9cda828b198f316727c81bdc8356b0513c56ba2f
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/index-cache.h"
36 #include "dwarf2/index-common.h"
37 #include "dwarf2/leb.h"
38 #include "bfd.h"
39 #include "elf-bfd.h"
40 #include "symtab.h"
41 #include "gdbtypes.h"
42 #include "objfiles.h"
43 #include "dwarf2.h"
44 #include "buildsym.h"
45 #include "demangle.h"
46 #include "gdb-demangle.h"
47 #include "filenames.h" /* for DOSish file names */
48 #include "macrotab.h"
49 #include "language.h"
50 #include "complaints.h"
51 #include "dwarf2/expr.h"
52 #include "dwarf2/loc.h"
53 #include "cp-support.h"
54 #include "hashtab.h"
55 #include "command.h"
56 #include "gdbcmd.h"
57 #include "block.h"
58 #include "addrmap.h"
59 #include "typeprint.h"
60 #include "psympriv.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "build-id.h"
70 #include "namespace.h"
71 #include "gdbsupport/function-view.h"
72 #include "gdbsupport/gdb_optional.h"
73 #include "gdbsupport/underlying.h"
74 #include "gdbsupport/hash_enum.h"
75 #include "filename-seen-cache.h"
76 #include "producer.h"
77 #include <fcntl.h>
78 #include <algorithm>
79 #include <unordered_map>
80 #include "gdbsupport/selftest.h"
81 #include "rust-lang.h"
82 #include "gdbsupport/pathstuff.h"
83
84 /* When == 1, print basic high level tracing messages.
85 When > 1, be more verbose.
86 This is in contrast to the low level DIE reading of dwarf_die_debug. */
87 static unsigned int dwarf_read_debug = 0;
88
89 /* When non-zero, dump DIEs after they are read in. */
90 static unsigned int dwarf_die_debug = 0;
91
92 /* When non-zero, dump line number entries as they are read in. */
93 static unsigned int dwarf_line_debug = 0;
94
95 /* When true, cross-check physname against demangler. */
96 static bool check_physname = false;
97
98 /* When true, do not reject deprecated .gdb_index sections. */
99 static bool use_deprecated_index_sections = false;
100
101 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
102
103 /* The "aclass" indices for various kinds of computed DWARF symbols. */
104
105 static int dwarf2_locexpr_index;
106 static int dwarf2_loclist_index;
107 static int dwarf2_locexpr_block_index;
108 static int dwarf2_loclist_block_index;
109
110 /* An index into a (C++) symbol name component in a symbol name as
111 recorded in the mapped_index's symbol table. For each C++ symbol
112 in the symbol table, we record one entry for the start of each
113 component in the symbol in a table of name components, and then
114 sort the table, in order to be able to binary search symbol names,
115 ignoring leading namespaces, both completion and regular look up.
116 For example, for symbol "A::B::C", we'll have an entry that points
117 to "A::B::C", another that points to "B::C", and another for "C".
118 Note that function symbols in GDB index have no parameter
119 information, just the function/method names. You can convert a
120 name_component to a "const char *" using the
121 'mapped_index::symbol_name_at(offset_type)' method. */
122
123 struct name_component
124 {
125 /* Offset in the symbol name where the component starts. Stored as
126 a (32-bit) offset instead of a pointer to save memory and improve
127 locality on 64-bit architectures. */
128 offset_type name_offset;
129
130 /* The symbol's index in the symbol and constant pool tables of a
131 mapped_index. */
132 offset_type idx;
133 };
134
135 /* Base class containing bits shared by both .gdb_index and
136 .debug_name indexes. */
137
138 struct mapped_index_base
139 {
140 mapped_index_base () = default;
141 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
142
143 /* The name_component table (a sorted vector). See name_component's
144 description above. */
145 std::vector<name_component> name_components;
146
147 /* How NAME_COMPONENTS is sorted. */
148 enum case_sensitivity name_components_casing;
149
150 /* Return the number of names in the symbol table. */
151 virtual size_t symbol_name_count () const = 0;
152
153 /* Get the name of the symbol at IDX in the symbol table. */
154 virtual const char *symbol_name_at (offset_type idx) const = 0;
155
156 /* Return whether the name at IDX in the symbol table should be
157 ignored. */
158 virtual bool symbol_name_slot_invalid (offset_type idx) const
159 {
160 return false;
161 }
162
163 /* Build the symbol name component sorted vector, if we haven't
164 yet. */
165 void build_name_components ();
166
167 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
168 possible matches for LN_NO_PARAMS in the name component
169 vector. */
170 std::pair<std::vector<name_component>::const_iterator,
171 std::vector<name_component>::const_iterator>
172 find_name_components_bounds (const lookup_name_info &ln_no_params,
173 enum language lang) const;
174
175 /* Prevent deleting/destroying via a base class pointer. */
176 protected:
177 ~mapped_index_base() = default;
178 };
179
180 /* A description of the mapped index. The file format is described in
181 a comment by the code that writes the index. */
182 struct mapped_index final : public mapped_index_base
183 {
184 /* A slot/bucket in the symbol table hash. */
185 struct symbol_table_slot
186 {
187 const offset_type name;
188 const offset_type vec;
189 };
190
191 /* Index data format version. */
192 int version = 0;
193
194 /* The address table data. */
195 gdb::array_view<const gdb_byte> address_table;
196
197 /* The symbol table, implemented as a hash table. */
198 gdb::array_view<symbol_table_slot> symbol_table;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool = nullptr;
202
203 bool symbol_name_slot_invalid (offset_type idx) const override
204 {
205 const auto &bucket = this->symbol_table[idx];
206 return bucket.name == 0 && bucket.vec == 0;
207 }
208
209 /* Convenience method to get at the name of the symbol at IDX in the
210 symbol table. */
211 const char *symbol_name_at (offset_type idx) const override
212 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
213
214 size_t symbol_name_count () const override
215 { return this->symbol_table.size (); }
216 };
217
218 /* A description of the mapped .debug_names.
219 Uninitialized map has CU_COUNT 0. */
220 struct mapped_debug_names final : public mapped_index_base
221 {
222 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
223 : dwarf2_per_objfile (dwarf2_per_objfile_)
224 {}
225
226 struct dwarf2_per_objfile *dwarf2_per_objfile;
227 bfd_endian dwarf5_byte_order;
228 bool dwarf5_is_dwarf64;
229 bool augmentation_is_gdb;
230 uint8_t offset_size;
231 uint32_t cu_count = 0;
232 uint32_t tu_count, bucket_count, name_count;
233 const gdb_byte *cu_table_reordered, *tu_table_reordered;
234 const uint32_t *bucket_table_reordered, *hash_table_reordered;
235 const gdb_byte *name_table_string_offs_reordered;
236 const gdb_byte *name_table_entry_offs_reordered;
237 const gdb_byte *entry_pool;
238
239 struct index_val
240 {
241 ULONGEST dwarf_tag;
242 struct attr
243 {
244 /* Attribute name DW_IDX_*. */
245 ULONGEST dw_idx;
246
247 /* Attribute form DW_FORM_*. */
248 ULONGEST form;
249
250 /* Value if FORM is DW_FORM_implicit_const. */
251 LONGEST implicit_const;
252 };
253 std::vector<attr> attr_vec;
254 };
255
256 std::unordered_map<ULONGEST, index_val> abbrev_map;
257
258 const char *namei_to_name (uint32_t namei) const;
259
260 /* Implementation of the mapped_index_base virtual interface, for
261 the name_components cache. */
262
263 const char *symbol_name_at (offset_type idx) const override
264 { return namei_to_name (idx); }
265
266 size_t symbol_name_count () const override
267 { return this->name_count; }
268 };
269
270 /* See dwarf2read.h. */
271
272 dwarf2_per_objfile *
273 get_dwarf2_per_objfile (struct objfile *objfile)
274 {
275 return dwarf2_objfile_data_key.get (objfile);
276 }
277
278 /* Default names of the debugging sections. */
279
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
282
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
284 {
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_loclists", ".zdebug_loclists" },
290 { ".debug_macinfo", ".zdebug_macinfo" },
291 { ".debug_macro", ".zdebug_macro" },
292 { ".debug_str", ".zdebug_str" },
293 { ".debug_str_offsets", ".zdebug_str_offsets" },
294 { ".debug_line_str", ".zdebug_line_str" },
295 { ".debug_ranges", ".zdebug_ranges" },
296 { ".debug_rnglists", ".zdebug_rnglists" },
297 { ".debug_types", ".zdebug_types" },
298 { ".debug_addr", ".zdebug_addr" },
299 { ".debug_frame", ".zdebug_frame" },
300 { ".eh_frame", NULL },
301 { ".gdb_index", ".zgdb_index" },
302 { ".debug_names", ".zdebug_names" },
303 { ".debug_aranges", ".zdebug_aranges" },
304 23
305 };
306
307 /* List of DWO/DWP sections. */
308
309 static const struct dwop_section_names
310 {
311 struct dwarf2_section_names abbrev_dwo;
312 struct dwarf2_section_names info_dwo;
313 struct dwarf2_section_names line_dwo;
314 struct dwarf2_section_names loc_dwo;
315 struct dwarf2_section_names loclists_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
323 }
324 dwop_section_names =
325 {
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
338 };
339
340 /* local data types */
341
342 /* The data in a compilation unit header, after target2host
343 translation, looks like this. */
344 struct comp_unit_head
345 {
346 unsigned int length;
347 short version;
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
350 sect_offset abbrev_sect_off;
351
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
354
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
357
358 enum dwarf_unit_type unit_type;
359
360 /* Offset to the first byte of this compilation unit header in the
361 .debug_info section, for resolving relative reference dies. */
362 sect_offset sect_off;
363
364 /* Offset to first die in this cu from the start of the cu.
365 This will be the first byte following the compilation unit header. */
366 cu_offset first_die_cu_offset;
367
368
369 /* 64-bit signature of this unit. For type units, it denotes the signature of
370 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
371 Also used in DWARF 5, to denote the dwo id when the unit type is
372 DW_UT_skeleton or DW_UT_split_compile. */
373 ULONGEST signature;
374
375 /* For types, offset in the type's DIE of the type defined by this TU. */
376 cu_offset type_cu_offset_in_tu;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 private:
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> m_builder;
442
443 public:
444 /* The generic symbol table building routines have separate lists for
445 file scope symbols and all all other scopes (local scopes). So
446 we need to select the right one to pass to add_symbol_to_list().
447 We do it by keeping a pointer to the correct list in list_in_scope.
448
449 FIXME: The original dwarf code just treated the file scope as the
450 first local scope, and all other local scopes as nested local
451 scopes, and worked fine. Check to see if we really need to
452 distinguish these in buildsym.c. */
453 struct pending **list_in_scope = nullptr;
454
455 /* Hash table holding all the loaded partial DIEs
456 with partial_die->offset.SECT_OFF as hash. */
457 htab_t partial_dies = nullptr;
458
459 /* Storage for things with the same lifetime as this read-in compilation
460 unit, including partial DIEs. */
461 auto_obstack comp_unit_obstack;
462
463 /* When multiple dwarf2_cu structures are living in memory, this field
464 chains them all together, so that they can be released efficiently.
465 We will probably also want a generation counter so that most-recently-used
466 compilation units are cached... */
467 struct dwarf2_per_cu_data *read_in_chain = nullptr;
468
469 /* Backlink to our per_cu entry. */
470 struct dwarf2_per_cu_data *per_cu;
471
472 /* How many compilation units ago was this CU last referenced? */
473 int last_used = 0;
474
475 /* A hash table of DIE cu_offset for following references with
476 die_info->offset.sect_off as hash. */
477 htab_t die_hash = nullptr;
478
479 /* Full DIEs if read in. */
480 struct die_info *dies = nullptr;
481
482 /* A set of pointers to dwarf2_per_cu_data objects for compilation
483 units referenced by this one. Only set during full symbol processing;
484 partial symbol tables do not have dependencies. */
485 htab_t dependencies = nullptr;
486
487 /* Header data from the line table, during full symbol processing. */
488 struct line_header *line_header = nullptr;
489 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
490 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
491 this is the DW_TAG_compile_unit die for this CU. We'll hold on
492 to the line header as long as this DIE is being processed. See
493 process_die_scope. */
494 die_info *line_header_die_owner = nullptr;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 std::vector<delayed_method_info> method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab = nullptr;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit = nullptr;
513
514 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 gdb::optional<ULONGEST> addr_base;
517
518 /* The DW_AT_rnglists_base attribute if present.
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab.
611 This PER_CU is recognized by having no section. */
612 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
613 struct dwarf2_per_cu_data per_cu;
614
615 /* The TUs that share this DW_AT_stmt_list entry.
616 This is added to while parsing type units to build partial symtabs,
617 and is deleted afterwards and not used again. */
618 std::vector<signatured_type *> *tus;
619
620 /* The compunit symtab.
621 Type units in a group needn't all be defined in the same source file,
622 so we create an essentially anonymous symtab as the compunit symtab. */
623 struct compunit_symtab *compunit_symtab;
624
625 /* The data used to construct the hash key. */
626 struct stmt_list_hash hash;
627
628 /* The number of symtabs from the line header.
629 The value here must match line_header.num_file_names. */
630 unsigned int num_symtabs;
631
632 /* The symbol tables for this TU (obtained from the files listed in
633 DW_AT_stmt_list).
634 WARNING: The order of entries here must match the order of entries
635 in the line header. After the first TU using this type_unit_group, the
636 line header for the subsequent TUs is recreated from this. This is done
637 because we need to use the same symtabs for each TU using the same
638 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
639 there's no guarantee the line header doesn't have duplicate entries. */
640 struct symtab **symtabs;
641 };
642
643 /* These sections are what may appear in a (real or virtual) DWO file. */
644
645 struct dwo_sections
646 {
647 struct dwarf2_section_info abbrev;
648 struct dwarf2_section_info line;
649 struct dwarf2_section_info loc;
650 struct dwarf2_section_info loclists;
651 struct dwarf2_section_info macinfo;
652 struct dwarf2_section_info macro;
653 struct dwarf2_section_info str;
654 struct dwarf2_section_info str_offsets;
655 /* In the case of a virtual DWO file, these two are unused. */
656 struct dwarf2_section_info info;
657 std::vector<dwarf2_section_info> types;
658 };
659
660 /* CUs/TUs in DWP/DWO files. */
661
662 struct dwo_unit
663 {
664 /* Backlink to the containing struct dwo_file. */
665 struct dwo_file *dwo_file;
666
667 /* The "id" that distinguishes this CU/TU.
668 .debug_info calls this "dwo_id", .debug_types calls this "signature".
669 Since signatures came first, we stick with it for consistency. */
670 ULONGEST signature;
671
672 /* The section this CU/TU lives in, in the DWO file. */
673 struct dwarf2_section_info *section;
674
675 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
676 sect_offset sect_off;
677 unsigned int length;
678
679 /* For types, offset in the type's DIE of the type defined by this TU. */
680 cu_offset type_offset_in_tu;
681 };
682
683 /* include/dwarf2.h defines the DWP section codes.
684 It defines a max value but it doesn't define a min value, which we
685 use for error checking, so provide one. */
686
687 enum dwp_v2_section_ids
688 {
689 DW_SECT_MIN = 1
690 };
691
692 /* Data for one DWO file.
693
694 This includes virtual DWO files (a virtual DWO file is a DWO file as it
695 appears in a DWP file). DWP files don't really have DWO files per se -
696 comdat folding of types "loses" the DWO file they came from, and from
697 a high level view DWP files appear to contain a mass of random types.
698 However, to maintain consistency with the non-DWP case we pretend DWP
699 files contain virtual DWO files, and we assign each TU with one virtual
700 DWO file (generally based on the line and abbrev section offsets -
701 a heuristic that seems to work in practice). */
702
703 struct dwo_file
704 {
705 dwo_file () = default;
706 DISABLE_COPY_AND_ASSIGN (dwo_file);
707
708 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
709 For virtual DWO files the name is constructed from the section offsets
710 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
711 from related CU+TUs. */
712 const char *dwo_name = nullptr;
713
714 /* The DW_AT_comp_dir attribute. */
715 const char *comp_dir = nullptr;
716
717 /* The bfd, when the file is open. Otherwise this is NULL.
718 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
719 gdb_bfd_ref_ptr dbfd;
720
721 /* The sections that make up this DWO file.
722 Remember that for virtual DWO files in DWP V2, these are virtual
723 sections (for lack of a better name). */
724 struct dwo_sections sections {};
725
726 /* The CUs in the file.
727 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
728 an extension to handle LLVM's Link Time Optimization output (where
729 multiple source files may be compiled into a single object/dwo pair). */
730 htab_up cus;
731
732 /* Table of TUs in the file.
733 Each element is a struct dwo_unit. */
734 htab_up tus;
735 };
736
737 /* These sections are what may appear in a DWP file. */
738
739 struct dwp_sections
740 {
741 /* These are used by both DWP version 1 and 2. */
742 struct dwarf2_section_info str;
743 struct dwarf2_section_info cu_index;
744 struct dwarf2_section_info tu_index;
745
746 /* These are only used by DWP version 2 files.
747 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
748 sections are referenced by section number, and are not recorded here.
749 In DWP version 2 there is at most one copy of all these sections, each
750 section being (effectively) comprised of the concatenation of all of the
751 individual sections that exist in the version 1 format.
752 To keep the code simple we treat each of these concatenated pieces as a
753 section itself (a virtual section?). */
754 struct dwarf2_section_info abbrev;
755 struct dwarf2_section_info info;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str_offsets;
761 struct dwarf2_section_info types;
762 };
763
764 /* These sections are what may appear in a virtual DWO file in DWP version 1.
765 A virtual DWO file is a DWO file as it appears in a DWP file. */
766
767 struct virtual_v1_dwo_sections
768 {
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.section. */
777 struct dwarf2_section_info info_or_types;
778 };
779
780 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
781 In version 2, the sections of the DWO files are concatenated together
782 and stored in one section of that name. Thus each ELF section contains
783 several "virtual" sections. */
784
785 struct virtual_v2_dwo_sections
786 {
787 bfd_size_type abbrev_offset;
788 bfd_size_type abbrev_size;
789
790 bfd_size_type line_offset;
791 bfd_size_type line_size;
792
793 bfd_size_type loc_offset;
794 bfd_size_type loc_size;
795
796 bfd_size_type macinfo_offset;
797 bfd_size_type macinfo_size;
798
799 bfd_size_type macro_offset;
800 bfd_size_type macro_size;
801
802 bfd_size_type str_offsets_offset;
803 bfd_size_type str_offsets_size;
804
805 /* Each DWP hash table entry records one CU or one TU.
806 That is recorded here, and copied to dwo_unit.section. */
807 bfd_size_type info_or_types_offset;
808 bfd_size_type info_or_types_size;
809 };
810
811 /* Contents of DWP hash tables. */
812
813 struct dwp_hash_table
814 {
815 uint32_t version, nr_columns;
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table;
818 union
819 {
820 struct
821 {
822 const gdb_byte *indices;
823 } v1;
824 struct
825 {
826 /* This is indexed by column number and gives the id of the section
827 in that column. */
828 #define MAX_NR_V2_DWO_SECTIONS \
829 (1 /* .debug_info or .debug_types */ \
830 + 1 /* .debug_abbrev */ \
831 + 1 /* .debug_line */ \
832 + 1 /* .debug_loc */ \
833 + 1 /* .debug_str_offsets */ \
834 + 1 /* .debug_macro or .debug_macinfo */)
835 int section_ids[MAX_NR_V2_DWO_SECTIONS];
836 const gdb_byte *offsets;
837 const gdb_byte *sizes;
838 } v2;
839 } section_pool;
840 };
841
842 /* Data for one DWP file. */
843
844 struct dwp_file
845 {
846 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
847 : name (name_),
848 dbfd (std::move (abfd))
849 {
850 }
851
852 /* Name of the file. */
853 const char *name;
854
855 /* File format version. */
856 int version = 0;
857
858 /* The bfd. */
859 gdb_bfd_ref_ptr dbfd;
860
861 /* Section info for this file. */
862 struct dwp_sections sections {};
863
864 /* Table of CUs in the file. */
865 const struct dwp_hash_table *cus = nullptr;
866
867 /* Table of TUs in the file. */
868 const struct dwp_hash_table *tus = nullptr;
869
870 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
871 htab_up loaded_cus;
872 htab_up loaded_tus;
873
874 /* Table to map ELF section numbers to their sections.
875 This is only needed for the DWP V1 file format. */
876 unsigned int num_sections = 0;
877 asection **elf_sections = nullptr;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The abbreviation table to use when reading the DIEs. */
907 struct abbrev_table *abbrev_table;
908 };
909
910 /* A subclass of die_reader_specs that holds storage and has complex
911 constructor and destructor behavior. */
912
913 class cutu_reader : public die_reader_specs
914 {
915 public:
916
917 cutu_reader (struct dwarf2_per_cu_data *this_cu,
918 struct abbrev_table *abbrev_table,
919 int use_existing_cu, int keep,
920 bool skip_partial);
921
922 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
923 struct dwarf2_cu *parent_cu = nullptr,
924 struct dwo_file *dwo_file = nullptr);
925
926 ~cutu_reader ();
927
928 DISABLE_COPY_AND_ASSIGN (cutu_reader);
929
930 const gdb_byte *info_ptr = nullptr;
931 struct die_info *comp_unit_die = nullptr;
932 bool dummy_p = false;
933
934 private:
935 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
936 int use_existing_cu, int keep);
937
938 struct dwarf2_per_cu_data *m_this_cu;
939 int m_keep = 0;
940 std::unique_ptr<dwarf2_cu> m_new_cu;
941
942 /* The ordinary abbreviation table. */
943 abbrev_table_up m_abbrev_table_holder;
944
945 /* The DWO abbreviation table. */
946 abbrev_table_up m_dwo_abbrev_table;
947 };
948
949 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
950 later. */
951 typedef int dir_index;
952
953 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
954 and later. */
955 typedef int file_name_index;
956
957 struct file_entry
958 {
959 file_entry () = default;
960
961 file_entry (const char *name_, dir_index d_index_,
962 unsigned int mod_time_, unsigned int length_)
963 : name (name_),
964 d_index (d_index_),
965 mod_time (mod_time_),
966 length (length_)
967 {}
968
969 /* Return the include directory at D_INDEX stored in LH. Returns
970 NULL if D_INDEX is out of bounds. */
971 const char *include_dir (const line_header *lh) const;
972
973 /* The file name. Note this is an observing pointer. The memory is
974 owned by debug_line_buffer. */
975 const char *name {};
976
977 /* The directory index (1-based). */
978 dir_index d_index {};
979
980 unsigned int mod_time {};
981
982 unsigned int length {};
983
984 /* True if referenced by the Line Number Program. */
985 bool included_p {};
986
987 /* The associated symbol table, if any. */
988 struct symtab *symtab {};
989 };
990
991 /* The line number information for a compilation unit (found in the
992 .debug_line section) begins with a "statement program header",
993 which contains the following information. */
994 struct line_header
995 {
996 line_header ()
997 : offset_in_dwz {}
998 {}
999
1000 /* Add an entry to the include directory table. */
1001 void add_include_dir (const char *include_dir);
1002
1003 /* Add an entry to the file name table. */
1004 void add_file_name (const char *name, dir_index d_index,
1005 unsigned int mod_time, unsigned int length);
1006
1007 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
1008 Returns NULL if INDEX is out of bounds. */
1009 const char *include_dir_at (dir_index index) const
1010 {
1011 int vec_index;
1012 if (version >= 5)
1013 vec_index = index;
1014 else
1015 vec_index = index - 1;
1016 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
1017 return NULL;
1018 return m_include_dirs[vec_index];
1019 }
1020
1021 bool is_valid_file_index (int file_index)
1022 {
1023 if (version >= 5)
1024 return 0 <= file_index && file_index < file_names_size ();
1025 return 1 <= file_index && file_index <= file_names_size ();
1026 }
1027
1028 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
1029 Returns NULL if INDEX is out of bounds. */
1030 file_entry *file_name_at (file_name_index index)
1031 {
1032 int vec_index;
1033 if (version >= 5)
1034 vec_index = index;
1035 else
1036 vec_index = index - 1;
1037 if (vec_index < 0 || vec_index >= m_file_names.size ())
1038 return NULL;
1039 return &m_file_names[vec_index];
1040 }
1041
1042 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1043 this method should only be used to iterate through all file entries in an
1044 index-agnostic manner. */
1045 std::vector<file_entry> &file_names ()
1046 { return m_file_names; }
1047
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1050
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1053
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1060 int line_base {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1063
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1069
1070 int file_names_size ()
1071 { return m_file_names.size(); }
1072
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start {}, *statement_program_end {};
1076
1077 private:
1078 /* The include_directories table. Note these are observing
1079 pointers. The memory is owned by debug_line_buffer. */
1080 std::vector<const char *> m_include_dirs;
1081
1082 /* The file_names table. This is private because the meaning of indexes
1083 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1084 before, and is 0 in DWARF 5 and later). So the client should use
1085 file_name_at method for access. */
1086 std::vector<file_entry> m_file_names;
1087 };
1088
1089 typedef std::unique_ptr<line_header> line_header_up;
1090
1091 const char *
1092 file_entry::include_dir (const line_header *lh) const
1093 {
1094 return lh->include_dir_at (d_index);
1095 }
1096
1097 /* When we construct a partial symbol table entry we only
1098 need this much information. */
1099 struct partial_die_info : public allocate_on_obstack
1100 {
1101 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1102
1103 /* Disable assign but still keep copy ctor, which is needed
1104 load_partial_dies. */
1105 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1106
1107 /* Adjust the partial die before generating a symbol for it. This
1108 function may set the is_external flag or change the DIE's
1109 name. */
1110 void fixup (struct dwarf2_cu *cu);
1111
1112 /* Read a minimal amount of information into the minimal die
1113 structure. */
1114 const gdb_byte *read (const struct die_reader_specs *reader,
1115 const struct abbrev_info &abbrev,
1116 const gdb_byte *info_ptr);
1117
1118 /* Offset of this DIE. */
1119 const sect_offset sect_off;
1120
1121 /* DWARF-2 tag for this DIE. */
1122 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1123
1124 /* Assorted flags describing the data found in this DIE. */
1125 const unsigned int has_children : 1;
1126
1127 unsigned int is_external : 1;
1128 unsigned int is_declaration : 1;
1129 unsigned int has_type : 1;
1130 unsigned int has_specification : 1;
1131 unsigned int has_pc_info : 1;
1132 unsigned int may_be_inlined : 1;
1133
1134 /* This DIE has been marked DW_AT_main_subprogram. */
1135 unsigned int main_subprogram : 1;
1136
1137 /* Flag set if the SCOPE field of this structure has been
1138 computed. */
1139 unsigned int scope_set : 1;
1140
1141 /* Flag set if the DIE has a byte_size attribute. */
1142 unsigned int has_byte_size : 1;
1143
1144 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1145 unsigned int has_const_value : 1;
1146
1147 /* Flag set if any of the DIE's children are template arguments. */
1148 unsigned int has_template_arguments : 1;
1149
1150 /* Flag set if fixup has been called on this die. */
1151 unsigned int fixup_called : 1;
1152
1153 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1154 unsigned int is_dwz : 1;
1155
1156 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1157 unsigned int spec_is_dwz : 1;
1158
1159 /* The name of this DIE. Normally the value of DW_AT_name, but
1160 sometimes a default name for unnamed DIEs. */
1161 const char *name = nullptr;
1162
1163 /* The linkage name, if present. */
1164 const char *linkage_name = nullptr;
1165
1166 /* The scope to prepend to our children. This is generally
1167 allocated on the comp_unit_obstack, so will disappear
1168 when this compilation unit leaves the cache. */
1169 const char *scope = nullptr;
1170
1171 /* Some data associated with the partial DIE. The tag determines
1172 which field is live. */
1173 union
1174 {
1175 /* The location description associated with this DIE, if any. */
1176 struct dwarf_block *locdesc;
1177 /* The offset of an import, for DW_TAG_imported_unit. */
1178 sect_offset sect_off;
1179 } d {};
1180
1181 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1182 CORE_ADDR lowpc = 0;
1183 CORE_ADDR highpc = 0;
1184
1185 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1186 DW_AT_sibling, if any. */
1187 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1188 could return DW_AT_sibling values to its caller load_partial_dies. */
1189 const gdb_byte *sibling = nullptr;
1190
1191 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1192 DW_AT_specification (or DW_AT_abstract_origin or
1193 DW_AT_extension). */
1194 sect_offset spec_offset {};
1195
1196 /* Pointers to this DIE's parent, first child, and next sibling,
1197 if any. */
1198 struct partial_die_info *die_parent = nullptr;
1199 struct partial_die_info *die_child = nullptr;
1200 struct partial_die_info *die_sibling = nullptr;
1201
1202 friend struct partial_die_info *
1203 dwarf2_cu::find_partial_die (sect_offset sect_off);
1204
1205 private:
1206 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1207 partial_die_info (sect_offset sect_off)
1208 : partial_die_info (sect_off, DW_TAG_padding, 0)
1209 {
1210 }
1211
1212 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1213 int has_children_)
1214 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1215 {
1216 is_external = 0;
1217 is_declaration = 0;
1218 has_type = 0;
1219 has_specification = 0;
1220 has_pc_info = 0;
1221 may_be_inlined = 0;
1222 main_subprogram = 0;
1223 scope_set = 0;
1224 has_byte_size = 0;
1225 has_const_value = 0;
1226 has_template_arguments = 0;
1227 fixup_called = 0;
1228 is_dwz = 0;
1229 spec_is_dwz = 0;
1230 }
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* True if this DIE has children. */
1250 unsigned char has_children : 1;
1251
1252 /* Abbrev number */
1253 unsigned int abbrev;
1254
1255 /* Offset in .debug_info or .debug_types section. */
1256 sect_offset sect_off;
1257
1258 /* The dies in a compilation unit form an n-ary tree. PARENT
1259 points to this die's parent; CHILD points to the first child of
1260 this node; and all the children of a given node are chained
1261 together via their SIBLING fields. */
1262 struct die_info *child; /* Its first child, if any. */
1263 struct die_info *sibling; /* Its next sibling, if any. */
1264 struct die_info *parent; /* Its parent, if any. */
1265
1266 /* An array of attributes, with NUM_ATTRS elements. There may be
1267 zero, but it's not common and zero-sized arrays are not
1268 sufficiently portable C. */
1269 struct attribute attrs[1];
1270 };
1271
1272 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1273 but this would require a corresponding change in unpack_field_as_long
1274 and friends. */
1275 static int bits_per_byte = 8;
1276
1277 /* When reading a variant or variant part, we track a bit more
1278 information about the field, and store it in an object of this
1279 type. */
1280
1281 struct variant_field
1282 {
1283 /* If we see a DW_TAG_variant, then this will be the discriminant
1284 value. */
1285 ULONGEST discriminant_value;
1286 /* If we see a DW_TAG_variant, then this will be set if this is the
1287 default branch. */
1288 bool default_branch;
1289 /* While reading a DW_TAG_variant_part, this will be set if this
1290 field is the discriminant. */
1291 bool is_discriminant;
1292 };
1293
1294 struct nextfield
1295 {
1296 int accessibility = 0;
1297 int virtuality = 0;
1298 /* Extra information to describe a variant or variant part. */
1299 struct variant_field variant {};
1300 struct field field {};
1301 };
1302
1303 struct fnfieldlist
1304 {
1305 const char *name = nullptr;
1306 std::vector<struct fn_field> fnfields;
1307 };
1308
1309 /* The routines that read and process dies for a C struct or C++ class
1310 pass lists of data member fields and lists of member function fields
1311 in an instance of a field_info structure, as defined below. */
1312 struct field_info
1313 {
1314 /* List of data member and baseclasses fields. */
1315 std::vector<struct nextfield> fields;
1316 std::vector<struct nextfield> baseclasses;
1317
1318 /* Number of fields (including baseclasses). */
1319 int nfields = 0;
1320
1321 /* Set if the accessibility of one of the fields is not public. */
1322 int non_public_fields = 0;
1323
1324 /* Member function fieldlist array, contains name of possibly overloaded
1325 member function, number of overloaded member functions and a pointer
1326 to the head of the member function field chain. */
1327 std::vector<struct fnfieldlist> fnfieldlists;
1328
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 std::vector<struct decl_field> typedef_field_list;
1332
1333 /* Nested types defined by this class and the number of elements in this
1334 list. */
1335 std::vector<struct decl_field> nested_types_list;
1336 };
1337
1338 /* Loaded secondary compilation units are kept in memory until they
1339 have not been referenced for the processing of this many
1340 compilation units. Set this to zero to disable caching. Cache
1341 sizes of up to at least twenty will improve startup time for
1342 typical inter-CU-reference binaries, at an obvious memory cost. */
1343 static int dwarf_max_cache_age = 5;
1344 static void
1345 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1347 {
1348 fprintf_filtered (file, _("The upper bound on the age of cached "
1349 "DWARF compilation units is %s.\n"),
1350 value);
1351 }
1352 \f
1353 /* local function prototypes */
1354
1355 static void dwarf2_find_base_address (struct die_info *die,
1356 struct dwarf2_cu *cu);
1357
1358 static dwarf2_psymtab *create_partial_symtab
1359 (struct dwarf2_per_cu_data *per_cu, const char *name);
1360
1361 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1362 const gdb_byte *info_ptr,
1363 struct die_info *type_unit_die);
1364
1365 static void dwarf2_build_psymtabs_hard
1366 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1367
1368 static void scan_partial_symbols (struct partial_die_info *,
1369 CORE_ADDR *, CORE_ADDR *,
1370 int, struct dwarf2_cu *);
1371
1372 static void add_partial_symbol (struct partial_die_info *,
1373 struct dwarf2_cu *);
1374
1375 static void add_partial_namespace (struct partial_die_info *pdi,
1376 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1377 int set_addrmap, struct dwarf2_cu *cu);
1378
1379 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1380 CORE_ADDR *highpc, int set_addrmap,
1381 struct dwarf2_cu *cu);
1382
1383 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1384 struct dwarf2_cu *cu);
1385
1386 static void add_partial_subprogram (struct partial_die_info *pdi,
1387 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1388 int need_pc, struct dwarf2_cu *cu);
1389
1390 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1391
1392 static struct partial_die_info *load_partial_dies
1393 (const struct die_reader_specs *, const gdb_byte *, int);
1394
1395 /* A pair of partial_die_info and compilation unit. */
1396 struct cu_partial_die_info
1397 {
1398 /* The compilation unit of the partial_die_info. */
1399 struct dwarf2_cu *cu;
1400 /* A partial_die_info. */
1401 struct partial_die_info *pdi;
1402
1403 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1404 : cu (cu),
1405 pdi (pdi)
1406 { /* Nothing. */ }
1407
1408 private:
1409 cu_partial_die_info () = delete;
1410 };
1411
1412 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1413 struct dwarf2_cu *);
1414
1415 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1416 struct attribute *, struct attr_abbrev *,
1417 const gdb_byte *, bool *need_reprocess);
1418
1419 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1420 struct attribute *attr);
1421
1422 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1423
1424 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1425 unsigned int *);
1426
1427 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1428
1429 static LONGEST read_checked_initial_length_and_offset
1430 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1431 unsigned int *, unsigned int *);
1432
1433 static LONGEST read_offset (bfd *, const gdb_byte *,
1434 const struct comp_unit_head *,
1435 unsigned int *);
1436
1437 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1438
1439 static sect_offset read_abbrev_offset
1440 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1441 struct dwarf2_section_info *, sect_offset);
1442
1443 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1444
1445 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1446
1447 static const char *read_indirect_string
1448 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1449 const struct comp_unit_head *, unsigned int *);
1450
1451 static const char *read_indirect_line_string
1452 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1453 const struct comp_unit_head *, unsigned int *);
1454
1455 static const char *read_indirect_string_at_offset
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1457 LONGEST str_offset);
1458
1459 static const char *read_indirect_string_from_dwz
1460 (struct objfile *objfile, struct dwz_file *, LONGEST);
1461
1462 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1463 const gdb_byte *,
1464 unsigned int *);
1465
1466 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1467 ULONGEST str_index);
1468
1469 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1470 ULONGEST str_index);
1471
1472 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1473
1474 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1475 struct dwarf2_cu *);
1476
1477 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1478 unsigned int);
1479
1480 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1481 struct dwarf2_cu *cu);
1482
1483 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1484
1485 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1486 struct dwarf2_cu *cu);
1487
1488 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1489
1490 static struct die_info *die_specification (struct die_info *die,
1491 struct dwarf2_cu **);
1492
1493 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1494 struct dwarf2_cu *cu);
1495
1496 static void dwarf_decode_lines (struct line_header *, const char *,
1497 struct dwarf2_cu *, dwarf2_psymtab *,
1498 CORE_ADDR, int decode_mapping);
1499
1500 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1501 const char *);
1502
1503 static struct symbol *new_symbol (struct die_info *, struct type *,
1504 struct dwarf2_cu *, struct symbol * = NULL);
1505
1506 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1507 struct dwarf2_cu *);
1508
1509 static void dwarf2_const_value_attr (const struct attribute *attr,
1510 struct type *type,
1511 const char *name,
1512 struct obstack *obstack,
1513 struct dwarf2_cu *cu, LONGEST *value,
1514 const gdb_byte **bytes,
1515 struct dwarf2_locexpr_baton **baton);
1516
1517 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1518
1519 static int need_gnat_info (struct dwarf2_cu *);
1520
1521 static struct type *die_descriptive_type (struct die_info *,
1522 struct dwarf2_cu *);
1523
1524 static void set_descriptive_type (struct type *, struct die_info *,
1525 struct dwarf2_cu *);
1526
1527 static struct type *die_containing_type (struct die_info *,
1528 struct dwarf2_cu *);
1529
1530 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1531 struct dwarf2_cu *);
1532
1533 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1534
1535 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1536
1537 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1538
1539 static char *typename_concat (struct obstack *obs, const char *prefix,
1540 const char *suffix, int physname,
1541 struct dwarf2_cu *cu);
1542
1543 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1544
1545 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1546
1547 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1548
1549 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1550
1551 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1552
1553 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1554
1555 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1556 struct dwarf2_cu *, dwarf2_psymtab *);
1557
1558 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1559 values. Keep the items ordered with increasing constraints compliance. */
1560 enum pc_bounds_kind
1561 {
1562 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1563 PC_BOUNDS_NOT_PRESENT,
1564
1565 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1566 were present but they do not form a valid range of PC addresses. */
1567 PC_BOUNDS_INVALID,
1568
1569 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1570 PC_BOUNDS_RANGES,
1571
1572 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1573 PC_BOUNDS_HIGH_LOW,
1574 };
1575
1576 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1577 CORE_ADDR *, CORE_ADDR *,
1578 struct dwarf2_cu *,
1579 dwarf2_psymtab *);
1580
1581 static void get_scope_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1586 CORE_ADDR, struct dwarf2_cu *);
1587
1588 static void dwarf2_add_field (struct field_info *, struct die_info *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_attach_fields_to_type (struct field_info *,
1592 struct type *, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_member_fn (struct field_info *,
1595 struct die_info *, struct type *,
1596 struct dwarf2_cu *);
1597
1598 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1599 struct type *,
1600 struct dwarf2_cu *);
1601
1602 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1607
1608 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1609
1610 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_unit_type_name (int unit_type);
1667
1668 static const char *dwarf_form_name (unsigned int);
1669
1670 static const char *dwarf_bool_name (unsigned int);
1671
1672 static const char *dwarf_type_encoding_name (unsigned int);
1673
1674 static struct die_info *sibling_die (struct die_info *);
1675
1676 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677
1678 static void dump_die_for_error (struct die_info *);
1679
1680 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 struct die_info *);
1682
1683 /*static*/ void dump_die (struct die_info *, int max_level);
1684
1685 static void store_in_ref_table (struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689
1690 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691
1692 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_ref (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct die_info *follow_die_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1705 struct dwarf2_cu *);
1706
1707 static struct type *get_DW_AT_signature_type (struct die_info *,
1708 const struct attribute *,
1709 struct dwarf2_cu *);
1710
1711 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712
1713 static void read_signatured_type (struct signatured_type *);
1714
1715 static int attr_to_dynamic_prop (const struct attribute *attr,
1716 struct die_info *die, struct dwarf2_cu *cu,
1717 struct dynamic_prop *prop, struct type *type);
1718
1719 /* memory allocation interface */
1720
1721 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1722
1723 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1724
1725 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1726
1727 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1728 struct dwarf2_loclist_baton *baton,
1729 const struct attribute *attr);
1730
1731 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1732 struct symbol *sym,
1733 struct dwarf2_cu *cu,
1734 int is_block);
1735
1736 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1737 const gdb_byte *info_ptr,
1738 struct abbrev_info *abbrev);
1739
1740 static hashval_t partial_die_hash (const void *item);
1741
1742 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1743
1744 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1745 (sect_offset sect_off, unsigned int offset_in_dwz,
1746 struct dwarf2_per_objfile *dwarf2_per_objfile);
1747
1748 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1749 struct die_info *comp_unit_die,
1750 enum language pretend_language);
1751
1752 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1753
1754 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1755
1756 static struct type *set_die_type (struct die_info *, struct type *,
1757 struct dwarf2_cu *);
1758
1759 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1760
1761 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1762
1763 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1764 enum language);
1765
1766 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1767 enum language);
1768
1769 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1770 enum language);
1771
1772 static void dwarf2_add_dependence (struct dwarf2_cu *,
1773 struct dwarf2_per_cu_data *);
1774
1775 static void dwarf2_mark (struct dwarf2_cu *);
1776
1777 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1778
1779 static struct type *get_die_type_at_offset (sect_offset,
1780 struct dwarf2_per_cu_data *);
1781
1782 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1783
1784 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1785 enum language pretend_language);
1786
1787 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1788
1789 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1790 static struct type *dwarf2_per_cu_addr_sized_int_type
1791 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1792 static struct type *dwarf2_per_cu_int_type
1793 (struct dwarf2_per_cu_data *per_cu, int size_in_bytes,
1794 bool unsigned_p);
1795
1796 /* Class, the destructor of which frees all allocated queue entries. This
1797 will only have work to do if an error was thrown while processing the
1798 dwarf. If no error was thrown then the queue entries should have all
1799 been processed, and freed, as we went along. */
1800
1801 class dwarf2_queue_guard
1802 {
1803 public:
1804 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1805 : m_per_objfile (per_objfile)
1806 {
1807 }
1808
1809 /* Free any entries remaining on the queue. There should only be
1810 entries left if we hit an error while processing the dwarf. */
1811 ~dwarf2_queue_guard ()
1812 {
1813 /* Ensure that no memory is allocated by the queue. */
1814 std::queue<dwarf2_queue_item> empty;
1815 std::swap (m_per_objfile->queue, empty);
1816 }
1817
1818 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1819
1820 private:
1821 dwarf2_per_objfile *m_per_objfile;
1822 };
1823
1824 dwarf2_queue_item::~dwarf2_queue_item ()
1825 {
1826 /* Anything still marked queued is likely to be in an
1827 inconsistent state, so discard it. */
1828 if (per_cu->queued)
1829 {
1830 if (per_cu->cu != NULL)
1831 free_one_cached_comp_unit (per_cu);
1832 per_cu->queued = 0;
1833 }
1834 }
1835
1836 /* The return type of find_file_and_directory. Note, the enclosed
1837 string pointers are only valid while this object is valid. */
1838
1839 struct file_and_directory
1840 {
1841 /* The filename. This is never NULL. */
1842 const char *name;
1843
1844 /* The compilation directory. NULL if not known. If we needed to
1845 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1846 points directly to the DW_AT_comp_dir string attribute owned by
1847 the obstack that owns the DIE. */
1848 const char *comp_dir;
1849
1850 /* If we needed to build a new string for comp_dir, this is what
1851 owns the storage. */
1852 std::string comp_dir_storage;
1853 };
1854
1855 static file_and_directory find_file_and_directory (struct die_info *die,
1856 struct dwarf2_cu *cu);
1857
1858 static char *file_full_name (int file, struct line_header *lh,
1859 const char *comp_dir);
1860
1861 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1862 enum class rcuh_kind { COMPILE, TYPE };
1863
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1866 struct comp_unit_head *header,
1867 struct dwarf2_section_info *section,
1868 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1869 rcuh_kind section_kind);
1870
1871 static htab_up allocate_signatured_type_table (struct objfile *objfile);
1872
1873 static htab_up allocate_dwo_unit_table (struct objfile *objfile);
1874
1875 static struct dwo_unit *lookup_dwo_unit_in_dwp
1876 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1877 struct dwp_file *dwp_file, const char *comp_dir,
1878 ULONGEST signature, int is_debug_types);
1879
1880 static struct dwp_file *get_dwp_file
1881 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882
1883 static struct dwo_unit *lookup_dwo_comp_unit
1884 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1885
1886 static struct dwo_unit *lookup_dwo_type_unit
1887 (struct signatured_type *, const char *, const char *);
1888
1889 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1890
1891 /* A unique pointer to a dwo_file. */
1892
1893 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1894
1895 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1896
1897 static void check_producer (struct dwarf2_cu *cu);
1898
1899 static void free_line_header_voidp (void *arg);
1900 \f
1901 /* Various complaints about symbol reading that don't abort the process. */
1902
1903 static void
1904 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1905 {
1906 complaint (_("statement list doesn't fit in .debug_line section"));
1907 }
1908
1909 static void
1910 dwarf2_debug_line_missing_file_complaint (void)
1911 {
1912 complaint (_(".debug_line section has line data without a file"));
1913 }
1914
1915 static void
1916 dwarf2_debug_line_missing_end_sequence_complaint (void)
1917 {
1918 complaint (_(".debug_line section has line "
1919 "program sequence without an end"));
1920 }
1921
1922 static void
1923 dwarf2_complex_location_expr_complaint (void)
1924 {
1925 complaint (_("location expression too complex"));
1926 }
1927
1928 static void
1929 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1930 int arg3)
1931 {
1932 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1933 arg1, arg2, arg3);
1934 }
1935
1936 static void
1937 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1938 {
1939 complaint (_("debug info runs off end of %s section"
1940 " [in module %s]"),
1941 section->get_name (),
1942 section->get_file_name ());
1943 }
1944
1945 static void
1946 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1947 {
1948 complaint (_("macro debug info contains a "
1949 "malformed macro definition:\n`%s'"),
1950 arg1);
1951 }
1952
1953 static void
1954 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1955 {
1956 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1957 arg1, arg2);
1958 }
1959
1960 /* Hash function for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash (const struct line_header *ofs)
1964 {
1965 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1966 }
1967
1968 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1969
1970 static hashval_t
1971 line_header_hash_voidp (const void *item)
1972 {
1973 const struct line_header *ofs = (const struct line_header *) item;
1974
1975 return line_header_hash (ofs);
1976 }
1977
1978 /* Equality function for line_header_hash. */
1979
1980 static int
1981 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1982 {
1983 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1984 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1985
1986 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1987 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1988 }
1989
1990 \f
1991
1992 /* See declaration. */
1993
1994 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1995 const dwarf2_debug_sections *names,
1996 bool can_copy_)
1997 : objfile (objfile_),
1998 can_copy (can_copy_)
1999 {
2000 if (names == NULL)
2001 names = &dwarf2_elf_names;
2002
2003 bfd *obfd = objfile->obfd;
2004
2005 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2006 locate_sections (obfd, sec, *names);
2007 }
2008
2009 dwarf2_per_objfile::~dwarf2_per_objfile ()
2010 {
2011 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2012 free_cached_comp_units ();
2013
2014 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2015 per_cu->imported_symtabs_free ();
2016
2017 for (signatured_type *sig_type : all_type_units)
2018 sig_type->per_cu.imported_symtabs_free ();
2019
2020 /* Everything else should be on the objfile obstack. */
2021 }
2022
2023 /* See declaration. */
2024
2025 void
2026 dwarf2_per_objfile::free_cached_comp_units ()
2027 {
2028 dwarf2_per_cu_data *per_cu = read_in_chain;
2029 dwarf2_per_cu_data **last_chain = &read_in_chain;
2030 while (per_cu != NULL)
2031 {
2032 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2033
2034 delete per_cu->cu;
2035 *last_chain = next_cu;
2036 per_cu = next_cu;
2037 }
2038 }
2039
2040 /* A helper class that calls free_cached_comp_units on
2041 destruction. */
2042
2043 class free_cached_comp_units
2044 {
2045 public:
2046
2047 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2048 : m_per_objfile (per_objfile)
2049 {
2050 }
2051
2052 ~free_cached_comp_units ()
2053 {
2054 m_per_objfile->free_cached_comp_units ();
2055 }
2056
2057 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2058
2059 private:
2060
2061 dwarf2_per_objfile *m_per_objfile;
2062 };
2063
2064 /* Try to locate the sections we need for DWARF 2 debugging
2065 information and return true if we have enough to do something.
2066 NAMES points to the dwarf2 section names, or is NULL if the standard
2067 ELF names are used. CAN_COPY is true for formats where symbol
2068 interposition is possible and so symbol values must follow copy
2069 relocation rules. */
2070
2071 int
2072 dwarf2_has_info (struct objfile *objfile,
2073 const struct dwarf2_debug_sections *names,
2074 bool can_copy)
2075 {
2076 if (objfile->flags & OBJF_READNEVER)
2077 return 0;
2078
2079 struct dwarf2_per_objfile *dwarf2_per_objfile
2080 = get_dwarf2_per_objfile (objfile);
2081
2082 if (dwarf2_per_objfile == NULL)
2083 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2084 names,
2085 can_copy);
2086
2087 return (!dwarf2_per_objfile->info.is_virtual
2088 && dwarf2_per_objfile->info.s.section != NULL
2089 && !dwarf2_per_objfile->abbrev.is_virtual
2090 && dwarf2_per_objfile->abbrev.s.section != NULL);
2091 }
2092
2093 /* When loading sections, we look either for uncompressed section or for
2094 compressed section names. */
2095
2096 static int
2097 section_is_p (const char *section_name,
2098 const struct dwarf2_section_names *names)
2099 {
2100 if (names->normal != NULL
2101 && strcmp (section_name, names->normal) == 0)
2102 return 1;
2103 if (names->compressed != NULL
2104 && strcmp (section_name, names->compressed) == 0)
2105 return 1;
2106 return 0;
2107 }
2108
2109 /* See declaration. */
2110
2111 void
2112 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2113 const dwarf2_debug_sections &names)
2114 {
2115 flagword aflag = bfd_section_flags (sectp);
2116
2117 if ((aflag & SEC_HAS_CONTENTS) == 0)
2118 {
2119 }
2120 else if (elf_section_data (sectp)->this_hdr.sh_size
2121 > bfd_get_file_size (abfd))
2122 {
2123 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2124 warning (_("Discarding section %s which has a section size (%s"
2125 ") larger than the file size [in module %s]"),
2126 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2127 bfd_get_filename (abfd));
2128 }
2129 else if (section_is_p (sectp->name, &names.info))
2130 {
2131 this->info.s.section = sectp;
2132 this->info.size = bfd_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names.abbrev))
2135 {
2136 this->abbrev.s.section = sectp;
2137 this->abbrev.size = bfd_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names.line))
2140 {
2141 this->line.s.section = sectp;
2142 this->line.size = bfd_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names.loc))
2145 {
2146 this->loc.s.section = sectp;
2147 this->loc.size = bfd_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names.loclists))
2150 {
2151 this->loclists.s.section = sectp;
2152 this->loclists.size = bfd_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names.macinfo))
2155 {
2156 this->macinfo.s.section = sectp;
2157 this->macinfo.size = bfd_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names.macro))
2160 {
2161 this->macro.s.section = sectp;
2162 this->macro.size = bfd_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names.str))
2165 {
2166 this->str.s.section = sectp;
2167 this->str.size = bfd_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names.str_offsets))
2170 {
2171 this->str_offsets.s.section = sectp;
2172 this->str_offsets.size = bfd_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names.line_str))
2175 {
2176 this->line_str.s.section = sectp;
2177 this->line_str.size = bfd_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names.addr))
2180 {
2181 this->addr.s.section = sectp;
2182 this->addr.size = bfd_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &names.frame))
2185 {
2186 this->frame.s.section = sectp;
2187 this->frame.size = bfd_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names.eh_frame))
2190 {
2191 this->eh_frame.s.section = sectp;
2192 this->eh_frame.size = bfd_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names.ranges))
2195 {
2196 this->ranges.s.section = sectp;
2197 this->ranges.size = bfd_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names.rnglists))
2200 {
2201 this->rnglists.s.section = sectp;
2202 this->rnglists.size = bfd_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names.types))
2205 {
2206 struct dwarf2_section_info type_section;
2207
2208 memset (&type_section, 0, sizeof (type_section));
2209 type_section.s.section = sectp;
2210 type_section.size = bfd_section_size (sectp);
2211
2212 this->types.push_back (type_section);
2213 }
2214 else if (section_is_p (sectp->name, &names.gdb_index))
2215 {
2216 this->gdb_index.s.section = sectp;
2217 this->gdb_index.size = bfd_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names.debug_names))
2220 {
2221 this->debug_names.s.section = sectp;
2222 this->debug_names.size = bfd_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names.debug_aranges))
2225 {
2226 this->debug_aranges.s.section = sectp;
2227 this->debug_aranges.size = bfd_section_size (sectp);
2228 }
2229
2230 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2231 && bfd_section_vma (sectp) == 0)
2232 this->has_section_at_zero = true;
2233 }
2234
2235 /* A helper function that returns the size of a section in a safe way.
2236 If you are positive that the section has been read before using the
2237 size, then it is safe to refer to the dwarf2_section_info object's
2238 "size" field directly. In other cases, you must call this
2239 function, because for compressed sections the size field is not set
2240 correctly until the section has been read. */
2241
2242 static bfd_size_type
2243 dwarf2_section_size (struct objfile *objfile,
2244 struct dwarf2_section_info *info)
2245 {
2246 if (!info->readin)
2247 info->read (objfile);
2248 return info->size;
2249 }
2250
2251 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2252 SECTION_NAME. */
2253
2254 void
2255 dwarf2_get_section_info (struct objfile *objfile,
2256 enum dwarf2_section_enum sect,
2257 asection **sectp, const gdb_byte **bufp,
2258 bfd_size_type *sizep)
2259 {
2260 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2261 struct dwarf2_section_info *info;
2262
2263 /* We may see an objfile without any DWARF, in which case we just
2264 return nothing. */
2265 if (data == NULL)
2266 {
2267 *sectp = NULL;
2268 *bufp = NULL;
2269 *sizep = 0;
2270 return;
2271 }
2272 switch (sect)
2273 {
2274 case DWARF2_DEBUG_FRAME:
2275 info = &data->frame;
2276 break;
2277 case DWARF2_EH_FRAME:
2278 info = &data->eh_frame;
2279 break;
2280 default:
2281 gdb_assert_not_reached ("unexpected section");
2282 }
2283
2284 info->read (objfile);
2285
2286 *sectp = info->get_bfd_section ();
2287 *bufp = info->buffer;
2288 *sizep = info->size;
2289 }
2290
2291 /* A helper function to find the sections for a .dwz file. */
2292
2293 static void
2294 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2295 {
2296 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2297
2298 /* Note that we only support the standard ELF names, because .dwz
2299 is ELF-only (at the time of writing). */
2300 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2301 {
2302 dwz_file->abbrev.s.section = sectp;
2303 dwz_file->abbrev.size = bfd_section_size (sectp);
2304 }
2305 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2306 {
2307 dwz_file->info.s.section = sectp;
2308 dwz_file->info.size = bfd_section_size (sectp);
2309 }
2310 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2311 {
2312 dwz_file->str.s.section = sectp;
2313 dwz_file->str.size = bfd_section_size (sectp);
2314 }
2315 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2316 {
2317 dwz_file->line.s.section = sectp;
2318 dwz_file->line.size = bfd_section_size (sectp);
2319 }
2320 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2321 {
2322 dwz_file->macro.s.section = sectp;
2323 dwz_file->macro.size = bfd_section_size (sectp);
2324 }
2325 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2326 {
2327 dwz_file->gdb_index.s.section = sectp;
2328 dwz_file->gdb_index.size = bfd_section_size (sectp);
2329 }
2330 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2331 {
2332 dwz_file->debug_names.s.section = sectp;
2333 dwz_file->debug_names.size = bfd_section_size (sectp);
2334 }
2335 }
2336
2337 /* See dwarf2read.h. */
2338
2339 struct dwz_file *
2340 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2341 {
2342 const char *filename;
2343 bfd_size_type buildid_len_arg;
2344 size_t buildid_len;
2345 bfd_byte *buildid;
2346
2347 if (dwarf2_per_objfile->dwz_file != NULL)
2348 return dwarf2_per_objfile->dwz_file.get ();
2349
2350 bfd_set_error (bfd_error_no_error);
2351 gdb::unique_xmalloc_ptr<char> data
2352 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2353 &buildid_len_arg, &buildid));
2354 if (data == NULL)
2355 {
2356 if (bfd_get_error () == bfd_error_no_error)
2357 return NULL;
2358 error (_("could not read '.gnu_debugaltlink' section: %s"),
2359 bfd_errmsg (bfd_get_error ()));
2360 }
2361
2362 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2363
2364 buildid_len = (size_t) buildid_len_arg;
2365
2366 filename = data.get ();
2367
2368 std::string abs_storage;
2369 if (!IS_ABSOLUTE_PATH (filename))
2370 {
2371 gdb::unique_xmalloc_ptr<char> abs
2372 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2373
2374 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2375 filename = abs_storage.c_str ();
2376 }
2377
2378 /* First try the file name given in the section. If that doesn't
2379 work, try to use the build-id instead. */
2380 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2381 if (dwz_bfd != NULL)
2382 {
2383 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2384 dwz_bfd.reset (nullptr);
2385 }
2386
2387 if (dwz_bfd == NULL)
2388 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2389
2390 if (dwz_bfd == NULL)
2391 error (_("could not find '.gnu_debugaltlink' file for %s"),
2392 objfile_name (dwarf2_per_objfile->objfile));
2393
2394 std::unique_ptr<struct dwz_file> result
2395 (new struct dwz_file (std::move (dwz_bfd)));
2396
2397 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2398 result.get ());
2399
2400 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2401 result->dwz_bfd.get ());
2402 dwarf2_per_objfile->dwz_file = std::move (result);
2403 return dwarf2_per_objfile->dwz_file.get ();
2404 }
2405 \f
2406 /* DWARF quick_symbols_functions support. */
2407
2408 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2409 unique line tables, so we maintain a separate table of all .debug_line
2410 derived entries to support the sharing.
2411 All the quick functions need is the list of file names. We discard the
2412 line_header when we're done and don't need to record it here. */
2413 struct quick_file_names
2414 {
2415 /* The data used to construct the hash key. */
2416 struct stmt_list_hash hash;
2417
2418 /* The number of entries in file_names, real_names. */
2419 unsigned int num_file_names;
2420
2421 /* The file names from the line table, after being run through
2422 file_full_name. */
2423 const char **file_names;
2424
2425 /* The file names from the line table after being run through
2426 gdb_realpath. These are computed lazily. */
2427 const char **real_names;
2428 };
2429
2430 /* When using the index (and thus not using psymtabs), each CU has an
2431 object of this type. This is used to hold information needed by
2432 the various "quick" methods. */
2433 struct dwarf2_per_cu_quick_data
2434 {
2435 /* The file table. This can be NULL if there was no file table
2436 or it's currently not read in.
2437 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2438 struct quick_file_names *file_names;
2439
2440 /* The corresponding symbol table. This is NULL if symbols for this
2441 CU have not yet been read. */
2442 struct compunit_symtab *compunit_symtab;
2443
2444 /* A temporary mark bit used when iterating over all CUs in
2445 expand_symtabs_matching. */
2446 unsigned int mark : 1;
2447
2448 /* True if we've tried to read the file table and found there isn't one.
2449 There will be no point in trying to read it again next time. */
2450 unsigned int no_file_data : 1;
2451 };
2452
2453 /* Utility hash function for a stmt_list_hash. */
2454
2455 static hashval_t
2456 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2457 {
2458 hashval_t v = 0;
2459
2460 if (stmt_list_hash->dwo_unit != NULL)
2461 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2462 v += to_underlying (stmt_list_hash->line_sect_off);
2463 return v;
2464 }
2465
2466 /* Utility equality function for a stmt_list_hash. */
2467
2468 static int
2469 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2470 const struct stmt_list_hash *rhs)
2471 {
2472 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2473 return 0;
2474 if (lhs->dwo_unit != NULL
2475 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2476 return 0;
2477
2478 return lhs->line_sect_off == rhs->line_sect_off;
2479 }
2480
2481 /* Hash function for a quick_file_names. */
2482
2483 static hashval_t
2484 hash_file_name_entry (const void *e)
2485 {
2486 const struct quick_file_names *file_data
2487 = (const struct quick_file_names *) e;
2488
2489 return hash_stmt_list_entry (&file_data->hash);
2490 }
2491
2492 /* Equality function for a quick_file_names. */
2493
2494 static int
2495 eq_file_name_entry (const void *a, const void *b)
2496 {
2497 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2498 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2499
2500 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2501 }
2502
2503 /* Delete function for a quick_file_names. */
2504
2505 static void
2506 delete_file_name_entry (void *e)
2507 {
2508 struct quick_file_names *file_data = (struct quick_file_names *) e;
2509 int i;
2510
2511 for (i = 0; i < file_data->num_file_names; ++i)
2512 {
2513 xfree ((void*) file_data->file_names[i]);
2514 if (file_data->real_names)
2515 xfree ((void*) file_data->real_names[i]);
2516 }
2517
2518 /* The space for the struct itself lives on objfile_obstack,
2519 so we don't free it here. */
2520 }
2521
2522 /* Create a quick_file_names hash table. */
2523
2524 static htab_up
2525 create_quick_file_names_table (unsigned int nr_initial_entries)
2526 {
2527 return htab_up (htab_create_alloc (nr_initial_entries,
2528 hash_file_name_entry, eq_file_name_entry,
2529 delete_file_name_entry, xcalloc, xfree));
2530 }
2531
2532 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2533 have to be created afterwards. You should call age_cached_comp_units after
2534 processing PER_CU->CU. dw2_setup must have been already called. */
2535
2536 static void
2537 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2538 {
2539 if (per_cu->is_debug_types)
2540 load_full_type_unit (per_cu);
2541 else
2542 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2543
2544 if (per_cu->cu == NULL)
2545 return; /* Dummy CU. */
2546
2547 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2548 }
2549
2550 /* Read in the symbols for PER_CU. */
2551
2552 static void
2553 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2554 {
2555 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2556
2557 /* Skip type_unit_groups, reading the type units they contain
2558 is handled elsewhere. */
2559 if (IS_TYPE_UNIT_GROUP (per_cu))
2560 return;
2561
2562 /* The destructor of dwarf2_queue_guard frees any entries left on
2563 the queue. After this point we're guaranteed to leave this function
2564 with the dwarf queue empty. */
2565 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2566
2567 if (dwarf2_per_objfile->using_index
2568 ? per_cu->v.quick->compunit_symtab == NULL
2569 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2570 {
2571 queue_comp_unit (per_cu, language_minimal);
2572 load_cu (per_cu, skip_partial);
2573
2574 /* If we just loaded a CU from a DWO, and we're working with an index
2575 that may badly handle TUs, load all the TUs in that DWO as well.
2576 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2577 if (!per_cu->is_debug_types
2578 && per_cu->cu != NULL
2579 && per_cu->cu->dwo_unit != NULL
2580 && dwarf2_per_objfile->index_table != NULL
2581 && dwarf2_per_objfile->index_table->version <= 7
2582 /* DWP files aren't supported yet. */
2583 && get_dwp_file (dwarf2_per_objfile) == NULL)
2584 queue_and_load_all_dwo_tus (per_cu);
2585 }
2586
2587 process_queue (dwarf2_per_objfile);
2588
2589 /* Age the cache, releasing compilation units that have not
2590 been used recently. */
2591 age_cached_comp_units (dwarf2_per_objfile);
2592 }
2593
2594 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2595 the objfile from which this CU came. Returns the resulting symbol
2596 table. */
2597
2598 static struct compunit_symtab *
2599 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2600 {
2601 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2602
2603 gdb_assert (dwarf2_per_objfile->using_index);
2604 if (!per_cu->v.quick->compunit_symtab)
2605 {
2606 free_cached_comp_units freer (dwarf2_per_objfile);
2607 scoped_restore decrementer = increment_reading_symtab ();
2608 dw2_do_instantiate_symtab (per_cu, skip_partial);
2609 process_cu_includes (dwarf2_per_objfile);
2610 }
2611
2612 return per_cu->v.quick->compunit_symtab;
2613 }
2614
2615 /* See declaration. */
2616
2617 dwarf2_per_cu_data *
2618 dwarf2_per_objfile::get_cutu (int index)
2619 {
2620 if (index >= this->all_comp_units.size ())
2621 {
2622 index -= this->all_comp_units.size ();
2623 gdb_assert (index < this->all_type_units.size ());
2624 return &this->all_type_units[index]->per_cu;
2625 }
2626
2627 return this->all_comp_units[index];
2628 }
2629
2630 /* See declaration. */
2631
2632 dwarf2_per_cu_data *
2633 dwarf2_per_objfile::get_cu (int index)
2634 {
2635 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2636
2637 return this->all_comp_units[index];
2638 }
2639
2640 /* See declaration. */
2641
2642 signatured_type *
2643 dwarf2_per_objfile::get_tu (int index)
2644 {
2645 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2646
2647 return this->all_type_units[index];
2648 }
2649
2650 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2651 objfile_obstack, and constructed with the specified field
2652 values. */
2653
2654 static dwarf2_per_cu_data *
2655 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2656 struct dwarf2_section_info *section,
2657 int is_dwz,
2658 sect_offset sect_off, ULONGEST length)
2659 {
2660 struct objfile *objfile = dwarf2_per_objfile->objfile;
2661 dwarf2_per_cu_data *the_cu
2662 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2663 struct dwarf2_per_cu_data);
2664 the_cu->sect_off = sect_off;
2665 the_cu->length = length;
2666 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2667 the_cu->section = section;
2668 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2669 struct dwarf2_per_cu_quick_data);
2670 the_cu->is_dwz = is_dwz;
2671 return the_cu;
2672 }
2673
2674 /* A helper for create_cus_from_index that handles a given list of
2675 CUs. */
2676
2677 static void
2678 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2679 const gdb_byte *cu_list, offset_type n_elements,
2680 struct dwarf2_section_info *section,
2681 int is_dwz)
2682 {
2683 for (offset_type i = 0; i < n_elements; i += 2)
2684 {
2685 gdb_static_assert (sizeof (ULONGEST) >= 8);
2686
2687 sect_offset sect_off
2688 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2689 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2690 cu_list += 2 * 8;
2691
2692 dwarf2_per_cu_data *per_cu
2693 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2694 sect_off, length);
2695 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2696 }
2697 }
2698
2699 /* Read the CU list from the mapped index, and use it to create all
2700 the CU objects for this objfile. */
2701
2702 static void
2703 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2704 const gdb_byte *cu_list, offset_type cu_list_elements,
2705 const gdb_byte *dwz_list, offset_type dwz_elements)
2706 {
2707 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2708 dwarf2_per_objfile->all_comp_units.reserve
2709 ((cu_list_elements + dwz_elements) / 2);
2710
2711 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2712 &dwarf2_per_objfile->info, 0);
2713
2714 if (dwz_elements == 0)
2715 return;
2716
2717 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2718 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2719 &dwz->info, 1);
2720 }
2721
2722 /* Create the signatured type hash table from the index. */
2723
2724 static void
2725 create_signatured_type_table_from_index
2726 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2727 struct dwarf2_section_info *section,
2728 const gdb_byte *bytes,
2729 offset_type elements)
2730 {
2731 struct objfile *objfile = dwarf2_per_objfile->objfile;
2732
2733 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2734 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2735
2736 htab_up sig_types_hash = allocate_signatured_type_table (objfile);
2737
2738 for (offset_type i = 0; i < elements; i += 3)
2739 {
2740 struct signatured_type *sig_type;
2741 ULONGEST signature;
2742 void **slot;
2743 cu_offset type_offset_in_tu;
2744
2745 gdb_static_assert (sizeof (ULONGEST) >= 8);
2746 sect_offset sect_off
2747 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2748 type_offset_in_tu
2749 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2750 BFD_ENDIAN_LITTLE);
2751 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2752 bytes += 3 * 8;
2753
2754 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2755 struct signatured_type);
2756 sig_type->signature = signature;
2757 sig_type->type_offset_in_tu = type_offset_in_tu;
2758 sig_type->per_cu.is_debug_types = 1;
2759 sig_type->per_cu.section = section;
2760 sig_type->per_cu.sect_off = sect_off;
2761 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2762 sig_type->per_cu.v.quick
2763 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2764 struct dwarf2_per_cu_quick_data);
2765
2766 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2767 *slot = sig_type;
2768
2769 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2770 }
2771
2772 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2773 }
2774
2775 /* Create the signatured type hash table from .debug_names. */
2776
2777 static void
2778 create_signatured_type_table_from_debug_names
2779 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2780 const mapped_debug_names &map,
2781 struct dwarf2_section_info *section,
2782 struct dwarf2_section_info *abbrev_section)
2783 {
2784 struct objfile *objfile = dwarf2_per_objfile->objfile;
2785
2786 section->read (objfile);
2787 abbrev_section->read (objfile);
2788
2789 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2790 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2791
2792 htab_up sig_types_hash = allocate_signatured_type_table (objfile);
2793
2794 for (uint32_t i = 0; i < map.tu_count; ++i)
2795 {
2796 struct signatured_type *sig_type;
2797 void **slot;
2798
2799 sect_offset sect_off
2800 = (sect_offset) (extract_unsigned_integer
2801 (map.tu_table_reordered + i * map.offset_size,
2802 map.offset_size,
2803 map.dwarf5_byte_order));
2804
2805 comp_unit_head cu_header;
2806 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2807 abbrev_section,
2808 section->buffer + to_underlying (sect_off),
2809 rcuh_kind::TYPE);
2810
2811 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct signatured_type);
2813 sig_type->signature = cu_header.signature;
2814 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2815 sig_type->per_cu.is_debug_types = 1;
2816 sig_type->per_cu.section = section;
2817 sig_type->per_cu.sect_off = sect_off;
2818 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2819 sig_type->per_cu.v.quick
2820 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_quick_data);
2822
2823 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2824 *slot = sig_type;
2825
2826 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2827 }
2828
2829 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2830 }
2831
2832 /* Read the address map data from the mapped index, and use it to
2833 populate the objfile's psymtabs_addrmap. */
2834
2835 static void
2836 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2837 struct mapped_index *index)
2838 {
2839 struct objfile *objfile = dwarf2_per_objfile->objfile;
2840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2841 const gdb_byte *iter, *end;
2842 struct addrmap *mutable_map;
2843 CORE_ADDR baseaddr;
2844
2845 auto_obstack temp_obstack;
2846
2847 mutable_map = addrmap_create_mutable (&temp_obstack);
2848
2849 iter = index->address_table.data ();
2850 end = iter + index->address_table.size ();
2851
2852 baseaddr = objfile->text_section_offset ();
2853
2854 while (iter < end)
2855 {
2856 ULONGEST hi, lo, cu_index;
2857 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2858 iter += 8;
2859 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2860 iter += 8;
2861 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2862 iter += 4;
2863
2864 if (lo > hi)
2865 {
2866 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2867 hex_string (lo), hex_string (hi));
2868 continue;
2869 }
2870
2871 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2872 {
2873 complaint (_(".gdb_index address table has invalid CU number %u"),
2874 (unsigned) cu_index);
2875 continue;
2876 }
2877
2878 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2879 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2880 addrmap_set_empty (mutable_map, lo, hi - 1,
2881 dwarf2_per_objfile->get_cu (cu_index));
2882 }
2883
2884 objfile->partial_symtabs->psymtabs_addrmap
2885 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2886 }
2887
2888 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2889 populate the objfile's psymtabs_addrmap. */
2890
2891 static void
2892 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2893 struct dwarf2_section_info *section)
2894 {
2895 struct objfile *objfile = dwarf2_per_objfile->objfile;
2896 bfd *abfd = objfile->obfd;
2897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2898 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2899
2900 auto_obstack temp_obstack;
2901 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2902
2903 std::unordered_map<sect_offset,
2904 dwarf2_per_cu_data *,
2905 gdb::hash_enum<sect_offset>>
2906 debug_info_offset_to_per_cu;
2907 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2908 {
2909 const auto insertpair
2910 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2911 if (!insertpair.second)
2912 {
2913 warning (_("Section .debug_aranges in %s has duplicate "
2914 "debug_info_offset %s, ignoring .debug_aranges."),
2915 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2916 return;
2917 }
2918 }
2919
2920 section->read (objfile);
2921
2922 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2923
2924 const gdb_byte *addr = section->buffer;
2925
2926 while (addr < section->buffer + section->size)
2927 {
2928 const gdb_byte *const entry_addr = addr;
2929 unsigned int bytes_read;
2930
2931 const LONGEST entry_length = read_initial_length (abfd, addr,
2932 &bytes_read);
2933 addr += bytes_read;
2934
2935 const gdb_byte *const entry_end = addr + entry_length;
2936 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2937 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2938 if (addr + entry_length > section->buffer + section->size)
2939 {
2940 warning (_("Section .debug_aranges in %s entry at offset %s "
2941 "length %s exceeds section length %s, "
2942 "ignoring .debug_aranges."),
2943 objfile_name (objfile),
2944 plongest (entry_addr - section->buffer),
2945 plongest (bytes_read + entry_length),
2946 pulongest (section->size));
2947 return;
2948 }
2949
2950 /* The version number. */
2951 const uint16_t version = read_2_bytes (abfd, addr);
2952 addr += 2;
2953 if (version != 2)
2954 {
2955 warning (_("Section .debug_aranges in %s entry at offset %s "
2956 "has unsupported version %d, ignoring .debug_aranges."),
2957 objfile_name (objfile),
2958 plongest (entry_addr - section->buffer), version);
2959 return;
2960 }
2961
2962 const uint64_t debug_info_offset
2963 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2964 addr += offset_size;
2965 const auto per_cu_it
2966 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2967 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2968 {
2969 warning (_("Section .debug_aranges in %s entry at offset %s "
2970 "debug_info_offset %s does not exists, "
2971 "ignoring .debug_aranges."),
2972 objfile_name (objfile),
2973 plongest (entry_addr - section->buffer),
2974 pulongest (debug_info_offset));
2975 return;
2976 }
2977 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2978
2979 const uint8_t address_size = *addr++;
2980 if (address_size < 1 || address_size > 8)
2981 {
2982 warning (_("Section .debug_aranges in %s entry at offset %s "
2983 "address_size %u is invalid, ignoring .debug_aranges."),
2984 objfile_name (objfile),
2985 plongest (entry_addr - section->buffer), address_size);
2986 return;
2987 }
2988
2989 const uint8_t segment_selector_size = *addr++;
2990 if (segment_selector_size != 0)
2991 {
2992 warning (_("Section .debug_aranges in %s entry at offset %s "
2993 "segment_selector_size %u is not supported, "
2994 "ignoring .debug_aranges."),
2995 objfile_name (objfile),
2996 plongest (entry_addr - section->buffer),
2997 segment_selector_size);
2998 return;
2999 }
3000
3001 /* Must pad to an alignment boundary that is twice the address
3002 size. It is undocumented by the DWARF standard but GCC does
3003 use it. */
3004 for (size_t padding = ((-(addr - section->buffer))
3005 & (2 * address_size - 1));
3006 padding > 0; padding--)
3007 if (*addr++ != 0)
3008 {
3009 warning (_("Section .debug_aranges in %s entry at offset %s "
3010 "padding is not zero, ignoring .debug_aranges."),
3011 objfile_name (objfile),
3012 plongest (entry_addr - section->buffer));
3013 return;
3014 }
3015
3016 for (;;)
3017 {
3018 if (addr + 2 * address_size > entry_end)
3019 {
3020 warning (_("Section .debug_aranges in %s entry at offset %s "
3021 "address list is not properly terminated, "
3022 "ignoring .debug_aranges."),
3023 objfile_name (objfile),
3024 plongest (entry_addr - section->buffer));
3025 return;
3026 }
3027 ULONGEST start = extract_unsigned_integer (addr, address_size,
3028 dwarf5_byte_order);
3029 addr += address_size;
3030 ULONGEST length = extract_unsigned_integer (addr, address_size,
3031 dwarf5_byte_order);
3032 addr += address_size;
3033 if (start == 0 && length == 0)
3034 break;
3035 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3036 {
3037 /* Symbol was eliminated due to a COMDAT group. */
3038 continue;
3039 }
3040 ULONGEST end = start + length;
3041 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3042 - baseaddr);
3043 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3044 - baseaddr);
3045 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3046 }
3047 }
3048
3049 objfile->partial_symtabs->psymtabs_addrmap
3050 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3051 }
3052
3053 /* Find a slot in the mapped index INDEX for the object named NAME.
3054 If NAME is found, set *VEC_OUT to point to the CU vector in the
3055 constant pool and return true. If NAME cannot be found, return
3056 false. */
3057
3058 static bool
3059 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3060 offset_type **vec_out)
3061 {
3062 offset_type hash;
3063 offset_type slot, step;
3064 int (*cmp) (const char *, const char *);
3065
3066 gdb::unique_xmalloc_ptr<char> without_params;
3067 if (current_language->la_language == language_cplus
3068 || current_language->la_language == language_fortran
3069 || current_language->la_language == language_d)
3070 {
3071 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3072 not contain any. */
3073
3074 if (strchr (name, '(') != NULL)
3075 {
3076 without_params = cp_remove_params (name);
3077
3078 if (without_params != NULL)
3079 name = without_params.get ();
3080 }
3081 }
3082
3083 /* Index version 4 did not support case insensitive searches. But the
3084 indices for case insensitive languages are built in lowercase, therefore
3085 simulate our NAME being searched is also lowercased. */
3086 hash = mapped_index_string_hash ((index->version == 4
3087 && case_sensitivity == case_sensitive_off
3088 ? 5 : index->version),
3089 name);
3090
3091 slot = hash & (index->symbol_table.size () - 1);
3092 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3093 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3094
3095 for (;;)
3096 {
3097 const char *str;
3098
3099 const auto &bucket = index->symbol_table[slot];
3100 if (bucket.name == 0 && bucket.vec == 0)
3101 return false;
3102
3103 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3104 if (!cmp (name, str))
3105 {
3106 *vec_out = (offset_type *) (index->constant_pool
3107 + MAYBE_SWAP (bucket.vec));
3108 return true;
3109 }
3110
3111 slot = (slot + step) & (index->symbol_table.size () - 1);
3112 }
3113 }
3114
3115 /* A helper function that reads the .gdb_index from BUFFER and fills
3116 in MAP. FILENAME is the name of the file containing the data;
3117 it is used for error reporting. DEPRECATED_OK is true if it is
3118 ok to use deprecated sections.
3119
3120 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3121 out parameters that are filled in with information about the CU and
3122 TU lists in the section.
3123
3124 Returns true if all went well, false otherwise. */
3125
3126 static bool
3127 read_gdb_index_from_buffer (struct objfile *objfile,
3128 const char *filename,
3129 bool deprecated_ok,
3130 gdb::array_view<const gdb_byte> buffer,
3131 struct mapped_index *map,
3132 const gdb_byte **cu_list,
3133 offset_type *cu_list_elements,
3134 const gdb_byte **types_list,
3135 offset_type *types_list_elements)
3136 {
3137 const gdb_byte *addr = &buffer[0];
3138
3139 /* Version check. */
3140 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3141 /* Versions earlier than 3 emitted every copy of a psymbol. This
3142 causes the index to behave very poorly for certain requests. Version 3
3143 contained incomplete addrmap. So, it seems better to just ignore such
3144 indices. */
3145 if (version < 4)
3146 {
3147 static int warning_printed = 0;
3148 if (!warning_printed)
3149 {
3150 warning (_("Skipping obsolete .gdb_index section in %s."),
3151 filename);
3152 warning_printed = 1;
3153 }
3154 return 0;
3155 }
3156 /* Index version 4 uses a different hash function than index version
3157 5 and later.
3158
3159 Versions earlier than 6 did not emit psymbols for inlined
3160 functions. Using these files will cause GDB not to be able to
3161 set breakpoints on inlined functions by name, so we ignore these
3162 indices unless the user has done
3163 "set use-deprecated-index-sections on". */
3164 if (version < 6 && !deprecated_ok)
3165 {
3166 static int warning_printed = 0;
3167 if (!warning_printed)
3168 {
3169 warning (_("\
3170 Skipping deprecated .gdb_index section in %s.\n\
3171 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3172 to use the section anyway."),
3173 filename);
3174 warning_printed = 1;
3175 }
3176 return 0;
3177 }
3178 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3179 of the TU (for symbols coming from TUs),
3180 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3181 Plus gold-generated indices can have duplicate entries for global symbols,
3182 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3183 These are just performance bugs, and we can't distinguish gdb-generated
3184 indices from gold-generated ones, so issue no warning here. */
3185
3186 /* Indexes with higher version than the one supported by GDB may be no
3187 longer backward compatible. */
3188 if (version > 8)
3189 return 0;
3190
3191 map->version = version;
3192
3193 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3194
3195 int i = 0;
3196 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3197 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3198 / 8);
3199 ++i;
3200
3201 *types_list = addr + MAYBE_SWAP (metadata[i]);
3202 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3203 - MAYBE_SWAP (metadata[i]))
3204 / 8);
3205 ++i;
3206
3207 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3208 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3209 map->address_table
3210 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3211 ++i;
3212
3213 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3214 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3215 map->symbol_table
3216 = gdb::array_view<mapped_index::symbol_table_slot>
3217 ((mapped_index::symbol_table_slot *) symbol_table,
3218 (mapped_index::symbol_table_slot *) symbol_table_end);
3219
3220 ++i;
3221 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3222
3223 return 1;
3224 }
3225
3226 /* Callback types for dwarf2_read_gdb_index. */
3227
3228 typedef gdb::function_view
3229 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3230 get_gdb_index_contents_ftype;
3231 typedef gdb::function_view
3232 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3233 get_gdb_index_contents_dwz_ftype;
3234
3235 /* Read .gdb_index. If everything went ok, initialize the "quick"
3236 elements of all the CUs and return 1. Otherwise, return 0. */
3237
3238 static int
3239 dwarf2_read_gdb_index
3240 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3241 get_gdb_index_contents_ftype get_gdb_index_contents,
3242 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3243 {
3244 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3245 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3246 struct dwz_file *dwz;
3247 struct objfile *objfile = dwarf2_per_objfile->objfile;
3248
3249 gdb::array_view<const gdb_byte> main_index_contents
3250 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3251
3252 if (main_index_contents.empty ())
3253 return 0;
3254
3255 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3256 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3257 use_deprecated_index_sections,
3258 main_index_contents, map.get (), &cu_list,
3259 &cu_list_elements, &types_list,
3260 &types_list_elements))
3261 return 0;
3262
3263 /* Don't use the index if it's empty. */
3264 if (map->symbol_table.empty ())
3265 return 0;
3266
3267 /* If there is a .dwz file, read it so we can get its CU list as
3268 well. */
3269 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3270 if (dwz != NULL)
3271 {
3272 struct mapped_index dwz_map;
3273 const gdb_byte *dwz_types_ignore;
3274 offset_type dwz_types_elements_ignore;
3275
3276 gdb::array_view<const gdb_byte> dwz_index_content
3277 = get_gdb_index_contents_dwz (objfile, dwz);
3278
3279 if (dwz_index_content.empty ())
3280 return 0;
3281
3282 if (!read_gdb_index_from_buffer (objfile,
3283 bfd_get_filename (dwz->dwz_bfd.get ()),
3284 1, dwz_index_content, &dwz_map,
3285 &dwz_list, &dwz_list_elements,
3286 &dwz_types_ignore,
3287 &dwz_types_elements_ignore))
3288 {
3289 warning (_("could not read '.gdb_index' section from %s; skipping"),
3290 bfd_get_filename (dwz->dwz_bfd.get ()));
3291 return 0;
3292 }
3293 }
3294
3295 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3296 dwz_list, dwz_list_elements);
3297
3298 if (types_list_elements)
3299 {
3300 /* We can only handle a single .debug_types when we have an
3301 index. */
3302 if (dwarf2_per_objfile->types.size () != 1)
3303 return 0;
3304
3305 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3306
3307 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3308 types_list, types_list_elements);
3309 }
3310
3311 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3312
3313 dwarf2_per_objfile->index_table = std::move (map);
3314 dwarf2_per_objfile->using_index = 1;
3315 dwarf2_per_objfile->quick_file_names_table =
3316 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3317
3318 return 1;
3319 }
3320
3321 /* die_reader_func for dw2_get_file_names. */
3322
3323 static void
3324 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3325 const gdb_byte *info_ptr,
3326 struct die_info *comp_unit_die)
3327 {
3328 struct dwarf2_cu *cu = reader->cu;
3329 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3330 struct dwarf2_per_objfile *dwarf2_per_objfile
3331 = cu->per_cu->dwarf2_per_objfile;
3332 struct objfile *objfile = dwarf2_per_objfile->objfile;
3333 struct dwarf2_per_cu_data *lh_cu;
3334 struct attribute *attr;
3335 void **slot;
3336 struct quick_file_names *qfn;
3337
3338 gdb_assert (! this_cu->is_debug_types);
3339
3340 /* Our callers never want to match partial units -- instead they
3341 will match the enclosing full CU. */
3342 if (comp_unit_die->tag == DW_TAG_partial_unit)
3343 {
3344 this_cu->v.quick->no_file_data = 1;
3345 return;
3346 }
3347
3348 lh_cu = this_cu;
3349 slot = NULL;
3350
3351 line_header_up lh;
3352 sect_offset line_offset {};
3353
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3355 if (attr != nullptr)
3356 {
3357 struct quick_file_names find_entry;
3358
3359 line_offset = (sect_offset) DW_UNSND (attr);
3360
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_sect_off = line_offset;
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3366 &find_entry, INSERT);
3367 if (*slot != NULL)
3368 {
3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3370 return;
3371 }
3372
3373 lh = dwarf_decode_line_header (line_offset, cu);
3374 }
3375 if (lh == NULL)
3376 {
3377 lh_cu->v.quick->no_file_data = 1;
3378 return;
3379 }
3380
3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_sect_off = line_offset;
3384 gdb_assert (slot != NULL);
3385 *slot = qfn;
3386
3387 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3388
3389 int offset = 0;
3390 if (strcmp (fnd.name, "<unknown>") != 0)
3391 ++offset;
3392
3393 qfn->num_file_names = offset + lh->file_names_size ();
3394 qfn->file_names =
3395 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3396 if (offset != 0)
3397 qfn->file_names[0] = xstrdup (fnd.name);
3398 for (int i = 0; i < lh->file_names_size (); ++i)
3399 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3400 qfn->real_names = NULL;
3401
3402 lh_cu->v.quick->file_names = qfn;
3403 }
3404
3405 /* A helper for the "quick" functions which attempts to read the line
3406 table for THIS_CU. */
3407
3408 static struct quick_file_names *
3409 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3410 {
3411 /* This should never be called for TUs. */
3412 gdb_assert (! this_cu->is_debug_types);
3413 /* Nor type unit groups. */
3414 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3415
3416 if (this_cu->v.quick->file_names != NULL)
3417 return this_cu->v.quick->file_names;
3418 /* If we know there is no line data, no point in looking again. */
3419 if (this_cu->v.quick->no_file_data)
3420 return NULL;
3421
3422 cutu_reader reader (this_cu);
3423 if (!reader.dummy_p)
3424 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3425
3426 if (this_cu->v.quick->no_file_data)
3427 return NULL;
3428 return this_cu->v.quick->file_names;
3429 }
3430
3431 /* A helper for the "quick" functions which computes and caches the
3432 real path for a given file name from the line table. */
3433
3434 static const char *
3435 dw2_get_real_path (struct objfile *objfile,
3436 struct quick_file_names *qfn, int index)
3437 {
3438 if (qfn->real_names == NULL)
3439 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3440 qfn->num_file_names, const char *);
3441
3442 if (qfn->real_names[index] == NULL)
3443 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3444
3445 return qfn->real_names[index];
3446 }
3447
3448 static struct symtab *
3449 dw2_find_last_source_symtab (struct objfile *objfile)
3450 {
3451 struct dwarf2_per_objfile *dwarf2_per_objfile
3452 = get_dwarf2_per_objfile (objfile);
3453 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3454 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3455
3456 if (cust == NULL)
3457 return NULL;
3458
3459 return compunit_primary_filetab (cust);
3460 }
3461
3462 /* Traversal function for dw2_forget_cached_source_info. */
3463
3464 static int
3465 dw2_free_cached_file_names (void **slot, void *info)
3466 {
3467 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3468
3469 if (file_data->real_names)
3470 {
3471 int i;
3472
3473 for (i = 0; i < file_data->num_file_names; ++i)
3474 {
3475 xfree ((void*) file_data->real_names[i]);
3476 file_data->real_names[i] = NULL;
3477 }
3478 }
3479
3480 return 1;
3481 }
3482
3483 static void
3484 dw2_forget_cached_source_info (struct objfile *objfile)
3485 {
3486 struct dwarf2_per_objfile *dwarf2_per_objfile
3487 = get_dwarf2_per_objfile (objfile);
3488
3489 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3490 dw2_free_cached_file_names, NULL);
3491 }
3492
3493 /* Helper function for dw2_map_symtabs_matching_filename that expands
3494 the symtabs and calls the iterator. */
3495
3496 static int
3497 dw2_map_expand_apply (struct objfile *objfile,
3498 struct dwarf2_per_cu_data *per_cu,
3499 const char *name, const char *real_path,
3500 gdb::function_view<bool (symtab *)> callback)
3501 {
3502 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3503
3504 /* Don't visit already-expanded CUs. */
3505 if (per_cu->v.quick->compunit_symtab)
3506 return 0;
3507
3508 /* This may expand more than one symtab, and we want to iterate over
3509 all of them. */
3510 dw2_instantiate_symtab (per_cu, false);
3511
3512 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3513 last_made, callback);
3514 }
3515
3516 /* Implementation of the map_symtabs_matching_filename method. */
3517
3518 static bool
3519 dw2_map_symtabs_matching_filename
3520 (struct objfile *objfile, const char *name, const char *real_path,
3521 gdb::function_view<bool (symtab *)> callback)
3522 {
3523 const char *name_basename = lbasename (name);
3524 struct dwarf2_per_objfile *dwarf2_per_objfile
3525 = get_dwarf2_per_objfile (objfile);
3526
3527 /* The rule is CUs specify all the files, including those used by
3528 any TU, so there's no need to scan TUs here. */
3529
3530 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3531 {
3532 /* We only need to look at symtabs not already expanded. */
3533 if (per_cu->v.quick->compunit_symtab)
3534 continue;
3535
3536 quick_file_names *file_data = dw2_get_file_names (per_cu);
3537 if (file_data == NULL)
3538 continue;
3539
3540 for (int j = 0; j < file_data->num_file_names; ++j)
3541 {
3542 const char *this_name = file_data->file_names[j];
3543 const char *this_real_name;
3544
3545 if (compare_filenames_for_search (this_name, name))
3546 {
3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3548 callback))
3549 return true;
3550 continue;
3551 }
3552
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3557 continue;
3558
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
3561 {
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3563 callback))
3564 return true;
3565 continue;
3566 }
3567
3568 if (real_path != NULL)
3569 {
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
3572 if (this_real_name != NULL
3573 && FILENAME_CMP (real_path, this_real_name) == 0)
3574 {
3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3576 callback))
3577 return true;
3578 continue;
3579 }
3580 }
3581 }
3582 }
3583
3584 return false;
3585 }
3586
3587 /* Struct used to manage iterating over all CUs looking for a symbol. */
3588
3589 struct dw2_symtab_iterator
3590 {
3591 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3592 struct dwarf2_per_objfile *dwarf2_per_objfile;
3593 /* If set, only look for symbols that match that block. Valid values are
3594 GLOBAL_BLOCK and STATIC_BLOCK. */
3595 gdb::optional<block_enum> block_index;
3596 /* The kind of symbol we're looking for. */
3597 domain_enum domain;
3598 /* The list of CUs from the index entry of the symbol,
3599 or NULL if not found. */
3600 offset_type *vec;
3601 /* The next element in VEC to look at. */
3602 int next;
3603 /* The number of elements in VEC, or zero if there is no match. */
3604 int length;
3605 /* Have we seen a global version of the symbol?
3606 If so we can ignore all further global instances.
3607 This is to work around gold/15646, inefficient gold-generated
3608 indices. */
3609 int global_seen;
3610 };
3611
3612 /* Initialize the index symtab iterator ITER. */
3613
3614 static void
3615 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3616 struct dwarf2_per_objfile *dwarf2_per_objfile,
3617 gdb::optional<block_enum> block_index,
3618 domain_enum domain,
3619 const char *name)
3620 {
3621 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3622 iter->block_index = block_index;
3623 iter->domain = domain;
3624 iter->next = 0;
3625 iter->global_seen = 0;
3626
3627 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3628
3629 /* index is NULL if OBJF_READNOW. */
3630 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3631 iter->length = MAYBE_SWAP (*iter->vec);
3632 else
3633 {
3634 iter->vec = NULL;
3635 iter->length = 0;
3636 }
3637 }
3638
3639 /* Return the next matching CU or NULL if there are no more. */
3640
3641 static struct dwarf2_per_cu_data *
3642 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3643 {
3644 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3645
3646 for ( ; iter->next < iter->length; ++iter->next)
3647 {
3648 offset_type cu_index_and_attrs =
3649 MAYBE_SWAP (iter->vec[iter->next + 1]);
3650 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3651 gdb_index_symbol_kind symbol_kind =
3652 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3653 /* Only check the symbol attributes if they're present.
3654 Indices prior to version 7 don't record them,
3655 and indices >= 7 may elide them for certain symbols
3656 (gold does this). */
3657 int attrs_valid =
3658 (dwarf2_per_objfile->index_table->version >= 7
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3660
3661 /* Don't crash on bad data. */
3662 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3663 + dwarf2_per_objfile->all_type_units.size ()))
3664 {
3665 complaint (_(".gdb_index entry has bad CU index"
3666 " [in module %s]"),
3667 objfile_name (dwarf2_per_objfile->objfile));
3668 continue;
3669 }
3670
3671 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3672
3673 /* Skip if already read in. */
3674 if (per_cu->v.quick->compunit_symtab)
3675 continue;
3676
3677 /* Check static vs global. */
3678 if (attrs_valid)
3679 {
3680 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3681
3682 if (iter->block_index.has_value ())
3683 {
3684 bool want_static = *iter->block_index == STATIC_BLOCK;
3685
3686 if (is_static != want_static)
3687 continue;
3688 }
3689
3690 /* Work around gold/15646. */
3691 if (!is_static && iter->global_seen)
3692 continue;
3693 if (!is_static)
3694 iter->global_seen = 1;
3695 }
3696
3697 /* Only check the symbol's kind if it has one. */
3698 if (attrs_valid)
3699 {
3700 switch (iter->domain)
3701 {
3702 case VAR_DOMAIN:
3703 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3704 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3705 /* Some types are also in VAR_DOMAIN. */
3706 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3707 continue;
3708 break;
3709 case STRUCT_DOMAIN:
3710 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3711 continue;
3712 break;
3713 case LABEL_DOMAIN:
3714 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3715 continue;
3716 break;
3717 case MODULE_DOMAIN:
3718 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3719 continue;
3720 break;
3721 default:
3722 break;
3723 }
3724 }
3725
3726 ++iter->next;
3727 return per_cu;
3728 }
3729
3730 return NULL;
3731 }
3732
3733 static struct compunit_symtab *
3734 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3735 const char *name, domain_enum domain)
3736 {
3737 struct compunit_symtab *stab_best = NULL;
3738 struct dwarf2_per_objfile *dwarf2_per_objfile
3739 = get_dwarf2_per_objfile (objfile);
3740
3741 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3742
3743 struct dw2_symtab_iterator iter;
3744 struct dwarf2_per_cu_data *per_cu;
3745
3746 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3747
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3749 {
3750 struct symbol *sym, *with_opaque = NULL;
3751 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3752 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3753 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3754
3755 sym = block_find_symbol (block, name, domain,
3756 block_find_non_opaque_type_preferred,
3757 &with_opaque);
3758
3759 /* Some caution must be observed with overloaded functions
3760 and methods, since the index will not contain any overload
3761 information (but NAME might contain it). */
3762
3763 if (sym != NULL
3764 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3765 return stab;
3766 if (with_opaque != NULL
3767 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3768 stab_best = stab;
3769
3770 /* Keep looking through other CUs. */
3771 }
3772
3773 return stab_best;
3774 }
3775
3776 static void
3777 dw2_print_stats (struct objfile *objfile)
3778 {
3779 struct dwarf2_per_objfile *dwarf2_per_objfile
3780 = get_dwarf2_per_objfile (objfile);
3781 int total = (dwarf2_per_objfile->all_comp_units.size ()
3782 + dwarf2_per_objfile->all_type_units.size ());
3783 int count = 0;
3784
3785 for (int i = 0; i < total; ++i)
3786 {
3787 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3788
3789 if (!per_cu->v.quick->compunit_symtab)
3790 ++count;
3791 }
3792 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3793 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3794 }
3795
3796 /* This dumps minimal information about the index.
3797 It is called via "mt print objfiles".
3798 One use is to verify .gdb_index has been loaded by the
3799 gdb.dwarf2/gdb-index.exp testcase. */
3800
3801 static void
3802 dw2_dump (struct objfile *objfile)
3803 {
3804 struct dwarf2_per_objfile *dwarf2_per_objfile
3805 = get_dwarf2_per_objfile (objfile);
3806
3807 gdb_assert (dwarf2_per_objfile->using_index);
3808 printf_filtered (".gdb_index:");
3809 if (dwarf2_per_objfile->index_table != NULL)
3810 {
3811 printf_filtered (" version %d\n",
3812 dwarf2_per_objfile->index_table->version);
3813 }
3814 else
3815 printf_filtered (" faked for \"readnow\"\n");
3816 printf_filtered ("\n");
3817 }
3818
3819 static void
3820 dw2_expand_symtabs_for_function (struct objfile *objfile,
3821 const char *func_name)
3822 {
3823 struct dwarf2_per_objfile *dwarf2_per_objfile
3824 = get_dwarf2_per_objfile (objfile);
3825
3826 struct dw2_symtab_iterator iter;
3827 struct dwarf2_per_cu_data *per_cu;
3828
3829 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3830
3831 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3832 dw2_instantiate_symtab (per_cu, false);
3833
3834 }
3835
3836 static void
3837 dw2_expand_all_symtabs (struct objfile *objfile)
3838 {
3839 struct dwarf2_per_objfile *dwarf2_per_objfile
3840 = get_dwarf2_per_objfile (objfile);
3841 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3842 + dwarf2_per_objfile->all_type_units.size ());
3843
3844 for (int i = 0; i < total_units; ++i)
3845 {
3846 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3847
3848 /* We don't want to directly expand a partial CU, because if we
3849 read it with the wrong language, then assertion failures can
3850 be triggered later on. See PR symtab/23010. So, tell
3851 dw2_instantiate_symtab to skip partial CUs -- any important
3852 partial CU will be read via DW_TAG_imported_unit anyway. */
3853 dw2_instantiate_symtab (per_cu, true);
3854 }
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3859 const char *fullname)
3860 {
3861 struct dwarf2_per_objfile *dwarf2_per_objfile
3862 = get_dwarf2_per_objfile (objfile);
3863
3864 /* We don't need to consider type units here.
3865 This is only called for examining code, e.g. expand_line_sal.
3866 There can be an order of magnitude (or more) more type units
3867 than comp units, and we avoid them if we can. */
3868
3869 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3870 {
3871 /* We only need to look at symtabs not already expanded. */
3872 if (per_cu->v.quick->compunit_symtab)
3873 continue;
3874
3875 quick_file_names *file_data = dw2_get_file_names (per_cu);
3876 if (file_data == NULL)
3877 continue;
3878
3879 for (int j = 0; j < file_data->num_file_names; ++j)
3880 {
3881 const char *this_fullname = file_data->file_names[j];
3882
3883 if (filename_cmp (this_fullname, fullname) == 0)
3884 {
3885 dw2_instantiate_symtab (per_cu, false);
3886 break;
3887 }
3888 }
3889 }
3890 }
3891
3892 static void
3893 dw2_map_matching_symbols
3894 (struct objfile *objfile,
3895 const lookup_name_info &name, domain_enum domain,
3896 int global,
3897 gdb::function_view<symbol_found_callback_ftype> callback,
3898 symbol_compare_ftype *ordered_compare)
3899 {
3900 /* Currently unimplemented; used for Ada. The function can be called if the
3901 current language is Ada for a non-Ada objfile using GNU index. As Ada
3902 does not look for non-Ada symbols this function should just return. */
3903 }
3904
3905 /* Starting from a search name, return the string that finds the upper
3906 bound of all strings that start with SEARCH_NAME in a sorted name
3907 list. Returns the empty string to indicate that the upper bound is
3908 the end of the list. */
3909
3910 static std::string
3911 make_sort_after_prefix_name (const char *search_name)
3912 {
3913 /* When looking to complete "func", we find the upper bound of all
3914 symbols that start with "func" by looking for where we'd insert
3915 the closest string that would follow "func" in lexicographical
3916 order. Usually, that's "func"-with-last-character-incremented,
3917 i.e. "fund". Mind non-ASCII characters, though. Usually those
3918 will be UTF-8 multi-byte sequences, but we can't be certain.
3919 Especially mind the 0xff character, which is a valid character in
3920 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3921 rule out compilers allowing it in identifiers. Note that
3922 conveniently, strcmp/strcasecmp are specified to compare
3923 characters interpreted as unsigned char. So what we do is treat
3924 the whole string as a base 256 number composed of a sequence of
3925 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3926 to 0, and carries 1 to the following more-significant position.
3927 If the very first character in SEARCH_NAME ends up incremented
3928 and carries/overflows, then the upper bound is the end of the
3929 list. The string after the empty string is also the empty
3930 string.
3931
3932 Some examples of this operation:
3933
3934 SEARCH_NAME => "+1" RESULT
3935
3936 "abc" => "abd"
3937 "ab\xff" => "ac"
3938 "\xff" "a" "\xff" => "\xff" "b"
3939 "\xff" => ""
3940 "\xff\xff" => ""
3941 "" => ""
3942
3943 Then, with these symbols for example:
3944
3945 func
3946 func1
3947 fund
3948
3949 completing "func" looks for symbols between "func" and
3950 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3951 which finds "func" and "func1", but not "fund".
3952
3953 And with:
3954
3955 funcÿ (Latin1 'ÿ' [0xff])
3956 funcÿ1
3957 fund
3958
3959 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3960 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3961
3962 And with:
3963
3964 ÿÿ (Latin1 'ÿ' [0xff])
3965 ÿÿ1
3966
3967 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3968 the end of the list.
3969 */
3970 std::string after = search_name;
3971 while (!after.empty () && (unsigned char) after.back () == 0xff)
3972 after.pop_back ();
3973 if (!after.empty ())
3974 after.back () = (unsigned char) after.back () + 1;
3975 return after;
3976 }
3977
3978 /* See declaration. */
3979
3980 std::pair<std::vector<name_component>::const_iterator,
3981 std::vector<name_component>::const_iterator>
3982 mapped_index_base::find_name_components_bounds
3983 (const lookup_name_info &lookup_name_without_params, language lang) const
3984 {
3985 auto *name_cmp
3986 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3987
3988 const char *lang_name
3989 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3990
3991 /* Comparison function object for lower_bound that matches against a
3992 given symbol name. */
3993 auto lookup_compare_lower = [&] (const name_component &elem,
3994 const char *name)
3995 {
3996 const char *elem_qualified = this->symbol_name_at (elem.idx);
3997 const char *elem_name = elem_qualified + elem.name_offset;
3998 return name_cmp (elem_name, name) < 0;
3999 };
4000
4001 /* Comparison function object for upper_bound that matches against a
4002 given symbol name. */
4003 auto lookup_compare_upper = [&] (const char *name,
4004 const name_component &elem)
4005 {
4006 const char *elem_qualified = this->symbol_name_at (elem.idx);
4007 const char *elem_name = elem_qualified + elem.name_offset;
4008 return name_cmp (name, elem_name) < 0;
4009 };
4010
4011 auto begin = this->name_components.begin ();
4012 auto end = this->name_components.end ();
4013
4014 /* Find the lower bound. */
4015 auto lower = [&] ()
4016 {
4017 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4018 return begin;
4019 else
4020 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4021 } ();
4022
4023 /* Find the upper bound. */
4024 auto upper = [&] ()
4025 {
4026 if (lookup_name_without_params.completion_mode ())
4027 {
4028 /* In completion mode, we want UPPER to point past all
4029 symbols names that have the same prefix. I.e., with
4030 these symbols, and completing "func":
4031
4032 function << lower bound
4033 function1
4034 other_function << upper bound
4035
4036 We find the upper bound by looking for the insertion
4037 point of "func"-with-last-character-incremented,
4038 i.e. "fund". */
4039 std::string after = make_sort_after_prefix_name (lang_name);
4040 if (after.empty ())
4041 return end;
4042 return std::lower_bound (lower, end, after.c_str (),
4043 lookup_compare_lower);
4044 }
4045 else
4046 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4047 } ();
4048
4049 return {lower, upper};
4050 }
4051
4052 /* See declaration. */
4053
4054 void
4055 mapped_index_base::build_name_components ()
4056 {
4057 if (!this->name_components.empty ())
4058 return;
4059
4060 this->name_components_casing = case_sensitivity;
4061 auto *name_cmp
4062 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4063
4064 /* The code below only knows how to break apart components of C++
4065 symbol names (and other languages that use '::' as
4066 namespace/module separator) and Ada symbol names. */
4067 auto count = this->symbol_name_count ();
4068 for (offset_type idx = 0; idx < count; idx++)
4069 {
4070 if (this->symbol_name_slot_invalid (idx))
4071 continue;
4072
4073 const char *name = this->symbol_name_at (idx);
4074
4075 /* Add each name component to the name component table. */
4076 unsigned int previous_len = 0;
4077
4078 if (strstr (name, "::") != nullptr)
4079 {
4080 for (unsigned int current_len = cp_find_first_component (name);
4081 name[current_len] != '\0';
4082 current_len += cp_find_first_component (name + current_len))
4083 {
4084 gdb_assert (name[current_len] == ':');
4085 this->name_components.push_back ({previous_len, idx});
4086 /* Skip the '::'. */
4087 current_len += 2;
4088 previous_len = current_len;
4089 }
4090 }
4091 else
4092 {
4093 /* Handle the Ada encoded (aka mangled) form here. */
4094 for (const char *iter = strstr (name, "__");
4095 iter != nullptr;
4096 iter = strstr (iter, "__"))
4097 {
4098 this->name_components.push_back ({previous_len, idx});
4099 iter += 2;
4100 previous_len = iter - name;
4101 }
4102 }
4103
4104 this->name_components.push_back ({previous_len, idx});
4105 }
4106
4107 /* Sort name_components elements by name. */
4108 auto name_comp_compare = [&] (const name_component &left,
4109 const name_component &right)
4110 {
4111 const char *left_qualified = this->symbol_name_at (left.idx);
4112 const char *right_qualified = this->symbol_name_at (right.idx);
4113
4114 const char *left_name = left_qualified + left.name_offset;
4115 const char *right_name = right_qualified + right.name_offset;
4116
4117 return name_cmp (left_name, right_name) < 0;
4118 };
4119
4120 std::sort (this->name_components.begin (),
4121 this->name_components.end (),
4122 name_comp_compare);
4123 }
4124
4125 /* Helper for dw2_expand_symtabs_matching that works with a
4126 mapped_index_base instead of the containing objfile. This is split
4127 to a separate function in order to be able to unit test the
4128 name_components matching using a mock mapped_index_base. For each
4129 symbol name that matches, calls MATCH_CALLBACK, passing it the
4130 symbol's index in the mapped_index_base symbol table. */
4131
4132 static void
4133 dw2_expand_symtabs_matching_symbol
4134 (mapped_index_base &index,
4135 const lookup_name_info &lookup_name_in,
4136 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4137 enum search_domain kind,
4138 gdb::function_view<bool (offset_type)> match_callback)
4139 {
4140 lookup_name_info lookup_name_without_params
4141 = lookup_name_in.make_ignore_params ();
4142
4143 /* Build the symbol name component sorted vector, if we haven't
4144 yet. */
4145 index.build_name_components ();
4146
4147 /* The same symbol may appear more than once in the range though.
4148 E.g., if we're looking for symbols that complete "w", and we have
4149 a symbol named "w1::w2", we'll find the two name components for
4150 that same symbol in the range. To be sure we only call the
4151 callback once per symbol, we first collect the symbol name
4152 indexes that matched in a temporary vector and ignore
4153 duplicates. */
4154 std::vector<offset_type> matches;
4155
4156 struct name_and_matcher
4157 {
4158 symbol_name_matcher_ftype *matcher;
4159 const std::string &name;
4160
4161 bool operator== (const name_and_matcher &other) const
4162 {
4163 return matcher == other.matcher && name == other.name;
4164 }
4165 };
4166
4167 /* A vector holding all the different symbol name matchers, for all
4168 languages. */
4169 std::vector<name_and_matcher> matchers;
4170
4171 for (int i = 0; i < nr_languages; i++)
4172 {
4173 enum language lang_e = (enum language) i;
4174
4175 const language_defn *lang = language_def (lang_e);
4176 symbol_name_matcher_ftype *name_matcher
4177 = get_symbol_name_matcher (lang, lookup_name_without_params);
4178
4179 name_and_matcher key {
4180 name_matcher,
4181 lookup_name_without_params.language_lookup_name (lang_e)
4182 };
4183
4184 /* Don't insert the same comparison routine more than once.
4185 Note that we do this linear walk. This is not a problem in
4186 practice because the number of supported languages is
4187 low. */
4188 if (std::find (matchers.begin (), matchers.end (), key)
4189 != matchers.end ())
4190 continue;
4191 matchers.push_back (std::move (key));
4192
4193 auto bounds
4194 = index.find_name_components_bounds (lookup_name_without_params,
4195 lang_e);
4196
4197 /* Now for each symbol name in range, check to see if we have a name
4198 match, and if so, call the MATCH_CALLBACK callback. */
4199
4200 for (; bounds.first != bounds.second; ++bounds.first)
4201 {
4202 const char *qualified = index.symbol_name_at (bounds.first->idx);
4203
4204 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4205 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4206 continue;
4207
4208 matches.push_back (bounds.first->idx);
4209 }
4210 }
4211
4212 std::sort (matches.begin (), matches.end ());
4213
4214 /* Finally call the callback, once per match. */
4215 ULONGEST prev = -1;
4216 for (offset_type idx : matches)
4217 {
4218 if (prev != idx)
4219 {
4220 if (!match_callback (idx))
4221 break;
4222 prev = idx;
4223 }
4224 }
4225
4226 /* Above we use a type wider than idx's for 'prev', since 0 and
4227 (offset_type)-1 are both possible values. */
4228 static_assert (sizeof (prev) > sizeof (offset_type), "");
4229 }
4230
4231 #if GDB_SELF_TEST
4232
4233 namespace selftests { namespace dw2_expand_symtabs_matching {
4234
4235 /* A mock .gdb_index/.debug_names-like name index table, enough to
4236 exercise dw2_expand_symtabs_matching_symbol, which works with the
4237 mapped_index_base interface. Builds an index from the symbol list
4238 passed as parameter to the constructor. */
4239 class mock_mapped_index : public mapped_index_base
4240 {
4241 public:
4242 mock_mapped_index (gdb::array_view<const char *> symbols)
4243 : m_symbol_table (symbols)
4244 {}
4245
4246 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4247
4248 /* Return the number of names in the symbol table. */
4249 size_t symbol_name_count () const override
4250 {
4251 return m_symbol_table.size ();
4252 }
4253
4254 /* Get the name of the symbol at IDX in the symbol table. */
4255 const char *symbol_name_at (offset_type idx) const override
4256 {
4257 return m_symbol_table[idx];
4258 }
4259
4260 private:
4261 gdb::array_view<const char *> m_symbol_table;
4262 };
4263
4264 /* Convenience function that converts a NULL pointer to a "<null>"
4265 string, to pass to print routines. */
4266
4267 static const char *
4268 string_or_null (const char *str)
4269 {
4270 return str != NULL ? str : "<null>";
4271 }
4272
4273 /* Check if a lookup_name_info built from
4274 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4275 index. EXPECTED_LIST is the list of expected matches, in expected
4276 matching order. If no match expected, then an empty list is
4277 specified. Returns true on success. On failure prints a warning
4278 indicating the file:line that failed, and returns false. */
4279
4280 static bool
4281 check_match (const char *file, int line,
4282 mock_mapped_index &mock_index,
4283 const char *name, symbol_name_match_type match_type,
4284 bool completion_mode,
4285 std::initializer_list<const char *> expected_list)
4286 {
4287 lookup_name_info lookup_name (name, match_type, completion_mode);
4288
4289 bool matched = true;
4290
4291 auto mismatch = [&] (const char *expected_str,
4292 const char *got)
4293 {
4294 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4295 "expected=\"%s\", got=\"%s\"\n"),
4296 file, line,
4297 (match_type == symbol_name_match_type::FULL
4298 ? "FULL" : "WILD"),
4299 name, string_or_null (expected_str), string_or_null (got));
4300 matched = false;
4301 };
4302
4303 auto expected_it = expected_list.begin ();
4304 auto expected_end = expected_list.end ();
4305
4306 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4307 NULL, ALL_DOMAIN,
4308 [&] (offset_type idx)
4309 {
4310 const char *matched_name = mock_index.symbol_name_at (idx);
4311 const char *expected_str
4312 = expected_it == expected_end ? NULL : *expected_it++;
4313
4314 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4315 mismatch (expected_str, matched_name);
4316 return true;
4317 });
4318
4319 const char *expected_str
4320 = expected_it == expected_end ? NULL : *expected_it++;
4321 if (expected_str != NULL)
4322 mismatch (expected_str, NULL);
4323
4324 return matched;
4325 }
4326
4327 /* The symbols added to the mock mapped_index for testing (in
4328 canonical form). */
4329 static const char *test_symbols[] = {
4330 "function",
4331 "std::bar",
4332 "std::zfunction",
4333 "std::zfunction2",
4334 "w1::w2",
4335 "ns::foo<char*>",
4336 "ns::foo<int>",
4337 "ns::foo<long>",
4338 "ns2::tmpl<int>::foo2",
4339 "(anonymous namespace)::A::B::C",
4340
4341 /* These are used to check that the increment-last-char in the
4342 matching algorithm for completion doesn't match "t1_fund" when
4343 completing "t1_func". */
4344 "t1_func",
4345 "t1_func1",
4346 "t1_fund",
4347 "t1_fund1",
4348
4349 /* A UTF-8 name with multi-byte sequences to make sure that
4350 cp-name-parser understands this as a single identifier ("função"
4351 is "function" in PT). */
4352 u8"u8função",
4353
4354 /* \377 (0xff) is Latin1 'ÿ'. */
4355 "yfunc\377",
4356
4357 /* \377 (0xff) is Latin1 'ÿ'. */
4358 "\377",
4359 "\377\377123",
4360
4361 /* A name with all sorts of complications. Starts with "z" to make
4362 it easier for the completion tests below. */
4363 #define Z_SYM_NAME \
4364 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4365 "::tuple<(anonymous namespace)::ui*, " \
4366 "std::default_delete<(anonymous namespace)::ui>, void>"
4367
4368 Z_SYM_NAME
4369 };
4370
4371 /* Returns true if the mapped_index_base::find_name_component_bounds
4372 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4373 in completion mode. */
4374
4375 static bool
4376 check_find_bounds_finds (mapped_index_base &index,
4377 const char *search_name,
4378 gdb::array_view<const char *> expected_syms)
4379 {
4380 lookup_name_info lookup_name (search_name,
4381 symbol_name_match_type::FULL, true);
4382
4383 auto bounds = index.find_name_components_bounds (lookup_name,
4384 language_cplus);
4385
4386 size_t distance = std::distance (bounds.first, bounds.second);
4387 if (distance != expected_syms.size ())
4388 return false;
4389
4390 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4391 {
4392 auto nc_elem = bounds.first + exp_elem;
4393 const char *qualified = index.symbol_name_at (nc_elem->idx);
4394 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4395 return false;
4396 }
4397
4398 return true;
4399 }
4400
4401 /* Test the lower-level mapped_index::find_name_component_bounds
4402 method. */
4403
4404 static void
4405 test_mapped_index_find_name_component_bounds ()
4406 {
4407 mock_mapped_index mock_index (test_symbols);
4408
4409 mock_index.build_name_components ();
4410
4411 /* Test the lower-level mapped_index::find_name_component_bounds
4412 method in completion mode. */
4413 {
4414 static const char *expected_syms[] = {
4415 "t1_func",
4416 "t1_func1",
4417 };
4418
4419 SELF_CHECK (check_find_bounds_finds (mock_index,
4420 "t1_func", expected_syms));
4421 }
4422
4423 /* Check that the increment-last-char in the name matching algorithm
4424 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4425 {
4426 static const char *expected_syms1[] = {
4427 "\377",
4428 "\377\377123",
4429 };
4430 SELF_CHECK (check_find_bounds_finds (mock_index,
4431 "\377", expected_syms1));
4432
4433 static const char *expected_syms2[] = {
4434 "\377\377123",
4435 };
4436 SELF_CHECK (check_find_bounds_finds (mock_index,
4437 "\377\377", expected_syms2));
4438 }
4439 }
4440
4441 /* Test dw2_expand_symtabs_matching_symbol. */
4442
4443 static void
4444 test_dw2_expand_symtabs_matching_symbol ()
4445 {
4446 mock_mapped_index mock_index (test_symbols);
4447
4448 /* We let all tests run until the end even if some fails, for debug
4449 convenience. */
4450 bool any_mismatch = false;
4451
4452 /* Create the expected symbols list (an initializer_list). Needed
4453 because lists have commas, and we need to pass them to CHECK,
4454 which is a macro. */
4455 #define EXPECT(...) { __VA_ARGS__ }
4456
4457 /* Wrapper for check_match that passes down the current
4458 __FILE__/__LINE__. */
4459 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4460 any_mismatch |= !check_match (__FILE__, __LINE__, \
4461 mock_index, \
4462 NAME, MATCH_TYPE, COMPLETION_MODE, \
4463 EXPECTED_LIST)
4464
4465 /* Identity checks. */
4466 for (const char *sym : test_symbols)
4467 {
4468 /* Should be able to match all existing symbols. */
4469 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4470 EXPECT (sym));
4471
4472 /* Should be able to match all existing symbols with
4473 parameters. */
4474 std::string with_params = std::string (sym) + "(int)";
4475 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4476 EXPECT (sym));
4477
4478 /* Should be able to match all existing symbols with
4479 parameters and qualifiers. */
4480 with_params = std::string (sym) + " ( int ) const";
4481 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4482 EXPECT (sym));
4483
4484 /* This should really find sym, but cp-name-parser.y doesn't
4485 know about lvalue/rvalue qualifiers yet. */
4486 with_params = std::string (sym) + " ( int ) &&";
4487 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4488 {});
4489 }
4490
4491 /* Check that the name matching algorithm for completion doesn't get
4492 confused with Latin1 'ÿ' / 0xff. */
4493 {
4494 static const char str[] = "\377";
4495 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4496 EXPECT ("\377", "\377\377123"));
4497 }
4498
4499 /* Check that the increment-last-char in the matching algorithm for
4500 completion doesn't match "t1_fund" when completing "t1_func". */
4501 {
4502 static const char str[] = "t1_func";
4503 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4504 EXPECT ("t1_func", "t1_func1"));
4505 }
4506
4507 /* Check that completion mode works at each prefix of the expected
4508 symbol name. */
4509 {
4510 static const char str[] = "function(int)";
4511 size_t len = strlen (str);
4512 std::string lookup;
4513
4514 for (size_t i = 1; i < len; i++)
4515 {
4516 lookup.assign (str, i);
4517 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4518 EXPECT ("function"));
4519 }
4520 }
4521
4522 /* While "w" is a prefix of both components, the match function
4523 should still only be called once. */
4524 {
4525 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4526 EXPECT ("w1::w2"));
4527 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4528 EXPECT ("w1::w2"));
4529 }
4530
4531 /* Same, with a "complicated" symbol. */
4532 {
4533 static const char str[] = Z_SYM_NAME;
4534 size_t len = strlen (str);
4535 std::string lookup;
4536
4537 for (size_t i = 1; i < len; i++)
4538 {
4539 lookup.assign (str, i);
4540 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4541 EXPECT (Z_SYM_NAME));
4542 }
4543 }
4544
4545 /* In FULL mode, an incomplete symbol doesn't match. */
4546 {
4547 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4548 {});
4549 }
4550
4551 /* A complete symbol with parameters matches any overload, since the
4552 index has no overload info. */
4553 {
4554 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4555 EXPECT ("std::zfunction", "std::zfunction2"));
4556 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4557 EXPECT ("std::zfunction", "std::zfunction2"));
4558 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4559 EXPECT ("std::zfunction", "std::zfunction2"));
4560 }
4561
4562 /* Check that whitespace is ignored appropriately. A symbol with a
4563 template argument list. */
4564 {
4565 static const char expected[] = "ns::foo<int>";
4566 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4567 EXPECT (expected));
4568 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4569 EXPECT (expected));
4570 }
4571
4572 /* Check that whitespace is ignored appropriately. A symbol with a
4573 template argument list that includes a pointer. */
4574 {
4575 static const char expected[] = "ns::foo<char*>";
4576 /* Try both completion and non-completion modes. */
4577 static const bool completion_mode[2] = {false, true};
4578 for (size_t i = 0; i < 2; i++)
4579 {
4580 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4581 completion_mode[i], EXPECT (expected));
4582 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4583 completion_mode[i], EXPECT (expected));
4584
4585 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4586 completion_mode[i], EXPECT (expected));
4587 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4588 completion_mode[i], EXPECT (expected));
4589 }
4590 }
4591
4592 {
4593 /* Check method qualifiers are ignored. */
4594 static const char expected[] = "ns::foo<char*>";
4595 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4596 symbol_name_match_type::FULL, true, EXPECT (expected));
4597 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4598 symbol_name_match_type::FULL, true, EXPECT (expected));
4599 CHECK_MATCH ("foo < char * > ( int ) const",
4600 symbol_name_match_type::WILD, true, EXPECT (expected));
4601 CHECK_MATCH ("foo < char * > ( int ) &&",
4602 symbol_name_match_type::WILD, true, EXPECT (expected));
4603 }
4604
4605 /* Test lookup names that don't match anything. */
4606 {
4607 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4608 {});
4609
4610 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4611 {});
4612 }
4613
4614 /* Some wild matching tests, exercising "(anonymous namespace)",
4615 which should not be confused with a parameter list. */
4616 {
4617 static const char *syms[] = {
4618 "A::B::C",
4619 "B::C",
4620 "C",
4621 "A :: B :: C ( int )",
4622 "B :: C ( int )",
4623 "C ( int )",
4624 };
4625
4626 for (const char *s : syms)
4627 {
4628 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4629 EXPECT ("(anonymous namespace)::A::B::C"));
4630 }
4631 }
4632
4633 {
4634 static const char expected[] = "ns2::tmpl<int>::foo2";
4635 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4636 EXPECT (expected));
4637 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4638 EXPECT (expected));
4639 }
4640
4641 SELF_CHECK (!any_mismatch);
4642
4643 #undef EXPECT
4644 #undef CHECK_MATCH
4645 }
4646
4647 static void
4648 run_test ()
4649 {
4650 test_mapped_index_find_name_component_bounds ();
4651 test_dw2_expand_symtabs_matching_symbol ();
4652 }
4653
4654 }} // namespace selftests::dw2_expand_symtabs_matching
4655
4656 #endif /* GDB_SELF_TEST */
4657
4658 /* If FILE_MATCHER is NULL or if PER_CU has
4659 dwarf2_per_cu_quick_data::MARK set (see
4660 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4661 EXPANSION_NOTIFY on it. */
4662
4663 static void
4664 dw2_expand_symtabs_matching_one
4665 (struct dwarf2_per_cu_data *per_cu,
4666 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4667 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4668 {
4669 if (file_matcher == NULL || per_cu->v.quick->mark)
4670 {
4671 bool symtab_was_null
4672 = (per_cu->v.quick->compunit_symtab == NULL);
4673
4674 dw2_instantiate_symtab (per_cu, false);
4675
4676 if (expansion_notify != NULL
4677 && symtab_was_null
4678 && per_cu->v.quick->compunit_symtab != NULL)
4679 expansion_notify (per_cu->v.quick->compunit_symtab);
4680 }
4681 }
4682
4683 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4684 matched, to expand corresponding CUs that were marked. IDX is the
4685 index of the symbol name that matched. */
4686
4687 static void
4688 dw2_expand_marked_cus
4689 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4690 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4691 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4692 search_domain kind)
4693 {
4694 offset_type *vec, vec_len, vec_idx;
4695 bool global_seen = false;
4696 mapped_index &index = *dwarf2_per_objfile->index_table;
4697
4698 vec = (offset_type *) (index.constant_pool
4699 + MAYBE_SWAP (index.symbol_table[idx].vec));
4700 vec_len = MAYBE_SWAP (vec[0]);
4701 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4702 {
4703 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4704 /* This value is only valid for index versions >= 7. */
4705 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4706 gdb_index_symbol_kind symbol_kind =
4707 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4708 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4709 /* Only check the symbol attributes if they're present.
4710 Indices prior to version 7 don't record them,
4711 and indices >= 7 may elide them for certain symbols
4712 (gold does this). */
4713 int attrs_valid =
4714 (index.version >= 7
4715 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4716
4717 /* Work around gold/15646. */
4718 if (attrs_valid)
4719 {
4720 if (!is_static && global_seen)
4721 continue;
4722 if (!is_static)
4723 global_seen = true;
4724 }
4725
4726 /* Only check the symbol's kind if it has one. */
4727 if (attrs_valid)
4728 {
4729 switch (kind)
4730 {
4731 case VARIABLES_DOMAIN:
4732 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4733 continue;
4734 break;
4735 case FUNCTIONS_DOMAIN:
4736 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4737 continue;
4738 break;
4739 case TYPES_DOMAIN:
4740 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4741 continue;
4742 break;
4743 case MODULES_DOMAIN:
4744 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4745 continue;
4746 break;
4747 default:
4748 break;
4749 }
4750 }
4751
4752 /* Don't crash on bad data. */
4753 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4754 + dwarf2_per_objfile->all_type_units.size ()))
4755 {
4756 complaint (_(".gdb_index entry has bad CU index"
4757 " [in module %s]"),
4758 objfile_name (dwarf2_per_objfile->objfile));
4759 continue;
4760 }
4761
4762 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4763 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4764 expansion_notify);
4765 }
4766 }
4767
4768 /* If FILE_MATCHER is non-NULL, set all the
4769 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4770 that match FILE_MATCHER. */
4771
4772 static void
4773 dw_expand_symtabs_matching_file_matcher
4774 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4775 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4776 {
4777 if (file_matcher == NULL)
4778 return;
4779
4780 objfile *const objfile = dwarf2_per_objfile->objfile;
4781
4782 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4783 htab_eq_pointer,
4784 NULL, xcalloc, xfree));
4785 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4786 htab_eq_pointer,
4787 NULL, xcalloc, xfree));
4788
4789 /* The rule is CUs specify all the files, including those used by
4790 any TU, so there's no need to scan TUs here. */
4791
4792 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4793 {
4794 QUIT;
4795
4796 per_cu->v.quick->mark = 0;
4797
4798 /* We only need to look at symtabs not already expanded. */
4799 if (per_cu->v.quick->compunit_symtab)
4800 continue;
4801
4802 quick_file_names *file_data = dw2_get_file_names (per_cu);
4803 if (file_data == NULL)
4804 continue;
4805
4806 if (htab_find (visited_not_found.get (), file_data) != NULL)
4807 continue;
4808 else if (htab_find (visited_found.get (), file_data) != NULL)
4809 {
4810 per_cu->v.quick->mark = 1;
4811 continue;
4812 }
4813
4814 for (int j = 0; j < file_data->num_file_names; ++j)
4815 {
4816 const char *this_real_name;
4817
4818 if (file_matcher (file_data->file_names[j], false))
4819 {
4820 per_cu->v.quick->mark = 1;
4821 break;
4822 }
4823
4824 /* Before we invoke realpath, which can get expensive when many
4825 files are involved, do a quick comparison of the basenames. */
4826 if (!basenames_may_differ
4827 && !file_matcher (lbasename (file_data->file_names[j]),
4828 true))
4829 continue;
4830
4831 this_real_name = dw2_get_real_path (objfile, file_data, j);
4832 if (file_matcher (this_real_name, false))
4833 {
4834 per_cu->v.quick->mark = 1;
4835 break;
4836 }
4837 }
4838
4839 void **slot = htab_find_slot (per_cu->v.quick->mark
4840 ? visited_found.get ()
4841 : visited_not_found.get (),
4842 file_data, INSERT);
4843 *slot = file_data;
4844 }
4845 }
4846
4847 static void
4848 dw2_expand_symtabs_matching
4849 (struct objfile *objfile,
4850 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4851 const lookup_name_info &lookup_name,
4852 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4853 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4854 enum search_domain kind)
4855 {
4856 struct dwarf2_per_objfile *dwarf2_per_objfile
4857 = get_dwarf2_per_objfile (objfile);
4858
4859 /* index_table is NULL if OBJF_READNOW. */
4860 if (!dwarf2_per_objfile->index_table)
4861 return;
4862
4863 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4864
4865 mapped_index &index = *dwarf2_per_objfile->index_table;
4866
4867 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4868 symbol_matcher,
4869 kind, [&] (offset_type idx)
4870 {
4871 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4872 expansion_notify, kind);
4873 return true;
4874 });
4875 }
4876
4877 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4878 symtab. */
4879
4880 static struct compunit_symtab *
4881 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4882 CORE_ADDR pc)
4883 {
4884 int i;
4885
4886 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4887 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4888 return cust;
4889
4890 if (cust->includes == NULL)
4891 return NULL;
4892
4893 for (i = 0; cust->includes[i]; ++i)
4894 {
4895 struct compunit_symtab *s = cust->includes[i];
4896
4897 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4898 if (s != NULL)
4899 return s;
4900 }
4901
4902 return NULL;
4903 }
4904
4905 static struct compunit_symtab *
4906 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4907 struct bound_minimal_symbol msymbol,
4908 CORE_ADDR pc,
4909 struct obj_section *section,
4910 int warn_if_readin)
4911 {
4912 struct dwarf2_per_cu_data *data;
4913 struct compunit_symtab *result;
4914
4915 if (!objfile->partial_symtabs->psymtabs_addrmap)
4916 return NULL;
4917
4918 CORE_ADDR baseaddr = objfile->text_section_offset ();
4919 data = (struct dwarf2_per_cu_data *) addrmap_find
4920 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4921 if (!data)
4922 return NULL;
4923
4924 if (warn_if_readin && data->v.quick->compunit_symtab)
4925 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4926 paddress (get_objfile_arch (objfile), pc));
4927
4928 result
4929 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4930 false),
4931 pc);
4932 gdb_assert (result != NULL);
4933 return result;
4934 }
4935
4936 static void
4937 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4938 void *data, int need_fullname)
4939 {
4940 struct dwarf2_per_objfile *dwarf2_per_objfile
4941 = get_dwarf2_per_objfile (objfile);
4942
4943 if (!dwarf2_per_objfile->filenames_cache)
4944 {
4945 dwarf2_per_objfile->filenames_cache.emplace ();
4946
4947 htab_up visited (htab_create_alloc (10,
4948 htab_hash_pointer, htab_eq_pointer,
4949 NULL, xcalloc, xfree));
4950
4951 /* The rule is CUs specify all the files, including those used
4952 by any TU, so there's no need to scan TUs here. We can
4953 ignore file names coming from already-expanded CUs. */
4954
4955 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4956 {
4957 if (per_cu->v.quick->compunit_symtab)
4958 {
4959 void **slot = htab_find_slot (visited.get (),
4960 per_cu->v.quick->file_names,
4961 INSERT);
4962
4963 *slot = per_cu->v.quick->file_names;
4964 }
4965 }
4966
4967 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4968 {
4969 /* We only need to look at symtabs not already expanded. */
4970 if (per_cu->v.quick->compunit_symtab)
4971 continue;
4972
4973 quick_file_names *file_data = dw2_get_file_names (per_cu);
4974 if (file_data == NULL)
4975 continue;
4976
4977 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4978 if (*slot)
4979 {
4980 /* Already visited. */
4981 continue;
4982 }
4983 *slot = file_data;
4984
4985 for (int j = 0; j < file_data->num_file_names; ++j)
4986 {
4987 const char *filename = file_data->file_names[j];
4988 dwarf2_per_objfile->filenames_cache->seen (filename);
4989 }
4990 }
4991 }
4992
4993 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4994 {
4995 gdb::unique_xmalloc_ptr<char> this_real_name;
4996
4997 if (need_fullname)
4998 this_real_name = gdb_realpath (filename);
4999 (*fun) (filename, this_real_name.get (), data);
5000 });
5001 }
5002
5003 static int
5004 dw2_has_symbols (struct objfile *objfile)
5005 {
5006 return 1;
5007 }
5008
5009 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5010 {
5011 dw2_has_symbols,
5012 dw2_find_last_source_symtab,
5013 dw2_forget_cached_source_info,
5014 dw2_map_symtabs_matching_filename,
5015 dw2_lookup_symbol,
5016 dw2_print_stats,
5017 dw2_dump,
5018 dw2_expand_symtabs_for_function,
5019 dw2_expand_all_symtabs,
5020 dw2_expand_symtabs_with_fullname,
5021 dw2_map_matching_symbols,
5022 dw2_expand_symtabs_matching,
5023 dw2_find_pc_sect_compunit_symtab,
5024 NULL,
5025 dw2_map_symbol_filenames
5026 };
5027
5028 /* DWARF-5 debug_names reader. */
5029
5030 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5031 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5032
5033 /* A helper function that reads the .debug_names section in SECTION
5034 and fills in MAP. FILENAME is the name of the file containing the
5035 section; it is used for error reporting.
5036
5037 Returns true if all went well, false otherwise. */
5038
5039 static bool
5040 read_debug_names_from_section (struct objfile *objfile,
5041 const char *filename,
5042 struct dwarf2_section_info *section,
5043 mapped_debug_names &map)
5044 {
5045 if (section->empty ())
5046 return false;
5047
5048 /* Older elfutils strip versions could keep the section in the main
5049 executable while splitting it for the separate debug info file. */
5050 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5051 return false;
5052
5053 section->read (objfile);
5054
5055 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5056
5057 const gdb_byte *addr = section->buffer;
5058
5059 bfd *const abfd = section->get_bfd_owner ();
5060
5061 unsigned int bytes_read;
5062 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5063 addr += bytes_read;
5064
5065 map.dwarf5_is_dwarf64 = bytes_read != 4;
5066 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5067 if (bytes_read + length != section->size)
5068 {
5069 /* There may be multiple per-CU indices. */
5070 warning (_("Section .debug_names in %s length %s does not match "
5071 "section length %s, ignoring .debug_names."),
5072 filename, plongest (bytes_read + length),
5073 pulongest (section->size));
5074 return false;
5075 }
5076
5077 /* The version number. */
5078 uint16_t version = read_2_bytes (abfd, addr);
5079 addr += 2;
5080 if (version != 5)
5081 {
5082 warning (_("Section .debug_names in %s has unsupported version %d, "
5083 "ignoring .debug_names."),
5084 filename, version);
5085 return false;
5086 }
5087
5088 /* Padding. */
5089 uint16_t padding = read_2_bytes (abfd, addr);
5090 addr += 2;
5091 if (padding != 0)
5092 {
5093 warning (_("Section .debug_names in %s has unsupported padding %d, "
5094 "ignoring .debug_names."),
5095 filename, padding);
5096 return false;
5097 }
5098
5099 /* comp_unit_count - The number of CUs in the CU list. */
5100 map.cu_count = read_4_bytes (abfd, addr);
5101 addr += 4;
5102
5103 /* local_type_unit_count - The number of TUs in the local TU
5104 list. */
5105 map.tu_count = read_4_bytes (abfd, addr);
5106 addr += 4;
5107
5108 /* foreign_type_unit_count - The number of TUs in the foreign TU
5109 list. */
5110 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5111 addr += 4;
5112 if (foreign_tu_count != 0)
5113 {
5114 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5115 "ignoring .debug_names."),
5116 filename, static_cast<unsigned long> (foreign_tu_count));
5117 return false;
5118 }
5119
5120 /* bucket_count - The number of hash buckets in the hash lookup
5121 table. */
5122 map.bucket_count = read_4_bytes (abfd, addr);
5123 addr += 4;
5124
5125 /* name_count - The number of unique names in the index. */
5126 map.name_count = read_4_bytes (abfd, addr);
5127 addr += 4;
5128
5129 /* abbrev_table_size - The size in bytes of the abbreviations
5130 table. */
5131 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5132 addr += 4;
5133
5134 /* augmentation_string_size - The size in bytes of the augmentation
5135 string. This value is rounded up to a multiple of 4. */
5136 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5137 addr += 4;
5138 map.augmentation_is_gdb = ((augmentation_string_size
5139 == sizeof (dwarf5_augmentation))
5140 && memcmp (addr, dwarf5_augmentation,
5141 sizeof (dwarf5_augmentation)) == 0);
5142 augmentation_string_size += (-augmentation_string_size) & 3;
5143 addr += augmentation_string_size;
5144
5145 /* List of CUs */
5146 map.cu_table_reordered = addr;
5147 addr += map.cu_count * map.offset_size;
5148
5149 /* List of Local TUs */
5150 map.tu_table_reordered = addr;
5151 addr += map.tu_count * map.offset_size;
5152
5153 /* Hash Lookup Table */
5154 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5155 addr += map.bucket_count * 4;
5156 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5157 addr += map.name_count * 4;
5158
5159 /* Name Table */
5160 map.name_table_string_offs_reordered = addr;
5161 addr += map.name_count * map.offset_size;
5162 map.name_table_entry_offs_reordered = addr;
5163 addr += map.name_count * map.offset_size;
5164
5165 const gdb_byte *abbrev_table_start = addr;
5166 for (;;)
5167 {
5168 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5169 addr += bytes_read;
5170 if (index_num == 0)
5171 break;
5172
5173 const auto insertpair
5174 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5175 if (!insertpair.second)
5176 {
5177 warning (_("Section .debug_names in %s has duplicate index %s, "
5178 "ignoring .debug_names."),
5179 filename, pulongest (index_num));
5180 return false;
5181 }
5182 mapped_debug_names::index_val &indexval = insertpair.first->second;
5183 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5184 addr += bytes_read;
5185
5186 for (;;)
5187 {
5188 mapped_debug_names::index_val::attr attr;
5189 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5190 addr += bytes_read;
5191 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5192 addr += bytes_read;
5193 if (attr.form == DW_FORM_implicit_const)
5194 {
5195 attr.implicit_const = read_signed_leb128 (abfd, addr,
5196 &bytes_read);
5197 addr += bytes_read;
5198 }
5199 if (attr.dw_idx == 0 && attr.form == 0)
5200 break;
5201 indexval.attr_vec.push_back (std::move (attr));
5202 }
5203 }
5204 if (addr != abbrev_table_start + abbrev_table_size)
5205 {
5206 warning (_("Section .debug_names in %s has abbreviation_table "
5207 "of size %s vs. written as %u, ignoring .debug_names."),
5208 filename, plongest (addr - abbrev_table_start),
5209 abbrev_table_size);
5210 return false;
5211 }
5212 map.entry_pool = addr;
5213
5214 return true;
5215 }
5216
5217 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5218 list. */
5219
5220 static void
5221 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5222 const mapped_debug_names &map,
5223 dwarf2_section_info &section,
5224 bool is_dwz)
5225 {
5226 sect_offset sect_off_prev;
5227 for (uint32_t i = 0; i <= map.cu_count; ++i)
5228 {
5229 sect_offset sect_off_next;
5230 if (i < map.cu_count)
5231 {
5232 sect_off_next
5233 = (sect_offset) (extract_unsigned_integer
5234 (map.cu_table_reordered + i * map.offset_size,
5235 map.offset_size,
5236 map.dwarf5_byte_order));
5237 }
5238 else
5239 sect_off_next = (sect_offset) section.size;
5240 if (i >= 1)
5241 {
5242 const ULONGEST length = sect_off_next - sect_off_prev;
5243 dwarf2_per_cu_data *per_cu
5244 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5245 sect_off_prev, length);
5246 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5247 }
5248 sect_off_prev = sect_off_next;
5249 }
5250 }
5251
5252 /* Read the CU list from the mapped index, and use it to create all
5253 the CU objects for this dwarf2_per_objfile. */
5254
5255 static void
5256 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5257 const mapped_debug_names &map,
5258 const mapped_debug_names &dwz_map)
5259 {
5260 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5261 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5262
5263 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5264 dwarf2_per_objfile->info,
5265 false /* is_dwz */);
5266
5267 if (dwz_map.cu_count == 0)
5268 return;
5269
5270 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5271 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5272 true /* is_dwz */);
5273 }
5274
5275 /* Read .debug_names. If everything went ok, initialize the "quick"
5276 elements of all the CUs and return true. Otherwise, return false. */
5277
5278 static bool
5279 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5280 {
5281 std::unique_ptr<mapped_debug_names> map
5282 (new mapped_debug_names (dwarf2_per_objfile));
5283 mapped_debug_names dwz_map (dwarf2_per_objfile);
5284 struct objfile *objfile = dwarf2_per_objfile->objfile;
5285
5286 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5287 &dwarf2_per_objfile->debug_names,
5288 *map))
5289 return false;
5290
5291 /* Don't use the index if it's empty. */
5292 if (map->name_count == 0)
5293 return false;
5294
5295 /* If there is a .dwz file, read it so we can get its CU list as
5296 well. */
5297 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5298 if (dwz != NULL)
5299 {
5300 if (!read_debug_names_from_section (objfile,
5301 bfd_get_filename (dwz->dwz_bfd.get ()),
5302 &dwz->debug_names, dwz_map))
5303 {
5304 warning (_("could not read '.debug_names' section from %s; skipping"),
5305 bfd_get_filename (dwz->dwz_bfd.get ()));
5306 return false;
5307 }
5308 }
5309
5310 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5311
5312 if (map->tu_count != 0)
5313 {
5314 /* We can only handle a single .debug_types when we have an
5315 index. */
5316 if (dwarf2_per_objfile->types.size () != 1)
5317 return false;
5318
5319 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5320
5321 create_signatured_type_table_from_debug_names
5322 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5323 }
5324
5325 create_addrmap_from_aranges (dwarf2_per_objfile,
5326 &dwarf2_per_objfile->debug_aranges);
5327
5328 dwarf2_per_objfile->debug_names_table = std::move (map);
5329 dwarf2_per_objfile->using_index = 1;
5330 dwarf2_per_objfile->quick_file_names_table =
5331 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5332
5333 return true;
5334 }
5335
5336 /* Type used to manage iterating over all CUs looking for a symbol for
5337 .debug_names. */
5338
5339 class dw2_debug_names_iterator
5340 {
5341 public:
5342 dw2_debug_names_iterator (const mapped_debug_names &map,
5343 gdb::optional<block_enum> block_index,
5344 domain_enum domain,
5345 const char *name)
5346 : m_map (map), m_block_index (block_index), m_domain (domain),
5347 m_addr (find_vec_in_debug_names (map, name))
5348 {}
5349
5350 dw2_debug_names_iterator (const mapped_debug_names &map,
5351 search_domain search, uint32_t namei)
5352 : m_map (map),
5353 m_search (search),
5354 m_addr (find_vec_in_debug_names (map, namei))
5355 {}
5356
5357 dw2_debug_names_iterator (const mapped_debug_names &map,
5358 block_enum block_index, domain_enum domain,
5359 uint32_t namei)
5360 : m_map (map), m_block_index (block_index), m_domain (domain),
5361 m_addr (find_vec_in_debug_names (map, namei))
5362 {}
5363
5364 /* Return the next matching CU or NULL if there are no more. */
5365 dwarf2_per_cu_data *next ();
5366
5367 private:
5368 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5369 const char *name);
5370 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5371 uint32_t namei);
5372
5373 /* The internalized form of .debug_names. */
5374 const mapped_debug_names &m_map;
5375
5376 /* If set, only look for symbols that match that block. Valid values are
5377 GLOBAL_BLOCK and STATIC_BLOCK. */
5378 const gdb::optional<block_enum> m_block_index;
5379
5380 /* The kind of symbol we're looking for. */
5381 const domain_enum m_domain = UNDEF_DOMAIN;
5382 const search_domain m_search = ALL_DOMAIN;
5383
5384 /* The list of CUs from the index entry of the symbol, or NULL if
5385 not found. */
5386 const gdb_byte *m_addr;
5387 };
5388
5389 const char *
5390 mapped_debug_names::namei_to_name (uint32_t namei) const
5391 {
5392 const ULONGEST namei_string_offs
5393 = extract_unsigned_integer ((name_table_string_offs_reordered
5394 + namei * offset_size),
5395 offset_size,
5396 dwarf5_byte_order);
5397 return read_indirect_string_at_offset
5398 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5399 }
5400
5401 /* Find a slot in .debug_names for the object named NAME. If NAME is
5402 found, return pointer to its pool data. If NAME cannot be found,
5403 return NULL. */
5404
5405 const gdb_byte *
5406 dw2_debug_names_iterator::find_vec_in_debug_names
5407 (const mapped_debug_names &map, const char *name)
5408 {
5409 int (*cmp) (const char *, const char *);
5410
5411 gdb::unique_xmalloc_ptr<char> without_params;
5412 if (current_language->la_language == language_cplus
5413 || current_language->la_language == language_fortran
5414 || current_language->la_language == language_d)
5415 {
5416 /* NAME is already canonical. Drop any qualifiers as
5417 .debug_names does not contain any. */
5418
5419 if (strchr (name, '(') != NULL)
5420 {
5421 without_params = cp_remove_params (name);
5422 if (without_params != NULL)
5423 name = without_params.get ();
5424 }
5425 }
5426
5427 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5428
5429 const uint32_t full_hash = dwarf5_djb_hash (name);
5430 uint32_t namei
5431 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5432 (map.bucket_table_reordered
5433 + (full_hash % map.bucket_count)), 4,
5434 map.dwarf5_byte_order);
5435 if (namei == 0)
5436 return NULL;
5437 --namei;
5438 if (namei >= map.name_count)
5439 {
5440 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5441 "[in module %s]"),
5442 namei, map.name_count,
5443 objfile_name (map.dwarf2_per_objfile->objfile));
5444 return NULL;
5445 }
5446
5447 for (;;)
5448 {
5449 const uint32_t namei_full_hash
5450 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5451 (map.hash_table_reordered + namei), 4,
5452 map.dwarf5_byte_order);
5453 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5454 return NULL;
5455
5456 if (full_hash == namei_full_hash)
5457 {
5458 const char *const namei_string = map.namei_to_name (namei);
5459
5460 #if 0 /* An expensive sanity check. */
5461 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5462 {
5463 complaint (_("Wrong .debug_names hash for string at index %u "
5464 "[in module %s]"),
5465 namei, objfile_name (dwarf2_per_objfile->objfile));
5466 return NULL;
5467 }
5468 #endif
5469
5470 if (cmp (namei_string, name) == 0)
5471 {
5472 const ULONGEST namei_entry_offs
5473 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5474 + namei * map.offset_size),
5475 map.offset_size, map.dwarf5_byte_order);
5476 return map.entry_pool + namei_entry_offs;
5477 }
5478 }
5479
5480 ++namei;
5481 if (namei >= map.name_count)
5482 return NULL;
5483 }
5484 }
5485
5486 const gdb_byte *
5487 dw2_debug_names_iterator::find_vec_in_debug_names
5488 (const mapped_debug_names &map, uint32_t namei)
5489 {
5490 if (namei >= map.name_count)
5491 {
5492 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5493 "[in module %s]"),
5494 namei, map.name_count,
5495 objfile_name (map.dwarf2_per_objfile->objfile));
5496 return NULL;
5497 }
5498
5499 const ULONGEST namei_entry_offs
5500 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5501 + namei * map.offset_size),
5502 map.offset_size, map.dwarf5_byte_order);
5503 return map.entry_pool + namei_entry_offs;
5504 }
5505
5506 /* See dw2_debug_names_iterator. */
5507
5508 dwarf2_per_cu_data *
5509 dw2_debug_names_iterator::next ()
5510 {
5511 if (m_addr == NULL)
5512 return NULL;
5513
5514 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5515 struct objfile *objfile = dwarf2_per_objfile->objfile;
5516 bfd *const abfd = objfile->obfd;
5517
5518 again:
5519
5520 unsigned int bytes_read;
5521 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5522 m_addr += bytes_read;
5523 if (abbrev == 0)
5524 return NULL;
5525
5526 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5527 if (indexval_it == m_map.abbrev_map.cend ())
5528 {
5529 complaint (_("Wrong .debug_names undefined abbrev code %s "
5530 "[in module %s]"),
5531 pulongest (abbrev), objfile_name (objfile));
5532 return NULL;
5533 }
5534 const mapped_debug_names::index_val &indexval = indexval_it->second;
5535 enum class symbol_linkage {
5536 unknown,
5537 static_,
5538 extern_,
5539 } symbol_linkage_ = symbol_linkage::unknown;
5540 dwarf2_per_cu_data *per_cu = NULL;
5541 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5542 {
5543 ULONGEST ull;
5544 switch (attr.form)
5545 {
5546 case DW_FORM_implicit_const:
5547 ull = attr.implicit_const;
5548 break;
5549 case DW_FORM_flag_present:
5550 ull = 1;
5551 break;
5552 case DW_FORM_udata:
5553 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5554 m_addr += bytes_read;
5555 break;
5556 default:
5557 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5558 dwarf_form_name (attr.form),
5559 objfile_name (objfile));
5560 return NULL;
5561 }
5562 switch (attr.dw_idx)
5563 {
5564 case DW_IDX_compile_unit:
5565 /* Don't crash on bad data. */
5566 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5567 {
5568 complaint (_(".debug_names entry has bad CU index %s"
5569 " [in module %s]"),
5570 pulongest (ull),
5571 objfile_name (dwarf2_per_objfile->objfile));
5572 continue;
5573 }
5574 per_cu = dwarf2_per_objfile->get_cutu (ull);
5575 break;
5576 case DW_IDX_type_unit:
5577 /* Don't crash on bad data. */
5578 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5579 {
5580 complaint (_(".debug_names entry has bad TU index %s"
5581 " [in module %s]"),
5582 pulongest (ull),
5583 objfile_name (dwarf2_per_objfile->objfile));
5584 continue;
5585 }
5586 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5587 break;
5588 case DW_IDX_GNU_internal:
5589 if (!m_map.augmentation_is_gdb)
5590 break;
5591 symbol_linkage_ = symbol_linkage::static_;
5592 break;
5593 case DW_IDX_GNU_external:
5594 if (!m_map.augmentation_is_gdb)
5595 break;
5596 symbol_linkage_ = symbol_linkage::extern_;
5597 break;
5598 }
5599 }
5600
5601 /* Skip if already read in. */
5602 if (per_cu->v.quick->compunit_symtab)
5603 goto again;
5604
5605 /* Check static vs global. */
5606 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5607 {
5608 const bool want_static = *m_block_index == STATIC_BLOCK;
5609 const bool symbol_is_static =
5610 symbol_linkage_ == symbol_linkage::static_;
5611 if (want_static != symbol_is_static)
5612 goto again;
5613 }
5614
5615 /* Match dw2_symtab_iter_next, symbol_kind
5616 and debug_names::psymbol_tag. */
5617 switch (m_domain)
5618 {
5619 case VAR_DOMAIN:
5620 switch (indexval.dwarf_tag)
5621 {
5622 case DW_TAG_variable:
5623 case DW_TAG_subprogram:
5624 /* Some types are also in VAR_DOMAIN. */
5625 case DW_TAG_typedef:
5626 case DW_TAG_structure_type:
5627 break;
5628 default:
5629 goto again;
5630 }
5631 break;
5632 case STRUCT_DOMAIN:
5633 switch (indexval.dwarf_tag)
5634 {
5635 case DW_TAG_typedef:
5636 case DW_TAG_structure_type:
5637 break;
5638 default:
5639 goto again;
5640 }
5641 break;
5642 case LABEL_DOMAIN:
5643 switch (indexval.dwarf_tag)
5644 {
5645 case 0:
5646 case DW_TAG_variable:
5647 break;
5648 default:
5649 goto again;
5650 }
5651 break;
5652 case MODULE_DOMAIN:
5653 switch (indexval.dwarf_tag)
5654 {
5655 case DW_TAG_module:
5656 break;
5657 default:
5658 goto again;
5659 }
5660 break;
5661 default:
5662 break;
5663 }
5664
5665 /* Match dw2_expand_symtabs_matching, symbol_kind and
5666 debug_names::psymbol_tag. */
5667 switch (m_search)
5668 {
5669 case VARIABLES_DOMAIN:
5670 switch (indexval.dwarf_tag)
5671 {
5672 case DW_TAG_variable:
5673 break;
5674 default:
5675 goto again;
5676 }
5677 break;
5678 case FUNCTIONS_DOMAIN:
5679 switch (indexval.dwarf_tag)
5680 {
5681 case DW_TAG_subprogram:
5682 break;
5683 default:
5684 goto again;
5685 }
5686 break;
5687 case TYPES_DOMAIN:
5688 switch (indexval.dwarf_tag)
5689 {
5690 case DW_TAG_typedef:
5691 case DW_TAG_structure_type:
5692 break;
5693 default:
5694 goto again;
5695 }
5696 break;
5697 case MODULES_DOMAIN:
5698 switch (indexval.dwarf_tag)
5699 {
5700 case DW_TAG_module:
5701 break;
5702 default:
5703 goto again;
5704 }
5705 default:
5706 break;
5707 }
5708
5709 return per_cu;
5710 }
5711
5712 static struct compunit_symtab *
5713 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5714 const char *name, domain_enum domain)
5715 {
5716 struct dwarf2_per_objfile *dwarf2_per_objfile
5717 = get_dwarf2_per_objfile (objfile);
5718
5719 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5720 if (!mapp)
5721 {
5722 /* index is NULL if OBJF_READNOW. */
5723 return NULL;
5724 }
5725 const auto &map = *mapp;
5726
5727 dw2_debug_names_iterator iter (map, block_index, domain, name);
5728
5729 struct compunit_symtab *stab_best = NULL;
5730 struct dwarf2_per_cu_data *per_cu;
5731 while ((per_cu = iter.next ()) != NULL)
5732 {
5733 struct symbol *sym, *with_opaque = NULL;
5734 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5735 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5736 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5737
5738 sym = block_find_symbol (block, name, domain,
5739 block_find_non_opaque_type_preferred,
5740 &with_opaque);
5741
5742 /* Some caution must be observed with overloaded functions and
5743 methods, since the index will not contain any overload
5744 information (but NAME might contain it). */
5745
5746 if (sym != NULL
5747 && strcmp_iw (sym->search_name (), name) == 0)
5748 return stab;
5749 if (with_opaque != NULL
5750 && strcmp_iw (with_opaque->search_name (), name) == 0)
5751 stab_best = stab;
5752
5753 /* Keep looking through other CUs. */
5754 }
5755
5756 return stab_best;
5757 }
5758
5759 /* This dumps minimal information about .debug_names. It is called
5760 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5761 uses this to verify that .debug_names has been loaded. */
5762
5763 static void
5764 dw2_debug_names_dump (struct objfile *objfile)
5765 {
5766 struct dwarf2_per_objfile *dwarf2_per_objfile
5767 = get_dwarf2_per_objfile (objfile);
5768
5769 gdb_assert (dwarf2_per_objfile->using_index);
5770 printf_filtered (".debug_names:");
5771 if (dwarf2_per_objfile->debug_names_table)
5772 printf_filtered (" exists\n");
5773 else
5774 printf_filtered (" faked for \"readnow\"\n");
5775 printf_filtered ("\n");
5776 }
5777
5778 static void
5779 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5780 const char *func_name)
5781 {
5782 struct dwarf2_per_objfile *dwarf2_per_objfile
5783 = get_dwarf2_per_objfile (objfile);
5784
5785 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5786 if (dwarf2_per_objfile->debug_names_table)
5787 {
5788 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5789
5790 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5791
5792 struct dwarf2_per_cu_data *per_cu;
5793 while ((per_cu = iter.next ()) != NULL)
5794 dw2_instantiate_symtab (per_cu, false);
5795 }
5796 }
5797
5798 static void
5799 dw2_debug_names_map_matching_symbols
5800 (struct objfile *objfile,
5801 const lookup_name_info &name, domain_enum domain,
5802 int global,
5803 gdb::function_view<symbol_found_callback_ftype> callback,
5804 symbol_compare_ftype *ordered_compare)
5805 {
5806 struct dwarf2_per_objfile *dwarf2_per_objfile
5807 = get_dwarf2_per_objfile (objfile);
5808
5809 /* debug_names_table is NULL if OBJF_READNOW. */
5810 if (!dwarf2_per_objfile->debug_names_table)
5811 return;
5812
5813 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5814 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5815
5816 const char *match_name = name.ada ().lookup_name ().c_str ();
5817 auto matcher = [&] (const char *symname)
5818 {
5819 if (ordered_compare == nullptr)
5820 return true;
5821 return ordered_compare (symname, match_name) == 0;
5822 };
5823
5824 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5825 [&] (offset_type namei)
5826 {
5827 /* The name was matched, now expand corresponding CUs that were
5828 marked. */
5829 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5830
5831 struct dwarf2_per_cu_data *per_cu;
5832 while ((per_cu = iter.next ()) != NULL)
5833 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5834 return true;
5835 });
5836
5837 /* It's a shame we couldn't do this inside the
5838 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5839 that have already been expanded. Instead, this loop matches what
5840 the psymtab code does. */
5841 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5842 {
5843 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5844 if (cust != nullptr)
5845 {
5846 const struct block *block
5847 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5848 if (!iterate_over_symbols_terminated (block, name,
5849 domain, callback))
5850 break;
5851 }
5852 }
5853 }
5854
5855 static void
5856 dw2_debug_names_expand_symtabs_matching
5857 (struct objfile *objfile,
5858 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5859 const lookup_name_info &lookup_name,
5860 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5861 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5862 enum search_domain kind)
5863 {
5864 struct dwarf2_per_objfile *dwarf2_per_objfile
5865 = get_dwarf2_per_objfile (objfile);
5866
5867 /* debug_names_table is NULL if OBJF_READNOW. */
5868 if (!dwarf2_per_objfile->debug_names_table)
5869 return;
5870
5871 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5872
5873 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5874
5875 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5876 symbol_matcher,
5877 kind, [&] (offset_type namei)
5878 {
5879 /* The name was matched, now expand corresponding CUs that were
5880 marked. */
5881 dw2_debug_names_iterator iter (map, kind, namei);
5882
5883 struct dwarf2_per_cu_data *per_cu;
5884 while ((per_cu = iter.next ()) != NULL)
5885 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5886 expansion_notify);
5887 return true;
5888 });
5889 }
5890
5891 const struct quick_symbol_functions dwarf2_debug_names_functions =
5892 {
5893 dw2_has_symbols,
5894 dw2_find_last_source_symtab,
5895 dw2_forget_cached_source_info,
5896 dw2_map_symtabs_matching_filename,
5897 dw2_debug_names_lookup_symbol,
5898 dw2_print_stats,
5899 dw2_debug_names_dump,
5900 dw2_debug_names_expand_symtabs_for_function,
5901 dw2_expand_all_symtabs,
5902 dw2_expand_symtabs_with_fullname,
5903 dw2_debug_names_map_matching_symbols,
5904 dw2_debug_names_expand_symtabs_matching,
5905 dw2_find_pc_sect_compunit_symtab,
5906 NULL,
5907 dw2_map_symbol_filenames
5908 };
5909
5910 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5911 to either a dwarf2_per_objfile or dwz_file object. */
5912
5913 template <typename T>
5914 static gdb::array_view<const gdb_byte>
5915 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5916 {
5917 dwarf2_section_info *section = &section_owner->gdb_index;
5918
5919 if (section->empty ())
5920 return {};
5921
5922 /* Older elfutils strip versions could keep the section in the main
5923 executable while splitting it for the separate debug info file. */
5924 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5925 return {};
5926
5927 section->read (obj);
5928
5929 /* dwarf2_section_info::size is a bfd_size_type, while
5930 gdb::array_view works with size_t. On 32-bit hosts, with
5931 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5932 is 32-bit. So we need an explicit narrowing conversion here.
5933 This is fine, because it's impossible to allocate or mmap an
5934 array/buffer larger than what size_t can represent. */
5935 return gdb::make_array_view (section->buffer, section->size);
5936 }
5937
5938 /* Lookup the index cache for the contents of the index associated to
5939 DWARF2_OBJ. */
5940
5941 static gdb::array_view<const gdb_byte>
5942 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5943 {
5944 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5945 if (build_id == nullptr)
5946 return {};
5947
5948 return global_index_cache.lookup_gdb_index (build_id,
5949 &dwarf2_obj->index_cache_res);
5950 }
5951
5952 /* Same as the above, but for DWZ. */
5953
5954 static gdb::array_view<const gdb_byte>
5955 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5956 {
5957 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5958 if (build_id == nullptr)
5959 return {};
5960
5961 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5962 }
5963
5964 /* See symfile.h. */
5965
5966 bool
5967 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5968 {
5969 struct dwarf2_per_objfile *dwarf2_per_objfile
5970 = get_dwarf2_per_objfile (objfile);
5971
5972 /* If we're about to read full symbols, don't bother with the
5973 indices. In this case we also don't care if some other debug
5974 format is making psymtabs, because they are all about to be
5975 expanded anyway. */
5976 if ((objfile->flags & OBJF_READNOW))
5977 {
5978 dwarf2_per_objfile->using_index = 1;
5979 create_all_comp_units (dwarf2_per_objfile);
5980 create_all_type_units (dwarf2_per_objfile);
5981 dwarf2_per_objfile->quick_file_names_table
5982 = create_quick_file_names_table
5983 (dwarf2_per_objfile->all_comp_units.size ());
5984
5985 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5986 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5987 {
5988 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5989
5990 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5991 struct dwarf2_per_cu_quick_data);
5992 }
5993
5994 /* Return 1 so that gdb sees the "quick" functions. However,
5995 these functions will be no-ops because we will have expanded
5996 all symtabs. */
5997 *index_kind = dw_index_kind::GDB_INDEX;
5998 return true;
5999 }
6000
6001 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6002 {
6003 *index_kind = dw_index_kind::DEBUG_NAMES;
6004 return true;
6005 }
6006
6007 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6008 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6009 get_gdb_index_contents_from_section<dwz_file>))
6010 {
6011 *index_kind = dw_index_kind::GDB_INDEX;
6012 return true;
6013 }
6014
6015 /* ... otherwise, try to find the index in the index cache. */
6016 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6017 get_gdb_index_contents_from_cache,
6018 get_gdb_index_contents_from_cache_dwz))
6019 {
6020 global_index_cache.hit ();
6021 *index_kind = dw_index_kind::GDB_INDEX;
6022 return true;
6023 }
6024
6025 global_index_cache.miss ();
6026 return false;
6027 }
6028
6029 \f
6030
6031 /* Build a partial symbol table. */
6032
6033 void
6034 dwarf2_build_psymtabs (struct objfile *objfile)
6035 {
6036 struct dwarf2_per_objfile *dwarf2_per_objfile
6037 = get_dwarf2_per_objfile (objfile);
6038
6039 init_psymbol_list (objfile, 1024);
6040
6041 try
6042 {
6043 /* This isn't really ideal: all the data we allocate on the
6044 objfile's obstack is still uselessly kept around. However,
6045 freeing it seems unsafe. */
6046 psymtab_discarder psymtabs (objfile);
6047 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6048 psymtabs.keep ();
6049
6050 /* (maybe) store an index in the cache. */
6051 global_index_cache.store (dwarf2_per_objfile);
6052 }
6053 catch (const gdb_exception_error &except)
6054 {
6055 exception_print (gdb_stderr, except);
6056 }
6057 }
6058
6059 /* Return the total length of the CU described by HEADER. */
6060
6061 static unsigned int
6062 get_cu_length (const struct comp_unit_head *header)
6063 {
6064 return header->initial_length_size + header->length;
6065 }
6066
6067 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6068
6069 static inline bool
6070 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6071 {
6072 sect_offset bottom = cu_header->sect_off;
6073 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6074
6075 return sect_off >= bottom && sect_off < top;
6076 }
6077
6078 /* Find the base address of the compilation unit for range lists and
6079 location lists. It will normally be specified by DW_AT_low_pc.
6080 In DWARF-3 draft 4, the base address could be overridden by
6081 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6082 compilation units with discontinuous ranges. */
6083
6084 static void
6085 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6086 {
6087 struct attribute *attr;
6088
6089 cu->base_known = 0;
6090 cu->base_address = 0;
6091
6092 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6093 if (attr != nullptr)
6094 {
6095 cu->base_address = attr->value_as_address ();
6096 cu->base_known = 1;
6097 }
6098 else
6099 {
6100 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6101 if (attr != nullptr)
6102 {
6103 cu->base_address = attr->value_as_address ();
6104 cu->base_known = 1;
6105 }
6106 }
6107 }
6108
6109 /* Read in the comp unit header information from the debug_info at info_ptr.
6110 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6111 NOTE: This leaves members offset, first_die_offset to be filled in
6112 by the caller. */
6113
6114 static const gdb_byte *
6115 read_comp_unit_head (struct comp_unit_head *cu_header,
6116 const gdb_byte *info_ptr,
6117 struct dwarf2_section_info *section,
6118 rcuh_kind section_kind)
6119 {
6120 int signed_addr;
6121 unsigned int bytes_read;
6122 const char *filename = section->get_file_name ();
6123 bfd *abfd = section->get_bfd_owner ();
6124
6125 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6126 cu_header->initial_length_size = bytes_read;
6127 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6128 info_ptr += bytes_read;
6129 cu_header->version = read_2_bytes (abfd, info_ptr);
6130 if (cu_header->version < 2 || cu_header->version > 5)
6131 error (_("Dwarf Error: wrong version in compilation unit header "
6132 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6133 cu_header->version, filename);
6134 info_ptr += 2;
6135 if (cu_header->version < 5)
6136 switch (section_kind)
6137 {
6138 case rcuh_kind::COMPILE:
6139 cu_header->unit_type = DW_UT_compile;
6140 break;
6141 case rcuh_kind::TYPE:
6142 cu_header->unit_type = DW_UT_type;
6143 break;
6144 default:
6145 internal_error (__FILE__, __LINE__,
6146 _("read_comp_unit_head: invalid section_kind"));
6147 }
6148 else
6149 {
6150 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6151 (read_1_byte (abfd, info_ptr));
6152 info_ptr += 1;
6153 switch (cu_header->unit_type)
6154 {
6155 case DW_UT_compile:
6156 case DW_UT_partial:
6157 case DW_UT_skeleton:
6158 case DW_UT_split_compile:
6159 if (section_kind != rcuh_kind::COMPILE)
6160 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6161 "(is %s, should be %s) [in module %s]"),
6162 dwarf_unit_type_name (cu_header->unit_type),
6163 dwarf_unit_type_name (DW_UT_type), filename);
6164 break;
6165 case DW_UT_type:
6166 case DW_UT_split_type:
6167 section_kind = rcuh_kind::TYPE;
6168 break;
6169 default:
6170 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6171 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6172 "[in module %s]"), cu_header->unit_type,
6173 dwarf_unit_type_name (DW_UT_compile),
6174 dwarf_unit_type_name (DW_UT_skeleton),
6175 dwarf_unit_type_name (DW_UT_split_compile),
6176 dwarf_unit_type_name (DW_UT_type),
6177 dwarf_unit_type_name (DW_UT_split_type), filename);
6178 }
6179
6180 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6181 info_ptr += 1;
6182 }
6183 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6184 cu_header,
6185 &bytes_read);
6186 info_ptr += bytes_read;
6187 if (cu_header->version < 5)
6188 {
6189 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6190 info_ptr += 1;
6191 }
6192 signed_addr = bfd_get_sign_extend_vma (abfd);
6193 if (signed_addr < 0)
6194 internal_error (__FILE__, __LINE__,
6195 _("read_comp_unit_head: dwarf from non elf file"));
6196 cu_header->signed_addr_p = signed_addr;
6197
6198 bool header_has_signature = section_kind == rcuh_kind::TYPE
6199 || cu_header->unit_type == DW_UT_skeleton
6200 || cu_header->unit_type == DW_UT_split_compile;
6201
6202 if (header_has_signature)
6203 {
6204 cu_header->signature = read_8_bytes (abfd, info_ptr);
6205 info_ptr += 8;
6206 }
6207
6208 if (section_kind == rcuh_kind::TYPE)
6209 {
6210 LONGEST type_offset;
6211 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6212 info_ptr += bytes_read;
6213 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6214 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6215 error (_("Dwarf Error: Too big type_offset in compilation unit "
6216 "header (is %s) [in module %s]"), plongest (type_offset),
6217 filename);
6218 }
6219
6220 return info_ptr;
6221 }
6222
6223 /* Helper function that returns the proper abbrev section for
6224 THIS_CU. */
6225
6226 static struct dwarf2_section_info *
6227 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6228 {
6229 struct dwarf2_section_info *abbrev;
6230 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6231
6232 if (this_cu->is_dwz)
6233 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6234 else
6235 abbrev = &dwarf2_per_objfile->abbrev;
6236
6237 return abbrev;
6238 }
6239
6240 /* Subroutine of read_and_check_comp_unit_head and
6241 read_and_check_type_unit_head to simplify them.
6242 Perform various error checking on the header. */
6243
6244 static void
6245 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6246 struct comp_unit_head *header,
6247 struct dwarf2_section_info *section,
6248 struct dwarf2_section_info *abbrev_section)
6249 {
6250 const char *filename = section->get_file_name ();
6251
6252 if (to_underlying (header->abbrev_sect_off)
6253 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6254 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6255 "(offset %s + 6) [in module %s]"),
6256 sect_offset_str (header->abbrev_sect_off),
6257 sect_offset_str (header->sect_off),
6258 filename);
6259
6260 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6261 avoid potential 32-bit overflow. */
6262 if (((ULONGEST) header->sect_off + get_cu_length (header))
6263 > section->size)
6264 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6265 "(offset %s + 0) [in module %s]"),
6266 header->length, sect_offset_str (header->sect_off),
6267 filename);
6268 }
6269
6270 /* Read in a CU/TU header and perform some basic error checking.
6271 The contents of the header are stored in HEADER.
6272 The result is a pointer to the start of the first DIE. */
6273
6274 static const gdb_byte *
6275 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6276 struct comp_unit_head *header,
6277 struct dwarf2_section_info *section,
6278 struct dwarf2_section_info *abbrev_section,
6279 const gdb_byte *info_ptr,
6280 rcuh_kind section_kind)
6281 {
6282 const gdb_byte *beg_of_comp_unit = info_ptr;
6283
6284 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6285
6286 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6287
6288 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6289
6290 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6291 abbrev_section);
6292
6293 return info_ptr;
6294 }
6295
6296 /* Fetch the abbreviation table offset from a comp or type unit header. */
6297
6298 static sect_offset
6299 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6300 struct dwarf2_section_info *section,
6301 sect_offset sect_off)
6302 {
6303 bfd *abfd = section->get_bfd_owner ();
6304 const gdb_byte *info_ptr;
6305 unsigned int initial_length_size, offset_size;
6306 uint16_t version;
6307
6308 section->read (dwarf2_per_objfile->objfile);
6309 info_ptr = section->buffer + to_underlying (sect_off);
6310 read_initial_length (abfd, info_ptr, &initial_length_size);
6311 offset_size = initial_length_size == 4 ? 4 : 8;
6312 info_ptr += initial_length_size;
6313
6314 version = read_2_bytes (abfd, info_ptr);
6315 info_ptr += 2;
6316 if (version >= 5)
6317 {
6318 /* Skip unit type and address size. */
6319 info_ptr += 2;
6320 }
6321
6322 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6323 }
6324
6325 /* Allocate a new partial symtab for file named NAME and mark this new
6326 partial symtab as being an include of PST. */
6327
6328 static void
6329 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6330 struct objfile *objfile)
6331 {
6332 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
6333
6334 if (!IS_ABSOLUTE_PATH (subpst->filename))
6335 {
6336 /* It shares objfile->objfile_obstack. */
6337 subpst->dirname = pst->dirname;
6338 }
6339
6340 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6341 subpst->dependencies[0] = pst;
6342 subpst->number_of_dependencies = 1;
6343
6344 /* No private part is necessary for include psymtabs. This property
6345 can be used to differentiate between such include psymtabs and
6346 the regular ones. */
6347 subpst->per_cu_data = nullptr;
6348 }
6349
6350 /* Read the Line Number Program data and extract the list of files
6351 included by the source file represented by PST. Build an include
6352 partial symtab for each of these included files. */
6353
6354 static void
6355 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6356 struct die_info *die,
6357 dwarf2_psymtab *pst)
6358 {
6359 line_header_up lh;
6360 struct attribute *attr;
6361
6362 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6363 if (attr != nullptr)
6364 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6365 if (lh == NULL)
6366 return; /* No linetable, so no includes. */
6367
6368 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6369 that we pass in the raw text_low here; that is ok because we're
6370 only decoding the line table to make include partial symtabs, and
6371 so the addresses aren't really used. */
6372 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6373 pst->raw_text_low (), 1);
6374 }
6375
6376 static hashval_t
6377 hash_signatured_type (const void *item)
6378 {
6379 const struct signatured_type *sig_type
6380 = (const struct signatured_type *) item;
6381
6382 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6383 return sig_type->signature;
6384 }
6385
6386 static int
6387 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6388 {
6389 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6390 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6391
6392 return lhs->signature == rhs->signature;
6393 }
6394
6395 /* Allocate a hash table for signatured types. */
6396
6397 static htab_up
6398 allocate_signatured_type_table (struct objfile *objfile)
6399 {
6400 return htab_up (htab_create_alloc (41,
6401 hash_signatured_type,
6402 eq_signatured_type,
6403 NULL, xcalloc, xfree));
6404 }
6405
6406 /* A helper function to add a signatured type CU to a table. */
6407
6408 static int
6409 add_signatured_type_cu_to_table (void **slot, void *datum)
6410 {
6411 struct signatured_type *sigt = (struct signatured_type *) *slot;
6412 std::vector<signatured_type *> *all_type_units
6413 = (std::vector<signatured_type *> *) datum;
6414
6415 all_type_units->push_back (sigt);
6416
6417 return 1;
6418 }
6419
6420 /* A helper for create_debug_types_hash_table. Read types from SECTION
6421 and fill them into TYPES_HTAB. It will process only type units,
6422 therefore DW_UT_type. */
6423
6424 static void
6425 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6426 struct dwo_file *dwo_file,
6427 dwarf2_section_info *section, htab_up &types_htab,
6428 rcuh_kind section_kind)
6429 {
6430 struct objfile *objfile = dwarf2_per_objfile->objfile;
6431 struct dwarf2_section_info *abbrev_section;
6432 bfd *abfd;
6433 const gdb_byte *info_ptr, *end_ptr;
6434
6435 abbrev_section = (dwo_file != NULL
6436 ? &dwo_file->sections.abbrev
6437 : &dwarf2_per_objfile->abbrev);
6438
6439 if (dwarf_read_debug)
6440 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6441 section->get_name (),
6442 abbrev_section->get_file_name ());
6443
6444 section->read (objfile);
6445 info_ptr = section->buffer;
6446
6447 if (info_ptr == NULL)
6448 return;
6449
6450 /* We can't set abfd until now because the section may be empty or
6451 not present, in which case the bfd is unknown. */
6452 abfd = section->get_bfd_owner ();
6453
6454 /* We don't use cutu_reader here because we don't need to read
6455 any dies: the signature is in the header. */
6456
6457 end_ptr = info_ptr + section->size;
6458 while (info_ptr < end_ptr)
6459 {
6460 struct signatured_type *sig_type;
6461 struct dwo_unit *dwo_tu;
6462 void **slot;
6463 const gdb_byte *ptr = info_ptr;
6464 struct comp_unit_head header;
6465 unsigned int length;
6466
6467 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6468
6469 /* Initialize it due to a false compiler warning. */
6470 header.signature = -1;
6471 header.type_cu_offset_in_tu = (cu_offset) -1;
6472
6473 /* We need to read the type's signature in order to build the hash
6474 table, but we don't need anything else just yet. */
6475
6476 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6477 abbrev_section, ptr, section_kind);
6478
6479 length = get_cu_length (&header);
6480
6481 /* Skip dummy type units. */
6482 if (ptr >= info_ptr + length
6483 || peek_abbrev_code (abfd, ptr) == 0
6484 || header.unit_type != DW_UT_type)
6485 {
6486 info_ptr += length;
6487 continue;
6488 }
6489
6490 if (types_htab == NULL)
6491 {
6492 if (dwo_file)
6493 types_htab = allocate_dwo_unit_table (objfile);
6494 else
6495 types_htab = allocate_signatured_type_table (objfile);
6496 }
6497
6498 if (dwo_file)
6499 {
6500 sig_type = NULL;
6501 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6502 struct dwo_unit);
6503 dwo_tu->dwo_file = dwo_file;
6504 dwo_tu->signature = header.signature;
6505 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6506 dwo_tu->section = section;
6507 dwo_tu->sect_off = sect_off;
6508 dwo_tu->length = length;
6509 }
6510 else
6511 {
6512 /* N.B.: type_offset is not usable if this type uses a DWO file.
6513 The real type_offset is in the DWO file. */
6514 dwo_tu = NULL;
6515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6516 struct signatured_type);
6517 sig_type->signature = header.signature;
6518 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6519 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6520 sig_type->per_cu.is_debug_types = 1;
6521 sig_type->per_cu.section = section;
6522 sig_type->per_cu.sect_off = sect_off;
6523 sig_type->per_cu.length = length;
6524 }
6525
6526 slot = htab_find_slot (types_htab.get (),
6527 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6528 INSERT);
6529 gdb_assert (slot != NULL);
6530 if (*slot != NULL)
6531 {
6532 sect_offset dup_sect_off;
6533
6534 if (dwo_file)
6535 {
6536 const struct dwo_unit *dup_tu
6537 = (const struct dwo_unit *) *slot;
6538
6539 dup_sect_off = dup_tu->sect_off;
6540 }
6541 else
6542 {
6543 const struct signatured_type *dup_tu
6544 = (const struct signatured_type *) *slot;
6545
6546 dup_sect_off = dup_tu->per_cu.sect_off;
6547 }
6548
6549 complaint (_("debug type entry at offset %s is duplicate to"
6550 " the entry at offset %s, signature %s"),
6551 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6552 hex_string (header.signature));
6553 }
6554 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6555
6556 if (dwarf_read_debug > 1)
6557 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6558 sect_offset_str (sect_off),
6559 hex_string (header.signature));
6560
6561 info_ptr += length;
6562 }
6563 }
6564
6565 /* Create the hash table of all entries in the .debug_types
6566 (or .debug_types.dwo) section(s).
6567 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6568 otherwise it is NULL.
6569
6570 The result is a pointer to the hash table or NULL if there are no types.
6571
6572 Note: This function processes DWO files only, not DWP files. */
6573
6574 static void
6575 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6576 struct dwo_file *dwo_file,
6577 gdb::array_view<dwarf2_section_info> type_sections,
6578 htab_up &types_htab)
6579 {
6580 for (dwarf2_section_info &section : type_sections)
6581 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6582 types_htab, rcuh_kind::TYPE);
6583 }
6584
6585 /* Create the hash table of all entries in the .debug_types section,
6586 and initialize all_type_units.
6587 The result is zero if there is an error (e.g. missing .debug_types section),
6588 otherwise non-zero. */
6589
6590 static int
6591 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6592 {
6593 htab_up types_htab;
6594
6595 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6596 &dwarf2_per_objfile->info, types_htab,
6597 rcuh_kind::COMPILE);
6598 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6599 dwarf2_per_objfile->types, types_htab);
6600 if (types_htab == NULL)
6601 {
6602 dwarf2_per_objfile->signatured_types = NULL;
6603 return 0;
6604 }
6605
6606 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6607
6608 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6609 dwarf2_per_objfile->all_type_units.reserve
6610 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6611
6612 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6613 add_signatured_type_cu_to_table,
6614 &dwarf2_per_objfile->all_type_units);
6615
6616 return 1;
6617 }
6618
6619 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6620 If SLOT is non-NULL, it is the entry to use in the hash table.
6621 Otherwise we find one. */
6622
6623 static struct signatured_type *
6624 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6625 void **slot)
6626 {
6627 struct objfile *objfile = dwarf2_per_objfile->objfile;
6628
6629 if (dwarf2_per_objfile->all_type_units.size ()
6630 == dwarf2_per_objfile->all_type_units.capacity ())
6631 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6632
6633 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6634 struct signatured_type);
6635
6636 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6637 sig_type->signature = sig;
6638 sig_type->per_cu.is_debug_types = 1;
6639 if (dwarf2_per_objfile->using_index)
6640 {
6641 sig_type->per_cu.v.quick =
6642 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6643 struct dwarf2_per_cu_quick_data);
6644 }
6645
6646 if (slot == NULL)
6647 {
6648 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6649 sig_type, INSERT);
6650 }
6651 gdb_assert (*slot == NULL);
6652 *slot = sig_type;
6653 /* The rest of sig_type must be filled in by the caller. */
6654 return sig_type;
6655 }
6656
6657 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6658 Fill in SIG_ENTRY with DWO_ENTRY. */
6659
6660 static void
6661 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6662 struct signatured_type *sig_entry,
6663 struct dwo_unit *dwo_entry)
6664 {
6665 /* Make sure we're not clobbering something we don't expect to. */
6666 gdb_assert (! sig_entry->per_cu.queued);
6667 gdb_assert (sig_entry->per_cu.cu == NULL);
6668 if (dwarf2_per_objfile->using_index)
6669 {
6670 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6671 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6672 }
6673 else
6674 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6675 gdb_assert (sig_entry->signature == dwo_entry->signature);
6676 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6677 gdb_assert (sig_entry->type_unit_group == NULL);
6678 gdb_assert (sig_entry->dwo_unit == NULL);
6679
6680 sig_entry->per_cu.section = dwo_entry->section;
6681 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6682 sig_entry->per_cu.length = dwo_entry->length;
6683 sig_entry->per_cu.reading_dwo_directly = 1;
6684 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6685 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6686 sig_entry->dwo_unit = dwo_entry;
6687 }
6688
6689 /* Subroutine of lookup_signatured_type.
6690 If we haven't read the TU yet, create the signatured_type data structure
6691 for a TU to be read in directly from a DWO file, bypassing the stub.
6692 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6693 using .gdb_index, then when reading a CU we want to stay in the DWO file
6694 containing that CU. Otherwise we could end up reading several other DWO
6695 files (due to comdat folding) to process the transitive closure of all the
6696 mentioned TUs, and that can be slow. The current DWO file will have every
6697 type signature that it needs.
6698 We only do this for .gdb_index because in the psymtab case we already have
6699 to read all the DWOs to build the type unit groups. */
6700
6701 static struct signatured_type *
6702 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6703 {
6704 struct dwarf2_per_objfile *dwarf2_per_objfile
6705 = cu->per_cu->dwarf2_per_objfile;
6706 struct objfile *objfile = dwarf2_per_objfile->objfile;
6707 struct dwo_file *dwo_file;
6708 struct dwo_unit find_dwo_entry, *dwo_entry;
6709 struct signatured_type find_sig_entry, *sig_entry;
6710 void **slot;
6711
6712 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6713
6714 /* If TU skeletons have been removed then we may not have read in any
6715 TUs yet. */
6716 if (dwarf2_per_objfile->signatured_types == NULL)
6717 {
6718 dwarf2_per_objfile->signatured_types
6719 = allocate_signatured_type_table (objfile);
6720 }
6721
6722 /* We only ever need to read in one copy of a signatured type.
6723 Use the global signatured_types array to do our own comdat-folding
6724 of types. If this is the first time we're reading this TU, and
6725 the TU has an entry in .gdb_index, replace the recorded data from
6726 .gdb_index with this TU. */
6727
6728 find_sig_entry.signature = sig;
6729 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6730 &find_sig_entry, INSERT);
6731 sig_entry = (struct signatured_type *) *slot;
6732
6733 /* We can get here with the TU already read, *or* in the process of being
6734 read. Don't reassign the global entry to point to this DWO if that's
6735 the case. Also note that if the TU is already being read, it may not
6736 have come from a DWO, the program may be a mix of Fission-compiled
6737 code and non-Fission-compiled code. */
6738
6739 /* Have we already tried to read this TU?
6740 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6741 needn't exist in the global table yet). */
6742 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6743 return sig_entry;
6744
6745 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6746 dwo_unit of the TU itself. */
6747 dwo_file = cu->dwo_unit->dwo_file;
6748
6749 /* Ok, this is the first time we're reading this TU. */
6750 if (dwo_file->tus == NULL)
6751 return NULL;
6752 find_dwo_entry.signature = sig;
6753 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6754 &find_dwo_entry);
6755 if (dwo_entry == NULL)
6756 return NULL;
6757
6758 /* If the global table doesn't have an entry for this TU, add one. */
6759 if (sig_entry == NULL)
6760 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6761
6762 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6763 sig_entry->per_cu.tu_read = 1;
6764 return sig_entry;
6765 }
6766
6767 /* Subroutine of lookup_signatured_type.
6768 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6769 then try the DWP file. If the TU stub (skeleton) has been removed then
6770 it won't be in .gdb_index. */
6771
6772 static struct signatured_type *
6773 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6774 {
6775 struct dwarf2_per_objfile *dwarf2_per_objfile
6776 = cu->per_cu->dwarf2_per_objfile;
6777 struct objfile *objfile = dwarf2_per_objfile->objfile;
6778 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6779 struct dwo_unit *dwo_entry;
6780 struct signatured_type find_sig_entry, *sig_entry;
6781 void **slot;
6782
6783 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6784 gdb_assert (dwp_file != NULL);
6785
6786 /* If TU skeletons have been removed then we may not have read in any
6787 TUs yet. */
6788 if (dwarf2_per_objfile->signatured_types == NULL)
6789 {
6790 dwarf2_per_objfile->signatured_types
6791 = allocate_signatured_type_table (objfile);
6792 }
6793
6794 find_sig_entry.signature = sig;
6795 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6796 &find_sig_entry, INSERT);
6797 sig_entry = (struct signatured_type *) *slot;
6798
6799 /* Have we already tried to read this TU?
6800 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6801 needn't exist in the global table yet). */
6802 if (sig_entry != NULL)
6803 return sig_entry;
6804
6805 if (dwp_file->tus == NULL)
6806 return NULL;
6807 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6808 sig, 1 /* is_debug_types */);
6809 if (dwo_entry == NULL)
6810 return NULL;
6811
6812 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6813 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6814
6815 return sig_entry;
6816 }
6817
6818 /* Lookup a signature based type for DW_FORM_ref_sig8.
6819 Returns NULL if signature SIG is not present in the table.
6820 It is up to the caller to complain about this. */
6821
6822 static struct signatured_type *
6823 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6824 {
6825 struct dwarf2_per_objfile *dwarf2_per_objfile
6826 = cu->per_cu->dwarf2_per_objfile;
6827
6828 if (cu->dwo_unit
6829 && dwarf2_per_objfile->using_index)
6830 {
6831 /* We're in a DWO/DWP file, and we're using .gdb_index.
6832 These cases require special processing. */
6833 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6834 return lookup_dwo_signatured_type (cu, sig);
6835 else
6836 return lookup_dwp_signatured_type (cu, sig);
6837 }
6838 else
6839 {
6840 struct signatured_type find_entry, *entry;
6841
6842 if (dwarf2_per_objfile->signatured_types == NULL)
6843 return NULL;
6844 find_entry.signature = sig;
6845 entry = ((struct signatured_type *)
6846 htab_find (dwarf2_per_objfile->signatured_types.get (),
6847 &find_entry));
6848 return entry;
6849 }
6850 }
6851
6852 /* Return the address base of the compile unit, which, if exists, is stored
6853 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6854 static gdb::optional<ULONGEST>
6855 lookup_addr_base (struct die_info *comp_unit_die)
6856 {
6857 struct attribute *attr;
6858 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6859 if (attr == nullptr)
6860 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6861 if (attr == nullptr)
6862 return gdb::optional<ULONGEST> ();
6863 return DW_UNSND (attr);
6864 }
6865
6866 /* Return range lists base of the compile unit, which, if exists, is stored
6867 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6868 static ULONGEST
6869 lookup_ranges_base (struct die_info *comp_unit_die)
6870 {
6871 struct attribute *attr;
6872 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6873 if (attr == nullptr)
6874 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6875 if (attr == nullptr)
6876 return 0;
6877 return DW_UNSND (attr);
6878 }
6879
6880 /* Low level DIE reading support. */
6881
6882 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6883
6884 static void
6885 init_cu_die_reader (struct die_reader_specs *reader,
6886 struct dwarf2_cu *cu,
6887 struct dwarf2_section_info *section,
6888 struct dwo_file *dwo_file,
6889 struct abbrev_table *abbrev_table)
6890 {
6891 gdb_assert (section->readin && section->buffer != NULL);
6892 reader->abfd = section->get_bfd_owner ();
6893 reader->cu = cu;
6894 reader->dwo_file = dwo_file;
6895 reader->die_section = section;
6896 reader->buffer = section->buffer;
6897 reader->buffer_end = section->buffer + section->size;
6898 reader->abbrev_table = abbrev_table;
6899 }
6900
6901 /* Subroutine of cutu_reader to simplify it.
6902 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6903 There's just a lot of work to do, and cutu_reader is big enough
6904 already.
6905
6906 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6907 from it to the DIE in the DWO. If NULL we are skipping the stub.
6908 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6909 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6910 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6911 STUB_COMP_DIR may be non-NULL.
6912 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6913 are filled in with the info of the DIE from the DWO file.
6914 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6915 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6916 kept around for at least as long as *RESULT_READER.
6917
6918 The result is non-zero if a valid (non-dummy) DIE was found. */
6919
6920 static int
6921 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6922 struct dwo_unit *dwo_unit,
6923 struct die_info *stub_comp_unit_die,
6924 const char *stub_comp_dir,
6925 struct die_reader_specs *result_reader,
6926 const gdb_byte **result_info_ptr,
6927 struct die_info **result_comp_unit_die,
6928 abbrev_table_up *result_dwo_abbrev_table)
6929 {
6930 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6931 struct objfile *objfile = dwarf2_per_objfile->objfile;
6932 struct dwarf2_cu *cu = this_cu->cu;
6933 bfd *abfd;
6934 const gdb_byte *begin_info_ptr, *info_ptr;
6935 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6936 int i,num_extra_attrs;
6937 struct dwarf2_section_info *dwo_abbrev_section;
6938 struct die_info *comp_unit_die;
6939
6940 /* At most one of these may be provided. */
6941 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6942
6943 /* These attributes aren't processed until later:
6944 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6945 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6946 referenced later. However, these attributes are found in the stub
6947 which we won't have later. In order to not impose this complication
6948 on the rest of the code, we read them here and copy them to the
6949 DWO CU/TU die. */
6950
6951 stmt_list = NULL;
6952 low_pc = NULL;
6953 high_pc = NULL;
6954 ranges = NULL;
6955 comp_dir = NULL;
6956
6957 if (stub_comp_unit_die != NULL)
6958 {
6959 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6960 DWO file. */
6961 if (! this_cu->is_debug_types)
6962 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6963 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6964 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6965 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6966 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6967
6968 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6969
6970 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6971 here (if needed). We need the value before we can process
6972 DW_AT_ranges. */
6973 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6974 }
6975 else if (stub_comp_dir != NULL)
6976 {
6977 /* Reconstruct the comp_dir attribute to simplify the code below. */
6978 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6979 comp_dir->name = DW_AT_comp_dir;
6980 comp_dir->form = DW_FORM_string;
6981 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6982 DW_STRING (comp_dir) = stub_comp_dir;
6983 }
6984
6985 /* Set up for reading the DWO CU/TU. */
6986 cu->dwo_unit = dwo_unit;
6987 dwarf2_section_info *section = dwo_unit->section;
6988 section->read (objfile);
6989 abfd = section->get_bfd_owner ();
6990 begin_info_ptr = info_ptr = (section->buffer
6991 + to_underlying (dwo_unit->sect_off));
6992 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6993
6994 if (this_cu->is_debug_types)
6995 {
6996 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6997
6998 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6999 &cu->header, section,
7000 dwo_abbrev_section,
7001 info_ptr, rcuh_kind::TYPE);
7002 /* This is not an assert because it can be caused by bad debug info. */
7003 if (sig_type->signature != cu->header.signature)
7004 {
7005 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7006 " TU at offset %s [in module %s]"),
7007 hex_string (sig_type->signature),
7008 hex_string (cu->header.signature),
7009 sect_offset_str (dwo_unit->sect_off),
7010 bfd_get_filename (abfd));
7011 }
7012 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7013 /* For DWOs coming from DWP files, we don't know the CU length
7014 nor the type's offset in the TU until now. */
7015 dwo_unit->length = get_cu_length (&cu->header);
7016 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7017
7018 /* Establish the type offset that can be used to lookup the type.
7019 For DWO files, we don't know it until now. */
7020 sig_type->type_offset_in_section
7021 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7022 }
7023 else
7024 {
7025 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7026 &cu->header, section,
7027 dwo_abbrev_section,
7028 info_ptr, rcuh_kind::COMPILE);
7029 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7030 /* For DWOs coming from DWP files, we don't know the CU length
7031 until now. */
7032 dwo_unit->length = get_cu_length (&cu->header);
7033 }
7034
7035 *result_dwo_abbrev_table
7036 = abbrev_table::read (objfile, dwo_abbrev_section,
7037 cu->header.abbrev_sect_off);
7038 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7039 result_dwo_abbrev_table->get ());
7040
7041 /* Read in the die, but leave space to copy over the attributes
7042 from the stub. This has the benefit of simplifying the rest of
7043 the code - all the work to maintain the illusion of a single
7044 DW_TAG_{compile,type}_unit DIE is done here. */
7045 num_extra_attrs = ((stmt_list != NULL)
7046 + (low_pc != NULL)
7047 + (high_pc != NULL)
7048 + (ranges != NULL)
7049 + (comp_dir != NULL));
7050 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7051 num_extra_attrs);
7052
7053 /* Copy over the attributes from the stub to the DIE we just read in. */
7054 comp_unit_die = *result_comp_unit_die;
7055 i = comp_unit_die->num_attrs;
7056 if (stmt_list != NULL)
7057 comp_unit_die->attrs[i++] = *stmt_list;
7058 if (low_pc != NULL)
7059 comp_unit_die->attrs[i++] = *low_pc;
7060 if (high_pc != NULL)
7061 comp_unit_die->attrs[i++] = *high_pc;
7062 if (ranges != NULL)
7063 comp_unit_die->attrs[i++] = *ranges;
7064 if (comp_dir != NULL)
7065 comp_unit_die->attrs[i++] = *comp_dir;
7066 comp_unit_die->num_attrs += num_extra_attrs;
7067
7068 if (dwarf_die_debug)
7069 {
7070 fprintf_unfiltered (gdb_stdlog,
7071 "Read die from %s@0x%x of %s:\n",
7072 section->get_name (),
7073 (unsigned) (begin_info_ptr - section->buffer),
7074 bfd_get_filename (abfd));
7075 dump_die (comp_unit_die, dwarf_die_debug);
7076 }
7077
7078 /* Skip dummy compilation units. */
7079 if (info_ptr >= begin_info_ptr + dwo_unit->length
7080 || peek_abbrev_code (abfd, info_ptr) == 0)
7081 return 0;
7082
7083 *result_info_ptr = info_ptr;
7084 return 1;
7085 }
7086
7087 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7088 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7089 signature is part of the header. */
7090 static gdb::optional<ULONGEST>
7091 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7092 {
7093 if (cu->header.version >= 5)
7094 return cu->header.signature;
7095 struct attribute *attr;
7096 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7097 if (attr == nullptr)
7098 return gdb::optional<ULONGEST> ();
7099 return DW_UNSND (attr);
7100 }
7101
7102 /* Subroutine of cutu_reader to simplify it.
7103 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7104 Returns NULL if the specified DWO unit cannot be found. */
7105
7106 static struct dwo_unit *
7107 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7108 struct die_info *comp_unit_die,
7109 const char *dwo_name)
7110 {
7111 struct dwarf2_cu *cu = this_cu->cu;
7112 struct dwo_unit *dwo_unit;
7113 const char *comp_dir;
7114
7115 gdb_assert (cu != NULL);
7116
7117 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7118 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7119 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7120
7121 if (this_cu->is_debug_types)
7122 {
7123 struct signatured_type *sig_type;
7124
7125 /* Since this_cu is the first member of struct signatured_type,
7126 we can go from a pointer to one to a pointer to the other. */
7127 sig_type = (struct signatured_type *) this_cu;
7128 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7129 }
7130 else
7131 {
7132 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7133 if (!signature.has_value ())
7134 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7135 " [in module %s]"),
7136 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7137 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7138 *signature);
7139 }
7140
7141 return dwo_unit;
7142 }
7143
7144 /* Subroutine of cutu_reader to simplify it.
7145 See it for a description of the parameters.
7146 Read a TU directly from a DWO file, bypassing the stub. */
7147
7148 void
7149 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7150 int use_existing_cu, int keep)
7151 {
7152 struct signatured_type *sig_type;
7153 struct die_reader_specs reader;
7154
7155 /* Verify we can do the following downcast, and that we have the
7156 data we need. */
7157 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7158 sig_type = (struct signatured_type *) this_cu;
7159 gdb_assert (sig_type->dwo_unit != NULL);
7160
7161 if (use_existing_cu && this_cu->cu != NULL)
7162 {
7163 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7164 /* There's no need to do the rereading_dwo_cu handling that
7165 cutu_reader does since we don't read the stub. */
7166 }
7167 else
7168 {
7169 /* If !use_existing_cu, this_cu->cu must be NULL. */
7170 gdb_assert (this_cu->cu == NULL);
7171 m_new_cu.reset (new dwarf2_cu (this_cu));
7172 }
7173
7174 /* A future optimization, if needed, would be to use an existing
7175 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7176 could share abbrev tables. */
7177
7178 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7179 NULL /* stub_comp_unit_die */,
7180 sig_type->dwo_unit->dwo_file->comp_dir,
7181 &reader, &info_ptr,
7182 &comp_unit_die,
7183 &m_dwo_abbrev_table) == 0)
7184 {
7185 /* Dummy die. */
7186 dummy_p = true;
7187 }
7188 }
7189
7190 /* Initialize a CU (or TU) and read its DIEs.
7191 If the CU defers to a DWO file, read the DWO file as well.
7192
7193 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7194 Otherwise the table specified in the comp unit header is read in and used.
7195 This is an optimization for when we already have the abbrev table.
7196
7197 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7198 Otherwise, a new CU is allocated with xmalloc.
7199
7200 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7201 read_in_chain. Otherwise the dwarf2_cu data is freed at the
7202 end. */
7203
7204 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7205 struct abbrev_table *abbrev_table,
7206 int use_existing_cu, int keep,
7207 bool skip_partial)
7208 : die_reader_specs {},
7209 m_this_cu (this_cu),
7210 m_keep (keep)
7211 {
7212 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7213 struct objfile *objfile = dwarf2_per_objfile->objfile;
7214 struct dwarf2_section_info *section = this_cu->section;
7215 bfd *abfd = section->get_bfd_owner ();
7216 struct dwarf2_cu *cu;
7217 const gdb_byte *begin_info_ptr;
7218 struct signatured_type *sig_type = NULL;
7219 struct dwarf2_section_info *abbrev_section;
7220 /* Non-zero if CU currently points to a DWO file and we need to
7221 reread it. When this happens we need to reread the skeleton die
7222 before we can reread the DWO file (this only applies to CUs, not TUs). */
7223 int rereading_dwo_cu = 0;
7224
7225 if (dwarf_die_debug)
7226 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7227 this_cu->is_debug_types ? "type" : "comp",
7228 sect_offset_str (this_cu->sect_off));
7229
7230 if (use_existing_cu)
7231 gdb_assert (keep);
7232
7233 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7234 file (instead of going through the stub), short-circuit all of this. */
7235 if (this_cu->reading_dwo_directly)
7236 {
7237 /* Narrow down the scope of possibilities to have to understand. */
7238 gdb_assert (this_cu->is_debug_types);
7239 gdb_assert (abbrev_table == NULL);
7240 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep);
7241 return;
7242 }
7243
7244 /* This is cheap if the section is already read in. */
7245 section->read (objfile);
7246
7247 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7248
7249 abbrev_section = get_abbrev_section_for_cu (this_cu);
7250
7251 if (use_existing_cu && this_cu->cu != NULL)
7252 {
7253 cu = this_cu->cu;
7254 /* If this CU is from a DWO file we need to start over, we need to
7255 refetch the attributes from the skeleton CU.
7256 This could be optimized by retrieving those attributes from when we
7257 were here the first time: the previous comp_unit_die was stored in
7258 comp_unit_obstack. But there's no data yet that we need this
7259 optimization. */
7260 if (cu->dwo_unit != NULL)
7261 rereading_dwo_cu = 1;
7262 }
7263 else
7264 {
7265 /* If !use_existing_cu, this_cu->cu must be NULL. */
7266 gdb_assert (this_cu->cu == NULL);
7267 m_new_cu.reset (new dwarf2_cu (this_cu));
7268 cu = m_new_cu.get ();
7269 }
7270
7271 /* Get the header. */
7272 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7273 {
7274 /* We already have the header, there's no need to read it in again. */
7275 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7276 }
7277 else
7278 {
7279 if (this_cu->is_debug_types)
7280 {
7281 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7282 &cu->header, section,
7283 abbrev_section, info_ptr,
7284 rcuh_kind::TYPE);
7285
7286 /* Since per_cu is the first member of struct signatured_type,
7287 we can go from a pointer to one to a pointer to the other. */
7288 sig_type = (struct signatured_type *) this_cu;
7289 gdb_assert (sig_type->signature == cu->header.signature);
7290 gdb_assert (sig_type->type_offset_in_tu
7291 == cu->header.type_cu_offset_in_tu);
7292 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7293
7294 /* LENGTH has not been set yet for type units if we're
7295 using .gdb_index. */
7296 this_cu->length = get_cu_length (&cu->header);
7297
7298 /* Establish the type offset that can be used to lookup the type. */
7299 sig_type->type_offset_in_section =
7300 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7301
7302 this_cu->dwarf_version = cu->header.version;
7303 }
7304 else
7305 {
7306 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7307 &cu->header, section,
7308 abbrev_section,
7309 info_ptr,
7310 rcuh_kind::COMPILE);
7311
7312 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7313 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7314 this_cu->dwarf_version = cu->header.version;
7315 }
7316 }
7317
7318 /* Skip dummy compilation units. */
7319 if (info_ptr >= begin_info_ptr + this_cu->length
7320 || peek_abbrev_code (abfd, info_ptr) == 0)
7321 {
7322 dummy_p = true;
7323 return;
7324 }
7325
7326 /* If we don't have them yet, read the abbrevs for this compilation unit.
7327 And if we need to read them now, make sure they're freed when we're
7328 done. */
7329 if (abbrev_table != NULL)
7330 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7331 else
7332 {
7333 m_abbrev_table_holder
7334 = abbrev_table::read (objfile, abbrev_section,
7335 cu->header.abbrev_sect_off);
7336 abbrev_table = m_abbrev_table_holder.get ();
7337 }
7338
7339 /* Read the top level CU/TU die. */
7340 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7341 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7342
7343 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7344 {
7345 dummy_p = true;
7346 return;
7347 }
7348
7349 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7350 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7351 table from the DWO file and pass the ownership over to us. It will be
7352 referenced from READER, so we must make sure to free it after we're done
7353 with READER.
7354
7355 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7356 DWO CU, that this test will fail (the attribute will not be present). */
7357 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7358 if (dwo_name != nullptr)
7359 {
7360 struct dwo_unit *dwo_unit;
7361 struct die_info *dwo_comp_unit_die;
7362
7363 if (comp_unit_die->has_children)
7364 {
7365 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7366 " has children (offset %s) [in module %s]"),
7367 sect_offset_str (this_cu->sect_off),
7368 bfd_get_filename (abfd));
7369 }
7370 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
7371 if (dwo_unit != NULL)
7372 {
7373 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7374 comp_unit_die, NULL,
7375 this, &info_ptr,
7376 &dwo_comp_unit_die,
7377 &m_dwo_abbrev_table) == 0)
7378 {
7379 /* Dummy die. */
7380 dummy_p = true;
7381 return;
7382 }
7383 comp_unit_die = dwo_comp_unit_die;
7384 }
7385 else
7386 {
7387 /* Yikes, we couldn't find the rest of the DIE, we only have
7388 the stub. A complaint has already been logged. There's
7389 not much more we can do except pass on the stub DIE to
7390 die_reader_func. We don't want to throw an error on bad
7391 debug info. */
7392 }
7393 }
7394 }
7395
7396 cutu_reader::~cutu_reader ()
7397 {
7398 /* Done, clean up. */
7399 if (m_new_cu != NULL && m_keep && !dummy_p)
7400 {
7401 struct dwarf2_per_objfile *dwarf2_per_objfile
7402 = m_this_cu->dwarf2_per_objfile;
7403 /* Link this CU into read_in_chain. */
7404 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7405 dwarf2_per_objfile->read_in_chain = m_this_cu;
7406 /* The chain owns it now. */
7407 m_new_cu.release ();
7408 }
7409 }
7410
7411 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7412 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7413 assumed to have already done the lookup to find the DWO file).
7414
7415 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7416 THIS_CU->is_debug_types, but nothing else.
7417
7418 We fill in THIS_CU->length.
7419
7420 THIS_CU->cu is always freed when done.
7421 This is done in order to not leave THIS_CU->cu in a state where we have
7422 to care whether it refers to the "main" CU or the DWO CU.
7423
7424 When parent_cu is passed, it is used to provide a default value for
7425 str_offsets_base and addr_base from the parent. */
7426
7427 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7428 struct dwarf2_cu *parent_cu,
7429 struct dwo_file *dwo_file)
7430 : die_reader_specs {},
7431 m_this_cu (this_cu)
7432 {
7433 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7434 struct objfile *objfile = dwarf2_per_objfile->objfile;
7435 struct dwarf2_section_info *section = this_cu->section;
7436 bfd *abfd = section->get_bfd_owner ();
7437 struct dwarf2_section_info *abbrev_section;
7438 const gdb_byte *begin_info_ptr, *info_ptr;
7439
7440 if (dwarf_die_debug)
7441 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7442 this_cu->is_debug_types ? "type" : "comp",
7443 sect_offset_str (this_cu->sect_off));
7444
7445 gdb_assert (this_cu->cu == NULL);
7446
7447 abbrev_section = (dwo_file != NULL
7448 ? &dwo_file->sections.abbrev
7449 : get_abbrev_section_for_cu (this_cu));
7450
7451 /* This is cheap if the section is already read in. */
7452 section->read (objfile);
7453
7454 m_new_cu.reset (new dwarf2_cu (this_cu));
7455
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7458 &m_new_cu->header, section,
7459 abbrev_section, info_ptr,
7460 (this_cu->is_debug_types
7461 ? rcuh_kind::TYPE
7462 : rcuh_kind::COMPILE));
7463
7464 if (parent_cu != nullptr)
7465 {
7466 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7467 m_new_cu->addr_base = parent_cu->addr_base;
7468 }
7469 this_cu->length = get_cu_length (&m_new_cu->header);
7470
7471 /* Skip dummy compilation units. */
7472 if (info_ptr >= begin_info_ptr + this_cu->length
7473 || peek_abbrev_code (abfd, info_ptr) == 0)
7474 {
7475 dummy_p = true;
7476 return;
7477 }
7478
7479 m_abbrev_table_holder
7480 = abbrev_table::read (objfile, abbrev_section,
7481 m_new_cu->header.abbrev_sect_off);
7482
7483 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7484 m_abbrev_table_holder.get ());
7485 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7486 }
7487
7488 \f
7489 /* Type Unit Groups.
7490
7491 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7492 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7493 so that all types coming from the same compilation (.o file) are grouped
7494 together. A future step could be to put the types in the same symtab as
7495 the CU the types ultimately came from. */
7496
7497 static hashval_t
7498 hash_type_unit_group (const void *item)
7499 {
7500 const struct type_unit_group *tu_group
7501 = (const struct type_unit_group *) item;
7502
7503 return hash_stmt_list_entry (&tu_group->hash);
7504 }
7505
7506 static int
7507 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7508 {
7509 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7510 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7511
7512 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7513 }
7514
7515 /* Allocate a hash table for type unit groups. */
7516
7517 static htab_up
7518 allocate_type_unit_groups_table (struct objfile *objfile)
7519 {
7520 return htab_up (htab_create_alloc (3,
7521 hash_type_unit_group,
7522 eq_type_unit_group,
7523 NULL, xcalloc, xfree));
7524 }
7525
7526 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7527 partial symtabs. We combine several TUs per psymtab to not let the size
7528 of any one psymtab grow too big. */
7529 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7530 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7531
7532 /* Helper routine for get_type_unit_group.
7533 Create the type_unit_group object used to hold one or more TUs. */
7534
7535 static struct type_unit_group *
7536 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7537 {
7538 struct dwarf2_per_objfile *dwarf2_per_objfile
7539 = cu->per_cu->dwarf2_per_objfile;
7540 struct objfile *objfile = dwarf2_per_objfile->objfile;
7541 struct dwarf2_per_cu_data *per_cu;
7542 struct type_unit_group *tu_group;
7543
7544 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7545 struct type_unit_group);
7546 per_cu = &tu_group->per_cu;
7547 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7548
7549 if (dwarf2_per_objfile->using_index)
7550 {
7551 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7552 struct dwarf2_per_cu_quick_data);
7553 }
7554 else
7555 {
7556 unsigned int line_offset = to_underlying (line_offset_struct);
7557 dwarf2_psymtab *pst;
7558 std::string name;
7559
7560 /* Give the symtab a useful name for debug purposes. */
7561 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7562 name = string_printf ("<type_units_%d>",
7563 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7564 else
7565 name = string_printf ("<type_units_at_0x%x>", line_offset);
7566
7567 pst = create_partial_symtab (per_cu, name.c_str ());
7568 pst->anonymous = true;
7569 }
7570
7571 tu_group->hash.dwo_unit = cu->dwo_unit;
7572 tu_group->hash.line_sect_off = line_offset_struct;
7573
7574 return tu_group;
7575 }
7576
7577 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7578 STMT_LIST is a DW_AT_stmt_list attribute. */
7579
7580 static struct type_unit_group *
7581 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7582 {
7583 struct dwarf2_per_objfile *dwarf2_per_objfile
7584 = cu->per_cu->dwarf2_per_objfile;
7585 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7586 struct type_unit_group *tu_group;
7587 void **slot;
7588 unsigned int line_offset;
7589 struct type_unit_group type_unit_group_for_lookup;
7590
7591 if (dwarf2_per_objfile->type_unit_groups == NULL)
7592 {
7593 dwarf2_per_objfile->type_unit_groups =
7594 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7595 }
7596
7597 /* Do we need to create a new group, or can we use an existing one? */
7598
7599 if (stmt_list)
7600 {
7601 line_offset = DW_UNSND (stmt_list);
7602 ++tu_stats->nr_symtab_sharers;
7603 }
7604 else
7605 {
7606 /* Ugh, no stmt_list. Rare, but we have to handle it.
7607 We can do various things here like create one group per TU or
7608 spread them over multiple groups to split up the expansion work.
7609 To avoid worst case scenarios (too many groups or too large groups)
7610 we, umm, group them in bunches. */
7611 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7612 | (tu_stats->nr_stmt_less_type_units
7613 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7614 ++tu_stats->nr_stmt_less_type_units;
7615 }
7616
7617 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7618 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7619 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7620 &type_unit_group_for_lookup, INSERT);
7621 if (*slot != NULL)
7622 {
7623 tu_group = (struct type_unit_group *) *slot;
7624 gdb_assert (tu_group != NULL);
7625 }
7626 else
7627 {
7628 sect_offset line_offset_struct = (sect_offset) line_offset;
7629 tu_group = create_type_unit_group (cu, line_offset_struct);
7630 *slot = tu_group;
7631 ++tu_stats->nr_symtabs;
7632 }
7633
7634 return tu_group;
7635 }
7636 \f
7637 /* Partial symbol tables. */
7638
7639 /* Create a psymtab named NAME and assign it to PER_CU.
7640
7641 The caller must fill in the following details:
7642 dirname, textlow, texthigh. */
7643
7644 static dwarf2_psymtab *
7645 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7646 {
7647 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7648 dwarf2_psymtab *pst;
7649
7650 pst = new dwarf2_psymtab (name, objfile, 0);
7651
7652 pst->psymtabs_addrmap_supported = true;
7653
7654 /* This is the glue that links PST into GDB's symbol API. */
7655 pst->per_cu_data = per_cu;
7656 per_cu->v.psymtab = pst;
7657
7658 return pst;
7659 }
7660
7661 /* DIE reader function for process_psymtab_comp_unit. */
7662
7663 static void
7664 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7665 const gdb_byte *info_ptr,
7666 struct die_info *comp_unit_die,
7667 int want_partial_unit,
7668 enum language pretend_language)
7669 {
7670 struct dwarf2_cu *cu = reader->cu;
7671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7673 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7674 CORE_ADDR baseaddr;
7675 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7676 dwarf2_psymtab *pst;
7677 enum pc_bounds_kind cu_bounds_kind;
7678 const char *filename;
7679
7680 if (comp_unit_die->tag == DW_TAG_partial_unit && !want_partial_unit)
7681 return;
7682
7683 gdb_assert (! per_cu->is_debug_types);
7684
7685 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7686
7687 /* Allocate a new partial symbol table structure. */
7688 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7689 if (filename == NULL)
7690 filename = "";
7691
7692 pst = create_partial_symtab (per_cu, filename);
7693
7694 /* This must be done before calling dwarf2_build_include_psymtabs. */
7695 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7696
7697 baseaddr = objfile->text_section_offset ();
7698
7699 dwarf2_find_base_address (comp_unit_die, cu);
7700
7701 /* Possibly set the default values of LOWPC and HIGHPC from
7702 `DW_AT_ranges'. */
7703 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7704 &best_highpc, cu, pst);
7705 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7706 {
7707 CORE_ADDR low
7708 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7709 - baseaddr);
7710 CORE_ADDR high
7711 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7712 - baseaddr - 1);
7713 /* Store the contiguous range if it is not empty; it can be
7714 empty for CUs with no code. */
7715 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7716 low, high, pst);
7717 }
7718
7719 /* Check if comp unit has_children.
7720 If so, read the rest of the partial symbols from this comp unit.
7721 If not, there's no more debug_info for this comp unit. */
7722 if (comp_unit_die->has_children)
7723 {
7724 struct partial_die_info *first_die;
7725 CORE_ADDR lowpc, highpc;
7726
7727 lowpc = ((CORE_ADDR) -1);
7728 highpc = ((CORE_ADDR) 0);
7729
7730 first_die = load_partial_dies (reader, info_ptr, 1);
7731
7732 scan_partial_symbols (first_die, &lowpc, &highpc,
7733 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7734
7735 /* If we didn't find a lowpc, set it to highpc to avoid
7736 complaints from `maint check'. */
7737 if (lowpc == ((CORE_ADDR) -1))
7738 lowpc = highpc;
7739
7740 /* If the compilation unit didn't have an explicit address range,
7741 then use the information extracted from its child dies. */
7742 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7743 {
7744 best_lowpc = lowpc;
7745 best_highpc = highpc;
7746 }
7747 }
7748 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7749 best_lowpc + baseaddr)
7750 - baseaddr);
7751 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7752 best_highpc + baseaddr)
7753 - baseaddr);
7754
7755 end_psymtab_common (objfile, pst);
7756
7757 if (!cu->per_cu->imported_symtabs_empty ())
7758 {
7759 int i;
7760 int len = cu->per_cu->imported_symtabs_size ();
7761
7762 /* Fill in 'dependencies' here; we fill in 'users' in a
7763 post-pass. */
7764 pst->number_of_dependencies = len;
7765 pst->dependencies
7766 = objfile->partial_symtabs->allocate_dependencies (len);
7767 for (i = 0; i < len; ++i)
7768 {
7769 pst->dependencies[i]
7770 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7771 }
7772
7773 cu->per_cu->imported_symtabs_free ();
7774 }
7775
7776 /* Get the list of files included in the current compilation unit,
7777 and build a psymtab for each of them. */
7778 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7779
7780 if (dwarf_read_debug)
7781 fprintf_unfiltered (gdb_stdlog,
7782 "Psymtab for %s unit @%s: %s - %s"
7783 ", %d global, %d static syms\n",
7784 per_cu->is_debug_types ? "type" : "comp",
7785 sect_offset_str (per_cu->sect_off),
7786 paddress (gdbarch, pst->text_low (objfile)),
7787 paddress (gdbarch, pst->text_high (objfile)),
7788 pst->n_global_syms, pst->n_static_syms);
7789 }
7790
7791 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7792 Process compilation unit THIS_CU for a psymtab. */
7793
7794 static void
7795 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7796 int want_partial_unit,
7797 enum language pretend_language)
7798 {
7799 /* If this compilation unit was already read in, free the
7800 cached copy in order to read it in again. This is
7801 necessary because we skipped some symbols when we first
7802 read in the compilation unit (see load_partial_dies).
7803 This problem could be avoided, but the benefit is unclear. */
7804 if (this_cu->cu != NULL)
7805 free_one_cached_comp_unit (this_cu);
7806
7807 cutu_reader reader (this_cu, NULL, 0, 0, false);
7808
7809 if (reader.dummy_p)
7810 {
7811 /* Nothing. */
7812 }
7813 else if (this_cu->is_debug_types)
7814 build_type_psymtabs_reader (&reader, reader.info_ptr,
7815 reader.comp_unit_die);
7816 else
7817 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7818 reader.comp_unit_die,
7819 want_partial_unit,
7820 pretend_language);
7821
7822 /* Age out any secondary CUs. */
7823 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7824 }
7825
7826 /* Reader function for build_type_psymtabs. */
7827
7828 static void
7829 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7830 const gdb_byte *info_ptr,
7831 struct die_info *type_unit_die)
7832 {
7833 struct dwarf2_per_objfile *dwarf2_per_objfile
7834 = reader->cu->per_cu->dwarf2_per_objfile;
7835 struct objfile *objfile = dwarf2_per_objfile->objfile;
7836 struct dwarf2_cu *cu = reader->cu;
7837 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7838 struct signatured_type *sig_type;
7839 struct type_unit_group *tu_group;
7840 struct attribute *attr;
7841 struct partial_die_info *first_die;
7842 CORE_ADDR lowpc, highpc;
7843 dwarf2_psymtab *pst;
7844
7845 gdb_assert (per_cu->is_debug_types);
7846 sig_type = (struct signatured_type *) per_cu;
7847
7848 if (! type_unit_die->has_children)
7849 return;
7850
7851 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7852 tu_group = get_type_unit_group (cu, attr);
7853
7854 if (tu_group->tus == nullptr)
7855 tu_group->tus = new std::vector<signatured_type *>;
7856 tu_group->tus->push_back (sig_type);
7857
7858 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7859 pst = create_partial_symtab (per_cu, "");
7860 pst->anonymous = true;
7861
7862 first_die = load_partial_dies (reader, info_ptr, 1);
7863
7864 lowpc = (CORE_ADDR) -1;
7865 highpc = (CORE_ADDR) 0;
7866 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7867
7868 end_psymtab_common (objfile, pst);
7869 }
7870
7871 /* Struct used to sort TUs by their abbreviation table offset. */
7872
7873 struct tu_abbrev_offset
7874 {
7875 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7876 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7877 {}
7878
7879 signatured_type *sig_type;
7880 sect_offset abbrev_offset;
7881 };
7882
7883 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7884
7885 static bool
7886 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7887 const struct tu_abbrev_offset &b)
7888 {
7889 return a.abbrev_offset < b.abbrev_offset;
7890 }
7891
7892 /* Efficiently read all the type units.
7893 This does the bulk of the work for build_type_psymtabs.
7894
7895 The efficiency is because we sort TUs by the abbrev table they use and
7896 only read each abbrev table once. In one program there are 200K TUs
7897 sharing 8K abbrev tables.
7898
7899 The main purpose of this function is to support building the
7900 dwarf2_per_objfile->type_unit_groups table.
7901 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7902 can collapse the search space by grouping them by stmt_list.
7903 The savings can be significant, in the same program from above the 200K TUs
7904 share 8K stmt_list tables.
7905
7906 FUNC is expected to call get_type_unit_group, which will create the
7907 struct type_unit_group if necessary and add it to
7908 dwarf2_per_objfile->type_unit_groups. */
7909
7910 static void
7911 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7912 {
7913 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7914 abbrev_table_up abbrev_table;
7915 sect_offset abbrev_offset;
7916
7917 /* It's up to the caller to not call us multiple times. */
7918 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7919
7920 if (dwarf2_per_objfile->all_type_units.empty ())
7921 return;
7922
7923 /* TUs typically share abbrev tables, and there can be way more TUs than
7924 abbrev tables. Sort by abbrev table to reduce the number of times we
7925 read each abbrev table in.
7926 Alternatives are to punt or to maintain a cache of abbrev tables.
7927 This is simpler and efficient enough for now.
7928
7929 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7930 symtab to use). Typically TUs with the same abbrev offset have the same
7931 stmt_list value too so in practice this should work well.
7932
7933 The basic algorithm here is:
7934
7935 sort TUs by abbrev table
7936 for each TU with same abbrev table:
7937 read abbrev table if first user
7938 read TU top level DIE
7939 [IWBN if DWO skeletons had DW_AT_stmt_list]
7940 call FUNC */
7941
7942 if (dwarf_read_debug)
7943 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7944
7945 /* Sort in a separate table to maintain the order of all_type_units
7946 for .gdb_index: TU indices directly index all_type_units. */
7947 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7948 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7949
7950 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7951 sorted_by_abbrev.emplace_back
7952 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7953 sig_type->per_cu.section,
7954 sig_type->per_cu.sect_off));
7955
7956 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7957 sort_tu_by_abbrev_offset);
7958
7959 abbrev_offset = (sect_offset) ~(unsigned) 0;
7960
7961 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7962 {
7963 /* Switch to the next abbrev table if necessary. */
7964 if (abbrev_table == NULL
7965 || tu.abbrev_offset != abbrev_offset)
7966 {
7967 abbrev_offset = tu.abbrev_offset;
7968 abbrev_table =
7969 abbrev_table::read (dwarf2_per_objfile->objfile,
7970 &dwarf2_per_objfile->abbrev,
7971 abbrev_offset);
7972 ++tu_stats->nr_uniq_abbrev_tables;
7973 }
7974
7975 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7976 0, 0, false);
7977 if (!reader.dummy_p)
7978 build_type_psymtabs_reader (&reader, reader.info_ptr,
7979 reader.comp_unit_die);
7980 }
7981 }
7982
7983 /* Print collected type unit statistics. */
7984
7985 static void
7986 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7987 {
7988 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7989
7990 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7991 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7992 dwarf2_per_objfile->all_type_units.size ());
7993 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7994 tu_stats->nr_uniq_abbrev_tables);
7995 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7996 tu_stats->nr_symtabs);
7997 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7998 tu_stats->nr_symtab_sharers);
7999 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8000 tu_stats->nr_stmt_less_type_units);
8001 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8002 tu_stats->nr_all_type_units_reallocs);
8003 }
8004
8005 /* Traversal function for build_type_psymtabs. */
8006
8007 static int
8008 build_type_psymtab_dependencies (void **slot, void *info)
8009 {
8010 struct dwarf2_per_objfile *dwarf2_per_objfile
8011 = (struct dwarf2_per_objfile *) info;
8012 struct objfile *objfile = dwarf2_per_objfile->objfile;
8013 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8014 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8015 dwarf2_psymtab *pst = per_cu->v.psymtab;
8016 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8017 int i;
8018
8019 gdb_assert (len > 0);
8020 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8021
8022 pst->number_of_dependencies = len;
8023 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8024 for (i = 0; i < len; ++i)
8025 {
8026 struct signatured_type *iter = tu_group->tus->at (i);
8027 gdb_assert (iter->per_cu.is_debug_types);
8028 pst->dependencies[i] = iter->per_cu.v.psymtab;
8029 iter->type_unit_group = tu_group;
8030 }
8031
8032 delete tu_group->tus;
8033 tu_group->tus = nullptr;
8034
8035 return 1;
8036 }
8037
8038 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8039 Build partial symbol tables for the .debug_types comp-units. */
8040
8041 static void
8042 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8043 {
8044 if (! create_all_type_units (dwarf2_per_objfile))
8045 return;
8046
8047 build_type_psymtabs_1 (dwarf2_per_objfile);
8048 }
8049
8050 /* Traversal function for process_skeletonless_type_unit.
8051 Read a TU in a DWO file and build partial symbols for it. */
8052
8053 static int
8054 process_skeletonless_type_unit (void **slot, void *info)
8055 {
8056 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8057 struct dwarf2_per_objfile *dwarf2_per_objfile
8058 = (struct dwarf2_per_objfile *) info;
8059 struct signatured_type find_entry, *entry;
8060
8061 /* If this TU doesn't exist in the global table, add it and read it in. */
8062
8063 if (dwarf2_per_objfile->signatured_types == NULL)
8064 {
8065 dwarf2_per_objfile->signatured_types
8066 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8067 }
8068
8069 find_entry.signature = dwo_unit->signature;
8070 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
8071 &find_entry, INSERT);
8072 /* If we've already seen this type there's nothing to do. What's happening
8073 is we're doing our own version of comdat-folding here. */
8074 if (*slot != NULL)
8075 return 1;
8076
8077 /* This does the job that create_all_type_units would have done for
8078 this TU. */
8079 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8080 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8081 *slot = entry;
8082
8083 /* This does the job that build_type_psymtabs_1 would have done. */
8084 cutu_reader reader (&entry->per_cu, NULL, 0, 0, false);
8085 if (!reader.dummy_p)
8086 build_type_psymtabs_reader (&reader, reader.info_ptr,
8087 reader.comp_unit_die);
8088
8089 return 1;
8090 }
8091
8092 /* Traversal function for process_skeletonless_type_units. */
8093
8094 static int
8095 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8096 {
8097 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8098
8099 if (dwo_file->tus != NULL)
8100 htab_traverse_noresize (dwo_file->tus.get (),
8101 process_skeletonless_type_unit, info);
8102
8103 return 1;
8104 }
8105
8106 /* Scan all TUs of DWO files, verifying we've processed them.
8107 This is needed in case a TU was emitted without its skeleton.
8108 Note: This can't be done until we know what all the DWO files are. */
8109
8110 static void
8111 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8112 {
8113 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8114 if (get_dwp_file (dwarf2_per_objfile) == NULL
8115 && dwarf2_per_objfile->dwo_files != NULL)
8116 {
8117 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8118 process_dwo_file_for_skeletonless_type_units,
8119 dwarf2_per_objfile);
8120 }
8121 }
8122
8123 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8124
8125 static void
8126 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8127 {
8128 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8129 {
8130 dwarf2_psymtab *pst = per_cu->v.psymtab;
8131
8132 if (pst == NULL)
8133 continue;
8134
8135 for (int j = 0; j < pst->number_of_dependencies; ++j)
8136 {
8137 /* Set the 'user' field only if it is not already set. */
8138 if (pst->dependencies[j]->user == NULL)
8139 pst->dependencies[j]->user = pst;
8140 }
8141 }
8142 }
8143
8144 /* Build the partial symbol table by doing a quick pass through the
8145 .debug_info and .debug_abbrev sections. */
8146
8147 static void
8148 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8149 {
8150 struct objfile *objfile = dwarf2_per_objfile->objfile;
8151
8152 if (dwarf_read_debug)
8153 {
8154 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8155 objfile_name (objfile));
8156 }
8157
8158 dwarf2_per_objfile->reading_partial_symbols = 1;
8159
8160 dwarf2_per_objfile->info.read (objfile);
8161
8162 /* Any cached compilation units will be linked by the per-objfile
8163 read_in_chain. Make sure to free them when we're done. */
8164 free_cached_comp_units freer (dwarf2_per_objfile);
8165
8166 build_type_psymtabs (dwarf2_per_objfile);
8167
8168 create_all_comp_units (dwarf2_per_objfile);
8169
8170 /* Create a temporary address map on a temporary obstack. We later
8171 copy this to the final obstack. */
8172 auto_obstack temp_obstack;
8173
8174 scoped_restore save_psymtabs_addrmap
8175 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8176 addrmap_create_mutable (&temp_obstack));
8177
8178 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8179 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8180
8181 /* This has to wait until we read the CUs, we need the list of DWOs. */
8182 process_skeletonless_type_units (dwarf2_per_objfile);
8183
8184 /* Now that all TUs have been processed we can fill in the dependencies. */
8185 if (dwarf2_per_objfile->type_unit_groups != NULL)
8186 {
8187 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
8188 build_type_psymtab_dependencies, dwarf2_per_objfile);
8189 }
8190
8191 if (dwarf_read_debug)
8192 print_tu_stats (dwarf2_per_objfile);
8193
8194 set_partial_user (dwarf2_per_objfile);
8195
8196 objfile->partial_symtabs->psymtabs_addrmap
8197 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8198 objfile->partial_symtabs->obstack ());
8199 /* At this point we want to keep the address map. */
8200 save_psymtabs_addrmap.release ();
8201
8202 if (dwarf_read_debug)
8203 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8204 objfile_name (objfile));
8205 }
8206
8207 /* Load the partial DIEs for a secondary CU into memory.
8208 This is also used when rereading a primary CU with load_all_dies. */
8209
8210 static void
8211 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8212 {
8213 cutu_reader reader (this_cu, NULL, 1, 1, false);
8214
8215 if (!reader.dummy_p)
8216 {
8217 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8218 language_minimal);
8219
8220 /* Check if comp unit has_children.
8221 If so, read the rest of the partial symbols from this comp unit.
8222 If not, there's no more debug_info for this comp unit. */
8223 if (reader.comp_unit_die->has_children)
8224 load_partial_dies (&reader, reader.info_ptr, 0);
8225 }
8226 }
8227
8228 static void
8229 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8230 struct dwarf2_section_info *section,
8231 struct dwarf2_section_info *abbrev_section,
8232 unsigned int is_dwz)
8233 {
8234 const gdb_byte *info_ptr;
8235 struct objfile *objfile = dwarf2_per_objfile->objfile;
8236
8237 if (dwarf_read_debug)
8238 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8239 section->get_name (),
8240 section->get_file_name ());
8241
8242 section->read (objfile);
8243
8244 info_ptr = section->buffer;
8245
8246 while (info_ptr < section->buffer + section->size)
8247 {
8248 struct dwarf2_per_cu_data *this_cu;
8249
8250 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8251
8252 comp_unit_head cu_header;
8253 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8254 abbrev_section, info_ptr,
8255 rcuh_kind::COMPILE);
8256
8257 /* Save the compilation unit for later lookup. */
8258 if (cu_header.unit_type != DW_UT_type)
8259 {
8260 this_cu = XOBNEW (&objfile->objfile_obstack,
8261 struct dwarf2_per_cu_data);
8262 memset (this_cu, 0, sizeof (*this_cu));
8263 }
8264 else
8265 {
8266 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8267 struct signatured_type);
8268 memset (sig_type, 0, sizeof (*sig_type));
8269 sig_type->signature = cu_header.signature;
8270 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8271 this_cu = &sig_type->per_cu;
8272 }
8273 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8274 this_cu->sect_off = sect_off;
8275 this_cu->length = cu_header.length + cu_header.initial_length_size;
8276 this_cu->is_dwz = is_dwz;
8277 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8278 this_cu->section = section;
8279
8280 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8281
8282 info_ptr = info_ptr + this_cu->length;
8283 }
8284 }
8285
8286 /* Create a list of all compilation units in OBJFILE.
8287 This is only done for -readnow and building partial symtabs. */
8288
8289 static void
8290 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8291 {
8292 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8293 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8294 &dwarf2_per_objfile->abbrev, 0);
8295
8296 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8297 if (dwz != NULL)
8298 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8299 1);
8300 }
8301
8302 /* Process all loaded DIEs for compilation unit CU, starting at
8303 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8304 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8305 DW_AT_ranges). See the comments of add_partial_subprogram on how
8306 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8307
8308 static void
8309 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8310 CORE_ADDR *highpc, int set_addrmap,
8311 struct dwarf2_cu *cu)
8312 {
8313 struct partial_die_info *pdi;
8314
8315 /* Now, march along the PDI's, descending into ones which have
8316 interesting children but skipping the children of the other ones,
8317 until we reach the end of the compilation unit. */
8318
8319 pdi = first_die;
8320
8321 while (pdi != NULL)
8322 {
8323 pdi->fixup (cu);
8324
8325 /* Anonymous namespaces or modules have no name but have interesting
8326 children, so we need to look at them. Ditto for anonymous
8327 enums. */
8328
8329 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8330 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8331 || pdi->tag == DW_TAG_imported_unit
8332 || pdi->tag == DW_TAG_inlined_subroutine)
8333 {
8334 switch (pdi->tag)
8335 {
8336 case DW_TAG_subprogram:
8337 case DW_TAG_inlined_subroutine:
8338 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8339 break;
8340 case DW_TAG_constant:
8341 case DW_TAG_variable:
8342 case DW_TAG_typedef:
8343 case DW_TAG_union_type:
8344 if (!pdi->is_declaration)
8345 {
8346 add_partial_symbol (pdi, cu);
8347 }
8348 break;
8349 case DW_TAG_class_type:
8350 case DW_TAG_interface_type:
8351 case DW_TAG_structure_type:
8352 if (!pdi->is_declaration)
8353 {
8354 add_partial_symbol (pdi, cu);
8355 }
8356 if ((cu->language == language_rust
8357 || cu->language == language_cplus) && pdi->has_children)
8358 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8359 set_addrmap, cu);
8360 break;
8361 case DW_TAG_enumeration_type:
8362 if (!pdi->is_declaration)
8363 add_partial_enumeration (pdi, cu);
8364 break;
8365 case DW_TAG_base_type:
8366 case DW_TAG_subrange_type:
8367 /* File scope base type definitions are added to the partial
8368 symbol table. */
8369 add_partial_symbol (pdi, cu);
8370 break;
8371 case DW_TAG_namespace:
8372 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8373 break;
8374 case DW_TAG_module:
8375 if (!pdi->is_declaration)
8376 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8377 break;
8378 case DW_TAG_imported_unit:
8379 {
8380 struct dwarf2_per_cu_data *per_cu;
8381
8382 /* For now we don't handle imported units in type units. */
8383 if (cu->per_cu->is_debug_types)
8384 {
8385 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8386 " supported in type units [in module %s]"),
8387 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8388 }
8389
8390 per_cu = dwarf2_find_containing_comp_unit
8391 (pdi->d.sect_off, pdi->is_dwz,
8392 cu->per_cu->dwarf2_per_objfile);
8393
8394 /* Go read the partial unit, if needed. */
8395 if (per_cu->v.psymtab == NULL)
8396 process_psymtab_comp_unit (per_cu, 1, cu->language);
8397
8398 cu->per_cu->imported_symtabs_push (per_cu);
8399 }
8400 break;
8401 case DW_TAG_imported_declaration:
8402 add_partial_symbol (pdi, cu);
8403 break;
8404 default:
8405 break;
8406 }
8407 }
8408
8409 /* If the die has a sibling, skip to the sibling. */
8410
8411 pdi = pdi->die_sibling;
8412 }
8413 }
8414
8415 /* Functions used to compute the fully scoped name of a partial DIE.
8416
8417 Normally, this is simple. For C++, the parent DIE's fully scoped
8418 name is concatenated with "::" and the partial DIE's name.
8419 Enumerators are an exception; they use the scope of their parent
8420 enumeration type, i.e. the name of the enumeration type is not
8421 prepended to the enumerator.
8422
8423 There are two complexities. One is DW_AT_specification; in this
8424 case "parent" means the parent of the target of the specification,
8425 instead of the direct parent of the DIE. The other is compilers
8426 which do not emit DW_TAG_namespace; in this case we try to guess
8427 the fully qualified name of structure types from their members'
8428 linkage names. This must be done using the DIE's children rather
8429 than the children of any DW_AT_specification target. We only need
8430 to do this for structures at the top level, i.e. if the target of
8431 any DW_AT_specification (if any; otherwise the DIE itself) does not
8432 have a parent. */
8433
8434 /* Compute the scope prefix associated with PDI's parent, in
8435 compilation unit CU. The result will be allocated on CU's
8436 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8437 field. NULL is returned if no prefix is necessary. */
8438 static const char *
8439 partial_die_parent_scope (struct partial_die_info *pdi,
8440 struct dwarf2_cu *cu)
8441 {
8442 const char *grandparent_scope;
8443 struct partial_die_info *parent, *real_pdi;
8444
8445 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8446 then this means the parent of the specification DIE. */
8447
8448 real_pdi = pdi;
8449 while (real_pdi->has_specification)
8450 {
8451 auto res = find_partial_die (real_pdi->spec_offset,
8452 real_pdi->spec_is_dwz, cu);
8453 real_pdi = res.pdi;
8454 cu = res.cu;
8455 }
8456
8457 parent = real_pdi->die_parent;
8458 if (parent == NULL)
8459 return NULL;
8460
8461 if (parent->scope_set)
8462 return parent->scope;
8463
8464 parent->fixup (cu);
8465
8466 grandparent_scope = partial_die_parent_scope (parent, cu);
8467
8468 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8469 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8470 Work around this problem here. */
8471 if (cu->language == language_cplus
8472 && parent->tag == DW_TAG_namespace
8473 && strcmp (parent->name, "::") == 0
8474 && grandparent_scope == NULL)
8475 {
8476 parent->scope = NULL;
8477 parent->scope_set = 1;
8478 return NULL;
8479 }
8480
8481 /* Nested subroutines in Fortran get a prefix. */
8482 if (pdi->tag == DW_TAG_enumerator)
8483 /* Enumerators should not get the name of the enumeration as a prefix. */
8484 parent->scope = grandparent_scope;
8485 else if (parent->tag == DW_TAG_namespace
8486 || parent->tag == DW_TAG_module
8487 || parent->tag == DW_TAG_structure_type
8488 || parent->tag == DW_TAG_class_type
8489 || parent->tag == DW_TAG_interface_type
8490 || parent->tag == DW_TAG_union_type
8491 || parent->tag == DW_TAG_enumeration_type
8492 || (cu->language == language_fortran
8493 && parent->tag == DW_TAG_subprogram
8494 && pdi->tag == DW_TAG_subprogram))
8495 {
8496 if (grandparent_scope == NULL)
8497 parent->scope = parent->name;
8498 else
8499 parent->scope = typename_concat (&cu->comp_unit_obstack,
8500 grandparent_scope,
8501 parent->name, 0, cu);
8502 }
8503 else
8504 {
8505 /* FIXME drow/2004-04-01: What should we be doing with
8506 function-local names? For partial symbols, we should probably be
8507 ignoring them. */
8508 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8509 dwarf_tag_name (parent->tag),
8510 sect_offset_str (pdi->sect_off));
8511 parent->scope = grandparent_scope;
8512 }
8513
8514 parent->scope_set = 1;
8515 return parent->scope;
8516 }
8517
8518 /* Return the fully scoped name associated with PDI, from compilation unit
8519 CU. The result will be allocated with malloc. */
8520
8521 static gdb::unique_xmalloc_ptr<char>
8522 partial_die_full_name (struct partial_die_info *pdi,
8523 struct dwarf2_cu *cu)
8524 {
8525 const char *parent_scope;
8526
8527 /* If this is a template instantiation, we can not work out the
8528 template arguments from partial DIEs. So, unfortunately, we have
8529 to go through the full DIEs. At least any work we do building
8530 types here will be reused if full symbols are loaded later. */
8531 if (pdi->has_template_arguments)
8532 {
8533 pdi->fixup (cu);
8534
8535 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8536 {
8537 struct die_info *die;
8538 struct attribute attr;
8539 struct dwarf2_cu *ref_cu = cu;
8540
8541 /* DW_FORM_ref_addr is using section offset. */
8542 attr.name = (enum dwarf_attribute) 0;
8543 attr.form = DW_FORM_ref_addr;
8544 attr.u.unsnd = to_underlying (pdi->sect_off);
8545 die = follow_die_ref (NULL, &attr, &ref_cu);
8546
8547 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8548 }
8549 }
8550
8551 parent_scope = partial_die_parent_scope (pdi, cu);
8552 if (parent_scope == NULL)
8553 return NULL;
8554 else
8555 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8556 pdi->name, 0, cu));
8557 }
8558
8559 static void
8560 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8561 {
8562 struct dwarf2_per_objfile *dwarf2_per_objfile
8563 = cu->per_cu->dwarf2_per_objfile;
8564 struct objfile *objfile = dwarf2_per_objfile->objfile;
8565 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8566 CORE_ADDR addr = 0;
8567 const char *actual_name = NULL;
8568 CORE_ADDR baseaddr;
8569
8570 baseaddr = objfile->text_section_offset ();
8571
8572 gdb::unique_xmalloc_ptr<char> built_actual_name
8573 = partial_die_full_name (pdi, cu);
8574 if (built_actual_name != NULL)
8575 actual_name = built_actual_name.get ();
8576
8577 if (actual_name == NULL)
8578 actual_name = pdi->name;
8579
8580 switch (pdi->tag)
8581 {
8582 case DW_TAG_inlined_subroutine:
8583 case DW_TAG_subprogram:
8584 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8585 - baseaddr);
8586 if (pdi->is_external
8587 || cu->language == language_ada
8588 || (cu->language == language_fortran
8589 && pdi->die_parent != NULL
8590 && pdi->die_parent->tag == DW_TAG_subprogram))
8591 {
8592 /* Normally, only "external" DIEs are part of the global scope.
8593 But in Ada and Fortran, we want to be able to access nested
8594 procedures globally. So all Ada and Fortran subprograms are
8595 stored in the global scope. */
8596 add_psymbol_to_list (actual_name,
8597 built_actual_name != NULL,
8598 VAR_DOMAIN, LOC_BLOCK,
8599 SECT_OFF_TEXT (objfile),
8600 psymbol_placement::GLOBAL,
8601 addr,
8602 cu->language, objfile);
8603 }
8604 else
8605 {
8606 add_psymbol_to_list (actual_name,
8607 built_actual_name != NULL,
8608 VAR_DOMAIN, LOC_BLOCK,
8609 SECT_OFF_TEXT (objfile),
8610 psymbol_placement::STATIC,
8611 addr, cu->language, objfile);
8612 }
8613
8614 if (pdi->main_subprogram && actual_name != NULL)
8615 set_objfile_main_name (objfile, actual_name, cu->language);
8616 break;
8617 case DW_TAG_constant:
8618 add_psymbol_to_list (actual_name,
8619 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8620 -1, (pdi->is_external
8621 ? psymbol_placement::GLOBAL
8622 : psymbol_placement::STATIC),
8623 0, cu->language, objfile);
8624 break;
8625 case DW_TAG_variable:
8626 if (pdi->d.locdesc)
8627 addr = decode_locdesc (pdi->d.locdesc, cu);
8628
8629 if (pdi->d.locdesc
8630 && addr == 0
8631 && !dwarf2_per_objfile->has_section_at_zero)
8632 {
8633 /* A global or static variable may also have been stripped
8634 out by the linker if unused, in which case its address
8635 will be nullified; do not add such variables into partial
8636 symbol table then. */
8637 }
8638 else if (pdi->is_external)
8639 {
8640 /* Global Variable.
8641 Don't enter into the minimal symbol tables as there is
8642 a minimal symbol table entry from the ELF symbols already.
8643 Enter into partial symbol table if it has a location
8644 descriptor or a type.
8645 If the location descriptor is missing, new_symbol will create
8646 a LOC_UNRESOLVED symbol, the address of the variable will then
8647 be determined from the minimal symbol table whenever the variable
8648 is referenced.
8649 The address for the partial symbol table entry is not
8650 used by GDB, but it comes in handy for debugging partial symbol
8651 table building. */
8652
8653 if (pdi->d.locdesc || pdi->has_type)
8654 add_psymbol_to_list (actual_name,
8655 built_actual_name != NULL,
8656 VAR_DOMAIN, LOC_STATIC,
8657 SECT_OFF_TEXT (objfile),
8658 psymbol_placement::GLOBAL,
8659 addr, cu->language, objfile);
8660 }
8661 else
8662 {
8663 int has_loc = pdi->d.locdesc != NULL;
8664
8665 /* Static Variable. Skip symbols whose value we cannot know (those
8666 without location descriptors or constant values). */
8667 if (!has_loc && !pdi->has_const_value)
8668 return;
8669
8670 add_psymbol_to_list (actual_name,
8671 built_actual_name != NULL,
8672 VAR_DOMAIN, LOC_STATIC,
8673 SECT_OFF_TEXT (objfile),
8674 psymbol_placement::STATIC,
8675 has_loc ? addr : 0,
8676 cu->language, objfile);
8677 }
8678 break;
8679 case DW_TAG_typedef:
8680 case DW_TAG_base_type:
8681 case DW_TAG_subrange_type:
8682 add_psymbol_to_list (actual_name,
8683 built_actual_name != NULL,
8684 VAR_DOMAIN, LOC_TYPEDEF, -1,
8685 psymbol_placement::STATIC,
8686 0, cu->language, objfile);
8687 break;
8688 case DW_TAG_imported_declaration:
8689 case DW_TAG_namespace:
8690 add_psymbol_to_list (actual_name,
8691 built_actual_name != NULL,
8692 VAR_DOMAIN, LOC_TYPEDEF, -1,
8693 psymbol_placement::GLOBAL,
8694 0, cu->language, objfile);
8695 break;
8696 case DW_TAG_module:
8697 /* With Fortran 77 there might be a "BLOCK DATA" module
8698 available without any name. If so, we skip the module as it
8699 doesn't bring any value. */
8700 if (actual_name != nullptr)
8701 add_psymbol_to_list (actual_name,
8702 built_actual_name != NULL,
8703 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8704 psymbol_placement::GLOBAL,
8705 0, cu->language, objfile);
8706 break;
8707 case DW_TAG_class_type:
8708 case DW_TAG_interface_type:
8709 case DW_TAG_structure_type:
8710 case DW_TAG_union_type:
8711 case DW_TAG_enumeration_type:
8712 /* Skip external references. The DWARF standard says in the section
8713 about "Structure, Union, and Class Type Entries": "An incomplete
8714 structure, union or class type is represented by a structure,
8715 union or class entry that does not have a byte size attribute
8716 and that has a DW_AT_declaration attribute." */
8717 if (!pdi->has_byte_size && pdi->is_declaration)
8718 return;
8719
8720 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8721 static vs. global. */
8722 add_psymbol_to_list (actual_name,
8723 built_actual_name != NULL,
8724 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8725 cu->language == language_cplus
8726 ? psymbol_placement::GLOBAL
8727 : psymbol_placement::STATIC,
8728 0, cu->language, objfile);
8729
8730 break;
8731 case DW_TAG_enumerator:
8732 add_psymbol_to_list (actual_name,
8733 built_actual_name != NULL,
8734 VAR_DOMAIN, LOC_CONST, -1,
8735 cu->language == language_cplus
8736 ? psymbol_placement::GLOBAL
8737 : psymbol_placement::STATIC,
8738 0, cu->language, objfile);
8739 break;
8740 default:
8741 break;
8742 }
8743 }
8744
8745 /* Read a partial die corresponding to a namespace; also, add a symbol
8746 corresponding to that namespace to the symbol table. NAMESPACE is
8747 the name of the enclosing namespace. */
8748
8749 static void
8750 add_partial_namespace (struct partial_die_info *pdi,
8751 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8752 int set_addrmap, struct dwarf2_cu *cu)
8753 {
8754 /* Add a symbol for the namespace. */
8755
8756 add_partial_symbol (pdi, cu);
8757
8758 /* Now scan partial symbols in that namespace. */
8759
8760 if (pdi->has_children)
8761 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8762 }
8763
8764 /* Read a partial die corresponding to a Fortran module. */
8765
8766 static void
8767 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8768 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8769 {
8770 /* Add a symbol for the namespace. */
8771
8772 add_partial_symbol (pdi, cu);
8773
8774 /* Now scan partial symbols in that module. */
8775
8776 if (pdi->has_children)
8777 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8778 }
8779
8780 /* Read a partial die corresponding to a subprogram or an inlined
8781 subprogram and create a partial symbol for that subprogram.
8782 When the CU language allows it, this routine also defines a partial
8783 symbol for each nested subprogram that this subprogram contains.
8784 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8785 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8786
8787 PDI may also be a lexical block, in which case we simply search
8788 recursively for subprograms defined inside that lexical block.
8789 Again, this is only performed when the CU language allows this
8790 type of definitions. */
8791
8792 static void
8793 add_partial_subprogram (struct partial_die_info *pdi,
8794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8795 int set_addrmap, struct dwarf2_cu *cu)
8796 {
8797 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8798 {
8799 if (pdi->has_pc_info)
8800 {
8801 if (pdi->lowpc < *lowpc)
8802 *lowpc = pdi->lowpc;
8803 if (pdi->highpc > *highpc)
8804 *highpc = pdi->highpc;
8805 if (set_addrmap)
8806 {
8807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8808 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8809 CORE_ADDR baseaddr;
8810 CORE_ADDR this_highpc;
8811 CORE_ADDR this_lowpc;
8812
8813 baseaddr = objfile->text_section_offset ();
8814 this_lowpc
8815 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8816 pdi->lowpc + baseaddr)
8817 - baseaddr);
8818 this_highpc
8819 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8820 pdi->highpc + baseaddr)
8821 - baseaddr);
8822 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8823 this_lowpc, this_highpc - 1,
8824 cu->per_cu->v.psymtab);
8825 }
8826 }
8827
8828 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8829 {
8830 if (!pdi->is_declaration)
8831 /* Ignore subprogram DIEs that do not have a name, they are
8832 illegal. Do not emit a complaint at this point, we will
8833 do so when we convert this psymtab into a symtab. */
8834 if (pdi->name)
8835 add_partial_symbol (pdi, cu);
8836 }
8837 }
8838
8839 if (! pdi->has_children)
8840 return;
8841
8842 if (cu->language == language_ada || cu->language == language_fortran)
8843 {
8844 pdi = pdi->die_child;
8845 while (pdi != NULL)
8846 {
8847 pdi->fixup (cu);
8848 if (pdi->tag == DW_TAG_subprogram
8849 || pdi->tag == DW_TAG_inlined_subroutine
8850 || pdi->tag == DW_TAG_lexical_block)
8851 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8852 pdi = pdi->die_sibling;
8853 }
8854 }
8855 }
8856
8857 /* Read a partial die corresponding to an enumeration type. */
8858
8859 static void
8860 add_partial_enumeration (struct partial_die_info *enum_pdi,
8861 struct dwarf2_cu *cu)
8862 {
8863 struct partial_die_info *pdi;
8864
8865 if (enum_pdi->name != NULL)
8866 add_partial_symbol (enum_pdi, cu);
8867
8868 pdi = enum_pdi->die_child;
8869 while (pdi)
8870 {
8871 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8872 complaint (_("malformed enumerator DIE ignored"));
8873 else
8874 add_partial_symbol (pdi, cu);
8875 pdi = pdi->die_sibling;
8876 }
8877 }
8878
8879 /* Return the initial uleb128 in the die at INFO_PTR. */
8880
8881 static unsigned int
8882 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8883 {
8884 unsigned int bytes_read;
8885
8886 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8887 }
8888
8889 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8890 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8891
8892 Return the corresponding abbrev, or NULL if the number is zero (indicating
8893 an empty DIE). In either case *BYTES_READ will be set to the length of
8894 the initial number. */
8895
8896 static struct abbrev_info *
8897 peek_die_abbrev (const die_reader_specs &reader,
8898 const gdb_byte *info_ptr, unsigned int *bytes_read)
8899 {
8900 dwarf2_cu *cu = reader.cu;
8901 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8902 unsigned int abbrev_number
8903 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8904
8905 if (abbrev_number == 0)
8906 return NULL;
8907
8908 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8909 if (!abbrev)
8910 {
8911 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8912 " at offset %s [in module %s]"),
8913 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8914 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8915 }
8916
8917 return abbrev;
8918 }
8919
8920 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8921 Returns a pointer to the end of a series of DIEs, terminated by an empty
8922 DIE. Any children of the skipped DIEs will also be skipped. */
8923
8924 static const gdb_byte *
8925 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8926 {
8927 while (1)
8928 {
8929 unsigned int bytes_read;
8930 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8931
8932 if (abbrev == NULL)
8933 return info_ptr + bytes_read;
8934 else
8935 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8936 }
8937 }
8938
8939 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8940 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8941 abbrev corresponding to that skipped uleb128 should be passed in
8942 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8943 children. */
8944
8945 static const gdb_byte *
8946 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8947 struct abbrev_info *abbrev)
8948 {
8949 unsigned int bytes_read;
8950 struct attribute attr;
8951 bfd *abfd = reader->abfd;
8952 struct dwarf2_cu *cu = reader->cu;
8953 const gdb_byte *buffer = reader->buffer;
8954 const gdb_byte *buffer_end = reader->buffer_end;
8955 unsigned int form, i;
8956
8957 for (i = 0; i < abbrev->num_attrs; i++)
8958 {
8959 /* The only abbrev we care about is DW_AT_sibling. */
8960 if (abbrev->attrs[i].name == DW_AT_sibling)
8961 {
8962 bool ignored;
8963 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8964 &ignored);
8965 if (attr.form == DW_FORM_ref_addr)
8966 complaint (_("ignoring absolute DW_AT_sibling"));
8967 else
8968 {
8969 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8970 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8971
8972 if (sibling_ptr < info_ptr)
8973 complaint (_("DW_AT_sibling points backwards"));
8974 else if (sibling_ptr > reader->buffer_end)
8975 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8976 else
8977 return sibling_ptr;
8978 }
8979 }
8980
8981 /* If it isn't DW_AT_sibling, skip this attribute. */
8982 form = abbrev->attrs[i].form;
8983 skip_attribute:
8984 switch (form)
8985 {
8986 case DW_FORM_ref_addr:
8987 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8988 and later it is offset sized. */
8989 if (cu->header.version == 2)
8990 info_ptr += cu->header.addr_size;
8991 else
8992 info_ptr += cu->header.offset_size;
8993 break;
8994 case DW_FORM_GNU_ref_alt:
8995 info_ptr += cu->header.offset_size;
8996 break;
8997 case DW_FORM_addr:
8998 info_ptr += cu->header.addr_size;
8999 break;
9000 case DW_FORM_data1:
9001 case DW_FORM_ref1:
9002 case DW_FORM_flag:
9003 case DW_FORM_strx1:
9004 info_ptr += 1;
9005 break;
9006 case DW_FORM_flag_present:
9007 case DW_FORM_implicit_const:
9008 break;
9009 case DW_FORM_data2:
9010 case DW_FORM_ref2:
9011 case DW_FORM_strx2:
9012 info_ptr += 2;
9013 break;
9014 case DW_FORM_strx3:
9015 info_ptr += 3;
9016 break;
9017 case DW_FORM_data4:
9018 case DW_FORM_ref4:
9019 case DW_FORM_strx4:
9020 info_ptr += 4;
9021 break;
9022 case DW_FORM_data8:
9023 case DW_FORM_ref8:
9024 case DW_FORM_ref_sig8:
9025 info_ptr += 8;
9026 break;
9027 case DW_FORM_data16:
9028 info_ptr += 16;
9029 break;
9030 case DW_FORM_string:
9031 read_direct_string (abfd, info_ptr, &bytes_read);
9032 info_ptr += bytes_read;
9033 break;
9034 case DW_FORM_sec_offset:
9035 case DW_FORM_strp:
9036 case DW_FORM_GNU_strp_alt:
9037 info_ptr += cu->header.offset_size;
9038 break;
9039 case DW_FORM_exprloc:
9040 case DW_FORM_block:
9041 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9042 info_ptr += bytes_read;
9043 break;
9044 case DW_FORM_block1:
9045 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9046 break;
9047 case DW_FORM_block2:
9048 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9049 break;
9050 case DW_FORM_block4:
9051 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9052 break;
9053 case DW_FORM_addrx:
9054 case DW_FORM_strx:
9055 case DW_FORM_sdata:
9056 case DW_FORM_udata:
9057 case DW_FORM_ref_udata:
9058 case DW_FORM_GNU_addr_index:
9059 case DW_FORM_GNU_str_index:
9060 case DW_FORM_rnglistx:
9061 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9062 break;
9063 case DW_FORM_indirect:
9064 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9065 info_ptr += bytes_read;
9066 /* We need to continue parsing from here, so just go back to
9067 the top. */
9068 goto skip_attribute;
9069
9070 default:
9071 error (_("Dwarf Error: Cannot handle %s "
9072 "in DWARF reader [in module %s]"),
9073 dwarf_form_name (form),
9074 bfd_get_filename (abfd));
9075 }
9076 }
9077
9078 if (abbrev->has_children)
9079 return skip_children (reader, info_ptr);
9080 else
9081 return info_ptr;
9082 }
9083
9084 /* Locate ORIG_PDI's sibling.
9085 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9086
9087 static const gdb_byte *
9088 locate_pdi_sibling (const struct die_reader_specs *reader,
9089 struct partial_die_info *orig_pdi,
9090 const gdb_byte *info_ptr)
9091 {
9092 /* Do we know the sibling already? */
9093
9094 if (orig_pdi->sibling)
9095 return orig_pdi->sibling;
9096
9097 /* Are there any children to deal with? */
9098
9099 if (!orig_pdi->has_children)
9100 return info_ptr;
9101
9102 /* Skip the children the long way. */
9103
9104 return skip_children (reader, info_ptr);
9105 }
9106
9107 /* Expand this partial symbol table into a full symbol table. SELF is
9108 not NULL. */
9109
9110 void
9111 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9112 {
9113 struct dwarf2_per_objfile *dwarf2_per_objfile
9114 = get_dwarf2_per_objfile (objfile);
9115
9116 gdb_assert (!readin);
9117 /* If this psymtab is constructed from a debug-only objfile, the
9118 has_section_at_zero flag will not necessarily be correct. We
9119 can get the correct value for this flag by looking at the data
9120 associated with the (presumably stripped) associated objfile. */
9121 if (objfile->separate_debug_objfile_backlink)
9122 {
9123 struct dwarf2_per_objfile *dpo_backlink
9124 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9125
9126 dwarf2_per_objfile->has_section_at_zero
9127 = dpo_backlink->has_section_at_zero;
9128 }
9129
9130 dwarf2_per_objfile->reading_partial_symbols = 0;
9131
9132 expand_psymtab (objfile);
9133
9134 process_cu_includes (dwarf2_per_objfile);
9135 }
9136 \f
9137 /* Reading in full CUs. */
9138
9139 /* Add PER_CU to the queue. */
9140
9141 static void
9142 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9143 enum language pretend_language)
9144 {
9145 per_cu->queued = 1;
9146 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
9147 }
9148
9149 /* If PER_CU is not yet queued, add it to the queue.
9150 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9151 dependency.
9152 The result is non-zero if PER_CU was queued, otherwise the result is zero
9153 meaning either PER_CU is already queued or it is already loaded.
9154
9155 N.B. There is an invariant here that if a CU is queued then it is loaded.
9156 The caller is required to load PER_CU if we return non-zero. */
9157
9158 static int
9159 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9160 struct dwarf2_per_cu_data *per_cu,
9161 enum language pretend_language)
9162 {
9163 /* We may arrive here during partial symbol reading, if we need full
9164 DIEs to process an unusual case (e.g. template arguments). Do
9165 not queue PER_CU, just tell our caller to load its DIEs. */
9166 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9167 {
9168 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9169 return 1;
9170 return 0;
9171 }
9172
9173 /* Mark the dependence relation so that we don't flush PER_CU
9174 too early. */
9175 if (dependent_cu != NULL)
9176 dwarf2_add_dependence (dependent_cu, per_cu);
9177
9178 /* If it's already on the queue, we have nothing to do. */
9179 if (per_cu->queued)
9180 return 0;
9181
9182 /* If the compilation unit is already loaded, just mark it as
9183 used. */
9184 if (per_cu->cu != NULL)
9185 {
9186 per_cu->cu->last_used = 0;
9187 return 0;
9188 }
9189
9190 /* Add it to the queue. */
9191 queue_comp_unit (per_cu, pretend_language);
9192
9193 return 1;
9194 }
9195
9196 /* Process the queue. */
9197
9198 static void
9199 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9200 {
9201 if (dwarf_read_debug)
9202 {
9203 fprintf_unfiltered (gdb_stdlog,
9204 "Expanding one or more symtabs of objfile %s ...\n",
9205 objfile_name (dwarf2_per_objfile->objfile));
9206 }
9207
9208 /* The queue starts out with one item, but following a DIE reference
9209 may load a new CU, adding it to the end of the queue. */
9210 while (!dwarf2_per_objfile->queue.empty ())
9211 {
9212 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
9213
9214 if ((dwarf2_per_objfile->using_index
9215 ? !item.per_cu->v.quick->compunit_symtab
9216 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
9217 /* Skip dummy CUs. */
9218 && item.per_cu->cu != NULL)
9219 {
9220 struct dwarf2_per_cu_data *per_cu = item.per_cu;
9221 unsigned int debug_print_threshold;
9222 char buf[100];
9223
9224 if (per_cu->is_debug_types)
9225 {
9226 struct signatured_type *sig_type =
9227 (struct signatured_type *) per_cu;
9228
9229 sprintf (buf, "TU %s at offset %s",
9230 hex_string (sig_type->signature),
9231 sect_offset_str (per_cu->sect_off));
9232 /* There can be 100s of TUs.
9233 Only print them in verbose mode. */
9234 debug_print_threshold = 2;
9235 }
9236 else
9237 {
9238 sprintf (buf, "CU at offset %s",
9239 sect_offset_str (per_cu->sect_off));
9240 debug_print_threshold = 1;
9241 }
9242
9243 if (dwarf_read_debug >= debug_print_threshold)
9244 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9245
9246 if (per_cu->is_debug_types)
9247 process_full_type_unit (per_cu, item.pretend_language);
9248 else
9249 process_full_comp_unit (per_cu, item.pretend_language);
9250
9251 if (dwarf_read_debug >= debug_print_threshold)
9252 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9253 }
9254
9255 item.per_cu->queued = 0;
9256 dwarf2_per_objfile->queue.pop ();
9257 }
9258
9259 if (dwarf_read_debug)
9260 {
9261 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9262 objfile_name (dwarf2_per_objfile->objfile));
9263 }
9264 }
9265
9266 /* Read in full symbols for PST, and anything it depends on. */
9267
9268 void
9269 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9270 {
9271 struct dwarf2_per_cu_data *per_cu;
9272
9273 if (readin)
9274 return;
9275
9276 read_dependencies (objfile);
9277
9278 per_cu = per_cu_data;
9279
9280 if (per_cu == NULL)
9281 {
9282 /* It's an include file, no symbols to read for it.
9283 Everything is in the parent symtab. */
9284 readin = true;
9285 return;
9286 }
9287
9288 dw2_do_instantiate_symtab (per_cu, false);
9289 }
9290
9291 /* Trivial hash function for die_info: the hash value of a DIE
9292 is its offset in .debug_info for this objfile. */
9293
9294 static hashval_t
9295 die_hash (const void *item)
9296 {
9297 const struct die_info *die = (const struct die_info *) item;
9298
9299 return to_underlying (die->sect_off);
9300 }
9301
9302 /* Trivial comparison function for die_info structures: two DIEs
9303 are equal if they have the same offset. */
9304
9305 static int
9306 die_eq (const void *item_lhs, const void *item_rhs)
9307 {
9308 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9309 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9310
9311 return die_lhs->sect_off == die_rhs->sect_off;
9312 }
9313
9314 /* Load the DIEs associated with PER_CU into memory. */
9315
9316 static void
9317 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9318 bool skip_partial,
9319 enum language pretend_language)
9320 {
9321 gdb_assert (! this_cu->is_debug_types);
9322
9323 cutu_reader reader (this_cu, NULL, 1, 1, skip_partial);
9324 if (reader.dummy_p)
9325 return;
9326
9327 struct dwarf2_cu *cu = reader.cu;
9328 const gdb_byte *info_ptr = reader.info_ptr;
9329
9330 gdb_assert (cu->die_hash == NULL);
9331 cu->die_hash =
9332 htab_create_alloc_ex (cu->header.length / 12,
9333 die_hash,
9334 die_eq,
9335 NULL,
9336 &cu->comp_unit_obstack,
9337 hashtab_obstack_allocate,
9338 dummy_obstack_deallocate);
9339
9340 if (reader.comp_unit_die->has_children)
9341 reader.comp_unit_die->child
9342 = read_die_and_siblings (&reader, reader.info_ptr,
9343 &info_ptr, reader.comp_unit_die);
9344 cu->dies = reader.comp_unit_die;
9345 /* comp_unit_die is not stored in die_hash, no need. */
9346
9347 /* We try not to read any attributes in this function, because not
9348 all CUs needed for references have been loaded yet, and symbol
9349 table processing isn't initialized. But we have to set the CU language,
9350 or we won't be able to build types correctly.
9351 Similarly, if we do not read the producer, we can not apply
9352 producer-specific interpretation. */
9353 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9354 }
9355
9356 /* Add a DIE to the delayed physname list. */
9357
9358 static void
9359 add_to_method_list (struct type *type, int fnfield_index, int index,
9360 const char *name, struct die_info *die,
9361 struct dwarf2_cu *cu)
9362 {
9363 struct delayed_method_info mi;
9364 mi.type = type;
9365 mi.fnfield_index = fnfield_index;
9366 mi.index = index;
9367 mi.name = name;
9368 mi.die = die;
9369 cu->method_list.push_back (mi);
9370 }
9371
9372 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9373 "const" / "volatile". If so, decrements LEN by the length of the
9374 modifier and return true. Otherwise return false. */
9375
9376 template<size_t N>
9377 static bool
9378 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9379 {
9380 size_t mod_len = sizeof (mod) - 1;
9381 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9382 {
9383 len -= mod_len;
9384 return true;
9385 }
9386 return false;
9387 }
9388
9389 /* Compute the physnames of any methods on the CU's method list.
9390
9391 The computation of method physnames is delayed in order to avoid the
9392 (bad) condition that one of the method's formal parameters is of an as yet
9393 incomplete type. */
9394
9395 static void
9396 compute_delayed_physnames (struct dwarf2_cu *cu)
9397 {
9398 /* Only C++ delays computing physnames. */
9399 if (cu->method_list.empty ())
9400 return;
9401 gdb_assert (cu->language == language_cplus);
9402
9403 for (const delayed_method_info &mi : cu->method_list)
9404 {
9405 const char *physname;
9406 struct fn_fieldlist *fn_flp
9407 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9408 physname = dwarf2_physname (mi.name, mi.die, cu);
9409 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9410 = physname ? physname : "";
9411
9412 /* Since there's no tag to indicate whether a method is a
9413 const/volatile overload, extract that information out of the
9414 demangled name. */
9415 if (physname != NULL)
9416 {
9417 size_t len = strlen (physname);
9418
9419 while (1)
9420 {
9421 if (physname[len] == ')') /* shortcut */
9422 break;
9423 else if (check_modifier (physname, len, " const"))
9424 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9425 else if (check_modifier (physname, len, " volatile"))
9426 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9427 else
9428 break;
9429 }
9430 }
9431 }
9432
9433 /* The list is no longer needed. */
9434 cu->method_list.clear ();
9435 }
9436
9437 /* Go objects should be embedded in a DW_TAG_module DIE,
9438 and it's not clear if/how imported objects will appear.
9439 To keep Go support simple until that's worked out,
9440 go back through what we've read and create something usable.
9441 We could do this while processing each DIE, and feels kinda cleaner,
9442 but that way is more invasive.
9443 This is to, for example, allow the user to type "p var" or "b main"
9444 without having to specify the package name, and allow lookups
9445 of module.object to work in contexts that use the expression
9446 parser. */
9447
9448 static void
9449 fixup_go_packaging (struct dwarf2_cu *cu)
9450 {
9451 gdb::unique_xmalloc_ptr<char> package_name;
9452 struct pending *list;
9453 int i;
9454
9455 for (list = *cu->get_builder ()->get_global_symbols ();
9456 list != NULL;
9457 list = list->next)
9458 {
9459 for (i = 0; i < list->nsyms; ++i)
9460 {
9461 struct symbol *sym = list->symbol[i];
9462
9463 if (sym->language () == language_go
9464 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9465 {
9466 gdb::unique_xmalloc_ptr<char> this_package_name
9467 (go_symbol_package_name (sym));
9468
9469 if (this_package_name == NULL)
9470 continue;
9471 if (package_name == NULL)
9472 package_name = std::move (this_package_name);
9473 else
9474 {
9475 struct objfile *objfile
9476 = cu->per_cu->dwarf2_per_objfile->objfile;
9477 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9478 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9479 (symbol_symtab (sym) != NULL
9480 ? symtab_to_filename_for_display
9481 (symbol_symtab (sym))
9482 : objfile_name (objfile)),
9483 this_package_name.get (), package_name.get ());
9484 }
9485 }
9486 }
9487 }
9488
9489 if (package_name != NULL)
9490 {
9491 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9492 const char *saved_package_name
9493 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9494 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9495 saved_package_name);
9496 struct symbol *sym;
9497
9498 sym = allocate_symbol (objfile);
9499 sym->set_language (language_go, &objfile->objfile_obstack);
9500 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9501 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9502 e.g., "main" finds the "main" module and not C's main(). */
9503 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9504 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9505 SYMBOL_TYPE (sym) = type;
9506
9507 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9508 }
9509 }
9510
9511 /* Allocate a fully-qualified name consisting of the two parts on the
9512 obstack. */
9513
9514 static const char *
9515 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9516 {
9517 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9518 }
9519
9520 /* A helper that allocates a struct discriminant_info to attach to a
9521 union type. */
9522
9523 static struct discriminant_info *
9524 alloc_discriminant_info (struct type *type, int discriminant_index,
9525 int default_index)
9526 {
9527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9528 gdb_assert (discriminant_index == -1
9529 || (discriminant_index >= 0
9530 && discriminant_index < TYPE_NFIELDS (type)));
9531 gdb_assert (default_index == -1
9532 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9533
9534 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9535
9536 struct discriminant_info *disc
9537 = ((struct discriminant_info *)
9538 TYPE_ZALLOC (type,
9539 offsetof (struct discriminant_info, discriminants)
9540 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9541 disc->default_index = default_index;
9542 disc->discriminant_index = discriminant_index;
9543
9544 struct dynamic_prop prop;
9545 prop.kind = PROP_UNDEFINED;
9546 prop.data.baton = disc;
9547
9548 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9549
9550 return disc;
9551 }
9552
9553 /* Some versions of rustc emitted enums in an unusual way.
9554
9555 Ordinary enums were emitted as unions. The first element of each
9556 structure in the union was named "RUST$ENUM$DISR". This element
9557 held the discriminant.
9558
9559 These versions of Rust also implemented the "non-zero"
9560 optimization. When the enum had two values, and one is empty and
9561 the other holds a pointer that cannot be zero, the pointer is used
9562 as the discriminant, with a zero value meaning the empty variant.
9563 Here, the union's first member is of the form
9564 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9565 where the fieldnos are the indices of the fields that should be
9566 traversed in order to find the field (which may be several fields deep)
9567 and the variantname is the name of the variant of the case when the
9568 field is zero.
9569
9570 This function recognizes whether TYPE is of one of these forms,
9571 and, if so, smashes it to be a variant type. */
9572
9573 static void
9574 quirk_rust_enum (struct type *type, struct objfile *objfile)
9575 {
9576 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9577
9578 /* We don't need to deal with empty enums. */
9579 if (TYPE_NFIELDS (type) == 0)
9580 return;
9581
9582 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9583 if (TYPE_NFIELDS (type) == 1
9584 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9585 {
9586 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9587
9588 /* Decode the field name to find the offset of the
9589 discriminant. */
9590 ULONGEST bit_offset = 0;
9591 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9592 while (name[0] >= '0' && name[0] <= '9')
9593 {
9594 char *tail;
9595 unsigned long index = strtoul (name, &tail, 10);
9596 name = tail;
9597 if (*name != '$'
9598 || index >= TYPE_NFIELDS (field_type)
9599 || (TYPE_FIELD_LOC_KIND (field_type, index)
9600 != FIELD_LOC_KIND_BITPOS))
9601 {
9602 complaint (_("Could not parse Rust enum encoding string \"%s\""
9603 "[in module %s]"),
9604 TYPE_FIELD_NAME (type, 0),
9605 objfile_name (objfile));
9606 return;
9607 }
9608 ++name;
9609
9610 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9611 field_type = TYPE_FIELD_TYPE (field_type, index);
9612 }
9613
9614 /* Make a union to hold the variants. */
9615 struct type *union_type = alloc_type (objfile);
9616 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9617 TYPE_NFIELDS (union_type) = 3;
9618 TYPE_FIELDS (union_type)
9619 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9620 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9621 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9622
9623 /* Put the discriminant must at index 0. */
9624 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9625 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9626 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9627 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9628
9629 /* The order of fields doesn't really matter, so put the real
9630 field at index 1 and the data-less field at index 2. */
9631 struct discriminant_info *disc
9632 = alloc_discriminant_info (union_type, 0, 1);
9633 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9634 TYPE_FIELD_NAME (union_type, 1)
9635 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9636 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9637 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9638 TYPE_FIELD_NAME (union_type, 1));
9639
9640 const char *dataless_name
9641 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9642 name);
9643 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9644 dataless_name);
9645 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9646 /* NAME points into the original discriminant name, which
9647 already has the correct lifetime. */
9648 TYPE_FIELD_NAME (union_type, 2) = name;
9649 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9650 disc->discriminants[2] = 0;
9651
9652 /* Smash this type to be a structure type. We have to do this
9653 because the type has already been recorded. */
9654 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9655 TYPE_NFIELDS (type) = 1;
9656 TYPE_FIELDS (type)
9657 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9658
9659 /* Install the variant part. */
9660 TYPE_FIELD_TYPE (type, 0) = union_type;
9661 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9662 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9663 }
9664 /* A union with a single anonymous field is probably an old-style
9665 univariant enum. */
9666 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9667 {
9668 /* Smash this type to be a structure type. We have to do this
9669 because the type has already been recorded. */
9670 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9671
9672 /* Make a union to hold the variants. */
9673 struct type *union_type = alloc_type (objfile);
9674 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9675 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9676 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9677 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9678 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9679
9680 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9681 const char *variant_name
9682 = rust_last_path_segment (TYPE_NAME (field_type));
9683 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9684 TYPE_NAME (field_type)
9685 = rust_fully_qualify (&objfile->objfile_obstack,
9686 TYPE_NAME (type), variant_name);
9687
9688 /* Install the union in the outer struct type. */
9689 TYPE_NFIELDS (type) = 1;
9690 TYPE_FIELDS (type)
9691 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9692 TYPE_FIELD_TYPE (type, 0) = union_type;
9693 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9694 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9695
9696 alloc_discriminant_info (union_type, -1, 0);
9697 }
9698 else
9699 {
9700 struct type *disr_type = nullptr;
9701 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9702 {
9703 disr_type = TYPE_FIELD_TYPE (type, i);
9704
9705 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9706 {
9707 /* All fields of a true enum will be structs. */
9708 return;
9709 }
9710 else if (TYPE_NFIELDS (disr_type) == 0)
9711 {
9712 /* Could be data-less variant, so keep going. */
9713 disr_type = nullptr;
9714 }
9715 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9716 "RUST$ENUM$DISR") != 0)
9717 {
9718 /* Not a Rust enum. */
9719 return;
9720 }
9721 else
9722 {
9723 /* Found one. */
9724 break;
9725 }
9726 }
9727
9728 /* If we got here without a discriminant, then it's probably
9729 just a union. */
9730 if (disr_type == nullptr)
9731 return;
9732
9733 /* Smash this type to be a structure type. We have to do this
9734 because the type has already been recorded. */
9735 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9736
9737 /* Make a union to hold the variants. */
9738 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9739 struct type *union_type = alloc_type (objfile);
9740 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9741 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9742 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9743 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9744 TYPE_FIELDS (union_type)
9745 = (struct field *) TYPE_ZALLOC (union_type,
9746 (TYPE_NFIELDS (union_type)
9747 * sizeof (struct field)));
9748
9749 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9750 TYPE_NFIELDS (type) * sizeof (struct field));
9751
9752 /* Install the discriminant at index 0 in the union. */
9753 TYPE_FIELD (union_type, 0) = *disr_field;
9754 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9755 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9756
9757 /* Install the union in the outer struct type. */
9758 TYPE_FIELD_TYPE (type, 0) = union_type;
9759 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9760 TYPE_NFIELDS (type) = 1;
9761
9762 /* Set the size and offset of the union type. */
9763 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9764
9765 /* We need a way to find the correct discriminant given a
9766 variant name. For convenience we build a map here. */
9767 struct type *enum_type = FIELD_TYPE (*disr_field);
9768 std::unordered_map<std::string, ULONGEST> discriminant_map;
9769 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9770 {
9771 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9772 {
9773 const char *name
9774 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9775 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9776 }
9777 }
9778
9779 int n_fields = TYPE_NFIELDS (union_type);
9780 struct discriminant_info *disc
9781 = alloc_discriminant_info (union_type, 0, -1);
9782 /* Skip the discriminant here. */
9783 for (int i = 1; i < n_fields; ++i)
9784 {
9785 /* Find the final word in the name of this variant's type.
9786 That name can be used to look up the correct
9787 discriminant. */
9788 const char *variant_name
9789 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9790 i)));
9791
9792 auto iter = discriminant_map.find (variant_name);
9793 if (iter != discriminant_map.end ())
9794 disc->discriminants[i] = iter->second;
9795
9796 /* Remove the discriminant field, if it exists. */
9797 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9798 if (TYPE_NFIELDS (sub_type) > 0)
9799 {
9800 --TYPE_NFIELDS (sub_type);
9801 ++TYPE_FIELDS (sub_type);
9802 }
9803 TYPE_FIELD_NAME (union_type, i) = variant_name;
9804 TYPE_NAME (sub_type)
9805 = rust_fully_qualify (&objfile->objfile_obstack,
9806 TYPE_NAME (type), variant_name);
9807 }
9808 }
9809 }
9810
9811 /* Rewrite some Rust unions to be structures with variants parts. */
9812
9813 static void
9814 rust_union_quirks (struct dwarf2_cu *cu)
9815 {
9816 gdb_assert (cu->language == language_rust);
9817 for (type *type_ : cu->rust_unions)
9818 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9819 /* We don't need this any more. */
9820 cu->rust_unions.clear ();
9821 }
9822
9823 /* Return the symtab for PER_CU. This works properly regardless of
9824 whether we're using the index or psymtabs. */
9825
9826 static struct compunit_symtab *
9827 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9828 {
9829 return (per_cu->dwarf2_per_objfile->using_index
9830 ? per_cu->v.quick->compunit_symtab
9831 : per_cu->v.psymtab->compunit_symtab);
9832 }
9833
9834 /* A helper function for computing the list of all symbol tables
9835 included by PER_CU. */
9836
9837 static void
9838 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9839 htab_t all_children, htab_t all_type_symtabs,
9840 struct dwarf2_per_cu_data *per_cu,
9841 struct compunit_symtab *immediate_parent)
9842 {
9843 void **slot;
9844 struct compunit_symtab *cust;
9845
9846 slot = htab_find_slot (all_children, per_cu, INSERT);
9847 if (*slot != NULL)
9848 {
9849 /* This inclusion and its children have been processed. */
9850 return;
9851 }
9852
9853 *slot = per_cu;
9854 /* Only add a CU if it has a symbol table. */
9855 cust = get_compunit_symtab (per_cu);
9856 if (cust != NULL)
9857 {
9858 /* If this is a type unit only add its symbol table if we haven't
9859 seen it yet (type unit per_cu's can share symtabs). */
9860 if (per_cu->is_debug_types)
9861 {
9862 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9863 if (*slot == NULL)
9864 {
9865 *slot = cust;
9866 result->push_back (cust);
9867 if (cust->user == NULL)
9868 cust->user = immediate_parent;
9869 }
9870 }
9871 else
9872 {
9873 result->push_back (cust);
9874 if (cust->user == NULL)
9875 cust->user = immediate_parent;
9876 }
9877 }
9878
9879 if (!per_cu->imported_symtabs_empty ())
9880 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9881 {
9882 recursively_compute_inclusions (result, all_children,
9883 all_type_symtabs, ptr, cust);
9884 }
9885 }
9886
9887 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9888 PER_CU. */
9889
9890 static void
9891 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9892 {
9893 gdb_assert (! per_cu->is_debug_types);
9894
9895 if (!per_cu->imported_symtabs_empty ())
9896 {
9897 int len;
9898 std::vector<compunit_symtab *> result_symtabs;
9899 htab_t all_children, all_type_symtabs;
9900 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9901
9902 /* If we don't have a symtab, we can just skip this case. */
9903 if (cust == NULL)
9904 return;
9905
9906 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9907 NULL, xcalloc, xfree);
9908 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9909 NULL, xcalloc, xfree);
9910
9911 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9912 {
9913 recursively_compute_inclusions (&result_symtabs, all_children,
9914 all_type_symtabs, ptr, cust);
9915 }
9916
9917 /* Now we have a transitive closure of all the included symtabs. */
9918 len = result_symtabs.size ();
9919 cust->includes
9920 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9921 struct compunit_symtab *, len + 1);
9922 memcpy (cust->includes, result_symtabs.data (),
9923 len * sizeof (compunit_symtab *));
9924 cust->includes[len] = NULL;
9925
9926 htab_delete (all_children);
9927 htab_delete (all_type_symtabs);
9928 }
9929 }
9930
9931 /* Compute the 'includes' field for the symtabs of all the CUs we just
9932 read. */
9933
9934 static void
9935 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9936 {
9937 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9938 {
9939 if (! iter->is_debug_types)
9940 compute_compunit_symtab_includes (iter);
9941 }
9942
9943 dwarf2_per_objfile->just_read_cus.clear ();
9944 }
9945
9946 /* Generate full symbol information for PER_CU, whose DIEs have
9947 already been loaded into memory. */
9948
9949 static void
9950 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9951 enum language pretend_language)
9952 {
9953 struct dwarf2_cu *cu = per_cu->cu;
9954 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9955 struct objfile *objfile = dwarf2_per_objfile->objfile;
9956 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9957 CORE_ADDR lowpc, highpc;
9958 struct compunit_symtab *cust;
9959 CORE_ADDR baseaddr;
9960 struct block *static_block;
9961 CORE_ADDR addr;
9962
9963 baseaddr = objfile->text_section_offset ();
9964
9965 /* Clear the list here in case something was left over. */
9966 cu->method_list.clear ();
9967
9968 cu->language = pretend_language;
9969 cu->language_defn = language_def (cu->language);
9970
9971 /* Do line number decoding in read_file_scope () */
9972 process_die (cu->dies, cu);
9973
9974 /* For now fudge the Go package. */
9975 if (cu->language == language_go)
9976 fixup_go_packaging (cu);
9977
9978 /* Now that we have processed all the DIEs in the CU, all the types
9979 should be complete, and it should now be safe to compute all of the
9980 physnames. */
9981 compute_delayed_physnames (cu);
9982
9983 if (cu->language == language_rust)
9984 rust_union_quirks (cu);
9985
9986 /* Some compilers don't define a DW_AT_high_pc attribute for the
9987 compilation unit. If the DW_AT_high_pc is missing, synthesize
9988 it, by scanning the DIE's below the compilation unit. */
9989 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9990
9991 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9992 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9993
9994 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9995 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9996 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9997 addrmap to help ensure it has an accurate map of pc values belonging to
9998 this comp unit. */
9999 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10000
10001 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10002 SECT_OFF_TEXT (objfile),
10003 0);
10004
10005 if (cust != NULL)
10006 {
10007 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10008
10009 /* Set symtab language to language from DW_AT_language. If the
10010 compilation is from a C file generated by language preprocessors, do
10011 not set the language if it was already deduced by start_subfile. */
10012 if (!(cu->language == language_c
10013 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10014 COMPUNIT_FILETABS (cust)->language = cu->language;
10015
10016 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10017 produce DW_AT_location with location lists but it can be possibly
10018 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10019 there were bugs in prologue debug info, fixed later in GCC-4.5
10020 by "unwind info for epilogues" patch (which is not directly related).
10021
10022 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10023 needed, it would be wrong due to missing DW_AT_producer there.
10024
10025 Still one can confuse GDB by using non-standard GCC compilation
10026 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10027 */
10028 if (cu->has_loclist && gcc_4_minor >= 5)
10029 cust->locations_valid = 1;
10030
10031 if (gcc_4_minor >= 5)
10032 cust->epilogue_unwind_valid = 1;
10033
10034 cust->call_site_htab = cu->call_site_htab;
10035 }
10036
10037 if (dwarf2_per_objfile->using_index)
10038 per_cu->v.quick->compunit_symtab = cust;
10039 else
10040 {
10041 dwarf2_psymtab *pst = per_cu->v.psymtab;
10042 pst->compunit_symtab = cust;
10043 pst->readin = true;
10044 }
10045
10046 /* Push it for inclusion processing later. */
10047 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10048
10049 /* Not needed any more. */
10050 cu->reset_builder ();
10051 }
10052
10053 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10054 already been loaded into memory. */
10055
10056 static void
10057 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10058 enum language pretend_language)
10059 {
10060 struct dwarf2_cu *cu = per_cu->cu;
10061 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10062 struct objfile *objfile = dwarf2_per_objfile->objfile;
10063 struct compunit_symtab *cust;
10064 struct signatured_type *sig_type;
10065
10066 gdb_assert (per_cu->is_debug_types);
10067 sig_type = (struct signatured_type *) per_cu;
10068
10069 /* Clear the list here in case something was left over. */
10070 cu->method_list.clear ();
10071
10072 cu->language = pretend_language;
10073 cu->language_defn = language_def (cu->language);
10074
10075 /* The symbol tables are set up in read_type_unit_scope. */
10076 process_die (cu->dies, cu);
10077
10078 /* For now fudge the Go package. */
10079 if (cu->language == language_go)
10080 fixup_go_packaging (cu);
10081
10082 /* Now that we have processed all the DIEs in the CU, all the types
10083 should be complete, and it should now be safe to compute all of the
10084 physnames. */
10085 compute_delayed_physnames (cu);
10086
10087 if (cu->language == language_rust)
10088 rust_union_quirks (cu);
10089
10090 /* TUs share symbol tables.
10091 If this is the first TU to use this symtab, complete the construction
10092 of it with end_expandable_symtab. Otherwise, complete the addition of
10093 this TU's symbols to the existing symtab. */
10094 if (sig_type->type_unit_group->compunit_symtab == NULL)
10095 {
10096 buildsym_compunit *builder = cu->get_builder ();
10097 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10098 sig_type->type_unit_group->compunit_symtab = cust;
10099
10100 if (cust != NULL)
10101 {
10102 /* Set symtab language to language from DW_AT_language. If the
10103 compilation is from a C file generated by language preprocessors,
10104 do not set the language if it was already deduced by
10105 start_subfile. */
10106 if (!(cu->language == language_c
10107 && COMPUNIT_FILETABS (cust)->language != language_c))
10108 COMPUNIT_FILETABS (cust)->language = cu->language;
10109 }
10110 }
10111 else
10112 {
10113 cu->get_builder ()->augment_type_symtab ();
10114 cust = sig_type->type_unit_group->compunit_symtab;
10115 }
10116
10117 if (dwarf2_per_objfile->using_index)
10118 per_cu->v.quick->compunit_symtab = cust;
10119 else
10120 {
10121 dwarf2_psymtab *pst = per_cu->v.psymtab;
10122 pst->compunit_symtab = cust;
10123 pst->readin = true;
10124 }
10125
10126 /* Not needed any more. */
10127 cu->reset_builder ();
10128 }
10129
10130 /* Process an imported unit DIE. */
10131
10132 static void
10133 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10134 {
10135 struct attribute *attr;
10136
10137 /* For now we don't handle imported units in type units. */
10138 if (cu->per_cu->is_debug_types)
10139 {
10140 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10141 " supported in type units [in module %s]"),
10142 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10143 }
10144
10145 attr = dwarf2_attr (die, DW_AT_import, cu);
10146 if (attr != NULL)
10147 {
10148 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10149 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10150 dwarf2_per_cu_data *per_cu
10151 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10152 cu->per_cu->dwarf2_per_objfile);
10153
10154 /* If necessary, add it to the queue and load its DIEs. */
10155 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10156 load_full_comp_unit (per_cu, false, cu->language);
10157
10158 cu->per_cu->imported_symtabs_push (per_cu);
10159 }
10160 }
10161
10162 /* RAII object that represents a process_die scope: i.e.,
10163 starts/finishes processing a DIE. */
10164 class process_die_scope
10165 {
10166 public:
10167 process_die_scope (die_info *die, dwarf2_cu *cu)
10168 : m_die (die), m_cu (cu)
10169 {
10170 /* We should only be processing DIEs not already in process. */
10171 gdb_assert (!m_die->in_process);
10172 m_die->in_process = true;
10173 }
10174
10175 ~process_die_scope ()
10176 {
10177 m_die->in_process = false;
10178
10179 /* If we're done processing the DIE for the CU that owns the line
10180 header, we don't need the line header anymore. */
10181 if (m_cu->line_header_die_owner == m_die)
10182 {
10183 delete m_cu->line_header;
10184 m_cu->line_header = NULL;
10185 m_cu->line_header_die_owner = NULL;
10186 }
10187 }
10188
10189 private:
10190 die_info *m_die;
10191 dwarf2_cu *m_cu;
10192 };
10193
10194 /* Process a die and its children. */
10195
10196 static void
10197 process_die (struct die_info *die, struct dwarf2_cu *cu)
10198 {
10199 process_die_scope scope (die, cu);
10200
10201 switch (die->tag)
10202 {
10203 case DW_TAG_padding:
10204 break;
10205 case DW_TAG_compile_unit:
10206 case DW_TAG_partial_unit:
10207 read_file_scope (die, cu);
10208 break;
10209 case DW_TAG_type_unit:
10210 read_type_unit_scope (die, cu);
10211 break;
10212 case DW_TAG_subprogram:
10213 /* Nested subprograms in Fortran get a prefix. */
10214 if (cu->language == language_fortran
10215 && die->parent != NULL
10216 && die->parent->tag == DW_TAG_subprogram)
10217 cu->processing_has_namespace_info = true;
10218 /* Fall through. */
10219 case DW_TAG_inlined_subroutine:
10220 read_func_scope (die, cu);
10221 break;
10222 case DW_TAG_lexical_block:
10223 case DW_TAG_try_block:
10224 case DW_TAG_catch_block:
10225 read_lexical_block_scope (die, cu);
10226 break;
10227 case DW_TAG_call_site:
10228 case DW_TAG_GNU_call_site:
10229 read_call_site_scope (die, cu);
10230 break;
10231 case DW_TAG_class_type:
10232 case DW_TAG_interface_type:
10233 case DW_TAG_structure_type:
10234 case DW_TAG_union_type:
10235 process_structure_scope (die, cu);
10236 break;
10237 case DW_TAG_enumeration_type:
10238 process_enumeration_scope (die, cu);
10239 break;
10240
10241 /* These dies have a type, but processing them does not create
10242 a symbol or recurse to process the children. Therefore we can
10243 read them on-demand through read_type_die. */
10244 case DW_TAG_subroutine_type:
10245 case DW_TAG_set_type:
10246 case DW_TAG_array_type:
10247 case DW_TAG_pointer_type:
10248 case DW_TAG_ptr_to_member_type:
10249 case DW_TAG_reference_type:
10250 case DW_TAG_rvalue_reference_type:
10251 case DW_TAG_string_type:
10252 break;
10253
10254 case DW_TAG_base_type:
10255 case DW_TAG_subrange_type:
10256 case DW_TAG_typedef:
10257 /* Add a typedef symbol for the type definition, if it has a
10258 DW_AT_name. */
10259 new_symbol (die, read_type_die (die, cu), cu);
10260 break;
10261 case DW_TAG_common_block:
10262 read_common_block (die, cu);
10263 break;
10264 case DW_TAG_common_inclusion:
10265 break;
10266 case DW_TAG_namespace:
10267 cu->processing_has_namespace_info = true;
10268 read_namespace (die, cu);
10269 break;
10270 case DW_TAG_module:
10271 cu->processing_has_namespace_info = true;
10272 read_module (die, cu);
10273 break;
10274 case DW_TAG_imported_declaration:
10275 cu->processing_has_namespace_info = true;
10276 if (read_namespace_alias (die, cu))
10277 break;
10278 /* The declaration is not a global namespace alias. */
10279 /* Fall through. */
10280 case DW_TAG_imported_module:
10281 cu->processing_has_namespace_info = true;
10282 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10283 || cu->language != language_fortran))
10284 complaint (_("Tag '%s' has unexpected children"),
10285 dwarf_tag_name (die->tag));
10286 read_import_statement (die, cu);
10287 break;
10288
10289 case DW_TAG_imported_unit:
10290 process_imported_unit_die (die, cu);
10291 break;
10292
10293 case DW_TAG_variable:
10294 read_variable (die, cu);
10295 break;
10296
10297 default:
10298 new_symbol (die, NULL, cu);
10299 break;
10300 }
10301 }
10302 \f
10303 /* DWARF name computation. */
10304
10305 /* A helper function for dwarf2_compute_name which determines whether DIE
10306 needs to have the name of the scope prepended to the name listed in the
10307 die. */
10308
10309 static int
10310 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10311 {
10312 struct attribute *attr;
10313
10314 switch (die->tag)
10315 {
10316 case DW_TAG_namespace:
10317 case DW_TAG_typedef:
10318 case DW_TAG_class_type:
10319 case DW_TAG_interface_type:
10320 case DW_TAG_structure_type:
10321 case DW_TAG_union_type:
10322 case DW_TAG_enumeration_type:
10323 case DW_TAG_enumerator:
10324 case DW_TAG_subprogram:
10325 case DW_TAG_inlined_subroutine:
10326 case DW_TAG_member:
10327 case DW_TAG_imported_declaration:
10328 return 1;
10329
10330 case DW_TAG_variable:
10331 case DW_TAG_constant:
10332 /* We only need to prefix "globally" visible variables. These include
10333 any variable marked with DW_AT_external or any variable that
10334 lives in a namespace. [Variables in anonymous namespaces
10335 require prefixing, but they are not DW_AT_external.] */
10336
10337 if (dwarf2_attr (die, DW_AT_specification, cu))
10338 {
10339 struct dwarf2_cu *spec_cu = cu;
10340
10341 return die_needs_namespace (die_specification (die, &spec_cu),
10342 spec_cu);
10343 }
10344
10345 attr = dwarf2_attr (die, DW_AT_external, cu);
10346 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10347 && die->parent->tag != DW_TAG_module)
10348 return 0;
10349 /* A variable in a lexical block of some kind does not need a
10350 namespace, even though in C++ such variables may be external
10351 and have a mangled name. */
10352 if (die->parent->tag == DW_TAG_lexical_block
10353 || die->parent->tag == DW_TAG_try_block
10354 || die->parent->tag == DW_TAG_catch_block
10355 || die->parent->tag == DW_TAG_subprogram)
10356 return 0;
10357 return 1;
10358
10359 default:
10360 return 0;
10361 }
10362 }
10363
10364 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10365 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10366 defined for the given DIE. */
10367
10368 static struct attribute *
10369 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10370 {
10371 struct attribute *attr;
10372
10373 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10374 if (attr == NULL)
10375 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10376
10377 return attr;
10378 }
10379
10380 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10381 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10382 defined for the given DIE. */
10383
10384 static const char *
10385 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10386 {
10387 const char *linkage_name;
10388
10389 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10390 if (linkage_name == NULL)
10391 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10392
10393 return linkage_name;
10394 }
10395
10396 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10397 compute the physname for the object, which include a method's:
10398 - formal parameters (C++),
10399 - receiver type (Go),
10400
10401 The term "physname" is a bit confusing.
10402 For C++, for example, it is the demangled name.
10403 For Go, for example, it's the mangled name.
10404
10405 For Ada, return the DIE's linkage name rather than the fully qualified
10406 name. PHYSNAME is ignored..
10407
10408 The result is allocated on the objfile_obstack and canonicalized. */
10409
10410 static const char *
10411 dwarf2_compute_name (const char *name,
10412 struct die_info *die, struct dwarf2_cu *cu,
10413 int physname)
10414 {
10415 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10416
10417 if (name == NULL)
10418 name = dwarf2_name (die, cu);
10419
10420 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10421 but otherwise compute it by typename_concat inside GDB.
10422 FIXME: Actually this is not really true, or at least not always true.
10423 It's all very confusing. compute_and_set_names doesn't try to demangle
10424 Fortran names because there is no mangling standard. So new_symbol
10425 will set the demangled name to the result of dwarf2_full_name, and it is
10426 the demangled name that GDB uses if it exists. */
10427 if (cu->language == language_ada
10428 || (cu->language == language_fortran && physname))
10429 {
10430 /* For Ada unit, we prefer the linkage name over the name, as
10431 the former contains the exported name, which the user expects
10432 to be able to reference. Ideally, we want the user to be able
10433 to reference this entity using either natural or linkage name,
10434 but we haven't started looking at this enhancement yet. */
10435 const char *linkage_name = dw2_linkage_name (die, cu);
10436
10437 if (linkage_name != NULL)
10438 return linkage_name;
10439 }
10440
10441 /* These are the only languages we know how to qualify names in. */
10442 if (name != NULL
10443 && (cu->language == language_cplus
10444 || cu->language == language_fortran || cu->language == language_d
10445 || cu->language == language_rust))
10446 {
10447 if (die_needs_namespace (die, cu))
10448 {
10449 const char *prefix;
10450 const char *canonical_name = NULL;
10451
10452 string_file buf;
10453
10454 prefix = determine_prefix (die, cu);
10455 if (*prefix != '\0')
10456 {
10457 gdb::unique_xmalloc_ptr<char> prefixed_name
10458 (typename_concat (NULL, prefix, name, physname, cu));
10459
10460 buf.puts (prefixed_name.get ());
10461 }
10462 else
10463 buf.puts (name);
10464
10465 /* Template parameters may be specified in the DIE's DW_AT_name, or
10466 as children with DW_TAG_template_type_param or
10467 DW_TAG_value_type_param. If the latter, add them to the name
10468 here. If the name already has template parameters, then
10469 skip this step; some versions of GCC emit both, and
10470 it is more efficient to use the pre-computed name.
10471
10472 Something to keep in mind about this process: it is very
10473 unlikely, or in some cases downright impossible, to produce
10474 something that will match the mangled name of a function.
10475 If the definition of the function has the same debug info,
10476 we should be able to match up with it anyway. But fallbacks
10477 using the minimal symbol, for instance to find a method
10478 implemented in a stripped copy of libstdc++, will not work.
10479 If we do not have debug info for the definition, we will have to
10480 match them up some other way.
10481
10482 When we do name matching there is a related problem with function
10483 templates; two instantiated function templates are allowed to
10484 differ only by their return types, which we do not add here. */
10485
10486 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10487 {
10488 struct attribute *attr;
10489 struct die_info *child;
10490 int first = 1;
10491
10492 die->building_fullname = 1;
10493
10494 for (child = die->child; child != NULL; child = child->sibling)
10495 {
10496 struct type *type;
10497 LONGEST value;
10498 const gdb_byte *bytes;
10499 struct dwarf2_locexpr_baton *baton;
10500 struct value *v;
10501
10502 if (child->tag != DW_TAG_template_type_param
10503 && child->tag != DW_TAG_template_value_param)
10504 continue;
10505
10506 if (first)
10507 {
10508 buf.puts ("<");
10509 first = 0;
10510 }
10511 else
10512 buf.puts (", ");
10513
10514 attr = dwarf2_attr (child, DW_AT_type, cu);
10515 if (attr == NULL)
10516 {
10517 complaint (_("template parameter missing DW_AT_type"));
10518 buf.puts ("UNKNOWN_TYPE");
10519 continue;
10520 }
10521 type = die_type (child, cu);
10522
10523 if (child->tag == DW_TAG_template_type_param)
10524 {
10525 c_print_type (type, "", &buf, -1, 0, cu->language,
10526 &type_print_raw_options);
10527 continue;
10528 }
10529
10530 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10531 if (attr == NULL)
10532 {
10533 complaint (_("template parameter missing "
10534 "DW_AT_const_value"));
10535 buf.puts ("UNKNOWN_VALUE");
10536 continue;
10537 }
10538
10539 dwarf2_const_value_attr (attr, type, name,
10540 &cu->comp_unit_obstack, cu,
10541 &value, &bytes, &baton);
10542
10543 if (TYPE_NOSIGN (type))
10544 /* GDB prints characters as NUMBER 'CHAR'. If that's
10545 changed, this can use value_print instead. */
10546 c_printchar (value, type, &buf);
10547 else
10548 {
10549 struct value_print_options opts;
10550
10551 if (baton != NULL)
10552 v = dwarf2_evaluate_loc_desc (type, NULL,
10553 baton->data,
10554 baton->size,
10555 baton->per_cu);
10556 else if (bytes != NULL)
10557 {
10558 v = allocate_value (type);
10559 memcpy (value_contents_writeable (v), bytes,
10560 TYPE_LENGTH (type));
10561 }
10562 else
10563 v = value_from_longest (type, value);
10564
10565 /* Specify decimal so that we do not depend on
10566 the radix. */
10567 get_formatted_print_options (&opts, 'd');
10568 opts.raw = 1;
10569 value_print (v, &buf, &opts);
10570 release_value (v);
10571 }
10572 }
10573
10574 die->building_fullname = 0;
10575
10576 if (!first)
10577 {
10578 /* Close the argument list, with a space if necessary
10579 (nested templates). */
10580 if (!buf.empty () && buf.string ().back () == '>')
10581 buf.puts (" >");
10582 else
10583 buf.puts (">");
10584 }
10585 }
10586
10587 /* For C++ methods, append formal parameter type
10588 information, if PHYSNAME. */
10589
10590 if (physname && die->tag == DW_TAG_subprogram
10591 && cu->language == language_cplus)
10592 {
10593 struct type *type = read_type_die (die, cu);
10594
10595 c_type_print_args (type, &buf, 1, cu->language,
10596 &type_print_raw_options);
10597
10598 if (cu->language == language_cplus)
10599 {
10600 /* Assume that an artificial first parameter is
10601 "this", but do not crash if it is not. RealView
10602 marks unnamed (and thus unused) parameters as
10603 artificial; there is no way to differentiate
10604 the two cases. */
10605 if (TYPE_NFIELDS (type) > 0
10606 && TYPE_FIELD_ARTIFICIAL (type, 0)
10607 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10608 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10609 0))))
10610 buf.puts (" const");
10611 }
10612 }
10613
10614 const std::string &intermediate_name = buf.string ();
10615
10616 if (cu->language == language_cplus)
10617 canonical_name
10618 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10619 &objfile->per_bfd->storage_obstack);
10620
10621 /* If we only computed INTERMEDIATE_NAME, or if
10622 INTERMEDIATE_NAME is already canonical, then we need to
10623 copy it to the appropriate obstack. */
10624 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10625 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10626 intermediate_name);
10627 else
10628 name = canonical_name;
10629 }
10630 }
10631
10632 return name;
10633 }
10634
10635 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10636 If scope qualifiers are appropriate they will be added. The result
10637 will be allocated on the storage_obstack, or NULL if the DIE does
10638 not have a name. NAME may either be from a previous call to
10639 dwarf2_name or NULL.
10640
10641 The output string will be canonicalized (if C++). */
10642
10643 static const char *
10644 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10645 {
10646 return dwarf2_compute_name (name, die, cu, 0);
10647 }
10648
10649 /* Construct a physname for the given DIE in CU. NAME may either be
10650 from a previous call to dwarf2_name or NULL. The result will be
10651 allocated on the objfile_objstack or NULL if the DIE does not have a
10652 name.
10653
10654 The output string will be canonicalized (if C++). */
10655
10656 static const char *
10657 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10658 {
10659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10660 const char *retval, *mangled = NULL, *canon = NULL;
10661 int need_copy = 1;
10662
10663 /* In this case dwarf2_compute_name is just a shortcut not building anything
10664 on its own. */
10665 if (!die_needs_namespace (die, cu))
10666 return dwarf2_compute_name (name, die, cu, 1);
10667
10668 mangled = dw2_linkage_name (die, cu);
10669
10670 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10671 See https://github.com/rust-lang/rust/issues/32925. */
10672 if (cu->language == language_rust && mangled != NULL
10673 && strchr (mangled, '{') != NULL)
10674 mangled = NULL;
10675
10676 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10677 has computed. */
10678 gdb::unique_xmalloc_ptr<char> demangled;
10679 if (mangled != NULL)
10680 {
10681
10682 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10683 {
10684 /* Do nothing (do not demangle the symbol name). */
10685 }
10686 else if (cu->language == language_go)
10687 {
10688 /* This is a lie, but we already lie to the caller new_symbol.
10689 new_symbol assumes we return the mangled name.
10690 This just undoes that lie until things are cleaned up. */
10691 }
10692 else
10693 {
10694 /* Use DMGL_RET_DROP for C++ template functions to suppress
10695 their return type. It is easier for GDB users to search
10696 for such functions as `name(params)' than `long name(params)'.
10697 In such case the minimal symbol names do not match the full
10698 symbol names but for template functions there is never a need
10699 to look up their definition from their declaration so
10700 the only disadvantage remains the minimal symbol variant
10701 `long name(params)' does not have the proper inferior type. */
10702 demangled.reset (gdb_demangle (mangled,
10703 (DMGL_PARAMS | DMGL_ANSI
10704 | DMGL_RET_DROP)));
10705 }
10706 if (demangled)
10707 canon = demangled.get ();
10708 else
10709 {
10710 canon = mangled;
10711 need_copy = 0;
10712 }
10713 }
10714
10715 if (canon == NULL || check_physname)
10716 {
10717 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10718
10719 if (canon != NULL && strcmp (physname, canon) != 0)
10720 {
10721 /* It may not mean a bug in GDB. The compiler could also
10722 compute DW_AT_linkage_name incorrectly. But in such case
10723 GDB would need to be bug-to-bug compatible. */
10724
10725 complaint (_("Computed physname <%s> does not match demangled <%s> "
10726 "(from linkage <%s>) - DIE at %s [in module %s]"),
10727 physname, canon, mangled, sect_offset_str (die->sect_off),
10728 objfile_name (objfile));
10729
10730 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10731 is available here - over computed PHYSNAME. It is safer
10732 against both buggy GDB and buggy compilers. */
10733
10734 retval = canon;
10735 }
10736 else
10737 {
10738 retval = physname;
10739 need_copy = 0;
10740 }
10741 }
10742 else
10743 retval = canon;
10744
10745 if (need_copy)
10746 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10747
10748 return retval;
10749 }
10750
10751 /* Inspect DIE in CU for a namespace alias. If one exists, record
10752 a new symbol for it.
10753
10754 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10755
10756 static int
10757 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10758 {
10759 struct attribute *attr;
10760
10761 /* If the die does not have a name, this is not a namespace
10762 alias. */
10763 attr = dwarf2_attr (die, DW_AT_name, cu);
10764 if (attr != NULL)
10765 {
10766 int num;
10767 struct die_info *d = die;
10768 struct dwarf2_cu *imported_cu = cu;
10769
10770 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10771 keep inspecting DIEs until we hit the underlying import. */
10772 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10773 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10774 {
10775 attr = dwarf2_attr (d, DW_AT_import, cu);
10776 if (attr == NULL)
10777 break;
10778
10779 d = follow_die_ref (d, attr, &imported_cu);
10780 if (d->tag != DW_TAG_imported_declaration)
10781 break;
10782 }
10783
10784 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10785 {
10786 complaint (_("DIE at %s has too many recursively imported "
10787 "declarations"), sect_offset_str (d->sect_off));
10788 return 0;
10789 }
10790
10791 if (attr != NULL)
10792 {
10793 struct type *type;
10794 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10795
10796 type = get_die_type_at_offset (sect_off, cu->per_cu);
10797 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10798 {
10799 /* This declaration is a global namespace alias. Add
10800 a symbol for it whose type is the aliased namespace. */
10801 new_symbol (die, type, cu);
10802 return 1;
10803 }
10804 }
10805 }
10806
10807 return 0;
10808 }
10809
10810 /* Return the using directives repository (global or local?) to use in the
10811 current context for CU.
10812
10813 For Ada, imported declarations can materialize renamings, which *may* be
10814 global. However it is impossible (for now?) in DWARF to distinguish
10815 "external" imported declarations and "static" ones. As all imported
10816 declarations seem to be static in all other languages, make them all CU-wide
10817 global only in Ada. */
10818
10819 static struct using_direct **
10820 using_directives (struct dwarf2_cu *cu)
10821 {
10822 if (cu->language == language_ada
10823 && cu->get_builder ()->outermost_context_p ())
10824 return cu->get_builder ()->get_global_using_directives ();
10825 else
10826 return cu->get_builder ()->get_local_using_directives ();
10827 }
10828
10829 /* Read the import statement specified by the given die and record it. */
10830
10831 static void
10832 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10833 {
10834 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10835 struct attribute *import_attr;
10836 struct die_info *imported_die, *child_die;
10837 struct dwarf2_cu *imported_cu;
10838 const char *imported_name;
10839 const char *imported_name_prefix;
10840 const char *canonical_name;
10841 const char *import_alias;
10842 const char *imported_declaration = NULL;
10843 const char *import_prefix;
10844 std::vector<const char *> excludes;
10845
10846 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10847 if (import_attr == NULL)
10848 {
10849 complaint (_("Tag '%s' has no DW_AT_import"),
10850 dwarf_tag_name (die->tag));
10851 return;
10852 }
10853
10854 imported_cu = cu;
10855 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10856 imported_name = dwarf2_name (imported_die, imported_cu);
10857 if (imported_name == NULL)
10858 {
10859 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10860
10861 The import in the following code:
10862 namespace A
10863 {
10864 typedef int B;
10865 }
10866
10867 int main ()
10868 {
10869 using A::B;
10870 B b;
10871 return b;
10872 }
10873
10874 ...
10875 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10876 <52> DW_AT_decl_file : 1
10877 <53> DW_AT_decl_line : 6
10878 <54> DW_AT_import : <0x75>
10879 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10880 <59> DW_AT_name : B
10881 <5b> DW_AT_decl_file : 1
10882 <5c> DW_AT_decl_line : 2
10883 <5d> DW_AT_type : <0x6e>
10884 ...
10885 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10886 <76> DW_AT_byte_size : 4
10887 <77> DW_AT_encoding : 5 (signed)
10888
10889 imports the wrong die ( 0x75 instead of 0x58 ).
10890 This case will be ignored until the gcc bug is fixed. */
10891 return;
10892 }
10893
10894 /* Figure out the local name after import. */
10895 import_alias = dwarf2_name (die, cu);
10896
10897 /* Figure out where the statement is being imported to. */
10898 import_prefix = determine_prefix (die, cu);
10899
10900 /* Figure out what the scope of the imported die is and prepend it
10901 to the name of the imported die. */
10902 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10903
10904 if (imported_die->tag != DW_TAG_namespace
10905 && imported_die->tag != DW_TAG_module)
10906 {
10907 imported_declaration = imported_name;
10908 canonical_name = imported_name_prefix;
10909 }
10910 else if (strlen (imported_name_prefix) > 0)
10911 canonical_name = obconcat (&objfile->objfile_obstack,
10912 imported_name_prefix,
10913 (cu->language == language_d ? "." : "::"),
10914 imported_name, (char *) NULL);
10915 else
10916 canonical_name = imported_name;
10917
10918 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10919 for (child_die = die->child; child_die && child_die->tag;
10920 child_die = sibling_die (child_die))
10921 {
10922 /* DWARF-4: A Fortran use statement with a “rename list” may be
10923 represented by an imported module entry with an import attribute
10924 referring to the module and owned entries corresponding to those
10925 entities that are renamed as part of being imported. */
10926
10927 if (child_die->tag != DW_TAG_imported_declaration)
10928 {
10929 complaint (_("child DW_TAG_imported_declaration expected "
10930 "- DIE at %s [in module %s]"),
10931 sect_offset_str (child_die->sect_off),
10932 objfile_name (objfile));
10933 continue;
10934 }
10935
10936 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10937 if (import_attr == NULL)
10938 {
10939 complaint (_("Tag '%s' has no DW_AT_import"),
10940 dwarf_tag_name (child_die->tag));
10941 continue;
10942 }
10943
10944 imported_cu = cu;
10945 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10946 &imported_cu);
10947 imported_name = dwarf2_name (imported_die, imported_cu);
10948 if (imported_name == NULL)
10949 {
10950 complaint (_("child DW_TAG_imported_declaration has unknown "
10951 "imported name - DIE at %s [in module %s]"),
10952 sect_offset_str (child_die->sect_off),
10953 objfile_name (objfile));
10954 continue;
10955 }
10956
10957 excludes.push_back (imported_name);
10958
10959 process_die (child_die, cu);
10960 }
10961
10962 add_using_directive (using_directives (cu),
10963 import_prefix,
10964 canonical_name,
10965 import_alias,
10966 imported_declaration,
10967 excludes,
10968 0,
10969 &objfile->objfile_obstack);
10970 }
10971
10972 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10973 types, but gives them a size of zero. Starting with version 14,
10974 ICC is compatible with GCC. */
10975
10976 static bool
10977 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10978 {
10979 if (!cu->checked_producer)
10980 check_producer (cu);
10981
10982 return cu->producer_is_icc_lt_14;
10983 }
10984
10985 /* ICC generates a DW_AT_type for C void functions. This was observed on
10986 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10987 which says that void functions should not have a DW_AT_type. */
10988
10989 static bool
10990 producer_is_icc (struct dwarf2_cu *cu)
10991 {
10992 if (!cu->checked_producer)
10993 check_producer (cu);
10994
10995 return cu->producer_is_icc;
10996 }
10997
10998 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10999 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11000 this, it was first present in GCC release 4.3.0. */
11001
11002 static bool
11003 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11004 {
11005 if (!cu->checked_producer)
11006 check_producer (cu);
11007
11008 return cu->producer_is_gcc_lt_4_3;
11009 }
11010
11011 static file_and_directory
11012 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11013 {
11014 file_and_directory res;
11015
11016 /* Find the filename. Do not use dwarf2_name here, since the filename
11017 is not a source language identifier. */
11018 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11019 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11020
11021 if (res.comp_dir == NULL
11022 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11023 && IS_ABSOLUTE_PATH (res.name))
11024 {
11025 res.comp_dir_storage = ldirname (res.name);
11026 if (!res.comp_dir_storage.empty ())
11027 res.comp_dir = res.comp_dir_storage.c_str ();
11028 }
11029 if (res.comp_dir != NULL)
11030 {
11031 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11032 directory, get rid of it. */
11033 const char *cp = strchr (res.comp_dir, ':');
11034
11035 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11036 res.comp_dir = cp + 1;
11037 }
11038
11039 if (res.name == NULL)
11040 res.name = "<unknown>";
11041
11042 return res;
11043 }
11044
11045 /* Handle DW_AT_stmt_list for a compilation unit.
11046 DIE is the DW_TAG_compile_unit die for CU.
11047 COMP_DIR is the compilation directory. LOWPC is passed to
11048 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11049
11050 static void
11051 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11052 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11053 {
11054 struct dwarf2_per_objfile *dwarf2_per_objfile
11055 = cu->per_cu->dwarf2_per_objfile;
11056 struct attribute *attr;
11057 struct line_header line_header_local;
11058 hashval_t line_header_local_hash;
11059 void **slot;
11060 int decode_mapping;
11061
11062 gdb_assert (! cu->per_cu->is_debug_types);
11063
11064 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11065 if (attr == NULL)
11066 return;
11067
11068 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11069
11070 /* The line header hash table is only created if needed (it exists to
11071 prevent redundant reading of the line table for partial_units).
11072 If we're given a partial_unit, we'll need it. If we're given a
11073 compile_unit, then use the line header hash table if it's already
11074 created, but don't create one just yet. */
11075
11076 if (dwarf2_per_objfile->line_header_hash == NULL
11077 && die->tag == DW_TAG_partial_unit)
11078 {
11079 dwarf2_per_objfile->line_header_hash
11080 .reset (htab_create_alloc (127, line_header_hash_voidp,
11081 line_header_eq_voidp,
11082 free_line_header_voidp,
11083 xcalloc, xfree));
11084 }
11085
11086 line_header_local.sect_off = line_offset;
11087 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11088 line_header_local_hash = line_header_hash (&line_header_local);
11089 if (dwarf2_per_objfile->line_header_hash != NULL)
11090 {
11091 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
11092 &line_header_local,
11093 line_header_local_hash, NO_INSERT);
11094
11095 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11096 is not present in *SLOT (since if there is something in *SLOT then
11097 it will be for a partial_unit). */
11098 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11099 {
11100 gdb_assert (*slot != NULL);
11101 cu->line_header = (struct line_header *) *slot;
11102 return;
11103 }
11104 }
11105
11106 /* dwarf_decode_line_header does not yet provide sufficient information.
11107 We always have to call also dwarf_decode_lines for it. */
11108 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11109 if (lh == NULL)
11110 return;
11111
11112 cu->line_header = lh.release ();
11113 cu->line_header_die_owner = die;
11114
11115 if (dwarf2_per_objfile->line_header_hash == NULL)
11116 slot = NULL;
11117 else
11118 {
11119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
11120 &line_header_local,
11121 line_header_local_hash, INSERT);
11122 gdb_assert (slot != NULL);
11123 }
11124 if (slot != NULL && *slot == NULL)
11125 {
11126 /* This newly decoded line number information unit will be owned
11127 by line_header_hash hash table. */
11128 *slot = cu->line_header;
11129 cu->line_header_die_owner = NULL;
11130 }
11131 else
11132 {
11133 /* We cannot free any current entry in (*slot) as that struct line_header
11134 may be already used by multiple CUs. Create only temporary decoded
11135 line_header for this CU - it may happen at most once for each line
11136 number information unit. And if we're not using line_header_hash
11137 then this is what we want as well. */
11138 gdb_assert (die->tag != DW_TAG_partial_unit);
11139 }
11140 decode_mapping = (die->tag != DW_TAG_partial_unit);
11141 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11142 decode_mapping);
11143
11144 }
11145
11146 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11147
11148 static void
11149 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11150 {
11151 struct dwarf2_per_objfile *dwarf2_per_objfile
11152 = cu->per_cu->dwarf2_per_objfile;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
11154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11155 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11156 CORE_ADDR highpc = ((CORE_ADDR) 0);
11157 struct attribute *attr;
11158 struct die_info *child_die;
11159 CORE_ADDR baseaddr;
11160
11161 prepare_one_comp_unit (cu, die, cu->language);
11162 baseaddr = objfile->text_section_offset ();
11163
11164 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11165
11166 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11167 from finish_block. */
11168 if (lowpc == ((CORE_ADDR) -1))
11169 lowpc = highpc;
11170 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11171
11172 file_and_directory fnd = find_file_and_directory (die, cu);
11173
11174 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11175 standardised yet. As a workaround for the language detection we fall
11176 back to the DW_AT_producer string. */
11177 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11178 cu->language = language_opencl;
11179
11180 /* Similar hack for Go. */
11181 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11182 set_cu_language (DW_LANG_Go, cu);
11183
11184 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11185
11186 /* Decode line number information if present. We do this before
11187 processing child DIEs, so that the line header table is available
11188 for DW_AT_decl_file. */
11189 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11190
11191 /* Process all dies in compilation unit. */
11192 if (die->child != NULL)
11193 {
11194 child_die = die->child;
11195 while (child_die && child_die->tag)
11196 {
11197 process_die (child_die, cu);
11198 child_die = sibling_die (child_die);
11199 }
11200 }
11201
11202 /* Decode macro information, if present. Dwarf 2 macro information
11203 refers to information in the line number info statement program
11204 header, so we can only read it if we've read the header
11205 successfully. */
11206 attr = dwarf2_attr (die, DW_AT_macros, cu);
11207 if (attr == NULL)
11208 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11209 if (attr && cu->line_header)
11210 {
11211 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11212 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11213
11214 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11215 }
11216 else
11217 {
11218 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11219 if (attr && cu->line_header)
11220 {
11221 unsigned int macro_offset = DW_UNSND (attr);
11222
11223 dwarf_decode_macros (cu, macro_offset, 0);
11224 }
11225 }
11226 }
11227
11228 void
11229 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11230 {
11231 struct type_unit_group *tu_group;
11232 int first_time;
11233 struct attribute *attr;
11234 unsigned int i;
11235 struct signatured_type *sig_type;
11236
11237 gdb_assert (per_cu->is_debug_types);
11238 sig_type = (struct signatured_type *) per_cu;
11239
11240 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11241
11242 /* If we're using .gdb_index (includes -readnow) then
11243 per_cu->type_unit_group may not have been set up yet. */
11244 if (sig_type->type_unit_group == NULL)
11245 sig_type->type_unit_group = get_type_unit_group (this, attr);
11246 tu_group = sig_type->type_unit_group;
11247
11248 /* If we've already processed this stmt_list there's no real need to
11249 do it again, we could fake it and just recreate the part we need
11250 (file name,index -> symtab mapping). If data shows this optimization
11251 is useful we can do it then. */
11252 first_time = tu_group->compunit_symtab == NULL;
11253
11254 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11255 debug info. */
11256 line_header_up lh;
11257 if (attr != NULL)
11258 {
11259 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11260 lh = dwarf_decode_line_header (line_offset, this);
11261 }
11262 if (lh == NULL)
11263 {
11264 if (first_time)
11265 start_symtab ("", NULL, 0);
11266 else
11267 {
11268 gdb_assert (tu_group->symtabs == NULL);
11269 gdb_assert (m_builder == nullptr);
11270 struct compunit_symtab *cust = tu_group->compunit_symtab;
11271 m_builder.reset (new struct buildsym_compunit
11272 (COMPUNIT_OBJFILE (cust), "",
11273 COMPUNIT_DIRNAME (cust),
11274 compunit_language (cust),
11275 0, cust));
11276 }
11277 return;
11278 }
11279
11280 line_header = lh.release ();
11281 line_header_die_owner = die;
11282
11283 if (first_time)
11284 {
11285 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11286
11287 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11288 still initializing it, and our caller (a few levels up)
11289 process_full_type_unit still needs to know if this is the first
11290 time. */
11291
11292 tu_group->num_symtabs = line_header->file_names_size ();
11293 tu_group->symtabs = XNEWVEC (struct symtab *,
11294 line_header->file_names_size ());
11295
11296 auto &file_names = line_header->file_names ();
11297 for (i = 0; i < file_names.size (); ++i)
11298 {
11299 file_entry &fe = file_names[i];
11300 dwarf2_start_subfile (this, fe.name,
11301 fe.include_dir (line_header));
11302 buildsym_compunit *b = get_builder ();
11303 if (b->get_current_subfile ()->symtab == NULL)
11304 {
11305 /* NOTE: start_subfile will recognize when it's been
11306 passed a file it has already seen. So we can't
11307 assume there's a simple mapping from
11308 cu->line_header->file_names to subfiles, plus
11309 cu->line_header->file_names may contain dups. */
11310 b->get_current_subfile ()->symtab
11311 = allocate_symtab (cust, b->get_current_subfile ()->name);
11312 }
11313
11314 fe.symtab = b->get_current_subfile ()->symtab;
11315 tu_group->symtabs[i] = fe.symtab;
11316 }
11317 }
11318 else
11319 {
11320 gdb_assert (m_builder == nullptr);
11321 struct compunit_symtab *cust = tu_group->compunit_symtab;
11322 m_builder.reset (new struct buildsym_compunit
11323 (COMPUNIT_OBJFILE (cust), "",
11324 COMPUNIT_DIRNAME (cust),
11325 compunit_language (cust),
11326 0, cust));
11327
11328 auto &file_names = line_header->file_names ();
11329 for (i = 0; i < file_names.size (); ++i)
11330 {
11331 file_entry &fe = file_names[i];
11332 fe.symtab = tu_group->symtabs[i];
11333 }
11334 }
11335
11336 /* The main symtab is allocated last. Type units don't have DW_AT_name
11337 so they don't have a "real" (so to speak) symtab anyway.
11338 There is later code that will assign the main symtab to all symbols
11339 that don't have one. We need to handle the case of a symbol with a
11340 missing symtab (DW_AT_decl_file) anyway. */
11341 }
11342
11343 /* Process DW_TAG_type_unit.
11344 For TUs we want to skip the first top level sibling if it's not the
11345 actual type being defined by this TU. In this case the first top
11346 level sibling is there to provide context only. */
11347
11348 static void
11349 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11350 {
11351 struct die_info *child_die;
11352
11353 prepare_one_comp_unit (cu, die, language_minimal);
11354
11355 /* Initialize (or reinitialize) the machinery for building symtabs.
11356 We do this before processing child DIEs, so that the line header table
11357 is available for DW_AT_decl_file. */
11358 cu->setup_type_unit_groups (die);
11359
11360 if (die->child != NULL)
11361 {
11362 child_die = die->child;
11363 while (child_die && child_die->tag)
11364 {
11365 process_die (child_die, cu);
11366 child_die = sibling_die (child_die);
11367 }
11368 }
11369 }
11370 \f
11371 /* DWO/DWP files.
11372
11373 http://gcc.gnu.org/wiki/DebugFission
11374 http://gcc.gnu.org/wiki/DebugFissionDWP
11375
11376 To simplify handling of both DWO files ("object" files with the DWARF info)
11377 and DWP files (a file with the DWOs packaged up into one file), we treat
11378 DWP files as having a collection of virtual DWO files. */
11379
11380 static hashval_t
11381 hash_dwo_file (const void *item)
11382 {
11383 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11384 hashval_t hash;
11385
11386 hash = htab_hash_string (dwo_file->dwo_name);
11387 if (dwo_file->comp_dir != NULL)
11388 hash += htab_hash_string (dwo_file->comp_dir);
11389 return hash;
11390 }
11391
11392 static int
11393 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11394 {
11395 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11396 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11397
11398 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11399 return 0;
11400 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11401 return lhs->comp_dir == rhs->comp_dir;
11402 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11403 }
11404
11405 /* Allocate a hash table for DWO files. */
11406
11407 static htab_up
11408 allocate_dwo_file_hash_table (struct objfile *objfile)
11409 {
11410 auto delete_dwo_file = [] (void *item)
11411 {
11412 struct dwo_file *dwo_file = (struct dwo_file *) item;
11413
11414 delete dwo_file;
11415 };
11416
11417 return htab_up (htab_create_alloc (41,
11418 hash_dwo_file,
11419 eq_dwo_file,
11420 delete_dwo_file,
11421 xcalloc, xfree));
11422 }
11423
11424 /* Lookup DWO file DWO_NAME. */
11425
11426 static void **
11427 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11428 const char *dwo_name,
11429 const char *comp_dir)
11430 {
11431 struct dwo_file find_entry;
11432 void **slot;
11433
11434 if (dwarf2_per_objfile->dwo_files == NULL)
11435 dwarf2_per_objfile->dwo_files
11436 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11437
11438 find_entry.dwo_name = dwo_name;
11439 find_entry.comp_dir = comp_dir;
11440 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11441 INSERT);
11442
11443 return slot;
11444 }
11445
11446 static hashval_t
11447 hash_dwo_unit (const void *item)
11448 {
11449 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11450
11451 /* This drops the top 32 bits of the id, but is ok for a hash. */
11452 return dwo_unit->signature;
11453 }
11454
11455 static int
11456 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11457 {
11458 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11459 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11460
11461 /* The signature is assumed to be unique within the DWO file.
11462 So while object file CU dwo_id's always have the value zero,
11463 that's OK, assuming each object file DWO file has only one CU,
11464 and that's the rule for now. */
11465 return lhs->signature == rhs->signature;
11466 }
11467
11468 /* Allocate a hash table for DWO CUs,TUs.
11469 There is one of these tables for each of CUs,TUs for each DWO file. */
11470
11471 static htab_up
11472 allocate_dwo_unit_table (struct objfile *objfile)
11473 {
11474 /* Start out with a pretty small number.
11475 Generally DWO files contain only one CU and maybe some TUs. */
11476 return htab_up (htab_create_alloc (3,
11477 hash_dwo_unit,
11478 eq_dwo_unit,
11479 NULL, xcalloc, xfree));
11480 }
11481
11482 /* die_reader_func for create_dwo_cu. */
11483
11484 static void
11485 create_dwo_cu_reader (const struct die_reader_specs *reader,
11486 const gdb_byte *info_ptr,
11487 struct die_info *comp_unit_die,
11488 struct dwo_file *dwo_file,
11489 struct dwo_unit *dwo_unit)
11490 {
11491 struct dwarf2_cu *cu = reader->cu;
11492 sect_offset sect_off = cu->per_cu->sect_off;
11493 struct dwarf2_section_info *section = cu->per_cu->section;
11494
11495 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11496 if (!signature.has_value ())
11497 {
11498 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11499 " its dwo_id [in module %s]"),
11500 sect_offset_str (sect_off), dwo_file->dwo_name);
11501 return;
11502 }
11503
11504 dwo_unit->dwo_file = dwo_file;
11505 dwo_unit->signature = *signature;
11506 dwo_unit->section = section;
11507 dwo_unit->sect_off = sect_off;
11508 dwo_unit->length = cu->per_cu->length;
11509
11510 if (dwarf_read_debug)
11511 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11512 sect_offset_str (sect_off),
11513 hex_string (dwo_unit->signature));
11514 }
11515
11516 /* Create the dwo_units for the CUs in a DWO_FILE.
11517 Note: This function processes DWO files only, not DWP files. */
11518
11519 static void
11520 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11521 dwarf2_cu *cu, struct dwo_file &dwo_file,
11522 dwarf2_section_info &section, htab_up &cus_htab)
11523 {
11524 struct objfile *objfile = dwarf2_per_objfile->objfile;
11525 const gdb_byte *info_ptr, *end_ptr;
11526
11527 section.read (objfile);
11528 info_ptr = section.buffer;
11529
11530 if (info_ptr == NULL)
11531 return;
11532
11533 if (dwarf_read_debug)
11534 {
11535 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11536 section.get_name (),
11537 section.get_file_name ());
11538 }
11539
11540 end_ptr = info_ptr + section.size;
11541 while (info_ptr < end_ptr)
11542 {
11543 struct dwarf2_per_cu_data per_cu;
11544 struct dwo_unit read_unit {};
11545 struct dwo_unit *dwo_unit;
11546 void **slot;
11547 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11548
11549 memset (&per_cu, 0, sizeof (per_cu));
11550 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11551 per_cu.is_debug_types = 0;
11552 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11553 per_cu.section = &section;
11554
11555 cutu_reader reader (&per_cu, cu, &dwo_file);
11556 if (!reader.dummy_p)
11557 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11558 &dwo_file, &read_unit);
11559 info_ptr += per_cu.length;
11560
11561 // If the unit could not be parsed, skip it.
11562 if (read_unit.dwo_file == NULL)
11563 continue;
11564
11565 if (cus_htab == NULL)
11566 cus_htab = allocate_dwo_unit_table (objfile);
11567
11568 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11569 *dwo_unit = read_unit;
11570 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11571 gdb_assert (slot != NULL);
11572 if (*slot != NULL)
11573 {
11574 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11575 sect_offset dup_sect_off = dup_cu->sect_off;
11576
11577 complaint (_("debug cu entry at offset %s is duplicate to"
11578 " the entry at offset %s, signature %s"),
11579 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11580 hex_string (dwo_unit->signature));
11581 }
11582 *slot = (void *)dwo_unit;
11583 }
11584 }
11585
11586 /* DWP file .debug_{cu,tu}_index section format:
11587 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11588
11589 DWP Version 1:
11590
11591 Both index sections have the same format, and serve to map a 64-bit
11592 signature to a set of section numbers. Each section begins with a header,
11593 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11594 indexes, and a pool of 32-bit section numbers. The index sections will be
11595 aligned at 8-byte boundaries in the file.
11596
11597 The index section header consists of:
11598
11599 V, 32 bit version number
11600 -, 32 bits unused
11601 N, 32 bit number of compilation units or type units in the index
11602 M, 32 bit number of slots in the hash table
11603
11604 Numbers are recorded using the byte order of the application binary.
11605
11606 The hash table begins at offset 16 in the section, and consists of an array
11607 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11608 order of the application binary). Unused slots in the hash table are 0.
11609 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11610
11611 The parallel table begins immediately after the hash table
11612 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11613 array of 32-bit indexes (using the byte order of the application binary),
11614 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11615 table contains a 32-bit index into the pool of section numbers. For unused
11616 hash table slots, the corresponding entry in the parallel table will be 0.
11617
11618 The pool of section numbers begins immediately following the hash table
11619 (at offset 16 + 12 * M from the beginning of the section). The pool of
11620 section numbers consists of an array of 32-bit words (using the byte order
11621 of the application binary). Each item in the array is indexed starting
11622 from 0. The hash table entry provides the index of the first section
11623 number in the set. Additional section numbers in the set follow, and the
11624 set is terminated by a 0 entry (section number 0 is not used in ELF).
11625
11626 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11627 section must be the first entry in the set, and the .debug_abbrev.dwo must
11628 be the second entry. Other members of the set may follow in any order.
11629
11630 ---
11631
11632 DWP Version 2:
11633
11634 DWP Version 2 combines all the .debug_info, etc. sections into one,
11635 and the entries in the index tables are now offsets into these sections.
11636 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11637 section.
11638
11639 Index Section Contents:
11640 Header
11641 Hash Table of Signatures dwp_hash_table.hash_table
11642 Parallel Table of Indices dwp_hash_table.unit_table
11643 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11644 Table of Section Sizes dwp_hash_table.v2.sizes
11645
11646 The index section header consists of:
11647
11648 V, 32 bit version number
11649 L, 32 bit number of columns in the table of section offsets
11650 N, 32 bit number of compilation units or type units in the index
11651 M, 32 bit number of slots in the hash table
11652
11653 Numbers are recorded using the byte order of the application binary.
11654
11655 The hash table has the same format as version 1.
11656 The parallel table of indices has the same format as version 1,
11657 except that the entries are origin-1 indices into the table of sections
11658 offsets and the table of section sizes.
11659
11660 The table of offsets begins immediately following the parallel table
11661 (at offset 16 + 12 * M from the beginning of the section). The table is
11662 a two-dimensional array of 32-bit words (using the byte order of the
11663 application binary), with L columns and N+1 rows, in row-major order.
11664 Each row in the array is indexed starting from 0. The first row provides
11665 a key to the remaining rows: each column in this row provides an identifier
11666 for a debug section, and the offsets in the same column of subsequent rows
11667 refer to that section. The section identifiers are:
11668
11669 DW_SECT_INFO 1 .debug_info.dwo
11670 DW_SECT_TYPES 2 .debug_types.dwo
11671 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11672 DW_SECT_LINE 4 .debug_line.dwo
11673 DW_SECT_LOC 5 .debug_loc.dwo
11674 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11675 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11676 DW_SECT_MACRO 8 .debug_macro.dwo
11677
11678 The offsets provided by the CU and TU index sections are the base offsets
11679 for the contributions made by each CU or TU to the corresponding section
11680 in the package file. Each CU and TU header contains an abbrev_offset
11681 field, used to find the abbreviations table for that CU or TU within the
11682 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11683 be interpreted as relative to the base offset given in the index section.
11684 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11685 should be interpreted as relative to the base offset for .debug_line.dwo,
11686 and offsets into other debug sections obtained from DWARF attributes should
11687 also be interpreted as relative to the corresponding base offset.
11688
11689 The table of sizes begins immediately following the table of offsets.
11690 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11691 with L columns and N rows, in row-major order. Each row in the array is
11692 indexed starting from 1 (row 0 is shared by the two tables).
11693
11694 ---
11695
11696 Hash table lookup is handled the same in version 1 and 2:
11697
11698 We assume that N and M will not exceed 2^32 - 1.
11699 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11700
11701 Given a 64-bit compilation unit signature or a type signature S, an entry
11702 in the hash table is located as follows:
11703
11704 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11705 the low-order k bits all set to 1.
11706
11707 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11708
11709 3) If the hash table entry at index H matches the signature, use that
11710 entry. If the hash table entry at index H is unused (all zeroes),
11711 terminate the search: the signature is not present in the table.
11712
11713 4) Let H = (H + H') modulo M. Repeat at Step 3.
11714
11715 Because M > N and H' and M are relatively prime, the search is guaranteed
11716 to stop at an unused slot or find the match. */
11717
11718 /* Create a hash table to map DWO IDs to their CU/TU entry in
11719 .debug_{info,types}.dwo in DWP_FILE.
11720 Returns NULL if there isn't one.
11721 Note: This function processes DWP files only, not DWO files. */
11722
11723 static struct dwp_hash_table *
11724 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11725 struct dwp_file *dwp_file, int is_debug_types)
11726 {
11727 struct objfile *objfile = dwarf2_per_objfile->objfile;
11728 bfd *dbfd = dwp_file->dbfd.get ();
11729 const gdb_byte *index_ptr, *index_end;
11730 struct dwarf2_section_info *index;
11731 uint32_t version, nr_columns, nr_units, nr_slots;
11732 struct dwp_hash_table *htab;
11733
11734 if (is_debug_types)
11735 index = &dwp_file->sections.tu_index;
11736 else
11737 index = &dwp_file->sections.cu_index;
11738
11739 if (index->empty ())
11740 return NULL;
11741 index->read (objfile);
11742
11743 index_ptr = index->buffer;
11744 index_end = index_ptr + index->size;
11745
11746 version = read_4_bytes (dbfd, index_ptr);
11747 index_ptr += 4;
11748 if (version == 2)
11749 nr_columns = read_4_bytes (dbfd, index_ptr);
11750 else
11751 nr_columns = 0;
11752 index_ptr += 4;
11753 nr_units = read_4_bytes (dbfd, index_ptr);
11754 index_ptr += 4;
11755 nr_slots = read_4_bytes (dbfd, index_ptr);
11756 index_ptr += 4;
11757
11758 if (version != 1 && version != 2)
11759 {
11760 error (_("Dwarf Error: unsupported DWP file version (%s)"
11761 " [in module %s]"),
11762 pulongest (version), dwp_file->name);
11763 }
11764 if (nr_slots != (nr_slots & -nr_slots))
11765 {
11766 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11767 " is not power of 2 [in module %s]"),
11768 pulongest (nr_slots), dwp_file->name);
11769 }
11770
11771 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11772 htab->version = version;
11773 htab->nr_columns = nr_columns;
11774 htab->nr_units = nr_units;
11775 htab->nr_slots = nr_slots;
11776 htab->hash_table = index_ptr;
11777 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11778
11779 /* Exit early if the table is empty. */
11780 if (nr_slots == 0 || nr_units == 0
11781 || (version == 2 && nr_columns == 0))
11782 {
11783 /* All must be zero. */
11784 if (nr_slots != 0 || nr_units != 0
11785 || (version == 2 && nr_columns != 0))
11786 {
11787 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11788 " all zero [in modules %s]"),
11789 dwp_file->name);
11790 }
11791 return htab;
11792 }
11793
11794 if (version == 1)
11795 {
11796 htab->section_pool.v1.indices =
11797 htab->unit_table + sizeof (uint32_t) * nr_slots;
11798 /* It's harder to decide whether the section is too small in v1.
11799 V1 is deprecated anyway so we punt. */
11800 }
11801 else
11802 {
11803 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11804 int *ids = htab->section_pool.v2.section_ids;
11805 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11806 /* Reverse map for error checking. */
11807 int ids_seen[DW_SECT_MAX + 1];
11808 int i;
11809
11810 if (nr_columns < 2)
11811 {
11812 error (_("Dwarf Error: bad DWP hash table, too few columns"
11813 " in section table [in module %s]"),
11814 dwp_file->name);
11815 }
11816 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11817 {
11818 error (_("Dwarf Error: bad DWP hash table, too many columns"
11819 " in section table [in module %s]"),
11820 dwp_file->name);
11821 }
11822 memset (ids, 255, sizeof_ids);
11823 memset (ids_seen, 255, sizeof (ids_seen));
11824 for (i = 0; i < nr_columns; ++i)
11825 {
11826 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11827
11828 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11829 {
11830 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11831 " in section table [in module %s]"),
11832 id, dwp_file->name);
11833 }
11834 if (ids_seen[id] != -1)
11835 {
11836 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11837 " id %d in section table [in module %s]"),
11838 id, dwp_file->name);
11839 }
11840 ids_seen[id] = i;
11841 ids[i] = id;
11842 }
11843 /* Must have exactly one info or types section. */
11844 if (((ids_seen[DW_SECT_INFO] != -1)
11845 + (ids_seen[DW_SECT_TYPES] != -1))
11846 != 1)
11847 {
11848 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11849 " DWO info/types section [in module %s]"),
11850 dwp_file->name);
11851 }
11852 /* Must have an abbrev section. */
11853 if (ids_seen[DW_SECT_ABBREV] == -1)
11854 {
11855 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11856 " section [in module %s]"),
11857 dwp_file->name);
11858 }
11859 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11860 htab->section_pool.v2.sizes =
11861 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11862 * nr_units * nr_columns);
11863 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11864 * nr_units * nr_columns))
11865 > index_end)
11866 {
11867 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11868 " [in module %s]"),
11869 dwp_file->name);
11870 }
11871 }
11872
11873 return htab;
11874 }
11875
11876 /* Update SECTIONS with the data from SECTP.
11877
11878 This function is like the other "locate" section routines that are
11879 passed to bfd_map_over_sections, but in this context the sections to
11880 read comes from the DWP V1 hash table, not the full ELF section table.
11881
11882 The result is non-zero for success, or zero if an error was found. */
11883
11884 static int
11885 locate_v1_virtual_dwo_sections (asection *sectp,
11886 struct virtual_v1_dwo_sections *sections)
11887 {
11888 const struct dwop_section_names *names = &dwop_section_names;
11889
11890 if (section_is_p (sectp->name, &names->abbrev_dwo))
11891 {
11892 /* There can be only one. */
11893 if (sections->abbrev.s.section != NULL)
11894 return 0;
11895 sections->abbrev.s.section = sectp;
11896 sections->abbrev.size = bfd_section_size (sectp);
11897 }
11898 else if (section_is_p (sectp->name, &names->info_dwo)
11899 || section_is_p (sectp->name, &names->types_dwo))
11900 {
11901 /* There can be only one. */
11902 if (sections->info_or_types.s.section != NULL)
11903 return 0;
11904 sections->info_or_types.s.section = sectp;
11905 sections->info_or_types.size = bfd_section_size (sectp);
11906 }
11907 else if (section_is_p (sectp->name, &names->line_dwo))
11908 {
11909 /* There can be only one. */
11910 if (sections->line.s.section != NULL)
11911 return 0;
11912 sections->line.s.section = sectp;
11913 sections->line.size = bfd_section_size (sectp);
11914 }
11915 else if (section_is_p (sectp->name, &names->loc_dwo))
11916 {
11917 /* There can be only one. */
11918 if (sections->loc.s.section != NULL)
11919 return 0;
11920 sections->loc.s.section = sectp;
11921 sections->loc.size = bfd_section_size (sectp);
11922 }
11923 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11924 {
11925 /* There can be only one. */
11926 if (sections->macinfo.s.section != NULL)
11927 return 0;
11928 sections->macinfo.s.section = sectp;
11929 sections->macinfo.size = bfd_section_size (sectp);
11930 }
11931 else if (section_is_p (sectp->name, &names->macro_dwo))
11932 {
11933 /* There can be only one. */
11934 if (sections->macro.s.section != NULL)
11935 return 0;
11936 sections->macro.s.section = sectp;
11937 sections->macro.size = bfd_section_size (sectp);
11938 }
11939 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11940 {
11941 /* There can be only one. */
11942 if (sections->str_offsets.s.section != NULL)
11943 return 0;
11944 sections->str_offsets.s.section = sectp;
11945 sections->str_offsets.size = bfd_section_size (sectp);
11946 }
11947 else
11948 {
11949 /* No other kind of section is valid. */
11950 return 0;
11951 }
11952
11953 return 1;
11954 }
11955
11956 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11957 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11958 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11959 This is for DWP version 1 files. */
11960
11961 static struct dwo_unit *
11962 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11963 struct dwp_file *dwp_file,
11964 uint32_t unit_index,
11965 const char *comp_dir,
11966 ULONGEST signature, int is_debug_types)
11967 {
11968 struct objfile *objfile = dwarf2_per_objfile->objfile;
11969 const struct dwp_hash_table *dwp_htab =
11970 is_debug_types ? dwp_file->tus : dwp_file->cus;
11971 bfd *dbfd = dwp_file->dbfd.get ();
11972 const char *kind = is_debug_types ? "TU" : "CU";
11973 struct dwo_file *dwo_file;
11974 struct dwo_unit *dwo_unit;
11975 struct virtual_v1_dwo_sections sections;
11976 void **dwo_file_slot;
11977 int i;
11978
11979 gdb_assert (dwp_file->version == 1);
11980
11981 if (dwarf_read_debug)
11982 {
11983 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11984 kind,
11985 pulongest (unit_index), hex_string (signature),
11986 dwp_file->name);
11987 }
11988
11989 /* Fetch the sections of this DWO unit.
11990 Put a limit on the number of sections we look for so that bad data
11991 doesn't cause us to loop forever. */
11992
11993 #define MAX_NR_V1_DWO_SECTIONS \
11994 (1 /* .debug_info or .debug_types */ \
11995 + 1 /* .debug_abbrev */ \
11996 + 1 /* .debug_line */ \
11997 + 1 /* .debug_loc */ \
11998 + 1 /* .debug_str_offsets */ \
11999 + 1 /* .debug_macro or .debug_macinfo */ \
12000 + 1 /* trailing zero */)
12001
12002 memset (&sections, 0, sizeof (sections));
12003
12004 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12005 {
12006 asection *sectp;
12007 uint32_t section_nr =
12008 read_4_bytes (dbfd,
12009 dwp_htab->section_pool.v1.indices
12010 + (unit_index + i) * sizeof (uint32_t));
12011
12012 if (section_nr == 0)
12013 break;
12014 if (section_nr >= dwp_file->num_sections)
12015 {
12016 error (_("Dwarf Error: bad DWP hash table, section number too large"
12017 " [in module %s]"),
12018 dwp_file->name);
12019 }
12020
12021 sectp = dwp_file->elf_sections[section_nr];
12022 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12023 {
12024 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12025 " [in module %s]"),
12026 dwp_file->name);
12027 }
12028 }
12029
12030 if (i < 2
12031 || sections.info_or_types.empty ()
12032 || sections.abbrev.empty ())
12033 {
12034 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12035 " [in module %s]"),
12036 dwp_file->name);
12037 }
12038 if (i == MAX_NR_V1_DWO_SECTIONS)
12039 {
12040 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12041 " [in module %s]"),
12042 dwp_file->name);
12043 }
12044
12045 /* It's easier for the rest of the code if we fake a struct dwo_file and
12046 have dwo_unit "live" in that. At least for now.
12047
12048 The DWP file can be made up of a random collection of CUs and TUs.
12049 However, for each CU + set of TUs that came from the same original DWO
12050 file, we can combine them back into a virtual DWO file to save space
12051 (fewer struct dwo_file objects to allocate). Remember that for really
12052 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12053
12054 std::string virtual_dwo_name =
12055 string_printf ("virtual-dwo/%d-%d-%d-%d",
12056 sections.abbrev.get_id (),
12057 sections.line.get_id (),
12058 sections.loc.get_id (),
12059 sections.str_offsets.get_id ());
12060 /* Can we use an existing virtual DWO file? */
12061 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12062 virtual_dwo_name.c_str (),
12063 comp_dir);
12064 /* Create one if necessary. */
12065 if (*dwo_file_slot == NULL)
12066 {
12067 if (dwarf_read_debug)
12068 {
12069 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12070 virtual_dwo_name.c_str ());
12071 }
12072 dwo_file = new struct dwo_file;
12073 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12074 virtual_dwo_name);
12075 dwo_file->comp_dir = comp_dir;
12076 dwo_file->sections.abbrev = sections.abbrev;
12077 dwo_file->sections.line = sections.line;
12078 dwo_file->sections.loc = sections.loc;
12079 dwo_file->sections.macinfo = sections.macinfo;
12080 dwo_file->sections.macro = sections.macro;
12081 dwo_file->sections.str_offsets = sections.str_offsets;
12082 /* The "str" section is global to the entire DWP file. */
12083 dwo_file->sections.str = dwp_file->sections.str;
12084 /* The info or types section is assigned below to dwo_unit,
12085 there's no need to record it in dwo_file.
12086 Also, we can't simply record type sections in dwo_file because
12087 we record a pointer into the vector in dwo_unit. As we collect more
12088 types we'll grow the vector and eventually have to reallocate space
12089 for it, invalidating all copies of pointers into the previous
12090 contents. */
12091 *dwo_file_slot = dwo_file;
12092 }
12093 else
12094 {
12095 if (dwarf_read_debug)
12096 {
12097 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12098 virtual_dwo_name.c_str ());
12099 }
12100 dwo_file = (struct dwo_file *) *dwo_file_slot;
12101 }
12102
12103 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12104 dwo_unit->dwo_file = dwo_file;
12105 dwo_unit->signature = signature;
12106 dwo_unit->section =
12107 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12108 *dwo_unit->section = sections.info_or_types;
12109 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12110
12111 return dwo_unit;
12112 }
12113
12114 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12115 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12116 piece within that section used by a TU/CU, return a virtual section
12117 of just that piece. */
12118
12119 static struct dwarf2_section_info
12120 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12121 struct dwarf2_section_info *section,
12122 bfd_size_type offset, bfd_size_type size)
12123 {
12124 struct dwarf2_section_info result;
12125 asection *sectp;
12126
12127 gdb_assert (section != NULL);
12128 gdb_assert (!section->is_virtual);
12129
12130 memset (&result, 0, sizeof (result));
12131 result.s.containing_section = section;
12132 result.is_virtual = true;
12133
12134 if (size == 0)
12135 return result;
12136
12137 sectp = section->get_bfd_section ();
12138
12139 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12140 bounds of the real section. This is a pretty-rare event, so just
12141 flag an error (easier) instead of a warning and trying to cope. */
12142 if (sectp == NULL
12143 || offset + size > bfd_section_size (sectp))
12144 {
12145 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12146 " in section %s [in module %s]"),
12147 sectp ? bfd_section_name (sectp) : "<unknown>",
12148 objfile_name (dwarf2_per_objfile->objfile));
12149 }
12150
12151 result.virtual_offset = offset;
12152 result.size = size;
12153 return result;
12154 }
12155
12156 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12157 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12158 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12159 This is for DWP version 2 files. */
12160
12161 static struct dwo_unit *
12162 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12163 struct dwp_file *dwp_file,
12164 uint32_t unit_index,
12165 const char *comp_dir,
12166 ULONGEST signature, int is_debug_types)
12167 {
12168 struct objfile *objfile = dwarf2_per_objfile->objfile;
12169 const struct dwp_hash_table *dwp_htab =
12170 is_debug_types ? dwp_file->tus : dwp_file->cus;
12171 bfd *dbfd = dwp_file->dbfd.get ();
12172 const char *kind = is_debug_types ? "TU" : "CU";
12173 struct dwo_file *dwo_file;
12174 struct dwo_unit *dwo_unit;
12175 struct virtual_v2_dwo_sections sections;
12176 void **dwo_file_slot;
12177 int i;
12178
12179 gdb_assert (dwp_file->version == 2);
12180
12181 if (dwarf_read_debug)
12182 {
12183 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12184 kind,
12185 pulongest (unit_index), hex_string (signature),
12186 dwp_file->name);
12187 }
12188
12189 /* Fetch the section offsets of this DWO unit. */
12190
12191 memset (&sections, 0, sizeof (sections));
12192
12193 for (i = 0; i < dwp_htab->nr_columns; ++i)
12194 {
12195 uint32_t offset = read_4_bytes (dbfd,
12196 dwp_htab->section_pool.v2.offsets
12197 + (((unit_index - 1) * dwp_htab->nr_columns
12198 + i)
12199 * sizeof (uint32_t)));
12200 uint32_t size = read_4_bytes (dbfd,
12201 dwp_htab->section_pool.v2.sizes
12202 + (((unit_index - 1) * dwp_htab->nr_columns
12203 + i)
12204 * sizeof (uint32_t)));
12205
12206 switch (dwp_htab->section_pool.v2.section_ids[i])
12207 {
12208 case DW_SECT_INFO:
12209 case DW_SECT_TYPES:
12210 sections.info_or_types_offset = offset;
12211 sections.info_or_types_size = size;
12212 break;
12213 case DW_SECT_ABBREV:
12214 sections.abbrev_offset = offset;
12215 sections.abbrev_size = size;
12216 break;
12217 case DW_SECT_LINE:
12218 sections.line_offset = offset;
12219 sections.line_size = size;
12220 break;
12221 case DW_SECT_LOC:
12222 sections.loc_offset = offset;
12223 sections.loc_size = size;
12224 break;
12225 case DW_SECT_STR_OFFSETS:
12226 sections.str_offsets_offset = offset;
12227 sections.str_offsets_size = size;
12228 break;
12229 case DW_SECT_MACINFO:
12230 sections.macinfo_offset = offset;
12231 sections.macinfo_size = size;
12232 break;
12233 case DW_SECT_MACRO:
12234 sections.macro_offset = offset;
12235 sections.macro_size = size;
12236 break;
12237 }
12238 }
12239
12240 /* It's easier for the rest of the code if we fake a struct dwo_file and
12241 have dwo_unit "live" in that. At least for now.
12242
12243 The DWP file can be made up of a random collection of CUs and TUs.
12244 However, for each CU + set of TUs that came from the same original DWO
12245 file, we can combine them back into a virtual DWO file to save space
12246 (fewer struct dwo_file objects to allocate). Remember that for really
12247 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12248
12249 std::string virtual_dwo_name =
12250 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12251 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12252 (long) (sections.line_size ? sections.line_offset : 0),
12253 (long) (sections.loc_size ? sections.loc_offset : 0),
12254 (long) (sections.str_offsets_size
12255 ? sections.str_offsets_offset : 0));
12256 /* Can we use an existing virtual DWO file? */
12257 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12258 virtual_dwo_name.c_str (),
12259 comp_dir);
12260 /* Create one if necessary. */
12261 if (*dwo_file_slot == NULL)
12262 {
12263 if (dwarf_read_debug)
12264 {
12265 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12266 virtual_dwo_name.c_str ());
12267 }
12268 dwo_file = new struct dwo_file;
12269 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12270 virtual_dwo_name);
12271 dwo_file->comp_dir = comp_dir;
12272 dwo_file->sections.abbrev =
12273 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12274 sections.abbrev_offset, sections.abbrev_size);
12275 dwo_file->sections.line =
12276 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12277 sections.line_offset, sections.line_size);
12278 dwo_file->sections.loc =
12279 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12280 sections.loc_offset, sections.loc_size);
12281 dwo_file->sections.macinfo =
12282 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12283 sections.macinfo_offset, sections.macinfo_size);
12284 dwo_file->sections.macro =
12285 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12286 sections.macro_offset, sections.macro_size);
12287 dwo_file->sections.str_offsets =
12288 create_dwp_v2_section (dwarf2_per_objfile,
12289 &dwp_file->sections.str_offsets,
12290 sections.str_offsets_offset,
12291 sections.str_offsets_size);
12292 /* The "str" section is global to the entire DWP file. */
12293 dwo_file->sections.str = dwp_file->sections.str;
12294 /* The info or types section is assigned below to dwo_unit,
12295 there's no need to record it in dwo_file.
12296 Also, we can't simply record type sections in dwo_file because
12297 we record a pointer into the vector in dwo_unit. As we collect more
12298 types we'll grow the vector and eventually have to reallocate space
12299 for it, invalidating all copies of pointers into the previous
12300 contents. */
12301 *dwo_file_slot = dwo_file;
12302 }
12303 else
12304 {
12305 if (dwarf_read_debug)
12306 {
12307 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12308 virtual_dwo_name.c_str ());
12309 }
12310 dwo_file = (struct dwo_file *) *dwo_file_slot;
12311 }
12312
12313 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12314 dwo_unit->dwo_file = dwo_file;
12315 dwo_unit->signature = signature;
12316 dwo_unit->section =
12317 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12318 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12319 is_debug_types
12320 ? &dwp_file->sections.types
12321 : &dwp_file->sections.info,
12322 sections.info_or_types_offset,
12323 sections.info_or_types_size);
12324 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12325
12326 return dwo_unit;
12327 }
12328
12329 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12330 Returns NULL if the signature isn't found. */
12331
12332 static struct dwo_unit *
12333 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12334 struct dwp_file *dwp_file, const char *comp_dir,
12335 ULONGEST signature, int is_debug_types)
12336 {
12337 const struct dwp_hash_table *dwp_htab =
12338 is_debug_types ? dwp_file->tus : dwp_file->cus;
12339 bfd *dbfd = dwp_file->dbfd.get ();
12340 uint32_t mask = dwp_htab->nr_slots - 1;
12341 uint32_t hash = signature & mask;
12342 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12343 unsigned int i;
12344 void **slot;
12345 struct dwo_unit find_dwo_cu;
12346
12347 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12348 find_dwo_cu.signature = signature;
12349 slot = htab_find_slot (is_debug_types
12350 ? dwp_file->loaded_tus.get ()
12351 : dwp_file->loaded_cus.get (),
12352 &find_dwo_cu, INSERT);
12353
12354 if (*slot != NULL)
12355 return (struct dwo_unit *) *slot;
12356
12357 /* Use a for loop so that we don't loop forever on bad debug info. */
12358 for (i = 0; i < dwp_htab->nr_slots; ++i)
12359 {
12360 ULONGEST signature_in_table;
12361
12362 signature_in_table =
12363 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12364 if (signature_in_table == signature)
12365 {
12366 uint32_t unit_index =
12367 read_4_bytes (dbfd,
12368 dwp_htab->unit_table + hash * sizeof (uint32_t));
12369
12370 if (dwp_file->version == 1)
12371 {
12372 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12373 dwp_file, unit_index,
12374 comp_dir, signature,
12375 is_debug_types);
12376 }
12377 else
12378 {
12379 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12380 dwp_file, unit_index,
12381 comp_dir, signature,
12382 is_debug_types);
12383 }
12384 return (struct dwo_unit *) *slot;
12385 }
12386 if (signature_in_table == 0)
12387 return NULL;
12388 hash = (hash + hash2) & mask;
12389 }
12390
12391 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12392 " [in module %s]"),
12393 dwp_file->name);
12394 }
12395
12396 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12397 Open the file specified by FILE_NAME and hand it off to BFD for
12398 preliminary analysis. Return a newly initialized bfd *, which
12399 includes a canonicalized copy of FILE_NAME.
12400 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12401 SEARCH_CWD is true if the current directory is to be searched.
12402 It will be searched before debug-file-directory.
12403 If successful, the file is added to the bfd include table of the
12404 objfile's bfd (see gdb_bfd_record_inclusion).
12405 If unable to find/open the file, return NULL.
12406 NOTE: This function is derived from symfile_bfd_open. */
12407
12408 static gdb_bfd_ref_ptr
12409 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12410 const char *file_name, int is_dwp, int search_cwd)
12411 {
12412 int desc;
12413 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12414 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12415 to debug_file_directory. */
12416 const char *search_path;
12417 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12418
12419 gdb::unique_xmalloc_ptr<char> search_path_holder;
12420 if (search_cwd)
12421 {
12422 if (*debug_file_directory != '\0')
12423 {
12424 search_path_holder.reset (concat (".", dirname_separator_string,
12425 debug_file_directory,
12426 (char *) NULL));
12427 search_path = search_path_holder.get ();
12428 }
12429 else
12430 search_path = ".";
12431 }
12432 else
12433 search_path = debug_file_directory;
12434
12435 openp_flags flags = OPF_RETURN_REALPATH;
12436 if (is_dwp)
12437 flags |= OPF_SEARCH_IN_PATH;
12438
12439 gdb::unique_xmalloc_ptr<char> absolute_name;
12440 desc = openp (search_path, flags, file_name,
12441 O_RDONLY | O_BINARY, &absolute_name);
12442 if (desc < 0)
12443 return NULL;
12444
12445 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12446 gnutarget, desc));
12447 if (sym_bfd == NULL)
12448 return NULL;
12449 bfd_set_cacheable (sym_bfd.get (), 1);
12450
12451 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12452 return NULL;
12453
12454 /* Success. Record the bfd as having been included by the objfile's bfd.
12455 This is important because things like demangled_names_hash lives in the
12456 objfile's per_bfd space and may have references to things like symbol
12457 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12459
12460 return sym_bfd;
12461 }
12462
12463 /* Try to open DWO file FILE_NAME.
12464 COMP_DIR is the DW_AT_comp_dir attribute.
12465 The result is the bfd handle of the file.
12466 If there is a problem finding or opening the file, return NULL.
12467 Upon success, the canonicalized path of the file is stored in the bfd,
12468 same as symfile_bfd_open. */
12469
12470 static gdb_bfd_ref_ptr
12471 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12472 const char *file_name, const char *comp_dir)
12473 {
12474 if (IS_ABSOLUTE_PATH (file_name))
12475 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12476 0 /*is_dwp*/, 0 /*search_cwd*/);
12477
12478 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12479
12480 if (comp_dir != NULL)
12481 {
12482 gdb::unique_xmalloc_ptr<char> path_to_try
12483 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12484
12485 /* NOTE: If comp_dir is a relative path, this will also try the
12486 search path, which seems useful. */
12487 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12488 path_to_try.get (),
12489 0 /*is_dwp*/,
12490 1 /*search_cwd*/));
12491 if (abfd != NULL)
12492 return abfd;
12493 }
12494
12495 /* That didn't work, try debug-file-directory, which, despite its name,
12496 is a list of paths. */
12497
12498 if (*debug_file_directory == '\0')
12499 return NULL;
12500
12501 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12502 0 /*is_dwp*/, 1 /*search_cwd*/);
12503 }
12504
12505 /* This function is mapped across the sections and remembers the offset and
12506 size of each of the DWO debugging sections we are interested in. */
12507
12508 static void
12509 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12510 {
12511 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12512 const struct dwop_section_names *names = &dwop_section_names;
12513
12514 if (section_is_p (sectp->name, &names->abbrev_dwo))
12515 {
12516 dwo_sections->abbrev.s.section = sectp;
12517 dwo_sections->abbrev.size = bfd_section_size (sectp);
12518 }
12519 else if (section_is_p (sectp->name, &names->info_dwo))
12520 {
12521 dwo_sections->info.s.section = sectp;
12522 dwo_sections->info.size = bfd_section_size (sectp);
12523 }
12524 else if (section_is_p (sectp->name, &names->line_dwo))
12525 {
12526 dwo_sections->line.s.section = sectp;
12527 dwo_sections->line.size = bfd_section_size (sectp);
12528 }
12529 else if (section_is_p (sectp->name, &names->loc_dwo))
12530 {
12531 dwo_sections->loc.s.section = sectp;
12532 dwo_sections->loc.size = bfd_section_size (sectp);
12533 }
12534 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12535 {
12536 dwo_sections->macinfo.s.section = sectp;
12537 dwo_sections->macinfo.size = bfd_section_size (sectp);
12538 }
12539 else if (section_is_p (sectp->name, &names->macro_dwo))
12540 {
12541 dwo_sections->macro.s.section = sectp;
12542 dwo_sections->macro.size = bfd_section_size (sectp);
12543 }
12544 else if (section_is_p (sectp->name, &names->str_dwo))
12545 {
12546 dwo_sections->str.s.section = sectp;
12547 dwo_sections->str.size = bfd_section_size (sectp);
12548 }
12549 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12550 {
12551 dwo_sections->str_offsets.s.section = sectp;
12552 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12553 }
12554 else if (section_is_p (sectp->name, &names->types_dwo))
12555 {
12556 struct dwarf2_section_info type_section;
12557
12558 memset (&type_section, 0, sizeof (type_section));
12559 type_section.s.section = sectp;
12560 type_section.size = bfd_section_size (sectp);
12561 dwo_sections->types.push_back (type_section);
12562 }
12563 }
12564
12565 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12566 by PER_CU. This is for the non-DWP case.
12567 The result is NULL if DWO_NAME can't be found. */
12568
12569 static struct dwo_file *
12570 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12571 const char *dwo_name, const char *comp_dir)
12572 {
12573 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12574
12575 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12576 if (dbfd == NULL)
12577 {
12578 if (dwarf_read_debug)
12579 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12580 return NULL;
12581 }
12582
12583 dwo_file_up dwo_file (new struct dwo_file);
12584 dwo_file->dwo_name = dwo_name;
12585 dwo_file->comp_dir = comp_dir;
12586 dwo_file->dbfd = std::move (dbfd);
12587
12588 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12589 &dwo_file->sections);
12590
12591 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12592 dwo_file->sections.info, dwo_file->cus);
12593
12594 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12595 dwo_file->sections.types, dwo_file->tus);
12596
12597 if (dwarf_read_debug)
12598 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12599
12600 return dwo_file.release ();
12601 }
12602
12603 /* This function is mapped across the sections and remembers the offset and
12604 size of each of the DWP debugging sections common to version 1 and 2 that
12605 we are interested in. */
12606
12607 static void
12608 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12609 void *dwp_file_ptr)
12610 {
12611 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12612 const struct dwop_section_names *names = &dwop_section_names;
12613 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12614
12615 /* Record the ELF section number for later lookup: this is what the
12616 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12617 gdb_assert (elf_section_nr < dwp_file->num_sections);
12618 dwp_file->elf_sections[elf_section_nr] = sectp;
12619
12620 /* Look for specific sections that we need. */
12621 if (section_is_p (sectp->name, &names->str_dwo))
12622 {
12623 dwp_file->sections.str.s.section = sectp;
12624 dwp_file->sections.str.size = bfd_section_size (sectp);
12625 }
12626 else if (section_is_p (sectp->name, &names->cu_index))
12627 {
12628 dwp_file->sections.cu_index.s.section = sectp;
12629 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12630 }
12631 else if (section_is_p (sectp->name, &names->tu_index))
12632 {
12633 dwp_file->sections.tu_index.s.section = sectp;
12634 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12635 }
12636 }
12637
12638 /* This function is mapped across the sections and remembers the offset and
12639 size of each of the DWP version 2 debugging sections that we are interested
12640 in. This is split into a separate function because we don't know if we
12641 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12642
12643 static void
12644 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12645 {
12646 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12647 const struct dwop_section_names *names = &dwop_section_names;
12648 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12649
12650 /* Record the ELF section number for later lookup: this is what the
12651 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12652 gdb_assert (elf_section_nr < dwp_file->num_sections);
12653 dwp_file->elf_sections[elf_section_nr] = sectp;
12654
12655 /* Look for specific sections that we need. */
12656 if (section_is_p (sectp->name, &names->abbrev_dwo))
12657 {
12658 dwp_file->sections.abbrev.s.section = sectp;
12659 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12660 }
12661 else if (section_is_p (sectp->name, &names->info_dwo))
12662 {
12663 dwp_file->sections.info.s.section = sectp;
12664 dwp_file->sections.info.size = bfd_section_size (sectp);
12665 }
12666 else if (section_is_p (sectp->name, &names->line_dwo))
12667 {
12668 dwp_file->sections.line.s.section = sectp;
12669 dwp_file->sections.line.size = bfd_section_size (sectp);
12670 }
12671 else if (section_is_p (sectp->name, &names->loc_dwo))
12672 {
12673 dwp_file->sections.loc.s.section = sectp;
12674 dwp_file->sections.loc.size = bfd_section_size (sectp);
12675 }
12676 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12677 {
12678 dwp_file->sections.macinfo.s.section = sectp;
12679 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12680 }
12681 else if (section_is_p (sectp->name, &names->macro_dwo))
12682 {
12683 dwp_file->sections.macro.s.section = sectp;
12684 dwp_file->sections.macro.size = bfd_section_size (sectp);
12685 }
12686 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12687 {
12688 dwp_file->sections.str_offsets.s.section = sectp;
12689 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12690 }
12691 else if (section_is_p (sectp->name, &names->types_dwo))
12692 {
12693 dwp_file->sections.types.s.section = sectp;
12694 dwp_file->sections.types.size = bfd_section_size (sectp);
12695 }
12696 }
12697
12698 /* Hash function for dwp_file loaded CUs/TUs. */
12699
12700 static hashval_t
12701 hash_dwp_loaded_cutus (const void *item)
12702 {
12703 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12704
12705 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12706 return dwo_unit->signature;
12707 }
12708
12709 /* Equality function for dwp_file loaded CUs/TUs. */
12710
12711 static int
12712 eq_dwp_loaded_cutus (const void *a, const void *b)
12713 {
12714 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12715 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12716
12717 return dua->signature == dub->signature;
12718 }
12719
12720 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12721
12722 static htab_up
12723 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
12724 {
12725 return htab_up (htab_create_alloc (3,
12726 hash_dwp_loaded_cutus,
12727 eq_dwp_loaded_cutus,
12728 NULL, xcalloc, xfree));
12729 }
12730
12731 /* Try to open DWP file FILE_NAME.
12732 The result is the bfd handle of the file.
12733 If there is a problem finding or opening the file, return NULL.
12734 Upon success, the canonicalized path of the file is stored in the bfd,
12735 same as symfile_bfd_open. */
12736
12737 static gdb_bfd_ref_ptr
12738 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12739 const char *file_name)
12740 {
12741 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12742 1 /*is_dwp*/,
12743 1 /*search_cwd*/));
12744 if (abfd != NULL)
12745 return abfd;
12746
12747 /* Work around upstream bug 15652.
12748 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12749 [Whether that's a "bug" is debatable, but it is getting in our way.]
12750 We have no real idea where the dwp file is, because gdb's realpath-ing
12751 of the executable's path may have discarded the needed info.
12752 [IWBN if the dwp file name was recorded in the executable, akin to
12753 .gnu_debuglink, but that doesn't exist yet.]
12754 Strip the directory from FILE_NAME and search again. */
12755 if (*debug_file_directory != '\0')
12756 {
12757 /* Don't implicitly search the current directory here.
12758 If the user wants to search "." to handle this case,
12759 it must be added to debug-file-directory. */
12760 return try_open_dwop_file (dwarf2_per_objfile,
12761 lbasename (file_name), 1 /*is_dwp*/,
12762 0 /*search_cwd*/);
12763 }
12764
12765 return NULL;
12766 }
12767
12768 /* Initialize the use of the DWP file for the current objfile.
12769 By convention the name of the DWP file is ${objfile}.dwp.
12770 The result is NULL if it can't be found. */
12771
12772 static std::unique_ptr<struct dwp_file>
12773 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12774 {
12775 struct objfile *objfile = dwarf2_per_objfile->objfile;
12776
12777 /* Try to find first .dwp for the binary file before any symbolic links
12778 resolving. */
12779
12780 /* If the objfile is a debug file, find the name of the real binary
12781 file and get the name of dwp file from there. */
12782 std::string dwp_name;
12783 if (objfile->separate_debug_objfile_backlink != NULL)
12784 {
12785 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12786 const char *backlink_basename = lbasename (backlink->original_name);
12787
12788 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12789 }
12790 else
12791 dwp_name = objfile->original_name;
12792
12793 dwp_name += ".dwp";
12794
12795 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12796 if (dbfd == NULL
12797 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12798 {
12799 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12800 dwp_name = objfile_name (objfile);
12801 dwp_name += ".dwp";
12802 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12803 }
12804
12805 if (dbfd == NULL)
12806 {
12807 if (dwarf_read_debug)
12808 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12809 return std::unique_ptr<dwp_file> ();
12810 }
12811
12812 const char *name = bfd_get_filename (dbfd.get ());
12813 std::unique_ptr<struct dwp_file> dwp_file
12814 (new struct dwp_file (name, std::move (dbfd)));
12815
12816 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12817 dwp_file->elf_sections =
12818 OBSTACK_CALLOC (&objfile->objfile_obstack,
12819 dwp_file->num_sections, asection *);
12820
12821 bfd_map_over_sections (dwp_file->dbfd.get (),
12822 dwarf2_locate_common_dwp_sections,
12823 dwp_file.get ());
12824
12825 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12826 0);
12827
12828 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12829 1);
12830
12831 /* The DWP file version is stored in the hash table. Oh well. */
12832 if (dwp_file->cus && dwp_file->tus
12833 && dwp_file->cus->version != dwp_file->tus->version)
12834 {
12835 /* Technically speaking, we should try to limp along, but this is
12836 pretty bizarre. We use pulongest here because that's the established
12837 portability solution (e.g, we cannot use %u for uint32_t). */
12838 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12839 " TU version %s [in DWP file %s]"),
12840 pulongest (dwp_file->cus->version),
12841 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12842 }
12843
12844 if (dwp_file->cus)
12845 dwp_file->version = dwp_file->cus->version;
12846 else if (dwp_file->tus)
12847 dwp_file->version = dwp_file->tus->version;
12848 else
12849 dwp_file->version = 2;
12850
12851 if (dwp_file->version == 2)
12852 bfd_map_over_sections (dwp_file->dbfd.get (),
12853 dwarf2_locate_v2_dwp_sections,
12854 dwp_file.get ());
12855
12856 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
12857 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
12858
12859 if (dwarf_read_debug)
12860 {
12861 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12862 fprintf_unfiltered (gdb_stdlog,
12863 " %s CUs, %s TUs\n",
12864 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12865 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12866 }
12867
12868 return dwp_file;
12869 }
12870
12871 /* Wrapper around open_and_init_dwp_file, only open it once. */
12872
12873 static struct dwp_file *
12874 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12875 {
12876 if (! dwarf2_per_objfile->dwp_checked)
12877 {
12878 dwarf2_per_objfile->dwp_file
12879 = open_and_init_dwp_file (dwarf2_per_objfile);
12880 dwarf2_per_objfile->dwp_checked = 1;
12881 }
12882 return dwarf2_per_objfile->dwp_file.get ();
12883 }
12884
12885 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12886 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12887 or in the DWP file for the objfile, referenced by THIS_UNIT.
12888 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12889 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12890
12891 This is called, for example, when wanting to read a variable with a
12892 complex location. Therefore we don't want to do file i/o for every call.
12893 Therefore we don't want to look for a DWO file on every call.
12894 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12895 then we check if we've already seen DWO_NAME, and only THEN do we check
12896 for a DWO file.
12897
12898 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12899 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12900
12901 static struct dwo_unit *
12902 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12903 const char *dwo_name, const char *comp_dir,
12904 ULONGEST signature, int is_debug_types)
12905 {
12906 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12907 struct objfile *objfile = dwarf2_per_objfile->objfile;
12908 const char *kind = is_debug_types ? "TU" : "CU";
12909 void **dwo_file_slot;
12910 struct dwo_file *dwo_file;
12911 struct dwp_file *dwp_file;
12912
12913 /* First see if there's a DWP file.
12914 If we have a DWP file but didn't find the DWO inside it, don't
12915 look for the original DWO file. It makes gdb behave differently
12916 depending on whether one is debugging in the build tree. */
12917
12918 dwp_file = get_dwp_file (dwarf2_per_objfile);
12919 if (dwp_file != NULL)
12920 {
12921 const struct dwp_hash_table *dwp_htab =
12922 is_debug_types ? dwp_file->tus : dwp_file->cus;
12923
12924 if (dwp_htab != NULL)
12925 {
12926 struct dwo_unit *dwo_cutu =
12927 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12928 signature, is_debug_types);
12929
12930 if (dwo_cutu != NULL)
12931 {
12932 if (dwarf_read_debug)
12933 {
12934 fprintf_unfiltered (gdb_stdlog,
12935 "Virtual DWO %s %s found: @%s\n",
12936 kind, hex_string (signature),
12937 host_address_to_string (dwo_cutu));
12938 }
12939 return dwo_cutu;
12940 }
12941 }
12942 }
12943 else
12944 {
12945 /* No DWP file, look for the DWO file. */
12946
12947 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12948 dwo_name, comp_dir);
12949 if (*dwo_file_slot == NULL)
12950 {
12951 /* Read in the file and build a table of the CUs/TUs it contains. */
12952 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12953 }
12954 /* NOTE: This will be NULL if unable to open the file. */
12955 dwo_file = (struct dwo_file *) *dwo_file_slot;
12956
12957 if (dwo_file != NULL)
12958 {
12959 struct dwo_unit *dwo_cutu = NULL;
12960
12961 if (is_debug_types && dwo_file->tus)
12962 {
12963 struct dwo_unit find_dwo_cutu;
12964
12965 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12966 find_dwo_cutu.signature = signature;
12967 dwo_cutu
12968 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12969 &find_dwo_cutu);
12970 }
12971 else if (!is_debug_types && dwo_file->cus)
12972 {
12973 struct dwo_unit find_dwo_cutu;
12974
12975 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12976 find_dwo_cutu.signature = signature;
12977 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12978 &find_dwo_cutu);
12979 }
12980
12981 if (dwo_cutu != NULL)
12982 {
12983 if (dwarf_read_debug)
12984 {
12985 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12986 kind, dwo_name, hex_string (signature),
12987 host_address_to_string (dwo_cutu));
12988 }
12989 return dwo_cutu;
12990 }
12991 }
12992 }
12993
12994 /* We didn't find it. This could mean a dwo_id mismatch, or
12995 someone deleted the DWO/DWP file, or the search path isn't set up
12996 correctly to find the file. */
12997
12998 if (dwarf_read_debug)
12999 {
13000 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13001 kind, dwo_name, hex_string (signature));
13002 }
13003
13004 /* This is a warning and not a complaint because it can be caused by
13005 pilot error (e.g., user accidentally deleting the DWO). */
13006 {
13007 /* Print the name of the DWP file if we looked there, helps the user
13008 better diagnose the problem. */
13009 std::string dwp_text;
13010
13011 if (dwp_file != NULL)
13012 dwp_text = string_printf (" [in DWP file %s]",
13013 lbasename (dwp_file->name));
13014
13015 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13016 " [in module %s]"),
13017 kind, dwo_name, hex_string (signature),
13018 dwp_text.c_str (),
13019 this_unit->is_debug_types ? "TU" : "CU",
13020 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13021 }
13022 return NULL;
13023 }
13024
13025 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13026 See lookup_dwo_cutu_unit for details. */
13027
13028 static struct dwo_unit *
13029 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13030 const char *dwo_name, const char *comp_dir,
13031 ULONGEST signature)
13032 {
13033 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13034 }
13035
13036 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13037 See lookup_dwo_cutu_unit for details. */
13038
13039 static struct dwo_unit *
13040 lookup_dwo_type_unit (struct signatured_type *this_tu,
13041 const char *dwo_name, const char *comp_dir)
13042 {
13043 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13044 }
13045
13046 /* Traversal function for queue_and_load_all_dwo_tus. */
13047
13048 static int
13049 queue_and_load_dwo_tu (void **slot, void *info)
13050 {
13051 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13052 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13053 ULONGEST signature = dwo_unit->signature;
13054 struct signatured_type *sig_type =
13055 lookup_dwo_signatured_type (per_cu->cu, signature);
13056
13057 if (sig_type != NULL)
13058 {
13059 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13060
13061 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13062 a real dependency of PER_CU on SIG_TYPE. That is detected later
13063 while processing PER_CU. */
13064 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13065 load_full_type_unit (sig_cu);
13066 per_cu->imported_symtabs_push (sig_cu);
13067 }
13068
13069 return 1;
13070 }
13071
13072 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13073 The DWO may have the only definition of the type, though it may not be
13074 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13075 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13076
13077 static void
13078 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13079 {
13080 struct dwo_unit *dwo_unit;
13081 struct dwo_file *dwo_file;
13082
13083 gdb_assert (!per_cu->is_debug_types);
13084 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13085 gdb_assert (per_cu->cu != NULL);
13086
13087 dwo_unit = per_cu->cu->dwo_unit;
13088 gdb_assert (dwo_unit != NULL);
13089
13090 dwo_file = dwo_unit->dwo_file;
13091 if (dwo_file->tus != NULL)
13092 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
13093 per_cu);
13094 }
13095
13096 /* Read in various DIEs. */
13097
13098 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13099 Inherit only the children of the DW_AT_abstract_origin DIE not being
13100 already referenced by DW_AT_abstract_origin from the children of the
13101 current DIE. */
13102
13103 static void
13104 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13105 {
13106 struct die_info *child_die;
13107 sect_offset *offsetp;
13108 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13109 struct die_info *origin_die;
13110 /* Iterator of the ORIGIN_DIE children. */
13111 struct die_info *origin_child_die;
13112 struct attribute *attr;
13113 struct dwarf2_cu *origin_cu;
13114 struct pending **origin_previous_list_in_scope;
13115
13116 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13117 if (!attr)
13118 return;
13119
13120 /* Note that following die references may follow to a die in a
13121 different cu. */
13122
13123 origin_cu = cu;
13124 origin_die = follow_die_ref (die, attr, &origin_cu);
13125
13126 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13127 symbols in. */
13128 origin_previous_list_in_scope = origin_cu->list_in_scope;
13129 origin_cu->list_in_scope = cu->list_in_scope;
13130
13131 if (die->tag != origin_die->tag
13132 && !(die->tag == DW_TAG_inlined_subroutine
13133 && origin_die->tag == DW_TAG_subprogram))
13134 complaint (_("DIE %s and its abstract origin %s have different tags"),
13135 sect_offset_str (die->sect_off),
13136 sect_offset_str (origin_die->sect_off));
13137
13138 std::vector<sect_offset> offsets;
13139
13140 for (child_die = die->child;
13141 child_die && child_die->tag;
13142 child_die = sibling_die (child_die))
13143 {
13144 struct die_info *child_origin_die;
13145 struct dwarf2_cu *child_origin_cu;
13146
13147 /* We are trying to process concrete instance entries:
13148 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13149 it's not relevant to our analysis here. i.e. detecting DIEs that are
13150 present in the abstract instance but not referenced in the concrete
13151 one. */
13152 if (child_die->tag == DW_TAG_call_site
13153 || child_die->tag == DW_TAG_GNU_call_site)
13154 continue;
13155
13156 /* For each CHILD_DIE, find the corresponding child of
13157 ORIGIN_DIE. If there is more than one layer of
13158 DW_AT_abstract_origin, follow them all; there shouldn't be,
13159 but GCC versions at least through 4.4 generate this (GCC PR
13160 40573). */
13161 child_origin_die = child_die;
13162 child_origin_cu = cu;
13163 while (1)
13164 {
13165 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13166 child_origin_cu);
13167 if (attr == NULL)
13168 break;
13169 child_origin_die = follow_die_ref (child_origin_die, attr,
13170 &child_origin_cu);
13171 }
13172
13173 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13174 counterpart may exist. */
13175 if (child_origin_die != child_die)
13176 {
13177 if (child_die->tag != child_origin_die->tag
13178 && !(child_die->tag == DW_TAG_inlined_subroutine
13179 && child_origin_die->tag == DW_TAG_subprogram))
13180 complaint (_("Child DIE %s and its abstract origin %s have "
13181 "different tags"),
13182 sect_offset_str (child_die->sect_off),
13183 sect_offset_str (child_origin_die->sect_off));
13184 if (child_origin_die->parent != origin_die)
13185 complaint (_("Child DIE %s and its abstract origin %s have "
13186 "different parents"),
13187 sect_offset_str (child_die->sect_off),
13188 sect_offset_str (child_origin_die->sect_off));
13189 else
13190 offsets.push_back (child_origin_die->sect_off);
13191 }
13192 }
13193 std::sort (offsets.begin (), offsets.end ());
13194 sect_offset *offsets_end = offsets.data () + offsets.size ();
13195 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13196 if (offsetp[-1] == *offsetp)
13197 complaint (_("Multiple children of DIE %s refer "
13198 "to DIE %s as their abstract origin"),
13199 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13200
13201 offsetp = offsets.data ();
13202 origin_child_die = origin_die->child;
13203 while (origin_child_die && origin_child_die->tag)
13204 {
13205 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13206 while (offsetp < offsets_end
13207 && *offsetp < origin_child_die->sect_off)
13208 offsetp++;
13209 if (offsetp >= offsets_end
13210 || *offsetp > origin_child_die->sect_off)
13211 {
13212 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13213 Check whether we're already processing ORIGIN_CHILD_DIE.
13214 This can happen with mutually referenced abstract_origins.
13215 PR 16581. */
13216 if (!origin_child_die->in_process)
13217 process_die (origin_child_die, origin_cu);
13218 }
13219 origin_child_die = sibling_die (origin_child_die);
13220 }
13221 origin_cu->list_in_scope = origin_previous_list_in_scope;
13222
13223 if (cu != origin_cu)
13224 compute_delayed_physnames (origin_cu);
13225 }
13226
13227 static void
13228 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13229 {
13230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13232 struct context_stack *newobj;
13233 CORE_ADDR lowpc;
13234 CORE_ADDR highpc;
13235 struct die_info *child_die;
13236 struct attribute *attr, *call_line, *call_file;
13237 const char *name;
13238 CORE_ADDR baseaddr;
13239 struct block *block;
13240 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13241 std::vector<struct symbol *> template_args;
13242 struct template_symbol *templ_func = NULL;
13243
13244 if (inlined_func)
13245 {
13246 /* If we do not have call site information, we can't show the
13247 caller of this inlined function. That's too confusing, so
13248 only use the scope for local variables. */
13249 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13250 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13251 if (call_line == NULL || call_file == NULL)
13252 {
13253 read_lexical_block_scope (die, cu);
13254 return;
13255 }
13256 }
13257
13258 baseaddr = objfile->text_section_offset ();
13259
13260 name = dwarf2_name (die, cu);
13261
13262 /* Ignore functions with missing or empty names. These are actually
13263 illegal according to the DWARF standard. */
13264 if (name == NULL)
13265 {
13266 complaint (_("missing name for subprogram DIE at %s"),
13267 sect_offset_str (die->sect_off));
13268 return;
13269 }
13270
13271 /* Ignore functions with missing or invalid low and high pc attributes. */
13272 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13273 <= PC_BOUNDS_INVALID)
13274 {
13275 attr = dwarf2_attr (die, DW_AT_external, cu);
13276 if (!attr || !DW_UNSND (attr))
13277 complaint (_("cannot get low and high bounds "
13278 "for subprogram DIE at %s"),
13279 sect_offset_str (die->sect_off));
13280 return;
13281 }
13282
13283 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13284 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13285
13286 /* If we have any template arguments, then we must allocate a
13287 different sort of symbol. */
13288 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13289 {
13290 if (child_die->tag == DW_TAG_template_type_param
13291 || child_die->tag == DW_TAG_template_value_param)
13292 {
13293 templ_func = allocate_template_symbol (objfile);
13294 templ_func->subclass = SYMBOL_TEMPLATE;
13295 break;
13296 }
13297 }
13298
13299 newobj = cu->get_builder ()->push_context (0, lowpc);
13300 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13301 (struct symbol *) templ_func);
13302
13303 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13304 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13305 cu->language);
13306
13307 /* If there is a location expression for DW_AT_frame_base, record
13308 it. */
13309 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13310 if (attr != nullptr)
13311 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13312
13313 /* If there is a location for the static link, record it. */
13314 newobj->static_link = NULL;
13315 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13316 if (attr != nullptr)
13317 {
13318 newobj->static_link
13319 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13320 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13321 dwarf2_per_cu_addr_type (cu->per_cu));
13322 }
13323
13324 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13325
13326 if (die->child != NULL)
13327 {
13328 child_die = die->child;
13329 while (child_die && child_die->tag)
13330 {
13331 if (child_die->tag == DW_TAG_template_type_param
13332 || child_die->tag == DW_TAG_template_value_param)
13333 {
13334 struct symbol *arg = new_symbol (child_die, NULL, cu);
13335
13336 if (arg != NULL)
13337 template_args.push_back (arg);
13338 }
13339 else
13340 process_die (child_die, cu);
13341 child_die = sibling_die (child_die);
13342 }
13343 }
13344
13345 inherit_abstract_dies (die, cu);
13346
13347 /* If we have a DW_AT_specification, we might need to import using
13348 directives from the context of the specification DIE. See the
13349 comment in determine_prefix. */
13350 if (cu->language == language_cplus
13351 && dwarf2_attr (die, DW_AT_specification, cu))
13352 {
13353 struct dwarf2_cu *spec_cu = cu;
13354 struct die_info *spec_die = die_specification (die, &spec_cu);
13355
13356 while (spec_die)
13357 {
13358 child_die = spec_die->child;
13359 while (child_die && child_die->tag)
13360 {
13361 if (child_die->tag == DW_TAG_imported_module)
13362 process_die (child_die, spec_cu);
13363 child_die = sibling_die (child_die);
13364 }
13365
13366 /* In some cases, GCC generates specification DIEs that
13367 themselves contain DW_AT_specification attributes. */
13368 spec_die = die_specification (spec_die, &spec_cu);
13369 }
13370 }
13371
13372 struct context_stack cstk = cu->get_builder ()->pop_context ();
13373 /* Make a block for the local symbols within. */
13374 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13375 cstk.static_link, lowpc, highpc);
13376
13377 /* For C++, set the block's scope. */
13378 if ((cu->language == language_cplus
13379 || cu->language == language_fortran
13380 || cu->language == language_d
13381 || cu->language == language_rust)
13382 && cu->processing_has_namespace_info)
13383 block_set_scope (block, determine_prefix (die, cu),
13384 &objfile->objfile_obstack);
13385
13386 /* If we have address ranges, record them. */
13387 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13388
13389 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13390
13391 /* Attach template arguments to function. */
13392 if (!template_args.empty ())
13393 {
13394 gdb_assert (templ_func != NULL);
13395
13396 templ_func->n_template_arguments = template_args.size ();
13397 templ_func->template_arguments
13398 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13399 templ_func->n_template_arguments);
13400 memcpy (templ_func->template_arguments,
13401 template_args.data (),
13402 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13403
13404 /* Make sure that the symtab is set on the new symbols. Even
13405 though they don't appear in this symtab directly, other parts
13406 of gdb assume that symbols do, and this is reasonably
13407 true. */
13408 for (symbol *sym : template_args)
13409 symbol_set_symtab (sym, symbol_symtab (templ_func));
13410 }
13411
13412 /* In C++, we can have functions nested inside functions (e.g., when
13413 a function declares a class that has methods). This means that
13414 when we finish processing a function scope, we may need to go
13415 back to building a containing block's symbol lists. */
13416 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13417 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13418
13419 /* If we've finished processing a top-level function, subsequent
13420 symbols go in the file symbol list. */
13421 if (cu->get_builder ()->outermost_context_p ())
13422 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13423 }
13424
13425 /* Process all the DIES contained within a lexical block scope. Start
13426 a new scope, process the dies, and then close the scope. */
13427
13428 static void
13429 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13430 {
13431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13433 CORE_ADDR lowpc, highpc;
13434 struct die_info *child_die;
13435 CORE_ADDR baseaddr;
13436
13437 baseaddr = objfile->text_section_offset ();
13438
13439 /* Ignore blocks with missing or invalid low and high pc attributes. */
13440 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13441 as multiple lexical blocks? Handling children in a sane way would
13442 be nasty. Might be easier to properly extend generic blocks to
13443 describe ranges. */
13444 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13445 {
13446 case PC_BOUNDS_NOT_PRESENT:
13447 /* DW_TAG_lexical_block has no attributes, process its children as if
13448 there was no wrapping by that DW_TAG_lexical_block.
13449 GCC does no longer produces such DWARF since GCC r224161. */
13450 for (child_die = die->child;
13451 child_die != NULL && child_die->tag;
13452 child_die = sibling_die (child_die))
13453 process_die (child_die, cu);
13454 return;
13455 case PC_BOUNDS_INVALID:
13456 return;
13457 }
13458 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13459 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13460
13461 cu->get_builder ()->push_context (0, lowpc);
13462 if (die->child != NULL)
13463 {
13464 child_die = die->child;
13465 while (child_die && child_die->tag)
13466 {
13467 process_die (child_die, cu);
13468 child_die = sibling_die (child_die);
13469 }
13470 }
13471 inherit_abstract_dies (die, cu);
13472 struct context_stack cstk = cu->get_builder ()->pop_context ();
13473
13474 if (*cu->get_builder ()->get_local_symbols () != NULL
13475 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13476 {
13477 struct block *block
13478 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13479 cstk.start_addr, highpc);
13480
13481 /* Note that recording ranges after traversing children, as we
13482 do here, means that recording a parent's ranges entails
13483 walking across all its children's ranges as they appear in
13484 the address map, which is quadratic behavior.
13485
13486 It would be nicer to record the parent's ranges before
13487 traversing its children, simply overriding whatever you find
13488 there. But since we don't even decide whether to create a
13489 block until after we've traversed its children, that's hard
13490 to do. */
13491 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13492 }
13493 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13494 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13495 }
13496
13497 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13498
13499 static void
13500 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13501 {
13502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13504 CORE_ADDR pc, baseaddr;
13505 struct attribute *attr;
13506 struct call_site *call_site, call_site_local;
13507 void **slot;
13508 int nparams;
13509 struct die_info *child_die;
13510
13511 baseaddr = objfile->text_section_offset ();
13512
13513 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13514 if (attr == NULL)
13515 {
13516 /* This was a pre-DWARF-5 GNU extension alias
13517 for DW_AT_call_return_pc. */
13518 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13519 }
13520 if (!attr)
13521 {
13522 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13523 "DIE %s [in module %s]"),
13524 sect_offset_str (die->sect_off), objfile_name (objfile));
13525 return;
13526 }
13527 pc = attr->value_as_address () + baseaddr;
13528 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13529
13530 if (cu->call_site_htab == NULL)
13531 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13532 NULL, &objfile->objfile_obstack,
13533 hashtab_obstack_allocate, NULL);
13534 call_site_local.pc = pc;
13535 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13536 if (*slot != NULL)
13537 {
13538 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13539 "DIE %s [in module %s]"),
13540 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13541 objfile_name (objfile));
13542 return;
13543 }
13544
13545 /* Count parameters at the caller. */
13546
13547 nparams = 0;
13548 for (child_die = die->child; child_die && child_die->tag;
13549 child_die = sibling_die (child_die))
13550 {
13551 if (child_die->tag != DW_TAG_call_site_parameter
13552 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13553 {
13554 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13555 "DW_TAG_call_site child DIE %s [in module %s]"),
13556 child_die->tag, sect_offset_str (child_die->sect_off),
13557 objfile_name (objfile));
13558 continue;
13559 }
13560
13561 nparams++;
13562 }
13563
13564 call_site
13565 = ((struct call_site *)
13566 obstack_alloc (&objfile->objfile_obstack,
13567 sizeof (*call_site)
13568 + (sizeof (*call_site->parameter) * (nparams - 1))));
13569 *slot = call_site;
13570 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13571 call_site->pc = pc;
13572
13573 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13574 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13575 {
13576 struct die_info *func_die;
13577
13578 /* Skip also over DW_TAG_inlined_subroutine. */
13579 for (func_die = die->parent;
13580 func_die && func_die->tag != DW_TAG_subprogram
13581 && func_die->tag != DW_TAG_subroutine_type;
13582 func_die = func_die->parent);
13583
13584 /* DW_AT_call_all_calls is a superset
13585 of DW_AT_call_all_tail_calls. */
13586 if (func_die
13587 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13588 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13589 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13590 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13591 {
13592 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13593 not complete. But keep CALL_SITE for look ups via call_site_htab,
13594 both the initial caller containing the real return address PC and
13595 the final callee containing the current PC of a chain of tail
13596 calls do not need to have the tail call list complete. But any
13597 function candidate for a virtual tail call frame searched via
13598 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13599 determined unambiguously. */
13600 }
13601 else
13602 {
13603 struct type *func_type = NULL;
13604
13605 if (func_die)
13606 func_type = get_die_type (func_die, cu);
13607 if (func_type != NULL)
13608 {
13609 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13610
13611 /* Enlist this call site to the function. */
13612 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13613 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13614 }
13615 else
13616 complaint (_("Cannot find function owning DW_TAG_call_site "
13617 "DIE %s [in module %s]"),
13618 sect_offset_str (die->sect_off), objfile_name (objfile));
13619 }
13620 }
13621
13622 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13623 if (attr == NULL)
13624 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13625 if (attr == NULL)
13626 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13627 if (attr == NULL)
13628 {
13629 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13630 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13631 }
13632 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13633 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13634 /* Keep NULL DWARF_BLOCK. */;
13635 else if (attr->form_is_block ())
13636 {
13637 struct dwarf2_locexpr_baton *dlbaton;
13638
13639 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13640 dlbaton->data = DW_BLOCK (attr)->data;
13641 dlbaton->size = DW_BLOCK (attr)->size;
13642 dlbaton->per_cu = cu->per_cu;
13643
13644 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13645 }
13646 else if (attr->form_is_ref ())
13647 {
13648 struct dwarf2_cu *target_cu = cu;
13649 struct die_info *target_die;
13650
13651 target_die = follow_die_ref (die, attr, &target_cu);
13652 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13653 if (die_is_declaration (target_die, target_cu))
13654 {
13655 const char *target_physname;
13656
13657 /* Prefer the mangled name; otherwise compute the demangled one. */
13658 target_physname = dw2_linkage_name (target_die, target_cu);
13659 if (target_physname == NULL)
13660 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13661 if (target_physname == NULL)
13662 complaint (_("DW_AT_call_target target DIE has invalid "
13663 "physname, for referencing DIE %s [in module %s]"),
13664 sect_offset_str (die->sect_off), objfile_name (objfile));
13665 else
13666 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13667 }
13668 else
13669 {
13670 CORE_ADDR lowpc;
13671
13672 /* DW_AT_entry_pc should be preferred. */
13673 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13674 <= PC_BOUNDS_INVALID)
13675 complaint (_("DW_AT_call_target target DIE has invalid "
13676 "low pc, for referencing DIE %s [in module %s]"),
13677 sect_offset_str (die->sect_off), objfile_name (objfile));
13678 else
13679 {
13680 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13681 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13682 }
13683 }
13684 }
13685 else
13686 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13687 "block nor reference, for DIE %s [in module %s]"),
13688 sect_offset_str (die->sect_off), objfile_name (objfile));
13689
13690 call_site->per_cu = cu->per_cu;
13691
13692 for (child_die = die->child;
13693 child_die && child_die->tag;
13694 child_die = sibling_die (child_die))
13695 {
13696 struct call_site_parameter *parameter;
13697 struct attribute *loc, *origin;
13698
13699 if (child_die->tag != DW_TAG_call_site_parameter
13700 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13701 {
13702 /* Already printed the complaint above. */
13703 continue;
13704 }
13705
13706 gdb_assert (call_site->parameter_count < nparams);
13707 parameter = &call_site->parameter[call_site->parameter_count];
13708
13709 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13710 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13711 register is contained in DW_AT_call_value. */
13712
13713 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13714 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13715 if (origin == NULL)
13716 {
13717 /* This was a pre-DWARF-5 GNU extension alias
13718 for DW_AT_call_parameter. */
13719 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13720 }
13721 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13722 {
13723 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13724
13725 sect_offset sect_off
13726 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13727 if (!offset_in_cu_p (&cu->header, sect_off))
13728 {
13729 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13730 binding can be done only inside one CU. Such referenced DIE
13731 therefore cannot be even moved to DW_TAG_partial_unit. */
13732 complaint (_("DW_AT_call_parameter offset is not in CU for "
13733 "DW_TAG_call_site child DIE %s [in module %s]"),
13734 sect_offset_str (child_die->sect_off),
13735 objfile_name (objfile));
13736 continue;
13737 }
13738 parameter->u.param_cu_off
13739 = (cu_offset) (sect_off - cu->header.sect_off);
13740 }
13741 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13742 {
13743 complaint (_("No DW_FORM_block* DW_AT_location for "
13744 "DW_TAG_call_site child DIE %s [in module %s]"),
13745 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13746 continue;
13747 }
13748 else
13749 {
13750 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13751 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13752 if (parameter->u.dwarf_reg != -1)
13753 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13754 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13755 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13756 &parameter->u.fb_offset))
13757 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13758 else
13759 {
13760 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13761 "for DW_FORM_block* DW_AT_location is supported for "
13762 "DW_TAG_call_site child DIE %s "
13763 "[in module %s]"),
13764 sect_offset_str (child_die->sect_off),
13765 objfile_name (objfile));
13766 continue;
13767 }
13768 }
13769
13770 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13771 if (attr == NULL)
13772 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13773 if (attr == NULL || !attr->form_is_block ())
13774 {
13775 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13776 "DW_TAG_call_site child DIE %s [in module %s]"),
13777 sect_offset_str (child_die->sect_off),
13778 objfile_name (objfile));
13779 continue;
13780 }
13781 parameter->value = DW_BLOCK (attr)->data;
13782 parameter->value_size = DW_BLOCK (attr)->size;
13783
13784 /* Parameters are not pre-cleared by memset above. */
13785 parameter->data_value = NULL;
13786 parameter->data_value_size = 0;
13787 call_site->parameter_count++;
13788
13789 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13790 if (attr == NULL)
13791 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13792 if (attr != nullptr)
13793 {
13794 if (!attr->form_is_block ())
13795 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13796 "DW_TAG_call_site child DIE %s [in module %s]"),
13797 sect_offset_str (child_die->sect_off),
13798 objfile_name (objfile));
13799 else
13800 {
13801 parameter->data_value = DW_BLOCK (attr)->data;
13802 parameter->data_value_size = DW_BLOCK (attr)->size;
13803 }
13804 }
13805 }
13806 }
13807
13808 /* Helper function for read_variable. If DIE represents a virtual
13809 table, then return the type of the concrete object that is
13810 associated with the virtual table. Otherwise, return NULL. */
13811
13812 static struct type *
13813 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13814 {
13815 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13816 if (attr == NULL)
13817 return NULL;
13818
13819 /* Find the type DIE. */
13820 struct die_info *type_die = NULL;
13821 struct dwarf2_cu *type_cu = cu;
13822
13823 if (attr->form_is_ref ())
13824 type_die = follow_die_ref (die, attr, &type_cu);
13825 if (type_die == NULL)
13826 return NULL;
13827
13828 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13829 return NULL;
13830 return die_containing_type (type_die, type_cu);
13831 }
13832
13833 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13834
13835 static void
13836 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13837 {
13838 struct rust_vtable_symbol *storage = NULL;
13839
13840 if (cu->language == language_rust)
13841 {
13842 struct type *containing_type = rust_containing_type (die, cu);
13843
13844 if (containing_type != NULL)
13845 {
13846 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13847
13848 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13849 initialize_objfile_symbol (storage);
13850 storage->concrete_type = containing_type;
13851 storage->subclass = SYMBOL_RUST_VTABLE;
13852 }
13853 }
13854
13855 struct symbol *res = new_symbol (die, NULL, cu, storage);
13856 struct attribute *abstract_origin
13857 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13858 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13859 if (res == NULL && loc && abstract_origin)
13860 {
13861 /* We have a variable without a name, but with a location and an abstract
13862 origin. This may be a concrete instance of an abstract variable
13863 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13864 later. */
13865 struct dwarf2_cu *origin_cu = cu;
13866 struct die_info *origin_die
13867 = follow_die_ref (die, abstract_origin, &origin_cu);
13868 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13869 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13870 }
13871 }
13872
13873 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13874 reading .debug_rnglists.
13875 Callback's type should be:
13876 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13877 Return true if the attributes are present and valid, otherwise,
13878 return false. */
13879
13880 template <typename Callback>
13881 static bool
13882 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13883 Callback &&callback)
13884 {
13885 struct dwarf2_per_objfile *dwarf2_per_objfile
13886 = cu->per_cu->dwarf2_per_objfile;
13887 struct objfile *objfile = dwarf2_per_objfile->objfile;
13888 bfd *obfd = objfile->obfd;
13889 /* Base address selection entry. */
13890 CORE_ADDR base;
13891 int found_base;
13892 const gdb_byte *buffer;
13893 CORE_ADDR baseaddr;
13894 bool overflow = false;
13895
13896 found_base = cu->base_known;
13897 base = cu->base_address;
13898
13899 dwarf2_per_objfile->rnglists.read (objfile);
13900 if (offset >= dwarf2_per_objfile->rnglists.size)
13901 {
13902 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13903 offset);
13904 return false;
13905 }
13906 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13907
13908 baseaddr = objfile->text_section_offset ();
13909
13910 while (1)
13911 {
13912 /* Initialize it due to a false compiler warning. */
13913 CORE_ADDR range_beginning = 0, range_end = 0;
13914 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13915 + dwarf2_per_objfile->rnglists.size);
13916 unsigned int bytes_read;
13917
13918 if (buffer == buf_end)
13919 {
13920 overflow = true;
13921 break;
13922 }
13923 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13924 switch (rlet)
13925 {
13926 case DW_RLE_end_of_list:
13927 break;
13928 case DW_RLE_base_address:
13929 if (buffer + cu->header.addr_size > buf_end)
13930 {
13931 overflow = true;
13932 break;
13933 }
13934 base = read_address (obfd, buffer, cu, &bytes_read);
13935 found_base = 1;
13936 buffer += bytes_read;
13937 break;
13938 case DW_RLE_start_length:
13939 if (buffer + cu->header.addr_size > buf_end)
13940 {
13941 overflow = true;
13942 break;
13943 }
13944 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13945 buffer += bytes_read;
13946 range_end = (range_beginning
13947 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13948 buffer += bytes_read;
13949 if (buffer > buf_end)
13950 {
13951 overflow = true;
13952 break;
13953 }
13954 break;
13955 case DW_RLE_offset_pair:
13956 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13957 buffer += bytes_read;
13958 if (buffer > buf_end)
13959 {
13960 overflow = true;
13961 break;
13962 }
13963 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13964 buffer += bytes_read;
13965 if (buffer > buf_end)
13966 {
13967 overflow = true;
13968 break;
13969 }
13970 break;
13971 case DW_RLE_start_end:
13972 if (buffer + 2 * cu->header.addr_size > buf_end)
13973 {
13974 overflow = true;
13975 break;
13976 }
13977 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13978 buffer += bytes_read;
13979 range_end = read_address (obfd, buffer, cu, &bytes_read);
13980 buffer += bytes_read;
13981 break;
13982 default:
13983 complaint (_("Invalid .debug_rnglists data (no base address)"));
13984 return false;
13985 }
13986 if (rlet == DW_RLE_end_of_list || overflow)
13987 break;
13988 if (rlet == DW_RLE_base_address)
13989 continue;
13990
13991 if (!found_base)
13992 {
13993 /* We have no valid base address for the ranges
13994 data. */
13995 complaint (_("Invalid .debug_rnglists data (no base address)"));
13996 return false;
13997 }
13998
13999 if (range_beginning > range_end)
14000 {
14001 /* Inverted range entries are invalid. */
14002 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14003 return false;
14004 }
14005
14006 /* Empty range entries have no effect. */
14007 if (range_beginning == range_end)
14008 continue;
14009
14010 range_beginning += base;
14011 range_end += base;
14012
14013 /* A not-uncommon case of bad debug info.
14014 Don't pollute the addrmap with bad data. */
14015 if (range_beginning + baseaddr == 0
14016 && !dwarf2_per_objfile->has_section_at_zero)
14017 {
14018 complaint (_(".debug_rnglists entry has start address of zero"
14019 " [in module %s]"), objfile_name (objfile));
14020 continue;
14021 }
14022
14023 callback (range_beginning, range_end);
14024 }
14025
14026 if (overflow)
14027 {
14028 complaint (_("Offset %d is not terminated "
14029 "for DW_AT_ranges attribute"),
14030 offset);
14031 return false;
14032 }
14033
14034 return true;
14035 }
14036
14037 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14038 Callback's type should be:
14039 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14040 Return 1 if the attributes are present and valid, otherwise, return 0. */
14041
14042 template <typename Callback>
14043 static int
14044 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14045 Callback &&callback)
14046 {
14047 struct dwarf2_per_objfile *dwarf2_per_objfile
14048 = cu->per_cu->dwarf2_per_objfile;
14049 struct objfile *objfile = dwarf2_per_objfile->objfile;
14050 struct comp_unit_head *cu_header = &cu->header;
14051 bfd *obfd = objfile->obfd;
14052 unsigned int addr_size = cu_header->addr_size;
14053 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14054 /* Base address selection entry. */
14055 CORE_ADDR base;
14056 int found_base;
14057 unsigned int dummy;
14058 const gdb_byte *buffer;
14059 CORE_ADDR baseaddr;
14060
14061 if (cu_header->version >= 5)
14062 return dwarf2_rnglists_process (offset, cu, callback);
14063
14064 found_base = cu->base_known;
14065 base = cu->base_address;
14066
14067 dwarf2_per_objfile->ranges.read (objfile);
14068 if (offset >= dwarf2_per_objfile->ranges.size)
14069 {
14070 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14071 offset);
14072 return 0;
14073 }
14074 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14075
14076 baseaddr = objfile->text_section_offset ();
14077
14078 while (1)
14079 {
14080 CORE_ADDR range_beginning, range_end;
14081
14082 range_beginning = read_address (obfd, buffer, cu, &dummy);
14083 buffer += addr_size;
14084 range_end = read_address (obfd, buffer, cu, &dummy);
14085 buffer += addr_size;
14086 offset += 2 * addr_size;
14087
14088 /* An end of list marker is a pair of zero addresses. */
14089 if (range_beginning == 0 && range_end == 0)
14090 /* Found the end of list entry. */
14091 break;
14092
14093 /* Each base address selection entry is a pair of 2 values.
14094 The first is the largest possible address, the second is
14095 the base address. Check for a base address here. */
14096 if ((range_beginning & mask) == mask)
14097 {
14098 /* If we found the largest possible address, then we already
14099 have the base address in range_end. */
14100 base = range_end;
14101 found_base = 1;
14102 continue;
14103 }
14104
14105 if (!found_base)
14106 {
14107 /* We have no valid base address for the ranges
14108 data. */
14109 complaint (_("Invalid .debug_ranges data (no base address)"));
14110 return 0;
14111 }
14112
14113 if (range_beginning > range_end)
14114 {
14115 /* Inverted range entries are invalid. */
14116 complaint (_("Invalid .debug_ranges data (inverted range)"));
14117 return 0;
14118 }
14119
14120 /* Empty range entries have no effect. */
14121 if (range_beginning == range_end)
14122 continue;
14123
14124 range_beginning += base;
14125 range_end += base;
14126
14127 /* A not-uncommon case of bad debug info.
14128 Don't pollute the addrmap with bad data. */
14129 if (range_beginning + baseaddr == 0
14130 && !dwarf2_per_objfile->has_section_at_zero)
14131 {
14132 complaint (_(".debug_ranges entry has start address of zero"
14133 " [in module %s]"), objfile_name (objfile));
14134 continue;
14135 }
14136
14137 callback (range_beginning, range_end);
14138 }
14139
14140 return 1;
14141 }
14142
14143 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14144 Return 1 if the attributes are present and valid, otherwise, return 0.
14145 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14146
14147 static int
14148 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14149 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14150 dwarf2_psymtab *ranges_pst)
14151 {
14152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14154 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14155 int low_set = 0;
14156 CORE_ADDR low = 0;
14157 CORE_ADDR high = 0;
14158 int retval;
14159
14160 retval = dwarf2_ranges_process (offset, cu,
14161 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14162 {
14163 if (ranges_pst != NULL)
14164 {
14165 CORE_ADDR lowpc;
14166 CORE_ADDR highpc;
14167
14168 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14169 range_beginning + baseaddr)
14170 - baseaddr);
14171 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14172 range_end + baseaddr)
14173 - baseaddr);
14174 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14175 lowpc, highpc - 1, ranges_pst);
14176 }
14177
14178 /* FIXME: This is recording everything as a low-high
14179 segment of consecutive addresses. We should have a
14180 data structure for discontiguous block ranges
14181 instead. */
14182 if (! low_set)
14183 {
14184 low = range_beginning;
14185 high = range_end;
14186 low_set = 1;
14187 }
14188 else
14189 {
14190 if (range_beginning < low)
14191 low = range_beginning;
14192 if (range_end > high)
14193 high = range_end;
14194 }
14195 });
14196 if (!retval)
14197 return 0;
14198
14199 if (! low_set)
14200 /* If the first entry is an end-of-list marker, the range
14201 describes an empty scope, i.e. no instructions. */
14202 return 0;
14203
14204 if (low_return)
14205 *low_return = low;
14206 if (high_return)
14207 *high_return = high;
14208 return 1;
14209 }
14210
14211 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14212 definition for the return value. *LOWPC and *HIGHPC are set iff
14213 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14214
14215 static enum pc_bounds_kind
14216 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14217 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14218 dwarf2_psymtab *pst)
14219 {
14220 struct dwarf2_per_objfile *dwarf2_per_objfile
14221 = cu->per_cu->dwarf2_per_objfile;
14222 struct attribute *attr;
14223 struct attribute *attr_high;
14224 CORE_ADDR low = 0;
14225 CORE_ADDR high = 0;
14226 enum pc_bounds_kind ret;
14227
14228 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14229 if (attr_high)
14230 {
14231 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14232 if (attr != nullptr)
14233 {
14234 low = attr->value_as_address ();
14235 high = attr_high->value_as_address ();
14236 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14237 high += low;
14238 }
14239 else
14240 /* Found high w/o low attribute. */
14241 return PC_BOUNDS_INVALID;
14242
14243 /* Found consecutive range of addresses. */
14244 ret = PC_BOUNDS_HIGH_LOW;
14245 }
14246 else
14247 {
14248 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14249 if (attr != NULL)
14250 {
14251 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14252 We take advantage of the fact that DW_AT_ranges does not appear
14253 in DW_TAG_compile_unit of DWO files. */
14254 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14255 unsigned int ranges_offset = (DW_UNSND (attr)
14256 + (need_ranges_base
14257 ? cu->ranges_base
14258 : 0));
14259
14260 /* Value of the DW_AT_ranges attribute is the offset in the
14261 .debug_ranges section. */
14262 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14263 return PC_BOUNDS_INVALID;
14264 /* Found discontinuous range of addresses. */
14265 ret = PC_BOUNDS_RANGES;
14266 }
14267 else
14268 return PC_BOUNDS_NOT_PRESENT;
14269 }
14270
14271 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14272 if (high <= low)
14273 return PC_BOUNDS_INVALID;
14274
14275 /* When using the GNU linker, .gnu.linkonce. sections are used to
14276 eliminate duplicate copies of functions and vtables and such.
14277 The linker will arbitrarily choose one and discard the others.
14278 The AT_*_pc values for such functions refer to local labels in
14279 these sections. If the section from that file was discarded, the
14280 labels are not in the output, so the relocs get a value of 0.
14281 If this is a discarded function, mark the pc bounds as invalid,
14282 so that GDB will ignore it. */
14283 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14284 return PC_BOUNDS_INVALID;
14285
14286 *lowpc = low;
14287 if (highpc)
14288 *highpc = high;
14289 return ret;
14290 }
14291
14292 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14293 its low and high PC addresses. Do nothing if these addresses could not
14294 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14295 and HIGHPC to the high address if greater than HIGHPC. */
14296
14297 static void
14298 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14299 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14300 struct dwarf2_cu *cu)
14301 {
14302 CORE_ADDR low, high;
14303 struct die_info *child = die->child;
14304
14305 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14306 {
14307 *lowpc = std::min (*lowpc, low);
14308 *highpc = std::max (*highpc, high);
14309 }
14310
14311 /* If the language does not allow nested subprograms (either inside
14312 subprograms or lexical blocks), we're done. */
14313 if (cu->language != language_ada)
14314 return;
14315
14316 /* Check all the children of the given DIE. If it contains nested
14317 subprograms, then check their pc bounds. Likewise, we need to
14318 check lexical blocks as well, as they may also contain subprogram
14319 definitions. */
14320 while (child && child->tag)
14321 {
14322 if (child->tag == DW_TAG_subprogram
14323 || child->tag == DW_TAG_lexical_block)
14324 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14325 child = sibling_die (child);
14326 }
14327 }
14328
14329 /* Get the low and high pc's represented by the scope DIE, and store
14330 them in *LOWPC and *HIGHPC. If the correct values can't be
14331 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14332
14333 static void
14334 get_scope_pc_bounds (struct die_info *die,
14335 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14336 struct dwarf2_cu *cu)
14337 {
14338 CORE_ADDR best_low = (CORE_ADDR) -1;
14339 CORE_ADDR best_high = (CORE_ADDR) 0;
14340 CORE_ADDR current_low, current_high;
14341
14342 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14343 >= PC_BOUNDS_RANGES)
14344 {
14345 best_low = current_low;
14346 best_high = current_high;
14347 }
14348 else
14349 {
14350 struct die_info *child = die->child;
14351
14352 while (child && child->tag)
14353 {
14354 switch (child->tag) {
14355 case DW_TAG_subprogram:
14356 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14357 break;
14358 case DW_TAG_namespace:
14359 case DW_TAG_module:
14360 /* FIXME: carlton/2004-01-16: Should we do this for
14361 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14362 that current GCC's always emit the DIEs corresponding
14363 to definitions of methods of classes as children of a
14364 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14365 the DIEs giving the declarations, which could be
14366 anywhere). But I don't see any reason why the
14367 standards says that they have to be there. */
14368 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14369
14370 if (current_low != ((CORE_ADDR) -1))
14371 {
14372 best_low = std::min (best_low, current_low);
14373 best_high = std::max (best_high, current_high);
14374 }
14375 break;
14376 default:
14377 /* Ignore. */
14378 break;
14379 }
14380
14381 child = sibling_die (child);
14382 }
14383 }
14384
14385 *lowpc = best_low;
14386 *highpc = best_high;
14387 }
14388
14389 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14390 in DIE. */
14391
14392 static void
14393 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14394 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14395 {
14396 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14397 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14398 struct attribute *attr;
14399 struct attribute *attr_high;
14400
14401 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14402 if (attr_high)
14403 {
14404 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14405 if (attr != nullptr)
14406 {
14407 CORE_ADDR low = attr->value_as_address ();
14408 CORE_ADDR high = attr_high->value_as_address ();
14409
14410 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14411 high += low;
14412
14413 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14414 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14415 cu->get_builder ()->record_block_range (block, low, high - 1);
14416 }
14417 }
14418
14419 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14420 if (attr != nullptr)
14421 {
14422 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14423 We take advantage of the fact that DW_AT_ranges does not appear
14424 in DW_TAG_compile_unit of DWO files. */
14425 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14426
14427 /* The value of the DW_AT_ranges attribute is the offset of the
14428 address range list in the .debug_ranges section. */
14429 unsigned long offset = (DW_UNSND (attr)
14430 + (need_ranges_base ? cu->ranges_base : 0));
14431
14432 std::vector<blockrange> blockvec;
14433 dwarf2_ranges_process (offset, cu,
14434 [&] (CORE_ADDR start, CORE_ADDR end)
14435 {
14436 start += baseaddr;
14437 end += baseaddr;
14438 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14439 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14440 cu->get_builder ()->record_block_range (block, start, end - 1);
14441 blockvec.emplace_back (start, end);
14442 });
14443
14444 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14445 }
14446 }
14447
14448 /* Check whether the producer field indicates either of GCC < 4.6, or the
14449 Intel C/C++ compiler, and cache the result in CU. */
14450
14451 static void
14452 check_producer (struct dwarf2_cu *cu)
14453 {
14454 int major, minor;
14455
14456 if (cu->producer == NULL)
14457 {
14458 /* For unknown compilers expect their behavior is DWARF version
14459 compliant.
14460
14461 GCC started to support .debug_types sections by -gdwarf-4 since
14462 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14463 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14464 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14465 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14466 }
14467 else if (producer_is_gcc (cu->producer, &major, &minor))
14468 {
14469 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14470 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14471 }
14472 else if (producer_is_icc (cu->producer, &major, &minor))
14473 {
14474 cu->producer_is_icc = true;
14475 cu->producer_is_icc_lt_14 = major < 14;
14476 }
14477 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14478 cu->producer_is_codewarrior = true;
14479 else
14480 {
14481 /* For other non-GCC compilers, expect their behavior is DWARF version
14482 compliant. */
14483 }
14484
14485 cu->checked_producer = true;
14486 }
14487
14488 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14489 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14490 during 4.6.0 experimental. */
14491
14492 static bool
14493 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14494 {
14495 if (!cu->checked_producer)
14496 check_producer (cu);
14497
14498 return cu->producer_is_gxx_lt_4_6;
14499 }
14500
14501
14502 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14503 with incorrect is_stmt attributes. */
14504
14505 static bool
14506 producer_is_codewarrior (struct dwarf2_cu *cu)
14507 {
14508 if (!cu->checked_producer)
14509 check_producer (cu);
14510
14511 return cu->producer_is_codewarrior;
14512 }
14513
14514 /* Return the default accessibility type if it is not overridden by
14515 DW_AT_accessibility. */
14516
14517 static enum dwarf_access_attribute
14518 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14519 {
14520 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14521 {
14522 /* The default DWARF 2 accessibility for members is public, the default
14523 accessibility for inheritance is private. */
14524
14525 if (die->tag != DW_TAG_inheritance)
14526 return DW_ACCESS_public;
14527 else
14528 return DW_ACCESS_private;
14529 }
14530 else
14531 {
14532 /* DWARF 3+ defines the default accessibility a different way. The same
14533 rules apply now for DW_TAG_inheritance as for the members and it only
14534 depends on the container kind. */
14535
14536 if (die->parent->tag == DW_TAG_class_type)
14537 return DW_ACCESS_private;
14538 else
14539 return DW_ACCESS_public;
14540 }
14541 }
14542
14543 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14544 offset. If the attribute was not found return 0, otherwise return
14545 1. If it was found but could not properly be handled, set *OFFSET
14546 to 0. */
14547
14548 static int
14549 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14550 LONGEST *offset)
14551 {
14552 struct attribute *attr;
14553
14554 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14555 if (attr != NULL)
14556 {
14557 *offset = 0;
14558
14559 /* Note that we do not check for a section offset first here.
14560 This is because DW_AT_data_member_location is new in DWARF 4,
14561 so if we see it, we can assume that a constant form is really
14562 a constant and not a section offset. */
14563 if (attr->form_is_constant ())
14564 *offset = dwarf2_get_attr_constant_value (attr, 0);
14565 else if (attr->form_is_section_offset ())
14566 dwarf2_complex_location_expr_complaint ();
14567 else if (attr->form_is_block ())
14568 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14569 else
14570 dwarf2_complex_location_expr_complaint ();
14571
14572 return 1;
14573 }
14574
14575 return 0;
14576 }
14577
14578 /* Add an aggregate field to the field list. */
14579
14580 static void
14581 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14582 struct dwarf2_cu *cu)
14583 {
14584 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14585 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14586 struct nextfield *new_field;
14587 struct attribute *attr;
14588 struct field *fp;
14589 const char *fieldname = "";
14590
14591 if (die->tag == DW_TAG_inheritance)
14592 {
14593 fip->baseclasses.emplace_back ();
14594 new_field = &fip->baseclasses.back ();
14595 }
14596 else
14597 {
14598 fip->fields.emplace_back ();
14599 new_field = &fip->fields.back ();
14600 }
14601
14602 fip->nfields++;
14603
14604 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14605 if (attr != nullptr)
14606 new_field->accessibility = DW_UNSND (attr);
14607 else
14608 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14609 if (new_field->accessibility != DW_ACCESS_public)
14610 fip->non_public_fields = 1;
14611
14612 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14613 if (attr != nullptr)
14614 new_field->virtuality = DW_UNSND (attr);
14615 else
14616 new_field->virtuality = DW_VIRTUALITY_none;
14617
14618 fp = &new_field->field;
14619
14620 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14621 {
14622 LONGEST offset;
14623
14624 /* Data member other than a C++ static data member. */
14625
14626 /* Get type of field. */
14627 fp->type = die_type (die, cu);
14628
14629 SET_FIELD_BITPOS (*fp, 0);
14630
14631 /* Get bit size of field (zero if none). */
14632 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14633 if (attr != nullptr)
14634 {
14635 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14636 }
14637 else
14638 {
14639 FIELD_BITSIZE (*fp) = 0;
14640 }
14641
14642 /* Get bit offset of field. */
14643 if (handle_data_member_location (die, cu, &offset))
14644 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14645 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14646 if (attr != nullptr)
14647 {
14648 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14649 {
14650 /* For big endian bits, the DW_AT_bit_offset gives the
14651 additional bit offset from the MSB of the containing
14652 anonymous object to the MSB of the field. We don't
14653 have to do anything special since we don't need to
14654 know the size of the anonymous object. */
14655 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14656 }
14657 else
14658 {
14659 /* For little endian bits, compute the bit offset to the
14660 MSB of the anonymous object, subtract off the number of
14661 bits from the MSB of the field to the MSB of the
14662 object, and then subtract off the number of bits of
14663 the field itself. The result is the bit offset of
14664 the LSB of the field. */
14665 int anonymous_size;
14666 int bit_offset = DW_UNSND (attr);
14667
14668 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14669 if (attr != nullptr)
14670 {
14671 /* The size of the anonymous object containing
14672 the bit field is explicit, so use the
14673 indicated size (in bytes). */
14674 anonymous_size = DW_UNSND (attr);
14675 }
14676 else
14677 {
14678 /* The size of the anonymous object containing
14679 the bit field must be inferred from the type
14680 attribute of the data member containing the
14681 bit field. */
14682 anonymous_size = TYPE_LENGTH (fp->type);
14683 }
14684 SET_FIELD_BITPOS (*fp,
14685 (FIELD_BITPOS (*fp)
14686 + anonymous_size * bits_per_byte
14687 - bit_offset - FIELD_BITSIZE (*fp)));
14688 }
14689 }
14690 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14691 if (attr != NULL)
14692 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14693 + dwarf2_get_attr_constant_value (attr, 0)));
14694
14695 /* Get name of field. */
14696 fieldname = dwarf2_name (die, cu);
14697 if (fieldname == NULL)
14698 fieldname = "";
14699
14700 /* The name is already allocated along with this objfile, so we don't
14701 need to duplicate it for the type. */
14702 fp->name = fieldname;
14703
14704 /* Change accessibility for artificial fields (e.g. virtual table
14705 pointer or virtual base class pointer) to private. */
14706 if (dwarf2_attr (die, DW_AT_artificial, cu))
14707 {
14708 FIELD_ARTIFICIAL (*fp) = 1;
14709 new_field->accessibility = DW_ACCESS_private;
14710 fip->non_public_fields = 1;
14711 }
14712 }
14713 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14714 {
14715 /* C++ static member. */
14716
14717 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14718 is a declaration, but all versions of G++ as of this writing
14719 (so through at least 3.2.1) incorrectly generate
14720 DW_TAG_variable tags. */
14721
14722 const char *physname;
14723
14724 /* Get name of field. */
14725 fieldname = dwarf2_name (die, cu);
14726 if (fieldname == NULL)
14727 return;
14728
14729 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14730 if (attr
14731 /* Only create a symbol if this is an external value.
14732 new_symbol checks this and puts the value in the global symbol
14733 table, which we want. If it is not external, new_symbol
14734 will try to put the value in cu->list_in_scope which is wrong. */
14735 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14736 {
14737 /* A static const member, not much different than an enum as far as
14738 we're concerned, except that we can support more types. */
14739 new_symbol (die, NULL, cu);
14740 }
14741
14742 /* Get physical name. */
14743 physname = dwarf2_physname (fieldname, die, cu);
14744
14745 /* The name is already allocated along with this objfile, so we don't
14746 need to duplicate it for the type. */
14747 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14748 FIELD_TYPE (*fp) = die_type (die, cu);
14749 FIELD_NAME (*fp) = fieldname;
14750 }
14751 else if (die->tag == DW_TAG_inheritance)
14752 {
14753 LONGEST offset;
14754
14755 /* C++ base class field. */
14756 if (handle_data_member_location (die, cu, &offset))
14757 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14758 FIELD_BITSIZE (*fp) = 0;
14759 FIELD_TYPE (*fp) = die_type (die, cu);
14760 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14761 }
14762 else if (die->tag == DW_TAG_variant_part)
14763 {
14764 /* process_structure_scope will treat this DIE as a union. */
14765 process_structure_scope (die, cu);
14766
14767 /* The variant part is relative to the start of the enclosing
14768 structure. */
14769 SET_FIELD_BITPOS (*fp, 0);
14770 fp->type = get_die_type (die, cu);
14771 fp->artificial = 1;
14772 fp->name = "<<variant>>";
14773
14774 /* Normally a DW_TAG_variant_part won't have a size, but our
14775 representation requires one, so set it to the maximum of the
14776 child sizes, being sure to account for the offset at which
14777 each child is seen. */
14778 if (TYPE_LENGTH (fp->type) == 0)
14779 {
14780 unsigned max = 0;
14781 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14782 {
14783 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14784 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14785 if (len > max)
14786 max = len;
14787 }
14788 TYPE_LENGTH (fp->type) = max;
14789 }
14790 }
14791 else
14792 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14793 }
14794
14795 /* Can the type given by DIE define another type? */
14796
14797 static bool
14798 type_can_define_types (const struct die_info *die)
14799 {
14800 switch (die->tag)
14801 {
14802 case DW_TAG_typedef:
14803 case DW_TAG_class_type:
14804 case DW_TAG_structure_type:
14805 case DW_TAG_union_type:
14806 case DW_TAG_enumeration_type:
14807 return true;
14808
14809 default:
14810 return false;
14811 }
14812 }
14813
14814 /* Add a type definition defined in the scope of the FIP's class. */
14815
14816 static void
14817 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14818 struct dwarf2_cu *cu)
14819 {
14820 struct decl_field fp;
14821 memset (&fp, 0, sizeof (fp));
14822
14823 gdb_assert (type_can_define_types (die));
14824
14825 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14826 fp.name = dwarf2_name (die, cu);
14827 fp.type = read_type_die (die, cu);
14828
14829 /* Save accessibility. */
14830 enum dwarf_access_attribute accessibility;
14831 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14832 if (attr != NULL)
14833 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14834 else
14835 accessibility = dwarf2_default_access_attribute (die, cu);
14836 switch (accessibility)
14837 {
14838 case DW_ACCESS_public:
14839 /* The assumed value if neither private nor protected. */
14840 break;
14841 case DW_ACCESS_private:
14842 fp.is_private = 1;
14843 break;
14844 case DW_ACCESS_protected:
14845 fp.is_protected = 1;
14846 break;
14847 default:
14848 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14849 }
14850
14851 if (die->tag == DW_TAG_typedef)
14852 fip->typedef_field_list.push_back (fp);
14853 else
14854 fip->nested_types_list.push_back (fp);
14855 }
14856
14857 /* Create the vector of fields, and attach it to the type. */
14858
14859 static void
14860 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14861 struct dwarf2_cu *cu)
14862 {
14863 int nfields = fip->nfields;
14864
14865 /* Record the field count, allocate space for the array of fields,
14866 and create blank accessibility bitfields if necessary. */
14867 TYPE_NFIELDS (type) = nfields;
14868 TYPE_FIELDS (type) = (struct field *)
14869 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14870
14871 if (fip->non_public_fields && cu->language != language_ada)
14872 {
14873 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14874
14875 TYPE_FIELD_PRIVATE_BITS (type) =
14876 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14877 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14878
14879 TYPE_FIELD_PROTECTED_BITS (type) =
14880 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14881 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14882
14883 TYPE_FIELD_IGNORE_BITS (type) =
14884 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14885 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14886 }
14887
14888 /* If the type has baseclasses, allocate and clear a bit vector for
14889 TYPE_FIELD_VIRTUAL_BITS. */
14890 if (!fip->baseclasses.empty () && cu->language != language_ada)
14891 {
14892 int num_bytes = B_BYTES (fip->baseclasses.size ());
14893 unsigned char *pointer;
14894
14895 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14896 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14897 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14898 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14899 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14900 }
14901
14902 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14903 {
14904 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14905
14906 for (int index = 0; index < nfields; ++index)
14907 {
14908 struct nextfield &field = fip->fields[index];
14909
14910 if (field.variant.is_discriminant)
14911 di->discriminant_index = index;
14912 else if (field.variant.default_branch)
14913 di->default_index = index;
14914 else
14915 di->discriminants[index] = field.variant.discriminant_value;
14916 }
14917 }
14918
14919 /* Copy the saved-up fields into the field vector. */
14920 for (int i = 0; i < nfields; ++i)
14921 {
14922 struct nextfield &field
14923 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14924 : fip->fields[i - fip->baseclasses.size ()]);
14925
14926 TYPE_FIELD (type, i) = field.field;
14927 switch (field.accessibility)
14928 {
14929 case DW_ACCESS_private:
14930 if (cu->language != language_ada)
14931 SET_TYPE_FIELD_PRIVATE (type, i);
14932 break;
14933
14934 case DW_ACCESS_protected:
14935 if (cu->language != language_ada)
14936 SET_TYPE_FIELD_PROTECTED (type, i);
14937 break;
14938
14939 case DW_ACCESS_public:
14940 break;
14941
14942 default:
14943 /* Unknown accessibility. Complain and treat it as public. */
14944 {
14945 complaint (_("unsupported accessibility %d"),
14946 field.accessibility);
14947 }
14948 break;
14949 }
14950 if (i < fip->baseclasses.size ())
14951 {
14952 switch (field.virtuality)
14953 {
14954 case DW_VIRTUALITY_virtual:
14955 case DW_VIRTUALITY_pure_virtual:
14956 if (cu->language == language_ada)
14957 error (_("unexpected virtuality in component of Ada type"));
14958 SET_TYPE_FIELD_VIRTUAL (type, i);
14959 break;
14960 }
14961 }
14962 }
14963 }
14964
14965 /* Return true if this member function is a constructor, false
14966 otherwise. */
14967
14968 static int
14969 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14970 {
14971 const char *fieldname;
14972 const char *type_name;
14973 int len;
14974
14975 if (die->parent == NULL)
14976 return 0;
14977
14978 if (die->parent->tag != DW_TAG_structure_type
14979 && die->parent->tag != DW_TAG_union_type
14980 && die->parent->tag != DW_TAG_class_type)
14981 return 0;
14982
14983 fieldname = dwarf2_name (die, cu);
14984 type_name = dwarf2_name (die->parent, cu);
14985 if (fieldname == NULL || type_name == NULL)
14986 return 0;
14987
14988 len = strlen (fieldname);
14989 return (strncmp (fieldname, type_name, len) == 0
14990 && (type_name[len] == '\0' || type_name[len] == '<'));
14991 }
14992
14993 /* Check if the given VALUE is a recognized enum
14994 dwarf_defaulted_attribute constant according to DWARF5 spec,
14995 Table 7.24. */
14996
14997 static bool
14998 is_valid_DW_AT_defaulted (ULONGEST value)
14999 {
15000 switch (value)
15001 {
15002 case DW_DEFAULTED_no:
15003 case DW_DEFAULTED_in_class:
15004 case DW_DEFAULTED_out_of_class:
15005 return true;
15006 }
15007
15008 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15009 return false;
15010 }
15011
15012 /* Add a member function to the proper fieldlist. */
15013
15014 static void
15015 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15016 struct type *type, struct dwarf2_cu *cu)
15017 {
15018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15019 struct attribute *attr;
15020 int i;
15021 struct fnfieldlist *flp = nullptr;
15022 struct fn_field *fnp;
15023 const char *fieldname;
15024 struct type *this_type;
15025 enum dwarf_access_attribute accessibility;
15026
15027 if (cu->language == language_ada)
15028 error (_("unexpected member function in Ada type"));
15029
15030 /* Get name of member function. */
15031 fieldname = dwarf2_name (die, cu);
15032 if (fieldname == NULL)
15033 return;
15034
15035 /* Look up member function name in fieldlist. */
15036 for (i = 0; i < fip->fnfieldlists.size (); i++)
15037 {
15038 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15039 {
15040 flp = &fip->fnfieldlists[i];
15041 break;
15042 }
15043 }
15044
15045 /* Create a new fnfieldlist if necessary. */
15046 if (flp == nullptr)
15047 {
15048 fip->fnfieldlists.emplace_back ();
15049 flp = &fip->fnfieldlists.back ();
15050 flp->name = fieldname;
15051 i = fip->fnfieldlists.size () - 1;
15052 }
15053
15054 /* Create a new member function field and add it to the vector of
15055 fnfieldlists. */
15056 flp->fnfields.emplace_back ();
15057 fnp = &flp->fnfields.back ();
15058
15059 /* Delay processing of the physname until later. */
15060 if (cu->language == language_cplus)
15061 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15062 die, cu);
15063 else
15064 {
15065 const char *physname = dwarf2_physname (fieldname, die, cu);
15066 fnp->physname = physname ? physname : "";
15067 }
15068
15069 fnp->type = alloc_type (objfile);
15070 this_type = read_type_die (die, cu);
15071 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15072 {
15073 int nparams = TYPE_NFIELDS (this_type);
15074
15075 /* TYPE is the domain of this method, and THIS_TYPE is the type
15076 of the method itself (TYPE_CODE_METHOD). */
15077 smash_to_method_type (fnp->type, type,
15078 TYPE_TARGET_TYPE (this_type),
15079 TYPE_FIELDS (this_type),
15080 TYPE_NFIELDS (this_type),
15081 TYPE_VARARGS (this_type));
15082
15083 /* Handle static member functions.
15084 Dwarf2 has no clean way to discern C++ static and non-static
15085 member functions. G++ helps GDB by marking the first
15086 parameter for non-static member functions (which is the this
15087 pointer) as artificial. We obtain this information from
15088 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15089 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15090 fnp->voffset = VOFFSET_STATIC;
15091 }
15092 else
15093 complaint (_("member function type missing for '%s'"),
15094 dwarf2_full_name (fieldname, die, cu));
15095
15096 /* Get fcontext from DW_AT_containing_type if present. */
15097 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15098 fnp->fcontext = die_containing_type (die, cu);
15099
15100 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15101 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15102
15103 /* Get accessibility. */
15104 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15105 if (attr != nullptr)
15106 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15107 else
15108 accessibility = dwarf2_default_access_attribute (die, cu);
15109 switch (accessibility)
15110 {
15111 case DW_ACCESS_private:
15112 fnp->is_private = 1;
15113 break;
15114 case DW_ACCESS_protected:
15115 fnp->is_protected = 1;
15116 break;
15117 }
15118
15119 /* Check for artificial methods. */
15120 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15121 if (attr && DW_UNSND (attr) != 0)
15122 fnp->is_artificial = 1;
15123
15124 /* Check for defaulted methods. */
15125 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15126 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15127 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15128
15129 /* Check for deleted methods. */
15130 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15131 if (attr != nullptr && DW_UNSND (attr) != 0)
15132 fnp->is_deleted = 1;
15133
15134 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15135
15136 /* Get index in virtual function table if it is a virtual member
15137 function. For older versions of GCC, this is an offset in the
15138 appropriate virtual table, as specified by DW_AT_containing_type.
15139 For everyone else, it is an expression to be evaluated relative
15140 to the object address. */
15141
15142 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15143 if (attr != nullptr)
15144 {
15145 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15146 {
15147 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15148 {
15149 /* Old-style GCC. */
15150 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15151 }
15152 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15153 || (DW_BLOCK (attr)->size > 1
15154 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15155 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15156 {
15157 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15158 if ((fnp->voffset % cu->header.addr_size) != 0)
15159 dwarf2_complex_location_expr_complaint ();
15160 else
15161 fnp->voffset /= cu->header.addr_size;
15162 fnp->voffset += 2;
15163 }
15164 else
15165 dwarf2_complex_location_expr_complaint ();
15166
15167 if (!fnp->fcontext)
15168 {
15169 /* If there is no `this' field and no DW_AT_containing_type,
15170 we cannot actually find a base class context for the
15171 vtable! */
15172 if (TYPE_NFIELDS (this_type) == 0
15173 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15174 {
15175 complaint (_("cannot determine context for virtual member "
15176 "function \"%s\" (offset %s)"),
15177 fieldname, sect_offset_str (die->sect_off));
15178 }
15179 else
15180 {
15181 fnp->fcontext
15182 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15183 }
15184 }
15185 }
15186 else if (attr->form_is_section_offset ())
15187 {
15188 dwarf2_complex_location_expr_complaint ();
15189 }
15190 else
15191 {
15192 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15193 fieldname);
15194 }
15195 }
15196 else
15197 {
15198 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15199 if (attr && DW_UNSND (attr))
15200 {
15201 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15202 complaint (_("Member function \"%s\" (offset %s) is virtual "
15203 "but the vtable offset is not specified"),
15204 fieldname, sect_offset_str (die->sect_off));
15205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15206 TYPE_CPLUS_DYNAMIC (type) = 1;
15207 }
15208 }
15209 }
15210
15211 /* Create the vector of member function fields, and attach it to the type. */
15212
15213 static void
15214 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15215 struct dwarf2_cu *cu)
15216 {
15217 if (cu->language == language_ada)
15218 error (_("unexpected member functions in Ada type"));
15219
15220 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15221 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15222 TYPE_ALLOC (type,
15223 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15224
15225 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15226 {
15227 struct fnfieldlist &nf = fip->fnfieldlists[i];
15228 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15229
15230 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15231 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15232 fn_flp->fn_fields = (struct fn_field *)
15233 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15234
15235 for (int k = 0; k < nf.fnfields.size (); ++k)
15236 fn_flp->fn_fields[k] = nf.fnfields[k];
15237 }
15238
15239 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15240 }
15241
15242 /* Returns non-zero if NAME is the name of a vtable member in CU's
15243 language, zero otherwise. */
15244 static int
15245 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15246 {
15247 static const char vptr[] = "_vptr";
15248
15249 /* Look for the C++ form of the vtable. */
15250 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15251 return 1;
15252
15253 return 0;
15254 }
15255
15256 /* GCC outputs unnamed structures that are really pointers to member
15257 functions, with the ABI-specified layout. If TYPE describes
15258 such a structure, smash it into a member function type.
15259
15260 GCC shouldn't do this; it should just output pointer to member DIEs.
15261 This is GCC PR debug/28767. */
15262
15263 static void
15264 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15265 {
15266 struct type *pfn_type, *self_type, *new_type;
15267
15268 /* Check for a structure with no name and two children. */
15269 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15270 return;
15271
15272 /* Check for __pfn and __delta members. */
15273 if (TYPE_FIELD_NAME (type, 0) == NULL
15274 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15275 || TYPE_FIELD_NAME (type, 1) == NULL
15276 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15277 return;
15278
15279 /* Find the type of the method. */
15280 pfn_type = TYPE_FIELD_TYPE (type, 0);
15281 if (pfn_type == NULL
15282 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15283 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15284 return;
15285
15286 /* Look for the "this" argument. */
15287 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15288 if (TYPE_NFIELDS (pfn_type) == 0
15289 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15290 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15291 return;
15292
15293 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15294 new_type = alloc_type (objfile);
15295 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15296 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15297 TYPE_VARARGS (pfn_type));
15298 smash_to_methodptr_type (type, new_type);
15299 }
15300
15301 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15302 appropriate error checking and issuing complaints if there is a
15303 problem. */
15304
15305 static ULONGEST
15306 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15307 {
15308 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15309
15310 if (attr == nullptr)
15311 return 0;
15312
15313 if (!attr->form_is_constant ())
15314 {
15315 complaint (_("DW_AT_alignment must have constant form"
15316 " - DIE at %s [in module %s]"),
15317 sect_offset_str (die->sect_off),
15318 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15319 return 0;
15320 }
15321
15322 ULONGEST align;
15323 if (attr->form == DW_FORM_sdata)
15324 {
15325 LONGEST val = DW_SND (attr);
15326 if (val < 0)
15327 {
15328 complaint (_("DW_AT_alignment value must not be negative"
15329 " - DIE at %s [in module %s]"),
15330 sect_offset_str (die->sect_off),
15331 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15332 return 0;
15333 }
15334 align = val;
15335 }
15336 else
15337 align = DW_UNSND (attr);
15338
15339 if (align == 0)
15340 {
15341 complaint (_("DW_AT_alignment value must not be zero"
15342 " - DIE at %s [in module %s]"),
15343 sect_offset_str (die->sect_off),
15344 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15345 return 0;
15346 }
15347 if ((align & (align - 1)) != 0)
15348 {
15349 complaint (_("DW_AT_alignment value must be a power of 2"
15350 " - DIE at %s [in module %s]"),
15351 sect_offset_str (die->sect_off),
15352 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15353 return 0;
15354 }
15355
15356 return align;
15357 }
15358
15359 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15360 the alignment for TYPE. */
15361
15362 static void
15363 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15364 struct type *type)
15365 {
15366 if (!set_type_align (type, get_alignment (cu, die)))
15367 complaint (_("DW_AT_alignment value too large"
15368 " - DIE at %s [in module %s]"),
15369 sect_offset_str (die->sect_off),
15370 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15371 }
15372
15373 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15374 constant for a type, according to DWARF5 spec, Table 5.5. */
15375
15376 static bool
15377 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15378 {
15379 switch (value)
15380 {
15381 case DW_CC_normal:
15382 case DW_CC_pass_by_reference:
15383 case DW_CC_pass_by_value:
15384 return true;
15385
15386 default:
15387 complaint (_("unrecognized DW_AT_calling_convention value "
15388 "(%s) for a type"), pulongest (value));
15389 return false;
15390 }
15391 }
15392
15393 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15394 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15395 also according to GNU-specific values (see include/dwarf2.h). */
15396
15397 static bool
15398 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15399 {
15400 switch (value)
15401 {
15402 case DW_CC_normal:
15403 case DW_CC_program:
15404 case DW_CC_nocall:
15405 return true;
15406
15407 case DW_CC_GNU_renesas_sh:
15408 case DW_CC_GNU_borland_fastcall_i386:
15409 case DW_CC_GDB_IBM_OpenCL:
15410 return true;
15411
15412 default:
15413 complaint (_("unrecognized DW_AT_calling_convention value "
15414 "(%s) for a subroutine"), pulongest (value));
15415 return false;
15416 }
15417 }
15418
15419 /* Called when we find the DIE that starts a structure or union scope
15420 (definition) to create a type for the structure or union. Fill in
15421 the type's name and general properties; the members will not be
15422 processed until process_structure_scope. A symbol table entry for
15423 the type will also not be done until process_structure_scope (assuming
15424 the type has a name).
15425
15426 NOTE: we need to call these functions regardless of whether or not the
15427 DIE has a DW_AT_name attribute, since it might be an anonymous
15428 structure or union. This gets the type entered into our set of
15429 user defined types. */
15430
15431 static struct type *
15432 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15433 {
15434 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15435 struct type *type;
15436 struct attribute *attr;
15437 const char *name;
15438
15439 /* If the definition of this type lives in .debug_types, read that type.
15440 Don't follow DW_AT_specification though, that will take us back up
15441 the chain and we want to go down. */
15442 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15443 if (attr != nullptr)
15444 {
15445 type = get_DW_AT_signature_type (die, attr, cu);
15446
15447 /* The type's CU may not be the same as CU.
15448 Ensure TYPE is recorded with CU in die_type_hash. */
15449 return set_die_type (die, type, cu);
15450 }
15451
15452 type = alloc_type (objfile);
15453 INIT_CPLUS_SPECIFIC (type);
15454
15455 name = dwarf2_name (die, cu);
15456 if (name != NULL)
15457 {
15458 if (cu->language == language_cplus
15459 || cu->language == language_d
15460 || cu->language == language_rust)
15461 {
15462 const char *full_name = dwarf2_full_name (name, die, cu);
15463
15464 /* dwarf2_full_name might have already finished building the DIE's
15465 type. If so, there is no need to continue. */
15466 if (get_die_type (die, cu) != NULL)
15467 return get_die_type (die, cu);
15468
15469 TYPE_NAME (type) = full_name;
15470 }
15471 else
15472 {
15473 /* The name is already allocated along with this objfile, so
15474 we don't need to duplicate it for the type. */
15475 TYPE_NAME (type) = name;
15476 }
15477 }
15478
15479 if (die->tag == DW_TAG_structure_type)
15480 {
15481 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15482 }
15483 else if (die->tag == DW_TAG_union_type)
15484 {
15485 TYPE_CODE (type) = TYPE_CODE_UNION;
15486 }
15487 else if (die->tag == DW_TAG_variant_part)
15488 {
15489 TYPE_CODE (type) = TYPE_CODE_UNION;
15490 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15491 }
15492 else
15493 {
15494 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15495 }
15496
15497 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15498 TYPE_DECLARED_CLASS (type) = 1;
15499
15500 /* Store the calling convention in the type if it's available in
15501 the die. Otherwise the calling convention remains set to
15502 the default value DW_CC_normal. */
15503 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15504 if (attr != nullptr
15505 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15506 {
15507 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15508 TYPE_CPLUS_CALLING_CONVENTION (type)
15509 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15510 }
15511
15512 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15513 if (attr != nullptr)
15514 {
15515 if (attr->form_is_constant ())
15516 TYPE_LENGTH (type) = DW_UNSND (attr);
15517 else
15518 {
15519 /* For the moment, dynamic type sizes are not supported
15520 by GDB's struct type. The actual size is determined
15521 on-demand when resolving the type of a given object,
15522 so set the type's length to zero for now. Otherwise,
15523 we record an expression as the length, and that expression
15524 could lead to a very large value, which could eventually
15525 lead to us trying to allocate that much memory when creating
15526 a value of that type. */
15527 TYPE_LENGTH (type) = 0;
15528 }
15529 }
15530 else
15531 {
15532 TYPE_LENGTH (type) = 0;
15533 }
15534
15535 maybe_set_alignment (cu, die, type);
15536
15537 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15538 {
15539 /* ICC<14 does not output the required DW_AT_declaration on
15540 incomplete types, but gives them a size of zero. */
15541 TYPE_STUB (type) = 1;
15542 }
15543 else
15544 TYPE_STUB_SUPPORTED (type) = 1;
15545
15546 if (die_is_declaration (die, cu))
15547 TYPE_STUB (type) = 1;
15548 else if (attr == NULL && die->child == NULL
15549 && producer_is_realview (cu->producer))
15550 /* RealView does not output the required DW_AT_declaration
15551 on incomplete types. */
15552 TYPE_STUB (type) = 1;
15553
15554 /* We need to add the type field to the die immediately so we don't
15555 infinitely recurse when dealing with pointers to the structure
15556 type within the structure itself. */
15557 set_die_type (die, type, cu);
15558
15559 /* set_die_type should be already done. */
15560 set_descriptive_type (type, die, cu);
15561
15562 return type;
15563 }
15564
15565 /* A helper for process_structure_scope that handles a single member
15566 DIE. */
15567
15568 static void
15569 handle_struct_member_die (struct die_info *child_die, struct type *type,
15570 struct field_info *fi,
15571 std::vector<struct symbol *> *template_args,
15572 struct dwarf2_cu *cu)
15573 {
15574 if (child_die->tag == DW_TAG_member
15575 || child_die->tag == DW_TAG_variable
15576 || child_die->tag == DW_TAG_variant_part)
15577 {
15578 /* NOTE: carlton/2002-11-05: A C++ static data member
15579 should be a DW_TAG_member that is a declaration, but
15580 all versions of G++ as of this writing (so through at
15581 least 3.2.1) incorrectly generate DW_TAG_variable
15582 tags for them instead. */
15583 dwarf2_add_field (fi, child_die, cu);
15584 }
15585 else if (child_die->tag == DW_TAG_subprogram)
15586 {
15587 /* Rust doesn't have member functions in the C++ sense.
15588 However, it does emit ordinary functions as children
15589 of a struct DIE. */
15590 if (cu->language == language_rust)
15591 read_func_scope (child_die, cu);
15592 else
15593 {
15594 /* C++ member function. */
15595 dwarf2_add_member_fn (fi, child_die, type, cu);
15596 }
15597 }
15598 else if (child_die->tag == DW_TAG_inheritance)
15599 {
15600 /* C++ base class field. */
15601 dwarf2_add_field (fi, child_die, cu);
15602 }
15603 else if (type_can_define_types (child_die))
15604 dwarf2_add_type_defn (fi, child_die, cu);
15605 else if (child_die->tag == DW_TAG_template_type_param
15606 || child_die->tag == DW_TAG_template_value_param)
15607 {
15608 struct symbol *arg = new_symbol (child_die, NULL, cu);
15609
15610 if (arg != NULL)
15611 template_args->push_back (arg);
15612 }
15613 else if (child_die->tag == DW_TAG_variant)
15614 {
15615 /* In a variant we want to get the discriminant and also add a
15616 field for our sole member child. */
15617 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15618
15619 for (die_info *variant_child = child_die->child;
15620 variant_child != NULL;
15621 variant_child = sibling_die (variant_child))
15622 {
15623 if (variant_child->tag == DW_TAG_member)
15624 {
15625 handle_struct_member_die (variant_child, type, fi,
15626 template_args, cu);
15627 /* Only handle the one. */
15628 break;
15629 }
15630 }
15631
15632 /* We don't handle this but we might as well report it if we see
15633 it. */
15634 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15635 complaint (_("DW_AT_discr_list is not supported yet"
15636 " - DIE at %s [in module %s]"),
15637 sect_offset_str (child_die->sect_off),
15638 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15639
15640 /* The first field was just added, so we can stash the
15641 discriminant there. */
15642 gdb_assert (!fi->fields.empty ());
15643 if (discr == NULL)
15644 fi->fields.back ().variant.default_branch = true;
15645 else
15646 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15647 }
15648 }
15649
15650 /* Finish creating a structure or union type, including filling in
15651 its members and creating a symbol for it. */
15652
15653 static void
15654 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15655 {
15656 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15657 struct die_info *child_die;
15658 struct type *type;
15659
15660 type = get_die_type (die, cu);
15661 if (type == NULL)
15662 type = read_structure_type (die, cu);
15663
15664 /* When reading a DW_TAG_variant_part, we need to notice when we
15665 read the discriminant member, so we can record it later in the
15666 discriminant_info. */
15667 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15668 sect_offset discr_offset {};
15669 bool has_template_parameters = false;
15670
15671 if (is_variant_part)
15672 {
15673 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15674 if (discr == NULL)
15675 {
15676 /* Maybe it's a univariant form, an extension we support.
15677 In this case arrange not to check the offset. */
15678 is_variant_part = false;
15679 }
15680 else if (discr->form_is_ref ())
15681 {
15682 struct dwarf2_cu *target_cu = cu;
15683 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15684
15685 discr_offset = target_die->sect_off;
15686 }
15687 else
15688 {
15689 complaint (_("DW_AT_discr does not have DIE reference form"
15690 " - DIE at %s [in module %s]"),
15691 sect_offset_str (die->sect_off),
15692 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15693 is_variant_part = false;
15694 }
15695 }
15696
15697 if (die->child != NULL && ! die_is_declaration (die, cu))
15698 {
15699 struct field_info fi;
15700 std::vector<struct symbol *> template_args;
15701
15702 child_die = die->child;
15703
15704 while (child_die && child_die->tag)
15705 {
15706 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15707
15708 if (is_variant_part && discr_offset == child_die->sect_off)
15709 fi.fields.back ().variant.is_discriminant = true;
15710
15711 child_die = sibling_die (child_die);
15712 }
15713
15714 /* Attach template arguments to type. */
15715 if (!template_args.empty ())
15716 {
15717 has_template_parameters = true;
15718 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15719 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15720 TYPE_TEMPLATE_ARGUMENTS (type)
15721 = XOBNEWVEC (&objfile->objfile_obstack,
15722 struct symbol *,
15723 TYPE_N_TEMPLATE_ARGUMENTS (type));
15724 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15725 template_args.data (),
15726 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15727 * sizeof (struct symbol *)));
15728 }
15729
15730 /* Attach fields and member functions to the type. */
15731 if (fi.nfields)
15732 dwarf2_attach_fields_to_type (&fi, type, cu);
15733 if (!fi.fnfieldlists.empty ())
15734 {
15735 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15736
15737 /* Get the type which refers to the base class (possibly this
15738 class itself) which contains the vtable pointer for the current
15739 class from the DW_AT_containing_type attribute. This use of
15740 DW_AT_containing_type is a GNU extension. */
15741
15742 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15743 {
15744 struct type *t = die_containing_type (die, cu);
15745
15746 set_type_vptr_basetype (type, t);
15747 if (type == t)
15748 {
15749 int i;
15750
15751 /* Our own class provides vtbl ptr. */
15752 for (i = TYPE_NFIELDS (t) - 1;
15753 i >= TYPE_N_BASECLASSES (t);
15754 --i)
15755 {
15756 const char *fieldname = TYPE_FIELD_NAME (t, i);
15757
15758 if (is_vtable_name (fieldname, cu))
15759 {
15760 set_type_vptr_fieldno (type, i);
15761 break;
15762 }
15763 }
15764
15765 /* Complain if virtual function table field not found. */
15766 if (i < TYPE_N_BASECLASSES (t))
15767 complaint (_("virtual function table pointer "
15768 "not found when defining class '%s'"),
15769 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15770 }
15771 else
15772 {
15773 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15774 }
15775 }
15776 else if (cu->producer
15777 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15778 {
15779 /* The IBM XLC compiler does not provide direct indication
15780 of the containing type, but the vtable pointer is
15781 always named __vfp. */
15782
15783 int i;
15784
15785 for (i = TYPE_NFIELDS (type) - 1;
15786 i >= TYPE_N_BASECLASSES (type);
15787 --i)
15788 {
15789 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15790 {
15791 set_type_vptr_fieldno (type, i);
15792 set_type_vptr_basetype (type, type);
15793 break;
15794 }
15795 }
15796 }
15797 }
15798
15799 /* Copy fi.typedef_field_list linked list elements content into the
15800 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15801 if (!fi.typedef_field_list.empty ())
15802 {
15803 int count = fi.typedef_field_list.size ();
15804
15805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15806 TYPE_TYPEDEF_FIELD_ARRAY (type)
15807 = ((struct decl_field *)
15808 TYPE_ALLOC (type,
15809 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15810 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15811
15812 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15813 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15814 }
15815
15816 /* Copy fi.nested_types_list linked list elements content into the
15817 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15818 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15819 {
15820 int count = fi.nested_types_list.size ();
15821
15822 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15823 TYPE_NESTED_TYPES_ARRAY (type)
15824 = ((struct decl_field *)
15825 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15826 TYPE_NESTED_TYPES_COUNT (type) = count;
15827
15828 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15829 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15830 }
15831 }
15832
15833 quirk_gcc_member_function_pointer (type, objfile);
15834 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15835 cu->rust_unions.push_back (type);
15836
15837 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15838 snapshots) has been known to create a die giving a declaration
15839 for a class that has, as a child, a die giving a definition for a
15840 nested class. So we have to process our children even if the
15841 current die is a declaration. Normally, of course, a declaration
15842 won't have any children at all. */
15843
15844 child_die = die->child;
15845
15846 while (child_die != NULL && child_die->tag)
15847 {
15848 if (child_die->tag == DW_TAG_member
15849 || child_die->tag == DW_TAG_variable
15850 || child_die->tag == DW_TAG_inheritance
15851 || child_die->tag == DW_TAG_template_value_param
15852 || child_die->tag == DW_TAG_template_type_param)
15853 {
15854 /* Do nothing. */
15855 }
15856 else
15857 process_die (child_die, cu);
15858
15859 child_die = sibling_die (child_die);
15860 }
15861
15862 /* Do not consider external references. According to the DWARF standard,
15863 these DIEs are identified by the fact that they have no byte_size
15864 attribute, and a declaration attribute. */
15865 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15866 || !die_is_declaration (die, cu))
15867 {
15868 struct symbol *sym = new_symbol (die, type, cu);
15869
15870 if (has_template_parameters)
15871 {
15872 struct symtab *symtab;
15873 if (sym != nullptr)
15874 symtab = symbol_symtab (sym);
15875 else if (cu->line_header != nullptr)
15876 {
15877 /* Any related symtab will do. */
15878 symtab
15879 = cu->line_header->file_names ()[0].symtab;
15880 }
15881 else
15882 {
15883 symtab = nullptr;
15884 complaint (_("could not find suitable "
15885 "symtab for template parameter"
15886 " - DIE at %s [in module %s]"),
15887 sect_offset_str (die->sect_off),
15888 objfile_name (objfile));
15889 }
15890
15891 if (symtab != nullptr)
15892 {
15893 /* Make sure that the symtab is set on the new symbols.
15894 Even though they don't appear in this symtab directly,
15895 other parts of gdb assume that symbols do, and this is
15896 reasonably true. */
15897 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15898 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15899 }
15900 }
15901 }
15902 }
15903
15904 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15905 update TYPE using some information only available in DIE's children. */
15906
15907 static void
15908 update_enumeration_type_from_children (struct die_info *die,
15909 struct type *type,
15910 struct dwarf2_cu *cu)
15911 {
15912 struct die_info *child_die;
15913 int unsigned_enum = 1;
15914 int flag_enum = 1;
15915 ULONGEST mask = 0;
15916
15917 auto_obstack obstack;
15918
15919 for (child_die = die->child;
15920 child_die != NULL && child_die->tag;
15921 child_die = sibling_die (child_die))
15922 {
15923 struct attribute *attr;
15924 LONGEST value;
15925 const gdb_byte *bytes;
15926 struct dwarf2_locexpr_baton *baton;
15927 const char *name;
15928
15929 if (child_die->tag != DW_TAG_enumerator)
15930 continue;
15931
15932 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15933 if (attr == NULL)
15934 continue;
15935
15936 name = dwarf2_name (child_die, cu);
15937 if (name == NULL)
15938 name = "<anonymous enumerator>";
15939
15940 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15941 &value, &bytes, &baton);
15942 if (value < 0)
15943 {
15944 unsigned_enum = 0;
15945 flag_enum = 0;
15946 }
15947 else if ((mask & value) != 0)
15948 flag_enum = 0;
15949 else
15950 mask |= value;
15951
15952 /* If we already know that the enum type is neither unsigned, nor
15953 a flag type, no need to look at the rest of the enumerates. */
15954 if (!unsigned_enum && !flag_enum)
15955 break;
15956 }
15957
15958 if (unsigned_enum)
15959 TYPE_UNSIGNED (type) = 1;
15960 if (flag_enum)
15961 TYPE_FLAG_ENUM (type) = 1;
15962 }
15963
15964 /* Given a DW_AT_enumeration_type die, set its type. We do not
15965 complete the type's fields yet, or create any symbols. */
15966
15967 static struct type *
15968 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15969 {
15970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15971 struct type *type;
15972 struct attribute *attr;
15973 const char *name;
15974
15975 /* If the definition of this type lives in .debug_types, read that type.
15976 Don't follow DW_AT_specification though, that will take us back up
15977 the chain and we want to go down. */
15978 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15979 if (attr != nullptr)
15980 {
15981 type = get_DW_AT_signature_type (die, attr, cu);
15982
15983 /* The type's CU may not be the same as CU.
15984 Ensure TYPE is recorded with CU in die_type_hash. */
15985 return set_die_type (die, type, cu);
15986 }
15987
15988 type = alloc_type (objfile);
15989
15990 TYPE_CODE (type) = TYPE_CODE_ENUM;
15991 name = dwarf2_full_name (NULL, die, cu);
15992 if (name != NULL)
15993 TYPE_NAME (type) = name;
15994
15995 attr = dwarf2_attr (die, DW_AT_type, cu);
15996 if (attr != NULL)
15997 {
15998 struct type *underlying_type = die_type (die, cu);
15999
16000 TYPE_TARGET_TYPE (type) = underlying_type;
16001 }
16002
16003 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16004 if (attr != nullptr)
16005 {
16006 TYPE_LENGTH (type) = DW_UNSND (attr);
16007 }
16008 else
16009 {
16010 TYPE_LENGTH (type) = 0;
16011 }
16012
16013 maybe_set_alignment (cu, die, type);
16014
16015 /* The enumeration DIE can be incomplete. In Ada, any type can be
16016 declared as private in the package spec, and then defined only
16017 inside the package body. Such types are known as Taft Amendment
16018 Types. When another package uses such a type, an incomplete DIE
16019 may be generated by the compiler. */
16020 if (die_is_declaration (die, cu))
16021 TYPE_STUB (type) = 1;
16022
16023 /* Finish the creation of this type by using the enum's children.
16024 We must call this even when the underlying type has been provided
16025 so that we can determine if we're looking at a "flag" enum. */
16026 update_enumeration_type_from_children (die, type, cu);
16027
16028 /* If this type has an underlying type that is not a stub, then we
16029 may use its attributes. We always use the "unsigned" attribute
16030 in this situation, because ordinarily we guess whether the type
16031 is unsigned -- but the guess can be wrong and the underlying type
16032 can tell us the reality. However, we defer to a local size
16033 attribute if one exists, because this lets the compiler override
16034 the underlying type if needed. */
16035 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16036 {
16037 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16038 if (TYPE_LENGTH (type) == 0)
16039 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16040 if (TYPE_RAW_ALIGN (type) == 0
16041 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16042 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16043 }
16044
16045 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16046
16047 return set_die_type (die, type, cu);
16048 }
16049
16050 /* Given a pointer to a die which begins an enumeration, process all
16051 the dies that define the members of the enumeration, and create the
16052 symbol for the enumeration type.
16053
16054 NOTE: We reverse the order of the element list. */
16055
16056 static void
16057 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16058 {
16059 struct type *this_type;
16060
16061 this_type = get_die_type (die, cu);
16062 if (this_type == NULL)
16063 this_type = read_enumeration_type (die, cu);
16064
16065 if (die->child != NULL)
16066 {
16067 struct die_info *child_die;
16068 struct symbol *sym;
16069 std::vector<struct field> fields;
16070 const char *name;
16071
16072 child_die = die->child;
16073 while (child_die && child_die->tag)
16074 {
16075 if (child_die->tag != DW_TAG_enumerator)
16076 {
16077 process_die (child_die, cu);
16078 }
16079 else
16080 {
16081 name = dwarf2_name (child_die, cu);
16082 if (name)
16083 {
16084 sym = new_symbol (child_die, this_type, cu);
16085
16086 fields.emplace_back ();
16087 struct field &field = fields.back ();
16088
16089 FIELD_NAME (field) = sym->linkage_name ();
16090 FIELD_TYPE (field) = NULL;
16091 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
16092 FIELD_BITSIZE (field) = 0;
16093 }
16094 }
16095
16096 child_die = sibling_die (child_die);
16097 }
16098
16099 if (!fields.empty ())
16100 {
16101 TYPE_NFIELDS (this_type) = fields.size ();
16102 TYPE_FIELDS (this_type) = (struct field *)
16103 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
16104 memcpy (TYPE_FIELDS (this_type), fields.data (),
16105 sizeof (struct field) * fields.size ());
16106 }
16107 }
16108
16109 /* If we are reading an enum from a .debug_types unit, and the enum
16110 is a declaration, and the enum is not the signatured type in the
16111 unit, then we do not want to add a symbol for it. Adding a
16112 symbol would in some cases obscure the true definition of the
16113 enum, giving users an incomplete type when the definition is
16114 actually available. Note that we do not want to do this for all
16115 enums which are just declarations, because C++0x allows forward
16116 enum declarations. */
16117 if (cu->per_cu->is_debug_types
16118 && die_is_declaration (die, cu))
16119 {
16120 struct signatured_type *sig_type;
16121
16122 sig_type = (struct signatured_type *) cu->per_cu;
16123 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16124 if (sig_type->type_offset_in_section != die->sect_off)
16125 return;
16126 }
16127
16128 new_symbol (die, this_type, cu);
16129 }
16130
16131 /* Extract all information from a DW_TAG_array_type DIE and put it in
16132 the DIE's type field. For now, this only handles one dimensional
16133 arrays. */
16134
16135 static struct type *
16136 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16137 {
16138 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16139 struct die_info *child_die;
16140 struct type *type;
16141 struct type *element_type, *range_type, *index_type;
16142 struct attribute *attr;
16143 const char *name;
16144 struct dynamic_prop *byte_stride_prop = NULL;
16145 unsigned int bit_stride = 0;
16146
16147 element_type = die_type (die, cu);
16148
16149 /* The die_type call above may have already set the type for this DIE. */
16150 type = get_die_type (die, cu);
16151 if (type)
16152 return type;
16153
16154 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16155 if (attr != NULL)
16156 {
16157 int stride_ok;
16158 struct type *prop_type
16159 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16160
16161 byte_stride_prop
16162 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16163 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16164 prop_type);
16165 if (!stride_ok)
16166 {
16167 complaint (_("unable to read array DW_AT_byte_stride "
16168 " - DIE at %s [in module %s]"),
16169 sect_offset_str (die->sect_off),
16170 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16171 /* Ignore this attribute. We will likely not be able to print
16172 arrays of this type correctly, but there is little we can do
16173 to help if we cannot read the attribute's value. */
16174 byte_stride_prop = NULL;
16175 }
16176 }
16177
16178 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16179 if (attr != NULL)
16180 bit_stride = DW_UNSND (attr);
16181
16182 /* Irix 6.2 native cc creates array types without children for
16183 arrays with unspecified length. */
16184 if (die->child == NULL)
16185 {
16186 index_type = objfile_type (objfile)->builtin_int;
16187 range_type = create_static_range_type (NULL, index_type, 0, -1);
16188 type = create_array_type_with_stride (NULL, element_type, range_type,
16189 byte_stride_prop, bit_stride);
16190 return set_die_type (die, type, cu);
16191 }
16192
16193 std::vector<struct type *> range_types;
16194 child_die = die->child;
16195 while (child_die && child_die->tag)
16196 {
16197 if (child_die->tag == DW_TAG_subrange_type)
16198 {
16199 struct type *child_type = read_type_die (child_die, cu);
16200
16201 if (child_type != NULL)
16202 {
16203 /* The range type was succesfully read. Save it for the
16204 array type creation. */
16205 range_types.push_back (child_type);
16206 }
16207 }
16208 child_die = sibling_die (child_die);
16209 }
16210
16211 /* Dwarf2 dimensions are output from left to right, create the
16212 necessary array types in backwards order. */
16213
16214 type = element_type;
16215
16216 if (read_array_order (die, cu) == DW_ORD_col_major)
16217 {
16218 int i = 0;
16219
16220 while (i < range_types.size ())
16221 type = create_array_type_with_stride (NULL, type, range_types[i++],
16222 byte_stride_prop, bit_stride);
16223 }
16224 else
16225 {
16226 size_t ndim = range_types.size ();
16227 while (ndim-- > 0)
16228 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16229 byte_stride_prop, bit_stride);
16230 }
16231
16232 /* Understand Dwarf2 support for vector types (like they occur on
16233 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16234 array type. This is not part of the Dwarf2/3 standard yet, but a
16235 custom vendor extension. The main difference between a regular
16236 array and the vector variant is that vectors are passed by value
16237 to functions. */
16238 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16239 if (attr != nullptr)
16240 make_vector_type (type);
16241
16242 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16243 implementation may choose to implement triple vectors using this
16244 attribute. */
16245 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16246 if (attr != nullptr)
16247 {
16248 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16249 TYPE_LENGTH (type) = DW_UNSND (attr);
16250 else
16251 complaint (_("DW_AT_byte_size for array type smaller "
16252 "than the total size of elements"));
16253 }
16254
16255 name = dwarf2_name (die, cu);
16256 if (name)
16257 TYPE_NAME (type) = name;
16258
16259 maybe_set_alignment (cu, die, type);
16260
16261 /* Install the type in the die. */
16262 set_die_type (die, type, cu);
16263
16264 /* set_die_type should be already done. */
16265 set_descriptive_type (type, die, cu);
16266
16267 return type;
16268 }
16269
16270 static enum dwarf_array_dim_ordering
16271 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16272 {
16273 struct attribute *attr;
16274
16275 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16276
16277 if (attr != nullptr)
16278 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16279
16280 /* GNU F77 is a special case, as at 08/2004 array type info is the
16281 opposite order to the dwarf2 specification, but data is still
16282 laid out as per normal fortran.
16283
16284 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16285 version checking. */
16286
16287 if (cu->language == language_fortran
16288 && cu->producer && strstr (cu->producer, "GNU F77"))
16289 {
16290 return DW_ORD_row_major;
16291 }
16292
16293 switch (cu->language_defn->la_array_ordering)
16294 {
16295 case array_column_major:
16296 return DW_ORD_col_major;
16297 case array_row_major:
16298 default:
16299 return DW_ORD_row_major;
16300 };
16301 }
16302
16303 /* Extract all information from a DW_TAG_set_type DIE and put it in
16304 the DIE's type field. */
16305
16306 static struct type *
16307 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16308 {
16309 struct type *domain_type, *set_type;
16310 struct attribute *attr;
16311
16312 domain_type = die_type (die, cu);
16313
16314 /* The die_type call above may have already set the type for this DIE. */
16315 set_type = get_die_type (die, cu);
16316 if (set_type)
16317 return set_type;
16318
16319 set_type = create_set_type (NULL, domain_type);
16320
16321 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16322 if (attr != nullptr)
16323 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16324
16325 maybe_set_alignment (cu, die, set_type);
16326
16327 return set_die_type (die, set_type, cu);
16328 }
16329
16330 /* A helper for read_common_block that creates a locexpr baton.
16331 SYM is the symbol which we are marking as computed.
16332 COMMON_DIE is the DIE for the common block.
16333 COMMON_LOC is the location expression attribute for the common
16334 block itself.
16335 MEMBER_LOC is the location expression attribute for the particular
16336 member of the common block that we are processing.
16337 CU is the CU from which the above come. */
16338
16339 static void
16340 mark_common_block_symbol_computed (struct symbol *sym,
16341 struct die_info *common_die,
16342 struct attribute *common_loc,
16343 struct attribute *member_loc,
16344 struct dwarf2_cu *cu)
16345 {
16346 struct dwarf2_per_objfile *dwarf2_per_objfile
16347 = cu->per_cu->dwarf2_per_objfile;
16348 struct objfile *objfile = dwarf2_per_objfile->objfile;
16349 struct dwarf2_locexpr_baton *baton;
16350 gdb_byte *ptr;
16351 unsigned int cu_off;
16352 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16353 LONGEST offset = 0;
16354
16355 gdb_assert (common_loc && member_loc);
16356 gdb_assert (common_loc->form_is_block ());
16357 gdb_assert (member_loc->form_is_block ()
16358 || member_loc->form_is_constant ());
16359
16360 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16361 baton->per_cu = cu->per_cu;
16362 gdb_assert (baton->per_cu);
16363
16364 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16365
16366 if (member_loc->form_is_constant ())
16367 {
16368 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16369 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16370 }
16371 else
16372 baton->size += DW_BLOCK (member_loc)->size;
16373
16374 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16375 baton->data = ptr;
16376
16377 *ptr++ = DW_OP_call4;
16378 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16379 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16380 ptr += 4;
16381
16382 if (member_loc->form_is_constant ())
16383 {
16384 *ptr++ = DW_OP_addr;
16385 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16386 ptr += cu->header.addr_size;
16387 }
16388 else
16389 {
16390 /* We have to copy the data here, because DW_OP_call4 will only
16391 use a DW_AT_location attribute. */
16392 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16393 ptr += DW_BLOCK (member_loc)->size;
16394 }
16395
16396 *ptr++ = DW_OP_plus;
16397 gdb_assert (ptr - baton->data == baton->size);
16398
16399 SYMBOL_LOCATION_BATON (sym) = baton;
16400 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16401 }
16402
16403 /* Create appropriate locally-scoped variables for all the
16404 DW_TAG_common_block entries. Also create a struct common_block
16405 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16406 is used to separate the common blocks name namespace from regular
16407 variable names. */
16408
16409 static void
16410 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16411 {
16412 struct attribute *attr;
16413
16414 attr = dwarf2_attr (die, DW_AT_location, cu);
16415 if (attr != nullptr)
16416 {
16417 /* Support the .debug_loc offsets. */
16418 if (attr->form_is_block ())
16419 {
16420 /* Ok. */
16421 }
16422 else if (attr->form_is_section_offset ())
16423 {
16424 dwarf2_complex_location_expr_complaint ();
16425 attr = NULL;
16426 }
16427 else
16428 {
16429 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16430 "common block member");
16431 attr = NULL;
16432 }
16433 }
16434
16435 if (die->child != NULL)
16436 {
16437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16438 struct die_info *child_die;
16439 size_t n_entries = 0, size;
16440 struct common_block *common_block;
16441 struct symbol *sym;
16442
16443 for (child_die = die->child;
16444 child_die && child_die->tag;
16445 child_die = sibling_die (child_die))
16446 ++n_entries;
16447
16448 size = (sizeof (struct common_block)
16449 + (n_entries - 1) * sizeof (struct symbol *));
16450 common_block
16451 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16452 size);
16453 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16454 common_block->n_entries = 0;
16455
16456 for (child_die = die->child;
16457 child_die && child_die->tag;
16458 child_die = sibling_die (child_die))
16459 {
16460 /* Create the symbol in the DW_TAG_common_block block in the current
16461 symbol scope. */
16462 sym = new_symbol (child_die, NULL, cu);
16463 if (sym != NULL)
16464 {
16465 struct attribute *member_loc;
16466
16467 common_block->contents[common_block->n_entries++] = sym;
16468
16469 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16470 cu);
16471 if (member_loc)
16472 {
16473 /* GDB has handled this for a long time, but it is
16474 not specified by DWARF. It seems to have been
16475 emitted by gfortran at least as recently as:
16476 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16477 complaint (_("Variable in common block has "
16478 "DW_AT_data_member_location "
16479 "- DIE at %s [in module %s]"),
16480 sect_offset_str (child_die->sect_off),
16481 objfile_name (objfile));
16482
16483 if (member_loc->form_is_section_offset ())
16484 dwarf2_complex_location_expr_complaint ();
16485 else if (member_loc->form_is_constant ()
16486 || member_loc->form_is_block ())
16487 {
16488 if (attr != nullptr)
16489 mark_common_block_symbol_computed (sym, die, attr,
16490 member_loc, cu);
16491 }
16492 else
16493 dwarf2_complex_location_expr_complaint ();
16494 }
16495 }
16496 }
16497
16498 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16499 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16500 }
16501 }
16502
16503 /* Create a type for a C++ namespace. */
16504
16505 static struct type *
16506 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16507 {
16508 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16509 const char *previous_prefix, *name;
16510 int is_anonymous;
16511 struct type *type;
16512
16513 /* For extensions, reuse the type of the original namespace. */
16514 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16515 {
16516 struct die_info *ext_die;
16517 struct dwarf2_cu *ext_cu = cu;
16518
16519 ext_die = dwarf2_extension (die, &ext_cu);
16520 type = read_type_die (ext_die, ext_cu);
16521
16522 /* EXT_CU may not be the same as CU.
16523 Ensure TYPE is recorded with CU in die_type_hash. */
16524 return set_die_type (die, type, cu);
16525 }
16526
16527 name = namespace_name (die, &is_anonymous, cu);
16528
16529 /* Now build the name of the current namespace. */
16530
16531 previous_prefix = determine_prefix (die, cu);
16532 if (previous_prefix[0] != '\0')
16533 name = typename_concat (&objfile->objfile_obstack,
16534 previous_prefix, name, 0, cu);
16535
16536 /* Create the type. */
16537 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16538
16539 return set_die_type (die, type, cu);
16540 }
16541
16542 /* Read a namespace scope. */
16543
16544 static void
16545 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16546 {
16547 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16548 int is_anonymous;
16549
16550 /* Add a symbol associated to this if we haven't seen the namespace
16551 before. Also, add a using directive if it's an anonymous
16552 namespace. */
16553
16554 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16555 {
16556 struct type *type;
16557
16558 type = read_type_die (die, cu);
16559 new_symbol (die, type, cu);
16560
16561 namespace_name (die, &is_anonymous, cu);
16562 if (is_anonymous)
16563 {
16564 const char *previous_prefix = determine_prefix (die, cu);
16565
16566 std::vector<const char *> excludes;
16567 add_using_directive (using_directives (cu),
16568 previous_prefix, TYPE_NAME (type), NULL,
16569 NULL, excludes, 0, &objfile->objfile_obstack);
16570 }
16571 }
16572
16573 if (die->child != NULL)
16574 {
16575 struct die_info *child_die = die->child;
16576
16577 while (child_die && child_die->tag)
16578 {
16579 process_die (child_die, cu);
16580 child_die = sibling_die (child_die);
16581 }
16582 }
16583 }
16584
16585 /* Read a Fortran module as type. This DIE can be only a declaration used for
16586 imported module. Still we need that type as local Fortran "use ... only"
16587 declaration imports depend on the created type in determine_prefix. */
16588
16589 static struct type *
16590 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16591 {
16592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16593 const char *module_name;
16594 struct type *type;
16595
16596 module_name = dwarf2_name (die, cu);
16597 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16598
16599 return set_die_type (die, type, cu);
16600 }
16601
16602 /* Read a Fortran module. */
16603
16604 static void
16605 read_module (struct die_info *die, struct dwarf2_cu *cu)
16606 {
16607 struct die_info *child_die = die->child;
16608 struct type *type;
16609
16610 type = read_type_die (die, cu);
16611 new_symbol (die, type, cu);
16612
16613 while (child_die && child_die->tag)
16614 {
16615 process_die (child_die, cu);
16616 child_die = sibling_die (child_die);
16617 }
16618 }
16619
16620 /* Return the name of the namespace represented by DIE. Set
16621 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16622 namespace. */
16623
16624 static const char *
16625 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16626 {
16627 struct die_info *current_die;
16628 const char *name = NULL;
16629
16630 /* Loop through the extensions until we find a name. */
16631
16632 for (current_die = die;
16633 current_die != NULL;
16634 current_die = dwarf2_extension (die, &cu))
16635 {
16636 /* We don't use dwarf2_name here so that we can detect the absence
16637 of a name -> anonymous namespace. */
16638 name = dwarf2_string_attr (die, DW_AT_name, cu);
16639
16640 if (name != NULL)
16641 break;
16642 }
16643
16644 /* Is it an anonymous namespace? */
16645
16646 *is_anonymous = (name == NULL);
16647 if (*is_anonymous)
16648 name = CP_ANONYMOUS_NAMESPACE_STR;
16649
16650 return name;
16651 }
16652
16653 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16654 the user defined type vector. */
16655
16656 static struct type *
16657 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16658 {
16659 struct gdbarch *gdbarch
16660 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16661 struct comp_unit_head *cu_header = &cu->header;
16662 struct type *type;
16663 struct attribute *attr_byte_size;
16664 struct attribute *attr_address_class;
16665 int byte_size, addr_class;
16666 struct type *target_type;
16667
16668 target_type = die_type (die, cu);
16669
16670 /* The die_type call above may have already set the type for this DIE. */
16671 type = get_die_type (die, cu);
16672 if (type)
16673 return type;
16674
16675 type = lookup_pointer_type (target_type);
16676
16677 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16678 if (attr_byte_size)
16679 byte_size = DW_UNSND (attr_byte_size);
16680 else
16681 byte_size = cu_header->addr_size;
16682
16683 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16684 if (attr_address_class)
16685 addr_class = DW_UNSND (attr_address_class);
16686 else
16687 addr_class = DW_ADDR_none;
16688
16689 ULONGEST alignment = get_alignment (cu, die);
16690
16691 /* If the pointer size, alignment, or address class is different
16692 than the default, create a type variant marked as such and set
16693 the length accordingly. */
16694 if (TYPE_LENGTH (type) != byte_size
16695 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16696 && alignment != TYPE_RAW_ALIGN (type))
16697 || addr_class != DW_ADDR_none)
16698 {
16699 if (gdbarch_address_class_type_flags_p (gdbarch))
16700 {
16701 int type_flags;
16702
16703 type_flags = gdbarch_address_class_type_flags
16704 (gdbarch, byte_size, addr_class);
16705 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16706 == 0);
16707 type = make_type_with_address_space (type, type_flags);
16708 }
16709 else if (TYPE_LENGTH (type) != byte_size)
16710 {
16711 complaint (_("invalid pointer size %d"), byte_size);
16712 }
16713 else if (TYPE_RAW_ALIGN (type) != alignment)
16714 {
16715 complaint (_("Invalid DW_AT_alignment"
16716 " - DIE at %s [in module %s]"),
16717 sect_offset_str (die->sect_off),
16718 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16719 }
16720 else
16721 {
16722 /* Should we also complain about unhandled address classes? */
16723 }
16724 }
16725
16726 TYPE_LENGTH (type) = byte_size;
16727 set_type_align (type, alignment);
16728 return set_die_type (die, type, cu);
16729 }
16730
16731 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16732 the user defined type vector. */
16733
16734 static struct type *
16735 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16736 {
16737 struct type *type;
16738 struct type *to_type;
16739 struct type *domain;
16740
16741 to_type = die_type (die, cu);
16742 domain = die_containing_type (die, cu);
16743
16744 /* The calls above may have already set the type for this DIE. */
16745 type = get_die_type (die, cu);
16746 if (type)
16747 return type;
16748
16749 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16750 type = lookup_methodptr_type (to_type);
16751 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16752 {
16753 struct type *new_type
16754 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16755
16756 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16757 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16758 TYPE_VARARGS (to_type));
16759 type = lookup_methodptr_type (new_type);
16760 }
16761 else
16762 type = lookup_memberptr_type (to_type, domain);
16763
16764 return set_die_type (die, type, cu);
16765 }
16766
16767 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16768 the user defined type vector. */
16769
16770 static struct type *
16771 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16772 enum type_code refcode)
16773 {
16774 struct comp_unit_head *cu_header = &cu->header;
16775 struct type *type, *target_type;
16776 struct attribute *attr;
16777
16778 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16779
16780 target_type = die_type (die, cu);
16781
16782 /* The die_type call above may have already set the type for this DIE. */
16783 type = get_die_type (die, cu);
16784 if (type)
16785 return type;
16786
16787 type = lookup_reference_type (target_type, refcode);
16788 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16789 if (attr != nullptr)
16790 {
16791 TYPE_LENGTH (type) = DW_UNSND (attr);
16792 }
16793 else
16794 {
16795 TYPE_LENGTH (type) = cu_header->addr_size;
16796 }
16797 maybe_set_alignment (cu, die, type);
16798 return set_die_type (die, type, cu);
16799 }
16800
16801 /* Add the given cv-qualifiers to the element type of the array. GCC
16802 outputs DWARF type qualifiers that apply to an array, not the
16803 element type. But GDB relies on the array element type to carry
16804 the cv-qualifiers. This mimics section 6.7.3 of the C99
16805 specification. */
16806
16807 static struct type *
16808 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16809 struct type *base_type, int cnst, int voltl)
16810 {
16811 struct type *el_type, *inner_array;
16812
16813 base_type = copy_type (base_type);
16814 inner_array = base_type;
16815
16816 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16817 {
16818 TYPE_TARGET_TYPE (inner_array) =
16819 copy_type (TYPE_TARGET_TYPE (inner_array));
16820 inner_array = TYPE_TARGET_TYPE (inner_array);
16821 }
16822
16823 el_type = TYPE_TARGET_TYPE (inner_array);
16824 cnst |= TYPE_CONST (el_type);
16825 voltl |= TYPE_VOLATILE (el_type);
16826 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16827
16828 return set_die_type (die, base_type, cu);
16829 }
16830
16831 static struct type *
16832 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16833 {
16834 struct type *base_type, *cv_type;
16835
16836 base_type = die_type (die, cu);
16837
16838 /* The die_type call above may have already set the type for this DIE. */
16839 cv_type = get_die_type (die, cu);
16840 if (cv_type)
16841 return cv_type;
16842
16843 /* In case the const qualifier is applied to an array type, the element type
16844 is so qualified, not the array type (section 6.7.3 of C99). */
16845 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16846 return add_array_cv_type (die, cu, base_type, 1, 0);
16847
16848 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16849 return set_die_type (die, cv_type, cu);
16850 }
16851
16852 static struct type *
16853 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16854 {
16855 struct type *base_type, *cv_type;
16856
16857 base_type = die_type (die, cu);
16858
16859 /* The die_type call above may have already set the type for this DIE. */
16860 cv_type = get_die_type (die, cu);
16861 if (cv_type)
16862 return cv_type;
16863
16864 /* In case the volatile qualifier is applied to an array type, the
16865 element type is so qualified, not the array type (section 6.7.3
16866 of C99). */
16867 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16868 return add_array_cv_type (die, cu, base_type, 0, 1);
16869
16870 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16871 return set_die_type (die, cv_type, cu);
16872 }
16873
16874 /* Handle DW_TAG_restrict_type. */
16875
16876 static struct type *
16877 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16878 {
16879 struct type *base_type, *cv_type;
16880
16881 base_type = die_type (die, cu);
16882
16883 /* The die_type call above may have already set the type for this DIE. */
16884 cv_type = get_die_type (die, cu);
16885 if (cv_type)
16886 return cv_type;
16887
16888 cv_type = make_restrict_type (base_type);
16889 return set_die_type (die, cv_type, cu);
16890 }
16891
16892 /* Handle DW_TAG_atomic_type. */
16893
16894 static struct type *
16895 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16896 {
16897 struct type *base_type, *cv_type;
16898
16899 base_type = die_type (die, cu);
16900
16901 /* The die_type call above may have already set the type for this DIE. */
16902 cv_type = get_die_type (die, cu);
16903 if (cv_type)
16904 return cv_type;
16905
16906 cv_type = make_atomic_type (base_type);
16907 return set_die_type (die, cv_type, cu);
16908 }
16909
16910 /* Extract all information from a DW_TAG_string_type DIE and add to
16911 the user defined type vector. It isn't really a user defined type,
16912 but it behaves like one, with other DIE's using an AT_user_def_type
16913 attribute to reference it. */
16914
16915 static struct type *
16916 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16917 {
16918 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16919 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16920 struct type *type, *range_type, *index_type, *char_type;
16921 struct attribute *attr;
16922 struct dynamic_prop prop;
16923 bool length_is_constant = true;
16924 LONGEST length;
16925
16926 /* There are a couple of places where bit sizes might be made use of
16927 when parsing a DW_TAG_string_type, however, no producer that we know
16928 of make use of these. Handling bit sizes that are a multiple of the
16929 byte size is easy enough, but what about other bit sizes? Lets deal
16930 with that problem when we have to. Warn about these attributes being
16931 unsupported, then parse the type and ignore them like we always
16932 have. */
16933 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16934 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16935 {
16936 static bool warning_printed = false;
16937 if (!warning_printed)
16938 {
16939 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16940 "currently supported on DW_TAG_string_type."));
16941 warning_printed = true;
16942 }
16943 }
16944
16945 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16946 if (attr != nullptr && !attr->form_is_constant ())
16947 {
16948 /* The string length describes the location at which the length of
16949 the string can be found. The size of the length field can be
16950 specified with one of the attributes below. */
16951 struct type *prop_type;
16952 struct attribute *len
16953 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16954 if (len == nullptr)
16955 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16956 if (len != nullptr && len->form_is_constant ())
16957 {
16958 /* Pass 0 as the default as we know this attribute is constant
16959 and the default value will not be returned. */
16960 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16961 prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true);
16962 }
16963 else
16964 {
16965 /* If the size is not specified then we assume it is the size of
16966 an address on this target. */
16967 prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true);
16968 }
16969
16970 /* Convert the attribute into a dynamic property. */
16971 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16972 length = 1;
16973 else
16974 length_is_constant = false;
16975 }
16976 else if (attr != nullptr)
16977 {
16978 /* This DW_AT_string_length just contains the length with no
16979 indirection. There's no need to create a dynamic property in this
16980 case. Pass 0 for the default value as we know it will not be
16981 returned in this case. */
16982 length = dwarf2_get_attr_constant_value (attr, 0);
16983 }
16984 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16985 {
16986 /* We don't currently support non-constant byte sizes for strings. */
16987 length = dwarf2_get_attr_constant_value (attr, 1);
16988 }
16989 else
16990 {
16991 /* Use 1 as a fallback length if we have nothing else. */
16992 length = 1;
16993 }
16994
16995 index_type = objfile_type (objfile)->builtin_int;
16996 if (length_is_constant)
16997 range_type = create_static_range_type (NULL, index_type, 1, length);
16998 else
16999 {
17000 struct dynamic_prop low_bound;
17001
17002 low_bound.kind = PROP_CONST;
17003 low_bound.data.const_val = 1;
17004 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17005 }
17006 char_type = language_string_char_type (cu->language_defn, gdbarch);
17007 type = create_string_type (NULL, char_type, range_type);
17008
17009 return set_die_type (die, type, cu);
17010 }
17011
17012 /* Assuming that DIE corresponds to a function, returns nonzero
17013 if the function is prototyped. */
17014
17015 static int
17016 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17017 {
17018 struct attribute *attr;
17019
17020 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17021 if (attr && (DW_UNSND (attr) != 0))
17022 return 1;
17023
17024 /* The DWARF standard implies that the DW_AT_prototyped attribute
17025 is only meaningful for C, but the concept also extends to other
17026 languages that allow unprototyped functions (Eg: Objective C).
17027 For all other languages, assume that functions are always
17028 prototyped. */
17029 if (cu->language != language_c
17030 && cu->language != language_objc
17031 && cu->language != language_opencl)
17032 return 1;
17033
17034 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17035 prototyped and unprototyped functions; default to prototyped,
17036 since that is more common in modern code (and RealView warns
17037 about unprototyped functions). */
17038 if (producer_is_realview (cu->producer))
17039 return 1;
17040
17041 return 0;
17042 }
17043
17044 /* Handle DIES due to C code like:
17045
17046 struct foo
17047 {
17048 int (*funcp)(int a, long l);
17049 int b;
17050 };
17051
17052 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17053
17054 static struct type *
17055 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17056 {
17057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17058 struct type *type; /* Type that this function returns. */
17059 struct type *ftype; /* Function that returns above type. */
17060 struct attribute *attr;
17061
17062 type = die_type (die, cu);
17063
17064 /* The die_type call above may have already set the type for this DIE. */
17065 ftype = get_die_type (die, cu);
17066 if (ftype)
17067 return ftype;
17068
17069 ftype = lookup_function_type (type);
17070
17071 if (prototyped_function_p (die, cu))
17072 TYPE_PROTOTYPED (ftype) = 1;
17073
17074 /* Store the calling convention in the type if it's available in
17075 the subroutine die. Otherwise set the calling convention to
17076 the default value DW_CC_normal. */
17077 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17078 if (attr != nullptr
17079 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17080 TYPE_CALLING_CONVENTION (ftype)
17081 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17082 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17083 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17084 else
17085 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17086
17087 /* Record whether the function returns normally to its caller or not
17088 if the DWARF producer set that information. */
17089 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17090 if (attr && (DW_UNSND (attr) != 0))
17091 TYPE_NO_RETURN (ftype) = 1;
17092
17093 /* We need to add the subroutine type to the die immediately so
17094 we don't infinitely recurse when dealing with parameters
17095 declared as the same subroutine type. */
17096 set_die_type (die, ftype, cu);
17097
17098 if (die->child != NULL)
17099 {
17100 struct type *void_type = objfile_type (objfile)->builtin_void;
17101 struct die_info *child_die;
17102 int nparams, iparams;
17103
17104 /* Count the number of parameters.
17105 FIXME: GDB currently ignores vararg functions, but knows about
17106 vararg member functions. */
17107 nparams = 0;
17108 child_die = die->child;
17109 while (child_die && child_die->tag)
17110 {
17111 if (child_die->tag == DW_TAG_formal_parameter)
17112 nparams++;
17113 else if (child_die->tag == DW_TAG_unspecified_parameters)
17114 TYPE_VARARGS (ftype) = 1;
17115 child_die = sibling_die (child_die);
17116 }
17117
17118 /* Allocate storage for parameters and fill them in. */
17119 TYPE_NFIELDS (ftype) = nparams;
17120 TYPE_FIELDS (ftype) = (struct field *)
17121 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17122
17123 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17124 even if we error out during the parameters reading below. */
17125 for (iparams = 0; iparams < nparams; iparams++)
17126 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17127
17128 iparams = 0;
17129 child_die = die->child;
17130 while (child_die && child_die->tag)
17131 {
17132 if (child_die->tag == DW_TAG_formal_parameter)
17133 {
17134 struct type *arg_type;
17135
17136 /* DWARF version 2 has no clean way to discern C++
17137 static and non-static member functions. G++ helps
17138 GDB by marking the first parameter for non-static
17139 member functions (which is the this pointer) as
17140 artificial. We pass this information to
17141 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17142
17143 DWARF version 3 added DW_AT_object_pointer, which GCC
17144 4.5 does not yet generate. */
17145 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17146 if (attr != nullptr)
17147 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17148 else
17149 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17150 arg_type = die_type (child_die, cu);
17151
17152 /* RealView does not mark THIS as const, which the testsuite
17153 expects. GCC marks THIS as const in method definitions,
17154 but not in the class specifications (GCC PR 43053). */
17155 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17156 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17157 {
17158 int is_this = 0;
17159 struct dwarf2_cu *arg_cu = cu;
17160 const char *name = dwarf2_name (child_die, cu);
17161
17162 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17163 if (attr != nullptr)
17164 {
17165 /* If the compiler emits this, use it. */
17166 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17167 is_this = 1;
17168 }
17169 else if (name && strcmp (name, "this") == 0)
17170 /* Function definitions will have the argument names. */
17171 is_this = 1;
17172 else if (name == NULL && iparams == 0)
17173 /* Declarations may not have the names, so like
17174 elsewhere in GDB, assume an artificial first
17175 argument is "this". */
17176 is_this = 1;
17177
17178 if (is_this)
17179 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17180 arg_type, 0);
17181 }
17182
17183 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17184 iparams++;
17185 }
17186 child_die = sibling_die (child_die);
17187 }
17188 }
17189
17190 return ftype;
17191 }
17192
17193 static struct type *
17194 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17195 {
17196 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17197 const char *name = NULL;
17198 struct type *this_type, *target_type;
17199
17200 name = dwarf2_full_name (NULL, die, cu);
17201 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17202 TYPE_TARGET_STUB (this_type) = 1;
17203 set_die_type (die, this_type, cu);
17204 target_type = die_type (die, cu);
17205 if (target_type != this_type)
17206 TYPE_TARGET_TYPE (this_type) = target_type;
17207 else
17208 {
17209 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17210 spec and cause infinite loops in GDB. */
17211 complaint (_("Self-referential DW_TAG_typedef "
17212 "- DIE at %s [in module %s]"),
17213 sect_offset_str (die->sect_off), objfile_name (objfile));
17214 TYPE_TARGET_TYPE (this_type) = NULL;
17215 }
17216 return this_type;
17217 }
17218
17219 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17220 (which may be different from NAME) to the architecture back-end to allow
17221 it to guess the correct format if necessary. */
17222
17223 static struct type *
17224 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17225 const char *name_hint, enum bfd_endian byte_order)
17226 {
17227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17228 const struct floatformat **format;
17229 struct type *type;
17230
17231 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17232 if (format)
17233 type = init_float_type (objfile, bits, name, format, byte_order);
17234 else
17235 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17236
17237 return type;
17238 }
17239
17240 /* Allocate an integer type of size BITS and name NAME. */
17241
17242 static struct type *
17243 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17244 int bits, int unsigned_p, const char *name)
17245 {
17246 struct type *type;
17247
17248 /* Versions of Intel's C Compiler generate an integer type called "void"
17249 instead of using DW_TAG_unspecified_type. This has been seen on
17250 at least versions 14, 17, and 18. */
17251 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17252 && strcmp (name, "void") == 0)
17253 type = objfile_type (objfile)->builtin_void;
17254 else
17255 type = init_integer_type (objfile, bits, unsigned_p, name);
17256
17257 return type;
17258 }
17259
17260 /* Initialise and return a floating point type of size BITS suitable for
17261 use as a component of a complex number. The NAME_HINT is passed through
17262 when initialising the floating point type and is the name of the complex
17263 type.
17264
17265 As DWARF doesn't currently provide an explicit name for the components
17266 of a complex number, but it can be helpful to have these components
17267 named, we try to select a suitable name based on the size of the
17268 component. */
17269 static struct type *
17270 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17271 struct objfile *objfile,
17272 int bits, const char *name_hint,
17273 enum bfd_endian byte_order)
17274 {
17275 gdbarch *gdbarch = get_objfile_arch (objfile);
17276 struct type *tt = nullptr;
17277
17278 /* Try to find a suitable floating point builtin type of size BITS.
17279 We're going to use the name of this type as the name for the complex
17280 target type that we are about to create. */
17281 switch (cu->language)
17282 {
17283 case language_fortran:
17284 switch (bits)
17285 {
17286 case 32:
17287 tt = builtin_f_type (gdbarch)->builtin_real;
17288 break;
17289 case 64:
17290 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17291 break;
17292 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17293 case 128:
17294 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17295 break;
17296 }
17297 break;
17298 default:
17299 switch (bits)
17300 {
17301 case 32:
17302 tt = builtin_type (gdbarch)->builtin_float;
17303 break;
17304 case 64:
17305 tt = builtin_type (gdbarch)->builtin_double;
17306 break;
17307 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17308 case 128:
17309 tt = builtin_type (gdbarch)->builtin_long_double;
17310 break;
17311 }
17312 break;
17313 }
17314
17315 /* If the type we found doesn't match the size we were looking for, then
17316 pretend we didn't find a type at all, the complex target type we
17317 create will then be nameless. */
17318 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17319 tt = nullptr;
17320
17321 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17322 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17323 }
17324
17325 /* Find a representation of a given base type and install
17326 it in the TYPE field of the die. */
17327
17328 static struct type *
17329 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17330 {
17331 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17332 struct type *type;
17333 struct attribute *attr;
17334 int encoding = 0, bits = 0;
17335 const char *name;
17336 gdbarch *arch;
17337
17338 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17339 if (attr != nullptr)
17340 encoding = DW_UNSND (attr);
17341 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17342 if (attr != nullptr)
17343 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17344 name = dwarf2_name (die, cu);
17345 if (!name)
17346 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17347
17348 arch = get_objfile_arch (objfile);
17349 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17350
17351 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17352 if (attr)
17353 {
17354 int endianity = DW_UNSND (attr);
17355
17356 switch (endianity)
17357 {
17358 case DW_END_big:
17359 byte_order = BFD_ENDIAN_BIG;
17360 break;
17361 case DW_END_little:
17362 byte_order = BFD_ENDIAN_LITTLE;
17363 break;
17364 default:
17365 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17366 break;
17367 }
17368 }
17369
17370 switch (encoding)
17371 {
17372 case DW_ATE_address:
17373 /* Turn DW_ATE_address into a void * pointer. */
17374 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17375 type = init_pointer_type (objfile, bits, name, type);
17376 break;
17377 case DW_ATE_boolean:
17378 type = init_boolean_type (objfile, bits, 1, name);
17379 break;
17380 case DW_ATE_complex_float:
17381 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17382 byte_order);
17383 type = init_complex_type (objfile, name, type);
17384 break;
17385 case DW_ATE_decimal_float:
17386 type = init_decfloat_type (objfile, bits, name);
17387 break;
17388 case DW_ATE_float:
17389 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17390 break;
17391 case DW_ATE_signed:
17392 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17393 break;
17394 case DW_ATE_unsigned:
17395 if (cu->language == language_fortran
17396 && name
17397 && startswith (name, "character("))
17398 type = init_character_type (objfile, bits, 1, name);
17399 else
17400 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17401 break;
17402 case DW_ATE_signed_char:
17403 if (cu->language == language_ada || cu->language == language_m2
17404 || cu->language == language_pascal
17405 || cu->language == language_fortran)
17406 type = init_character_type (objfile, bits, 0, name);
17407 else
17408 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17409 break;
17410 case DW_ATE_unsigned_char:
17411 if (cu->language == language_ada || cu->language == language_m2
17412 || cu->language == language_pascal
17413 || cu->language == language_fortran
17414 || cu->language == language_rust)
17415 type = init_character_type (objfile, bits, 1, name);
17416 else
17417 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17418 break;
17419 case DW_ATE_UTF:
17420 {
17421 if (bits == 16)
17422 type = builtin_type (arch)->builtin_char16;
17423 else if (bits == 32)
17424 type = builtin_type (arch)->builtin_char32;
17425 else
17426 {
17427 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17428 bits);
17429 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17430 }
17431 return set_die_type (die, type, cu);
17432 }
17433 break;
17434
17435 default:
17436 complaint (_("unsupported DW_AT_encoding: '%s'"),
17437 dwarf_type_encoding_name (encoding));
17438 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17439 break;
17440 }
17441
17442 if (name && strcmp (name, "char") == 0)
17443 TYPE_NOSIGN (type) = 1;
17444
17445 maybe_set_alignment (cu, die, type);
17446
17447 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17448
17449 return set_die_type (die, type, cu);
17450 }
17451
17452 /* Parse dwarf attribute if it's a block, reference or constant and put the
17453 resulting value of the attribute into struct bound_prop.
17454 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17455
17456 static int
17457 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17458 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17459 struct type *default_type)
17460 {
17461 struct dwarf2_property_baton *baton;
17462 struct obstack *obstack
17463 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17464
17465 gdb_assert (default_type != NULL);
17466
17467 if (attr == NULL || prop == NULL)
17468 return 0;
17469
17470 if (attr->form_is_block ())
17471 {
17472 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17473 baton->property_type = default_type;
17474 baton->locexpr.per_cu = cu->per_cu;
17475 baton->locexpr.size = DW_BLOCK (attr)->size;
17476 baton->locexpr.data = DW_BLOCK (attr)->data;
17477 switch (attr->name)
17478 {
17479 case DW_AT_string_length:
17480 baton->locexpr.is_reference = true;
17481 break;
17482 default:
17483 baton->locexpr.is_reference = false;
17484 break;
17485 }
17486 prop->data.baton = baton;
17487 prop->kind = PROP_LOCEXPR;
17488 gdb_assert (prop->data.baton != NULL);
17489 }
17490 else if (attr->form_is_ref ())
17491 {
17492 struct dwarf2_cu *target_cu = cu;
17493 struct die_info *target_die;
17494 struct attribute *target_attr;
17495
17496 target_die = follow_die_ref (die, attr, &target_cu);
17497 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17498 if (target_attr == NULL)
17499 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17500 target_cu);
17501 if (target_attr == NULL)
17502 return 0;
17503
17504 switch (target_attr->name)
17505 {
17506 case DW_AT_location:
17507 if (target_attr->form_is_section_offset ())
17508 {
17509 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17510 baton->property_type = die_type (target_die, target_cu);
17511 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17512 prop->data.baton = baton;
17513 prop->kind = PROP_LOCLIST;
17514 gdb_assert (prop->data.baton != NULL);
17515 }
17516 else if (target_attr->form_is_block ())
17517 {
17518 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17519 baton->property_type = die_type (target_die, target_cu);
17520 baton->locexpr.per_cu = cu->per_cu;
17521 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17522 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17523 baton->locexpr.is_reference = true;
17524 prop->data.baton = baton;
17525 prop->kind = PROP_LOCEXPR;
17526 gdb_assert (prop->data.baton != NULL);
17527 }
17528 else
17529 {
17530 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17531 "dynamic property");
17532 return 0;
17533 }
17534 break;
17535 case DW_AT_data_member_location:
17536 {
17537 LONGEST offset;
17538
17539 if (!handle_data_member_location (target_die, target_cu,
17540 &offset))
17541 return 0;
17542
17543 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17544 baton->property_type = read_type_die (target_die->parent,
17545 target_cu);
17546 baton->offset_info.offset = offset;
17547 baton->offset_info.type = die_type (target_die, target_cu);
17548 prop->data.baton = baton;
17549 prop->kind = PROP_ADDR_OFFSET;
17550 break;
17551 }
17552 }
17553 }
17554 else if (attr->form_is_constant ())
17555 {
17556 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17557 prop->kind = PROP_CONST;
17558 }
17559 else
17560 {
17561 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17562 dwarf2_name (die, cu));
17563 return 0;
17564 }
17565
17566 return 1;
17567 }
17568
17569 /* Find an integer type SIZE_IN_BYTES bytes in size and return it.
17570 UNSIGNED_P controls if the integer is unsigned or not. */
17571
17572 static struct type *
17573 dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu,
17574 int size_in_bytes, bool unsigned_p)
17575 {
17576 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17577 struct type *int_type;
17578
17579 /* Helper macro to examine the various builtin types. */
17580 #define TRY_TYPE(F) \
17581 int_type = (unsigned_p \
17582 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17583 : objfile_type (objfile)->builtin_ ## F); \
17584 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17585 return int_type
17586
17587 TRY_TYPE (char);
17588 TRY_TYPE (short);
17589 TRY_TYPE (int);
17590 TRY_TYPE (long);
17591 TRY_TYPE (long_long);
17592
17593 #undef TRY_TYPE
17594
17595 gdb_assert_not_reached ("unable to find suitable integer type");
17596 }
17597
17598 /* Find an integer type the same size as the address size given in the
17599 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17600 is unsigned or not. */
17601
17602 static struct type *
17603 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17604 bool unsigned_p)
17605 {
17606 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17607 return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p);
17608 }
17609
17610 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17611 present (which is valid) then compute the default type based on the
17612 compilation units address size. */
17613
17614 static struct type *
17615 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17616 {
17617 struct type *index_type = die_type (die, cu);
17618
17619 /* Dwarf-2 specifications explicitly allows to create subrange types
17620 without specifying a base type.
17621 In that case, the base type must be set to the type of
17622 the lower bound, upper bound or count, in that order, if any of these
17623 three attributes references an object that has a type.
17624 If no base type is found, the Dwarf-2 specifications say that
17625 a signed integer type of size equal to the size of an address should
17626 be used.
17627 For the following C code: `extern char gdb_int [];'
17628 GCC produces an empty range DIE.
17629 FIXME: muller/2010-05-28: Possible references to object for low bound,
17630 high bound or count are not yet handled by this code. */
17631 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17632 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17633
17634 return index_type;
17635 }
17636
17637 /* Read the given DW_AT_subrange DIE. */
17638
17639 static struct type *
17640 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17641 {
17642 struct type *base_type, *orig_base_type;
17643 struct type *range_type;
17644 struct attribute *attr;
17645 struct dynamic_prop low, high;
17646 int low_default_is_valid;
17647 int high_bound_is_count = 0;
17648 const char *name;
17649 ULONGEST negative_mask;
17650
17651 orig_base_type = read_subrange_index_type (die, cu);
17652
17653 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17654 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17655 creating the range type, but we use the result of check_typedef
17656 when examining properties of the type. */
17657 base_type = check_typedef (orig_base_type);
17658
17659 /* The die_type call above may have already set the type for this DIE. */
17660 range_type = get_die_type (die, cu);
17661 if (range_type)
17662 return range_type;
17663
17664 low.kind = PROP_CONST;
17665 high.kind = PROP_CONST;
17666 high.data.const_val = 0;
17667
17668 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17669 omitting DW_AT_lower_bound. */
17670 switch (cu->language)
17671 {
17672 case language_c:
17673 case language_cplus:
17674 low.data.const_val = 0;
17675 low_default_is_valid = 1;
17676 break;
17677 case language_fortran:
17678 low.data.const_val = 1;
17679 low_default_is_valid = 1;
17680 break;
17681 case language_d:
17682 case language_objc:
17683 case language_rust:
17684 low.data.const_val = 0;
17685 low_default_is_valid = (cu->header.version >= 4);
17686 break;
17687 case language_ada:
17688 case language_m2:
17689 case language_pascal:
17690 low.data.const_val = 1;
17691 low_default_is_valid = (cu->header.version >= 4);
17692 break;
17693 default:
17694 low.data.const_val = 0;
17695 low_default_is_valid = 0;
17696 break;
17697 }
17698
17699 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17700 if (attr != nullptr)
17701 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17702 else if (!low_default_is_valid)
17703 complaint (_("Missing DW_AT_lower_bound "
17704 "- DIE at %s [in module %s]"),
17705 sect_offset_str (die->sect_off),
17706 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17707
17708 struct attribute *attr_ub, *attr_count;
17709 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17710 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17711 {
17712 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17713 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17714 {
17715 /* If bounds are constant do the final calculation here. */
17716 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17717 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17718 else
17719 high_bound_is_count = 1;
17720 }
17721 else
17722 {
17723 if (attr_ub != NULL)
17724 complaint (_("Unresolved DW_AT_upper_bound "
17725 "- DIE at %s [in module %s]"),
17726 sect_offset_str (die->sect_off),
17727 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17728 if (attr_count != NULL)
17729 complaint (_("Unresolved DW_AT_count "
17730 "- DIE at %s [in module %s]"),
17731 sect_offset_str (die->sect_off),
17732 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17733 }
17734 }
17735
17736 LONGEST bias = 0;
17737 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17738 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17739 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17740
17741 /* Normally, the DWARF producers are expected to use a signed
17742 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17743 But this is unfortunately not always the case, as witnessed
17744 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17745 is used instead. To work around that ambiguity, we treat
17746 the bounds as signed, and thus sign-extend their values, when
17747 the base type is signed. */
17748 negative_mask =
17749 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17750 if (low.kind == PROP_CONST
17751 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17752 low.data.const_val |= negative_mask;
17753 if (high.kind == PROP_CONST
17754 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17755 high.data.const_val |= negative_mask;
17756
17757 /* Check for bit and byte strides. */
17758 struct dynamic_prop byte_stride_prop;
17759 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17760 if (attr_byte_stride != nullptr)
17761 {
17762 struct type *prop_type
17763 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17764 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17765 prop_type);
17766 }
17767
17768 struct dynamic_prop bit_stride_prop;
17769 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17770 if (attr_bit_stride != nullptr)
17771 {
17772 /* It only makes sense to have either a bit or byte stride. */
17773 if (attr_byte_stride != nullptr)
17774 {
17775 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17776 "- DIE at %s [in module %s]"),
17777 sect_offset_str (die->sect_off),
17778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17779 attr_bit_stride = nullptr;
17780 }
17781 else
17782 {
17783 struct type *prop_type
17784 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17785 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17786 prop_type);
17787 }
17788 }
17789
17790 if (attr_byte_stride != nullptr
17791 || attr_bit_stride != nullptr)
17792 {
17793 bool byte_stride_p = (attr_byte_stride != nullptr);
17794 struct dynamic_prop *stride
17795 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17796
17797 range_type
17798 = create_range_type_with_stride (NULL, orig_base_type, &low,
17799 &high, bias, stride, byte_stride_p);
17800 }
17801 else
17802 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17803
17804 if (high_bound_is_count)
17805 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17806
17807 /* Ada expects an empty array on no boundary attributes. */
17808 if (attr == NULL && cu->language != language_ada)
17809 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17810
17811 name = dwarf2_name (die, cu);
17812 if (name)
17813 TYPE_NAME (range_type) = name;
17814
17815 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17816 if (attr != nullptr)
17817 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17818
17819 maybe_set_alignment (cu, die, range_type);
17820
17821 set_die_type (die, range_type, cu);
17822
17823 /* set_die_type should be already done. */
17824 set_descriptive_type (range_type, die, cu);
17825
17826 return range_type;
17827 }
17828
17829 static struct type *
17830 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17831 {
17832 struct type *type;
17833
17834 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17835 NULL);
17836 TYPE_NAME (type) = dwarf2_name (die, cu);
17837
17838 /* In Ada, an unspecified type is typically used when the description
17839 of the type is deferred to a different unit. When encountering
17840 such a type, we treat it as a stub, and try to resolve it later on,
17841 when needed. */
17842 if (cu->language == language_ada)
17843 TYPE_STUB (type) = 1;
17844
17845 return set_die_type (die, type, cu);
17846 }
17847
17848 /* Read a single die and all its descendents. Set the die's sibling
17849 field to NULL; set other fields in the die correctly, and set all
17850 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17851 location of the info_ptr after reading all of those dies. PARENT
17852 is the parent of the die in question. */
17853
17854 static struct die_info *
17855 read_die_and_children (const struct die_reader_specs *reader,
17856 const gdb_byte *info_ptr,
17857 const gdb_byte **new_info_ptr,
17858 struct die_info *parent)
17859 {
17860 struct die_info *die;
17861 const gdb_byte *cur_ptr;
17862
17863 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17864 if (die == NULL)
17865 {
17866 *new_info_ptr = cur_ptr;
17867 return NULL;
17868 }
17869 store_in_ref_table (die, reader->cu);
17870
17871 if (die->has_children)
17872 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17873 else
17874 {
17875 die->child = NULL;
17876 *new_info_ptr = cur_ptr;
17877 }
17878
17879 die->sibling = NULL;
17880 die->parent = parent;
17881 return die;
17882 }
17883
17884 /* Read a die, all of its descendents, and all of its siblings; set
17885 all of the fields of all of the dies correctly. Arguments are as
17886 in read_die_and_children. */
17887
17888 static struct die_info *
17889 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17890 const gdb_byte *info_ptr,
17891 const gdb_byte **new_info_ptr,
17892 struct die_info *parent)
17893 {
17894 struct die_info *first_die, *last_sibling;
17895 const gdb_byte *cur_ptr;
17896
17897 cur_ptr = info_ptr;
17898 first_die = last_sibling = NULL;
17899
17900 while (1)
17901 {
17902 struct die_info *die
17903 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17904
17905 if (die == NULL)
17906 {
17907 *new_info_ptr = cur_ptr;
17908 return first_die;
17909 }
17910
17911 if (!first_die)
17912 first_die = die;
17913 else
17914 last_sibling->sibling = die;
17915
17916 last_sibling = die;
17917 }
17918 }
17919
17920 /* Read a die, all of its descendents, and all of its siblings; set
17921 all of the fields of all of the dies correctly. Arguments are as
17922 in read_die_and_children.
17923 This the main entry point for reading a DIE and all its children. */
17924
17925 static struct die_info *
17926 read_die_and_siblings (const struct die_reader_specs *reader,
17927 const gdb_byte *info_ptr,
17928 const gdb_byte **new_info_ptr,
17929 struct die_info *parent)
17930 {
17931 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17932 new_info_ptr, parent);
17933
17934 if (dwarf_die_debug)
17935 {
17936 fprintf_unfiltered (gdb_stdlog,
17937 "Read die from %s@0x%x of %s:\n",
17938 reader->die_section->get_name (),
17939 (unsigned) (info_ptr - reader->die_section->buffer),
17940 bfd_get_filename (reader->abfd));
17941 dump_die (die, dwarf_die_debug);
17942 }
17943
17944 return die;
17945 }
17946
17947 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17948 attributes.
17949 The caller is responsible for filling in the extra attributes
17950 and updating (*DIEP)->num_attrs.
17951 Set DIEP to point to a newly allocated die with its information,
17952 except for its child, sibling, and parent fields. */
17953
17954 static const gdb_byte *
17955 read_full_die_1 (const struct die_reader_specs *reader,
17956 struct die_info **diep, const gdb_byte *info_ptr,
17957 int num_extra_attrs)
17958 {
17959 unsigned int abbrev_number, bytes_read, i;
17960 struct abbrev_info *abbrev;
17961 struct die_info *die;
17962 struct dwarf2_cu *cu = reader->cu;
17963 bfd *abfd = reader->abfd;
17964
17965 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17966 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17967 info_ptr += bytes_read;
17968 if (!abbrev_number)
17969 {
17970 *diep = NULL;
17971 return info_ptr;
17972 }
17973
17974 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17975 if (!abbrev)
17976 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17977 abbrev_number,
17978 bfd_get_filename (abfd));
17979
17980 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17981 die->sect_off = sect_off;
17982 die->tag = abbrev->tag;
17983 die->abbrev = abbrev_number;
17984 die->has_children = abbrev->has_children;
17985
17986 /* Make the result usable.
17987 The caller needs to update num_attrs after adding the extra
17988 attributes. */
17989 die->num_attrs = abbrev->num_attrs;
17990
17991 std::vector<int> indexes_that_need_reprocess;
17992 for (i = 0; i < abbrev->num_attrs; ++i)
17993 {
17994 bool need_reprocess;
17995 info_ptr =
17996 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17997 info_ptr, &need_reprocess);
17998 if (need_reprocess)
17999 indexes_that_need_reprocess.push_back (i);
18000 }
18001
18002 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
18003 if (attr != nullptr)
18004 cu->str_offsets_base = DW_UNSND (attr);
18005
18006 auto maybe_addr_base = lookup_addr_base(die);
18007 if (maybe_addr_base.has_value ())
18008 cu->addr_base = *maybe_addr_base;
18009 for (int index : indexes_that_need_reprocess)
18010 read_attribute_reprocess (reader, &die->attrs[index]);
18011 *diep = die;
18012 return info_ptr;
18013 }
18014
18015 /* Read a die and all its attributes.
18016 Set DIEP to point to a newly allocated die with its information,
18017 except for its child, sibling, and parent fields. */
18018
18019 static const gdb_byte *
18020 read_full_die (const struct die_reader_specs *reader,
18021 struct die_info **diep, const gdb_byte *info_ptr)
18022 {
18023 const gdb_byte *result;
18024
18025 result = read_full_die_1 (reader, diep, info_ptr, 0);
18026
18027 if (dwarf_die_debug)
18028 {
18029 fprintf_unfiltered (gdb_stdlog,
18030 "Read die from %s@0x%x of %s:\n",
18031 reader->die_section->get_name (),
18032 (unsigned) (info_ptr - reader->die_section->buffer),
18033 bfd_get_filename (reader->abfd));
18034 dump_die (*diep, dwarf_die_debug);
18035 }
18036
18037 return result;
18038 }
18039 \f
18040
18041 /* Returns nonzero if TAG represents a type that we might generate a partial
18042 symbol for. */
18043
18044 static int
18045 is_type_tag_for_partial (int tag)
18046 {
18047 switch (tag)
18048 {
18049 #if 0
18050 /* Some types that would be reasonable to generate partial symbols for,
18051 that we don't at present. */
18052 case DW_TAG_array_type:
18053 case DW_TAG_file_type:
18054 case DW_TAG_ptr_to_member_type:
18055 case DW_TAG_set_type:
18056 case DW_TAG_string_type:
18057 case DW_TAG_subroutine_type:
18058 #endif
18059 case DW_TAG_base_type:
18060 case DW_TAG_class_type:
18061 case DW_TAG_interface_type:
18062 case DW_TAG_enumeration_type:
18063 case DW_TAG_structure_type:
18064 case DW_TAG_subrange_type:
18065 case DW_TAG_typedef:
18066 case DW_TAG_union_type:
18067 return 1;
18068 default:
18069 return 0;
18070 }
18071 }
18072
18073 /* Load all DIEs that are interesting for partial symbols into memory. */
18074
18075 static struct partial_die_info *
18076 load_partial_dies (const struct die_reader_specs *reader,
18077 const gdb_byte *info_ptr, int building_psymtab)
18078 {
18079 struct dwarf2_cu *cu = reader->cu;
18080 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18081 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18082 unsigned int bytes_read;
18083 unsigned int load_all = 0;
18084 int nesting_level = 1;
18085
18086 parent_die = NULL;
18087 last_die = NULL;
18088
18089 gdb_assert (cu->per_cu != NULL);
18090 if (cu->per_cu->load_all_dies)
18091 load_all = 1;
18092
18093 cu->partial_dies
18094 = htab_create_alloc_ex (cu->header.length / 12,
18095 partial_die_hash,
18096 partial_die_eq,
18097 NULL,
18098 &cu->comp_unit_obstack,
18099 hashtab_obstack_allocate,
18100 dummy_obstack_deallocate);
18101
18102 while (1)
18103 {
18104 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18105
18106 /* A NULL abbrev means the end of a series of children. */
18107 if (abbrev == NULL)
18108 {
18109 if (--nesting_level == 0)
18110 return first_die;
18111
18112 info_ptr += bytes_read;
18113 last_die = parent_die;
18114 parent_die = parent_die->die_parent;
18115 continue;
18116 }
18117
18118 /* Check for template arguments. We never save these; if
18119 they're seen, we just mark the parent, and go on our way. */
18120 if (parent_die != NULL
18121 && cu->language == language_cplus
18122 && (abbrev->tag == DW_TAG_template_type_param
18123 || abbrev->tag == DW_TAG_template_value_param))
18124 {
18125 parent_die->has_template_arguments = 1;
18126
18127 if (!load_all)
18128 {
18129 /* We don't need a partial DIE for the template argument. */
18130 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18131 continue;
18132 }
18133 }
18134
18135 /* We only recurse into c++ subprograms looking for template arguments.
18136 Skip their other children. */
18137 if (!load_all
18138 && cu->language == language_cplus
18139 && parent_die != NULL
18140 && parent_die->tag == DW_TAG_subprogram)
18141 {
18142 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18143 continue;
18144 }
18145
18146 /* Check whether this DIE is interesting enough to save. Normally
18147 we would not be interested in members here, but there may be
18148 later variables referencing them via DW_AT_specification (for
18149 static members). */
18150 if (!load_all
18151 && !is_type_tag_for_partial (abbrev->tag)
18152 && abbrev->tag != DW_TAG_constant
18153 && abbrev->tag != DW_TAG_enumerator
18154 && abbrev->tag != DW_TAG_subprogram
18155 && abbrev->tag != DW_TAG_inlined_subroutine
18156 && abbrev->tag != DW_TAG_lexical_block
18157 && abbrev->tag != DW_TAG_variable
18158 && abbrev->tag != DW_TAG_namespace
18159 && abbrev->tag != DW_TAG_module
18160 && abbrev->tag != DW_TAG_member
18161 && abbrev->tag != DW_TAG_imported_unit
18162 && abbrev->tag != DW_TAG_imported_declaration)
18163 {
18164 /* Otherwise we skip to the next sibling, if any. */
18165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18166 continue;
18167 }
18168
18169 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18170 abbrev);
18171
18172 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18173
18174 /* This two-pass algorithm for processing partial symbols has a
18175 high cost in cache pressure. Thus, handle some simple cases
18176 here which cover the majority of C partial symbols. DIEs
18177 which neither have specification tags in them, nor could have
18178 specification tags elsewhere pointing at them, can simply be
18179 processed and discarded.
18180
18181 This segment is also optional; scan_partial_symbols and
18182 add_partial_symbol will handle these DIEs if we chain
18183 them in normally. When compilers which do not emit large
18184 quantities of duplicate debug information are more common,
18185 this code can probably be removed. */
18186
18187 /* Any complete simple types at the top level (pretty much all
18188 of them, for a language without namespaces), can be processed
18189 directly. */
18190 if (parent_die == NULL
18191 && pdi.has_specification == 0
18192 && pdi.is_declaration == 0
18193 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18194 || pdi.tag == DW_TAG_base_type
18195 || pdi.tag == DW_TAG_subrange_type))
18196 {
18197 if (building_psymtab && pdi.name != NULL)
18198 add_psymbol_to_list (pdi.name, false,
18199 VAR_DOMAIN, LOC_TYPEDEF, -1,
18200 psymbol_placement::STATIC,
18201 0, cu->language, objfile);
18202 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18203 continue;
18204 }
18205
18206 /* The exception for DW_TAG_typedef with has_children above is
18207 a workaround of GCC PR debug/47510. In the case of this complaint
18208 type_name_or_error will error on such types later.
18209
18210 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18211 it could not find the child DIEs referenced later, this is checked
18212 above. In correct DWARF DW_TAG_typedef should have no children. */
18213
18214 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18215 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18216 "- DIE at %s [in module %s]"),
18217 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18218
18219 /* If we're at the second level, and we're an enumerator, and
18220 our parent has no specification (meaning possibly lives in a
18221 namespace elsewhere), then we can add the partial symbol now
18222 instead of queueing it. */
18223 if (pdi.tag == DW_TAG_enumerator
18224 && parent_die != NULL
18225 && parent_die->die_parent == NULL
18226 && parent_die->tag == DW_TAG_enumeration_type
18227 && parent_die->has_specification == 0)
18228 {
18229 if (pdi.name == NULL)
18230 complaint (_("malformed enumerator DIE ignored"));
18231 else if (building_psymtab)
18232 add_psymbol_to_list (pdi.name, false,
18233 VAR_DOMAIN, LOC_CONST, -1,
18234 cu->language == language_cplus
18235 ? psymbol_placement::GLOBAL
18236 : psymbol_placement::STATIC,
18237 0, cu->language, objfile);
18238
18239 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18240 continue;
18241 }
18242
18243 struct partial_die_info *part_die
18244 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18245
18246 /* We'll save this DIE so link it in. */
18247 part_die->die_parent = parent_die;
18248 part_die->die_sibling = NULL;
18249 part_die->die_child = NULL;
18250
18251 if (last_die && last_die == parent_die)
18252 last_die->die_child = part_die;
18253 else if (last_die)
18254 last_die->die_sibling = part_die;
18255
18256 last_die = part_die;
18257
18258 if (first_die == NULL)
18259 first_die = part_die;
18260
18261 /* Maybe add the DIE to the hash table. Not all DIEs that we
18262 find interesting need to be in the hash table, because we
18263 also have the parent/sibling/child chains; only those that we
18264 might refer to by offset later during partial symbol reading.
18265
18266 For now this means things that might have be the target of a
18267 DW_AT_specification, DW_AT_abstract_origin, or
18268 DW_AT_extension. DW_AT_extension will refer only to
18269 namespaces; DW_AT_abstract_origin refers to functions (and
18270 many things under the function DIE, but we do not recurse
18271 into function DIEs during partial symbol reading) and
18272 possibly variables as well; DW_AT_specification refers to
18273 declarations. Declarations ought to have the DW_AT_declaration
18274 flag. It happens that GCC forgets to put it in sometimes, but
18275 only for functions, not for types.
18276
18277 Adding more things than necessary to the hash table is harmless
18278 except for the performance cost. Adding too few will result in
18279 wasted time in find_partial_die, when we reread the compilation
18280 unit with load_all_dies set. */
18281
18282 if (load_all
18283 || abbrev->tag == DW_TAG_constant
18284 || abbrev->tag == DW_TAG_subprogram
18285 || abbrev->tag == DW_TAG_variable
18286 || abbrev->tag == DW_TAG_namespace
18287 || part_die->is_declaration)
18288 {
18289 void **slot;
18290
18291 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18292 to_underlying (part_die->sect_off),
18293 INSERT);
18294 *slot = part_die;
18295 }
18296
18297 /* For some DIEs we want to follow their children (if any). For C
18298 we have no reason to follow the children of structures; for other
18299 languages we have to, so that we can get at method physnames
18300 to infer fully qualified class names, for DW_AT_specification,
18301 and for C++ template arguments. For C++, we also look one level
18302 inside functions to find template arguments (if the name of the
18303 function does not already contain the template arguments).
18304
18305 For Ada and Fortran, we need to scan the children of subprograms
18306 and lexical blocks as well because these languages allow the
18307 definition of nested entities that could be interesting for the
18308 debugger, such as nested subprograms for instance. */
18309 if (last_die->has_children
18310 && (load_all
18311 || last_die->tag == DW_TAG_namespace
18312 || last_die->tag == DW_TAG_module
18313 || last_die->tag == DW_TAG_enumeration_type
18314 || (cu->language == language_cplus
18315 && last_die->tag == DW_TAG_subprogram
18316 && (last_die->name == NULL
18317 || strchr (last_die->name, '<') == NULL))
18318 || (cu->language != language_c
18319 && (last_die->tag == DW_TAG_class_type
18320 || last_die->tag == DW_TAG_interface_type
18321 || last_die->tag == DW_TAG_structure_type
18322 || last_die->tag == DW_TAG_union_type))
18323 || ((cu->language == language_ada
18324 || cu->language == language_fortran)
18325 && (last_die->tag == DW_TAG_subprogram
18326 || last_die->tag == DW_TAG_lexical_block))))
18327 {
18328 nesting_level++;
18329 parent_die = last_die;
18330 continue;
18331 }
18332
18333 /* Otherwise we skip to the next sibling, if any. */
18334 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18335
18336 /* Back to the top, do it again. */
18337 }
18338 }
18339
18340 partial_die_info::partial_die_info (sect_offset sect_off_,
18341 struct abbrev_info *abbrev)
18342 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18343 {
18344 }
18345
18346 /* Read a minimal amount of information into the minimal die structure.
18347 INFO_PTR should point just after the initial uleb128 of a DIE. */
18348
18349 const gdb_byte *
18350 partial_die_info::read (const struct die_reader_specs *reader,
18351 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18352 {
18353 struct dwarf2_cu *cu = reader->cu;
18354 struct dwarf2_per_objfile *dwarf2_per_objfile
18355 = cu->per_cu->dwarf2_per_objfile;
18356 unsigned int i;
18357 int has_low_pc_attr = 0;
18358 int has_high_pc_attr = 0;
18359 int high_pc_relative = 0;
18360
18361 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
18362 for (i = 0; i < abbrev.num_attrs; ++i)
18363 {
18364 bool need_reprocess;
18365 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
18366 info_ptr, &need_reprocess);
18367 /* String and address offsets that need to do the reprocessing have
18368 already been read at this point, so there is no need to wait until
18369 the loop terminates to do the reprocessing. */
18370 if (need_reprocess)
18371 read_attribute_reprocess (reader, &attr_vec[i]);
18372 attribute &attr = attr_vec[i];
18373 /* Store the data if it is of an attribute we want to keep in a
18374 partial symbol table. */
18375 switch (attr.name)
18376 {
18377 case DW_AT_name:
18378 switch (tag)
18379 {
18380 case DW_TAG_compile_unit:
18381 case DW_TAG_partial_unit:
18382 case DW_TAG_type_unit:
18383 /* Compilation units have a DW_AT_name that is a filename, not
18384 a source language identifier. */
18385 case DW_TAG_enumeration_type:
18386 case DW_TAG_enumerator:
18387 /* These tags always have simple identifiers already; no need
18388 to canonicalize them. */
18389 name = DW_STRING (&attr);
18390 break;
18391 default:
18392 {
18393 struct objfile *objfile = dwarf2_per_objfile->objfile;
18394
18395 name
18396 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18397 &objfile->per_bfd->storage_obstack);
18398 }
18399 break;
18400 }
18401 break;
18402 case DW_AT_linkage_name:
18403 case DW_AT_MIPS_linkage_name:
18404 /* Note that both forms of linkage name might appear. We
18405 assume they will be the same, and we only store the last
18406 one we see. */
18407 linkage_name = DW_STRING (&attr);
18408 break;
18409 case DW_AT_low_pc:
18410 has_low_pc_attr = 1;
18411 lowpc = attr.value_as_address ();
18412 break;
18413 case DW_AT_high_pc:
18414 has_high_pc_attr = 1;
18415 highpc = attr.value_as_address ();
18416 if (cu->header.version >= 4 && attr.form_is_constant ())
18417 high_pc_relative = 1;
18418 break;
18419 case DW_AT_location:
18420 /* Support the .debug_loc offsets. */
18421 if (attr.form_is_block ())
18422 {
18423 d.locdesc = DW_BLOCK (&attr);
18424 }
18425 else if (attr.form_is_section_offset ())
18426 {
18427 dwarf2_complex_location_expr_complaint ();
18428 }
18429 else
18430 {
18431 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18432 "partial symbol information");
18433 }
18434 break;
18435 case DW_AT_external:
18436 is_external = DW_UNSND (&attr);
18437 break;
18438 case DW_AT_declaration:
18439 is_declaration = DW_UNSND (&attr);
18440 break;
18441 case DW_AT_type:
18442 has_type = 1;
18443 break;
18444 case DW_AT_abstract_origin:
18445 case DW_AT_specification:
18446 case DW_AT_extension:
18447 has_specification = 1;
18448 spec_offset = dwarf2_get_ref_die_offset (&attr);
18449 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18450 || cu->per_cu->is_dwz);
18451 break;
18452 case DW_AT_sibling:
18453 /* Ignore absolute siblings, they might point outside of
18454 the current compile unit. */
18455 if (attr.form == DW_FORM_ref_addr)
18456 complaint (_("ignoring absolute DW_AT_sibling"));
18457 else
18458 {
18459 const gdb_byte *buffer = reader->buffer;
18460 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18461 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18462
18463 if (sibling_ptr < info_ptr)
18464 complaint (_("DW_AT_sibling points backwards"));
18465 else if (sibling_ptr > reader->buffer_end)
18466 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18467 else
18468 sibling = sibling_ptr;
18469 }
18470 break;
18471 case DW_AT_byte_size:
18472 has_byte_size = 1;
18473 break;
18474 case DW_AT_const_value:
18475 has_const_value = 1;
18476 break;
18477 case DW_AT_calling_convention:
18478 /* DWARF doesn't provide a way to identify a program's source-level
18479 entry point. DW_AT_calling_convention attributes are only meant
18480 to describe functions' calling conventions.
18481
18482 However, because it's a necessary piece of information in
18483 Fortran, and before DWARF 4 DW_CC_program was the only
18484 piece of debugging information whose definition refers to
18485 a 'main program' at all, several compilers marked Fortran
18486 main programs with DW_CC_program --- even when those
18487 functions use the standard calling conventions.
18488
18489 Although DWARF now specifies a way to provide this
18490 information, we support this practice for backward
18491 compatibility. */
18492 if (DW_UNSND (&attr) == DW_CC_program
18493 && cu->language == language_fortran)
18494 main_subprogram = 1;
18495 break;
18496 case DW_AT_inline:
18497 if (DW_UNSND (&attr) == DW_INL_inlined
18498 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18499 may_be_inlined = 1;
18500 break;
18501
18502 case DW_AT_import:
18503 if (tag == DW_TAG_imported_unit)
18504 {
18505 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18506 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18507 || cu->per_cu->is_dwz);
18508 }
18509 break;
18510
18511 case DW_AT_main_subprogram:
18512 main_subprogram = DW_UNSND (&attr);
18513 break;
18514
18515 case DW_AT_ranges:
18516 {
18517 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18518 but that requires a full DIE, so instead we just
18519 reimplement it. */
18520 int need_ranges_base = tag != DW_TAG_compile_unit;
18521 unsigned int ranges_offset = (DW_UNSND (&attr)
18522 + (need_ranges_base
18523 ? cu->ranges_base
18524 : 0));
18525
18526 /* Value of the DW_AT_ranges attribute is the offset in the
18527 .debug_ranges section. */
18528 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18529 nullptr))
18530 has_pc_info = 1;
18531 }
18532 break;
18533
18534 default:
18535 break;
18536 }
18537 }
18538
18539 /* For Ada, if both the name and the linkage name appear, we prefer
18540 the latter. This lets "catch exception" work better, regardless
18541 of the order in which the name and linkage name were emitted.
18542 Really, though, this is just a workaround for the fact that gdb
18543 doesn't store both the name and the linkage name. */
18544 if (cu->language == language_ada && linkage_name != nullptr)
18545 name = linkage_name;
18546
18547 if (high_pc_relative)
18548 highpc += lowpc;
18549
18550 if (has_low_pc_attr && has_high_pc_attr)
18551 {
18552 /* When using the GNU linker, .gnu.linkonce. sections are used to
18553 eliminate duplicate copies of functions and vtables and such.
18554 The linker will arbitrarily choose one and discard the others.
18555 The AT_*_pc values for such functions refer to local labels in
18556 these sections. If the section from that file was discarded, the
18557 labels are not in the output, so the relocs get a value of 0.
18558 If this is a discarded function, mark the pc bounds as invalid,
18559 so that GDB will ignore it. */
18560 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18561 {
18562 struct objfile *objfile = dwarf2_per_objfile->objfile;
18563 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18564
18565 complaint (_("DW_AT_low_pc %s is zero "
18566 "for DIE at %s [in module %s]"),
18567 paddress (gdbarch, lowpc),
18568 sect_offset_str (sect_off),
18569 objfile_name (objfile));
18570 }
18571 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18572 else if (lowpc >= highpc)
18573 {
18574 struct objfile *objfile = dwarf2_per_objfile->objfile;
18575 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18576
18577 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18578 "for DIE at %s [in module %s]"),
18579 paddress (gdbarch, lowpc),
18580 paddress (gdbarch, highpc),
18581 sect_offset_str (sect_off),
18582 objfile_name (objfile));
18583 }
18584 else
18585 has_pc_info = 1;
18586 }
18587
18588 return info_ptr;
18589 }
18590
18591 /* Find a cached partial DIE at OFFSET in CU. */
18592
18593 struct partial_die_info *
18594 dwarf2_cu::find_partial_die (sect_offset sect_off)
18595 {
18596 struct partial_die_info *lookup_die = NULL;
18597 struct partial_die_info part_die (sect_off);
18598
18599 lookup_die = ((struct partial_die_info *)
18600 htab_find_with_hash (partial_dies, &part_die,
18601 to_underlying (sect_off)));
18602
18603 return lookup_die;
18604 }
18605
18606 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18607 except in the case of .debug_types DIEs which do not reference
18608 outside their CU (they do however referencing other types via
18609 DW_FORM_ref_sig8). */
18610
18611 static const struct cu_partial_die_info
18612 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18613 {
18614 struct dwarf2_per_objfile *dwarf2_per_objfile
18615 = cu->per_cu->dwarf2_per_objfile;
18616 struct objfile *objfile = dwarf2_per_objfile->objfile;
18617 struct dwarf2_per_cu_data *per_cu = NULL;
18618 struct partial_die_info *pd = NULL;
18619
18620 if (offset_in_dwz == cu->per_cu->is_dwz
18621 && offset_in_cu_p (&cu->header, sect_off))
18622 {
18623 pd = cu->find_partial_die (sect_off);
18624 if (pd != NULL)
18625 return { cu, pd };
18626 /* We missed recording what we needed.
18627 Load all dies and try again. */
18628 per_cu = cu->per_cu;
18629 }
18630 else
18631 {
18632 /* TUs don't reference other CUs/TUs (except via type signatures). */
18633 if (cu->per_cu->is_debug_types)
18634 {
18635 error (_("Dwarf Error: Type Unit at offset %s contains"
18636 " external reference to offset %s [in module %s].\n"),
18637 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18638 bfd_get_filename (objfile->obfd));
18639 }
18640 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18641 dwarf2_per_objfile);
18642
18643 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18644 load_partial_comp_unit (per_cu);
18645
18646 per_cu->cu->last_used = 0;
18647 pd = per_cu->cu->find_partial_die (sect_off);
18648 }
18649
18650 /* If we didn't find it, and not all dies have been loaded,
18651 load them all and try again. */
18652
18653 if (pd == NULL && per_cu->load_all_dies == 0)
18654 {
18655 per_cu->load_all_dies = 1;
18656
18657 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18658 THIS_CU->cu may already be in use. So we can't just free it and
18659 replace its DIEs with the ones we read in. Instead, we leave those
18660 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18661 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18662 set. */
18663 load_partial_comp_unit (per_cu);
18664
18665 pd = per_cu->cu->find_partial_die (sect_off);
18666 }
18667
18668 if (pd == NULL)
18669 internal_error (__FILE__, __LINE__,
18670 _("could not find partial DIE %s "
18671 "in cache [from module %s]\n"),
18672 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18673 return { per_cu->cu, pd };
18674 }
18675
18676 /* See if we can figure out if the class lives in a namespace. We do
18677 this by looking for a member function; its demangled name will
18678 contain namespace info, if there is any. */
18679
18680 static void
18681 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18682 struct dwarf2_cu *cu)
18683 {
18684 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18685 what template types look like, because the demangler
18686 frequently doesn't give the same name as the debug info. We
18687 could fix this by only using the demangled name to get the
18688 prefix (but see comment in read_structure_type). */
18689
18690 struct partial_die_info *real_pdi;
18691 struct partial_die_info *child_pdi;
18692
18693 /* If this DIE (this DIE's specification, if any) has a parent, then
18694 we should not do this. We'll prepend the parent's fully qualified
18695 name when we create the partial symbol. */
18696
18697 real_pdi = struct_pdi;
18698 while (real_pdi->has_specification)
18699 {
18700 auto res = find_partial_die (real_pdi->spec_offset,
18701 real_pdi->spec_is_dwz, cu);
18702 real_pdi = res.pdi;
18703 cu = res.cu;
18704 }
18705
18706 if (real_pdi->die_parent != NULL)
18707 return;
18708
18709 for (child_pdi = struct_pdi->die_child;
18710 child_pdi != NULL;
18711 child_pdi = child_pdi->die_sibling)
18712 {
18713 if (child_pdi->tag == DW_TAG_subprogram
18714 && child_pdi->linkage_name != NULL)
18715 {
18716 gdb::unique_xmalloc_ptr<char> actual_class_name
18717 (language_class_name_from_physname (cu->language_defn,
18718 child_pdi->linkage_name));
18719 if (actual_class_name != NULL)
18720 {
18721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18722 struct_pdi->name
18723 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18724 actual_class_name.get ());
18725 }
18726 break;
18727 }
18728 }
18729 }
18730
18731 void
18732 partial_die_info::fixup (struct dwarf2_cu *cu)
18733 {
18734 /* Once we've fixed up a die, there's no point in doing so again.
18735 This also avoids a memory leak if we were to call
18736 guess_partial_die_structure_name multiple times. */
18737 if (fixup_called)
18738 return;
18739
18740 /* If we found a reference attribute and the DIE has no name, try
18741 to find a name in the referred to DIE. */
18742
18743 if (name == NULL && has_specification)
18744 {
18745 struct partial_die_info *spec_die;
18746
18747 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18748 spec_die = res.pdi;
18749 cu = res.cu;
18750
18751 spec_die->fixup (cu);
18752
18753 if (spec_die->name)
18754 {
18755 name = spec_die->name;
18756
18757 /* Copy DW_AT_external attribute if it is set. */
18758 if (spec_die->is_external)
18759 is_external = spec_die->is_external;
18760 }
18761 }
18762
18763 /* Set default names for some unnamed DIEs. */
18764
18765 if (name == NULL && tag == DW_TAG_namespace)
18766 name = CP_ANONYMOUS_NAMESPACE_STR;
18767
18768 /* If there is no parent die to provide a namespace, and there are
18769 children, see if we can determine the namespace from their linkage
18770 name. */
18771 if (cu->language == language_cplus
18772 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18773 && die_parent == NULL
18774 && has_children
18775 && (tag == DW_TAG_class_type
18776 || tag == DW_TAG_structure_type
18777 || tag == DW_TAG_union_type))
18778 guess_partial_die_structure_name (this, cu);
18779
18780 /* GCC might emit a nameless struct or union that has a linkage
18781 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18782 if (name == NULL
18783 && (tag == DW_TAG_class_type
18784 || tag == DW_TAG_interface_type
18785 || tag == DW_TAG_structure_type
18786 || tag == DW_TAG_union_type)
18787 && linkage_name != NULL)
18788 {
18789 gdb::unique_xmalloc_ptr<char> demangled
18790 (gdb_demangle (linkage_name, DMGL_TYPES));
18791 if (demangled != nullptr)
18792 {
18793 const char *base;
18794
18795 /* Strip any leading namespaces/classes, keep only the base name.
18796 DW_AT_name for named DIEs does not contain the prefixes. */
18797 base = strrchr (demangled.get (), ':');
18798 if (base && base > demangled.get () && base[-1] == ':')
18799 base++;
18800 else
18801 base = demangled.get ();
18802
18803 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18804 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18805 }
18806 }
18807
18808 fixup_called = 1;
18809 }
18810
18811 /* Process the attributes that had to be skipped in the first round. These
18812 attributes are the ones that need str_offsets_base or addr_base attributes.
18813 They could not have been processed in the first round, because at the time
18814 the values of str_offsets_base or addr_base may not have been known. */
18815 void read_attribute_reprocess (const struct die_reader_specs *reader,
18816 struct attribute *attr)
18817 {
18818 struct dwarf2_cu *cu = reader->cu;
18819 switch (attr->form)
18820 {
18821 case DW_FORM_addrx:
18822 case DW_FORM_GNU_addr_index:
18823 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18824 break;
18825 case DW_FORM_strx:
18826 case DW_FORM_strx1:
18827 case DW_FORM_strx2:
18828 case DW_FORM_strx3:
18829 case DW_FORM_strx4:
18830 case DW_FORM_GNU_str_index:
18831 {
18832 unsigned int str_index = DW_UNSND (attr);
18833 if (reader->dwo_file != NULL)
18834 {
18835 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18836 DW_STRING_IS_CANONICAL (attr) = 0;
18837 }
18838 else
18839 {
18840 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18841 DW_STRING_IS_CANONICAL (attr) = 0;
18842 }
18843 break;
18844 }
18845 default:
18846 gdb_assert_not_reached (_("Unexpected DWARF form."));
18847 }
18848 }
18849
18850 /* Read an attribute value described by an attribute form. */
18851
18852 static const gdb_byte *
18853 read_attribute_value (const struct die_reader_specs *reader,
18854 struct attribute *attr, unsigned form,
18855 LONGEST implicit_const, const gdb_byte *info_ptr,
18856 bool *need_reprocess)
18857 {
18858 struct dwarf2_cu *cu = reader->cu;
18859 struct dwarf2_per_objfile *dwarf2_per_objfile
18860 = cu->per_cu->dwarf2_per_objfile;
18861 struct objfile *objfile = dwarf2_per_objfile->objfile;
18862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18863 bfd *abfd = reader->abfd;
18864 struct comp_unit_head *cu_header = &cu->header;
18865 unsigned int bytes_read;
18866 struct dwarf_block *blk;
18867 *need_reprocess = false;
18868
18869 attr->form = (enum dwarf_form) form;
18870 switch (form)
18871 {
18872 case DW_FORM_ref_addr:
18873 if (cu->header.version == 2)
18874 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18875 else
18876 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18877 &cu->header, &bytes_read);
18878 info_ptr += bytes_read;
18879 break;
18880 case DW_FORM_GNU_ref_alt:
18881 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18882 info_ptr += bytes_read;
18883 break;
18884 case DW_FORM_addr:
18885 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18886 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18887 info_ptr += bytes_read;
18888 break;
18889 case DW_FORM_block2:
18890 blk = dwarf_alloc_block (cu);
18891 blk->size = read_2_bytes (abfd, info_ptr);
18892 info_ptr += 2;
18893 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18894 info_ptr += blk->size;
18895 DW_BLOCK (attr) = blk;
18896 break;
18897 case DW_FORM_block4:
18898 blk = dwarf_alloc_block (cu);
18899 blk->size = read_4_bytes (abfd, info_ptr);
18900 info_ptr += 4;
18901 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18902 info_ptr += blk->size;
18903 DW_BLOCK (attr) = blk;
18904 break;
18905 case DW_FORM_data2:
18906 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18907 info_ptr += 2;
18908 break;
18909 case DW_FORM_data4:
18910 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18911 info_ptr += 4;
18912 break;
18913 case DW_FORM_data8:
18914 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18915 info_ptr += 8;
18916 break;
18917 case DW_FORM_data16:
18918 blk = dwarf_alloc_block (cu);
18919 blk->size = 16;
18920 blk->data = read_n_bytes (abfd, info_ptr, 16);
18921 info_ptr += 16;
18922 DW_BLOCK (attr) = blk;
18923 break;
18924 case DW_FORM_sec_offset:
18925 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18926 info_ptr += bytes_read;
18927 break;
18928 case DW_FORM_string:
18929 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18930 DW_STRING_IS_CANONICAL (attr) = 0;
18931 info_ptr += bytes_read;
18932 break;
18933 case DW_FORM_strp:
18934 if (!cu->per_cu->is_dwz)
18935 {
18936 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18937 abfd, info_ptr, cu_header,
18938 &bytes_read);
18939 DW_STRING_IS_CANONICAL (attr) = 0;
18940 info_ptr += bytes_read;
18941 break;
18942 }
18943 /* FALLTHROUGH */
18944 case DW_FORM_line_strp:
18945 if (!cu->per_cu->is_dwz)
18946 {
18947 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18948 abfd, info_ptr,
18949 cu_header, &bytes_read);
18950 DW_STRING_IS_CANONICAL (attr) = 0;
18951 info_ptr += bytes_read;
18952 break;
18953 }
18954 /* FALLTHROUGH */
18955 case DW_FORM_GNU_strp_alt:
18956 {
18957 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18958 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18959 &bytes_read);
18960
18961 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18962 dwz, str_offset);
18963 DW_STRING_IS_CANONICAL (attr) = 0;
18964 info_ptr += bytes_read;
18965 }
18966 break;
18967 case DW_FORM_exprloc:
18968 case DW_FORM_block:
18969 blk = dwarf_alloc_block (cu);
18970 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18971 info_ptr += bytes_read;
18972 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18973 info_ptr += blk->size;
18974 DW_BLOCK (attr) = blk;
18975 break;
18976 case DW_FORM_block1:
18977 blk = dwarf_alloc_block (cu);
18978 blk->size = read_1_byte (abfd, info_ptr);
18979 info_ptr += 1;
18980 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18981 info_ptr += blk->size;
18982 DW_BLOCK (attr) = blk;
18983 break;
18984 case DW_FORM_data1:
18985 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18986 info_ptr += 1;
18987 break;
18988 case DW_FORM_flag:
18989 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18990 info_ptr += 1;
18991 break;
18992 case DW_FORM_flag_present:
18993 DW_UNSND (attr) = 1;
18994 break;
18995 case DW_FORM_sdata:
18996 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18997 info_ptr += bytes_read;
18998 break;
18999 case DW_FORM_udata:
19000 case DW_FORM_rnglistx:
19001 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19002 info_ptr += bytes_read;
19003 break;
19004 case DW_FORM_ref1:
19005 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19006 + read_1_byte (abfd, info_ptr));
19007 info_ptr += 1;
19008 break;
19009 case DW_FORM_ref2:
19010 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19011 + read_2_bytes (abfd, info_ptr));
19012 info_ptr += 2;
19013 break;
19014 case DW_FORM_ref4:
19015 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19016 + read_4_bytes (abfd, info_ptr));
19017 info_ptr += 4;
19018 break;
19019 case DW_FORM_ref8:
19020 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19021 + read_8_bytes (abfd, info_ptr));
19022 info_ptr += 8;
19023 break;
19024 case DW_FORM_ref_sig8:
19025 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19026 info_ptr += 8;
19027 break;
19028 case DW_FORM_ref_udata:
19029 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19030 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19031 info_ptr += bytes_read;
19032 break;
19033 case DW_FORM_indirect:
19034 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19035 info_ptr += bytes_read;
19036 if (form == DW_FORM_implicit_const)
19037 {
19038 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19039 info_ptr += bytes_read;
19040 }
19041 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19042 info_ptr, need_reprocess);
19043 break;
19044 case DW_FORM_implicit_const:
19045 DW_SND (attr) = implicit_const;
19046 break;
19047 case DW_FORM_addrx:
19048 case DW_FORM_GNU_addr_index:
19049 *need_reprocess = true;
19050 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19051 info_ptr += bytes_read;
19052 break;
19053 case DW_FORM_strx:
19054 case DW_FORM_strx1:
19055 case DW_FORM_strx2:
19056 case DW_FORM_strx3:
19057 case DW_FORM_strx4:
19058 case DW_FORM_GNU_str_index:
19059 {
19060 ULONGEST str_index;
19061 if (form == DW_FORM_strx1)
19062 {
19063 str_index = read_1_byte (abfd, info_ptr);
19064 info_ptr += 1;
19065 }
19066 else if (form == DW_FORM_strx2)
19067 {
19068 str_index = read_2_bytes (abfd, info_ptr);
19069 info_ptr += 2;
19070 }
19071 else if (form == DW_FORM_strx3)
19072 {
19073 str_index = read_3_bytes (abfd, info_ptr);
19074 info_ptr += 3;
19075 }
19076 else if (form == DW_FORM_strx4)
19077 {
19078 str_index = read_4_bytes (abfd, info_ptr);
19079 info_ptr += 4;
19080 }
19081 else
19082 {
19083 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19084 info_ptr += bytes_read;
19085 }
19086 *need_reprocess = true;
19087 DW_UNSND (attr) = str_index;
19088 }
19089 break;
19090 default:
19091 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19092 dwarf_form_name (form),
19093 bfd_get_filename (abfd));
19094 }
19095
19096 /* Super hack. */
19097 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19098 attr->form = DW_FORM_GNU_ref_alt;
19099
19100 /* We have seen instances where the compiler tried to emit a byte
19101 size attribute of -1 which ended up being encoded as an unsigned
19102 0xffffffff. Although 0xffffffff is technically a valid size value,
19103 an object of this size seems pretty unlikely so we can relatively
19104 safely treat these cases as if the size attribute was invalid and
19105 treat them as zero by default. */
19106 if (attr->name == DW_AT_byte_size
19107 && form == DW_FORM_data4
19108 && DW_UNSND (attr) >= 0xffffffff)
19109 {
19110 complaint
19111 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19112 hex_string (DW_UNSND (attr)));
19113 DW_UNSND (attr) = 0;
19114 }
19115
19116 return info_ptr;
19117 }
19118
19119 /* Read an attribute described by an abbreviated attribute. */
19120
19121 static const gdb_byte *
19122 read_attribute (const struct die_reader_specs *reader,
19123 struct attribute *attr, struct attr_abbrev *abbrev,
19124 const gdb_byte *info_ptr, bool *need_reprocess)
19125 {
19126 attr->name = abbrev->name;
19127 return read_attribute_value (reader, attr, abbrev->form,
19128 abbrev->implicit_const, info_ptr,
19129 need_reprocess);
19130 }
19131
19132 static CORE_ADDR
19133 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19134 unsigned int *bytes_read)
19135 {
19136 struct comp_unit_head *cu_header = &cu->header;
19137 CORE_ADDR retval = 0;
19138
19139 if (cu_header->signed_addr_p)
19140 {
19141 switch (cu_header->addr_size)
19142 {
19143 case 2:
19144 retval = bfd_get_signed_16 (abfd, buf);
19145 break;
19146 case 4:
19147 retval = bfd_get_signed_32 (abfd, buf);
19148 break;
19149 case 8:
19150 retval = bfd_get_signed_64 (abfd, buf);
19151 break;
19152 default:
19153 internal_error (__FILE__, __LINE__,
19154 _("read_address: bad switch, signed [in module %s]"),
19155 bfd_get_filename (abfd));
19156 }
19157 }
19158 else
19159 {
19160 switch (cu_header->addr_size)
19161 {
19162 case 2:
19163 retval = bfd_get_16 (abfd, buf);
19164 break;
19165 case 4:
19166 retval = bfd_get_32 (abfd, buf);
19167 break;
19168 case 8:
19169 retval = bfd_get_64 (abfd, buf);
19170 break;
19171 default:
19172 internal_error (__FILE__, __LINE__,
19173 _("read_address: bad switch, "
19174 "unsigned [in module %s]"),
19175 bfd_get_filename (abfd));
19176 }
19177 }
19178
19179 *bytes_read = cu_header->addr_size;
19180 return retval;
19181 }
19182
19183 /* Read the initial length from a section. The (draft) DWARF 3
19184 specification allows the initial length to take up either 4 bytes
19185 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19186 bytes describe the length and all offsets will be 8 bytes in length
19187 instead of 4.
19188
19189 An older, non-standard 64-bit format is also handled by this
19190 function. The older format in question stores the initial length
19191 as an 8-byte quantity without an escape value. Lengths greater
19192 than 2^32 aren't very common which means that the initial 4 bytes
19193 is almost always zero. Since a length value of zero doesn't make
19194 sense for the 32-bit format, this initial zero can be considered to
19195 be an escape value which indicates the presence of the older 64-bit
19196 format. As written, the code can't detect (old format) lengths
19197 greater than 4GB. If it becomes necessary to handle lengths
19198 somewhat larger than 4GB, we could allow other small values (such
19199 as the non-sensical values of 1, 2, and 3) to also be used as
19200 escape values indicating the presence of the old format.
19201
19202 The value returned via bytes_read should be used to increment the
19203 relevant pointer after calling read_initial_length().
19204
19205 [ Note: read_initial_length() and read_offset() are based on the
19206 document entitled "DWARF Debugging Information Format", revision
19207 3, draft 8, dated November 19, 2001. This document was obtained
19208 from:
19209
19210 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19211
19212 This document is only a draft and is subject to change. (So beware.)
19213
19214 Details regarding the older, non-standard 64-bit format were
19215 determined empirically by examining 64-bit ELF files produced by
19216 the SGI toolchain on an IRIX 6.5 machine.
19217
19218 - Kevin, July 16, 2002
19219 ] */
19220
19221 static LONGEST
19222 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19223 {
19224 LONGEST length = bfd_get_32 (abfd, buf);
19225
19226 if (length == 0xffffffff)
19227 {
19228 length = bfd_get_64 (abfd, buf + 4);
19229 *bytes_read = 12;
19230 }
19231 else if (length == 0)
19232 {
19233 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19234 length = bfd_get_64 (abfd, buf);
19235 *bytes_read = 8;
19236 }
19237 else
19238 {
19239 *bytes_read = 4;
19240 }
19241
19242 return length;
19243 }
19244
19245 /* Cover function for read_initial_length.
19246 Returns the length of the object at BUF, and stores the size of the
19247 initial length in *BYTES_READ and stores the size that offsets will be in
19248 *OFFSET_SIZE.
19249 If the initial length size is not equivalent to that specified in
19250 CU_HEADER then issue a complaint.
19251 This is useful when reading non-comp-unit headers. */
19252
19253 static LONGEST
19254 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19255 const struct comp_unit_head *cu_header,
19256 unsigned int *bytes_read,
19257 unsigned int *offset_size)
19258 {
19259 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19260
19261 gdb_assert (cu_header->initial_length_size == 4
19262 || cu_header->initial_length_size == 8
19263 || cu_header->initial_length_size == 12);
19264
19265 if (cu_header->initial_length_size != *bytes_read)
19266 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19267
19268 *offset_size = (*bytes_read == 4) ? 4 : 8;
19269 return length;
19270 }
19271
19272 /* Read an offset from the data stream. The size of the offset is
19273 given by cu_header->offset_size. */
19274
19275 static LONGEST
19276 read_offset (bfd *abfd, const gdb_byte *buf,
19277 const struct comp_unit_head *cu_header,
19278 unsigned int *bytes_read)
19279 {
19280 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19281
19282 *bytes_read = cu_header->offset_size;
19283 return offset;
19284 }
19285
19286 /* Read an offset from the data stream. */
19287
19288 static LONGEST
19289 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19290 {
19291 LONGEST retval = 0;
19292
19293 switch (offset_size)
19294 {
19295 case 4:
19296 retval = bfd_get_32 (abfd, buf);
19297 break;
19298 case 8:
19299 retval = bfd_get_64 (abfd, buf);
19300 break;
19301 default:
19302 internal_error (__FILE__, __LINE__,
19303 _("read_offset_1: bad switch [in module %s]"),
19304 bfd_get_filename (abfd));
19305 }
19306
19307 return retval;
19308 }
19309
19310 static const gdb_byte *
19311 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19312 {
19313 /* If the size of a host char is 8 bits, we can return a pointer
19314 to the buffer, otherwise we have to copy the data to a buffer
19315 allocated on the temporary obstack. */
19316 gdb_assert (HOST_CHAR_BIT == 8);
19317 return buf;
19318 }
19319
19320 static const char *
19321 read_direct_string (bfd *abfd, const gdb_byte *buf,
19322 unsigned int *bytes_read_ptr)
19323 {
19324 /* If the size of a host char is 8 bits, we can return a pointer
19325 to the string, otherwise we have to copy the string to a buffer
19326 allocated on the temporary obstack. */
19327 gdb_assert (HOST_CHAR_BIT == 8);
19328 if (*buf == '\0')
19329 {
19330 *bytes_read_ptr = 1;
19331 return NULL;
19332 }
19333 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19334 return (const char *) buf;
19335 }
19336
19337 /* Return pointer to string at section SECT offset STR_OFFSET with error
19338 reporting strings FORM_NAME and SECT_NAME. */
19339
19340 static const char *
19341 read_indirect_string_at_offset_from (struct objfile *objfile,
19342 bfd *abfd, LONGEST str_offset,
19343 struct dwarf2_section_info *sect,
19344 const char *form_name,
19345 const char *sect_name)
19346 {
19347 sect->read (objfile);
19348 if (sect->buffer == NULL)
19349 error (_("%s used without %s section [in module %s]"),
19350 form_name, sect_name, bfd_get_filename (abfd));
19351 if (str_offset >= sect->size)
19352 error (_("%s pointing outside of %s section [in module %s]"),
19353 form_name, sect_name, bfd_get_filename (abfd));
19354 gdb_assert (HOST_CHAR_BIT == 8);
19355 if (sect->buffer[str_offset] == '\0')
19356 return NULL;
19357 return (const char *) (sect->buffer + str_offset);
19358 }
19359
19360 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19361
19362 static const char *
19363 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19364 bfd *abfd, LONGEST str_offset)
19365 {
19366 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19367 abfd, str_offset,
19368 &dwarf2_per_objfile->str,
19369 "DW_FORM_strp", ".debug_str");
19370 }
19371
19372 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19373
19374 static const char *
19375 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19376 bfd *abfd, LONGEST str_offset)
19377 {
19378 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19379 abfd, str_offset,
19380 &dwarf2_per_objfile->line_str,
19381 "DW_FORM_line_strp",
19382 ".debug_line_str");
19383 }
19384
19385 /* Read a string at offset STR_OFFSET in the .debug_str section from
19386 the .dwz file DWZ. Throw an error if the offset is too large. If
19387 the string consists of a single NUL byte, return NULL; otherwise
19388 return a pointer to the string. */
19389
19390 static const char *
19391 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19392 LONGEST str_offset)
19393 {
19394 dwz->str.read (objfile);
19395
19396 if (dwz->str.buffer == NULL)
19397 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19398 "section [in module %s]"),
19399 bfd_get_filename (dwz->dwz_bfd.get ()));
19400 if (str_offset >= dwz->str.size)
19401 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19402 ".debug_str section [in module %s]"),
19403 bfd_get_filename (dwz->dwz_bfd.get ()));
19404 gdb_assert (HOST_CHAR_BIT == 8);
19405 if (dwz->str.buffer[str_offset] == '\0')
19406 return NULL;
19407 return (const char *) (dwz->str.buffer + str_offset);
19408 }
19409
19410 /* Return pointer to string at .debug_str offset as read from BUF.
19411 BUF is assumed to be in a compilation unit described by CU_HEADER.
19412 Return *BYTES_READ_PTR count of bytes read from BUF. */
19413
19414 static const char *
19415 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19416 const gdb_byte *buf,
19417 const struct comp_unit_head *cu_header,
19418 unsigned int *bytes_read_ptr)
19419 {
19420 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19421
19422 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19423 }
19424
19425 /* Return pointer to string at .debug_line_str offset as read from BUF.
19426 BUF is assumed to be in a compilation unit described by CU_HEADER.
19427 Return *BYTES_READ_PTR count of bytes read from BUF. */
19428
19429 static const char *
19430 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19431 bfd *abfd, const gdb_byte *buf,
19432 const struct comp_unit_head *cu_header,
19433 unsigned int *bytes_read_ptr)
19434 {
19435 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19436
19437 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19438 str_offset);
19439 }
19440
19441 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19442 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19443 ADDR_SIZE is the size of addresses from the CU header. */
19444
19445 static CORE_ADDR
19446 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19447 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19448 int addr_size)
19449 {
19450 struct objfile *objfile = dwarf2_per_objfile->objfile;
19451 bfd *abfd = objfile->obfd;
19452 const gdb_byte *info_ptr;
19453 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19454
19455 dwarf2_per_objfile->addr.read (objfile);
19456 if (dwarf2_per_objfile->addr.buffer == NULL)
19457 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19458 objfile_name (objfile));
19459 if (addr_base_or_zero + addr_index * addr_size
19460 >= dwarf2_per_objfile->addr.size)
19461 error (_("DW_FORM_addr_index pointing outside of "
19462 ".debug_addr section [in module %s]"),
19463 objfile_name (objfile));
19464 info_ptr = (dwarf2_per_objfile->addr.buffer
19465 + addr_base_or_zero + addr_index * addr_size);
19466 if (addr_size == 4)
19467 return bfd_get_32 (abfd, info_ptr);
19468 else
19469 return bfd_get_64 (abfd, info_ptr);
19470 }
19471
19472 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19473
19474 static CORE_ADDR
19475 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19476 {
19477 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19478 cu->addr_base, cu->header.addr_size);
19479 }
19480
19481 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19482
19483 static CORE_ADDR
19484 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19485 unsigned int *bytes_read)
19486 {
19487 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19488 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19489
19490 return read_addr_index (cu, addr_index);
19491 }
19492
19493 /* Given an index in .debug_addr, fetch the value.
19494 NOTE: This can be called during dwarf expression evaluation,
19495 long after the debug information has been read, and thus per_cu->cu
19496 may no longer exist. */
19497
19498 CORE_ADDR
19499 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19500 unsigned int addr_index)
19501 {
19502 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19503 struct dwarf2_cu *cu = per_cu->cu;
19504 gdb::optional<ULONGEST> addr_base;
19505 int addr_size;
19506
19507 /* We need addr_base and addr_size.
19508 If we don't have PER_CU->cu, we have to get it.
19509 Nasty, but the alternative is storing the needed info in PER_CU,
19510 which at this point doesn't seem justified: it's not clear how frequently
19511 it would get used and it would increase the size of every PER_CU.
19512 Entry points like dwarf2_per_cu_addr_size do a similar thing
19513 so we're not in uncharted territory here.
19514 Alas we need to be a bit more complicated as addr_base is contained
19515 in the DIE.
19516
19517 We don't need to read the entire CU(/TU).
19518 We just need the header and top level die.
19519
19520 IWBN to use the aging mechanism to let us lazily later discard the CU.
19521 For now we skip this optimization. */
19522
19523 if (cu != NULL)
19524 {
19525 addr_base = cu->addr_base;
19526 addr_size = cu->header.addr_size;
19527 }
19528 else
19529 {
19530 cutu_reader reader (per_cu, NULL, 0, 0, false);
19531 addr_base = reader.cu->addr_base;
19532 addr_size = reader.cu->header.addr_size;
19533 }
19534
19535 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19536 addr_size);
19537 }
19538
19539 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19540 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19541 DWO file. */
19542
19543 static const char *
19544 read_str_index (struct dwarf2_cu *cu,
19545 struct dwarf2_section_info *str_section,
19546 struct dwarf2_section_info *str_offsets_section,
19547 ULONGEST str_offsets_base, ULONGEST str_index)
19548 {
19549 struct dwarf2_per_objfile *dwarf2_per_objfile
19550 = cu->per_cu->dwarf2_per_objfile;
19551 struct objfile *objfile = dwarf2_per_objfile->objfile;
19552 const char *objf_name = objfile_name (objfile);
19553 bfd *abfd = objfile->obfd;
19554 const gdb_byte *info_ptr;
19555 ULONGEST str_offset;
19556 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19557
19558 str_section->read (objfile);
19559 str_offsets_section->read (objfile);
19560 if (str_section->buffer == NULL)
19561 error (_("%s used without %s section"
19562 " in CU at offset %s [in module %s]"),
19563 form_name, str_section->get_name (),
19564 sect_offset_str (cu->header.sect_off), objf_name);
19565 if (str_offsets_section->buffer == NULL)
19566 error (_("%s used without %s section"
19567 " in CU at offset %s [in module %s]"),
19568 form_name, str_section->get_name (),
19569 sect_offset_str (cu->header.sect_off), objf_name);
19570 info_ptr = (str_offsets_section->buffer
19571 + str_offsets_base
19572 + str_index * cu->header.offset_size);
19573 if (cu->header.offset_size == 4)
19574 str_offset = bfd_get_32 (abfd, info_ptr);
19575 else
19576 str_offset = bfd_get_64 (abfd, info_ptr);
19577 if (str_offset >= str_section->size)
19578 error (_("Offset from %s pointing outside of"
19579 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19580 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19581 return (const char *) (str_section->buffer + str_offset);
19582 }
19583
19584 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19585
19586 static const char *
19587 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19588 {
19589 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19590 ? reader->cu->header.addr_size : 0;
19591 return read_str_index (reader->cu,
19592 &reader->dwo_file->sections.str,
19593 &reader->dwo_file->sections.str_offsets,
19594 str_offsets_base, str_index);
19595 }
19596
19597 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19598
19599 static const char *
19600 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19601 {
19602 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19603 const char *objf_name = objfile_name (objfile);
19604 static const char form_name[] = "DW_FORM_GNU_str_index";
19605 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19606
19607 if (!cu->str_offsets_base.has_value ())
19608 error (_("%s used in Fission stub without %s"
19609 " in CU at offset 0x%lx [in module %s]"),
19610 form_name, str_offsets_attr_name,
19611 (long) cu->header.offset_size, objf_name);
19612
19613 return read_str_index (cu,
19614 &cu->per_cu->dwarf2_per_objfile->str,
19615 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19616 *cu->str_offsets_base, str_index);
19617 }
19618
19619 /* Return the length of an LEB128 number in BUF. */
19620
19621 static int
19622 leb128_size (const gdb_byte *buf)
19623 {
19624 const gdb_byte *begin = buf;
19625 gdb_byte byte;
19626
19627 while (1)
19628 {
19629 byte = *buf++;
19630 if ((byte & 128) == 0)
19631 return buf - begin;
19632 }
19633 }
19634
19635 static void
19636 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19637 {
19638 switch (lang)
19639 {
19640 case DW_LANG_C89:
19641 case DW_LANG_C99:
19642 case DW_LANG_C11:
19643 case DW_LANG_C:
19644 case DW_LANG_UPC:
19645 cu->language = language_c;
19646 break;
19647 case DW_LANG_Java:
19648 case DW_LANG_C_plus_plus:
19649 case DW_LANG_C_plus_plus_11:
19650 case DW_LANG_C_plus_plus_14:
19651 cu->language = language_cplus;
19652 break;
19653 case DW_LANG_D:
19654 cu->language = language_d;
19655 break;
19656 case DW_LANG_Fortran77:
19657 case DW_LANG_Fortran90:
19658 case DW_LANG_Fortran95:
19659 case DW_LANG_Fortran03:
19660 case DW_LANG_Fortran08:
19661 cu->language = language_fortran;
19662 break;
19663 case DW_LANG_Go:
19664 cu->language = language_go;
19665 break;
19666 case DW_LANG_Mips_Assembler:
19667 cu->language = language_asm;
19668 break;
19669 case DW_LANG_Ada83:
19670 case DW_LANG_Ada95:
19671 cu->language = language_ada;
19672 break;
19673 case DW_LANG_Modula2:
19674 cu->language = language_m2;
19675 break;
19676 case DW_LANG_Pascal83:
19677 cu->language = language_pascal;
19678 break;
19679 case DW_LANG_ObjC:
19680 cu->language = language_objc;
19681 break;
19682 case DW_LANG_Rust:
19683 case DW_LANG_Rust_old:
19684 cu->language = language_rust;
19685 break;
19686 case DW_LANG_Cobol74:
19687 case DW_LANG_Cobol85:
19688 default:
19689 cu->language = language_minimal;
19690 break;
19691 }
19692 cu->language_defn = language_def (cu->language);
19693 }
19694
19695 /* Return the named attribute or NULL if not there. */
19696
19697 static struct attribute *
19698 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19699 {
19700 for (;;)
19701 {
19702 unsigned int i;
19703 struct attribute *spec = NULL;
19704
19705 for (i = 0; i < die->num_attrs; ++i)
19706 {
19707 if (die->attrs[i].name == name)
19708 return &die->attrs[i];
19709 if (die->attrs[i].name == DW_AT_specification
19710 || die->attrs[i].name == DW_AT_abstract_origin)
19711 spec = &die->attrs[i];
19712 }
19713
19714 if (!spec)
19715 break;
19716
19717 die = follow_die_ref (die, spec, &cu);
19718 }
19719
19720 return NULL;
19721 }
19722
19723 /* Return the named attribute or NULL if not there,
19724 but do not follow DW_AT_specification, etc.
19725 This is for use in contexts where we're reading .debug_types dies.
19726 Following DW_AT_specification, DW_AT_abstract_origin will take us
19727 back up the chain, and we want to go down. */
19728
19729 static struct attribute *
19730 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19731 {
19732 unsigned int i;
19733
19734 for (i = 0; i < die->num_attrs; ++i)
19735 if (die->attrs[i].name == name)
19736 return &die->attrs[i];
19737
19738 return NULL;
19739 }
19740
19741 /* Return the string associated with a string-typed attribute, or NULL if it
19742 is either not found or is of an incorrect type. */
19743
19744 static const char *
19745 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19746 {
19747 struct attribute *attr;
19748 const char *str = NULL;
19749
19750 attr = dwarf2_attr (die, name, cu);
19751
19752 if (attr != NULL)
19753 {
19754 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19755 || attr->form == DW_FORM_string
19756 || attr->form == DW_FORM_strx
19757 || attr->form == DW_FORM_strx1
19758 || attr->form == DW_FORM_strx2
19759 || attr->form == DW_FORM_strx3
19760 || attr->form == DW_FORM_strx4
19761 || attr->form == DW_FORM_GNU_str_index
19762 || attr->form == DW_FORM_GNU_strp_alt)
19763 str = DW_STRING (attr);
19764 else
19765 complaint (_("string type expected for attribute %s for "
19766 "DIE at %s in module %s"),
19767 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19769 }
19770
19771 return str;
19772 }
19773
19774 /* Return the dwo name or NULL if not present. If present, it is in either
19775 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19776 static const char *
19777 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19778 {
19779 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19780 if (dwo_name == nullptr)
19781 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19782 return dwo_name;
19783 }
19784
19785 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19786 and holds a non-zero value. This function should only be used for
19787 DW_FORM_flag or DW_FORM_flag_present attributes. */
19788
19789 static int
19790 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19791 {
19792 struct attribute *attr = dwarf2_attr (die, name, cu);
19793
19794 return (attr && DW_UNSND (attr));
19795 }
19796
19797 static int
19798 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19799 {
19800 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19801 which value is non-zero. However, we have to be careful with
19802 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19803 (via dwarf2_flag_true_p) follows this attribute. So we may
19804 end up accidently finding a declaration attribute that belongs
19805 to a different DIE referenced by the specification attribute,
19806 even though the given DIE does not have a declaration attribute. */
19807 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19808 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19809 }
19810
19811 /* Return the die giving the specification for DIE, if there is
19812 one. *SPEC_CU is the CU containing DIE on input, and the CU
19813 containing the return value on output. If there is no
19814 specification, but there is an abstract origin, that is
19815 returned. */
19816
19817 static struct die_info *
19818 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19819 {
19820 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19821 *spec_cu);
19822
19823 if (spec_attr == NULL)
19824 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19825
19826 if (spec_attr == NULL)
19827 return NULL;
19828 else
19829 return follow_die_ref (die, spec_attr, spec_cu);
19830 }
19831
19832 /* Stub for free_line_header to match void * callback types. */
19833
19834 static void
19835 free_line_header_voidp (void *arg)
19836 {
19837 struct line_header *lh = (struct line_header *) arg;
19838
19839 delete lh;
19840 }
19841
19842 void
19843 line_header::add_include_dir (const char *include_dir)
19844 {
19845 if (dwarf_line_debug >= 2)
19846 {
19847 size_t new_size;
19848 if (version >= 5)
19849 new_size = m_include_dirs.size ();
19850 else
19851 new_size = m_include_dirs.size () + 1;
19852 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19853 new_size, include_dir);
19854 }
19855 m_include_dirs.push_back (include_dir);
19856 }
19857
19858 void
19859 line_header::add_file_name (const char *name,
19860 dir_index d_index,
19861 unsigned int mod_time,
19862 unsigned int length)
19863 {
19864 if (dwarf_line_debug >= 2)
19865 {
19866 size_t new_size;
19867 if (version >= 5)
19868 new_size = file_names_size ();
19869 else
19870 new_size = file_names_size () + 1;
19871 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
19872 new_size, name);
19873 }
19874 m_file_names.emplace_back (name, d_index, mod_time, length);
19875 }
19876
19877 /* A convenience function to find the proper .debug_line section for a CU. */
19878
19879 static struct dwarf2_section_info *
19880 get_debug_line_section (struct dwarf2_cu *cu)
19881 {
19882 struct dwarf2_section_info *section;
19883 struct dwarf2_per_objfile *dwarf2_per_objfile
19884 = cu->per_cu->dwarf2_per_objfile;
19885
19886 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19887 DWO file. */
19888 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19889 section = &cu->dwo_unit->dwo_file->sections.line;
19890 else if (cu->per_cu->is_dwz)
19891 {
19892 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19893
19894 section = &dwz->line;
19895 }
19896 else
19897 section = &dwarf2_per_objfile->line;
19898
19899 return section;
19900 }
19901
19902 /* Read directory or file name entry format, starting with byte of
19903 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19904 entries count and the entries themselves in the described entry
19905 format. */
19906
19907 static void
19908 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19909 bfd *abfd, const gdb_byte **bufp,
19910 struct line_header *lh,
19911 const struct comp_unit_head *cu_header,
19912 void (*callback) (struct line_header *lh,
19913 const char *name,
19914 dir_index d_index,
19915 unsigned int mod_time,
19916 unsigned int length))
19917 {
19918 gdb_byte format_count, formati;
19919 ULONGEST data_count, datai;
19920 const gdb_byte *buf = *bufp;
19921 const gdb_byte *format_header_data;
19922 unsigned int bytes_read;
19923
19924 format_count = read_1_byte (abfd, buf);
19925 buf += 1;
19926 format_header_data = buf;
19927 for (formati = 0; formati < format_count; formati++)
19928 {
19929 read_unsigned_leb128 (abfd, buf, &bytes_read);
19930 buf += bytes_read;
19931 read_unsigned_leb128 (abfd, buf, &bytes_read);
19932 buf += bytes_read;
19933 }
19934
19935 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19936 buf += bytes_read;
19937 for (datai = 0; datai < data_count; datai++)
19938 {
19939 const gdb_byte *format = format_header_data;
19940 struct file_entry fe;
19941
19942 for (formati = 0; formati < format_count; formati++)
19943 {
19944 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19945 format += bytes_read;
19946
19947 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19948 format += bytes_read;
19949
19950 gdb::optional<const char *> string;
19951 gdb::optional<unsigned int> uint;
19952
19953 switch (form)
19954 {
19955 case DW_FORM_string:
19956 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19957 buf += bytes_read;
19958 break;
19959
19960 case DW_FORM_line_strp:
19961 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19962 abfd, buf,
19963 cu_header,
19964 &bytes_read));
19965 buf += bytes_read;
19966 break;
19967
19968 case DW_FORM_data1:
19969 uint.emplace (read_1_byte (abfd, buf));
19970 buf += 1;
19971 break;
19972
19973 case DW_FORM_data2:
19974 uint.emplace (read_2_bytes (abfd, buf));
19975 buf += 2;
19976 break;
19977
19978 case DW_FORM_data4:
19979 uint.emplace (read_4_bytes (abfd, buf));
19980 buf += 4;
19981 break;
19982
19983 case DW_FORM_data8:
19984 uint.emplace (read_8_bytes (abfd, buf));
19985 buf += 8;
19986 break;
19987
19988 case DW_FORM_data16:
19989 /* This is used for MD5, but file_entry does not record MD5s. */
19990 buf += 16;
19991 break;
19992
19993 case DW_FORM_udata:
19994 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19995 buf += bytes_read;
19996 break;
19997
19998 case DW_FORM_block:
19999 /* It is valid only for DW_LNCT_timestamp which is ignored by
20000 current GDB. */
20001 break;
20002 }
20003
20004 switch (content_type)
20005 {
20006 case DW_LNCT_path:
20007 if (string.has_value ())
20008 fe.name = *string;
20009 break;
20010 case DW_LNCT_directory_index:
20011 if (uint.has_value ())
20012 fe.d_index = (dir_index) *uint;
20013 break;
20014 case DW_LNCT_timestamp:
20015 if (uint.has_value ())
20016 fe.mod_time = *uint;
20017 break;
20018 case DW_LNCT_size:
20019 if (uint.has_value ())
20020 fe.length = *uint;
20021 break;
20022 case DW_LNCT_MD5:
20023 break;
20024 default:
20025 complaint (_("Unknown format content type %s"),
20026 pulongest (content_type));
20027 }
20028 }
20029
20030 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20031 }
20032
20033 *bufp = buf;
20034 }
20035
20036 /* Read the statement program header starting at OFFSET in
20037 .debug_line, or .debug_line.dwo. Return a pointer
20038 to a struct line_header, allocated using xmalloc.
20039 Returns NULL if there is a problem reading the header, e.g., if it
20040 has a version we don't understand.
20041
20042 NOTE: the strings in the include directory and file name tables of
20043 the returned object point into the dwarf line section buffer,
20044 and must not be freed. */
20045
20046 static line_header_up
20047 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20048 {
20049 const gdb_byte *line_ptr;
20050 unsigned int bytes_read, offset_size;
20051 int i;
20052 const char *cur_dir, *cur_file;
20053 struct dwarf2_section_info *section;
20054 bfd *abfd;
20055 struct dwarf2_per_objfile *dwarf2_per_objfile
20056 = cu->per_cu->dwarf2_per_objfile;
20057
20058 section = get_debug_line_section (cu);
20059 section->read (dwarf2_per_objfile->objfile);
20060 if (section->buffer == NULL)
20061 {
20062 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20063 complaint (_("missing .debug_line.dwo section"));
20064 else
20065 complaint (_("missing .debug_line section"));
20066 return 0;
20067 }
20068
20069 /* We can't do this until we know the section is non-empty.
20070 Only then do we know we have such a section. */
20071 abfd = section->get_bfd_owner ();
20072
20073 /* Make sure that at least there's room for the total_length field.
20074 That could be 12 bytes long, but we're just going to fudge that. */
20075 if (to_underlying (sect_off) + 4 >= section->size)
20076 {
20077 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20078 return 0;
20079 }
20080
20081 line_header_up lh (new line_header ());
20082
20083 lh->sect_off = sect_off;
20084 lh->offset_in_dwz = cu->per_cu->is_dwz;
20085
20086 line_ptr = section->buffer + to_underlying (sect_off);
20087
20088 /* Read in the header. */
20089 lh->total_length =
20090 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20091 &bytes_read, &offset_size);
20092 line_ptr += bytes_read;
20093
20094 const gdb_byte *start_here = line_ptr;
20095
20096 if (line_ptr + lh->total_length > (section->buffer + section->size))
20097 {
20098 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20099 return 0;
20100 }
20101 lh->statement_program_end = start_here + lh->total_length;
20102 lh->version = read_2_bytes (abfd, line_ptr);
20103 line_ptr += 2;
20104 if (lh->version > 5)
20105 {
20106 /* This is a version we don't understand. The format could have
20107 changed in ways we don't handle properly so just punt. */
20108 complaint (_("unsupported version in .debug_line section"));
20109 return NULL;
20110 }
20111 if (lh->version >= 5)
20112 {
20113 gdb_byte segment_selector_size;
20114
20115 /* Skip address size. */
20116 read_1_byte (abfd, line_ptr);
20117 line_ptr += 1;
20118
20119 segment_selector_size = read_1_byte (abfd, line_ptr);
20120 line_ptr += 1;
20121 if (segment_selector_size != 0)
20122 {
20123 complaint (_("unsupported segment selector size %u "
20124 "in .debug_line section"),
20125 segment_selector_size);
20126 return NULL;
20127 }
20128 }
20129 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20130 line_ptr += offset_size;
20131 lh->statement_program_start = line_ptr + lh->header_length;
20132 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20133 line_ptr += 1;
20134 if (lh->version >= 4)
20135 {
20136 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20137 line_ptr += 1;
20138 }
20139 else
20140 lh->maximum_ops_per_instruction = 1;
20141
20142 if (lh->maximum_ops_per_instruction == 0)
20143 {
20144 lh->maximum_ops_per_instruction = 1;
20145 complaint (_("invalid maximum_ops_per_instruction "
20146 "in `.debug_line' section"));
20147 }
20148
20149 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20150 line_ptr += 1;
20151 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20152 line_ptr += 1;
20153 lh->line_range = read_1_byte (abfd, line_ptr);
20154 line_ptr += 1;
20155 lh->opcode_base = read_1_byte (abfd, line_ptr);
20156 line_ptr += 1;
20157 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20158
20159 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20160 for (i = 1; i < lh->opcode_base; ++i)
20161 {
20162 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20163 line_ptr += 1;
20164 }
20165
20166 if (lh->version >= 5)
20167 {
20168 /* Read directory table. */
20169 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20170 &cu->header,
20171 [] (struct line_header *header, const char *name,
20172 dir_index d_index, unsigned int mod_time,
20173 unsigned int length)
20174 {
20175 header->add_include_dir (name);
20176 });
20177
20178 /* Read file name table. */
20179 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20180 &cu->header,
20181 [] (struct line_header *header, const char *name,
20182 dir_index d_index, unsigned int mod_time,
20183 unsigned int length)
20184 {
20185 header->add_file_name (name, d_index, mod_time, length);
20186 });
20187 }
20188 else
20189 {
20190 /* Read directory table. */
20191 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20192 {
20193 line_ptr += bytes_read;
20194 lh->add_include_dir (cur_dir);
20195 }
20196 line_ptr += bytes_read;
20197
20198 /* Read file name table. */
20199 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20200 {
20201 unsigned int mod_time, length;
20202 dir_index d_index;
20203
20204 line_ptr += bytes_read;
20205 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20206 line_ptr += bytes_read;
20207 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20208 line_ptr += bytes_read;
20209 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20210 line_ptr += bytes_read;
20211
20212 lh->add_file_name (cur_file, d_index, mod_time, length);
20213 }
20214 line_ptr += bytes_read;
20215 }
20216
20217 if (line_ptr > (section->buffer + section->size))
20218 complaint (_("line number info header doesn't "
20219 "fit in `.debug_line' section"));
20220
20221 return lh;
20222 }
20223
20224 /* Subroutine of dwarf_decode_lines to simplify it.
20225 Return the file name of the psymtab for the given file_entry.
20226 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20227 If space for the result is malloc'd, *NAME_HOLDER will be set.
20228 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20229
20230 static const char *
20231 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20232 const dwarf2_psymtab *pst,
20233 const char *comp_dir,
20234 gdb::unique_xmalloc_ptr<char> *name_holder)
20235 {
20236 const char *include_name = fe.name;
20237 const char *include_name_to_compare = include_name;
20238 const char *pst_filename;
20239 int file_is_pst;
20240
20241 const char *dir_name = fe.include_dir (lh);
20242
20243 gdb::unique_xmalloc_ptr<char> hold_compare;
20244 if (!IS_ABSOLUTE_PATH (include_name)
20245 && (dir_name != NULL || comp_dir != NULL))
20246 {
20247 /* Avoid creating a duplicate psymtab for PST.
20248 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20249 Before we do the comparison, however, we need to account
20250 for DIR_NAME and COMP_DIR.
20251 First prepend dir_name (if non-NULL). If we still don't
20252 have an absolute path prepend comp_dir (if non-NULL).
20253 However, the directory we record in the include-file's
20254 psymtab does not contain COMP_DIR (to match the
20255 corresponding symtab(s)).
20256
20257 Example:
20258
20259 bash$ cd /tmp
20260 bash$ gcc -g ./hello.c
20261 include_name = "hello.c"
20262 dir_name = "."
20263 DW_AT_comp_dir = comp_dir = "/tmp"
20264 DW_AT_name = "./hello.c"
20265
20266 */
20267
20268 if (dir_name != NULL)
20269 {
20270 name_holder->reset (concat (dir_name, SLASH_STRING,
20271 include_name, (char *) NULL));
20272 include_name = name_holder->get ();
20273 include_name_to_compare = include_name;
20274 }
20275 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20276 {
20277 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20278 include_name, (char *) NULL));
20279 include_name_to_compare = hold_compare.get ();
20280 }
20281 }
20282
20283 pst_filename = pst->filename;
20284 gdb::unique_xmalloc_ptr<char> copied_name;
20285 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20286 {
20287 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20288 pst_filename, (char *) NULL));
20289 pst_filename = copied_name.get ();
20290 }
20291
20292 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20293
20294 if (file_is_pst)
20295 return NULL;
20296 return include_name;
20297 }
20298
20299 /* State machine to track the state of the line number program. */
20300
20301 class lnp_state_machine
20302 {
20303 public:
20304 /* Initialize a machine state for the start of a line number
20305 program. */
20306 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20307 bool record_lines_p);
20308
20309 file_entry *current_file ()
20310 {
20311 /* lh->file_names is 0-based, but the file name numbers in the
20312 statement program are 1-based. */
20313 return m_line_header->file_name_at (m_file);
20314 }
20315
20316 /* Record the line in the state machine. END_SEQUENCE is true if
20317 we're processing the end of a sequence. */
20318 void record_line (bool end_sequence);
20319
20320 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20321 nop-out rest of the lines in this sequence. */
20322 void check_line_address (struct dwarf2_cu *cu,
20323 const gdb_byte *line_ptr,
20324 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20325
20326 void handle_set_discriminator (unsigned int discriminator)
20327 {
20328 m_discriminator = discriminator;
20329 m_line_has_non_zero_discriminator |= discriminator != 0;
20330 }
20331
20332 /* Handle DW_LNE_set_address. */
20333 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20334 {
20335 m_op_index = 0;
20336 address += baseaddr;
20337 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20338 }
20339
20340 /* Handle DW_LNS_advance_pc. */
20341 void handle_advance_pc (CORE_ADDR adjust);
20342
20343 /* Handle a special opcode. */
20344 void handle_special_opcode (unsigned char op_code);
20345
20346 /* Handle DW_LNS_advance_line. */
20347 void handle_advance_line (int line_delta)
20348 {
20349 advance_line (line_delta);
20350 }
20351
20352 /* Handle DW_LNS_set_file. */
20353 void handle_set_file (file_name_index file);
20354
20355 /* Handle DW_LNS_negate_stmt. */
20356 void handle_negate_stmt ()
20357 {
20358 m_is_stmt = !m_is_stmt;
20359 }
20360
20361 /* Handle DW_LNS_const_add_pc. */
20362 void handle_const_add_pc ();
20363
20364 /* Handle DW_LNS_fixed_advance_pc. */
20365 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20366 {
20367 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20368 m_op_index = 0;
20369 }
20370
20371 /* Handle DW_LNS_copy. */
20372 void handle_copy ()
20373 {
20374 record_line (false);
20375 m_discriminator = 0;
20376 }
20377
20378 /* Handle DW_LNE_end_sequence. */
20379 void handle_end_sequence ()
20380 {
20381 m_currently_recording_lines = true;
20382 }
20383
20384 private:
20385 /* Advance the line by LINE_DELTA. */
20386 void advance_line (int line_delta)
20387 {
20388 m_line += line_delta;
20389
20390 if (line_delta != 0)
20391 m_line_has_non_zero_discriminator = m_discriminator != 0;
20392 }
20393
20394 struct dwarf2_cu *m_cu;
20395
20396 gdbarch *m_gdbarch;
20397
20398 /* True if we're recording lines.
20399 Otherwise we're building partial symtabs and are just interested in
20400 finding include files mentioned by the line number program. */
20401 bool m_record_lines_p;
20402
20403 /* The line number header. */
20404 line_header *m_line_header;
20405
20406 /* These are part of the standard DWARF line number state machine,
20407 and initialized according to the DWARF spec. */
20408
20409 unsigned char m_op_index = 0;
20410 /* The line table index of the current file. */
20411 file_name_index m_file = 1;
20412 unsigned int m_line = 1;
20413
20414 /* These are initialized in the constructor. */
20415
20416 CORE_ADDR m_address;
20417 bool m_is_stmt;
20418 unsigned int m_discriminator;
20419
20420 /* Additional bits of state we need to track. */
20421
20422 /* The last file that we called dwarf2_start_subfile for.
20423 This is only used for TLLs. */
20424 unsigned int m_last_file = 0;
20425 /* The last file a line number was recorded for. */
20426 struct subfile *m_last_subfile = NULL;
20427
20428 /* When true, record the lines we decode. */
20429 bool m_currently_recording_lines = false;
20430
20431 /* The last line number that was recorded, used to coalesce
20432 consecutive entries for the same line. This can happen, for
20433 example, when discriminators are present. PR 17276. */
20434 unsigned int m_last_line = 0;
20435 bool m_line_has_non_zero_discriminator = false;
20436 };
20437
20438 void
20439 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20440 {
20441 CORE_ADDR addr_adj = (((m_op_index + adjust)
20442 / m_line_header->maximum_ops_per_instruction)
20443 * m_line_header->minimum_instruction_length);
20444 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20445 m_op_index = ((m_op_index + adjust)
20446 % m_line_header->maximum_ops_per_instruction);
20447 }
20448
20449 void
20450 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20451 {
20452 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20453 CORE_ADDR addr_adj = (((m_op_index
20454 + (adj_opcode / m_line_header->line_range))
20455 / m_line_header->maximum_ops_per_instruction)
20456 * m_line_header->minimum_instruction_length);
20457 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20458 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20459 % m_line_header->maximum_ops_per_instruction);
20460
20461 int line_delta = (m_line_header->line_base
20462 + (adj_opcode % m_line_header->line_range));
20463 advance_line (line_delta);
20464 record_line (false);
20465 m_discriminator = 0;
20466 }
20467
20468 void
20469 lnp_state_machine::handle_set_file (file_name_index file)
20470 {
20471 m_file = file;
20472
20473 const file_entry *fe = current_file ();
20474 if (fe == NULL)
20475 dwarf2_debug_line_missing_file_complaint ();
20476 else if (m_record_lines_p)
20477 {
20478 const char *dir = fe->include_dir (m_line_header);
20479
20480 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20481 m_line_has_non_zero_discriminator = m_discriminator != 0;
20482 dwarf2_start_subfile (m_cu, fe->name, dir);
20483 }
20484 }
20485
20486 void
20487 lnp_state_machine::handle_const_add_pc ()
20488 {
20489 CORE_ADDR adjust
20490 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20491
20492 CORE_ADDR addr_adj
20493 = (((m_op_index + adjust)
20494 / m_line_header->maximum_ops_per_instruction)
20495 * m_line_header->minimum_instruction_length);
20496
20497 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20498 m_op_index = ((m_op_index + adjust)
20499 % m_line_header->maximum_ops_per_instruction);
20500 }
20501
20502 /* Return non-zero if we should add LINE to the line number table.
20503 LINE is the line to add, LAST_LINE is the last line that was added,
20504 LAST_SUBFILE is the subfile for LAST_LINE.
20505 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20506 had a non-zero discriminator.
20507
20508 We have to be careful in the presence of discriminators.
20509 E.g., for this line:
20510
20511 for (i = 0; i < 100000; i++);
20512
20513 clang can emit four line number entries for that one line,
20514 each with a different discriminator.
20515 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20516
20517 However, we want gdb to coalesce all four entries into one.
20518 Otherwise the user could stepi into the middle of the line and
20519 gdb would get confused about whether the pc really was in the
20520 middle of the line.
20521
20522 Things are further complicated by the fact that two consecutive
20523 line number entries for the same line is a heuristic used by gcc
20524 to denote the end of the prologue. So we can't just discard duplicate
20525 entries, we have to be selective about it. The heuristic we use is
20526 that we only collapse consecutive entries for the same line if at least
20527 one of those entries has a non-zero discriminator. PR 17276.
20528
20529 Note: Addresses in the line number state machine can never go backwards
20530 within one sequence, thus this coalescing is ok. */
20531
20532 static int
20533 dwarf_record_line_p (struct dwarf2_cu *cu,
20534 unsigned int line, unsigned int last_line,
20535 int line_has_non_zero_discriminator,
20536 struct subfile *last_subfile)
20537 {
20538 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20539 return 1;
20540 if (line != last_line)
20541 return 1;
20542 /* Same line for the same file that we've seen already.
20543 As a last check, for pr 17276, only record the line if the line
20544 has never had a non-zero discriminator. */
20545 if (!line_has_non_zero_discriminator)
20546 return 1;
20547 return 0;
20548 }
20549
20550 /* Use the CU's builder to record line number LINE beginning at
20551 address ADDRESS in the line table of subfile SUBFILE. */
20552
20553 static void
20554 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20555 unsigned int line, CORE_ADDR address,
20556 struct dwarf2_cu *cu)
20557 {
20558 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20559
20560 if (dwarf_line_debug)
20561 {
20562 fprintf_unfiltered (gdb_stdlog,
20563 "Recording line %u, file %s, address %s\n",
20564 line, lbasename (subfile->name),
20565 paddress (gdbarch, address));
20566 }
20567
20568 if (cu != nullptr)
20569 cu->get_builder ()->record_line (subfile, line, addr);
20570 }
20571
20572 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20573 Mark the end of a set of line number records.
20574 The arguments are the same as for dwarf_record_line_1.
20575 If SUBFILE is NULL the request is ignored. */
20576
20577 static void
20578 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20579 CORE_ADDR address, struct dwarf2_cu *cu)
20580 {
20581 if (subfile == NULL)
20582 return;
20583
20584 if (dwarf_line_debug)
20585 {
20586 fprintf_unfiltered (gdb_stdlog,
20587 "Finishing current line, file %s, address %s\n",
20588 lbasename (subfile->name),
20589 paddress (gdbarch, address));
20590 }
20591
20592 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20593 }
20594
20595 void
20596 lnp_state_machine::record_line (bool end_sequence)
20597 {
20598 if (dwarf_line_debug)
20599 {
20600 fprintf_unfiltered (gdb_stdlog,
20601 "Processing actual line %u: file %u,"
20602 " address %s, is_stmt %u, discrim %u%s\n",
20603 m_line, m_file,
20604 paddress (m_gdbarch, m_address),
20605 m_is_stmt, m_discriminator,
20606 (end_sequence ? "\t(end sequence)" : ""));
20607 }
20608
20609 file_entry *fe = current_file ();
20610
20611 if (fe == NULL)
20612 dwarf2_debug_line_missing_file_complaint ();
20613 /* For now we ignore lines not starting on an instruction boundary.
20614 But not when processing end_sequence for compatibility with the
20615 previous version of the code. */
20616 else if (m_op_index == 0 || end_sequence)
20617 {
20618 fe->included_p = 1;
20619 if (m_record_lines_p
20620 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20621 {
20622 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20623 || end_sequence)
20624 {
20625 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20626 m_currently_recording_lines ? m_cu : nullptr);
20627 }
20628
20629 if (!end_sequence)
20630 {
20631 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20632 m_line_has_non_zero_discriminator,
20633 m_last_subfile))
20634 {
20635 buildsym_compunit *builder = m_cu->get_builder ();
20636 dwarf_record_line_1 (m_gdbarch,
20637 builder->get_current_subfile (),
20638 m_line, m_address,
20639 m_currently_recording_lines ? m_cu : nullptr);
20640 }
20641 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20642 m_last_line = m_line;
20643 }
20644 }
20645 }
20646 }
20647
20648 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20649 line_header *lh, bool record_lines_p)
20650 {
20651 m_cu = cu;
20652 m_gdbarch = arch;
20653 m_record_lines_p = record_lines_p;
20654 m_line_header = lh;
20655
20656 m_currently_recording_lines = true;
20657
20658 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20659 was a line entry for it so that the backend has a chance to adjust it
20660 and also record it in case it needs it. This is currently used by MIPS
20661 code, cf. `mips_adjust_dwarf2_line'. */
20662 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20663 m_is_stmt = lh->default_is_stmt;
20664 m_discriminator = 0;
20665 }
20666
20667 void
20668 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20669 const gdb_byte *line_ptr,
20670 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20671 {
20672 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20673 the pc range of the CU. However, we restrict the test to only ADDRESS
20674 values of zero to preserve GDB's previous behaviour which is to handle
20675 the specific case of a function being GC'd by the linker. */
20676
20677 if (address == 0 && address < unrelocated_lowpc)
20678 {
20679 /* This line table is for a function which has been
20680 GCd by the linker. Ignore it. PR gdb/12528 */
20681
20682 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20683 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20684
20685 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20686 line_offset, objfile_name (objfile));
20687 m_currently_recording_lines = false;
20688 /* Note: m_currently_recording_lines is left as false until we see
20689 DW_LNE_end_sequence. */
20690 }
20691 }
20692
20693 /* Subroutine of dwarf_decode_lines to simplify it.
20694 Process the line number information in LH.
20695 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20696 program in order to set included_p for every referenced header. */
20697
20698 static void
20699 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20700 const int decode_for_pst_p, CORE_ADDR lowpc)
20701 {
20702 const gdb_byte *line_ptr, *extended_end;
20703 const gdb_byte *line_end;
20704 unsigned int bytes_read, extended_len;
20705 unsigned char op_code, extended_op;
20706 CORE_ADDR baseaddr;
20707 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20708 bfd *abfd = objfile->obfd;
20709 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20710 /* True if we're recording line info (as opposed to building partial
20711 symtabs and just interested in finding include files mentioned by
20712 the line number program). */
20713 bool record_lines_p = !decode_for_pst_p;
20714
20715 baseaddr = objfile->text_section_offset ();
20716
20717 line_ptr = lh->statement_program_start;
20718 line_end = lh->statement_program_end;
20719
20720 /* Read the statement sequences until there's nothing left. */
20721 while (line_ptr < line_end)
20722 {
20723 /* The DWARF line number program state machine. Reset the state
20724 machine at the start of each sequence. */
20725 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20726 bool end_sequence = false;
20727
20728 if (record_lines_p)
20729 {
20730 /* Start a subfile for the current file of the state
20731 machine. */
20732 const file_entry *fe = state_machine.current_file ();
20733
20734 if (fe != NULL)
20735 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20736 }
20737
20738 /* Decode the table. */
20739 while (line_ptr < line_end && !end_sequence)
20740 {
20741 op_code = read_1_byte (abfd, line_ptr);
20742 line_ptr += 1;
20743
20744 if (op_code >= lh->opcode_base)
20745 {
20746 /* Special opcode. */
20747 state_machine.handle_special_opcode (op_code);
20748 }
20749 else switch (op_code)
20750 {
20751 case DW_LNS_extended_op:
20752 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20753 &bytes_read);
20754 line_ptr += bytes_read;
20755 extended_end = line_ptr + extended_len;
20756 extended_op = read_1_byte (abfd, line_ptr);
20757 line_ptr += 1;
20758 switch (extended_op)
20759 {
20760 case DW_LNE_end_sequence:
20761 state_machine.handle_end_sequence ();
20762 end_sequence = true;
20763 break;
20764 case DW_LNE_set_address:
20765 {
20766 CORE_ADDR address
20767 = read_address (abfd, line_ptr, cu, &bytes_read);
20768 line_ptr += bytes_read;
20769
20770 state_machine.check_line_address (cu, line_ptr,
20771 lowpc - baseaddr, address);
20772 state_machine.handle_set_address (baseaddr, address);
20773 }
20774 break;
20775 case DW_LNE_define_file:
20776 {
20777 const char *cur_file;
20778 unsigned int mod_time, length;
20779 dir_index dindex;
20780
20781 cur_file = read_direct_string (abfd, line_ptr,
20782 &bytes_read);
20783 line_ptr += bytes_read;
20784 dindex = (dir_index)
20785 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20786 line_ptr += bytes_read;
20787 mod_time =
20788 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20789 line_ptr += bytes_read;
20790 length =
20791 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20792 line_ptr += bytes_read;
20793 lh->add_file_name (cur_file, dindex, mod_time, length);
20794 }
20795 break;
20796 case DW_LNE_set_discriminator:
20797 {
20798 /* The discriminator is not interesting to the
20799 debugger; just ignore it. We still need to
20800 check its value though:
20801 if there are consecutive entries for the same
20802 (non-prologue) line we want to coalesce them.
20803 PR 17276. */
20804 unsigned int discr
20805 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20806 line_ptr += bytes_read;
20807
20808 state_machine.handle_set_discriminator (discr);
20809 }
20810 break;
20811 default:
20812 complaint (_("mangled .debug_line section"));
20813 return;
20814 }
20815 /* Make sure that we parsed the extended op correctly. If e.g.
20816 we expected a different address size than the producer used,
20817 we may have read the wrong number of bytes. */
20818 if (line_ptr != extended_end)
20819 {
20820 complaint (_("mangled .debug_line section"));
20821 return;
20822 }
20823 break;
20824 case DW_LNS_copy:
20825 state_machine.handle_copy ();
20826 break;
20827 case DW_LNS_advance_pc:
20828 {
20829 CORE_ADDR adjust
20830 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20831 line_ptr += bytes_read;
20832
20833 state_machine.handle_advance_pc (adjust);
20834 }
20835 break;
20836 case DW_LNS_advance_line:
20837 {
20838 int line_delta
20839 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20840 line_ptr += bytes_read;
20841
20842 state_machine.handle_advance_line (line_delta);
20843 }
20844 break;
20845 case DW_LNS_set_file:
20846 {
20847 file_name_index file
20848 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20849 &bytes_read);
20850 line_ptr += bytes_read;
20851
20852 state_machine.handle_set_file (file);
20853 }
20854 break;
20855 case DW_LNS_set_column:
20856 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20857 line_ptr += bytes_read;
20858 break;
20859 case DW_LNS_negate_stmt:
20860 state_machine.handle_negate_stmt ();
20861 break;
20862 case DW_LNS_set_basic_block:
20863 break;
20864 /* Add to the address register of the state machine the
20865 address increment value corresponding to special opcode
20866 255. I.e., this value is scaled by the minimum
20867 instruction length since special opcode 255 would have
20868 scaled the increment. */
20869 case DW_LNS_const_add_pc:
20870 state_machine.handle_const_add_pc ();
20871 break;
20872 case DW_LNS_fixed_advance_pc:
20873 {
20874 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20875 line_ptr += 2;
20876
20877 state_machine.handle_fixed_advance_pc (addr_adj);
20878 }
20879 break;
20880 default:
20881 {
20882 /* Unknown standard opcode, ignore it. */
20883 int i;
20884
20885 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20886 {
20887 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20888 line_ptr += bytes_read;
20889 }
20890 }
20891 }
20892 }
20893
20894 if (!end_sequence)
20895 dwarf2_debug_line_missing_end_sequence_complaint ();
20896
20897 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20898 in which case we still finish recording the last line). */
20899 state_machine.record_line (true);
20900 }
20901 }
20902
20903 /* Decode the Line Number Program (LNP) for the given line_header
20904 structure and CU. The actual information extracted and the type
20905 of structures created from the LNP depends on the value of PST.
20906
20907 1. If PST is NULL, then this procedure uses the data from the program
20908 to create all necessary symbol tables, and their linetables.
20909
20910 2. If PST is not NULL, this procedure reads the program to determine
20911 the list of files included by the unit represented by PST, and
20912 builds all the associated partial symbol tables.
20913
20914 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20915 It is used for relative paths in the line table.
20916 NOTE: When processing partial symtabs (pst != NULL),
20917 comp_dir == pst->dirname.
20918
20919 NOTE: It is important that psymtabs have the same file name (via strcmp)
20920 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20921 symtab we don't use it in the name of the psymtabs we create.
20922 E.g. expand_line_sal requires this when finding psymtabs to expand.
20923 A good testcase for this is mb-inline.exp.
20924
20925 LOWPC is the lowest address in CU (or 0 if not known).
20926
20927 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20928 for its PC<->lines mapping information. Otherwise only the filename
20929 table is read in. */
20930
20931 static void
20932 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20933 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20934 CORE_ADDR lowpc, int decode_mapping)
20935 {
20936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20937 const int decode_for_pst_p = (pst != NULL);
20938
20939 if (decode_mapping)
20940 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20941
20942 if (decode_for_pst_p)
20943 {
20944 /* Now that we're done scanning the Line Header Program, we can
20945 create the psymtab of each included file. */
20946 for (auto &file_entry : lh->file_names ())
20947 if (file_entry.included_p == 1)
20948 {
20949 gdb::unique_xmalloc_ptr<char> name_holder;
20950 const char *include_name =
20951 psymtab_include_file_name (lh, file_entry, pst,
20952 comp_dir, &name_holder);
20953 if (include_name != NULL)
20954 dwarf2_create_include_psymtab (include_name, pst, objfile);
20955 }
20956 }
20957 else
20958 {
20959 /* Make sure a symtab is created for every file, even files
20960 which contain only variables (i.e. no code with associated
20961 line numbers). */
20962 buildsym_compunit *builder = cu->get_builder ();
20963 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20964
20965 for (auto &fe : lh->file_names ())
20966 {
20967 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20968 if (builder->get_current_subfile ()->symtab == NULL)
20969 {
20970 builder->get_current_subfile ()->symtab
20971 = allocate_symtab (cust,
20972 builder->get_current_subfile ()->name);
20973 }
20974 fe.symtab = builder->get_current_subfile ()->symtab;
20975 }
20976 }
20977 }
20978
20979 /* Start a subfile for DWARF. FILENAME is the name of the file and
20980 DIRNAME the name of the source directory which contains FILENAME
20981 or NULL if not known.
20982 This routine tries to keep line numbers from identical absolute and
20983 relative file names in a common subfile.
20984
20985 Using the `list' example from the GDB testsuite, which resides in
20986 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20987 of /srcdir/list0.c yields the following debugging information for list0.c:
20988
20989 DW_AT_name: /srcdir/list0.c
20990 DW_AT_comp_dir: /compdir
20991 files.files[0].name: list0.h
20992 files.files[0].dir: /srcdir
20993 files.files[1].name: list0.c
20994 files.files[1].dir: /srcdir
20995
20996 The line number information for list0.c has to end up in a single
20997 subfile, so that `break /srcdir/list0.c:1' works as expected.
20998 start_subfile will ensure that this happens provided that we pass the
20999 concatenation of files.files[1].dir and files.files[1].name as the
21000 subfile's name. */
21001
21002 static void
21003 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21004 const char *dirname)
21005 {
21006 gdb::unique_xmalloc_ptr<char> copy;
21007
21008 /* In order not to lose the line information directory,
21009 we concatenate it to the filename when it makes sense.
21010 Note that the Dwarf3 standard says (speaking of filenames in line
21011 information): ``The directory index is ignored for file names
21012 that represent full path names''. Thus ignoring dirname in the
21013 `else' branch below isn't an issue. */
21014
21015 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21016 {
21017 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21018 filename = copy.get ();
21019 }
21020
21021 cu->get_builder ()->start_subfile (filename);
21022 }
21023
21024 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21025 buildsym_compunit constructor. */
21026
21027 struct compunit_symtab *
21028 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21029 CORE_ADDR low_pc)
21030 {
21031 gdb_assert (m_builder == nullptr);
21032
21033 m_builder.reset (new struct buildsym_compunit
21034 (per_cu->dwarf2_per_objfile->objfile,
21035 name, comp_dir, language, low_pc));
21036
21037 list_in_scope = get_builder ()->get_file_symbols ();
21038
21039 get_builder ()->record_debugformat ("DWARF 2");
21040 get_builder ()->record_producer (producer);
21041
21042 processing_has_namespace_info = false;
21043
21044 return get_builder ()->get_compunit_symtab ();
21045 }
21046
21047 static void
21048 var_decode_location (struct attribute *attr, struct symbol *sym,
21049 struct dwarf2_cu *cu)
21050 {
21051 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21052 struct comp_unit_head *cu_header = &cu->header;
21053
21054 /* NOTE drow/2003-01-30: There used to be a comment and some special
21055 code here to turn a symbol with DW_AT_external and a
21056 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21057 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21058 with some versions of binutils) where shared libraries could have
21059 relocations against symbols in their debug information - the
21060 minimal symbol would have the right address, but the debug info
21061 would not. It's no longer necessary, because we will explicitly
21062 apply relocations when we read in the debug information now. */
21063
21064 /* A DW_AT_location attribute with no contents indicates that a
21065 variable has been optimized away. */
21066 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
21067 {
21068 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21069 return;
21070 }
21071
21072 /* Handle one degenerate form of location expression specially, to
21073 preserve GDB's previous behavior when section offsets are
21074 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21075 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21076
21077 if (attr->form_is_block ()
21078 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21079 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21080 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21081 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21082 && (DW_BLOCK (attr)->size
21083 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21084 {
21085 unsigned int dummy;
21086
21087 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21088 SET_SYMBOL_VALUE_ADDRESS (sym,
21089 read_address (objfile->obfd,
21090 DW_BLOCK (attr)->data + 1,
21091 cu, &dummy));
21092 else
21093 SET_SYMBOL_VALUE_ADDRESS
21094 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21095 &dummy));
21096 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21097 fixup_symbol_section (sym, objfile);
21098 SET_SYMBOL_VALUE_ADDRESS
21099 (sym,
21100 SYMBOL_VALUE_ADDRESS (sym)
21101 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21102 return;
21103 }
21104
21105 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21106 expression evaluator, and use LOC_COMPUTED only when necessary
21107 (i.e. when the value of a register or memory location is
21108 referenced, or a thread-local block, etc.). Then again, it might
21109 not be worthwhile. I'm assuming that it isn't unless performance
21110 or memory numbers show me otherwise. */
21111
21112 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21113
21114 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21115 cu->has_loclist = true;
21116 }
21117
21118 /* Given a pointer to a DWARF information entry, figure out if we need
21119 to make a symbol table entry for it, and if so, create a new entry
21120 and return a pointer to it.
21121 If TYPE is NULL, determine symbol type from the die, otherwise
21122 used the passed type.
21123 If SPACE is not NULL, use it to hold the new symbol. If it is
21124 NULL, allocate a new symbol on the objfile's obstack. */
21125
21126 static struct symbol *
21127 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21128 struct symbol *space)
21129 {
21130 struct dwarf2_per_objfile *dwarf2_per_objfile
21131 = cu->per_cu->dwarf2_per_objfile;
21132 struct objfile *objfile = dwarf2_per_objfile->objfile;
21133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21134 struct symbol *sym = NULL;
21135 const char *name;
21136 struct attribute *attr = NULL;
21137 struct attribute *attr2 = NULL;
21138 CORE_ADDR baseaddr;
21139 struct pending **list_to_add = NULL;
21140
21141 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21142
21143 baseaddr = objfile->text_section_offset ();
21144
21145 name = dwarf2_name (die, cu);
21146 if (name)
21147 {
21148 const char *linkagename;
21149 int suppress_add = 0;
21150
21151 if (space)
21152 sym = space;
21153 else
21154 sym = allocate_symbol (objfile);
21155 OBJSTAT (objfile, n_syms++);
21156
21157 /* Cache this symbol's name and the name's demangled form (if any). */
21158 sym->set_language (cu->language, &objfile->objfile_obstack);
21159 linkagename = dwarf2_physname (name, die, cu);
21160 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
21161
21162 /* Fortran does not have mangling standard and the mangling does differ
21163 between gfortran, iFort etc. */
21164 if (cu->language == language_fortran
21165 && symbol_get_demangled_name (sym) == NULL)
21166 symbol_set_demangled_name (sym,
21167 dwarf2_full_name (name, die, cu),
21168 NULL);
21169
21170 /* Default assumptions.
21171 Use the passed type or decode it from the die. */
21172 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21173 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21174 if (type != NULL)
21175 SYMBOL_TYPE (sym) = type;
21176 else
21177 SYMBOL_TYPE (sym) = die_type (die, cu);
21178 attr = dwarf2_attr (die,
21179 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21180 cu);
21181 if (attr != nullptr)
21182 {
21183 SYMBOL_LINE (sym) = DW_UNSND (attr);
21184 }
21185
21186 attr = dwarf2_attr (die,
21187 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21188 cu);
21189 if (attr != nullptr)
21190 {
21191 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21192 struct file_entry *fe;
21193
21194 if (cu->line_header != NULL)
21195 fe = cu->line_header->file_name_at (file_index);
21196 else
21197 fe = NULL;
21198
21199 if (fe == NULL)
21200 complaint (_("file index out of range"));
21201 else
21202 symbol_set_symtab (sym, fe->symtab);
21203 }
21204
21205 switch (die->tag)
21206 {
21207 case DW_TAG_label:
21208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21209 if (attr != nullptr)
21210 {
21211 CORE_ADDR addr;
21212
21213 addr = attr->value_as_address ();
21214 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21215 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21216 }
21217 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21218 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21219 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21220 add_symbol_to_list (sym, cu->list_in_scope);
21221 break;
21222 case DW_TAG_subprogram:
21223 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21224 finish_block. */
21225 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21226 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21227 if ((attr2 && (DW_UNSND (attr2) != 0))
21228 || cu->language == language_ada
21229 || cu->language == language_fortran)
21230 {
21231 /* Subprograms marked external are stored as a global symbol.
21232 Ada and Fortran subprograms, whether marked external or
21233 not, are always stored as a global symbol, because we want
21234 to be able to access them globally. For instance, we want
21235 to be able to break on a nested subprogram without having
21236 to specify the context. */
21237 list_to_add = cu->get_builder ()->get_global_symbols ();
21238 }
21239 else
21240 {
21241 list_to_add = cu->list_in_scope;
21242 }
21243 break;
21244 case DW_TAG_inlined_subroutine:
21245 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21246 finish_block. */
21247 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21248 SYMBOL_INLINED (sym) = 1;
21249 list_to_add = cu->list_in_scope;
21250 break;
21251 case DW_TAG_template_value_param:
21252 suppress_add = 1;
21253 /* Fall through. */
21254 case DW_TAG_constant:
21255 case DW_TAG_variable:
21256 case DW_TAG_member:
21257 /* Compilation with minimal debug info may result in
21258 variables with missing type entries. Change the
21259 misleading `void' type to something sensible. */
21260 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21261 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21262
21263 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21264 /* In the case of DW_TAG_member, we should only be called for
21265 static const members. */
21266 if (die->tag == DW_TAG_member)
21267 {
21268 /* dwarf2_add_field uses die_is_declaration,
21269 so we do the same. */
21270 gdb_assert (die_is_declaration (die, cu));
21271 gdb_assert (attr);
21272 }
21273 if (attr != nullptr)
21274 {
21275 dwarf2_const_value (attr, sym, cu);
21276 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21277 if (!suppress_add)
21278 {
21279 if (attr2 && (DW_UNSND (attr2) != 0))
21280 list_to_add = cu->get_builder ()->get_global_symbols ();
21281 else
21282 list_to_add = cu->list_in_scope;
21283 }
21284 break;
21285 }
21286 attr = dwarf2_attr (die, DW_AT_location, cu);
21287 if (attr != nullptr)
21288 {
21289 var_decode_location (attr, sym, cu);
21290 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21291
21292 /* Fortran explicitly imports any global symbols to the local
21293 scope by DW_TAG_common_block. */
21294 if (cu->language == language_fortran && die->parent
21295 && die->parent->tag == DW_TAG_common_block)
21296 attr2 = NULL;
21297
21298 if (SYMBOL_CLASS (sym) == LOC_STATIC
21299 && SYMBOL_VALUE_ADDRESS (sym) == 0
21300 && !dwarf2_per_objfile->has_section_at_zero)
21301 {
21302 /* When a static variable is eliminated by the linker,
21303 the corresponding debug information is not stripped
21304 out, but the variable address is set to null;
21305 do not add such variables into symbol table. */
21306 }
21307 else if (attr2 && (DW_UNSND (attr2) != 0))
21308 {
21309 if (SYMBOL_CLASS (sym) == LOC_STATIC
21310 && (objfile->flags & OBJF_MAINLINE) == 0
21311 && dwarf2_per_objfile->can_copy)
21312 {
21313 /* A global static variable might be subject to
21314 copy relocation. We first check for a local
21315 minsym, though, because maybe the symbol was
21316 marked hidden, in which case this would not
21317 apply. */
21318 bound_minimal_symbol found
21319 = (lookup_minimal_symbol_linkage
21320 (sym->linkage_name (), objfile));
21321 if (found.minsym != nullptr)
21322 sym->maybe_copied = 1;
21323 }
21324
21325 /* A variable with DW_AT_external is never static,
21326 but it may be block-scoped. */
21327 list_to_add
21328 = ((cu->list_in_scope
21329 == cu->get_builder ()->get_file_symbols ())
21330 ? cu->get_builder ()->get_global_symbols ()
21331 : cu->list_in_scope);
21332 }
21333 else
21334 list_to_add = cu->list_in_scope;
21335 }
21336 else
21337 {
21338 /* We do not know the address of this symbol.
21339 If it is an external symbol and we have type information
21340 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21341 The address of the variable will then be determined from
21342 the minimal symbol table whenever the variable is
21343 referenced. */
21344 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21345
21346 /* Fortran explicitly imports any global symbols to the local
21347 scope by DW_TAG_common_block. */
21348 if (cu->language == language_fortran && die->parent
21349 && die->parent->tag == DW_TAG_common_block)
21350 {
21351 /* SYMBOL_CLASS doesn't matter here because
21352 read_common_block is going to reset it. */
21353 if (!suppress_add)
21354 list_to_add = cu->list_in_scope;
21355 }
21356 else if (attr2 && (DW_UNSND (attr2) != 0)
21357 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21358 {
21359 /* A variable with DW_AT_external is never static, but it
21360 may be block-scoped. */
21361 list_to_add
21362 = ((cu->list_in_scope
21363 == cu->get_builder ()->get_file_symbols ())
21364 ? cu->get_builder ()->get_global_symbols ()
21365 : cu->list_in_scope);
21366
21367 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21368 }
21369 else if (!die_is_declaration (die, cu))
21370 {
21371 /* Use the default LOC_OPTIMIZED_OUT class. */
21372 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21373 if (!suppress_add)
21374 list_to_add = cu->list_in_scope;
21375 }
21376 }
21377 break;
21378 case DW_TAG_formal_parameter:
21379 {
21380 /* If we are inside a function, mark this as an argument. If
21381 not, we might be looking at an argument to an inlined function
21382 when we do not have enough information to show inlined frames;
21383 pretend it's a local variable in that case so that the user can
21384 still see it. */
21385 struct context_stack *curr
21386 = cu->get_builder ()->get_current_context_stack ();
21387 if (curr != nullptr && curr->name != nullptr)
21388 SYMBOL_IS_ARGUMENT (sym) = 1;
21389 attr = dwarf2_attr (die, DW_AT_location, cu);
21390 if (attr != nullptr)
21391 {
21392 var_decode_location (attr, sym, cu);
21393 }
21394 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21395 if (attr != nullptr)
21396 {
21397 dwarf2_const_value (attr, sym, cu);
21398 }
21399
21400 list_to_add = cu->list_in_scope;
21401 }
21402 break;
21403 case DW_TAG_unspecified_parameters:
21404 /* From varargs functions; gdb doesn't seem to have any
21405 interest in this information, so just ignore it for now.
21406 (FIXME?) */
21407 break;
21408 case DW_TAG_template_type_param:
21409 suppress_add = 1;
21410 /* Fall through. */
21411 case DW_TAG_class_type:
21412 case DW_TAG_interface_type:
21413 case DW_TAG_structure_type:
21414 case DW_TAG_union_type:
21415 case DW_TAG_set_type:
21416 case DW_TAG_enumeration_type:
21417 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21418 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21419
21420 {
21421 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21422 really ever be static objects: otherwise, if you try
21423 to, say, break of a class's method and you're in a file
21424 which doesn't mention that class, it won't work unless
21425 the check for all static symbols in lookup_symbol_aux
21426 saves you. See the OtherFileClass tests in
21427 gdb.c++/namespace.exp. */
21428
21429 if (!suppress_add)
21430 {
21431 buildsym_compunit *builder = cu->get_builder ();
21432 list_to_add
21433 = (cu->list_in_scope == builder->get_file_symbols ()
21434 && cu->language == language_cplus
21435 ? builder->get_global_symbols ()
21436 : cu->list_in_scope);
21437
21438 /* The semantics of C++ state that "struct foo {
21439 ... }" also defines a typedef for "foo". */
21440 if (cu->language == language_cplus
21441 || cu->language == language_ada
21442 || cu->language == language_d
21443 || cu->language == language_rust)
21444 {
21445 /* The symbol's name is already allocated along
21446 with this objfile, so we don't need to
21447 duplicate it for the type. */
21448 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21449 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
21450 }
21451 }
21452 }
21453 break;
21454 case DW_TAG_typedef:
21455 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21456 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21457 list_to_add = cu->list_in_scope;
21458 break;
21459 case DW_TAG_base_type:
21460 case DW_TAG_subrange_type:
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21462 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21463 list_to_add = cu->list_in_scope;
21464 break;
21465 case DW_TAG_enumerator:
21466 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21467 if (attr != nullptr)
21468 {
21469 dwarf2_const_value (attr, sym, cu);
21470 }
21471 {
21472 /* NOTE: carlton/2003-11-10: See comment above in the
21473 DW_TAG_class_type, etc. block. */
21474
21475 list_to_add
21476 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21477 && cu->language == language_cplus
21478 ? cu->get_builder ()->get_global_symbols ()
21479 : cu->list_in_scope);
21480 }
21481 break;
21482 case DW_TAG_imported_declaration:
21483 case DW_TAG_namespace:
21484 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21485 list_to_add = cu->get_builder ()->get_global_symbols ();
21486 break;
21487 case DW_TAG_module:
21488 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21489 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21490 list_to_add = cu->get_builder ()->get_global_symbols ();
21491 break;
21492 case DW_TAG_common_block:
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21494 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21495 add_symbol_to_list (sym, cu->list_in_scope);
21496 break;
21497 default:
21498 /* Not a tag we recognize. Hopefully we aren't processing
21499 trash data, but since we must specifically ignore things
21500 we don't recognize, there is nothing else we should do at
21501 this point. */
21502 complaint (_("unsupported tag: '%s'"),
21503 dwarf_tag_name (die->tag));
21504 break;
21505 }
21506
21507 if (suppress_add)
21508 {
21509 sym->hash_next = objfile->template_symbols;
21510 objfile->template_symbols = sym;
21511 list_to_add = NULL;
21512 }
21513
21514 if (list_to_add != NULL)
21515 add_symbol_to_list (sym, list_to_add);
21516
21517 /* For the benefit of old versions of GCC, check for anonymous
21518 namespaces based on the demangled name. */
21519 if (!cu->processing_has_namespace_info
21520 && cu->language == language_cplus)
21521 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21522 }
21523 return (sym);
21524 }
21525
21526 /* Given an attr with a DW_FORM_dataN value in host byte order,
21527 zero-extend it as appropriate for the symbol's type. The DWARF
21528 standard (v4) is not entirely clear about the meaning of using
21529 DW_FORM_dataN for a constant with a signed type, where the type is
21530 wider than the data. The conclusion of a discussion on the DWARF
21531 list was that this is unspecified. We choose to always zero-extend
21532 because that is the interpretation long in use by GCC. */
21533
21534 static gdb_byte *
21535 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21536 struct dwarf2_cu *cu, LONGEST *value, int bits)
21537 {
21538 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21539 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21540 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21541 LONGEST l = DW_UNSND (attr);
21542
21543 if (bits < sizeof (*value) * 8)
21544 {
21545 l &= ((LONGEST) 1 << bits) - 1;
21546 *value = l;
21547 }
21548 else if (bits == sizeof (*value) * 8)
21549 *value = l;
21550 else
21551 {
21552 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21553 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21554 return bytes;
21555 }
21556
21557 return NULL;
21558 }
21559
21560 /* Read a constant value from an attribute. Either set *VALUE, or if
21561 the value does not fit in *VALUE, set *BYTES - either already
21562 allocated on the objfile obstack, or newly allocated on OBSTACK,
21563 or, set *BATON, if we translated the constant to a location
21564 expression. */
21565
21566 static void
21567 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21568 const char *name, struct obstack *obstack,
21569 struct dwarf2_cu *cu,
21570 LONGEST *value, const gdb_byte **bytes,
21571 struct dwarf2_locexpr_baton **baton)
21572 {
21573 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21574 struct comp_unit_head *cu_header = &cu->header;
21575 struct dwarf_block *blk;
21576 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21577 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21578
21579 *value = 0;
21580 *bytes = NULL;
21581 *baton = NULL;
21582
21583 switch (attr->form)
21584 {
21585 case DW_FORM_addr:
21586 case DW_FORM_addrx:
21587 case DW_FORM_GNU_addr_index:
21588 {
21589 gdb_byte *data;
21590
21591 if (TYPE_LENGTH (type) != cu_header->addr_size)
21592 dwarf2_const_value_length_mismatch_complaint (name,
21593 cu_header->addr_size,
21594 TYPE_LENGTH (type));
21595 /* Symbols of this form are reasonably rare, so we just
21596 piggyback on the existing location code rather than writing
21597 a new implementation of symbol_computed_ops. */
21598 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21599 (*baton)->per_cu = cu->per_cu;
21600 gdb_assert ((*baton)->per_cu);
21601
21602 (*baton)->size = 2 + cu_header->addr_size;
21603 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21604 (*baton)->data = data;
21605
21606 data[0] = DW_OP_addr;
21607 store_unsigned_integer (&data[1], cu_header->addr_size,
21608 byte_order, DW_ADDR (attr));
21609 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21610 }
21611 break;
21612 case DW_FORM_string:
21613 case DW_FORM_strp:
21614 case DW_FORM_strx:
21615 case DW_FORM_GNU_str_index:
21616 case DW_FORM_GNU_strp_alt:
21617 /* DW_STRING is already allocated on the objfile obstack, point
21618 directly to it. */
21619 *bytes = (const gdb_byte *) DW_STRING (attr);
21620 break;
21621 case DW_FORM_block1:
21622 case DW_FORM_block2:
21623 case DW_FORM_block4:
21624 case DW_FORM_block:
21625 case DW_FORM_exprloc:
21626 case DW_FORM_data16:
21627 blk = DW_BLOCK (attr);
21628 if (TYPE_LENGTH (type) != blk->size)
21629 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21630 TYPE_LENGTH (type));
21631 *bytes = blk->data;
21632 break;
21633
21634 /* The DW_AT_const_value attributes are supposed to carry the
21635 symbol's value "represented as it would be on the target
21636 architecture." By the time we get here, it's already been
21637 converted to host endianness, so we just need to sign- or
21638 zero-extend it as appropriate. */
21639 case DW_FORM_data1:
21640 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21641 break;
21642 case DW_FORM_data2:
21643 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21644 break;
21645 case DW_FORM_data4:
21646 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21647 break;
21648 case DW_FORM_data8:
21649 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21650 break;
21651
21652 case DW_FORM_sdata:
21653 case DW_FORM_implicit_const:
21654 *value = DW_SND (attr);
21655 break;
21656
21657 case DW_FORM_udata:
21658 *value = DW_UNSND (attr);
21659 break;
21660
21661 default:
21662 complaint (_("unsupported const value attribute form: '%s'"),
21663 dwarf_form_name (attr->form));
21664 *value = 0;
21665 break;
21666 }
21667 }
21668
21669
21670 /* Copy constant value from an attribute to a symbol. */
21671
21672 static void
21673 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21674 struct dwarf2_cu *cu)
21675 {
21676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21677 LONGEST value;
21678 const gdb_byte *bytes;
21679 struct dwarf2_locexpr_baton *baton;
21680
21681 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21682 sym->print_name (),
21683 &objfile->objfile_obstack, cu,
21684 &value, &bytes, &baton);
21685
21686 if (baton != NULL)
21687 {
21688 SYMBOL_LOCATION_BATON (sym) = baton;
21689 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21690 }
21691 else if (bytes != NULL)
21692 {
21693 SYMBOL_VALUE_BYTES (sym) = bytes;
21694 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21695 }
21696 else
21697 {
21698 SYMBOL_VALUE (sym) = value;
21699 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21700 }
21701 }
21702
21703 /* Return the type of the die in question using its DW_AT_type attribute. */
21704
21705 static struct type *
21706 die_type (struct die_info *die, struct dwarf2_cu *cu)
21707 {
21708 struct attribute *type_attr;
21709
21710 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21711 if (!type_attr)
21712 {
21713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21714 /* A missing DW_AT_type represents a void type. */
21715 return objfile_type (objfile)->builtin_void;
21716 }
21717
21718 return lookup_die_type (die, type_attr, cu);
21719 }
21720
21721 /* True iff CU's producer generates GNAT Ada auxiliary information
21722 that allows to find parallel types through that information instead
21723 of having to do expensive parallel lookups by type name. */
21724
21725 static int
21726 need_gnat_info (struct dwarf2_cu *cu)
21727 {
21728 /* Assume that the Ada compiler was GNAT, which always produces
21729 the auxiliary information. */
21730 return (cu->language == language_ada);
21731 }
21732
21733 /* Return the auxiliary type of the die in question using its
21734 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21735 attribute is not present. */
21736
21737 static struct type *
21738 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21739 {
21740 struct attribute *type_attr;
21741
21742 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21743 if (!type_attr)
21744 return NULL;
21745
21746 return lookup_die_type (die, type_attr, cu);
21747 }
21748
21749 /* If DIE has a descriptive_type attribute, then set the TYPE's
21750 descriptive type accordingly. */
21751
21752 static void
21753 set_descriptive_type (struct type *type, struct die_info *die,
21754 struct dwarf2_cu *cu)
21755 {
21756 struct type *descriptive_type = die_descriptive_type (die, cu);
21757
21758 if (descriptive_type)
21759 {
21760 ALLOCATE_GNAT_AUX_TYPE (type);
21761 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21762 }
21763 }
21764
21765 /* Return the containing type of the die in question using its
21766 DW_AT_containing_type attribute. */
21767
21768 static struct type *
21769 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21770 {
21771 struct attribute *type_attr;
21772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21773
21774 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21775 if (!type_attr)
21776 error (_("Dwarf Error: Problem turning containing type into gdb type "
21777 "[in module %s]"), objfile_name (objfile));
21778
21779 return lookup_die_type (die, type_attr, cu);
21780 }
21781
21782 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21783
21784 static struct type *
21785 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21786 {
21787 struct dwarf2_per_objfile *dwarf2_per_objfile
21788 = cu->per_cu->dwarf2_per_objfile;
21789 struct objfile *objfile = dwarf2_per_objfile->objfile;
21790 char *saved;
21791
21792 std::string message
21793 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21794 objfile_name (objfile),
21795 sect_offset_str (cu->header.sect_off),
21796 sect_offset_str (die->sect_off));
21797 saved = obstack_strdup (&objfile->objfile_obstack, message);
21798
21799 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21800 }
21801
21802 /* Look up the type of DIE in CU using its type attribute ATTR.
21803 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21804 DW_AT_containing_type.
21805 If there is no type substitute an error marker. */
21806
21807 static struct type *
21808 lookup_die_type (struct die_info *die, const struct attribute *attr,
21809 struct dwarf2_cu *cu)
21810 {
21811 struct dwarf2_per_objfile *dwarf2_per_objfile
21812 = cu->per_cu->dwarf2_per_objfile;
21813 struct objfile *objfile = dwarf2_per_objfile->objfile;
21814 struct type *this_type;
21815
21816 gdb_assert (attr->name == DW_AT_type
21817 || attr->name == DW_AT_GNAT_descriptive_type
21818 || attr->name == DW_AT_containing_type);
21819
21820 /* First see if we have it cached. */
21821
21822 if (attr->form == DW_FORM_GNU_ref_alt)
21823 {
21824 struct dwarf2_per_cu_data *per_cu;
21825 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21826
21827 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21828 dwarf2_per_objfile);
21829 this_type = get_die_type_at_offset (sect_off, per_cu);
21830 }
21831 else if (attr->form_is_ref ())
21832 {
21833 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21834
21835 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21836 }
21837 else if (attr->form == DW_FORM_ref_sig8)
21838 {
21839 ULONGEST signature = DW_SIGNATURE (attr);
21840
21841 return get_signatured_type (die, signature, cu);
21842 }
21843 else
21844 {
21845 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21846 " at %s [in module %s]"),
21847 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21848 objfile_name (objfile));
21849 return build_error_marker_type (cu, die);
21850 }
21851
21852 /* If not cached we need to read it in. */
21853
21854 if (this_type == NULL)
21855 {
21856 struct die_info *type_die = NULL;
21857 struct dwarf2_cu *type_cu = cu;
21858
21859 if (attr->form_is_ref ())
21860 type_die = follow_die_ref (die, attr, &type_cu);
21861 if (type_die == NULL)
21862 return build_error_marker_type (cu, die);
21863 /* If we find the type now, it's probably because the type came
21864 from an inter-CU reference and the type's CU got expanded before
21865 ours. */
21866 this_type = read_type_die (type_die, type_cu);
21867 }
21868
21869 /* If we still don't have a type use an error marker. */
21870
21871 if (this_type == NULL)
21872 return build_error_marker_type (cu, die);
21873
21874 return this_type;
21875 }
21876
21877 /* Return the type in DIE, CU.
21878 Returns NULL for invalid types.
21879
21880 This first does a lookup in die_type_hash,
21881 and only reads the die in if necessary.
21882
21883 NOTE: This can be called when reading in partial or full symbols. */
21884
21885 static struct type *
21886 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21887 {
21888 struct type *this_type;
21889
21890 this_type = get_die_type (die, cu);
21891 if (this_type)
21892 return this_type;
21893
21894 return read_type_die_1 (die, cu);
21895 }
21896
21897 /* Read the type in DIE, CU.
21898 Returns NULL for invalid types. */
21899
21900 static struct type *
21901 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21902 {
21903 struct type *this_type = NULL;
21904
21905 switch (die->tag)
21906 {
21907 case DW_TAG_class_type:
21908 case DW_TAG_interface_type:
21909 case DW_TAG_structure_type:
21910 case DW_TAG_union_type:
21911 this_type = read_structure_type (die, cu);
21912 break;
21913 case DW_TAG_enumeration_type:
21914 this_type = read_enumeration_type (die, cu);
21915 break;
21916 case DW_TAG_subprogram:
21917 case DW_TAG_subroutine_type:
21918 case DW_TAG_inlined_subroutine:
21919 this_type = read_subroutine_type (die, cu);
21920 break;
21921 case DW_TAG_array_type:
21922 this_type = read_array_type (die, cu);
21923 break;
21924 case DW_TAG_set_type:
21925 this_type = read_set_type (die, cu);
21926 break;
21927 case DW_TAG_pointer_type:
21928 this_type = read_tag_pointer_type (die, cu);
21929 break;
21930 case DW_TAG_ptr_to_member_type:
21931 this_type = read_tag_ptr_to_member_type (die, cu);
21932 break;
21933 case DW_TAG_reference_type:
21934 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21935 break;
21936 case DW_TAG_rvalue_reference_type:
21937 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21938 break;
21939 case DW_TAG_const_type:
21940 this_type = read_tag_const_type (die, cu);
21941 break;
21942 case DW_TAG_volatile_type:
21943 this_type = read_tag_volatile_type (die, cu);
21944 break;
21945 case DW_TAG_restrict_type:
21946 this_type = read_tag_restrict_type (die, cu);
21947 break;
21948 case DW_TAG_string_type:
21949 this_type = read_tag_string_type (die, cu);
21950 break;
21951 case DW_TAG_typedef:
21952 this_type = read_typedef (die, cu);
21953 break;
21954 case DW_TAG_subrange_type:
21955 this_type = read_subrange_type (die, cu);
21956 break;
21957 case DW_TAG_base_type:
21958 this_type = read_base_type (die, cu);
21959 break;
21960 case DW_TAG_unspecified_type:
21961 this_type = read_unspecified_type (die, cu);
21962 break;
21963 case DW_TAG_namespace:
21964 this_type = read_namespace_type (die, cu);
21965 break;
21966 case DW_TAG_module:
21967 this_type = read_module_type (die, cu);
21968 break;
21969 case DW_TAG_atomic_type:
21970 this_type = read_tag_atomic_type (die, cu);
21971 break;
21972 default:
21973 complaint (_("unexpected tag in read_type_die: '%s'"),
21974 dwarf_tag_name (die->tag));
21975 break;
21976 }
21977
21978 return this_type;
21979 }
21980
21981 /* See if we can figure out if the class lives in a namespace. We do
21982 this by looking for a member function; its demangled name will
21983 contain namespace info, if there is any.
21984 Return the computed name or NULL.
21985 Space for the result is allocated on the objfile's obstack.
21986 This is the full-die version of guess_partial_die_structure_name.
21987 In this case we know DIE has no useful parent. */
21988
21989 static const char *
21990 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21991 {
21992 struct die_info *spec_die;
21993 struct dwarf2_cu *spec_cu;
21994 struct die_info *child;
21995 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21996
21997 spec_cu = cu;
21998 spec_die = die_specification (die, &spec_cu);
21999 if (spec_die != NULL)
22000 {
22001 die = spec_die;
22002 cu = spec_cu;
22003 }
22004
22005 for (child = die->child;
22006 child != NULL;
22007 child = child->sibling)
22008 {
22009 if (child->tag == DW_TAG_subprogram)
22010 {
22011 const char *linkage_name = dw2_linkage_name (child, cu);
22012
22013 if (linkage_name != NULL)
22014 {
22015 gdb::unique_xmalloc_ptr<char> actual_name
22016 (language_class_name_from_physname (cu->language_defn,
22017 linkage_name));
22018 const char *name = NULL;
22019
22020 if (actual_name != NULL)
22021 {
22022 const char *die_name = dwarf2_name (die, cu);
22023
22024 if (die_name != NULL
22025 && strcmp (die_name, actual_name.get ()) != 0)
22026 {
22027 /* Strip off the class name from the full name.
22028 We want the prefix. */
22029 int die_name_len = strlen (die_name);
22030 int actual_name_len = strlen (actual_name.get ());
22031 const char *ptr = actual_name.get ();
22032
22033 /* Test for '::' as a sanity check. */
22034 if (actual_name_len > die_name_len + 2
22035 && ptr[actual_name_len - die_name_len - 1] == ':')
22036 name = obstack_strndup (
22037 &objfile->per_bfd->storage_obstack,
22038 ptr, actual_name_len - die_name_len - 2);
22039 }
22040 }
22041 return name;
22042 }
22043 }
22044 }
22045
22046 return NULL;
22047 }
22048
22049 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22050 prefix part in such case. See
22051 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22052
22053 static const char *
22054 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22055 {
22056 struct attribute *attr;
22057 const char *base;
22058
22059 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22060 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22061 return NULL;
22062
22063 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22064 return NULL;
22065
22066 attr = dw2_linkage_name_attr (die, cu);
22067 if (attr == NULL || DW_STRING (attr) == NULL)
22068 return NULL;
22069
22070 /* dwarf2_name had to be already called. */
22071 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22072
22073 /* Strip the base name, keep any leading namespaces/classes. */
22074 base = strrchr (DW_STRING (attr), ':');
22075 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22076 return "";
22077
22078 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22079 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22080 DW_STRING (attr),
22081 &base[-1] - DW_STRING (attr));
22082 }
22083
22084 /* Return the name of the namespace/class that DIE is defined within,
22085 or "" if we can't tell. The caller should not xfree the result.
22086
22087 For example, if we're within the method foo() in the following
22088 code:
22089
22090 namespace N {
22091 class C {
22092 void foo () {
22093 }
22094 };
22095 }
22096
22097 then determine_prefix on foo's die will return "N::C". */
22098
22099 static const char *
22100 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22101 {
22102 struct dwarf2_per_objfile *dwarf2_per_objfile
22103 = cu->per_cu->dwarf2_per_objfile;
22104 struct die_info *parent, *spec_die;
22105 struct dwarf2_cu *spec_cu;
22106 struct type *parent_type;
22107 const char *retval;
22108
22109 if (cu->language != language_cplus
22110 && cu->language != language_fortran && cu->language != language_d
22111 && cu->language != language_rust)
22112 return "";
22113
22114 retval = anonymous_struct_prefix (die, cu);
22115 if (retval)
22116 return retval;
22117
22118 /* We have to be careful in the presence of DW_AT_specification.
22119 For example, with GCC 3.4, given the code
22120
22121 namespace N {
22122 void foo() {
22123 // Definition of N::foo.
22124 }
22125 }
22126
22127 then we'll have a tree of DIEs like this:
22128
22129 1: DW_TAG_compile_unit
22130 2: DW_TAG_namespace // N
22131 3: DW_TAG_subprogram // declaration of N::foo
22132 4: DW_TAG_subprogram // definition of N::foo
22133 DW_AT_specification // refers to die #3
22134
22135 Thus, when processing die #4, we have to pretend that we're in
22136 the context of its DW_AT_specification, namely the contex of die
22137 #3. */
22138 spec_cu = cu;
22139 spec_die = die_specification (die, &spec_cu);
22140 if (spec_die == NULL)
22141 parent = die->parent;
22142 else
22143 {
22144 parent = spec_die->parent;
22145 cu = spec_cu;
22146 }
22147
22148 if (parent == NULL)
22149 return "";
22150 else if (parent->building_fullname)
22151 {
22152 const char *name;
22153 const char *parent_name;
22154
22155 /* It has been seen on RealView 2.2 built binaries,
22156 DW_TAG_template_type_param types actually _defined_ as
22157 children of the parent class:
22158
22159 enum E {};
22160 template class <class Enum> Class{};
22161 Class<enum E> class_e;
22162
22163 1: DW_TAG_class_type (Class)
22164 2: DW_TAG_enumeration_type (E)
22165 3: DW_TAG_enumerator (enum1:0)
22166 3: DW_TAG_enumerator (enum2:1)
22167 ...
22168 2: DW_TAG_template_type_param
22169 DW_AT_type DW_FORM_ref_udata (E)
22170
22171 Besides being broken debug info, it can put GDB into an
22172 infinite loop. Consider:
22173
22174 When we're building the full name for Class<E>, we'll start
22175 at Class, and go look over its template type parameters,
22176 finding E. We'll then try to build the full name of E, and
22177 reach here. We're now trying to build the full name of E,
22178 and look over the parent DIE for containing scope. In the
22179 broken case, if we followed the parent DIE of E, we'd again
22180 find Class, and once again go look at its template type
22181 arguments, etc., etc. Simply don't consider such parent die
22182 as source-level parent of this die (it can't be, the language
22183 doesn't allow it), and break the loop here. */
22184 name = dwarf2_name (die, cu);
22185 parent_name = dwarf2_name (parent, cu);
22186 complaint (_("template param type '%s' defined within parent '%s'"),
22187 name ? name : "<unknown>",
22188 parent_name ? parent_name : "<unknown>");
22189 return "";
22190 }
22191 else
22192 switch (parent->tag)
22193 {
22194 case DW_TAG_namespace:
22195 parent_type = read_type_die (parent, cu);
22196 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22197 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22198 Work around this problem here. */
22199 if (cu->language == language_cplus
22200 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22201 return "";
22202 /* We give a name to even anonymous namespaces. */
22203 return TYPE_NAME (parent_type);
22204 case DW_TAG_class_type:
22205 case DW_TAG_interface_type:
22206 case DW_TAG_structure_type:
22207 case DW_TAG_union_type:
22208 case DW_TAG_module:
22209 parent_type = read_type_die (parent, cu);
22210 if (TYPE_NAME (parent_type) != NULL)
22211 return TYPE_NAME (parent_type);
22212 else
22213 /* An anonymous structure is only allowed non-static data
22214 members; no typedefs, no member functions, et cetera.
22215 So it does not need a prefix. */
22216 return "";
22217 case DW_TAG_compile_unit:
22218 case DW_TAG_partial_unit:
22219 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22220 if (cu->language == language_cplus
22221 && !dwarf2_per_objfile->types.empty ()
22222 && die->child != NULL
22223 && (die->tag == DW_TAG_class_type
22224 || die->tag == DW_TAG_structure_type
22225 || die->tag == DW_TAG_union_type))
22226 {
22227 const char *name = guess_full_die_structure_name (die, cu);
22228 if (name != NULL)
22229 return name;
22230 }
22231 return "";
22232 case DW_TAG_subprogram:
22233 /* Nested subroutines in Fortran get a prefix with the name
22234 of the parent's subroutine. */
22235 if (cu->language == language_fortran)
22236 {
22237 if ((die->tag == DW_TAG_subprogram)
22238 && (dwarf2_name (parent, cu) != NULL))
22239 return dwarf2_name (parent, cu);
22240 }
22241 return determine_prefix (parent, cu);
22242 case DW_TAG_enumeration_type:
22243 parent_type = read_type_die (parent, cu);
22244 if (TYPE_DECLARED_CLASS (parent_type))
22245 {
22246 if (TYPE_NAME (parent_type) != NULL)
22247 return TYPE_NAME (parent_type);
22248 return "";
22249 }
22250 /* Fall through. */
22251 default:
22252 return determine_prefix (parent, cu);
22253 }
22254 }
22255
22256 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22257 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22258 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22259 an obconcat, otherwise allocate storage for the result. The CU argument is
22260 used to determine the language and hence, the appropriate separator. */
22261
22262 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22263
22264 static char *
22265 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22266 int physname, struct dwarf2_cu *cu)
22267 {
22268 const char *lead = "";
22269 const char *sep;
22270
22271 if (suffix == NULL || suffix[0] == '\0'
22272 || prefix == NULL || prefix[0] == '\0')
22273 sep = "";
22274 else if (cu->language == language_d)
22275 {
22276 /* For D, the 'main' function could be defined in any module, but it
22277 should never be prefixed. */
22278 if (strcmp (suffix, "D main") == 0)
22279 {
22280 prefix = "";
22281 sep = "";
22282 }
22283 else
22284 sep = ".";
22285 }
22286 else if (cu->language == language_fortran && physname)
22287 {
22288 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22289 DW_AT_MIPS_linkage_name is preferred and used instead. */
22290
22291 lead = "__";
22292 sep = "_MOD_";
22293 }
22294 else
22295 sep = "::";
22296
22297 if (prefix == NULL)
22298 prefix = "";
22299 if (suffix == NULL)
22300 suffix = "";
22301
22302 if (obs == NULL)
22303 {
22304 char *retval
22305 = ((char *)
22306 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22307
22308 strcpy (retval, lead);
22309 strcat (retval, prefix);
22310 strcat (retval, sep);
22311 strcat (retval, suffix);
22312 return retval;
22313 }
22314 else
22315 {
22316 /* We have an obstack. */
22317 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22318 }
22319 }
22320
22321 /* Return sibling of die, NULL if no sibling. */
22322
22323 static struct die_info *
22324 sibling_die (struct die_info *die)
22325 {
22326 return die->sibling;
22327 }
22328
22329 /* Get name of a die, return NULL if not found. */
22330
22331 static const char *
22332 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22333 struct obstack *obstack)
22334 {
22335 if (name && cu->language == language_cplus)
22336 {
22337 std::string canon_name = cp_canonicalize_string (name);
22338
22339 if (!canon_name.empty ())
22340 {
22341 if (canon_name != name)
22342 name = obstack_strdup (obstack, canon_name);
22343 }
22344 }
22345
22346 return name;
22347 }
22348
22349 /* Get name of a die, return NULL if not found.
22350 Anonymous namespaces are converted to their magic string. */
22351
22352 static const char *
22353 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22354 {
22355 struct attribute *attr;
22356 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22357
22358 attr = dwarf2_attr (die, DW_AT_name, cu);
22359 if ((!attr || !DW_STRING (attr))
22360 && die->tag != DW_TAG_namespace
22361 && die->tag != DW_TAG_class_type
22362 && die->tag != DW_TAG_interface_type
22363 && die->tag != DW_TAG_structure_type
22364 && die->tag != DW_TAG_union_type)
22365 return NULL;
22366
22367 switch (die->tag)
22368 {
22369 case DW_TAG_compile_unit:
22370 case DW_TAG_partial_unit:
22371 /* Compilation units have a DW_AT_name that is a filename, not
22372 a source language identifier. */
22373 case DW_TAG_enumeration_type:
22374 case DW_TAG_enumerator:
22375 /* These tags always have simple identifiers already; no need
22376 to canonicalize them. */
22377 return DW_STRING (attr);
22378
22379 case DW_TAG_namespace:
22380 if (attr != NULL && DW_STRING (attr) != NULL)
22381 return DW_STRING (attr);
22382 return CP_ANONYMOUS_NAMESPACE_STR;
22383
22384 case DW_TAG_class_type:
22385 case DW_TAG_interface_type:
22386 case DW_TAG_structure_type:
22387 case DW_TAG_union_type:
22388 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22389 structures or unions. These were of the form "._%d" in GCC 4.1,
22390 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22391 and GCC 4.4. We work around this problem by ignoring these. */
22392 if (attr && DW_STRING (attr)
22393 && (startswith (DW_STRING (attr), "._")
22394 || startswith (DW_STRING (attr), "<anonymous")))
22395 return NULL;
22396
22397 /* GCC might emit a nameless typedef that has a linkage name. See
22398 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22399 if (!attr || DW_STRING (attr) == NULL)
22400 {
22401 attr = dw2_linkage_name_attr (die, cu);
22402 if (attr == NULL || DW_STRING (attr) == NULL)
22403 return NULL;
22404
22405 /* Avoid demangling DW_STRING (attr) the second time on a second
22406 call for the same DIE. */
22407 if (!DW_STRING_IS_CANONICAL (attr))
22408 {
22409 gdb::unique_xmalloc_ptr<char> demangled
22410 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
22411
22412 const char *base;
22413
22414 /* FIXME: we already did this for the partial symbol... */
22415 DW_STRING (attr)
22416 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22417 demangled.get ());
22418 DW_STRING_IS_CANONICAL (attr) = 1;
22419
22420 /* Strip any leading namespaces/classes, keep only the base name.
22421 DW_AT_name for named DIEs does not contain the prefixes. */
22422 base = strrchr (DW_STRING (attr), ':');
22423 if (base && base > DW_STRING (attr) && base[-1] == ':')
22424 return &base[1];
22425 else
22426 return DW_STRING (attr);
22427 }
22428 }
22429 break;
22430
22431 default:
22432 break;
22433 }
22434
22435 if (!DW_STRING_IS_CANONICAL (attr))
22436 {
22437 DW_STRING (attr)
22438 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22439 &objfile->per_bfd->storage_obstack);
22440 DW_STRING_IS_CANONICAL (attr) = 1;
22441 }
22442 return DW_STRING (attr);
22443 }
22444
22445 /* Return the die that this die in an extension of, or NULL if there
22446 is none. *EXT_CU is the CU containing DIE on input, and the CU
22447 containing the return value on output. */
22448
22449 static struct die_info *
22450 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22451 {
22452 struct attribute *attr;
22453
22454 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22455 if (attr == NULL)
22456 return NULL;
22457
22458 return follow_die_ref (die, attr, ext_cu);
22459 }
22460
22461 /* A convenience function that returns an "unknown" DWARF name,
22462 including the value of V. STR is the name of the entity being
22463 printed, e.g., "TAG". */
22464
22465 static const char *
22466 dwarf_unknown (const char *str, unsigned v)
22467 {
22468 char *cell = get_print_cell ();
22469 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22470 return cell;
22471 }
22472
22473 /* Convert a DIE tag into its string name. */
22474
22475 static const char *
22476 dwarf_tag_name (unsigned tag)
22477 {
22478 const char *name = get_DW_TAG_name (tag);
22479
22480 if (name == NULL)
22481 return dwarf_unknown ("TAG", tag);
22482
22483 return name;
22484 }
22485
22486 /* Convert a DWARF attribute code into its string name. */
22487
22488 static const char *
22489 dwarf_attr_name (unsigned attr)
22490 {
22491 const char *name;
22492
22493 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22494 if (attr == DW_AT_MIPS_fde)
22495 return "DW_AT_MIPS_fde";
22496 #else
22497 if (attr == DW_AT_HP_block_index)
22498 return "DW_AT_HP_block_index";
22499 #endif
22500
22501 name = get_DW_AT_name (attr);
22502
22503 if (name == NULL)
22504 return dwarf_unknown ("AT", attr);
22505
22506 return name;
22507 }
22508
22509 /* Convert a unit type to corresponding DW_UT name. */
22510
22511 static const char *
22512 dwarf_unit_type_name (int unit_type) {
22513 switch (unit_type)
22514 {
22515 case 0x01:
22516 return "DW_UT_compile (0x01)";
22517 case 0x02:
22518 return "DW_UT_type (0x02)";
22519 case 0x03:
22520 return "DW_UT_partial (0x03)";
22521 case 0x04:
22522 return "DW_UT_skeleton (0x04)";
22523 case 0x05:
22524 return "DW_UT_split_compile (0x05)";
22525 case 0x06:
22526 return "DW_UT_split_type (0x06)";
22527 case 0x80:
22528 return "DW_UT_lo_user (0x80)";
22529 case 0xff:
22530 return "DW_UT_hi_user (0xff)";
22531 default:
22532 return nullptr;
22533 }
22534 }
22535
22536 /* Convert a DWARF value form code into its string name. */
22537
22538 static const char *
22539 dwarf_form_name (unsigned form)
22540 {
22541 const char *name = get_DW_FORM_name (form);
22542
22543 if (name == NULL)
22544 return dwarf_unknown ("FORM", form);
22545
22546 return name;
22547 }
22548
22549 static const char *
22550 dwarf_bool_name (unsigned mybool)
22551 {
22552 if (mybool)
22553 return "TRUE";
22554 else
22555 return "FALSE";
22556 }
22557
22558 /* Convert a DWARF type code into its string name. */
22559
22560 static const char *
22561 dwarf_type_encoding_name (unsigned enc)
22562 {
22563 const char *name = get_DW_ATE_name (enc);
22564
22565 if (name == NULL)
22566 return dwarf_unknown ("ATE", enc);
22567
22568 return name;
22569 }
22570
22571 static void
22572 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22573 {
22574 unsigned int i;
22575
22576 print_spaces (indent, f);
22577 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22578 dwarf_tag_name (die->tag), die->abbrev,
22579 sect_offset_str (die->sect_off));
22580
22581 if (die->parent != NULL)
22582 {
22583 print_spaces (indent, f);
22584 fprintf_unfiltered (f, " parent at offset: %s\n",
22585 sect_offset_str (die->parent->sect_off));
22586 }
22587
22588 print_spaces (indent, f);
22589 fprintf_unfiltered (f, " has children: %s\n",
22590 dwarf_bool_name (die->child != NULL));
22591
22592 print_spaces (indent, f);
22593 fprintf_unfiltered (f, " attributes:\n");
22594
22595 for (i = 0; i < die->num_attrs; ++i)
22596 {
22597 print_spaces (indent, f);
22598 fprintf_unfiltered (f, " %s (%s) ",
22599 dwarf_attr_name (die->attrs[i].name),
22600 dwarf_form_name (die->attrs[i].form));
22601
22602 switch (die->attrs[i].form)
22603 {
22604 case DW_FORM_addr:
22605 case DW_FORM_addrx:
22606 case DW_FORM_GNU_addr_index:
22607 fprintf_unfiltered (f, "address: ");
22608 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22609 break;
22610 case DW_FORM_block2:
22611 case DW_FORM_block4:
22612 case DW_FORM_block:
22613 case DW_FORM_block1:
22614 fprintf_unfiltered (f, "block: size %s",
22615 pulongest (DW_BLOCK (&die->attrs[i])->size));
22616 break;
22617 case DW_FORM_exprloc:
22618 fprintf_unfiltered (f, "expression: size %s",
22619 pulongest (DW_BLOCK (&die->attrs[i])->size));
22620 break;
22621 case DW_FORM_data16:
22622 fprintf_unfiltered (f, "constant of 16 bytes");
22623 break;
22624 case DW_FORM_ref_addr:
22625 fprintf_unfiltered (f, "ref address: ");
22626 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22627 break;
22628 case DW_FORM_GNU_ref_alt:
22629 fprintf_unfiltered (f, "alt ref address: ");
22630 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22631 break;
22632 case DW_FORM_ref1:
22633 case DW_FORM_ref2:
22634 case DW_FORM_ref4:
22635 case DW_FORM_ref8:
22636 case DW_FORM_ref_udata:
22637 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22638 (long) (DW_UNSND (&die->attrs[i])));
22639 break;
22640 case DW_FORM_data1:
22641 case DW_FORM_data2:
22642 case DW_FORM_data4:
22643 case DW_FORM_data8:
22644 case DW_FORM_udata:
22645 case DW_FORM_sdata:
22646 fprintf_unfiltered (f, "constant: %s",
22647 pulongest (DW_UNSND (&die->attrs[i])));
22648 break;
22649 case DW_FORM_sec_offset:
22650 fprintf_unfiltered (f, "section offset: %s",
22651 pulongest (DW_UNSND (&die->attrs[i])));
22652 break;
22653 case DW_FORM_ref_sig8:
22654 fprintf_unfiltered (f, "signature: %s",
22655 hex_string (DW_SIGNATURE (&die->attrs[i])));
22656 break;
22657 case DW_FORM_string:
22658 case DW_FORM_strp:
22659 case DW_FORM_line_strp:
22660 case DW_FORM_strx:
22661 case DW_FORM_GNU_str_index:
22662 case DW_FORM_GNU_strp_alt:
22663 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22664 DW_STRING (&die->attrs[i])
22665 ? DW_STRING (&die->attrs[i]) : "",
22666 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22667 break;
22668 case DW_FORM_flag:
22669 if (DW_UNSND (&die->attrs[i]))
22670 fprintf_unfiltered (f, "flag: TRUE");
22671 else
22672 fprintf_unfiltered (f, "flag: FALSE");
22673 break;
22674 case DW_FORM_flag_present:
22675 fprintf_unfiltered (f, "flag: TRUE");
22676 break;
22677 case DW_FORM_indirect:
22678 /* The reader will have reduced the indirect form to
22679 the "base form" so this form should not occur. */
22680 fprintf_unfiltered (f,
22681 "unexpected attribute form: DW_FORM_indirect");
22682 break;
22683 case DW_FORM_implicit_const:
22684 fprintf_unfiltered (f, "constant: %s",
22685 plongest (DW_SND (&die->attrs[i])));
22686 break;
22687 default:
22688 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22689 die->attrs[i].form);
22690 break;
22691 }
22692 fprintf_unfiltered (f, "\n");
22693 }
22694 }
22695
22696 static void
22697 dump_die_for_error (struct die_info *die)
22698 {
22699 dump_die_shallow (gdb_stderr, 0, die);
22700 }
22701
22702 static void
22703 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22704 {
22705 int indent = level * 4;
22706
22707 gdb_assert (die != NULL);
22708
22709 if (level >= max_level)
22710 return;
22711
22712 dump_die_shallow (f, indent, die);
22713
22714 if (die->child != NULL)
22715 {
22716 print_spaces (indent, f);
22717 fprintf_unfiltered (f, " Children:");
22718 if (level + 1 < max_level)
22719 {
22720 fprintf_unfiltered (f, "\n");
22721 dump_die_1 (f, level + 1, max_level, die->child);
22722 }
22723 else
22724 {
22725 fprintf_unfiltered (f,
22726 " [not printed, max nesting level reached]\n");
22727 }
22728 }
22729
22730 if (die->sibling != NULL && level > 0)
22731 {
22732 dump_die_1 (f, level, max_level, die->sibling);
22733 }
22734 }
22735
22736 /* This is called from the pdie macro in gdbinit.in.
22737 It's not static so gcc will keep a copy callable from gdb. */
22738
22739 void
22740 dump_die (struct die_info *die, int max_level)
22741 {
22742 dump_die_1 (gdb_stdlog, 0, max_level, die);
22743 }
22744
22745 static void
22746 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22747 {
22748 void **slot;
22749
22750 slot = htab_find_slot_with_hash (cu->die_hash, die,
22751 to_underlying (die->sect_off),
22752 INSERT);
22753
22754 *slot = die;
22755 }
22756
22757 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22758 required kind. */
22759
22760 static sect_offset
22761 dwarf2_get_ref_die_offset (const struct attribute *attr)
22762 {
22763 if (attr->form_is_ref ())
22764 return (sect_offset) DW_UNSND (attr);
22765
22766 complaint (_("unsupported die ref attribute form: '%s'"),
22767 dwarf_form_name (attr->form));
22768 return {};
22769 }
22770
22771 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22772 * the value held by the attribute is not constant. */
22773
22774 static LONGEST
22775 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22776 {
22777 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22778 return DW_SND (attr);
22779 else if (attr->form == DW_FORM_udata
22780 || attr->form == DW_FORM_data1
22781 || attr->form == DW_FORM_data2
22782 || attr->form == DW_FORM_data4
22783 || attr->form == DW_FORM_data8)
22784 return DW_UNSND (attr);
22785 else
22786 {
22787 /* For DW_FORM_data16 see attribute::form_is_constant. */
22788 complaint (_("Attribute value is not a constant (%s)"),
22789 dwarf_form_name (attr->form));
22790 return default_value;
22791 }
22792 }
22793
22794 /* Follow reference or signature attribute ATTR of SRC_DIE.
22795 On entry *REF_CU is the CU of SRC_DIE.
22796 On exit *REF_CU is the CU of the result. */
22797
22798 static struct die_info *
22799 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22800 struct dwarf2_cu **ref_cu)
22801 {
22802 struct die_info *die;
22803
22804 if (attr->form_is_ref ())
22805 die = follow_die_ref (src_die, attr, ref_cu);
22806 else if (attr->form == DW_FORM_ref_sig8)
22807 die = follow_die_sig (src_die, attr, ref_cu);
22808 else
22809 {
22810 dump_die_for_error (src_die);
22811 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22812 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22813 }
22814
22815 return die;
22816 }
22817
22818 /* Follow reference OFFSET.
22819 On entry *REF_CU is the CU of the source die referencing OFFSET.
22820 On exit *REF_CU is the CU of the result.
22821 Returns NULL if OFFSET is invalid. */
22822
22823 static struct die_info *
22824 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22825 struct dwarf2_cu **ref_cu)
22826 {
22827 struct die_info temp_die;
22828 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22829 struct dwarf2_per_objfile *dwarf2_per_objfile
22830 = cu->per_cu->dwarf2_per_objfile;
22831
22832 gdb_assert (cu->per_cu != NULL);
22833
22834 target_cu = cu;
22835
22836 if (cu->per_cu->is_debug_types)
22837 {
22838 /* .debug_types CUs cannot reference anything outside their CU.
22839 If they need to, they have to reference a signatured type via
22840 DW_FORM_ref_sig8. */
22841 if (!offset_in_cu_p (&cu->header, sect_off))
22842 return NULL;
22843 }
22844 else if (offset_in_dwz != cu->per_cu->is_dwz
22845 || !offset_in_cu_p (&cu->header, sect_off))
22846 {
22847 struct dwarf2_per_cu_data *per_cu;
22848
22849 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22850 dwarf2_per_objfile);
22851
22852 /* If necessary, add it to the queue and load its DIEs. */
22853 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22854 load_full_comp_unit (per_cu, false, cu->language);
22855
22856 target_cu = per_cu->cu;
22857 }
22858 else if (cu->dies == NULL)
22859 {
22860 /* We're loading full DIEs during partial symbol reading. */
22861 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22862 load_full_comp_unit (cu->per_cu, false, language_minimal);
22863 }
22864
22865 *ref_cu = target_cu;
22866 temp_die.sect_off = sect_off;
22867
22868 if (target_cu != cu)
22869 target_cu->ancestor = cu;
22870
22871 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22872 &temp_die,
22873 to_underlying (sect_off));
22874 }
22875
22876 /* Follow reference attribute ATTR of SRC_DIE.
22877 On entry *REF_CU is the CU of SRC_DIE.
22878 On exit *REF_CU is the CU of the result. */
22879
22880 static struct die_info *
22881 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22882 struct dwarf2_cu **ref_cu)
22883 {
22884 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22885 struct dwarf2_cu *cu = *ref_cu;
22886 struct die_info *die;
22887
22888 die = follow_die_offset (sect_off,
22889 (attr->form == DW_FORM_GNU_ref_alt
22890 || cu->per_cu->is_dwz),
22891 ref_cu);
22892 if (!die)
22893 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22894 "at %s [in module %s]"),
22895 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22896 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22897
22898 return die;
22899 }
22900
22901 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22902 Returned value is intended for DW_OP_call*. Returned
22903 dwarf2_locexpr_baton->data has lifetime of
22904 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22905
22906 struct dwarf2_locexpr_baton
22907 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22908 struct dwarf2_per_cu_data *per_cu,
22909 CORE_ADDR (*get_frame_pc) (void *baton),
22910 void *baton, bool resolve_abstract_p)
22911 {
22912 struct dwarf2_cu *cu;
22913 struct die_info *die;
22914 struct attribute *attr;
22915 struct dwarf2_locexpr_baton retval;
22916 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22917 struct objfile *objfile = dwarf2_per_objfile->objfile;
22918
22919 if (per_cu->cu == NULL)
22920 load_cu (per_cu, false);
22921 cu = per_cu->cu;
22922 if (cu == NULL)
22923 {
22924 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22925 Instead just throw an error, not much else we can do. */
22926 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22927 sect_offset_str (sect_off), objfile_name (objfile));
22928 }
22929
22930 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22931 if (!die)
22932 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22933 sect_offset_str (sect_off), objfile_name (objfile));
22934
22935 attr = dwarf2_attr (die, DW_AT_location, cu);
22936 if (!attr && resolve_abstract_p
22937 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22938 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22939 {
22940 CORE_ADDR pc = (*get_frame_pc) (baton);
22941 CORE_ADDR baseaddr = objfile->text_section_offset ();
22942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22943
22944 for (const auto &cand_off
22945 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22946 {
22947 struct dwarf2_cu *cand_cu = cu;
22948 struct die_info *cand
22949 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22950 if (!cand
22951 || !cand->parent
22952 || cand->parent->tag != DW_TAG_subprogram)
22953 continue;
22954
22955 CORE_ADDR pc_low, pc_high;
22956 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22957 if (pc_low == ((CORE_ADDR) -1))
22958 continue;
22959 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22960 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22961 if (!(pc_low <= pc && pc < pc_high))
22962 continue;
22963
22964 die = cand;
22965 attr = dwarf2_attr (die, DW_AT_location, cu);
22966 break;
22967 }
22968 }
22969
22970 if (!attr)
22971 {
22972 /* DWARF: "If there is no such attribute, then there is no effect.".
22973 DATA is ignored if SIZE is 0. */
22974
22975 retval.data = NULL;
22976 retval.size = 0;
22977 }
22978 else if (attr->form_is_section_offset ())
22979 {
22980 struct dwarf2_loclist_baton loclist_baton;
22981 CORE_ADDR pc = (*get_frame_pc) (baton);
22982 size_t size;
22983
22984 fill_in_loclist_baton (cu, &loclist_baton, attr);
22985
22986 retval.data = dwarf2_find_location_expression (&loclist_baton,
22987 &size, pc);
22988 retval.size = size;
22989 }
22990 else
22991 {
22992 if (!attr->form_is_block ())
22993 error (_("Dwarf Error: DIE at %s referenced in module %s "
22994 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22995 sect_offset_str (sect_off), objfile_name (objfile));
22996
22997 retval.data = DW_BLOCK (attr)->data;
22998 retval.size = DW_BLOCK (attr)->size;
22999 }
23000 retval.per_cu = cu->per_cu;
23001
23002 age_cached_comp_units (dwarf2_per_objfile);
23003
23004 return retval;
23005 }
23006
23007 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23008 offset. */
23009
23010 struct dwarf2_locexpr_baton
23011 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23012 struct dwarf2_per_cu_data *per_cu,
23013 CORE_ADDR (*get_frame_pc) (void *baton),
23014 void *baton)
23015 {
23016 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23017
23018 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23019 }
23020
23021 /* Write a constant of a given type as target-ordered bytes into
23022 OBSTACK. */
23023
23024 static const gdb_byte *
23025 write_constant_as_bytes (struct obstack *obstack,
23026 enum bfd_endian byte_order,
23027 struct type *type,
23028 ULONGEST value,
23029 LONGEST *len)
23030 {
23031 gdb_byte *result;
23032
23033 *len = TYPE_LENGTH (type);
23034 result = (gdb_byte *) obstack_alloc (obstack, *len);
23035 store_unsigned_integer (result, *len, byte_order, value);
23036
23037 return result;
23038 }
23039
23040 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23041 pointer to the constant bytes and set LEN to the length of the
23042 data. If memory is needed, allocate it on OBSTACK. If the DIE
23043 does not have a DW_AT_const_value, return NULL. */
23044
23045 const gdb_byte *
23046 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23047 struct dwarf2_per_cu_data *per_cu,
23048 struct obstack *obstack,
23049 LONGEST *len)
23050 {
23051 struct dwarf2_cu *cu;
23052 struct die_info *die;
23053 struct attribute *attr;
23054 const gdb_byte *result = NULL;
23055 struct type *type;
23056 LONGEST value;
23057 enum bfd_endian byte_order;
23058 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23059
23060 if (per_cu->cu == NULL)
23061 load_cu (per_cu, false);
23062 cu = per_cu->cu;
23063 if (cu == NULL)
23064 {
23065 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23066 Instead just throw an error, not much else we can do. */
23067 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23068 sect_offset_str (sect_off), objfile_name (objfile));
23069 }
23070
23071 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23072 if (!die)
23073 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23074 sect_offset_str (sect_off), objfile_name (objfile));
23075
23076 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23077 if (attr == NULL)
23078 return NULL;
23079
23080 byte_order = (bfd_big_endian (objfile->obfd)
23081 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23082
23083 switch (attr->form)
23084 {
23085 case DW_FORM_addr:
23086 case DW_FORM_addrx:
23087 case DW_FORM_GNU_addr_index:
23088 {
23089 gdb_byte *tem;
23090
23091 *len = cu->header.addr_size;
23092 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23093 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23094 result = tem;
23095 }
23096 break;
23097 case DW_FORM_string:
23098 case DW_FORM_strp:
23099 case DW_FORM_strx:
23100 case DW_FORM_GNU_str_index:
23101 case DW_FORM_GNU_strp_alt:
23102 /* DW_STRING is already allocated on the objfile obstack, point
23103 directly to it. */
23104 result = (const gdb_byte *) DW_STRING (attr);
23105 *len = strlen (DW_STRING (attr));
23106 break;
23107 case DW_FORM_block1:
23108 case DW_FORM_block2:
23109 case DW_FORM_block4:
23110 case DW_FORM_block:
23111 case DW_FORM_exprloc:
23112 case DW_FORM_data16:
23113 result = DW_BLOCK (attr)->data;
23114 *len = DW_BLOCK (attr)->size;
23115 break;
23116
23117 /* The DW_AT_const_value attributes are supposed to carry the
23118 symbol's value "represented as it would be on the target
23119 architecture." By the time we get here, it's already been
23120 converted to host endianness, so we just need to sign- or
23121 zero-extend it as appropriate. */
23122 case DW_FORM_data1:
23123 type = die_type (die, cu);
23124 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23125 if (result == NULL)
23126 result = write_constant_as_bytes (obstack, byte_order,
23127 type, value, len);
23128 break;
23129 case DW_FORM_data2:
23130 type = die_type (die, cu);
23131 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23132 if (result == NULL)
23133 result = write_constant_as_bytes (obstack, byte_order,
23134 type, value, len);
23135 break;
23136 case DW_FORM_data4:
23137 type = die_type (die, cu);
23138 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23139 if (result == NULL)
23140 result = write_constant_as_bytes (obstack, byte_order,
23141 type, value, len);
23142 break;
23143 case DW_FORM_data8:
23144 type = die_type (die, cu);
23145 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23146 if (result == NULL)
23147 result = write_constant_as_bytes (obstack, byte_order,
23148 type, value, len);
23149 break;
23150
23151 case DW_FORM_sdata:
23152 case DW_FORM_implicit_const:
23153 type = die_type (die, cu);
23154 result = write_constant_as_bytes (obstack, byte_order,
23155 type, DW_SND (attr), len);
23156 break;
23157
23158 case DW_FORM_udata:
23159 type = die_type (die, cu);
23160 result = write_constant_as_bytes (obstack, byte_order,
23161 type, DW_UNSND (attr), len);
23162 break;
23163
23164 default:
23165 complaint (_("unsupported const value attribute form: '%s'"),
23166 dwarf_form_name (attr->form));
23167 break;
23168 }
23169
23170 return result;
23171 }
23172
23173 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23174 valid type for this die is found. */
23175
23176 struct type *
23177 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23178 struct dwarf2_per_cu_data *per_cu)
23179 {
23180 struct dwarf2_cu *cu;
23181 struct die_info *die;
23182
23183 if (per_cu->cu == NULL)
23184 load_cu (per_cu, false);
23185 cu = per_cu->cu;
23186 if (!cu)
23187 return NULL;
23188
23189 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23190 if (!die)
23191 return NULL;
23192
23193 return die_type (die, cu);
23194 }
23195
23196 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23197 PER_CU. */
23198
23199 struct type *
23200 dwarf2_get_die_type (cu_offset die_offset,
23201 struct dwarf2_per_cu_data *per_cu)
23202 {
23203 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23204 return get_die_type_at_offset (die_offset_sect, per_cu);
23205 }
23206
23207 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23208 On entry *REF_CU is the CU of SRC_DIE.
23209 On exit *REF_CU is the CU of the result.
23210 Returns NULL if the referenced DIE isn't found. */
23211
23212 static struct die_info *
23213 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23214 struct dwarf2_cu **ref_cu)
23215 {
23216 struct die_info temp_die;
23217 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23218 struct die_info *die;
23219
23220 /* While it might be nice to assert sig_type->type == NULL here,
23221 we can get here for DW_AT_imported_declaration where we need
23222 the DIE not the type. */
23223
23224 /* If necessary, add it to the queue and load its DIEs. */
23225
23226 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23227 read_signatured_type (sig_type);
23228
23229 sig_cu = sig_type->per_cu.cu;
23230 gdb_assert (sig_cu != NULL);
23231 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23232 temp_die.sect_off = sig_type->type_offset_in_section;
23233 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23234 to_underlying (temp_die.sect_off));
23235 if (die)
23236 {
23237 struct dwarf2_per_objfile *dwarf2_per_objfile
23238 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23239
23240 /* For .gdb_index version 7 keep track of included TUs.
23241 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23242 if (dwarf2_per_objfile->index_table != NULL
23243 && dwarf2_per_objfile->index_table->version <= 7)
23244 {
23245 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23246 }
23247
23248 *ref_cu = sig_cu;
23249 if (sig_cu != cu)
23250 sig_cu->ancestor = cu;
23251
23252 return die;
23253 }
23254
23255 return NULL;
23256 }
23257
23258 /* Follow signatured type referenced by ATTR in SRC_DIE.
23259 On entry *REF_CU is the CU of SRC_DIE.
23260 On exit *REF_CU is the CU of the result.
23261 The result is the DIE of the type.
23262 If the referenced type cannot be found an error is thrown. */
23263
23264 static struct die_info *
23265 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23266 struct dwarf2_cu **ref_cu)
23267 {
23268 ULONGEST signature = DW_SIGNATURE (attr);
23269 struct signatured_type *sig_type;
23270 struct die_info *die;
23271
23272 gdb_assert (attr->form == DW_FORM_ref_sig8);
23273
23274 sig_type = lookup_signatured_type (*ref_cu, signature);
23275 /* sig_type will be NULL if the signatured type is missing from
23276 the debug info. */
23277 if (sig_type == NULL)
23278 {
23279 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23280 " from DIE at %s [in module %s]"),
23281 hex_string (signature), sect_offset_str (src_die->sect_off),
23282 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23283 }
23284
23285 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23286 if (die == NULL)
23287 {
23288 dump_die_for_error (src_die);
23289 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23290 " from DIE at %s [in module %s]"),
23291 hex_string (signature), sect_offset_str (src_die->sect_off),
23292 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23293 }
23294
23295 return die;
23296 }
23297
23298 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23299 reading in and processing the type unit if necessary. */
23300
23301 static struct type *
23302 get_signatured_type (struct die_info *die, ULONGEST signature,
23303 struct dwarf2_cu *cu)
23304 {
23305 struct dwarf2_per_objfile *dwarf2_per_objfile
23306 = cu->per_cu->dwarf2_per_objfile;
23307 struct signatured_type *sig_type;
23308 struct dwarf2_cu *type_cu;
23309 struct die_info *type_die;
23310 struct type *type;
23311
23312 sig_type = lookup_signatured_type (cu, signature);
23313 /* sig_type will be NULL if the signatured type is missing from
23314 the debug info. */
23315 if (sig_type == NULL)
23316 {
23317 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23318 " from DIE at %s [in module %s]"),
23319 hex_string (signature), sect_offset_str (die->sect_off),
23320 objfile_name (dwarf2_per_objfile->objfile));
23321 return build_error_marker_type (cu, die);
23322 }
23323
23324 /* If we already know the type we're done. */
23325 if (sig_type->type != NULL)
23326 return sig_type->type;
23327
23328 type_cu = cu;
23329 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23330 if (type_die != NULL)
23331 {
23332 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23333 is created. This is important, for example, because for c++ classes
23334 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23335 type = read_type_die (type_die, type_cu);
23336 if (type == NULL)
23337 {
23338 complaint (_("Dwarf Error: Cannot build signatured type %s"
23339 " referenced from DIE at %s [in module %s]"),
23340 hex_string (signature), sect_offset_str (die->sect_off),
23341 objfile_name (dwarf2_per_objfile->objfile));
23342 type = build_error_marker_type (cu, die);
23343 }
23344 }
23345 else
23346 {
23347 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23348 " from DIE at %s [in module %s]"),
23349 hex_string (signature), sect_offset_str (die->sect_off),
23350 objfile_name (dwarf2_per_objfile->objfile));
23351 type = build_error_marker_type (cu, die);
23352 }
23353 sig_type->type = type;
23354
23355 return type;
23356 }
23357
23358 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23359 reading in and processing the type unit if necessary. */
23360
23361 static struct type *
23362 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23363 struct dwarf2_cu *cu) /* ARI: editCase function */
23364 {
23365 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23366 if (attr->form_is_ref ())
23367 {
23368 struct dwarf2_cu *type_cu = cu;
23369 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23370
23371 return read_type_die (type_die, type_cu);
23372 }
23373 else if (attr->form == DW_FORM_ref_sig8)
23374 {
23375 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23376 }
23377 else
23378 {
23379 struct dwarf2_per_objfile *dwarf2_per_objfile
23380 = cu->per_cu->dwarf2_per_objfile;
23381
23382 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23383 " at %s [in module %s]"),
23384 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23385 objfile_name (dwarf2_per_objfile->objfile));
23386 return build_error_marker_type (cu, die);
23387 }
23388 }
23389
23390 /* Load the DIEs associated with type unit PER_CU into memory. */
23391
23392 static void
23393 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23394 {
23395 struct signatured_type *sig_type;
23396
23397 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23398 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23399
23400 /* We have the per_cu, but we need the signatured_type.
23401 Fortunately this is an easy translation. */
23402 gdb_assert (per_cu->is_debug_types);
23403 sig_type = (struct signatured_type *) per_cu;
23404
23405 gdb_assert (per_cu->cu == NULL);
23406
23407 read_signatured_type (sig_type);
23408
23409 gdb_assert (per_cu->cu != NULL);
23410 }
23411
23412 /* Read in a signatured type and build its CU and DIEs.
23413 If the type is a stub for the real type in a DWO file,
23414 read in the real type from the DWO file as well. */
23415
23416 static void
23417 read_signatured_type (struct signatured_type *sig_type)
23418 {
23419 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23420
23421 gdb_assert (per_cu->is_debug_types);
23422 gdb_assert (per_cu->cu == NULL);
23423
23424 cutu_reader reader (per_cu, NULL, 0, 1, false);
23425
23426 if (!reader.dummy_p)
23427 {
23428 struct dwarf2_cu *cu = reader.cu;
23429 const gdb_byte *info_ptr = reader.info_ptr;
23430
23431 gdb_assert (cu->die_hash == NULL);
23432 cu->die_hash =
23433 htab_create_alloc_ex (cu->header.length / 12,
23434 die_hash,
23435 die_eq,
23436 NULL,
23437 &cu->comp_unit_obstack,
23438 hashtab_obstack_allocate,
23439 dummy_obstack_deallocate);
23440
23441 if (reader.comp_unit_die->has_children)
23442 reader.comp_unit_die->child
23443 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23444 reader.comp_unit_die);
23445 cu->dies = reader.comp_unit_die;
23446 /* comp_unit_die is not stored in die_hash, no need. */
23447
23448 /* We try not to read any attributes in this function, because
23449 not all CUs needed for references have been loaded yet, and
23450 symbol table processing isn't initialized. But we have to
23451 set the CU language, or we won't be able to build types
23452 correctly. Similarly, if we do not read the producer, we can
23453 not apply producer-specific interpretation. */
23454 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23455 }
23456
23457 sig_type->per_cu.tu_read = 1;
23458 }
23459
23460 /* Decode simple location descriptions.
23461 Given a pointer to a dwarf block that defines a location, compute
23462 the location and return the value.
23463
23464 NOTE drow/2003-11-18: This function is called in two situations
23465 now: for the address of static or global variables (partial symbols
23466 only) and for offsets into structures which are expected to be
23467 (more or less) constant. The partial symbol case should go away,
23468 and only the constant case should remain. That will let this
23469 function complain more accurately. A few special modes are allowed
23470 without complaint for global variables (for instance, global
23471 register values and thread-local values).
23472
23473 A location description containing no operations indicates that the
23474 object is optimized out. The return value is 0 for that case.
23475 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23476 callers will only want a very basic result and this can become a
23477 complaint.
23478
23479 Note that stack[0] is unused except as a default error return. */
23480
23481 static CORE_ADDR
23482 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23483 {
23484 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23485 size_t i;
23486 size_t size = blk->size;
23487 const gdb_byte *data = blk->data;
23488 CORE_ADDR stack[64];
23489 int stacki;
23490 unsigned int bytes_read, unsnd;
23491 gdb_byte op;
23492
23493 i = 0;
23494 stacki = 0;
23495 stack[stacki] = 0;
23496 stack[++stacki] = 0;
23497
23498 while (i < size)
23499 {
23500 op = data[i++];
23501 switch (op)
23502 {
23503 case DW_OP_lit0:
23504 case DW_OP_lit1:
23505 case DW_OP_lit2:
23506 case DW_OP_lit3:
23507 case DW_OP_lit4:
23508 case DW_OP_lit5:
23509 case DW_OP_lit6:
23510 case DW_OP_lit7:
23511 case DW_OP_lit8:
23512 case DW_OP_lit9:
23513 case DW_OP_lit10:
23514 case DW_OP_lit11:
23515 case DW_OP_lit12:
23516 case DW_OP_lit13:
23517 case DW_OP_lit14:
23518 case DW_OP_lit15:
23519 case DW_OP_lit16:
23520 case DW_OP_lit17:
23521 case DW_OP_lit18:
23522 case DW_OP_lit19:
23523 case DW_OP_lit20:
23524 case DW_OP_lit21:
23525 case DW_OP_lit22:
23526 case DW_OP_lit23:
23527 case DW_OP_lit24:
23528 case DW_OP_lit25:
23529 case DW_OP_lit26:
23530 case DW_OP_lit27:
23531 case DW_OP_lit28:
23532 case DW_OP_lit29:
23533 case DW_OP_lit30:
23534 case DW_OP_lit31:
23535 stack[++stacki] = op - DW_OP_lit0;
23536 break;
23537
23538 case DW_OP_reg0:
23539 case DW_OP_reg1:
23540 case DW_OP_reg2:
23541 case DW_OP_reg3:
23542 case DW_OP_reg4:
23543 case DW_OP_reg5:
23544 case DW_OP_reg6:
23545 case DW_OP_reg7:
23546 case DW_OP_reg8:
23547 case DW_OP_reg9:
23548 case DW_OP_reg10:
23549 case DW_OP_reg11:
23550 case DW_OP_reg12:
23551 case DW_OP_reg13:
23552 case DW_OP_reg14:
23553 case DW_OP_reg15:
23554 case DW_OP_reg16:
23555 case DW_OP_reg17:
23556 case DW_OP_reg18:
23557 case DW_OP_reg19:
23558 case DW_OP_reg20:
23559 case DW_OP_reg21:
23560 case DW_OP_reg22:
23561 case DW_OP_reg23:
23562 case DW_OP_reg24:
23563 case DW_OP_reg25:
23564 case DW_OP_reg26:
23565 case DW_OP_reg27:
23566 case DW_OP_reg28:
23567 case DW_OP_reg29:
23568 case DW_OP_reg30:
23569 case DW_OP_reg31:
23570 stack[++stacki] = op - DW_OP_reg0;
23571 if (i < size)
23572 dwarf2_complex_location_expr_complaint ();
23573 break;
23574
23575 case DW_OP_regx:
23576 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23577 i += bytes_read;
23578 stack[++stacki] = unsnd;
23579 if (i < size)
23580 dwarf2_complex_location_expr_complaint ();
23581 break;
23582
23583 case DW_OP_addr:
23584 stack[++stacki] = read_address (objfile->obfd, &data[i],
23585 cu, &bytes_read);
23586 i += bytes_read;
23587 break;
23588
23589 case DW_OP_const1u:
23590 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23591 i += 1;
23592 break;
23593
23594 case DW_OP_const1s:
23595 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23596 i += 1;
23597 break;
23598
23599 case DW_OP_const2u:
23600 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23601 i += 2;
23602 break;
23603
23604 case DW_OP_const2s:
23605 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23606 i += 2;
23607 break;
23608
23609 case DW_OP_const4u:
23610 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23611 i += 4;
23612 break;
23613
23614 case DW_OP_const4s:
23615 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23616 i += 4;
23617 break;
23618
23619 case DW_OP_const8u:
23620 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23621 i += 8;
23622 break;
23623
23624 case DW_OP_constu:
23625 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23626 &bytes_read);
23627 i += bytes_read;
23628 break;
23629
23630 case DW_OP_consts:
23631 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23632 i += bytes_read;
23633 break;
23634
23635 case DW_OP_dup:
23636 stack[stacki + 1] = stack[stacki];
23637 stacki++;
23638 break;
23639
23640 case DW_OP_plus:
23641 stack[stacki - 1] += stack[stacki];
23642 stacki--;
23643 break;
23644
23645 case DW_OP_plus_uconst:
23646 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23647 &bytes_read);
23648 i += bytes_read;
23649 break;
23650
23651 case DW_OP_minus:
23652 stack[stacki - 1] -= stack[stacki];
23653 stacki--;
23654 break;
23655
23656 case DW_OP_deref:
23657 /* If we're not the last op, then we definitely can't encode
23658 this using GDB's address_class enum. This is valid for partial
23659 global symbols, although the variable's address will be bogus
23660 in the psymtab. */
23661 if (i < size)
23662 dwarf2_complex_location_expr_complaint ();
23663 break;
23664
23665 case DW_OP_GNU_push_tls_address:
23666 case DW_OP_form_tls_address:
23667 /* The top of the stack has the offset from the beginning
23668 of the thread control block at which the variable is located. */
23669 /* Nothing should follow this operator, so the top of stack would
23670 be returned. */
23671 /* This is valid for partial global symbols, but the variable's
23672 address will be bogus in the psymtab. Make it always at least
23673 non-zero to not look as a variable garbage collected by linker
23674 which have DW_OP_addr 0. */
23675 if (i < size)
23676 dwarf2_complex_location_expr_complaint ();
23677 stack[stacki]++;
23678 break;
23679
23680 case DW_OP_GNU_uninit:
23681 break;
23682
23683 case DW_OP_addrx:
23684 case DW_OP_GNU_addr_index:
23685 case DW_OP_GNU_const_index:
23686 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23687 &bytes_read);
23688 i += bytes_read;
23689 break;
23690
23691 default:
23692 {
23693 const char *name = get_DW_OP_name (op);
23694
23695 if (name)
23696 complaint (_("unsupported stack op: '%s'"),
23697 name);
23698 else
23699 complaint (_("unsupported stack op: '%02x'"),
23700 op);
23701 }
23702
23703 return (stack[stacki]);
23704 }
23705
23706 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23707 outside of the allocated space. Also enforce minimum>0. */
23708 if (stacki >= ARRAY_SIZE (stack) - 1)
23709 {
23710 complaint (_("location description stack overflow"));
23711 return 0;
23712 }
23713
23714 if (stacki <= 0)
23715 {
23716 complaint (_("location description stack underflow"));
23717 return 0;
23718 }
23719 }
23720 return (stack[stacki]);
23721 }
23722
23723 /* memory allocation interface */
23724
23725 static struct dwarf_block *
23726 dwarf_alloc_block (struct dwarf2_cu *cu)
23727 {
23728 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23729 }
23730
23731 static struct die_info *
23732 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23733 {
23734 struct die_info *die;
23735 size_t size = sizeof (struct die_info);
23736
23737 if (num_attrs > 1)
23738 size += (num_attrs - 1) * sizeof (struct attribute);
23739
23740 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23741 memset (die, 0, sizeof (struct die_info));
23742 return (die);
23743 }
23744
23745 \f
23746 /* Macro support. */
23747
23748 /* Return file name relative to the compilation directory of file number I in
23749 *LH's file name table. The result is allocated using xmalloc; the caller is
23750 responsible for freeing it. */
23751
23752 static char *
23753 file_file_name (int file, struct line_header *lh)
23754 {
23755 /* Is the file number a valid index into the line header's file name
23756 table? Remember that file numbers start with one, not zero. */
23757 if (lh->is_valid_file_index (file))
23758 {
23759 const file_entry *fe = lh->file_name_at (file);
23760
23761 if (!IS_ABSOLUTE_PATH (fe->name))
23762 {
23763 const char *dir = fe->include_dir (lh);
23764 if (dir != NULL)
23765 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
23766 }
23767 return xstrdup (fe->name);
23768 }
23769 else
23770 {
23771 /* The compiler produced a bogus file number. We can at least
23772 record the macro definitions made in the file, even if we
23773 won't be able to find the file by name. */
23774 char fake_name[80];
23775
23776 xsnprintf (fake_name, sizeof (fake_name),
23777 "<bad macro file number %d>", file);
23778
23779 complaint (_("bad file number in macro information (%d)"),
23780 file);
23781
23782 return xstrdup (fake_name);
23783 }
23784 }
23785
23786 /* Return the full name of file number I in *LH's file name table.
23787 Use COMP_DIR as the name of the current directory of the
23788 compilation. The result is allocated using xmalloc; the caller is
23789 responsible for freeing it. */
23790 static char *
23791 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23792 {
23793 /* Is the file number a valid index into the line header's file name
23794 table? Remember that file numbers start with one, not zero. */
23795 if (lh->is_valid_file_index (file))
23796 {
23797 char *relative = file_file_name (file, lh);
23798
23799 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23800 return relative;
23801 return reconcat (relative, comp_dir, SLASH_STRING,
23802 relative, (char *) NULL);
23803 }
23804 else
23805 return file_file_name (file, lh);
23806 }
23807
23808
23809 static struct macro_source_file *
23810 macro_start_file (struct dwarf2_cu *cu,
23811 int file, int line,
23812 struct macro_source_file *current_file,
23813 struct line_header *lh)
23814 {
23815 /* File name relative to the compilation directory of this source file. */
23816 char *file_name = file_file_name (file, lh);
23817
23818 if (! current_file)
23819 {
23820 /* Note: We don't create a macro table for this compilation unit
23821 at all until we actually get a filename. */
23822 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23823
23824 /* If we have no current file, then this must be the start_file
23825 directive for the compilation unit's main source file. */
23826 current_file = macro_set_main (macro_table, file_name);
23827 macro_define_special (macro_table);
23828 }
23829 else
23830 current_file = macro_include (current_file, line, file_name);
23831
23832 xfree (file_name);
23833
23834 return current_file;
23835 }
23836
23837 static const char *
23838 consume_improper_spaces (const char *p, const char *body)
23839 {
23840 if (*p == ' ')
23841 {
23842 complaint (_("macro definition contains spaces "
23843 "in formal argument list:\n`%s'"),
23844 body);
23845
23846 while (*p == ' ')
23847 p++;
23848 }
23849
23850 return p;
23851 }
23852
23853
23854 static void
23855 parse_macro_definition (struct macro_source_file *file, int line,
23856 const char *body)
23857 {
23858 const char *p;
23859
23860 /* The body string takes one of two forms. For object-like macro
23861 definitions, it should be:
23862
23863 <macro name> " " <definition>
23864
23865 For function-like macro definitions, it should be:
23866
23867 <macro name> "() " <definition>
23868 or
23869 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23870
23871 Spaces may appear only where explicitly indicated, and in the
23872 <definition>.
23873
23874 The Dwarf 2 spec says that an object-like macro's name is always
23875 followed by a space, but versions of GCC around March 2002 omit
23876 the space when the macro's definition is the empty string.
23877
23878 The Dwarf 2 spec says that there should be no spaces between the
23879 formal arguments in a function-like macro's formal argument list,
23880 but versions of GCC around March 2002 include spaces after the
23881 commas. */
23882
23883
23884 /* Find the extent of the macro name. The macro name is terminated
23885 by either a space or null character (for an object-like macro) or
23886 an opening paren (for a function-like macro). */
23887 for (p = body; *p; p++)
23888 if (*p == ' ' || *p == '(')
23889 break;
23890
23891 if (*p == ' ' || *p == '\0')
23892 {
23893 /* It's an object-like macro. */
23894 int name_len = p - body;
23895 std::string name (body, name_len);
23896 const char *replacement;
23897
23898 if (*p == ' ')
23899 replacement = body + name_len + 1;
23900 else
23901 {
23902 dwarf2_macro_malformed_definition_complaint (body);
23903 replacement = body + name_len;
23904 }
23905
23906 macro_define_object (file, line, name.c_str (), replacement);
23907 }
23908 else if (*p == '(')
23909 {
23910 /* It's a function-like macro. */
23911 std::string name (body, p - body);
23912 int argc = 0;
23913 int argv_size = 1;
23914 char **argv = XNEWVEC (char *, argv_size);
23915
23916 p++;
23917
23918 p = consume_improper_spaces (p, body);
23919
23920 /* Parse the formal argument list. */
23921 while (*p && *p != ')')
23922 {
23923 /* Find the extent of the current argument name. */
23924 const char *arg_start = p;
23925
23926 while (*p && *p != ',' && *p != ')' && *p != ' ')
23927 p++;
23928
23929 if (! *p || p == arg_start)
23930 dwarf2_macro_malformed_definition_complaint (body);
23931 else
23932 {
23933 /* Make sure argv has room for the new argument. */
23934 if (argc >= argv_size)
23935 {
23936 argv_size *= 2;
23937 argv = XRESIZEVEC (char *, argv, argv_size);
23938 }
23939
23940 argv[argc++] = savestring (arg_start, p - arg_start);
23941 }
23942
23943 p = consume_improper_spaces (p, body);
23944
23945 /* Consume the comma, if present. */
23946 if (*p == ',')
23947 {
23948 p++;
23949
23950 p = consume_improper_spaces (p, body);
23951 }
23952 }
23953
23954 if (*p == ')')
23955 {
23956 p++;
23957
23958 if (*p == ' ')
23959 /* Perfectly formed definition, no complaints. */
23960 macro_define_function (file, line, name.c_str (),
23961 argc, (const char **) argv,
23962 p + 1);
23963 else if (*p == '\0')
23964 {
23965 /* Complain, but do define it. */
23966 dwarf2_macro_malformed_definition_complaint (body);
23967 macro_define_function (file, line, name.c_str (),
23968 argc, (const char **) argv,
23969 p);
23970 }
23971 else
23972 /* Just complain. */
23973 dwarf2_macro_malformed_definition_complaint (body);
23974 }
23975 else
23976 /* Just complain. */
23977 dwarf2_macro_malformed_definition_complaint (body);
23978
23979 {
23980 int i;
23981
23982 for (i = 0; i < argc; i++)
23983 xfree (argv[i]);
23984 }
23985 xfree (argv);
23986 }
23987 else
23988 dwarf2_macro_malformed_definition_complaint (body);
23989 }
23990
23991 /* Skip some bytes from BYTES according to the form given in FORM.
23992 Returns the new pointer. */
23993
23994 static const gdb_byte *
23995 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23996 enum dwarf_form form,
23997 unsigned int offset_size,
23998 struct dwarf2_section_info *section)
23999 {
24000 unsigned int bytes_read;
24001
24002 switch (form)
24003 {
24004 case DW_FORM_data1:
24005 case DW_FORM_flag:
24006 ++bytes;
24007 break;
24008
24009 case DW_FORM_data2:
24010 bytes += 2;
24011 break;
24012
24013 case DW_FORM_data4:
24014 bytes += 4;
24015 break;
24016
24017 case DW_FORM_data8:
24018 bytes += 8;
24019 break;
24020
24021 case DW_FORM_data16:
24022 bytes += 16;
24023 break;
24024
24025 case DW_FORM_string:
24026 read_direct_string (abfd, bytes, &bytes_read);
24027 bytes += bytes_read;
24028 break;
24029
24030 case DW_FORM_sec_offset:
24031 case DW_FORM_strp:
24032 case DW_FORM_GNU_strp_alt:
24033 bytes += offset_size;
24034 break;
24035
24036 case DW_FORM_block:
24037 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24038 bytes += bytes_read;
24039 break;
24040
24041 case DW_FORM_block1:
24042 bytes += 1 + read_1_byte (abfd, bytes);
24043 break;
24044 case DW_FORM_block2:
24045 bytes += 2 + read_2_bytes (abfd, bytes);
24046 break;
24047 case DW_FORM_block4:
24048 bytes += 4 + read_4_bytes (abfd, bytes);
24049 break;
24050
24051 case DW_FORM_addrx:
24052 case DW_FORM_sdata:
24053 case DW_FORM_strx:
24054 case DW_FORM_udata:
24055 case DW_FORM_GNU_addr_index:
24056 case DW_FORM_GNU_str_index:
24057 bytes = gdb_skip_leb128 (bytes, buffer_end);
24058 if (bytes == NULL)
24059 {
24060 dwarf2_section_buffer_overflow_complaint (section);
24061 return NULL;
24062 }
24063 break;
24064
24065 case DW_FORM_implicit_const:
24066 break;
24067
24068 default:
24069 {
24070 complaint (_("invalid form 0x%x in `%s'"),
24071 form, section->get_name ());
24072 return NULL;
24073 }
24074 }
24075
24076 return bytes;
24077 }
24078
24079 /* A helper for dwarf_decode_macros that handles skipping an unknown
24080 opcode. Returns an updated pointer to the macro data buffer; or,
24081 on error, issues a complaint and returns NULL. */
24082
24083 static const gdb_byte *
24084 skip_unknown_opcode (unsigned int opcode,
24085 const gdb_byte **opcode_definitions,
24086 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24087 bfd *abfd,
24088 unsigned int offset_size,
24089 struct dwarf2_section_info *section)
24090 {
24091 unsigned int bytes_read, i;
24092 unsigned long arg;
24093 const gdb_byte *defn;
24094
24095 if (opcode_definitions[opcode] == NULL)
24096 {
24097 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24098 opcode);
24099 return NULL;
24100 }
24101
24102 defn = opcode_definitions[opcode];
24103 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24104 defn += bytes_read;
24105
24106 for (i = 0; i < arg; ++i)
24107 {
24108 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24109 (enum dwarf_form) defn[i], offset_size,
24110 section);
24111 if (mac_ptr == NULL)
24112 {
24113 /* skip_form_bytes already issued the complaint. */
24114 return NULL;
24115 }
24116 }
24117
24118 return mac_ptr;
24119 }
24120
24121 /* A helper function which parses the header of a macro section.
24122 If the macro section is the extended (for now called "GNU") type,
24123 then this updates *OFFSET_SIZE. Returns a pointer to just after
24124 the header, or issues a complaint and returns NULL on error. */
24125
24126 static const gdb_byte *
24127 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24128 bfd *abfd,
24129 const gdb_byte *mac_ptr,
24130 unsigned int *offset_size,
24131 int section_is_gnu)
24132 {
24133 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24134
24135 if (section_is_gnu)
24136 {
24137 unsigned int version, flags;
24138
24139 version = read_2_bytes (abfd, mac_ptr);
24140 if (version != 4 && version != 5)
24141 {
24142 complaint (_("unrecognized version `%d' in .debug_macro section"),
24143 version);
24144 return NULL;
24145 }
24146 mac_ptr += 2;
24147
24148 flags = read_1_byte (abfd, mac_ptr);
24149 ++mac_ptr;
24150 *offset_size = (flags & 1) ? 8 : 4;
24151
24152 if ((flags & 2) != 0)
24153 /* We don't need the line table offset. */
24154 mac_ptr += *offset_size;
24155
24156 /* Vendor opcode descriptions. */
24157 if ((flags & 4) != 0)
24158 {
24159 unsigned int i, count;
24160
24161 count = read_1_byte (abfd, mac_ptr);
24162 ++mac_ptr;
24163 for (i = 0; i < count; ++i)
24164 {
24165 unsigned int opcode, bytes_read;
24166 unsigned long arg;
24167
24168 opcode = read_1_byte (abfd, mac_ptr);
24169 ++mac_ptr;
24170 opcode_definitions[opcode] = mac_ptr;
24171 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24172 mac_ptr += bytes_read;
24173 mac_ptr += arg;
24174 }
24175 }
24176 }
24177
24178 return mac_ptr;
24179 }
24180
24181 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24182 including DW_MACRO_import. */
24183
24184 static void
24185 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24186 bfd *abfd,
24187 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24188 struct macro_source_file *current_file,
24189 struct line_header *lh,
24190 struct dwarf2_section_info *section,
24191 int section_is_gnu, int section_is_dwz,
24192 unsigned int offset_size,
24193 htab_t include_hash)
24194 {
24195 struct dwarf2_per_objfile *dwarf2_per_objfile
24196 = cu->per_cu->dwarf2_per_objfile;
24197 struct objfile *objfile = dwarf2_per_objfile->objfile;
24198 enum dwarf_macro_record_type macinfo_type;
24199 int at_commandline;
24200 const gdb_byte *opcode_definitions[256];
24201
24202 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24203 &offset_size, section_is_gnu);
24204 if (mac_ptr == NULL)
24205 {
24206 /* We already issued a complaint. */
24207 return;
24208 }
24209
24210 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24211 GDB is still reading the definitions from command line. First
24212 DW_MACINFO_start_file will need to be ignored as it was already executed
24213 to create CURRENT_FILE for the main source holding also the command line
24214 definitions. On first met DW_MACINFO_start_file this flag is reset to
24215 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24216
24217 at_commandline = 1;
24218
24219 do
24220 {
24221 /* Do we at least have room for a macinfo type byte? */
24222 if (mac_ptr >= mac_end)
24223 {
24224 dwarf2_section_buffer_overflow_complaint (section);
24225 break;
24226 }
24227
24228 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24229 mac_ptr++;
24230
24231 /* Note that we rely on the fact that the corresponding GNU and
24232 DWARF constants are the same. */
24233 DIAGNOSTIC_PUSH
24234 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24235 switch (macinfo_type)
24236 {
24237 /* A zero macinfo type indicates the end of the macro
24238 information. */
24239 case 0:
24240 break;
24241
24242 case DW_MACRO_define:
24243 case DW_MACRO_undef:
24244 case DW_MACRO_define_strp:
24245 case DW_MACRO_undef_strp:
24246 case DW_MACRO_define_sup:
24247 case DW_MACRO_undef_sup:
24248 {
24249 unsigned int bytes_read;
24250 int line;
24251 const char *body;
24252 int is_define;
24253
24254 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24255 mac_ptr += bytes_read;
24256
24257 if (macinfo_type == DW_MACRO_define
24258 || macinfo_type == DW_MACRO_undef)
24259 {
24260 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24261 mac_ptr += bytes_read;
24262 }
24263 else
24264 {
24265 LONGEST str_offset;
24266
24267 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24268 mac_ptr += offset_size;
24269
24270 if (macinfo_type == DW_MACRO_define_sup
24271 || macinfo_type == DW_MACRO_undef_sup
24272 || section_is_dwz)
24273 {
24274 struct dwz_file *dwz
24275 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24276
24277 body = read_indirect_string_from_dwz (objfile,
24278 dwz, str_offset);
24279 }
24280 else
24281 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24282 abfd, str_offset);
24283 }
24284
24285 is_define = (macinfo_type == DW_MACRO_define
24286 || macinfo_type == DW_MACRO_define_strp
24287 || macinfo_type == DW_MACRO_define_sup);
24288 if (! current_file)
24289 {
24290 /* DWARF violation as no main source is present. */
24291 complaint (_("debug info with no main source gives macro %s "
24292 "on line %d: %s"),
24293 is_define ? _("definition") : _("undefinition"),
24294 line, body);
24295 break;
24296 }
24297 if ((line == 0 && !at_commandline)
24298 || (line != 0 && at_commandline))
24299 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24300 at_commandline ? _("command-line") : _("in-file"),
24301 is_define ? _("definition") : _("undefinition"),
24302 line == 0 ? _("zero") : _("non-zero"), line, body);
24303
24304 if (body == NULL)
24305 {
24306 /* Fedora's rpm-build's "debugedit" binary
24307 corrupted .debug_macro sections.
24308
24309 For more info, see
24310 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24311 complaint (_("debug info gives %s invalid macro %s "
24312 "without body (corrupted?) at line %d "
24313 "on file %s"),
24314 at_commandline ? _("command-line") : _("in-file"),
24315 is_define ? _("definition") : _("undefinition"),
24316 line, current_file->filename);
24317 }
24318 else if (is_define)
24319 parse_macro_definition (current_file, line, body);
24320 else
24321 {
24322 gdb_assert (macinfo_type == DW_MACRO_undef
24323 || macinfo_type == DW_MACRO_undef_strp
24324 || macinfo_type == DW_MACRO_undef_sup);
24325 macro_undef (current_file, line, body);
24326 }
24327 }
24328 break;
24329
24330 case DW_MACRO_start_file:
24331 {
24332 unsigned int bytes_read;
24333 int line, file;
24334
24335 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24336 mac_ptr += bytes_read;
24337 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24338 mac_ptr += bytes_read;
24339
24340 if ((line == 0 && !at_commandline)
24341 || (line != 0 && at_commandline))
24342 complaint (_("debug info gives source %d included "
24343 "from %s at %s line %d"),
24344 file, at_commandline ? _("command-line") : _("file"),
24345 line == 0 ? _("zero") : _("non-zero"), line);
24346
24347 if (at_commandline)
24348 {
24349 /* This DW_MACRO_start_file was executed in the
24350 pass one. */
24351 at_commandline = 0;
24352 }
24353 else
24354 current_file = macro_start_file (cu, file, line, current_file,
24355 lh);
24356 }
24357 break;
24358
24359 case DW_MACRO_end_file:
24360 if (! current_file)
24361 complaint (_("macro debug info has an unmatched "
24362 "`close_file' directive"));
24363 else
24364 {
24365 current_file = current_file->included_by;
24366 if (! current_file)
24367 {
24368 enum dwarf_macro_record_type next_type;
24369
24370 /* GCC circa March 2002 doesn't produce the zero
24371 type byte marking the end of the compilation
24372 unit. Complain if it's not there, but exit no
24373 matter what. */
24374
24375 /* Do we at least have room for a macinfo type byte? */
24376 if (mac_ptr >= mac_end)
24377 {
24378 dwarf2_section_buffer_overflow_complaint (section);
24379 return;
24380 }
24381
24382 /* We don't increment mac_ptr here, so this is just
24383 a look-ahead. */
24384 next_type
24385 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24386 mac_ptr);
24387 if (next_type != 0)
24388 complaint (_("no terminating 0-type entry for "
24389 "macros in `.debug_macinfo' section"));
24390
24391 return;
24392 }
24393 }
24394 break;
24395
24396 case DW_MACRO_import:
24397 case DW_MACRO_import_sup:
24398 {
24399 LONGEST offset;
24400 void **slot;
24401 bfd *include_bfd = abfd;
24402 struct dwarf2_section_info *include_section = section;
24403 const gdb_byte *include_mac_end = mac_end;
24404 int is_dwz = section_is_dwz;
24405 const gdb_byte *new_mac_ptr;
24406
24407 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24408 mac_ptr += offset_size;
24409
24410 if (macinfo_type == DW_MACRO_import_sup)
24411 {
24412 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24413
24414 dwz->macro.read (objfile);
24415
24416 include_section = &dwz->macro;
24417 include_bfd = include_section->get_bfd_owner ();
24418 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24419 is_dwz = 1;
24420 }
24421
24422 new_mac_ptr = include_section->buffer + offset;
24423 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24424
24425 if (*slot != NULL)
24426 {
24427 /* This has actually happened; see
24428 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24429 complaint (_("recursive DW_MACRO_import in "
24430 ".debug_macro section"));
24431 }
24432 else
24433 {
24434 *slot = (void *) new_mac_ptr;
24435
24436 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24437 include_mac_end, current_file, lh,
24438 section, section_is_gnu, is_dwz,
24439 offset_size, include_hash);
24440
24441 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24442 }
24443 }
24444 break;
24445
24446 case DW_MACINFO_vendor_ext:
24447 if (!section_is_gnu)
24448 {
24449 unsigned int bytes_read;
24450
24451 /* This reads the constant, but since we don't recognize
24452 any vendor extensions, we ignore it. */
24453 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24454 mac_ptr += bytes_read;
24455 read_direct_string (abfd, mac_ptr, &bytes_read);
24456 mac_ptr += bytes_read;
24457
24458 /* We don't recognize any vendor extensions. */
24459 break;
24460 }
24461 /* FALLTHROUGH */
24462
24463 default:
24464 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24465 mac_ptr, mac_end, abfd, offset_size,
24466 section);
24467 if (mac_ptr == NULL)
24468 return;
24469 break;
24470 }
24471 DIAGNOSTIC_POP
24472 } while (macinfo_type != 0);
24473 }
24474
24475 static void
24476 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24477 int section_is_gnu)
24478 {
24479 struct dwarf2_per_objfile *dwarf2_per_objfile
24480 = cu->per_cu->dwarf2_per_objfile;
24481 struct objfile *objfile = dwarf2_per_objfile->objfile;
24482 struct line_header *lh = cu->line_header;
24483 bfd *abfd;
24484 const gdb_byte *mac_ptr, *mac_end;
24485 struct macro_source_file *current_file = 0;
24486 enum dwarf_macro_record_type macinfo_type;
24487 unsigned int offset_size = cu->header.offset_size;
24488 const gdb_byte *opcode_definitions[256];
24489 void **slot;
24490 struct dwarf2_section_info *section;
24491 const char *section_name;
24492
24493 if (cu->dwo_unit != NULL)
24494 {
24495 if (section_is_gnu)
24496 {
24497 section = &cu->dwo_unit->dwo_file->sections.macro;
24498 section_name = ".debug_macro.dwo";
24499 }
24500 else
24501 {
24502 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24503 section_name = ".debug_macinfo.dwo";
24504 }
24505 }
24506 else
24507 {
24508 if (section_is_gnu)
24509 {
24510 section = &dwarf2_per_objfile->macro;
24511 section_name = ".debug_macro";
24512 }
24513 else
24514 {
24515 section = &dwarf2_per_objfile->macinfo;
24516 section_name = ".debug_macinfo";
24517 }
24518 }
24519
24520 section->read (objfile);
24521 if (section->buffer == NULL)
24522 {
24523 complaint (_("missing %s section"), section_name);
24524 return;
24525 }
24526 abfd = section->get_bfd_owner ();
24527
24528 /* First pass: Find the name of the base filename.
24529 This filename is needed in order to process all macros whose definition
24530 (or undefinition) comes from the command line. These macros are defined
24531 before the first DW_MACINFO_start_file entry, and yet still need to be
24532 associated to the base file.
24533
24534 To determine the base file name, we scan the macro definitions until we
24535 reach the first DW_MACINFO_start_file entry. We then initialize
24536 CURRENT_FILE accordingly so that any macro definition found before the
24537 first DW_MACINFO_start_file can still be associated to the base file. */
24538
24539 mac_ptr = section->buffer + offset;
24540 mac_end = section->buffer + section->size;
24541
24542 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24543 &offset_size, section_is_gnu);
24544 if (mac_ptr == NULL)
24545 {
24546 /* We already issued a complaint. */
24547 return;
24548 }
24549
24550 do
24551 {
24552 /* Do we at least have room for a macinfo type byte? */
24553 if (mac_ptr >= mac_end)
24554 {
24555 /* Complaint is printed during the second pass as GDB will probably
24556 stop the first pass earlier upon finding
24557 DW_MACINFO_start_file. */
24558 break;
24559 }
24560
24561 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24562 mac_ptr++;
24563
24564 /* Note that we rely on the fact that the corresponding GNU and
24565 DWARF constants are the same. */
24566 DIAGNOSTIC_PUSH
24567 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24568 switch (macinfo_type)
24569 {
24570 /* A zero macinfo type indicates the end of the macro
24571 information. */
24572 case 0:
24573 break;
24574
24575 case DW_MACRO_define:
24576 case DW_MACRO_undef:
24577 /* Only skip the data by MAC_PTR. */
24578 {
24579 unsigned int bytes_read;
24580
24581 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24582 mac_ptr += bytes_read;
24583 read_direct_string (abfd, mac_ptr, &bytes_read);
24584 mac_ptr += bytes_read;
24585 }
24586 break;
24587
24588 case DW_MACRO_start_file:
24589 {
24590 unsigned int bytes_read;
24591 int line, file;
24592
24593 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24594 mac_ptr += bytes_read;
24595 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24596 mac_ptr += bytes_read;
24597
24598 current_file = macro_start_file (cu, file, line, current_file, lh);
24599 }
24600 break;
24601
24602 case DW_MACRO_end_file:
24603 /* No data to skip by MAC_PTR. */
24604 break;
24605
24606 case DW_MACRO_define_strp:
24607 case DW_MACRO_undef_strp:
24608 case DW_MACRO_define_sup:
24609 case DW_MACRO_undef_sup:
24610 {
24611 unsigned int bytes_read;
24612
24613 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24615 mac_ptr += offset_size;
24616 }
24617 break;
24618
24619 case DW_MACRO_import:
24620 case DW_MACRO_import_sup:
24621 /* Note that, according to the spec, a transparent include
24622 chain cannot call DW_MACRO_start_file. So, we can just
24623 skip this opcode. */
24624 mac_ptr += offset_size;
24625 break;
24626
24627 case DW_MACINFO_vendor_ext:
24628 /* Only skip the data by MAC_PTR. */
24629 if (!section_is_gnu)
24630 {
24631 unsigned int bytes_read;
24632
24633 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24634 mac_ptr += bytes_read;
24635 read_direct_string (abfd, mac_ptr, &bytes_read);
24636 mac_ptr += bytes_read;
24637 }
24638 /* FALLTHROUGH */
24639
24640 default:
24641 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24642 mac_ptr, mac_end, abfd, offset_size,
24643 section);
24644 if (mac_ptr == NULL)
24645 return;
24646 break;
24647 }
24648 DIAGNOSTIC_POP
24649 } while (macinfo_type != 0 && current_file == NULL);
24650
24651 /* Second pass: Process all entries.
24652
24653 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24654 command-line macro definitions/undefinitions. This flag is unset when we
24655 reach the first DW_MACINFO_start_file entry. */
24656
24657 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24658 htab_eq_pointer,
24659 NULL, xcalloc, xfree));
24660 mac_ptr = section->buffer + offset;
24661 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24662 *slot = (void *) mac_ptr;
24663 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24664 current_file, lh, section,
24665 section_is_gnu, 0, offset_size,
24666 include_hash.get ());
24667 }
24668
24669 /* Return the .debug_loc section to use for CU.
24670 For DWO files use .debug_loc.dwo. */
24671
24672 static struct dwarf2_section_info *
24673 cu_debug_loc_section (struct dwarf2_cu *cu)
24674 {
24675 struct dwarf2_per_objfile *dwarf2_per_objfile
24676 = cu->per_cu->dwarf2_per_objfile;
24677
24678 if (cu->dwo_unit)
24679 {
24680 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24681
24682 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24683 }
24684 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24685 : &dwarf2_per_objfile->loc);
24686 }
24687
24688 /* A helper function that fills in a dwarf2_loclist_baton. */
24689
24690 static void
24691 fill_in_loclist_baton (struct dwarf2_cu *cu,
24692 struct dwarf2_loclist_baton *baton,
24693 const struct attribute *attr)
24694 {
24695 struct dwarf2_per_objfile *dwarf2_per_objfile
24696 = cu->per_cu->dwarf2_per_objfile;
24697 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24698
24699 section->read (dwarf2_per_objfile->objfile);
24700
24701 baton->per_cu = cu->per_cu;
24702 gdb_assert (baton->per_cu);
24703 /* We don't know how long the location list is, but make sure we
24704 don't run off the edge of the section. */
24705 baton->size = section->size - DW_UNSND (attr);
24706 baton->data = section->buffer + DW_UNSND (attr);
24707 baton->base_address = cu->base_address;
24708 baton->from_dwo = cu->dwo_unit != NULL;
24709 }
24710
24711 static void
24712 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24713 struct dwarf2_cu *cu, int is_block)
24714 {
24715 struct dwarf2_per_objfile *dwarf2_per_objfile
24716 = cu->per_cu->dwarf2_per_objfile;
24717 struct objfile *objfile = dwarf2_per_objfile->objfile;
24718 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24719
24720 if (attr->form_is_section_offset ()
24721 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24722 the section. If so, fall through to the complaint in the
24723 other branch. */
24724 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24725 {
24726 struct dwarf2_loclist_baton *baton;
24727
24728 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24729
24730 fill_in_loclist_baton (cu, baton, attr);
24731
24732 if (cu->base_known == 0)
24733 complaint (_("Location list used without "
24734 "specifying the CU base address."));
24735
24736 SYMBOL_ACLASS_INDEX (sym) = (is_block
24737 ? dwarf2_loclist_block_index
24738 : dwarf2_loclist_index);
24739 SYMBOL_LOCATION_BATON (sym) = baton;
24740 }
24741 else
24742 {
24743 struct dwarf2_locexpr_baton *baton;
24744
24745 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24746 baton->per_cu = cu->per_cu;
24747 gdb_assert (baton->per_cu);
24748
24749 if (attr->form_is_block ())
24750 {
24751 /* Note that we're just copying the block's data pointer
24752 here, not the actual data. We're still pointing into the
24753 info_buffer for SYM's objfile; right now we never release
24754 that buffer, but when we do clean up properly this may
24755 need to change. */
24756 baton->size = DW_BLOCK (attr)->size;
24757 baton->data = DW_BLOCK (attr)->data;
24758 }
24759 else
24760 {
24761 dwarf2_invalid_attrib_class_complaint ("location description",
24762 sym->natural_name ());
24763 baton->size = 0;
24764 }
24765
24766 SYMBOL_ACLASS_INDEX (sym) = (is_block
24767 ? dwarf2_locexpr_block_index
24768 : dwarf2_locexpr_index);
24769 SYMBOL_LOCATION_BATON (sym) = baton;
24770 }
24771 }
24772
24773 /* Return the OBJFILE associated with the compilation unit CU. If CU
24774 came from a separate debuginfo file, then the master objfile is
24775 returned. */
24776
24777 struct objfile *
24778 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24779 {
24780 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24781
24782 /* Return the master objfile, so that we can report and look up the
24783 correct file containing this variable. */
24784 if (objfile->separate_debug_objfile_backlink)
24785 objfile = objfile->separate_debug_objfile_backlink;
24786
24787 return objfile;
24788 }
24789
24790 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24791 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24792 CU_HEADERP first. */
24793
24794 static const struct comp_unit_head *
24795 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24796 struct dwarf2_per_cu_data *per_cu)
24797 {
24798 const gdb_byte *info_ptr;
24799
24800 if (per_cu->cu)
24801 return &per_cu->cu->header;
24802
24803 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24804
24805 memset (cu_headerp, 0, sizeof (*cu_headerp));
24806 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24807 rcuh_kind::COMPILE);
24808
24809 return cu_headerp;
24810 }
24811
24812 /* Return the address size given in the compilation unit header for CU. */
24813
24814 int
24815 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24816 {
24817 struct comp_unit_head cu_header_local;
24818 const struct comp_unit_head *cu_headerp;
24819
24820 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24821
24822 return cu_headerp->addr_size;
24823 }
24824
24825 /* Return the offset size given in the compilation unit header for CU. */
24826
24827 int
24828 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24829 {
24830 struct comp_unit_head cu_header_local;
24831 const struct comp_unit_head *cu_headerp;
24832
24833 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24834
24835 return cu_headerp->offset_size;
24836 }
24837
24838 /* See its dwarf2loc.h declaration. */
24839
24840 int
24841 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24842 {
24843 struct comp_unit_head cu_header_local;
24844 const struct comp_unit_head *cu_headerp;
24845
24846 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24847
24848 if (cu_headerp->version == 2)
24849 return cu_headerp->addr_size;
24850 else
24851 return cu_headerp->offset_size;
24852 }
24853
24854 /* Return the text offset of the CU. The returned offset comes from
24855 this CU's objfile. If this objfile came from a separate debuginfo
24856 file, then the offset may be different from the corresponding
24857 offset in the parent objfile. */
24858
24859 CORE_ADDR
24860 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24861 {
24862 return per_cu->dwarf2_per_objfile->objfile->text_section_offset ();
24863 }
24864
24865 /* Return a type that is a generic pointer type, the size of which matches
24866 the address size given in the compilation unit header for PER_CU. */
24867 static struct type *
24868 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
24869 {
24870 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24871 struct type *void_type = objfile_type (objfile)->builtin_void;
24872 struct type *addr_type = lookup_pointer_type (void_type);
24873 int addr_size = dwarf2_per_cu_addr_size (per_cu);
24874
24875 if (TYPE_LENGTH (addr_type) == addr_size)
24876 return addr_type;
24877
24878 addr_type
24879 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
24880 return addr_type;
24881 }
24882
24883 /* Return DWARF version number of PER_CU. */
24884
24885 short
24886 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24887 {
24888 return per_cu->dwarf_version;
24889 }
24890
24891 /* Locate the .debug_info compilation unit from CU's objfile which contains
24892 the DIE at OFFSET. Raises an error on failure. */
24893
24894 static struct dwarf2_per_cu_data *
24895 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24896 unsigned int offset_in_dwz,
24897 struct dwarf2_per_objfile *dwarf2_per_objfile)
24898 {
24899 struct dwarf2_per_cu_data *this_cu;
24900 int low, high;
24901
24902 low = 0;
24903 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24904 while (high > low)
24905 {
24906 struct dwarf2_per_cu_data *mid_cu;
24907 int mid = low + (high - low) / 2;
24908
24909 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24910 if (mid_cu->is_dwz > offset_in_dwz
24911 || (mid_cu->is_dwz == offset_in_dwz
24912 && mid_cu->sect_off + mid_cu->length >= sect_off))
24913 high = mid;
24914 else
24915 low = mid + 1;
24916 }
24917 gdb_assert (low == high);
24918 this_cu = dwarf2_per_objfile->all_comp_units[low];
24919 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24920 {
24921 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24922 error (_("Dwarf Error: could not find partial DIE containing "
24923 "offset %s [in module %s]"),
24924 sect_offset_str (sect_off),
24925 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24926
24927 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24928 <= sect_off);
24929 return dwarf2_per_objfile->all_comp_units[low-1];
24930 }
24931 else
24932 {
24933 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24934 && sect_off >= this_cu->sect_off + this_cu->length)
24935 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24936 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24937 return this_cu;
24938 }
24939 }
24940
24941 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24942
24943 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24944 : per_cu (per_cu_),
24945 mark (false),
24946 has_loclist (false),
24947 checked_producer (false),
24948 producer_is_gxx_lt_4_6 (false),
24949 producer_is_gcc_lt_4_3 (false),
24950 producer_is_icc (false),
24951 producer_is_icc_lt_14 (false),
24952 producer_is_codewarrior (false),
24953 processing_has_namespace_info (false)
24954 {
24955 per_cu->cu = this;
24956 }
24957
24958 /* Destroy a dwarf2_cu. */
24959
24960 dwarf2_cu::~dwarf2_cu ()
24961 {
24962 per_cu->cu = NULL;
24963 }
24964
24965 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24966
24967 static void
24968 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24969 enum language pretend_language)
24970 {
24971 struct attribute *attr;
24972
24973 /* Set the language we're debugging. */
24974 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24975 if (attr != nullptr)
24976 set_cu_language (DW_UNSND (attr), cu);
24977 else
24978 {
24979 cu->language = pretend_language;
24980 cu->language_defn = language_def (cu->language);
24981 }
24982
24983 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24984 }
24985
24986 /* Increase the age counter on each cached compilation unit, and free
24987 any that are too old. */
24988
24989 static void
24990 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24991 {
24992 struct dwarf2_per_cu_data *per_cu, **last_chain;
24993
24994 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24995 per_cu = dwarf2_per_objfile->read_in_chain;
24996 while (per_cu != NULL)
24997 {
24998 per_cu->cu->last_used ++;
24999 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25000 dwarf2_mark (per_cu->cu);
25001 per_cu = per_cu->cu->read_in_chain;
25002 }
25003
25004 per_cu = dwarf2_per_objfile->read_in_chain;
25005 last_chain = &dwarf2_per_objfile->read_in_chain;
25006 while (per_cu != NULL)
25007 {
25008 struct dwarf2_per_cu_data *next_cu;
25009
25010 next_cu = per_cu->cu->read_in_chain;
25011
25012 if (!per_cu->cu->mark)
25013 {
25014 delete per_cu->cu;
25015 *last_chain = next_cu;
25016 }
25017 else
25018 last_chain = &per_cu->cu->read_in_chain;
25019
25020 per_cu = next_cu;
25021 }
25022 }
25023
25024 /* Remove a single compilation unit from the cache. */
25025
25026 static void
25027 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25028 {
25029 struct dwarf2_per_cu_data *per_cu, **last_chain;
25030 struct dwarf2_per_objfile *dwarf2_per_objfile
25031 = target_per_cu->dwarf2_per_objfile;
25032
25033 per_cu = dwarf2_per_objfile->read_in_chain;
25034 last_chain = &dwarf2_per_objfile->read_in_chain;
25035 while (per_cu != NULL)
25036 {
25037 struct dwarf2_per_cu_data *next_cu;
25038
25039 next_cu = per_cu->cu->read_in_chain;
25040
25041 if (per_cu == target_per_cu)
25042 {
25043 delete per_cu->cu;
25044 per_cu->cu = NULL;
25045 *last_chain = next_cu;
25046 break;
25047 }
25048 else
25049 last_chain = &per_cu->cu->read_in_chain;
25050
25051 per_cu = next_cu;
25052 }
25053 }
25054
25055 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25056 We store these in a hash table separate from the DIEs, and preserve them
25057 when the DIEs are flushed out of cache.
25058
25059 The CU "per_cu" pointer is needed because offset alone is not enough to
25060 uniquely identify the type. A file may have multiple .debug_types sections,
25061 or the type may come from a DWO file. Furthermore, while it's more logical
25062 to use per_cu->section+offset, with Fission the section with the data is in
25063 the DWO file but we don't know that section at the point we need it.
25064 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25065 because we can enter the lookup routine, get_die_type_at_offset, from
25066 outside this file, and thus won't necessarily have PER_CU->cu.
25067 Fortunately, PER_CU is stable for the life of the objfile. */
25068
25069 struct dwarf2_per_cu_offset_and_type
25070 {
25071 const struct dwarf2_per_cu_data *per_cu;
25072 sect_offset sect_off;
25073 struct type *type;
25074 };
25075
25076 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25077
25078 static hashval_t
25079 per_cu_offset_and_type_hash (const void *item)
25080 {
25081 const struct dwarf2_per_cu_offset_and_type *ofs
25082 = (const struct dwarf2_per_cu_offset_and_type *) item;
25083
25084 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25085 }
25086
25087 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25088
25089 static int
25090 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25091 {
25092 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25093 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25094 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25095 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25096
25097 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25098 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25099 }
25100
25101 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25102 table if necessary. For convenience, return TYPE.
25103
25104 The DIEs reading must have careful ordering to:
25105 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25106 reading current DIE.
25107 * Not trying to dereference contents of still incompletely read in types
25108 while reading in other DIEs.
25109 * Enable referencing still incompletely read in types just by a pointer to
25110 the type without accessing its fields.
25111
25112 Therefore caller should follow these rules:
25113 * Try to fetch any prerequisite types we may need to build this DIE type
25114 before building the type and calling set_die_type.
25115 * After building type call set_die_type for current DIE as soon as
25116 possible before fetching more types to complete the current type.
25117 * Make the type as complete as possible before fetching more types. */
25118
25119 static struct type *
25120 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25121 {
25122 struct dwarf2_per_objfile *dwarf2_per_objfile
25123 = cu->per_cu->dwarf2_per_objfile;
25124 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25125 struct objfile *objfile = dwarf2_per_objfile->objfile;
25126 struct attribute *attr;
25127 struct dynamic_prop prop;
25128
25129 /* For Ada types, make sure that the gnat-specific data is always
25130 initialized (if not already set). There are a few types where
25131 we should not be doing so, because the type-specific area is
25132 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25133 where the type-specific area is used to store the floatformat).
25134 But this is not a problem, because the gnat-specific information
25135 is actually not needed for these types. */
25136 if (need_gnat_info (cu)
25137 && TYPE_CODE (type) != TYPE_CODE_FUNC
25138 && TYPE_CODE (type) != TYPE_CODE_FLT
25139 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25140 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25141 && TYPE_CODE (type) != TYPE_CODE_METHOD
25142 && !HAVE_GNAT_AUX_INFO (type))
25143 INIT_GNAT_SPECIFIC (type);
25144
25145 /* Read DW_AT_allocated and set in type. */
25146 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25147 if (attr != NULL && attr->form_is_block ())
25148 {
25149 struct type *prop_type
25150 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25151 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25152 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25153 }
25154 else if (attr != NULL)
25155 {
25156 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25157 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25158 sect_offset_str (die->sect_off));
25159 }
25160
25161 /* Read DW_AT_associated and set in type. */
25162 attr = dwarf2_attr (die, DW_AT_associated, cu);
25163 if (attr != NULL && attr->form_is_block ())
25164 {
25165 struct type *prop_type
25166 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25167 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25168 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25169 }
25170 else if (attr != NULL)
25171 {
25172 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25173 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25174 sect_offset_str (die->sect_off));
25175 }
25176
25177 /* Read DW_AT_data_location and set in type. */
25178 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25179 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25180 dwarf2_per_cu_addr_type (cu->per_cu)))
25181 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25182
25183 if (dwarf2_per_objfile->die_type_hash == NULL)
25184 dwarf2_per_objfile->die_type_hash
25185 = htab_up (htab_create_alloc (127,
25186 per_cu_offset_and_type_hash,
25187 per_cu_offset_and_type_eq,
25188 NULL, xcalloc, xfree));
25189
25190 ofs.per_cu = cu->per_cu;
25191 ofs.sect_off = die->sect_off;
25192 ofs.type = type;
25193 slot = (struct dwarf2_per_cu_offset_and_type **)
25194 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
25195 if (*slot)
25196 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25197 sect_offset_str (die->sect_off));
25198 *slot = XOBNEW (&objfile->objfile_obstack,
25199 struct dwarf2_per_cu_offset_and_type);
25200 **slot = ofs;
25201 return type;
25202 }
25203
25204 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25205 or return NULL if the die does not have a saved type. */
25206
25207 static struct type *
25208 get_die_type_at_offset (sect_offset sect_off,
25209 struct dwarf2_per_cu_data *per_cu)
25210 {
25211 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25212 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25213
25214 if (dwarf2_per_objfile->die_type_hash == NULL)
25215 return NULL;
25216
25217 ofs.per_cu = per_cu;
25218 ofs.sect_off = sect_off;
25219 slot = ((struct dwarf2_per_cu_offset_and_type *)
25220 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
25221 if (slot)
25222 return slot->type;
25223 else
25224 return NULL;
25225 }
25226
25227 /* Look up the type for DIE in CU in die_type_hash,
25228 or return NULL if DIE does not have a saved type. */
25229
25230 static struct type *
25231 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25232 {
25233 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25234 }
25235
25236 /* Add a dependence relationship from CU to REF_PER_CU. */
25237
25238 static void
25239 dwarf2_add_dependence (struct dwarf2_cu *cu,
25240 struct dwarf2_per_cu_data *ref_per_cu)
25241 {
25242 void **slot;
25243
25244 if (cu->dependencies == NULL)
25245 cu->dependencies
25246 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25247 NULL, &cu->comp_unit_obstack,
25248 hashtab_obstack_allocate,
25249 dummy_obstack_deallocate);
25250
25251 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25252 if (*slot == NULL)
25253 *slot = ref_per_cu;
25254 }
25255
25256 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25257 Set the mark field in every compilation unit in the
25258 cache that we must keep because we are keeping CU. */
25259
25260 static int
25261 dwarf2_mark_helper (void **slot, void *data)
25262 {
25263 struct dwarf2_per_cu_data *per_cu;
25264
25265 per_cu = (struct dwarf2_per_cu_data *) *slot;
25266
25267 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25268 reading of the chain. As such dependencies remain valid it is not much
25269 useful to track and undo them during QUIT cleanups. */
25270 if (per_cu->cu == NULL)
25271 return 1;
25272
25273 if (per_cu->cu->mark)
25274 return 1;
25275 per_cu->cu->mark = true;
25276
25277 if (per_cu->cu->dependencies != NULL)
25278 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25279
25280 return 1;
25281 }
25282
25283 /* Set the mark field in CU and in every other compilation unit in the
25284 cache that we must keep because we are keeping CU. */
25285
25286 static void
25287 dwarf2_mark (struct dwarf2_cu *cu)
25288 {
25289 if (cu->mark)
25290 return;
25291 cu->mark = true;
25292 if (cu->dependencies != NULL)
25293 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25294 }
25295
25296 static void
25297 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25298 {
25299 while (per_cu)
25300 {
25301 per_cu->cu->mark = false;
25302 per_cu = per_cu->cu->read_in_chain;
25303 }
25304 }
25305
25306 /* Trivial hash function for partial_die_info: the hash value of a DIE
25307 is its offset in .debug_info for this objfile. */
25308
25309 static hashval_t
25310 partial_die_hash (const void *item)
25311 {
25312 const struct partial_die_info *part_die
25313 = (const struct partial_die_info *) item;
25314
25315 return to_underlying (part_die->sect_off);
25316 }
25317
25318 /* Trivial comparison function for partial_die_info structures: two DIEs
25319 are equal if they have the same offset. */
25320
25321 static int
25322 partial_die_eq (const void *item_lhs, const void *item_rhs)
25323 {
25324 const struct partial_die_info *part_die_lhs
25325 = (const struct partial_die_info *) item_lhs;
25326 const struct partial_die_info *part_die_rhs
25327 = (const struct partial_die_info *) item_rhs;
25328
25329 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25330 }
25331
25332 struct cmd_list_element *set_dwarf_cmdlist;
25333 struct cmd_list_element *show_dwarf_cmdlist;
25334
25335 static void
25336 set_dwarf_cmd (const char *args, int from_tty)
25337 {
25338 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25339 gdb_stdout);
25340 }
25341
25342 static void
25343 show_dwarf_cmd (const char *args, int from_tty)
25344 {
25345 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25346 }
25347
25348 static void
25349 show_check_physname (struct ui_file *file, int from_tty,
25350 struct cmd_list_element *c, const char *value)
25351 {
25352 fprintf_filtered (file,
25353 _("Whether to check \"physname\" is %s.\n"),
25354 value);
25355 }
25356
25357 void _initialize_dwarf2_read ();
25358 void
25359 _initialize_dwarf2_read ()
25360 {
25361 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25362 Set DWARF specific variables.\n\
25363 Configure DWARF variables such as the cache size."),
25364 &set_dwarf_cmdlist, "maintenance set dwarf ",
25365 0/*allow-unknown*/, &maintenance_set_cmdlist);
25366
25367 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25368 Show DWARF specific variables.\n\
25369 Show DWARF variables such as the cache size."),
25370 &show_dwarf_cmdlist, "maintenance show dwarf ",
25371 0/*allow-unknown*/, &maintenance_show_cmdlist);
25372
25373 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25374 &dwarf_max_cache_age, _("\
25375 Set the upper bound on the age of cached DWARF compilation units."), _("\
25376 Show the upper bound on the age of cached DWARF compilation units."), _("\
25377 A higher limit means that cached compilation units will be stored\n\
25378 in memory longer, and more total memory will be used. Zero disables\n\
25379 caching, which can slow down startup."),
25380 NULL,
25381 show_dwarf_max_cache_age,
25382 &set_dwarf_cmdlist,
25383 &show_dwarf_cmdlist);
25384
25385 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25386 Set debugging of the DWARF reader."), _("\
25387 Show debugging of the DWARF reader."), _("\
25388 When enabled (non-zero), debugging messages are printed during DWARF\n\
25389 reading and symtab expansion. A value of 1 (one) provides basic\n\
25390 information. A value greater than 1 provides more verbose information."),
25391 NULL,
25392 NULL,
25393 &setdebuglist, &showdebuglist);
25394
25395 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25396 Set debugging of the DWARF DIE reader."), _("\
25397 Show debugging of the DWARF DIE reader."), _("\
25398 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25399 The value is the maximum depth to print."),
25400 NULL,
25401 NULL,
25402 &setdebuglist, &showdebuglist);
25403
25404 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25405 Set debugging of the dwarf line reader."), _("\
25406 Show debugging of the dwarf line reader."), _("\
25407 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25408 A value of 1 (one) provides basic information.\n\
25409 A value greater than 1 provides more verbose information."),
25410 NULL,
25411 NULL,
25412 &setdebuglist, &showdebuglist);
25413
25414 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25415 Set cross-checking of \"physname\" code against demangler."), _("\
25416 Show cross-checking of \"physname\" code against demangler."), _("\
25417 When enabled, GDB's internal \"physname\" code is checked against\n\
25418 the demangler."),
25419 NULL, show_check_physname,
25420 &setdebuglist, &showdebuglist);
25421
25422 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25423 no_class, &use_deprecated_index_sections, _("\
25424 Set whether to use deprecated gdb_index sections."), _("\
25425 Show whether to use deprecated gdb_index sections."), _("\
25426 When enabled, deprecated .gdb_index sections are used anyway.\n\
25427 Normally they are ignored either because of a missing feature or\n\
25428 performance issue.\n\
25429 Warning: This option must be enabled before gdb reads the file."),
25430 NULL,
25431 NULL,
25432 &setlist, &showlist);
25433
25434 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25435 &dwarf2_locexpr_funcs);
25436 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25437 &dwarf2_loclist_funcs);
25438
25439 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25440 &dwarf2_block_frame_base_locexpr_funcs);
25441 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25442 &dwarf2_block_frame_base_loclist_funcs);
25443
25444 #if GDB_SELF_TEST
25445 selftests::register_test ("dw2_expand_symtabs_matching",
25446 selftests::dw2_expand_symtabs_matching::run_test);
25447 #endif
25448 }
This page took 0.646678 seconds and 4 git commands to generate.