /* A description of the mapped .debug_names.
253 Uninitialized map has CU_COUNT 0. */
254 struct mapped_debug_names final : public mapped_index_base
255 {
256 bfd_endian dwarf5_byte_order;
257 bool dwarf5_is_dwarf64;
258 bool augmentation_is_gdb;
259 uint8_t offset_size;
260 uint32_t cu_count = 0;
261 uint32_t tu_count, bucket_count, name_count;
262 const gdb_byte *cu_table_reordered, *tu_table_reordered;
263 const uint32_t *bucket_table_reordered, *hash_table_reordered;
264 const gdb_byte *name_table_string_offs_reordered;
265 const gdb_byte *name_table_entry_offs_reordered;
266 const gdb_byte *entry_pool;
267
268 struct index_val
269 {
270 ULONGEST dwarf_tag;
271 struct attr
272 {
273 /* Attribute name DW_IDX_*. */
274 ULONGEST dw_idx;
275
276 /* Attribute form DW_FORM_*. */
277 ULONGEST form;
278
279 /* Value if FORM is DW_FORM_implicit_const. */
280 LONGEST implicit_const;
281 };
282 std::vector<attr> attr_vec;
283 };
284
285 std::unordered_map<ULONGEST, index_val> abbrev_map;
286
287 const char *namei_to_name
288 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
289
290 /* Implementation of the mapped_index_base virtual interface, for
291 the name_components cache. */
292
293 const char *symbol_name_at
294 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
295 { return namei_to_name (idx, per_objfile); }
296
297 size_t symbol_name_count () const override
298 { return this->name_count; }
299 };
300
301 /* See dwarf2read.h. */
302
303 dwarf2_per_objfile *
304 get_dwarf2_per_objfile (struct objfile *objfile)
305 {
306 return dwarf2_objfile_data_key.get (objfile);
307 }
308
309 /* Default names of the debugging sections. */
310
311 /* Note that if the debugging section has been compressed, it might
312 have a name like .zdebug_info. */
313
314 static const struct dwarf2_debug_sections dwarf2_elf_names =
315 {
316 { ".debug_info", ".zdebug_info" },
317 { ".debug_abbrev", ".zdebug_abbrev" },
318 { ".debug_line", ".zdebug_line" },
319 { ".debug_loc", ".zdebug_loc" },
320 { ".debug_loclists", ".zdebug_loclists" },
321 { ".debug_macinfo", ".zdebug_macinfo" },
322 { ".debug_macro", ".zdebug_macro" },
323 { ".debug_str", ".zdebug_str" },
324 { ".debug_str_offsets", ".zdebug_str_offsets" },
325 { ".debug_line_str", ".zdebug_line_str" },
326 { ".debug_ranges", ".zdebug_ranges" },
327 { ".debug_rnglists", ".zdebug_rnglists" },
328 { ".debug_types", ".zdebug_types" },
329 { ".debug_addr", ".zdebug_addr" },
330 { ".debug_frame", ".zdebug_frame" },
331 { ".eh_frame", NULL },
332 { ".gdb_index", ".zgdb_index" },
333 { ".debug_names", ".zdebug_names" },
334 { ".debug_aranges", ".zdebug_aranges" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names loclists_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names rnglists_dwo;
350 struct dwarf2_section_names str_dwo;
351 struct dwarf2_section_names str_offsets_dwo;
352 struct dwarf2_section_names types_dwo;
353 struct dwarf2_section_names cu_index;
354 struct dwarf2_section_names tu_index;
355 }
356 dwop_section_names =
357 {
358 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
359 { ".debug_info.dwo", ".zdebug_info.dwo" },
360 { ".debug_line.dwo", ".zdebug_line.dwo" },
361 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
362 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" },
366 { ".debug_str.dwo", ".zdebug_str.dwo" },
367 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
368 { ".debug_types.dwo", ".zdebug_types.dwo" },
369 { ".debug_cu_index", ".zdebug_cu_index" },
370 { ".debug_tu_index", ".zdebug_tu_index" },
371 };
372
373 /* local data types */
374
375 /* The location list and range list sections (.debug_loclists & .debug_rnglists)
376 begin with a header, which contains the following information. */
377 struct loclists_rnglists_header
378 {
379 /* A 4-byte or 12-byte length containing the length of the
380 set of entries for this compilation unit, not including the
381 length field itself. */
382 unsigned int length;
383
384 /* A 2-byte version identifier. */
385 short version;
386
387 /* A 1-byte unsigned integer containing the size in bytes of an address on
388 the target system. */
389 unsigned char addr_size;
390
391 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
392 on the target system. */
393 unsigned char segment_collector_size;
394
395 /* A 4-byte count of the number of offsets that follow the header. */
396 unsigned int offset_entry_count;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 explicit dwarf2_cu (dwarf2_per_cu_data *per_cu,
423 dwarf2_per_objfile *per_objfile);
424
425 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
426
427 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
428 Create the set of symtabs used by this TU, or if this TU is sharing
429 symtabs with another TU and the symtabs have already been created
430 then restore those symtabs in the line header.
431 We don't need the pc/line-number mapping for type units. */
432 void setup_type_unit_groups (struct die_info *die);
433
434 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
435 buildsym_compunit constructor. */
436 struct compunit_symtab *start_symtab (const char *name,
437 const char *comp_dir,
438 CORE_ADDR low_pc);
439
440 /* Reset the builder. */
441 void reset_builder () { m_builder.reset (); }
442
443 /* Return a type that is a generic pointer type, the size of which
444 matches the address size given in the compilation unit header for
445 this CU. */
446 struct type *addr_type () const;
447
448 /* Find an integer type the same size as the address size given in
449 the compilation unit header for this CU. UNSIGNED_P controls if
450 the integer is unsigned or not. */
451 struct type *addr_sized_int_type (bool unsigned_p) const;
452
453 /* The header of the compilation unit. */
454 struct comp_unit_head header {};
455
456 /* Base address of this compilation unit. */
457 gdb::optional<CORE_ADDR> base_address;
458
459 /* The language we are debugging. */
460 enum language language = language_unknown;
461 const struct language_defn *language_defn = nullptr;
462
463 const char *producer = nullptr;
464
465 private:
466 /* The symtab builder for this CU. This is only non-NULL when full
467 symbols are being read. */
468 std::unique_ptr<buildsym_compunit> m_builder;
469
470 public:
471 /* The generic symbol table building routines have separate lists for
472 file scope symbols and all all other scopes (local scopes). So
473 we need to select the right one to pass to add_symbol_to_list().
474 We do it by keeping a pointer to the correct list in list_in_scope.
475
476 FIXME: The original dwarf code just treated the file scope as the
477 first local scope, and all other local scopes as nested local
478 scopes, and worked fine. Check to see if we really need to
479 distinguish these in buildsym.c. */
480 struct pending **list_in_scope = nullptr;
481
482 /* Hash table holding all the loaded partial DIEs
483 with partial_die->offset.SECT_OFF as hash. */
484 htab_t partial_dies = nullptr;
485
486 /* Storage for things with the same lifetime as this read-in compilation
487 unit, including partial DIEs. */
488 auto_obstack comp_unit_obstack;
489
490 /* Backlink to our per_cu entry. */
491 struct dwarf2_per_cu_data *per_cu;
492
493 /* The dwarf2_per_objfile that owns this. */
494 dwarf2_per_objfile *per_objfile;
495
496 /* How many compilation units ago was this CU last referenced? */
497 int last_used = 0;
498
499 /* A hash table of DIE cu_offset for following references with
500 die_info->offset.sect_off as hash. */
501 htab_t die_hash = nullptr;
502
503 /* Full DIEs if read in. */
504 struct die_info *dies = nullptr;
505
506 /* A set of pointers to dwarf2_per_cu_data objects for compilation
507 units referenced by this one. Only set during full symbol processing;
508 partial symbol tables do not have dependencies. */
509 htab_t dependencies = nullptr;
510
511 /* Header data from the line table, during full symbol processing. */
512 struct line_header *line_header = nullptr;
513 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
514 it's owned by dwarf2_per_bfd::line_header_hash. If non-NULL,
515 this is the DW_TAG_compile_unit die for this CU. We'll hold on
516 to the line header as long as this DIE is being processed. See
517 process_die_scope. */
518 die_info *line_header_die_owner = nullptr;
519
520 /* A list of methods which need to have physnames computed
521 after all type information has been read. */
522 std::vector<delayed_method_info> method_list;
523
524 /* To be copied to symtab->call_site_htab. */
525 htab_t call_site_htab = nullptr;
526
527 /* Non-NULL if this CU came from a DWO file.
528 There is an invariant here that is important to remember:
529 Except for attributes copied from the top level DIE in the "main"
530 (or "stub") file in preparation for reading the DWO file
531 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
532 Either there isn't a DWO file (in which case this is NULL and the point
533 is moot), or there is and either we're not going to read it (in which
534 case this is NULL) or there is and we are reading it (in which case this
535 is non-NULL). */
536 struct dwo_unit *dwo_unit = nullptr;
537
538 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
539 Note this value comes from the Fission stub CU/TU's DIE. */
540 gdb::optional<ULONGEST> addr_base;
541
542 /* The DW_AT_rnglists_base attribute if present.
543 Note this value comes from the Fission stub CU/TU's DIE.
544 Also note that the value is zero in the non-DWO case so this value can
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
551 ULONGEST ranges_base = 0;
552
553 /* The DW_AT_loclists_base attribute if present. */
554 ULONGEST loclist_base = 0;
555
556 /* When reading debug info generated by older versions of rustc, we
557 have to rewrite some union types to be struct types with a
558 variant part. This rewriting must be done after the CU is fully
559 read in, because otherwise at the point of rewriting some struct
560 type might not have been fully processed. So, we keep a list of
561 all such types here and process them after expansion. */
562 std::vector<struct type *> rust_unions;
563
564 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
565 files, the value is implicitly zero. For DWARF 5 version DWO files, the
566 value is often implicit and is the size of the header of
567 .debug_str_offsets section (8 or 4, depending on the address size). */
568 gdb::optional<ULONGEST> str_offsets_base;
569
570 /* Mark used when releasing cached dies. */
571 bool mark : 1;
572
573 /* This CU references .debug_loc. See the symtab->locations_valid field.
574 This test is imperfect as there may exist optimized debug code not using
575 any location list and still facing inlining issues if handled as
576 unoptimized code. For a future better test see GCC PR other/32998. */
577 bool has_loclist : 1;
578
579 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
580 if all the producer_is_* fields are valid. This information is cached
581 because profiling CU expansion showed excessive time spent in
582 producer_is_gxx_lt_4_6. */
583 bool checked_producer : 1;
584 bool producer_is_gxx_lt_4_6 : 1;
585 bool producer_is_gcc_lt_4_3 : 1;
586 bool producer_is_icc : 1;
587 bool producer_is_icc_lt_14 : 1;
588 bool producer_is_codewarrior : 1;
589
590 /* When true, the file that we're processing is known to have
591 debugging info for C++ namespaces. GCC 3.3.x did not produce
592 this information, but later versions do. */
593
594 bool processing_has_namespace_info : 1;
595
596 struct partial_die_info *find_partial_die (sect_offset sect_off);
597
598 /* If this CU was inherited by another CU (via specification,
599 abstract_origin, etc), this is the ancestor CU. */
600 dwarf2_cu *ancestor;
601
602 /* Get the buildsym_compunit for this CU. */
603 buildsym_compunit *get_builder ()
604 {
605 /* If this CU has a builder associated with it, use that. */
606 if (m_builder != nullptr)
607 return m_builder.get ();
608
609 /* Otherwise, search ancestors for a valid builder. */
610 if (ancestor != nullptr)
611 return ancestor->get_builder ();
612
613 return nullptr;
614 }
615 };
616
617 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
618 This includes type_unit_group and quick_file_names. */
619
620 struct stmt_list_hash
621 {
622 /* The DWO unit this table is from or NULL if there is none. */
623 struct dwo_unit *dwo_unit;
624
625 /* Offset in .debug_line or .debug_line.dwo. */
626 sect_offset line_sect_off;
627 };
628
629 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
630 an object of this type. This contains elements of type unit groups
631 that can be shared across objfiles. The non-shareable parts are in
632 type_unit_group_unshareable. */
633
634 struct type_unit_group
635 {
636 /* dwarf2read.c's main "handle" on a TU symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab. */
640 struct dwarf2_per_cu_data per_cu;
641
642 /* The TUs that share this DW_AT_stmt_list entry.
643 This is added to while parsing type units to build partial symtabs,
644 and is deleted afterwards and not used again. */
645 std::vector<signatured_type *> *tus;
646
647 /* The data used to construct the hash key. */
648 struct stmt_list_hash hash;
649 };
650
651 /* These sections are what may appear in a (real or virtual) DWO file. */
652
653 struct dwo_sections
654 {
655 struct dwarf2_section_info abbrev;
656 struct dwarf2_section_info line;
657 struct dwarf2_section_info loc;
658 struct dwarf2_section_info loclists;
659 struct dwarf2_section_info macinfo;
660 struct dwarf2_section_info macro;
661 struct dwarf2_section_info rnglists;
662 struct dwarf2_section_info str;
663 struct dwarf2_section_info str_offsets;
664 /* In the case of a virtual DWO file, these two are unused. */
665 struct dwarf2_section_info info;
666 std::vector<dwarf2_section_info> types;
667 };
668
669 /* CUs/TUs in DWP/DWO files. */
670
671 struct dwo_unit
672 {
673 /* Backlink to the containing struct dwo_file. */
674 struct dwo_file *dwo_file;
675
676 /* The "id" that distinguishes this CU/TU.
677 .debug_info calls this "dwo_id", .debug_types calls this "signature".
678 Since signatures came first, we stick with it for consistency. */
679 ULONGEST signature;
680
681 /* The section this CU/TU lives in, in the DWO file. */
682 struct dwarf2_section_info *section;
683
684 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
685 sect_offset sect_off;
686 unsigned int length;
687
688 /* For types, offset in the type's DIE of the type defined by this TU. */
689 cu_offset type_offset_in_tu;
690 };
691
692 /* include/dwarf2.h defines the DWP section codes.
693 It defines a max value but it doesn't define a min value, which we
694 use for error checking, so provide one. */
695
696 enum dwp_v2_section_ids
697 {
698 DW_SECT_MIN = 1
699 };
700
701 /* Data for one DWO file.
702
703 This includes virtual DWO files (a virtual DWO file is a DWO file as it
704 appears in a DWP file). DWP files don't really have DWO files per se -
705 comdat folding of types "loses" the DWO file they came from, and from
706 a high level view DWP files appear to contain a mass of random types.
707 However, to maintain consistency with the non-DWP case we pretend DWP
708 files contain virtual DWO files, and we assign each TU with one virtual
709 DWO file (generally based on the line and abbrev section offsets -
710 a heuristic that seems to work in practice). */
711
712 struct dwo_file
713 {
714 dwo_file () = default;
715 DISABLE_COPY_AND_ASSIGN (dwo_file);
716
717 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name = nullptr;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir = nullptr;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 gdb_bfd_ref_ptr dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections {};
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_up cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_up tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by all DWP versions (1, 2 and 5). */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 and version 5 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 or 5 there is at most one copy of all these sections,
759 each section being (effectively) comprised of the concatenation of all of
760 the individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info loclists;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info rnglists;
771 struct dwarf2_section_info str_offsets;
772 struct dwarf2_section_info types;
773 };
774
775 /* These sections are what may appear in a virtual DWO file in DWP version 1.
776 A virtual DWO file is a DWO file as it appears in a DWP file. */
777
778 struct virtual_v1_dwo_sections
779 {
780 struct dwarf2_section_info abbrev;
781 struct dwarf2_section_info line;
782 struct dwarf2_section_info loc;
783 struct dwarf2_section_info macinfo;
784 struct dwarf2_section_info macro;
785 struct dwarf2_section_info str_offsets;
786 /* Each DWP hash table entry records one CU or one TU.
787 That is recorded here, and copied to dwo_unit.section. */
788 struct dwarf2_section_info info_or_types;
789 };
790
791 /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5.
792 In version 2, the sections of the DWO files are concatenated together
793 and stored in one section of that name. Thus each ELF section contains
794 several "virtual" sections. */
795
796 struct virtual_v2_or_v5_dwo_sections
797 {
798 bfd_size_type abbrev_offset;
799 bfd_size_type abbrev_size;
800
801 bfd_size_type line_offset;
802 bfd_size_type line_size;
803
804 bfd_size_type loc_offset;
805 bfd_size_type loc_size;
806
807 bfd_size_type loclists_offset;
808 bfd_size_type loclists_size;
809
810 bfd_size_type macinfo_offset;
811 bfd_size_type macinfo_size;
812
813 bfd_size_type macro_offset;
814 bfd_size_type macro_size;
815
816 bfd_size_type rnglists_offset;
817 bfd_size_type rnglists_size;
818
819 bfd_size_type str_offsets_offset;
820 bfd_size_type str_offsets_size;
821
822 /* Each DWP hash table entry records one CU or one TU.
823 That is recorded here, and copied to dwo_unit.section. */
824 bfd_size_type info_or_types_offset;
825 bfd_size_type info_or_types_size;
826 };
827
828 /* Contents of DWP hash tables. */
829
830 struct dwp_hash_table
831 {
832 uint32_t version, nr_columns;
833 uint32_t nr_units, nr_slots;
834 const gdb_byte *hash_table, *unit_table;
835 union
836 {
837 struct
838 {
839 const gdb_byte *indices;
840 } v1;
841 struct
842 {
843 /* This is indexed by column number and gives the id of the section
844 in that column. */
845 #define MAX_NR_V2_DWO_SECTIONS \
846 (1 /* .debug_info or .debug_types */ \
847 + 1 /* .debug_abbrev */ \
848 + 1 /* .debug_line */ \
849 + 1 /* .debug_loc */ \
850 + 1 /* .debug_str_offsets */ \
851 + 1 /* .debug_macro or .debug_macinfo */)
852 int section_ids[MAX_NR_V2_DWO_SECTIONS];
853 const gdb_byte *offsets;
854 const gdb_byte *sizes;
855 } v2;
856 struct
857 {
858 /* This is indexed by column number and gives the id of the section
859 in that column. */
860 #define MAX_NR_V5_DWO_SECTIONS \
861 (1 /* .debug_info */ \
862 + 1 /* .debug_abbrev */ \
863 + 1 /* .debug_line */ \
864 + 1 /* .debug_loclists */ \
865 + 1 /* .debug_str_offsets */ \
866 + 1 /* .debug_macro */ \
867 + 1 /* .debug_rnglists */)
868 int section_ids[MAX_NR_V5_DWO_SECTIONS];
869 const gdb_byte *offsets;
870 const gdb_byte *sizes;
871 } v5;
872 } section_pool;
873 };
874
875 /* Data for one DWP file. */
876
877 struct dwp_file
878 {
879 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
880 : name (name_),
881 dbfd (std::move (abfd))
882 {
883 }
884
885 /* Name of the file. */
886 const char *name;
887
888 /* File format version. */
889 int version = 0;
890
891 /* The bfd. */
892 gdb_bfd_ref_ptr dbfd;
893
894 /* Section info for this file. */
895 struct dwp_sections sections {};
896
897 /* Table of CUs in the file. */
898 const struct dwp_hash_table *cus = nullptr;
899
900 /* Table of TUs in the file. */
901 const struct dwp_hash_table *tus = nullptr;
902
903 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
904 htab_up loaded_cus;
905 htab_up loaded_tus;
906
907 /* Table to map ELF section numbers to their sections.
908 This is only needed for the DWP V1 file format. */
909 unsigned int num_sections = 0;
910 asection **elf_sections = nullptr;
911 };
912
913 /* Struct used to pass misc. parameters to read_die_and_children, et
914 al. which are used for both .debug_info and .debug_types dies.
915 All parameters here are unchanging for the life of the call. This
916 struct exists to abstract away the constant parameters of die reading. */
917
918 struct die_reader_specs
919 {
920 /* The bfd of die_section. */
921 bfd* abfd;
922
923 /* The CU of the DIE we are parsing. */
924 struct dwarf2_cu *cu;
925
926 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
927 struct dwo_file *dwo_file;
928
929 /* The section the die comes from.
930 This is either .debug_info or .debug_types, or the .dwo variants. */
931 struct dwarf2_section_info *die_section;
932
933 /* die_section->buffer. */
934 const gdb_byte *buffer;
935
936 /* The end of the buffer. */
937 const gdb_byte *buffer_end;
938
939 /* The abbreviation table to use when reading the DIEs. */
940 struct abbrev_table *abbrev_table;
941 };
942
943 /* A subclass of die_reader_specs that holds storage and has complex
944 constructor and destructor behavior. */
945
946 class cutu_reader : public die_reader_specs
947 {
948 public:
949
950 cutu_reader (dwarf2_per_cu_data *this_cu,
951 dwarf2_per_objfile *per_objfile,
952 struct abbrev_table *abbrev_table,
953 dwarf2_cu *existing_cu,
954 bool skip_partial);
955
956 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
957 dwarf2_per_objfile *per_objfile,
958 struct dwarf2_cu *parent_cu = nullptr,
959 struct dwo_file *dwo_file = nullptr);
960
961 DISABLE_COPY_AND_ASSIGN (cutu_reader);
962
963 const gdb_byte *info_ptr = nullptr;
964 struct die_info *comp_unit_die = nullptr;
965 bool dummy_p = false;
966
967 /* Release the new CU, putting it on the chain. This cannot be done
968 for dummy CUs. */
969 void keep ();
970
971 private:
972 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
973 dwarf2_per_objfile *per_objfile,
974 dwarf2_cu *existing_cu);
975
976 struct dwarf2_per_cu_data *m_this_cu;
977 std::unique_ptr<dwarf2_cu> m_new_cu;
978
979 /* The ordinary abbreviation table. */
980 abbrev_table_up m_abbrev_table_holder;
981
982 /* The DWO abbreviation table. */
983 abbrev_table_up m_dwo_abbrev_table;
984 };
985
986 /* When we construct a partial symbol table entry we only
987 need this much information. */
988 struct partial_die_info : public allocate_on_obstack
989 {
990 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
991
992 /* Disable assign but still keep copy ctor, which is needed
993 load_partial_dies. */
994 partial_die_info& operator=(const partial_die_info& rhs) = delete;
995
996 /* Adjust the partial die before generating a symbol for it. This
997 function may set the is_external flag or change the DIE's
998 name. */
999 void fixup (struct dwarf2_cu *cu);
1000
1001 /* Read a minimal amount of information into the minimal die
1002 structure. */
1003 const gdb_byte *read (const struct die_reader_specs *reader,
1004 const struct abbrev_info &abbrev,
1005 const gdb_byte *info_ptr);
1006
1007 /* Compute the name of this partial DIE. This memoizes the
1008 result, so it is safe to call multiple times. */
1009 const char *name (dwarf2_cu *cu);
1010
1011 /* Offset of this DIE. */
1012 const sect_offset sect_off;
1013
1014 /* DWARF-2 tag for this DIE. */
1015 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1016
1017 /* Assorted flags describing the data found in this DIE. */
1018 const unsigned int has_children : 1;
1019
1020 unsigned int is_external : 1;
1021 unsigned int is_declaration : 1;
1022 unsigned int has_type : 1;
1023 unsigned int has_specification : 1;
1024 unsigned int has_pc_info : 1;
1025 unsigned int may_be_inlined : 1;
1026
1027 /* This DIE has been marked DW_AT_main_subprogram. */
1028 unsigned int main_subprogram : 1;
1029
1030 /* Flag set if the SCOPE field of this structure has been
1031 computed. */
1032 unsigned int scope_set : 1;
1033
1034 /* Flag set if the DIE has a byte_size attribute. */
1035 unsigned int has_byte_size : 1;
1036
1037 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1038 unsigned int has_const_value : 1;
1039
1040 /* Flag set if any of the DIE's children are template arguments. */
1041 unsigned int has_template_arguments : 1;
1042
1043 /* Flag set if fixup has been called on this die. */
1044 unsigned int fixup_called : 1;
1045
1046 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1047 unsigned int is_dwz : 1;
1048
1049 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1050 unsigned int spec_is_dwz : 1;
1051
1052 unsigned int canonical_name : 1;
1053
1054 /* The name of this DIE. Normally the value of DW_AT_name, but
1055 sometimes a default name for unnamed DIEs. */
1056 const char *raw_name = nullptr;
1057
1058 /* The linkage name, if present. */
1059 const char *linkage_name = nullptr;
1060
1061 /* The scope to prepend to our children. This is generally
1062 allocated on the comp_unit_obstack, so will disappear
1063 when this compilation unit leaves the cache. */
1064 const char *scope = nullptr;
1065
1066 /* Some data associated with the partial DIE. The tag determines
1067 which field is live. */
1068 union
1069 {
1070 /* The location description associated with this DIE, if any. */
1071 struct dwarf_block *locdesc;
1072 /* The offset of an import, for DW_TAG_imported_unit. */
1073 sect_offset sect_off;
1074 } d {};
1075
1076 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1077 CORE_ADDR lowpc = 0;
1078 CORE_ADDR highpc = 0;
1079
1080 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1081 DW_AT_sibling, if any. */
1082 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1083 could return DW_AT_sibling values to its caller load_partial_dies. */
1084 const gdb_byte *sibling = nullptr;
1085
1086 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1087 DW_AT_specification (or DW_AT_abstract_origin or
1088 DW_AT_extension). */
1089 sect_offset spec_offset {};
1090
1091 /* Pointers to this DIE's parent, first child, and next sibling,
1092 if any. */
1093 struct partial_die_info *die_parent = nullptr;
1094 struct partial_die_info *die_child = nullptr;
1095 struct partial_die_info *die_sibling = nullptr;
1096
1097 friend struct partial_die_info *
1098 dwarf2_cu::find_partial_die (sect_offset sect_off);
1099
1100 private:
1101 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1102 partial_die_info (sect_offset sect_off)
1103 : partial_die_info (sect_off, DW_TAG_padding, 0)
1104 {
1105 }
1106
1107 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1108 int has_children_)
1109 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1110 {
1111 is_external = 0;
1112 is_declaration = 0;
1113 has_type = 0;
1114 has_specification = 0;
1115 has_pc_info = 0;
1116 may_be_inlined = 0;
1117 main_subprogram = 0;
1118 scope_set = 0;
1119 has_byte_size = 0;
1120 has_const_value = 0;
1121 has_template_arguments = 0;
1122 fixup_called = 0;
1123 is_dwz = 0;
1124 spec_is_dwz = 0;
1125 canonical_name = 0;
1126 }
1127 };
1128
1129 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1130 but this would require a corresponding change in unpack_field_as_long
1131 and friends. */
1132 static int bits_per_byte = 8;
1133
1134 struct variant_part_builder;
1135
1136 /* When reading a variant, we track a bit more information about the
1137 field, and store it in an object of this type. */
1138
1139 struct variant_field
1140 {
1141 int first_field = -1;
1142 int last_field = -1;
1143
1144 /* A variant can contain other variant parts. */
1145 std::vector<variant_part_builder> variant_parts;
1146
1147 /* If we see a DW_TAG_variant, then this will be set if this is the
1148 default branch. */
1149 bool default_branch = false;
1150 /* If we see a DW_AT_discr_value, then this will be the discriminant
1151 value. */
1152 ULONGEST discriminant_value = 0;
1153 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1154 data. */
1155 struct dwarf_block *discr_list_data = nullptr;
1156 };
1157
1158 /* This represents a DW_TAG_variant_part. */
1159
1160 struct variant_part_builder
1161 {
1162 /* The offset of the discriminant field. */
1163 sect_offset discriminant_offset {};
1164
1165 /* Variants that are direct children of this variant part. */
1166 std::vector<variant_field> variants;
1167
1168 /* True if we're currently reading a variant. */
1169 bool processing_variant = false;
1170 };
1171
1172 struct nextfield
1173 {
1174 int accessibility = 0;
1175 int virtuality = 0;
1176 /* Variant parts need to find the discriminant, which is a DIE
1177 reference. We track the section offset of each field to make
1178 this link. */
1179 sect_offset offset;
1180 struct field field {};
1181 };
1182
1183 struct fnfieldlist
1184 {
1185 const char *name = nullptr;
1186 std::vector<struct fn_field> fnfields;
1187 };
1188
1189 /* The routines that read and process dies for a C struct or C++ class
1190 pass lists of data member fields and lists of member function fields
1191 in an instance of a field_info structure, as defined below. */
1192 struct field_info
1193 {
1194 /* List of data member and baseclasses fields. */
1195 std::vector<struct nextfield> fields;
1196 std::vector<struct nextfield> baseclasses;
1197
1198 /* Set if the accessibility of one of the fields is not public. */
1199 bool non_public_fields = false;
1200
1201 /* Member function fieldlist array, contains name of possibly overloaded
1202 member function, number of overloaded member functions and a pointer
1203 to the head of the member function field chain. */
1204 std::vector<struct fnfieldlist> fnfieldlists;
1205
1206 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1207 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1208 std::vector<struct decl_field> typedef_field_list;
1209
1210 /* Nested types defined by this class and the number of elements in this
1211 list. */
1212 std::vector<struct decl_field> nested_types_list;
1213
1214 /* If non-null, this is the variant part we are currently
1215 reading. */
1216 variant_part_builder *current_variant_part = nullptr;
1217 /* This holds all the top-level variant parts attached to the type
1218 we're reading. */
1219 std::vector<variant_part_builder> variant_parts;
1220
1221 /* Return the total number of fields (including baseclasses). */
1222 int nfields () const
1223 {
1224 return fields.size () + baseclasses.size ();
1225 }
1226 };
1227
1228 /* Loaded secondary compilation units are kept in memory until they
1229 have not been referenced for the processing of this many
1230 compilation units. Set this to zero to disable caching. Cache
1231 sizes of up to at least twenty will improve startup time for
1232 typical inter-CU-reference binaries, at an obvious memory cost. */
1233 static int dwarf_max_cache_age = 5;
1234 static void
1235 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c, const char *value)
1237 {
1238 fprintf_filtered (file, _("The upper bound on the age of cached "
1239 "DWARF compilation units is %s.\n"),
1240 value);
1241 }
1242 \f
1243 /* local function prototypes */
1244
1245 static void dwarf2_find_base_address (struct die_info *die,
1246 struct dwarf2_cu *cu);
1247
1248 static dwarf2_psymtab *create_partial_symtab
1249 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1250 const char *name);
1251
1252 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1253 const gdb_byte *info_ptr,
1254 struct die_info *type_unit_die);
1255
1256 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1257
1258 static void scan_partial_symbols (struct partial_die_info *,
1259 CORE_ADDR *, CORE_ADDR *,
1260 int, struct dwarf2_cu *);
1261
1262 static void add_partial_symbol (struct partial_die_info *,
1263 struct dwarf2_cu *);
1264
1265 static void add_partial_namespace (struct partial_die_info *pdi,
1266 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1267 int set_addrmap, struct dwarf2_cu *cu);
1268
1269 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1270 CORE_ADDR *highpc, int set_addrmap,
1271 struct dwarf2_cu *cu);
1272
1273 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1274 struct dwarf2_cu *cu);
1275
1276 static void add_partial_subprogram (struct partial_die_info *pdi,
1277 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1278 int need_pc, struct dwarf2_cu *cu);
1279
1280 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1281
1282 static struct partial_die_info *load_partial_dies
1283 (const struct die_reader_specs *, const gdb_byte *, int);
1284
1285 /* A pair of partial_die_info and compilation unit. */
1286 struct cu_partial_die_info
1287 {
1288 /* The compilation unit of the partial_die_info. */
1289 struct dwarf2_cu *cu;
1290 /* A partial_die_info. */
1291 struct partial_die_info *pdi;
1292
1293 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1294 : cu (cu),
1295 pdi (pdi)
1296 { /* Nothing. */ }
1297
1298 private:
1299 cu_partial_die_info () = delete;
1300 };
1301
1302 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1303 struct dwarf2_cu *);
1304
1305 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1306 struct attribute *, struct attr_abbrev *,
1307 const gdb_byte *);
1308
1309 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1310 struct attribute *attr, dwarf_tag tag);
1311
1312 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1313
1314 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1315 dwarf2_section_info *, sect_offset);
1316
1317 static const char *read_indirect_string
1318 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1319 const struct comp_unit_head *, unsigned int *);
1320
1321 static const char *read_indirect_string_at_offset
1322 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1323
1324 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1325 const gdb_byte *,
1326 unsigned int *);
1327
1328 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1329 ULONGEST str_index);
1330
1331 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1332 ULONGEST str_index);
1333
1334 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1335
1336 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1337 struct dwarf2_cu *);
1338
1339 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1340 struct dwarf2_cu *cu);
1341
1342 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1343
1344 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1345 struct dwarf2_cu *cu);
1346
1347 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1348
1349 static struct die_info *die_specification (struct die_info *die,
1350 struct dwarf2_cu **);
1351
1352 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1353 struct dwarf2_cu *cu);
1354
1355 static void dwarf_decode_lines (struct line_header *, const char *,
1356 struct dwarf2_cu *, dwarf2_psymtab *,
1357 CORE_ADDR, int decode_mapping);
1358
1359 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1360 const char *);
1361
1362 static struct symbol *new_symbol (struct die_info *, struct type *,
1363 struct dwarf2_cu *, struct symbol * = NULL);
1364
1365 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1366 struct dwarf2_cu *);
1367
1368 static void dwarf2_const_value_attr (const struct attribute *attr,
1369 struct type *type,
1370 const char *name,
1371 struct obstack *obstack,
1372 struct dwarf2_cu *cu, LONGEST *value,
1373 const gdb_byte **bytes,
1374 struct dwarf2_locexpr_baton **baton);
1375
1376 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1377
1378 static int need_gnat_info (struct dwarf2_cu *);
1379
1380 static struct type *die_descriptive_type (struct die_info *,
1381 struct dwarf2_cu *);
1382
1383 static void set_descriptive_type (struct type *, struct die_info *,
1384 struct dwarf2_cu *);
1385
1386 static struct type *die_containing_type (struct die_info *,
1387 struct dwarf2_cu *);
1388
1389 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1390 struct dwarf2_cu *);
1391
1392 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1393
1394 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1395
1396 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1397
1398 static char *typename_concat (struct obstack *obs, const char *prefix,
1399 const char *suffix, int physname,
1400 struct dwarf2_cu *cu);
1401
1402 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1403
1404 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1405
1406 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1407
1408 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1409
1410 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1411
1412 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1413
1414 /* Return the .debug_loclists section to use for cu. */
1415 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1416
1417 /* Return the .debug_rnglists section to use for cu. */
1418 static struct dwarf2_section_info *cu_debug_rnglists_section
1419 (struct dwarf2_cu *cu, dwarf_tag tag);
1420
1421 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1422 values. Keep the items ordered with increasing constraints compliance. */
1423 enum pc_bounds_kind
1424 {
1425 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1426 PC_BOUNDS_NOT_PRESENT,
1427
1428 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1429 were present but they do not form a valid range of PC addresses. */
1430 PC_BOUNDS_INVALID,
1431
1432 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1433 PC_BOUNDS_RANGES,
1434
1435 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1436 PC_BOUNDS_HIGH_LOW,
1437 };
1438
1439 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1440 CORE_ADDR *, CORE_ADDR *,
1441 struct dwarf2_cu *,
1442 dwarf2_psymtab *);
1443
1444 static void get_scope_pc_bounds (struct die_info *,
1445 CORE_ADDR *, CORE_ADDR *,
1446 struct dwarf2_cu *);
1447
1448 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1449 CORE_ADDR, struct dwarf2_cu *);
1450
1451 static void dwarf2_add_field (struct field_info *, struct die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void dwarf2_attach_fields_to_type (struct field_info *,
1455 struct type *, struct dwarf2_cu *);
1456
1457 static void dwarf2_add_member_fn (struct field_info *,
1458 struct die_info *, struct type *,
1459 struct dwarf2_cu *);
1460
1461 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1462 struct type *,
1463 struct dwarf2_cu *);
1464
1465 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1466
1467 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1468
1469 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1470
1471 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1472
1473 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1474
1475 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1476
1477 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1478
1479 static struct type *read_module_type (struct die_info *die,
1480 struct dwarf2_cu *cu);
1481
1482 static const char *namespace_name (struct die_info *die,
1483 int *is_anonymous, struct dwarf2_cu *);
1484
1485 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1486
1487 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1488 bool * = nullptr);
1489
1490 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1491 struct dwarf2_cu *);
1492
1493 static struct die_info *read_die_and_siblings_1
1494 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1495 struct die_info *);
1496
1497 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1498 const gdb_byte *info_ptr,
1499 const gdb_byte **new_info_ptr,
1500 struct die_info *parent);
1501
1502 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1503 struct die_info **, const gdb_byte *,
1504 int);
1505
1506 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1507 struct die_info **, const gdb_byte *);
1508
1509 static void process_die (struct die_info *, struct dwarf2_cu *);
1510
1511 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1512 struct objfile *);
1513
1514 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1515
1516 static const char *dwarf2_full_name (const char *name,
1517 struct die_info *die,
1518 struct dwarf2_cu *cu);
1519
1520 static const char *dwarf2_physname (const char *name, struct die_info *die,
1521 struct dwarf2_cu *cu);
1522
1523 static struct die_info *dwarf2_extension (struct die_info *die,
1524 struct dwarf2_cu **);
1525
1526 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1527
1528 static void dump_die_for_error (struct die_info *);
1529
1530 static void dump_die_1 (struct ui_file *, int level, int max_level,
1531 struct die_info *);
1532
1533 /*static*/ void dump_die (struct die_info *, int max_level);
1534
1535 static void store_in_ref_table (struct die_info *,
1536 struct dwarf2_cu *);
1537
1538 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1539 const struct attribute *,
1540 struct dwarf2_cu **);
1541
1542 static struct die_info *follow_die_ref (struct die_info *,
1543 const struct attribute *,
1544 struct dwarf2_cu **);
1545
1546 static struct die_info *follow_die_sig (struct die_info *,
1547 const struct attribute *,
1548 struct dwarf2_cu **);
1549
1550 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1551 struct dwarf2_cu *);
1552
1553 static struct type *get_DW_AT_signature_type (struct die_info *,
1554 const struct attribute *,
1555 struct dwarf2_cu *);
1556
1557 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1558 dwarf2_per_objfile *per_objfile);
1559
1560 static void read_signatured_type (signatured_type *sig_type,
1561 dwarf2_per_objfile *per_objfile);
1562
1563 static int attr_to_dynamic_prop (const struct attribute *attr,
1564 struct die_info *die, struct dwarf2_cu *cu,
1565 struct dynamic_prop *prop, struct type *type);
1566
1567 /* memory allocation interface */
1568
1569 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1570
1571 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1572
1573 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1574
1575 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1576 struct dwarf2_loclist_baton *baton,
1577 const struct attribute *attr);
1578
1579 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1580 struct symbol *sym,
1581 struct dwarf2_cu *cu,
1582 int is_block);
1583
1584 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1585 const gdb_byte *info_ptr,
1586 struct abbrev_info *abbrev);
1587
1588 static hashval_t partial_die_hash (const void *item);
1589
1590 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1591
1592 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1593 (sect_offset sect_off, unsigned int offset_in_dwz,
1594 dwarf2_per_objfile *per_objfile);
1595
1596 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1597 struct die_info *comp_unit_die,
1598 enum language pretend_language);
1599
1600 static struct type *set_die_type (struct die_info *, struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1604
1605 static int create_all_type_units (dwarf2_per_objfile *per_objfile);
1606
1607 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1608 dwarf2_per_objfile *per_objfile,
1609 bool skip_partial,
1610 enum language pretend_language);
1611
1612 static void process_full_comp_unit (dwarf2_cu *cu,
1613 enum language pretend_language);
1614
1615 static void process_full_type_unit (dwarf2_cu *cu,
1616 enum language pretend_language);
1617
1618 static void dwarf2_add_dependence (struct dwarf2_cu *,
1619 struct dwarf2_per_cu_data *);
1620
1621 static void dwarf2_mark (struct dwarf2_cu *);
1622
1623 static struct type *get_die_type_at_offset (sect_offset,
1624 dwarf2_per_cu_data *per_cu,
1625 dwarf2_per_objfile *per_objfile);
1626
1627 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1630 dwarf2_per_objfile *per_objfile,
1631 enum language pretend_language);
1632
1633 static void process_queue (dwarf2_per_objfile *per_objfile);
1634
1635 /* Class, the destructor of which frees all allocated queue entries. This
1636 will only have work to do if an error was thrown while processing the
1637 dwarf. If no error was thrown then the queue entries should have all
1638 been processed, and freed, as we went along. */
1639
1640 class dwarf2_queue_guard
1641 {
1642 public:
1643 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1644 : m_per_objfile (per_objfile)
1645 {
1646 }
1647
1648 /* Free any entries remaining on the queue. There should only be
1649 entries left if we hit an error while processing the dwarf. */
1650 ~dwarf2_queue_guard ()
1651 {
1652 /* Ensure that no memory is allocated by the queue. */
1653 std::queue<dwarf2_queue_item> empty;
1654 std::swap (m_per_objfile->per_bfd->queue, empty);
1655 }
1656
1657 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1658
1659 private:
1660 dwarf2_per_objfile *m_per_objfile;
1661 };
1662
1663 dwarf2_queue_item::~dwarf2_queue_item ()
1664 {
1665 /* Anything still marked queued is likely to be in an
1666 inconsistent state, so discard it. */
1667 if (per_cu->queued)
1668 {
1669 per_objfile->remove_cu (per_cu);
1670 per_cu->queued = 0;
1671 }
1672 }
1673
1674 /* The return type of find_file_and_directory. Note, the enclosed
1675 string pointers are only valid while this object is valid. */
1676
1677 struct file_and_directory
1678 {
1679 /* The filename. This is never NULL. */
1680 const char *name;
1681
1682 /* The compilation directory. NULL if not known. If we needed to
1683 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1684 points directly to the DW_AT_comp_dir string attribute owned by
1685 the obstack that owns the DIE. */
1686 const char *comp_dir;
1687
1688 /* If we needed to build a new string for comp_dir, this is what
1689 owns the storage. */
1690 std::string comp_dir_storage;
1691 };
1692
1693 static file_and_directory find_file_and_directory (struct die_info *die,
1694 struct dwarf2_cu *cu);
1695
1696 static htab_up allocate_signatured_type_table ();
1697
1698 static htab_up allocate_dwo_unit_table ();
1699
1700 static struct dwo_unit *lookup_dwo_unit_in_dwp
1701 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1702 const char *comp_dir, ULONGEST signature, int is_debug_types);
1703
1704 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1705
1706 static struct dwo_unit *lookup_dwo_comp_unit
1707 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1708 ULONGEST signature);
1709
1710 static struct dwo_unit *lookup_dwo_type_unit
1711 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1712
1713 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1714
1715 /* A unique pointer to a dwo_file. */
1716
1717 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1718
1719 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1720
1721 static void check_producer (struct dwarf2_cu *cu);
1722
1723 static void free_line_header_voidp (void *arg);
1724 \f
1725 /* Various complaints about symbol reading that don't abort the process. */
1726
1727 static void
1728 dwarf2_debug_line_missing_file_complaint (void)
1729 {
1730 complaint (_(".debug_line section has line data without a file"));
1731 }
1732
1733 static void
1734 dwarf2_debug_line_missing_end_sequence_complaint (void)
1735 {
1736 complaint (_(".debug_line section has line "
1737 "program sequence without an end"));
1738 }
1739
1740 static void
1741 dwarf2_complex_location_expr_complaint (void)
1742 {
1743 complaint (_("location expression too complex"));
1744 }
1745
1746 static void
1747 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1748 int arg3)
1749 {
1750 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1751 arg1, arg2, arg3);
1752 }
1753
1754 static void
1755 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1756 {
1757 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1758 arg1, arg2);
1759 }
1760
1761 /* Hash function for line_header_hash. */
1762
1763 static hashval_t
1764 line_header_hash (const struct line_header *ofs)
1765 {
1766 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1767 }
1768
1769 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1770
1771 static hashval_t
1772 line_header_hash_voidp (const void *item)
1773 {
1774 const struct line_header *ofs = (const struct line_header *) item;
1775
1776 return line_header_hash (ofs);
1777 }
1778
1779 /* Equality function for line_header_hash. */
1780
1781 static int
1782 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1783 {
1784 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1785 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1786
1787 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1788 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1789 }
1790
1791 \f
1792
1793 /* See declaration. */
1794
1795 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1796 bool can_copy_)
1797 : obfd (obfd),
1798 can_copy (can_copy_)
1799 {
1800 if (names == NULL)
1801 names = &dwarf2_elf_names;
1802
1803 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1804 locate_sections (obfd, sec, *names);
1805 }
1806
1807 dwarf2_per_bfd::~dwarf2_per_bfd ()
1808 {
1809 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1810 per_cu->imported_symtabs_free ();
1811
1812 for (signatured_type *sig_type : all_type_units)
1813 sig_type->per_cu.imported_symtabs_free ();
1814
1815 /* Everything else should be on this->obstack. */
1816 }
1817
1818 /* See read.h. */
1819
1820 void
1821 dwarf2_per_objfile::remove_all_cus ()
1822 {
1823 for (auto pair : m_dwarf2_cus)
1824 delete pair.second;
1825
1826 m_dwarf2_cus.clear ();
1827 }
1828
1829 /* A helper class that calls free_cached_comp_units on
1830 destruction. */
1831
1832 class free_cached_comp_units
1833 {
1834 public:
1835
1836 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1837 : m_per_objfile (per_objfile)
1838 {
1839 }
1840
1841 ~free_cached_comp_units ()
1842 {
1843 m_per_objfile->remove_all_cus ();
1844 }
1845
1846 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1847
1848 private:
1849
1850 dwarf2_per_objfile *m_per_objfile;
1851 };
1852
1853 /* See read.h. */
1854
1855 bool
1856 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1857 {
1858 gdb_assert (per_cu->index < this->m_symtabs.size ());
1859
1860 return this->m_symtabs[per_cu->index] != nullptr;
1861 }
1862
1863 /* See read.h. */
1864
1865 compunit_symtab *
1866 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1867 {
1868 gdb_assert (per_cu->index < this->m_symtabs.size ());
1869
1870 return this->m_symtabs[per_cu->index];
1871 }
1872
1873 /* See read.h. */
1874
1875 void
1876 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1877 compunit_symtab *symtab)
1878 {
1879 gdb_assert (per_cu->index < this->m_symtabs.size ());
1880 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1881
1882 this->m_symtabs[per_cu->index] = symtab;
1883 }
1884
1885 /* Try to locate the sections we need for DWARF 2 debugging
1886 information and return true if we have enough to do something.
1887 NAMES points to the dwarf2 section names, or is NULL if the standard
1888 ELF names are used. CAN_COPY is true for formats where symbol
1889 interposition is possible and so symbol values must follow copy
1890 relocation rules. */
1891
1892 int
1893 dwarf2_has_info (struct objfile *objfile,
1894 const struct dwarf2_debug_sections *names,
1895 bool can_copy)
1896 {
1897 if (objfile->flags & OBJF_READNEVER)
1898 return 0;
1899
1900 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1901
1902 if (per_objfile == NULL)
1903 {
1904 dwarf2_per_bfd *per_bfd;
1905
1906 /* We can share a "dwarf2_per_bfd" with other objfiles if the BFD
1907 doesn't require relocations and if there aren't partial symbols
1908 from some other reader. */
1909 if (!objfile_has_partial_symbols (objfile)
1910 && !gdb_bfd_requires_relocations (objfile->obfd))
1911 {
1912 /* See if one has been created for this BFD yet. */
1913 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1914
1915 if (per_bfd == nullptr)
1916 {
1917 /* No, create it now. */
1918 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1919 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1920 }
1921 }
1922 else
1923 {
1924 /* No sharing possible, create one specifically for this objfile. */
1925 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1926 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1927 }
1928
1929 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1930 }
1931
1932 return (!per_objfile->per_bfd->info.is_virtual
1933 && per_objfile->per_bfd->info.s.section != NULL
1934 && !per_objfile->per_bfd->abbrev.is_virtual
1935 && per_objfile->per_bfd->abbrev.s.section != NULL);
1936 }
1937
1938 /* When loading sections, we look either for uncompressed section or for
1939 compressed section names. */
1940
1941 static int
1942 section_is_p (const char *section_name,
1943 const struct dwarf2_section_names *names)
1944 {
1945 if (names->normal != NULL
1946 && strcmp (section_name, names->normal) == 0)
1947 return 1;
1948 if (names->compressed != NULL
1949 && strcmp (section_name, names->compressed) == 0)
1950 return 1;
1951 return 0;
1952 }
1953
1954 /* See declaration. */
1955
1956 void
1957 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1958 const dwarf2_debug_sections &names)
1959 {
1960 flagword aflag = bfd_section_flags (sectp);
1961
1962 if ((aflag & SEC_HAS_CONTENTS) == 0)
1963 {
1964 }
1965 else if (elf_section_data (sectp)->this_hdr.sh_size
1966 > bfd_get_file_size (abfd))
1967 {
1968 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1969 warning (_("Discarding section %s which has a section size (%s"
1970 ") larger than the file size [in module %s]"),
1971 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1972 bfd_get_filename (abfd));
1973 }
1974 else if (section_is_p (sectp->name, &names.info))
1975 {
1976 this->info.s.section = sectp;
1977 this->info.size = bfd_section_size (sectp);
1978 }
1979 else if (section_is_p (sectp->name, &names.abbrev))
1980 {
1981 this->abbrev.s.section = sectp;
1982 this->abbrev.size = bfd_section_size (sectp);
1983 }
1984 else if (section_is_p (sectp->name, &names.line))
1985 {
1986 this->line.s.section = sectp;
1987 this->line.size = bfd_section_size (sectp);
1988 }
1989 else if (section_is_p (sectp->name, &names.loc))
1990 {
1991 this->loc.s.section = sectp;
1992 this->loc.size = bfd_section_size (sectp);
1993 }
1994 else if (section_is_p (sectp->name, &names.loclists))
1995 {
1996 this->loclists.s.section = sectp;
1997 this->loclists.size = bfd_section_size (sectp);
1998 }
1999 else if (section_is_p (sectp->name, &names.macinfo))
2000 {
2001 this->macinfo.s.section = sectp;
2002 this->macinfo.size = bfd_section_size (sectp);
2003 }
2004 else if (section_is_p (sectp->name, &names.macro))
2005 {
2006 this->macro.s.section = sectp;
2007 this->macro.size = bfd_section_size (sectp);
2008 }
2009 else if (section_is_p (sectp->name, &names.str))
2010 {
2011 this->str.s.section = sectp;
2012 this->str.size = bfd_section_size (sectp);
2013 }
2014 else if (section_is_p (sectp->name, &names.str_offsets))
2015 {
2016 this->str_offsets.s.section = sectp;
2017 this->str_offsets.size = bfd_section_size (sectp);
2018 }
2019 else if (section_is_p (sectp->name, &names.line_str))
2020 {
2021 this->line_str.s.section = sectp;
2022 this->line_str.size = bfd_section_size (sectp);
2023 }
2024 else if (section_is_p (sectp->name, &names.addr))
2025 {
2026 this->addr.s.section = sectp;
2027 this->addr.size = bfd_section_size (sectp);
2028 }
2029 else if (section_is_p (sectp->name, &names.frame))
2030 {
2031 this->frame.s.section = sectp;
2032 this->frame.size = bfd_section_size (sectp);
2033 }
2034 else if (section_is_p (sectp->name, &names.eh_frame))
2035 {
2036 this->eh_frame.s.section = sectp;
2037 this->eh_frame.size = bfd_section_size (sectp);
2038 }
2039 else if (section_is_p (sectp->name, &names.ranges))
2040 {
2041 this->ranges.s.section = sectp;
2042 this->ranges.size = bfd_section_size (sectp);
2043 }
2044 else if (section_is_p (sectp->name, &names.rnglists))
2045 {
2046 this->rnglists.s.section = sectp;
2047 this->rnglists.size = bfd_section_size (sectp);
2048 }
2049 else if (section_is_p (sectp->name, &names.types))
2050 {
2051 struct dwarf2_section_info type_section;
2052
2053 memset (&type_section, 0, sizeof (type_section));
2054 type_section.s.section = sectp;
2055 type_section.size = bfd_section_size (sectp);
2056
2057 this->types.push_back (type_section);
2058 }
2059 else if (section_is_p (sectp->name, &names.gdb_index))
2060 {
2061 this->gdb_index.s.section = sectp;
2062 this->gdb_index.size = bfd_section_size (sectp);
2063 }
2064 else if (section_is_p (sectp->name, &names.debug_names))
2065 {
2066 this->debug_names.s.section = sectp;
2067 this->debug_names.size = bfd_section_size (sectp);
2068 }
2069 else if (section_is_p (sectp->name, &names.debug_aranges))
2070 {
2071 this->debug_aranges.s.section = sectp;
2072 this->debug_aranges.size = bfd_section_size (sectp);
2073 }
2074
2075 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2076 && bfd_section_vma (sectp) == 0)
2077 this->has_section_at_zero = true;
2078 }
2079
2080 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2081 SECTION_NAME. */
2082
2083 void
2084 dwarf2_get_section_info (struct objfile *objfile,
2085 enum dwarf2_section_enum sect,
2086 asection **sectp, const gdb_byte **bufp,
2087 bfd_size_type *sizep)
2088 {
2089 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2090 struct dwarf2_section_info *info;
2091
2092 /* We may see an objfile without any DWARF, in which case we just
2093 return nothing. */
2094 if (per_objfile == NULL)
2095 {
2096 *sectp = NULL;
2097 *bufp = NULL;
2098 *sizep = 0;
2099 return;
2100 }
2101 switch (sect)
2102 {
2103 case DWARF2_DEBUG_FRAME:
2104 info = &per_objfile->per_bfd->frame;
2105 break;
2106 case DWARF2_EH_FRAME:
2107 info = &per_objfile->per_bfd->eh_frame;
2108 break;
2109 default:
2110 gdb_assert_not_reached ("unexpected section");
2111 }
2112
2113 info->read (objfile);
2114
2115 *sectp = info->get_bfd_section ();
2116 *bufp = info->buffer;
2117 *sizep = info->size;
2118 }
2119
2120 /* A helper function to find the sections for a .dwz file. */
2121
2122 static void
2123 locate_dwz_sections (bfd *abfd, asection *sectp, dwz_file *dwz_file)
2124 {
2125 /* Note that we only support the standard ELF names, because .dwz
2126 is ELF-only (at the time of writing). */
2127 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2128 {
2129 dwz_file->abbrev.s.section = sectp;
2130 dwz_file->abbrev.size = bfd_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2133 {
2134 dwz_file->info.s.section = sectp;
2135 dwz_file->info.size = bfd_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2138 {
2139 dwz_file->str.s.section = sectp;
2140 dwz_file->str.size = bfd_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2143 {
2144 dwz_file->line.s.section = sectp;
2145 dwz_file->line.size = bfd_section_size (sectp);
2146 }
2147 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2148 {
2149 dwz_file->macro.s.section = sectp;
2150 dwz_file->macro.size = bfd_section_size (sectp);
2151 }
2152 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2153 {
2154 dwz_file->gdb_index.s.section = sectp;
2155 dwz_file->gdb_index.size = bfd_section_size (sectp);
2156 }
2157 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2158 {
2159 dwz_file->debug_names.s.section = sectp;
2160 dwz_file->debug_names.size = bfd_section_size (sectp);
2161 }
2162 }
2163
2164 /* See dwarf2read.h. */
2165
2166 struct dwz_file *
2167 dwarf2_get_dwz_file (dwarf2_per_bfd *per_bfd)
2168 {
2169 const char *filename;
2170 bfd_size_type buildid_len_arg;
2171 size_t buildid_len;
2172 bfd_byte *buildid;
2173
2174 if (per_bfd->dwz_file != NULL)
2175 return per_bfd->dwz_file.get ();
2176
2177 bfd_set_error (bfd_error_no_error);
2178 gdb::unique_xmalloc_ptr<char> data
2179 (bfd_get_alt_debug_link_info (per_bfd->obfd,
2180 &buildid_len_arg, &buildid));
2181 if (data == NULL)
2182 {
2183 if (bfd_get_error () == bfd_error_no_error)
2184 return NULL;
2185 error (_("could not read '.gnu_debugaltlink' section: %s"),
2186 bfd_errmsg (bfd_get_error ()));
2187 }
2188
2189 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2190
2191 buildid_len = (size_t) buildid_len_arg;
2192
2193 filename = data.get ();
2194
2195 std::string abs_storage;
2196 if (!IS_ABSOLUTE_PATH (filename))
2197 {
2198 gdb::unique_xmalloc_ptr<char> abs
2199 = gdb_realpath (bfd_get_filename (per_bfd->obfd));
2200
2201 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2202 filename = abs_storage.c_str ();
2203 }
2204
2205 /* First try the file name given in the section. If that doesn't
2206 work, try to use the build-id instead. */
2207 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget));
2208 if (dwz_bfd != NULL)
2209 {
2210 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2211 dwz_bfd.reset (nullptr);
2212 }
2213
2214 if (dwz_bfd == NULL)
2215 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2216
2217 if (dwz_bfd == nullptr)
2218 {
2219 gdb::unique_xmalloc_ptr<char> alt_filename;
2220 const char *origname = bfd_get_filename (per_bfd->obfd);
2221
2222 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2223 buildid_len,
2224 origname,
2225 &alt_filename));
2226
2227 if (fd.get () >= 0)
2228 {
2229 /* File successfully retrieved from server. */
2230 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget);
2231
2232 if (dwz_bfd == nullptr)
2233 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2234 alt_filename.get ());
2235 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2236 dwz_bfd.reset (nullptr);
2237 }
2238 }
2239
2240 if (dwz_bfd == NULL)
2241 error (_("could not find '.gnu_debugaltlink' file for %s"),
2242 bfd_get_filename (per_bfd->obfd));
2243
2244 std::unique_ptr<struct dwz_file> result
2245 (new struct dwz_file (std::move (dwz_bfd)));
2246
2247 for (asection *sec : gdb_bfd_sections (result->dwz_bfd))
2248 locate_dwz_sections (result->dwz_bfd.get (), sec, result.get ());
2249
2250 gdb_bfd_record_inclusion (per_bfd->obfd, result->dwz_bfd.get ());
2251 per_bfd->dwz_file = std::move (result);
2252 return per_bfd->dwz_file.get ();
2253 }
2254 \f
2255 /* DWARF quick_symbols_functions support. */
2256
2257 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2258 unique line tables, so we maintain a separate table of all .debug_line
2259 derived entries to support the sharing.
2260 All the quick functions need is the list of file names. We discard the
2261 line_header when we're done and don't need to record it here. */
2262 struct quick_file_names
2263 {
2264 /* The data used to construct the hash key. */
2265 struct stmt_list_hash hash;
2266
2267 /* The number of entries in file_names, real_names. */
2268 unsigned int num_file_names;
2269
2270 /* The file names from the line table, after being run through
2271 file_full_name. */
2272 const char **file_names;
2273
2274 /* The file names from the line table after being run through
2275 gdb_realpath. These are computed lazily. */
2276 const char **real_names;
2277 };
2278
2279 /* When using the index (and thus not using psymtabs), each CU has an
2280 object of this type. This is used to hold information needed by
2281 the various "quick" methods. */
2282 struct dwarf2_per_cu_quick_data
2283 {
2284 /* The file table. This can be NULL if there was no file table
2285 or it's currently not read in.
2286 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2287 struct quick_file_names *file_names;
2288
2289 /* A temporary mark bit used when iterating over all CUs in
2290 expand_symtabs_matching. */
2291 unsigned int mark : 1;
2292
2293 /* True if we've tried to read the file table and found there isn't one.
2294 There will be no point in trying to read it again next time. */
2295 unsigned int no_file_data : 1;
2296 };
2297
2298 /* Utility hash function for a stmt_list_hash. */
2299
2300 static hashval_t
2301 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2302 {
2303 hashval_t v = 0;
2304
2305 if (stmt_list_hash->dwo_unit != NULL)
2306 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2307 v += to_underlying (stmt_list_hash->line_sect_off);
2308 return v;
2309 }
2310
2311 /* Utility equality function for a stmt_list_hash. */
2312
2313 static int
2314 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2315 const struct stmt_list_hash *rhs)
2316 {
2317 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2318 return 0;
2319 if (lhs->dwo_unit != NULL
2320 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2321 return 0;
2322
2323 return lhs->line_sect_off == rhs->line_sect_off;
2324 }
2325
2326 /* Hash function for a quick_file_names. */
2327
2328 static hashval_t
2329 hash_file_name_entry (const void *e)
2330 {
2331 const struct quick_file_names *file_data
2332 = (const struct quick_file_names *) e;
2333
2334 return hash_stmt_list_entry (&file_data->hash);
2335 }
2336
2337 /* Equality function for a quick_file_names. */
2338
2339 static int
2340 eq_file_name_entry (const void *a, const void *b)
2341 {
2342 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2343 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2344
2345 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2346 }
2347
2348 /* Delete function for a quick_file_names. */
2349
2350 static void
2351 delete_file_name_entry (void *e)
2352 {
2353 struct quick_file_names *file_data = (struct quick_file_names *) e;
2354 int i;
2355
2356 for (i = 0; i < file_data->num_file_names; ++i)
2357 {
2358 xfree ((void*) file_data->file_names[i]);
2359 if (file_data->real_names)
2360 xfree ((void*) file_data->real_names[i]);
2361 }
2362
2363 /* The space for the struct itself lives on the obstack, so we don't
2364 free it here. */
2365 }
2366
2367 /* Create a quick_file_names hash table. */
2368
2369 static htab_up
2370 create_quick_file_names_table (unsigned int nr_initial_entries)
2371 {
2372 return htab_up (htab_create_alloc (nr_initial_entries,
2373 hash_file_name_entry, eq_file_name_entry,
2374 delete_file_name_entry, xcalloc, xfree));
2375 }
2376
2377 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2378 function is unrelated to symtabs, symtab would have to be created afterwards.
2379 You should call age_cached_comp_units after processing the CU. */
2380
2381 static dwarf2_cu *
2382 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2383 bool skip_partial)
2384 {
2385 if (per_cu->is_debug_types)
2386 load_full_type_unit (per_cu, per_objfile);
2387 else
2388 load_full_comp_unit (per_cu, per_objfile, skip_partial, language_minimal);
2389
2390 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2391 if (cu == nullptr)
2392 return nullptr; /* Dummy CU. */
2393
2394 dwarf2_find_base_address (cu->dies, cu);
2395
2396 return cu;
2397 }
2398
2399 /* Read in the symbols for PER_CU in the context of DWARF"_PER_OBJFILE. */
2400
2401 static void
2402 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2403 dwarf2_per_objfile *per_objfile, bool skip_partial)
2404 {
2405 /* Skip type_unit_groups, reading the type units they contain
2406 is handled elsewhere. */
2407 if (per_cu->type_unit_group_p ())
2408 return;
2409
2410 /* The destructor of dwarf2_queue_guard frees any entries left on
2411 the queue. After this point we're guaranteed to leave this function
2412 with the dwarf queue empty. */
2413 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2414
2415 if (!per_objfile->symtab_set_p (per_cu))
2416 {
2417 queue_comp_unit (per_cu, per_objfile, language_minimal);
2418 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2419
2420 /* If we just loaded a CU from a DWO, and we're working with an index
2421 that may badly handle TUs, load all the TUs in that DWO as well.
2422 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2423 if (!per_cu->is_debug_types
2424 && cu != NULL
2425 && cu->dwo_unit != NULL
2426 && per_objfile->per_bfd->index_table != NULL
2427 && per_objfile->per_bfd->index_table->version <= 7
2428 /* DWP files aren't supported yet. */
2429 && get_dwp_file (per_objfile) == NULL)
2430 queue_and_load_all_dwo_tus (cu);
2431 }
2432
2433 process_queue (per_objfile);
2434
2435 /* Age the cache, releasing compilation units that have not
2436 been used recently. */
2437 per_objfile->age_comp_units ();
2438 }
2439
2440 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2441 the per-objfile for which this symtab is instantiated.
2442
2443 Returns the resulting symbol table. */
2444
2445 static struct compunit_symtab *
2446 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2447 dwarf2_per_objfile *per_objfile,
2448 bool skip_partial)
2449 {
2450 gdb_assert (per_objfile->per_bfd->using_index);
2451
2452 if (!per_objfile->symtab_set_p (per_cu))
2453 {
2454 free_cached_comp_units freer (per_objfile);
2455 scoped_restore decrementer = increment_reading_symtab ();
2456 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2457 process_cu_includes (per_objfile);
2458 }
2459
2460 return per_objfile->get_symtab (per_cu);
2461 }
2462
2463 /* See declaration. */
2464
2465 dwarf2_per_cu_data *
2466 dwarf2_per_bfd::get_cutu (int index)
2467 {
2468 if (index >= this->all_comp_units.size ())
2469 {
2470 index -= this->all_comp_units.size ();
2471 gdb_assert (index < this->all_type_units.size ());
2472 return &this->all_type_units[index]->per_cu;
2473 }
2474
2475 return this->all_comp_units[index];
2476 }
2477
2478 /* See declaration. */
2479
2480 dwarf2_per_cu_data *
2481 dwarf2_per_bfd::get_cu (int index)
2482 {
2483 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2484
2485 return this->all_comp_units[index];
2486 }
2487
2488 /* See declaration. */
2489
2490 signatured_type *
2491 dwarf2_per_bfd::get_tu (int index)
2492 {
2493 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2494
2495 return this->all_type_units[index];
2496 }
2497
2498 /* See read.h. */
2499
2500 dwarf2_per_cu_data *
2501 dwarf2_per_bfd::allocate_per_cu ()
2502 {
2503 dwarf2_per_cu_data *result = OBSTACK_ZALLOC (&obstack, dwarf2_per_cu_data);
2504 result->per_bfd = this;
2505 result->index = m_num_psymtabs++;
2506 return result;
2507 }
2508
2509 /* See read.h. */
2510
2511 signatured_type *
2512 dwarf2_per_bfd::allocate_signatured_type ()
2513 {
2514 signatured_type *result = OBSTACK_ZALLOC (&obstack, signatured_type);
2515 result->per_cu.per_bfd = this;
2516 result->per_cu.index = m_num_psymtabs++;
2517 return result;
2518 }
2519
2520 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2521 obstack, and constructed with the specified field values. */
2522
2523 static dwarf2_per_cu_data *
2524 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2525 struct dwarf2_section_info *section,
2526 int is_dwz,
2527 sect_offset sect_off, ULONGEST length)
2528 {
2529 dwarf2_per_cu_data *the_cu = per_bfd->allocate_per_cu ();
2530 the_cu->sect_off = sect_off;
2531 the_cu->length = length;
2532 the_cu->section = section;
2533 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2534 struct dwarf2_per_cu_quick_data);
2535 the_cu->is_dwz = is_dwz;
2536 return the_cu;
2537 }
2538
2539 /* A helper for create_cus_from_index that handles a given list of
2540 CUs. */
2541
2542 static void
2543 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2544 const gdb_byte *cu_list, offset_type n_elements,
2545 struct dwarf2_section_info *section,
2546 int is_dwz)
2547 {
2548 for (offset_type i = 0; i < n_elements; i += 2)
2549 {
2550 gdb_static_assert (sizeof (ULONGEST) >= 8);
2551
2552 sect_offset sect_off
2553 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2554 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2555 cu_list += 2 * 8;
2556
2557 dwarf2_per_cu_data *per_cu
2558 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2559 length);
2560 per_bfd->all_comp_units.push_back (per_cu);
2561 }
2562 }
2563
2564 /* Read the CU list from the mapped index, and use it to create all
2565 the CU objects for PER_BFD. */
2566
2567 static void
2568 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2569 const gdb_byte *cu_list, offset_type cu_list_elements,
2570 const gdb_byte *dwz_list, offset_type dwz_elements)
2571 {
2572 gdb_assert (per_bfd->all_comp_units.empty ());
2573 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2574
2575 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2576 &per_bfd->info, 0);
2577
2578 if (dwz_elements == 0)
2579 return;
2580
2581 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2582 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2583 &dwz->info, 1);
2584 }
2585
2586 /* Create the signatured type hash table from the index. */
2587
2588 static void
2589 create_signatured_type_table_from_index
2590 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2591 const gdb_byte *bytes, offset_type elements)
2592 {
2593 gdb_assert (per_bfd->all_type_units.empty ());
2594 per_bfd->all_type_units.reserve (elements / 3);
2595
2596 htab_up sig_types_hash = allocate_signatured_type_table ();
2597
2598 for (offset_type i = 0; i < elements; i += 3)
2599 {
2600 struct signatured_type *sig_type;
2601 ULONGEST signature;
2602 void **slot;
2603 cu_offset type_offset_in_tu;
2604
2605 gdb_static_assert (sizeof (ULONGEST) >= 8);
2606 sect_offset sect_off
2607 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2608 type_offset_in_tu
2609 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2610 BFD_ENDIAN_LITTLE);
2611 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2612 bytes += 3 * 8;
2613
2614 sig_type = per_bfd->allocate_signatured_type ();
2615 sig_type->signature = signature;
2616 sig_type->type_offset_in_tu = type_offset_in_tu;
2617 sig_type->per_cu.is_debug_types = 1;
2618 sig_type->per_cu.section = section;
2619 sig_type->per_cu.sect_off = sect_off;
2620 sig_type->per_cu.v.quick
2621 = OBSTACK_ZALLOC (&per_bfd->obstack,
2622 struct dwarf2_per_cu_quick_data);
2623
2624 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2625 *slot = sig_type;
2626
2627 per_bfd->all_type_units.push_back (sig_type);
2628 }
2629
2630 per_bfd->signatured_types = std::move (sig_types_hash);
2631 }
2632
2633 /* Create the signatured type hash table from .debug_names. */
2634
2635 static void
2636 create_signatured_type_table_from_debug_names
2637 (dwarf2_per_objfile *per_objfile,
2638 const mapped_debug_names &map,
2639 struct dwarf2_section_info *section,
2640 struct dwarf2_section_info *abbrev_section)
2641 {
2642 struct objfile *objfile = per_objfile->objfile;
2643
2644 section->read (objfile);
2645 abbrev_section->read (objfile);
2646
2647 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
2648 per_objfile->per_bfd->all_type_units.reserve (map.tu_count);
2649
2650 htab_up sig_types_hash = allocate_signatured_type_table ();
2651
2652 for (uint32_t i = 0; i < map.tu_count; ++i)
2653 {
2654 struct signatured_type *sig_type;
2655 void **slot;
2656
2657 sect_offset sect_off
2658 = (sect_offset) (extract_unsigned_integer
2659 (map.tu_table_reordered + i * map.offset_size,
2660 map.offset_size,
2661 map.dwarf5_byte_order));
2662
2663 comp_unit_head cu_header;
2664 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2665 abbrev_section,
2666 section->buffer + to_underlying (sect_off),
2667 rcuh_kind::TYPE);
2668
2669 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
2670 sig_type->signature = cu_header.signature;
2671 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2672 sig_type->per_cu.is_debug_types = 1;
2673 sig_type->per_cu.section = section;
2674 sig_type->per_cu.sect_off = sect_off;
2675 sig_type->per_cu.v.quick
2676 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2677 struct dwarf2_per_cu_quick_data);
2678
2679 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2680 *slot = sig_type;
2681
2682 per_objfile->per_bfd->all_type_units.push_back (sig_type);
2683 }
2684
2685 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2686 }
2687
2688 /* Read the address map data from the mapped index, and use it to
2689 populate the objfile's psymtabs_addrmap. */
2690
2691 static void
2692 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2693 struct mapped_index *index)
2694 {
2695 struct objfile *objfile = per_objfile->objfile;
2696 struct gdbarch *gdbarch = objfile->arch ();
2697 const gdb_byte *iter, *end;
2698 struct addrmap *mutable_map;
2699 CORE_ADDR baseaddr;
2700
2701 auto_obstack temp_obstack;
2702
2703 mutable_map = addrmap_create_mutable (&temp_obstack);
2704
2705 iter = index->address_table.data ();
2706 end = iter + index->address_table.size ();
2707
2708 baseaddr = objfile->text_section_offset ();
2709
2710 while (iter < end)
2711 {
2712 ULONGEST hi, lo, cu_index;
2713 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2714 iter += 8;
2715 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2716 iter += 8;
2717 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2718 iter += 4;
2719
2720 if (lo > hi)
2721 {
2722 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2723 hex_string (lo), hex_string (hi));
2724 continue;
2725 }
2726
2727 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
2728 {
2729 complaint (_(".gdb_index address table has invalid CU number %u"),
2730 (unsigned) cu_index);
2731 continue;
2732 }
2733
2734 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2735 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2736 addrmap_set_empty (mutable_map, lo, hi - 1,
2737 per_objfile->per_bfd->get_cu (cu_index));
2738 }
2739
2740 objfile->partial_symtabs->psymtabs_addrmap
2741 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2742 }
2743
2744 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2745 populate the objfile's psymtabs_addrmap. */
2746
2747 static void
2748 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2749 struct dwarf2_section_info *section)
2750 {
2751 struct objfile *objfile = per_objfile->objfile;
2752 bfd *abfd = objfile->obfd;
2753 struct gdbarch *gdbarch = objfile->arch ();
2754 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2755
2756 auto_obstack temp_obstack;
2757 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2758
2759 std::unordered_map<sect_offset,
2760 dwarf2_per_cu_data *,
2761 gdb::hash_enum<sect_offset>>
2762 debug_info_offset_to_per_cu;
2763 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
2764 {
2765 const auto insertpair
2766 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2767 if (!insertpair.second)
2768 {
2769 warning (_("Section .debug_aranges in %s has duplicate "
2770 "debug_info_offset %s, ignoring .debug_aranges."),
2771 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2772 return;
2773 }
2774 }
2775
2776 section->read (objfile);
2777
2778 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2779
2780 const gdb_byte *addr = section->buffer;
2781
2782 while (addr < section->buffer + section->size)
2783 {
2784 const gdb_byte *const entry_addr = addr;
2785 unsigned int bytes_read;
2786
2787 const LONGEST entry_length = read_initial_length (abfd, addr,
2788 &bytes_read);
2789 addr += bytes_read;
2790
2791 const gdb_byte *const entry_end = addr + entry_length;
2792 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2793 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2794 if (addr + entry_length > section->buffer + section->size)
2795 {
2796 warning (_("Section .debug_aranges in %s entry at offset %s "
2797 "length %s exceeds section length %s, "
2798 "ignoring .debug_aranges."),
2799 objfile_name (objfile),
2800 plongest (entry_addr - section->buffer),
2801 plongest (bytes_read + entry_length),
2802 pulongest (section->size));
2803 return;
2804 }
2805
2806 /* The version number. */
2807 const uint16_t version = read_2_bytes (abfd, addr);
2808 addr += 2;
2809 if (version != 2)
2810 {
2811 warning (_("Section .debug_aranges in %s entry at offset %s "
2812 "has unsupported version %d, ignoring .debug_aranges."),
2813 objfile_name (objfile),
2814 plongest (entry_addr - section->buffer), version);
2815 return;
2816 }
2817
2818 const uint64_t debug_info_offset
2819 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2820 addr += offset_size;
2821 const auto per_cu_it
2822 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2823 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2824 {
2825 warning (_("Section .debug_aranges in %s entry at offset %s "
2826 "debug_info_offset %s does not exists, "
2827 "ignoring .debug_aranges."),
2828 objfile_name (objfile),
2829 plongest (entry_addr - section->buffer),
2830 pulongest (debug_info_offset));
2831 return;
2832 }
2833 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2834
2835 const uint8_t address_size = *addr++;
2836 if (address_size < 1 || address_size > 8)
2837 {
2838 warning (_("Section .debug_aranges in %s entry at offset %s "
2839 "address_size %u is invalid, ignoring .debug_aranges."),
2840 objfile_name (objfile),
2841 plongest (entry_addr - section->buffer), address_size);
2842 return;
2843 }
2844
2845 const uint8_t segment_selector_size = *addr++;
2846 if (segment_selector_size != 0)
2847 {
2848 warning (_("Section .debug_aranges in %s entry at offset %s "
2849 "segment_selector_size %u is not supported, "
2850 "ignoring .debug_aranges."),
2851 objfile_name (objfile),
2852 plongest (entry_addr - section->buffer),
2853 segment_selector_size);
2854 return;
2855 }
2856
2857 /* Must pad to an alignment boundary that is twice the address
2858 size. It is undocumented by the DWARF standard but GCC does
2859 use it. */
2860 for (size_t padding = ((-(addr - section->buffer))
2861 & (2 * address_size - 1));
2862 padding > 0; padding--)
2863 if (*addr++ != 0)
2864 {
2865 warning (_("Section .debug_aranges in %s entry at offset %s "
2866 "padding is not zero, ignoring .debug_aranges."),
2867 objfile_name (objfile),
2868 plongest (entry_addr - section->buffer));
2869 return;
2870 }
2871
2872 for (;;)
2873 {
2874 if (addr + 2 * address_size > entry_end)
2875 {
2876 warning (_("Section .debug_aranges in %s entry at offset %s "
2877 "address list is not properly terminated, "
2878 "ignoring .debug_aranges."),
2879 objfile_name (objfile),
2880 plongest (entry_addr - section->buffer));
2881 return;
2882 }
2883 ULONGEST start = extract_unsigned_integer (addr, address_size,
2884 dwarf5_byte_order);
2885 addr += address_size;
2886 ULONGEST length = extract_unsigned_integer (addr, address_size,
2887 dwarf5_byte_order);
2888 addr += address_size;
2889 if (start == 0 && length == 0)
2890 break;
2891 if (start == 0 && !per_objfile->per_bfd->has_section_at_zero)
2892 {
2893 /* Symbol was eliminated due to a COMDAT group. */
2894 continue;
2895 }
2896 ULONGEST end = start + length;
2897 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2898 - baseaddr);
2899 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2900 - baseaddr);
2901 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2902 }
2903 }
2904
2905 objfile->partial_symtabs->psymtabs_addrmap
2906 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2907 }
2908
2909 /* Find a slot in the mapped index INDEX for the object named NAME.
2910 If NAME is found, set *VEC_OUT to point to the CU vector in the
2911 constant pool and return true. If NAME cannot be found, return
2912 false. */
2913
2914 static bool
2915 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2916 offset_type **vec_out)
2917 {
2918 offset_type hash;
2919 offset_type slot, step;
2920 int (*cmp) (const char *, const char *);
2921
2922 gdb::unique_xmalloc_ptr<char> without_params;
2923 if (current_language->la_language == language_cplus
2924 || current_language->la_language == language_fortran
2925 || current_language->la_language == language_d)
2926 {
2927 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2928 not contain any. */
2929
2930 if (strchr (name, '(') != NULL)
2931 {
2932 without_params = cp_remove_params (name);
2933
2934 if (without_params != NULL)
2935 name = without_params.get ();
2936 }
2937 }
2938
2939 /* Index version 4 did not support case insensitive searches. But the
2940 indices for case insensitive languages are built in lowercase, therefore
2941 simulate our NAME being searched is also lowercased. */
2942 hash = mapped_index_string_hash ((index->version == 4
2943 && case_sensitivity == case_sensitive_off
2944 ? 5 : index->version),
2945 name);
2946
2947 slot = hash & (index->symbol_table.size () - 1);
2948 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2949 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2950
2951 for (;;)
2952 {
2953 const char *str;
2954
2955 const auto &bucket = index->symbol_table[slot];
2956 if (bucket.name == 0 && bucket.vec == 0)
2957 return false;
2958
2959 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2960 if (!cmp (name, str))
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
2963 + MAYBE_SWAP (bucket.vec));
2964 return true;
2965 }
2966
2967 slot = (slot + step) & (index->symbol_table.size () - 1);
2968 }
2969 }
2970
2971 /* A helper function that reads the .gdb_index from BUFFER and fills
2972 in MAP. FILENAME is the name of the file containing the data;
2973 it is used for error reporting. DEPRECATED_OK is true if it is
2974 ok to use deprecated sections.
2975
2976 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2977 out parameters that are filled in with information about the CU and
2978 TU lists in the section.
2979
2980 Returns true if all went well, false otherwise. */
2981
2982 static bool
2983 read_gdb_index_from_buffer (const char *filename,
2984 bool deprecated_ok,
2985 gdb::array_view<const gdb_byte> buffer,
2986 struct mapped_index *map,
2987 const gdb_byte **cu_list,
2988 offset_type *cu_list_elements,
2989 const gdb_byte **types_list,
2990 offset_type *types_list_elements)
2991 {
2992 const gdb_byte *addr = &buffer[0];
2993
2994 /* Version check. */
2995 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2996 /* Versions earlier than 3 emitted every copy of a psymbol. This
2997 causes the index to behave very poorly for certain requests. Version 3
2998 contained incomplete addrmap. So, it seems better to just ignore such
2999 indices. */
3000 if (version < 4)
3001 {
3002 static int warning_printed = 0;
3003 if (!warning_printed)
3004 {
3005 warning (_("Skipping obsolete .gdb_index section in %s."),
3006 filename);
3007 warning_printed = 1;
3008 }
3009 return 0;
3010 }
3011 /* Index version 4 uses a different hash function than index version
3012 5 and later.
3013
3014 Versions earlier than 6 did not emit psymbols for inlined
3015 functions. Using these files will cause GDB not to be able to
3016 set breakpoints on inlined functions by name, so we ignore these
3017 indices unless the user has done
3018 "set use-deprecated-index-sections on". */
3019 if (version < 6 && !deprecated_ok)
3020 {
3021 static int warning_printed = 0;
3022 if (!warning_printed)
3023 {
3024 warning (_("\
3025 Skipping deprecated .gdb_index section in %s.\n\
3026 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3027 to use the section anyway."),
3028 filename);
3029 warning_printed = 1;
3030 }
3031 return 0;
3032 }
3033 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3034 of the TU (for symbols coming from TUs),
3035 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3036 Plus gold-generated indices can have duplicate entries for global symbols,
3037 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3038 These are just performance bugs, and we can't distinguish gdb-generated
3039 indices from gold-generated ones, so issue no warning here. */
3040
3041 /* Indexes with higher version than the one supported by GDB may be no
3042 longer backward compatible. */
3043 if (version > 8)
3044 return 0;
3045
3046 map->version = version;
3047
3048 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3049
3050 int i = 0;
3051 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3052 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3053 / 8);
3054 ++i;
3055
3056 *types_list = addr + MAYBE_SWAP (metadata[i]);
3057 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3058 - MAYBE_SWAP (metadata[i]))
3059 / 8);
3060 ++i;
3061
3062 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3063 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3064 map->address_table
3065 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3066 ++i;
3067
3068 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3069 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3070 map->symbol_table
3071 = gdb::array_view<mapped_index::symbol_table_slot>
3072 ((mapped_index::symbol_table_slot *) symbol_table,
3073 (mapped_index::symbol_table_slot *) symbol_table_end);
3074
3075 ++i;
3076 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3077
3078 return 1;
3079 }
3080
3081 /* Callback types for dwarf2_read_gdb_index. */
3082
3083 typedef gdb::function_view
3084 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
3085 get_gdb_index_contents_ftype;
3086 typedef gdb::function_view
3087 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3088 get_gdb_index_contents_dwz_ftype;
3089
3090 /* Read .gdb_index. If everything went ok, initialize the "quick"
3091 elements of all the CUs and return 1. Otherwise, return 0. */
3092
3093 static int
3094 dwarf2_read_gdb_index
3095 (dwarf2_per_objfile *per_objfile,
3096 get_gdb_index_contents_ftype get_gdb_index_contents,
3097 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3098 {
3099 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3100 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3101 struct dwz_file *dwz;
3102 struct objfile *objfile = per_objfile->objfile;
3103 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
3104
3105 gdb::array_view<const gdb_byte> main_index_contents
3106 = get_gdb_index_contents (objfile, per_bfd);
3107
3108 if (main_index_contents.empty ())
3109 return 0;
3110
3111 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3112 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3113 use_deprecated_index_sections,
3114 main_index_contents, map.get (), &cu_list,
3115 &cu_list_elements, &types_list,
3116 &types_list_elements))
3117 return 0;
3118
3119 /* Don't use the index if it's empty. */
3120 if (map->symbol_table.empty ())
3121 return 0;
3122
3123 /* If there is a .dwz file, read it so we can get its CU list as
3124 well. */
3125 dwz = dwarf2_get_dwz_file (per_bfd);
3126 if (dwz != NULL)
3127 {
3128 struct mapped_index dwz_map;
3129 const gdb_byte *dwz_types_ignore;
3130 offset_type dwz_types_elements_ignore;
3131
3132 gdb::array_view<const gdb_byte> dwz_index_content
3133 = get_gdb_index_contents_dwz (objfile, dwz);
3134
3135 if (dwz_index_content.empty ())
3136 return 0;
3137
3138 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3139 1, dwz_index_content, &dwz_map,
3140 &dwz_list, &dwz_list_elements,
3141 &dwz_types_ignore,
3142 &dwz_types_elements_ignore))
3143 {
3144 warning (_("could not read '.gdb_index' section from %s; skipping"),
3145 bfd_get_filename (dwz->dwz_bfd.get ()));
3146 return 0;
3147 }
3148 }
3149
3150 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
3151 dwz_list_elements);
3152
3153 if (types_list_elements)
3154 {
3155 /* We can only handle a single .debug_types when we have an
3156 index. */
3157 if (per_bfd->types.size () != 1)
3158 return 0;
3159
3160 dwarf2_section_info *section = &per_bfd->types[0];
3161
3162 create_signatured_type_table_from_index (per_bfd, section, types_list,
3163 types_list_elements);
3164 }
3165
3166 create_addrmap_from_index (per_objfile, map.get ());
3167
3168 per_bfd->index_table = std::move (map);
3169 per_bfd->using_index = 1;
3170 per_bfd->quick_file_names_table =
3171 create_quick_file_names_table (per_bfd->all_comp_units.size ());
3172
3173 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
3174 objfiles using the same BFD. */
3175 gdb_assert (per_bfd->partial_symtabs == nullptr);
3176 per_bfd->partial_symtabs = objfile->partial_symtabs;
3177
3178 return 1;
3179 }
3180
3181 /* die_reader_func for dw2_get_file_names. */
3182
3183 static void
3184 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3185 const gdb_byte *info_ptr,
3186 struct die_info *comp_unit_die)
3187 {
3188 struct dwarf2_cu *cu = reader->cu;
3189 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3190 dwarf2_per_objfile *per_objfile = cu->per_objfile;
3191 struct dwarf2_per_cu_data *lh_cu;
3192 struct attribute *attr;
3193 void **slot;
3194 struct quick_file_names *qfn;
3195
3196 gdb_assert (! this_cu->is_debug_types);
3197
3198 /* Our callers never want to match partial units -- instead they
3199 will match the enclosing full CU. */
3200 if (comp_unit_die->tag == DW_TAG_partial_unit)
3201 {
3202 this_cu->v.quick->no_file_data = 1;
3203 return;
3204 }
3205
3206 lh_cu = this_cu;
3207 slot = NULL;
3208
3209 line_header_up lh;
3210 sect_offset line_offset {};
3211
3212 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3213 if (attr != nullptr && attr->form_is_unsigned ())
3214 {
3215 struct quick_file_names find_entry;
3216
3217 line_offset = (sect_offset) attr->as_unsigned ();
3218
3219 /* We may have already read in this line header (TU line header sharing).
3220 If we have we're done. */
3221 find_entry.hash.dwo_unit = cu->dwo_unit;
3222 find_entry.hash.line_sect_off = line_offset;
3223 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
3224 &find_entry, INSERT);
3225 if (*slot != NULL)
3226 {
3227 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3228 return;
3229 }
3230
3231 lh = dwarf_decode_line_header (line_offset, cu);
3232 }
3233 if (lh == NULL)
3234 {
3235 lh_cu->v.quick->no_file_data = 1;
3236 return;
3237 }
3238
3239 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
3240 qfn->hash.dwo_unit = cu->dwo_unit;
3241 qfn->hash.line_sect_off = line_offset;
3242 gdb_assert (slot != NULL);
3243 *slot = qfn;
3244
3245 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3246
3247 int offset = 0;
3248 if (strcmp (fnd.name, "<unknown>") != 0)
3249 ++offset;
3250
3251 qfn->num_file_names = offset + lh->file_names_size ();
3252 qfn->file_names =
3253 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
3254 qfn->num_file_names);
3255 if (offset != 0)
3256 qfn->file_names[0] = xstrdup (fnd.name);
3257 for (int i = 0; i < lh->file_names_size (); ++i)
3258 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3259 fnd.comp_dir).release ();
3260 qfn->real_names = NULL;
3261
3262 lh_cu->v.quick->file_names = qfn;
3263 }
3264
3265 /* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268 static struct quick_file_names *
3269 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3270 dwarf2_per_objfile *per_objfile)
3271 {
3272 /* This should never be called for TUs. */
3273 gdb_assert (! this_cu->is_debug_types);
3274 /* Nor type unit groups. */
3275 gdb_assert (! this_cu->type_unit_group_p ());
3276
3277 if (this_cu->v.quick->file_names != NULL)
3278 return this_cu->v.quick->file_names;
3279 /* If we know there is no line data, no point in looking again. */
3280 if (this_cu->v.quick->no_file_data)
3281 return NULL;
3282
3283 cutu_reader reader (this_cu, per_objfile);
3284 if (!reader.dummy_p)
3285 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3286
3287 if (this_cu->v.quick->no_file_data)
3288 return NULL;
3289 return this_cu->v.quick->file_names;
3290 }
3291
3292 /* A helper for the "quick" functions which computes and caches the
3293 real path for a given file name from the line table. */
3294
3295 static const char *
3296 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3297 struct quick_file_names *qfn, int index)
3298 {
3299 if (qfn->real_names == NULL)
3300 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3301 qfn->num_file_names, const char *);
3302
3303 if (qfn->real_names[index] == NULL)
3304 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3305
3306 return qfn->real_names[index];
3307 }
3308
3309 static struct symtab *
3310 dw2_find_last_source_symtab (struct objfile *objfile)
3311 {
3312 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3313 dwarf2_per_cu_data *dwarf_cu = per_objfile->per_bfd->all_comp_units.back ();
3314 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3315
3316 if (cust == NULL)
3317 return NULL;
3318
3319 return compunit_primary_filetab (cust);
3320 }
3321
3322 /* Traversal function for dw2_forget_cached_source_info. */
3323
3324 static int
3325 dw2_free_cached_file_names (void **slot, void *info)
3326 {
3327 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3328
3329 if (file_data->real_names)
3330 {
3331 int i;
3332
3333 for (i = 0; i < file_data->num_file_names; ++i)
3334 {
3335 xfree ((void*) file_data->real_names[i]);
3336 file_data->real_names[i] = NULL;
3337 }
3338 }
3339
3340 return 1;
3341 }
3342
3343 static void
3344 dw2_forget_cached_source_info (struct objfile *objfile)
3345 {
3346 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3347
3348 htab_traverse_noresize (per_objfile->per_bfd->quick_file_names_table.get (),
3349 dw2_free_cached_file_names, NULL);
3350 }
3351
3352 /* Helper function for dw2_map_symtabs_matching_filename that expands
3353 the symtabs and calls the iterator. */
3354
3355 static int
3356 dw2_map_expand_apply (struct objfile *objfile,
3357 struct dwarf2_per_cu_data *per_cu,
3358 const char *name, const char *real_path,
3359 gdb::function_view<bool (symtab *)> callback)
3360 {
3361 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3362
3363 /* Don't visit already-expanded CUs. */
3364 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3365 if (per_objfile->symtab_set_p (per_cu))
3366 return 0;
3367
3368 /* This may expand more than one symtab, and we want to iterate over
3369 all of them. */
3370 dw2_instantiate_symtab (per_cu, per_objfile, false);
3371
3372 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3373 last_made, callback);
3374 }
3375
3376 /* Implementation of the map_symtabs_matching_filename method. */
3377
3378 static bool
3379 dw2_map_symtabs_matching_filename
3380 (struct objfile *objfile, const char *name, const char *real_path,
3381 gdb::function_view<bool (symtab *)> callback)
3382 {
3383 const char *name_basename = lbasename (name);
3384 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3385
3386 /* The rule is CUs specify all the files, including those used by
3387 any TU, so there's no need to scan TUs here. */
3388
3389 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3390 {
3391 /* We only need to look at symtabs not already expanded. */
3392 if (per_objfile->symtab_set_p (per_cu))
3393 continue;
3394
3395 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3396 if (file_data == NULL)
3397 continue;
3398
3399 for (int j = 0; j < file_data->num_file_names; ++j)
3400 {
3401 const char *this_name = file_data->file_names[j];
3402 const char *this_real_name;
3403
3404 if (compare_filenames_for_search (this_name, name))
3405 {
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3407 callback))
3408 return true;
3409 continue;
3410 }
3411
3412 /* Before we invoke realpath, which can get expensive when many
3413 files are involved, do a quick comparison of the basenames. */
3414 if (! basenames_may_differ
3415 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3416 continue;
3417
3418 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
3419 if (compare_filenames_for_search (this_real_name, name))
3420 {
3421 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3422 callback))
3423 return true;
3424 continue;
3425 }
3426
3427 if (real_path != NULL)
3428 {
3429 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3430 gdb_assert (IS_ABSOLUTE_PATH (name));
3431 if (this_real_name != NULL
3432 && FILENAME_CMP (real_path, this_real_name) == 0)
3433 {
3434 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3435 callback))
3436 return true;
3437 continue;
3438 }
3439 }
3440 }
3441 }
3442
3443 return false;
3444 }
3445
3446 /* Struct used to manage iterating over all CUs looking for a symbol. */
3447
3448 struct dw2_symtab_iterator
3449 {
3450 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3451 dwarf2_per_objfile *per_objfile;
3452 /* If set, only look for symbols that match that block. Valid values are
3453 GLOBAL_BLOCK and STATIC_BLOCK. */
3454 gdb::optional<block_enum> block_index;
3455 /* The kind of symbol we're looking for. */
3456 domain_enum domain;
3457 /* The list of CUs from the index entry of the symbol,
3458 or NULL if not found. */
3459 offset_type *vec;
3460 /* The next element in VEC to look at. */
3461 int next;
3462 /* The number of elements in VEC, or zero if there is no match. */
3463 int length;
3464 /* Have we seen a global version of the symbol?
3465 If so we can ignore all further global instances.
3466 This is to work around gold/15646, inefficient gold-generated
3467 indices. */
3468 int global_seen;
3469 };
3470
3471 /* Initialize the index symtab iterator ITER, common part. */
3472
3473 static void
3474 dw2_symtab_iter_init_common (struct dw2_symtab_iterator *iter,
3475 dwarf2_per_objfile *per_objfile,
3476 gdb::optional<block_enum> block_index,
3477 domain_enum domain)
3478 {
3479 iter->per_objfile = per_objfile;
3480 iter->block_index = block_index;
3481 iter->domain = domain;
3482 iter->next = 0;
3483 iter->global_seen = 0;
3484 iter->vec = NULL;
3485 iter->length = 0;
3486 }
3487
3488 /* Initialize the index symtab iterator ITER, const char *NAME variant. */
3489
3490 static void
3491 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3492 dwarf2_per_objfile *per_objfile,
3493 gdb::optional<block_enum> block_index,
3494 domain_enum domain,
3495 const char *name)
3496 {
3497 dw2_symtab_iter_init_common (iter, per_objfile, block_index, domain);
3498
3499 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3500 /* index is NULL if OBJF_READNOW. */
3501 if (index == NULL)
3502 return;
3503
3504 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3505 iter->length = MAYBE_SWAP (*iter->vec);
3506 }
3507
3508 /* Initialize the index symtab iterator ITER, offset_type NAMEI variant. */
3509
3510 static void
3511 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3512 dwarf2_per_objfile *per_objfile,
3513 gdb::optional<block_enum> block_index,
3514 domain_enum domain, offset_type namei)
3515 {
3516 dw2_symtab_iter_init_common (iter, per_objfile, block_index, domain);
3517
3518 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3519 /* index is NULL if OBJF_READNOW. */
3520 if (index == NULL)
3521 return;
3522
3523 gdb_assert (!index->symbol_name_slot_invalid (namei));
3524 const auto &bucket = index->symbol_table[namei];
3525
3526 iter->vec = (offset_type *) (index->constant_pool
3527 + MAYBE_SWAP (bucket.vec));
3528 iter->length = MAYBE_SWAP (*iter->vec);
3529 }
3530
3531 /* Return the next matching CU or NULL if there are no more. */
3532
3533 static struct dwarf2_per_cu_data *
3534 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3535 {
3536 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3537
3538 for ( ; iter->next < iter->length; ++iter->next)
3539 {
3540 offset_type cu_index_and_attrs =
3541 MAYBE_SWAP (iter->vec[iter->next + 1]);
3542 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3543 gdb_index_symbol_kind symbol_kind =
3544 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3545 /* Only check the symbol attributes if they're present.
3546 Indices prior to version 7 don't record them,
3547 and indices >= 7 may elide them for certain symbols
3548 (gold does this). */
3549 int attrs_valid =
3550 (per_objfile->per_bfd->index_table->version >= 7
3551 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3552
3553 /* Don't crash on bad data. */
3554 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
3555 + per_objfile->per_bfd->all_type_units.size ()))
3556 {
3557 complaint (_(".gdb_index entry has bad CU index"
3558 " [in module %s]"), objfile_name (per_objfile->objfile));
3559 continue;
3560 }
3561
3562 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
3563
3564 /* Skip if already read in. */
3565 if (per_objfile->symtab_set_p (per_cu))
3566 continue;
3567
3568 /* Check static vs global. */
3569 if (attrs_valid)
3570 {
3571 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3572
3573 if (iter->block_index.has_value ())
3574 {
3575 bool want_static = *iter->block_index == STATIC_BLOCK;
3576
3577 if (is_static != want_static)
3578 continue;
3579 }
3580
3581 /* Work around gold/15646. */
3582 if (!is_static
3583 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3584 {
3585 if (iter->global_seen)
3586 continue;
3587
3588 iter->global_seen = 1;
3589 }
3590 }
3591
3592 /* Only check the symbol's kind if it has one. */
3593 if (attrs_valid)
3594 {
3595 switch (iter->domain)
3596 {
3597 case VAR_DOMAIN:
3598 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3599 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3600 /* Some types are also in VAR_DOMAIN. */
3601 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3602 continue;
3603 break;
3604 case STRUCT_DOMAIN:
3605 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3606 continue;
3607 break;
3608 case LABEL_DOMAIN:
3609 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3610 continue;
3611 break;
3612 case MODULE_DOMAIN:
3613 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3614 continue;
3615 break;
3616 default:
3617 break;
3618 }
3619 }
3620
3621 ++iter->next;
3622 return per_cu;
3623 }
3624
3625 return NULL;
3626 }
3627
3628 static struct compunit_symtab *
3629 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3630 const char *name, domain_enum domain)
3631 {
3632 struct compunit_symtab *stab_best = NULL;
3633 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3634
3635 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3636
3637 struct dw2_symtab_iterator iter;
3638 struct dwarf2_per_cu_data *per_cu;
3639
3640 dw2_symtab_iter_init (&iter, per_objfile, block_index, domain, name);
3641
3642 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3643 {
3644 struct symbol *sym, *with_opaque = NULL;
3645 struct compunit_symtab *stab
3646 = dw2_instantiate_symtab (per_cu, per_objfile, false);
3647 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3648 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3649
3650 sym = block_find_symbol (block, name, domain,
3651 block_find_non_opaque_type_preferred,
3652 &with_opaque);
3653
3654 /* Some caution must be observed with overloaded functions
3655 and methods, since the index will not contain any overload
3656 information (but NAME might contain it). */
3657
3658 if (sym != NULL
3659 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3660 return stab;
3661 if (with_opaque != NULL
3662 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3663 stab_best = stab;
3664
3665 /* Keep looking through other CUs. */
3666 }
3667
3668 return stab_best;
3669 }
3670
3671 static void
3672 dw2_print_stats (struct objfile *objfile)
3673 {
3674 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3675 int total = (per_objfile->per_bfd->all_comp_units.size ()
3676 + per_objfile->per_bfd->all_type_units.size ());
3677 int count = 0;
3678
3679 for (int i = 0; i < total; ++i)
3680 {
3681 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3682
3683 if (!per_objfile->symtab_set_p (per_cu))
3684 ++count;
3685 }
3686 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3687 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3688 }
3689
3690 /* This dumps minimal information about the index.
3691 It is called via "mt print objfiles".
3692 One use is to verify .gdb_index has been loaded by the
3693 gdb.dwarf2/gdb-index.exp testcase. */
3694
3695 static void
3696 dw2_dump (struct objfile *objfile)
3697 {
3698 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3699
3700 gdb_assert (per_objfile->per_bfd->using_index);
3701 printf_filtered (".gdb_index:");
3702 if (per_objfile->per_bfd->index_table != NULL)
3703 {
3704 printf_filtered (" version %d\n",
3705 per_objfile->per_bfd->index_table->version);
3706 }
3707 else
3708 printf_filtered (" faked for \"readnow\"\n");
3709 printf_filtered ("\n");
3710 }
3711
3712 static void
3713 dw2_expand_symtabs_for_function (struct objfile *objfile,
3714 const char *func_name)
3715 {
3716 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3717
3718 struct dw2_symtab_iterator iter;
3719 struct dwarf2_per_cu_data *per_cu;
3720
3721 dw2_symtab_iter_init (&iter, per_objfile, {}, VAR_DOMAIN, func_name);
3722
3723 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3724 dw2_instantiate_symtab (per_cu, per_objfile, false);
3725
3726 }
3727
3728 static void
3729 dw2_expand_all_symtabs (struct objfile *objfile)
3730 {
3731 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3732 int total_units = (per_objfile->per_bfd->all_comp_units.size ()
3733 + per_objfile->per_bfd->all_type_units.size ());
3734
3735 for (int i = 0; i < total_units; ++i)
3736 {
3737 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (i);
3738
3739 /* We don't want to directly expand a partial CU, because if we
3740 read it with the wrong language, then assertion failures can
3741 be triggered later on. See PR symtab/23010. So, tell
3742 dw2_instantiate_symtab to skip partial CUs -- any important
3743 partial CU will be read via DW_TAG_imported_unit anyway. */
3744 dw2_instantiate_symtab (per_cu, per_objfile, true);
3745 }
3746 }
3747
3748 static void
3749 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3750 const char *fullname)
3751 {
3752 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3753
3754 /* We don't need to consider type units here.
3755 This is only called for examining code, e.g. expand_line_sal.
3756 There can be an order of magnitude (or more) more type units
3757 than comp units, and we avoid them if we can. */
3758
3759 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
3760 {
3761 /* We only need to look at symtabs not already expanded. */
3762 if (per_objfile->symtab_set_p (per_cu))
3763 continue;
3764
3765 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
3766 if (file_data == NULL)
3767 continue;
3768
3769 for (int j = 0; j < file_data->num_file_names; ++j)
3770 {
3771 const char *this_fullname = file_data->file_names[j];
3772
3773 if (filename_cmp (this_fullname, fullname) == 0)
3774 {
3775 dw2_instantiate_symtab (per_cu, per_objfile, false);
3776 break;
3777 }
3778 }
3779 }
3780 }
3781
3782 static void
3783 dw2_expand_symtabs_matching_symbol
3784 (mapped_index_base &index,
3785 const lookup_name_info &lookup_name_in,
3786 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3787 enum search_domain kind,
3788 gdb::function_view<bool (offset_type)> match_callback,
3789 dwarf2_per_objfile *per_objfile);
3790
3791 static void
3792 dw2_expand_symtabs_matching_one
3793 (dwarf2_per_cu_data *per_cu,
3794 dwarf2_per_objfile *per_objfile,
3795 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3796 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3797
3798 static void
3799 dw2_map_matching_symbols
3800 (struct objfile *objfile,
3801 const lookup_name_info &name, domain_enum domain,
3802 int global,
3803 gdb::function_view<symbol_found_callback_ftype> callback,
3804 symbol_compare_ftype *ordered_compare)
3805 {
3806 /* Used for Ada. */
3807 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3808
3809 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3810
3811 if (per_objfile->per_bfd->index_table != nullptr)
3812 {
3813 mapped_index &index = *per_objfile->per_bfd->index_table;
3814
3815 const char *match_name = name.ada ().lookup_name ().c_str ();
3816 auto matcher = [&] (const char *symname)
3817 {
3818 if (ordered_compare == nullptr)
3819 return true;
3820 return ordered_compare (symname, match_name) == 0;
3821 };
3822
3823 dw2_expand_symtabs_matching_symbol (index, name, matcher, ALL_DOMAIN,
3824 [&] (offset_type namei)
3825 {
3826 struct dw2_symtab_iterator iter;
3827 struct dwarf2_per_cu_data *per_cu;
3828
3829 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3830 namei);
3831 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3832 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3833 nullptr);
3834 return true;
3835 }, per_objfile);
3836 }
3837 else
3838 {
3839 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3840 proceed assuming all symtabs have been read in. */
3841 }
3842
3843 for (compunit_symtab *cust : objfile->compunits ())
3844 {
3845 const struct block *block;
3846
3847 if (cust == NULL)
3848 continue;
3849 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3850 if (!iterate_over_symbols_terminated (block, name,
3851 domain, callback))
3852 return;
3853 }
3854 }
3855
3856 /* Starting from a search name, return the string that finds the upper
3857 bound of all strings that start with SEARCH_NAME in a sorted name
3858 list. Returns the empty string to indicate that the upper bound is
3859 the end of the list. */
3860
3861 static std::string
3862 make_sort_after_prefix_name (const char *search_name)
3863 {
3864 /* When looking to complete "func", we find the upper bound of all
3865 symbols that start with "func" by looking for where we'd insert
3866 the closest string that would follow "func" in lexicographical
3867 order. Usually, that's "func"-with-last-character-incremented,
3868 i.e. "fund". Mind non-ASCII characters, though. Usually those
3869 will be UTF-8 multi-byte sequences, but we can't be certain.
3870 Especially mind the 0xff character, which is a valid character in
3871 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3872 rule out compilers allowing it in identifiers. Note that
3873 conveniently, strcmp/strcasecmp are specified to compare
3874 characters interpreted as unsigned char. So what we do is treat
3875 the whole string as a base 256 number composed of a sequence of
3876 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3877 to 0, and carries 1 to the following more-significant position.
3878 If the very first character in SEARCH_NAME ends up incremented
3879 and carries/overflows, then the upper bound is the end of the
3880 list. The string after the empty string is also the empty
3881 string.
3882
3883 Some examples of this operation:
3884
3885 SEARCH_NAME => "+1" RESULT
3886
3887 "abc" => "abd"
3888 "ab\xff" => "ac"
3889 "\xff" "a" "\xff" => "\xff" "b"
3890 "\xff" => ""
3891 "\xff\xff" => ""
3892 "" => ""
3893
3894 Then, with these symbols for example:
3895
3896 func
3897 func1
3898 fund
3899
3900 completing "func" looks for symbols between "func" and
3901 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3902 which finds "func" and "func1", but not "fund".
3903
3904 And with:
3905
3906 funcÿ (Latin1 'ÿ' [0xff])
3907 funcÿ1
3908 fund
3909
3910 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3911 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3912
3913 And with:
3914
3915 ÿÿ (Latin1 'ÿ' [0xff])
3916 ÿÿ1
3917
3918 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3919 the end of the list.
3920 */
3921 std::string after = search_name;
3922 while (!after.empty () && (unsigned char) after.back () == 0xff)
3923 after.pop_back ();
3924 if (!after.empty ())
3925 after.back () = (unsigned char) after.back () + 1;
3926 return after;
3927 }
3928
3929 /* See declaration. */
3930
3931 std::pair<std::vector<name_component>::const_iterator,
3932 std::vector<name_component>::const_iterator>
3933 mapped_index_base::find_name_components_bounds
3934 (const lookup_name_info &lookup_name_without_params, language lang,
3935 dwarf2_per_objfile *per_objfile) const
3936 {
3937 auto *name_cmp
3938 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3939
3940 const char *lang_name
3941 = lookup_name_without_params.language_lookup_name (lang);
3942
3943 /* Comparison function object for lower_bound that matches against a
3944 given symbol name. */
3945 auto lookup_compare_lower = [&] (const name_component &elem,
3946 const char *name)
3947 {
3948 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3949 const char *elem_name = elem_qualified + elem.name_offset;
3950 return name_cmp (elem_name, name) < 0;
3951 };
3952
3953 /* Comparison function object for upper_bound that matches against a
3954 given symbol name. */
3955 auto lookup_compare_upper = [&] (const char *name,
3956 const name_component &elem)
3957 {
3958 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3959 const char *elem_name = elem_qualified + elem.name_offset;
3960 return name_cmp (name, elem_name) < 0;
3961 };
3962
3963 auto begin = this->name_components.begin ();
3964 auto end = this->name_components.end ();
3965
3966 /* Find the lower bound. */
3967 auto lower = [&] ()
3968 {
3969 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3970 return begin;
3971 else
3972 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3973 } ();
3974
3975 /* Find the upper bound. */
3976 auto upper = [&] ()
3977 {
3978 if (lookup_name_without_params.completion_mode ())
3979 {
3980 /* In completion mode, we want UPPER to point past all
3981 symbols names that have the same prefix. I.e., with
3982 these symbols, and completing "func":
3983
3984 function << lower bound
3985 function1
3986 other_function << upper bound
3987
3988 We find the upper bound by looking for the insertion
3989 point of "func"-with-last-character-incremented,
3990 i.e. "fund". */
3991 std::string after = make_sort_after_prefix_name (lang_name);
3992 if (after.empty ())
3993 return end;
3994 return std::lower_bound (lower, end, after.c_str (),
3995 lookup_compare_lower);
3996 }
3997 else
3998 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3999 } ();
4000
4001 return {lower, upper};
4002 }
4003
4004 /* See declaration. */
4005
4006 void
4007 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
4008 {
4009 if (!this->name_components.empty ())
4010 return;
4011
4012 this->name_components_casing = case_sensitivity;
4013 auto *name_cmp
4014 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4015
4016 /* The code below only knows how to break apart components of C++
4017 symbol names (and other languages that use '::' as
4018 namespace/module separator) and Ada symbol names. */
4019 auto count = this->symbol_name_count ();
4020 for (offset_type idx = 0; idx < count; idx++)
4021 {
4022 if (this->symbol_name_slot_invalid (idx))
4023 continue;
4024
4025 const char *name = this->symbol_name_at (idx, per_objfile);
4026
4027 /* Add each name component to the name component table. */
4028 unsigned int previous_len = 0;
4029
4030 if (strstr (name, "::") != nullptr)
4031 {
4032 for (unsigned int current_len = cp_find_first_component (name);
4033 name[current_len] != '\0';
4034 current_len += cp_find_first_component (name + current_len))
4035 {
4036 gdb_assert (name[current_len] == ':');
4037 this->name_components.push_back ({previous_len, idx});
4038 /* Skip the '::'. */
4039 current_len += 2;
4040 previous_len = current_len;
4041 }
4042 }
4043 else
4044 {
4045 /* Handle the Ada encoded (aka mangled) form here. */
4046 for (const char *iter = strstr (name, "__");
4047 iter != nullptr;
4048 iter = strstr (iter, "__"))
4049 {
4050 this->name_components.push_back ({previous_len, idx});
4051 iter += 2;
4052 previous_len = iter - name;
4053 }
4054 }
4055
4056 this->name_components.push_back ({previous_len, idx});
4057 }
4058
4059 /* Sort name_components elements by name. */
4060 auto name_comp_compare = [&] (const name_component &left,
4061 const name_component &right)
4062 {
4063 const char *left_qualified
4064 = this->symbol_name_at (left.idx, per_objfile);
4065 const char *right_qualified
4066 = this->symbol_name_at (right.idx, per_objfile);
4067
4068 const char *left_name = left_qualified + left.name_offset;
4069 const char *right_name = right_qualified + right.name_offset;
4070
4071 return name_cmp (left_name, right_name) < 0;
4072 };
4073
4074 std::sort (this->name_components.begin (),
4075 this->name_components.end (),
4076 name_comp_compare);
4077 }
4078
4079 /* Helper for dw2_expand_symtabs_matching that works with a
4080 mapped_index_base instead of the containing objfile. This is split
4081 to a separate function in order to be able to unit test the
4082 name_components matching using a mock mapped_index_base. For each
4083 symbol name that matches, calls MATCH_CALLBACK, passing it the
4084 symbol's index in the mapped_index_base symbol table. */
4085
4086 static void
4087 dw2_expand_symtabs_matching_symbol
4088 (mapped_index_base &index,
4089 const lookup_name_info &lookup_name_in,
4090 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4091 enum search_domain kind,
4092 gdb::function_view<bool (offset_type)> match_callback,
4093 dwarf2_per_objfile *per_objfile)
4094 {
4095 lookup_name_info lookup_name_without_params
4096 = lookup_name_in.make_ignore_params ();
4097
4098 /* Build the symbol name component sorted vector, if we haven't
4099 yet. */
4100 index.build_name_components (per_objfile);
4101
4102 /* The same symbol may appear more than once in the range though.
4103 E.g., if we're looking for symbols that complete "w", and we have
4104 a symbol named "w1::w2", we'll find the two name components for
4105 that same symbol in the range. To be sure we only call the
4106 callback once per symbol, we first collect the symbol name
4107 indexes that matched in a temporary vector and ignore
4108 duplicates. */
4109 std::vector<offset_type> matches;
4110
4111 struct name_and_matcher
4112 {
4113 symbol_name_matcher_ftype *matcher;
4114 const char *name;
4115
4116 bool operator== (const name_and_matcher &other) const
4117 {
4118 return matcher == other.matcher && strcmp (name, other.name) == 0;
4119 }
4120 };
4121
4122 /* A vector holding all the different symbol name matchers, for all
4123 languages. */
4124 std::vector<name_and_matcher> matchers;
4125
4126 for (int i = 0; i < nr_languages; i++)
4127 {
4128 enum language lang_e = (enum language) i;
4129
4130 const language_defn *lang = language_def (lang_e);
4131 symbol_name_matcher_ftype *name_matcher
4132 = lang->get_symbol_name_matcher (lookup_name_without_params);
4133
4134 name_and_matcher key {
4135 name_matcher,
4136 lookup_name_without_params.language_lookup_name (lang_e)
4137 };
4138
4139 /* Don't insert the same comparison routine more than once.
4140 Note that we do this linear walk. This is not a problem in
4141 practice because the number of supported languages is
4142 low. */
4143 if (std::find (matchers.begin (), matchers.end (), key)
4144 != matchers.end ())
4145 continue;
4146 matchers.push_back (std::move (key));
4147
4148 auto bounds
4149 = index.find_name_components_bounds (lookup_name_without_params,
4150 lang_e, per_objfile);
4151
4152 /* Now for each symbol name in range, check to see if we have a name
4153 match, and if so, call the MATCH_CALLBACK callback. */
4154
4155 for (; bounds.first != bounds.second; ++bounds.first)
4156 {
4157 const char *qualified
4158 = index.symbol_name_at (bounds.first->idx, per_objfile);
4159
4160 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4161 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4162 continue;
4163
4164 matches.push_back (bounds.first->idx);
4165 }
4166 }
4167
4168 std::sort (matches.begin (), matches.end ());
4169
4170 /* Finally call the callback, once per match. */
4171 ULONGEST prev = -1;
4172 for (offset_type idx : matches)
4173 {
4174 if (prev != idx)
4175 {
4176 if (!match_callback (idx))
4177 break;
4178 prev = idx;
4179 }
4180 }
4181
4182 /* Above we use a type wider than idx's for 'prev', since 0 and
4183 (offset_type)-1 are both possible values. */
4184 static_assert (sizeof (prev) > sizeof (offset_type), "");
4185 }
4186
4187 #if GDB_SELF_TEST
4188
4189 namespace selftests { namespace dw2_expand_symtabs_matching {
4190
4191 /* A mock .gdb_index/.debug_names-like name index table, enough to
4192 exercise dw2_expand_symtabs_matching_symbol, which works with the
4193 mapped_index_base interface. Builds an index from the symbol list
4194 passed as parameter to the constructor. */
4195 class mock_mapped_index : public mapped_index_base
4196 {
4197 public:
4198 mock_mapped_index (gdb::array_view<const char *> symbols)
4199 : m_symbol_table (symbols)
4200 {}
4201
4202 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4203
4204 /* Return the number of names in the symbol table. */
4205 size_t symbol_name_count () const override
4206 {
4207 return m_symbol_table.size ();
4208 }
4209
4210 /* Get the name of the symbol at IDX in the symbol table. */
4211 const char *symbol_name_at
4212 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
4213 {
4214 return m_symbol_table[idx];
4215 }
4216
4217 private:
4218 gdb::array_view<const char *> m_symbol_table;
4219 };
4220
4221 /* Convenience function that converts a NULL pointer to a "<null>"
4222 string, to pass to print routines. */
4223
4224 static const char *
4225 string_or_null (const char *str)
4226 {
4227 return str != NULL ? str : "<null>";
4228 }
4229
4230 /* Check if a lookup_name_info built from
4231 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4232 index. EXPECTED_LIST is the list of expected matches, in expected
4233 matching order. If no match expected, then an empty list is
4234 specified. Returns true on success. On failure prints a warning
4235 indicating the file:line that failed, and returns false. */
4236
4237 static bool
4238 check_match (const char *file, int line,
4239 mock_mapped_index &mock_index,
4240 const char *name, symbol_name_match_type match_type,
4241 bool completion_mode,
4242 std::initializer_list<const char *> expected_list,
4243 dwarf2_per_objfile *per_objfile)
4244 {
4245 lookup_name_info lookup_name (name, match_type, completion_mode);
4246
4247 bool matched = true;
4248
4249 auto mismatch = [&] (const char *expected_str,
4250 const char *got)
4251 {
4252 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4253 "expected=\"%s\", got=\"%s\"\n"),
4254 file, line,
4255 (match_type == symbol_name_match_type::FULL
4256 ? "FULL" : "WILD"),
4257 name, string_or_null (expected_str), string_or_null (got));
4258 matched = false;
4259 };
4260
4261 auto expected_it = expected_list.begin ();
4262 auto expected_end = expected_list.end ();
4263
4264 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4265 NULL, ALL_DOMAIN,
4266 [&] (offset_type idx)
4267 {
4268 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
4269 const char *expected_str
4270 = expected_it == expected_end ? NULL : *expected_it++;
4271
4272 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4273 mismatch (expected_str, matched_name);
4274 return true;
4275 }, per_objfile);
4276
4277 const char *expected_str
4278 = expected_it == expected_end ? NULL : *expected_it++;
4279 if (expected_str != NULL)
4280 mismatch (expected_str, NULL);
4281
4282 return matched;
4283 }
4284
4285 /* The symbols added to the mock mapped_index for testing (in
4286 canonical form). */
4287 static const char *test_symbols[] = {
4288 "function",
4289 "std::bar",
4290 "std::zfunction",
4291 "std::zfunction2",
4292 "w1::w2",
4293 "ns::foo<char*>",
4294 "ns::foo<int>",
4295 "ns::foo<long>",
4296 "ns2::tmpl<int>::foo2",
4297 "(anonymous namespace)::A::B::C",
4298
4299 /* These are used to check that the increment-last-char in the
4300 matching algorithm for completion doesn't match "t1_fund" when
4301 completing "t1_func". */
4302 "t1_func",
4303 "t1_func1",
4304 "t1_fund",
4305 "t1_fund1",
4306
4307 /* A UTF-8 name with multi-byte sequences to make sure that
4308 cp-name-parser understands this as a single identifier ("função"
4309 is "function" in PT). */
4310 u8"u8função",
4311
4312 /* \377 (0xff) is Latin1 'ÿ'. */
4313 "yfunc\377",
4314
4315 /* \377 (0xff) is Latin1 'ÿ'. */
4316 "\377",
4317 "\377\377123",
4318
4319 /* A name with all sorts of complications. Starts with "z" to make
4320 it easier for the completion tests below. */
4321 #define Z_SYM_NAME \
4322 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4323 "::tuple<(anonymous namespace)::ui*, " \
4324 "std::default_delete<(anonymous namespace)::ui>, void>"
4325
4326 Z_SYM_NAME
4327 };
4328
4329 /* Returns true if the mapped_index_base::find_name_component_bounds
4330 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4331 in completion mode. */
4332
4333 static bool
4334 check_find_bounds_finds (mapped_index_base &index,
4335 const char *search_name,
4336 gdb::array_view<const char *> expected_syms,
4337 dwarf2_per_objfile *per_objfile)
4338 {
4339 lookup_name_info lookup_name (search_name,
4340 symbol_name_match_type::FULL, true);
4341
4342 auto bounds = index.find_name_components_bounds (lookup_name,
4343 language_cplus,
4344 per_objfile);
4345
4346 size_t distance = std::distance (bounds.first, bounds.second);
4347 if (distance != expected_syms.size ())
4348 return false;
4349
4350 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4351 {
4352 auto nc_elem = bounds.first + exp_elem;
4353 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
4354 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4355 return false;
4356 }
4357
4358 return true;
4359 }
4360
4361 /* Test the lower-level mapped_index::find_name_component_bounds
4362 method. */
4363
4364 static void
4365 test_mapped_index_find_name_component_bounds ()
4366 {
4367 mock_mapped_index mock_index (test_symbols);
4368
4369 mock_index.build_name_components (NULL /* per_objfile */);
4370
4371 /* Test the lower-level mapped_index::find_name_component_bounds
4372 method in completion mode. */
4373 {
4374 static const char *expected_syms[] = {
4375 "t1_func",
4376 "t1_func1",
4377 };
4378
4379 SELF_CHECK (check_find_bounds_finds
4380 (mock_index, "t1_func", expected_syms,
4381 NULL /* per_objfile */));
4382 }
4383
4384 /* Check that the increment-last-char in the name matching algorithm
4385 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4386 {
4387 static const char *expected_syms1[] = {
4388 "\377",
4389 "\377\377123",
4390 };
4391 SELF_CHECK (check_find_bounds_finds
4392 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
4393
4394 static const char *expected_syms2[] = {
4395 "\377\377123",
4396 };
4397 SELF_CHECK (check_find_bounds_finds
4398 (mock_index, "\377\377", expected_syms2,
4399 NULL /* per_objfile */));
4400 }
4401 }
4402
4403 /* Test dw2_expand_symtabs_matching_symbol. */
4404
4405 static void
4406 test_dw2_expand_symtabs_matching_symbol ()
4407 {
4408 mock_mapped_index mock_index (test_symbols);
4409
4410 /* We let all tests run until the end even if some fails, for debug
4411 convenience. */
4412 bool any_mismatch = false;
4413
4414 /* Create the expected symbols list (an initializer_list). Needed
4415 because lists have commas, and we need to pass them to CHECK,
4416 which is a macro. */
4417 #define EXPECT(...) { __VA_ARGS__ }
4418
4419 /* Wrapper for check_match that passes down the current
4420 __FILE__/__LINE__. */
4421 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4422 any_mismatch |= !check_match (__FILE__, __LINE__, \
4423 mock_index, \
4424 NAME, MATCH_TYPE, COMPLETION_MODE, \
4425 EXPECTED_LIST, NULL)
4426
4427 /* Identity checks. */
4428 for (const char *sym : test_symbols)
4429 {
4430 /* Should be able to match all existing symbols. */
4431 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4432 EXPECT (sym));
4433
4434 /* Should be able to match all existing symbols with
4435 parameters. */
4436 std::string with_params = std::string (sym) + "(int)";
4437 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4438 EXPECT (sym));
4439
4440 /* Should be able to match all existing symbols with
4441 parameters and qualifiers. */
4442 with_params = std::string (sym) + " ( int ) const";
4443 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4444 EXPECT (sym));
4445
4446 /* This should really find sym, but cp-name-parser.y doesn't
4447 know about lvalue/rvalue qualifiers yet. */
4448 with_params = std::string (sym) + " ( int ) &&";
4449 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4450 {});
4451 }
4452
4453 /* Check that the name matching algorithm for completion doesn't get
4454 confused with Latin1 'ÿ' / 0xff. */
4455 {
4456 static const char str[] = "\377";
4457 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4458 EXPECT ("\377", "\377\377123"));
4459 }
4460
4461 /* Check that the increment-last-char in the matching algorithm for
4462 completion doesn't match "t1_fund" when completing "t1_func". */
4463 {
4464 static const char str[] = "t1_func";
4465 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4466 EXPECT ("t1_func", "t1_func1"));
4467 }
4468
4469 /* Check that completion mode works at each prefix of the expected
4470 symbol name. */
4471 {
4472 static const char str[] = "function(int)";
4473 size_t len = strlen (str);
4474 std::string lookup;
4475
4476 for (size_t i = 1; i < len; i++)
4477 {
4478 lookup.assign (str, i);
4479 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4480 EXPECT ("function"));
4481 }
4482 }
4483
4484 /* While "w" is a prefix of both components, the match function
4485 should still only be called once. */
4486 {
4487 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4488 EXPECT ("w1::w2"));
4489 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4490 EXPECT ("w1::w2"));
4491 }
4492
4493 /* Same, with a "complicated" symbol. */
4494 {
4495 static const char str[] = Z_SYM_NAME;
4496 size_t len = strlen (str);
4497 std::string lookup;
4498
4499 for (size_t i = 1; i < len; i++)
4500 {
4501 lookup.assign (str, i);
4502 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4503 EXPECT (Z_SYM_NAME));
4504 }
4505 }
4506
4507 /* In FULL mode, an incomplete symbol doesn't match. */
4508 {
4509 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4510 {});
4511 }
4512
4513 /* A complete symbol with parameters matches any overload, since the
4514 index has no overload info. */
4515 {
4516 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4517 EXPECT ("std::zfunction", "std::zfunction2"));
4518 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4519 EXPECT ("std::zfunction", "std::zfunction2"));
4520 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4521 EXPECT ("std::zfunction", "std::zfunction2"));
4522 }
4523
4524 /* Check that whitespace is ignored appropriately. A symbol with a
4525 template argument list. */
4526 {
4527 static const char expected[] = "ns::foo<int>";
4528 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4529 EXPECT (expected));
4530 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4531 EXPECT (expected));
4532 }
4533
4534 /* Check that whitespace is ignored appropriately. A symbol with a
4535 template argument list that includes a pointer. */
4536 {
4537 static const char expected[] = "ns::foo<char*>";
4538 /* Try both completion and non-completion modes. */
4539 static const bool completion_mode[2] = {false, true};
4540 for (size_t i = 0; i < 2; i++)
4541 {
4542 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4543 completion_mode[i], EXPECT (expected));
4544 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4545 completion_mode[i], EXPECT (expected));
4546
4547 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4548 completion_mode[i], EXPECT (expected));
4549 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4550 completion_mode[i], EXPECT (expected));
4551 }
4552 }
4553
4554 {
4555 /* Check method qualifiers are ignored. */
4556 static const char expected[] = "ns::foo<char*>";
4557 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4558 symbol_name_match_type::FULL, true, EXPECT (expected));
4559 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4560 symbol_name_match_type::FULL, true, EXPECT (expected));
4561 CHECK_MATCH ("foo < char * > ( int ) const",
4562 symbol_name_match_type::WILD, true, EXPECT (expected));
4563 CHECK_MATCH ("foo < char * > ( int ) &&",
4564 symbol_name_match_type::WILD, true, EXPECT (expected));
4565 }
4566
4567 /* Test lookup names that don't match anything. */
4568 {
4569 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4570 {});
4571
4572 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4573 {});
4574 }
4575
4576 /* Some wild matching tests, exercising "(anonymous namespace)",
4577 which should not be confused with a parameter list. */
4578 {
4579 static const char *syms[] = {
4580 "A::B::C",
4581 "B::C",
4582 "C",
4583 "A :: B :: C ( int )",
4584 "B :: C ( int )",
4585 "C ( int )",
4586 };
4587
4588 for (const char *s : syms)
4589 {
4590 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4591 EXPECT ("(anonymous namespace)::A::B::C"));
4592 }
4593 }
4594
4595 {
4596 static const char expected[] = "ns2::tmpl<int>::foo2";
4597 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4598 EXPECT (expected));
4599 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4600 EXPECT (expected));
4601 }
4602
4603 SELF_CHECK (!any_mismatch);
4604
4605 #undef EXPECT
4606 #undef CHECK_MATCH
4607 }
4608
4609 static void
4610 run_test ()
4611 {
4612 test_mapped_index_find_name_component_bounds ();
4613 test_dw2_expand_symtabs_matching_symbol ();
4614 }
4615
4616 }} // namespace selftests::dw2_expand_symtabs_matching
4617
4618 #endif /* GDB_SELF_TEST */
4619
4620 /* If FILE_MATCHER is NULL or if PER_CU has
4621 dwarf2_per_cu_quick_data::MARK set (see
4622 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4623 EXPANSION_NOTIFY on it. */
4624
4625 static void
4626 dw2_expand_symtabs_matching_one
4627 (dwarf2_per_cu_data *per_cu,
4628 dwarf2_per_objfile *per_objfile,
4629 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4630 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4631 {
4632 if (file_matcher == NULL || per_cu->v.quick->mark)
4633 {
4634 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4635
4636 compunit_symtab *symtab
4637 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4638 gdb_assert (symtab != nullptr);
4639
4640 if (expansion_notify != NULL && symtab_was_null)
4641 expansion_notify (symtab);
4642 }
4643 }
4644
4645 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4646 matched, to expand corresponding CUs that were marked. IDX is the
4647 index of the symbol name that matched. */
4648
4649 static void
4650 dw2_expand_marked_cus
4651 (dwarf2_per_objfile *per_objfile, offset_type idx,
4652 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4653 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4654 search_domain kind)
4655 {
4656 offset_type *vec, vec_len, vec_idx;
4657 bool global_seen = false;
4658 mapped_index &index = *per_objfile->per_bfd->index_table;
4659
4660 vec = (offset_type *) (index.constant_pool
4661 + MAYBE_SWAP (index.symbol_table[idx].vec));
4662 vec_len = MAYBE_SWAP (vec[0]);
4663 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4664 {
4665 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4666 /* This value is only valid for index versions >= 7. */
4667 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4668 gdb_index_symbol_kind symbol_kind =
4669 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4670 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4671 /* Only check the symbol attributes if they're present.
4672 Indices prior to version 7 don't record them,
4673 and indices >= 7 may elide them for certain symbols
4674 (gold does this). */
4675 int attrs_valid =
4676 (index.version >= 7
4677 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4678
4679 /* Work around gold/15646. */
4680 if (attrs_valid
4681 && !is_static
4682 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4683 {
4684 if (global_seen)
4685 continue;
4686
4687 global_seen = true;
4688 }
4689
4690 /* Only check the symbol's kind if it has one. */
4691 if (attrs_valid)
4692 {
4693 switch (kind)
4694 {
4695 case VARIABLES_DOMAIN:
4696 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4697 continue;
4698 break;
4699 case FUNCTIONS_DOMAIN:
4700 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4701 continue;
4702 break;
4703 case TYPES_DOMAIN:
4704 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4705 continue;
4706 break;
4707 case MODULES_DOMAIN:
4708 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4709 continue;
4710 break;
4711 default:
4712 break;
4713 }
4714 }
4715
4716 /* Don't crash on bad data. */
4717 if (cu_index >= (per_objfile->per_bfd->all_comp_units.size ()
4718 + per_objfile->per_bfd->all_type_units.size ()))
4719 {
4720 complaint (_(".gdb_index entry has bad CU index"
4721 " [in module %s]"), objfile_name (per_objfile->objfile));
4722 continue;
4723 }
4724
4725 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cutu (cu_index);
4726 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4727 expansion_notify);
4728 }
4729 }
4730
4731 /* If FILE_MATCHER is non-NULL, set all the
4732 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4733 that match FILE_MATCHER. */
4734
4735 static void
4736 dw_expand_symtabs_matching_file_matcher
4737 (dwarf2_per_objfile *per_objfile,
4738 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4739 {
4740 if (file_matcher == NULL)
4741 return;
4742
4743 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4744 htab_eq_pointer,
4745 NULL, xcalloc, xfree));
4746 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4747 htab_eq_pointer,
4748 NULL, xcalloc, xfree));
4749
4750 /* The rule is CUs specify all the files, including those used by
4751 any TU, so there's no need to scan TUs here. */
4752
4753 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4754 {
4755 QUIT;
4756
4757 per_cu->v.quick->mark = 0;
4758
4759 /* We only need to look at symtabs not already expanded. */
4760 if (per_objfile->symtab_set_p (per_cu))
4761 continue;
4762
4763 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
4764 if (file_data == NULL)
4765 continue;
4766
4767 if (htab_find (visited_not_found.get (), file_data) != NULL)
4768 continue;
4769 else if (htab_find (visited_found.get (), file_data) != NULL)
4770 {
4771 per_cu->v.quick->mark = 1;
4772 continue;
4773 }
4774
4775 for (int j = 0; j < file_data->num_file_names; ++j)
4776 {
4777 const char *this_real_name;
4778
4779 if (file_matcher (file_data->file_names[j], false))
4780 {
4781 per_cu->v.quick->mark = 1;
4782 break;
4783 }
4784
4785 /* Before we invoke realpath, which can get expensive when many
4786 files are involved, do a quick comparison of the basenames. */
4787 if (!basenames_may_differ
4788 && !file_matcher (lbasename (file_data->file_names[j]),
4789 true))
4790 continue;
4791
4792 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4793 if (file_matcher (this_real_name, false))
4794 {
4795 per_cu->v.quick->mark = 1;
4796 break;
4797 }
4798 }
4799
4800 void **slot = htab_find_slot (per_cu->v.quick->mark
4801 ? visited_found.get ()
4802 : visited_not_found.get (),
4803 file_data, INSERT);
4804 *slot = file_data;
4805 }
4806 }
4807
4808 static void
4809 dw2_expand_symtabs_matching
4810 (struct objfile *objfile,
4811 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4812 const lookup_name_info *lookup_name,
4813 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4814 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4815 enum search_domain kind)
4816 {
4817 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4818
4819 /* index_table is NULL if OBJF_READNOW. */
4820 if (!per_objfile->per_bfd->index_table)
4821 return;
4822
4823 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4824
4825 if (symbol_matcher == NULL && lookup_name == NULL)
4826 {
4827 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4828 {
4829 QUIT;
4830
4831 dw2_expand_symtabs_matching_one (per_cu, per_objfile,
4832 file_matcher, expansion_notify);
4833 }
4834 return;
4835 }
4836
4837 mapped_index &index = *per_objfile->per_bfd->index_table;
4838
4839 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4840 symbol_matcher,
4841 kind, [&] (offset_type idx)
4842 {
4843 dw2_expand_marked_cus (per_objfile, idx, file_matcher, expansion_notify,
4844 kind);
4845 return true;
4846 }, per_objfile);
4847 }
4848
4849 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4850 symtab. */
4851
4852 static struct compunit_symtab *
4853 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4854 CORE_ADDR pc)
4855 {
4856 int i;
4857
4858 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4859 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4860 return cust;
4861
4862 if (cust->includes == NULL)
4863 return NULL;
4864
4865 for (i = 0; cust->includes[i]; ++i)
4866 {
4867 struct compunit_symtab *s = cust->includes[i];
4868
4869 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4870 if (s != NULL)
4871 return s;
4872 }
4873
4874 return NULL;
4875 }
4876
4877 static struct compunit_symtab *
4878 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4879 struct bound_minimal_symbol msymbol,
4880 CORE_ADDR pc,
4881 struct obj_section *section,
4882 int warn_if_readin)
4883 {
4884 struct dwarf2_per_cu_data *data;
4885 struct compunit_symtab *result;
4886
4887 if (!objfile->partial_symtabs->psymtabs_addrmap)
4888 return NULL;
4889
4890 CORE_ADDR baseaddr = objfile->text_section_offset ();
4891 data = (struct dwarf2_per_cu_data *) addrmap_find
4892 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4893 if (!data)
4894 return NULL;
4895
4896 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4897 if (warn_if_readin && per_objfile->symtab_set_p (data))
4898 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4899 paddress (objfile->arch (), pc));
4900
4901 result = recursively_find_pc_sect_compunit_symtab
4902 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4903
4904 gdb_assert (result != NULL);
4905 return result;
4906 }
4907
4908 static void
4909 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4910 void *data, int need_fullname)
4911 {
4912 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4913
4914 if (!per_objfile->per_bfd->filenames_cache)
4915 {
4916 per_objfile->per_bfd->filenames_cache.emplace ();
4917
4918 htab_up visited (htab_create_alloc (10,
4919 htab_hash_pointer, htab_eq_pointer,
4920 NULL, xcalloc, xfree));
4921
4922 /* The rule is CUs specify all the files, including those used
4923 by any TU, so there's no need to scan TUs here. We can
4924 ignore file names coming from already-expanded CUs. */
4925
4926 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4927 {
4928 if (per_objfile->symtab_set_p (per_cu))
4929 {
4930 void **slot = htab_find_slot (visited.get (),
4931 per_cu->v.quick->file_names,
4932 INSERT);
4933
4934 *slot = per_cu->v.quick->file_names;
4935 }
4936 }
4937
4938 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
4939 {
4940 /* We only need to look at symtabs not already expanded. */
4941 if (per_objfile->symtab_set_p (per_cu))
4942 continue;
4943
4944 quick_file_names *file_data
4945 = dw2_get_file_names (per_cu, per_objfile);
4946 if (file_data == NULL)
4947 continue;
4948
4949 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4950 if (*slot)
4951 {
4952 /* Already visited. */
4953 continue;
4954 }
4955 *slot = file_data;
4956
4957 for (int j = 0; j < file_data->num_file_names; ++j)
4958 {
4959 const char *filename = file_data->file_names[j];
4960 per_objfile->per_bfd->filenames_cache->seen (filename);
4961 }
4962 }
4963 }
4964
4965 per_objfile->per_bfd->filenames_cache->traverse ([&] (const char *filename)
4966 {
4967 gdb::unique_xmalloc_ptr<char> this_real_name;
4968
4969 if (need_fullname)
4970 this_real_name = gdb_realpath (filename);
4971 (*fun) (filename, this_real_name.get (), data);
4972 });
4973 }
4974
4975 static int
4976 dw2_has_symbols (struct objfile *objfile)
4977 {
4978 return 1;
4979 }
4980
4981 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4982 {
4983 dw2_has_symbols,
4984 dw2_find_last_source_symtab,
4985 dw2_forget_cached_source_info,
4986 dw2_map_symtabs_matching_filename,
4987 dw2_lookup_symbol,
4988 NULL,
4989 dw2_print_stats,
4990 dw2_dump,
4991 dw2_expand_symtabs_for_function,
4992 dw2_expand_all_symtabs,
4993 dw2_expand_symtabs_with_fullname,
4994 dw2_map_matching_symbols,
4995 dw2_expand_symtabs_matching,
4996 dw2_find_pc_sect_compunit_symtab,
4997 NULL,
4998 dw2_map_symbol_filenames
4999 };
5000
5001 /* DWARF-5 debug_names reader. */
5002
5003 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5004 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5005
5006 /* A helper function that reads the .debug_names section in SECTION
5007 and fills in MAP. FILENAME is the name of the file containing the
5008 section; it is used for error reporting.
5009
5010 Returns true if all went well, false otherwise. */
5011
5012 static bool
5013 read_debug_names_from_section (struct objfile *objfile,
5014 const char *filename,
5015 struct dwarf2_section_info *section,
5016 mapped_debug_names &map)
5017 {
5018 if (section->empty ())
5019 return false;
5020
5021 /* Older elfutils strip versions could keep the section in the main
5022 executable while splitting it for the separate debug info file. */
5023 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5024 return false;
5025
5026 section->read (objfile);
5027
5028 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
5029
5030 const gdb_byte *addr = section->buffer;
5031
5032 bfd *const abfd = section->get_bfd_owner ();
5033
5034 unsigned int bytes_read;
5035 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5036 addr += bytes_read;
5037
5038 map.dwarf5_is_dwarf64 = bytes_read != 4;
5039 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5040 if (bytes_read + length != section->size)
5041 {
5042 /* There may be multiple per-CU indices. */
5043 warning (_("Section .debug_names in %s length %s does not match "
5044 "section length %s, ignoring .debug_names."),
5045 filename, plongest (bytes_read + length),
5046 pulongest (section->size));
5047 return false;
5048 }
5049
5050 /* The version number. */
5051 uint16_t version = read_2_bytes (abfd, addr);
5052 addr += 2;
5053 if (version != 5)
5054 {
5055 warning (_("Section .debug_names in %s has unsupported version %d, "
5056 "ignoring .debug_names."),
5057 filename, version);
5058 return false;
5059 }
5060
5061 /* Padding. */
5062 uint16_t padding = read_2_bytes (abfd, addr);
5063 addr += 2;
5064 if (padding != 0)
5065 {
5066 warning (_("Section .debug_names in %s has unsupported padding %d, "
5067 "ignoring .debug_names."),
5068 filename, padding);
5069 return false;
5070 }
5071
5072 /* comp_unit_count - The number of CUs in the CU list. */
5073 map.cu_count = read_4_bytes (abfd, addr);
5074 addr += 4;
5075
5076 /* local_type_unit_count - The number of TUs in the local TU
5077 list. */
5078 map.tu_count = read_4_bytes (abfd, addr);
5079 addr += 4;
5080
5081 /* foreign_type_unit_count - The number of TUs in the foreign TU
5082 list. */
5083 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5084 addr += 4;
5085 if (foreign_tu_count != 0)
5086 {
5087 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5088 "ignoring .debug_names."),
5089 filename, static_cast<unsigned long> (foreign_tu_count));
5090 return false;
5091 }
5092
5093 /* bucket_count - The number of hash buckets in the hash lookup
5094 table. */
5095 map.bucket_count = read_4_bytes (abfd, addr);
5096 addr += 4;
5097
5098 /* name_count - The number of unique names in the index. */
5099 map.name_count = read_4_bytes (abfd, addr);
5100 addr += 4;
5101
5102 /* abbrev_table_size - The size in bytes of the abbreviations
5103 table. */
5104 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5105 addr += 4;
5106
5107 /* augmentation_string_size - The size in bytes of the augmentation
5108 string. This value is rounded up to a multiple of 4. */
5109 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5110 addr += 4;
5111 map.augmentation_is_gdb = ((augmentation_string_size
5112 == sizeof (dwarf5_augmentation))
5113 && memcmp (addr, dwarf5_augmentation,
5114 sizeof (dwarf5_augmentation)) == 0);
5115 augmentation_string_size += (-augmentation_string_size) & 3;
5116 addr += augmentation_string_size;
5117
5118 /* List of CUs */
5119 map.cu_table_reordered = addr;
5120 addr += map.cu_count * map.offset_size;
5121
5122 /* List of Local TUs */
5123 map.tu_table_reordered = addr;
5124 addr += map.tu_count * map.offset_size;
5125
5126 /* Hash Lookup Table */
5127 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5128 addr += map.bucket_count * 4;
5129 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5130 addr += map.name_count * 4;
5131
5132 /* Name Table */
5133 map.name_table_string_offs_reordered = addr;
5134 addr += map.name_count * map.offset_size;
5135 map.name_table_entry_offs_reordered = addr;
5136 addr += map.name_count * map.offset_size;
5137
5138 const gdb_byte *abbrev_table_start = addr;
5139 for (;;)
5140 {
5141 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5142 addr += bytes_read;
5143 if (index_num == 0)
5144 break;
5145
5146 const auto insertpair
5147 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5148 if (!insertpair.second)
5149 {
5150 warning (_("Section .debug_names in %s has duplicate index %s, "
5151 "ignoring .debug_names."),
5152 filename, pulongest (index_num));
5153 return false;
5154 }
5155 mapped_debug_names::index_val &indexval = insertpair.first->second;
5156 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5157 addr += bytes_read;
5158
5159 for (;;)
5160 {
5161 mapped_debug_names::index_val::attr attr;
5162 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5163 addr += bytes_read;
5164 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5165 addr += bytes_read;
5166 if (attr.form == DW_FORM_implicit_const)
5167 {
5168 attr.implicit_const = read_signed_leb128 (abfd, addr,
5169 &bytes_read);
5170 addr += bytes_read;
5171 }
5172 if (attr.dw_idx == 0 && attr.form == 0)
5173 break;
5174 indexval.attr_vec.push_back (std::move (attr));
5175 }
5176 }
5177 if (addr != abbrev_table_start + abbrev_table_size)
5178 {
5179 warning (_("Section .debug_names in %s has abbreviation_table "
5180 "of size %s vs. written as %u, ignoring .debug_names."),
5181 filename, plongest (addr - abbrev_table_start),
5182 abbrev_table_size);
5183 return false;
5184 }
5185 map.entry_pool = addr;
5186
5187 return true;
5188 }
5189
5190 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5191 list. */
5192
5193 static void
5194 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
5195 const mapped_debug_names &map,
5196 dwarf2_section_info &section,
5197 bool is_dwz)
5198 {
5199 if (!map.augmentation_is_gdb)
5200 {
5201 for (uint32_t i = 0; i < map.cu_count; ++i)
5202 {
5203 sect_offset sect_off
5204 = (sect_offset) (extract_unsigned_integer
5205 (map.cu_table_reordered + i * map.offset_size,
5206 map.offset_size,
5207 map.dwarf5_byte_order));
5208 /* We don't know the length of the CU, because the CU list in a
5209 .debug_names index can be incomplete, so we can't use the start of
5210 the next CU as end of this CU. We create the CUs here with length 0,
5211 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5212 dwarf2_per_cu_data *per_cu
5213 = create_cu_from_index_list (per_bfd, &section, is_dwz, sect_off, 0);
5214 per_bfd->all_comp_units.push_back (per_cu);
5215 }
5216 }
5217
5218 sect_offset sect_off_prev;
5219 for (uint32_t i = 0; i <= map.cu_count; ++i)
5220 {
5221 sect_offset sect_off_next;
5222 if (i < map.cu_count)
5223 {
5224 sect_off_next
5225 = (sect_offset) (extract_unsigned_integer
5226 (map.cu_table_reordered + i * map.offset_size,
5227 map.offset_size,
5228 map.dwarf5_byte_order));
5229 }
5230 else
5231 sect_off_next = (sect_offset) section.size;
5232 if (i >= 1)
5233 {
5234 const ULONGEST length = sect_off_next - sect_off_prev;
5235 dwarf2_per_cu_data *per_cu
5236 = create_cu_from_index_list (per_bfd, &section, is_dwz,
5237 sect_off_prev, length);
5238 per_bfd->all_comp_units.push_back (per_cu);
5239 }
5240 sect_off_prev = sect_off_next;
5241 }
5242 }
5243
5244 /* Read the CU list from the mapped index, and use it to create all
5245 the CU objects for this dwarf2_per_objfile. */
5246
5247 static void
5248 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
5249 const mapped_debug_names &map,
5250 const mapped_debug_names &dwz_map)
5251 {
5252 gdb_assert (per_bfd->all_comp_units.empty ());
5253 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5254
5255 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
5256 false /* is_dwz */);
5257
5258 if (dwz_map.cu_count == 0)
5259 return;
5260
5261 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5262 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
5263 true /* is_dwz */);
5264 }
5265
5266 /* Read .debug_names. If everything went ok, initialize the "quick"
5267 elements of all the CUs and return true. Otherwise, return false. */
5268
5269 static bool
5270 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
5271 {
5272 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
5273 mapped_debug_names dwz_map;
5274 struct objfile *objfile = per_objfile->objfile;
5275 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5276
5277 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5278 &per_objfile->per_bfd->debug_names, *map))
5279 return false;
5280
5281 /* Don't use the index if it's empty. */
5282 if (map->name_count == 0)
5283 return false;
5284
5285 /* If there is a .dwz file, read it so we can get its CU list as
5286 well. */
5287 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
5288 if (dwz != NULL)
5289 {
5290 if (!read_debug_names_from_section (objfile,
5291 bfd_get_filename (dwz->dwz_bfd.get ()),
5292 &dwz->debug_names, dwz_map))
5293 {
5294 warning (_("could not read '.debug_names' section from %s; skipping"),
5295 bfd_get_filename (dwz->dwz_bfd.get ()));
5296 return false;
5297 }
5298 }
5299
5300 create_cus_from_debug_names (per_bfd, *map, dwz_map);
5301
5302 if (map->tu_count != 0)
5303 {
5304 /* We can only handle a single .debug_types when we have an
5305 index. */
5306 if (per_bfd->types.size () != 1)
5307 return false;
5308
5309 dwarf2_section_info *section = &per_bfd->types[0];
5310
5311 create_signatured_type_table_from_debug_names
5312 (per_objfile, *map, section, &per_bfd->abbrev);
5313 }
5314
5315 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
5316
5317 per_bfd->debug_names_table = std::move (map);
5318 per_bfd->using_index = 1;
5319 per_bfd->quick_file_names_table =
5320 create_quick_file_names_table (per_objfile->per_bfd->all_comp_units.size ());
5321
5322 /* Save partial symtabs in the per_bfd object, for the benefit of subsequent
5323 objfiles using the same BFD. */
5324 gdb_assert (per_bfd->partial_symtabs == nullptr);
5325 per_bfd->partial_symtabs = objfile->partial_symtabs;
5326
5327 return true;
5328 }
5329
5330 /* Type used to manage iterating over all CUs looking for a symbol for
5331 .debug_names. */
5332
5333 class dw2_debug_names_iterator
5334 {
5335 public:
5336 dw2_debug_names_iterator (const mapped_debug_names &map,
5337 gdb::optional<block_enum> block_index,
5338 domain_enum domain,
5339 const char *name, dwarf2_per_objfile *per_objfile)
5340 : m_map (map), m_block_index (block_index), m_domain (domain),
5341 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
5342 m_per_objfile (per_objfile)
5343 {}
5344
5345 dw2_debug_names_iterator (const mapped_debug_names &map,
5346 search_domain search, uint32_t namei, dwarf2_per_objfile *per_objfile)
5347 : m_map (map),
5348 m_search (search),
5349 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5350 m_per_objfile (per_objfile)
5351 {}
5352
5353 dw2_debug_names_iterator (const mapped_debug_names &map,
5354 block_enum block_index, domain_enum domain,
5355 uint32_t namei, dwarf2_per_objfile *per_objfile)
5356 : m_map (map), m_block_index (block_index), m_domain (domain),
5357 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
5358 m_per_objfile (per_objfile)
5359 {}
5360
5361 /* Return the next matching CU or NULL if there are no more. */
5362 dwarf2_per_cu_data *next ();
5363
5364 private:
5365 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5366 const char *name,
5367 dwarf2_per_objfile *per_objfile);
5368 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5369 uint32_t namei,
5370 dwarf2_per_objfile *per_objfile);
5371
5372 /* The internalized form of .debug_names. */
5373 const mapped_debug_names &m_map;
5374
5375 /* If set, only look for symbols that match that block. Valid values are
5376 GLOBAL_BLOCK and STATIC_BLOCK. */
5377 const gdb::optional<block_enum> m_block_index;
5378
5379 /* The kind of symbol we're looking for. */
5380 const domain_enum m_domain = UNDEF_DOMAIN;
5381 const search_domain m_search = ALL_DOMAIN;
5382
5383 /* The list of CUs from the index entry of the symbol, or NULL if
5384 not found. */
5385 const gdb_byte *m_addr;
5386
5387 dwarf2_per_objfile *m_per_objfile;
5388 };
5389
5390 const char *
5391 mapped_debug_names::namei_to_name
5392 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
5393 {
5394 const ULONGEST namei_string_offs
5395 = extract_unsigned_integer ((name_table_string_offs_reordered
5396 + namei * offset_size),
5397 offset_size,
5398 dwarf5_byte_order);
5399 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
5400 }
5401
5402 /* Find a slot in .debug_names for the object named NAME. If NAME is
5403 found, return pointer to its pool data. If NAME cannot be found,
5404 return NULL. */
5405
5406 const gdb_byte *
5407 dw2_debug_names_iterator::find_vec_in_debug_names
5408 (const mapped_debug_names &map, const char *name,
5409 dwarf2_per_objfile *per_objfile)
5410 {
5411 int (*cmp) (const char *, const char *);
5412
5413 gdb::unique_xmalloc_ptr<char> without_params;
5414 if (current_language->la_language == language_cplus
5415 || current_language->la_language == language_fortran
5416 || current_language->la_language == language_d)
5417 {
5418 /* NAME is already canonical. Drop any qualifiers as
5419 .debug_names does not contain any. */
5420
5421 if (strchr (name, '(') != NULL)
5422 {
5423 without_params = cp_remove_params (name);
5424 if (without_params != NULL)
5425 name = without_params.get ();
5426 }
5427 }
5428
5429 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5430
5431 const uint32_t full_hash = dwarf5_djb_hash (name);
5432 uint32_t namei
5433 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5434 (map.bucket_table_reordered
5435 + (full_hash % map.bucket_count)), 4,
5436 map.dwarf5_byte_order);
5437 if (namei == 0)
5438 return NULL;
5439 --namei;
5440 if (namei >= map.name_count)
5441 {
5442 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5443 "[in module %s]"),
5444 namei, map.name_count,
5445 objfile_name (per_objfile->objfile));
5446 return NULL;
5447 }
5448
5449 for (;;)
5450 {
5451 const uint32_t namei_full_hash
5452 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5453 (map.hash_table_reordered + namei), 4,
5454 map.dwarf5_byte_order);
5455 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5456 return NULL;
5457
5458 if (full_hash == namei_full_hash)
5459 {
5460 const char *const namei_string = map.namei_to_name (namei, per_objfile);
5461
5462 #if 0 /* An expensive sanity check. */
5463 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5464 {
5465 complaint (_("Wrong .debug_names hash for string at index %u "
5466 "[in module %s]"),
5467 namei, objfile_name (dwarf2_per_objfile->objfile));
5468 return NULL;
5469 }
5470 #endif
5471
5472 if (cmp (namei_string, name) == 0)
5473 {
5474 const ULONGEST namei_entry_offs
5475 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5476 + namei * map.offset_size),
5477 map.offset_size, map.dwarf5_byte_order);
5478 return map.entry_pool + namei_entry_offs;
5479 }
5480 }
5481
5482 ++namei;
5483 if (namei >= map.name_count)
5484 return NULL;
5485 }
5486 }
5487
5488 const gdb_byte *
5489 dw2_debug_names_iterator::find_vec_in_debug_names
5490 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
5491 {
5492 if (namei >= map.name_count)
5493 {
5494 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5495 "[in module %s]"),
5496 namei, map.name_count,
5497 objfile_name (per_objfile->objfile));
5498 return NULL;
5499 }
5500
5501 const ULONGEST namei_entry_offs
5502 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5503 + namei * map.offset_size),
5504 map.offset_size, map.dwarf5_byte_order);
5505 return map.entry_pool + namei_entry_offs;
5506 }
5507
5508 /* See dw2_debug_names_iterator. */
5509
5510 dwarf2_per_cu_data *
5511 dw2_debug_names_iterator::next ()
5512 {
5513 if (m_addr == NULL)
5514 return NULL;
5515
5516 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5517 struct objfile *objfile = m_per_objfile->objfile;
5518 bfd *const abfd = objfile->obfd;
5519
5520 again:
5521
5522 unsigned int bytes_read;
5523 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5524 m_addr += bytes_read;
5525 if (abbrev == 0)
5526 return NULL;
5527
5528 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5529 if (indexval_it == m_map.abbrev_map.cend ())
5530 {
5531 complaint (_("Wrong .debug_names undefined abbrev code %s "
5532 "[in module %s]"),
5533 pulongest (abbrev), objfile_name (objfile));
5534 return NULL;
5535 }
5536 const mapped_debug_names::index_val &indexval = indexval_it->second;
5537 enum class symbol_linkage {
5538 unknown,
5539 static_,
5540 extern_,
5541 } symbol_linkage_ = symbol_linkage::unknown;
5542 dwarf2_per_cu_data *per_cu = NULL;
5543 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5544 {
5545 ULONGEST ull;
5546 switch (attr.form)
5547 {
5548 case DW_FORM_implicit_const:
5549 ull = attr.implicit_const;
5550 break;
5551 case DW_FORM_flag_present:
5552 ull = 1;
5553 break;
5554 case DW_FORM_udata:
5555 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5556 m_addr += bytes_read;
5557 break;
5558 case DW_FORM_ref4:
5559 ull = read_4_bytes (abfd, m_addr);
5560 m_addr += 4;
5561 break;
5562 case DW_FORM_ref8:
5563 ull = read_8_bytes (abfd, m_addr);
5564 m_addr += 8;
5565 break;
5566 case DW_FORM_ref_sig8:
5567 ull = read_8_bytes (abfd, m_addr);
5568 m_addr += 8;
5569 break;
5570 default:
5571 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5572 dwarf_form_name (attr.form),
5573 objfile_name (objfile));
5574 return NULL;
5575 }
5576 switch (attr.dw_idx)
5577 {
5578 case DW_IDX_compile_unit:
5579 /* Don't crash on bad data. */
5580 if (ull >= m_per_objfile->per_bfd->all_comp_units.size ())
5581 {
5582 complaint (_(".debug_names entry has bad CU index %s"
5583 " [in module %s]"),
5584 pulongest (ull),
5585 objfile_name (objfile));
5586 continue;
5587 }
5588 per_cu = per_bfd->get_cutu (ull);
5589 break;
5590 case DW_IDX_type_unit:
5591 /* Don't crash on bad data. */
5592 if (ull >= per_bfd->all_type_units.size ())
5593 {
5594 complaint (_(".debug_names entry has bad TU index %s"
5595 " [in module %s]"),
5596 pulongest (ull),
5597 objfile_name (objfile));
5598 continue;
5599 }
5600 per_cu = &per_bfd->get_tu (ull)->per_cu;
5601 break;
5602 case DW_IDX_die_offset:
5603 /* In a per-CU index (as opposed to a per-module index), index
5604 entries without CU attribute implicitly refer to the single CU. */
5605 if (per_cu == NULL)
5606 per_cu = per_bfd->get_cu (0);
5607 break;
5608 case DW_IDX_GNU_internal:
5609 if (!m_map.augmentation_is_gdb)
5610 break;
5611 symbol_linkage_ = symbol_linkage::static_;
5612 break;
5613 case DW_IDX_GNU_external:
5614 if (!m_map.augmentation_is_gdb)
5615 break;
5616 symbol_linkage_ = symbol_linkage::extern_;
5617 break;
5618 }
5619 }
5620
5621 /* Skip if already read in. */
5622 if (m_per_objfile->symtab_set_p (per_cu))
5623 goto again;
5624
5625 /* Check static vs global. */
5626 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5627 {
5628 const bool want_static = *m_block_index == STATIC_BLOCK;
5629 const bool symbol_is_static =
5630 symbol_linkage_ == symbol_linkage::static_;
5631 if (want_static != symbol_is_static)
5632 goto again;
5633 }
5634
5635 /* Match dw2_symtab_iter_next, symbol_kind
5636 and debug_names::psymbol_tag. */
5637 switch (m_domain)
5638 {
5639 case VAR_DOMAIN:
5640 switch (indexval.dwarf_tag)
5641 {
5642 case DW_TAG_variable:
5643 case DW_TAG_subprogram:
5644 /* Some types are also in VAR_DOMAIN. */
5645 case DW_TAG_typedef:
5646 case DW_TAG_structure_type:
5647 break;
5648 default:
5649 goto again;
5650 }
5651 break;
5652 case STRUCT_DOMAIN:
5653 switch (indexval.dwarf_tag)
5654 {
5655 case DW_TAG_typedef:
5656 case DW_TAG_structure_type:
5657 break;
5658 default:
5659 goto again;
5660 }
5661 break;
5662 case LABEL_DOMAIN:
5663 switch (indexval.dwarf_tag)
5664 {
5665 case 0:
5666 case DW_TAG_variable:
5667 break;
5668 default:
5669 goto again;
5670 }
5671 break;
5672 case MODULE_DOMAIN:
5673 switch (indexval.dwarf_tag)
5674 {
5675 case DW_TAG_module:
5676 break;
5677 default:
5678 goto again;
5679 }
5680 break;
5681 default:
5682 break;
5683 }
5684
5685 /* Match dw2_expand_symtabs_matching, symbol_kind and
5686 debug_names::psymbol_tag. */
5687 switch (m_search)
5688 {
5689 case VARIABLES_DOMAIN:
5690 switch (indexval.dwarf_tag)
5691 {
5692 case DW_TAG_variable:
5693 break;
5694 default:
5695 goto again;
5696 }
5697 break;
5698 case FUNCTIONS_DOMAIN:
5699 switch (indexval.dwarf_tag)
5700 {
5701 case DW_TAG_subprogram:
5702 break;
5703 default:
5704 goto again;
5705 }
5706 break;
5707 case TYPES_DOMAIN:
5708 switch (indexval.dwarf_tag)
5709 {
5710 case DW_TAG_typedef:
5711 case DW_TAG_structure_type:
5712 break;
5713 default:
5714 goto again;
5715 }
5716 break;
5717 case MODULES_DOMAIN:
5718 switch (indexval.dwarf_tag)
5719 {
5720 case DW_TAG_module:
5721 break;
5722 default:
5723 goto again;
5724 }
5725 default:
5726 break;
5727 }
5728
5729 return per_cu;
5730 }
5731
5732 static struct compunit_symtab *
5733 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5734 const char *name, domain_enum domain)
5735 {
5736 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5737
5738 const auto &mapp = per_objfile->per_bfd->debug_names_table;
5739 if (!mapp)
5740 {
5741 /* index is NULL if OBJF_READNOW. */
5742 return NULL;
5743 }
5744 const auto &map = *mapp;
5745
5746 dw2_debug_names_iterator iter (map, block_index, domain, name, per_objfile);
5747
5748 struct compunit_symtab *stab_best = NULL;
5749 struct dwarf2_per_cu_data *per_cu;
5750 while ((per_cu = iter.next ()) != NULL)
5751 {
5752 struct symbol *sym, *with_opaque = NULL;
5753 compunit_symtab *stab
5754 = dw2_instantiate_symtab (per_cu, per_objfile, false);
5755 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5756 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5757
5758 sym = block_find_symbol (block, name, domain,
5759 block_find_non_opaque_type_preferred,
5760 &with_opaque);
5761
5762 /* Some caution must be observed with overloaded functions and
5763 methods, since the index will not contain any overload
5764 information (but NAME might contain it). */
5765
5766 if (sym != NULL
5767 && strcmp_iw (sym->search_name (), name) == 0)
5768 return stab;
5769 if (with_opaque != NULL
5770 && strcmp_iw (with_opaque->search_name (), name) == 0)
5771 stab_best = stab;
5772
5773 /* Keep looking through other CUs. */
5774 }
5775
5776 return stab_best;
5777 }
5778
5779 /* This dumps minimal information about .debug_names. It is called
5780 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5781 uses this to verify that .debug_names has been loaded. */
5782
5783 static void
5784 dw2_debug_names_dump (struct objfile *objfile)
5785 {
5786 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5787
5788 gdb_assert (per_objfile->per_bfd->using_index);
5789 printf_filtered (".debug_names:");
5790 if (per_objfile->per_bfd->debug_names_table)
5791 printf_filtered (" exists\n");
5792 else
5793 printf_filtered (" faked for \"readnow\"\n");
5794 printf_filtered ("\n");
5795 }
5796
5797 static void
5798 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5799 const char *func_name)
5800 {
5801 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5802
5803 /* per_objfile->per_bfd->debug_names_table is NULL if OBJF_READNOW. */
5804 if (per_objfile->per_bfd->debug_names_table)
5805 {
5806 const mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5807
5808 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name,
5809 per_objfile);
5810
5811 struct dwarf2_per_cu_data *per_cu;
5812 while ((per_cu = iter.next ()) != NULL)
5813 dw2_instantiate_symtab (per_cu, per_objfile, false);
5814 }
5815 }
5816
5817 static void
5818 dw2_debug_names_map_matching_symbols
5819 (struct objfile *objfile,
5820 const lookup_name_info &name, domain_enum domain,
5821 int global,
5822 gdb::function_view<symbol_found_callback_ftype> callback,
5823 symbol_compare_ftype *ordered_compare)
5824 {
5825 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5826
5827 /* debug_names_table is NULL if OBJF_READNOW. */
5828 if (!per_objfile->per_bfd->debug_names_table)
5829 return;
5830
5831 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5832 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5833
5834 const char *match_name = name.ada ().lookup_name ().c_str ();
5835 auto matcher = [&] (const char *symname)
5836 {
5837 if (ordered_compare == nullptr)
5838 return true;
5839 return ordered_compare (symname, match_name) == 0;
5840 };
5841
5842 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5843 [&] (offset_type namei)
5844 {
5845 /* The name was matched, now expand corresponding CUs that were
5846 marked. */
5847 dw2_debug_names_iterator iter (map, block_kind, domain, namei,
5848 per_objfile);
5849
5850 struct dwarf2_per_cu_data *per_cu;
5851 while ((per_cu = iter.next ()) != NULL)
5852 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5853 nullptr);
5854 return true;
5855 }, per_objfile);
5856
5857 /* It's a shame we couldn't do this inside the
5858 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5859 that have already been expanded. Instead, this loop matches what
5860 the psymtab code does. */
5861 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5862 {
5863 compunit_symtab *symtab = per_objfile->get_symtab (per_cu);
5864 if (symtab != nullptr)
5865 {
5866 const struct block *block
5867 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5868 if (!iterate_over_symbols_terminated (block, name,
5869 domain, callback))
5870 break;
5871 }
5872 }
5873 }
5874
5875 static void
5876 dw2_debug_names_expand_symtabs_matching
5877 (struct objfile *objfile,
5878 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5879 const lookup_name_info *lookup_name,
5880 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5881 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5882 enum search_domain kind)
5883 {
5884 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5885
5886 /* debug_names_table is NULL if OBJF_READNOW. */
5887 if (!per_objfile->per_bfd->debug_names_table)
5888 return;
5889
5890 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5891
5892 if (symbol_matcher == NULL && lookup_name == NULL)
5893 {
5894 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
5895 {
5896 QUIT;
5897
5898 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5899 expansion_notify);
5900 }
5901 return;
5902 }
5903
5904 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5905
5906 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5907 symbol_matcher,
5908 kind, [&] (offset_type namei)
5909 {
5910 /* The name was matched, now expand corresponding CUs that were
5911 marked. */
5912 dw2_debug_names_iterator iter (map, kind, namei, per_objfile);
5913
5914 struct dwarf2_per_cu_data *per_cu;
5915 while ((per_cu = iter.next ()) != NULL)
5916 dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
5917 expansion_notify);
5918 return true;
5919 }, per_objfile);
5920 }
5921
5922 const struct quick_symbol_functions dwarf2_debug_names_functions =
5923 {
5924 dw2_has_symbols,
5925 dw2_find_last_source_symtab,
5926 dw2_forget_cached_source_info,
5927 dw2_map_symtabs_matching_filename,
5928 dw2_debug_names_lookup_symbol,
5929 NULL,
5930 dw2_print_stats,
5931 dw2_debug_names_dump,
5932 dw2_debug_names_expand_symtabs_for_function,
5933 dw2_expand_all_symtabs,
5934 dw2_expand_symtabs_with_fullname,
5935 dw2_debug_names_map_matching_symbols,
5936 dw2_debug_names_expand_symtabs_matching,
5937 dw2_find_pc_sect_compunit_symtab,
5938 NULL,
5939 dw2_map_symbol_filenames
5940 };
5941
5942 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5943 to either a dwarf2_per_bfd or dwz_file object. */
5944
5945 template <typename T>
5946 static gdb::array_view<const gdb_byte>
5947 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5948 {
5949 dwarf2_section_info *section = &section_owner->gdb_index;
5950
5951 if (section->empty ())
5952 return {};
5953
5954 /* Older elfutils strip versions could keep the section in the main
5955 executable while splitting it for the separate debug info file. */
5956 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5957 return {};
5958
5959 section->read (obj);
5960
5961 /* dwarf2_section_info::size is a bfd_size_type, while
5962 gdb::array_view works with size_t. On 32-bit hosts, with
5963 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5964 is 32-bit. So we need an explicit narrowing conversion here.
5965 This is fine, because it's impossible to allocate or mmap an
5966 array/buffer larger than what size_t can represent. */
5967 return gdb::make_array_view (section->buffer, section->size);
5968 }
5969
5970 /* Lookup the index cache for the contents of the index associated to
5971 DWARF2_OBJ. */
5972
5973 static gdb::array_view<const gdb_byte>
5974 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5975 {
5976 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5977 if (build_id == nullptr)
5978 return {};
5979
5980 return global_index_cache.lookup_gdb_index (build_id,
5981 &dwarf2_per_bfd->index_cache_res);
5982 }
5983
5984 /* Same as the above, but for DWZ. */
5985
5986 static gdb::array_view<const gdb_byte>
5987 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5988 {
5989 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5990 if (build_id == nullptr)
5991 return {};
5992
5993 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5994 }
5995
5996 /* See symfile.h. */
5997
5998 bool
5999 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6000 {
6001 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6002 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6003
6004 /* If we're about to read full symbols, don't bother with the
6005 indices. In this case we also don't care if some other debug
6006 format is making psymtabs, because they are all about to be
6007 expanded anyway. */
6008 if ((objfile->flags & OBJF_READNOW))
6009 {
6010 /* When using READNOW, the using_index flag (set below) indicates that
6011 PER_BFD was already initialized, when we loaded some other objfile. */
6012 if (per_bfd->using_index)
6013 {
6014 *index_kind = dw_index_kind::GDB_INDEX;
6015 per_objfile->resize_symtabs ();
6016 return true;
6017 }
6018
6019 per_bfd->using_index = 1;
6020 create_all_comp_units (per_objfile);
6021 create_all_type_units (per_objfile);
6022 per_bfd->quick_file_names_table
6023 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
6024 per_objfile->resize_symtabs ();
6025
6026 for (int i = 0; i < (per_bfd->all_comp_units.size ()
6027 + per_bfd->all_type_units.size ()); ++i)
6028 {
6029 dwarf2_per_cu_data *per_cu = per_bfd->get_cutu (i);
6030
6031 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
6032 struct dwarf2_per_cu_quick_data);
6033 }
6034
6035 /* Return 1 so that gdb sees the "quick" functions. However,
6036 these functions will be no-ops because we will have expanded
6037 all symtabs. */
6038 *index_kind = dw_index_kind::GDB_INDEX;
6039 return true;
6040 }
6041
6042 /* Was a debug names index already read when we processed an objfile sharing
6043 PER_BFD? */
6044 if (per_bfd->debug_names_table != nullptr)
6045 {
6046 *index_kind = dw_index_kind::DEBUG_NAMES;
6047 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
6048 per_objfile->resize_symtabs ();
6049 return true;
6050 }
6051
6052 /* Was a GDB index already read when we processed an objfile sharing
6053 PER_BFD? */
6054 if (per_bfd->index_table != nullptr)
6055 {
6056 *index_kind = dw_index_kind::GDB_INDEX;
6057 per_objfile->objfile->partial_symtabs = per_bfd->partial_symtabs;
6058 per_objfile->resize_symtabs ();
6059 return true;
6060 }
6061
6062 /* There might already be partial symtabs built for this BFD. This happens
6063 when loading the same binary twice with the index-cache enabled. If so,
6064 don't try to read an index. The objfile / per_objfile initialization will
6065 be completed in dwarf2_build_psymtabs, in the standard partial symtabs
6066 code path. */
6067 if (per_bfd->partial_symtabs != nullptr)
6068 return false;
6069
6070 if (dwarf2_read_debug_names (per_objfile))
6071 {
6072 *index_kind = dw_index_kind::DEBUG_NAMES;
6073 per_objfile->resize_symtabs ();
6074 return true;
6075 }
6076
6077 if (dwarf2_read_gdb_index (per_objfile,
6078 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
6079 get_gdb_index_contents_from_section<dwz_file>))
6080 {
6081 *index_kind = dw_index_kind::GDB_INDEX;
6082 per_objfile->resize_symtabs ();
6083 return true;
6084 }
6085
6086 /* ... otherwise, try to find the index in the index cache. */
6087 if (dwarf2_read_gdb_index (per_objfile,
6088 get_gdb_index_contents_from_cache,
6089 get_gdb_index_contents_from_cache_dwz))
6090 {
6091 global_index_cache.hit ();
6092 *index_kind = dw_index_kind::GDB_INDEX;
6093 per_objfile->resize_symtabs ();
6094 return true;
6095 }
6096
6097 global_index_cache.miss ();
6098 return false;
6099 }
6100
6101 \f
6102
6103 /* Build a partial symbol table. */
6104
6105 void
6106 dwarf2_build_psymtabs (struct objfile *objfile)
6107 {
6108 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
6109 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6110
6111 if (per_bfd->partial_symtabs != nullptr)
6112 {
6113 /* Partial symbols were already read, so now we can simply
6114 attach them. */
6115 objfile->partial_symtabs = per_bfd->partial_symtabs;
6116 per_objfile->resize_symtabs ();
6117 return;
6118 }
6119
6120 init_psymbol_list (objfile, 1024);
6121
6122 try
6123 {
6124 /* This isn't really ideal: all the data we allocate on the
6125 objfile's obstack is still uselessly kept around. However,
6126 freeing it seems unsafe. */
6127 psymtab_discarder psymtabs (objfile);
6128 dwarf2_build_psymtabs_hard (per_objfile);
6129 psymtabs.keep ();
6130
6131 per_objfile->resize_symtabs ();
6132
6133 /* (maybe) store an index in the cache. */
6134 global_index_cache.store (per_objfile);
6135 }
6136 catch (const gdb_exception_error &except)
6137 {
6138 exception_print (gdb_stderr, except);
6139 }
6140
6141 /* Finish by setting the local reference to partial symtabs, so that
6142 we don't try to read them again if reading another objfile with the same
6143 BFD. If we can't in fact share, this won't make a difference anyway as
6144 the dwarf2_per_bfd object won't be shared. */
6145 per_bfd->partial_symtabs = objfile->partial_symtabs;
6146 }
6147
6148 /* Find the base address of the compilation unit for range lists and
6149 location lists. It will normally be specified by DW_AT_low_pc.
6150 In DWARF-3 draft 4, the base address could be overridden by
6151 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6152 compilation units with discontinuous ranges. */
6153
6154 static void
6155 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6156 {
6157 struct attribute *attr;
6158
6159 cu->base_address.reset ();
6160
6161 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6162 if (attr != nullptr)
6163 cu->base_address = attr->as_address ();
6164 else
6165 {
6166 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6167 if (attr != nullptr)
6168 cu->base_address = attr->as_address ();
6169 }
6170 }
6171
6172 /* Helper function that returns the proper abbrev section for
6173 THIS_CU. */
6174
6175 static struct dwarf2_section_info *
6176 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6177 {
6178 struct dwarf2_section_info *abbrev;
6179 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
6180
6181 if (this_cu->is_dwz)
6182 abbrev = &dwarf2_get_dwz_file (per_bfd)->abbrev;
6183 else
6184 abbrev = &per_bfd->abbrev;
6185
6186 return abbrev;
6187 }
6188
6189 /* Fetch the abbreviation table offset from a comp or type unit header. */
6190
6191 static sect_offset
6192 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
6193 struct dwarf2_section_info *section,
6194 sect_offset sect_off)
6195 {
6196 bfd *abfd = section->get_bfd_owner ();
6197 const gdb_byte *info_ptr;
6198 unsigned int initial_length_size, offset_size;
6199 uint16_t version;
6200
6201 section->read (per_objfile->objfile);
6202 info_ptr = section->buffer + to_underlying (sect_off);
6203 read_initial_length (abfd, info_ptr, &initial_length_size);
6204 offset_size = initial_length_size == 4 ? 4 : 8;
6205 info_ptr += initial_length_size;
6206
6207 version = read_2_bytes (abfd, info_ptr);
6208 info_ptr += 2;
6209 if (version >= 5)
6210 {
6211 /* Skip unit type and address size. */
6212 info_ptr += 2;
6213 }
6214
6215 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
6216 }
6217
6218 /* A partial symtab that is used only for include files. */
6219 struct dwarf2_include_psymtab : public partial_symtab
6220 {
6221 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
6222 : partial_symtab (filename, objfile)
6223 {
6224 }
6225
6226 void read_symtab (struct objfile *objfile) override
6227 {
6228 /* It's an include file, no symbols to read for it.
6229 Everything is in the includer symtab. */
6230
6231 /* The expansion of a dwarf2_include_psymtab is just a trigger for
6232 expansion of the includer psymtab. We use the dependencies[0] field to
6233 model the includer. But if we go the regular route of calling
6234 expand_psymtab here, and having expand_psymtab call expand_dependencies
6235 to expand the includer, we'll only use expand_psymtab on the includer
6236 (making it a non-toplevel psymtab), while if we expand the includer via
6237 another path, we'll use read_symtab (making it a toplevel psymtab).
6238 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6239 psymtab, and trigger read_symtab on the includer here directly. */
6240 includer ()->read_symtab (objfile);
6241 }
6242
6243 void expand_psymtab (struct objfile *objfile) override
6244 {
6245 /* This is not called by read_symtab, and should not be called by any
6246 expand_dependencies. */
6247 gdb_assert (false);
6248 }
6249
6250 bool readin_p (struct objfile *objfile) const override
6251 {
6252 return includer ()->readin_p (objfile);
6253 }
6254
6255 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
6256 {
6257 return nullptr;
6258 }
6259
6260 private:
6261 partial_symtab *includer () const
6262 {
6263 /* An include psymtab has exactly one dependency: the psymtab that
6264 includes it. */
6265 gdb_assert (this->number_of_dependencies == 1);
6266 return this->dependencies[0];
6267 }
6268 };
6269
6270 /* Allocate a new partial symtab for file named NAME and mark this new
6271 partial symtab as being an include of PST. */
6272
6273 static void
6274 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6275 struct objfile *objfile)
6276 {
6277 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6278
6279 if (!IS_ABSOLUTE_PATH (subpst->filename))
6280 subpst->dirname = pst->dirname;
6281
6282 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6283 subpst->dependencies[0] = pst;
6284 subpst->number_of_dependencies = 1;
6285 }
6286
6287 /* Read the Line Number Program data and extract the list of files
6288 included by the source file represented by PST. Build an include
6289 partial symtab for each of these included files. */
6290
6291 static void
6292 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6293 struct die_info *die,
6294 dwarf2_psymtab *pst)
6295 {
6296 line_header_up lh;
6297 struct attribute *attr;
6298
6299 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6300 if (attr != nullptr && attr->form_is_unsigned ())
6301 lh = dwarf_decode_line_header ((sect_offset) attr->as_unsigned (), cu);
6302 if (lh == NULL)
6303 return; /* No linetable, so no includes. */
6304
6305 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6306 that we pass in the raw text_low here; that is ok because we're
6307 only decoding the line table to make include partial symtabs, and
6308 so the addresses aren't really used. */
6309 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6310 pst->raw_text_low (), 1);
6311 }
6312
6313 static hashval_t
6314 hash_signatured_type (const void *item)
6315 {
6316 const struct signatured_type *sig_type
6317 = (const struct signatured_type *) item;
6318
6319 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6320 return sig_type->signature;
6321 }
6322
6323 static int
6324 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6325 {
6326 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6327 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6328
6329 return lhs->signature == rhs->signature;
6330 }
6331
6332 /* Allocate a hash table for signatured types. */
6333
6334 static htab_up
6335 allocate_signatured_type_table ()
6336 {
6337 return htab_up (htab_create_alloc (41,
6338 hash_signatured_type,
6339 eq_signatured_type,
6340 NULL, xcalloc, xfree));
6341 }
6342
6343 /* A helper function to add a signatured type CU to a table. */
6344
6345 static int
6346 add_signatured_type_cu_to_table (void **slot, void *datum)
6347 {
6348 struct signatured_type *sigt = (struct signatured_type *) *slot;
6349 std::vector<signatured_type *> *all_type_units
6350 = (std::vector<signatured_type *> *) datum;
6351
6352 all_type_units->push_back (sigt);
6353
6354 return 1;
6355 }
6356
6357 /* A helper for create_debug_types_hash_table. Read types from SECTION
6358 and fill them into TYPES_HTAB. It will process only type units,
6359 therefore DW_UT_type. */
6360
6361 static void
6362 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
6363 struct dwo_file *dwo_file,
6364 dwarf2_section_info *section, htab_up &types_htab,
6365 rcuh_kind section_kind)
6366 {
6367 struct objfile *objfile = per_objfile->objfile;
6368 struct dwarf2_section_info *abbrev_section;
6369 bfd *abfd;
6370 const gdb_byte *info_ptr, *end_ptr;
6371
6372 abbrev_section = (dwo_file != NULL
6373 ? &dwo_file->sections.abbrev
6374 : &per_objfile->per_bfd->abbrev);
6375
6376 if (dwarf_read_debug)
6377 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6378 section->get_name (),
6379 abbrev_section->get_file_name ());
6380
6381 section->read (objfile);
6382 info_ptr = section->buffer;
6383
6384 if (info_ptr == NULL)
6385 return;
6386
6387 /* We can't set abfd until now because the section may be empty or
6388 not present, in which case the bfd is unknown. */
6389 abfd = section->get_bfd_owner ();
6390
6391 /* We don't use cutu_reader here because we don't need to read
6392 any dies: the signature is in the header. */
6393
6394 end_ptr = info_ptr + section->size;
6395 while (info_ptr < end_ptr)
6396 {
6397 struct signatured_type *sig_type;
6398 struct dwo_unit *dwo_tu;
6399 void **slot;
6400 const gdb_byte *ptr = info_ptr;
6401 struct comp_unit_head header;
6402 unsigned int length;
6403
6404 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6405
6406 /* Initialize it due to a false compiler warning. */
6407 header.signature = -1;
6408 header.type_cu_offset_in_tu = (cu_offset) -1;
6409
6410 /* We need to read the type's signature in order to build the hash
6411 table, but we don't need anything else just yet. */
6412
6413 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
6414 abbrev_section, ptr, section_kind);
6415
6416 length = header.get_length ();
6417
6418 /* Skip dummy type units. */
6419 if (ptr >= info_ptr + length
6420 || peek_abbrev_code (abfd, ptr) == 0
6421 || (header.unit_type != DW_UT_type
6422 && header.unit_type != DW_UT_split_type))
6423 {
6424 info_ptr += length;
6425 continue;
6426 }
6427
6428 if (types_htab == NULL)
6429 {
6430 if (dwo_file)
6431 types_htab = allocate_dwo_unit_table ();
6432 else
6433 types_htab = allocate_signatured_type_table ();
6434 }
6435
6436 if (dwo_file)
6437 {
6438 sig_type = NULL;
6439 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
6440 dwo_tu->dwo_file = dwo_file;
6441 dwo_tu->signature = header.signature;
6442 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6443 dwo_tu->section = section;
6444 dwo_tu->sect_off = sect_off;
6445 dwo_tu->length = length;
6446 }
6447 else
6448 {
6449 /* N.B.: type_offset is not usable if this type uses a DWO file.
6450 The real type_offset is in the DWO file. */
6451 dwo_tu = NULL;
6452 sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6453 sig_type->signature = header.signature;
6454 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6455 sig_type->per_cu.is_debug_types = 1;
6456 sig_type->per_cu.section = section;
6457 sig_type->per_cu.sect_off = sect_off;
6458 sig_type->per_cu.length = length;
6459 }
6460
6461 slot = htab_find_slot (types_htab.get (),
6462 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6463 INSERT);
6464 gdb_assert (slot != NULL);
6465 if (*slot != NULL)
6466 {
6467 sect_offset dup_sect_off;
6468
6469 if (dwo_file)
6470 {
6471 const struct dwo_unit *dup_tu
6472 = (const struct dwo_unit *) *slot;
6473
6474 dup_sect_off = dup_tu->sect_off;
6475 }
6476 else
6477 {
6478 const struct signatured_type *dup_tu
6479 = (const struct signatured_type *) *slot;
6480
6481 dup_sect_off = dup_tu->per_cu.sect_off;
6482 }
6483
6484 complaint (_("debug type entry at offset %s is duplicate to"
6485 " the entry at offset %s, signature %s"),
6486 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6487 hex_string (header.signature));
6488 }
6489 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6490
6491 if (dwarf_read_debug > 1)
6492 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6493 sect_offset_str (sect_off),
6494 hex_string (header.signature));
6495
6496 info_ptr += length;
6497 }
6498 }
6499
6500 /* Create the hash table of all entries in the .debug_types
6501 (or .debug_types.dwo) section(s).
6502 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6503 otherwise it is NULL.
6504
6505 The result is a pointer to the hash table or NULL if there are no types.
6506
6507 Note: This function processes DWO files only, not DWP files. */
6508
6509 static void
6510 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
6511 struct dwo_file *dwo_file,
6512 gdb::array_view<dwarf2_section_info> type_sections,
6513 htab_up &types_htab)
6514 {
6515 for (dwarf2_section_info &section : type_sections)
6516 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
6517 rcuh_kind::TYPE);
6518 }
6519
6520 /* Create the hash table of all entries in the .debug_types section,
6521 and initialize all_type_units.
6522 The result is zero if there is an error (e.g. missing .debug_types section),
6523 otherwise non-zero. */
6524
6525 static int
6526 create_all_type_units (dwarf2_per_objfile *per_objfile)
6527 {
6528 htab_up types_htab;
6529
6530 create_debug_type_hash_table (per_objfile, NULL, &per_objfile->per_bfd->info,
6531 types_htab, rcuh_kind::COMPILE);
6532 create_debug_types_hash_table (per_objfile, NULL, per_objfile->per_bfd->types,
6533 types_htab);
6534 if (types_htab == NULL)
6535 {
6536 per_objfile->per_bfd->signatured_types = NULL;
6537 return 0;
6538 }
6539
6540 per_objfile->per_bfd->signatured_types = std::move (types_htab);
6541
6542 gdb_assert (per_objfile->per_bfd->all_type_units.empty ());
6543 per_objfile->per_bfd->all_type_units.reserve
6544 (htab_elements (per_objfile->per_bfd->signatured_types.get ()));
6545
6546 htab_traverse_noresize (per_objfile->per_bfd->signatured_types.get (),
6547 add_signatured_type_cu_to_table,
6548 &per_objfile->per_bfd->all_type_units);
6549
6550 return 1;
6551 }
6552
6553 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
6554 If SLOT is non-NULL, it is the entry to use in the hash table.
6555 Otherwise we find one. */
6556
6557 static struct signatured_type *
6558 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
6559 {
6560 if (per_objfile->per_bfd->all_type_units.size ()
6561 == per_objfile->per_bfd->all_type_units.capacity ())
6562 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6563
6564 signatured_type *sig_type = per_objfile->per_bfd->allocate_signatured_type ();
6565
6566 per_objfile->resize_symtabs ();
6567
6568 per_objfile->per_bfd->all_type_units.push_back (sig_type);
6569 sig_type->signature = sig;
6570 sig_type->per_cu.is_debug_types = 1;
6571 if (per_objfile->per_bfd->using_index)
6572 {
6573 sig_type->per_cu.v.quick =
6574 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
6575 struct dwarf2_per_cu_quick_data);
6576 }
6577
6578 if (slot == NULL)
6579 {
6580 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6581 sig_type, INSERT);
6582 }
6583 gdb_assert (*slot == NULL);
6584 *slot = sig_type;
6585 /* The rest of sig_type must be filled in by the caller. */
6586 return sig_type;
6587 }
6588
6589 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6590 Fill in SIG_ENTRY with DWO_ENTRY. */
6591
6592 static void
6593 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
6594 struct signatured_type *sig_entry,
6595 struct dwo_unit *dwo_entry)
6596 {
6597 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6598
6599 /* Make sure we're not clobbering something we don't expect to. */
6600 gdb_assert (! sig_entry->per_cu.queued);
6601 gdb_assert (per_objfile->get_cu (&sig_entry->per_cu) == NULL);
6602 if (per_bfd->using_index)
6603 {
6604 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6605 gdb_assert (!per_objfile->symtab_set_p (&sig_entry->per_cu));
6606 }
6607 else
6608 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6609 gdb_assert (sig_entry->signature == dwo_entry->signature);
6610 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6611 gdb_assert (sig_entry->type_unit_group == NULL);
6612 gdb_assert (sig_entry->dwo_unit == NULL);
6613
6614 sig_entry->per_cu.section = dwo_entry->section;
6615 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6616 sig_entry->per_cu.length = dwo_entry->length;
6617 sig_entry->per_cu.reading_dwo_directly = 1;
6618 sig_entry->per_cu.per_bfd = per_bfd;
6619 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6620 sig_entry->dwo_unit = dwo_entry;
6621 }
6622
6623 /* Subroutine of lookup_signatured_type.
6624 If we haven't read the TU yet, create the signatured_type data structure
6625 for a TU to be read in directly from a DWO file, bypassing the stub.
6626 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6627 using .gdb_index, then when reading a CU we want to stay in the DWO file
6628 containing that CU. Otherwise we could end up reading several other DWO
6629 files (due to comdat folding) to process the transitive closure of all the
6630 mentioned TUs, and that can be slow. The current DWO file will have every
6631 type signature that it needs.
6632 We only do this for .gdb_index because in the psymtab case we already have
6633 to read all the DWOs to build the type unit groups. */
6634
6635 static struct signatured_type *
6636 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6637 {
6638 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6639 struct dwo_file *dwo_file;
6640 struct dwo_unit find_dwo_entry, *dwo_entry;
6641 struct signatured_type find_sig_entry, *sig_entry;
6642 void **slot;
6643
6644 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6645
6646 /* If TU skeletons have been removed then we may not have read in any
6647 TUs yet. */
6648 if (per_objfile->per_bfd->signatured_types == NULL)
6649 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6650
6651 /* We only ever need to read in one copy of a signatured type.
6652 Use the global signatured_types array to do our own comdat-folding
6653 of types. If this is the first time we're reading this TU, and
6654 the TU has an entry in .gdb_index, replace the recorded data from
6655 .gdb_index with this TU. */
6656
6657 find_sig_entry.signature = sig;
6658 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6659 &find_sig_entry, INSERT);
6660 sig_entry = (struct signatured_type *) *slot;
6661
6662 /* We can get here with the TU already read, *or* in the process of being
6663 read. Don't reassign the global entry to point to this DWO if that's
6664 the case. Also note that if the TU is already being read, it may not
6665 have come from a DWO, the program may be a mix of Fission-compiled
6666 code and non-Fission-compiled code. */
6667
6668 /* Have we already tried to read this TU?
6669 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6670 needn't exist in the global table yet). */
6671 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6672 return sig_entry;
6673
6674 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6675 dwo_unit of the TU itself. */
6676 dwo_file = cu->dwo_unit->dwo_file;
6677
6678 /* Ok, this is the first time we're reading this TU. */
6679 if (dwo_file->tus == NULL)
6680 return NULL;
6681 find_dwo_entry.signature = sig;
6682 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6683 &find_dwo_entry);
6684 if (dwo_entry == NULL)
6685 return NULL;
6686
6687 /* If the global table doesn't have an entry for this TU, add one. */
6688 if (sig_entry == NULL)
6689 sig_entry = add_type_unit (per_objfile, sig, slot);
6690
6691 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6692 sig_entry->per_cu.tu_read = 1;
6693 return sig_entry;
6694 }
6695
6696 /* Subroutine of lookup_signatured_type.
6697 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6698 then try the DWP file. If the TU stub (skeleton) has been removed then
6699 it won't be in .gdb_index. */
6700
6701 static struct signatured_type *
6702 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6703 {
6704 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6705 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6706 struct dwo_unit *dwo_entry;
6707 struct signatured_type find_sig_entry, *sig_entry;
6708 void **slot;
6709
6710 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6711 gdb_assert (dwp_file != NULL);
6712
6713 /* If TU skeletons have been removed then we may not have read in any
6714 TUs yet. */
6715 if (per_objfile->per_bfd->signatured_types == NULL)
6716 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6717
6718 find_sig_entry.signature = sig;
6719 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6720 &find_sig_entry, INSERT);
6721 sig_entry = (struct signatured_type *) *slot;
6722
6723 /* Have we already tried to read this TU?
6724 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6725 needn't exist in the global table yet). */
6726 if (sig_entry != NULL)
6727 return sig_entry;
6728
6729 if (dwp_file->tus == NULL)
6730 return NULL;
6731 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6732 1 /* is_debug_types */);
6733 if (dwo_entry == NULL)
6734 return NULL;
6735
6736 sig_entry = add_type_unit (per_objfile, sig, slot);
6737 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6738
6739 return sig_entry;
6740 }
6741
6742 /* Lookup a signature based type for DW_FORM_ref_sig8.
6743 Returns NULL if signature SIG is not present in the table.
6744 It is up to the caller to complain about this. */
6745
6746 static struct signatured_type *
6747 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6748 {
6749 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6750
6751 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6752 {
6753 /* We're in a DWO/DWP file, and we're using .gdb_index.
6754 These cases require special processing. */
6755 if (get_dwp_file (per_objfile) == NULL)
6756 return lookup_dwo_signatured_type (cu, sig);
6757 else
6758 return lookup_dwp_signatured_type (cu, sig);
6759 }
6760 else
6761 {
6762 struct signatured_type find_entry, *entry;
6763
6764 if (per_objfile->per_bfd->signatured_types == NULL)
6765 return NULL;
6766 find_entry.signature = sig;
6767 entry = ((struct signatured_type *)
6768 htab_find (per_objfile->per_bfd->signatured_types.get (),
6769 &find_entry));
6770 return entry;
6771 }
6772 }
6773
6774 /* Low level DIE reading support. */
6775
6776 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6777
6778 static void
6779 init_cu_die_reader (struct die_reader_specs *reader,
6780 struct dwarf2_cu *cu,
6781 struct dwarf2_section_info *section,
6782 struct dwo_file *dwo_file,
6783 struct abbrev_table *abbrev_table)
6784 {
6785 gdb_assert (section->readin && section->buffer != NULL);
6786 reader->abfd = section->get_bfd_owner ();
6787 reader->cu = cu;
6788 reader->dwo_file = dwo_file;
6789 reader->die_section = section;
6790 reader->buffer = section->buffer;
6791 reader->buffer_end = section->buffer + section->size;
6792 reader->abbrev_table = abbrev_table;
6793 }
6794
6795 /* Subroutine of cutu_reader to simplify it.
6796 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6797 There's just a lot of work to do, and cutu_reader is big enough
6798 already.
6799
6800 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6801 from it to the DIE in the DWO. If NULL we are skipping the stub.
6802 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6803 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6804 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6805 STUB_COMP_DIR may be non-NULL.
6806 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6807 are filled in with the info of the DIE from the DWO file.
6808 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6809 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6810 kept around for at least as long as *RESULT_READER.
6811
6812 The result is non-zero if a valid (non-dummy) DIE was found. */
6813
6814 static int
6815 read_cutu_die_from_dwo (dwarf2_cu *cu,
6816 struct dwo_unit *dwo_unit,
6817 struct die_info *stub_comp_unit_die,
6818 const char *stub_comp_dir,
6819 struct die_reader_specs *result_reader,
6820 const gdb_byte **result_info_ptr,
6821 struct die_info **result_comp_unit_die,
6822 abbrev_table_up *result_dwo_abbrev_table)
6823 {
6824 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6825 dwarf2_per_cu_data *per_cu = cu->per_cu;
6826 struct objfile *objfile = per_objfile->objfile;
6827 bfd *abfd;
6828 const gdb_byte *begin_info_ptr, *info_ptr;
6829 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6830 int i,num_extra_attrs;
6831 struct dwarf2_section_info *dwo_abbrev_section;
6832 struct die_info *comp_unit_die;
6833
6834 /* At most one of these may be provided. */
6835 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6836
6837 /* These attributes aren't processed until later:
6838 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6839 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6840 referenced later. However, these attributes are found in the stub
6841 which we won't have later. In order to not impose this complication
6842 on the rest of the code, we read them here and copy them to the
6843 DWO CU/TU die. */
6844
6845 stmt_list = NULL;
6846 low_pc = NULL;
6847 high_pc = NULL;
6848 ranges = NULL;
6849 comp_dir = NULL;
6850
6851 if (stub_comp_unit_die != NULL)
6852 {
6853 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6854 DWO file. */
6855 if (!per_cu->is_debug_types)
6856 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6857 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6858 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6859 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6860 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6861
6862 cu->addr_base = stub_comp_unit_die->addr_base ();
6863
6864 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6865 here (if needed). We need the value before we can process
6866 DW_AT_ranges. */
6867 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6868 }
6869 else if (stub_comp_dir != NULL)
6870 {
6871 /* Reconstruct the comp_dir attribute to simplify the code below. */
6872 comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, struct attribute);
6873 comp_dir->name = DW_AT_comp_dir;
6874 comp_dir->form = DW_FORM_string;
6875 comp_dir->set_string_noncanonical (stub_comp_dir);
6876 }
6877
6878 /* Set up for reading the DWO CU/TU. */
6879 cu->dwo_unit = dwo_unit;
6880 dwarf2_section_info *section = dwo_unit->section;
6881 section->read (objfile);
6882 abfd = section->get_bfd_owner ();
6883 begin_info_ptr = info_ptr = (section->buffer
6884 + to_underlying (dwo_unit->sect_off));
6885 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6886
6887 if (per_cu->is_debug_types)
6888 {
6889 signatured_type *sig_type = (struct signatured_type *) per_cu;
6890
6891 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6892 section, dwo_abbrev_section,
6893 info_ptr, rcuh_kind::TYPE);
6894 /* This is not an assert because it can be caused by bad debug info. */
6895 if (sig_type->signature != cu->header.signature)
6896 {
6897 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6898 " TU at offset %s [in module %s]"),
6899 hex_string (sig_type->signature),
6900 hex_string (cu->header.signature),
6901 sect_offset_str (dwo_unit->sect_off),
6902 bfd_get_filename (abfd));
6903 }
6904 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6905 /* For DWOs coming from DWP files, we don't know the CU length
6906 nor the type's offset in the TU until now. */
6907 dwo_unit->length = cu->header.get_length ();
6908 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6909
6910 /* Establish the type offset that can be used to lookup the type.
6911 For DWO files, we don't know it until now. */
6912 sig_type->type_offset_in_section
6913 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6914 }
6915 else
6916 {
6917 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6918 section, dwo_abbrev_section,
6919 info_ptr, rcuh_kind::COMPILE);
6920 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6921 /* For DWOs coming from DWP files, we don't know the CU length
6922 until now. */
6923 dwo_unit->length = cu->header.get_length ();
6924 }
6925
6926 *result_dwo_abbrev_table
6927 = abbrev_table::read (objfile, dwo_abbrev_section,
6928 cu->header.abbrev_sect_off);
6929 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6930 result_dwo_abbrev_table->get ());
6931
6932 /* Read in the die, but leave space to copy over the attributes
6933 from the stub. This has the benefit of simplifying the rest of
6934 the code - all the work to maintain the illusion of a single
6935 DW_TAG_{compile,type}_unit DIE is done here. */
6936 num_extra_attrs = ((stmt_list != NULL)
6937 + (low_pc != NULL)
6938 + (high_pc != NULL)
6939 + (ranges != NULL)
6940 + (comp_dir != NULL));
6941 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6942 num_extra_attrs);
6943
6944 /* Copy over the attributes from the stub to the DIE we just read in. */
6945 comp_unit_die = *result_comp_unit_die;
6946 i = comp_unit_die->num_attrs;
6947 if (stmt_list != NULL)
6948 comp_unit_die->attrs[i++] = *stmt_list;
6949 if (low_pc != NULL)
6950 comp_unit_die->attrs[i++] = *low_pc;
6951 if (high_pc != NULL)
6952 comp_unit_die->attrs[i++] = *high_pc;
6953 if (ranges != NULL)
6954 comp_unit_die->attrs[i++] = *ranges;
6955 if (comp_dir != NULL)
6956 comp_unit_die->attrs[i++] = *comp_dir;
6957 comp_unit_die->num_attrs += num_extra_attrs;
6958
6959 if (dwarf_die_debug)
6960 {
6961 fprintf_unfiltered (gdb_stdlog,
6962 "Read die from %s@0x%x of %s:\n",
6963 section->get_name (),
6964 (unsigned) (begin_info_ptr - section->buffer),
6965 bfd_get_filename (abfd));
6966 dump_die (comp_unit_die, dwarf_die_debug);
6967 }
6968
6969 /* Skip dummy compilation units. */
6970 if (info_ptr >= begin_info_ptr + dwo_unit->length
6971 || peek_abbrev_code (abfd, info_ptr) == 0)
6972 return 0;
6973
6974 *result_info_ptr = info_ptr;
6975 return 1;
6976 }
6977
6978 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6979 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6980 signature is part of the header. */
6981 static gdb::optional<ULONGEST>
6982 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6983 {
6984 if (cu->header.version >= 5)
6985 return cu->header.signature;
6986 struct attribute *attr;
6987 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6988 if (attr == nullptr || !attr->form_is_unsigned ())
6989 return gdb::optional<ULONGEST> ();
6990 return attr->as_unsigned ();
6991 }
6992
6993 /* Subroutine of cutu_reader to simplify it.
6994 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6995 Returns NULL if the specified DWO unit cannot be found. */
6996
6997 static struct dwo_unit *
6998 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6999 {
7000 dwarf2_per_cu_data *per_cu = cu->per_cu;
7001 struct dwo_unit *dwo_unit;
7002 const char *comp_dir;
7003
7004 gdb_assert (cu != NULL);
7005
7006 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7007 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7008 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7009
7010 if (per_cu->is_debug_types)
7011 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
7012 else
7013 {
7014 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7015
7016 if (!signature.has_value ())
7017 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7018 " [in module %s]"),
7019 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
7020
7021 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
7022 }
7023
7024 return dwo_unit;
7025 }
7026
7027 /* Subroutine of cutu_reader to simplify it.
7028 See it for a description of the parameters.
7029 Read a TU directly from a DWO file, bypassing the stub. */
7030
7031 void
7032 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
7033 dwarf2_per_objfile *per_objfile,
7034 dwarf2_cu *existing_cu)
7035 {
7036 struct signatured_type *sig_type;
7037
7038 /* Verify we can do the following downcast, and that we have the
7039 data we need. */
7040 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7041 sig_type = (struct signatured_type *) this_cu;
7042 gdb_assert (sig_type->dwo_unit != NULL);
7043
7044 dwarf2_cu *cu;
7045
7046 if (existing_cu != nullptr)
7047 {
7048 cu = existing_cu;
7049 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
7050 /* There's no need to do the rereading_dwo_cu handling that
7051 cutu_reader does since we don't read the stub. */
7052 }
7053 else
7054 {
7055 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7056 in per_objfile yet. */
7057 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7058 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7059 cu = m_new_cu.get ();
7060 }
7061
7062 /* A future optimization, if needed, would be to use an existing
7063 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7064 could share abbrev tables. */
7065
7066 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
7067 NULL /* stub_comp_unit_die */,
7068 sig_type->dwo_unit->dwo_file->comp_dir,
7069 this, &info_ptr,
7070 &comp_unit_die,
7071 &m_dwo_abbrev_table) == 0)
7072 {
7073 /* Dummy die. */
7074 dummy_p = true;
7075 }
7076 }
7077
7078 /* Initialize a CU (or TU) and read its DIEs.
7079 If the CU defers to a DWO file, read the DWO file as well.
7080
7081 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7082 Otherwise the table specified in the comp unit header is read in and used.
7083 This is an optimization for when we already have the abbrev table.
7084
7085 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
7086 allocated. */
7087
7088 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7089 dwarf2_per_objfile *per_objfile,
7090 struct abbrev_table *abbrev_table,
7091 dwarf2_cu *existing_cu,
7092 bool skip_partial)
7093 : die_reader_specs {},
7094 m_this_cu (this_cu)
7095 {
7096 struct objfile *objfile = per_objfile->objfile;
7097 struct dwarf2_section_info *section = this_cu->section;
7098 bfd *abfd = section->get_bfd_owner ();
7099 const gdb_byte *begin_info_ptr;
7100 struct signatured_type *sig_type = NULL;
7101 struct dwarf2_section_info *abbrev_section;
7102 /* Non-zero if CU currently points to a DWO file and we need to
7103 reread it. When this happens we need to reread the skeleton die
7104 before we can reread the DWO file (this only applies to CUs, not TUs). */
7105 int rereading_dwo_cu = 0;
7106
7107 if (dwarf_die_debug)
7108 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7109 this_cu->is_debug_types ? "type" : "comp",
7110 sect_offset_str (this_cu->sect_off));
7111
7112 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7113 file (instead of going through the stub), short-circuit all of this. */
7114 if (this_cu->reading_dwo_directly)
7115 {
7116 /* Narrow down the scope of possibilities to have to understand. */
7117 gdb_assert (this_cu->is_debug_types);
7118 gdb_assert (abbrev_table == NULL);
7119 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
7120 return;
7121 }
7122
7123 /* This is cheap if the section is already read in. */
7124 section->read (objfile);
7125
7126 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7127
7128 abbrev_section = get_abbrev_section_for_cu (this_cu);
7129
7130 dwarf2_cu *cu;
7131
7132 if (existing_cu != nullptr)
7133 {
7134 cu = existing_cu;
7135 /* If this CU is from a DWO file we need to start over, we need to
7136 refetch the attributes from the skeleton CU.
7137 This could be optimized by retrieving those attributes from when we
7138 were here the first time: the previous comp_unit_die was stored in
7139 comp_unit_obstack. But there's no data yet that we need this
7140 optimization. */
7141 if (cu->dwo_unit != NULL)
7142 rereading_dwo_cu = 1;
7143 }
7144 else
7145 {
7146 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
7147 in per_objfile yet. */
7148 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7149 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7150 cu = m_new_cu.get ();
7151 }
7152
7153 /* Get the header. */
7154 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7155 {
7156 /* We already have the header, there's no need to read it in again. */
7157 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7158 }
7159 else
7160 {
7161 if (this_cu->is_debug_types)
7162 {
7163 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7164 section, abbrev_section,
7165 info_ptr, rcuh_kind::TYPE);
7166
7167 /* Since per_cu is the first member of struct signatured_type,
7168 we can go from a pointer to one to a pointer to the other. */
7169 sig_type = (struct signatured_type *) this_cu;
7170 gdb_assert (sig_type->signature == cu->header.signature);
7171 gdb_assert (sig_type->type_offset_in_tu
7172 == cu->header.type_cu_offset_in_tu);
7173 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7174
7175 /* LENGTH has not been set yet for type units if we're
7176 using .gdb_index. */
7177 this_cu->length = cu->header.get_length ();
7178
7179 /* Establish the type offset that can be used to lookup the type. */
7180 sig_type->type_offset_in_section =
7181 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7182
7183 this_cu->dwarf_version = cu->header.version;
7184 }
7185 else
7186 {
7187 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
7188 section, abbrev_section,
7189 info_ptr,
7190 rcuh_kind::COMPILE);
7191
7192 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7193 if (this_cu->length == 0)
7194 this_cu->length = cu->header.get_length ();
7195 else
7196 gdb_assert (this_cu->length == cu->header.get_length ());
7197 this_cu->dwarf_version = cu->header.version;
7198 }
7199 }
7200
7201 /* Skip dummy compilation units. */
7202 if (info_ptr >= begin_info_ptr + this_cu->length
7203 || peek_abbrev_code (abfd, info_ptr) == 0)
7204 {
7205 dummy_p = true;
7206 return;
7207 }
7208
7209 /* If we don't have them yet, read the abbrevs for this compilation unit.
7210 And if we need to read them now, make sure they're freed when we're
7211 done. */
7212 if (abbrev_table != NULL)
7213 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7214 else
7215 {
7216 m_abbrev_table_holder
7217 = abbrev_table::read (objfile, abbrev_section,
7218 cu->header.abbrev_sect_off);
7219 abbrev_table = m_abbrev_table_holder.get ();
7220 }
7221
7222 /* Read the top level CU/TU die. */
7223 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7224 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7225
7226 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7227 {
7228 dummy_p = true;
7229 return;
7230 }
7231
7232 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7233 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7234 table from the DWO file and pass the ownership over to us. It will be
7235 referenced from READER, so we must make sure to free it after we're done
7236 with READER.
7237
7238 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7239 DWO CU, that this test will fail (the attribute will not be present). */
7240 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7241 if (dwo_name != nullptr)
7242 {
7243 struct dwo_unit *dwo_unit;
7244 struct die_info *dwo_comp_unit_die;
7245
7246 if (comp_unit_die->has_children)
7247 {
7248 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7249 " has children (offset %s) [in module %s]"),
7250 sect_offset_str (this_cu->sect_off),
7251 bfd_get_filename (abfd));
7252 }
7253 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
7254 if (dwo_unit != NULL)
7255 {
7256 if (read_cutu_die_from_dwo (cu, dwo_unit,
7257 comp_unit_die, NULL,
7258 this, &info_ptr,
7259 &dwo_comp_unit_die,
7260 &m_dwo_abbrev_table) == 0)
7261 {
7262 /* Dummy die. */
7263 dummy_p = true;
7264 return;
7265 }
7266 comp_unit_die = dwo_comp_unit_die;
7267 }
7268 else
7269 {
7270 /* Yikes, we couldn't find the rest of the DIE, we only have
7271 the stub. A complaint has already been logged. There's
7272 not much more we can do except pass on the stub DIE to
7273 die_reader_func. We don't want to throw an error on bad
7274 debug info. */
7275 }
7276 }
7277 }
7278
7279 void
7280 cutu_reader::keep ()
7281 {
7282 /* Done, clean up. */
7283 gdb_assert (!dummy_p);
7284 if (m_new_cu != NULL)
7285 {
7286 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
7287 now. */
7288 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
7289 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
7290 }
7291 }
7292
7293 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7294 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7295 assumed to have already done the lookup to find the DWO file).
7296
7297 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7298 THIS_CU->is_debug_types, but nothing else.
7299
7300 We fill in THIS_CU->length.
7301
7302 THIS_CU->cu is always freed when done.
7303 This is done in order to not leave THIS_CU->cu in a state where we have
7304 to care whether it refers to the "main" CU or the DWO CU.
7305
7306 When parent_cu is passed, it is used to provide a default value for
7307 str_offsets_base and addr_base from the parent. */
7308
7309 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
7310 dwarf2_per_objfile *per_objfile,
7311 struct dwarf2_cu *parent_cu,
7312 struct dwo_file *dwo_file)
7313 : die_reader_specs {},
7314 m_this_cu (this_cu)
7315 {
7316 struct objfile *objfile = per_objfile->objfile;
7317 struct dwarf2_section_info *section = this_cu->section;
7318 bfd *abfd = section->get_bfd_owner ();
7319 struct dwarf2_section_info *abbrev_section;
7320 const gdb_byte *begin_info_ptr, *info_ptr;
7321
7322 if (dwarf_die_debug)
7323 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7324 this_cu->is_debug_types ? "type" : "comp",
7325 sect_offset_str (this_cu->sect_off));
7326
7327 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
7328
7329 abbrev_section = (dwo_file != NULL
7330 ? &dwo_file->sections.abbrev
7331 : get_abbrev_section_for_cu (this_cu));
7332
7333 /* This is cheap if the section is already read in. */
7334 section->read (objfile);
7335
7336 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
7337
7338 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7339 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
7340 section, abbrev_section, info_ptr,
7341 (this_cu->is_debug_types
7342 ? rcuh_kind::TYPE
7343 : rcuh_kind::COMPILE));
7344
7345 if (parent_cu != nullptr)
7346 {
7347 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7348 m_new_cu->addr_base = parent_cu->addr_base;
7349 }
7350 this_cu->length = m_new_cu->header.get_length ();
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + this_cu->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 {
7356 dummy_p = true;
7357 return;
7358 }
7359
7360 m_abbrev_table_holder
7361 = abbrev_table::read (objfile, abbrev_section,
7362 m_new_cu->header.abbrev_sect_off);
7363
7364 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7365 m_abbrev_table_holder.get ());
7366 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7367 }
7368
7369 \f
7370 /* Type Unit Groups.
7371
7372 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7373 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7374 so that all types coming from the same compilation (.o file) are grouped
7375 together. A future step could be to put the types in the same symtab as
7376 the CU the types ultimately came from. */
7377
7378 static hashval_t
7379 hash_type_unit_group (const void *item)
7380 {
7381 const struct type_unit_group *tu_group
7382 = (const struct type_unit_group *) item;
7383
7384 return hash_stmt_list_entry (&tu_group->hash);
7385 }
7386
7387 static int
7388 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7389 {
7390 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7391 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7392
7393 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7394 }
7395
7396 /* Allocate a hash table for type unit groups. */
7397
7398 static htab_up
7399 allocate_type_unit_groups_table ()
7400 {
7401 return htab_up (htab_create_alloc (3,
7402 hash_type_unit_group,
7403 eq_type_unit_group,
7404 NULL, xcalloc, xfree));
7405 }
7406
7407 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7408 partial symtabs. We combine several TUs per psymtab to not let the size
7409 of any one psymtab grow too big. */
7410 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7411 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7412
7413 /* Helper routine for get_type_unit_group.
7414 Create the type_unit_group object used to hold one or more TUs. */
7415
7416 static struct type_unit_group *
7417 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7418 {
7419 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7420 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7421 struct dwarf2_per_cu_data *per_cu;
7422 struct type_unit_group *tu_group;
7423
7424 tu_group = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, type_unit_group);
7425 per_cu = &tu_group->per_cu;
7426 per_cu->per_bfd = per_bfd;
7427
7428 if (per_bfd->using_index)
7429 {
7430 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
7431 struct dwarf2_per_cu_quick_data);
7432 }
7433 else
7434 {
7435 unsigned int line_offset = to_underlying (line_offset_struct);
7436 dwarf2_psymtab *pst;
7437 std::string name;
7438
7439 /* Give the symtab a useful name for debug purposes. */
7440 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7441 name = string_printf ("<type_units_%d>",
7442 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7443 else
7444 name = string_printf ("<type_units_at_0x%x>", line_offset);
7445
7446 pst = create_partial_symtab (per_cu, per_objfile, name.c_str ());
7447 pst->anonymous = true;
7448 }
7449
7450 tu_group->hash.dwo_unit = cu->dwo_unit;
7451 tu_group->hash.line_sect_off = line_offset_struct;
7452
7453 return tu_group;
7454 }
7455
7456 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7457 STMT_LIST is a DW_AT_stmt_list attribute. */
7458
7459 static struct type_unit_group *
7460 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7461 {
7462 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7463 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7464 struct type_unit_group *tu_group;
7465 void **slot;
7466 unsigned int line_offset;
7467 struct type_unit_group type_unit_group_for_lookup;
7468
7469 if (per_objfile->per_bfd->type_unit_groups == NULL)
7470 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
7471
7472 /* Do we need to create a new group, or can we use an existing one? */
7473
7474 if (stmt_list != nullptr && stmt_list->form_is_unsigned ())
7475 {
7476 line_offset = stmt_list->as_unsigned ();
7477 ++tu_stats->nr_symtab_sharers;
7478 }
7479 else
7480 {
7481 /* Ugh, no stmt_list. Rare, but we have to handle it.
7482 We can do various things here like create one group per TU or
7483 spread them over multiple groups to split up the expansion work.
7484 To avoid worst case scenarios (too many groups or too large groups)
7485 we, umm, group them in bunches. */
7486 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7487 | (tu_stats->nr_stmt_less_type_units
7488 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7489 ++tu_stats->nr_stmt_less_type_units;
7490 }
7491
7492 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7493 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7494 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
7495 &type_unit_group_for_lookup, INSERT);
7496 if (*slot != NULL)
7497 {
7498 tu_group = (struct type_unit_group *) *slot;
7499 gdb_assert (tu_group != NULL);
7500 }
7501 else
7502 {
7503 sect_offset line_offset_struct = (sect_offset) line_offset;
7504 tu_group = create_type_unit_group (cu, line_offset_struct);
7505 *slot = tu_group;
7506 ++tu_stats->nr_symtabs;
7507 }
7508
7509 return tu_group;
7510 }
7511 \f
7512 /* Partial symbol tables. */
7513
7514 /* Create a psymtab named NAME and assign it to PER_CU.
7515
7516 The caller must fill in the following details:
7517 dirname, textlow, texthigh. */
7518
7519 static dwarf2_psymtab *
7520 create_partial_symtab (dwarf2_per_cu_data *per_cu,
7521 dwarf2_per_objfile *per_objfile,
7522 const char *name)
7523 {
7524 struct objfile *objfile = per_objfile->objfile;
7525 dwarf2_psymtab *pst;
7526
7527 pst = new dwarf2_psymtab (name, objfile, per_cu);
7528
7529 pst->psymtabs_addrmap_supported = true;
7530
7531 /* This is the glue that links PST into GDB's symbol API. */
7532 per_cu->v.psymtab = pst;
7533
7534 return pst;
7535 }
7536
7537 /* DIE reader function for process_psymtab_comp_unit. */
7538
7539 static void
7540 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7541 const gdb_byte *info_ptr,
7542 struct die_info *comp_unit_die,
7543 enum language pretend_language)
7544 {
7545 struct dwarf2_cu *cu = reader->cu;
7546 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7547 struct objfile *objfile = per_objfile->objfile;
7548 struct gdbarch *gdbarch = objfile->arch ();
7549 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7550 CORE_ADDR baseaddr;
7551 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7552 dwarf2_psymtab *pst;
7553 enum pc_bounds_kind cu_bounds_kind;
7554 const char *filename;
7555
7556 gdb_assert (! per_cu->is_debug_types);
7557
7558 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7559
7560 /* Allocate a new partial symbol table structure. */
7561 gdb::unique_xmalloc_ptr<char> debug_filename;
7562 static const char artificial[] = "<artificial>";
7563 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7564 if (filename == NULL)
7565 filename = "";
7566 else if (strcmp (filename, artificial) == 0)
7567 {
7568 debug_filename.reset (concat (artificial, "@",
7569 sect_offset_str (per_cu->sect_off),
7570 (char *) NULL));
7571 filename = debug_filename.get ();
7572 }
7573
7574 pst = create_partial_symtab (per_cu, per_objfile, filename);
7575
7576 /* This must be done before calling dwarf2_build_include_psymtabs. */
7577 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7578
7579 baseaddr = objfile->text_section_offset ();
7580
7581 dwarf2_find_base_address (comp_unit_die, cu);
7582
7583 /* Possibly set the default values of LOWPC and HIGHPC from
7584 `DW_AT_ranges'. */
7585 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7586 &best_highpc, cu, pst);
7587 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7588 {
7589 CORE_ADDR low
7590 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7591 - baseaddr);
7592 CORE_ADDR high
7593 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7594 - baseaddr - 1);
7595 /* Store the contiguous range if it is not empty; it can be
7596 empty for CUs with no code. */
7597 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7598 low, high, pst);
7599 }
7600
7601 /* Check if comp unit has_children.
7602 If so, read the rest of the partial symbols from this comp unit.
7603 If not, there's no more debug_info for this comp unit. */
7604 if (comp_unit_die->has_children)
7605 {
7606 struct partial_die_info *first_die;
7607 CORE_ADDR lowpc, highpc;
7608
7609 lowpc = ((CORE_ADDR) -1);
7610 highpc = ((CORE_ADDR) 0);
7611
7612 first_die = load_partial_dies (reader, info_ptr, 1);
7613
7614 scan_partial_symbols (first_die, &lowpc, &highpc,
7615 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7616
7617 /* If we didn't find a lowpc, set it to highpc to avoid
7618 complaints from `maint check'. */
7619 if (lowpc == ((CORE_ADDR) -1))
7620 lowpc = highpc;
7621
7622 /* If the compilation unit didn't have an explicit address range,
7623 then use the information extracted from its child dies. */
7624 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7625 {
7626 best_lowpc = lowpc;
7627 best_highpc = highpc;
7628 }
7629 }
7630 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7631 best_lowpc + baseaddr)
7632 - baseaddr);
7633 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7634 best_highpc + baseaddr)
7635 - baseaddr);
7636
7637 end_psymtab_common (objfile, pst);
7638
7639 if (!cu->per_cu->imported_symtabs_empty ())
7640 {
7641 int i;
7642 int len = cu->per_cu->imported_symtabs_size ();
7643
7644 /* Fill in 'dependencies' here; we fill in 'users' in a
7645 post-pass. */
7646 pst->number_of_dependencies = len;
7647 pst->dependencies
7648 = objfile->partial_symtabs->allocate_dependencies (len);
7649 for (i = 0; i < len; ++i)
7650 {
7651 pst->dependencies[i]
7652 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7653 }
7654
7655 cu->per_cu->imported_symtabs_free ();
7656 }
7657
7658 /* Get the list of files included in the current compilation unit,
7659 and build a psymtab for each of them. */
7660 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7661
7662 if (dwarf_read_debug)
7663 fprintf_unfiltered (gdb_stdlog,
7664 "Psymtab for %s unit @%s: %s - %s"
7665 ", %d global, %d static syms\n",
7666 per_cu->is_debug_types ? "type" : "comp",
7667 sect_offset_str (per_cu->sect_off),
7668 paddress (gdbarch, pst->text_low (objfile)),
7669 paddress (gdbarch, pst->text_high (objfile)),
7670 pst->n_global_syms, pst->n_static_syms);
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Process compilation unit THIS_CU for a psymtab. */
7675
7676 static void
7677 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7678 dwarf2_per_objfile *per_objfile,
7679 bool want_partial_unit,
7680 enum language pretend_language)
7681 {
7682 /* If this compilation unit was already read in, free the
7683 cached copy in order to read it in again. This is
7684 necessary because we skipped some symbols when we first
7685 read in the compilation unit (see load_partial_dies).
7686 This problem could be avoided, but the benefit is unclear. */
7687 per_objfile->remove_cu (this_cu);
7688
7689 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7690
7691 switch (reader.comp_unit_die->tag)
7692 {
7693 case DW_TAG_compile_unit:
7694 this_cu->unit_type = DW_UT_compile;
7695 break;
7696 case DW_TAG_partial_unit:
7697 this_cu->unit_type = DW_UT_partial;
7698 break;
7699 default:
7700 abort ();
7701 }
7702
7703 if (reader.dummy_p)
7704 {
7705 /* Nothing. */
7706 }
7707 else if (this_cu->is_debug_types)
7708 build_type_psymtabs_reader (&reader, reader.info_ptr,
7709 reader.comp_unit_die);
7710 else if (want_partial_unit
7711 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7712 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7713 reader.comp_unit_die,
7714 pretend_language);
7715
7716 this_cu->lang = reader.cu->language;
7717
7718 /* Age out any secondary CUs. */
7719 per_objfile->age_comp_units ();
7720 }
7721
7722 /* Reader function for build_type_psymtabs. */
7723
7724 static void
7725 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7726 const gdb_byte *info_ptr,
7727 struct die_info *type_unit_die)
7728 {
7729 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7730 struct objfile *objfile = per_objfile->objfile;
7731 struct dwarf2_cu *cu = reader->cu;
7732 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7733 struct signatured_type *sig_type;
7734 struct type_unit_group *tu_group;
7735 struct attribute *attr;
7736 struct partial_die_info *first_die;
7737 CORE_ADDR lowpc, highpc;
7738 dwarf2_psymtab *pst;
7739
7740 gdb_assert (per_cu->is_debug_types);
7741 sig_type = (struct signatured_type *) per_cu;
7742
7743 if (! type_unit_die->has_children)
7744 return;
7745
7746 attr = type_unit_die->attr (DW_AT_stmt_list);
7747 tu_group = get_type_unit_group (cu, attr);
7748
7749 if (tu_group->tus == nullptr)
7750 tu_group->tus = new std::vector<signatured_type *>;
7751 tu_group->tus->push_back (sig_type);
7752
7753 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7754 pst = create_partial_symtab (per_cu, per_objfile, "");
7755 pst->anonymous = true;
7756
7757 first_die = load_partial_dies (reader, info_ptr, 1);
7758
7759 lowpc = (CORE_ADDR) -1;
7760 highpc = (CORE_ADDR) 0;
7761 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7762
7763 end_psymtab_common (objfile, pst);
7764 }
7765
7766 /* Struct used to sort TUs by their abbreviation table offset. */
7767
7768 struct tu_abbrev_offset
7769 {
7770 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7771 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7772 {}
7773
7774 signatured_type *sig_type;
7775 sect_offset abbrev_offset;
7776 };
7777
7778 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7779
7780 static bool
7781 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7782 const struct tu_abbrev_offset &b)
7783 {
7784 return a.abbrev_offset < b.abbrev_offset;
7785 }
7786
7787 /* Efficiently read all the type units.
7788 This does the bulk of the work for build_type_psymtabs.
7789
7790 The efficiency is because we sort TUs by the abbrev table they use and
7791 only read each abbrev table once. In one program there are 200K TUs
7792 sharing 8K abbrev tables.
7793
7794 The main purpose of this function is to support building the
7795 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7796 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7797 can collapse the search space by grouping them by stmt_list.
7798 The savings can be significant, in the same program from above the 200K TUs
7799 share 8K stmt_list tables.
7800
7801 FUNC is expected to call get_type_unit_group, which will create the
7802 struct type_unit_group if necessary and add it to
7803 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7804
7805 static void
7806 build_type_psymtabs_1 (dwarf2_per_objfile *per_objfile)
7807 {
7808 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7809 abbrev_table_up abbrev_table;
7810 sect_offset abbrev_offset;
7811
7812 /* It's up to the caller to not call us multiple times. */
7813 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7814
7815 if (per_objfile->per_bfd->all_type_units.empty ())
7816 return;
7817
7818 /* TUs typically share abbrev tables, and there can be way more TUs than
7819 abbrev tables. Sort by abbrev table to reduce the number of times we
7820 read each abbrev table in.
7821 Alternatives are to punt or to maintain a cache of abbrev tables.
7822 This is simpler and efficient enough for now.
7823
7824 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7825 symtab to use). Typically TUs with the same abbrev offset have the same
7826 stmt_list value too so in practice this should work well.
7827
7828 The basic algorithm here is:
7829
7830 sort TUs by abbrev table
7831 for each TU with same abbrev table:
7832 read abbrev table if first user
7833 read TU top level DIE
7834 [IWBN if DWO skeletons had DW_AT_stmt_list]
7835 call FUNC */
7836
7837 if (dwarf_read_debug)
7838 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7839
7840 /* Sort in a separate table to maintain the order of all_type_units
7841 for .gdb_index: TU indices directly index all_type_units. */
7842 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7843 sorted_by_abbrev.reserve (per_objfile->per_bfd->all_type_units.size ());
7844
7845 for (signatured_type *sig_type : per_objfile->per_bfd->all_type_units)
7846 sorted_by_abbrev.emplace_back
7847 (sig_type, read_abbrev_offset (per_objfile, sig_type->per_cu.section,
7848 sig_type->per_cu.sect_off));
7849
7850 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7851 sort_tu_by_abbrev_offset);
7852
7853 abbrev_offset = (sect_offset) ~(unsigned) 0;
7854
7855 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7856 {
7857 /* Switch to the next abbrev table if necessary. */
7858 if (abbrev_table == NULL
7859 || tu.abbrev_offset != abbrev_offset)
7860 {
7861 abbrev_offset = tu.abbrev_offset;
7862 abbrev_table =
7863 abbrev_table::read (per_objfile->objfile,
7864 &per_objfile->per_bfd->abbrev, abbrev_offset);
7865 ++tu_stats->nr_uniq_abbrev_tables;
7866 }
7867
7868 cutu_reader reader (&tu.sig_type->per_cu, per_objfile,
7869 abbrev_table.get (), nullptr, false);
7870 if (!reader.dummy_p)
7871 build_type_psymtabs_reader (&reader, reader.info_ptr,
7872 reader.comp_unit_die);
7873 }
7874 }
7875
7876 /* Print collected type unit statistics. */
7877
7878 static void
7879 print_tu_stats (dwarf2_per_objfile *per_objfile)
7880 {
7881 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7882
7883 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7884 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7885 per_objfile->per_bfd->all_type_units.size ());
7886 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7887 tu_stats->nr_uniq_abbrev_tables);
7888 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7889 tu_stats->nr_symtabs);
7890 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7891 tu_stats->nr_symtab_sharers);
7892 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7893 tu_stats->nr_stmt_less_type_units);
7894 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7895 tu_stats->nr_all_type_units_reallocs);
7896 }
7897
7898 /* Traversal function for build_type_psymtabs. */
7899
7900 static int
7901 build_type_psymtab_dependencies (void **slot, void *info)
7902 {
7903 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7904 struct objfile *objfile = per_objfile->objfile;
7905 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7906 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7907 dwarf2_psymtab *pst = per_cu->v.psymtab;
7908 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7909 int i;
7910
7911 gdb_assert (len > 0);
7912 gdb_assert (per_cu->type_unit_group_p ());
7913
7914 pst->number_of_dependencies = len;
7915 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7916 for (i = 0; i < len; ++i)
7917 {
7918 struct signatured_type *iter = tu_group->tus->at (i);
7919 gdb_assert (iter->per_cu.is_debug_types);
7920 pst->dependencies[i] = iter->per_cu.v.psymtab;
7921 iter->type_unit_group = tu_group;
7922 }
7923
7924 delete tu_group->tus;
7925 tu_group->tus = nullptr;
7926
7927 return 1;
7928 }
7929
7930 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7931 Build partial symbol tables for the .debug_types comp-units. */
7932
7933 static void
7934 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7935 {
7936 if (! create_all_type_units (per_objfile))
7937 return;
7938
7939 build_type_psymtabs_1 (per_objfile);
7940 }
7941
7942 /* Traversal function for process_skeletonless_type_unit.
7943 Read a TU in a DWO file and build partial symbols for it. */
7944
7945 static int
7946 process_skeletonless_type_unit (void **slot, void *info)
7947 {
7948 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7949 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7950 struct signatured_type find_entry, *entry;
7951
7952 /* If this TU doesn't exist in the global table, add it and read it in. */
7953
7954 if (per_objfile->per_bfd->signatured_types == NULL)
7955 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7956
7957 find_entry.signature = dwo_unit->signature;
7958 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7959 &find_entry, INSERT);
7960 /* If we've already seen this type there's nothing to do. What's happening
7961 is we're doing our own version of comdat-folding here. */
7962 if (*slot != NULL)
7963 return 1;
7964
7965 /* This does the job that create_all_type_units would have done for
7966 this TU. */
7967 entry = add_type_unit (per_objfile, dwo_unit->signature, slot);
7968 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7969 *slot = entry;
7970
7971 /* This does the job that build_type_psymtabs_1 would have done. */
7972 cutu_reader reader (&entry->per_cu, per_objfile, nullptr, nullptr, false);
7973 if (!reader.dummy_p)
7974 build_type_psymtabs_reader (&reader, reader.info_ptr,
7975 reader.comp_unit_die);
7976
7977 return 1;
7978 }
7979
7980 /* Traversal function for process_skeletonless_type_units. */
7981
7982 static int
7983 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7984 {
7985 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7986
7987 if (dwo_file->tus != NULL)
7988 htab_traverse_noresize (dwo_file->tus.get (),
7989 process_skeletonless_type_unit, info);
7990
7991 return 1;
7992 }
7993
7994 /* Scan all TUs of DWO files, verifying we've processed them.
7995 This is needed in case a TU was emitted without its skeleton.
7996 Note: This can't be done until we know what all the DWO files are. */
7997
7998 static void
7999 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
8000 {
8001 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8002 if (get_dwp_file (per_objfile) == NULL
8003 && per_objfile->per_bfd->dwo_files != NULL)
8004 {
8005 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
8006 process_dwo_file_for_skeletonless_type_units,
8007 per_objfile);
8008 }
8009 }
8010
8011 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8012
8013 static void
8014 set_partial_user (dwarf2_per_objfile *per_objfile)
8015 {
8016 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
8017 {
8018 dwarf2_psymtab *pst = per_cu->v.psymtab;
8019
8020 if (pst == NULL)
8021 continue;
8022
8023 for (int j = 0; j < pst->number_of_dependencies; ++j)
8024 {
8025 /* Set the 'user' field only if it is not already set. */
8026 if (pst->dependencies[j]->user == NULL)
8027 pst->dependencies[j]->user = pst;
8028 }
8029 }
8030 }
8031
8032 /* Build the partial symbol table by doing a quick pass through the
8033 .debug_info and .debug_abbrev sections. */
8034
8035 static void
8036 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
8037 {
8038 struct objfile *objfile = per_objfile->objfile;
8039
8040 if (dwarf_read_debug)
8041 {
8042 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8043 objfile_name (objfile));
8044 }
8045
8046 scoped_restore restore_reading_psyms
8047 = make_scoped_restore (&per_objfile->per_bfd->reading_partial_symbols,
8048 true);
8049
8050 per_objfile->per_bfd->info.read (objfile);
8051
8052 /* Any cached compilation units will be linked by the per-objfile
8053 read_in_chain. Make sure to free them when we're done. */
8054 free_cached_comp_units freer (per_objfile);
8055
8056 build_type_psymtabs (per_objfile);
8057
8058 create_all_comp_units (per_objfile);
8059
8060 /* Create a temporary address map on a temporary obstack. We later
8061 copy this to the final obstack. */
8062 auto_obstack temp_obstack;
8063
8064 scoped_restore save_psymtabs_addrmap
8065 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8066 addrmap_create_mutable (&temp_obstack));
8067
8068 for (dwarf2_per_cu_data *per_cu : per_objfile->per_bfd->all_comp_units)
8069 {
8070 if (per_cu->v.psymtab != NULL)
8071 /* In case a forward DW_TAG_imported_unit has read the CU already. */
8072 continue;
8073 process_psymtab_comp_unit (per_cu, per_objfile, false,
8074 language_minimal);
8075 }
8076
8077 /* This has to wait until we read the CUs, we need the list of DWOs. */
8078 process_skeletonless_type_units (per_objfile);
8079
8080 /* Now that all TUs have been processed we can fill in the dependencies. */
8081 if (per_objfile->per_bfd->type_unit_groups != NULL)
8082 {
8083 htab_traverse_noresize (per_objfile->per_bfd->type_unit_groups.get (),
8084 build_type_psymtab_dependencies, per_objfile);
8085 }
8086
8087 if (dwarf_read_debug)
8088 print_tu_stats (per_objfile);
8089
8090 set_partial_user (per_objfile);
8091
8092 objfile->partial_symtabs->psymtabs_addrmap
8093 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8094 objfile->partial_symtabs->obstack ());
8095 /* At this point we want to keep the address map. */
8096 save_psymtabs_addrmap.release ();
8097
8098 if (dwarf_read_debug)
8099 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8100 objfile_name (objfile));
8101 }
8102
8103 /* Load the partial DIEs for a secondary CU into memory.
8104 This is also used when rereading a primary CU with load_all_dies. */
8105
8106 static void
8107 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
8108 dwarf2_per_objfile *per_objfile,
8109 dwarf2_cu *existing_cu)
8110 {
8111 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
8112
8113 if (!reader.dummy_p)
8114 {
8115 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8116 language_minimal);
8117
8118 /* Check if comp unit has_children.
8119 If so, read the rest of the partial symbols from this comp unit.
8120 If not, there's no more debug_info for this comp unit. */
8121 if (reader.comp_unit_die->has_children)
8122 load_partial_dies (&reader, reader.info_ptr, 0);
8123
8124 reader.keep ();
8125 }
8126 }
8127
8128 static void
8129 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
8130 struct dwarf2_section_info *section,
8131 struct dwarf2_section_info *abbrev_section,
8132 unsigned int is_dwz)
8133 {
8134 const gdb_byte *info_ptr;
8135 struct objfile *objfile = per_objfile->objfile;
8136
8137 if (dwarf_read_debug)
8138 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8139 section->get_name (),
8140 section->get_file_name ());
8141
8142 section->read (objfile);
8143
8144 info_ptr = section->buffer;
8145
8146 while (info_ptr < section->buffer + section->size)
8147 {
8148 struct dwarf2_per_cu_data *this_cu;
8149
8150 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8151
8152 comp_unit_head cu_header;
8153 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
8154 abbrev_section, info_ptr,
8155 rcuh_kind::COMPILE);
8156
8157 /* Save the compilation unit for later lookup. */
8158 if (cu_header.unit_type != DW_UT_type)
8159 this_cu = per_objfile->per_bfd->allocate_per_cu ();
8160 else
8161 {
8162 auto sig_type = per_objfile->per_bfd->allocate_signatured_type ();
8163 sig_type->signature = cu_header.signature;
8164 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8165 this_cu = &sig_type->per_cu;
8166 }
8167 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8168 this_cu->sect_off = sect_off;
8169 this_cu->length = cu_header.length + cu_header.initial_length_size;
8170 this_cu->is_dwz = is_dwz;
8171 this_cu->section = section;
8172
8173 per_objfile->per_bfd->all_comp_units.push_back (this_cu);
8174
8175 info_ptr = info_ptr + this_cu->length;
8176 }
8177 }
8178
8179 /* Create a list of all compilation units in OBJFILE.
8180 This is only done for -readnow and building partial symtabs. */
8181
8182 static void
8183 create_all_comp_units (dwarf2_per_objfile *per_objfile)
8184 {
8185 gdb_assert (per_objfile->per_bfd->all_comp_units.empty ());
8186 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
8187 &per_objfile->per_bfd->abbrev, 0);
8188
8189 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
8190 if (dwz != NULL)
8191 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1);
8192 }
8193
8194 /* Process all loaded DIEs for compilation unit CU, starting at
8195 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8196 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8197 DW_AT_ranges). See the comments of add_partial_subprogram on how
8198 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8199
8200 static void
8201 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8202 CORE_ADDR *highpc, int set_addrmap,
8203 struct dwarf2_cu *cu)
8204 {
8205 struct partial_die_info *pdi;
8206
8207 /* Now, march along the PDI's, descending into ones which have
8208 interesting children but skipping the children of the other ones,
8209 until we reach the end of the compilation unit. */
8210
8211 pdi = first_die;
8212
8213 while (pdi != NULL)
8214 {
8215 pdi->fixup (cu);
8216
8217 /* Anonymous namespaces or modules have no name but have interesting
8218 children, so we need to look at them. Ditto for anonymous
8219 enums. */
8220
8221 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
8222 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8223 || pdi->tag == DW_TAG_imported_unit
8224 || pdi->tag == DW_TAG_inlined_subroutine)
8225 {
8226 switch (pdi->tag)
8227 {
8228 case DW_TAG_subprogram:
8229 case DW_TAG_inlined_subroutine:
8230 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8231 if (cu->language == language_cplus)
8232 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8233 set_addrmap, cu);
8234 break;
8235 case DW_TAG_constant:
8236 case DW_TAG_variable:
8237 case DW_TAG_typedef:
8238 case DW_TAG_union_type:
8239 if (!pdi->is_declaration
8240 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8241 {
8242 add_partial_symbol (pdi, cu);
8243 }
8244 break;
8245 case DW_TAG_class_type:
8246 case DW_TAG_interface_type:
8247 case DW_TAG_structure_type:
8248 if (!pdi->is_declaration)
8249 {
8250 add_partial_symbol (pdi, cu);
8251 }
8252 if ((cu->language == language_rust
8253 || cu->language == language_cplus) && pdi->has_children)
8254 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8255 set_addrmap, cu);
8256 break;
8257 case DW_TAG_enumeration_type:
8258 if (!pdi->is_declaration)
8259 add_partial_enumeration (pdi, cu);
8260 break;
8261 case DW_TAG_base_type:
8262 case DW_TAG_subrange_type:
8263 /* File scope base type definitions are added to the partial
8264 symbol table. */
8265 add_partial_symbol (pdi, cu);
8266 break;
8267 case DW_TAG_namespace:
8268 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8269 break;
8270 case DW_TAG_module:
8271 if (!pdi->is_declaration)
8272 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8273 break;
8274 case DW_TAG_imported_unit:
8275 {
8276 struct dwarf2_per_cu_data *per_cu;
8277
8278 /* For now we don't handle imported units in type units. */
8279 if (cu->per_cu->is_debug_types)
8280 {
8281 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8282 " supported in type units [in module %s]"),
8283 objfile_name (cu->per_objfile->objfile));
8284 }
8285
8286 per_cu = dwarf2_find_containing_comp_unit
8287 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
8288
8289 /* Go read the partial unit, if needed. */
8290 if (per_cu->v.psymtab == NULL)
8291 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
8292 cu->language);
8293
8294 cu->per_cu->imported_symtabs_push (per_cu);
8295 }
8296 break;
8297 case DW_TAG_imported_declaration:
8298 add_partial_symbol (pdi, cu);
8299 break;
8300 default:
8301 break;
8302 }
8303 }
8304
8305 /* If the die has a sibling, skip to the sibling. */
8306
8307 pdi = pdi->die_sibling;
8308 }
8309 }
8310
8311 /* Functions used to compute the fully scoped name of a partial DIE.
8312
8313 Normally, this is simple. For C++, the parent DIE's fully scoped
8314 name is concatenated with "::" and the partial DIE's name.
8315 Enumerators are an exception; they use the scope of their parent
8316 enumeration type, i.e. the name of the enumeration type is not
8317 prepended to the enumerator.
8318
8319 There are two complexities. One is DW_AT_specification; in this
8320 case "parent" means the parent of the target of the specification,
8321 instead of the direct parent of the DIE. The other is compilers
8322 which do not emit DW_TAG_namespace; in this case we try to guess
8323 the fully qualified name of structure types from their members'
8324 linkage names. This must be done using the DIE's children rather
8325 than the children of any DW_AT_specification target. We only need
8326 to do this for structures at the top level, i.e. if the target of
8327 any DW_AT_specification (if any; otherwise the DIE itself) does not
8328 have a parent. */
8329
8330 /* Compute the scope prefix associated with PDI's parent, in
8331 compilation unit CU. The result will be allocated on CU's
8332 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8333 field. NULL is returned if no prefix is necessary. */
8334 static const char *
8335 partial_die_parent_scope (struct partial_die_info *pdi,
8336 struct dwarf2_cu *cu)
8337 {
8338 const char *grandparent_scope;
8339 struct partial_die_info *parent, *real_pdi;
8340
8341 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8342 then this means the parent of the specification DIE. */
8343
8344 real_pdi = pdi;
8345 while (real_pdi->has_specification)
8346 {
8347 auto res = find_partial_die (real_pdi->spec_offset,
8348 real_pdi->spec_is_dwz, cu);
8349 real_pdi = res.pdi;
8350 cu = res.cu;
8351 }
8352
8353 parent = real_pdi->die_parent;
8354 if (parent == NULL)
8355 return NULL;
8356
8357 if (parent->scope_set)
8358 return parent->scope;
8359
8360 parent->fixup (cu);
8361
8362 grandparent_scope = partial_die_parent_scope (parent, cu);
8363
8364 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8365 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8366 Work around this problem here. */
8367 if (cu->language == language_cplus
8368 && parent->tag == DW_TAG_namespace
8369 && strcmp (parent->name (cu), "::") == 0
8370 && grandparent_scope == NULL)
8371 {
8372 parent->scope = NULL;
8373 parent->scope_set = 1;
8374 return NULL;
8375 }
8376
8377 /* Nested subroutines in Fortran get a prefix. */
8378 if (pdi->tag == DW_TAG_enumerator)
8379 /* Enumerators should not get the name of the enumeration as a prefix. */
8380 parent->scope = grandparent_scope;
8381 else if (parent->tag == DW_TAG_namespace
8382 || parent->tag == DW_TAG_module
8383 || parent->tag == DW_TAG_structure_type
8384 || parent->tag == DW_TAG_class_type
8385 || parent->tag == DW_TAG_interface_type
8386 || parent->tag == DW_TAG_union_type
8387 || parent->tag == DW_TAG_enumeration_type
8388 || (cu->language == language_fortran
8389 && parent->tag == DW_TAG_subprogram
8390 && pdi->tag == DW_TAG_subprogram))
8391 {
8392 if (grandparent_scope == NULL)
8393 parent->scope = parent->name (cu);
8394 else
8395 parent->scope = typename_concat (&cu->comp_unit_obstack,
8396 grandparent_scope,
8397 parent->name (cu), 0, cu);
8398 }
8399 else
8400 {
8401 /* FIXME drow/2004-04-01: What should we be doing with
8402 function-local names? For partial symbols, we should probably be
8403 ignoring them. */
8404 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8405 dwarf_tag_name (parent->tag),
8406 sect_offset_str (pdi->sect_off));
8407 parent->scope = grandparent_scope;
8408 }
8409
8410 parent->scope_set = 1;
8411 return parent->scope;
8412 }
8413
8414 /* Return the fully scoped name associated with PDI, from compilation unit
8415 CU. The result will be allocated with malloc. */
8416
8417 static gdb::unique_xmalloc_ptr<char>
8418 partial_die_full_name (struct partial_die_info *pdi,
8419 struct dwarf2_cu *cu)
8420 {
8421 const char *parent_scope;
8422
8423 /* If this is a template instantiation, we can not work out the
8424 template arguments from partial DIEs. So, unfortunately, we have
8425 to go through the full DIEs. At least any work we do building
8426 types here will be reused if full symbols are loaded later. */
8427 if (pdi->has_template_arguments)
8428 {
8429 pdi->fixup (cu);
8430
8431 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
8432 {
8433 struct die_info *die;
8434 struct attribute attr;
8435 struct dwarf2_cu *ref_cu = cu;
8436
8437 /* DW_FORM_ref_addr is using section offset. */
8438 attr.name = (enum dwarf_attribute) 0;
8439 attr.form = DW_FORM_ref_addr;
8440 attr.u.unsnd = to_underlying (pdi->sect_off);
8441 die = follow_die_ref (NULL, &attr, &ref_cu);
8442
8443 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8444 }
8445 }
8446
8447 parent_scope = partial_die_parent_scope (pdi, cu);
8448 if (parent_scope == NULL)
8449 return NULL;
8450 else
8451 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8452 pdi->name (cu),
8453 0, cu));
8454 }
8455
8456 static void
8457 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8458 {
8459 dwarf2_per_objfile *per_objfile = cu->per_objfile;
8460 struct objfile *objfile = per_objfile->objfile;
8461 struct gdbarch *gdbarch = objfile->arch ();
8462 CORE_ADDR addr = 0;
8463 const char *actual_name = NULL;
8464 CORE_ADDR baseaddr;
8465
8466 baseaddr = objfile->text_section_offset ();
8467
8468 gdb::unique_xmalloc_ptr<char> built_actual_name
8469 = partial_die_full_name (pdi, cu);
8470 if (built_actual_name != NULL)
8471 actual_name = built_actual_name.get ();
8472
8473 if (actual_name == NULL)
8474 actual_name = pdi->name (cu);
8475
8476 partial_symbol psymbol;
8477 memset (&psymbol, 0, sizeof (psymbol));
8478 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8479 psymbol.ginfo.section = -1;
8480
8481 /* The code below indicates that the psymbol should be installed by
8482 setting this. */
8483 gdb::optional<psymbol_placement> where;
8484
8485 switch (pdi->tag)
8486 {
8487 case DW_TAG_inlined_subroutine:
8488 case DW_TAG_subprogram:
8489 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8490 - baseaddr);
8491 if (pdi->is_external
8492 || cu->language == language_ada
8493 || (cu->language == language_fortran
8494 && pdi->die_parent != NULL
8495 && pdi->die_parent->tag == DW_TAG_subprogram))
8496 {
8497 /* Normally, only "external" DIEs are part of the global scope.
8498 But in Ada and Fortran, we want to be able to access nested
8499 procedures globally. So all Ada and Fortran subprograms are
8500 stored in the global scope. */
8501 where = psymbol_placement::GLOBAL;
8502 }
8503 else
8504 where = psymbol_placement::STATIC;
8505
8506 psymbol.domain = VAR_DOMAIN;
8507 psymbol.aclass = LOC_BLOCK;
8508 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8509 psymbol.ginfo.value.address = addr;
8510
8511 if (pdi->main_subprogram && actual_name != NULL)
8512 set_objfile_main_name (objfile, actual_name, cu->language);
8513 break;
8514 case DW_TAG_constant:
8515 psymbol.domain = VAR_DOMAIN;
8516 psymbol.aclass = LOC_STATIC;
8517 where = (pdi->is_external
8518 ? psymbol_placement::GLOBAL
8519 : psymbol_placement::STATIC);
8520 break;
8521 case DW_TAG_variable:
8522 if (pdi->d.locdesc)
8523 addr = decode_locdesc (pdi->d.locdesc, cu);
8524
8525 if (pdi->d.locdesc
8526 && addr == 0
8527 && !per_objfile->per_bfd->has_section_at_zero)
8528 {
8529 /* A global or static variable may also have been stripped
8530 out by the linker if unused, in which case its address
8531 will be nullified; do not add such variables into partial
8532 symbol table then. */
8533 }
8534 else if (pdi->is_external)
8535 {
8536 /* Global Variable.
8537 Don't enter into the minimal symbol tables as there is
8538 a minimal symbol table entry from the ELF symbols already.
8539 Enter into partial symbol table if it has a location
8540 descriptor or a type.
8541 If the location descriptor is missing, new_symbol will create
8542 a LOC_UNRESOLVED symbol, the address of the variable will then
8543 be determined from the minimal symbol table whenever the variable
8544 is referenced.
8545 The address for the partial symbol table entry is not
8546 used by GDB, but it comes in handy for debugging partial symbol
8547 table building. */
8548
8549 if (pdi->d.locdesc || pdi->has_type)
8550 {
8551 psymbol.domain = VAR_DOMAIN;
8552 psymbol.aclass = LOC_STATIC;
8553 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8554 psymbol.ginfo.value.address = addr;
8555 where = psymbol_placement::GLOBAL;
8556 }
8557 }
8558 else
8559 {
8560 int has_loc = pdi->d.locdesc != NULL;
8561
8562 /* Static Variable. Skip symbols whose value we cannot know (those
8563 without location descriptors or constant values). */
8564 if (!has_loc && !pdi->has_const_value)
8565 return;
8566
8567 psymbol.domain = VAR_DOMAIN;
8568 psymbol.aclass = LOC_STATIC;
8569 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8570 if (has_loc)
8571 psymbol.ginfo.value.address = addr;
8572 where = psymbol_placement::STATIC;
8573 }
8574 break;
8575 case DW_TAG_typedef:
8576 case DW_TAG_base_type:
8577 case DW_TAG_subrange_type:
8578 psymbol.domain = VAR_DOMAIN;
8579 psymbol.aclass = LOC_TYPEDEF;
8580 where = psymbol_placement::STATIC;
8581 break;
8582 case DW_TAG_imported_declaration:
8583 case DW_TAG_namespace:
8584 psymbol.domain = VAR_DOMAIN;
8585 psymbol.aclass = LOC_TYPEDEF;
8586 where = psymbol_placement::GLOBAL;
8587 break;
8588 case DW_TAG_module:
8589 /* With Fortran 77 there might be a "BLOCK DATA" module
8590 available without any name. If so, we skip the module as it
8591 doesn't bring any value. */
8592 if (actual_name != nullptr)
8593 {
8594 psymbol.domain = MODULE_DOMAIN;
8595 psymbol.aclass = LOC_TYPEDEF;
8596 where = psymbol_placement::GLOBAL;
8597 }
8598 break;
8599 case DW_TAG_class_type:
8600 case DW_TAG_interface_type:
8601 case DW_TAG_structure_type:
8602 case DW_TAG_union_type:
8603 case DW_TAG_enumeration_type:
8604 /* Skip external references. The DWARF standard says in the section
8605 about "Structure, Union, and Class Type Entries": "An incomplete
8606 structure, union or class type is represented by a structure,
8607 union or class entry that does not have a byte size attribute
8608 and that has a DW_AT_declaration attribute." */
8609 if (!pdi->has_byte_size && pdi->is_declaration)
8610 return;
8611
8612 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8613 static vs. global. */
8614 psymbol.domain = STRUCT_DOMAIN;
8615 psymbol.aclass = LOC_TYPEDEF;
8616 where = (cu->language == language_cplus
8617 ? psymbol_placement::GLOBAL
8618 : psymbol_placement::STATIC);
8619 break;
8620 case DW_TAG_enumerator:
8621 psymbol.domain = VAR_DOMAIN;
8622 psymbol.aclass = LOC_CONST;
8623 where = (cu->language == language_cplus
8624 ? psymbol_placement::GLOBAL
8625 : psymbol_placement::STATIC);
8626 break;
8627 default:
8628 break;
8629 }
8630
8631 if (where.has_value ())
8632 {
8633 if (built_actual_name != nullptr)
8634 actual_name = objfile->intern (actual_name);
8635 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8636 psymbol.ginfo.set_linkage_name (actual_name);
8637 else
8638 {
8639 psymbol.ginfo.set_demangled_name (actual_name,
8640 &objfile->objfile_obstack);
8641 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8642 }
8643 add_psymbol_to_list (psymbol, *where, objfile);
8644 }
8645 }
8646
8647 /* Read a partial die corresponding to a namespace; also, add a symbol
8648 corresponding to that namespace to the symbol table. NAMESPACE is
8649 the name of the enclosing namespace. */
8650
8651 static void
8652 add_partial_namespace (struct partial_die_info *pdi,
8653 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8654 int set_addrmap, struct dwarf2_cu *cu)
8655 {
8656 /* Add a symbol for the namespace. */
8657
8658 add_partial_symbol (pdi, cu);
8659
8660 /* Now scan partial symbols in that namespace. */
8661
8662 if (pdi->has_children)
8663 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8664 }
8665
8666 /* Read a partial die corresponding to a Fortran module. */
8667
8668 static void
8669 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8670 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8671 {
8672 /* Add a symbol for the namespace. */
8673
8674 add_partial_symbol (pdi, cu);
8675
8676 /* Now scan partial symbols in that module. */
8677
8678 if (pdi->has_children)
8679 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8680 }
8681
8682 /* Read a partial die corresponding to a subprogram or an inlined
8683 subprogram and create a partial symbol for that subprogram.
8684 When the CU language allows it, this routine also defines a partial
8685 symbol for each nested subprogram that this subprogram contains.
8686 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8687 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8688
8689 PDI may also be a lexical block, in which case we simply search
8690 recursively for subprograms defined inside that lexical block.
8691 Again, this is only performed when the CU language allows this
8692 type of definitions. */
8693
8694 static void
8695 add_partial_subprogram (struct partial_die_info *pdi,
8696 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8697 int set_addrmap, struct dwarf2_cu *cu)
8698 {
8699 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8700 {
8701 if (pdi->has_pc_info)
8702 {
8703 if (pdi->lowpc < *lowpc)
8704 *lowpc = pdi->lowpc;
8705 if (pdi->highpc > *highpc)
8706 *highpc = pdi->highpc;
8707 if (set_addrmap)
8708 {
8709 struct objfile *objfile = cu->per_objfile->objfile;
8710 struct gdbarch *gdbarch = objfile->arch ();
8711 CORE_ADDR baseaddr;
8712 CORE_ADDR this_highpc;
8713 CORE_ADDR this_lowpc;
8714
8715 baseaddr = objfile->text_section_offset ();
8716 this_lowpc
8717 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8718 pdi->lowpc + baseaddr)
8719 - baseaddr);
8720 this_highpc
8721 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8722 pdi->highpc + baseaddr)
8723 - baseaddr);
8724 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8725 this_lowpc, this_highpc - 1,
8726 cu->per_cu->v.psymtab);
8727 }
8728 }
8729
8730 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8731 {
8732 if (!pdi->is_declaration)
8733 /* Ignore subprogram DIEs that do not have a name, they are
8734 illegal. Do not emit a complaint at this point, we will
8735 do so when we convert this psymtab into a symtab. */
8736 if (pdi->name (cu))
8737 add_partial_symbol (pdi, cu);
8738 }
8739 }
8740
8741 if (! pdi->has_children)
8742 return;
8743
8744 if (cu->language == language_ada || cu->language == language_fortran)
8745 {
8746 pdi = pdi->die_child;
8747 while (pdi != NULL)
8748 {
8749 pdi->fixup (cu);
8750 if (pdi->tag == DW_TAG_subprogram
8751 || pdi->tag == DW_TAG_inlined_subroutine
8752 || pdi->tag == DW_TAG_lexical_block)
8753 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8754 pdi = pdi->die_sibling;
8755 }
8756 }
8757 }
8758
8759 /* Read a partial die corresponding to an enumeration type. */
8760
8761 static void
8762 add_partial_enumeration (struct partial_die_info *enum_pdi,
8763 struct dwarf2_cu *cu)
8764 {
8765 struct partial_die_info *pdi;
8766
8767 if (enum_pdi->name (cu) != NULL)
8768 add_partial_symbol (enum_pdi, cu);
8769
8770 pdi = enum_pdi->die_child;
8771 while (pdi)
8772 {
8773 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8774 complaint (_("malformed enumerator DIE ignored"));
8775 else
8776 add_partial_symbol (pdi, cu);
8777 pdi = pdi->die_sibling;
8778 }
8779 }
8780
8781 /* Return the initial uleb128 in the die at INFO_PTR. */
8782
8783 static unsigned int
8784 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8785 {
8786 unsigned int bytes_read;
8787
8788 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8789 }
8790
8791 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8792 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8793
8794 Return the corresponding abbrev, or NULL if the number is zero (indicating
8795 an empty DIE). In either case *BYTES_READ will be set to the length of
8796 the initial number. */
8797
8798 static struct abbrev_info *
8799 peek_die_abbrev (const die_reader_specs &reader,
8800 const gdb_byte *info_ptr, unsigned int *bytes_read)
8801 {
8802 dwarf2_cu *cu = reader.cu;
8803 bfd *abfd = cu->per_objfile->objfile->obfd;
8804 unsigned int abbrev_number
8805 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8806
8807 if (abbrev_number == 0)
8808 return NULL;
8809
8810 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8811 if (!abbrev)
8812 {
8813 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8814 " at offset %s [in module %s]"),
8815 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8816 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8817 }
8818
8819 return abbrev;
8820 }
8821
8822 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8823 Returns a pointer to the end of a series of DIEs, terminated by an empty
8824 DIE. Any children of the skipped DIEs will also be skipped. */
8825
8826 static const gdb_byte *
8827 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8828 {
8829 while (1)
8830 {
8831 unsigned int bytes_read;
8832 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8833
8834 if (abbrev == NULL)
8835 return info_ptr + bytes_read;
8836 else
8837 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8838 }
8839 }
8840
8841 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8842 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8843 abbrev corresponding to that skipped uleb128 should be passed in
8844 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8845 children. */
8846
8847 static const gdb_byte *
8848 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8849 struct abbrev_info *abbrev)
8850 {
8851 unsigned int bytes_read;
8852 struct attribute attr;
8853 bfd *abfd = reader->abfd;
8854 struct dwarf2_cu *cu = reader->cu;
8855 const gdb_byte *buffer = reader->buffer;
8856 const gdb_byte *buffer_end = reader->buffer_end;
8857 unsigned int form, i;
8858
8859 for (i = 0; i < abbrev->num_attrs; i++)
8860 {
8861 /* The only abbrev we care about is DW_AT_sibling. */
8862 if (abbrev->attrs[i].name == DW_AT_sibling)
8863 {
8864 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8865 if (attr.form == DW_FORM_ref_addr)
8866 complaint (_("ignoring absolute DW_AT_sibling"));
8867 else
8868 {
8869 sect_offset off = attr.get_ref_die_offset ();
8870 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8871
8872 if (sibling_ptr < info_ptr)
8873 complaint (_("DW_AT_sibling points backwards"));
8874 else if (sibling_ptr > reader->buffer_end)
8875 reader->die_section->overflow_complaint ();
8876 else
8877 return sibling_ptr;
8878 }
8879 }
8880
8881 /* If it isn't DW_AT_sibling, skip this attribute. */
8882 form = abbrev->attrs[i].form;
8883 skip_attribute:
8884 switch (form)
8885 {
8886 case DW_FORM_ref_addr:
8887 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8888 and later it is offset sized. */
8889 if (cu->header.version == 2)
8890 info_ptr += cu->header.addr_size;
8891 else
8892 info_ptr += cu->header.offset_size;
8893 break;
8894 case DW_FORM_GNU_ref_alt:
8895 info_ptr += cu->header.offset_size;
8896 break;
8897 case DW_FORM_addr:
8898 info_ptr += cu->header.addr_size;
8899 break;
8900 case DW_FORM_data1:
8901 case DW_FORM_ref1:
8902 case DW_FORM_flag:
8903 case DW_FORM_strx1:
8904 info_ptr += 1;
8905 break;
8906 case DW_FORM_flag_present:
8907 case DW_FORM_implicit_const:
8908 break;
8909 case DW_FORM_data2:
8910 case DW_FORM_ref2:
8911 case DW_FORM_strx2:
8912 info_ptr += 2;
8913 break;
8914 case DW_FORM_strx3:
8915 info_ptr += 3;
8916 break;
8917 case DW_FORM_data4:
8918 case DW_FORM_ref4:
8919 case DW_FORM_strx4:
8920 info_ptr += 4;
8921 break;
8922 case DW_FORM_data8:
8923 case DW_FORM_ref8:
8924 case DW_FORM_ref_sig8:
8925 info_ptr += 8;
8926 break;
8927 case DW_FORM_data16:
8928 info_ptr += 16;
8929 break;
8930 case DW_FORM_string:
8931 read_direct_string (abfd, info_ptr, &bytes_read);
8932 info_ptr += bytes_read;
8933 break;
8934 case DW_FORM_sec_offset:
8935 case DW_FORM_strp:
8936 case DW_FORM_GNU_strp_alt:
8937 info_ptr += cu->header.offset_size;
8938 break;
8939 case DW_FORM_exprloc:
8940 case DW_FORM_block:
8941 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8942 info_ptr += bytes_read;
8943 break;
8944 case DW_FORM_block1:
8945 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8946 break;
8947 case DW_FORM_block2:
8948 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8949 break;
8950 case DW_FORM_block4:
8951 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8952 break;
8953 case DW_FORM_addrx:
8954 case DW_FORM_strx:
8955 case DW_FORM_sdata:
8956 case DW_FORM_udata:
8957 case DW_FORM_ref_udata:
8958 case DW_FORM_GNU_addr_index:
8959 case DW_FORM_GNU_str_index:
8960 case DW_FORM_rnglistx:
8961 case DW_FORM_loclistx:
8962 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8963 break;
8964 case DW_FORM_indirect:
8965 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8966 info_ptr += bytes_read;
8967 /* We need to continue parsing from here, so just go back to
8968 the top. */
8969 goto skip_attribute;
8970
8971 default:
8972 error (_("Dwarf Error: Cannot handle %s "
8973 "in DWARF reader [in module %s]"),
8974 dwarf_form_name (form),
8975 bfd_get_filename (abfd));
8976 }
8977 }
8978
8979 if (abbrev->has_children)
8980 return skip_children (reader, info_ptr);
8981 else
8982 return info_ptr;
8983 }
8984
8985 /* Locate ORIG_PDI's sibling.
8986 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8987
8988 static const gdb_byte *
8989 locate_pdi_sibling (const struct die_reader_specs *reader,
8990 struct partial_die_info *orig_pdi,
8991 const gdb_byte *info_ptr)
8992 {
8993 /* Do we know the sibling already? */
8994
8995 if (orig_pdi->sibling)
8996 return orig_pdi->sibling;
8997
8998 /* Are there any children to deal with? */
8999
9000 if (!orig_pdi->has_children)
9001 return info_ptr;
9002
9003 /* Skip the children the long way. */
9004
9005 return skip_children (reader, info_ptr);
9006 }
9007
9008 /* Expand this partial symbol table into a full symbol table. SELF is
9009 not NULL. */
9010
9011 void
9012 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9013 {
9014 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9015
9016 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
9017
9018 /* If this psymtab is constructed from a debug-only objfile, the
9019 has_section_at_zero flag will not necessarily be correct. We
9020 can get the correct value for this flag by looking at the data
9021 associated with the (presumably stripped) associated objfile. */
9022 if (objfile->separate_debug_objfile_backlink)
9023 {
9024 dwarf2_per_objfile *per_objfile_backlink
9025 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9026
9027 per_objfile->per_bfd->has_section_at_zero
9028 = per_objfile_backlink->per_bfd->has_section_at_zero;
9029 }
9030
9031 expand_psymtab (objfile);
9032
9033 process_cu_includes (per_objfile);
9034 }
9035 \f
9036 /* Reading in full CUs. */
9037
9038 /* Add PER_CU to the queue. */
9039
9040 static void
9041 queue_comp_unit (dwarf2_per_cu_data *per_cu,
9042 dwarf2_per_objfile *per_objfile,
9043 enum language pretend_language)
9044 {
9045 per_cu->queued = 1;
9046 per_cu->per_bfd->queue.emplace (per_cu, per_objfile, pretend_language);
9047 }
9048
9049 /* If PER_CU is not yet queued, add it to the queue.
9050 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9051 dependency.
9052 The result is non-zero if PER_CU was queued, otherwise the result is zero
9053 meaning either PER_CU is already queued or it is already loaded.
9054
9055 N.B. There is an invariant here that if a CU is queued then it is loaded.
9056 The caller is required to load PER_CU if we return non-zero. */
9057
9058 static int
9059 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9060 dwarf2_per_cu_data *per_cu,
9061 dwarf2_per_objfile *per_objfile,
9062 enum language pretend_language)
9063 {
9064 /* We may arrive here during partial symbol reading, if we need full
9065 DIEs to process an unusual case (e.g. template arguments). Do
9066 not queue PER_CU, just tell our caller to load its DIEs. */
9067 if (per_cu->per_bfd->reading_partial_symbols)
9068 {
9069 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9070
9071 if (cu == NULL || cu->dies == NULL)
9072 return 1;
9073 return 0;
9074 }
9075
9076 /* Mark the dependence relation so that we don't flush PER_CU
9077 too early. */
9078 if (dependent_cu != NULL)
9079 dwarf2_add_dependence (dependent_cu, per_cu);
9080
9081 /* If it's already on the queue, we have nothing to do. */
9082 if (per_cu->queued)
9083 return 0;
9084
9085 /* If the compilation unit is already loaded, just mark it as
9086 used. */
9087 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9088 if (cu != nullptr)
9089 {
9090 cu->last_used = 0;
9091 return 0;
9092 }
9093
9094 /* Add it to the queue. */
9095 queue_comp_unit (per_cu, per_objfile, pretend_language);
9096
9097 return 1;
9098 }
9099
9100 /* Process the queue. */
9101
9102 static void
9103 process_queue (dwarf2_per_objfile *per_objfile)
9104 {
9105 if (dwarf_read_debug)
9106 {
9107 fprintf_unfiltered (gdb_stdlog,
9108 "Expanding one or more symtabs of objfile %s ...\n",
9109 objfile_name (per_objfile->objfile));
9110 }
9111
9112 /* The queue starts out with one item, but following a DIE reference
9113 may load a new CU, adding it to the end of the queue. */
9114 while (!per_objfile->per_bfd->queue.empty ())
9115 {
9116 dwarf2_queue_item &item = per_objfile->per_bfd->queue.front ();
9117 dwarf2_per_cu_data *per_cu = item.per_cu;
9118
9119 if (!per_objfile->symtab_set_p (per_cu))
9120 {
9121 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
9122
9123 /* Skip dummy CUs. */
9124 if (cu != nullptr)
9125 {
9126 unsigned int debug_print_threshold;
9127 char buf[100];
9128
9129 if (per_cu->is_debug_types)
9130 {
9131 struct signatured_type *sig_type =
9132 (struct signatured_type *) per_cu;
9133
9134 sprintf (buf, "TU %s at offset %s",
9135 hex_string (sig_type->signature),
9136 sect_offset_str (per_cu->sect_off));
9137 /* There can be 100s of TUs.
9138 Only print them in verbose mode. */
9139 debug_print_threshold = 2;
9140 }
9141 else
9142 {
9143 sprintf (buf, "CU at offset %s",
9144 sect_offset_str (per_cu->sect_off));
9145 debug_print_threshold = 1;
9146 }
9147
9148 if (dwarf_read_debug >= debug_print_threshold)
9149 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9150
9151 if (per_cu->is_debug_types)
9152 process_full_type_unit (cu, item.pretend_language);
9153 else
9154 process_full_comp_unit (cu, item.pretend_language);
9155
9156 if (dwarf_read_debug >= debug_print_threshold)
9157 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9158 }
9159 }
9160
9161 per_cu->queued = 0;
9162 per_objfile->per_bfd->queue.pop ();
9163 }
9164
9165 if (dwarf_read_debug)
9166 {
9167 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9168 objfile_name (per_objfile->objfile));
9169 }
9170 }
9171
9172 /* Read in full symbols for PST, and anything it depends on. */
9173
9174 void
9175 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9176 {
9177 gdb_assert (!readin_p (objfile));
9178
9179 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9180 free_cached_comp_units freer (per_objfile);
9181 expand_dependencies (objfile);
9182
9183 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
9184 gdb_assert (get_compunit_symtab (objfile) != nullptr);
9185 }
9186
9187 /* See psympriv.h. */
9188
9189 bool
9190 dwarf2_psymtab::readin_p (struct objfile *objfile) const
9191 {
9192 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9193 return per_objfile->symtab_set_p (per_cu_data);
9194 }
9195
9196 /* See psympriv.h. */
9197
9198 compunit_symtab *
9199 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
9200 {
9201 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
9202 return per_objfile->get_symtab (per_cu_data);
9203 }
9204
9205 /* Trivial hash function for die_info: the hash value of a DIE
9206 is its offset in .debug_info for this objfile. */
9207
9208 static hashval_t
9209 die_hash (const void *item)
9210 {
9211 const struct die_info *die = (const struct die_info *) item;
9212
9213 return to_underlying (die->sect_off);
9214 }
9215
9216 /* Trivial comparison function for die_info structures: two DIEs
9217 are equal if they have the same offset. */
9218
9219 static int
9220 die_eq (const void *item_lhs, const void *item_rhs)
9221 {
9222 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9223 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9224
9225 return die_lhs->sect_off == die_rhs->sect_off;
9226 }
9227
9228 /* Load the DIEs associated with PER_CU into memory. */
9229
9230 static void
9231 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
9232 dwarf2_per_objfile *per_objfile,
9233 bool skip_partial,
9234 enum language pretend_language)
9235 {
9236 gdb_assert (! this_cu->is_debug_types);
9237
9238 dwarf2_cu *existing_cu = per_objfile->get_cu (this_cu);
9239 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
9240 if (reader.dummy_p)
9241 return;
9242
9243 struct dwarf2_cu *cu = reader.cu;
9244 const gdb_byte *info_ptr = reader.info_ptr;
9245
9246 gdb_assert (cu->die_hash == NULL);
9247 cu->die_hash =
9248 htab_create_alloc_ex (cu->header.length / 12,
9249 die_hash,
9250 die_eq,
9251 NULL,
9252 &cu->comp_unit_obstack,
9253 hashtab_obstack_allocate,
9254 dummy_obstack_deallocate);
9255
9256 if (reader.comp_unit_die->has_children)
9257 reader.comp_unit_die->child
9258 = read_die_and_siblings (&reader, reader.info_ptr,
9259 &info_ptr, reader.comp_unit_die);
9260 cu->dies = reader.comp_unit_die;
9261 /* comp_unit_die is not stored in die_hash, no need. */
9262
9263 /* We try not to read any attributes in this function, because not
9264 all CUs needed for references have been loaded yet, and symbol
9265 table processing isn't initialized. But we have to set the CU language,
9266 or we won't be able to build types correctly.
9267 Similarly, if we do not read the producer, we can not apply
9268 producer-specific interpretation. */
9269 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9270
9271 reader.keep ();
9272 }
9273
9274 /* Add a DIE to the delayed physname list. */
9275
9276 static void
9277 add_to_method_list (struct type *type, int fnfield_index, int index,
9278 const char *name, struct die_info *die,
9279 struct dwarf2_cu *cu)
9280 {
9281 struct delayed_method_info mi;
9282 mi.type = type;
9283 mi.fnfield_index = fnfield_index;
9284 mi.index = index;
9285 mi.name = name;
9286 mi.die = die;
9287 cu->method_list.push_back (mi);
9288 }
9289
9290 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9291 "const" / "volatile". If so, decrements LEN by the length of the
9292 modifier and return true. Otherwise return false. */
9293
9294 template<size_t N>
9295 static bool
9296 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9297 {
9298 size_t mod_len = sizeof (mod) - 1;
9299 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9300 {
9301 len -= mod_len;
9302 return true;
9303 }
9304 return false;
9305 }
9306
9307 /* Compute the physnames of any methods on the CU's method list.
9308
9309 The computation of method physnames is delayed in order to avoid the
9310 (bad) condition that one of the method's formal parameters is of an as yet
9311 incomplete type. */
9312
9313 static void
9314 compute_delayed_physnames (struct dwarf2_cu *cu)
9315 {
9316 /* Only C++ delays computing physnames. */
9317 if (cu->method_list.empty ())
9318 return;
9319 gdb_assert (cu->language == language_cplus);
9320
9321 for (const delayed_method_info &mi : cu->method_list)
9322 {
9323 const char *physname;
9324 struct fn_fieldlist *fn_flp
9325 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9326 physname = dwarf2_physname (mi.name, mi.die, cu);
9327 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9328 = physname ? physname : "";
9329
9330 /* Since there's no tag to indicate whether a method is a
9331 const/volatile overload, extract that information out of the
9332 demangled name. */
9333 if (physname != NULL)
9334 {
9335 size_t len = strlen (physname);
9336
9337 while (1)
9338 {
9339 if (physname[len] == ')') /* shortcut */
9340 break;
9341 else if (check_modifier (physname, len, " const"))
9342 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9343 else if (check_modifier (physname, len, " volatile"))
9344 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9345 else
9346 break;
9347 }
9348 }
9349 }
9350
9351 /* The list is no longer needed. */
9352 cu->method_list.clear ();
9353 }
9354
9355 /* Go objects should be embedded in a DW_TAG_module DIE,
9356 and it's not clear if/how imported objects will appear.
9357 To keep Go support simple until that's worked out,
9358 go back through what we've read and create something usable.
9359 We could do this while processing each DIE, and feels kinda cleaner,
9360 but that way is more invasive.
9361 This is to, for example, allow the user to type "p var" or "b main"
9362 without having to specify the package name, and allow lookups
9363 of module.object to work in contexts that use the expression
9364 parser. */
9365
9366 static void
9367 fixup_go_packaging (struct dwarf2_cu *cu)
9368 {
9369 gdb::unique_xmalloc_ptr<char> package_name;
9370 struct pending *list;
9371 int i;
9372
9373 for (list = *cu->get_builder ()->get_global_symbols ();
9374 list != NULL;
9375 list = list->next)
9376 {
9377 for (i = 0; i < list->nsyms; ++i)
9378 {
9379 struct symbol *sym = list->symbol[i];
9380
9381 if (sym->language () == language_go
9382 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9383 {
9384 gdb::unique_xmalloc_ptr<char> this_package_name
9385 (go_symbol_package_name (sym));
9386
9387 if (this_package_name == NULL)
9388 continue;
9389 if (package_name == NULL)
9390 package_name = std::move (this_package_name);
9391 else
9392 {
9393 struct objfile *objfile = cu->per_objfile->objfile;
9394 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9395 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9396 (symbol_symtab (sym) != NULL
9397 ? symtab_to_filename_for_display
9398 (symbol_symtab (sym))
9399 : objfile_name (objfile)),
9400 this_package_name.get (), package_name.get ());
9401 }
9402 }
9403 }
9404 }
9405
9406 if (package_name != NULL)
9407 {
9408 struct objfile *objfile = cu->per_objfile->objfile;
9409 const char *saved_package_name = objfile->intern (package_name.get ());
9410 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9411 saved_package_name);
9412 struct symbol *sym;
9413
9414 sym = new (&objfile->objfile_obstack) symbol;
9415 sym->set_language (language_go, &objfile->objfile_obstack);
9416 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9417 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9418 e.g., "main" finds the "main" module and not C's main(). */
9419 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9420 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9421 SYMBOL_TYPE (sym) = type;
9422
9423 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9424 }
9425 }
9426
9427 /* Allocate a fully-qualified name consisting of the two parts on the
9428 obstack. */
9429
9430 static const char *
9431 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9432 {
9433 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9434 }
9435
9436 /* A helper that allocates a variant part to attach to a Rust enum
9437 type. OBSTACK is where the results should be allocated. TYPE is
9438 the type we're processing. DISCRIMINANT_INDEX is the index of the
9439 discriminant. It must be the index of one of the fields of TYPE,
9440 or -1 to mean there is no discriminant (univariant enum).
9441 DEFAULT_INDEX is the index of the default field; or -1 if there is
9442 no default. RANGES is indexed by "effective" field number (the
9443 field index, but omitting the discriminant and default fields) and
9444 must hold the discriminant values used by the variants. Note that
9445 RANGES must have a lifetime at least as long as OBSTACK -- either
9446 already allocated on it, or static. */
9447
9448 static void
9449 alloc_rust_variant (struct obstack *obstack, struct type *type,
9450 int discriminant_index, int default_index,
9451 gdb::array_view<discriminant_range> ranges)
9452 {
9453 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */
9454 gdb_assert (discriminant_index == -1
9455 || (discriminant_index >= 0
9456 && discriminant_index < type->num_fields ()));
9457 gdb_assert (default_index == -1
9458 || (default_index >= 0 && default_index < type->num_fields ()));
9459
9460 /* We have one variant for each non-discriminant field. */
9461 int n_variants = type->num_fields ();
9462 if (discriminant_index != -1)
9463 --n_variants;
9464
9465 variant *variants = new (obstack) variant[n_variants];
9466 int var_idx = 0;
9467 int range_idx = 0;
9468 for (int i = 0; i < type->num_fields (); ++i)
9469 {
9470 if (i == discriminant_index)
9471 continue;
9472
9473 variants[var_idx].first_field = i;
9474 variants[var_idx].last_field = i + 1;
9475
9476 /* The default field does not need a range, but other fields do.
9477 We skipped the discriminant above. */
9478 if (i != default_index)
9479 {
9480 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9481 ++range_idx;
9482 }
9483
9484 ++var_idx;
9485 }
9486
9487 gdb_assert (range_idx == ranges.size ());
9488 gdb_assert (var_idx == n_variants);
9489
9490 variant_part *part = new (obstack) variant_part;
9491 part->discriminant_index = discriminant_index;
9492 /* If there is no discriminant, then whether it is signed is of no
9493 consequence. */
9494 part->is_unsigned
9495 = (discriminant_index == -1
9496 ? false
9497 : type->field (discriminant_index).type ()->is_unsigned ());
9498 part->variants = gdb::array_view<variant> (variants, n_variants);
9499
9500 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9501 gdb::array_view<variant_part> *prop_value
9502 = new (storage) gdb::array_view<variant_part> (part, 1);
9503
9504 struct dynamic_prop prop;
9505 prop.set_variant_parts (prop_value);
9506
9507 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9508 }
9509
9510 /* Some versions of rustc emitted enums in an unusual way.
9511
9512 Ordinary enums were emitted as unions. The first element of each
9513 structure in the union was named "RUST$ENUM$DISR". This element
9514 held the discriminant.
9515
9516 These versions of Rust also implemented the "non-zero"
9517 optimization. When the enum had two values, and one is empty and
9518 the other holds a pointer that cannot be zero, the pointer is used
9519 as the discriminant, with a zero value meaning the empty variant.
9520 Here, the union's first member is of the form
9521 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9522 where the fieldnos are the indices of the fields that should be
9523 traversed in order to find the field (which may be several fields deep)
9524 and the variantname is the name of the variant of the case when the
9525 field is zero.
9526
9527 This function recognizes whether TYPE is of one of these forms,
9528 and, if so, smashes it to be a variant type. */
9529
9530 static void
9531 quirk_rust_enum (struct type *type, struct objfile *objfile)
9532 {
9533 gdb_assert (type->code () == TYPE_CODE_UNION);
9534
9535 /* We don't need to deal with empty enums. */
9536 if (type->num_fields () == 0)
9537 return;
9538
9539 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9540 if (type->num_fields () == 1
9541 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9542 {
9543 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9544
9545 /* Decode the field name to find the offset of the
9546 discriminant. */
9547 ULONGEST bit_offset = 0;
9548 struct type *field_type = type->field (0).type ();
9549 while (name[0] >= '0' && name[0] <= '9')
9550 {
9551 char *tail;
9552 unsigned long index = strtoul (name, &tail, 10);
9553 name = tail;
9554 if (*name != '$'
9555 || index >= field_type->num_fields ()
9556 || (TYPE_FIELD_LOC_KIND (field_type, index)
9557 != FIELD_LOC_KIND_BITPOS))
9558 {
9559 complaint (_("Could not parse Rust enum encoding string \"%s\""
9560 "[in module %s]"),
9561 TYPE_FIELD_NAME (type, 0),
9562 objfile_name (objfile));
9563 return;
9564 }
9565 ++name;
9566
9567 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9568 field_type = field_type->field (index).type ();
9569 }
9570
9571 /* Smash this type to be a structure type. We have to do this
9572 because the type has already been recorded. */
9573 type->set_code (TYPE_CODE_STRUCT);
9574 type->set_num_fields (3);
9575 /* Save the field we care about. */
9576 struct field saved_field = type->field (0);
9577 type->set_fields
9578 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9579
9580 /* Put the discriminant at index 0. */
9581 type->field (0).set_type (field_type);
9582 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9583 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9584 SET_FIELD_BITPOS (type->field (0), bit_offset);
9585
9586 /* The order of fields doesn't really matter, so put the real
9587 field at index 1 and the data-less field at index 2. */
9588 type->field (1) = saved_field;
9589 TYPE_FIELD_NAME (type, 1)
9590 = rust_last_path_segment (type->field (1).type ()->name ());
9591 type->field (1).type ()->set_name
9592 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9593 TYPE_FIELD_NAME (type, 1)));
9594
9595 const char *dataless_name
9596 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9597 name);
9598 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9599 dataless_name);
9600 type->field (2).set_type (dataless_type);
9601 /* NAME points into the original discriminant name, which
9602 already has the correct lifetime. */
9603 TYPE_FIELD_NAME (type, 2) = name;
9604 SET_FIELD_BITPOS (type->field (2), 0);
9605
9606 /* Indicate that this is a variant type. */
9607 static discriminant_range ranges[1] = { { 0, 0 } };
9608 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9609 }
9610 /* A union with a single anonymous field is probably an old-style
9611 univariant enum. */
9612 else if (type->num_fields () == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9613 {
9614 /* Smash this type to be a structure type. We have to do this
9615 because the type has already been recorded. */
9616 type->set_code (TYPE_CODE_STRUCT);
9617
9618 struct type *field_type = type->field (0).type ();
9619 const char *variant_name
9620 = rust_last_path_segment (field_type->name ());
9621 TYPE_FIELD_NAME (type, 0) = variant_name;
9622 field_type->set_name
9623 (rust_fully_qualify (&objfile->objfile_obstack,
9624 type->name (), variant_name));
9625
9626 alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {});
9627 }
9628 else
9629 {
9630 struct type *disr_type = nullptr;
9631 for (int i = 0; i < type->num_fields (); ++i)
9632 {
9633 disr_type = type->field (i).type ();
9634
9635 if (disr_type->code () != TYPE_CODE_STRUCT)
9636 {
9637 /* All fields of a true enum will be structs. */
9638 return;
9639 }
9640 else if (disr_type->num_fields () == 0)
9641 {
9642 /* Could be data-less variant, so keep going. */
9643 disr_type = nullptr;
9644 }
9645 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9646 "RUST$ENUM$DISR") != 0)
9647 {
9648 /* Not a Rust enum. */
9649 return;
9650 }
9651 else
9652 {
9653 /* Found one. */
9654 break;
9655 }
9656 }
9657
9658 /* If we got here without a discriminant, then it's probably
9659 just a union. */
9660 if (disr_type == nullptr)
9661 return;
9662
9663 /* Smash this type to be a structure type. We have to do this
9664 because the type has already been recorded. */
9665 type->set_code (TYPE_CODE_STRUCT);
9666
9667 /* Make space for the discriminant field. */
9668 struct field *disr_field = &disr_type->field (0);
9669 field *new_fields
9670 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9671 * sizeof (struct field)));
9672 memcpy (new_fields + 1, type->fields (),
9673 type->num_fields () * sizeof (struct field));
9674 type->set_fields (new_fields);
9675 type->set_num_fields (type->num_fields () + 1);
9676
9677 /* Install the discriminant at index 0 in the union. */
9678 type->field (0) = *disr_field;
9679 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9680 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9681
9682 /* We need a way to find the correct discriminant given a
9683 variant name. For convenience we build a map here. */
9684 struct type *enum_type = disr_field->type ();
9685 std::unordered_map<std::string, ULONGEST> discriminant_map;
9686 for (int i = 0; i < enum_type->num_fields (); ++i)
9687 {
9688 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9689 {
9690 const char *name
9691 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9692 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9693 }
9694 }
9695
9696 int n_fields = type->num_fields ();
9697 /* We don't need a range entry for the discriminant, but we do
9698 need one for every other field, as there is no default
9699 variant. */
9700 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9701 discriminant_range,
9702 n_fields - 1);
9703 /* Skip the discriminant here. */
9704 for (int i = 1; i < n_fields; ++i)
9705 {
9706 /* Find the final word in the name of this variant's type.
9707 That name can be used to look up the correct
9708 discriminant. */
9709 const char *variant_name
9710 = rust_last_path_segment (type->field (i).type ()->name ());
9711
9712 auto iter = discriminant_map.find (variant_name);
9713 if (iter != discriminant_map.end ())
9714 {
9715 ranges[i - 1].low = iter->second;
9716 ranges[i - 1].high = iter->second;
9717 }
9718
9719 /* In Rust, each element should have the size of the
9720 enclosing enum. */
9721 TYPE_LENGTH (type->field (i).type ()) = TYPE_LENGTH (type);
9722
9723 /* Remove the discriminant field, if it exists. */
9724 struct type *sub_type = type->field (i).type ();
9725 if (sub_type->num_fields () > 0)
9726 {
9727 sub_type->set_num_fields (sub_type->num_fields () - 1);
9728 sub_type->set_fields (sub_type->fields () + 1);
9729 }
9730 TYPE_FIELD_NAME (type, i) = variant_name;
9731 sub_type->set_name
9732 (rust_fully_qualify (&objfile->objfile_obstack,
9733 type->name (), variant_name));
9734 }
9735
9736 /* Indicate that this is a variant type. */
9737 alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1,
9738 gdb::array_view<discriminant_range> (ranges,
9739 n_fields - 1));
9740 }
9741 }
9742
9743 /* Rewrite some Rust unions to be structures with variants parts. */
9744
9745 static void
9746 rust_union_quirks (struct dwarf2_cu *cu)
9747 {
9748 gdb_assert (cu->language == language_rust);
9749 for (type *type_ : cu->rust_unions)
9750 quirk_rust_enum (type_, cu->per_objfile->objfile);
9751 /* We don't need this any more. */
9752 cu->rust_unions.clear ();
9753 }
9754
9755 /* See read.h. */
9756
9757 type_unit_group_unshareable *
9758 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9759 {
9760 auto iter = this->m_type_units.find (tu_group);
9761 if (iter != this->m_type_units.end ())
9762 return iter->second.get ();
9763
9764 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9765 type_unit_group_unshareable *result = uniq.get ();
9766 this->m_type_units[tu_group] = std::move (uniq);
9767 return result;
9768 }
9769
9770 struct type *
9771 dwarf2_per_objfile::get_type_for_signatured_type
9772 (signatured_type *sig_type) const
9773 {
9774 auto iter = this->m_type_map.find (sig_type);
9775 if (iter == this->m_type_map.end ())
9776 return nullptr;
9777
9778 return iter->second;
9779 }
9780
9781 void dwarf2_per_objfile::set_type_for_signatured_type
9782 (signatured_type *sig_type, struct type *type)
9783 {
9784 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9785
9786 this->m_type_map[sig_type] = type;
9787 }
9788
9789 /* A helper function for computing the list of all symbol tables
9790 included by PER_CU. */
9791
9792 static void
9793 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9794 htab_t all_children, htab_t all_type_symtabs,
9795 dwarf2_per_cu_data *per_cu,
9796 dwarf2_per_objfile *per_objfile,
9797 struct compunit_symtab *immediate_parent)
9798 {
9799 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9800 if (*slot != NULL)
9801 {
9802 /* This inclusion and its children have been processed. */
9803 return;
9804 }
9805
9806 *slot = per_cu;
9807
9808 /* Only add a CU if it has a symbol table. */
9809 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9810 if (cust != NULL)
9811 {
9812 /* If this is a type unit only add its symbol table if we haven't
9813 seen it yet (type unit per_cu's can share symtabs). */
9814 if (per_cu->is_debug_types)
9815 {
9816 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9817 if (*slot == NULL)
9818 {
9819 *slot = cust;
9820 result->push_back (cust);
9821 if (cust->user == NULL)
9822 cust->user = immediate_parent;
9823 }
9824 }
9825 else
9826 {
9827 result->push_back (cust);
9828 if (cust->user == NULL)
9829 cust->user = immediate_parent;
9830 }
9831 }
9832
9833 if (!per_cu->imported_symtabs_empty ())
9834 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9835 {
9836 recursively_compute_inclusions (result, all_children,
9837 all_type_symtabs, ptr, per_objfile,
9838 cust);
9839 }
9840 }
9841
9842 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9843 PER_CU. */
9844
9845 static void
9846 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9847 dwarf2_per_objfile *per_objfile)
9848 {
9849 gdb_assert (! per_cu->is_debug_types);
9850
9851 if (!per_cu->imported_symtabs_empty ())
9852 {
9853 int len;
9854 std::vector<compunit_symtab *> result_symtabs;
9855 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9856
9857 /* If we don't have a symtab, we can just skip this case. */
9858 if (cust == NULL)
9859 return;
9860
9861 htab_up all_children (htab_create_alloc (1, htab_hash_pointer,
9862 htab_eq_pointer,
9863 NULL, xcalloc, xfree));
9864 htab_up all_type_symtabs (htab_create_alloc (1, htab_hash_pointer,
9865 htab_eq_pointer,
9866 NULL, xcalloc, xfree));
9867
9868 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9869 {
9870 recursively_compute_inclusions (&result_symtabs, all_children.get (),
9871 all_type_symtabs.get (), ptr,
9872 per_objfile, cust);
9873 }
9874
9875 /* Now we have a transitive closure of all the included symtabs. */
9876 len = result_symtabs.size ();
9877 cust->includes
9878 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9879 struct compunit_symtab *, len + 1);
9880 memcpy (cust->includes, result_symtabs.data (),
9881 len * sizeof (compunit_symtab *));
9882 cust->includes[len] = NULL;
9883 }
9884 }
9885
9886 /* Compute the 'includes' field for the symtabs of all the CUs we just
9887 read. */
9888
9889 static void
9890 process_cu_includes (dwarf2_per_objfile *per_objfile)
9891 {
9892 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9893 {
9894 if (! iter->is_debug_types)
9895 compute_compunit_symtab_includes (iter, per_objfile);
9896 }
9897
9898 per_objfile->per_bfd->just_read_cus.clear ();
9899 }
9900
9901 /* Generate full symbol information for CU, whose DIEs have
9902 already been loaded into memory. */
9903
9904 static void
9905 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9906 {
9907 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9908 struct objfile *objfile = per_objfile->objfile;
9909 struct gdbarch *gdbarch = objfile->arch ();
9910 CORE_ADDR lowpc, highpc;
9911 struct compunit_symtab *cust;
9912 CORE_ADDR baseaddr;
9913 struct block *static_block;
9914 CORE_ADDR addr;
9915
9916 baseaddr = objfile->text_section_offset ();
9917
9918 /* Clear the list here in case something was left over. */
9919 cu->method_list.clear ();
9920
9921 cu->language = pretend_language;
9922 cu->language_defn = language_def (cu->language);
9923
9924 /* Do line number decoding in read_file_scope () */
9925 process_die (cu->dies, cu);
9926
9927 /* For now fudge the Go package. */
9928 if (cu->language == language_go)
9929 fixup_go_packaging (cu);
9930
9931 /* Now that we have processed all the DIEs in the CU, all the types
9932 should be complete, and it should now be safe to compute all of the
9933 physnames. */
9934 compute_delayed_physnames (cu);
9935
9936 if (cu->language == language_rust)
9937 rust_union_quirks (cu);
9938
9939 /* Some compilers don't define a DW_AT_high_pc attribute for the
9940 compilation unit. If the DW_AT_high_pc is missing, synthesize
9941 it, by scanning the DIE's below the compilation unit. */
9942 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9943
9944 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9945 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9946
9947 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9948 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9949 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9950 addrmap to help ensure it has an accurate map of pc values belonging to
9951 this comp unit. */
9952 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9953
9954 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9955 SECT_OFF_TEXT (objfile),
9956 0);
9957
9958 if (cust != NULL)
9959 {
9960 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9961
9962 /* Set symtab language to language from DW_AT_language. If the
9963 compilation is from a C file generated by language preprocessors, do
9964 not set the language if it was already deduced by start_subfile. */
9965 if (!(cu->language == language_c
9966 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9967 COMPUNIT_FILETABS (cust)->language = cu->language;
9968
9969 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9970 produce DW_AT_location with location lists but it can be possibly
9971 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9972 there were bugs in prologue debug info, fixed later in GCC-4.5
9973 by "unwind info for epilogues" patch (which is not directly related).
9974
9975 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9976 needed, it would be wrong due to missing DW_AT_producer there.
9977
9978 Still one can confuse GDB by using non-standard GCC compilation
9979 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9980 */
9981 if (cu->has_loclist && gcc_4_minor >= 5)
9982 cust->locations_valid = 1;
9983
9984 if (gcc_4_minor >= 5)
9985 cust->epilogue_unwind_valid = 1;
9986
9987 cust->call_site_htab = cu->call_site_htab;
9988 }
9989
9990 per_objfile->set_symtab (cu->per_cu, cust);
9991
9992 /* Push it for inclusion processing later. */
9993 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
9994
9995 /* Not needed any more. */
9996 cu->reset_builder ();
9997 }
9998
9999 /* Generate full symbol information for type unit CU, whose DIEs have
10000 already been loaded into memory. */
10001
10002 static void
10003 process_full_type_unit (dwarf2_cu *cu,
10004 enum language pretend_language)
10005 {
10006 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10007 struct objfile *objfile = per_objfile->objfile;
10008 struct compunit_symtab *cust;
10009 struct signatured_type *sig_type;
10010
10011 gdb_assert (cu->per_cu->is_debug_types);
10012 sig_type = (struct signatured_type *) cu->per_cu;
10013
10014 /* Clear the list here in case something was left over. */
10015 cu->method_list.clear ();
10016
10017 cu->language = pretend_language;
10018 cu->language_defn = language_def (cu->language);
10019
10020 /* The symbol tables are set up in read_type_unit_scope. */
10021 process_die (cu->dies, cu);
10022
10023 /* For now fudge the Go package. */
10024 if (cu->language == language_go)
10025 fixup_go_packaging (cu);
10026
10027 /* Now that we have processed all the DIEs in the CU, all the types
10028 should be complete, and it should now be safe to compute all of the
10029 physnames. */
10030 compute_delayed_physnames (cu);
10031
10032 if (cu->language == language_rust)
10033 rust_union_quirks (cu);
10034
10035 /* TUs share symbol tables.
10036 If this is the first TU to use this symtab, complete the construction
10037 of it with end_expandable_symtab. Otherwise, complete the addition of
10038 this TU's symbols to the existing symtab. */
10039 type_unit_group_unshareable *tug_unshare =
10040 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
10041 if (tug_unshare->compunit_symtab == NULL)
10042 {
10043 buildsym_compunit *builder = cu->get_builder ();
10044 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10045 tug_unshare->compunit_symtab = cust;
10046
10047 if (cust != NULL)
10048 {
10049 /* Set symtab language to language from DW_AT_language. If the
10050 compilation is from a C file generated by language preprocessors,
10051 do not set the language if it was already deduced by
10052 start_subfile. */
10053 if (!(cu->language == language_c
10054 && COMPUNIT_FILETABS (cust)->language != language_c))
10055 COMPUNIT_FILETABS (cust)->language = cu->language;
10056 }
10057 }
10058 else
10059 {
10060 cu->get_builder ()->augment_type_symtab ();
10061 cust = tug_unshare->compunit_symtab;
10062 }
10063
10064 per_objfile->set_symtab (cu->per_cu, cust);
10065
10066 /* Not needed any more. */
10067 cu->reset_builder ();
10068 }
10069
10070 /* Process an imported unit DIE. */
10071
10072 static void
10073 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10074 {
10075 struct attribute *attr;
10076
10077 /* For now we don't handle imported units in type units. */
10078 if (cu->per_cu->is_debug_types)
10079 {
10080 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10081 " supported in type units [in module %s]"),
10082 objfile_name (cu->per_objfile->objfile));
10083 }
10084
10085 attr = dwarf2_attr (die, DW_AT_import, cu);
10086 if (attr != NULL)
10087 {
10088 sect_offset sect_off = attr->get_ref_die_offset ();
10089 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10090 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10091 dwarf2_per_cu_data *per_cu
10092 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
10093
10094 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
10095 into another compilation unit, at root level. Regard this as a hint,
10096 and ignore it. */
10097 if (die->parent && die->parent->parent == NULL
10098 && per_cu->unit_type == DW_UT_compile
10099 && per_cu->lang == language_cplus)
10100 return;
10101
10102 /* If necessary, add it to the queue and load its DIEs. */
10103 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
10104 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
10105
10106 cu->per_cu->imported_symtabs_push (per_cu);
10107 }
10108 }
10109
10110 /* RAII object that represents a process_die scope: i.e.,
10111 starts/finishes processing a DIE. */
10112 class process_die_scope
10113 {
10114 public:
10115 process_die_scope (die_info *die, dwarf2_cu *cu)
10116 : m_die (die), m_cu (cu)
10117 {
10118 /* We should only be processing DIEs not already in process. */
10119 gdb_assert (!m_die->in_process);
10120 m_die->in_process = true;
10121 }
10122
10123 ~process_die_scope ()
10124 {
10125 m_die->in_process = false;
10126
10127 /* If we're done processing the DIE for the CU that owns the line
10128 header, we don't need the line header anymore. */
10129 if (m_cu->line_header_die_owner == m_die)
10130 {
10131 delete m_cu->line_header;
10132 m_cu->line_header = NULL;
10133 m_cu->line_header_die_owner = NULL;
10134 }
10135 }
10136
10137 private:
10138 die_info *m_die;
10139 dwarf2_cu *m_cu;
10140 };
10141
10142 /* Process a die and its children. */
10143
10144 static void
10145 process_die (struct die_info *die, struct dwarf2_cu *cu)
10146 {
10147 process_die_scope scope (die, cu);
10148
10149 switch (die->tag)
10150 {
10151 case DW_TAG_padding:
10152 break;
10153 case DW_TAG_compile_unit:
10154 case DW_TAG_partial_unit:
10155 read_file_scope (die, cu);
10156 break;
10157 case DW_TAG_type_unit:
10158 read_type_unit_scope (die, cu);
10159 break;
10160 case DW_TAG_subprogram:
10161 /* Nested subprograms in Fortran get a prefix. */
10162 if (cu->language == language_fortran
10163 && die->parent != NULL
10164 && die->parent->tag == DW_TAG_subprogram)
10165 cu->processing_has_namespace_info = true;
10166 /* Fall through. */
10167 case DW_TAG_inlined_subroutine:
10168 read_func_scope (die, cu);
10169 break;
10170 case DW_TAG_lexical_block:
10171 case DW_TAG_try_block:
10172 case DW_TAG_catch_block:
10173 read_lexical_block_scope (die, cu);
10174 break;
10175 case DW_TAG_call_site:
10176 case DW_TAG_GNU_call_site:
10177 read_call_site_scope (die, cu);
10178 break;
10179 case DW_TAG_class_type:
10180 case DW_TAG_interface_type:
10181 case DW_TAG_structure_type:
10182 case DW_TAG_union_type:
10183 process_structure_scope (die, cu);
10184 break;
10185 case DW_TAG_enumeration_type:
10186 process_enumeration_scope (die, cu);
10187 break;
10188
10189 /* These dies have a type, but processing them does not create
10190 a symbol or recurse to process the children. Therefore we can
10191 read them on-demand through read_type_die. */
10192 case DW_TAG_subroutine_type:
10193 case DW_TAG_set_type:
10194 case DW_TAG_array_type:
10195 case DW_TAG_pointer_type:
10196 case DW_TAG_ptr_to_member_type:
10197 case DW_TAG_reference_type:
10198 case DW_TAG_rvalue_reference_type:
10199 case DW_TAG_string_type:
10200 break;
10201
10202 case DW_TAG_base_type:
10203 case DW_TAG_subrange_type:
10204 case DW_TAG_typedef:
10205 /* Add a typedef symbol for the type definition, if it has a
10206 DW_AT_name. */
10207 new_symbol (die, read_type_die (die, cu), cu);
10208 break;
10209 case DW_TAG_common_block:
10210 read_common_block (die, cu);
10211 break;
10212 case DW_TAG_common_inclusion:
10213 break;
10214 case DW_TAG_namespace:
10215 cu->processing_has_namespace_info = true;
10216 read_namespace (die, cu);
10217 break;
10218 case DW_TAG_module:
10219 cu->processing_has_namespace_info = true;
10220 read_module (die, cu);
10221 break;
10222 case DW_TAG_imported_declaration:
10223 cu->processing_has_namespace_info = true;
10224 if (read_namespace_alias (die, cu))
10225 break;
10226 /* The declaration is not a global namespace alias. */
10227 /* Fall through. */
10228 case DW_TAG_imported_module:
10229 cu->processing_has_namespace_info = true;
10230 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10231 || cu->language != language_fortran))
10232 complaint (_("Tag '%s' has unexpected children"),
10233 dwarf_tag_name (die->tag));
10234 read_import_statement (die, cu);
10235 break;
10236
10237 case DW_TAG_imported_unit:
10238 process_imported_unit_die (die, cu);
10239 break;
10240
10241 case DW_TAG_variable:
10242 read_variable (die, cu);
10243 break;
10244
10245 default:
10246 new_symbol (die, NULL, cu);
10247 break;
10248 }
10249 }
10250 \f
10251 /* DWARF name computation. */
10252
10253 /* A helper function for dwarf2_compute_name which determines whether DIE
10254 needs to have the name of the scope prepended to the name listed in the
10255 die. */
10256
10257 static int
10258 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10259 {
10260 struct attribute *attr;
10261
10262 switch (die->tag)
10263 {
10264 case DW_TAG_namespace:
10265 case DW_TAG_typedef:
10266 case DW_TAG_class_type:
10267 case DW_TAG_interface_type:
10268 case DW_TAG_structure_type:
10269 case DW_TAG_union_type:
10270 case DW_TAG_enumeration_type:
10271 case DW_TAG_enumerator:
10272 case DW_TAG_subprogram:
10273 case DW_TAG_inlined_subroutine:
10274 case DW_TAG_member:
10275 case DW_TAG_imported_declaration:
10276 return 1;
10277
10278 case DW_TAG_variable:
10279 case DW_TAG_constant:
10280 /* We only need to prefix "globally" visible variables. These include
10281 any variable marked with DW_AT_external or any variable that
10282 lives in a namespace. [Variables in anonymous namespaces
10283 require prefixing, but they are not DW_AT_external.] */
10284
10285 if (dwarf2_attr (die, DW_AT_specification, cu))
10286 {
10287 struct dwarf2_cu *spec_cu = cu;
10288
10289 return die_needs_namespace (die_specification (die, &spec_cu),
10290 spec_cu);
10291 }
10292
10293 attr = dwarf2_attr (die, DW_AT_external, cu);
10294 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10295 && die->parent->tag != DW_TAG_module)
10296 return 0;
10297 /* A variable in a lexical block of some kind does not need a
10298 namespace, even though in C++ such variables may be external
10299 and have a mangled name. */
10300 if (die->parent->tag == DW_TAG_lexical_block
10301 || die->parent->tag == DW_TAG_try_block
10302 || die->parent->tag == DW_TAG_catch_block
10303 || die->parent->tag == DW_TAG_subprogram)
10304 return 0;
10305 return 1;
10306
10307 default:
10308 return 0;
10309 }
10310 }
10311
10312 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10313 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10314 defined for the given DIE. */
10315
10316 static struct attribute *
10317 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10318 {
10319 struct attribute *attr;
10320
10321 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10322 if (attr == NULL)
10323 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10324
10325 return attr;
10326 }
10327
10328 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10329 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10330 defined for the given DIE. */
10331
10332 static const char *
10333 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10334 {
10335 const char *linkage_name;
10336
10337 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10338 if (linkage_name == NULL)
10339 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10340
10341 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10342 See https://github.com/rust-lang/rust/issues/32925. */
10343 if (cu->language == language_rust && linkage_name != NULL
10344 && strchr (linkage_name, '{') != NULL)
10345 linkage_name = NULL;
10346
10347 return linkage_name;
10348 }
10349
10350 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10351 compute the physname for the object, which include a method's:
10352 - formal parameters (C++),
10353 - receiver type (Go),
10354
10355 The term "physname" is a bit confusing.
10356 For C++, for example, it is the demangled name.
10357 For Go, for example, it's the mangled name.
10358
10359 For Ada, return the DIE's linkage name rather than the fully qualified
10360 name. PHYSNAME is ignored..
10361
10362 The result is allocated on the objfile->per_bfd's obstack and
10363 canonicalized. */
10364
10365 static const char *
10366 dwarf2_compute_name (const char *name,
10367 struct die_info *die, struct dwarf2_cu *cu,
10368 int physname)
10369 {
10370 struct objfile *objfile = cu->per_objfile->objfile;
10371
10372 if (name == NULL)
10373 name = dwarf2_name (die, cu);
10374
10375 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10376 but otherwise compute it by typename_concat inside GDB.
10377 FIXME: Actually this is not really true, or at least not always true.
10378 It's all very confusing. compute_and_set_names doesn't try to demangle
10379 Fortran names because there is no mangling standard. So new_symbol
10380 will set the demangled name to the result of dwarf2_full_name, and it is
10381 the demangled name that GDB uses if it exists. */
10382 if (cu->language == language_ada
10383 || (cu->language == language_fortran && physname))
10384 {
10385 /* For Ada unit, we prefer the linkage name over the name, as
10386 the former contains the exported name, which the user expects
10387 to be able to reference. Ideally, we want the user to be able
10388 to reference this entity using either natural or linkage name,
10389 but we haven't started looking at this enhancement yet. */
10390 const char *linkage_name = dw2_linkage_name (die, cu);
10391
10392 if (linkage_name != NULL)
10393 return linkage_name;
10394 }
10395
10396 /* These are the only languages we know how to qualify names in. */
10397 if (name != NULL
10398 && (cu->language == language_cplus
10399 || cu->language == language_fortran || cu->language == language_d
10400 || cu->language == language_rust))
10401 {
10402 if (die_needs_namespace (die, cu))
10403 {
10404 const char *prefix;
10405 const char *canonical_name = NULL;
10406
10407 string_file buf;
10408
10409 prefix = determine_prefix (die, cu);
10410 if (*prefix != '\0')
10411 {
10412 gdb::unique_xmalloc_ptr<char> prefixed_name
10413 (typename_concat (NULL, prefix, name, physname, cu));
10414
10415 buf.puts (prefixed_name.get ());
10416 }
10417 else
10418 buf.puts (name);
10419
10420 /* Template parameters may be specified in the DIE's DW_AT_name, or
10421 as children with DW_TAG_template_type_param or
10422 DW_TAG_value_type_param. If the latter, add them to the name
10423 here. If the name already has template parameters, then
10424 skip this step; some versions of GCC emit both, and
10425 it is more efficient to use the pre-computed name.
10426
10427 Something to keep in mind about this process: it is very
10428 unlikely, or in some cases downright impossible, to produce
10429 something that will match the mangled name of a function.
10430 If the definition of the function has the same debug info,
10431 we should be able to match up with it anyway. But fallbacks
10432 using the minimal symbol, for instance to find a method
10433 implemented in a stripped copy of libstdc++, will not work.
10434 If we do not have debug info for the definition, we will have to
10435 match them up some other way.
10436
10437 When we do name matching there is a related problem with function
10438 templates; two instantiated function templates are allowed to
10439 differ only by their return types, which we do not add here. */
10440
10441 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10442 {
10443 struct attribute *attr;
10444 struct die_info *child;
10445 int first = 1;
10446
10447 die->building_fullname = 1;
10448
10449 for (child = die->child; child != NULL; child = child->sibling)
10450 {
10451 struct type *type;
10452 LONGEST value;
10453 const gdb_byte *bytes;
10454 struct dwarf2_locexpr_baton *baton;
10455 struct value *v;
10456
10457 if (child->tag != DW_TAG_template_type_param
10458 && child->tag != DW_TAG_template_value_param)
10459 continue;
10460
10461 if (first)
10462 {
10463 buf.puts ("<");
10464 first = 0;
10465 }
10466 else
10467 buf.puts (", ");
10468
10469 attr = dwarf2_attr (child, DW_AT_type, cu);
10470 if (attr == NULL)
10471 {
10472 complaint (_("template parameter missing DW_AT_type"));
10473 buf.puts ("UNKNOWN_TYPE");
10474 continue;
10475 }
10476 type = die_type (child, cu);
10477
10478 if (child->tag == DW_TAG_template_type_param)
10479 {
10480 c_print_type (type, "", &buf, -1, 0, cu->language,
10481 &type_print_raw_options);
10482 continue;
10483 }
10484
10485 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10486 if (attr == NULL)
10487 {
10488 complaint (_("template parameter missing "
10489 "DW_AT_const_value"));
10490 buf.puts ("UNKNOWN_VALUE");
10491 continue;
10492 }
10493
10494 dwarf2_const_value_attr (attr, type, name,
10495 &cu->comp_unit_obstack, cu,
10496 &value, &bytes, &baton);
10497
10498 if (type->has_no_signedness ())
10499 /* GDB prints characters as NUMBER 'CHAR'. If that's
10500 changed, this can use value_print instead. */
10501 c_printchar (value, type, &buf);
10502 else
10503 {
10504 struct value_print_options opts;
10505
10506 if (baton != NULL)
10507 v = dwarf2_evaluate_loc_desc (type, NULL,
10508 baton->data,
10509 baton->size,
10510 baton->per_cu,
10511 baton->per_objfile);
10512 else if (bytes != NULL)
10513 {
10514 v = allocate_value (type);
10515 memcpy (value_contents_writeable (v), bytes,
10516 TYPE_LENGTH (type));
10517 }
10518 else
10519 v = value_from_longest (type, value);
10520
10521 /* Specify decimal so that we do not depend on
10522 the radix. */
10523 get_formatted_print_options (&opts, 'd');
10524 opts.raw = 1;
10525 value_print (v, &buf, &opts);
10526 release_value (v);
10527 }
10528 }
10529
10530 die->building_fullname = 0;
10531
10532 if (!first)
10533 {
10534 /* Close the argument list, with a space if necessary
10535 (nested templates). */
10536 if (!buf.empty () && buf.string ().back () == '>')
10537 buf.puts (" >");
10538 else
10539 buf.puts (">");
10540 }
10541 }
10542
10543 /* For C++ methods, append formal parameter type
10544 information, if PHYSNAME. */
10545
10546 if (physname && die->tag == DW_TAG_subprogram
10547 && cu->language == language_cplus)
10548 {
10549 struct type *type = read_type_die (die, cu);
10550
10551 c_type_print_args (type, &buf, 1, cu->language,
10552 &type_print_raw_options);
10553
10554 if (cu->language == language_cplus)
10555 {
10556 /* Assume that an artificial first parameter is
10557 "this", but do not crash if it is not. RealView
10558 marks unnamed (and thus unused) parameters as
10559 artificial; there is no way to differentiate
10560 the two cases. */
10561 if (type->num_fields () > 0
10562 && TYPE_FIELD_ARTIFICIAL (type, 0)
10563 && type->field (0).type ()->code () == TYPE_CODE_PTR
10564 && TYPE_CONST (TYPE_TARGET_TYPE (type->field (0).type ())))
10565 buf.puts (" const");
10566 }
10567 }
10568
10569 const std::string &intermediate_name = buf.string ();
10570
10571 if (cu->language == language_cplus)
10572 canonical_name
10573 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10574 objfile);
10575
10576 /* If we only computed INTERMEDIATE_NAME, or if
10577 INTERMEDIATE_NAME is already canonical, then we need to
10578 intern it. */
10579 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10580 name = objfile->intern (intermediate_name);
10581 else
10582 name = canonical_name;
10583 }
10584 }
10585
10586 return name;
10587 }
10588
10589 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10590 If scope qualifiers are appropriate they will be added. The result
10591 will be allocated on the storage_obstack, or NULL if the DIE does
10592 not have a name. NAME may either be from a previous call to
10593 dwarf2_name or NULL.
10594
10595 The output string will be canonicalized (if C++). */
10596
10597 static const char *
10598 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10599 {
10600 return dwarf2_compute_name (name, die, cu, 0);
10601 }
10602
10603 /* Construct a physname for the given DIE in CU. NAME may either be
10604 from a previous call to dwarf2_name or NULL. The result will be
10605 allocated on the objfile_objstack or NULL if the DIE does not have a
10606 name.
10607
10608 The output string will be canonicalized (if C++). */
10609
10610 static const char *
10611 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10612 {
10613 struct objfile *objfile = cu->per_objfile->objfile;
10614 const char *retval, *mangled = NULL, *canon = NULL;
10615 int need_copy = 1;
10616
10617 /* In this case dwarf2_compute_name is just a shortcut not building anything
10618 on its own. */
10619 if (!die_needs_namespace (die, cu))
10620 return dwarf2_compute_name (name, die, cu, 1);
10621
10622 if (cu->language != language_rust)
10623 mangled = dw2_linkage_name (die, cu);
10624
10625 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10626 has computed. */
10627 gdb::unique_xmalloc_ptr<char> demangled;
10628 if (mangled != NULL)
10629 {
10630
10631 if (language_def (cu->language)->store_sym_names_in_linkage_form_p ())
10632 {
10633 /* Do nothing (do not demangle the symbol name). */
10634 }
10635 else
10636 {
10637 /* Use DMGL_RET_DROP for C++ template functions to suppress
10638 their return type. It is easier for GDB users to search
10639 for such functions as `name(params)' than `long name(params)'.
10640 In such case the minimal symbol names do not match the full
10641 symbol names but for template functions there is never a need
10642 to look up their definition from their declaration so
10643 the only disadvantage remains the minimal symbol variant
10644 `long name(params)' does not have the proper inferior type. */
10645 demangled.reset (gdb_demangle (mangled,
10646 (DMGL_PARAMS | DMGL_ANSI
10647 | DMGL_RET_DROP)));
10648 }
10649 if (demangled)
10650 canon = demangled.get ();
10651 else
10652 {
10653 canon = mangled;
10654 need_copy = 0;
10655 }
10656 }
10657
10658 if (canon == NULL || check_physname)
10659 {
10660 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10661
10662 if (canon != NULL && strcmp (physname, canon) != 0)
10663 {
10664 /* It may not mean a bug in GDB. The compiler could also
10665 compute DW_AT_linkage_name incorrectly. But in such case
10666 GDB would need to be bug-to-bug compatible. */
10667
10668 complaint (_("Computed physname <%s> does not match demangled <%s> "
10669 "(from linkage <%s>) - DIE at %s [in module %s]"),
10670 physname, canon, mangled, sect_offset_str (die->sect_off),
10671 objfile_name (objfile));
10672
10673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10674 is available here - over computed PHYSNAME. It is safer
10675 against both buggy GDB and buggy compilers. */
10676
10677 retval = canon;
10678 }
10679 else
10680 {
10681 retval = physname;
10682 need_copy = 0;
10683 }
10684 }
10685 else
10686 retval = canon;
10687
10688 if (need_copy)
10689 retval = objfile->intern (retval);
10690
10691 return retval;
10692 }
10693
10694 /* Inspect DIE in CU for a namespace alias. If one exists, record
10695 a new symbol for it.
10696
10697 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10698
10699 static int
10700 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10701 {
10702 struct attribute *attr;
10703
10704 /* If the die does not have a name, this is not a namespace
10705 alias. */
10706 attr = dwarf2_attr (die, DW_AT_name, cu);
10707 if (attr != NULL)
10708 {
10709 int num;
10710 struct die_info *d = die;
10711 struct dwarf2_cu *imported_cu = cu;
10712
10713 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10714 keep inspecting DIEs until we hit the underlying import. */
10715 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10716 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10717 {
10718 attr = dwarf2_attr (d, DW_AT_import, cu);
10719 if (attr == NULL)
10720 break;
10721
10722 d = follow_die_ref (d, attr, &imported_cu);
10723 if (d->tag != DW_TAG_imported_declaration)
10724 break;
10725 }
10726
10727 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10728 {
10729 complaint (_("DIE at %s has too many recursively imported "
10730 "declarations"), sect_offset_str (d->sect_off));
10731 return 0;
10732 }
10733
10734 if (attr != NULL)
10735 {
10736 struct type *type;
10737 sect_offset sect_off = attr->get_ref_die_offset ();
10738
10739 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10740 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10741 {
10742 /* This declaration is a global namespace alias. Add
10743 a symbol for it whose type is the aliased namespace. */
10744 new_symbol (die, type, cu);
10745 return 1;
10746 }
10747 }
10748 }
10749
10750 return 0;
10751 }
10752
10753 /* Return the using directives repository (global or local?) to use in the
10754 current context for CU.
10755
10756 For Ada, imported declarations can materialize renamings, which *may* be
10757 global. However it is impossible (for now?) in DWARF to distinguish
10758 "external" imported declarations and "static" ones. As all imported
10759 declarations seem to be static in all other languages, make them all CU-wide
10760 global only in Ada. */
10761
10762 static struct using_direct **
10763 using_directives (struct dwarf2_cu *cu)
10764 {
10765 if (cu->language == language_ada
10766 && cu->get_builder ()->outermost_context_p ())
10767 return cu->get_builder ()->get_global_using_directives ();
10768 else
10769 return cu->get_builder ()->get_local_using_directives ();
10770 }
10771
10772 /* Read the import statement specified by the given die and record it. */
10773
10774 static void
10775 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10776 {
10777 struct objfile *objfile = cu->per_objfile->objfile;
10778 struct attribute *import_attr;
10779 struct die_info *imported_die, *child_die;
10780 struct dwarf2_cu *imported_cu;
10781 const char *imported_name;
10782 const char *imported_name_prefix;
10783 const char *canonical_name;
10784 const char *import_alias;
10785 const char *imported_declaration = NULL;
10786 const char *import_prefix;
10787 std::vector<const char *> excludes;
10788
10789 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10790 if (import_attr == NULL)
10791 {
10792 complaint (_("Tag '%s' has no DW_AT_import"),
10793 dwarf_tag_name (die->tag));
10794 return;
10795 }
10796
10797 imported_cu = cu;
10798 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10799 imported_name = dwarf2_name (imported_die, imported_cu);
10800 if (imported_name == NULL)
10801 {
10802 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10803
10804 The import in the following code:
10805 namespace A
10806 {
10807 typedef int B;
10808 }
10809
10810 int main ()
10811 {
10812 using A::B;
10813 B b;
10814 return b;
10815 }
10816
10817 ...
10818 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10819 <52> DW_AT_decl_file : 1
10820 <53> DW_AT_decl_line : 6
10821 <54> DW_AT_import : <0x75>
10822 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10823 <59> DW_AT_name : B
10824 <5b> DW_AT_decl_file : 1
10825 <5c> DW_AT_decl_line : 2
10826 <5d> DW_AT_type : <0x6e>
10827 ...
10828 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10829 <76> DW_AT_byte_size : 4
10830 <77> DW_AT_encoding : 5 (signed)
10831
10832 imports the wrong die ( 0x75 instead of 0x58 ).
10833 This case will be ignored until the gcc bug is fixed. */
10834 return;
10835 }
10836
10837 /* Figure out the local name after import. */
10838 import_alias = dwarf2_name (die, cu);
10839
10840 /* Figure out where the statement is being imported to. */
10841 import_prefix = determine_prefix (die, cu);
10842
10843 /* Figure out what the scope of the imported die is and prepend it
10844 to the name of the imported die. */
10845 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10846
10847 if (imported_die->tag != DW_TAG_namespace
10848 && imported_die->tag != DW_TAG_module)
10849 {
10850 imported_declaration = imported_name;
10851 canonical_name = imported_name_prefix;
10852 }
10853 else if (strlen (imported_name_prefix) > 0)
10854 canonical_name = obconcat (&objfile->objfile_obstack,
10855 imported_name_prefix,
10856 (cu->language == language_d ? "." : "::"),
10857 imported_name, (char *) NULL);
10858 else
10859 canonical_name = imported_name;
10860
10861 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10862 for (child_die = die->child; child_die && child_die->tag;
10863 child_die = child_die->sibling)
10864 {
10865 /* DWARF-4: A Fortran use statement with a “rename list” may be
10866 represented by an imported module entry with an import attribute
10867 referring to the module and owned entries corresponding to those
10868 entities that are renamed as part of being imported. */
10869
10870 if (child_die->tag != DW_TAG_imported_declaration)
10871 {
10872 complaint (_("child DW_TAG_imported_declaration expected "
10873 "- DIE at %s [in module %s]"),
10874 sect_offset_str (child_die->sect_off),
10875 objfile_name (objfile));
10876 continue;
10877 }
10878
10879 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10880 if (import_attr == NULL)
10881 {
10882 complaint (_("Tag '%s' has no DW_AT_import"),
10883 dwarf_tag_name (child_die->tag));
10884 continue;
10885 }
10886
10887 imported_cu = cu;
10888 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10889 &imported_cu);
10890 imported_name = dwarf2_name (imported_die, imported_cu);
10891 if (imported_name == NULL)
10892 {
10893 complaint (_("child DW_TAG_imported_declaration has unknown "
10894 "imported name - DIE at %s [in module %s]"),
10895 sect_offset_str (child_die->sect_off),
10896 objfile_name (objfile));
10897 continue;
10898 }
10899
10900 excludes.push_back (imported_name);
10901
10902 process_die (child_die, cu);
10903 }
10904
10905 add_using_directive (using_directives (cu),
10906 import_prefix,
10907 canonical_name,
10908 import_alias,
10909 imported_declaration,
10910 excludes,
10911 0,
10912 &objfile->objfile_obstack);
10913 }
10914
10915 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10916 types, but gives them a size of zero. Starting with version 14,
10917 ICC is compatible with GCC. */
10918
10919 static bool
10920 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10921 {
10922 if (!cu->checked_producer)
10923 check_producer (cu);
10924
10925 return cu->producer_is_icc_lt_14;
10926 }
10927
10928 /* ICC generates a DW_AT_type for C void functions. This was observed on
10929 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10930 which says that void functions should not have a DW_AT_type. */
10931
10932 static bool
10933 producer_is_icc (struct dwarf2_cu *cu)
10934 {
10935 if (!cu->checked_producer)
10936 check_producer (cu);
10937
10938 return cu->producer_is_icc;
10939 }
10940
10941 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10942 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10943 this, it was first present in GCC release 4.3.0. */
10944
10945 static bool
10946 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10947 {
10948 if (!cu->checked_producer)
10949 check_producer (cu);
10950
10951 return cu->producer_is_gcc_lt_4_3;
10952 }
10953
10954 static file_and_directory
10955 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10956 {
10957 file_and_directory res;
10958
10959 /* Find the filename. Do not use dwarf2_name here, since the filename
10960 is not a source language identifier. */
10961 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10962 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10963
10964 if (res.comp_dir == NULL
10965 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10966 && IS_ABSOLUTE_PATH (res.name))
10967 {
10968 res.comp_dir_storage = ldirname (res.name);
10969 if (!res.comp_dir_storage.empty ())
10970 res.comp_dir = res.comp_dir_storage.c_str ();
10971 }
10972 if (res.comp_dir != NULL)
10973 {
10974 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10975 directory, get rid of it. */
10976 const char *cp = strchr (res.comp_dir, ':');
10977
10978 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10979 res.comp_dir = cp + 1;
10980 }
10981
10982 if (res.name == NULL)
10983 res.name = "<unknown>";
10984
10985 return res;
10986 }
10987
10988 /* Handle DW_AT_stmt_list for a compilation unit.
10989 DIE is the DW_TAG_compile_unit die for CU.
10990 COMP_DIR is the compilation directory. LOWPC is passed to
10991 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10992
10993 static void
10994 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10995 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10996 {
10997 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10998 struct attribute *attr;
10999 struct line_header line_header_local;
11000 hashval_t line_header_local_hash;
11001 void **slot;
11002 int decode_mapping;
11003
11004 gdb_assert (! cu->per_cu->is_debug_types);
11005
11006 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11007 if (attr == NULL || !attr->form_is_unsigned ())
11008 return;
11009
11010 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
11011
11012 /* The line header hash table is only created if needed (it exists to
11013 prevent redundant reading of the line table for partial_units).
11014 If we're given a partial_unit, we'll need it. If we're given a
11015 compile_unit, then use the line header hash table if it's already
11016 created, but don't create one just yet. */
11017
11018 if (per_objfile->line_header_hash == NULL
11019 && die->tag == DW_TAG_partial_unit)
11020 {
11021 per_objfile->line_header_hash
11022 .reset (htab_create_alloc (127, line_header_hash_voidp,
11023 line_header_eq_voidp,
11024 free_line_header_voidp,
11025 xcalloc, xfree));
11026 }
11027
11028 line_header_local.sect_off = line_offset;
11029 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11030 line_header_local_hash = line_header_hash (&line_header_local);
11031 if (per_objfile->line_header_hash != NULL)
11032 {
11033 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
11034 &line_header_local,
11035 line_header_local_hash, NO_INSERT);
11036
11037 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11038 is not present in *SLOT (since if there is something in *SLOT then
11039 it will be for a partial_unit). */
11040 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11041 {
11042 gdb_assert (*slot != NULL);
11043 cu->line_header = (struct line_header *) *slot;
11044 return;
11045 }
11046 }
11047
11048 /* dwarf_decode_line_header does not yet provide sufficient information.
11049 We always have to call also dwarf_decode_lines for it. */
11050 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11051 if (lh == NULL)
11052 return;
11053
11054 cu->line_header = lh.release ();
11055 cu->line_header_die_owner = die;
11056
11057 if (per_objfile->line_header_hash == NULL)
11058 slot = NULL;
11059 else
11060 {
11061 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
11062 &line_header_local,
11063 line_header_local_hash, INSERT);
11064 gdb_assert (slot != NULL);
11065 }
11066 if (slot != NULL && *slot == NULL)
11067 {
11068 /* This newly decoded line number information unit will be owned
11069 by line_header_hash hash table. */
11070 *slot = cu->line_header;
11071 cu->line_header_die_owner = NULL;
11072 }
11073 else
11074 {
11075 /* We cannot free any current entry in (*slot) as that struct line_header
11076 may be already used by multiple CUs. Create only temporary decoded
11077 line_header for this CU - it may happen at most once for each line
11078 number information unit. And if we're not using line_header_hash
11079 then this is what we want as well. */
11080 gdb_assert (die->tag != DW_TAG_partial_unit);
11081 }
11082 decode_mapping = (die->tag != DW_TAG_partial_unit);
11083 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11084 decode_mapping);
11085
11086 }
11087
11088 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11089
11090 static void
11091 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11092 {
11093 dwarf2_per_objfile *per_objfile = cu->per_objfile;
11094 struct objfile *objfile = per_objfile->objfile;
11095 struct gdbarch *gdbarch = objfile->arch ();
11096 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11097 CORE_ADDR highpc = ((CORE_ADDR) 0);
11098 struct attribute *attr;
11099 struct die_info *child_die;
11100 CORE_ADDR baseaddr;
11101
11102 prepare_one_comp_unit (cu, die, cu->language);
11103 baseaddr = objfile->text_section_offset ();
11104
11105 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11106
11107 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11108 from finish_block. */
11109 if (lowpc == ((CORE_ADDR) -1))
11110 lowpc = highpc;
11111 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11112
11113 file_and_directory fnd = find_file_and_directory (die, cu);
11114
11115 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11116 standardised yet. As a workaround for the language detection we fall
11117 back to the DW_AT_producer string. */
11118 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11119 cu->language = language_opencl;
11120
11121 /* Similar hack for Go. */
11122 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11123 set_cu_language (DW_LANG_Go, cu);
11124
11125 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11126
11127 /* Decode line number information if present. We do this before
11128 processing child DIEs, so that the line header table is available
11129 for DW_AT_decl_file. */
11130 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11131
11132 /* Process all dies in compilation unit. */
11133 if (die->child != NULL)
11134 {
11135 child_die = die->child;
11136 while (child_die && child_die->tag)
11137 {
11138 process_die (child_die, cu);
11139 child_die = child_die->sibling;
11140 }
11141 }
11142
11143 /* Decode macro information, if present. Dwarf 2 macro information
11144 refers to information in the line number info statement program
11145 header, so we can only read it if we've read the header
11146 successfully. */
11147 attr = dwarf2_attr (die, DW_AT_macros, cu);
11148 if (attr == NULL)
11149 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11150 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
11151 {
11152 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11153 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11154
11155 dwarf_decode_macros (cu, attr->as_unsigned (), 1);
11156 }
11157 else
11158 {
11159 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11160 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
11161 {
11162 unsigned int macro_offset = attr->as_unsigned ();
11163
11164 dwarf_decode_macros (cu, macro_offset, 0);
11165 }
11166 }
11167 }
11168
11169 void
11170 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11171 {
11172 struct type_unit_group *tu_group;
11173 int first_time;
11174 struct attribute *attr;
11175 unsigned int i;
11176 struct signatured_type *sig_type;
11177
11178 gdb_assert (per_cu->is_debug_types);
11179 sig_type = (struct signatured_type *) per_cu;
11180
11181 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11182
11183 /* If we're using .gdb_index (includes -readnow) then
11184 per_cu->type_unit_group may not have been set up yet. */
11185 if (sig_type->type_unit_group == NULL)
11186 sig_type->type_unit_group = get_type_unit_group (this, attr);
11187 tu_group = sig_type->type_unit_group;
11188
11189 /* If we've already processed this stmt_list there's no real need to
11190 do it again, we could fake it and just recreate the part we need
11191 (file name,index -> symtab mapping). If data shows this optimization
11192 is useful we can do it then. */
11193 type_unit_group_unshareable *tug_unshare
11194 = per_objfile->get_type_unit_group_unshareable (tu_group);
11195 first_time = tug_unshare->compunit_symtab == NULL;
11196
11197 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11198 debug info. */
11199 line_header_up lh;
11200 if (attr != NULL && attr->form_is_unsigned ())
11201 {
11202 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
11203 lh = dwarf_decode_line_header (line_offset, this);
11204 }
11205 if (lh == NULL)
11206 {
11207 if (first_time)
11208 start_symtab ("", NULL, 0);
11209 else
11210 {
11211 gdb_assert (tug_unshare->symtabs == NULL);
11212 gdb_assert (m_builder == nullptr);
11213 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11214 m_builder.reset (new struct buildsym_compunit
11215 (COMPUNIT_OBJFILE (cust), "",
11216 COMPUNIT_DIRNAME (cust),
11217 compunit_language (cust),
11218 0, cust));
11219 list_in_scope = get_builder ()->get_file_symbols ();
11220 }
11221 return;
11222 }
11223
11224 line_header = lh.release ();
11225 line_header_die_owner = die;
11226
11227 if (first_time)
11228 {
11229 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11230
11231 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11232 still initializing it, and our caller (a few levels up)
11233 process_full_type_unit still needs to know if this is the first
11234 time. */
11235
11236 tug_unshare->symtabs
11237 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
11238 struct symtab *, line_header->file_names_size ());
11239
11240 auto &file_names = line_header->file_names ();
11241 for (i = 0; i < file_names.size (); ++i)
11242 {
11243 file_entry &fe = file_names[i];
11244 dwarf2_start_subfile (this, fe.name,
11245 fe.include_dir (line_header));
11246 buildsym_compunit *b = get_builder ();
11247 if (b->get_current_subfile ()->symtab == NULL)
11248 {
11249 /* NOTE: start_subfile will recognize when it's been
11250 passed a file it has already seen. So we can't
11251 assume there's a simple mapping from
11252 cu->line_header->file_names to subfiles, plus
11253 cu->line_header->file_names may contain dups. */
11254 b->get_current_subfile ()->symtab
11255 = allocate_symtab (cust, b->get_current_subfile ()->name);
11256 }
11257
11258 fe.symtab = b->get_current_subfile ()->symtab;
11259 tug_unshare->symtabs[i] = fe.symtab;
11260 }
11261 }
11262 else
11263 {
11264 gdb_assert (m_builder == nullptr);
11265 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
11266 m_builder.reset (new struct buildsym_compunit
11267 (COMPUNIT_OBJFILE (cust), "",
11268 COMPUNIT_DIRNAME (cust),
11269 compunit_language (cust),
11270 0, cust));
11271 list_in_scope = get_builder ()->get_file_symbols ();
11272
11273 auto &file_names = line_header->file_names ();
11274 for (i = 0; i < file_names.size (); ++i)
11275 {
11276 file_entry &fe = file_names[i];
11277 fe.symtab = tug_unshare->symtabs[i];
11278 }
11279 }
11280
11281 /* The main symtab is allocated last. Type units don't have DW_AT_name
11282 so they don't have a "real" (so to speak) symtab anyway.
11283 There is later code that will assign the main symtab to all symbols
11284 that don't have one. We need to handle the case of a symbol with a
11285 missing symtab (DW_AT_decl_file) anyway. */
11286 }
11287
11288 /* Process DW_TAG_type_unit.
11289 For TUs we want to skip the first top level sibling if it's not the
11290 actual type being defined by this TU. In this case the first top
11291 level sibling is there to provide context only. */
11292
11293 static void
11294 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11295 {
11296 struct die_info *child_die;
11297
11298 prepare_one_comp_unit (cu, die, language_minimal);
11299
11300 /* Initialize (or reinitialize) the machinery for building symtabs.
11301 We do this before processing child DIEs, so that the line header table
11302 is available for DW_AT_decl_file. */
11303 cu->setup_type_unit_groups (die);
11304
11305 if (die->child != NULL)
11306 {
11307 child_die = die->child;
11308 while (child_die && child_die->tag)
11309 {
11310 process_die (child_die, cu);
11311 child_die = child_die->sibling;
11312 }
11313 }
11314 }
11315 \f
11316 /* DWO/DWP files.
11317
11318 http://gcc.gnu.org/wiki/DebugFission
11319 http://gcc.gnu.org/wiki/DebugFissionDWP
11320
11321 To simplify handling of both DWO files ("object" files with the DWARF info)
11322 and DWP files (a file with the DWOs packaged up into one file), we treat
11323 DWP files as having a collection of virtual DWO files. */
11324
11325 static hashval_t
11326 hash_dwo_file (const void *item)
11327 {
11328 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11329 hashval_t hash;
11330
11331 hash = htab_hash_string (dwo_file->dwo_name);
11332 if (dwo_file->comp_dir != NULL)
11333 hash += htab_hash_string (dwo_file->comp_dir);
11334 return hash;
11335 }
11336
11337 static int
11338 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11339 {
11340 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11341 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11342
11343 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11344 return 0;
11345 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11346 return lhs->comp_dir == rhs->comp_dir;
11347 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11348 }
11349
11350 /* Allocate a hash table for DWO files. */
11351
11352 static htab_up
11353 allocate_dwo_file_hash_table ()
11354 {
11355 auto delete_dwo_file = [] (void *item)
11356 {
11357 struct dwo_file *dwo_file = (struct dwo_file *) item;
11358
11359 delete dwo_file;
11360 };
11361
11362 return htab_up (htab_create_alloc (41,
11363 hash_dwo_file,
11364 eq_dwo_file,
11365 delete_dwo_file,
11366 xcalloc, xfree));
11367 }
11368
11369 /* Lookup DWO file DWO_NAME. */
11370
11371 static void **
11372 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
11373 const char *dwo_name,
11374 const char *comp_dir)
11375 {
11376 struct dwo_file find_entry;
11377 void **slot;
11378
11379 if (per_objfile->per_bfd->dwo_files == NULL)
11380 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
11381
11382 find_entry.dwo_name = dwo_name;
11383 find_entry.comp_dir = comp_dir;
11384 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
11385 INSERT);
11386
11387 return slot;
11388 }
11389
11390 static hashval_t
11391 hash_dwo_unit (const void *item)
11392 {
11393 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11394
11395 /* This drops the top 32 bits of the id, but is ok for a hash. */
11396 return dwo_unit->signature;
11397 }
11398
11399 static int
11400 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11401 {
11402 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11403 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11404
11405 /* The signature is assumed to be unique within the DWO file.
11406 So while object file CU dwo_id's always have the value zero,
11407 that's OK, assuming each object file DWO file has only one CU,
11408 and that's the rule for now. */
11409 return lhs->signature == rhs->signature;
11410 }
11411
11412 /* Allocate a hash table for DWO CUs,TUs.
11413 There is one of these tables for each of CUs,TUs for each DWO file. */
11414
11415 static htab_up
11416 allocate_dwo_unit_table ()
11417 {
11418 /* Start out with a pretty small number.
11419 Generally DWO files contain only one CU and maybe some TUs. */
11420 return htab_up (htab_create_alloc (3,
11421 hash_dwo_unit,
11422 eq_dwo_unit,
11423 NULL, xcalloc, xfree));
11424 }
11425
11426 /* die_reader_func for create_dwo_cu. */
11427
11428 static void
11429 create_dwo_cu_reader (const struct die_reader_specs *reader,
11430 const gdb_byte *info_ptr,
11431 struct die_info *comp_unit_die,
11432 struct dwo_file *dwo_file,
11433 struct dwo_unit *dwo_unit)
11434 {
11435 struct dwarf2_cu *cu = reader->cu;
11436 sect_offset sect_off = cu->per_cu->sect_off;
11437 struct dwarf2_section_info *section = cu->per_cu->section;
11438
11439 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11440 if (!signature.has_value ())
11441 {
11442 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11443 " its dwo_id [in module %s]"),
11444 sect_offset_str (sect_off), dwo_file->dwo_name);
11445 return;
11446 }
11447
11448 dwo_unit->dwo_file = dwo_file;
11449 dwo_unit->signature = *signature;
11450 dwo_unit->section = section;
11451 dwo_unit->sect_off = sect_off;
11452 dwo_unit->length = cu->per_cu->length;
11453
11454 if (dwarf_read_debug)
11455 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11456 sect_offset_str (sect_off),
11457 hex_string (dwo_unit->signature));
11458 }
11459
11460 /* Create the dwo_units for the CUs in a DWO_FILE.
11461 Note: This function processes DWO files only, not DWP files. */
11462
11463 static void
11464 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
11465 dwarf2_cu *cu, struct dwo_file &dwo_file,
11466 dwarf2_section_info &section, htab_up &cus_htab)
11467 {
11468 struct objfile *objfile = per_objfile->objfile;
11469 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
11470 const gdb_byte *info_ptr, *end_ptr;
11471
11472 section.read (objfile);
11473 info_ptr = section.buffer;
11474
11475 if (info_ptr == NULL)
11476 return;
11477
11478 if (dwarf_read_debug)
11479 {
11480 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11481 section.get_name (),
11482 section.get_file_name ());
11483 }
11484
11485 end_ptr = info_ptr + section.size;
11486 while (info_ptr < end_ptr)
11487 {
11488 struct dwarf2_per_cu_data per_cu;
11489 struct dwo_unit read_unit {};
11490 struct dwo_unit *dwo_unit;
11491 void **slot;
11492 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11493
11494 memset (&per_cu, 0, sizeof (per_cu));
11495 per_cu.per_bfd = per_bfd;
11496 per_cu.is_debug_types = 0;
11497 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11498 per_cu.section = &section;
11499
11500 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
11501 if (!reader.dummy_p)
11502 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11503 &dwo_file, &read_unit);
11504 info_ptr += per_cu.length;
11505
11506 // If the unit could not be parsed, skip it.
11507 if (read_unit.dwo_file == NULL)
11508 continue;
11509
11510 if (cus_htab == NULL)
11511 cus_htab = allocate_dwo_unit_table ();
11512
11513 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11514 struct dwo_unit);
11515 *dwo_unit = read_unit;
11516 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11517 gdb_assert (slot != NULL);
11518 if (*slot != NULL)
11519 {
11520 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11521 sect_offset dup_sect_off = dup_cu->sect_off;
11522
11523 complaint (_("debug cu entry at offset %s is duplicate to"
11524 " the entry at offset %s, signature %s"),
11525 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11526 hex_string (dwo_unit->signature));
11527 }
11528 *slot = (void *)dwo_unit;
11529 }
11530 }
11531
11532 /* DWP file .debug_{cu,tu}_index section format:
11533 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11534 [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"]
11535
11536 DWP Versions 1 & 2 are older, pre-standard format versions. The first
11537 officially standard DWP format was published with DWARF v5 and is called
11538 Version 5. There are no versions 3 or 4.
11539
11540 DWP Version 1:
11541
11542 Both index sections have the same format, and serve to map a 64-bit
11543 signature to a set of section numbers. Each section begins with a header,
11544 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11545 indexes, and a pool of 32-bit section numbers. The index sections will be
11546 aligned at 8-byte boundaries in the file.
11547
11548 The index section header consists of:
11549
11550 V, 32 bit version number
11551 -, 32 bits unused
11552 N, 32 bit number of compilation units or type units in the index
11553 M, 32 bit number of slots in the hash table
11554
11555 Numbers are recorded using the byte order of the application binary.
11556
11557 The hash table begins at offset 16 in the section, and consists of an array
11558 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11559 order of the application binary). Unused slots in the hash table are 0.
11560 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11561
11562 The parallel table begins immediately after the hash table
11563 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11564 array of 32-bit indexes (using the byte order of the application binary),
11565 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11566 table contains a 32-bit index into the pool of section numbers. For unused
11567 hash table slots, the corresponding entry in the parallel table will be 0.
11568
11569 The pool of section numbers begins immediately following the hash table
11570 (at offset 16 + 12 * M from the beginning of the section). The pool of
11571 section numbers consists of an array of 32-bit words (using the byte order
11572 of the application binary). Each item in the array is indexed starting
11573 from 0. The hash table entry provides the index of the first section
11574 number in the set. Additional section numbers in the set follow, and the
11575 set is terminated by a 0 entry (section number 0 is not used in ELF).
11576
11577 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11578 section must be the first entry in the set, and the .debug_abbrev.dwo must
11579 be the second entry. Other members of the set may follow in any order.
11580
11581 ---
11582
11583 DWP Versions 2 and 5:
11584
11585 DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one,
11586 and the entries in the index tables are now offsets into these sections.
11587 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11588 section.
11589
11590 Index Section Contents:
11591 Header
11592 Hash Table of Signatures dwp_hash_table.hash_table
11593 Parallel Table of Indices dwp_hash_table.unit_table
11594 Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets}
11595 Table of Section Sizes dwp_hash_table.{v2|v5}.sizes
11596
11597 The index section header consists of:
11598
11599 V, 32 bit version number
11600 L, 32 bit number of columns in the table of section offsets
11601 N, 32 bit number of compilation units or type units in the index
11602 M, 32 bit number of slots in the hash table
11603
11604 Numbers are recorded using the byte order of the application binary.
11605
11606 The hash table has the same format as version 1.
11607 The parallel table of indices has the same format as version 1,
11608 except that the entries are origin-1 indices into the table of sections
11609 offsets and the table of section sizes.
11610
11611 The table of offsets begins immediately following the parallel table
11612 (at offset 16 + 12 * M from the beginning of the section). The table is
11613 a two-dimensional array of 32-bit words (using the byte order of the
11614 application binary), with L columns and N+1 rows, in row-major order.
11615 Each row in the array is indexed starting from 0. The first row provides
11616 a key to the remaining rows: each column in this row provides an identifier
11617 for a debug section, and the offsets in the same column of subsequent rows
11618 refer to that section. The section identifiers for Version 2 are:
11619
11620 DW_SECT_INFO 1 .debug_info.dwo
11621 DW_SECT_TYPES 2 .debug_types.dwo
11622 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11623 DW_SECT_LINE 4 .debug_line.dwo
11624 DW_SECT_LOC 5 .debug_loc.dwo
11625 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11626 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11627 DW_SECT_MACRO 8 .debug_macro.dwo
11628
11629 The section identifiers for Version 5 are:
11630
11631 DW_SECT_INFO_V5 1 .debug_info.dwo
11632 DW_SECT_RESERVED_V5 2 --
11633 DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo
11634 DW_SECT_LINE_V5 4 .debug_line.dwo
11635 DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo
11636 DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo
11637 DW_SECT_MACRO_V5 7 .debug_macro.dwo
11638 DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo
11639
11640 The offsets provided by the CU and TU index sections are the base offsets
11641 for the contributions made by each CU or TU to the corresponding section
11642 in the package file. Each CU and TU header contains an abbrev_offset
11643 field, used to find the abbreviations table for that CU or TU within the
11644 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11645 be interpreted as relative to the base offset given in the index section.
11646 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11647 should be interpreted as relative to the base offset for .debug_line.dwo,
11648 and offsets into other debug sections obtained from DWARF attributes should
11649 also be interpreted as relative to the corresponding base offset.
11650
11651 The table of sizes begins immediately following the table of offsets.
11652 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11653 with L columns and N rows, in row-major order. Each row in the array is
11654 indexed starting from 1 (row 0 is shared by the two tables).
11655
11656 ---
11657
11658 Hash table lookup is handled the same in version 1 and 2:
11659
11660 We assume that N and M will not exceed 2^32 - 1.
11661 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11662
11663 Given a 64-bit compilation unit signature or a type signature S, an entry
11664 in the hash table is located as follows:
11665
11666 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11667 the low-order k bits all set to 1.
11668
11669 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11670
11671 3) If the hash table entry at index H matches the signature, use that
11672 entry. If the hash table entry at index H is unused (all zeroes),
11673 terminate the search: the signature is not present in the table.
11674
11675 4) Let H = (H + H') modulo M. Repeat at Step 3.
11676
11677 Because M > N and H' and M are relatively prime, the search is guaranteed
11678 to stop at an unused slot or find the match. */
11679
11680 /* Create a hash table to map DWO IDs to their CU/TU entry in
11681 .debug_{info,types}.dwo in DWP_FILE.
11682 Returns NULL if there isn't one.
11683 Note: This function processes DWP files only, not DWO files. */
11684
11685 static struct dwp_hash_table *
11686 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11687 struct dwp_file *dwp_file, int is_debug_types)
11688 {
11689 struct objfile *objfile = per_objfile->objfile;
11690 bfd *dbfd = dwp_file->dbfd.get ();
11691 const gdb_byte *index_ptr, *index_end;
11692 struct dwarf2_section_info *index;
11693 uint32_t version, nr_columns, nr_units, nr_slots;
11694 struct dwp_hash_table *htab;
11695
11696 if (is_debug_types)
11697 index = &dwp_file->sections.tu_index;
11698 else
11699 index = &dwp_file->sections.cu_index;
11700
11701 if (index->empty ())
11702 return NULL;
11703 index->read (objfile);
11704
11705 index_ptr = index->buffer;
11706 index_end = index_ptr + index->size;
11707
11708 /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding.
11709 For now it's safe to just read 4 bytes (particularly as it's difficult to
11710 tell if you're dealing with Version 5 before you've read the version). */
11711 version = read_4_bytes (dbfd, index_ptr);
11712 index_ptr += 4;
11713 if (version == 2 || version == 5)
11714 nr_columns = read_4_bytes (dbfd, index_ptr);
11715 else
11716 nr_columns = 0;
11717 index_ptr += 4;
11718 nr_units = read_4_bytes (dbfd, index_ptr);
11719 index_ptr += 4;
11720 nr_slots = read_4_bytes (dbfd, index_ptr);
11721 index_ptr += 4;
11722
11723 if (version != 1 && version != 2 && version != 5)
11724 {
11725 error (_("Dwarf Error: unsupported DWP file version (%s)"
11726 " [in module %s]"),
11727 pulongest (version), dwp_file->name);
11728 }
11729 if (nr_slots != (nr_slots & -nr_slots))
11730 {
11731 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11732 " is not power of 2 [in module %s]"),
11733 pulongest (nr_slots), dwp_file->name);
11734 }
11735
11736 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11737 htab->version = version;
11738 htab->nr_columns = nr_columns;
11739 htab->nr_units = nr_units;
11740 htab->nr_slots = nr_slots;
11741 htab->hash_table = index_ptr;
11742 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11743
11744 /* Exit early if the table is empty. */
11745 if (nr_slots == 0 || nr_units == 0
11746 || (version == 2 && nr_columns == 0)
11747 || (version == 5 && nr_columns == 0))
11748 {
11749 /* All must be zero. */
11750 if (nr_slots != 0 || nr_units != 0
11751 || (version == 2 && nr_columns != 0)
11752 || (version == 5 && nr_columns != 0))
11753 {
11754 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11755 " all zero [in modules %s]"),
11756 dwp_file->name);
11757 }
11758 return htab;
11759 }
11760
11761 if (version == 1)
11762 {
11763 htab->section_pool.v1.indices =
11764 htab->unit_table + sizeof (uint32_t) * nr_slots;
11765 /* It's harder to decide whether the section is too small in v1.
11766 V1 is deprecated anyway so we punt. */
11767 }
11768 else if (version == 2)
11769 {
11770 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11771 int *ids = htab->section_pool.v2.section_ids;
11772 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11773 /* Reverse map for error checking. */
11774 int ids_seen[DW_SECT_MAX + 1];
11775 int i;
11776
11777 if (nr_columns < 2)
11778 {
11779 error (_("Dwarf Error: bad DWP hash table, too few columns"
11780 " in section table [in module %s]"),
11781 dwp_file->name);
11782 }
11783 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11784 {
11785 error (_("Dwarf Error: bad DWP hash table, too many columns"
11786 " in section table [in module %s]"),
11787 dwp_file->name);
11788 }
11789 memset (ids, 255, sizeof_ids);
11790 memset (ids_seen, 255, sizeof (ids_seen));
11791 for (i = 0; i < nr_columns; ++i)
11792 {
11793 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11794
11795 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11796 {
11797 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11798 " in section table [in module %s]"),
11799 id, dwp_file->name);
11800 }
11801 if (ids_seen[id] != -1)
11802 {
11803 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11804 " id %d in section table [in module %s]"),
11805 id, dwp_file->name);
11806 }
11807 ids_seen[id] = i;
11808 ids[i] = id;
11809 }
11810 /* Must have exactly one info or types section. */
11811 if (((ids_seen[DW_SECT_INFO] != -1)
11812 + (ids_seen[DW_SECT_TYPES] != -1))
11813 != 1)
11814 {
11815 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11816 " DWO info/types section [in module %s]"),
11817 dwp_file->name);
11818 }
11819 /* Must have an abbrev section. */
11820 if (ids_seen[DW_SECT_ABBREV] == -1)
11821 {
11822 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11823 " section [in module %s]"),
11824 dwp_file->name);
11825 }
11826 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11827 htab->section_pool.v2.sizes =
11828 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11829 * nr_units * nr_columns);
11830 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11831 * nr_units * nr_columns))
11832 > index_end)
11833 {
11834 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11835 " [in module %s]"),
11836 dwp_file->name);
11837 }
11838 }
11839 else /* version == 5 */
11840 {
11841 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11842 int *ids = htab->section_pool.v5.section_ids;
11843 size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids);
11844 /* Reverse map for error checking. */
11845 int ids_seen[DW_SECT_MAX_V5 + 1];
11846
11847 if (nr_columns < 2)
11848 {
11849 error (_("Dwarf Error: bad DWP hash table, too few columns"
11850 " in section table [in module %s]"),
11851 dwp_file->name);
11852 }
11853 if (nr_columns > MAX_NR_V5_DWO_SECTIONS)
11854 {
11855 error (_("Dwarf Error: bad DWP hash table, too many columns"
11856 " in section table [in module %s]"),
11857 dwp_file->name);
11858 }
11859 memset (ids, 255, sizeof_ids);
11860 memset (ids_seen, 255, sizeof (ids_seen));
11861 for (int i = 0; i < nr_columns; ++i)
11862 {
11863 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11864
11865 if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5)
11866 {
11867 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11868 " in section table [in module %s]"),
11869 id, dwp_file->name);
11870 }
11871 if (ids_seen[id] != -1)
11872 {
11873 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11874 " id %d in section table [in module %s]"),
11875 id, dwp_file->name);
11876 }
11877 ids_seen[id] = i;
11878 ids[i] = id;
11879 }
11880 /* Must have seen an info section. */
11881 if (ids_seen[DW_SECT_INFO_V5] == -1)
11882 {
11883 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11884 " DWO info/types section [in module %s]"),
11885 dwp_file->name);
11886 }
11887 /* Must have an abbrev section. */
11888 if (ids_seen[DW_SECT_ABBREV_V5] == -1)
11889 {
11890 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11891 " section [in module %s]"),
11892 dwp_file->name);
11893 }
11894 htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11895 htab->section_pool.v5.sizes
11896 = htab->section_pool.v5.offsets + (sizeof (uint32_t)
11897 * nr_units * nr_columns);
11898 if ((htab->section_pool.v5.sizes + (sizeof (uint32_t)
11899 * nr_units * nr_columns))
11900 > index_end)
11901 {
11902 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11903 " [in module %s]"),
11904 dwp_file->name);
11905 }
11906 }
11907
11908 return htab;
11909 }
11910
11911 /* Update SECTIONS with the data from SECTP.
11912
11913 This function is like the other "locate" section routines, but in
11914 this context the sections to read comes from the DWP V1 hash table,
11915 not the full ELF section table.
11916
11917 The result is non-zero for success, or zero if an error was found. */
11918
11919 static int
11920 locate_v1_virtual_dwo_sections (asection *sectp,
11921 struct virtual_v1_dwo_sections *sections)
11922 {
11923 const struct dwop_section_names *names = &dwop_section_names;
11924
11925 if (section_is_p (sectp->name, &names->abbrev_dwo))
11926 {
11927 /* There can be only one. */
11928 if (sections->abbrev.s.section != NULL)
11929 return 0;
11930 sections->abbrev.s.section = sectp;
11931 sections->abbrev.size = bfd_section_size (sectp);
11932 }
11933 else if (section_is_p (sectp->name, &names->info_dwo)
11934 || section_is_p (sectp->name, &names->types_dwo))
11935 {
11936 /* There can be only one. */
11937 if (sections->info_or_types.s.section != NULL)
11938 return 0;
11939 sections->info_or_types.s.section = sectp;
11940 sections->info_or_types.size = bfd_section_size (sectp);
11941 }
11942 else if (section_is_p (sectp->name, &names->line_dwo))
11943 {
11944 /* There can be only one. */
11945 if (sections->line.s.section != NULL)
11946 return 0;
11947 sections->line.s.section = sectp;
11948 sections->line.size = bfd_section_size (sectp);
11949 }
11950 else if (section_is_p (sectp->name, &names->loc_dwo))
11951 {
11952 /* There can be only one. */
11953 if (sections->loc.s.section != NULL)
11954 return 0;
11955 sections->loc.s.section = sectp;
11956 sections->loc.size = bfd_section_size (sectp);
11957 }
11958 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11959 {
11960 /* There can be only one. */
11961 if (sections->macinfo.s.section != NULL)
11962 return 0;
11963 sections->macinfo.s.section = sectp;
11964 sections->macinfo.size = bfd_section_size (sectp);
11965 }
11966 else if (section_is_p (sectp->name, &names->macro_dwo))
11967 {
11968 /* There can be only one. */
11969 if (sections->macro.s.section != NULL)
11970 return 0;
11971 sections->macro.s.section = sectp;
11972 sections->macro.size = bfd_section_size (sectp);
11973 }
11974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11975 {
11976 /* There can be only one. */
11977 if (sections->str_offsets.s.section != NULL)
11978 return 0;
11979 sections->str_offsets.s.section = sectp;
11980 sections->str_offsets.size = bfd_section_size (sectp);
11981 }
11982 else
11983 {
11984 /* No other kind of section is valid. */
11985 return 0;
11986 }
11987
11988 return 1;
11989 }
11990
11991 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11992 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11993 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11994 This is for DWP version 1 files. */
11995
11996 static struct dwo_unit *
11997 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
11998 struct dwp_file *dwp_file,
11999 uint32_t unit_index,
12000 const char *comp_dir,
12001 ULONGEST signature, int is_debug_types)
12002 {
12003 const struct dwp_hash_table *dwp_htab =
12004 is_debug_types ? dwp_file->tus : dwp_file->cus;
12005 bfd *dbfd = dwp_file->dbfd.get ();
12006 const char *kind = is_debug_types ? "TU" : "CU";
12007 struct dwo_file *dwo_file;
12008 struct dwo_unit *dwo_unit;
12009 struct virtual_v1_dwo_sections sections;
12010 void **dwo_file_slot;
12011 int i;
12012
12013 gdb_assert (dwp_file->version == 1);
12014
12015 if (dwarf_read_debug)
12016 {
12017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12018 kind,
12019 pulongest (unit_index), hex_string (signature),
12020 dwp_file->name);
12021 }
12022
12023 /* Fetch the sections of this DWO unit.
12024 Put a limit on the number of sections we look for so that bad data
12025 doesn't cause us to loop forever. */
12026
12027 #define MAX_NR_V1_DWO_SECTIONS \
12028 (1 /* .debug_info or .debug_types */ \
12029 + 1 /* .debug_abbrev */ \
12030 + 1 /* .debug_line */ \
12031 + 1 /* .debug_loc */ \
12032 + 1 /* .debug_str_offsets */ \
12033 + 1 /* .debug_macro or .debug_macinfo */ \
12034 + 1 /* trailing zero */)
12035
12036 memset (&sections, 0, sizeof (sections));
12037
12038 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12039 {
12040 asection *sectp;
12041 uint32_t section_nr =
12042 read_4_bytes (dbfd,
12043 dwp_htab->section_pool.v1.indices
12044 + (unit_index + i) * sizeof (uint32_t));
12045
12046 if (section_nr == 0)
12047 break;
12048 if (section_nr >= dwp_file->num_sections)
12049 {
12050 error (_("Dwarf Error: bad DWP hash table, section number too large"
12051 " [in module %s]"),
12052 dwp_file->name);
12053 }
12054
12055 sectp = dwp_file->elf_sections[section_nr];
12056 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12057 {
12058 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12059 " [in module %s]"),
12060 dwp_file->name);
12061 }
12062 }
12063
12064 if (i < 2
12065 || sections.info_or_types.empty ()
12066 || sections.abbrev.empty ())
12067 {
12068 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12069 " [in module %s]"),
12070 dwp_file->name);
12071 }
12072 if (i == MAX_NR_V1_DWO_SECTIONS)
12073 {
12074 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12075 " [in module %s]"),
12076 dwp_file->name);
12077 }
12078
12079 /* It's easier for the rest of the code if we fake a struct dwo_file and
12080 have dwo_unit "live" in that. At least for now.
12081
12082 The DWP file can be made up of a random collection of CUs and TUs.
12083 However, for each CU + set of TUs that came from the same original DWO
12084 file, we can combine them back into a virtual DWO file to save space
12085 (fewer struct dwo_file objects to allocate). Remember that for really
12086 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12087
12088 std::string virtual_dwo_name =
12089 string_printf ("virtual-dwo/%d-%d-%d-%d",
12090 sections.abbrev.get_id (),
12091 sections.line.get_id (),
12092 sections.loc.get_id (),
12093 sections.str_offsets.get_id ());
12094 /* Can we use an existing virtual DWO file? */
12095 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12096 comp_dir);
12097 /* Create one if necessary. */
12098 if (*dwo_file_slot == NULL)
12099 {
12100 if (dwarf_read_debug)
12101 {
12102 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12103 virtual_dwo_name.c_str ());
12104 }
12105 dwo_file = new struct dwo_file;
12106 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12107 dwo_file->comp_dir = comp_dir;
12108 dwo_file->sections.abbrev = sections.abbrev;
12109 dwo_file->sections.line = sections.line;
12110 dwo_file->sections.loc = sections.loc;
12111 dwo_file->sections.macinfo = sections.macinfo;
12112 dwo_file->sections.macro = sections.macro;
12113 dwo_file->sections.str_offsets = sections.str_offsets;
12114 /* The "str" section is global to the entire DWP file. */
12115 dwo_file->sections.str = dwp_file->sections.str;
12116 /* The info or types section is assigned below to dwo_unit,
12117 there's no need to record it in dwo_file.
12118 Also, we can't simply record type sections in dwo_file because
12119 we record a pointer into the vector in dwo_unit. As we collect more
12120 types we'll grow the vector and eventually have to reallocate space
12121 for it, invalidating all copies of pointers into the previous
12122 contents. */
12123 *dwo_file_slot = dwo_file;
12124 }
12125 else
12126 {
12127 if (dwarf_read_debug)
12128 {
12129 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12130 virtual_dwo_name.c_str ());
12131 }
12132 dwo_file = (struct dwo_file *) *dwo_file_slot;
12133 }
12134
12135 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12136 dwo_unit->dwo_file = dwo_file;
12137 dwo_unit->signature = signature;
12138 dwo_unit->section =
12139 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12140 *dwo_unit->section = sections.info_or_types;
12141 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12142
12143 return dwo_unit;
12144 }
12145
12146 /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to
12147 simplify them. Given a pointer to the containing section SECTION, and
12148 OFFSET,SIZE of the piece within that section used by a TU/CU, return a
12149 virtual section of just that piece. */
12150
12151 static struct dwarf2_section_info
12152 create_dwp_v2_or_v5_section (dwarf2_per_objfile *per_objfile,
12153 struct dwarf2_section_info *section,
12154 bfd_size_type offset, bfd_size_type size)
12155 {
12156 struct dwarf2_section_info result;
12157 asection *sectp;
12158
12159 gdb_assert (section != NULL);
12160 gdb_assert (!section->is_virtual);
12161
12162 memset (&result, 0, sizeof (result));
12163 result.s.containing_section = section;
12164 result.is_virtual = true;
12165
12166 if (size == 0)
12167 return result;
12168
12169 sectp = section->get_bfd_section ();
12170
12171 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12172 bounds of the real section. This is a pretty-rare event, so just
12173 flag an error (easier) instead of a warning and trying to cope. */
12174 if (sectp == NULL
12175 || offset + size > bfd_section_size (sectp))
12176 {
12177 error (_("Dwarf Error: Bad DWP V2 or V5 section info, doesn't fit"
12178 " in section %s [in module %s]"),
12179 sectp ? bfd_section_name (sectp) : "<unknown>",
12180 objfile_name (per_objfile->objfile));
12181 }
12182
12183 result.virtual_offset = offset;
12184 result.size = size;
12185 return result;
12186 }
12187
12188 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12189 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12190 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12191 This is for DWP version 2 files. */
12192
12193 static struct dwo_unit *
12194 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
12195 struct dwp_file *dwp_file,
12196 uint32_t unit_index,
12197 const char *comp_dir,
12198 ULONGEST signature, int is_debug_types)
12199 {
12200 const struct dwp_hash_table *dwp_htab =
12201 is_debug_types ? dwp_file->tus : dwp_file->cus;
12202 bfd *dbfd = dwp_file->dbfd.get ();
12203 const char *kind = is_debug_types ? "TU" : "CU";
12204 struct dwo_file *dwo_file;
12205 struct dwo_unit *dwo_unit;
12206 struct virtual_v2_or_v5_dwo_sections sections;
12207 void **dwo_file_slot;
12208 int i;
12209
12210 gdb_assert (dwp_file->version == 2);
12211
12212 if (dwarf_read_debug)
12213 {
12214 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12215 kind,
12216 pulongest (unit_index), hex_string (signature),
12217 dwp_file->name);
12218 }
12219
12220 /* Fetch the section offsets of this DWO unit. */
12221
12222 memset (&sections, 0, sizeof (sections));
12223
12224 for (i = 0; i < dwp_htab->nr_columns; ++i)
12225 {
12226 uint32_t offset = read_4_bytes (dbfd,
12227 dwp_htab->section_pool.v2.offsets
12228 + (((unit_index - 1) * dwp_htab->nr_columns
12229 + i)
12230 * sizeof (uint32_t)));
12231 uint32_t size = read_4_bytes (dbfd,
12232 dwp_htab->section_pool.v2.sizes
12233 + (((unit_index - 1) * dwp_htab->nr_columns
12234 + i)
12235 * sizeof (uint32_t)));
12236
12237 switch (dwp_htab->section_pool.v2.section_ids[i])
12238 {
12239 case DW_SECT_INFO:
12240 case DW_SECT_TYPES:
12241 sections.info_or_types_offset = offset;
12242 sections.info_or_types_size = size;
12243 break;
12244 case DW_SECT_ABBREV:
12245 sections.abbrev_offset = offset;
12246 sections.abbrev_size = size;
12247 break;
12248 case DW_SECT_LINE:
12249 sections.line_offset = offset;
12250 sections.line_size = size;
12251 break;
12252 case DW_SECT_LOC:
12253 sections.loc_offset = offset;
12254 sections.loc_size = size;
12255 break;
12256 case DW_SECT_STR_OFFSETS:
12257 sections.str_offsets_offset = offset;
12258 sections.str_offsets_size = size;
12259 break;
12260 case DW_SECT_MACINFO:
12261 sections.macinfo_offset = offset;
12262 sections.macinfo_size = size;
12263 break;
12264 case DW_SECT_MACRO:
12265 sections.macro_offset = offset;
12266 sections.macro_size = size;
12267 break;
12268 }
12269 }
12270
12271 /* It's easier for the rest of the code if we fake a struct dwo_file and
12272 have dwo_unit "live" in that. At least for now.
12273
12274 The DWP file can be made up of a random collection of CUs and TUs.
12275 However, for each CU + set of TUs that came from the same original DWO
12276 file, we can combine them back into a virtual DWO file to save space
12277 (fewer struct dwo_file objects to allocate). Remember that for really
12278 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12279
12280 std::string virtual_dwo_name =
12281 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12282 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12283 (long) (sections.line_size ? sections.line_offset : 0),
12284 (long) (sections.loc_size ? sections.loc_offset : 0),
12285 (long) (sections.str_offsets_size
12286 ? sections.str_offsets_offset : 0));
12287 /* Can we use an existing virtual DWO file? */
12288 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
12289 comp_dir);
12290 /* Create one if necessary. */
12291 if (*dwo_file_slot == NULL)
12292 {
12293 if (dwarf_read_debug)
12294 {
12295 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12296 virtual_dwo_name.c_str ());
12297 }
12298 dwo_file = new struct dwo_file;
12299 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12300 dwo_file->comp_dir = comp_dir;
12301 dwo_file->sections.abbrev =
12302 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.abbrev,
12303 sections.abbrev_offset,
12304 sections.abbrev_size);
12305 dwo_file->sections.line =
12306 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.line,
12307 sections.line_offset,
12308 sections.line_size);
12309 dwo_file->sections.loc =
12310 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.loc,
12311 sections.loc_offset, sections.loc_size);
12312 dwo_file->sections.macinfo =
12313 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macinfo,
12314 sections.macinfo_offset,
12315 sections.macinfo_size);
12316 dwo_file->sections.macro =
12317 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macro,
12318 sections.macro_offset,
12319 sections.macro_size);
12320 dwo_file->sections.str_offsets =
12321 create_dwp_v2_or_v5_section (per_objfile,
12322 &dwp_file->sections.str_offsets,
12323 sections.str_offsets_offset,
12324 sections.str_offsets_size);
12325 /* The "str" section is global to the entire DWP file. */
12326 dwo_file->sections.str = dwp_file->sections.str;
12327 /* The info or types section is assigned below to dwo_unit,
12328 there's no need to record it in dwo_file.
12329 Also, we can't simply record type sections in dwo_file because
12330 we record a pointer into the vector in dwo_unit. As we collect more
12331 types we'll grow the vector and eventually have to reallocate space
12332 for it, invalidating all copies of pointers into the previous
12333 contents. */
12334 *dwo_file_slot = dwo_file;
12335 }
12336 else
12337 {
12338 if (dwarf_read_debug)
12339 {
12340 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12341 virtual_dwo_name.c_str ());
12342 }
12343 dwo_file = (struct dwo_file *) *dwo_file_slot;
12344 }
12345
12346 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12347 dwo_unit->dwo_file = dwo_file;
12348 dwo_unit->signature = signature;
12349 dwo_unit->section =
12350 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12351 *dwo_unit->section = create_dwp_v2_or_v5_section
12352 (per_objfile,
12353 is_debug_types
12354 ? &dwp_file->sections.types
12355 : &dwp_file->sections.info,
12356 sections.info_or_types_offset,
12357 sections.info_or_types_size);
12358 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12359
12360 return dwo_unit;
12361 }
12362
12363 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12364 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12365 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12366 This is for DWP version 5 files. */
12367
12368 static struct dwo_unit *
12369 create_dwo_unit_in_dwp_v5 (dwarf2_per_objfile *per_objfile,
12370 struct dwp_file *dwp_file,
12371 uint32_t unit_index,
12372 const char *comp_dir,
12373 ULONGEST signature, int is_debug_types)
12374 {
12375 const struct dwp_hash_table *dwp_htab
12376 = is_debug_types ? dwp_file->tus : dwp_file->cus;
12377 bfd *dbfd = dwp_file->dbfd.get ();
12378 const char *kind = is_debug_types ? "TU" : "CU";
12379 struct dwo_file *dwo_file;
12380 struct dwo_unit *dwo_unit;
12381 struct virtual_v2_or_v5_dwo_sections sections {};
12382 void **dwo_file_slot;
12383
12384 gdb_assert (dwp_file->version == 5);
12385
12386 if (dwarf_read_debug)
12387 {
12388 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V5 file: %s\n",
12389 kind,
12390 pulongest (unit_index), hex_string (signature),
12391 dwp_file->name);
12392 }
12393
12394 /* Fetch the section offsets of this DWO unit. */
12395
12396 /* memset (&sections, 0, sizeof (sections)); */
12397
12398 for (int i = 0; i < dwp_htab->nr_columns; ++i)
12399 {
12400 uint32_t offset = read_4_bytes (dbfd,
12401 dwp_htab->section_pool.v5.offsets
12402 + (((unit_index - 1)
12403 * dwp_htab->nr_columns
12404 + i)
12405 * sizeof (uint32_t)));
12406 uint32_t size = read_4_bytes (dbfd,
12407 dwp_htab->section_pool.v5.sizes
12408 + (((unit_index - 1) * dwp_htab->nr_columns
12409 + i)
12410 * sizeof (uint32_t)));
12411
12412 switch (dwp_htab->section_pool.v5.section_ids[i])
12413 {
12414 case DW_SECT_ABBREV_V5:
12415 sections.abbrev_offset = offset;
12416 sections.abbrev_size = size;
12417 break;
12418 case DW_SECT_INFO_V5:
12419 sections.info_or_types_offset = offset;
12420 sections.info_or_types_size = size;
12421 break;
12422 case DW_SECT_LINE_V5:
12423 sections.line_offset = offset;
12424 sections.line_size = size;
12425 break;
12426 case DW_SECT_LOCLISTS_V5:
12427 sections.loclists_offset = offset;
12428 sections.loclists_size = size;
12429 break;
12430 case DW_SECT_MACRO_V5:
12431 sections.macro_offset = offset;
12432 sections.macro_size = size;
12433 break;
12434 case DW_SECT_RNGLISTS_V5:
12435 sections.rnglists_offset = offset;
12436 sections.rnglists_size = size;
12437 break;
12438 case DW_SECT_STR_OFFSETS_V5:
12439 sections.str_offsets_offset = offset;
12440 sections.str_offsets_size = size;
12441 break;
12442 case DW_SECT_RESERVED_V5:
12443 default:
12444 break;
12445 }
12446 }
12447
12448 /* It's easier for the rest of the code if we fake a struct dwo_file and
12449 have dwo_unit "live" in that. At least for now.
12450
12451 The DWP file can be made up of a random collection of CUs and TUs.
12452 However, for each CU + set of TUs that came from the same original DWO
12453 file, we can combine them back into a virtual DWO file to save space
12454 (fewer struct dwo_file objects to allocate). Remember that for really
12455 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12456
12457 std::string virtual_dwo_name =
12458 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld",
12459 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12460 (long) (sections.line_size ? sections.line_offset : 0),
12461 (long) (sections.loclists_size ? sections.loclists_offset : 0),
12462 (long) (sections.str_offsets_size
12463 ? sections.str_offsets_offset : 0),
12464 (long) (sections.macro_size ? sections.macro_offset : 0),
12465 (long) (sections.rnglists_size ? sections.rnglists_offset: 0));
12466 /* Can we use an existing virtual DWO file? */
12467 dwo_file_slot = lookup_dwo_file_slot (per_objfile,
12468 virtual_dwo_name.c_str (),
12469 comp_dir);
12470 /* Create one if necessary. */
12471 if (*dwo_file_slot == NULL)
12472 {
12473 if (dwarf_read_debug)
12474 {
12475 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12476 virtual_dwo_name.c_str ());
12477 }
12478 dwo_file = new struct dwo_file;
12479 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
12480 dwo_file->comp_dir = comp_dir;
12481 dwo_file->sections.abbrev =
12482 create_dwp_v2_or_v5_section (per_objfile,
12483 &dwp_file->sections.abbrev,
12484 sections.abbrev_offset,
12485 sections.abbrev_size);
12486 dwo_file->sections.line =
12487 create_dwp_v2_or_v5_section (per_objfile,
12488 &dwp_file->sections.line,
12489 sections.line_offset, sections.line_size);
12490 dwo_file->sections.macro =
12491 create_dwp_v2_or_v5_section (per_objfile,
12492 &dwp_file->sections.macro,
12493 sections.macro_offset,
12494 sections.macro_size);
12495 dwo_file->sections.loclists =
12496 create_dwp_v2_or_v5_section (per_objfile,
12497 &dwp_file->sections.loclists,
12498 sections.loclists_offset,
12499 sections.loclists_size);
12500 dwo_file->sections.rnglists =
12501 create_dwp_v2_or_v5_section (per_objfile,
12502 &dwp_file->sections.rnglists,
12503 sections.rnglists_offset,
12504 sections.rnglists_size);
12505 dwo_file->sections.str_offsets =
12506 create_dwp_v2_or_v5_section (per_objfile,
12507 &dwp_file->sections.str_offsets,
12508 sections.str_offsets_offset,
12509 sections.str_offsets_size);
12510 /* The "str" section is global to the entire DWP file. */
12511 dwo_file->sections.str = dwp_file->sections.str;
12512 /* The info or types section is assigned below to dwo_unit,
12513 there's no need to record it in dwo_file.
12514 Also, we can't simply record type sections in dwo_file because
12515 we record a pointer into the vector in dwo_unit. As we collect more
12516 types we'll grow the vector and eventually have to reallocate space
12517 for it, invalidating all copies of pointers into the previous
12518 contents. */
12519 *dwo_file_slot = dwo_file;
12520 }
12521 else
12522 {
12523 if (dwarf_read_debug)
12524 {
12525 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12526 virtual_dwo_name.c_str ());
12527 }
12528 dwo_file = (struct dwo_file *) *dwo_file_slot;
12529 }
12530
12531 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12532 dwo_unit->dwo_file = dwo_file;
12533 dwo_unit->signature = signature;
12534 dwo_unit->section
12535 = XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12536 *dwo_unit->section = create_dwp_v2_or_v5_section (per_objfile,
12537 &dwp_file->sections.info,
12538 sections.info_or_types_offset,
12539 sections.info_or_types_size);
12540 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12541
12542 return dwo_unit;
12543 }
12544
12545 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12546 Returns NULL if the signature isn't found. */
12547
12548 static struct dwo_unit *
12549 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
12550 struct dwp_file *dwp_file, const char *comp_dir,
12551 ULONGEST signature, int is_debug_types)
12552 {
12553 const struct dwp_hash_table *dwp_htab =
12554 is_debug_types ? dwp_file->tus : dwp_file->cus;
12555 bfd *dbfd = dwp_file->dbfd.get ();
12556 uint32_t mask = dwp_htab->nr_slots - 1;
12557 uint32_t hash = signature & mask;
12558 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12559 unsigned int i;
12560 void **slot;
12561 struct dwo_unit find_dwo_cu;
12562
12563 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12564 find_dwo_cu.signature = signature;
12565 slot = htab_find_slot (is_debug_types
12566 ? dwp_file->loaded_tus.get ()
12567 : dwp_file->loaded_cus.get (),
12568 &find_dwo_cu, INSERT);
12569
12570 if (*slot != NULL)
12571 return (struct dwo_unit *) *slot;
12572
12573 /* Use a for loop so that we don't loop forever on bad debug info. */
12574 for (i = 0; i < dwp_htab->nr_slots; ++i)
12575 {
12576 ULONGEST signature_in_table;
12577
12578 signature_in_table =
12579 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12580 if (signature_in_table == signature)
12581 {
12582 uint32_t unit_index =
12583 read_4_bytes (dbfd,
12584 dwp_htab->unit_table + hash * sizeof (uint32_t));
12585
12586 if (dwp_file->version == 1)
12587 {
12588 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
12589 unit_index, comp_dir,
12590 signature, is_debug_types);
12591 }
12592 else if (dwp_file->version == 2)
12593 {
12594 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
12595 unit_index, comp_dir,
12596 signature, is_debug_types);
12597 }
12598 else /* version == 5 */
12599 {
12600 *slot = create_dwo_unit_in_dwp_v5 (per_objfile, dwp_file,
12601 unit_index, comp_dir,
12602 signature, is_debug_types);
12603 }
12604 return (struct dwo_unit *) *slot;
12605 }
12606 if (signature_in_table == 0)
12607 return NULL;
12608 hash = (hash + hash2) & mask;
12609 }
12610
12611 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12612 " [in module %s]"),
12613 dwp_file->name);
12614 }
12615
12616 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12617 Open the file specified by FILE_NAME and hand it off to BFD for
12618 preliminary analysis. Return a newly initialized bfd *, which
12619 includes a canonicalized copy of FILE_NAME.
12620 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12621 SEARCH_CWD is true if the current directory is to be searched.
12622 It will be searched before debug-file-directory.
12623 If successful, the file is added to the bfd include table of the
12624 objfile's bfd (see gdb_bfd_record_inclusion).
12625 If unable to find/open the file, return NULL.
12626 NOTE: This function is derived from symfile_bfd_open. */
12627
12628 static gdb_bfd_ref_ptr
12629 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12630 const char *file_name, int is_dwp, int search_cwd)
12631 {
12632 int desc;
12633 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12634 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12635 to debug_file_directory. */
12636 const char *search_path;
12637 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12638
12639 gdb::unique_xmalloc_ptr<char> search_path_holder;
12640 if (search_cwd)
12641 {
12642 if (*debug_file_directory != '\0')
12643 {
12644 search_path_holder.reset (concat (".", dirname_separator_string,
12645 debug_file_directory,
12646 (char *) NULL));
12647 search_path = search_path_holder.get ();
12648 }
12649 else
12650 search_path = ".";
12651 }
12652 else
12653 search_path = debug_file_directory;
12654
12655 openp_flags flags = OPF_RETURN_REALPATH;
12656 if (is_dwp)
12657 flags |= OPF_SEARCH_IN_PATH;
12658
12659 gdb::unique_xmalloc_ptr<char> absolute_name;
12660 desc = openp (search_path, flags, file_name,
12661 O_RDONLY | O_BINARY, &absolute_name);
12662 if (desc < 0)
12663 return NULL;
12664
12665 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12666 gnutarget, desc));
12667 if (sym_bfd == NULL)
12668 return NULL;
12669 bfd_set_cacheable (sym_bfd.get (), 1);
12670
12671 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12672 return NULL;
12673
12674 /* Success. Record the bfd as having been included by the objfile's bfd.
12675 This is important because things like demangled_names_hash lives in the
12676 objfile's per_bfd space and may have references to things like symbol
12677 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12678 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12679
12680 return sym_bfd;
12681 }
12682
12683 /* Try to open DWO file FILE_NAME.
12684 COMP_DIR is the DW_AT_comp_dir attribute.
12685 The result is the bfd handle of the file.
12686 If there is a problem finding or opening the file, return NULL.
12687 Upon success, the canonicalized path of the file is stored in the bfd,
12688 same as symfile_bfd_open. */
12689
12690 static gdb_bfd_ref_ptr
12691 open_dwo_file (dwarf2_per_objfile *per_objfile,
12692 const char *file_name, const char *comp_dir)
12693 {
12694 if (IS_ABSOLUTE_PATH (file_name))
12695 return try_open_dwop_file (per_objfile, file_name,
12696 0 /*is_dwp*/, 0 /*search_cwd*/);
12697
12698 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12699
12700 if (comp_dir != NULL)
12701 {
12702 gdb::unique_xmalloc_ptr<char> path_to_try
12703 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12704
12705 /* NOTE: If comp_dir is a relative path, this will also try the
12706 search path, which seems useful. */
12707 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12708 0 /*is_dwp*/,
12709 1 /*search_cwd*/));
12710 if (abfd != NULL)
12711 return abfd;
12712 }
12713
12714 /* That didn't work, try debug-file-directory, which, despite its name,
12715 is a list of paths. */
12716
12717 if (*debug_file_directory == '\0')
12718 return NULL;
12719
12720 return try_open_dwop_file (per_objfile, file_name,
12721 0 /*is_dwp*/, 1 /*search_cwd*/);
12722 }
12723
12724 /* This function is mapped across the sections and remembers the offset and
12725 size of each of the DWO debugging sections we are interested in. */
12726
12727 static void
12728 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp,
12729 dwo_sections *dwo_sections)
12730 {
12731 const struct dwop_section_names *names = &dwop_section_names;
12732
12733 if (section_is_p (sectp->name, &names->abbrev_dwo))
12734 {
12735 dwo_sections->abbrev.s.section = sectp;
12736 dwo_sections->abbrev.size = bfd_section_size (sectp);
12737 }
12738 else if (section_is_p (sectp->name, &names->info_dwo))
12739 {
12740 dwo_sections->info.s.section = sectp;
12741 dwo_sections->info.size = bfd_section_size (sectp);
12742 }
12743 else if (section_is_p (sectp->name, &names->line_dwo))
12744 {
12745 dwo_sections->line.s.section = sectp;
12746 dwo_sections->line.size = bfd_section_size (sectp);
12747 }
12748 else if (section_is_p (sectp->name, &names->loc_dwo))
12749 {
12750 dwo_sections->loc.s.section = sectp;
12751 dwo_sections->loc.size = bfd_section_size (sectp);
12752 }
12753 else if (section_is_p (sectp->name, &names->loclists_dwo))
12754 {
12755 dwo_sections->loclists.s.section = sectp;
12756 dwo_sections->loclists.size = bfd_section_size (sectp);
12757 }
12758 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12759 {
12760 dwo_sections->macinfo.s.section = sectp;
12761 dwo_sections->macinfo.size = bfd_section_size (sectp);
12762 }
12763 else if (section_is_p (sectp->name, &names->macro_dwo))
12764 {
12765 dwo_sections->macro.s.section = sectp;
12766 dwo_sections->macro.size = bfd_section_size (sectp);
12767 }
12768 else if (section_is_p (sectp->name, &names->rnglists_dwo))
12769 {
12770 dwo_sections->rnglists.s.section = sectp;
12771 dwo_sections->rnglists.size = bfd_section_size (sectp);
12772 }
12773 else if (section_is_p (sectp->name, &names->str_dwo))
12774 {
12775 dwo_sections->str.s.section = sectp;
12776 dwo_sections->str.size = bfd_section_size (sectp);
12777 }
12778 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12779 {
12780 dwo_sections->str_offsets.s.section = sectp;
12781 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12782 }
12783 else if (section_is_p (sectp->name, &names->types_dwo))
12784 {
12785 struct dwarf2_section_info type_section;
12786
12787 memset (&type_section, 0, sizeof (type_section));
12788 type_section.s.section = sectp;
12789 type_section.size = bfd_section_size (sectp);
12790 dwo_sections->types.push_back (type_section);
12791 }
12792 }
12793
12794 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12795 by PER_CU. This is for the non-DWP case.
12796 The result is NULL if DWO_NAME can't be found. */
12797
12798 static struct dwo_file *
12799 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12800 const char *comp_dir)
12801 {
12802 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12803
12804 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12805 if (dbfd == NULL)
12806 {
12807 if (dwarf_read_debug)
12808 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12809 return NULL;
12810 }
12811
12812 dwo_file_up dwo_file (new struct dwo_file);
12813 dwo_file->dwo_name = dwo_name;
12814 dwo_file->comp_dir = comp_dir;
12815 dwo_file->dbfd = std::move (dbfd);
12816
12817 for (asection *sec : gdb_bfd_sections (dwo_file->dbfd))
12818 dwarf2_locate_dwo_sections (dwo_file->dbfd.get (), sec,
12819 &dwo_file->sections);
12820
12821 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12822 dwo_file->cus);
12823
12824 if (cu->per_cu->dwarf_version < 5)
12825 {
12826 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12827 dwo_file->sections.types, dwo_file->tus);
12828 }
12829 else
12830 {
12831 create_debug_type_hash_table (per_objfile, dwo_file.get (),
12832 &dwo_file->sections.info, dwo_file->tus,
12833 rcuh_kind::TYPE);
12834 }
12835
12836 if (dwarf_read_debug)
12837 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12838
12839 return dwo_file.release ();
12840 }
12841
12842 /* This function is mapped across the sections and remembers the offset and
12843 size of each of the DWP debugging sections common to version 1 and 2 that
12844 we are interested in. */
12845
12846 static void
12847 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12848 dwp_file *dwp_file)
12849 {
12850 const struct dwop_section_names *names = &dwop_section_names;
12851 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12852
12853 /* Record the ELF section number for later lookup: this is what the
12854 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12855 gdb_assert (elf_section_nr < dwp_file->num_sections);
12856 dwp_file->elf_sections[elf_section_nr] = sectp;
12857
12858 /* Look for specific sections that we need. */
12859 if (section_is_p (sectp->name, &names->str_dwo))
12860 {
12861 dwp_file->sections.str.s.section = sectp;
12862 dwp_file->sections.str.size = bfd_section_size (sectp);
12863 }
12864 else if (section_is_p (sectp->name, &names->cu_index))
12865 {
12866 dwp_file->sections.cu_index.s.section = sectp;
12867 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12868 }
12869 else if (section_is_p (sectp->name, &names->tu_index))
12870 {
12871 dwp_file->sections.tu_index.s.section = sectp;
12872 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12873 }
12874 }
12875
12876 /* This function is mapped across the sections and remembers the offset and
12877 size of each of the DWP version 2 debugging sections that we are interested
12878 in. This is split into a separate function because we don't know if we
12879 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12880
12881 static void
12882 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12883 {
12884 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12885 const struct dwop_section_names *names = &dwop_section_names;
12886 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12887
12888 /* Record the ELF section number for later lookup: this is what the
12889 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12890 gdb_assert (elf_section_nr < dwp_file->num_sections);
12891 dwp_file->elf_sections[elf_section_nr] = sectp;
12892
12893 /* Look for specific sections that we need. */
12894 if (section_is_p (sectp->name, &names->abbrev_dwo))
12895 {
12896 dwp_file->sections.abbrev.s.section = sectp;
12897 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12898 }
12899 else if (section_is_p (sectp->name, &names->info_dwo))
12900 {
12901 dwp_file->sections.info.s.section = sectp;
12902 dwp_file->sections.info.size = bfd_section_size (sectp);
12903 }
12904 else if (section_is_p (sectp->name, &names->line_dwo))
12905 {
12906 dwp_file->sections.line.s.section = sectp;
12907 dwp_file->sections.line.size = bfd_section_size (sectp);
12908 }
12909 else if (section_is_p (sectp->name, &names->loc_dwo))
12910 {
12911 dwp_file->sections.loc.s.section = sectp;
12912 dwp_file->sections.loc.size = bfd_section_size (sectp);
12913 }
12914 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12915 {
12916 dwp_file->sections.macinfo.s.section = sectp;
12917 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12918 }
12919 else if (section_is_p (sectp->name, &names->macro_dwo))
12920 {
12921 dwp_file->sections.macro.s.section = sectp;
12922 dwp_file->sections.macro.size = bfd_section_size (sectp);
12923 }
12924 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12925 {
12926 dwp_file->sections.str_offsets.s.section = sectp;
12927 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12928 }
12929 else if (section_is_p (sectp->name, &names->types_dwo))
12930 {
12931 dwp_file->sections.types.s.section = sectp;
12932 dwp_file->sections.types.size = bfd_section_size (sectp);
12933 }
12934 }
12935
12936 /* This function is mapped across the sections and remembers the offset and
12937 size of each of the DWP version 5 debugging sections that we are interested
12938 in. This is split into a separate function because we don't know if we
12939 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12940
12941 static void
12942 dwarf2_locate_v5_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12943 {
12944 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12945 const struct dwop_section_names *names = &dwop_section_names;
12946 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12947
12948 /* Record the ELF section number for later lookup: this is what the
12949 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12950 gdb_assert (elf_section_nr < dwp_file->num_sections);
12951 dwp_file->elf_sections[elf_section_nr] = sectp;
12952
12953 /* Look for specific sections that we need. */
12954 if (section_is_p (sectp->name, &names->abbrev_dwo))
12955 {
12956 dwp_file->sections.abbrev.s.section = sectp;
12957 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->info_dwo))
12960 {
12961 dwp_file->sections.info.s.section = sectp;
12962 dwp_file->sections.info.size = bfd_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->line_dwo))
12965 {
12966 dwp_file->sections.line.s.section = sectp;
12967 dwp_file->sections.line.size = bfd_section_size (sectp);
12968 }
12969 else if (section_is_p (sectp->name, &names->loclists_dwo))
12970 {
12971 dwp_file->sections.loclists.s.section = sectp;
12972 dwp_file->sections.loclists.size = bfd_section_size (sectp);
12973 }
12974 else if (section_is_p (sectp->name, &names->macro_dwo))
12975 {
12976 dwp_file->sections.macro.s.section = sectp;
12977 dwp_file->sections.macro.size = bfd_section_size (sectp);
12978 }
12979 else if (section_is_p (sectp->name, &names->rnglists_dwo))
12980 {
12981 dwp_file->sections.rnglists.s.section = sectp;
12982 dwp_file->sections.rnglists.size = bfd_section_size (sectp);
12983 }
12984 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12985 {
12986 dwp_file->sections.str_offsets.s.section = sectp;
12987 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12988 }
12989 }
12990
12991 /* Hash function for dwp_file loaded CUs/TUs. */
12992
12993 static hashval_t
12994 hash_dwp_loaded_cutus (const void *item)
12995 {
12996 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12997
12998 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12999 return dwo_unit->signature;
13000 }
13001
13002 /* Equality function for dwp_file loaded CUs/TUs. */
13003
13004 static int
13005 eq_dwp_loaded_cutus (const void *a, const void *b)
13006 {
13007 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13008 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13009
13010 return dua->signature == dub->signature;
13011 }
13012
13013 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13014
13015 static htab_up
13016 allocate_dwp_loaded_cutus_table ()
13017 {
13018 return htab_up (htab_create_alloc (3,
13019 hash_dwp_loaded_cutus,
13020 eq_dwp_loaded_cutus,
13021 NULL, xcalloc, xfree));
13022 }
13023
13024 /* Try to open DWP file FILE_NAME.
13025 The result is the bfd handle of the file.
13026 If there is a problem finding or opening the file, return NULL.
13027 Upon success, the canonicalized path of the file is stored in the bfd,
13028 same as symfile_bfd_open. */
13029
13030 static gdb_bfd_ref_ptr
13031 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
13032 {
13033 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
13034 1 /*is_dwp*/,
13035 1 /*search_cwd*/));
13036 if (abfd != NULL)
13037 return abfd;
13038
13039 /* Work around upstream bug 15652.
13040 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13041 [Whether that's a "bug" is debatable, but it is getting in our way.]
13042 We have no real idea where the dwp file is, because gdb's realpath-ing
13043 of the executable's path may have discarded the needed info.
13044 [IWBN if the dwp file name was recorded in the executable, akin to
13045 .gnu_debuglink, but that doesn't exist yet.]
13046 Strip the directory from FILE_NAME and search again. */
13047 if (*debug_file_directory != '\0')
13048 {
13049 /* Don't implicitly search the current directory here.
13050 If the user wants to search "." to handle this case,
13051 it must be added to debug-file-directory. */
13052 return try_open_dwop_file (per_objfile, lbasename (file_name),
13053 1 /*is_dwp*/,
13054 0 /*search_cwd*/);
13055 }
13056
13057 return NULL;
13058 }
13059
13060 /* Initialize the use of the DWP file for the current objfile.
13061 By convention the name of the DWP file is ${objfile}.dwp.
13062 The result is NULL if it can't be found. */
13063
13064 static std::unique_ptr<struct dwp_file>
13065 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
13066 {
13067 struct objfile *objfile = per_objfile->objfile;
13068
13069 /* Try to find first .dwp for the binary file before any symbolic links
13070 resolving. */
13071
13072 /* If the objfile is a debug file, find the name of the real binary
13073 file and get the name of dwp file from there. */
13074 std::string dwp_name;
13075 if (objfile->separate_debug_objfile_backlink != NULL)
13076 {
13077 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13078 const char *backlink_basename = lbasename (backlink->original_name);
13079
13080 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13081 }
13082 else
13083 dwp_name = objfile->original_name;
13084
13085 dwp_name += ".dwp";
13086
13087 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
13088 if (dbfd == NULL
13089 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13090 {
13091 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13092 dwp_name = objfile_name (objfile);
13093 dwp_name += ".dwp";
13094 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
13095 }
13096
13097 if (dbfd == NULL)
13098 {
13099 if (dwarf_read_debug)
13100 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13101 return std::unique_ptr<dwp_file> ();
13102 }
13103
13104 const char *name = bfd_get_filename (dbfd.get ());
13105 std::unique_ptr<struct dwp_file> dwp_file
13106 (new struct dwp_file (name, std::move (dbfd)));
13107
13108 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13109 dwp_file->elf_sections =
13110 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
13111 dwp_file->num_sections, asection *);
13112
13113 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
13114 dwarf2_locate_common_dwp_sections (dwp_file->dbfd.get (), sec,
13115 dwp_file.get ());
13116
13117 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
13118
13119 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
13120
13121 /* The DWP file version is stored in the hash table. Oh well. */
13122 if (dwp_file->cus && dwp_file->tus
13123 && dwp_file->cus->version != dwp_file->tus->version)
13124 {
13125 /* Technically speaking, we should try to limp along, but this is
13126 pretty bizarre. We use pulongest here because that's the established
13127 portability solution (e.g, we cannot use %u for uint32_t). */
13128 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13129 " TU version %s [in DWP file %s]"),
13130 pulongest (dwp_file->cus->version),
13131 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13132 }
13133
13134 if (dwp_file->cus)
13135 dwp_file->version = dwp_file->cus->version;
13136 else if (dwp_file->tus)
13137 dwp_file->version = dwp_file->tus->version;
13138 else
13139 dwp_file->version = 2;
13140
13141 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
13142 {
13143 if (dwp_file->version == 2)
13144 dwarf2_locate_v2_dwp_sections (dwp_file->dbfd.get (), sec,
13145 dwp_file.get ());
13146 else
13147 dwarf2_locate_v5_dwp_sections (dwp_file->dbfd.get (), sec,
13148 dwp_file.get ());
13149 }
13150
13151 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
13152 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
13153
13154 if (dwarf_read_debug)
13155 {
13156 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13157 fprintf_unfiltered (gdb_stdlog,
13158 " %s CUs, %s TUs\n",
13159 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13160 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13161 }
13162
13163 return dwp_file;
13164 }
13165
13166 /* Wrapper around open_and_init_dwp_file, only open it once. */
13167
13168 static struct dwp_file *
13169 get_dwp_file (dwarf2_per_objfile *per_objfile)
13170 {
13171 if (!per_objfile->per_bfd->dwp_checked)
13172 {
13173 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
13174 per_objfile->per_bfd->dwp_checked = 1;
13175 }
13176 return per_objfile->per_bfd->dwp_file.get ();
13177 }
13178
13179 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13180 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13181 or in the DWP file for the objfile, referenced by THIS_UNIT.
13182 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13183 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13184
13185 This is called, for example, when wanting to read a variable with a
13186 complex location. Therefore we don't want to do file i/o for every call.
13187 Therefore we don't want to look for a DWO file on every call.
13188 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13189 then we check if we've already seen DWO_NAME, and only THEN do we check
13190 for a DWO file.
13191
13192 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13193 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13194
13195 static struct dwo_unit *
13196 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
13197 ULONGEST signature, int is_debug_types)
13198 {
13199 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13200 struct objfile *objfile = per_objfile->objfile;
13201 const char *kind = is_debug_types ? "TU" : "CU";
13202 void **dwo_file_slot;
13203 struct dwo_file *dwo_file;
13204 struct dwp_file *dwp_file;
13205
13206 /* First see if there's a DWP file.
13207 If we have a DWP file but didn't find the DWO inside it, don't
13208 look for the original DWO file. It makes gdb behave differently
13209 depending on whether one is debugging in the build tree. */
13210
13211 dwp_file = get_dwp_file (per_objfile);
13212 if (dwp_file != NULL)
13213 {
13214 const struct dwp_hash_table *dwp_htab =
13215 is_debug_types ? dwp_file->tus : dwp_file->cus;
13216
13217 if (dwp_htab != NULL)
13218 {
13219 struct dwo_unit *dwo_cutu =
13220 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
13221 is_debug_types);
13222
13223 if (dwo_cutu != NULL)
13224 {
13225 if (dwarf_read_debug)
13226 {
13227 fprintf_unfiltered (gdb_stdlog,
13228 "Virtual DWO %s %s found: @%s\n",
13229 kind, hex_string (signature),
13230 host_address_to_string (dwo_cutu));
13231 }
13232 return dwo_cutu;
13233 }
13234 }
13235 }
13236 else
13237 {
13238 /* No DWP file, look for the DWO file. */
13239
13240 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
13241 if (*dwo_file_slot == NULL)
13242 {
13243 /* Read in the file and build a table of the CUs/TUs it contains. */
13244 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
13245 }
13246 /* NOTE: This will be NULL if unable to open the file. */
13247 dwo_file = (struct dwo_file *) *dwo_file_slot;
13248
13249 if (dwo_file != NULL)
13250 {
13251 struct dwo_unit *dwo_cutu = NULL;
13252
13253 if (is_debug_types && dwo_file->tus)
13254 {
13255 struct dwo_unit find_dwo_cutu;
13256
13257 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13258 find_dwo_cutu.signature = signature;
13259 dwo_cutu
13260 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
13261 &find_dwo_cutu);
13262 }
13263 else if (!is_debug_types && dwo_file->cus)
13264 {
13265 struct dwo_unit find_dwo_cutu;
13266
13267 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13268 find_dwo_cutu.signature = signature;
13269 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
13270 &find_dwo_cutu);
13271 }
13272
13273 if (dwo_cutu != NULL)
13274 {
13275 if (dwarf_read_debug)
13276 {
13277 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13278 kind, dwo_name, hex_string (signature),
13279 host_address_to_string (dwo_cutu));
13280 }
13281 return dwo_cutu;
13282 }
13283 }
13284 }
13285
13286 /* We didn't find it. This could mean a dwo_id mismatch, or
13287 someone deleted the DWO/DWP file, or the search path isn't set up
13288 correctly to find the file. */
13289
13290 if (dwarf_read_debug)
13291 {
13292 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13293 kind, dwo_name, hex_string (signature));
13294 }
13295
13296 /* This is a warning and not a complaint because it can be caused by
13297 pilot error (e.g., user accidentally deleting the DWO). */
13298 {
13299 /* Print the name of the DWP file if we looked there, helps the user
13300 better diagnose the problem. */
13301 std::string dwp_text;
13302
13303 if (dwp_file != NULL)
13304 dwp_text = string_printf (" [in DWP file %s]",
13305 lbasename (dwp_file->name));
13306
13307 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13308 " [in module %s]"),
13309 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
13310 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
13311 }
13312 return NULL;
13313 }
13314
13315 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13316 See lookup_dwo_cutu_unit for details. */
13317
13318 static struct dwo_unit *
13319 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
13320 ULONGEST signature)
13321 {
13322 gdb_assert (!cu->per_cu->is_debug_types);
13323
13324 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
13325 }
13326
13327 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13328 See lookup_dwo_cutu_unit for details. */
13329
13330 static struct dwo_unit *
13331 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
13332 {
13333 gdb_assert (cu->per_cu->is_debug_types);
13334
13335 signatured_type *sig_type = (signatured_type *) cu->per_cu;
13336
13337 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
13338 }
13339
13340 /* Traversal function for queue_and_load_all_dwo_tus. */
13341
13342 static int
13343 queue_and_load_dwo_tu (void **slot, void *info)
13344 {
13345 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13346 dwarf2_cu *cu = (dwarf2_cu *) info;
13347 ULONGEST signature = dwo_unit->signature;
13348 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
13349
13350 if (sig_type != NULL)
13351 {
13352 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13353
13354 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13355 a real dependency of PER_CU on SIG_TYPE. That is detected later
13356 while processing PER_CU. */
13357 if (maybe_queue_comp_unit (NULL, sig_cu, cu->per_objfile, cu->language))
13358 load_full_type_unit (sig_cu, cu->per_objfile);
13359 cu->per_cu->imported_symtabs_push (sig_cu);
13360 }
13361
13362 return 1;
13363 }
13364
13365 /* Queue all TUs contained in the DWO of CU to be read in.
13366 The DWO may have the only definition of the type, though it may not be
13367 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13368 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13369
13370 static void
13371 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
13372 {
13373 struct dwo_unit *dwo_unit;
13374 struct dwo_file *dwo_file;
13375
13376 gdb_assert (cu != nullptr);
13377 gdb_assert (!cu->per_cu->is_debug_types);
13378 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
13379
13380 dwo_unit = cu->dwo_unit;
13381 gdb_assert (dwo_unit != NULL);
13382
13383 dwo_file = dwo_unit->dwo_file;
13384 if (dwo_file->tus != NULL)
13385 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
13386 }
13387
13388 /* Read in various DIEs. */
13389
13390 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13391 Inherit only the children of the DW_AT_abstract_origin DIE not being
13392 already referenced by DW_AT_abstract_origin from the children of the
13393 current DIE. */
13394
13395 static void
13396 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13397 {
13398 struct die_info *child_die;
13399 sect_offset *offsetp;
13400 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13401 struct die_info *origin_die;
13402 /* Iterator of the ORIGIN_DIE children. */
13403 struct die_info *origin_child_die;
13404 struct attribute *attr;
13405 struct dwarf2_cu *origin_cu;
13406 struct pending **origin_previous_list_in_scope;
13407
13408 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13409 if (!attr)
13410 return;
13411
13412 /* Note that following die references may follow to a die in a
13413 different cu. */
13414
13415 origin_cu = cu;
13416 origin_die = follow_die_ref (die, attr, &origin_cu);
13417
13418 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13419 symbols in. */
13420 origin_previous_list_in_scope = origin_cu->list_in_scope;
13421 origin_cu->list_in_scope = cu->list_in_scope;
13422
13423 if (die->tag != origin_die->tag
13424 && !(die->tag == DW_TAG_inlined_subroutine
13425 && origin_die->tag == DW_TAG_subprogram))
13426 complaint (_("DIE %s and its abstract origin %s have different tags"),
13427 sect_offset_str (die->sect_off),
13428 sect_offset_str (origin_die->sect_off));
13429
13430 std::vector<sect_offset> offsets;
13431
13432 for (child_die = die->child;
13433 child_die && child_die->tag;
13434 child_die = child_die->sibling)
13435 {
13436 struct die_info *child_origin_die;
13437 struct dwarf2_cu *child_origin_cu;
13438
13439 /* We are trying to process concrete instance entries:
13440 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13441 it's not relevant to our analysis here. i.e. detecting DIEs that are
13442 present in the abstract instance but not referenced in the concrete
13443 one. */
13444 if (child_die->tag == DW_TAG_call_site
13445 || child_die->tag == DW_TAG_GNU_call_site)
13446 continue;
13447
13448 /* For each CHILD_DIE, find the corresponding child of
13449 ORIGIN_DIE. If there is more than one layer of
13450 DW_AT_abstract_origin, follow them all; there shouldn't be,
13451 but GCC versions at least through 4.4 generate this (GCC PR
13452 40573). */
13453 child_origin_die = child_die;
13454 child_origin_cu = cu;
13455 while (1)
13456 {
13457 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13458 child_origin_cu);
13459 if (attr == NULL)
13460 break;
13461 child_origin_die = follow_die_ref (child_origin_die, attr,
13462 &child_origin_cu);
13463 }
13464
13465 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13466 counterpart may exist. */
13467 if (child_origin_die != child_die)
13468 {
13469 if (child_die->tag != child_origin_die->tag
13470 && !(child_die->tag == DW_TAG_inlined_subroutine
13471 && child_origin_die->tag == DW_TAG_subprogram))
13472 complaint (_("Child DIE %s and its abstract origin %s have "
13473 "different tags"),
13474 sect_offset_str (child_die->sect_off),
13475 sect_offset_str (child_origin_die->sect_off));
13476 if (child_origin_die->parent != origin_die)
13477 complaint (_("Child DIE %s and its abstract origin %s have "
13478 "different parents"),
13479 sect_offset_str (child_die->sect_off),
13480 sect_offset_str (child_origin_die->sect_off));
13481 else
13482 offsets.push_back (child_origin_die->sect_off);
13483 }
13484 }
13485 std::sort (offsets.begin (), offsets.end ());
13486 sect_offset *offsets_end = offsets.data () + offsets.size ();
13487 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13488 if (offsetp[-1] == *offsetp)
13489 complaint (_("Multiple children of DIE %s refer "
13490 "to DIE %s as their abstract origin"),
13491 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13492
13493 offsetp = offsets.data ();
13494 origin_child_die = origin_die->child;
13495 while (origin_child_die && origin_child_die->tag)
13496 {
13497 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13498 while (offsetp < offsets_end
13499 && *offsetp < origin_child_die->sect_off)
13500 offsetp++;
13501 if (offsetp >= offsets_end
13502 || *offsetp > origin_child_die->sect_off)
13503 {
13504 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13505 Check whether we're already processing ORIGIN_CHILD_DIE.
13506 This can happen with mutually referenced abstract_origins.
13507 PR 16581. */
13508 if (!origin_child_die->in_process)
13509 process_die (origin_child_die, origin_cu);
13510 }
13511 origin_child_die = origin_child_die->sibling;
13512 }
13513 origin_cu->list_in_scope = origin_previous_list_in_scope;
13514
13515 if (cu != origin_cu)
13516 compute_delayed_physnames (origin_cu);
13517 }
13518
13519 static void
13520 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13521 {
13522 struct objfile *objfile = cu->per_objfile->objfile;
13523 struct gdbarch *gdbarch = objfile->arch ();
13524 struct context_stack *newobj;
13525 CORE_ADDR lowpc;
13526 CORE_ADDR highpc;
13527 struct die_info *child_die;
13528 struct attribute *attr, *call_line, *call_file;
13529 const char *name;
13530 CORE_ADDR baseaddr;
13531 struct block *block;
13532 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13533 std::vector<struct symbol *> template_args;
13534 struct template_symbol *templ_func = NULL;
13535
13536 if (inlined_func)
13537 {
13538 /* If we do not have call site information, we can't show the
13539 caller of this inlined function. That's too confusing, so
13540 only use the scope for local variables. */
13541 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13542 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13543 if (call_line == NULL || call_file == NULL)
13544 {
13545 read_lexical_block_scope (die, cu);
13546 return;
13547 }
13548 }
13549
13550 baseaddr = objfile->text_section_offset ();
13551
13552 name = dwarf2_name (die, cu);
13553
13554 /* Ignore functions with missing or empty names. These are actually
13555 illegal according to the DWARF standard. */
13556 if (name == NULL)
13557 {
13558 complaint (_("missing name for subprogram DIE at %s"),
13559 sect_offset_str (die->sect_off));
13560 return;
13561 }
13562
13563 /* Ignore functions with missing or invalid low and high pc attributes. */
13564 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13565 <= PC_BOUNDS_INVALID)
13566 {
13567 attr = dwarf2_attr (die, DW_AT_external, cu);
13568 if (attr == nullptr || !attr->as_boolean ())
13569 complaint (_("cannot get low and high bounds "
13570 "for subprogram DIE at %s"),
13571 sect_offset_str (die->sect_off));
13572 return;
13573 }
13574
13575 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13576 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13577
13578 /* If we have any template arguments, then we must allocate a
13579 different sort of symbol. */
13580 for (child_die = die->child; child_die; child_die = child_die->sibling)
13581 {
13582 if (child_die->tag == DW_TAG_template_type_param
13583 || child_die->tag == DW_TAG_template_value_param)
13584 {
13585 templ_func = new (&objfile->objfile_obstack) template_symbol;
13586 templ_func->subclass = SYMBOL_TEMPLATE;
13587 break;
13588 }
13589 }
13590
13591 newobj = cu->get_builder ()->push_context (0, lowpc);
13592 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13593 (struct symbol *) templ_func);
13594
13595 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13596 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13597 cu->language);
13598
13599 /* If there is a location expression for DW_AT_frame_base, record
13600 it. */
13601 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13602 if (attr != nullptr)
13603 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13604
13605 /* If there is a location for the static link, record it. */
13606 newobj->static_link = NULL;
13607 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13608 if (attr != nullptr)
13609 {
13610 newobj->static_link
13611 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13612 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13613 cu->addr_type ());
13614 }
13615
13616 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13617
13618 if (die->child != NULL)
13619 {
13620 child_die = die->child;
13621 while (child_die && child_die->tag)
13622 {
13623 if (child_die->tag == DW_TAG_template_type_param
13624 || child_die->tag == DW_TAG_template_value_param)
13625 {
13626 struct symbol *arg = new_symbol (child_die, NULL, cu);
13627
13628 if (arg != NULL)
13629 template_args.push_back (arg);
13630 }
13631 else
13632 process_die (child_die, cu);
13633 child_die = child_die->sibling;
13634 }
13635 }
13636
13637 inherit_abstract_dies (die, cu);
13638
13639 /* If we have a DW_AT_specification, we might need to import using
13640 directives from the context of the specification DIE. See the
13641 comment in determine_prefix. */
13642 if (cu->language == language_cplus
13643 && dwarf2_attr (die, DW_AT_specification, cu))
13644 {
13645 struct dwarf2_cu *spec_cu = cu;
13646 struct die_info *spec_die = die_specification (die, &spec_cu);
13647
13648 while (spec_die)
13649 {
13650 child_die = spec_die->child;
13651 while (child_die && child_die->tag)
13652 {
13653 if (child_die->tag == DW_TAG_imported_module)
13654 process_die (child_die, spec_cu);
13655 child_die = child_die->sibling;
13656 }
13657
13658 /* In some cases, GCC generates specification DIEs that
13659 themselves contain DW_AT_specification attributes. */
13660 spec_die = die_specification (spec_die, &spec_cu);
13661 }
13662 }
13663
13664 struct context_stack cstk = cu->get_builder ()->pop_context ();
13665 /* Make a block for the local symbols within. */
13666 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13667 cstk.static_link, lowpc, highpc);
13668
13669 /* For C++, set the block's scope. */
13670 if ((cu->language == language_cplus
13671 || cu->language == language_fortran
13672 || cu->language == language_d
13673 || cu->language == language_rust)
13674 && cu->processing_has_namespace_info)
13675 block_set_scope (block, determine_prefix (die, cu),
13676 &objfile->objfile_obstack);
13677
13678 /* If we have address ranges, record them. */
13679 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13680
13681 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13682
13683 /* Attach template arguments to function. */
13684 if (!template_args.empty ())
13685 {
13686 gdb_assert (templ_func != NULL);
13687
13688 templ_func->n_template_arguments = template_args.size ();
13689 templ_func->template_arguments
13690 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13691 templ_func->n_template_arguments);
13692 memcpy (templ_func->template_arguments,
13693 template_args.data (),
13694 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13695
13696 /* Make sure that the symtab is set on the new symbols. Even
13697 though they don't appear in this symtab directly, other parts
13698 of gdb assume that symbols do, and this is reasonably
13699 true. */
13700 for (symbol *sym : template_args)
13701 symbol_set_symtab (sym, symbol_symtab (templ_func));
13702 }
13703
13704 /* In C++, we can have functions nested inside functions (e.g., when
13705 a function declares a class that has methods). This means that
13706 when we finish processing a function scope, we may need to go
13707 back to building a containing block's symbol lists. */
13708 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13709 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13710
13711 /* If we've finished processing a top-level function, subsequent
13712 symbols go in the file symbol list. */
13713 if (cu->get_builder ()->outermost_context_p ())
13714 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13715 }
13716
13717 /* Process all the DIES contained within a lexical block scope. Start
13718 a new scope, process the dies, and then close the scope. */
13719
13720 static void
13721 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13722 {
13723 struct objfile *objfile = cu->per_objfile->objfile;
13724 struct gdbarch *gdbarch = objfile->arch ();
13725 CORE_ADDR lowpc, highpc;
13726 struct die_info *child_die;
13727 CORE_ADDR baseaddr;
13728
13729 baseaddr = objfile->text_section_offset ();
13730
13731 /* Ignore blocks with missing or invalid low and high pc attributes. */
13732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13733 as multiple lexical blocks? Handling children in a sane way would
13734 be nasty. Might be easier to properly extend generic blocks to
13735 describe ranges. */
13736 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13737 {
13738 case PC_BOUNDS_NOT_PRESENT:
13739 /* DW_TAG_lexical_block has no attributes, process its children as if
13740 there was no wrapping by that DW_TAG_lexical_block.
13741 GCC does no longer produces such DWARF since GCC r224161. */
13742 for (child_die = die->child;
13743 child_die != NULL && child_die->tag;
13744 child_die = child_die->sibling)
13745 {
13746 /* We might already be processing this DIE. This can happen
13747 in an unusual circumstance -- where a subroutine A
13748 appears lexically in another subroutine B, but A actually
13749 inlines B. The recursion is broken here, rather than in
13750 inherit_abstract_dies, because it seems better to simply
13751 drop concrete children here. */
13752 if (!child_die->in_process)
13753 process_die (child_die, cu);
13754 }
13755 return;
13756 case PC_BOUNDS_INVALID:
13757 return;
13758 }
13759 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13760 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13761
13762 cu->get_builder ()->push_context (0, lowpc);
13763 if (die->child != NULL)
13764 {
13765 child_die = die->child;
13766 while (child_die && child_die->tag)
13767 {
13768 process_die (child_die, cu);
13769 child_die = child_die->sibling;
13770 }
13771 }
13772 inherit_abstract_dies (die, cu);
13773 struct context_stack cstk = cu->get_builder ()->pop_context ();
13774
13775 if (*cu->get_builder ()->get_local_symbols () != NULL
13776 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13777 {
13778 struct block *block
13779 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13780 cstk.start_addr, highpc);
13781
13782 /* Note that recording ranges after traversing children, as we
13783 do here, means that recording a parent's ranges entails
13784 walking across all its children's ranges as they appear in
13785 the address map, which is quadratic behavior.
13786
13787 It would be nicer to record the parent's ranges before
13788 traversing its children, simply overriding whatever you find
13789 there. But since we don't even decide whether to create a
13790 block until after we've traversed its children, that's hard
13791 to do. */
13792 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13793 }
13794 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13795 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13796 }
13797
13798 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13799
13800 static void
13801 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13802 {
13803 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13804 struct objfile *objfile = per_objfile->objfile;
13805 struct gdbarch *gdbarch = objfile->arch ();
13806 CORE_ADDR pc, baseaddr;
13807 struct attribute *attr;
13808 struct call_site *call_site, call_site_local;
13809 void **slot;
13810 int nparams;
13811 struct die_info *child_die;
13812
13813 baseaddr = objfile->text_section_offset ();
13814
13815 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13816 if (attr == NULL)
13817 {
13818 /* This was a pre-DWARF-5 GNU extension alias
13819 for DW_AT_call_return_pc. */
13820 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13821 }
13822 if (!attr)
13823 {
13824 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13825 "DIE %s [in module %s]"),
13826 sect_offset_str (die->sect_off), objfile_name (objfile));
13827 return;
13828 }
13829 pc = attr->as_address () + baseaddr;
13830 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13831
13832 if (cu->call_site_htab == NULL)
13833 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13834 NULL, &objfile->objfile_obstack,
13835 hashtab_obstack_allocate, NULL);
13836 call_site_local.pc = pc;
13837 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13838 if (*slot != NULL)
13839 {
13840 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13841 "DIE %s [in module %s]"),
13842 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13843 objfile_name (objfile));
13844 return;
13845 }
13846
13847 /* Count parameters at the caller. */
13848
13849 nparams = 0;
13850 for (child_die = die->child; child_die && child_die->tag;
13851 child_die = child_die->sibling)
13852 {
13853 if (child_die->tag != DW_TAG_call_site_parameter
13854 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13855 {
13856 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13857 "DW_TAG_call_site child DIE %s [in module %s]"),
13858 child_die->tag, sect_offset_str (child_die->sect_off),
13859 objfile_name (objfile));
13860 continue;
13861 }
13862
13863 nparams++;
13864 }
13865
13866 call_site
13867 = ((struct call_site *)
13868 obstack_alloc (&objfile->objfile_obstack,
13869 sizeof (*call_site)
13870 + (sizeof (*call_site->parameter) * (nparams - 1))));
13871 *slot = call_site;
13872 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13873 call_site->pc = pc;
13874
13875 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13876 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13877 {
13878 struct die_info *func_die;
13879
13880 /* Skip also over DW_TAG_inlined_subroutine. */
13881 for (func_die = die->parent;
13882 func_die && func_die->tag != DW_TAG_subprogram
13883 && func_die->tag != DW_TAG_subroutine_type;
13884 func_die = func_die->parent);
13885
13886 /* DW_AT_call_all_calls is a superset
13887 of DW_AT_call_all_tail_calls. */
13888 if (func_die
13889 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13890 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13891 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13892 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13893 {
13894 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13895 not complete. But keep CALL_SITE for look ups via call_site_htab,
13896 both the initial caller containing the real return address PC and
13897 the final callee containing the current PC of a chain of tail
13898 calls do not need to have the tail call list complete. But any
13899 function candidate for a virtual tail call frame searched via
13900 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13901 determined unambiguously. */
13902 }
13903 else
13904 {
13905 struct type *func_type = NULL;
13906
13907 if (func_die)
13908 func_type = get_die_type (func_die, cu);
13909 if (func_type != NULL)
13910 {
13911 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13912
13913 /* Enlist this call site to the function. */
13914 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13915 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13916 }
13917 else
13918 complaint (_("Cannot find function owning DW_TAG_call_site "
13919 "DIE %s [in module %s]"),
13920 sect_offset_str (die->sect_off), objfile_name (objfile));
13921 }
13922 }
13923
13924 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13925 if (attr == NULL)
13926 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13927 if (attr == NULL)
13928 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13929 if (attr == NULL)
13930 {
13931 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13932 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13933 }
13934 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13935 if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0))
13936 /* Keep NULL DWARF_BLOCK. */;
13937 else if (attr->form_is_block ())
13938 {
13939 struct dwarf2_locexpr_baton *dlbaton;
13940 struct dwarf_block *block = attr->as_block ();
13941
13942 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13943 dlbaton->data = block->data;
13944 dlbaton->size = block->size;
13945 dlbaton->per_objfile = per_objfile;
13946 dlbaton->per_cu = cu->per_cu;
13947
13948 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13949 }
13950 else if (attr->form_is_ref ())
13951 {
13952 struct dwarf2_cu *target_cu = cu;
13953 struct die_info *target_die;
13954
13955 target_die = follow_die_ref (die, attr, &target_cu);
13956 gdb_assert (target_cu->per_objfile->objfile == objfile);
13957 if (die_is_declaration (target_die, target_cu))
13958 {
13959 const char *target_physname;
13960
13961 /* Prefer the mangled name; otherwise compute the demangled one. */
13962 target_physname = dw2_linkage_name (target_die, target_cu);
13963 if (target_physname == NULL)
13964 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13965 if (target_physname == NULL)
13966 complaint (_("DW_AT_call_target target DIE has invalid "
13967 "physname, for referencing DIE %s [in module %s]"),
13968 sect_offset_str (die->sect_off), objfile_name (objfile));
13969 else
13970 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13971 }
13972 else
13973 {
13974 CORE_ADDR lowpc;
13975
13976 /* DW_AT_entry_pc should be preferred. */
13977 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13978 <= PC_BOUNDS_INVALID)
13979 complaint (_("DW_AT_call_target target DIE has invalid "
13980 "low pc, for referencing DIE %s [in module %s]"),
13981 sect_offset_str (die->sect_off), objfile_name (objfile));
13982 else
13983 {
13984 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13985 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13986 }
13987 }
13988 }
13989 else
13990 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13991 "block nor reference, for DIE %s [in module %s]"),
13992 sect_offset_str (die->sect_off), objfile_name (objfile));
13993
13994 call_site->per_cu = cu->per_cu;
13995 call_site->per_objfile = per_objfile;
13996
13997 for (child_die = die->child;
13998 child_die && child_die->tag;
13999 child_die = child_die->sibling)
14000 {
14001 struct call_site_parameter *parameter;
14002 struct attribute *loc, *origin;
14003
14004 if (child_die->tag != DW_TAG_call_site_parameter
14005 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14006 {
14007 /* Already printed the complaint above. */
14008 continue;
14009 }
14010
14011 gdb_assert (call_site->parameter_count < nparams);
14012 parameter = &call_site->parameter[call_site->parameter_count];
14013
14014 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14015 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14016 register is contained in DW_AT_call_value. */
14017
14018 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14019 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14020 if (origin == NULL)
14021 {
14022 /* This was a pre-DWARF-5 GNU extension alias
14023 for DW_AT_call_parameter. */
14024 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14025 }
14026 if (loc == NULL && origin != NULL && origin->form_is_ref ())
14027 {
14028 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14029
14030 sect_offset sect_off = origin->get_ref_die_offset ();
14031 if (!cu->header.offset_in_cu_p (sect_off))
14032 {
14033 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14034 binding can be done only inside one CU. Such referenced DIE
14035 therefore cannot be even moved to DW_TAG_partial_unit. */
14036 complaint (_("DW_AT_call_parameter offset is not in CU for "
14037 "DW_TAG_call_site child DIE %s [in module %s]"),
14038 sect_offset_str (child_die->sect_off),
14039 objfile_name (objfile));
14040 continue;
14041 }
14042 parameter->u.param_cu_off
14043 = (cu_offset) (sect_off - cu->header.sect_off);
14044 }
14045 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
14046 {
14047 complaint (_("No DW_FORM_block* DW_AT_location for "
14048 "DW_TAG_call_site child DIE %s [in module %s]"),
14049 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14050 continue;
14051 }
14052 else
14053 {
14054 struct dwarf_block *block = loc->as_block ();
14055
14056 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14057 (block->data, &block->data[block->size]);
14058 if (parameter->u.dwarf_reg != -1)
14059 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14060 else if (dwarf_block_to_sp_offset (gdbarch, block->data,
14061 &block->data[block->size],
14062 &parameter->u.fb_offset))
14063 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14064 else
14065 {
14066 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14067 "for DW_FORM_block* DW_AT_location is supported for "
14068 "DW_TAG_call_site child DIE %s "
14069 "[in module %s]"),
14070 sect_offset_str (child_die->sect_off),
14071 objfile_name (objfile));
14072 continue;
14073 }
14074 }
14075
14076 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14077 if (attr == NULL)
14078 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14079 if (attr == NULL || !attr->form_is_block ())
14080 {
14081 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087
14088 struct dwarf_block *block = attr->as_block ();
14089 parameter->value = block->data;
14090 parameter->value_size = block->size;
14091
14092 /* Parameters are not pre-cleared by memset above. */
14093 parameter->data_value = NULL;
14094 parameter->data_value_size = 0;
14095 call_site->parameter_count++;
14096
14097 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14098 if (attr == NULL)
14099 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14100 if (attr != nullptr)
14101 {
14102 if (!attr->form_is_block ())
14103 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14104 "DW_TAG_call_site child DIE %s [in module %s]"),
14105 sect_offset_str (child_die->sect_off),
14106 objfile_name (objfile));
14107 else
14108 {
14109 block = attr->as_block ();
14110 parameter->data_value = block->data;
14111 parameter->data_value_size = block->size;
14112 }
14113 }
14114 }
14115 }
14116
14117 /* Helper function for read_variable. If DIE represents a virtual
14118 table, then return the type of the concrete object that is
14119 associated with the virtual table. Otherwise, return NULL. */
14120
14121 static struct type *
14122 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14123 {
14124 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14125 if (attr == NULL)
14126 return NULL;
14127
14128 /* Find the type DIE. */
14129 struct die_info *type_die = NULL;
14130 struct dwarf2_cu *type_cu = cu;
14131
14132 if (attr->form_is_ref ())
14133 type_die = follow_die_ref (die, attr, &type_cu);
14134 if (type_die == NULL)
14135 return NULL;
14136
14137 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14138 return NULL;
14139 return die_containing_type (type_die, type_cu);
14140 }
14141
14142 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14143
14144 static void
14145 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14146 {
14147 struct rust_vtable_symbol *storage = NULL;
14148
14149 if (cu->language == language_rust)
14150 {
14151 struct type *containing_type = rust_containing_type (die, cu);
14152
14153 if (containing_type != NULL)
14154 {
14155 struct objfile *objfile = cu->per_objfile->objfile;
14156
14157 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
14158 storage->concrete_type = containing_type;
14159 storage->subclass = SYMBOL_RUST_VTABLE;
14160 }
14161 }
14162
14163 struct symbol *res = new_symbol (die, NULL, cu, storage);
14164 struct attribute *abstract_origin
14165 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14166 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14167 if (res == NULL && loc && abstract_origin)
14168 {
14169 /* We have a variable without a name, but with a location and an abstract
14170 origin. This may be a concrete instance of an abstract variable
14171 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14172 later. */
14173 struct dwarf2_cu *origin_cu = cu;
14174 struct die_info *origin_die
14175 = follow_die_ref (die, abstract_origin, &origin_cu);
14176 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14177 per_objfile->per_bfd->abstract_to_concrete
14178 [origin_die->sect_off].push_back (die->sect_off);
14179 }
14180 }
14181
14182 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14183 reading .debug_rnglists.
14184 Callback's type should be:
14185 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14186 Return true if the attributes are present and valid, otherwise,
14187 return false. */
14188
14189 template <typename Callback>
14190 static bool
14191 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14192 dwarf_tag tag, Callback &&callback)
14193 {
14194 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14195 struct objfile *objfile = per_objfile->objfile;
14196 bfd *obfd = objfile->obfd;
14197 /* Base address selection entry. */
14198 gdb::optional<CORE_ADDR> base;
14199 const gdb_byte *buffer;
14200 CORE_ADDR baseaddr;
14201 bool overflow = false;
14202 ULONGEST addr_index;
14203 struct dwarf2_section_info *rnglists_section;
14204
14205 base = cu->base_address;
14206 rnglists_section = cu_debug_rnglists_section (cu, tag);
14207 rnglists_section->read (objfile);
14208
14209 if (offset >= rnglists_section->size)
14210 {
14211 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14212 offset);
14213 return false;
14214 }
14215 buffer = rnglists_section->buffer + offset;
14216
14217 baseaddr = objfile->text_section_offset ();
14218
14219 while (1)
14220 {
14221 /* Initialize it due to a false compiler warning. */
14222 CORE_ADDR range_beginning = 0, range_end = 0;
14223 const gdb_byte *buf_end = (rnglists_section->buffer
14224 + rnglists_section->size);
14225 unsigned int bytes_read;
14226
14227 if (buffer == buf_end)
14228 {
14229 overflow = true;
14230 break;
14231 }
14232 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14233 switch (rlet)
14234 {
14235 case DW_RLE_end_of_list:
14236 break;
14237 case DW_RLE_base_address:
14238 if (buffer + cu->header.addr_size > buf_end)
14239 {
14240 overflow = true;
14241 break;
14242 }
14243 base = cu->header.read_address (obfd, buffer, &bytes_read);
14244 buffer += bytes_read;
14245 break;
14246 case DW_RLE_base_addressx:
14247 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14248 buffer += bytes_read;
14249 base = read_addr_index (cu, addr_index);
14250 break;
14251 case DW_RLE_start_length:
14252 if (buffer + cu->header.addr_size > buf_end)
14253 {
14254 overflow = true;
14255 break;
14256 }
14257 range_beginning = cu->header.read_address (obfd, buffer,
14258 &bytes_read);
14259 buffer += bytes_read;
14260 range_end = (range_beginning
14261 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14262 buffer += bytes_read;
14263 if (buffer > buf_end)
14264 {
14265 overflow = true;
14266 break;
14267 }
14268 break;
14269 case DW_RLE_startx_length:
14270 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14271 buffer += bytes_read;
14272 range_beginning = read_addr_index (cu, addr_index);
14273 if (buffer > buf_end)
14274 {
14275 overflow = true;
14276 break;
14277 }
14278 range_end = (range_beginning
14279 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14280 buffer += bytes_read;
14281 break;
14282 case DW_RLE_offset_pair:
14283 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14284 buffer += bytes_read;
14285 if (buffer > buf_end)
14286 {
14287 overflow = true;
14288 break;
14289 }
14290 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14291 buffer += bytes_read;
14292 if (buffer > buf_end)
14293 {
14294 overflow = true;
14295 break;
14296 }
14297 break;
14298 case DW_RLE_start_end:
14299 if (buffer + 2 * cu->header.addr_size > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 range_beginning = cu->header.read_address (obfd, buffer,
14305 &bytes_read);
14306 buffer += bytes_read;
14307 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
14308 buffer += bytes_read;
14309 break;
14310 case DW_RLE_startx_endx:
14311 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14312 buffer += bytes_read;
14313 range_beginning = read_addr_index (cu, addr_index);
14314 if (buffer > buf_end)
14315 {
14316 overflow = true;
14317 break;
14318 }
14319 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14320 buffer += bytes_read;
14321 range_end = read_addr_index (cu, addr_index);
14322 break;
14323 default:
14324 complaint (_("Invalid .debug_rnglists data (no base address)"));
14325 return false;
14326 }
14327 if (rlet == DW_RLE_end_of_list || overflow)
14328 break;
14329 if (rlet == DW_RLE_base_address)
14330 continue;
14331
14332 if (range_beginning > range_end)
14333 {
14334 /* Inverted range entries are invalid. */
14335 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14336 return false;
14337 }
14338
14339 /* Empty range entries have no effect. */
14340 if (range_beginning == range_end)
14341 continue;
14342
14343 /* Only DW_RLE_offset_pair needs the base address added. */
14344 if (rlet == DW_RLE_offset_pair)
14345 {
14346 if (!base.has_value ())
14347 {
14348 /* We have no valid base address for the DW_RLE_offset_pair. */
14349 complaint (_("Invalid .debug_rnglists data (no base address for "
14350 "DW_RLE_offset_pair)"));
14351 return false;
14352 }
14353
14354 range_beginning += *base;
14355 range_end += *base;
14356 }
14357
14358 /* A not-uncommon case of bad debug info.
14359 Don't pollute the addrmap with bad data. */
14360 if (range_beginning + baseaddr == 0
14361 && !per_objfile->per_bfd->has_section_at_zero)
14362 {
14363 complaint (_(".debug_rnglists entry has start address of zero"
14364 " [in module %s]"), objfile_name (objfile));
14365 continue;
14366 }
14367
14368 callback (range_beginning, range_end);
14369 }
14370
14371 if (overflow)
14372 {
14373 complaint (_("Offset %d is not terminated "
14374 "for DW_AT_ranges attribute"),
14375 offset);
14376 return false;
14377 }
14378
14379 return true;
14380 }
14381
14382 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14383 Callback's type should be:
14384 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14385 Return 1 if the attributes are present and valid, otherwise, return 0. */
14386
14387 template <typename Callback>
14388 static int
14389 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag,
14390 Callback &&callback)
14391 {
14392 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14393 struct objfile *objfile = per_objfile->objfile;
14394 struct comp_unit_head *cu_header = &cu->header;
14395 bfd *obfd = objfile->obfd;
14396 unsigned int addr_size = cu_header->addr_size;
14397 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14398 /* Base address selection entry. */
14399 gdb::optional<CORE_ADDR> base;
14400 unsigned int dummy;
14401 const gdb_byte *buffer;
14402 CORE_ADDR baseaddr;
14403
14404 if (cu_header->version >= 5)
14405 return dwarf2_rnglists_process (offset, cu, tag, callback);
14406
14407 base = cu->base_address;
14408
14409 per_objfile->per_bfd->ranges.read (objfile);
14410 if (offset >= per_objfile->per_bfd->ranges.size)
14411 {
14412 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14413 offset);
14414 return 0;
14415 }
14416 buffer = per_objfile->per_bfd->ranges.buffer + offset;
14417
14418 baseaddr = objfile->text_section_offset ();
14419
14420 while (1)
14421 {
14422 CORE_ADDR range_beginning, range_end;
14423
14424 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
14425 buffer += addr_size;
14426 range_end = cu->header.read_address (obfd, buffer, &dummy);
14427 buffer += addr_size;
14428 offset += 2 * addr_size;
14429
14430 /* An end of list marker is a pair of zero addresses. */
14431 if (range_beginning == 0 && range_end == 0)
14432 /* Found the end of list entry. */
14433 break;
14434
14435 /* Each base address selection entry is a pair of 2 values.
14436 The first is the largest possible address, the second is
14437 the base address. Check for a base address here. */
14438 if ((range_beginning & mask) == mask)
14439 {
14440 /* If we found the largest possible address, then we already
14441 have the base address in range_end. */
14442 base = range_end;
14443 continue;
14444 }
14445
14446 if (!base.has_value ())
14447 {
14448 /* We have no valid base address for the ranges
14449 data. */
14450 complaint (_("Invalid .debug_ranges data (no base address)"));
14451 return 0;
14452 }
14453
14454 if (range_beginning > range_end)
14455 {
14456 /* Inverted range entries are invalid. */
14457 complaint (_("Invalid .debug_ranges data (inverted range)"));
14458 return 0;
14459 }
14460
14461 /* Empty range entries have no effect. */
14462 if (range_beginning == range_end)
14463 continue;
14464
14465 range_beginning += *base;
14466 range_end += *base;
14467
14468 /* A not-uncommon case of bad debug info.
14469 Don't pollute the addrmap with bad data. */
14470 if (range_beginning + baseaddr == 0
14471 && !per_objfile->per_bfd->has_section_at_zero)
14472 {
14473 complaint (_(".debug_ranges entry has start address of zero"
14474 " [in module %s]"), objfile_name (objfile));
14475 continue;
14476 }
14477
14478 callback (range_beginning, range_end);
14479 }
14480
14481 return 1;
14482 }
14483
14484 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14485 Return 1 if the attributes are present and valid, otherwise, return 0.
14486 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14487
14488 static int
14489 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14490 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14491 dwarf2_psymtab *ranges_pst, dwarf_tag tag)
14492 {
14493 struct objfile *objfile = cu->per_objfile->objfile;
14494 struct gdbarch *gdbarch = objfile->arch ();
14495 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14496 int low_set = 0;
14497 CORE_ADDR low = 0;
14498 CORE_ADDR high = 0;
14499 int retval;
14500
14501 retval = dwarf2_ranges_process (offset, cu, tag,
14502 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14503 {
14504 if (ranges_pst != NULL)
14505 {
14506 CORE_ADDR lowpc;
14507 CORE_ADDR highpc;
14508
14509 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14510 range_beginning + baseaddr)
14511 - baseaddr);
14512 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14513 range_end + baseaddr)
14514 - baseaddr);
14515 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14516 lowpc, highpc - 1, ranges_pst);
14517 }
14518
14519 /* FIXME: This is recording everything as a low-high
14520 segment of consecutive addresses. We should have a
14521 data structure for discontiguous block ranges
14522 instead. */
14523 if (! low_set)
14524 {
14525 low = range_beginning;
14526 high = range_end;
14527 low_set = 1;
14528 }
14529 else
14530 {
14531 if (range_beginning < low)
14532 low = range_beginning;
14533 if (range_end > high)
14534 high = range_end;
14535 }
14536 });
14537 if (!retval)
14538 return 0;
14539
14540 if (! low_set)
14541 /* If the first entry is an end-of-list marker, the range
14542 describes an empty scope, i.e. no instructions. */
14543 return 0;
14544
14545 if (low_return)
14546 *low_return = low;
14547 if (high_return)
14548 *high_return = high;
14549 return 1;
14550 }
14551
14552 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14553 definition for the return value. *LOWPC and *HIGHPC are set iff
14554 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14555
14556 static enum pc_bounds_kind
14557 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14558 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14559 dwarf2_psymtab *pst)
14560 {
14561 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14562 struct attribute *attr;
14563 struct attribute *attr_high;
14564 CORE_ADDR low = 0;
14565 CORE_ADDR high = 0;
14566 enum pc_bounds_kind ret;
14567
14568 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14569 if (attr_high)
14570 {
14571 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14572 if (attr != nullptr)
14573 {
14574 low = attr->as_address ();
14575 high = attr_high->as_address ();
14576 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14577 high += low;
14578 }
14579 else
14580 /* Found high w/o low attribute. */
14581 return PC_BOUNDS_INVALID;
14582
14583 /* Found consecutive range of addresses. */
14584 ret = PC_BOUNDS_HIGH_LOW;
14585 }
14586 else
14587 {
14588 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14589 if (attr != nullptr && attr->form_is_unsigned ())
14590 {
14591 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14592 We take advantage of the fact that DW_AT_ranges does not appear
14593 in DW_TAG_compile_unit of DWO files.
14594
14595 Attributes of the form DW_FORM_rnglistx have already had their
14596 value changed by read_rnglist_index and already include
14597 DW_AT_rnglists_base, so don't need to add the ranges base,
14598 either. */
14599 int need_ranges_base = (die->tag != DW_TAG_compile_unit
14600 && attr->form != DW_FORM_rnglistx);
14601 unsigned int ranges_offset = (attr->as_unsigned ()
14602 + (need_ranges_base
14603 ? cu->ranges_base
14604 : 0));
14605
14606 /* Value of the DW_AT_ranges attribute is the offset in the
14607 .debug_ranges section. */
14608 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst,
14609 die->tag))
14610 return PC_BOUNDS_INVALID;
14611 /* Found discontinuous range of addresses. */
14612 ret = PC_BOUNDS_RANGES;
14613 }
14614 else
14615 return PC_BOUNDS_NOT_PRESENT;
14616 }
14617
14618 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14619 if (high <= low)
14620 return PC_BOUNDS_INVALID;
14621
14622 /* When using the GNU linker, .gnu.linkonce. sections are used to
14623 eliminate duplicate copies of functions and vtables and such.
14624 The linker will arbitrarily choose one and discard the others.
14625 The AT_*_pc values for such functions refer to local labels in
14626 these sections. If the section from that file was discarded, the
14627 labels are not in the output, so the relocs get a value of 0.
14628 If this is a discarded function, mark the pc bounds as invalid,
14629 so that GDB will ignore it. */
14630 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14631 return PC_BOUNDS_INVALID;
14632
14633 *lowpc = low;
14634 if (highpc)
14635 *highpc = high;
14636 return ret;
14637 }
14638
14639 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14640 its low and high PC addresses. Do nothing if these addresses could not
14641 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14642 and HIGHPC to the high address if greater than HIGHPC. */
14643
14644 static void
14645 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14646 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14647 struct dwarf2_cu *cu)
14648 {
14649 CORE_ADDR low, high;
14650 struct die_info *child = die->child;
14651
14652 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14653 {
14654 *lowpc = std::min (*lowpc, low);
14655 *highpc = std::max (*highpc, high);
14656 }
14657
14658 /* If the language does not allow nested subprograms (either inside
14659 subprograms or lexical blocks), we're done. */
14660 if (cu->language != language_ada)
14661 return;
14662
14663 /* Check all the children of the given DIE. If it contains nested
14664 subprograms, then check their pc bounds. Likewise, we need to
14665 check lexical blocks as well, as they may also contain subprogram
14666 definitions. */
14667 while (child && child->tag)
14668 {
14669 if (child->tag == DW_TAG_subprogram
14670 || child->tag == DW_TAG_lexical_block)
14671 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14672 child = child->sibling;
14673 }
14674 }
14675
14676 /* Get the low and high pc's represented by the scope DIE, and store
14677 them in *LOWPC and *HIGHPC. If the correct values can't be
14678 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14679
14680 static void
14681 get_scope_pc_bounds (struct die_info *die,
14682 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14683 struct dwarf2_cu *cu)
14684 {
14685 CORE_ADDR best_low = (CORE_ADDR) -1;
14686 CORE_ADDR best_high = (CORE_ADDR) 0;
14687 CORE_ADDR current_low, current_high;
14688
14689 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14690 >= PC_BOUNDS_RANGES)
14691 {
14692 best_low = current_low;
14693 best_high = current_high;
14694 }
14695 else
14696 {
14697 struct die_info *child = die->child;
14698
14699 while (child && child->tag)
14700 {
14701 switch (child->tag) {
14702 case DW_TAG_subprogram:
14703 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14704 break;
14705 case DW_TAG_namespace:
14706 case DW_TAG_module:
14707 /* FIXME: carlton/2004-01-16: Should we do this for
14708 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14709 that current GCC's always emit the DIEs corresponding
14710 to definitions of methods of classes as children of a
14711 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14712 the DIEs giving the declarations, which could be
14713 anywhere). But I don't see any reason why the
14714 standards says that they have to be there. */
14715 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14716
14717 if (current_low != ((CORE_ADDR) -1))
14718 {
14719 best_low = std::min (best_low, current_low);
14720 best_high = std::max (best_high, current_high);
14721 }
14722 break;
14723 default:
14724 /* Ignore. */
14725 break;
14726 }
14727
14728 child = child->sibling;
14729 }
14730 }
14731
14732 *lowpc = best_low;
14733 *highpc = best_high;
14734 }
14735
14736 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14737 in DIE. */
14738
14739 static void
14740 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14741 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14742 {
14743 struct objfile *objfile = cu->per_objfile->objfile;
14744 struct gdbarch *gdbarch = objfile->arch ();
14745 struct attribute *attr;
14746 struct attribute *attr_high;
14747
14748 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14749 if (attr_high)
14750 {
14751 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14752 if (attr != nullptr)
14753 {
14754 CORE_ADDR low = attr->as_address ();
14755 CORE_ADDR high = attr_high->as_address ();
14756
14757 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14758 high += low;
14759
14760 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14761 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14762 cu->get_builder ()->record_block_range (block, low, high - 1);
14763 }
14764 }
14765
14766 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14767 if (attr != nullptr && attr->form_is_unsigned ())
14768 {
14769 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14770 We take advantage of the fact that DW_AT_ranges does not appear
14771 in DW_TAG_compile_unit of DWO files.
14772
14773 Attributes of the form DW_FORM_rnglistx have already had their
14774 value changed by read_rnglist_index and already include
14775 DW_AT_rnglists_base, so don't need to add the ranges base,
14776 either. */
14777 int need_ranges_base = (die->tag != DW_TAG_compile_unit
14778 && attr->form != DW_FORM_rnglistx);
14779
14780 /* The value of the DW_AT_ranges attribute is the offset of the
14781 address range list in the .debug_ranges section. */
14782 unsigned long offset = (attr->as_unsigned ()
14783 + (need_ranges_base ? cu->ranges_base : 0));
14784
14785 std::vector<blockrange> blockvec;
14786 dwarf2_ranges_process (offset, cu, die->tag,
14787 [&] (CORE_ADDR start, CORE_ADDR end)
14788 {
14789 start += baseaddr;
14790 end += baseaddr;
14791 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14792 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14793 cu->get_builder ()->record_block_range (block, start, end - 1);
14794 blockvec.emplace_back (start, end);
14795 });
14796
14797 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14798 }
14799 }
14800
14801 /* Check whether the producer field indicates either of GCC < 4.6, or the
14802 Intel C/C++ compiler, and cache the result in CU. */
14803
14804 static void
14805 check_producer (struct dwarf2_cu *cu)
14806 {
14807 int major, minor;
14808
14809 if (cu->producer == NULL)
14810 {
14811 /* For unknown compilers expect their behavior is DWARF version
14812 compliant.
14813
14814 GCC started to support .debug_types sections by -gdwarf-4 since
14815 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14816 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14817 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14818 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14819 }
14820 else if (producer_is_gcc (cu->producer, &major, &minor))
14821 {
14822 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14823 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14824 }
14825 else if (producer_is_icc (cu->producer, &major, &minor))
14826 {
14827 cu->producer_is_icc = true;
14828 cu->producer_is_icc_lt_14 = major < 14;
14829 }
14830 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14831 cu->producer_is_codewarrior = true;
14832 else
14833 {
14834 /* For other non-GCC compilers, expect their behavior is DWARF version
14835 compliant. */
14836 }
14837
14838 cu->checked_producer = true;
14839 }
14840
14841 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14842 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14843 during 4.6.0 experimental. */
14844
14845 static bool
14846 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14847 {
14848 if (!cu->checked_producer)
14849 check_producer (cu);
14850
14851 return cu->producer_is_gxx_lt_4_6;
14852 }
14853
14854
14855 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14856 with incorrect is_stmt attributes. */
14857
14858 static bool
14859 producer_is_codewarrior (struct dwarf2_cu *cu)
14860 {
14861 if (!cu->checked_producer)
14862 check_producer (cu);
14863
14864 return cu->producer_is_codewarrior;
14865 }
14866
14867 /* Return the accessibility of DIE, as given by DW_AT_accessibility.
14868 If that attribute is not available, return the appropriate
14869 default. */
14870
14871 static enum dwarf_access_attribute
14872 dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14873 {
14874 attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14875 if (attr != nullptr)
14876 {
14877 LONGEST value = attr->constant_value (-1);
14878 if (value == DW_ACCESS_public
14879 || value == DW_ACCESS_protected
14880 || value == DW_ACCESS_private)
14881 return (dwarf_access_attribute) value;
14882 complaint (_("Unhandled DW_AT_accessibility value (%s)"),
14883 plongest (value));
14884 }
14885
14886 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14887 {
14888 /* The default DWARF 2 accessibility for members is public, the default
14889 accessibility for inheritance is private. */
14890
14891 if (die->tag != DW_TAG_inheritance)
14892 return DW_ACCESS_public;
14893 else
14894 return DW_ACCESS_private;
14895 }
14896 else
14897 {
14898 /* DWARF 3+ defines the default accessibility a different way. The same
14899 rules apply now for DW_TAG_inheritance as for the members and it only
14900 depends on the container kind. */
14901
14902 if (die->parent->tag == DW_TAG_class_type)
14903 return DW_ACCESS_private;
14904 else
14905 return DW_ACCESS_public;
14906 }
14907 }
14908
14909 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14910 offset. If the attribute was not found return 0, otherwise return
14911 1. If it was found but could not properly be handled, set *OFFSET
14912 to 0. */
14913
14914 static int
14915 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14916 LONGEST *offset)
14917 {
14918 struct attribute *attr;
14919
14920 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14921 if (attr != NULL)
14922 {
14923 *offset = 0;
14924
14925 /* Note that we do not check for a section offset first here.
14926 This is because DW_AT_data_member_location is new in DWARF 4,
14927 so if we see it, we can assume that a constant form is really
14928 a constant and not a section offset. */
14929 if (attr->form_is_constant ())
14930 *offset = attr->constant_value (0);
14931 else if (attr->form_is_section_offset ())
14932 dwarf2_complex_location_expr_complaint ();
14933 else if (attr->form_is_block ())
14934 *offset = decode_locdesc (attr->as_block (), cu);
14935 else
14936 dwarf2_complex_location_expr_complaint ();
14937
14938 return 1;
14939 }
14940
14941 return 0;
14942 }
14943
14944 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14945
14946 static void
14947 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14948 struct field *field)
14949 {
14950 struct attribute *attr;
14951
14952 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14953 if (attr != NULL)
14954 {
14955 if (attr->form_is_constant ())
14956 {
14957 LONGEST offset = attr->constant_value (0);
14958 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14959 }
14960 else if (attr->form_is_section_offset ())
14961 dwarf2_complex_location_expr_complaint ();
14962 else if (attr->form_is_block ())
14963 {
14964 bool handled;
14965 CORE_ADDR offset = decode_locdesc (attr->as_block (), cu, &handled);
14966 if (handled)
14967 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14968 else
14969 {
14970 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14971 struct objfile *objfile = per_objfile->objfile;
14972 struct dwarf2_locexpr_baton *dlbaton
14973 = XOBNEW (&objfile->objfile_obstack,
14974 struct dwarf2_locexpr_baton);
14975 dlbaton->data = attr->as_block ()->data;
14976 dlbaton->size = attr->as_block ()->size;
14977 /* When using this baton, we want to compute the address
14978 of the field, not the value. This is why
14979 is_reference is set to false here. */
14980 dlbaton->is_reference = false;
14981 dlbaton->per_objfile = per_objfile;
14982 dlbaton->per_cu = cu->per_cu;
14983
14984 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14985 }
14986 }
14987 else
14988 dwarf2_complex_location_expr_complaint ();
14989 }
14990 }
14991
14992 /* Add an aggregate field to the field list. */
14993
14994 static void
14995 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14996 struct dwarf2_cu *cu)
14997 {
14998 struct objfile *objfile = cu->per_objfile->objfile;
14999 struct gdbarch *gdbarch = objfile->arch ();
15000 struct nextfield *new_field;
15001 struct attribute *attr;
15002 struct field *fp;
15003 const char *fieldname = "";
15004
15005 if (die->tag == DW_TAG_inheritance)
15006 {
15007 fip->baseclasses.emplace_back ();
15008 new_field = &fip->baseclasses.back ();
15009 }
15010 else
15011 {
15012 fip->fields.emplace_back ();
15013 new_field = &fip->fields.back ();
15014 }
15015
15016 new_field->offset = die->sect_off;
15017
15018 new_field->accessibility = dwarf2_access_attribute (die, cu);
15019 if (new_field->accessibility != DW_ACCESS_public)
15020 fip->non_public_fields = true;
15021
15022 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15023 if (attr != nullptr)
15024 new_field->virtuality = attr->as_virtuality ();
15025 else
15026 new_field->virtuality = DW_VIRTUALITY_none;
15027
15028 fp = &new_field->field;
15029
15030 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15031 {
15032 /* Data member other than a C++ static data member. */
15033
15034 /* Get type of field. */
15035 fp->set_type (die_type (die, cu));
15036
15037 SET_FIELD_BITPOS (*fp, 0);
15038
15039 /* Get bit size of field (zero if none). */
15040 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15041 if (attr != nullptr)
15042 {
15043 FIELD_BITSIZE (*fp) = attr->constant_value (0);
15044 }
15045 else
15046 {
15047 FIELD_BITSIZE (*fp) = 0;
15048 }
15049
15050 /* Get bit offset of field. */
15051 handle_data_member_location (die, cu, fp);
15052 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15053 if (attr != nullptr && attr->form_is_unsigned ())
15054 {
15055 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
15056 {
15057 /* For big endian bits, the DW_AT_bit_offset gives the
15058 additional bit offset from the MSB of the containing
15059 anonymous object to the MSB of the field. We don't
15060 have to do anything special since we don't need to
15061 know the size of the anonymous object. */
15062 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15063 + attr->as_unsigned ()));
15064 }
15065 else
15066 {
15067 /* For little endian bits, compute the bit offset to the
15068 MSB of the anonymous object, subtract off the number of
15069 bits from the MSB of the field to the MSB of the
15070 object, and then subtract off the number of bits of
15071 the field itself. The result is the bit offset of
15072 the LSB of the field. */
15073 int anonymous_size;
15074 int bit_offset = attr->as_unsigned ();
15075
15076 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15077 if (attr != nullptr && attr->form_is_unsigned ())
15078 {
15079 /* The size of the anonymous object containing
15080 the bit field is explicit, so use the
15081 indicated size (in bytes). */
15082 anonymous_size = attr->as_unsigned ();
15083 }
15084 else
15085 {
15086 /* The size of the anonymous object containing
15087 the bit field must be inferred from the type
15088 attribute of the data member containing the
15089 bit field. */
15090 anonymous_size = TYPE_LENGTH (fp->type ());
15091 }
15092 SET_FIELD_BITPOS (*fp,
15093 (FIELD_BITPOS (*fp)
15094 + anonymous_size * bits_per_byte
15095 - bit_offset - FIELD_BITSIZE (*fp)));
15096 }
15097 }
15098 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15099 if (attr != NULL)
15100 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15101 + attr->constant_value (0)));
15102
15103 /* Get name of field. */
15104 fieldname = dwarf2_name (die, cu);
15105 if (fieldname == NULL)
15106 fieldname = "";
15107
15108 /* The name is already allocated along with this objfile, so we don't
15109 need to duplicate it for the type. */
15110 fp->name = fieldname;
15111
15112 /* Change accessibility for artificial fields (e.g. virtual table
15113 pointer or virtual base class pointer) to private. */
15114 if (dwarf2_attr (die, DW_AT_artificial, cu))
15115 {
15116 FIELD_ARTIFICIAL (*fp) = 1;
15117 new_field->accessibility = DW_ACCESS_private;
15118 fip->non_public_fields = true;
15119 }
15120 }
15121 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15122 {
15123 /* C++ static member. */
15124
15125 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15126 is a declaration, but all versions of G++ as of this writing
15127 (so through at least 3.2.1) incorrectly generate
15128 DW_TAG_variable tags. */
15129
15130 const char *physname;
15131
15132 /* Get name of field. */
15133 fieldname = dwarf2_name (die, cu);
15134 if (fieldname == NULL)
15135 return;
15136
15137 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15138 if (attr
15139 /* Only create a symbol if this is an external value.
15140 new_symbol checks this and puts the value in the global symbol
15141 table, which we want. If it is not external, new_symbol
15142 will try to put the value in cu->list_in_scope which is wrong. */
15143 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15144 {
15145 /* A static const member, not much different than an enum as far as
15146 we're concerned, except that we can support more types. */
15147 new_symbol (die, NULL, cu);
15148 }
15149
15150 /* Get physical name. */
15151 physname = dwarf2_physname (fieldname, die, cu);
15152
15153 /* The name is already allocated along with this objfile, so we don't
15154 need to duplicate it for the type. */
15155 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15156 fp->set_type (die_type (die, cu));
15157 FIELD_NAME (*fp) = fieldname;
15158 }
15159 else if (die->tag == DW_TAG_inheritance)
15160 {
15161 /* C++ base class field. */
15162 handle_data_member_location (die, cu, fp);
15163 FIELD_BITSIZE (*fp) = 0;
15164 fp->set_type (die_type (die, cu));
15165 FIELD_NAME (*fp) = fp->type ()->name ();
15166 }
15167 else
15168 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15169 }
15170
15171 /* Can the type given by DIE define another type? */
15172
15173 static bool
15174 type_can_define_types (const struct die_info *die)
15175 {
15176 switch (die->tag)
15177 {
15178 case DW_TAG_typedef:
15179 case DW_TAG_class_type:
15180 case DW_TAG_structure_type:
15181 case DW_TAG_union_type:
15182 case DW_TAG_enumeration_type:
15183 return true;
15184
15185 default:
15186 return false;
15187 }
15188 }
15189
15190 /* Add a type definition defined in the scope of the FIP's class. */
15191
15192 static void
15193 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15194 struct dwarf2_cu *cu)
15195 {
15196 struct decl_field fp;
15197 memset (&fp, 0, sizeof (fp));
15198
15199 gdb_assert (type_can_define_types (die));
15200
15201 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15202 fp.name = dwarf2_name (die, cu);
15203 fp.type = read_type_die (die, cu);
15204
15205 /* Save accessibility. */
15206 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15207 switch (accessibility)
15208 {
15209 case DW_ACCESS_public:
15210 /* The assumed value if neither private nor protected. */
15211 break;
15212 case DW_ACCESS_private:
15213 fp.is_private = 1;
15214 break;
15215 case DW_ACCESS_protected:
15216 fp.is_protected = 1;
15217 break;
15218 }
15219
15220 if (die->tag == DW_TAG_typedef)
15221 fip->typedef_field_list.push_back (fp);
15222 else
15223 fip->nested_types_list.push_back (fp);
15224 }
15225
15226 /* A convenience typedef that's used when finding the discriminant
15227 field for a variant part. */
15228 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
15229 offset_map_type;
15230
15231 /* Compute the discriminant range for a given variant. OBSTACK is
15232 where the results will be stored. VARIANT is the variant to
15233 process. IS_UNSIGNED indicates whether the discriminant is signed
15234 or unsigned. */
15235
15236 static const gdb::array_view<discriminant_range>
15237 convert_variant_range (struct obstack *obstack, const variant_field &variant,
15238 bool is_unsigned)
15239 {
15240 std::vector<discriminant_range> ranges;
15241
15242 if (variant.default_branch)
15243 return {};
15244
15245 if (variant.discr_list_data == nullptr)
15246 {
15247 discriminant_range r
15248 = {variant.discriminant_value, variant.discriminant_value};
15249 ranges.push_back (r);
15250 }
15251 else
15252 {
15253 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
15254 variant.discr_list_data->size);
15255 while (!data.empty ())
15256 {
15257 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
15258 {
15259 complaint (_("invalid discriminant marker: %d"), data[0]);
15260 break;
15261 }
15262 bool is_range = data[0] == DW_DSC_range;
15263 data = data.slice (1);
15264
15265 ULONGEST low, high;
15266 unsigned int bytes_read;
15267
15268 if (data.empty ())
15269 {
15270 complaint (_("DW_AT_discr_list missing low value"));
15271 break;
15272 }
15273 if (is_unsigned)
15274 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
15275 else
15276 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
15277 &bytes_read);
15278 data = data.slice (bytes_read);
15279
15280 if (is_range)
15281 {
15282 if (data.empty ())
15283 {
15284 complaint (_("DW_AT_discr_list missing high value"));
15285 break;
15286 }
15287 if (is_unsigned)
15288 high = read_unsigned_leb128 (nullptr, data.data (),
15289 &bytes_read);
15290 else
15291 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
15292 &bytes_read);
15293 data = data.slice (bytes_read);
15294 }
15295 else
15296 high = low;
15297
15298 ranges.push_back ({ low, high });
15299 }
15300 }
15301
15302 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
15303 ranges.size ());
15304 std::copy (ranges.begin (), ranges.end (), result);
15305 return gdb::array_view<discriminant_range> (result, ranges.size ());
15306 }
15307
15308 static const gdb::array_view<variant_part> create_variant_parts
15309 (struct obstack *obstack,
15310 const offset_map_type &offset_map,
15311 struct field_info *fi,
15312 const std::vector<variant_part_builder> &variant_parts);
15313
15314 /* Fill in a "struct variant" for a given variant field. RESULT is
15315 the variant to fill in. OBSTACK is where any needed allocations
15316 will be done. OFFSET_MAP holds the mapping from section offsets to
15317 fields for the type. FI describes the fields of the type we're
15318 processing. FIELD is the variant field we're converting. */
15319
15320 static void
15321 create_one_variant (variant &result, struct obstack *obstack,
15322 const offset_map_type &offset_map,
15323 struct field_info *fi, const variant_field &field)
15324 {
15325 result.discriminants = convert_variant_range (obstack, field, false);
15326 result.first_field = field.first_field + fi->baseclasses.size ();
15327 result.last_field = field.last_field + fi->baseclasses.size ();
15328 result.parts = create_variant_parts (obstack, offset_map, fi,
15329 field.variant_parts);
15330 }
15331
15332 /* Fill in a "struct variant_part" for a given variant part. RESULT
15333 is the variant part to fill in. OBSTACK is where any needed
15334 allocations will be done. OFFSET_MAP holds the mapping from
15335 section offsets to fields for the type. FI describes the fields of
15336 the type we're processing. BUILDER is the variant part to be
15337 converted. */
15338
15339 static void
15340 create_one_variant_part (variant_part &result,
15341 struct obstack *obstack,
15342 const offset_map_type &offset_map,
15343 struct field_info *fi,
15344 const variant_part_builder &builder)
15345 {
15346 auto iter = offset_map.find (builder.discriminant_offset);
15347 if (iter == offset_map.end ())
15348 {
15349 result.discriminant_index = -1;
15350 /* Doesn't matter. */
15351 result.is_unsigned = false;
15352 }
15353 else
15354 {
15355 result.discriminant_index = iter->second;
15356 result.is_unsigned
15357 = fi->fields[result.discriminant_index].field.type ()->is_unsigned ();
15358 }
15359
15360 size_t n = builder.variants.size ();
15361 variant *output = new (obstack) variant[n];
15362 for (size_t i = 0; i < n; ++i)
15363 create_one_variant (output[i], obstack, offset_map, fi,
15364 builder.variants[i]);
15365
15366 result.variants = gdb::array_view<variant> (output, n);
15367 }
15368
15369 /* Create a vector of variant parts that can be attached to a type.
15370 OBSTACK is where any needed allocations will be done. OFFSET_MAP
15371 holds the mapping from section offsets to fields for the type. FI
15372 describes the fields of the type we're processing. VARIANT_PARTS
15373 is the vector to convert. */
15374
15375 static const gdb::array_view<variant_part>
15376 create_variant_parts (struct obstack *obstack,
15377 const offset_map_type &offset_map,
15378 struct field_info *fi,
15379 const std::vector<variant_part_builder> &variant_parts)
15380 {
15381 if (variant_parts.empty ())
15382 return {};
15383
15384 size_t n = variant_parts.size ();
15385 variant_part *result = new (obstack) variant_part[n];
15386 for (size_t i = 0; i < n; ++i)
15387 create_one_variant_part (result[i], obstack, offset_map, fi,
15388 variant_parts[i]);
15389
15390 return gdb::array_view<variant_part> (result, n);
15391 }
15392
15393 /* Compute the variant part vector for FIP, attaching it to TYPE when
15394 done. */
15395
15396 static void
15397 add_variant_property (struct field_info *fip, struct type *type,
15398 struct dwarf2_cu *cu)
15399 {
15400 /* Map section offsets of fields to their field index. Note the
15401 field index here does not take the number of baseclasses into
15402 account. */
15403 offset_map_type offset_map;
15404 for (int i = 0; i < fip->fields.size (); ++i)
15405 offset_map[fip->fields[i].offset] = i;
15406
15407 struct objfile *objfile = cu->per_objfile->objfile;
15408 gdb::array_view<variant_part> parts
15409 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
15410 fip->variant_parts);
15411
15412 struct dynamic_prop prop;
15413 prop.set_variant_parts ((gdb::array_view<variant_part> *)
15414 obstack_copy (&objfile->objfile_obstack, &parts,
15415 sizeof (parts)));
15416
15417 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
15418 }
15419
15420 /* Create the vector of fields, and attach it to the type. */
15421
15422 static void
15423 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15424 struct dwarf2_cu *cu)
15425 {
15426 int nfields = fip->nfields ();
15427
15428 /* Record the field count, allocate space for the array of fields,
15429 and create blank accessibility bitfields if necessary. */
15430 type->set_num_fields (nfields);
15431 type->set_fields
15432 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
15433
15434 if (fip->non_public_fields && cu->language != language_ada)
15435 {
15436 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15437
15438 TYPE_FIELD_PRIVATE_BITS (type) =
15439 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15440 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15441
15442 TYPE_FIELD_PROTECTED_BITS (type) =
15443 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15444 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15445
15446 TYPE_FIELD_IGNORE_BITS (type) =
15447 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15448 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15449 }
15450
15451 /* If the type has baseclasses, allocate and clear a bit vector for
15452 TYPE_FIELD_VIRTUAL_BITS. */
15453 if (!fip->baseclasses.empty () && cu->language != language_ada)
15454 {
15455 int num_bytes = B_BYTES (fip->baseclasses.size ());
15456 unsigned char *pointer;
15457
15458 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15459 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15460 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15461 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15462 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15463 }
15464
15465 if (!fip->variant_parts.empty ())
15466 add_variant_property (fip, type, cu);
15467
15468 /* Copy the saved-up fields into the field vector. */
15469 for (int i = 0; i < nfields; ++i)
15470 {
15471 struct nextfield &field
15472 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15473 : fip->fields[i - fip->baseclasses.size ()]);
15474
15475 type->field (i) = field.field;
15476 switch (field.accessibility)
15477 {
15478 case DW_ACCESS_private:
15479 if (cu->language != language_ada)
15480 SET_TYPE_FIELD_PRIVATE (type, i);
15481 break;
15482
15483 case DW_ACCESS_protected:
15484 if (cu->language != language_ada)
15485 SET_TYPE_FIELD_PROTECTED (type, i);
15486 break;
15487
15488 case DW_ACCESS_public:
15489 break;
15490
15491 default:
15492 /* Unknown accessibility. Complain and treat it as public. */
15493 {
15494 complaint (_("unsupported accessibility %d"),
15495 field.accessibility);
15496 }
15497 break;
15498 }
15499 if (i < fip->baseclasses.size ())
15500 {
15501 switch (field.virtuality)
15502 {
15503 case DW_VIRTUALITY_virtual:
15504 case DW_VIRTUALITY_pure_virtual:
15505 if (cu->language == language_ada)
15506 error (_("unexpected virtuality in component of Ada type"));
15507 SET_TYPE_FIELD_VIRTUAL (type, i);
15508 break;
15509 }
15510 }
15511 }
15512 }
15513
15514 /* Return true if this member function is a constructor, false
15515 otherwise. */
15516
15517 static int
15518 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15519 {
15520 const char *fieldname;
15521 const char *type_name;
15522 int len;
15523
15524 if (die->parent == NULL)
15525 return 0;
15526
15527 if (die->parent->tag != DW_TAG_structure_type
15528 && die->parent->tag != DW_TAG_union_type
15529 && die->parent->tag != DW_TAG_class_type)
15530 return 0;
15531
15532 fieldname = dwarf2_name (die, cu);
15533 type_name = dwarf2_name (die->parent, cu);
15534 if (fieldname == NULL || type_name == NULL)
15535 return 0;
15536
15537 len = strlen (fieldname);
15538 return (strncmp (fieldname, type_name, len) == 0
15539 && (type_name[len] == '\0' || type_name[len] == '<'));
15540 }
15541
15542 /* Add a member function to the proper fieldlist. */
15543
15544 static void
15545 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15546 struct type *type, struct dwarf2_cu *cu)
15547 {
15548 struct objfile *objfile = cu->per_objfile->objfile;
15549 struct attribute *attr;
15550 int i;
15551 struct fnfieldlist *flp = nullptr;
15552 struct fn_field *fnp;
15553 const char *fieldname;
15554 struct type *this_type;
15555
15556 if (cu->language == language_ada)
15557 error (_("unexpected member function in Ada type"));
15558
15559 /* Get name of member function. */
15560 fieldname = dwarf2_name (die, cu);
15561 if (fieldname == NULL)
15562 return;
15563
15564 /* Look up member function name in fieldlist. */
15565 for (i = 0; i < fip->fnfieldlists.size (); i++)
15566 {
15567 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15568 {
15569 flp = &fip->fnfieldlists[i];
15570 break;
15571 }
15572 }
15573
15574 /* Create a new fnfieldlist if necessary. */
15575 if (flp == nullptr)
15576 {
15577 fip->fnfieldlists.emplace_back ();
15578 flp = &fip->fnfieldlists.back ();
15579 flp->name = fieldname;
15580 i = fip->fnfieldlists.size () - 1;
15581 }
15582
15583 /* Create a new member function field and add it to the vector of
15584 fnfieldlists. */
15585 flp->fnfields.emplace_back ();
15586 fnp = &flp->fnfields.back ();
15587
15588 /* Delay processing of the physname until later. */
15589 if (cu->language == language_cplus)
15590 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15591 die, cu);
15592 else
15593 {
15594 const char *physname = dwarf2_physname (fieldname, die, cu);
15595 fnp->physname = physname ? physname : "";
15596 }
15597
15598 fnp->type = alloc_type (objfile);
15599 this_type = read_type_die (die, cu);
15600 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15601 {
15602 int nparams = this_type->num_fields ();
15603
15604 /* TYPE is the domain of this method, and THIS_TYPE is the type
15605 of the method itself (TYPE_CODE_METHOD). */
15606 smash_to_method_type (fnp->type, type,
15607 TYPE_TARGET_TYPE (this_type),
15608 this_type->fields (),
15609 this_type->num_fields (),
15610 this_type->has_varargs ());
15611
15612 /* Handle static member functions.
15613 Dwarf2 has no clean way to discern C++ static and non-static
15614 member functions. G++ helps GDB by marking the first
15615 parameter for non-static member functions (which is the this
15616 pointer) as artificial. We obtain this information from
15617 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15618 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15619 fnp->voffset = VOFFSET_STATIC;
15620 }
15621 else
15622 complaint (_("member function type missing for '%s'"),
15623 dwarf2_full_name (fieldname, die, cu));
15624
15625 /* Get fcontext from DW_AT_containing_type if present. */
15626 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15627 fnp->fcontext = die_containing_type (die, cu);
15628
15629 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15630 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15631
15632 /* Get accessibility. */
15633 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15634 switch (accessibility)
15635 {
15636 case DW_ACCESS_private:
15637 fnp->is_private = 1;
15638 break;
15639 case DW_ACCESS_protected:
15640 fnp->is_protected = 1;
15641 break;
15642 }
15643
15644 /* Check for artificial methods. */
15645 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15646 if (attr && attr->as_boolean ())
15647 fnp->is_artificial = 1;
15648
15649 /* Check for defaulted methods. */
15650 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15651 if (attr != nullptr)
15652 fnp->defaulted = attr->defaulted ();
15653
15654 /* Check for deleted methods. */
15655 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15656 if (attr != nullptr && attr->as_boolean ())
15657 fnp->is_deleted = 1;
15658
15659 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15660
15661 /* Get index in virtual function table if it is a virtual member
15662 function. For older versions of GCC, this is an offset in the
15663 appropriate virtual table, as specified by DW_AT_containing_type.
15664 For everyone else, it is an expression to be evaluated relative
15665 to the object address. */
15666
15667 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15668 if (attr != nullptr)
15669 {
15670 if (attr->form_is_block () && attr->as_block ()->size > 0)
15671 {
15672 struct dwarf_block *block = attr->as_block ();
15673
15674 if (block->data[0] == DW_OP_constu)
15675 {
15676 /* Old-style GCC. */
15677 fnp->voffset = decode_locdesc (block, cu) + 2;
15678 }
15679 else if (block->data[0] == DW_OP_deref
15680 || (block->size > 1
15681 && block->data[0] == DW_OP_deref_size
15682 && block->data[1] == cu->header.addr_size))
15683 {
15684 fnp->voffset = decode_locdesc (block, cu);
15685 if ((fnp->voffset % cu->header.addr_size) != 0)
15686 dwarf2_complex_location_expr_complaint ();
15687 else
15688 fnp->voffset /= cu->header.addr_size;
15689 fnp->voffset += 2;
15690 }
15691 else
15692 dwarf2_complex_location_expr_complaint ();
15693
15694 if (!fnp->fcontext)
15695 {
15696 /* If there is no `this' field and no DW_AT_containing_type,
15697 we cannot actually find a base class context for the
15698 vtable! */
15699 if (this_type->num_fields () == 0
15700 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15701 {
15702 complaint (_("cannot determine context for virtual member "
15703 "function \"%s\" (offset %s)"),
15704 fieldname, sect_offset_str (die->sect_off));
15705 }
15706 else
15707 {
15708 fnp->fcontext
15709 = TYPE_TARGET_TYPE (this_type->field (0).type ());
15710 }
15711 }
15712 }
15713 else if (attr->form_is_section_offset ())
15714 {
15715 dwarf2_complex_location_expr_complaint ();
15716 }
15717 else
15718 {
15719 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15720 fieldname);
15721 }
15722 }
15723 else
15724 {
15725 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15726 if (attr != nullptr && attr->as_virtuality () != DW_VIRTUALITY_none)
15727 {
15728 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15729 complaint (_("Member function \"%s\" (offset %s) is virtual "
15730 "but the vtable offset is not specified"),
15731 fieldname, sect_offset_str (die->sect_off));
15732 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15733 TYPE_CPLUS_DYNAMIC (type) = 1;
15734 }
15735 }
15736 }
15737
15738 /* Create the vector of member function fields, and attach it to the type. */
15739
15740 static void
15741 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15742 struct dwarf2_cu *cu)
15743 {
15744 if (cu->language == language_ada)
15745 error (_("unexpected member functions in Ada type"));
15746
15747 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15748 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15749 TYPE_ALLOC (type,
15750 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15751
15752 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15753 {
15754 struct fnfieldlist &nf = fip->fnfieldlists[i];
15755 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15756
15757 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15758 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15759 fn_flp->fn_fields = (struct fn_field *)
15760 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15761
15762 for (int k = 0; k < nf.fnfields.size (); ++k)
15763 fn_flp->fn_fields[k] = nf.fnfields[k];
15764 }
15765
15766 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15767 }
15768
15769 /* Returns non-zero if NAME is the name of a vtable member in CU's
15770 language, zero otherwise. */
15771 static int
15772 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15773 {
15774 static const char vptr[] = "_vptr";
15775
15776 /* Look for the C++ form of the vtable. */
15777 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15778 return 1;
15779
15780 return 0;
15781 }
15782
15783 /* GCC outputs unnamed structures that are really pointers to member
15784 functions, with the ABI-specified layout. If TYPE describes
15785 such a structure, smash it into a member function type.
15786
15787 GCC shouldn't do this; it should just output pointer to member DIEs.
15788 This is GCC PR debug/28767. */
15789
15790 static void
15791 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15792 {
15793 struct type *pfn_type, *self_type, *new_type;
15794
15795 /* Check for a structure with no name and two children. */
15796 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15797 return;
15798
15799 /* Check for __pfn and __delta members. */
15800 if (TYPE_FIELD_NAME (type, 0) == NULL
15801 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15802 || TYPE_FIELD_NAME (type, 1) == NULL
15803 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15804 return;
15805
15806 /* Find the type of the method. */
15807 pfn_type = type->field (0).type ();
15808 if (pfn_type == NULL
15809 || pfn_type->code () != TYPE_CODE_PTR
15810 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15811 return;
15812
15813 /* Look for the "this" argument. */
15814 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15815 if (pfn_type->num_fields () == 0
15816 /* || pfn_type->field (0).type () == NULL */
15817 || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR)
15818 return;
15819
15820 self_type = TYPE_TARGET_TYPE (pfn_type->field (0).type ());
15821 new_type = alloc_type (objfile);
15822 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15823 pfn_type->fields (), pfn_type->num_fields (),
15824 pfn_type->has_varargs ());
15825 smash_to_methodptr_type (type, new_type);
15826 }
15827
15828 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15829 appropriate error checking and issuing complaints if there is a
15830 problem. */
15831
15832 static ULONGEST
15833 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15834 {
15835 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15836
15837 if (attr == nullptr)
15838 return 0;
15839
15840 if (!attr->form_is_constant ())
15841 {
15842 complaint (_("DW_AT_alignment must have constant form"
15843 " - DIE at %s [in module %s]"),
15844 sect_offset_str (die->sect_off),
15845 objfile_name (cu->per_objfile->objfile));
15846 return 0;
15847 }
15848
15849 LONGEST val = attr->constant_value (0);
15850 if (val < 0)
15851 {
15852 complaint (_("DW_AT_alignment value must not be negative"
15853 " - DIE at %s [in module %s]"),
15854 sect_offset_str (die->sect_off),
15855 objfile_name (cu->per_objfile->objfile));
15856 return 0;
15857 }
15858 ULONGEST align = val;
15859
15860 if (align == 0)
15861 {
15862 complaint (_("DW_AT_alignment value must not be zero"
15863 " - DIE at %s [in module %s]"),
15864 sect_offset_str (die->sect_off),
15865 objfile_name (cu->per_objfile->objfile));
15866 return 0;
15867 }
15868 if ((align & (align - 1)) != 0)
15869 {
15870 complaint (_("DW_AT_alignment value must be a power of 2"
15871 " - DIE at %s [in module %s]"),
15872 sect_offset_str (die->sect_off),
15873 objfile_name (cu->per_objfile->objfile));
15874 return 0;
15875 }
15876
15877 return align;
15878 }
15879
15880 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15881 the alignment for TYPE. */
15882
15883 static void
15884 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15885 struct type *type)
15886 {
15887 if (!set_type_align (type, get_alignment (cu, die)))
15888 complaint (_("DW_AT_alignment value too large"
15889 " - DIE at %s [in module %s]"),
15890 sect_offset_str (die->sect_off),
15891 objfile_name (cu->per_objfile->objfile));
15892 }
15893
15894 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15895 constant for a type, according to DWARF5 spec, Table 5.5. */
15896
15897 static bool
15898 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15899 {
15900 switch (value)
15901 {
15902 case DW_CC_normal:
15903 case DW_CC_pass_by_reference:
15904 case DW_CC_pass_by_value:
15905 return true;
15906
15907 default:
15908 complaint (_("unrecognized DW_AT_calling_convention value "
15909 "(%s) for a type"), pulongest (value));
15910 return false;
15911 }
15912 }
15913
15914 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15915 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15916 also according to GNU-specific values (see include/dwarf2.h). */
15917
15918 static bool
15919 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15920 {
15921 switch (value)
15922 {
15923 case DW_CC_normal:
15924 case DW_CC_program:
15925 case DW_CC_nocall:
15926 return true;
15927
15928 case DW_CC_GNU_renesas_sh:
15929 case DW_CC_GNU_borland_fastcall_i386:
15930 case DW_CC_GDB_IBM_OpenCL:
15931 return true;
15932
15933 default:
15934 complaint (_("unrecognized DW_AT_calling_convention value "
15935 "(%s) for a subroutine"), pulongest (value));
15936 return false;
15937 }
15938 }
15939
15940 /* Called when we find the DIE that starts a structure or union scope
15941 (definition) to create a type for the structure or union. Fill in
15942 the type's name and general properties; the members will not be
15943 processed until process_structure_scope. A symbol table entry for
15944 the type will also not be done until process_structure_scope (assuming
15945 the type has a name).
15946
15947 NOTE: we need to call these functions regardless of whether or not the
15948 DIE has a DW_AT_name attribute, since it might be an anonymous
15949 structure or union. This gets the type entered into our set of
15950 user defined types. */
15951
15952 static struct type *
15953 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15954 {
15955 struct objfile *objfile = cu->per_objfile->objfile;
15956 struct type *type;
15957 struct attribute *attr;
15958 const char *name;
15959
15960 /* If the definition of this type lives in .debug_types, read that type.
15961 Don't follow DW_AT_specification though, that will take us back up
15962 the chain and we want to go down. */
15963 attr = die->attr (DW_AT_signature);
15964 if (attr != nullptr)
15965 {
15966 type = get_DW_AT_signature_type (die, attr, cu);
15967
15968 /* The type's CU may not be the same as CU.
15969 Ensure TYPE is recorded with CU in die_type_hash. */
15970 return set_die_type (die, type, cu);
15971 }
15972
15973 type = alloc_type (objfile);
15974 INIT_CPLUS_SPECIFIC (type);
15975
15976 name = dwarf2_name (die, cu);
15977 if (name != NULL)
15978 {
15979 if (cu->language == language_cplus
15980 || cu->language == language_d
15981 || cu->language == language_rust)
15982 {
15983 const char *full_name = dwarf2_full_name (name, die, cu);
15984
15985 /* dwarf2_full_name might have already finished building the DIE's
15986 type. If so, there is no need to continue. */
15987 if (get_die_type (die, cu) != NULL)
15988 return get_die_type (die, cu);
15989
15990 type->set_name (full_name);
15991 }
15992 else
15993 {
15994 /* The name is already allocated along with this objfile, so
15995 we don't need to duplicate it for the type. */
15996 type->set_name (name);
15997 }
15998 }
15999
16000 if (die->tag == DW_TAG_structure_type)
16001 {
16002 type->set_code (TYPE_CODE_STRUCT);
16003 }
16004 else if (die->tag == DW_TAG_union_type)
16005 {
16006 type->set_code (TYPE_CODE_UNION);
16007 }
16008 else
16009 {
16010 type->set_code (TYPE_CODE_STRUCT);
16011 }
16012
16013 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
16014 TYPE_DECLARED_CLASS (type) = 1;
16015
16016 /* Store the calling convention in the type if it's available in
16017 the die. Otherwise the calling convention remains set to
16018 the default value DW_CC_normal. */
16019 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16020 if (attr != nullptr
16021 && is_valid_DW_AT_calling_convention_for_type (attr->constant_value (0)))
16022 {
16023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16024 TYPE_CPLUS_CALLING_CONVENTION (type)
16025 = (enum dwarf_calling_convention) (attr->constant_value (0));
16026 }
16027
16028 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16029 if (attr != nullptr)
16030 {
16031 if (attr->form_is_constant ())
16032 TYPE_LENGTH (type) = attr->constant_value (0);
16033 else
16034 {
16035 struct dynamic_prop prop;
16036 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
16037 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
16038 TYPE_LENGTH (type) = 0;
16039 }
16040 }
16041 else
16042 {
16043 TYPE_LENGTH (type) = 0;
16044 }
16045
16046 maybe_set_alignment (cu, die, type);
16047
16048 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
16049 {
16050 /* ICC<14 does not output the required DW_AT_declaration on
16051 incomplete types, but gives them a size of zero. */
16052 type->set_is_stub (true);
16053 }
16054 else
16055 type->set_stub_is_supported (true);
16056
16057 if (die_is_declaration (die, cu))
16058 type->set_is_stub (true);
16059 else if (attr == NULL && die->child == NULL
16060 && producer_is_realview (cu->producer))
16061 /* RealView does not output the required DW_AT_declaration
16062 on incomplete types. */
16063 type->set_is_stub (true);
16064
16065 /* We need to add the type field to the die immediately so we don't
16066 infinitely recurse when dealing with pointers to the structure
16067 type within the structure itself. */
16068 set_die_type (die, type, cu);
16069
16070 /* set_die_type should be already done. */
16071 set_descriptive_type (type, die, cu);
16072
16073 return type;
16074 }
16075
16076 static void handle_struct_member_die
16077 (struct die_info *child_die,
16078 struct type *type,
16079 struct field_info *fi,
16080 std::vector<struct symbol *> *template_args,
16081 struct dwarf2_cu *cu);
16082
16083 /* A helper for handle_struct_member_die that handles
16084 DW_TAG_variant_part. */
16085
16086 static void
16087 handle_variant_part (struct die_info *die, struct type *type,
16088 struct field_info *fi,
16089 std::vector<struct symbol *> *template_args,
16090 struct dwarf2_cu *cu)
16091 {
16092 variant_part_builder *new_part;
16093 if (fi->current_variant_part == nullptr)
16094 {
16095 fi->variant_parts.emplace_back ();
16096 new_part = &fi->variant_parts.back ();
16097 }
16098 else if (!fi->current_variant_part->processing_variant)
16099 {
16100 complaint (_("nested DW_TAG_variant_part seen "
16101 "- DIE at %s [in module %s]"),
16102 sect_offset_str (die->sect_off),
16103 objfile_name (cu->per_objfile->objfile));
16104 return;
16105 }
16106 else
16107 {
16108 variant_field &current = fi->current_variant_part->variants.back ();
16109 current.variant_parts.emplace_back ();
16110 new_part = &current.variant_parts.back ();
16111 }
16112
16113 /* When we recurse, we want callees to add to this new variant
16114 part. */
16115 scoped_restore save_current_variant_part
16116 = make_scoped_restore (&fi->current_variant_part, new_part);
16117
16118 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16119 if (discr == NULL)
16120 {
16121 /* It's a univariant form, an extension we support. */
16122 }
16123 else if (discr->form_is_ref ())
16124 {
16125 struct dwarf2_cu *target_cu = cu;
16126 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16127
16128 new_part->discriminant_offset = target_die->sect_off;
16129 }
16130 else
16131 {
16132 complaint (_("DW_AT_discr does not have DIE reference form"
16133 " - DIE at %s [in module %s]"),
16134 sect_offset_str (die->sect_off),
16135 objfile_name (cu->per_objfile->objfile));
16136 }
16137
16138 for (die_info *child_die = die->child;
16139 child_die != NULL;
16140 child_die = child_die->sibling)
16141 handle_struct_member_die (child_die, type, fi, template_args, cu);
16142 }
16143
16144 /* A helper for handle_struct_member_die that handles
16145 DW_TAG_variant. */
16146
16147 static void
16148 handle_variant (struct die_info *die, struct type *type,
16149 struct field_info *fi,
16150 std::vector<struct symbol *> *template_args,
16151 struct dwarf2_cu *cu)
16152 {
16153 if (fi->current_variant_part == nullptr)
16154 {
16155 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
16156 "- DIE at %s [in module %s]"),
16157 sect_offset_str (die->sect_off),
16158 objfile_name (cu->per_objfile->objfile));
16159 return;
16160 }
16161 if (fi->current_variant_part->processing_variant)
16162 {
16163 complaint (_("nested DW_TAG_variant seen "
16164 "- DIE at %s [in module %s]"),
16165 sect_offset_str (die->sect_off),
16166 objfile_name (cu->per_objfile->objfile));
16167 return;
16168 }
16169
16170 scoped_restore save_processing_variant
16171 = make_scoped_restore (&fi->current_variant_part->processing_variant,
16172 true);
16173
16174 fi->current_variant_part->variants.emplace_back ();
16175 variant_field &variant = fi->current_variant_part->variants.back ();
16176 variant.first_field = fi->fields.size ();
16177
16178 /* In a variant we want to get the discriminant and also add a
16179 field for our sole member child. */
16180 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
16181 if (discr == nullptr || !discr->form_is_constant ())
16182 {
16183 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
16184 if (discr == nullptr || discr->as_block ()->size == 0)
16185 variant.default_branch = true;
16186 else
16187 variant.discr_list_data = discr->as_block ();
16188 }
16189 else
16190 variant.discriminant_value = discr->constant_value (0);
16191
16192 for (die_info *variant_child = die->child;
16193 variant_child != NULL;
16194 variant_child = variant_child->sibling)
16195 handle_struct_member_die (variant_child, type, fi, template_args, cu);
16196
16197 variant.last_field = fi->fields.size ();
16198 }
16199
16200 /* A helper for process_structure_scope that handles a single member
16201 DIE. */
16202
16203 static void
16204 handle_struct_member_die (struct die_info *child_die, struct type *type,
16205 struct field_info *fi,
16206 std::vector<struct symbol *> *template_args,
16207 struct dwarf2_cu *cu)
16208 {
16209 if (child_die->tag == DW_TAG_member
16210 || child_die->tag == DW_TAG_variable)
16211 {
16212 /* NOTE: carlton/2002-11-05: A C++ static data member
16213 should be a DW_TAG_member that is a declaration, but
16214 all versions of G++ as of this writing (so through at
16215 least 3.2.1) incorrectly generate DW_TAG_variable
16216 tags for them instead. */
16217 dwarf2_add_field (fi, child_die, cu);
16218 }
16219 else if (child_die->tag == DW_TAG_subprogram)
16220 {
16221 /* Rust doesn't have member functions in the C++ sense.
16222 However, it does emit ordinary functions as children
16223 of a struct DIE. */
16224 if (cu->language == language_rust)
16225 read_func_scope (child_die, cu);
16226 else
16227 {
16228 /* C++ member function. */
16229 dwarf2_add_member_fn (fi, child_die, type, cu);
16230 }
16231 }
16232 else if (child_die->tag == DW_TAG_inheritance)
16233 {
16234 /* C++ base class field. */
16235 dwarf2_add_field (fi, child_die, cu);
16236 }
16237 else if (type_can_define_types (child_die))
16238 dwarf2_add_type_defn (fi, child_die, cu);
16239 else if (child_die->tag == DW_TAG_template_type_param
16240 || child_die->tag == DW_TAG_template_value_param)
16241 {
16242 struct symbol *arg = new_symbol (child_die, NULL, cu);
16243
16244 if (arg != NULL)
16245 template_args->push_back (arg);
16246 }
16247 else if (child_die->tag == DW_TAG_variant_part)
16248 handle_variant_part (child_die, type, fi, template_args, cu);
16249 else if (child_die->tag == DW_TAG_variant)
16250 handle_variant (child_die, type, fi, template_args, cu);
16251 }
16252
16253 /* Finish creating a structure or union type, including filling in
16254 its members and creating a symbol for it. */
16255
16256 static void
16257 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16258 {
16259 struct objfile *objfile = cu->per_objfile->objfile;
16260 struct die_info *child_die;
16261 struct type *type;
16262
16263 type = get_die_type (die, cu);
16264 if (type == NULL)
16265 type = read_structure_type (die, cu);
16266
16267 bool has_template_parameters = false;
16268 if (die->child != NULL && ! die_is_declaration (die, cu))
16269 {
16270 struct field_info fi;
16271 std::vector<struct symbol *> template_args;
16272
16273 child_die = die->child;
16274
16275 while (child_die && child_die->tag)
16276 {
16277 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16278 child_die = child_die->sibling;
16279 }
16280
16281 /* Attach template arguments to type. */
16282 if (!template_args.empty ())
16283 {
16284 has_template_parameters = true;
16285 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16286 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16287 TYPE_TEMPLATE_ARGUMENTS (type)
16288 = XOBNEWVEC (&objfile->objfile_obstack,
16289 struct symbol *,
16290 TYPE_N_TEMPLATE_ARGUMENTS (type));
16291 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16292 template_args.data (),
16293 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16294 * sizeof (struct symbol *)));
16295 }
16296
16297 /* Attach fields and member functions to the type. */
16298 if (fi.nfields () > 0)
16299 dwarf2_attach_fields_to_type (&fi, type, cu);
16300 if (!fi.fnfieldlists.empty ())
16301 {
16302 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16303
16304 /* Get the type which refers to the base class (possibly this
16305 class itself) which contains the vtable pointer for the current
16306 class from the DW_AT_containing_type attribute. This use of
16307 DW_AT_containing_type is a GNU extension. */
16308
16309 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16310 {
16311 struct type *t = die_containing_type (die, cu);
16312
16313 set_type_vptr_basetype (type, t);
16314 if (type == t)
16315 {
16316 int i;
16317
16318 /* Our own class provides vtbl ptr. */
16319 for (i = t->num_fields () - 1;
16320 i >= TYPE_N_BASECLASSES (t);
16321 --i)
16322 {
16323 const char *fieldname = TYPE_FIELD_NAME (t, i);
16324
16325 if (is_vtable_name (fieldname, cu))
16326 {
16327 set_type_vptr_fieldno (type, i);
16328 break;
16329 }
16330 }
16331
16332 /* Complain if virtual function table field not found. */
16333 if (i < TYPE_N_BASECLASSES (t))
16334 complaint (_("virtual function table pointer "
16335 "not found when defining class '%s'"),
16336 type->name () ? type->name () : "");
16337 }
16338 else
16339 {
16340 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16341 }
16342 }
16343 else if (cu->producer
16344 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16345 {
16346 /* The IBM XLC compiler does not provide direct indication
16347 of the containing type, but the vtable pointer is
16348 always named __vfp. */
16349
16350 int i;
16351
16352 for (i = type->num_fields () - 1;
16353 i >= TYPE_N_BASECLASSES (type);
16354 --i)
16355 {
16356 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16357 {
16358 set_type_vptr_fieldno (type, i);
16359 set_type_vptr_basetype (type, type);
16360 break;
16361 }
16362 }
16363 }
16364 }
16365
16366 /* Copy fi.typedef_field_list linked list elements content into the
16367 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16368 if (!fi.typedef_field_list.empty ())
16369 {
16370 int count = fi.typedef_field_list.size ();
16371
16372 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16373 TYPE_TYPEDEF_FIELD_ARRAY (type)
16374 = ((struct decl_field *)
16375 TYPE_ALLOC (type,
16376 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16377 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16378
16379 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16380 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16381 }
16382
16383 /* Copy fi.nested_types_list linked list elements content into the
16384 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16385 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16386 {
16387 int count = fi.nested_types_list.size ();
16388
16389 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16390 TYPE_NESTED_TYPES_ARRAY (type)
16391 = ((struct decl_field *)
16392 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16393 TYPE_NESTED_TYPES_COUNT (type) = count;
16394
16395 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16396 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16397 }
16398 }
16399
16400 quirk_gcc_member_function_pointer (type, objfile);
16401 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16402 cu->rust_unions.push_back (type);
16403
16404 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16405 snapshots) has been known to create a die giving a declaration
16406 for a class that has, as a child, a die giving a definition for a
16407 nested class. So we have to process our children even if the
16408 current die is a declaration. Normally, of course, a declaration
16409 won't have any children at all. */
16410
16411 child_die = die->child;
16412
16413 while (child_die != NULL && child_die->tag)
16414 {
16415 if (child_die->tag == DW_TAG_member
16416 || child_die->tag == DW_TAG_variable
16417 || child_die->tag == DW_TAG_inheritance
16418 || child_die->tag == DW_TAG_template_value_param
16419 || child_die->tag == DW_TAG_template_type_param)
16420 {
16421 /* Do nothing. */
16422 }
16423 else
16424 process_die (child_die, cu);
16425
16426 child_die = child_die->sibling;
16427 }
16428
16429 /* Do not consider external references. According to the DWARF standard,
16430 these DIEs are identified by the fact that they have no byte_size
16431 attribute, and a declaration attribute. */
16432 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16433 || !die_is_declaration (die, cu)
16434 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
16435 {
16436 struct symbol *sym = new_symbol (die, type, cu);
16437
16438 if (has_template_parameters)
16439 {
16440 struct symtab *symtab;
16441 if (sym != nullptr)
16442 symtab = symbol_symtab (sym);
16443 else if (cu->line_header != nullptr)
16444 {
16445 /* Any related symtab will do. */
16446 symtab
16447 = cu->line_header->file_names ()[0].symtab;
16448 }
16449 else
16450 {
16451 symtab = nullptr;
16452 complaint (_("could not find suitable "
16453 "symtab for template parameter"
16454 " - DIE at %s [in module %s]"),
16455 sect_offset_str (die->sect_off),
16456 objfile_name (objfile));
16457 }
16458
16459 if (symtab != nullptr)
16460 {
16461 /* Make sure that the symtab is set on the new symbols.
16462 Even though they don't appear in this symtab directly,
16463 other parts of gdb assume that symbols do, and this is
16464 reasonably true. */
16465 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16466 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16467 }
16468 }
16469 }
16470 }
16471
16472 /* Assuming DIE is an enumeration type, and TYPE is its associated
16473 type, update TYPE using some information only available in DIE's
16474 children. In particular, the fields are computed. */
16475
16476 static void
16477 update_enumeration_type_from_children (struct die_info *die,
16478 struct type *type,
16479 struct dwarf2_cu *cu)
16480 {
16481 struct die_info *child_die;
16482 int unsigned_enum = 1;
16483 int flag_enum = 1;
16484
16485 auto_obstack obstack;
16486 std::vector<struct field> fields;
16487
16488 for (child_die = die->child;
16489 child_die != NULL && child_die->tag;
16490 child_die = child_die->sibling)
16491 {
16492 struct attribute *attr;
16493 LONGEST value;
16494 const gdb_byte *bytes;
16495 struct dwarf2_locexpr_baton *baton;
16496 const char *name;
16497
16498 if (child_die->tag != DW_TAG_enumerator)
16499 continue;
16500
16501 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16502 if (attr == NULL)
16503 continue;
16504
16505 name = dwarf2_name (child_die, cu);
16506 if (name == NULL)
16507 name = "<anonymous enumerator>";
16508
16509 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16510 &value, &bytes, &baton);
16511 if (value < 0)
16512 {
16513 unsigned_enum = 0;
16514 flag_enum = 0;
16515 }
16516 else
16517 {
16518 if (count_one_bits_ll (value) >= 2)
16519 flag_enum = 0;
16520 }
16521
16522 fields.emplace_back ();
16523 struct field &field = fields.back ();
16524 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
16525 SET_FIELD_ENUMVAL (field, value);
16526 }
16527
16528 if (!fields.empty ())
16529 {
16530 type->set_num_fields (fields.size ());
16531 type->set_fields
16532 ((struct field *)
16533 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16534 memcpy (type->fields (), fields.data (),
16535 sizeof (struct field) * fields.size ());
16536 }
16537
16538 if (unsigned_enum)
16539 type->set_is_unsigned (true);
16540
16541 if (flag_enum)
16542 TYPE_FLAG_ENUM (type) = 1;
16543 }
16544
16545 /* Given a DW_AT_enumeration_type die, set its type. We do not
16546 complete the type's fields yet, or create any symbols. */
16547
16548 static struct type *
16549 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16550 {
16551 struct objfile *objfile = cu->per_objfile->objfile;
16552 struct type *type;
16553 struct attribute *attr;
16554 const char *name;
16555
16556 /* If the definition of this type lives in .debug_types, read that type.
16557 Don't follow DW_AT_specification though, that will take us back up
16558 the chain and we want to go down. */
16559 attr = die->attr (DW_AT_signature);
16560 if (attr != nullptr)
16561 {
16562 type = get_DW_AT_signature_type (die, attr, cu);
16563
16564 /* The type's CU may not be the same as CU.
16565 Ensure TYPE is recorded with CU in die_type_hash. */
16566 return set_die_type (die, type, cu);
16567 }
16568
16569 type = alloc_type (objfile);
16570
16571 type->set_code (TYPE_CODE_ENUM);
16572 name = dwarf2_full_name (NULL, die, cu);
16573 if (name != NULL)
16574 type->set_name (name);
16575
16576 attr = dwarf2_attr (die, DW_AT_type, cu);
16577 if (attr != NULL)
16578 {
16579 struct type *underlying_type = die_type (die, cu);
16580
16581 TYPE_TARGET_TYPE (type) = underlying_type;
16582 }
16583
16584 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16585 if (attr != nullptr)
16586 {
16587 TYPE_LENGTH (type) = attr->constant_value (0);
16588 }
16589 else
16590 {
16591 TYPE_LENGTH (type) = 0;
16592 }
16593
16594 maybe_set_alignment (cu, die, type);
16595
16596 /* The enumeration DIE can be incomplete. In Ada, any type can be
16597 declared as private in the package spec, and then defined only
16598 inside the package body. Such types are known as Taft Amendment
16599 Types. When another package uses such a type, an incomplete DIE
16600 may be generated by the compiler. */
16601 if (die_is_declaration (die, cu))
16602 type->set_is_stub (true);
16603
16604 /* If this type has an underlying type that is not a stub, then we
16605 may use its attributes. We always use the "unsigned" attribute
16606 in this situation, because ordinarily we guess whether the type
16607 is unsigned -- but the guess can be wrong and the underlying type
16608 can tell us the reality. However, we defer to a local size
16609 attribute if one exists, because this lets the compiler override
16610 the underlying type if needed. */
16611 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_TARGET_TYPE (type)->is_stub ())
16612 {
16613 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16614 underlying_type = check_typedef (underlying_type);
16615
16616 type->set_is_unsigned (underlying_type->is_unsigned ());
16617
16618 if (TYPE_LENGTH (type) == 0)
16619 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16620
16621 if (TYPE_RAW_ALIGN (type) == 0
16622 && TYPE_RAW_ALIGN (underlying_type) != 0)
16623 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16624 }
16625
16626 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16627
16628 set_die_type (die, type, cu);
16629
16630 /* Finish the creation of this type by using the enum's children.
16631 Note that, as usual, this must come after set_die_type to avoid
16632 infinite recursion when trying to compute the names of the
16633 enumerators. */
16634 update_enumeration_type_from_children (die, type, cu);
16635
16636 return type;
16637 }
16638
16639 /* Given a pointer to a die which begins an enumeration, process all
16640 the dies that define the members of the enumeration, and create the
16641 symbol for the enumeration type.
16642
16643 NOTE: We reverse the order of the element list. */
16644
16645 static void
16646 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16647 {
16648 struct type *this_type;
16649
16650 this_type = get_die_type (die, cu);
16651 if (this_type == NULL)
16652 this_type = read_enumeration_type (die, cu);
16653
16654 if (die->child != NULL)
16655 {
16656 struct die_info *child_die;
16657 const char *name;
16658
16659 child_die = die->child;
16660 while (child_die && child_die->tag)
16661 {
16662 if (child_die->tag != DW_TAG_enumerator)
16663 {
16664 process_die (child_die, cu);
16665 }
16666 else
16667 {
16668 name = dwarf2_name (child_die, cu);
16669 if (name)
16670 new_symbol (child_die, this_type, cu);
16671 }
16672
16673 child_die = child_die->sibling;
16674 }
16675 }
16676
16677 /* If we are reading an enum from a .debug_types unit, and the enum
16678 is a declaration, and the enum is not the signatured type in the
16679 unit, then we do not want to add a symbol for it. Adding a
16680 symbol would in some cases obscure the true definition of the
16681 enum, giving users an incomplete type when the definition is
16682 actually available. Note that we do not want to do this for all
16683 enums which are just declarations, because C++0x allows forward
16684 enum declarations. */
16685 if (cu->per_cu->is_debug_types
16686 && die_is_declaration (die, cu))
16687 {
16688 struct signatured_type *sig_type;
16689
16690 sig_type = (struct signatured_type *) cu->per_cu;
16691 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16692 if (sig_type->type_offset_in_section != die->sect_off)
16693 return;
16694 }
16695
16696 new_symbol (die, this_type, cu);
16697 }
16698
16699 /* Extract all information from a DW_TAG_array_type DIE and put it in
16700 the DIE's type field. For now, this only handles one dimensional
16701 arrays. */
16702
16703 static struct type *
16704 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16705 {
16706 struct objfile *objfile = cu->per_objfile->objfile;
16707 struct die_info *child_die;
16708 struct type *type;
16709 struct type *element_type, *range_type, *index_type;
16710 struct attribute *attr;
16711 const char *name;
16712 struct dynamic_prop *byte_stride_prop = NULL;
16713 unsigned int bit_stride = 0;
16714
16715 element_type = die_type (die, cu);
16716
16717 /* The die_type call above may have already set the type for this DIE. */
16718 type = get_die_type (die, cu);
16719 if (type)
16720 return type;
16721
16722 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16723 if (attr != NULL)
16724 {
16725 int stride_ok;
16726 struct type *prop_type = cu->addr_sized_int_type (false);
16727
16728 byte_stride_prop
16729 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16730 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16731 prop_type);
16732 if (!stride_ok)
16733 {
16734 complaint (_("unable to read array DW_AT_byte_stride "
16735 " - DIE at %s [in module %s]"),
16736 sect_offset_str (die->sect_off),
16737 objfile_name (cu->per_objfile->objfile));
16738 /* Ignore this attribute. We will likely not be able to print
16739 arrays of this type correctly, but there is little we can do
16740 to help if we cannot read the attribute's value. */
16741 byte_stride_prop = NULL;
16742 }
16743 }
16744
16745 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16746 if (attr != NULL)
16747 bit_stride = attr->constant_value (0);
16748
16749 /* Irix 6.2 native cc creates array types without children for
16750 arrays with unspecified length. */
16751 if (die->child == NULL)
16752 {
16753 index_type = objfile_type (objfile)->builtin_int;
16754 range_type = create_static_range_type (NULL, index_type, 0, -1);
16755 type = create_array_type_with_stride (NULL, element_type, range_type,
16756 byte_stride_prop, bit_stride);
16757 return set_die_type (die, type, cu);
16758 }
16759
16760 std::vector<struct type *> range_types;
16761 child_die = die->child;
16762 while (child_die && child_die->tag)
16763 {
16764 if (child_die->tag == DW_TAG_subrange_type)
16765 {
16766 struct type *child_type = read_type_die (child_die, cu);
16767
16768 if (child_type != NULL)
16769 {
16770 /* The range type was succesfully read. Save it for the
16771 array type creation. */
16772 range_types.push_back (child_type);
16773 }
16774 }
16775 child_die = child_die->sibling;
16776 }
16777
16778 /* Dwarf2 dimensions are output from left to right, create the
16779 necessary array types in backwards order. */
16780
16781 type = element_type;
16782
16783 if (read_array_order (die, cu) == DW_ORD_col_major)
16784 {
16785 int i = 0;
16786
16787 while (i < range_types.size ())
16788 type = create_array_type_with_stride (NULL, type, range_types[i++],
16789 byte_stride_prop, bit_stride);
16790 }
16791 else
16792 {
16793 size_t ndim = range_types.size ();
16794 while (ndim-- > 0)
16795 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16796 byte_stride_prop, bit_stride);
16797 }
16798
16799 /* Understand Dwarf2 support for vector types (like they occur on
16800 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16801 array type. This is not part of the Dwarf2/3 standard yet, but a
16802 custom vendor extension. The main difference between a regular
16803 array and the vector variant is that vectors are passed by value
16804 to functions. */
16805 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16806 if (attr != nullptr)
16807 make_vector_type (type);
16808
16809 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16810 implementation may choose to implement triple vectors using this
16811 attribute. */
16812 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16813 if (attr != nullptr && attr->form_is_unsigned ())
16814 {
16815 if (attr->as_unsigned () >= TYPE_LENGTH (type))
16816 TYPE_LENGTH (type) = attr->as_unsigned ();
16817 else
16818 complaint (_("DW_AT_byte_size for array type smaller "
16819 "than the total size of elements"));
16820 }
16821
16822 name = dwarf2_name (die, cu);
16823 if (name)
16824 type->set_name (name);
16825
16826 maybe_set_alignment (cu, die, type);
16827
16828 /* Install the type in the die. */
16829 set_die_type (die, type, cu);
16830
16831 /* set_die_type should be already done. */
16832 set_descriptive_type (type, die, cu);
16833
16834 return type;
16835 }
16836
16837 static enum dwarf_array_dim_ordering
16838 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16839 {
16840 struct attribute *attr;
16841
16842 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16843
16844 if (attr != nullptr)
16845 {
16846 LONGEST val = attr->constant_value (-1);
16847 if (val == DW_ORD_row_major || val == DW_ORD_col_major)
16848 return (enum dwarf_array_dim_ordering) val;
16849 }
16850
16851 /* GNU F77 is a special case, as at 08/2004 array type info is the
16852 opposite order to the dwarf2 specification, but data is still
16853 laid out as per normal fortran.
16854
16855 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16856 version checking. */
16857
16858 if (cu->language == language_fortran
16859 && cu->producer && strstr (cu->producer, "GNU F77"))
16860 {
16861 return DW_ORD_row_major;
16862 }
16863
16864 switch (cu->language_defn->array_ordering ())
16865 {
16866 case array_column_major:
16867 return DW_ORD_col_major;
16868 case array_row_major:
16869 default:
16870 return DW_ORD_row_major;
16871 };
16872 }
16873
16874 /* Extract all information from a DW_TAG_set_type DIE and put it in
16875 the DIE's type field. */
16876
16877 static struct type *
16878 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16879 {
16880 struct type *domain_type, *set_type;
16881 struct attribute *attr;
16882
16883 domain_type = die_type (die, cu);
16884
16885 /* The die_type call above may have already set the type for this DIE. */
16886 set_type = get_die_type (die, cu);
16887 if (set_type)
16888 return set_type;
16889
16890 set_type = create_set_type (NULL, domain_type);
16891
16892 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16893 if (attr != nullptr && attr->form_is_unsigned ())
16894 TYPE_LENGTH (set_type) = attr->as_unsigned ();
16895
16896 maybe_set_alignment (cu, die, set_type);
16897
16898 return set_die_type (die, set_type, cu);
16899 }
16900
16901 /* A helper for read_common_block that creates a locexpr baton.
16902 SYM is the symbol which we are marking as computed.
16903 COMMON_DIE is the DIE for the common block.
16904 COMMON_LOC is the location expression attribute for the common
16905 block itself.
16906 MEMBER_LOC is the location expression attribute for the particular
16907 member of the common block that we are processing.
16908 CU is the CU from which the above come. */
16909
16910 static void
16911 mark_common_block_symbol_computed (struct symbol *sym,
16912 struct die_info *common_die,
16913 struct attribute *common_loc,
16914 struct attribute *member_loc,
16915 struct dwarf2_cu *cu)
16916 {
16917 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16918 struct objfile *objfile = per_objfile->objfile;
16919 struct dwarf2_locexpr_baton *baton;
16920 gdb_byte *ptr;
16921 unsigned int cu_off;
16922 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16923 LONGEST offset = 0;
16924
16925 gdb_assert (common_loc && member_loc);
16926 gdb_assert (common_loc->form_is_block ());
16927 gdb_assert (member_loc->form_is_block ()
16928 || member_loc->form_is_constant ());
16929
16930 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16931 baton->per_objfile = per_objfile;
16932 baton->per_cu = cu->per_cu;
16933 gdb_assert (baton->per_cu);
16934
16935 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16936
16937 if (member_loc->form_is_constant ())
16938 {
16939 offset = member_loc->constant_value (0);
16940 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16941 }
16942 else
16943 baton->size += member_loc->as_block ()->size;
16944
16945 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16946 baton->data = ptr;
16947
16948 *ptr++ = DW_OP_call4;
16949 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16950 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16951 ptr += 4;
16952
16953 if (member_loc->form_is_constant ())
16954 {
16955 *ptr++ = DW_OP_addr;
16956 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16957 ptr += cu->header.addr_size;
16958 }
16959 else
16960 {
16961 /* We have to copy the data here, because DW_OP_call4 will only
16962 use a DW_AT_location attribute. */
16963 struct dwarf_block *block = member_loc->as_block ();
16964 memcpy (ptr, block->data, block->size);
16965 ptr += block->size;
16966 }
16967
16968 *ptr++ = DW_OP_plus;
16969 gdb_assert (ptr - baton->data == baton->size);
16970
16971 SYMBOL_LOCATION_BATON (sym) = baton;
16972 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16973 }
16974
16975 /* Create appropriate locally-scoped variables for all the
16976 DW_TAG_common_block entries. Also create a struct common_block
16977 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16978 is used to separate the common blocks name namespace from regular
16979 variable names. */
16980
16981 static void
16982 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16983 {
16984 struct attribute *attr;
16985
16986 attr = dwarf2_attr (die, DW_AT_location, cu);
16987 if (attr != nullptr)
16988 {
16989 /* Support the .debug_loc offsets. */
16990 if (attr->form_is_block ())
16991 {
16992 /* Ok. */
16993 }
16994 else if (attr->form_is_section_offset ())
16995 {
16996 dwarf2_complex_location_expr_complaint ();
16997 attr = NULL;
16998 }
16999 else
17000 {
17001 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17002 "common block member");
17003 attr = NULL;
17004 }
17005 }
17006
17007 if (die->child != NULL)
17008 {
17009 struct objfile *objfile = cu->per_objfile->objfile;
17010 struct die_info *child_die;
17011 size_t n_entries = 0, size;
17012 struct common_block *common_block;
17013 struct symbol *sym;
17014
17015 for (child_die = die->child;
17016 child_die && child_die->tag;
17017 child_die = child_die->sibling)
17018 ++n_entries;
17019
17020 size = (sizeof (struct common_block)
17021 + (n_entries - 1) * sizeof (struct symbol *));
17022 common_block
17023 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
17024 size);
17025 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
17026 common_block->n_entries = 0;
17027
17028 for (child_die = die->child;
17029 child_die && child_die->tag;
17030 child_die = child_die->sibling)
17031 {
17032 /* Create the symbol in the DW_TAG_common_block block in the current
17033 symbol scope. */
17034 sym = new_symbol (child_die, NULL, cu);
17035 if (sym != NULL)
17036 {
17037 struct attribute *member_loc;
17038
17039 common_block->contents[common_block->n_entries++] = sym;
17040
17041 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
17042 cu);
17043 if (member_loc)
17044 {
17045 /* GDB has handled this for a long time, but it is
17046 not specified by DWARF. It seems to have been
17047 emitted by gfortran at least as recently as:
17048 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
17049 complaint (_("Variable in common block has "
17050 "DW_AT_data_member_location "
17051 "- DIE at %s [in module %s]"),
17052 sect_offset_str (child_die->sect_off),
17053 objfile_name (objfile));
17054
17055 if (member_loc->form_is_section_offset ())
17056 dwarf2_complex_location_expr_complaint ();
17057 else if (member_loc->form_is_constant ()
17058 || member_loc->form_is_block ())
17059 {
17060 if (attr != nullptr)
17061 mark_common_block_symbol_computed (sym, die, attr,
17062 member_loc, cu);
17063 }
17064 else
17065 dwarf2_complex_location_expr_complaint ();
17066 }
17067 }
17068 }
17069
17070 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
17071 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
17072 }
17073 }
17074
17075 /* Create a type for a C++ namespace. */
17076
17077 static struct type *
17078 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
17079 {
17080 struct objfile *objfile = cu->per_objfile->objfile;
17081 const char *previous_prefix, *name;
17082 int is_anonymous;
17083 struct type *type;
17084
17085 /* For extensions, reuse the type of the original namespace. */
17086 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17087 {
17088 struct die_info *ext_die;
17089 struct dwarf2_cu *ext_cu = cu;
17090
17091 ext_die = dwarf2_extension (die, &ext_cu);
17092 type = read_type_die (ext_die, ext_cu);
17093
17094 /* EXT_CU may not be the same as CU.
17095 Ensure TYPE is recorded with CU in die_type_hash. */
17096 return set_die_type (die, type, cu);
17097 }
17098
17099 name = namespace_name (die, &is_anonymous, cu);
17100
17101 /* Now build the name of the current namespace. */
17102
17103 previous_prefix = determine_prefix (die, cu);
17104 if (previous_prefix[0] != '\0')
17105 name = typename_concat (&objfile->objfile_obstack,
17106 previous_prefix, name, 0, cu);
17107
17108 /* Create the type. */
17109 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17110
17111 return set_die_type (die, type, cu);
17112 }
17113
17114 /* Read a namespace scope. */
17115
17116 static void
17117 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17118 {
17119 struct objfile *objfile = cu->per_objfile->objfile;
17120 int is_anonymous;
17121
17122 /* Add a symbol associated to this if we haven't seen the namespace
17123 before. Also, add a using directive if it's an anonymous
17124 namespace. */
17125
17126 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17127 {
17128 struct type *type;
17129
17130 type = read_type_die (die, cu);
17131 new_symbol (die, type, cu);
17132
17133 namespace_name (die, &is_anonymous, cu);
17134 if (is_anonymous)
17135 {
17136 const char *previous_prefix = determine_prefix (die, cu);
17137
17138 std::vector<const char *> excludes;
17139 add_using_directive (using_directives (cu),
17140 previous_prefix, type->name (), NULL,
17141 NULL, excludes, 0, &objfile->objfile_obstack);
17142 }
17143 }
17144
17145 if (die->child != NULL)
17146 {
17147 struct die_info *child_die = die->child;
17148
17149 while (child_die && child_die->tag)
17150 {
17151 process_die (child_die, cu);
17152 child_die = child_die->sibling;
17153 }
17154 }
17155 }
17156
17157 /* Read a Fortran module as type. This DIE can be only a declaration used for
17158 imported module. Still we need that type as local Fortran "use ... only"
17159 declaration imports depend on the created type in determine_prefix. */
17160
17161 static struct type *
17162 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17163 {
17164 struct objfile *objfile = cu->per_objfile->objfile;
17165 const char *module_name;
17166 struct type *type;
17167
17168 module_name = dwarf2_name (die, cu);
17169 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17170
17171 return set_die_type (die, type, cu);
17172 }
17173
17174 /* Read a Fortran module. */
17175
17176 static void
17177 read_module (struct die_info *die, struct dwarf2_cu *cu)
17178 {
17179 struct die_info *child_die = die->child;
17180 struct type *type;
17181
17182 type = read_type_die (die, cu);
17183 new_symbol (die, type, cu);
17184
17185 while (child_die && child_die->tag)
17186 {
17187 process_die (child_die, cu);
17188 child_die = child_die->sibling;
17189 }
17190 }
17191
17192 /* Return the name of the namespace represented by DIE. Set
17193 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17194 namespace. */
17195
17196 static const char *
17197 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17198 {
17199 struct die_info *current_die;
17200 const char *name = NULL;
17201
17202 /* Loop through the extensions until we find a name. */
17203
17204 for (current_die = die;
17205 current_die != NULL;
17206 current_die = dwarf2_extension (die, &cu))
17207 {
17208 /* We don't use dwarf2_name here so that we can detect the absence
17209 of a name -> anonymous namespace. */
17210 name = dwarf2_string_attr (die, DW_AT_name, cu);
17211
17212 if (name != NULL)
17213 break;
17214 }
17215
17216 /* Is it an anonymous namespace? */
17217
17218 *is_anonymous = (name == NULL);
17219 if (*is_anonymous)
17220 name = CP_ANONYMOUS_NAMESPACE_STR;
17221
17222 return name;
17223 }
17224
17225 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17226 the user defined type vector. */
17227
17228 static struct type *
17229 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17230 {
17231 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
17232 struct comp_unit_head *cu_header = &cu->header;
17233 struct type *type;
17234 struct attribute *attr_byte_size;
17235 struct attribute *attr_address_class;
17236 int byte_size, addr_class;
17237 struct type *target_type;
17238
17239 target_type = die_type (die, cu);
17240
17241 /* The die_type call above may have already set the type for this DIE. */
17242 type = get_die_type (die, cu);
17243 if (type)
17244 return type;
17245
17246 type = lookup_pointer_type (target_type);
17247
17248 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17249 if (attr_byte_size)
17250 byte_size = attr_byte_size->constant_value (cu_header->addr_size);
17251 else
17252 byte_size = cu_header->addr_size;
17253
17254 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17255 if (attr_address_class)
17256 addr_class = attr_address_class->constant_value (DW_ADDR_none);
17257 else
17258 addr_class = DW_ADDR_none;
17259
17260 ULONGEST alignment = get_alignment (cu, die);
17261
17262 /* If the pointer size, alignment, or address class is different
17263 than the default, create a type variant marked as such and set
17264 the length accordingly. */
17265 if (TYPE_LENGTH (type) != byte_size
17266 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17267 && alignment != TYPE_RAW_ALIGN (type))
17268 || addr_class != DW_ADDR_none)
17269 {
17270 if (gdbarch_address_class_type_flags_p (gdbarch))
17271 {
17272 type_instance_flags type_flags
17273 = gdbarch_address_class_type_flags (gdbarch, byte_size,
17274 addr_class);
17275 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17276 == 0);
17277 type = make_type_with_address_space (type, type_flags);
17278 }
17279 else if (TYPE_LENGTH (type) != byte_size)
17280 {
17281 complaint (_("invalid pointer size %d"), byte_size);
17282 }
17283 else if (TYPE_RAW_ALIGN (type) != alignment)
17284 {
17285 complaint (_("Invalid DW_AT_alignment"
17286 " - DIE at %s [in module %s]"),
17287 sect_offset_str (die->sect_off),
17288 objfile_name (cu->per_objfile->objfile));
17289 }
17290 else
17291 {
17292 /* Should we also complain about unhandled address classes? */
17293 }
17294 }
17295
17296 TYPE_LENGTH (type) = byte_size;
17297 set_type_align (type, alignment);
17298 return set_die_type (die, type, cu);
17299 }
17300
17301 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17302 the user defined type vector. */
17303
17304 static struct type *
17305 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17306 {
17307 struct type *type;
17308 struct type *to_type;
17309 struct type *domain;
17310
17311 to_type = die_type (die, cu);
17312 domain = die_containing_type (die, cu);
17313
17314 /* The calls above may have already set the type for this DIE. */
17315 type = get_die_type (die, cu);
17316 if (type)
17317 return type;
17318
17319 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
17320 type = lookup_methodptr_type (to_type);
17321 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
17322 {
17323 struct type *new_type = alloc_type (cu->per_objfile->objfile);
17324
17325 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17326 to_type->fields (), to_type->num_fields (),
17327 to_type->has_varargs ());
17328 type = lookup_methodptr_type (new_type);
17329 }
17330 else
17331 type = lookup_memberptr_type (to_type, domain);
17332
17333 return set_die_type (die, type, cu);
17334 }
17335
17336 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17337 the user defined type vector. */
17338
17339 static struct type *
17340 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17341 enum type_code refcode)
17342 {
17343 struct comp_unit_head *cu_header = &cu->header;
17344 struct type *type, *target_type;
17345 struct attribute *attr;
17346
17347 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17348
17349 target_type = die_type (die, cu);
17350
17351 /* The die_type call above may have already set the type for this DIE. */
17352 type = get_die_type (die, cu);
17353 if (type)
17354 return type;
17355
17356 type = lookup_reference_type (target_type, refcode);
17357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17358 if (attr != nullptr)
17359 {
17360 TYPE_LENGTH (type) = attr->constant_value (cu_header->addr_size);
17361 }
17362 else
17363 {
17364 TYPE_LENGTH (type) = cu_header->addr_size;
17365 }
17366 maybe_set_alignment (cu, die, type);
17367 return set_die_type (die, type, cu);
17368 }
17369
17370 /* Add the given cv-qualifiers to the element type of the array. GCC
17371 outputs DWARF type qualifiers that apply to an array, not the
17372 element type. But GDB relies on the array element type to carry
17373 the cv-qualifiers. This mimics section 6.7.3 of the C99
17374 specification. */
17375
17376 static struct type *
17377 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17378 struct type *base_type, int cnst, int voltl)
17379 {
17380 struct type *el_type, *inner_array;
17381
17382 base_type = copy_type (base_type);
17383 inner_array = base_type;
17384
17385 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
17386 {
17387 TYPE_TARGET_TYPE (inner_array) =
17388 copy_type (TYPE_TARGET_TYPE (inner_array));
17389 inner_array = TYPE_TARGET_TYPE (inner_array);
17390 }
17391
17392 el_type = TYPE_TARGET_TYPE (inner_array);
17393 cnst |= TYPE_CONST (el_type);
17394 voltl |= TYPE_VOLATILE (el_type);
17395 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17396
17397 return set_die_type (die, base_type, cu);
17398 }
17399
17400 static struct type *
17401 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17402 {
17403 struct type *base_type, *cv_type;
17404
17405 base_type = die_type (die, cu);
17406
17407 /* The die_type call above may have already set the type for this DIE. */
17408 cv_type = get_die_type (die, cu);
17409 if (cv_type)
17410 return cv_type;
17411
17412 /* In case the const qualifier is applied to an array type, the element type
17413 is so qualified, not the array type (section 6.7.3 of C99). */
17414 if (base_type->code () == TYPE_CODE_ARRAY)
17415 return add_array_cv_type (die, cu, base_type, 1, 0);
17416
17417 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17418 return set_die_type (die, cv_type, cu);
17419 }
17420
17421 static struct type *
17422 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17423 {
17424 struct type *base_type, *cv_type;
17425
17426 base_type = die_type (die, cu);
17427
17428 /* The die_type call above may have already set the type for this DIE. */
17429 cv_type = get_die_type (die, cu);
17430 if (cv_type)
17431 return cv_type;
17432
17433 /* In case the volatile qualifier is applied to an array type, the
17434 element type is so qualified, not the array type (section 6.7.3
17435 of C99). */
17436 if (base_type->code () == TYPE_CODE_ARRAY)
17437 return add_array_cv_type (die, cu, base_type, 0, 1);
17438
17439 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17440 return set_die_type (die, cv_type, cu);
17441 }
17442
17443 /* Handle DW_TAG_restrict_type. */
17444
17445 static struct type *
17446 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17447 {
17448 struct type *base_type, *cv_type;
17449
17450 base_type = die_type (die, cu);
17451
17452 /* The die_type call above may have already set the type for this DIE. */
17453 cv_type = get_die_type (die, cu);
17454 if (cv_type)
17455 return cv_type;
17456
17457 cv_type = make_restrict_type (base_type);
17458 return set_die_type (die, cv_type, cu);
17459 }
17460
17461 /* Handle DW_TAG_atomic_type. */
17462
17463 static struct type *
17464 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17465 {
17466 struct type *base_type, *cv_type;
17467
17468 base_type = die_type (die, cu);
17469
17470 /* The die_type call above may have already set the type for this DIE. */
17471 cv_type = get_die_type (die, cu);
17472 if (cv_type)
17473 return cv_type;
17474
17475 cv_type = make_atomic_type (base_type);
17476 return set_die_type (die, cv_type, cu);
17477 }
17478
17479 /* Extract all information from a DW_TAG_string_type DIE and add to
17480 the user defined type vector. It isn't really a user defined type,
17481 but it behaves like one, with other DIE's using an AT_user_def_type
17482 attribute to reference it. */
17483
17484 static struct type *
17485 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17486 {
17487 struct objfile *objfile = cu->per_objfile->objfile;
17488 struct gdbarch *gdbarch = objfile->arch ();
17489 struct type *type, *range_type, *index_type, *char_type;
17490 struct attribute *attr;
17491 struct dynamic_prop prop;
17492 bool length_is_constant = true;
17493 LONGEST length;
17494
17495 /* There are a couple of places where bit sizes might be made use of
17496 when parsing a DW_TAG_string_type, however, no producer that we know
17497 of make use of these. Handling bit sizes that are a multiple of the
17498 byte size is easy enough, but what about other bit sizes? Lets deal
17499 with that problem when we have to. Warn about these attributes being
17500 unsupported, then parse the type and ignore them like we always
17501 have. */
17502 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17503 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17504 {
17505 static bool warning_printed = false;
17506 if (!warning_printed)
17507 {
17508 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17509 "currently supported on DW_TAG_string_type."));
17510 warning_printed = true;
17511 }
17512 }
17513
17514 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17515 if (attr != nullptr && !attr->form_is_constant ())
17516 {
17517 /* The string length describes the location at which the length of
17518 the string can be found. The size of the length field can be
17519 specified with one of the attributes below. */
17520 struct type *prop_type;
17521 struct attribute *len
17522 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17523 if (len == nullptr)
17524 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17525 if (len != nullptr && len->form_is_constant ())
17526 {
17527 /* Pass 0 as the default as we know this attribute is constant
17528 and the default value will not be returned. */
17529 LONGEST sz = len->constant_value (0);
17530 prop_type = cu->per_objfile->int_type (sz, true);
17531 }
17532 else
17533 {
17534 /* If the size is not specified then we assume it is the size of
17535 an address on this target. */
17536 prop_type = cu->addr_sized_int_type (true);
17537 }
17538
17539 /* Convert the attribute into a dynamic property. */
17540 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17541 length = 1;
17542 else
17543 length_is_constant = false;
17544 }
17545 else if (attr != nullptr)
17546 {
17547 /* This DW_AT_string_length just contains the length with no
17548 indirection. There's no need to create a dynamic property in this
17549 case. Pass 0 for the default value as we know it will not be
17550 returned in this case. */
17551 length = attr->constant_value (0);
17552 }
17553 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17554 {
17555 /* We don't currently support non-constant byte sizes for strings. */
17556 length = attr->constant_value (1);
17557 }
17558 else
17559 {
17560 /* Use 1 as a fallback length if we have nothing else. */
17561 length = 1;
17562 }
17563
17564 index_type = objfile_type (objfile)->builtin_int;
17565 if (length_is_constant)
17566 range_type = create_static_range_type (NULL, index_type, 1, length);
17567 else
17568 {
17569 struct dynamic_prop low_bound;
17570
17571 low_bound.set_const_val (1);
17572 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17573 }
17574 char_type = language_string_char_type (cu->language_defn, gdbarch);
17575 type = create_string_type (NULL, char_type, range_type);
17576
17577 return set_die_type (die, type, cu);
17578 }
17579
17580 /* Assuming that DIE corresponds to a function, returns nonzero
17581 if the function is prototyped. */
17582
17583 static int
17584 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17585 {
17586 struct attribute *attr;
17587
17588 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17589 if (attr && attr->as_boolean ())
17590 return 1;
17591
17592 /* The DWARF standard implies that the DW_AT_prototyped attribute
17593 is only meaningful for C, but the concept also extends to other
17594 languages that allow unprototyped functions (Eg: Objective C).
17595 For all other languages, assume that functions are always
17596 prototyped. */
17597 if (cu->language != language_c
17598 && cu->language != language_objc
17599 && cu->language != language_opencl)
17600 return 1;
17601
17602 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17603 prototyped and unprototyped functions; default to prototyped,
17604 since that is more common in modern code (and RealView warns
17605 about unprototyped functions). */
17606 if (producer_is_realview (cu->producer))
17607 return 1;
17608
17609 return 0;
17610 }
17611
17612 /* Handle DIES due to C code like:
17613
17614 struct foo
17615 {
17616 int (*funcp)(int a, long l);
17617 int b;
17618 };
17619
17620 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17621
17622 static struct type *
17623 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17624 {
17625 struct objfile *objfile = cu->per_objfile->objfile;
17626 struct type *type; /* Type that this function returns. */
17627 struct type *ftype; /* Function that returns above type. */
17628 struct attribute *attr;
17629
17630 type = die_type (die, cu);
17631
17632 /* The die_type call above may have already set the type for this DIE. */
17633 ftype = get_die_type (die, cu);
17634 if (ftype)
17635 return ftype;
17636
17637 ftype = lookup_function_type (type);
17638
17639 if (prototyped_function_p (die, cu))
17640 ftype->set_is_prototyped (true);
17641
17642 /* Store the calling convention in the type if it's available in
17643 the subroutine die. Otherwise set the calling convention to
17644 the default value DW_CC_normal. */
17645 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17646 if (attr != nullptr
17647 && is_valid_DW_AT_calling_convention_for_subroutine (attr->constant_value (0)))
17648 TYPE_CALLING_CONVENTION (ftype)
17649 = (enum dwarf_calling_convention) attr->constant_value (0);
17650 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17651 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17652 else
17653 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17654
17655 /* Record whether the function returns normally to its caller or not
17656 if the DWARF producer set that information. */
17657 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17658 if (attr && attr->as_boolean ())
17659 TYPE_NO_RETURN (ftype) = 1;
17660
17661 /* We need to add the subroutine type to the die immediately so
17662 we don't infinitely recurse when dealing with parameters
17663 declared as the same subroutine type. */
17664 set_die_type (die, ftype, cu);
17665
17666 if (die->child != NULL)
17667 {
17668 struct type *void_type = objfile_type (objfile)->builtin_void;
17669 struct die_info *child_die;
17670 int nparams, iparams;
17671
17672 /* Count the number of parameters.
17673 FIXME: GDB currently ignores vararg functions, but knows about
17674 vararg member functions. */
17675 nparams = 0;
17676 child_die = die->child;
17677 while (child_die && child_die->tag)
17678 {
17679 if (child_die->tag == DW_TAG_formal_parameter)
17680 nparams++;
17681 else if (child_die->tag == DW_TAG_unspecified_parameters)
17682 ftype->set_has_varargs (true);
17683
17684 child_die = child_die->sibling;
17685 }
17686
17687 /* Allocate storage for parameters and fill them in. */
17688 ftype->set_num_fields (nparams);
17689 ftype->set_fields
17690 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17691
17692 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17693 even if we error out during the parameters reading below. */
17694 for (iparams = 0; iparams < nparams; iparams++)
17695 ftype->field (iparams).set_type (void_type);
17696
17697 iparams = 0;
17698 child_die = die->child;
17699 while (child_die && child_die->tag)
17700 {
17701 if (child_die->tag == DW_TAG_formal_parameter)
17702 {
17703 struct type *arg_type;
17704
17705 /* DWARF version 2 has no clean way to discern C++
17706 static and non-static member functions. G++ helps
17707 GDB by marking the first parameter for non-static
17708 member functions (which is the this pointer) as
17709 artificial. We pass this information to
17710 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17711
17712 DWARF version 3 added DW_AT_object_pointer, which GCC
17713 4.5 does not yet generate. */
17714 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17715 if (attr != nullptr)
17716 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = attr->as_boolean ();
17717 else
17718 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17719 arg_type = die_type (child_die, cu);
17720
17721 /* RealView does not mark THIS as const, which the testsuite
17722 expects. GCC marks THIS as const in method definitions,
17723 but not in the class specifications (GCC PR 43053). */
17724 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17725 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17726 {
17727 int is_this = 0;
17728 struct dwarf2_cu *arg_cu = cu;
17729 const char *name = dwarf2_name (child_die, cu);
17730
17731 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17732 if (attr != nullptr)
17733 {
17734 /* If the compiler emits this, use it. */
17735 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17736 is_this = 1;
17737 }
17738 else if (name && strcmp (name, "this") == 0)
17739 /* Function definitions will have the argument names. */
17740 is_this = 1;
17741 else if (name == NULL && iparams == 0)
17742 /* Declarations may not have the names, so like
17743 elsewhere in GDB, assume an artificial first
17744 argument is "this". */
17745 is_this = 1;
17746
17747 if (is_this)
17748 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17749 arg_type, 0);
17750 }
17751
17752 ftype->field (iparams).set_type (arg_type);
17753 iparams++;
17754 }
17755 child_die = child_die->sibling;
17756 }
17757 }
17758
17759 return ftype;
17760 }
17761
17762 static struct type *
17763 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17764 {
17765 struct objfile *objfile = cu->per_objfile->objfile;
17766 const char *name = NULL;
17767 struct type *this_type, *target_type;
17768
17769 name = dwarf2_full_name (NULL, die, cu);
17770 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17771 this_type->set_target_is_stub (true);
17772 set_die_type (die, this_type, cu);
17773 target_type = die_type (die, cu);
17774 if (target_type != this_type)
17775 TYPE_TARGET_TYPE (this_type) = target_type;
17776 else
17777 {
17778 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17779 spec and cause infinite loops in GDB. */
17780 complaint (_("Self-referential DW_TAG_typedef "
17781 "- DIE at %s [in module %s]"),
17782 sect_offset_str (die->sect_off), objfile_name (objfile));
17783 TYPE_TARGET_TYPE (this_type) = NULL;
17784 }
17785 if (name == NULL)
17786 {
17787 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17788 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17789 Handle these by just returning the target type, rather than
17790 constructing an anonymous typedef type and trying to handle this
17791 elsewhere. */
17792 set_die_type (die, target_type, cu);
17793 return target_type;
17794 }
17795 return this_type;
17796 }
17797
17798 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17799 (which may be different from NAME) to the architecture back-end to allow
17800 it to guess the correct format if necessary. */
17801
17802 static struct type *
17803 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17804 const char *name_hint, enum bfd_endian byte_order)
17805 {
17806 struct gdbarch *gdbarch = objfile->arch ();
17807 const struct floatformat **format;
17808 struct type *type;
17809
17810 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17811 if (format)
17812 type = init_float_type (objfile, bits, name, format, byte_order);
17813 else
17814 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17815
17816 return type;
17817 }
17818
17819 /* Allocate an integer type of size BITS and name NAME. */
17820
17821 static struct type *
17822 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17823 int bits, int unsigned_p, const char *name)
17824 {
17825 struct type *type;
17826
17827 /* Versions of Intel's C Compiler generate an integer type called "void"
17828 instead of using DW_TAG_unspecified_type. This has been seen on
17829 at least versions 14, 17, and 18. */
17830 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17831 && strcmp (name, "void") == 0)
17832 type = objfile_type (objfile)->builtin_void;
17833 else
17834 type = init_integer_type (objfile, bits, unsigned_p, name);
17835
17836 return type;
17837 }
17838
17839 /* Initialise and return a floating point type of size BITS suitable for
17840 use as a component of a complex number. The NAME_HINT is passed through
17841 when initialising the floating point type and is the name of the complex
17842 type.
17843
17844 As DWARF doesn't currently provide an explicit name for the components
17845 of a complex number, but it can be helpful to have these components
17846 named, we try to select a suitable name based on the size of the
17847 component. */
17848 static struct type *
17849 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17850 struct objfile *objfile,
17851 int bits, const char *name_hint,
17852 enum bfd_endian byte_order)
17853 {
17854 gdbarch *gdbarch = objfile->arch ();
17855 struct type *tt = nullptr;
17856
17857 /* Try to find a suitable floating point builtin type of size BITS.
17858 We're going to use the name of this type as the name for the complex
17859 target type that we are about to create. */
17860 switch (cu->language)
17861 {
17862 case language_fortran:
17863 switch (bits)
17864 {
17865 case 32:
17866 tt = builtin_f_type (gdbarch)->builtin_real;
17867 break;
17868 case 64:
17869 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17870 break;
17871 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17872 case 128:
17873 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17874 break;
17875 }
17876 break;
17877 default:
17878 switch (bits)
17879 {
17880 case 32:
17881 tt = builtin_type (gdbarch)->builtin_float;
17882 break;
17883 case 64:
17884 tt = builtin_type (gdbarch)->builtin_double;
17885 break;
17886 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17887 case 128:
17888 tt = builtin_type (gdbarch)->builtin_long_double;
17889 break;
17890 }
17891 break;
17892 }
17893
17894 /* If the type we found doesn't match the size we were looking for, then
17895 pretend we didn't find a type at all, the complex target type we
17896 create will then be nameless. */
17897 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17898 tt = nullptr;
17899
17900 const char *name = (tt == nullptr) ? nullptr : tt->name ();
17901 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17902 }
17903
17904 /* Find a representation of a given base type and install
17905 it in the TYPE field of the die. */
17906
17907 static struct type *
17908 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17909 {
17910 struct objfile *objfile = cu->per_objfile->objfile;
17911 struct type *type;
17912 struct attribute *attr;
17913 int encoding = 0, bits = 0;
17914 const char *name;
17915 gdbarch *arch;
17916
17917 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17918 if (attr != nullptr && attr->form_is_constant ())
17919 encoding = attr->constant_value (0);
17920 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17921 if (attr != nullptr)
17922 bits = attr->constant_value (0) * TARGET_CHAR_BIT;
17923 name = dwarf2_name (die, cu);
17924 if (!name)
17925 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17926
17927 arch = objfile->arch ();
17928 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17929
17930 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17931 if (attr != nullptr && attr->form_is_constant ())
17932 {
17933 int endianity = attr->constant_value (0);
17934
17935 switch (endianity)
17936 {
17937 case DW_END_big:
17938 byte_order = BFD_ENDIAN_BIG;
17939 break;
17940 case DW_END_little:
17941 byte_order = BFD_ENDIAN_LITTLE;
17942 break;
17943 default:
17944 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17945 break;
17946 }
17947 }
17948
17949 switch (encoding)
17950 {
17951 case DW_ATE_address:
17952 /* Turn DW_ATE_address into a void * pointer. */
17953 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17954 type = init_pointer_type (objfile, bits, name, type);
17955 break;
17956 case DW_ATE_boolean:
17957 type = init_boolean_type (objfile, bits, 1, name);
17958 break;
17959 case DW_ATE_complex_float:
17960 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17961 byte_order);
17962 if (type->code () == TYPE_CODE_ERROR)
17963 {
17964 if (name == nullptr)
17965 {
17966 struct obstack *obstack
17967 = &cu->per_objfile->objfile->objfile_obstack;
17968 name = obconcat (obstack, "_Complex ", type->name (),
17969 nullptr);
17970 }
17971 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17972 }
17973 else
17974 type = init_complex_type (name, type);
17975 break;
17976 case DW_ATE_decimal_float:
17977 type = init_decfloat_type (objfile, bits, name);
17978 break;
17979 case DW_ATE_float:
17980 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17981 break;
17982 case DW_ATE_signed:
17983 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17984 break;
17985 case DW_ATE_unsigned:
17986 if (cu->language == language_fortran
17987 && name
17988 && startswith (name, "character("))
17989 type = init_character_type (objfile, bits, 1, name);
17990 else
17991 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17992 break;
17993 case DW_ATE_signed_char:
17994 if (cu->language == language_ada || cu->language == language_m2
17995 || cu->language == language_pascal
17996 || cu->language == language_fortran)
17997 type = init_character_type (objfile, bits, 0, name);
17998 else
17999 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18000 break;
18001 case DW_ATE_unsigned_char:
18002 if (cu->language == language_ada || cu->language == language_m2
18003 || cu->language == language_pascal
18004 || cu->language == language_fortran
18005 || cu->language == language_rust)
18006 type = init_character_type (objfile, bits, 1, name);
18007 else
18008 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18009 break;
18010 case DW_ATE_UTF:
18011 {
18012 if (bits == 16)
18013 type = builtin_type (arch)->builtin_char16;
18014 else if (bits == 32)
18015 type = builtin_type (arch)->builtin_char32;
18016 else
18017 {
18018 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
18019 bits);
18020 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18021 }
18022 return set_die_type (die, type, cu);
18023 }
18024 break;
18025
18026 default:
18027 complaint (_("unsupported DW_AT_encoding: '%s'"),
18028 dwarf_type_encoding_name (encoding));
18029 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18030 break;
18031 }
18032
18033 if (name && strcmp (name, "char") == 0)
18034 type->set_has_no_signedness (true);
18035
18036 maybe_set_alignment (cu, die, type);
18037
18038 type->set_endianity_is_not_default (gdbarch_byte_order (arch) != byte_order);
18039
18040 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT)
18041 {
18042 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
18043 if (attr != nullptr && attr->as_unsigned () <= 8 * TYPE_LENGTH (type))
18044 {
18045 unsigned real_bit_size = attr->as_unsigned ();
18046 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
18047 /* Only use the attributes if they make sense together. */
18048 if (attr == nullptr
18049 || (attr->as_unsigned () + real_bit_size
18050 <= 8 * TYPE_LENGTH (type)))
18051 {
18052 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size
18053 = real_bit_size;
18054 if (attr != nullptr)
18055 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset
18056 = attr->as_unsigned ();
18057 }
18058 }
18059 }
18060
18061 return set_die_type (die, type, cu);
18062 }
18063
18064 /* Parse dwarf attribute if it's a block, reference or constant and put the
18065 resulting value of the attribute into struct bound_prop.
18066 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18067
18068 static int
18069 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18070 struct dwarf2_cu *cu, struct dynamic_prop *prop,
18071 struct type *default_type)
18072 {
18073 struct dwarf2_property_baton *baton;
18074 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18075 struct objfile *objfile = per_objfile->objfile;
18076 struct obstack *obstack = &objfile->objfile_obstack;
18077
18078 gdb_assert (default_type != NULL);
18079
18080 if (attr == NULL || prop == NULL)
18081 return 0;
18082
18083 if (attr->form_is_block ())
18084 {
18085 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18086 baton->property_type = default_type;
18087 baton->locexpr.per_cu = cu->per_cu;
18088 baton->locexpr.per_objfile = per_objfile;
18089
18090 struct dwarf_block *block = attr->as_block ();
18091 baton->locexpr.size = block->size;
18092 baton->locexpr.data = block->data;
18093 switch (attr->name)
18094 {
18095 case DW_AT_string_length:
18096 baton->locexpr.is_reference = true;
18097 break;
18098 default:
18099 baton->locexpr.is_reference = false;
18100 break;
18101 }
18102
18103 prop->set_locexpr (baton);
18104 gdb_assert (prop->baton () != NULL);
18105 }
18106 else if (attr->form_is_ref ())
18107 {
18108 struct dwarf2_cu *target_cu = cu;
18109 struct die_info *target_die;
18110 struct attribute *target_attr;
18111
18112 target_die = follow_die_ref (die, attr, &target_cu);
18113 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18114 if (target_attr == NULL)
18115 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18116 target_cu);
18117 if (target_attr == NULL)
18118 return 0;
18119
18120 switch (target_attr->name)
18121 {
18122 case DW_AT_location:
18123 if (target_attr->form_is_section_offset ())
18124 {
18125 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18126 baton->property_type = die_type (target_die, target_cu);
18127 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18128 prop->set_loclist (baton);
18129 gdb_assert (prop->baton () != NULL);
18130 }
18131 else if (target_attr->form_is_block ())
18132 {
18133 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18134 baton->property_type = die_type (target_die, target_cu);
18135 baton->locexpr.per_cu = cu->per_cu;
18136 baton->locexpr.per_objfile = per_objfile;
18137 struct dwarf_block *block = target_attr->as_block ();
18138 baton->locexpr.size = block->size;
18139 baton->locexpr.data = block->data;
18140 baton->locexpr.is_reference = true;
18141 prop->set_locexpr (baton);
18142 gdb_assert (prop->baton () != NULL);
18143 }
18144 else
18145 {
18146 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18147 "dynamic property");
18148 return 0;
18149 }
18150 break;
18151 case DW_AT_data_member_location:
18152 {
18153 LONGEST offset;
18154
18155 if (!handle_data_member_location (target_die, target_cu,
18156 &offset))
18157 return 0;
18158
18159 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18160 baton->property_type = read_type_die (target_die->parent,
18161 target_cu);
18162 baton->offset_info.offset = offset;
18163 baton->offset_info.type = die_type (target_die, target_cu);
18164 prop->set_addr_offset (baton);
18165 break;
18166 }
18167 }
18168 }
18169 else if (attr->form_is_constant ())
18170 prop->set_const_val (attr->constant_value (0));
18171 else
18172 {
18173 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18174 dwarf2_name (die, cu));
18175 return 0;
18176 }
18177
18178 return 1;
18179 }
18180
18181 /* See read.h. */
18182
18183 struct type *
18184 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
18185 {
18186 struct type *int_type;
18187
18188 /* Helper macro to examine the various builtin types. */
18189 #define TRY_TYPE(F) \
18190 int_type = (unsigned_p \
18191 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18192 : objfile_type (objfile)->builtin_ ## F); \
18193 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
18194 return int_type
18195
18196 TRY_TYPE (char);
18197 TRY_TYPE (short);
18198 TRY_TYPE (int);
18199 TRY_TYPE (long);
18200 TRY_TYPE (long_long);
18201
18202 #undef TRY_TYPE
18203
18204 gdb_assert_not_reached ("unable to find suitable integer type");
18205 }
18206
18207 /* See read.h. */
18208
18209 struct type *
18210 dwarf2_cu::addr_sized_int_type (bool unsigned_p) const
18211 {
18212 int addr_size = this->per_cu->addr_size ();
18213 return this->per_objfile->int_type (addr_size, unsigned_p);
18214 }
18215
18216 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18217 present (which is valid) then compute the default type based on the
18218 compilation units address size. */
18219
18220 static struct type *
18221 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18222 {
18223 struct type *index_type = die_type (die, cu);
18224
18225 /* Dwarf-2 specifications explicitly allows to create subrange types
18226 without specifying a base type.
18227 In that case, the base type must be set to the type of
18228 the lower bound, upper bound or count, in that order, if any of these
18229 three attributes references an object that has a type.
18230 If no base type is found, the Dwarf-2 specifications say that
18231 a signed integer type of size equal to the size of an address should
18232 be used.
18233 For the following C code: `extern char gdb_int [];'
18234 GCC produces an empty range DIE.
18235 FIXME: muller/2010-05-28: Possible references to object for low bound,
18236 high bound or count are not yet handled by this code. */
18237 if (index_type->code () == TYPE_CODE_VOID)
18238 index_type = cu->addr_sized_int_type (false);
18239
18240 return index_type;
18241 }
18242
18243 /* Read the given DW_AT_subrange DIE. */
18244
18245 static struct type *
18246 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18247 {
18248 struct type *base_type, *orig_base_type;
18249 struct type *range_type;
18250 struct attribute *attr;
18251 struct dynamic_prop low, high;
18252 int low_default_is_valid;
18253 int high_bound_is_count = 0;
18254 const char *name;
18255 ULONGEST negative_mask;
18256
18257 orig_base_type = read_subrange_index_type (die, cu);
18258
18259 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18260 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18261 creating the range type, but we use the result of check_typedef
18262 when examining properties of the type. */
18263 base_type = check_typedef (orig_base_type);
18264
18265 /* The die_type call above may have already set the type for this DIE. */
18266 range_type = get_die_type (die, cu);
18267 if (range_type)
18268 return range_type;
18269
18270 high.set_const_val (0);
18271
18272 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18273 omitting DW_AT_lower_bound. */
18274 switch (cu->language)
18275 {
18276 case language_c:
18277 case language_cplus:
18278 low.set_const_val (0);
18279 low_default_is_valid = 1;
18280 break;
18281 case language_fortran:
18282 low.set_const_val (1);
18283 low_default_is_valid = 1;
18284 break;
18285 case language_d:
18286 case language_objc:
18287 case language_rust:
18288 low.set_const_val (0);
18289 low_default_is_valid = (cu->header.version >= 4);
18290 break;
18291 case language_ada:
18292 case language_m2:
18293 case language_pascal:
18294 low.set_const_val (1);
18295 low_default_is_valid = (cu->header.version >= 4);
18296 break;
18297 default:
18298 low.set_const_val (0);
18299 low_default_is_valid = 0;
18300 break;
18301 }
18302
18303 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18304 if (attr != nullptr)
18305 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18306 else if (!low_default_is_valid)
18307 complaint (_("Missing DW_AT_lower_bound "
18308 "- DIE at %s [in module %s]"),
18309 sect_offset_str (die->sect_off),
18310 objfile_name (cu->per_objfile->objfile));
18311
18312 struct attribute *attr_ub, *attr_count;
18313 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18314 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18315 {
18316 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18317 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18318 {
18319 /* If bounds are constant do the final calculation here. */
18320 if (low.kind () == PROP_CONST && high.kind () == PROP_CONST)
18321 high.set_const_val (low.const_val () + high.const_val () - 1);
18322 else
18323 high_bound_is_count = 1;
18324 }
18325 else
18326 {
18327 if (attr_ub != NULL)
18328 complaint (_("Unresolved DW_AT_upper_bound "
18329 "- DIE at %s [in module %s]"),
18330 sect_offset_str (die->sect_off),
18331 objfile_name (cu->per_objfile->objfile));
18332 if (attr_count != NULL)
18333 complaint (_("Unresolved DW_AT_count "
18334 "- DIE at %s [in module %s]"),
18335 sect_offset_str (die->sect_off),
18336 objfile_name (cu->per_objfile->objfile));
18337 }
18338 }
18339
18340 LONGEST bias = 0;
18341 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18342 if (bias_attr != nullptr && bias_attr->form_is_constant ())
18343 bias = bias_attr->constant_value (0);
18344
18345 /* Normally, the DWARF producers are expected to use a signed
18346 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18347 But this is unfortunately not always the case, as witnessed
18348 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18349 is used instead. To work around that ambiguity, we treat
18350 the bounds as signed, and thus sign-extend their values, when
18351 the base type is signed. */
18352 negative_mask =
18353 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18354 if (low.kind () == PROP_CONST
18355 && !base_type->is_unsigned () && (low.const_val () & negative_mask))
18356 low.set_const_val (low.const_val () | negative_mask);
18357 if (high.kind () == PROP_CONST
18358 && !base_type->is_unsigned () && (high.const_val () & negative_mask))
18359 high.set_const_val (high.const_val () | negative_mask);
18360
18361 /* Check for bit and byte strides. */
18362 struct dynamic_prop byte_stride_prop;
18363 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18364 if (attr_byte_stride != nullptr)
18365 {
18366 struct type *prop_type = cu->addr_sized_int_type (false);
18367 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18368 prop_type);
18369 }
18370
18371 struct dynamic_prop bit_stride_prop;
18372 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18373 if (attr_bit_stride != nullptr)
18374 {
18375 /* It only makes sense to have either a bit or byte stride. */
18376 if (attr_byte_stride != nullptr)
18377 {
18378 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18379 "- DIE at %s [in module %s]"),
18380 sect_offset_str (die->sect_off),
18381 objfile_name (cu->per_objfile->objfile));
18382 attr_bit_stride = nullptr;
18383 }
18384 else
18385 {
18386 struct type *prop_type = cu->addr_sized_int_type (false);
18387 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18388 prop_type);
18389 }
18390 }
18391
18392 if (attr_byte_stride != nullptr
18393 || attr_bit_stride != nullptr)
18394 {
18395 bool byte_stride_p = (attr_byte_stride != nullptr);
18396 struct dynamic_prop *stride
18397 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18398
18399 range_type
18400 = create_range_type_with_stride (NULL, orig_base_type, &low,
18401 &high, bias, stride, byte_stride_p);
18402 }
18403 else
18404 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18405
18406 if (high_bound_is_count)
18407 range_type->bounds ()->flag_upper_bound_is_count = 1;
18408
18409 /* Ada expects an empty array on no boundary attributes. */
18410 if (attr == NULL && cu->language != language_ada)
18411 range_type->bounds ()->high.set_undefined ();
18412
18413 name = dwarf2_name (die, cu);
18414 if (name)
18415 range_type->set_name (name);
18416
18417 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18418 if (attr != nullptr)
18419 TYPE_LENGTH (range_type) = attr->constant_value (0);
18420
18421 maybe_set_alignment (cu, die, range_type);
18422
18423 set_die_type (die, range_type, cu);
18424
18425 /* set_die_type should be already done. */
18426 set_descriptive_type (range_type, die, cu);
18427
18428 return range_type;
18429 }
18430
18431 static struct type *
18432 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18433 {
18434 struct type *type;
18435
18436 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
18437 type->set_name (dwarf2_name (die, cu));
18438
18439 /* In Ada, an unspecified type is typically used when the description
18440 of the type is deferred to a different unit. When encountering
18441 such a type, we treat it as a stub, and try to resolve it later on,
18442 when needed. */
18443 if (cu->language == language_ada)
18444 type->set_is_stub (true);
18445
18446 return set_die_type (die, type, cu);
18447 }
18448
18449 /* Read a single die and all its descendents. Set the die's sibling
18450 field to NULL; set other fields in the die correctly, and set all
18451 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18452 location of the info_ptr after reading all of those dies. PARENT
18453 is the parent of the die in question. */
18454
18455 static struct die_info *
18456 read_die_and_children (const struct die_reader_specs *reader,
18457 const gdb_byte *info_ptr,
18458 const gdb_byte **new_info_ptr,
18459 struct die_info *parent)
18460 {
18461 struct die_info *die;
18462 const gdb_byte *cur_ptr;
18463
18464 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
18465 if (die == NULL)
18466 {
18467 *new_info_ptr = cur_ptr;
18468 return NULL;
18469 }
18470 store_in_ref_table (die, reader->cu);
18471
18472 if (die->has_children)
18473 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18474 else
18475 {
18476 die->child = NULL;
18477 *new_info_ptr = cur_ptr;
18478 }
18479
18480 die->sibling = NULL;
18481 die->parent = parent;
18482 return die;
18483 }
18484
18485 /* Read a die, all of its descendents, and all of its siblings; set
18486 all of the fields of all of the dies correctly. Arguments are as
18487 in read_die_and_children. */
18488
18489 static struct die_info *
18490 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18491 const gdb_byte *info_ptr,
18492 const gdb_byte **new_info_ptr,
18493 struct die_info *parent)
18494 {
18495 struct die_info *first_die, *last_sibling;
18496 const gdb_byte *cur_ptr;
18497
18498 cur_ptr = info_ptr;
18499 first_die = last_sibling = NULL;
18500
18501 while (1)
18502 {
18503 struct die_info *die
18504 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18505
18506 if (die == NULL)
18507 {
18508 *new_info_ptr = cur_ptr;
18509 return first_die;
18510 }
18511
18512 if (!first_die)
18513 first_die = die;
18514 else
18515 last_sibling->sibling = die;
18516
18517 last_sibling = die;
18518 }
18519 }
18520
18521 /* Read a die, all of its descendents, and all of its siblings; set
18522 all of the fields of all of the dies correctly. Arguments are as
18523 in read_die_and_children.
18524 This the main entry point for reading a DIE and all its children. */
18525
18526 static struct die_info *
18527 read_die_and_siblings (const struct die_reader_specs *reader,
18528 const gdb_byte *info_ptr,
18529 const gdb_byte **new_info_ptr,
18530 struct die_info *parent)
18531 {
18532 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18533 new_info_ptr, parent);
18534
18535 if (dwarf_die_debug)
18536 {
18537 fprintf_unfiltered (gdb_stdlog,
18538 "Read die from %s@0x%x of %s:\n",
18539 reader->die_section->get_name (),
18540 (unsigned) (info_ptr - reader->die_section->buffer),
18541 bfd_get_filename (reader->abfd));
18542 dump_die (die, dwarf_die_debug);
18543 }
18544
18545 return die;
18546 }
18547
18548 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18549 attributes.
18550 The caller is responsible for filling in the extra attributes
18551 and updating (*DIEP)->num_attrs.
18552 Set DIEP to point to a newly allocated die with its information,
18553 except for its child, sibling, and parent fields. */
18554
18555 static const gdb_byte *
18556 read_full_die_1 (const struct die_reader_specs *reader,
18557 struct die_info **diep, const gdb_byte *info_ptr,
18558 int num_extra_attrs)
18559 {
18560 unsigned int abbrev_number, bytes_read, i;
18561 struct abbrev_info *abbrev;
18562 struct die_info *die;
18563 struct dwarf2_cu *cu = reader->cu;
18564 bfd *abfd = reader->abfd;
18565
18566 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18567 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18568 info_ptr += bytes_read;
18569 if (!abbrev_number)
18570 {
18571 *diep = NULL;
18572 return info_ptr;
18573 }
18574
18575 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18576 if (!abbrev)
18577 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18578 abbrev_number,
18579 bfd_get_filename (abfd));
18580
18581 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18582 die->sect_off = sect_off;
18583 die->tag = abbrev->tag;
18584 die->abbrev = abbrev_number;
18585 die->has_children = abbrev->has_children;
18586
18587 /* Make the result usable.
18588 The caller needs to update num_attrs after adding the extra
18589 attributes. */
18590 die->num_attrs = abbrev->num_attrs;
18591
18592 bool any_need_reprocess = false;
18593 for (i = 0; i < abbrev->num_attrs; ++i)
18594 {
18595 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18596 info_ptr);
18597 if (die->attrs[i].requires_reprocessing_p ())
18598 any_need_reprocess = true;
18599 }
18600
18601 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18602 if (attr != nullptr && attr->form_is_unsigned ())
18603 cu->str_offsets_base = attr->as_unsigned ();
18604
18605 attr = die->attr (DW_AT_loclists_base);
18606 if (attr != nullptr)
18607 cu->loclist_base = attr->as_unsigned ();
18608
18609 auto maybe_addr_base = die->addr_base ();
18610 if (maybe_addr_base.has_value ())
18611 cu->addr_base = *maybe_addr_base;
18612
18613 attr = die->attr (DW_AT_rnglists_base);
18614 if (attr != nullptr)
18615 cu->ranges_base = attr->as_unsigned ();
18616
18617 if (any_need_reprocess)
18618 {
18619 for (i = 0; i < abbrev->num_attrs; ++i)
18620 {
18621 if (die->attrs[i].requires_reprocessing_p ())
18622 read_attribute_reprocess (reader, &die->attrs[i], die->tag);
18623 }
18624 }
18625 *diep = die;
18626 return info_ptr;
18627 }
18628
18629 /* Read a die and all its attributes.
18630 Set DIEP to point to a newly allocated die with its information,
18631 except for its child, sibling, and parent fields. */
18632
18633 static const gdb_byte *
18634 read_full_die (const struct die_reader_specs *reader,
18635 struct die_info **diep, const gdb_byte *info_ptr)
18636 {
18637 const gdb_byte *result;
18638
18639 result = read_full_die_1 (reader, diep, info_ptr, 0);
18640
18641 if (dwarf_die_debug)
18642 {
18643 fprintf_unfiltered (gdb_stdlog,
18644 "Read die from %s@0x%x of %s:\n",
18645 reader->die_section->get_name (),
18646 (unsigned) (info_ptr - reader->die_section->buffer),
18647 bfd_get_filename (reader->abfd));
18648 dump_die (*diep, dwarf_die_debug);
18649 }
18650
18651 return result;
18652 }
18653 \f
18654
18655 /* Returns nonzero if TAG represents a type that we might generate a partial
18656 symbol for. */
18657
18658 static int
18659 is_type_tag_for_partial (int tag)
18660 {
18661 switch (tag)
18662 {
18663 #if 0
18664 /* Some types that would be reasonable to generate partial symbols for,
18665 that we don't at present. */
18666 case DW_TAG_array_type:
18667 case DW_TAG_file_type:
18668 case DW_TAG_ptr_to_member_type:
18669 case DW_TAG_set_type:
18670 case DW_TAG_string_type:
18671 case DW_TAG_subroutine_type:
18672 #endif
18673 case DW_TAG_base_type:
18674 case DW_TAG_class_type:
18675 case DW_TAG_interface_type:
18676 case DW_TAG_enumeration_type:
18677 case DW_TAG_structure_type:
18678 case DW_TAG_subrange_type:
18679 case DW_TAG_typedef:
18680 case DW_TAG_union_type:
18681 return 1;
18682 default:
18683 return 0;
18684 }
18685 }
18686
18687 /* Load all DIEs that are interesting for partial symbols into memory. */
18688
18689 static struct partial_die_info *
18690 load_partial_dies (const struct die_reader_specs *reader,
18691 const gdb_byte *info_ptr, int building_psymtab)
18692 {
18693 struct dwarf2_cu *cu = reader->cu;
18694 struct objfile *objfile = cu->per_objfile->objfile;
18695 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18696 unsigned int bytes_read;
18697 unsigned int load_all = 0;
18698 int nesting_level = 1;
18699
18700 parent_die = NULL;
18701 last_die = NULL;
18702
18703 gdb_assert (cu->per_cu != NULL);
18704 if (cu->per_cu->load_all_dies)
18705 load_all = 1;
18706
18707 cu->partial_dies
18708 = htab_create_alloc_ex (cu->header.length / 12,
18709 partial_die_hash,
18710 partial_die_eq,
18711 NULL,
18712 &cu->comp_unit_obstack,
18713 hashtab_obstack_allocate,
18714 dummy_obstack_deallocate);
18715
18716 while (1)
18717 {
18718 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18719
18720 /* A NULL abbrev means the end of a series of children. */
18721 if (abbrev == NULL)
18722 {
18723 if (--nesting_level == 0)
18724 return first_die;
18725
18726 info_ptr += bytes_read;
18727 last_die = parent_die;
18728 parent_die = parent_die->die_parent;
18729 continue;
18730 }
18731
18732 /* Check for template arguments. We never save these; if
18733 they're seen, we just mark the parent, and go on our way. */
18734 if (parent_die != NULL
18735 && cu->language == language_cplus
18736 && (abbrev->tag == DW_TAG_template_type_param
18737 || abbrev->tag == DW_TAG_template_value_param))
18738 {
18739 parent_die->has_template_arguments = 1;
18740
18741 if (!load_all)
18742 {
18743 /* We don't need a partial DIE for the template argument. */
18744 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18745 continue;
18746 }
18747 }
18748
18749 /* We only recurse into c++ subprograms looking for template arguments.
18750 Skip their other children. */
18751 if (!load_all
18752 && cu->language == language_cplus
18753 && parent_die != NULL
18754 && parent_die->tag == DW_TAG_subprogram
18755 && abbrev->tag != DW_TAG_inlined_subroutine)
18756 {
18757 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18758 continue;
18759 }
18760
18761 /* Check whether this DIE is interesting enough to save. Normally
18762 we would not be interested in members here, but there may be
18763 later variables referencing them via DW_AT_specification (for
18764 static members). */
18765 if (!load_all
18766 && !is_type_tag_for_partial (abbrev->tag)
18767 && abbrev->tag != DW_TAG_constant
18768 && abbrev->tag != DW_TAG_enumerator
18769 && abbrev->tag != DW_TAG_subprogram
18770 && abbrev->tag != DW_TAG_inlined_subroutine
18771 && abbrev->tag != DW_TAG_lexical_block
18772 && abbrev->tag != DW_TAG_variable
18773 && abbrev->tag != DW_TAG_namespace
18774 && abbrev->tag != DW_TAG_module
18775 && abbrev->tag != DW_TAG_member
18776 && abbrev->tag != DW_TAG_imported_unit
18777 && abbrev->tag != DW_TAG_imported_declaration)
18778 {
18779 /* Otherwise we skip to the next sibling, if any. */
18780 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18781 continue;
18782 }
18783
18784 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18785 abbrev);
18786
18787 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18788
18789 /* This two-pass algorithm for processing partial symbols has a
18790 high cost in cache pressure. Thus, handle some simple cases
18791 here which cover the majority of C partial symbols. DIEs
18792 which neither have specification tags in them, nor could have
18793 specification tags elsewhere pointing at them, can simply be
18794 processed and discarded.
18795
18796 This segment is also optional; scan_partial_symbols and
18797 add_partial_symbol will handle these DIEs if we chain
18798 them in normally. When compilers which do not emit large
18799 quantities of duplicate debug information are more common,
18800 this code can probably be removed. */
18801
18802 /* Any complete simple types at the top level (pretty much all
18803 of them, for a language without namespaces), can be processed
18804 directly. */
18805 if (parent_die == NULL
18806 && pdi.has_specification == 0
18807 && pdi.is_declaration == 0
18808 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18809 || pdi.tag == DW_TAG_base_type
18810 || pdi.tag == DW_TAG_subrange_type))
18811 {
18812 if (building_psymtab && pdi.raw_name != NULL)
18813 add_partial_symbol (&pdi, cu);
18814
18815 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18816 continue;
18817 }
18818
18819 /* The exception for DW_TAG_typedef with has_children above is
18820 a workaround of GCC PR debug/47510. In the case of this complaint
18821 type_name_or_error will error on such types later.
18822
18823 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18824 it could not find the child DIEs referenced later, this is checked
18825 above. In correct DWARF DW_TAG_typedef should have no children. */
18826
18827 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18828 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18829 "- DIE at %s [in module %s]"),
18830 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18831
18832 /* If we're at the second level, and we're an enumerator, and
18833 our parent has no specification (meaning possibly lives in a
18834 namespace elsewhere), then we can add the partial symbol now
18835 instead of queueing it. */
18836 if (pdi.tag == DW_TAG_enumerator
18837 && parent_die != NULL
18838 && parent_die->die_parent == NULL
18839 && parent_die->tag == DW_TAG_enumeration_type
18840 && parent_die->has_specification == 0)
18841 {
18842 if (pdi.raw_name == NULL)
18843 complaint (_("malformed enumerator DIE ignored"));
18844 else if (building_psymtab)
18845 add_partial_symbol (&pdi, cu);
18846
18847 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18848 continue;
18849 }
18850
18851 struct partial_die_info *part_die
18852 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18853
18854 /* We'll save this DIE so link it in. */
18855 part_die->die_parent = parent_die;
18856 part_die->die_sibling = NULL;
18857 part_die->die_child = NULL;
18858
18859 if (last_die && last_die == parent_die)
18860 last_die->die_child = part_die;
18861 else if (last_die)
18862 last_die->die_sibling = part_die;
18863
18864 last_die = part_die;
18865
18866 if (first_die == NULL)
18867 first_die = part_die;
18868
18869 /* Maybe add the DIE to the hash table. Not all DIEs that we
18870 find interesting need to be in the hash table, because we
18871 also have the parent/sibling/child chains; only those that we
18872 might refer to by offset later during partial symbol reading.
18873
18874 For now this means things that might have be the target of a
18875 DW_AT_specification, DW_AT_abstract_origin, or
18876 DW_AT_extension. DW_AT_extension will refer only to
18877 namespaces; DW_AT_abstract_origin refers to functions (and
18878 many things under the function DIE, but we do not recurse
18879 into function DIEs during partial symbol reading) and
18880 possibly variables as well; DW_AT_specification refers to
18881 declarations. Declarations ought to have the DW_AT_declaration
18882 flag. It happens that GCC forgets to put it in sometimes, but
18883 only for functions, not for types.
18884
18885 Adding more things than necessary to the hash table is harmless
18886 except for the performance cost. Adding too few will result in
18887 wasted time in find_partial_die, when we reread the compilation
18888 unit with load_all_dies set. */
18889
18890 if (load_all
18891 || abbrev->tag == DW_TAG_constant
18892 || abbrev->tag == DW_TAG_subprogram
18893 || abbrev->tag == DW_TAG_variable
18894 || abbrev->tag == DW_TAG_namespace
18895 || part_die->is_declaration)
18896 {
18897 void **slot;
18898
18899 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18900 to_underlying (part_die->sect_off),
18901 INSERT);
18902 *slot = part_die;
18903 }
18904
18905 /* For some DIEs we want to follow their children (if any). For C
18906 we have no reason to follow the children of structures; for other
18907 languages we have to, so that we can get at method physnames
18908 to infer fully qualified class names, for DW_AT_specification,
18909 and for C++ template arguments. For C++, we also look one level
18910 inside functions to find template arguments (if the name of the
18911 function does not already contain the template arguments).
18912
18913 For Ada and Fortran, we need to scan the children of subprograms
18914 and lexical blocks as well because these languages allow the
18915 definition of nested entities that could be interesting for the
18916 debugger, such as nested subprograms for instance. */
18917 if (last_die->has_children
18918 && (load_all
18919 || last_die->tag == DW_TAG_namespace
18920 || last_die->tag == DW_TAG_module
18921 || last_die->tag == DW_TAG_enumeration_type
18922 || (cu->language == language_cplus
18923 && last_die->tag == DW_TAG_subprogram
18924 && (last_die->raw_name == NULL
18925 || strchr (last_die->raw_name, '<') == NULL))
18926 || (cu->language != language_c
18927 && (last_die->tag == DW_TAG_class_type
18928 || last_die->tag == DW_TAG_interface_type
18929 || last_die->tag == DW_TAG_structure_type
18930 || last_die->tag == DW_TAG_union_type))
18931 || ((cu->language == language_ada
18932 || cu->language == language_fortran)
18933 && (last_die->tag == DW_TAG_subprogram
18934 || last_die->tag == DW_TAG_lexical_block))))
18935 {
18936 nesting_level++;
18937 parent_die = last_die;
18938 continue;
18939 }
18940
18941 /* Otherwise we skip to the next sibling, if any. */
18942 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18943
18944 /* Back to the top, do it again. */
18945 }
18946 }
18947
18948 partial_die_info::partial_die_info (sect_offset sect_off_,
18949 struct abbrev_info *abbrev)
18950 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18951 {
18952 }
18953
18954 /* See class definition. */
18955
18956 const char *
18957 partial_die_info::name (dwarf2_cu *cu)
18958 {
18959 if (!canonical_name && raw_name != nullptr)
18960 {
18961 struct objfile *objfile = cu->per_objfile->objfile;
18962 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
18963 canonical_name = 1;
18964 }
18965
18966 return raw_name;
18967 }
18968
18969 /* Read a minimal amount of information into the minimal die structure.
18970 INFO_PTR should point just after the initial uleb128 of a DIE. */
18971
18972 const gdb_byte *
18973 partial_die_info::read (const struct die_reader_specs *reader,
18974 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18975 {
18976 struct dwarf2_cu *cu = reader->cu;
18977 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18978 unsigned int i;
18979 int has_low_pc_attr = 0;
18980 int has_high_pc_attr = 0;
18981 int high_pc_relative = 0;
18982
18983 for (i = 0; i < abbrev.num_attrs; ++i)
18984 {
18985 attribute attr;
18986 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18987 /* String and address offsets that need to do the reprocessing have
18988 already been read at this point, so there is no need to wait until
18989 the loop terminates to do the reprocessing. */
18990 if (attr.requires_reprocessing_p ())
18991 read_attribute_reprocess (reader, &attr, tag);
18992 /* Store the data if it is of an attribute we want to keep in a
18993 partial symbol table. */
18994 switch (attr.name)
18995 {
18996 case DW_AT_name:
18997 switch (tag)
18998 {
18999 case DW_TAG_compile_unit:
19000 case DW_TAG_partial_unit:
19001 case DW_TAG_type_unit:
19002 /* Compilation units have a DW_AT_name that is a filename, not
19003 a source language identifier. */
19004 case DW_TAG_enumeration_type:
19005 case DW_TAG_enumerator:
19006 /* These tags always have simple identifiers already; no need
19007 to canonicalize them. */
19008 canonical_name = 1;
19009 raw_name = attr.as_string ();
19010 break;
19011 default:
19012 canonical_name = 0;
19013 raw_name = attr.as_string ();
19014 break;
19015 }
19016 break;
19017 case DW_AT_linkage_name:
19018 case DW_AT_MIPS_linkage_name:
19019 /* Note that both forms of linkage name might appear. We
19020 assume they will be the same, and we only store the last
19021 one we see. */
19022 linkage_name = attr.as_string ();
19023 break;
19024 case DW_AT_low_pc:
19025 has_low_pc_attr = 1;
19026 lowpc = attr.as_address ();
19027 break;
19028 case DW_AT_high_pc:
19029 has_high_pc_attr = 1;
19030 highpc = attr.as_address ();
19031 if (cu->header.version >= 4 && attr.form_is_constant ())
19032 high_pc_relative = 1;
19033 break;
19034 case DW_AT_location:
19035 /* Support the .debug_loc offsets. */
19036 if (attr.form_is_block ())
19037 {
19038 d.locdesc = attr.as_block ();
19039 }
19040 else if (attr.form_is_section_offset ())
19041 {
19042 dwarf2_complex_location_expr_complaint ();
19043 }
19044 else
19045 {
19046 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19047 "partial symbol information");
19048 }
19049 break;
19050 case DW_AT_external:
19051 is_external = attr.as_boolean ();
19052 break;
19053 case DW_AT_declaration:
19054 is_declaration = attr.as_boolean ();
19055 break;
19056 case DW_AT_type:
19057 has_type = 1;
19058 break;
19059 case DW_AT_abstract_origin:
19060 case DW_AT_specification:
19061 case DW_AT_extension:
19062 has_specification = 1;
19063 spec_offset = attr.get_ref_die_offset ();
19064 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19065 || cu->per_cu->is_dwz);
19066 break;
19067 case DW_AT_sibling:
19068 /* Ignore absolute siblings, they might point outside of
19069 the current compile unit. */
19070 if (attr.form == DW_FORM_ref_addr)
19071 complaint (_("ignoring absolute DW_AT_sibling"));
19072 else
19073 {
19074 const gdb_byte *buffer = reader->buffer;
19075 sect_offset off = attr.get_ref_die_offset ();
19076 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19077
19078 if (sibling_ptr < info_ptr)
19079 complaint (_("DW_AT_sibling points backwards"));
19080 else if (sibling_ptr > reader->buffer_end)
19081 reader->die_section->overflow_complaint ();
19082 else
19083 sibling = sibling_ptr;
19084 }
19085 break;
19086 case DW_AT_byte_size:
19087 has_byte_size = 1;
19088 break;
19089 case DW_AT_const_value:
19090 has_const_value = 1;
19091 break;
19092 case DW_AT_calling_convention:
19093 /* DWARF doesn't provide a way to identify a program's source-level
19094 entry point. DW_AT_calling_convention attributes are only meant
19095 to describe functions' calling conventions.
19096
19097 However, because it's a necessary piece of information in
19098 Fortran, and before DWARF 4 DW_CC_program was the only
19099 piece of debugging information whose definition refers to
19100 a 'main program' at all, several compilers marked Fortran
19101 main programs with DW_CC_program --- even when those
19102 functions use the standard calling conventions.
19103
19104 Although DWARF now specifies a way to provide this
19105 information, we support this practice for backward
19106 compatibility. */
19107 if (attr.constant_value (0) == DW_CC_program
19108 && cu->language == language_fortran)
19109 main_subprogram = 1;
19110 break;
19111 case DW_AT_inline:
19112 {
19113 LONGEST value = attr.constant_value (-1);
19114 if (value == DW_INL_inlined
19115 || value == DW_INL_declared_inlined)
19116 may_be_inlined = 1;
19117 }
19118 break;
19119
19120 case DW_AT_import:
19121 if (tag == DW_TAG_imported_unit)
19122 {
19123 d.sect_off = attr.get_ref_die_offset ();
19124 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19125 || cu->per_cu->is_dwz);
19126 }
19127 break;
19128
19129 case DW_AT_main_subprogram:
19130 main_subprogram = attr.as_boolean ();
19131 break;
19132
19133 case DW_AT_ranges:
19134 {
19135 /* DW_AT_rnglists_base does not apply to DIEs from the DWO
19136 skeleton. We take advantage of the fact the DW_AT_ranges
19137 does not appear in DW_TAG_compile_unit of DWO files.
19138
19139 Attributes of the form DW_FORM_rnglistx have already had
19140 their value changed by read_rnglist_index and already
19141 include DW_AT_rnglists_base, so don't need to add the ranges
19142 base, either. */
19143 int need_ranges_base = (tag != DW_TAG_compile_unit
19144 && attr.form != DW_FORM_rnglistx);
19145 /* It would be nice to reuse dwarf2_get_pc_bounds here,
19146 but that requires a full DIE, so instead we just
19147 reimplement it. */
19148 unsigned int ranges_offset = (attr.constant_value (0)
19149 + (need_ranges_base
19150 ? cu->ranges_base
19151 : 0));
19152
19153 /* Value of the DW_AT_ranges attribute is the offset in the
19154 .debug_ranges section. */
19155 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
19156 nullptr, tag))
19157 has_pc_info = 1;
19158 }
19159 break;
19160
19161 default:
19162 break;
19163 }
19164 }
19165
19166 /* For Ada, if both the name and the linkage name appear, we prefer
19167 the latter. This lets "catch exception" work better, regardless
19168 of the order in which the name and linkage name were emitted.
19169 Really, though, this is just a workaround for the fact that gdb
19170 doesn't store both the name and the linkage name. */
19171 if (cu->language == language_ada && linkage_name != nullptr)
19172 raw_name = linkage_name;
19173
19174 if (high_pc_relative)
19175 highpc += lowpc;
19176
19177 if (has_low_pc_attr && has_high_pc_attr)
19178 {
19179 /* When using the GNU linker, .gnu.linkonce. sections are used to
19180 eliminate duplicate copies of functions and vtables and such.
19181 The linker will arbitrarily choose one and discard the others.
19182 The AT_*_pc values for such functions refer to local labels in
19183 these sections. If the section from that file was discarded, the
19184 labels are not in the output, so the relocs get a value of 0.
19185 If this is a discarded function, mark the pc bounds as invalid,
19186 so that GDB will ignore it. */
19187 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
19188 {
19189 struct objfile *objfile = per_objfile->objfile;
19190 struct gdbarch *gdbarch = objfile->arch ();
19191
19192 complaint (_("DW_AT_low_pc %s is zero "
19193 "for DIE at %s [in module %s]"),
19194 paddress (gdbarch, lowpc),
19195 sect_offset_str (sect_off),
19196 objfile_name (objfile));
19197 }
19198 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19199 else if (lowpc >= highpc)
19200 {
19201 struct objfile *objfile = per_objfile->objfile;
19202 struct gdbarch *gdbarch = objfile->arch ();
19203
19204 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19205 "for DIE at %s [in module %s]"),
19206 paddress (gdbarch, lowpc),
19207 paddress (gdbarch, highpc),
19208 sect_offset_str (sect_off),
19209 objfile_name (objfile));
19210 }
19211 else
19212 has_pc_info = 1;
19213 }
19214
19215 return info_ptr;
19216 }
19217
19218 /* Find a cached partial DIE at OFFSET in CU. */
19219
19220 struct partial_die_info *
19221 dwarf2_cu::find_partial_die (sect_offset sect_off)
19222 {
19223 struct partial_die_info *lookup_die = NULL;
19224 struct partial_die_info part_die (sect_off);
19225
19226 lookup_die = ((struct partial_die_info *)
19227 htab_find_with_hash (partial_dies, &part_die,
19228 to_underlying (sect_off)));
19229
19230 return lookup_die;
19231 }
19232
19233 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19234 except in the case of .debug_types DIEs which do not reference
19235 outside their CU (they do however referencing other types via
19236 DW_FORM_ref_sig8). */
19237
19238 static const struct cu_partial_die_info
19239 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19240 {
19241 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19242 struct objfile *objfile = per_objfile->objfile;
19243 struct partial_die_info *pd = NULL;
19244
19245 if (offset_in_dwz == cu->per_cu->is_dwz
19246 && cu->header.offset_in_cu_p (sect_off))
19247 {
19248 pd = cu->find_partial_die (sect_off);
19249 if (pd != NULL)
19250 return { cu, pd };
19251 /* We missed recording what we needed.
19252 Load all dies and try again. */
19253 }
19254 else
19255 {
19256 /* TUs don't reference other CUs/TUs (except via type signatures). */
19257 if (cu->per_cu->is_debug_types)
19258 {
19259 error (_("Dwarf Error: Type Unit at offset %s contains"
19260 " external reference to offset %s [in module %s].\n"),
19261 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19262 bfd_get_filename (objfile->obfd));
19263 }
19264 dwarf2_per_cu_data *per_cu
19265 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19266 per_objfile);
19267
19268 cu = per_objfile->get_cu (per_cu);
19269 if (cu == NULL || cu->partial_dies == NULL)
19270 load_partial_comp_unit (per_cu, per_objfile, nullptr);
19271
19272 cu = per_objfile->get_cu (per_cu);
19273
19274 cu->last_used = 0;
19275 pd = cu->find_partial_die (sect_off);
19276 }
19277
19278 /* If we didn't find it, and not all dies have been loaded,
19279 load them all and try again. */
19280
19281 if (pd == NULL && cu->per_cu->load_all_dies == 0)
19282 {
19283 cu->per_cu->load_all_dies = 1;
19284
19285 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19286 THIS_CU->cu may already be in use. So we can't just free it and
19287 replace its DIEs with the ones we read in. Instead, we leave those
19288 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19289 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19290 set. */
19291 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
19292
19293 pd = cu->find_partial_die (sect_off);
19294 }
19295
19296 if (pd == NULL)
19297 error (_("Dwarf Error: Cannot not find DIE at %s [from module %s]\n"),
19298 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19299 return { cu, pd };
19300 }
19301
19302 /* See if we can figure out if the class lives in a namespace. We do
19303 this by looking for a member function; its demangled name will
19304 contain namespace info, if there is any. */
19305
19306 static void
19307 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19308 struct dwarf2_cu *cu)
19309 {
19310 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19311 what template types look like, because the demangler
19312 frequently doesn't give the same name as the debug info. We
19313 could fix this by only using the demangled name to get the
19314 prefix (but see comment in read_structure_type). */
19315
19316 struct partial_die_info *real_pdi;
19317 struct partial_die_info *child_pdi;
19318
19319 /* If this DIE (this DIE's specification, if any) has a parent, then
19320 we should not do this. We'll prepend the parent's fully qualified
19321 name when we create the partial symbol. */
19322
19323 real_pdi = struct_pdi;
19324 while (real_pdi->has_specification)
19325 {
19326 auto res = find_partial_die (real_pdi->spec_offset,
19327 real_pdi->spec_is_dwz, cu);
19328 real_pdi = res.pdi;
19329 cu = res.cu;
19330 }
19331
19332 if (real_pdi->die_parent != NULL)
19333 return;
19334
19335 for (child_pdi = struct_pdi->die_child;
19336 child_pdi != NULL;
19337 child_pdi = child_pdi->die_sibling)
19338 {
19339 if (child_pdi->tag == DW_TAG_subprogram
19340 && child_pdi->linkage_name != NULL)
19341 {
19342 gdb::unique_xmalloc_ptr<char> actual_class_name
19343 (cu->language_defn->class_name_from_physname
19344 (child_pdi->linkage_name));
19345 if (actual_class_name != NULL)
19346 {
19347 struct objfile *objfile = cu->per_objfile->objfile;
19348 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
19349 struct_pdi->canonical_name = 1;
19350 }
19351 break;
19352 }
19353 }
19354 }
19355
19356 /* Return true if a DIE with TAG may have the DW_AT_const_value
19357 attribute. */
19358
19359 static bool
19360 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
19361 {
19362 switch (tag)
19363 {
19364 case DW_TAG_constant:
19365 case DW_TAG_enumerator:
19366 case DW_TAG_formal_parameter:
19367 case DW_TAG_template_value_param:
19368 case DW_TAG_variable:
19369 return true;
19370 }
19371
19372 return false;
19373 }
19374
19375 void
19376 partial_die_info::fixup (struct dwarf2_cu *cu)
19377 {
19378 /* Once we've fixed up a die, there's no point in doing so again.
19379 This also avoids a memory leak if we were to call
19380 guess_partial_die_structure_name multiple times. */
19381 if (fixup_called)
19382 return;
19383
19384 /* If we found a reference attribute and the DIE has no name, try
19385 to find a name in the referred to DIE. */
19386
19387 if (raw_name == NULL && has_specification)
19388 {
19389 struct partial_die_info *spec_die;
19390
19391 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19392 spec_die = res.pdi;
19393 cu = res.cu;
19394
19395 spec_die->fixup (cu);
19396
19397 if (spec_die->raw_name)
19398 {
19399 raw_name = spec_die->raw_name;
19400 canonical_name = spec_die->canonical_name;
19401
19402 /* Copy DW_AT_external attribute if it is set. */
19403 if (spec_die->is_external)
19404 is_external = spec_die->is_external;
19405 }
19406 }
19407
19408 if (!has_const_value && has_specification
19409 && can_have_DW_AT_const_value_p (tag))
19410 {
19411 struct partial_die_info *spec_die;
19412
19413 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19414 spec_die = res.pdi;
19415 cu = res.cu;
19416
19417 spec_die->fixup (cu);
19418
19419 if (spec_die->has_const_value)
19420 {
19421 /* Copy DW_AT_const_value attribute if it is set. */
19422 has_const_value = spec_die->has_const_value;
19423 }
19424 }
19425
19426 /* Set default names for some unnamed DIEs. */
19427
19428 if (raw_name == NULL && tag == DW_TAG_namespace)
19429 {
19430 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
19431 canonical_name = 1;
19432 }
19433
19434 /* If there is no parent die to provide a namespace, and there are
19435 children, see if we can determine the namespace from their linkage
19436 name. */
19437 if (cu->language == language_cplus
19438 && !cu->per_objfile->per_bfd->types.empty ()
19439 && die_parent == NULL
19440 && has_children
19441 && (tag == DW_TAG_class_type
19442 || tag == DW_TAG_structure_type
19443 || tag == DW_TAG_union_type))
19444 guess_partial_die_structure_name (this, cu);
19445
19446 /* GCC might emit a nameless struct or union that has a linkage
19447 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19448 if (raw_name == NULL
19449 && (tag == DW_TAG_class_type
19450 || tag == DW_TAG_interface_type
19451 || tag == DW_TAG_structure_type
19452 || tag == DW_TAG_union_type)
19453 && linkage_name != NULL)
19454 {
19455 gdb::unique_xmalloc_ptr<char> demangled
19456 (gdb_demangle (linkage_name, DMGL_TYPES));
19457 if (demangled != nullptr)
19458 {
19459 const char *base;
19460
19461 /* Strip any leading namespaces/classes, keep only the base name.
19462 DW_AT_name for named DIEs does not contain the prefixes. */
19463 base = strrchr (demangled.get (), ':');
19464 if (base && base > demangled.get () && base[-1] == ':')
19465 base++;
19466 else
19467 base = demangled.get ();
19468
19469 struct objfile *objfile = cu->per_objfile->objfile;
19470 raw_name = objfile->intern (base);
19471 canonical_name = 1;
19472 }
19473 }
19474
19475 fixup_called = 1;
19476 }
19477
19478 /* Read the .debug_loclists or .debug_rnglists header (they are the same format)
19479 contents from the given SECTION in the HEADER. */
19480 static void
19481 read_loclists_rnglists_header (struct loclists_rnglists_header *header,
19482 struct dwarf2_section_info *section)
19483 {
19484 unsigned int bytes_read;
19485 bfd *abfd = section->get_bfd_owner ();
19486 const gdb_byte *info_ptr = section->buffer;
19487 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
19488 info_ptr += bytes_read;
19489 header->version = read_2_bytes (abfd, info_ptr);
19490 info_ptr += 2;
19491 header->addr_size = read_1_byte (abfd, info_ptr);
19492 info_ptr += 1;
19493 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19494 info_ptr += 1;
19495 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19496 }
19497
19498 /* Return the DW_AT_loclists_base value for the CU. */
19499 static ULONGEST
19500 lookup_loclist_base (struct dwarf2_cu *cu)
19501 {
19502 /* For the .dwo unit, the loclist_base points to the first offset following
19503 the header. The header consists of the following entities-
19504 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19505 bit format)
19506 2. version (2 bytes)
19507 3. address size (1 byte)
19508 4. segment selector size (1 byte)
19509 5. offset entry count (4 bytes)
19510 These sizes are derived as per the DWARFv5 standard. */
19511 if (cu->dwo_unit != nullptr)
19512 {
19513 if (cu->header.initial_length_size == 4)
19514 return LOCLIST_HEADER_SIZE32;
19515 return LOCLIST_HEADER_SIZE64;
19516 }
19517 return cu->loclist_base;
19518 }
19519
19520 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19521 array of offsets in the .debug_loclists section. */
19522 static CORE_ADDR
19523 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19524 {
19525 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19526 struct objfile *objfile = per_objfile->objfile;
19527 bfd *abfd = objfile->obfd;
19528 ULONGEST loclist_base = lookup_loclist_base (cu);
19529 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19530
19531 section->read (objfile);
19532 if (section->buffer == NULL)
19533 complaint (_("DW_FORM_loclistx used without .debug_loclists "
19534 "section [in module %s]"), objfile_name (objfile));
19535 struct loclists_rnglists_header header;
19536 read_loclists_rnglists_header (&header, section);
19537 if (loclist_index >= header.offset_entry_count)
19538 complaint (_("DW_FORM_loclistx pointing outside of "
19539 ".debug_loclists offset array [in module %s]"),
19540 objfile_name (objfile));
19541 if (loclist_base + loclist_index * cu->header.offset_size
19542 >= section->size)
19543 complaint (_("DW_FORM_loclistx pointing outside of "
19544 ".debug_loclists section [in module %s]"),
19545 objfile_name (objfile));
19546 const gdb_byte *info_ptr
19547 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
19548
19549 if (cu->header.offset_size == 4)
19550 return bfd_get_32 (abfd, info_ptr) + loclist_base;
19551 else
19552 return bfd_get_64 (abfd, info_ptr) + loclist_base;
19553 }
19554
19555 /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the
19556 array of offsets in the .debug_rnglists section. */
19557 static CORE_ADDR
19558 read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index,
19559 dwarf_tag tag)
19560 {
19561 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19562 struct objfile *objfile = dwarf2_per_objfile->objfile;
19563 bfd *abfd = objfile->obfd;
19564 ULONGEST rnglist_header_size =
19565 (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32
19566 : RNGLIST_HEADER_SIZE64);
19567 ULONGEST rnglist_base =
19568 (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->ranges_base;
19569 ULONGEST start_offset =
19570 rnglist_base + rnglist_index * cu->header.offset_size;
19571
19572 /* Get rnglists section. */
19573 struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag);
19574
19575 /* Read the rnglists section content. */
19576 section->read (objfile);
19577 if (section->buffer == nullptr)
19578 error (_("DW_FORM_rnglistx used without .debug_rnglists section "
19579 "[in module %s]"),
19580 objfile_name (objfile));
19581
19582 /* Verify the rnglist index is valid. */
19583 struct loclists_rnglists_header header;
19584 read_loclists_rnglists_header (&header, section);
19585 if (rnglist_index >= header.offset_entry_count)
19586 error (_("DW_FORM_rnglistx index pointing outside of "
19587 ".debug_rnglists offset array [in module %s]"),
19588 objfile_name (objfile));
19589
19590 /* Validate that the offset is within the section's range. */
19591 if (start_offset >= section->size)
19592 error (_("DW_FORM_rnglistx pointing outside of "
19593 ".debug_rnglists section [in module %s]"),
19594 objfile_name (objfile));
19595
19596 /* Validate that reading won't go beyond the end of the section. */
19597 if (start_offset + cu->header.offset_size > rnglist_base + section->size)
19598 error (_("Reading DW_FORM_rnglistx index beyond end of"
19599 ".debug_rnglists section [in module %s]"),
19600 objfile_name (objfile));
19601
19602 const gdb_byte *info_ptr = section->buffer + start_offset;
19603
19604 if (cu->header.offset_size == 4)
19605 return read_4_bytes (abfd, info_ptr) + rnglist_base;
19606 else
19607 return read_8_bytes (abfd, info_ptr) + rnglist_base;
19608 }
19609
19610 /* Process the attributes that had to be skipped in the first round. These
19611 attributes are the ones that need str_offsets_base or addr_base attributes.
19612 They could not have been processed in the first round, because at the time
19613 the values of str_offsets_base or addr_base may not have been known. */
19614 static void
19615 read_attribute_reprocess (const struct die_reader_specs *reader,
19616 struct attribute *attr, dwarf_tag tag)
19617 {
19618 struct dwarf2_cu *cu = reader->cu;
19619 switch (attr->form)
19620 {
19621 case DW_FORM_addrx:
19622 case DW_FORM_GNU_addr_index:
19623 attr->set_address (read_addr_index (cu,
19624 attr->as_unsigned_reprocess ()));
19625 break;
19626 case DW_FORM_loclistx:
19627 attr->set_address (read_loclist_index (cu, attr->as_unsigned ()));
19628 break;
19629 case DW_FORM_rnglistx:
19630 attr->set_address (read_rnglist_index (cu, attr->as_unsigned (), tag));
19631 break;
19632 case DW_FORM_strx:
19633 case DW_FORM_strx1:
19634 case DW_FORM_strx2:
19635 case DW_FORM_strx3:
19636 case DW_FORM_strx4:
19637 case DW_FORM_GNU_str_index:
19638 {
19639 unsigned int str_index = attr->as_unsigned_reprocess ();
19640 gdb_assert (!attr->canonical_string_p ());
19641 if (reader->dwo_file != NULL)
19642 attr->set_string_noncanonical (read_dwo_str_index (reader,
19643 str_index));
19644 else
19645 attr->set_string_noncanonical (read_stub_str_index (cu,
19646 str_index));
19647 break;
19648 }
19649 default:
19650 gdb_assert_not_reached (_("Unexpected DWARF form."));
19651 }
19652 }
19653
19654 /* Read an attribute value described by an attribute form. */
19655
19656 static const gdb_byte *
19657 read_attribute_value (const struct die_reader_specs *reader,
19658 struct attribute *attr, unsigned form,
19659 LONGEST implicit_const, const gdb_byte *info_ptr)
19660 {
19661 struct dwarf2_cu *cu = reader->cu;
19662 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19663 struct objfile *objfile = per_objfile->objfile;
19664 bfd *abfd = reader->abfd;
19665 struct comp_unit_head *cu_header = &cu->header;
19666 unsigned int bytes_read;
19667 struct dwarf_block *blk;
19668
19669 attr->form = (enum dwarf_form) form;
19670 switch (form)
19671 {
19672 case DW_FORM_ref_addr:
19673 if (cu->header.version == 2)
19674 attr->set_unsigned (cu->header.read_address (abfd, info_ptr,
19675 &bytes_read));
19676 else
19677 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19678 &bytes_read));
19679 info_ptr += bytes_read;
19680 break;
19681 case DW_FORM_GNU_ref_alt:
19682 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19683 &bytes_read));
19684 info_ptr += bytes_read;
19685 break;
19686 case DW_FORM_addr:
19687 {
19688 struct gdbarch *gdbarch = objfile->arch ();
19689 CORE_ADDR addr = cu->header.read_address (abfd, info_ptr, &bytes_read);
19690 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
19691 attr->set_address (addr);
19692 info_ptr += bytes_read;
19693 }
19694 break;
19695 case DW_FORM_block2:
19696 blk = dwarf_alloc_block (cu);
19697 blk->size = read_2_bytes (abfd, info_ptr);
19698 info_ptr += 2;
19699 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19700 info_ptr += blk->size;
19701 attr->set_block (blk);
19702 break;
19703 case DW_FORM_block4:
19704 blk = dwarf_alloc_block (cu);
19705 blk->size = read_4_bytes (abfd, info_ptr);
19706 info_ptr += 4;
19707 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19708 info_ptr += blk->size;
19709 attr->set_block (blk);
19710 break;
19711 case DW_FORM_data2:
19712 attr->set_unsigned (read_2_bytes (abfd, info_ptr));
19713 info_ptr += 2;
19714 break;
19715 case DW_FORM_data4:
19716 attr->set_unsigned (read_4_bytes (abfd, info_ptr));
19717 info_ptr += 4;
19718 break;
19719 case DW_FORM_data8:
19720 attr->set_unsigned (read_8_bytes (abfd, info_ptr));
19721 info_ptr += 8;
19722 break;
19723 case DW_FORM_data16:
19724 blk = dwarf_alloc_block (cu);
19725 blk->size = 16;
19726 blk->data = read_n_bytes (abfd, info_ptr, 16);
19727 info_ptr += 16;
19728 attr->set_block (blk);
19729 break;
19730 case DW_FORM_sec_offset:
19731 attr->set_unsigned (cu->header.read_offset (abfd, info_ptr,
19732 &bytes_read));
19733 info_ptr += bytes_read;
19734 break;
19735 case DW_FORM_loclistx:
19736 {
19737 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19738 &bytes_read));
19739 info_ptr += bytes_read;
19740 }
19741 break;
19742 case DW_FORM_string:
19743 attr->set_string_noncanonical (read_direct_string (abfd, info_ptr,
19744 &bytes_read));
19745 info_ptr += bytes_read;
19746 break;
19747 case DW_FORM_strp:
19748 if (!cu->per_cu->is_dwz)
19749 {
19750 attr->set_string_noncanonical
19751 (read_indirect_string (per_objfile,
19752 abfd, info_ptr, cu_header,
19753 &bytes_read));
19754 info_ptr += bytes_read;
19755 break;
19756 }
19757 /* FALLTHROUGH */
19758 case DW_FORM_line_strp:
19759 if (!cu->per_cu->is_dwz)
19760 {
19761 attr->set_string_noncanonical
19762 (per_objfile->read_line_string (info_ptr, cu_header,
19763 &bytes_read));
19764 info_ptr += bytes_read;
19765 break;
19766 }
19767 /* FALLTHROUGH */
19768 case DW_FORM_GNU_strp_alt:
19769 {
19770 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
19771 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19772 &bytes_read);
19773
19774 attr->set_string_noncanonical
19775 (dwz->read_string (objfile, str_offset));
19776 info_ptr += bytes_read;
19777 }
19778 break;
19779 case DW_FORM_exprloc:
19780 case DW_FORM_block:
19781 blk = dwarf_alloc_block (cu);
19782 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19783 info_ptr += bytes_read;
19784 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19785 info_ptr += blk->size;
19786 attr->set_block (blk);
19787 break;
19788 case DW_FORM_block1:
19789 blk = dwarf_alloc_block (cu);
19790 blk->size = read_1_byte (abfd, info_ptr);
19791 info_ptr += 1;
19792 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19793 info_ptr += blk->size;
19794 attr->set_block (blk);
19795 break;
19796 case DW_FORM_data1:
19797 case DW_FORM_flag:
19798 attr->set_unsigned (read_1_byte (abfd, info_ptr));
19799 info_ptr += 1;
19800 break;
19801 case DW_FORM_flag_present:
19802 attr->set_unsigned (1);
19803 break;
19804 case DW_FORM_sdata:
19805 attr->set_signed (read_signed_leb128 (abfd, info_ptr, &bytes_read));
19806 info_ptr += bytes_read;
19807 break;
19808 case DW_FORM_rnglistx:
19809 {
19810 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19811 &bytes_read));
19812 info_ptr += bytes_read;
19813 }
19814 break;
19815 case DW_FORM_udata:
19816 attr->set_unsigned (read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19817 info_ptr += bytes_read;
19818 break;
19819 case DW_FORM_ref1:
19820 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19821 + read_1_byte (abfd, info_ptr)));
19822 info_ptr += 1;
19823 break;
19824 case DW_FORM_ref2:
19825 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19826 + read_2_bytes (abfd, info_ptr)));
19827 info_ptr += 2;
19828 break;
19829 case DW_FORM_ref4:
19830 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19831 + read_4_bytes (abfd, info_ptr)));
19832 info_ptr += 4;
19833 break;
19834 case DW_FORM_ref8:
19835 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19836 + read_8_bytes (abfd, info_ptr)));
19837 info_ptr += 8;
19838 break;
19839 case DW_FORM_ref_sig8:
19840 attr->set_signature (read_8_bytes (abfd, info_ptr));
19841 info_ptr += 8;
19842 break;
19843 case DW_FORM_ref_udata:
19844 attr->set_unsigned ((to_underlying (cu->header.sect_off)
19845 + read_unsigned_leb128 (abfd, info_ptr,
19846 &bytes_read)));
19847 info_ptr += bytes_read;
19848 break;
19849 case DW_FORM_indirect:
19850 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19851 info_ptr += bytes_read;
19852 if (form == DW_FORM_implicit_const)
19853 {
19854 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19855 info_ptr += bytes_read;
19856 }
19857 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19858 info_ptr);
19859 break;
19860 case DW_FORM_implicit_const:
19861 attr->set_signed (implicit_const);
19862 break;
19863 case DW_FORM_addrx:
19864 case DW_FORM_GNU_addr_index:
19865 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
19866 &bytes_read));
19867 info_ptr += bytes_read;
19868 break;
19869 case DW_FORM_strx:
19870 case DW_FORM_strx1:
19871 case DW_FORM_strx2:
19872 case DW_FORM_strx3:
19873 case DW_FORM_strx4:
19874 case DW_FORM_GNU_str_index:
19875 {
19876 ULONGEST str_index;
19877 if (form == DW_FORM_strx1)
19878 {
19879 str_index = read_1_byte (abfd, info_ptr);
19880 info_ptr += 1;
19881 }
19882 else if (form == DW_FORM_strx2)
19883 {
19884 str_index = read_2_bytes (abfd, info_ptr);
19885 info_ptr += 2;
19886 }
19887 else if (form == DW_FORM_strx3)
19888 {
19889 str_index = read_3_bytes (abfd, info_ptr);
19890 info_ptr += 3;
19891 }
19892 else if (form == DW_FORM_strx4)
19893 {
19894 str_index = read_4_bytes (abfd, info_ptr);
19895 info_ptr += 4;
19896 }
19897 else
19898 {
19899 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19900 info_ptr += bytes_read;
19901 }
19902 attr->set_unsigned_reprocess (str_index);
19903 }
19904 break;
19905 default:
19906 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19907 dwarf_form_name (form),
19908 bfd_get_filename (abfd));
19909 }
19910
19911 /* Super hack. */
19912 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19913 attr->form = DW_FORM_GNU_ref_alt;
19914
19915 /* We have seen instances where the compiler tried to emit a byte
19916 size attribute of -1 which ended up being encoded as an unsigned
19917 0xffffffff. Although 0xffffffff is technically a valid size value,
19918 an object of this size seems pretty unlikely so we can relatively
19919 safely treat these cases as if the size attribute was invalid and
19920 treat them as zero by default. */
19921 if (attr->name == DW_AT_byte_size
19922 && form == DW_FORM_data4
19923 && attr->as_unsigned () >= 0xffffffff)
19924 {
19925 complaint
19926 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19927 hex_string (attr->as_unsigned ()));
19928 attr->set_unsigned (0);
19929 }
19930
19931 return info_ptr;
19932 }
19933
19934 /* Read an attribute described by an abbreviated attribute. */
19935
19936 static const gdb_byte *
19937 read_attribute (const struct die_reader_specs *reader,
19938 struct attribute *attr, struct attr_abbrev *abbrev,
19939 const gdb_byte *info_ptr)
19940 {
19941 attr->name = abbrev->name;
19942 attr->string_is_canonical = 0;
19943 attr->requires_reprocessing = 0;
19944 return read_attribute_value (reader, attr, abbrev->form,
19945 abbrev->implicit_const, info_ptr);
19946 }
19947
19948 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19949
19950 static const char *
19951 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
19952 LONGEST str_offset)
19953 {
19954 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
19955 str_offset, "DW_FORM_strp");
19956 }
19957
19958 /* Return pointer to string at .debug_str offset as read from BUF.
19959 BUF is assumed to be in a compilation unit described by CU_HEADER.
19960 Return *BYTES_READ_PTR count of bytes read from BUF. */
19961
19962 static const char *
19963 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
19964 const gdb_byte *buf,
19965 const struct comp_unit_head *cu_header,
19966 unsigned int *bytes_read_ptr)
19967 {
19968 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19969
19970 return read_indirect_string_at_offset (per_objfile, str_offset);
19971 }
19972
19973 /* See read.h. */
19974
19975 const char *
19976 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19977 const struct comp_unit_head *cu_header,
19978 unsigned int *bytes_read_ptr)
19979 {
19980 bfd *abfd = objfile->obfd;
19981 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19982
19983 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19984 }
19985
19986 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19987 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19988 ADDR_SIZE is the size of addresses from the CU header. */
19989
19990 static CORE_ADDR
19991 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
19992 gdb::optional<ULONGEST> addr_base, int addr_size)
19993 {
19994 struct objfile *objfile = per_objfile->objfile;
19995 bfd *abfd = objfile->obfd;
19996 const gdb_byte *info_ptr;
19997 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19998
19999 per_objfile->per_bfd->addr.read (objfile);
20000 if (per_objfile->per_bfd->addr.buffer == NULL)
20001 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20002 objfile_name (objfile));
20003 if (addr_base_or_zero + addr_index * addr_size
20004 >= per_objfile->per_bfd->addr.size)
20005 error (_("DW_FORM_addr_index pointing outside of "
20006 ".debug_addr section [in module %s]"),
20007 objfile_name (objfile));
20008 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
20009 + addr_index * addr_size);
20010 if (addr_size == 4)
20011 return bfd_get_32 (abfd, info_ptr);
20012 else
20013 return bfd_get_64 (abfd, info_ptr);
20014 }
20015
20016 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20017
20018 static CORE_ADDR
20019 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20020 {
20021 return read_addr_index_1 (cu->per_objfile, addr_index,
20022 cu->addr_base, cu->header.addr_size);
20023 }
20024
20025 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20026
20027 static CORE_ADDR
20028 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20029 unsigned int *bytes_read)
20030 {
20031 bfd *abfd = cu->per_objfile->objfile->obfd;
20032 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20033
20034 return read_addr_index (cu, addr_index);
20035 }
20036
20037 /* See read.h. */
20038
20039 CORE_ADDR
20040 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
20041 dwarf2_per_objfile *per_objfile,
20042 unsigned int addr_index)
20043 {
20044 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
20045 gdb::optional<ULONGEST> addr_base;
20046 int addr_size;
20047
20048 /* We need addr_base and addr_size.
20049 If we don't have PER_CU->cu, we have to get it.
20050 Nasty, but the alternative is storing the needed info in PER_CU,
20051 which at this point doesn't seem justified: it's not clear how frequently
20052 it would get used and it would increase the size of every PER_CU.
20053 Entry points like dwarf2_per_cu_addr_size do a similar thing
20054 so we're not in uncharted territory here.
20055 Alas we need to be a bit more complicated as addr_base is contained
20056 in the DIE.
20057
20058 We don't need to read the entire CU(/TU).
20059 We just need the header and top level die.
20060
20061 IWBN to use the aging mechanism to let us lazily later discard the CU.
20062 For now we skip this optimization. */
20063
20064 if (cu != NULL)
20065 {
20066 addr_base = cu->addr_base;
20067 addr_size = cu->header.addr_size;
20068 }
20069 else
20070 {
20071 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
20072 addr_base = reader.cu->addr_base;
20073 addr_size = reader.cu->header.addr_size;
20074 }
20075
20076 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
20077 }
20078
20079 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
20080 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
20081 DWO file. */
20082
20083 static const char *
20084 read_str_index (struct dwarf2_cu *cu,
20085 struct dwarf2_section_info *str_section,
20086 struct dwarf2_section_info *str_offsets_section,
20087 ULONGEST str_offsets_base, ULONGEST str_index)
20088 {
20089 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20090 struct objfile *objfile = per_objfile->objfile;
20091 const char *objf_name = objfile_name (objfile);
20092 bfd *abfd = objfile->obfd;
20093 const gdb_byte *info_ptr;
20094 ULONGEST str_offset;
20095 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20096
20097 str_section->read (objfile);
20098 str_offsets_section->read (objfile);
20099 if (str_section->buffer == NULL)
20100 error (_("%s used without %s section"
20101 " in CU at offset %s [in module %s]"),
20102 form_name, str_section->get_name (),
20103 sect_offset_str (cu->header.sect_off), objf_name);
20104 if (str_offsets_section->buffer == NULL)
20105 error (_("%s used without %s section"
20106 " in CU at offset %s [in module %s]"),
20107 form_name, str_section->get_name (),
20108 sect_offset_str (cu->header.sect_off), objf_name);
20109 info_ptr = (str_offsets_section->buffer
20110 + str_offsets_base
20111 + str_index * cu->header.offset_size);
20112 if (cu->header.offset_size == 4)
20113 str_offset = bfd_get_32 (abfd, info_ptr);
20114 else
20115 str_offset = bfd_get_64 (abfd, info_ptr);
20116 if (str_offset >= str_section->size)
20117 error (_("Offset from %s pointing outside of"
20118 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20119 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20120 return (const char *) (str_section->buffer + str_offset);
20121 }
20122
20123 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
20124
20125 static const char *
20126 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20127 {
20128 ULONGEST str_offsets_base = reader->cu->header.version >= 5
20129 ? reader->cu->header.addr_size : 0;
20130 return read_str_index (reader->cu,
20131 &reader->dwo_file->sections.str,
20132 &reader->dwo_file->sections.str_offsets,
20133 str_offsets_base, str_index);
20134 }
20135
20136 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
20137
20138 static const char *
20139 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
20140 {
20141 struct objfile *objfile = cu->per_objfile->objfile;
20142 const char *objf_name = objfile_name (objfile);
20143 static const char form_name[] = "DW_FORM_GNU_str_index";
20144 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
20145
20146 if (!cu->str_offsets_base.has_value ())
20147 error (_("%s used in Fission stub without %s"
20148 " in CU at offset 0x%lx [in module %s]"),
20149 form_name, str_offsets_attr_name,
20150 (long) cu->header.offset_size, objf_name);
20151
20152 return read_str_index (cu,
20153 &cu->per_objfile->per_bfd->str,
20154 &cu->per_objfile->per_bfd->str_offsets,
20155 *cu->str_offsets_base, str_index);
20156 }
20157
20158 /* Return the length of an LEB128 number in BUF. */
20159
20160 static int
20161 leb128_size (const gdb_byte *buf)
20162 {
20163 const gdb_byte *begin = buf;
20164 gdb_byte byte;
20165
20166 while (1)
20167 {
20168 byte = *buf++;
20169 if ((byte & 128) == 0)
20170 return buf - begin;
20171 }
20172 }
20173
20174 static void
20175 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20176 {
20177 switch (lang)
20178 {
20179 case DW_LANG_C89:
20180 case DW_LANG_C99:
20181 case DW_LANG_C11:
20182 case DW_LANG_C:
20183 case DW_LANG_UPC:
20184 cu->language = language_c;
20185 break;
20186 case DW_LANG_Java:
20187 case DW_LANG_C_plus_plus:
20188 case DW_LANG_C_plus_plus_11:
20189 case DW_LANG_C_plus_plus_14:
20190 cu->language = language_cplus;
20191 break;
20192 case DW_LANG_D:
20193 cu->language = language_d;
20194 break;
20195 case DW_LANG_Fortran77:
20196 case DW_LANG_Fortran90:
20197 case DW_LANG_Fortran95:
20198 case DW_LANG_Fortran03:
20199 case DW_LANG_Fortran08:
20200 cu->language = language_fortran;
20201 break;
20202 case DW_LANG_Go:
20203 cu->language = language_go;
20204 break;
20205 case DW_LANG_Mips_Assembler:
20206 cu->language = language_asm;
20207 break;
20208 case DW_LANG_Ada83:
20209 case DW_LANG_Ada95:
20210 cu->language = language_ada;
20211 break;
20212 case DW_LANG_Modula2:
20213 cu->language = language_m2;
20214 break;
20215 case DW_LANG_Pascal83:
20216 cu->language = language_pascal;
20217 break;
20218 case DW_LANG_ObjC:
20219 cu->language = language_objc;
20220 break;
20221 case DW_LANG_Rust:
20222 case DW_LANG_Rust_old:
20223 cu->language = language_rust;
20224 break;
20225 case DW_LANG_Cobol74:
20226 case DW_LANG_Cobol85:
20227 default:
20228 cu->language = language_minimal;
20229 break;
20230 }
20231 cu->language_defn = language_def (cu->language);
20232 }
20233
20234 /* Return the named attribute or NULL if not there. */
20235
20236 static struct attribute *
20237 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20238 {
20239 for (;;)
20240 {
20241 unsigned int i;
20242 struct attribute *spec = NULL;
20243
20244 for (i = 0; i < die->num_attrs; ++i)
20245 {
20246 if (die->attrs[i].name == name)
20247 return &die->attrs[i];
20248 if (die->attrs[i].name == DW_AT_specification
20249 || die->attrs[i].name == DW_AT_abstract_origin)
20250 spec = &die->attrs[i];
20251 }
20252
20253 if (!spec)
20254 break;
20255
20256 die = follow_die_ref (die, spec, &cu);
20257 }
20258
20259 return NULL;
20260 }
20261
20262 /* Return the string associated with a string-typed attribute, or NULL if it
20263 is either not found or is of an incorrect type. */
20264
20265 static const char *
20266 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20267 {
20268 struct attribute *attr;
20269 const char *str = NULL;
20270
20271 attr = dwarf2_attr (die, name, cu);
20272
20273 if (attr != NULL)
20274 {
20275 str = attr->as_string ();
20276 if (str == nullptr)
20277 complaint (_("string type expected for attribute %s for "
20278 "DIE at %s in module %s"),
20279 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20280 objfile_name (cu->per_objfile->objfile));
20281 }
20282
20283 return str;
20284 }
20285
20286 /* Return the dwo name or NULL if not present. If present, it is in either
20287 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20288 static const char *
20289 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20290 {
20291 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20292 if (dwo_name == nullptr)
20293 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20294 return dwo_name;
20295 }
20296
20297 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20298 and holds a non-zero value. This function should only be used for
20299 DW_FORM_flag or DW_FORM_flag_present attributes. */
20300
20301 static int
20302 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20303 {
20304 struct attribute *attr = dwarf2_attr (die, name, cu);
20305
20306 return attr != nullptr && attr->as_boolean ();
20307 }
20308
20309 static int
20310 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20311 {
20312 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20313 which value is non-zero. However, we have to be careful with
20314 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20315 (via dwarf2_flag_true_p) follows this attribute. So we may
20316 end up accidently finding a declaration attribute that belongs
20317 to a different DIE referenced by the specification attribute,
20318 even though the given DIE does not have a declaration attribute. */
20319 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20320 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20321 }
20322
20323 /* Return the die giving the specification for DIE, if there is
20324 one. *SPEC_CU is the CU containing DIE on input, and the CU
20325 containing the return value on output. If there is no
20326 specification, but there is an abstract origin, that is
20327 returned. */
20328
20329 static struct die_info *
20330 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20331 {
20332 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20333 *spec_cu);
20334
20335 if (spec_attr == NULL)
20336 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20337
20338 if (spec_attr == NULL)
20339 return NULL;
20340 else
20341 return follow_die_ref (die, spec_attr, spec_cu);
20342 }
20343
20344 /* Stub for free_line_header to match void * callback types. */
20345
20346 static void
20347 free_line_header_voidp (void *arg)
20348 {
20349 struct line_header *lh = (struct line_header *) arg;
20350
20351 delete lh;
20352 }
20353
20354 /* A convenience function to find the proper .debug_line section for a CU. */
20355
20356 static struct dwarf2_section_info *
20357 get_debug_line_section (struct dwarf2_cu *cu)
20358 {
20359 struct dwarf2_section_info *section;
20360 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20361
20362 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20363 DWO file. */
20364 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20365 section = &cu->dwo_unit->dwo_file->sections.line;
20366 else if (cu->per_cu->is_dwz)
20367 {
20368 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
20369
20370 section = &dwz->line;
20371 }
20372 else
20373 section = &per_objfile->per_bfd->line;
20374
20375 return section;
20376 }
20377
20378 /* Read the statement program header starting at OFFSET in
20379 .debug_line, or .debug_line.dwo. Return a pointer
20380 to a struct line_header, allocated using xmalloc.
20381 Returns NULL if there is a problem reading the header, e.g., if it
20382 has a version we don't understand.
20383
20384 NOTE: the strings in the include directory and file name tables of
20385 the returned object point into the dwarf line section buffer,
20386 and must not be freed. */
20387
20388 static line_header_up
20389 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20390 {
20391 struct dwarf2_section_info *section;
20392 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20393
20394 section = get_debug_line_section (cu);
20395 section->read (per_objfile->objfile);
20396 if (section->buffer == NULL)
20397 {
20398 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20399 complaint (_("missing .debug_line.dwo section"));
20400 else
20401 complaint (_("missing .debug_line section"));
20402 return 0;
20403 }
20404
20405 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
20406 per_objfile, section, &cu->header);
20407 }
20408
20409 /* Subroutine of dwarf_decode_lines to simplify it.
20410 Return the file name of the psymtab for the given file_entry.
20411 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20412 If space for the result is malloc'd, *NAME_HOLDER will be set.
20413 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20414
20415 static const char *
20416 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20417 const dwarf2_psymtab *pst,
20418 const char *comp_dir,
20419 gdb::unique_xmalloc_ptr<char> *name_holder)
20420 {
20421 const char *include_name = fe.name;
20422 const char *include_name_to_compare = include_name;
20423 const char *pst_filename;
20424 int file_is_pst;
20425
20426 const char *dir_name = fe.include_dir (lh);
20427
20428 gdb::unique_xmalloc_ptr<char> hold_compare;
20429 if (!IS_ABSOLUTE_PATH (include_name)
20430 && (dir_name != NULL || comp_dir != NULL))
20431 {
20432 /* Avoid creating a duplicate psymtab for PST.
20433 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20434 Before we do the comparison, however, we need to account
20435 for DIR_NAME and COMP_DIR.
20436 First prepend dir_name (if non-NULL). If we still don't
20437 have an absolute path prepend comp_dir (if non-NULL).
20438 However, the directory we record in the include-file's
20439 psymtab does not contain COMP_DIR (to match the
20440 corresponding symtab(s)).
20441
20442 Example:
20443
20444 bash$ cd /tmp
20445 bash$ gcc -g ./hello.c
20446 include_name = "hello.c"
20447 dir_name = "."
20448 DW_AT_comp_dir = comp_dir = "/tmp"
20449 DW_AT_name = "./hello.c"
20450
20451 */
20452
20453 if (dir_name != NULL)
20454 {
20455 name_holder->reset (concat (dir_name, SLASH_STRING,
20456 include_name, (char *) NULL));
20457 include_name = name_holder->get ();
20458 include_name_to_compare = include_name;
20459 }
20460 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20461 {
20462 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20463 include_name, (char *) NULL));
20464 include_name_to_compare = hold_compare.get ();
20465 }
20466 }
20467
20468 pst_filename = pst->filename;
20469 gdb::unique_xmalloc_ptr<char> copied_name;
20470 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20471 {
20472 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20473 pst_filename, (char *) NULL));
20474 pst_filename = copied_name.get ();
20475 }
20476
20477 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20478
20479 if (file_is_pst)
20480 return NULL;
20481 return include_name;
20482 }
20483
20484 /* State machine to track the state of the line number program. */
20485
20486 class lnp_state_machine
20487 {
20488 public:
20489 /* Initialize a machine state for the start of a line number
20490 program. */
20491 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20492 bool record_lines_p);
20493
20494 file_entry *current_file ()
20495 {
20496 /* lh->file_names is 0-based, but the file name numbers in the
20497 statement program are 1-based. */
20498 return m_line_header->file_name_at (m_file);
20499 }
20500
20501 /* Record the line in the state machine. END_SEQUENCE is true if
20502 we're processing the end of a sequence. */
20503 void record_line (bool end_sequence);
20504
20505 /* Check ADDRESS is -1, or zero and less than UNRELOCATED_LOWPC, and if true
20506 nop-out rest of the lines in this sequence. */
20507 void check_line_address (struct dwarf2_cu *cu,
20508 const gdb_byte *line_ptr,
20509 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20510
20511 void handle_set_discriminator (unsigned int discriminator)
20512 {
20513 m_discriminator = discriminator;
20514 m_line_has_non_zero_discriminator |= discriminator != 0;
20515 }
20516
20517 /* Handle DW_LNE_set_address. */
20518 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20519 {
20520 m_op_index = 0;
20521 address += baseaddr;
20522 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20523 }
20524
20525 /* Handle DW_LNS_advance_pc. */
20526 void handle_advance_pc (CORE_ADDR adjust);
20527
20528 /* Handle a special opcode. */
20529 void handle_special_opcode (unsigned char op_code);
20530
20531 /* Handle DW_LNS_advance_line. */
20532 void handle_advance_line (int line_delta)
20533 {
20534 advance_line (line_delta);
20535 }
20536
20537 /* Handle DW_LNS_set_file. */
20538 void handle_set_file (file_name_index file);
20539
20540 /* Handle DW_LNS_negate_stmt. */
20541 void handle_negate_stmt ()
20542 {
20543 m_is_stmt = !m_is_stmt;
20544 }
20545
20546 /* Handle DW_LNS_const_add_pc. */
20547 void handle_const_add_pc ();
20548
20549 /* Handle DW_LNS_fixed_advance_pc. */
20550 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20551 {
20552 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20553 m_op_index = 0;
20554 }
20555
20556 /* Handle DW_LNS_copy. */
20557 void handle_copy ()
20558 {
20559 record_line (false);
20560 m_discriminator = 0;
20561 }
20562
20563 /* Handle DW_LNE_end_sequence. */
20564 void handle_end_sequence ()
20565 {
20566 m_currently_recording_lines = true;
20567 }
20568
20569 private:
20570 /* Advance the line by LINE_DELTA. */
20571 void advance_line (int line_delta)
20572 {
20573 m_line += line_delta;
20574
20575 if (line_delta != 0)
20576 m_line_has_non_zero_discriminator = m_discriminator != 0;
20577 }
20578
20579 struct dwarf2_cu *m_cu;
20580
20581 gdbarch *m_gdbarch;
20582
20583 /* True if we're recording lines.
20584 Otherwise we're building partial symtabs and are just interested in
20585 finding include files mentioned by the line number program. */
20586 bool m_record_lines_p;
20587
20588 /* The line number header. */
20589 line_header *m_line_header;
20590
20591 /* These are part of the standard DWARF line number state machine,
20592 and initialized according to the DWARF spec. */
20593
20594 unsigned char m_op_index = 0;
20595 /* The line table index of the current file. */
20596 file_name_index m_file = 1;
20597 unsigned int m_line = 1;
20598
20599 /* These are initialized in the constructor. */
20600
20601 CORE_ADDR m_address;
20602 bool m_is_stmt;
20603 unsigned int m_discriminator;
20604
20605 /* Additional bits of state we need to track. */
20606
20607 /* The last file that we called dwarf2_start_subfile for.
20608 This is only used for TLLs. */
20609 unsigned int m_last_file = 0;
20610 /* The last file a line number was recorded for. */
20611 struct subfile *m_last_subfile = NULL;
20612
20613 /* The address of the last line entry. */
20614 CORE_ADDR m_last_address;
20615
20616 /* Set to true when a previous line at the same address (using
20617 m_last_address) had m_is_stmt true. This is reset to false when a
20618 line entry at a new address (m_address different to m_last_address) is
20619 processed. */
20620 bool m_stmt_at_address = false;
20621
20622 /* When true, record the lines we decode. */
20623 bool m_currently_recording_lines = false;
20624
20625 /* The last line number that was recorded, used to coalesce
20626 consecutive entries for the same line. This can happen, for
20627 example, when discriminators are present. PR 17276. */
20628 unsigned int m_last_line = 0;
20629 bool m_line_has_non_zero_discriminator = false;
20630 };
20631
20632 void
20633 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20634 {
20635 CORE_ADDR addr_adj = (((m_op_index + adjust)
20636 / m_line_header->maximum_ops_per_instruction)
20637 * m_line_header->minimum_instruction_length);
20638 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20639 m_op_index = ((m_op_index + adjust)
20640 % m_line_header->maximum_ops_per_instruction);
20641 }
20642
20643 void
20644 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20645 {
20646 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20647 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20648 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20649 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20650 / m_line_header->maximum_ops_per_instruction)
20651 * m_line_header->minimum_instruction_length);
20652 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20653 m_op_index = ((m_op_index + adj_opcode_d)
20654 % m_line_header->maximum_ops_per_instruction);
20655
20656 int line_delta = m_line_header->line_base + adj_opcode_r;
20657 advance_line (line_delta);
20658 record_line (false);
20659 m_discriminator = 0;
20660 }
20661
20662 void
20663 lnp_state_machine::handle_set_file (file_name_index file)
20664 {
20665 m_file = file;
20666
20667 const file_entry *fe = current_file ();
20668 if (fe == NULL)
20669 dwarf2_debug_line_missing_file_complaint ();
20670 else if (m_record_lines_p)
20671 {
20672 const char *dir = fe->include_dir (m_line_header);
20673
20674 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20675 m_line_has_non_zero_discriminator = m_discriminator != 0;
20676 dwarf2_start_subfile (m_cu, fe->name, dir);
20677 }
20678 }
20679
20680 void
20681 lnp_state_machine::handle_const_add_pc ()
20682 {
20683 CORE_ADDR adjust
20684 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20685
20686 CORE_ADDR addr_adj
20687 = (((m_op_index + adjust)
20688 / m_line_header->maximum_ops_per_instruction)
20689 * m_line_header->minimum_instruction_length);
20690
20691 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20692 m_op_index = ((m_op_index + adjust)
20693 % m_line_header->maximum_ops_per_instruction);
20694 }
20695
20696 /* Return non-zero if we should add LINE to the line number table.
20697 LINE is the line to add, LAST_LINE is the last line that was added,
20698 LAST_SUBFILE is the subfile for LAST_LINE.
20699 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20700 had a non-zero discriminator.
20701
20702 We have to be careful in the presence of discriminators.
20703 E.g., for this line:
20704
20705 for (i = 0; i < 100000; i++);
20706
20707 clang can emit four line number entries for that one line,
20708 each with a different discriminator.
20709 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20710
20711 However, we want gdb to coalesce all four entries into one.
20712 Otherwise the user could stepi into the middle of the line and
20713 gdb would get confused about whether the pc really was in the
20714 middle of the line.
20715
20716 Things are further complicated by the fact that two consecutive
20717 line number entries for the same line is a heuristic used by gcc
20718 to denote the end of the prologue. So we can't just discard duplicate
20719 entries, we have to be selective about it. The heuristic we use is
20720 that we only collapse consecutive entries for the same line if at least
20721 one of those entries has a non-zero discriminator. PR 17276.
20722
20723 Note: Addresses in the line number state machine can never go backwards
20724 within one sequence, thus this coalescing is ok. */
20725
20726 static int
20727 dwarf_record_line_p (struct dwarf2_cu *cu,
20728 unsigned int line, unsigned int last_line,
20729 int line_has_non_zero_discriminator,
20730 struct subfile *last_subfile)
20731 {
20732 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20733 return 1;
20734 if (line != last_line)
20735 return 1;
20736 /* Same line for the same file that we've seen already.
20737 As a last check, for pr 17276, only record the line if the line
20738 has never had a non-zero discriminator. */
20739 if (!line_has_non_zero_discriminator)
20740 return 1;
20741 return 0;
20742 }
20743
20744 /* Use the CU's builder to record line number LINE beginning at
20745 address ADDRESS in the line table of subfile SUBFILE. */
20746
20747 static void
20748 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20749 unsigned int line, CORE_ADDR address, bool is_stmt,
20750 struct dwarf2_cu *cu)
20751 {
20752 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20753
20754 if (dwarf_line_debug)
20755 {
20756 fprintf_unfiltered (gdb_stdlog,
20757 "Recording line %u, file %s, address %s\n",
20758 line, lbasename (subfile->name),
20759 paddress (gdbarch, address));
20760 }
20761
20762 if (cu != nullptr)
20763 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20764 }
20765
20766 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20767 Mark the end of a set of line number records.
20768 The arguments are the same as for dwarf_record_line_1.
20769 If SUBFILE is NULL the request is ignored. */
20770
20771 static void
20772 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20773 CORE_ADDR address, struct dwarf2_cu *cu)
20774 {
20775 if (subfile == NULL)
20776 return;
20777
20778 if (dwarf_line_debug)
20779 {
20780 fprintf_unfiltered (gdb_stdlog,
20781 "Finishing current line, file %s, address %s\n",
20782 lbasename (subfile->name),
20783 paddress (gdbarch, address));
20784 }
20785
20786 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20787 }
20788
20789 void
20790 lnp_state_machine::record_line (bool end_sequence)
20791 {
20792 if (dwarf_line_debug)
20793 {
20794 fprintf_unfiltered (gdb_stdlog,
20795 "Processing actual line %u: file %u,"
20796 " address %s, is_stmt %u, discrim %u%s\n",
20797 m_line, m_file,
20798 paddress (m_gdbarch, m_address),
20799 m_is_stmt, m_discriminator,
20800 (end_sequence ? "\t(end sequence)" : ""));
20801 }
20802
20803 file_entry *fe = current_file ();
20804
20805 if (fe == NULL)
20806 dwarf2_debug_line_missing_file_complaint ();
20807 /* For now we ignore lines not starting on an instruction boundary.
20808 But not when processing end_sequence for compatibility with the
20809 previous version of the code. */
20810 else if (m_op_index == 0 || end_sequence)
20811 {
20812 fe->included_p = 1;
20813 if (m_record_lines_p)
20814 {
20815 /* When we switch files we insert an end maker in the first file,
20816 switch to the second file and add a new line entry. The
20817 problem is that the end marker inserted in the first file will
20818 discard any previous line entries at the same address. If the
20819 line entries in the first file are marked as is-stmt, while
20820 the new line in the second file is non-stmt, then this means
20821 the end marker will discard is-stmt lines so we can have a
20822 non-stmt line. This means that there are less addresses at
20823 which the user can insert a breakpoint.
20824
20825 To improve this we track the last address in m_last_address,
20826 and whether we have seen an is-stmt at this address. Then
20827 when switching files, if we have seen a stmt at the current
20828 address, and we are switching to create a non-stmt line, then
20829 discard the new line. */
20830 bool file_changed
20831 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
20832 bool ignore_this_line
20833 = ((file_changed && !end_sequence && m_last_address == m_address
20834 && !m_is_stmt && m_stmt_at_address)
20835 || (!end_sequence && m_line == 0));
20836
20837 if ((file_changed && !ignore_this_line) || end_sequence)
20838 {
20839 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20840 m_currently_recording_lines ? m_cu : nullptr);
20841 }
20842
20843 if (!end_sequence && !ignore_this_line)
20844 {
20845 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20846
20847 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20848 m_line_has_non_zero_discriminator,
20849 m_last_subfile))
20850 {
20851 buildsym_compunit *builder = m_cu->get_builder ();
20852 dwarf_record_line_1 (m_gdbarch,
20853 builder->get_current_subfile (),
20854 m_line, m_address, is_stmt,
20855 m_currently_recording_lines ? m_cu : nullptr);
20856 }
20857 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20858 m_last_line = m_line;
20859 }
20860 }
20861 }
20862
20863 /* Track whether we have seen any m_is_stmt true at m_address in case we
20864 have multiple line table entries all at m_address. */
20865 if (m_last_address != m_address)
20866 {
20867 m_stmt_at_address = false;
20868 m_last_address = m_address;
20869 }
20870 m_stmt_at_address |= m_is_stmt;
20871 }
20872
20873 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20874 line_header *lh, bool record_lines_p)
20875 {
20876 m_cu = cu;
20877 m_gdbarch = arch;
20878 m_record_lines_p = record_lines_p;
20879 m_line_header = lh;
20880
20881 m_currently_recording_lines = true;
20882
20883 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20884 was a line entry for it so that the backend has a chance to adjust it
20885 and also record it in case it needs it. This is currently used by MIPS
20886 code, cf. `mips_adjust_dwarf2_line'. */
20887 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20888 m_is_stmt = lh->default_is_stmt;
20889 m_discriminator = 0;
20890
20891 m_last_address = m_address;
20892 m_stmt_at_address = false;
20893 }
20894
20895 void
20896 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20897 const gdb_byte *line_ptr,
20898 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20899 {
20900 /* Linkers resolve a symbolic relocation referencing a GC'd function to 0 or
20901 -1. If ADDRESS is 0, ignoring the opcode will err if the text section is
20902 located at 0x0. In this case, additionally check that if
20903 ADDRESS < UNRELOCATED_LOWPC. */
20904
20905 if ((address == 0 && address < unrelocated_lowpc)
20906 || address == (CORE_ADDR) -1)
20907 {
20908 /* This line table is for a function which has been
20909 GCd by the linker. Ignore it. PR gdb/12528 */
20910
20911 struct objfile *objfile = cu->per_objfile->objfile;
20912 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20913
20914 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20915 line_offset, objfile_name (objfile));
20916 m_currently_recording_lines = false;
20917 /* Note: m_currently_recording_lines is left as false until we see
20918 DW_LNE_end_sequence. */
20919 }
20920 }
20921
20922 /* Subroutine of dwarf_decode_lines to simplify it.
20923 Process the line number information in LH.
20924 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20925 program in order to set included_p for every referenced header. */
20926
20927 static void
20928 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20929 const int decode_for_pst_p, CORE_ADDR lowpc)
20930 {
20931 const gdb_byte *line_ptr, *extended_end;
20932 const gdb_byte *line_end;
20933 unsigned int bytes_read, extended_len;
20934 unsigned char op_code, extended_op;
20935 CORE_ADDR baseaddr;
20936 struct objfile *objfile = cu->per_objfile->objfile;
20937 bfd *abfd = objfile->obfd;
20938 struct gdbarch *gdbarch = objfile->arch ();
20939 /* True if we're recording line info (as opposed to building partial
20940 symtabs and just interested in finding include files mentioned by
20941 the line number program). */
20942 bool record_lines_p = !decode_for_pst_p;
20943
20944 baseaddr = objfile->text_section_offset ();
20945
20946 line_ptr = lh->statement_program_start;
20947 line_end = lh->statement_program_end;
20948
20949 /* Read the statement sequences until there's nothing left. */
20950 while (line_ptr < line_end)
20951 {
20952 /* The DWARF line number program state machine. Reset the state
20953 machine at the start of each sequence. */
20954 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20955 bool end_sequence = false;
20956
20957 if (record_lines_p)
20958 {
20959 /* Start a subfile for the current file of the state
20960 machine. */
20961 const file_entry *fe = state_machine.current_file ();
20962
20963 if (fe != NULL)
20964 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20965 }
20966
20967 /* Decode the table. */
20968 while (line_ptr < line_end && !end_sequence)
20969 {
20970 op_code = read_1_byte (abfd, line_ptr);
20971 line_ptr += 1;
20972
20973 if (op_code >= lh->opcode_base)
20974 {
20975 /* Special opcode. */
20976 state_machine.handle_special_opcode (op_code);
20977 }
20978 else switch (op_code)
20979 {
20980 case DW_LNS_extended_op:
20981 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20982 &bytes_read);
20983 line_ptr += bytes_read;
20984 extended_end = line_ptr + extended_len;
20985 extended_op = read_1_byte (abfd, line_ptr);
20986 line_ptr += 1;
20987 if (DW_LNE_lo_user <= extended_op
20988 && extended_op <= DW_LNE_hi_user)
20989 {
20990 /* Vendor extension, ignore. */
20991 line_ptr = extended_end;
20992 break;
20993 }
20994 switch (extended_op)
20995 {
20996 case DW_LNE_end_sequence:
20997 state_machine.handle_end_sequence ();
20998 end_sequence = true;
20999 break;
21000 case DW_LNE_set_address:
21001 {
21002 CORE_ADDR address
21003 = cu->header.read_address (abfd, line_ptr, &bytes_read);
21004 line_ptr += bytes_read;
21005
21006 state_machine.check_line_address (cu, line_ptr,
21007 lowpc - baseaddr, address);
21008 state_machine.handle_set_address (baseaddr, address);
21009 }
21010 break;
21011 case DW_LNE_define_file:
21012 {
21013 const char *cur_file;
21014 unsigned int mod_time, length;
21015 dir_index dindex;
21016
21017 cur_file = read_direct_string (abfd, line_ptr,
21018 &bytes_read);
21019 line_ptr += bytes_read;
21020 dindex = (dir_index)
21021 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21022 line_ptr += bytes_read;
21023 mod_time =
21024 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21025 line_ptr += bytes_read;
21026 length =
21027 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21028 line_ptr += bytes_read;
21029 lh->add_file_name (cur_file, dindex, mod_time, length);
21030 }
21031 break;
21032 case DW_LNE_set_discriminator:
21033 {
21034 /* The discriminator is not interesting to the
21035 debugger; just ignore it. We still need to
21036 check its value though:
21037 if there are consecutive entries for the same
21038 (non-prologue) line we want to coalesce them.
21039 PR 17276. */
21040 unsigned int discr
21041 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21042 line_ptr += bytes_read;
21043
21044 state_machine.handle_set_discriminator (discr);
21045 }
21046 break;
21047 default:
21048 complaint (_("mangled .debug_line section"));
21049 return;
21050 }
21051 /* Make sure that we parsed the extended op correctly. If e.g.
21052 we expected a different address size than the producer used,
21053 we may have read the wrong number of bytes. */
21054 if (line_ptr != extended_end)
21055 {
21056 complaint (_("mangled .debug_line section"));
21057 return;
21058 }
21059 break;
21060 case DW_LNS_copy:
21061 state_machine.handle_copy ();
21062 break;
21063 case DW_LNS_advance_pc:
21064 {
21065 CORE_ADDR adjust
21066 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21067 line_ptr += bytes_read;
21068
21069 state_machine.handle_advance_pc (adjust);
21070 }
21071 break;
21072 case DW_LNS_advance_line:
21073 {
21074 int line_delta
21075 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21076 line_ptr += bytes_read;
21077
21078 state_machine.handle_advance_line (line_delta);
21079 }
21080 break;
21081 case DW_LNS_set_file:
21082 {
21083 file_name_index file
21084 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21085 &bytes_read);
21086 line_ptr += bytes_read;
21087
21088 state_machine.handle_set_file (file);
21089 }
21090 break;
21091 case DW_LNS_set_column:
21092 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21093 line_ptr += bytes_read;
21094 break;
21095 case DW_LNS_negate_stmt:
21096 state_machine.handle_negate_stmt ();
21097 break;
21098 case DW_LNS_set_basic_block:
21099 break;
21100 /* Add to the address register of the state machine the
21101 address increment value corresponding to special opcode
21102 255. I.e., this value is scaled by the minimum
21103 instruction length since special opcode 255 would have
21104 scaled the increment. */
21105 case DW_LNS_const_add_pc:
21106 state_machine.handle_const_add_pc ();
21107 break;
21108 case DW_LNS_fixed_advance_pc:
21109 {
21110 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21111 line_ptr += 2;
21112
21113 state_machine.handle_fixed_advance_pc (addr_adj);
21114 }
21115 break;
21116 default:
21117 {
21118 /* Unknown standard opcode, ignore it. */
21119 int i;
21120
21121 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21122 {
21123 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21124 line_ptr += bytes_read;
21125 }
21126 }
21127 }
21128 }
21129
21130 if (!end_sequence)
21131 dwarf2_debug_line_missing_end_sequence_complaint ();
21132
21133 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21134 in which case we still finish recording the last line). */
21135 state_machine.record_line (true);
21136 }
21137 }
21138
21139 /* Decode the Line Number Program (LNP) for the given line_header
21140 structure and CU. The actual information extracted and the type
21141 of structures created from the LNP depends on the value of PST.
21142
21143 1. If PST is NULL, then this procedure uses the data from the program
21144 to create all necessary symbol tables, and their linetables.
21145
21146 2. If PST is not NULL, this procedure reads the program to determine
21147 the list of files included by the unit represented by PST, and
21148 builds all the associated partial symbol tables.
21149
21150 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21151 It is used for relative paths in the line table.
21152 NOTE: When processing partial symtabs (pst != NULL),
21153 comp_dir == pst->dirname.
21154
21155 NOTE: It is important that psymtabs have the same file name (via strcmp)
21156 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21157 symtab we don't use it in the name of the psymtabs we create.
21158 E.g. expand_line_sal requires this when finding psymtabs to expand.
21159 A good testcase for this is mb-inline.exp.
21160
21161 LOWPC is the lowest address in CU (or 0 if not known).
21162
21163 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21164 for its PC<->lines mapping information. Otherwise only the filename
21165 table is read in. */
21166
21167 static void
21168 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21169 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
21170 CORE_ADDR lowpc, int decode_mapping)
21171 {
21172 struct objfile *objfile = cu->per_objfile->objfile;
21173 const int decode_for_pst_p = (pst != NULL);
21174
21175 if (decode_mapping)
21176 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21177
21178 if (decode_for_pst_p)
21179 {
21180 /* Now that we're done scanning the Line Header Program, we can
21181 create the psymtab of each included file. */
21182 for (auto &file_entry : lh->file_names ())
21183 if (file_entry.included_p == 1)
21184 {
21185 gdb::unique_xmalloc_ptr<char> name_holder;
21186 const char *include_name =
21187 psymtab_include_file_name (lh, file_entry, pst,
21188 comp_dir, &name_holder);
21189 if (include_name != NULL)
21190 dwarf2_create_include_psymtab (include_name, pst, objfile);
21191 }
21192 }
21193 else
21194 {
21195 /* Make sure a symtab is created for every file, even files
21196 which contain only variables (i.e. no code with associated
21197 line numbers). */
21198 buildsym_compunit *builder = cu->get_builder ();
21199 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21200
21201 for (auto &fe : lh->file_names ())
21202 {
21203 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21204 if (builder->get_current_subfile ()->symtab == NULL)
21205 {
21206 builder->get_current_subfile ()->symtab
21207 = allocate_symtab (cust,
21208 builder->get_current_subfile ()->name);
21209 }
21210 fe.symtab = builder->get_current_subfile ()->symtab;
21211 }
21212 }
21213 }
21214
21215 /* Start a subfile for DWARF. FILENAME is the name of the file and
21216 DIRNAME the name of the source directory which contains FILENAME
21217 or NULL if not known.
21218 This routine tries to keep line numbers from identical absolute and
21219 relative file names in a common subfile.
21220
21221 Using the `list' example from the GDB testsuite, which resides in
21222 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21223 of /srcdir/list0.c yields the following debugging information for list0.c:
21224
21225 DW_AT_name: /srcdir/list0.c
21226 DW_AT_comp_dir: /compdir
21227 files.files[0].name: list0.h
21228 files.files[0].dir: /srcdir
21229 files.files[1].name: list0.c
21230 files.files[1].dir: /srcdir
21231
21232 The line number information for list0.c has to end up in a single
21233 subfile, so that `break /srcdir/list0.c:1' works as expected.
21234 start_subfile will ensure that this happens provided that we pass the
21235 concatenation of files.files[1].dir and files.files[1].name as the
21236 subfile's name. */
21237
21238 static void
21239 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21240 const char *dirname)
21241 {
21242 gdb::unique_xmalloc_ptr<char> copy;
21243
21244 /* In order not to lose the line information directory,
21245 we concatenate it to the filename when it makes sense.
21246 Note that the Dwarf3 standard says (speaking of filenames in line
21247 information): ``The directory index is ignored for file names
21248 that represent full path names''. Thus ignoring dirname in the
21249 `else' branch below isn't an issue. */
21250
21251 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21252 {
21253 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21254 filename = copy.get ();
21255 }
21256
21257 cu->get_builder ()->start_subfile (filename);
21258 }
21259
21260 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21261 buildsym_compunit constructor. */
21262
21263 struct compunit_symtab *
21264 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21265 CORE_ADDR low_pc)
21266 {
21267 gdb_assert (m_builder == nullptr);
21268
21269 m_builder.reset (new struct buildsym_compunit
21270 (this->per_objfile->objfile,
21271 name, comp_dir, language, low_pc));
21272
21273 list_in_scope = get_builder ()->get_file_symbols ();
21274
21275 get_builder ()->record_debugformat ("DWARF 2");
21276 get_builder ()->record_producer (producer);
21277
21278 processing_has_namespace_info = false;
21279
21280 return get_builder ()->get_compunit_symtab ();
21281 }
21282
21283 static void
21284 var_decode_location (struct attribute *attr, struct symbol *sym,
21285 struct dwarf2_cu *cu)
21286 {
21287 struct objfile *objfile = cu->per_objfile->objfile;
21288 struct comp_unit_head *cu_header = &cu->header;
21289
21290 /* NOTE drow/2003-01-30: There used to be a comment and some special
21291 code here to turn a symbol with DW_AT_external and a
21292 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21293 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21294 with some versions of binutils) where shared libraries could have
21295 relocations against symbols in their debug information - the
21296 minimal symbol would have the right address, but the debug info
21297 would not. It's no longer necessary, because we will explicitly
21298 apply relocations when we read in the debug information now. */
21299
21300 /* A DW_AT_location attribute with no contents indicates that a
21301 variable has been optimized away. */
21302 if (attr->form_is_block () && attr->as_block ()->size == 0)
21303 {
21304 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21305 return;
21306 }
21307
21308 /* Handle one degenerate form of location expression specially, to
21309 preserve GDB's previous behavior when section offsets are
21310 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21311 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21312
21313 if (attr->form_is_block ())
21314 {
21315 struct dwarf_block *block = attr->as_block ();
21316
21317 if ((block->data[0] == DW_OP_addr
21318 && block->size == 1 + cu_header->addr_size)
21319 || ((block->data[0] == DW_OP_GNU_addr_index
21320 || block->data[0] == DW_OP_addrx)
21321 && (block->size
21322 == 1 + leb128_size (&block->data[1]))))
21323 {
21324 unsigned int dummy;
21325
21326 if (block->data[0] == DW_OP_addr)
21327 SET_SYMBOL_VALUE_ADDRESS
21328 (sym, cu->header.read_address (objfile->obfd,
21329 block->data + 1,
21330 &dummy));
21331 else
21332 SET_SYMBOL_VALUE_ADDRESS
21333 (sym, read_addr_index_from_leb128 (cu, block->data + 1,
21334 &dummy));
21335 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21336 fixup_symbol_section (sym, objfile);
21337 SET_SYMBOL_VALUE_ADDRESS
21338 (sym,
21339 SYMBOL_VALUE_ADDRESS (sym)
21340 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21341 return;
21342 }
21343 }
21344
21345 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21346 expression evaluator, and use LOC_COMPUTED only when necessary
21347 (i.e. when the value of a register or memory location is
21348 referenced, or a thread-local block, etc.). Then again, it might
21349 not be worthwhile. I'm assuming that it isn't unless performance
21350 or memory numbers show me otherwise. */
21351
21352 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21353
21354 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21355 cu->has_loclist = true;
21356 }
21357
21358 /* Given a pointer to a DWARF information entry, figure out if we need
21359 to make a symbol table entry for it, and if so, create a new entry
21360 and return a pointer to it.
21361 If TYPE is NULL, determine symbol type from the die, otherwise
21362 used the passed type.
21363 If SPACE is not NULL, use it to hold the new symbol. If it is
21364 NULL, allocate a new symbol on the objfile's obstack. */
21365
21366 static struct symbol *
21367 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21368 struct symbol *space)
21369 {
21370 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21371 struct objfile *objfile = per_objfile->objfile;
21372 struct gdbarch *gdbarch = objfile->arch ();
21373 struct symbol *sym = NULL;
21374 const char *name;
21375 struct attribute *attr = NULL;
21376 struct attribute *attr2 = NULL;
21377 CORE_ADDR baseaddr;
21378 struct pending **list_to_add = NULL;
21379
21380 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21381
21382 baseaddr = objfile->text_section_offset ();
21383
21384 name = dwarf2_name (die, cu);
21385 if (name)
21386 {
21387 int suppress_add = 0;
21388
21389 if (space)
21390 sym = space;
21391 else
21392 sym = new (&objfile->objfile_obstack) symbol;
21393 OBJSTAT (objfile, n_syms++);
21394
21395 /* Cache this symbol's name and the name's demangled form (if any). */
21396 sym->set_language (cu->language, &objfile->objfile_obstack);
21397 /* Fortran does not have mangling standard and the mangling does differ
21398 between gfortran, iFort etc. */
21399 const char *physname
21400 = (cu->language == language_fortran
21401 ? dwarf2_full_name (name, die, cu)
21402 : dwarf2_physname (name, die, cu));
21403 const char *linkagename = dw2_linkage_name (die, cu);
21404
21405 if (linkagename == nullptr || cu->language == language_ada)
21406 sym->set_linkage_name (physname);
21407 else
21408 {
21409 sym->set_demangled_name (physname, &objfile->objfile_obstack);
21410 sym->set_linkage_name (linkagename);
21411 }
21412
21413 /* Default assumptions.
21414 Use the passed type or decode it from the die. */
21415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21416 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21417 if (type != NULL)
21418 SYMBOL_TYPE (sym) = type;
21419 else
21420 SYMBOL_TYPE (sym) = die_type (die, cu);
21421 attr = dwarf2_attr (die,
21422 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21423 cu);
21424 if (attr != nullptr)
21425 SYMBOL_LINE (sym) = attr->constant_value (0);
21426
21427 attr = dwarf2_attr (die,
21428 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21429 cu);
21430 if (attr != nullptr && attr->form_is_unsigned ())
21431 {
21432 file_name_index file_index
21433 = (file_name_index) attr->as_unsigned ();
21434 struct file_entry *fe;
21435
21436 if (cu->line_header != NULL)
21437 fe = cu->line_header->file_name_at (file_index);
21438 else
21439 fe = NULL;
21440
21441 if (fe == NULL)
21442 complaint (_("file index out of range"));
21443 else
21444 symbol_set_symtab (sym, fe->symtab);
21445 }
21446
21447 switch (die->tag)
21448 {
21449 case DW_TAG_label:
21450 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21451 if (attr != nullptr)
21452 {
21453 CORE_ADDR addr;
21454
21455 addr = attr->as_address ();
21456 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21457 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21458 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21459 }
21460 else
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21462 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21463 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21464 add_symbol_to_list (sym, cu->list_in_scope);
21465 break;
21466 case DW_TAG_subprogram:
21467 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21468 finish_block. */
21469 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21470 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21471 if ((attr2 != nullptr && attr2->as_boolean ())
21472 || cu->language == language_ada
21473 || cu->language == language_fortran)
21474 {
21475 /* Subprograms marked external are stored as a global symbol.
21476 Ada and Fortran subprograms, whether marked external or
21477 not, are always stored as a global symbol, because we want
21478 to be able to access them globally. For instance, we want
21479 to be able to break on a nested subprogram without having
21480 to specify the context. */
21481 list_to_add = cu->get_builder ()->get_global_symbols ();
21482 }
21483 else
21484 {
21485 list_to_add = cu->list_in_scope;
21486 }
21487 break;
21488 case DW_TAG_inlined_subroutine:
21489 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21490 finish_block. */
21491 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21492 SYMBOL_INLINED (sym) = 1;
21493 list_to_add = cu->list_in_scope;
21494 break;
21495 case DW_TAG_template_value_param:
21496 suppress_add = 1;
21497 /* Fall through. */
21498 case DW_TAG_constant:
21499 case DW_TAG_variable:
21500 case DW_TAG_member:
21501 /* Compilation with minimal debug info may result in
21502 variables with missing type entries. Change the
21503 misleading `void' type to something sensible. */
21504 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
21505 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21506
21507 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21508 /* In the case of DW_TAG_member, we should only be called for
21509 static const members. */
21510 if (die->tag == DW_TAG_member)
21511 {
21512 /* dwarf2_add_field uses die_is_declaration,
21513 so we do the same. */
21514 gdb_assert (die_is_declaration (die, cu));
21515 gdb_assert (attr);
21516 }
21517 if (attr != nullptr)
21518 {
21519 dwarf2_const_value (attr, sym, cu);
21520 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21521 if (!suppress_add)
21522 {
21523 if (attr2 != nullptr && attr2->as_boolean ())
21524 list_to_add = cu->get_builder ()->get_global_symbols ();
21525 else
21526 list_to_add = cu->list_in_scope;
21527 }
21528 break;
21529 }
21530 attr = dwarf2_attr (die, DW_AT_location, cu);
21531 if (attr != nullptr)
21532 {
21533 var_decode_location (attr, sym, cu);
21534 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21535
21536 /* Fortran explicitly imports any global symbols to the local
21537 scope by DW_TAG_common_block. */
21538 if (cu->language == language_fortran && die->parent
21539 && die->parent->tag == DW_TAG_common_block)
21540 attr2 = NULL;
21541
21542 if (SYMBOL_CLASS (sym) == LOC_STATIC
21543 && SYMBOL_VALUE_ADDRESS (sym) == 0
21544 && !per_objfile->per_bfd->has_section_at_zero)
21545 {
21546 /* When a static variable is eliminated by the linker,
21547 the corresponding debug information is not stripped
21548 out, but the variable address is set to null;
21549 do not add such variables into symbol table. */
21550 }
21551 else if (attr2 != nullptr && attr2->as_boolean ())
21552 {
21553 if (SYMBOL_CLASS (sym) == LOC_STATIC
21554 && (objfile->flags & OBJF_MAINLINE) == 0
21555 && per_objfile->per_bfd->can_copy)
21556 {
21557 /* A global static variable might be subject to
21558 copy relocation. We first check for a local
21559 minsym, though, because maybe the symbol was
21560 marked hidden, in which case this would not
21561 apply. */
21562 bound_minimal_symbol found
21563 = (lookup_minimal_symbol_linkage
21564 (sym->linkage_name (), objfile));
21565 if (found.minsym != nullptr)
21566 sym->maybe_copied = 1;
21567 }
21568
21569 /* A variable with DW_AT_external is never static,
21570 but it may be block-scoped. */
21571 list_to_add
21572 = ((cu->list_in_scope
21573 == cu->get_builder ()->get_file_symbols ())
21574 ? cu->get_builder ()->get_global_symbols ()
21575 : cu->list_in_scope);
21576 }
21577 else
21578 list_to_add = cu->list_in_scope;
21579 }
21580 else
21581 {
21582 /* We do not know the address of this symbol.
21583 If it is an external symbol and we have type information
21584 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21585 The address of the variable will then be determined from
21586 the minimal symbol table whenever the variable is
21587 referenced. */
21588 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21589
21590 /* Fortran explicitly imports any global symbols to the local
21591 scope by DW_TAG_common_block. */
21592 if (cu->language == language_fortran && die->parent
21593 && die->parent->tag == DW_TAG_common_block)
21594 {
21595 /* SYMBOL_CLASS doesn't matter here because
21596 read_common_block is going to reset it. */
21597 if (!suppress_add)
21598 list_to_add = cu->list_in_scope;
21599 }
21600 else if (attr2 != nullptr && attr2->as_boolean ()
21601 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21602 {
21603 /* A variable with DW_AT_external is never static, but it
21604 may be block-scoped. */
21605 list_to_add
21606 = ((cu->list_in_scope
21607 == cu->get_builder ()->get_file_symbols ())
21608 ? cu->get_builder ()->get_global_symbols ()
21609 : cu->list_in_scope);
21610
21611 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21612 }
21613 else if (!die_is_declaration (die, cu))
21614 {
21615 /* Use the default LOC_OPTIMIZED_OUT class. */
21616 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21617 if (!suppress_add)
21618 list_to_add = cu->list_in_scope;
21619 }
21620 }
21621 break;
21622 case DW_TAG_formal_parameter:
21623 {
21624 /* If we are inside a function, mark this as an argument. If
21625 not, we might be looking at an argument to an inlined function
21626 when we do not have enough information to show inlined frames;
21627 pretend it's a local variable in that case so that the user can
21628 still see it. */
21629 struct context_stack *curr
21630 = cu->get_builder ()->get_current_context_stack ();
21631 if (curr != nullptr && curr->name != nullptr)
21632 SYMBOL_IS_ARGUMENT (sym) = 1;
21633 attr = dwarf2_attr (die, DW_AT_location, cu);
21634 if (attr != nullptr)
21635 {
21636 var_decode_location (attr, sym, cu);
21637 }
21638 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21639 if (attr != nullptr)
21640 {
21641 dwarf2_const_value (attr, sym, cu);
21642 }
21643
21644 list_to_add = cu->list_in_scope;
21645 }
21646 break;
21647 case DW_TAG_unspecified_parameters:
21648 /* From varargs functions; gdb doesn't seem to have any
21649 interest in this information, so just ignore it for now.
21650 (FIXME?) */
21651 break;
21652 case DW_TAG_template_type_param:
21653 suppress_add = 1;
21654 /* Fall through. */
21655 case DW_TAG_class_type:
21656 case DW_TAG_interface_type:
21657 case DW_TAG_structure_type:
21658 case DW_TAG_union_type:
21659 case DW_TAG_set_type:
21660 case DW_TAG_enumeration_type:
21661 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21662 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21663
21664 {
21665 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21666 really ever be static objects: otherwise, if you try
21667 to, say, break of a class's method and you're in a file
21668 which doesn't mention that class, it won't work unless
21669 the check for all static symbols in lookup_symbol_aux
21670 saves you. See the OtherFileClass tests in
21671 gdb.c++/namespace.exp. */
21672
21673 if (!suppress_add)
21674 {
21675 buildsym_compunit *builder = cu->get_builder ();
21676 list_to_add
21677 = (cu->list_in_scope == builder->get_file_symbols ()
21678 && cu->language == language_cplus
21679 ? builder->get_global_symbols ()
21680 : cu->list_in_scope);
21681
21682 /* The semantics of C++ state that "struct foo {
21683 ... }" also defines a typedef for "foo". */
21684 if (cu->language == language_cplus
21685 || cu->language == language_ada
21686 || cu->language == language_d
21687 || cu->language == language_rust)
21688 {
21689 /* The symbol's name is already allocated along
21690 with this objfile, so we don't need to
21691 duplicate it for the type. */
21692 if (SYMBOL_TYPE (sym)->name () == 0)
21693 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
21694 }
21695 }
21696 }
21697 break;
21698 case DW_TAG_typedef:
21699 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21700 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21701 list_to_add = cu->list_in_scope;
21702 break;
21703 case DW_TAG_base_type:
21704 case DW_TAG_subrange_type:
21705 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21706 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21707 list_to_add = cu->list_in_scope;
21708 break;
21709 case DW_TAG_enumerator:
21710 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21711 if (attr != nullptr)
21712 {
21713 dwarf2_const_value (attr, sym, cu);
21714 }
21715 {
21716 /* NOTE: carlton/2003-11-10: See comment above in the
21717 DW_TAG_class_type, etc. block. */
21718
21719 list_to_add
21720 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21721 && cu->language == language_cplus
21722 ? cu->get_builder ()->get_global_symbols ()
21723 : cu->list_in_scope);
21724 }
21725 break;
21726 case DW_TAG_imported_declaration:
21727 case DW_TAG_namespace:
21728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21729 list_to_add = cu->get_builder ()->get_global_symbols ();
21730 break;
21731 case DW_TAG_module:
21732 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21733 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21734 list_to_add = cu->get_builder ()->get_global_symbols ();
21735 break;
21736 case DW_TAG_common_block:
21737 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21738 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21739 add_symbol_to_list (sym, cu->list_in_scope);
21740 break;
21741 default:
21742 /* Not a tag we recognize. Hopefully we aren't processing
21743 trash data, but since we must specifically ignore things
21744 we don't recognize, there is nothing else we should do at
21745 this point. */
21746 complaint (_("unsupported tag: '%s'"),
21747 dwarf_tag_name (die->tag));
21748 break;
21749 }
21750
21751 if (suppress_add)
21752 {
21753 sym->hash_next = objfile->template_symbols;
21754 objfile->template_symbols = sym;
21755 list_to_add = NULL;
21756 }
21757
21758 if (list_to_add != NULL)
21759 add_symbol_to_list (sym, list_to_add);
21760
21761 /* For the benefit of old versions of GCC, check for anonymous
21762 namespaces based on the demangled name. */
21763 if (!cu->processing_has_namespace_info
21764 && cu->language == language_cplus)
21765 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21766 }
21767 return (sym);
21768 }
21769
21770 /* Given an attr with a DW_FORM_dataN value in host byte order,
21771 zero-extend it as appropriate for the symbol's type. The DWARF
21772 standard (v4) is not entirely clear about the meaning of using
21773 DW_FORM_dataN for a constant with a signed type, where the type is
21774 wider than the data. The conclusion of a discussion on the DWARF
21775 list was that this is unspecified. We choose to always zero-extend
21776 because that is the interpretation long in use by GCC. */
21777
21778 static gdb_byte *
21779 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21780 struct dwarf2_cu *cu, LONGEST *value, int bits)
21781 {
21782 struct objfile *objfile = cu->per_objfile->objfile;
21783 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21784 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21785 LONGEST l = attr->constant_value (0);
21786
21787 if (bits < sizeof (*value) * 8)
21788 {
21789 l &= ((LONGEST) 1 << bits) - 1;
21790 *value = l;
21791 }
21792 else if (bits == sizeof (*value) * 8)
21793 *value = l;
21794 else
21795 {
21796 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21797 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21798 return bytes;
21799 }
21800
21801 return NULL;
21802 }
21803
21804 /* Read a constant value from an attribute. Either set *VALUE, or if
21805 the value does not fit in *VALUE, set *BYTES - either already
21806 allocated on the objfile obstack, or newly allocated on OBSTACK,
21807 or, set *BATON, if we translated the constant to a location
21808 expression. */
21809
21810 static void
21811 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21812 const char *name, struct obstack *obstack,
21813 struct dwarf2_cu *cu,
21814 LONGEST *value, const gdb_byte **bytes,
21815 struct dwarf2_locexpr_baton **baton)
21816 {
21817 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21818 struct objfile *objfile = per_objfile->objfile;
21819 struct comp_unit_head *cu_header = &cu->header;
21820 struct dwarf_block *blk;
21821 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21822 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21823
21824 *value = 0;
21825 *bytes = NULL;
21826 *baton = NULL;
21827
21828 switch (attr->form)
21829 {
21830 case DW_FORM_addr:
21831 case DW_FORM_addrx:
21832 case DW_FORM_GNU_addr_index:
21833 {
21834 gdb_byte *data;
21835
21836 if (TYPE_LENGTH (type) != cu_header->addr_size)
21837 dwarf2_const_value_length_mismatch_complaint (name,
21838 cu_header->addr_size,
21839 TYPE_LENGTH (type));
21840 /* Symbols of this form are reasonably rare, so we just
21841 piggyback on the existing location code rather than writing
21842 a new implementation of symbol_computed_ops. */
21843 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21844 (*baton)->per_objfile = per_objfile;
21845 (*baton)->per_cu = cu->per_cu;
21846 gdb_assert ((*baton)->per_cu);
21847
21848 (*baton)->size = 2 + cu_header->addr_size;
21849 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21850 (*baton)->data = data;
21851
21852 data[0] = DW_OP_addr;
21853 store_unsigned_integer (&data[1], cu_header->addr_size,
21854 byte_order, attr->as_address ());
21855 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21856 }
21857 break;
21858 case DW_FORM_string:
21859 case DW_FORM_strp:
21860 case DW_FORM_strx:
21861 case DW_FORM_GNU_str_index:
21862 case DW_FORM_GNU_strp_alt:
21863 /* The string is already allocated on the objfile obstack, point
21864 directly to it. */
21865 *bytes = (const gdb_byte *) attr->as_string ();
21866 break;
21867 case DW_FORM_block1:
21868 case DW_FORM_block2:
21869 case DW_FORM_block4:
21870 case DW_FORM_block:
21871 case DW_FORM_exprloc:
21872 case DW_FORM_data16:
21873 blk = attr->as_block ();
21874 if (TYPE_LENGTH (type) != blk->size)
21875 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21876 TYPE_LENGTH (type));
21877 *bytes = blk->data;
21878 break;
21879
21880 /* The DW_AT_const_value attributes are supposed to carry the
21881 symbol's value "represented as it would be on the target
21882 architecture." By the time we get here, it's already been
21883 converted to host endianness, so we just need to sign- or
21884 zero-extend it as appropriate. */
21885 case DW_FORM_data1:
21886 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21887 break;
21888 case DW_FORM_data2:
21889 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21890 break;
21891 case DW_FORM_data4:
21892 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21893 break;
21894 case DW_FORM_data8:
21895 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21896 break;
21897
21898 case DW_FORM_sdata:
21899 case DW_FORM_implicit_const:
21900 *value = attr->as_signed ();
21901 break;
21902
21903 case DW_FORM_udata:
21904 *value = attr->as_unsigned ();
21905 break;
21906
21907 default:
21908 complaint (_("unsupported const value attribute form: '%s'"),
21909 dwarf_form_name (attr->form));
21910 *value = 0;
21911 break;
21912 }
21913 }
21914
21915
21916 /* Copy constant value from an attribute to a symbol. */
21917
21918 static void
21919 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21920 struct dwarf2_cu *cu)
21921 {
21922 struct objfile *objfile = cu->per_objfile->objfile;
21923 LONGEST value;
21924 const gdb_byte *bytes;
21925 struct dwarf2_locexpr_baton *baton;
21926
21927 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21928 sym->print_name (),
21929 &objfile->objfile_obstack, cu,
21930 &value, &bytes, &baton);
21931
21932 if (baton != NULL)
21933 {
21934 SYMBOL_LOCATION_BATON (sym) = baton;
21935 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21936 }
21937 else if (bytes != NULL)
21938 {
21939 SYMBOL_VALUE_BYTES (sym) = bytes;
21940 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21941 }
21942 else
21943 {
21944 SYMBOL_VALUE (sym) = value;
21945 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21946 }
21947 }
21948
21949 /* Return the type of the die in question using its DW_AT_type attribute. */
21950
21951 static struct type *
21952 die_type (struct die_info *die, struct dwarf2_cu *cu)
21953 {
21954 struct attribute *type_attr;
21955
21956 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21957 if (!type_attr)
21958 {
21959 struct objfile *objfile = cu->per_objfile->objfile;
21960 /* A missing DW_AT_type represents a void type. */
21961 return objfile_type (objfile)->builtin_void;
21962 }
21963
21964 return lookup_die_type (die, type_attr, cu);
21965 }
21966
21967 /* True iff CU's producer generates GNAT Ada auxiliary information
21968 that allows to find parallel types through that information instead
21969 of having to do expensive parallel lookups by type name. */
21970
21971 static int
21972 need_gnat_info (struct dwarf2_cu *cu)
21973 {
21974 /* Assume that the Ada compiler was GNAT, which always produces
21975 the auxiliary information. */
21976 return (cu->language == language_ada);
21977 }
21978
21979 /* Return the auxiliary type of the die in question using its
21980 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21981 attribute is not present. */
21982
21983 static struct type *
21984 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21985 {
21986 struct attribute *type_attr;
21987
21988 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21989 if (!type_attr)
21990 return NULL;
21991
21992 return lookup_die_type (die, type_attr, cu);
21993 }
21994
21995 /* If DIE has a descriptive_type attribute, then set the TYPE's
21996 descriptive type accordingly. */
21997
21998 static void
21999 set_descriptive_type (struct type *type, struct die_info *die,
22000 struct dwarf2_cu *cu)
22001 {
22002 struct type *descriptive_type = die_descriptive_type (die, cu);
22003
22004 if (descriptive_type)
22005 {
22006 ALLOCATE_GNAT_AUX_TYPE (type);
22007 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22008 }
22009 }
22010
22011 /* Return the containing type of the die in question using its
22012 DW_AT_containing_type attribute. */
22013
22014 static struct type *
22015 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22016 {
22017 struct attribute *type_attr;
22018 struct objfile *objfile = cu->per_objfile->objfile;
22019
22020 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22021 if (!type_attr)
22022 error (_("Dwarf Error: Problem turning containing type into gdb type "
22023 "[in module %s]"), objfile_name (objfile));
22024
22025 return lookup_die_type (die, type_attr, cu);
22026 }
22027
22028 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22029
22030 static struct type *
22031 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22032 {
22033 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22034 struct objfile *objfile = per_objfile->objfile;
22035 char *saved;
22036
22037 std::string message
22038 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22039 objfile_name (objfile),
22040 sect_offset_str (cu->header.sect_off),
22041 sect_offset_str (die->sect_off));
22042 saved = obstack_strdup (&objfile->objfile_obstack, message);
22043
22044 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22045 }
22046
22047 /* Look up the type of DIE in CU using its type attribute ATTR.
22048 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22049 DW_AT_containing_type.
22050 If there is no type substitute an error marker. */
22051
22052 static struct type *
22053 lookup_die_type (struct die_info *die, const struct attribute *attr,
22054 struct dwarf2_cu *cu)
22055 {
22056 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22057 struct objfile *objfile = per_objfile->objfile;
22058 struct type *this_type;
22059
22060 gdb_assert (attr->name == DW_AT_type
22061 || attr->name == DW_AT_GNAT_descriptive_type
22062 || attr->name == DW_AT_containing_type);
22063
22064 /* First see if we have it cached. */
22065
22066 if (attr->form == DW_FORM_GNU_ref_alt)
22067 {
22068 struct dwarf2_per_cu_data *per_cu;
22069 sect_offset sect_off = attr->get_ref_die_offset ();
22070
22071 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
22072 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
22073 }
22074 else if (attr->form_is_ref ())
22075 {
22076 sect_offset sect_off = attr->get_ref_die_offset ();
22077
22078 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
22079 }
22080 else if (attr->form == DW_FORM_ref_sig8)
22081 {
22082 ULONGEST signature = attr->as_signature ();
22083
22084 return get_signatured_type (die, signature, cu);
22085 }
22086 else
22087 {
22088 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22089 " at %s [in module %s]"),
22090 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22091 objfile_name (objfile));
22092 return build_error_marker_type (cu, die);
22093 }
22094
22095 /* If not cached we need to read it in. */
22096
22097 if (this_type == NULL)
22098 {
22099 struct die_info *type_die = NULL;
22100 struct dwarf2_cu *type_cu = cu;
22101
22102 if (attr->form_is_ref ())
22103 type_die = follow_die_ref (die, attr, &type_cu);
22104 if (type_die == NULL)
22105 return build_error_marker_type (cu, die);
22106 /* If we find the type now, it's probably because the type came
22107 from an inter-CU reference and the type's CU got expanded before
22108 ours. */
22109 this_type = read_type_die (type_die, type_cu);
22110 }
22111
22112 /* If we still don't have a type use an error marker. */
22113
22114 if (this_type == NULL)
22115 return build_error_marker_type (cu, die);
22116
22117 return this_type;
22118 }
22119
22120 /* Return the type in DIE, CU.
22121 Returns NULL for invalid types.
22122
22123 This first does a lookup in die_type_hash,
22124 and only reads the die in if necessary.
22125
22126 NOTE: This can be called when reading in partial or full symbols. */
22127
22128 static struct type *
22129 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22130 {
22131 struct type *this_type;
22132
22133 this_type = get_die_type (die, cu);
22134 if (this_type)
22135 return this_type;
22136
22137 return read_type_die_1 (die, cu);
22138 }
22139
22140 /* Read the type in DIE, CU.
22141 Returns NULL for invalid types. */
22142
22143 static struct type *
22144 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22145 {
22146 struct type *this_type = NULL;
22147
22148 switch (die->tag)
22149 {
22150 case DW_TAG_class_type:
22151 case DW_TAG_interface_type:
22152 case DW_TAG_structure_type:
22153 case DW_TAG_union_type:
22154 this_type = read_structure_type (die, cu);
22155 break;
22156 case DW_TAG_enumeration_type:
22157 this_type = read_enumeration_type (die, cu);
22158 break;
22159 case DW_TAG_subprogram:
22160 case DW_TAG_subroutine_type:
22161 case DW_TAG_inlined_subroutine:
22162 this_type = read_subroutine_type (die, cu);
22163 break;
22164 case DW_TAG_array_type:
22165 this_type = read_array_type (die, cu);
22166 break;
22167 case DW_TAG_set_type:
22168 this_type = read_set_type (die, cu);
22169 break;
22170 case DW_TAG_pointer_type:
22171 this_type = read_tag_pointer_type (die, cu);
22172 break;
22173 case DW_TAG_ptr_to_member_type:
22174 this_type = read_tag_ptr_to_member_type (die, cu);
22175 break;
22176 case DW_TAG_reference_type:
22177 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22178 break;
22179 case DW_TAG_rvalue_reference_type:
22180 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22181 break;
22182 case DW_TAG_const_type:
22183 this_type = read_tag_const_type (die, cu);
22184 break;
22185 case DW_TAG_volatile_type:
22186 this_type = read_tag_volatile_type (die, cu);
22187 break;
22188 case DW_TAG_restrict_type:
22189 this_type = read_tag_restrict_type (die, cu);
22190 break;
22191 case DW_TAG_string_type:
22192 this_type = read_tag_string_type (die, cu);
22193 break;
22194 case DW_TAG_typedef:
22195 this_type = read_typedef (die, cu);
22196 break;
22197 case DW_TAG_subrange_type:
22198 this_type = read_subrange_type (die, cu);
22199 break;
22200 case DW_TAG_base_type:
22201 this_type = read_base_type (die, cu);
22202 break;
22203 case DW_TAG_unspecified_type:
22204 this_type = read_unspecified_type (die, cu);
22205 break;
22206 case DW_TAG_namespace:
22207 this_type = read_namespace_type (die, cu);
22208 break;
22209 case DW_TAG_module:
22210 this_type = read_module_type (die, cu);
22211 break;
22212 case DW_TAG_atomic_type:
22213 this_type = read_tag_atomic_type (die, cu);
22214 break;
22215 default:
22216 complaint (_("unexpected tag in read_type_die: '%s'"),
22217 dwarf_tag_name (die->tag));
22218 break;
22219 }
22220
22221 return this_type;
22222 }
22223
22224 /* See if we can figure out if the class lives in a namespace. We do
22225 this by looking for a member function; its demangled name will
22226 contain namespace info, if there is any.
22227 Return the computed name or NULL.
22228 Space for the result is allocated on the objfile's obstack.
22229 This is the full-die version of guess_partial_die_structure_name.
22230 In this case we know DIE has no useful parent. */
22231
22232 static const char *
22233 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22234 {
22235 struct die_info *spec_die;
22236 struct dwarf2_cu *spec_cu;
22237 struct die_info *child;
22238 struct objfile *objfile = cu->per_objfile->objfile;
22239
22240 spec_cu = cu;
22241 spec_die = die_specification (die, &spec_cu);
22242 if (spec_die != NULL)
22243 {
22244 die = spec_die;
22245 cu = spec_cu;
22246 }
22247
22248 for (child = die->child;
22249 child != NULL;
22250 child = child->sibling)
22251 {
22252 if (child->tag == DW_TAG_subprogram)
22253 {
22254 const char *linkage_name = dw2_linkage_name (child, cu);
22255
22256 if (linkage_name != NULL)
22257 {
22258 gdb::unique_xmalloc_ptr<char> actual_name
22259 (cu->language_defn->class_name_from_physname (linkage_name));
22260 const char *name = NULL;
22261
22262 if (actual_name != NULL)
22263 {
22264 const char *die_name = dwarf2_name (die, cu);
22265
22266 if (die_name != NULL
22267 && strcmp (die_name, actual_name.get ()) != 0)
22268 {
22269 /* Strip off the class name from the full name.
22270 We want the prefix. */
22271 int die_name_len = strlen (die_name);
22272 int actual_name_len = strlen (actual_name.get ());
22273 const char *ptr = actual_name.get ();
22274
22275 /* Test for '::' as a sanity check. */
22276 if (actual_name_len > die_name_len + 2
22277 && ptr[actual_name_len - die_name_len - 1] == ':')
22278 name = obstack_strndup (
22279 &objfile->per_bfd->storage_obstack,
22280 ptr, actual_name_len - die_name_len - 2);
22281 }
22282 }
22283 return name;
22284 }
22285 }
22286 }
22287
22288 return NULL;
22289 }
22290
22291 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22292 prefix part in such case. See
22293 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22294
22295 static const char *
22296 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22297 {
22298 struct attribute *attr;
22299 const char *base;
22300
22301 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22302 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22303 return NULL;
22304
22305 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22306 return NULL;
22307
22308 attr = dw2_linkage_name_attr (die, cu);
22309 const char *attr_name = attr->as_string ();
22310 if (attr == NULL || attr_name == NULL)
22311 return NULL;
22312
22313 /* dwarf2_name had to be already called. */
22314 gdb_assert (attr->canonical_string_p ());
22315
22316 /* Strip the base name, keep any leading namespaces/classes. */
22317 base = strrchr (attr_name, ':');
22318 if (base == NULL || base == attr_name || base[-1] != ':')
22319 return "";
22320
22321 struct objfile *objfile = cu->per_objfile->objfile;
22322 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22323 attr_name,
22324 &base[-1] - attr_name);
22325 }
22326
22327 /* Return the name of the namespace/class that DIE is defined within,
22328 or "" if we can't tell. The caller should not xfree the result.
22329
22330 For example, if we're within the method foo() in the following
22331 code:
22332
22333 namespace N {
22334 class C {
22335 void foo () {
22336 }
22337 };
22338 }
22339
22340 then determine_prefix on foo's die will return "N::C". */
22341
22342 static const char *
22343 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22344 {
22345 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22346 struct die_info *parent, *spec_die;
22347 struct dwarf2_cu *spec_cu;
22348 struct type *parent_type;
22349 const char *retval;
22350
22351 if (cu->language != language_cplus
22352 && cu->language != language_fortran && cu->language != language_d
22353 && cu->language != language_rust)
22354 return "";
22355
22356 retval = anonymous_struct_prefix (die, cu);
22357 if (retval)
22358 return retval;
22359
22360 /* We have to be careful in the presence of DW_AT_specification.
22361 For example, with GCC 3.4, given the code
22362
22363 namespace N {
22364 void foo() {
22365 // Definition of N::foo.
22366 }
22367 }
22368
22369 then we'll have a tree of DIEs like this:
22370
22371 1: DW_TAG_compile_unit
22372 2: DW_TAG_namespace // N
22373 3: DW_TAG_subprogram // declaration of N::foo
22374 4: DW_TAG_subprogram // definition of N::foo
22375 DW_AT_specification // refers to die #3
22376
22377 Thus, when processing die #4, we have to pretend that we're in
22378 the context of its DW_AT_specification, namely the contex of die
22379 #3. */
22380 spec_cu = cu;
22381 spec_die = die_specification (die, &spec_cu);
22382 if (spec_die == NULL)
22383 parent = die->parent;
22384 else
22385 {
22386 parent = spec_die->parent;
22387 cu = spec_cu;
22388 }
22389
22390 if (parent == NULL)
22391 return "";
22392 else if (parent->building_fullname)
22393 {
22394 const char *name;
22395 const char *parent_name;
22396
22397 /* It has been seen on RealView 2.2 built binaries,
22398 DW_TAG_template_type_param types actually _defined_ as
22399 children of the parent class:
22400
22401 enum E {};
22402 template class <class Enum> Class{};
22403 Class<enum E> class_e;
22404
22405 1: DW_TAG_class_type (Class)
22406 2: DW_TAG_enumeration_type (E)
22407 3: DW_TAG_enumerator (enum1:0)
22408 3: DW_TAG_enumerator (enum2:1)
22409 ...
22410 2: DW_TAG_template_type_param
22411 DW_AT_type DW_FORM_ref_udata (E)
22412
22413 Besides being broken debug info, it can put GDB into an
22414 infinite loop. Consider:
22415
22416 When we're building the full name for Class<E>, we'll start
22417 at Class, and go look over its template type parameters,
22418 finding E. We'll then try to build the full name of E, and
22419 reach here. We're now trying to build the full name of E,
22420 and look over the parent DIE for containing scope. In the
22421 broken case, if we followed the parent DIE of E, we'd again
22422 find Class, and once again go look at its template type
22423 arguments, etc., etc. Simply don't consider such parent die
22424 as source-level parent of this die (it can't be, the language
22425 doesn't allow it), and break the loop here. */
22426 name = dwarf2_name (die, cu);
22427 parent_name = dwarf2_name (parent, cu);
22428 complaint (_("template param type '%s' defined within parent '%s'"),
22429 name ? name : "<unknown>",
22430 parent_name ? parent_name : "<unknown>");
22431 return "";
22432 }
22433 else
22434 switch (parent->tag)
22435 {
22436 case DW_TAG_namespace:
22437 parent_type = read_type_die (parent, cu);
22438 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22439 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22440 Work around this problem here. */
22441 if (cu->language == language_cplus
22442 && strcmp (parent_type->name (), "::") == 0)
22443 return "";
22444 /* We give a name to even anonymous namespaces. */
22445 return parent_type->name ();
22446 case DW_TAG_class_type:
22447 case DW_TAG_interface_type:
22448 case DW_TAG_structure_type:
22449 case DW_TAG_union_type:
22450 case DW_TAG_module:
22451 parent_type = read_type_die (parent, cu);
22452 if (parent_type->name () != NULL)
22453 return parent_type->name ();
22454 else
22455 /* An anonymous structure is only allowed non-static data
22456 members; no typedefs, no member functions, et cetera.
22457 So it does not need a prefix. */
22458 return "";
22459 case DW_TAG_compile_unit:
22460 case DW_TAG_partial_unit:
22461 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22462 if (cu->language == language_cplus
22463 && !per_objfile->per_bfd->types.empty ()
22464 && die->child != NULL
22465 && (die->tag == DW_TAG_class_type
22466 || die->tag == DW_TAG_structure_type
22467 || die->tag == DW_TAG_union_type))
22468 {
22469 const char *name = guess_full_die_structure_name (die, cu);
22470 if (name != NULL)
22471 return name;
22472 }
22473 return "";
22474 case DW_TAG_subprogram:
22475 /* Nested subroutines in Fortran get a prefix with the name
22476 of the parent's subroutine. */
22477 if (cu->language == language_fortran)
22478 {
22479 if ((die->tag == DW_TAG_subprogram)
22480 && (dwarf2_name (parent, cu) != NULL))
22481 return dwarf2_name (parent, cu);
22482 }
22483 return determine_prefix (parent, cu);
22484 case DW_TAG_enumeration_type:
22485 parent_type = read_type_die (parent, cu);
22486 if (TYPE_DECLARED_CLASS (parent_type))
22487 {
22488 if (parent_type->name () != NULL)
22489 return parent_type->name ();
22490 return "";
22491 }
22492 /* Fall through. */
22493 default:
22494 return determine_prefix (parent, cu);
22495 }
22496 }
22497
22498 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22499 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22500 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22501 an obconcat, otherwise allocate storage for the result. The CU argument is
22502 used to determine the language and hence, the appropriate separator. */
22503
22504 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22505
22506 static char *
22507 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22508 int physname, struct dwarf2_cu *cu)
22509 {
22510 const char *lead = "";
22511 const char *sep;
22512
22513 if (suffix == NULL || suffix[0] == '\0'
22514 || prefix == NULL || prefix[0] == '\0')
22515 sep = "";
22516 else if (cu->language == language_d)
22517 {
22518 /* For D, the 'main' function could be defined in any module, but it
22519 should never be prefixed. */
22520 if (strcmp (suffix, "D main") == 0)
22521 {
22522 prefix = "";
22523 sep = "";
22524 }
22525 else
22526 sep = ".";
22527 }
22528 else if (cu->language == language_fortran && physname)
22529 {
22530 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22531 DW_AT_MIPS_linkage_name is preferred and used instead. */
22532
22533 lead = "__";
22534 sep = "_MOD_";
22535 }
22536 else
22537 sep = "::";
22538
22539 if (prefix == NULL)
22540 prefix = "";
22541 if (suffix == NULL)
22542 suffix = "";
22543
22544 if (obs == NULL)
22545 {
22546 char *retval
22547 = ((char *)
22548 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22549
22550 strcpy (retval, lead);
22551 strcat (retval, prefix);
22552 strcat (retval, sep);
22553 strcat (retval, suffix);
22554 return retval;
22555 }
22556 else
22557 {
22558 /* We have an obstack. */
22559 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22560 }
22561 }
22562
22563 /* Get name of a die, return NULL if not found. */
22564
22565 static const char *
22566 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22567 struct objfile *objfile)
22568 {
22569 if (name && cu->language == language_cplus)
22570 {
22571 gdb::unique_xmalloc_ptr<char> canon_name
22572 = cp_canonicalize_string (name);
22573
22574 if (canon_name != nullptr)
22575 name = objfile->intern (canon_name.get ());
22576 }
22577
22578 return name;
22579 }
22580
22581 /* Get name of a die, return NULL if not found.
22582 Anonymous namespaces are converted to their magic string. */
22583
22584 static const char *
22585 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22586 {
22587 struct attribute *attr;
22588 struct objfile *objfile = cu->per_objfile->objfile;
22589
22590 attr = dwarf2_attr (die, DW_AT_name, cu);
22591 const char *attr_name = attr == nullptr ? nullptr : attr->as_string ();
22592 if (attr_name == nullptr
22593 && die->tag != DW_TAG_namespace
22594 && die->tag != DW_TAG_class_type
22595 && die->tag != DW_TAG_interface_type
22596 && die->tag != DW_TAG_structure_type
22597 && die->tag != DW_TAG_union_type)
22598 return NULL;
22599
22600 switch (die->tag)
22601 {
22602 case DW_TAG_compile_unit:
22603 case DW_TAG_partial_unit:
22604 /* Compilation units have a DW_AT_name that is a filename, not
22605 a source language identifier. */
22606 case DW_TAG_enumeration_type:
22607 case DW_TAG_enumerator:
22608 /* These tags always have simple identifiers already; no need
22609 to canonicalize them. */
22610 return attr_name;
22611
22612 case DW_TAG_namespace:
22613 if (attr_name != nullptr)
22614 return attr_name;
22615 return CP_ANONYMOUS_NAMESPACE_STR;
22616
22617 case DW_TAG_class_type:
22618 case DW_TAG_interface_type:
22619 case DW_TAG_structure_type:
22620 case DW_TAG_union_type:
22621 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22622 structures or unions. These were of the form "._%d" in GCC 4.1,
22623 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22624 and GCC 4.4. We work around this problem by ignoring these. */
22625 if (attr_name != nullptr
22626 && (startswith (attr_name, "._")
22627 || startswith (attr_name, "<anonymous")))
22628 return NULL;
22629
22630 /* GCC might emit a nameless typedef that has a linkage name. See
22631 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22632 if (!attr || attr_name == NULL)
22633 {
22634 attr = dw2_linkage_name_attr (die, cu);
22635 attr_name = attr == nullptr ? nullptr : attr->as_string ();
22636 if (attr == NULL || attr_name == NULL)
22637 return NULL;
22638
22639 /* Avoid demangling attr_name the second time on a second
22640 call for the same DIE. */
22641 if (!attr->canonical_string_p ())
22642 {
22643 gdb::unique_xmalloc_ptr<char> demangled
22644 (gdb_demangle (attr_name, DMGL_TYPES));
22645 if (demangled == nullptr)
22646 return nullptr;
22647
22648 attr->set_string_canonical (objfile->intern (demangled.get ()));
22649 attr_name = attr->as_string ();
22650 }
22651
22652 /* Strip any leading namespaces/classes, keep only the
22653 base name. DW_AT_name for named DIEs does not
22654 contain the prefixes. */
22655 const char *base = strrchr (attr_name, ':');
22656 if (base && base > attr_name && base[-1] == ':')
22657 return &base[1];
22658 else
22659 return attr_name;
22660 }
22661 break;
22662
22663 default:
22664 break;
22665 }
22666
22667 if (!attr->canonical_string_p ())
22668 attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu,
22669 objfile));
22670 return attr->as_string ();
22671 }
22672
22673 /* Return the die that this die in an extension of, or NULL if there
22674 is none. *EXT_CU is the CU containing DIE on input, and the CU
22675 containing the return value on output. */
22676
22677 static struct die_info *
22678 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22679 {
22680 struct attribute *attr;
22681
22682 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22683 if (attr == NULL)
22684 return NULL;
22685
22686 return follow_die_ref (die, attr, ext_cu);
22687 }
22688
22689 static void
22690 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22691 {
22692 unsigned int i;
22693
22694 print_spaces (indent, f);
22695 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22696 dwarf_tag_name (die->tag), die->abbrev,
22697 sect_offset_str (die->sect_off));
22698
22699 if (die->parent != NULL)
22700 {
22701 print_spaces (indent, f);
22702 fprintf_unfiltered (f, " parent at offset: %s\n",
22703 sect_offset_str (die->parent->sect_off));
22704 }
22705
22706 print_spaces (indent, f);
22707 fprintf_unfiltered (f, " has children: %s\n",
22708 dwarf_bool_name (die->child != NULL));
22709
22710 print_spaces (indent, f);
22711 fprintf_unfiltered (f, " attributes:\n");
22712
22713 for (i = 0; i < die->num_attrs; ++i)
22714 {
22715 print_spaces (indent, f);
22716 fprintf_unfiltered (f, " %s (%s) ",
22717 dwarf_attr_name (die->attrs[i].name),
22718 dwarf_form_name (die->attrs[i].form));
22719
22720 switch (die->attrs[i].form)
22721 {
22722 case DW_FORM_addr:
22723 case DW_FORM_addrx:
22724 case DW_FORM_GNU_addr_index:
22725 fprintf_unfiltered (f, "address: ");
22726 fputs_filtered (hex_string (die->attrs[i].as_address ()), f);
22727 break;
22728 case DW_FORM_block2:
22729 case DW_FORM_block4:
22730 case DW_FORM_block:
22731 case DW_FORM_block1:
22732 fprintf_unfiltered (f, "block: size %s",
22733 pulongest (die->attrs[i].as_block ()->size));
22734 break;
22735 case DW_FORM_exprloc:
22736 fprintf_unfiltered (f, "expression: size %s",
22737 pulongest (die->attrs[i].as_block ()->size));
22738 break;
22739 case DW_FORM_data16:
22740 fprintf_unfiltered (f, "constant of 16 bytes");
22741 break;
22742 case DW_FORM_ref_addr:
22743 fprintf_unfiltered (f, "ref address: ");
22744 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
22745 break;
22746 case DW_FORM_GNU_ref_alt:
22747 fprintf_unfiltered (f, "alt ref address: ");
22748 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
22749 break;
22750 case DW_FORM_ref1:
22751 case DW_FORM_ref2:
22752 case DW_FORM_ref4:
22753 case DW_FORM_ref8:
22754 case DW_FORM_ref_udata:
22755 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22756 (long) (die->attrs[i].as_unsigned ()));
22757 break;
22758 case DW_FORM_data1:
22759 case DW_FORM_data2:
22760 case DW_FORM_data4:
22761 case DW_FORM_data8:
22762 case DW_FORM_udata:
22763 fprintf_unfiltered (f, "constant: %s",
22764 pulongest (die->attrs[i].as_unsigned ()));
22765 break;
22766 case DW_FORM_sec_offset:
22767 fprintf_unfiltered (f, "section offset: %s",
22768 pulongest (die->attrs[i].as_unsigned ()));
22769 break;
22770 case DW_FORM_ref_sig8:
22771 fprintf_unfiltered (f, "signature: %s",
22772 hex_string (die->attrs[i].as_signature ()));
22773 break;
22774 case DW_FORM_string:
22775 case DW_FORM_strp:
22776 case DW_FORM_line_strp:
22777 case DW_FORM_strx:
22778 case DW_FORM_GNU_str_index:
22779 case DW_FORM_GNU_strp_alt:
22780 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22781 die->attrs[i].as_string ()
22782 ? die->attrs[i].as_string () : "",
22783 die->attrs[i].canonical_string_p () ? "is" : "not");
22784 break;
22785 case DW_FORM_flag:
22786 if (die->attrs[i].as_boolean ())
22787 fprintf_unfiltered (f, "flag: TRUE");
22788 else
22789 fprintf_unfiltered (f, "flag: FALSE");
22790 break;
22791 case DW_FORM_flag_present:
22792 fprintf_unfiltered (f, "flag: TRUE");
22793 break;
22794 case DW_FORM_indirect:
22795 /* The reader will have reduced the indirect form to
22796 the "base form" so this form should not occur. */
22797 fprintf_unfiltered (f,
22798 "unexpected attribute form: DW_FORM_indirect");
22799 break;
22800 case DW_FORM_sdata:
22801 case DW_FORM_implicit_const:
22802 fprintf_unfiltered (f, "constant: %s",
22803 plongest (die->attrs[i].as_signed ()));
22804 break;
22805 default:
22806 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22807 die->attrs[i].form);
22808 break;
22809 }
22810 fprintf_unfiltered (f, "\n");
22811 }
22812 }
22813
22814 static void
22815 dump_die_for_error (struct die_info *die)
22816 {
22817 dump_die_shallow (gdb_stderr, 0, die);
22818 }
22819
22820 static void
22821 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22822 {
22823 int indent = level * 4;
22824
22825 gdb_assert (die != NULL);
22826
22827 if (level >= max_level)
22828 return;
22829
22830 dump_die_shallow (f, indent, die);
22831
22832 if (die->child != NULL)
22833 {
22834 print_spaces (indent, f);
22835 fprintf_unfiltered (f, " Children:");
22836 if (level + 1 < max_level)
22837 {
22838 fprintf_unfiltered (f, "\n");
22839 dump_die_1 (f, level + 1, max_level, die->child);
22840 }
22841 else
22842 {
22843 fprintf_unfiltered (f,
22844 " [not printed, max nesting level reached]\n");
22845 }
22846 }
22847
22848 if (die->sibling != NULL && level > 0)
22849 {
22850 dump_die_1 (f, level, max_level, die->sibling);
22851 }
22852 }
22853
22854 /* This is called from the pdie macro in gdbinit.in.
22855 It's not static so gcc will keep a copy callable from gdb. */
22856
22857 void
22858 dump_die (struct die_info *die, int max_level)
22859 {
22860 dump_die_1 (gdb_stdlog, 0, max_level, die);
22861 }
22862
22863 static void
22864 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22865 {
22866 void **slot;
22867
22868 slot = htab_find_slot_with_hash (cu->die_hash, die,
22869 to_underlying (die->sect_off),
22870 INSERT);
22871
22872 *slot = die;
22873 }
22874
22875 /* Follow reference or signature attribute ATTR of SRC_DIE.
22876 On entry *REF_CU is the CU of SRC_DIE.
22877 On exit *REF_CU is the CU of the result. */
22878
22879 static struct die_info *
22880 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22881 struct dwarf2_cu **ref_cu)
22882 {
22883 struct die_info *die;
22884
22885 if (attr->form_is_ref ())
22886 die = follow_die_ref (src_die, attr, ref_cu);
22887 else if (attr->form == DW_FORM_ref_sig8)
22888 die = follow_die_sig (src_die, attr, ref_cu);
22889 else
22890 {
22891 dump_die_for_error (src_die);
22892 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22893 objfile_name ((*ref_cu)->per_objfile->objfile));
22894 }
22895
22896 return die;
22897 }
22898
22899 /* Follow reference OFFSET.
22900 On entry *REF_CU is the CU of the source die referencing OFFSET.
22901 On exit *REF_CU is the CU of the result.
22902 Returns NULL if OFFSET is invalid. */
22903
22904 static struct die_info *
22905 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22906 struct dwarf2_cu **ref_cu)
22907 {
22908 struct die_info temp_die;
22909 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22910 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22911
22912 gdb_assert (cu->per_cu != NULL);
22913
22914 target_cu = cu;
22915
22916 if (cu->per_cu->is_debug_types)
22917 {
22918 /* .debug_types CUs cannot reference anything outside their CU.
22919 If they need to, they have to reference a signatured type via
22920 DW_FORM_ref_sig8. */
22921 if (!cu->header.offset_in_cu_p (sect_off))
22922 return NULL;
22923 }
22924 else if (offset_in_dwz != cu->per_cu->is_dwz
22925 || !cu->header.offset_in_cu_p (sect_off))
22926 {
22927 struct dwarf2_per_cu_data *per_cu;
22928
22929 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22930 per_objfile);
22931
22932 /* If necessary, add it to the queue and load its DIEs. */
22933 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->language))
22934 load_full_comp_unit (per_cu, per_objfile, false, cu->language);
22935
22936 target_cu = per_objfile->get_cu (per_cu);
22937 }
22938 else if (cu->dies == NULL)
22939 {
22940 /* We're loading full DIEs during partial symbol reading. */
22941 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
22942 load_full_comp_unit (cu->per_cu, per_objfile, false, language_minimal);
22943 }
22944
22945 *ref_cu = target_cu;
22946 temp_die.sect_off = sect_off;
22947
22948 if (target_cu != cu)
22949 target_cu->ancestor = cu;
22950
22951 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22952 &temp_die,
22953 to_underlying (sect_off));
22954 }
22955
22956 /* Follow reference attribute ATTR of SRC_DIE.
22957 On entry *REF_CU is the CU of SRC_DIE.
22958 On exit *REF_CU is the CU of the result. */
22959
22960 static struct die_info *
22961 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22962 struct dwarf2_cu **ref_cu)
22963 {
22964 sect_offset sect_off = attr->get_ref_die_offset ();
22965 struct dwarf2_cu *cu = *ref_cu;
22966 struct die_info *die;
22967
22968 die = follow_die_offset (sect_off,
22969 (attr->form == DW_FORM_GNU_ref_alt
22970 || cu->per_cu->is_dwz),
22971 ref_cu);
22972 if (!die)
22973 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22974 "at %s [in module %s]"),
22975 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22976 objfile_name (cu->per_objfile->objfile));
22977
22978 return die;
22979 }
22980
22981 /* See read.h. */
22982
22983 struct dwarf2_locexpr_baton
22984 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22985 dwarf2_per_cu_data *per_cu,
22986 dwarf2_per_objfile *per_objfile,
22987 gdb::function_view<CORE_ADDR ()> get_frame_pc,
22988 bool resolve_abstract_p)
22989 {
22990 struct die_info *die;
22991 struct attribute *attr;
22992 struct dwarf2_locexpr_baton retval;
22993 struct objfile *objfile = per_objfile->objfile;
22994
22995 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
22996 if (cu == nullptr)
22997 cu = load_cu (per_cu, per_objfile, false);
22998
22999 if (cu == nullptr)
23000 {
23001 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23002 Instead just throw an error, not much else we can do. */
23003 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23004 sect_offset_str (sect_off), objfile_name (objfile));
23005 }
23006
23007 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23008 if (!die)
23009 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23010 sect_offset_str (sect_off), objfile_name (objfile));
23011
23012 attr = dwarf2_attr (die, DW_AT_location, cu);
23013 if (!attr && resolve_abstract_p
23014 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
23015 != per_objfile->per_bfd->abstract_to_concrete.end ()))
23016 {
23017 CORE_ADDR pc = get_frame_pc ();
23018 CORE_ADDR baseaddr = objfile->text_section_offset ();
23019 struct gdbarch *gdbarch = objfile->arch ();
23020
23021 for (const auto &cand_off
23022 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
23023 {
23024 struct dwarf2_cu *cand_cu = cu;
23025 struct die_info *cand
23026 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23027 if (!cand
23028 || !cand->parent
23029 || cand->parent->tag != DW_TAG_subprogram)
23030 continue;
23031
23032 CORE_ADDR pc_low, pc_high;
23033 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23034 if (pc_low == ((CORE_ADDR) -1))
23035 continue;
23036 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23037 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23038 if (!(pc_low <= pc && pc < pc_high))
23039 continue;
23040
23041 die = cand;
23042 attr = dwarf2_attr (die, DW_AT_location, cu);
23043 break;
23044 }
23045 }
23046
23047 if (!attr)
23048 {
23049 /* DWARF: "If there is no such attribute, then there is no effect.".
23050 DATA is ignored if SIZE is 0. */
23051
23052 retval.data = NULL;
23053 retval.size = 0;
23054 }
23055 else if (attr->form_is_section_offset ())
23056 {
23057 struct dwarf2_loclist_baton loclist_baton;
23058 CORE_ADDR pc = get_frame_pc ();
23059 size_t size;
23060
23061 fill_in_loclist_baton (cu, &loclist_baton, attr);
23062
23063 retval.data = dwarf2_find_location_expression (&loclist_baton,
23064 &size, pc);
23065 retval.size = size;
23066 }
23067 else
23068 {
23069 if (!attr->form_is_block ())
23070 error (_("Dwarf Error: DIE at %s referenced in module %s "
23071 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23072 sect_offset_str (sect_off), objfile_name (objfile));
23073
23074 struct dwarf_block *block = attr->as_block ();
23075 retval.data = block->data;
23076 retval.size = block->size;
23077 }
23078 retval.per_objfile = per_objfile;
23079 retval.per_cu = cu->per_cu;
23080
23081 per_objfile->age_comp_units ();
23082
23083 return retval;
23084 }
23085
23086 /* See read.h. */
23087
23088 struct dwarf2_locexpr_baton
23089 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23090 dwarf2_per_cu_data *per_cu,
23091 dwarf2_per_objfile *per_objfile,
23092 gdb::function_view<CORE_ADDR ()> get_frame_pc)
23093 {
23094 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23095
23096 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
23097 get_frame_pc);
23098 }
23099
23100 /* Write a constant of a given type as target-ordered bytes into
23101 OBSTACK. */
23102
23103 static const gdb_byte *
23104 write_constant_as_bytes (struct obstack *obstack,
23105 enum bfd_endian byte_order,
23106 struct type *type,
23107 ULONGEST value,
23108 LONGEST *len)
23109 {
23110 gdb_byte *result;
23111
23112 *len = TYPE_LENGTH (type);
23113 result = (gdb_byte *) obstack_alloc (obstack, *len);
23114 store_unsigned_integer (result, *len, byte_order, value);
23115
23116 return result;
23117 }
23118
23119 /* See read.h. */
23120
23121 const gdb_byte *
23122 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23123 dwarf2_per_cu_data *per_cu,
23124 dwarf2_per_objfile *per_objfile,
23125 obstack *obstack,
23126 LONGEST *len)
23127 {
23128 struct die_info *die;
23129 struct attribute *attr;
23130 const gdb_byte *result = NULL;
23131 struct type *type;
23132 LONGEST value;
23133 enum bfd_endian byte_order;
23134 struct objfile *objfile = per_objfile->objfile;
23135
23136 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23137 if (cu == nullptr)
23138 cu = load_cu (per_cu, per_objfile, false);
23139
23140 if (cu == nullptr)
23141 {
23142 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23143 Instead just throw an error, not much else we can do. */
23144 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23145 sect_offset_str (sect_off), objfile_name (objfile));
23146 }
23147
23148 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23149 if (!die)
23150 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23151 sect_offset_str (sect_off), objfile_name (objfile));
23152
23153 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23154 if (attr == NULL)
23155 return NULL;
23156
23157 byte_order = (bfd_big_endian (objfile->obfd)
23158 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23159
23160 switch (attr->form)
23161 {
23162 case DW_FORM_addr:
23163 case DW_FORM_addrx:
23164 case DW_FORM_GNU_addr_index:
23165 {
23166 gdb_byte *tem;
23167
23168 *len = cu->header.addr_size;
23169 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23170 store_unsigned_integer (tem, *len, byte_order, attr->as_address ());
23171 result = tem;
23172 }
23173 break;
23174 case DW_FORM_string:
23175 case DW_FORM_strp:
23176 case DW_FORM_strx:
23177 case DW_FORM_GNU_str_index:
23178 case DW_FORM_GNU_strp_alt:
23179 /* The string is already allocated on the objfile obstack, point
23180 directly to it. */
23181 {
23182 const char *attr_name = attr->as_string ();
23183 result = (const gdb_byte *) attr_name;
23184 *len = strlen (attr_name);
23185 }
23186 break;
23187 case DW_FORM_block1:
23188 case DW_FORM_block2:
23189 case DW_FORM_block4:
23190 case DW_FORM_block:
23191 case DW_FORM_exprloc:
23192 case DW_FORM_data16:
23193 {
23194 struct dwarf_block *block = attr->as_block ();
23195 result = block->data;
23196 *len = block->size;
23197 }
23198 break;
23199
23200 /* The DW_AT_const_value attributes are supposed to carry the
23201 symbol's value "represented as it would be on the target
23202 architecture." By the time we get here, it's already been
23203 converted to host endianness, so we just need to sign- or
23204 zero-extend it as appropriate. */
23205 case DW_FORM_data1:
23206 type = die_type (die, cu);
23207 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23208 if (result == NULL)
23209 result = write_constant_as_bytes (obstack, byte_order,
23210 type, value, len);
23211 break;
23212 case DW_FORM_data2:
23213 type = die_type (die, cu);
23214 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23215 if (result == NULL)
23216 result = write_constant_as_bytes (obstack, byte_order,
23217 type, value, len);
23218 break;
23219 case DW_FORM_data4:
23220 type = die_type (die, cu);
23221 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23222 if (result == NULL)
23223 result = write_constant_as_bytes (obstack, byte_order,
23224 type, value, len);
23225 break;
23226 case DW_FORM_data8:
23227 type = die_type (die, cu);
23228 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23229 if (result == NULL)
23230 result = write_constant_as_bytes (obstack, byte_order,
23231 type, value, len);
23232 break;
23233
23234 case DW_FORM_sdata:
23235 case DW_FORM_implicit_const:
23236 type = die_type (die, cu);
23237 result = write_constant_as_bytes (obstack, byte_order,
23238 type, attr->as_signed (), len);
23239 break;
23240
23241 case DW_FORM_udata:
23242 type = die_type (die, cu);
23243 result = write_constant_as_bytes (obstack, byte_order,
23244 type, attr->as_unsigned (), len);
23245 break;
23246
23247 default:
23248 complaint (_("unsupported const value attribute form: '%s'"),
23249 dwarf_form_name (attr->form));
23250 break;
23251 }
23252
23253 return result;
23254 }
23255
23256 /* See read.h. */
23257
23258 struct type *
23259 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23260 dwarf2_per_cu_data *per_cu,
23261 dwarf2_per_objfile *per_objfile)
23262 {
23263 struct die_info *die;
23264
23265 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23266 if (cu == nullptr)
23267 cu = load_cu (per_cu, per_objfile, false);
23268
23269 if (cu == nullptr)
23270 return nullptr;
23271
23272 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23273 if (!die)
23274 return NULL;
23275
23276 return die_type (die, cu);
23277 }
23278
23279 /* See read.h. */
23280
23281 struct type *
23282 dwarf2_get_die_type (cu_offset die_offset,
23283 dwarf2_per_cu_data *per_cu,
23284 dwarf2_per_objfile *per_objfile)
23285 {
23286 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23287 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
23288 }
23289
23290 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23291 On entry *REF_CU is the CU of SRC_DIE.
23292 On exit *REF_CU is the CU of the result.
23293 Returns NULL if the referenced DIE isn't found. */
23294
23295 static struct die_info *
23296 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23297 struct dwarf2_cu **ref_cu)
23298 {
23299 struct die_info temp_die;
23300 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23301 struct die_info *die;
23302 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
23303
23304
23305 /* While it might be nice to assert sig_type->type == NULL here,
23306 we can get here for DW_AT_imported_declaration where we need
23307 the DIE not the type. */
23308
23309 /* If necessary, add it to the queue and load its DIEs. */
23310
23311 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, per_objfile,
23312 language_minimal))
23313 read_signatured_type (sig_type, per_objfile);
23314
23315 sig_cu = per_objfile->get_cu (&sig_type->per_cu);
23316 gdb_assert (sig_cu != NULL);
23317 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23318 temp_die.sect_off = sig_type->type_offset_in_section;
23319 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23320 to_underlying (temp_die.sect_off));
23321 if (die)
23322 {
23323 /* For .gdb_index version 7 keep track of included TUs.
23324 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23325 if (per_objfile->per_bfd->index_table != NULL
23326 && per_objfile->per_bfd->index_table->version <= 7)
23327 {
23328 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23329 }
23330
23331 *ref_cu = sig_cu;
23332 if (sig_cu != cu)
23333 sig_cu->ancestor = cu;
23334
23335 return die;
23336 }
23337
23338 return NULL;
23339 }
23340
23341 /* Follow signatured type referenced by ATTR in SRC_DIE.
23342 On entry *REF_CU is the CU of SRC_DIE.
23343 On exit *REF_CU is the CU of the result.
23344 The result is the DIE of the type.
23345 If the referenced type cannot be found an error is thrown. */
23346
23347 static struct die_info *
23348 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23349 struct dwarf2_cu **ref_cu)
23350 {
23351 ULONGEST signature = attr->as_signature ();
23352 struct signatured_type *sig_type;
23353 struct die_info *die;
23354
23355 gdb_assert (attr->form == DW_FORM_ref_sig8);
23356
23357 sig_type = lookup_signatured_type (*ref_cu, signature);
23358 /* sig_type will be NULL if the signatured type is missing from
23359 the debug info. */
23360 if (sig_type == NULL)
23361 {
23362 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23363 " from DIE at %s [in module %s]"),
23364 hex_string (signature), sect_offset_str (src_die->sect_off),
23365 objfile_name ((*ref_cu)->per_objfile->objfile));
23366 }
23367
23368 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23369 if (die == NULL)
23370 {
23371 dump_die_for_error (src_die);
23372 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23373 " from DIE at %s [in module %s]"),
23374 hex_string (signature), sect_offset_str (src_die->sect_off),
23375 objfile_name ((*ref_cu)->per_objfile->objfile));
23376 }
23377
23378 return die;
23379 }
23380
23381 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23382 reading in and processing the type unit if necessary. */
23383
23384 static struct type *
23385 get_signatured_type (struct die_info *die, ULONGEST signature,
23386 struct dwarf2_cu *cu)
23387 {
23388 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23389 struct signatured_type *sig_type;
23390 struct dwarf2_cu *type_cu;
23391 struct die_info *type_die;
23392 struct type *type;
23393
23394 sig_type = lookup_signatured_type (cu, signature);
23395 /* sig_type will be NULL if the signatured type is missing from
23396 the debug info. */
23397 if (sig_type == NULL)
23398 {
23399 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23400 " from DIE at %s [in module %s]"),
23401 hex_string (signature), sect_offset_str (die->sect_off),
23402 objfile_name (per_objfile->objfile));
23403 return build_error_marker_type (cu, die);
23404 }
23405
23406 /* If we already know the type we're done. */
23407 type = per_objfile->get_type_for_signatured_type (sig_type);
23408 if (type != nullptr)
23409 return type;
23410
23411 type_cu = cu;
23412 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23413 if (type_die != NULL)
23414 {
23415 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23416 is created. This is important, for example, because for c++ classes
23417 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23418 type = read_type_die (type_die, type_cu);
23419 if (type == NULL)
23420 {
23421 complaint (_("Dwarf Error: Cannot build signatured type %s"
23422 " referenced from DIE at %s [in module %s]"),
23423 hex_string (signature), sect_offset_str (die->sect_off),
23424 objfile_name (per_objfile->objfile));
23425 type = build_error_marker_type (cu, die);
23426 }
23427 }
23428 else
23429 {
23430 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23431 " from DIE at %s [in module %s]"),
23432 hex_string (signature), sect_offset_str (die->sect_off),
23433 objfile_name (per_objfile->objfile));
23434 type = build_error_marker_type (cu, die);
23435 }
23436
23437 per_objfile->set_type_for_signatured_type (sig_type, type);
23438
23439 return type;
23440 }
23441
23442 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23443 reading in and processing the type unit if necessary. */
23444
23445 static struct type *
23446 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23447 struct dwarf2_cu *cu) /* ARI: editCase function */
23448 {
23449 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23450 if (attr->form_is_ref ())
23451 {
23452 struct dwarf2_cu *type_cu = cu;
23453 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23454
23455 return read_type_die (type_die, type_cu);
23456 }
23457 else if (attr->form == DW_FORM_ref_sig8)
23458 {
23459 return get_signatured_type (die, attr->as_signature (), cu);
23460 }
23461 else
23462 {
23463 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23464
23465 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23466 " at %s [in module %s]"),
23467 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23468 objfile_name (per_objfile->objfile));
23469 return build_error_marker_type (cu, die);
23470 }
23471 }
23472
23473 /* Load the DIEs associated with type unit PER_CU into memory. */
23474
23475 static void
23476 load_full_type_unit (dwarf2_per_cu_data *per_cu,
23477 dwarf2_per_objfile *per_objfile)
23478 {
23479 struct signatured_type *sig_type;
23480
23481 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23482 gdb_assert (! per_cu->type_unit_group_p ());
23483
23484 /* We have the per_cu, but we need the signatured_type.
23485 Fortunately this is an easy translation. */
23486 gdb_assert (per_cu->is_debug_types);
23487 sig_type = (struct signatured_type *) per_cu;
23488
23489 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23490
23491 read_signatured_type (sig_type, per_objfile);
23492
23493 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
23494 }
23495
23496 /* Read in a signatured type and build its CU and DIEs.
23497 If the type is a stub for the real type in a DWO file,
23498 read in the real type from the DWO file as well. */
23499
23500 static void
23501 read_signatured_type (signatured_type *sig_type,
23502 dwarf2_per_objfile *per_objfile)
23503 {
23504 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23505
23506 gdb_assert (per_cu->is_debug_types);
23507 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23508
23509 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
23510
23511 if (!reader.dummy_p)
23512 {
23513 struct dwarf2_cu *cu = reader.cu;
23514 const gdb_byte *info_ptr = reader.info_ptr;
23515
23516 gdb_assert (cu->die_hash == NULL);
23517 cu->die_hash =
23518 htab_create_alloc_ex (cu->header.length / 12,
23519 die_hash,
23520 die_eq,
23521 NULL,
23522 &cu->comp_unit_obstack,
23523 hashtab_obstack_allocate,
23524 dummy_obstack_deallocate);
23525
23526 if (reader.comp_unit_die->has_children)
23527 reader.comp_unit_die->child
23528 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23529 reader.comp_unit_die);
23530 cu->dies = reader.comp_unit_die;
23531 /* comp_unit_die is not stored in die_hash, no need. */
23532
23533 /* We try not to read any attributes in this function, because
23534 not all CUs needed for references have been loaded yet, and
23535 symbol table processing isn't initialized. But we have to
23536 set the CU language, or we won't be able to build types
23537 correctly. Similarly, if we do not read the producer, we can
23538 not apply producer-specific interpretation. */
23539 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23540
23541 reader.keep ();
23542 }
23543
23544 sig_type->per_cu.tu_read = 1;
23545 }
23546
23547 /* Decode simple location descriptions.
23548 Given a pointer to a dwarf block that defines a location, compute
23549 the location and return the value. If COMPUTED is non-null, it is
23550 set to true to indicate that decoding was successful, and false
23551 otherwise. If COMPUTED is null, then this function may emit a
23552 complaint. */
23553
23554 static CORE_ADDR
23555 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
23556 {
23557 struct objfile *objfile = cu->per_objfile->objfile;
23558 size_t i;
23559 size_t size = blk->size;
23560 const gdb_byte *data = blk->data;
23561 CORE_ADDR stack[64];
23562 int stacki;
23563 unsigned int bytes_read, unsnd;
23564 gdb_byte op;
23565
23566 if (computed != nullptr)
23567 *computed = false;
23568
23569 i = 0;
23570 stacki = 0;
23571 stack[stacki] = 0;
23572 stack[++stacki] = 0;
23573
23574 while (i < size)
23575 {
23576 op = data[i++];
23577 switch (op)
23578 {
23579 case DW_OP_lit0:
23580 case DW_OP_lit1:
23581 case DW_OP_lit2:
23582 case DW_OP_lit3:
23583 case DW_OP_lit4:
23584 case DW_OP_lit5:
23585 case DW_OP_lit6:
23586 case DW_OP_lit7:
23587 case DW_OP_lit8:
23588 case DW_OP_lit9:
23589 case DW_OP_lit10:
23590 case DW_OP_lit11:
23591 case DW_OP_lit12:
23592 case DW_OP_lit13:
23593 case DW_OP_lit14:
23594 case DW_OP_lit15:
23595 case DW_OP_lit16:
23596 case DW_OP_lit17:
23597 case DW_OP_lit18:
23598 case DW_OP_lit19:
23599 case DW_OP_lit20:
23600 case DW_OP_lit21:
23601 case DW_OP_lit22:
23602 case DW_OP_lit23:
23603 case DW_OP_lit24:
23604 case DW_OP_lit25:
23605 case DW_OP_lit26:
23606 case DW_OP_lit27:
23607 case DW_OP_lit28:
23608 case DW_OP_lit29:
23609 case DW_OP_lit30:
23610 case DW_OP_lit31:
23611 stack[++stacki] = op - DW_OP_lit0;
23612 break;
23613
23614 case DW_OP_reg0:
23615 case DW_OP_reg1:
23616 case DW_OP_reg2:
23617 case DW_OP_reg3:
23618 case DW_OP_reg4:
23619 case DW_OP_reg5:
23620 case DW_OP_reg6:
23621 case DW_OP_reg7:
23622 case DW_OP_reg8:
23623 case DW_OP_reg9:
23624 case DW_OP_reg10:
23625 case DW_OP_reg11:
23626 case DW_OP_reg12:
23627 case DW_OP_reg13:
23628 case DW_OP_reg14:
23629 case DW_OP_reg15:
23630 case DW_OP_reg16:
23631 case DW_OP_reg17:
23632 case DW_OP_reg18:
23633 case DW_OP_reg19:
23634 case DW_OP_reg20:
23635 case DW_OP_reg21:
23636 case DW_OP_reg22:
23637 case DW_OP_reg23:
23638 case DW_OP_reg24:
23639 case DW_OP_reg25:
23640 case DW_OP_reg26:
23641 case DW_OP_reg27:
23642 case DW_OP_reg28:
23643 case DW_OP_reg29:
23644 case DW_OP_reg30:
23645 case DW_OP_reg31:
23646 stack[++stacki] = op - DW_OP_reg0;
23647 if (i < size)
23648 {
23649 if (computed == nullptr)
23650 dwarf2_complex_location_expr_complaint ();
23651 else
23652 return 0;
23653 }
23654 break;
23655
23656 case DW_OP_regx:
23657 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23658 i += bytes_read;
23659 stack[++stacki] = unsnd;
23660 if (i < size)
23661 {
23662 if (computed == nullptr)
23663 dwarf2_complex_location_expr_complaint ();
23664 else
23665 return 0;
23666 }
23667 break;
23668
23669 case DW_OP_addr:
23670 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
23671 &bytes_read);
23672 i += bytes_read;
23673 break;
23674
23675 case DW_OP_const1u:
23676 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23677 i += 1;
23678 break;
23679
23680 case DW_OP_const1s:
23681 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23682 i += 1;
23683 break;
23684
23685 case DW_OP_const2u:
23686 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23687 i += 2;
23688 break;
23689
23690 case DW_OP_const2s:
23691 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23692 i += 2;
23693 break;
23694
23695 case DW_OP_const4u:
23696 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23697 i += 4;
23698 break;
23699
23700 case DW_OP_const4s:
23701 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23702 i += 4;
23703 break;
23704
23705 case DW_OP_const8u:
23706 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23707 i += 8;
23708 break;
23709
23710 case DW_OP_constu:
23711 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23712 &bytes_read);
23713 i += bytes_read;
23714 break;
23715
23716 case DW_OP_consts:
23717 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23718 i += bytes_read;
23719 break;
23720
23721 case DW_OP_dup:
23722 stack[stacki + 1] = stack[stacki];
23723 stacki++;
23724 break;
23725
23726 case DW_OP_plus:
23727 stack[stacki - 1] += stack[stacki];
23728 stacki--;
23729 break;
23730
23731 case DW_OP_plus_uconst:
23732 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23733 &bytes_read);
23734 i += bytes_read;
23735 break;
23736
23737 case DW_OP_minus:
23738 stack[stacki - 1] -= stack[stacki];
23739 stacki--;
23740 break;
23741
23742 case DW_OP_deref:
23743 /* If we're not the last op, then we definitely can't encode
23744 this using GDB's address_class enum. This is valid for partial
23745 global symbols, although the variable's address will be bogus
23746 in the psymtab. */
23747 if (i < size)
23748 {
23749 if (computed == nullptr)
23750 dwarf2_complex_location_expr_complaint ();
23751 else
23752 return 0;
23753 }
23754 break;
23755
23756 case DW_OP_GNU_push_tls_address:
23757 case DW_OP_form_tls_address:
23758 /* The top of the stack has the offset from the beginning
23759 of the thread control block at which the variable is located. */
23760 /* Nothing should follow this operator, so the top of stack would
23761 be returned. */
23762 /* This is valid for partial global symbols, but the variable's
23763 address will be bogus in the psymtab. Make it always at least
23764 non-zero to not look as a variable garbage collected by linker
23765 which have DW_OP_addr 0. */
23766 if (i < size)
23767 {
23768 if (computed == nullptr)
23769 dwarf2_complex_location_expr_complaint ();
23770 else
23771 return 0;
23772 }
23773 stack[stacki]++;
23774 break;
23775
23776 case DW_OP_GNU_uninit:
23777 if (computed != nullptr)
23778 return 0;
23779 break;
23780
23781 case DW_OP_addrx:
23782 case DW_OP_GNU_addr_index:
23783 case DW_OP_GNU_const_index:
23784 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23785 &bytes_read);
23786 i += bytes_read;
23787 break;
23788
23789 default:
23790 if (computed == nullptr)
23791 {
23792 const char *name = get_DW_OP_name (op);
23793
23794 if (name)
23795 complaint (_("unsupported stack op: '%s'"),
23796 name);
23797 else
23798 complaint (_("unsupported stack op: '%02x'"),
23799 op);
23800 }
23801
23802 return (stack[stacki]);
23803 }
23804
23805 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23806 outside of the allocated space. Also enforce minimum>0. */
23807 if (stacki >= ARRAY_SIZE (stack) - 1)
23808 {
23809 if (computed == nullptr)
23810 complaint (_("location description stack overflow"));
23811 return 0;
23812 }
23813
23814 if (stacki <= 0)
23815 {
23816 if (computed == nullptr)
23817 complaint (_("location description stack underflow"));
23818 return 0;
23819 }
23820 }
23821
23822 if (computed != nullptr)
23823 *computed = true;
23824 return (stack[stacki]);
23825 }
23826
23827 /* memory allocation interface */
23828
23829 static struct dwarf_block *
23830 dwarf_alloc_block (struct dwarf2_cu *cu)
23831 {
23832 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23833 }
23834
23835 static struct die_info *
23836 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23837 {
23838 struct die_info *die;
23839 size_t size = sizeof (struct die_info);
23840
23841 if (num_attrs > 1)
23842 size += (num_attrs - 1) * sizeof (struct attribute);
23843
23844 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23845 memset (die, 0, sizeof (struct die_info));
23846 return (die);
23847 }
23848
23849 \f
23850
23851 /* Macro support. */
23852
23853 /* An overload of dwarf_decode_macros that finds the correct section
23854 and ensures it is read in before calling the other overload. */
23855
23856 static void
23857 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23858 int section_is_gnu)
23859 {
23860 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23861 struct objfile *objfile = per_objfile->objfile;
23862 const struct line_header *lh = cu->line_header;
23863 unsigned int offset_size = cu->header.offset_size;
23864 struct dwarf2_section_info *section;
23865 const char *section_name;
23866
23867 if (cu->dwo_unit != nullptr)
23868 {
23869 if (section_is_gnu)
23870 {
23871 section = &cu->dwo_unit->dwo_file->sections.macro;
23872 section_name = ".debug_macro.dwo";
23873 }
23874 else
23875 {
23876 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23877 section_name = ".debug_macinfo.dwo";
23878 }
23879 }
23880 else
23881 {
23882 if (section_is_gnu)
23883 {
23884 section = &per_objfile->per_bfd->macro;
23885 section_name = ".debug_macro";
23886 }
23887 else
23888 {
23889 section = &per_objfile->per_bfd->macinfo;
23890 section_name = ".debug_macinfo";
23891 }
23892 }
23893
23894 section->read (objfile);
23895 if (section->buffer == nullptr)
23896 {
23897 complaint (_("missing %s section"), section_name);
23898 return;
23899 }
23900
23901 buildsym_compunit *builder = cu->get_builder ();
23902
23903 dwarf_decode_macros (per_objfile, builder, section, lh,
23904 offset_size, offset, section_is_gnu);
23905 }
23906
23907 /* Return the .debug_loc section to use for CU.
23908 For DWO files use .debug_loc.dwo. */
23909
23910 static struct dwarf2_section_info *
23911 cu_debug_loc_section (struct dwarf2_cu *cu)
23912 {
23913 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23914
23915 if (cu->dwo_unit)
23916 {
23917 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23918
23919 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23920 }
23921 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
23922 : &per_objfile->per_bfd->loc);
23923 }
23924
23925 /* Return the .debug_rnglists section to use for CU. */
23926 static struct dwarf2_section_info *
23927 cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag)
23928 {
23929 if (cu->header.version < 5)
23930 error (_(".debug_rnglists section cannot be used in DWARF %d"),
23931 cu->header.version);
23932 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
23933
23934 /* Make sure we read the .debug_rnglists section from the file that
23935 contains the DW_AT_ranges attribute we are reading. Normally that
23936 would be the .dwo file, if there is one. However for DW_TAG_compile_unit
23937 or DW_TAG_skeleton unit, we always want to read from objfile/linked
23938 program. */
23939 if (cu->dwo_unit != nullptr
23940 && tag != DW_TAG_compile_unit
23941 && tag != DW_TAG_skeleton_unit)
23942 {
23943 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23944
23945 if (sections->rnglists.size > 0)
23946 return &sections->rnglists;
23947 else
23948 error (_(".debug_rnglists section is missing from .dwo file."));
23949 }
23950 return &dwarf2_per_objfile->per_bfd->rnglists;
23951 }
23952
23953 /* A helper function that fills in a dwarf2_loclist_baton. */
23954
23955 static void
23956 fill_in_loclist_baton (struct dwarf2_cu *cu,
23957 struct dwarf2_loclist_baton *baton,
23958 const struct attribute *attr)
23959 {
23960 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23961 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23962
23963 section->read (per_objfile->objfile);
23964
23965 baton->per_objfile = per_objfile;
23966 baton->per_cu = cu->per_cu;
23967 gdb_assert (baton->per_cu);
23968 /* We don't know how long the location list is, but make sure we
23969 don't run off the edge of the section. */
23970 baton->size = section->size - attr->as_unsigned ();
23971 baton->data = section->buffer + attr->as_unsigned ();
23972 if (cu->base_address.has_value ())
23973 baton->base_address = *cu->base_address;
23974 else
23975 baton->base_address = 0;
23976 baton->from_dwo = cu->dwo_unit != NULL;
23977 }
23978
23979 static void
23980 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23981 struct dwarf2_cu *cu, int is_block)
23982 {
23983 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23984 struct objfile *objfile = per_objfile->objfile;
23985 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23986
23987 if (attr->form_is_section_offset ()
23988 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23989 the section. If so, fall through to the complaint in the
23990 other branch. */
23991 && attr->as_unsigned () < section->get_size (objfile))
23992 {
23993 struct dwarf2_loclist_baton *baton;
23994
23995 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23996
23997 fill_in_loclist_baton (cu, baton, attr);
23998
23999 if (!cu->base_address.has_value ())
24000 complaint (_("Location list used without "
24001 "specifying the CU base address."));
24002
24003 SYMBOL_ACLASS_INDEX (sym) = (is_block
24004 ? dwarf2_loclist_block_index
24005 : dwarf2_loclist_index);
24006 SYMBOL_LOCATION_BATON (sym) = baton;
24007 }
24008 else
24009 {
24010 struct dwarf2_locexpr_baton *baton;
24011
24012 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24013 baton->per_objfile = per_objfile;
24014 baton->per_cu = cu->per_cu;
24015 gdb_assert (baton->per_cu);
24016
24017 if (attr->form_is_block ())
24018 {
24019 /* Note that we're just copying the block's data pointer
24020 here, not the actual data. We're still pointing into the
24021 info_buffer for SYM's objfile; right now we never release
24022 that buffer, but when we do clean up properly this may
24023 need to change. */
24024 struct dwarf_block *block = attr->as_block ();
24025 baton->size = block->size;
24026 baton->data = block->data;
24027 }
24028 else
24029 {
24030 dwarf2_invalid_attrib_class_complaint ("location description",
24031 sym->natural_name ());
24032 baton->size = 0;
24033 }
24034
24035 SYMBOL_ACLASS_INDEX (sym) = (is_block
24036 ? dwarf2_locexpr_block_index
24037 : dwarf2_locexpr_index);
24038 SYMBOL_LOCATION_BATON (sym) = baton;
24039 }
24040 }
24041
24042 /* See read.h. */
24043
24044 const comp_unit_head *
24045 dwarf2_per_cu_data::get_header () const
24046 {
24047 if (!m_header_read_in)
24048 {
24049 const gdb_byte *info_ptr
24050 = this->section->buffer + to_underlying (this->sect_off);
24051
24052 memset (&m_header, 0, sizeof (m_header));
24053
24054 read_comp_unit_head (&m_header, info_ptr, this->section,
24055 rcuh_kind::COMPILE);
24056 }
24057
24058 return &m_header;
24059 }
24060
24061 /* See read.h. */
24062
24063 int
24064 dwarf2_per_cu_data::addr_size () const
24065 {
24066 return this->get_header ()->addr_size;
24067 }
24068
24069 /* See read.h. */
24070
24071 int
24072 dwarf2_per_cu_data::offset_size () const
24073 {
24074 return this->get_header ()->offset_size;
24075 }
24076
24077 /* See read.h. */
24078
24079 int
24080 dwarf2_per_cu_data::ref_addr_size () const
24081 {
24082 const comp_unit_head *header = this->get_header ();
24083
24084 if (header->version == 2)
24085 return header->addr_size;
24086 else
24087 return header->offset_size;
24088 }
24089
24090 /* See read.h. */
24091
24092 struct type *
24093 dwarf2_cu::addr_type () const
24094 {
24095 struct objfile *objfile = this->per_objfile->objfile;
24096 struct type *void_type = objfile_type (objfile)->builtin_void;
24097 struct type *addr_type = lookup_pointer_type (void_type);
24098 int addr_size = this->per_cu->addr_size ();
24099
24100 if (TYPE_LENGTH (addr_type) == addr_size)
24101 return addr_type;
24102
24103 addr_type = addr_sized_int_type (addr_type->is_unsigned ());
24104 return addr_type;
24105 }
24106
24107 /* A helper function for dwarf2_find_containing_comp_unit that returns
24108 the index of the result, and that searches a vector. It will
24109 return a result even if the offset in question does not actually
24110 occur in any CU. This is separate so that it can be unit
24111 tested. */
24112
24113 static int
24114 dwarf2_find_containing_comp_unit
24115 (sect_offset sect_off,
24116 unsigned int offset_in_dwz,
24117 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24118 {
24119 int low, high;
24120
24121 low = 0;
24122 high = all_comp_units.size () - 1;
24123 while (high > low)
24124 {
24125 struct dwarf2_per_cu_data *mid_cu;
24126 int mid = low + (high - low) / 2;
24127
24128 mid_cu = all_comp_units[mid];
24129 if (mid_cu->is_dwz > offset_in_dwz
24130 || (mid_cu->is_dwz == offset_in_dwz
24131 && mid_cu->sect_off + mid_cu->length > sect_off))
24132 high = mid;
24133 else
24134 low = mid + 1;
24135 }
24136 gdb_assert (low == high);
24137 return low;
24138 }
24139
24140 /* Locate the .debug_info compilation unit from CU's objfile which contains
24141 the DIE at OFFSET. Raises an error on failure. */
24142
24143 static struct dwarf2_per_cu_data *
24144 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24145 unsigned int offset_in_dwz,
24146 dwarf2_per_objfile *per_objfile)
24147 {
24148 int low = dwarf2_find_containing_comp_unit
24149 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
24150 dwarf2_per_cu_data *this_cu = per_objfile->per_bfd->all_comp_units[low];
24151
24152 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24153 {
24154 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24155 error (_("Dwarf Error: could not find partial DIE containing "
24156 "offset %s [in module %s]"),
24157 sect_offset_str (sect_off),
24158 bfd_get_filename (per_objfile->objfile->obfd));
24159
24160 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
24161 <= sect_off);
24162 return per_objfile->per_bfd->all_comp_units[low-1];
24163 }
24164 else
24165 {
24166 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
24167 && sect_off >= this_cu->sect_off + this_cu->length)
24168 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24169 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24170 return this_cu;
24171 }
24172 }
24173
24174 #if GDB_SELF_TEST
24175
24176 namespace selftests {
24177 namespace find_containing_comp_unit {
24178
24179 static void
24180 run_test ()
24181 {
24182 struct dwarf2_per_cu_data one {};
24183 struct dwarf2_per_cu_data two {};
24184 struct dwarf2_per_cu_data three {};
24185 struct dwarf2_per_cu_data four {};
24186
24187 one.length = 5;
24188 two.sect_off = sect_offset (one.length);
24189 two.length = 7;
24190
24191 three.length = 5;
24192 three.is_dwz = 1;
24193 four.sect_off = sect_offset (three.length);
24194 four.length = 7;
24195 four.is_dwz = 1;
24196
24197 std::vector<dwarf2_per_cu_data *> units;
24198 units.push_back (&one);
24199 units.push_back (&two);
24200 units.push_back (&three);
24201 units.push_back (&four);
24202
24203 int result;
24204
24205 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24206 SELF_CHECK (units[result] == &one);
24207 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24208 SELF_CHECK (units[result] == &one);
24209 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24210 SELF_CHECK (units[result] == &two);
24211
24212 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24213 SELF_CHECK (units[result] == &three);
24214 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24215 SELF_CHECK (units[result] == &three);
24216 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24217 SELF_CHECK (units[result] == &four);
24218 }
24219
24220 }
24221 }
24222
24223 #endif /* GDB_SELF_TEST */
24224
24225 /* Initialize dwarf2_cu to read PER_CU, in the context of PER_OBJFILE. */
24226
24227 dwarf2_cu::dwarf2_cu (dwarf2_per_cu_data *per_cu,
24228 dwarf2_per_objfile *per_objfile)
24229 : per_cu (per_cu),
24230 per_objfile (per_objfile),
24231 mark (false),
24232 has_loclist (false),
24233 checked_producer (false),
24234 producer_is_gxx_lt_4_6 (false),
24235 producer_is_gcc_lt_4_3 (false),
24236 producer_is_icc (false),
24237 producer_is_icc_lt_14 (false),
24238 producer_is_codewarrior (false),
24239 processing_has_namespace_info (false)
24240 {
24241 }
24242
24243 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24244
24245 static void
24246 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24247 enum language pretend_language)
24248 {
24249 struct attribute *attr;
24250
24251 /* Set the language we're debugging. */
24252 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24253 if (attr != nullptr)
24254 set_cu_language (attr->constant_value (0), cu);
24255 else
24256 {
24257 cu->language = pretend_language;
24258 cu->language_defn = language_def (cu->language);
24259 }
24260
24261 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24262 }
24263
24264 /* See read.h. */
24265
24266 dwarf2_cu *
24267 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
24268 {
24269 auto it = m_dwarf2_cus.find (per_cu);
24270 if (it == m_dwarf2_cus.end ())
24271 return nullptr;
24272
24273 return it->second;
24274 }
24275
24276 /* See read.h. */
24277
24278 void
24279 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
24280 {
24281 gdb_assert (this->get_cu (per_cu) == nullptr);
24282
24283 m_dwarf2_cus[per_cu] = cu;
24284 }
24285
24286 /* See read.h. */
24287
24288 void
24289 dwarf2_per_objfile::age_comp_units ()
24290 {
24291 /* Start by clearing all marks. */
24292 for (auto pair : m_dwarf2_cus)
24293 pair.second->mark = false;
24294
24295 /* Traverse all CUs, mark them and their dependencies if used recently
24296 enough. */
24297 for (auto pair : m_dwarf2_cus)
24298 {
24299 dwarf2_cu *cu = pair.second;
24300
24301 cu->last_used++;
24302 if (cu->last_used <= dwarf_max_cache_age)
24303 dwarf2_mark (cu);
24304 }
24305
24306 /* Delete all CUs still not marked. */
24307 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
24308 {
24309 dwarf2_cu *cu = it->second;
24310
24311 if (!cu->mark)
24312 {
24313 delete cu;
24314 it = m_dwarf2_cus.erase (it);
24315 }
24316 else
24317 it++;
24318 }
24319 }
24320
24321 /* See read.h. */
24322
24323 void
24324 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
24325 {
24326 auto it = m_dwarf2_cus.find (per_cu);
24327 if (it == m_dwarf2_cus.end ())
24328 return;
24329
24330 delete it->second;
24331
24332 m_dwarf2_cus.erase (it);
24333 }
24334
24335 dwarf2_per_objfile::~dwarf2_per_objfile ()
24336 {
24337 remove_all_cus ();
24338 }
24339
24340 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24341 We store these in a hash table separate from the DIEs, and preserve them
24342 when the DIEs are flushed out of cache.
24343
24344 The CU "per_cu" pointer is needed because offset alone is not enough to
24345 uniquely identify the type. A file may have multiple .debug_types sections,
24346 or the type may come from a DWO file. Furthermore, while it's more logical
24347 to use per_cu->section+offset, with Fission the section with the data is in
24348 the DWO file but we don't know that section at the point we need it.
24349 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24350 because we can enter the lookup routine, get_die_type_at_offset, from
24351 outside this file, and thus won't necessarily have PER_CU->cu.
24352 Fortunately, PER_CU is stable for the life of the objfile. */
24353
24354 struct dwarf2_per_cu_offset_and_type
24355 {
24356 const struct dwarf2_per_cu_data *per_cu;
24357 sect_offset sect_off;
24358 struct type *type;
24359 };
24360
24361 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24362
24363 static hashval_t
24364 per_cu_offset_and_type_hash (const void *item)
24365 {
24366 const struct dwarf2_per_cu_offset_and_type *ofs
24367 = (const struct dwarf2_per_cu_offset_and_type *) item;
24368
24369 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24370 }
24371
24372 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24373
24374 static int
24375 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24376 {
24377 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24378 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24379 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24380 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24381
24382 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24383 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24384 }
24385
24386 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24387 table if necessary. For convenience, return TYPE.
24388
24389 The DIEs reading must have careful ordering to:
24390 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24391 reading current DIE.
24392 * Not trying to dereference contents of still incompletely read in types
24393 while reading in other DIEs.
24394 * Enable referencing still incompletely read in types just by a pointer to
24395 the type without accessing its fields.
24396
24397 Therefore caller should follow these rules:
24398 * Try to fetch any prerequisite types we may need to build this DIE type
24399 before building the type and calling set_die_type.
24400 * After building type call set_die_type for current DIE as soon as
24401 possible before fetching more types to complete the current type.
24402 * Make the type as complete as possible before fetching more types. */
24403
24404 static struct type *
24405 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24406 {
24407 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24408 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24409 struct objfile *objfile = per_objfile->objfile;
24410 struct attribute *attr;
24411 struct dynamic_prop prop;
24412
24413 /* For Ada types, make sure that the gnat-specific data is always
24414 initialized (if not already set). There are a few types where
24415 we should not be doing so, because the type-specific area is
24416 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24417 where the type-specific area is used to store the floatformat).
24418 But this is not a problem, because the gnat-specific information
24419 is actually not needed for these types. */
24420 if (need_gnat_info (cu)
24421 && type->code () != TYPE_CODE_FUNC
24422 && type->code () != TYPE_CODE_FLT
24423 && type->code () != TYPE_CODE_METHODPTR
24424 && type->code () != TYPE_CODE_MEMBERPTR
24425 && type->code () != TYPE_CODE_METHOD
24426 && !HAVE_GNAT_AUX_INFO (type))
24427 INIT_GNAT_SPECIFIC (type);
24428
24429 /* Read DW_AT_allocated and set in type. */
24430 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24431 if (attr != NULL)
24432 {
24433 struct type *prop_type = cu->addr_sized_int_type (false);
24434 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24435 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
24436 }
24437
24438 /* Read DW_AT_associated and set in type. */
24439 attr = dwarf2_attr (die, DW_AT_associated, cu);
24440 if (attr != NULL)
24441 {
24442 struct type *prop_type = cu->addr_sized_int_type (false);
24443 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24444 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
24445 }
24446
24447 /* Read DW_AT_data_location and set in type. */
24448 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24449 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
24450 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
24451
24452 if (per_objfile->die_type_hash == NULL)
24453 per_objfile->die_type_hash
24454 = htab_up (htab_create_alloc (127,
24455 per_cu_offset_and_type_hash,
24456 per_cu_offset_and_type_eq,
24457 NULL, xcalloc, xfree));
24458
24459 ofs.per_cu = cu->per_cu;
24460 ofs.sect_off = die->sect_off;
24461 ofs.type = type;
24462 slot = (struct dwarf2_per_cu_offset_and_type **)
24463 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
24464 if (*slot)
24465 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24466 sect_offset_str (die->sect_off));
24467 *slot = XOBNEW (&objfile->objfile_obstack,
24468 struct dwarf2_per_cu_offset_and_type);
24469 **slot = ofs;
24470 return type;
24471 }
24472
24473 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24474 or return NULL if the die does not have a saved type. */
24475
24476 static struct type *
24477 get_die_type_at_offset (sect_offset sect_off,
24478 dwarf2_per_cu_data *per_cu,
24479 dwarf2_per_objfile *per_objfile)
24480 {
24481 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24482
24483 if (per_objfile->die_type_hash == NULL)
24484 return NULL;
24485
24486 ofs.per_cu = per_cu;
24487 ofs.sect_off = sect_off;
24488 slot = ((struct dwarf2_per_cu_offset_and_type *)
24489 htab_find (per_objfile->die_type_hash.get (), &ofs));
24490 if (slot)
24491 return slot->type;
24492 else
24493 return NULL;
24494 }
24495
24496 /* Look up the type for DIE in CU in die_type_hash,
24497 or return NULL if DIE does not have a saved type. */
24498
24499 static struct type *
24500 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24501 {
24502 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
24503 }
24504
24505 /* Add a dependence relationship from CU to REF_PER_CU. */
24506
24507 static void
24508 dwarf2_add_dependence (struct dwarf2_cu *cu,
24509 struct dwarf2_per_cu_data *ref_per_cu)
24510 {
24511 void **slot;
24512
24513 if (cu->dependencies == NULL)
24514 cu->dependencies
24515 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24516 NULL, &cu->comp_unit_obstack,
24517 hashtab_obstack_allocate,
24518 dummy_obstack_deallocate);
24519
24520 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24521 if (*slot == NULL)
24522 *slot = ref_per_cu;
24523 }
24524
24525 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24526 Set the mark field in every compilation unit in the
24527 cache that we must keep because we are keeping CU.
24528
24529 DATA is the dwarf2_per_objfile object in which to look up CUs. */
24530
24531 static int
24532 dwarf2_mark_helper (void **slot, void *data)
24533 {
24534 dwarf2_per_cu_data *per_cu = (dwarf2_per_cu_data *) *slot;
24535 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) data;
24536 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
24537
24538 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24539 reading of the chain. As such dependencies remain valid it is not much
24540 useful to track and undo them during QUIT cleanups. */
24541 if (cu == nullptr)
24542 return 1;
24543
24544 if (cu->mark)
24545 return 1;
24546
24547 cu->mark = true;
24548
24549 if (cu->dependencies != nullptr)
24550 htab_traverse (cu->dependencies, dwarf2_mark_helper, per_objfile);
24551
24552 return 1;
24553 }
24554
24555 /* Set the mark field in CU and in every other compilation unit in the
24556 cache that we must keep because we are keeping CU. */
24557
24558 static void
24559 dwarf2_mark (struct dwarf2_cu *cu)
24560 {
24561 if (cu->mark)
24562 return;
24563
24564 cu->mark = true;
24565
24566 if (cu->dependencies != nullptr)
24567 htab_traverse (cu->dependencies, dwarf2_mark_helper, cu->per_objfile);
24568 }
24569
24570 /* Trivial hash function for partial_die_info: the hash value of a DIE
24571 is its offset in .debug_info for this objfile. */
24572
24573 static hashval_t
24574 partial_die_hash (const void *item)
24575 {
24576 const struct partial_die_info *part_die
24577 = (const struct partial_die_info *) item;
24578
24579 return to_underlying (part_die->sect_off);
24580 }
24581
24582 /* Trivial comparison function for partial_die_info structures: two DIEs
24583 are equal if they have the same offset. */
24584
24585 static int
24586 partial_die_eq (const void *item_lhs, const void *item_rhs)
24587 {
24588 const struct partial_die_info *part_die_lhs
24589 = (const struct partial_die_info *) item_lhs;
24590 const struct partial_die_info *part_die_rhs
24591 = (const struct partial_die_info *) item_rhs;
24592
24593 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24594 }
24595
24596 struct cmd_list_element *set_dwarf_cmdlist;
24597 struct cmd_list_element *show_dwarf_cmdlist;
24598
24599 static void
24600 show_check_physname (struct ui_file *file, int from_tty,
24601 struct cmd_list_element *c, const char *value)
24602 {
24603 fprintf_filtered (file,
24604 _("Whether to check \"physname\" is %s.\n"),
24605 value);
24606 }
24607
24608 void _initialize_dwarf2_read ();
24609 void
24610 _initialize_dwarf2_read ()
24611 {
24612 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24613 Set DWARF specific variables.\n\
24614 Configure DWARF variables such as the cache size."),
24615 &set_dwarf_cmdlist, "maintenance set dwarf ",
24616 0/*allow-unknown*/, &maintenance_set_cmdlist);
24617
24618 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24619 Show DWARF specific variables.\n\
24620 Show DWARF variables such as the cache size."),
24621 &show_dwarf_cmdlist, "maintenance show dwarf ",
24622 0/*allow-unknown*/, &maintenance_show_cmdlist);
24623
24624 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24625 &dwarf_max_cache_age, _("\
24626 Set the upper bound on the age of cached DWARF compilation units."), _("\
24627 Show the upper bound on the age of cached DWARF compilation units."), _("\
24628 A higher limit means that cached compilation units will be stored\n\
24629 in memory longer, and more total memory will be used. Zero disables\n\
24630 caching, which can slow down startup."),
24631 NULL,
24632 show_dwarf_max_cache_age,
24633 &set_dwarf_cmdlist,
24634 &show_dwarf_cmdlist);
24635
24636 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24637 Set debugging of the DWARF reader."), _("\
24638 Show debugging of the DWARF reader."), _("\
24639 When enabled (non-zero), debugging messages are printed during DWARF\n\
24640 reading and symtab expansion. A value of 1 (one) provides basic\n\
24641 information. A value greater than 1 provides more verbose information."),
24642 NULL,
24643 NULL,
24644 &setdebuglist, &showdebuglist);
24645
24646 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24647 Set debugging of the DWARF DIE reader."), _("\
24648 Show debugging of the DWARF DIE reader."), _("\
24649 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24650 The value is the maximum depth to print."),
24651 NULL,
24652 NULL,
24653 &setdebuglist, &showdebuglist);
24654
24655 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24656 Set debugging of the dwarf line reader."), _("\
24657 Show debugging of the dwarf line reader."), _("\
24658 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24659 A value of 1 (one) provides basic information.\n\
24660 A value greater than 1 provides more verbose information."),
24661 NULL,
24662 NULL,
24663 &setdebuglist, &showdebuglist);
24664
24665 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24666 Set cross-checking of \"physname\" code against demangler."), _("\
24667 Show cross-checking of \"physname\" code against demangler."), _("\
24668 When enabled, GDB's internal \"physname\" code is checked against\n\
24669 the demangler."),
24670 NULL, show_check_physname,
24671 &setdebuglist, &showdebuglist);
24672
24673 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24674 no_class, &use_deprecated_index_sections, _("\
24675 Set whether to use deprecated gdb_index sections."), _("\
24676 Show whether to use deprecated gdb_index sections."), _("\
24677 When enabled, deprecated .gdb_index sections are used anyway.\n\
24678 Normally they are ignored either because of a missing feature or\n\
24679 performance issue.\n\
24680 Warning: This option must be enabled before gdb reads the file."),
24681 NULL,
24682 NULL,
24683 &setlist, &showlist);
24684
24685 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24686 &dwarf2_locexpr_funcs);
24687 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24688 &dwarf2_loclist_funcs);
24689
24690 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24691 &dwarf2_block_frame_base_locexpr_funcs);
24692 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24693 &dwarf2_block_frame_base_loclist_funcs);
24694
24695 #if GDB_SELF_TEST
24696 selftests::register_test ("dw2_expand_symtabs_matching",
24697 selftests::dw2_expand_symtabs_matching::run_test);
24698 selftests::register_test ("dwarf2_find_containing_comp_unit",
24699 selftests::find_containing_comp_unit::run_test);
24700 #endif
24701 }
This page took 0.657996 seconds and 4 git commands to generate.