Move the rust "{" hack
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2412 objfile_obstack, and constructed with the specified field
2413 values. */
2414
2415 static dwarf2_per_cu_data *
2416 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2417 struct dwarf2_section_info *section,
2418 int is_dwz,
2419 sect_offset sect_off, ULONGEST length)
2420 {
2421 struct objfile *objfile = dwarf2_per_objfile->objfile;
2422 dwarf2_per_cu_data *the_cu
2423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2424 struct dwarf2_per_cu_data);
2425 the_cu->sect_off = sect_off;
2426 the_cu->length = length;
2427 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2428 the_cu->section = section;
2429 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2430 struct dwarf2_per_cu_quick_data);
2431 the_cu->is_dwz = is_dwz;
2432 return the_cu;
2433 }
2434
2435 /* A helper for create_cus_from_index that handles a given list of
2436 CUs. */
2437
2438 static void
2439 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 const gdb_byte *cu_list, offset_type n_elements,
2441 struct dwarf2_section_info *section,
2442 int is_dwz)
2443 {
2444 for (offset_type i = 0; i < n_elements; i += 2)
2445 {
2446 gdb_static_assert (sizeof (ULONGEST) >= 8);
2447
2448 sect_offset sect_off
2449 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2450 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2451 cu_list += 2 * 8;
2452
2453 dwarf2_per_cu_data *per_cu
2454 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2455 sect_off, length);
2456 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2457 }
2458 }
2459
2460 /* Read the CU list from the mapped index, and use it to create all
2461 the CU objects for this objfile. */
2462
2463 static void
2464 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2465 const gdb_byte *cu_list, offset_type cu_list_elements,
2466 const gdb_byte *dwz_list, offset_type dwz_elements)
2467 {
2468 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2469 dwarf2_per_objfile->all_comp_units.reserve
2470 ((cu_list_elements + dwz_elements) / 2);
2471
2472 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2473 &dwarf2_per_objfile->info, 0);
2474
2475 if (dwz_elements == 0)
2476 return;
2477
2478 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2479 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2480 &dwz->info, 1);
2481 }
2482
2483 /* Create the signatured type hash table from the index. */
2484
2485 static void
2486 create_signatured_type_table_from_index
2487 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 struct dwarf2_section_info *section,
2489 const gdb_byte *bytes,
2490 offset_type elements)
2491 {
2492 struct objfile *objfile = dwarf2_per_objfile->objfile;
2493
2494 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2495 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2496
2497 htab_up sig_types_hash = allocate_signatured_type_table ();
2498
2499 for (offset_type i = 0; i < elements; i += 3)
2500 {
2501 struct signatured_type *sig_type;
2502 ULONGEST signature;
2503 void **slot;
2504 cu_offset type_offset_in_tu;
2505
2506 gdb_static_assert (sizeof (ULONGEST) >= 8);
2507 sect_offset sect_off
2508 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2509 type_offset_in_tu
2510 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2511 BFD_ENDIAN_LITTLE);
2512 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2513 bytes += 3 * 8;
2514
2515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2516 struct signatured_type);
2517 sig_type->signature = signature;
2518 sig_type->type_offset_in_tu = type_offset_in_tu;
2519 sig_type->per_cu.is_debug_types = 1;
2520 sig_type->per_cu.section = section;
2521 sig_type->per_cu.sect_off = sect_off;
2522 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2523 sig_type->per_cu.v.quick
2524 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2525 struct dwarf2_per_cu_quick_data);
2526
2527 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2528 *slot = sig_type;
2529
2530 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2531 }
2532
2533 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2534 }
2535
2536 /* Create the signatured type hash table from .debug_names. */
2537
2538 static void
2539 create_signatured_type_table_from_debug_names
2540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2541 const mapped_debug_names &map,
2542 struct dwarf2_section_info *section,
2543 struct dwarf2_section_info *abbrev_section)
2544 {
2545 struct objfile *objfile = dwarf2_per_objfile->objfile;
2546
2547 section->read (objfile);
2548 abbrev_section->read (objfile);
2549
2550 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2551 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2552
2553 htab_up sig_types_hash = allocate_signatured_type_table ();
2554
2555 for (uint32_t i = 0; i < map.tu_count; ++i)
2556 {
2557 struct signatured_type *sig_type;
2558 void **slot;
2559
2560 sect_offset sect_off
2561 = (sect_offset) (extract_unsigned_integer
2562 (map.tu_table_reordered + i * map.offset_size,
2563 map.offset_size,
2564 map.dwarf5_byte_order));
2565
2566 comp_unit_head cu_header;
2567 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2568 abbrev_section,
2569 section->buffer + to_underlying (sect_off),
2570 rcuh_kind::TYPE);
2571
2572 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2573 struct signatured_type);
2574 sig_type->signature = cu_header.signature;
2575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2576 sig_type->per_cu.is_debug_types = 1;
2577 sig_type->per_cu.section = section;
2578 sig_type->per_cu.sect_off = sect_off;
2579 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2580 sig_type->per_cu.v.quick
2581 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2582 struct dwarf2_per_cu_quick_data);
2583
2584 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2585 *slot = sig_type;
2586
2587 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2588 }
2589
2590 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2591 }
2592
2593 /* Read the address map data from the mapped index, and use it to
2594 populate the objfile's psymtabs_addrmap. */
2595
2596 static void
2597 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2598 struct mapped_index *index)
2599 {
2600 struct objfile *objfile = dwarf2_per_objfile->objfile;
2601 struct gdbarch *gdbarch = objfile->arch ();
2602 const gdb_byte *iter, *end;
2603 struct addrmap *mutable_map;
2604 CORE_ADDR baseaddr;
2605
2606 auto_obstack temp_obstack;
2607
2608 mutable_map = addrmap_create_mutable (&temp_obstack);
2609
2610 iter = index->address_table.data ();
2611 end = iter + index->address_table.size ();
2612
2613 baseaddr = objfile->text_section_offset ();
2614
2615 while (iter < end)
2616 {
2617 ULONGEST hi, lo, cu_index;
2618 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2619 iter += 8;
2620 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2621 iter += 8;
2622 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2623 iter += 4;
2624
2625 if (lo > hi)
2626 {
2627 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2628 hex_string (lo), hex_string (hi));
2629 continue;
2630 }
2631
2632 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2633 {
2634 complaint (_(".gdb_index address table has invalid CU number %u"),
2635 (unsigned) cu_index);
2636 continue;
2637 }
2638
2639 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2640 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2641 addrmap_set_empty (mutable_map, lo, hi - 1,
2642 dwarf2_per_objfile->get_cu (cu_index));
2643 }
2644
2645 objfile->partial_symtabs->psymtabs_addrmap
2646 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2647 }
2648
2649 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2650 populate the objfile's psymtabs_addrmap. */
2651
2652 static void
2653 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2654 struct dwarf2_section_info *section)
2655 {
2656 struct objfile *objfile = dwarf2_per_objfile->objfile;
2657 bfd *abfd = objfile->obfd;
2658 struct gdbarch *gdbarch = objfile->arch ();
2659 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2660
2661 auto_obstack temp_obstack;
2662 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2663
2664 std::unordered_map<sect_offset,
2665 dwarf2_per_cu_data *,
2666 gdb::hash_enum<sect_offset>>
2667 debug_info_offset_to_per_cu;
2668 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2669 {
2670 const auto insertpair
2671 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2672 if (!insertpair.second)
2673 {
2674 warning (_("Section .debug_aranges in %s has duplicate "
2675 "debug_info_offset %s, ignoring .debug_aranges."),
2676 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2677 return;
2678 }
2679 }
2680
2681 section->read (objfile);
2682
2683 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2684
2685 const gdb_byte *addr = section->buffer;
2686
2687 while (addr < section->buffer + section->size)
2688 {
2689 const gdb_byte *const entry_addr = addr;
2690 unsigned int bytes_read;
2691
2692 const LONGEST entry_length = read_initial_length (abfd, addr,
2693 &bytes_read);
2694 addr += bytes_read;
2695
2696 const gdb_byte *const entry_end = addr + entry_length;
2697 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2698 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2699 if (addr + entry_length > section->buffer + section->size)
2700 {
2701 warning (_("Section .debug_aranges in %s entry at offset %s "
2702 "length %s exceeds section length %s, "
2703 "ignoring .debug_aranges."),
2704 objfile_name (objfile),
2705 plongest (entry_addr - section->buffer),
2706 plongest (bytes_read + entry_length),
2707 pulongest (section->size));
2708 return;
2709 }
2710
2711 /* The version number. */
2712 const uint16_t version = read_2_bytes (abfd, addr);
2713 addr += 2;
2714 if (version != 2)
2715 {
2716 warning (_("Section .debug_aranges in %s entry at offset %s "
2717 "has unsupported version %d, ignoring .debug_aranges."),
2718 objfile_name (objfile),
2719 plongest (entry_addr - section->buffer), version);
2720 return;
2721 }
2722
2723 const uint64_t debug_info_offset
2724 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2725 addr += offset_size;
2726 const auto per_cu_it
2727 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2728 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2729 {
2730 warning (_("Section .debug_aranges in %s entry at offset %s "
2731 "debug_info_offset %s does not exists, "
2732 "ignoring .debug_aranges."),
2733 objfile_name (objfile),
2734 plongest (entry_addr - section->buffer),
2735 pulongest (debug_info_offset));
2736 return;
2737 }
2738 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2739
2740 const uint8_t address_size = *addr++;
2741 if (address_size < 1 || address_size > 8)
2742 {
2743 warning (_("Section .debug_aranges in %s entry at offset %s "
2744 "address_size %u is invalid, ignoring .debug_aranges."),
2745 objfile_name (objfile),
2746 plongest (entry_addr - section->buffer), address_size);
2747 return;
2748 }
2749
2750 const uint8_t segment_selector_size = *addr++;
2751 if (segment_selector_size != 0)
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "segment_selector_size %u is not supported, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 segment_selector_size);
2759 return;
2760 }
2761
2762 /* Must pad to an alignment boundary that is twice the address
2763 size. It is undocumented by the DWARF standard but GCC does
2764 use it. */
2765 for (size_t padding = ((-(addr - section->buffer))
2766 & (2 * address_size - 1));
2767 padding > 0; padding--)
2768 if (*addr++ != 0)
2769 {
2770 warning (_("Section .debug_aranges in %s entry at offset %s "
2771 "padding is not zero, ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer));
2774 return;
2775 }
2776
2777 for (;;)
2778 {
2779 if (addr + 2 * address_size > entry_end)
2780 {
2781 warning (_("Section .debug_aranges in %s entry at offset %s "
2782 "address list is not properly terminated, "
2783 "ignoring .debug_aranges."),
2784 objfile_name (objfile),
2785 plongest (entry_addr - section->buffer));
2786 return;
2787 }
2788 ULONGEST start = extract_unsigned_integer (addr, address_size,
2789 dwarf5_byte_order);
2790 addr += address_size;
2791 ULONGEST length = extract_unsigned_integer (addr, address_size,
2792 dwarf5_byte_order);
2793 addr += address_size;
2794 if (start == 0 && length == 0)
2795 break;
2796 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2797 {
2798 /* Symbol was eliminated due to a COMDAT group. */
2799 continue;
2800 }
2801 ULONGEST end = start + length;
2802 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2803 - baseaddr);
2804 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2805 - baseaddr);
2806 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2807 }
2808 }
2809
2810 objfile->partial_symtabs->psymtabs_addrmap
2811 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2812 }
2813
2814 /* Find a slot in the mapped index INDEX for the object named NAME.
2815 If NAME is found, set *VEC_OUT to point to the CU vector in the
2816 constant pool and return true. If NAME cannot be found, return
2817 false. */
2818
2819 static bool
2820 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2821 offset_type **vec_out)
2822 {
2823 offset_type hash;
2824 offset_type slot, step;
2825 int (*cmp) (const char *, const char *);
2826
2827 gdb::unique_xmalloc_ptr<char> without_params;
2828 if (current_language->la_language == language_cplus
2829 || current_language->la_language == language_fortran
2830 || current_language->la_language == language_d)
2831 {
2832 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2833 not contain any. */
2834
2835 if (strchr (name, '(') != NULL)
2836 {
2837 without_params = cp_remove_params (name);
2838
2839 if (without_params != NULL)
2840 name = without_params.get ();
2841 }
2842 }
2843
2844 /* Index version 4 did not support case insensitive searches. But the
2845 indices for case insensitive languages are built in lowercase, therefore
2846 simulate our NAME being searched is also lowercased. */
2847 hash = mapped_index_string_hash ((index->version == 4
2848 && case_sensitivity == case_sensitive_off
2849 ? 5 : index->version),
2850 name);
2851
2852 slot = hash & (index->symbol_table.size () - 1);
2853 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2854 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2855
2856 for (;;)
2857 {
2858 const char *str;
2859
2860 const auto &bucket = index->symbol_table[slot];
2861 if (bucket.name == 0 && bucket.vec == 0)
2862 return false;
2863
2864 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2865 if (!cmp (name, str))
2866 {
2867 *vec_out = (offset_type *) (index->constant_pool
2868 + MAYBE_SWAP (bucket.vec));
2869 return true;
2870 }
2871
2872 slot = (slot + step) & (index->symbol_table.size () - 1);
2873 }
2874 }
2875
2876 /* A helper function that reads the .gdb_index from BUFFER and fills
2877 in MAP. FILENAME is the name of the file containing the data;
2878 it is used for error reporting. DEPRECATED_OK is true if it is
2879 ok to use deprecated sections.
2880
2881 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2882 out parameters that are filled in with information about the CU and
2883 TU lists in the section.
2884
2885 Returns true if all went well, false otherwise. */
2886
2887 static bool
2888 read_gdb_index_from_buffer (const char *filename,
2889 bool deprecated_ok,
2890 gdb::array_view<const gdb_byte> buffer,
2891 struct mapped_index *map,
2892 const gdb_byte **cu_list,
2893 offset_type *cu_list_elements,
2894 const gdb_byte **types_list,
2895 offset_type *types_list_elements)
2896 {
2897 const gdb_byte *addr = &buffer[0];
2898
2899 /* Version check. */
2900 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2901 /* Versions earlier than 3 emitted every copy of a psymbol. This
2902 causes the index to behave very poorly for certain requests. Version 3
2903 contained incomplete addrmap. So, it seems better to just ignore such
2904 indices. */
2905 if (version < 4)
2906 {
2907 static int warning_printed = 0;
2908 if (!warning_printed)
2909 {
2910 warning (_("Skipping obsolete .gdb_index section in %s."),
2911 filename);
2912 warning_printed = 1;
2913 }
2914 return 0;
2915 }
2916 /* Index version 4 uses a different hash function than index version
2917 5 and later.
2918
2919 Versions earlier than 6 did not emit psymbols for inlined
2920 functions. Using these files will cause GDB not to be able to
2921 set breakpoints on inlined functions by name, so we ignore these
2922 indices unless the user has done
2923 "set use-deprecated-index-sections on". */
2924 if (version < 6 && !deprecated_ok)
2925 {
2926 static int warning_printed = 0;
2927 if (!warning_printed)
2928 {
2929 warning (_("\
2930 Skipping deprecated .gdb_index section in %s.\n\
2931 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2932 to use the section anyway."),
2933 filename);
2934 warning_printed = 1;
2935 }
2936 return 0;
2937 }
2938 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2939 of the TU (for symbols coming from TUs),
2940 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2941 Plus gold-generated indices can have duplicate entries for global symbols,
2942 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2943 These are just performance bugs, and we can't distinguish gdb-generated
2944 indices from gold-generated ones, so issue no warning here. */
2945
2946 /* Indexes with higher version than the one supported by GDB may be no
2947 longer backward compatible. */
2948 if (version > 8)
2949 return 0;
2950
2951 map->version = version;
2952
2953 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2954
2955 int i = 0;
2956 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2957 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2958 / 8);
2959 ++i;
2960
2961 *types_list = addr + MAYBE_SWAP (metadata[i]);
2962 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2963 - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2968 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2969 map->address_table
2970 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2971 ++i;
2972
2973 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->symbol_table
2976 = gdb::array_view<mapped_index::symbol_table_slot>
2977 ((mapped_index::symbol_table_slot *) symbol_table,
2978 (mapped_index::symbol_table_slot *) symbol_table_end);
2979
2980 ++i;
2981 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2982
2983 return 1;
2984 }
2985
2986 /* Callback types for dwarf2_read_gdb_index. */
2987
2988 typedef gdb::function_view
2989 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2990 get_gdb_index_contents_ftype;
2991 typedef gdb::function_view
2992 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2993 get_gdb_index_contents_dwz_ftype;
2994
2995 /* Read .gdb_index. If everything went ok, initialize the "quick"
2996 elements of all the CUs and return 1. Otherwise, return 0. */
2997
2998 static int
2999 dwarf2_read_gdb_index
3000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 get_gdb_index_contents_ftype get_gdb_index_contents,
3002 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3003 {
3004 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3005 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3006 struct dwz_file *dwz;
3007 struct objfile *objfile = dwarf2_per_objfile->objfile;
3008
3009 gdb::array_view<const gdb_byte> main_index_contents
3010 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3011
3012 if (main_index_contents.empty ())
3013 return 0;
3014
3015 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3016 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3017 use_deprecated_index_sections,
3018 main_index_contents, map.get (), &cu_list,
3019 &cu_list_elements, &types_list,
3020 &types_list_elements))
3021 return 0;
3022
3023 /* Don't use the index if it's empty. */
3024 if (map->symbol_table.empty ())
3025 return 0;
3026
3027 /* If there is a .dwz file, read it so we can get its CU list as
3028 well. */
3029 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3030 if (dwz != NULL)
3031 {
3032 struct mapped_index dwz_map;
3033 const gdb_byte *dwz_types_ignore;
3034 offset_type dwz_types_elements_ignore;
3035
3036 gdb::array_view<const gdb_byte> dwz_index_content
3037 = get_gdb_index_contents_dwz (objfile, dwz);
3038
3039 if (dwz_index_content.empty ())
3040 return 0;
3041
3042 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3043 1, dwz_index_content, &dwz_map,
3044 &dwz_list, &dwz_list_elements,
3045 &dwz_types_ignore,
3046 &dwz_types_elements_ignore))
3047 {
3048 warning (_("could not read '.gdb_index' section from %s; skipping"),
3049 bfd_get_filename (dwz->dwz_bfd.get ()));
3050 return 0;
3051 }
3052 }
3053
3054 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3055 dwz_list, dwz_list_elements);
3056
3057 if (types_list_elements)
3058 {
3059 /* We can only handle a single .debug_types when we have an
3060 index. */
3061 if (dwarf2_per_objfile->types.size () != 1)
3062 return 0;
3063
3064 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3065
3066 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3067 types_list, types_list_elements);
3068 }
3069
3070 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3071
3072 dwarf2_per_objfile->index_table = std::move (map);
3073 dwarf2_per_objfile->using_index = 1;
3074 dwarf2_per_objfile->quick_file_names_table =
3075 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3076
3077 return 1;
3078 }
3079
3080 /* die_reader_func for dw2_get_file_names. */
3081
3082 static void
3083 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3084 const gdb_byte *info_ptr,
3085 struct die_info *comp_unit_die)
3086 {
3087 struct dwarf2_cu *cu = reader->cu;
3088 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3089 struct dwarf2_per_objfile *dwarf2_per_objfile
3090 = cu->per_cu->dwarf2_per_objfile;
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092 struct dwarf2_per_cu_data *lh_cu;
3093 struct attribute *attr;
3094 void **slot;
3095 struct quick_file_names *qfn;
3096
3097 gdb_assert (! this_cu->is_debug_types);
3098
3099 /* Our callers never want to match partial units -- instead they
3100 will match the enclosing full CU. */
3101 if (comp_unit_die->tag == DW_TAG_partial_unit)
3102 {
3103 this_cu->v.quick->no_file_data = 1;
3104 return;
3105 }
3106
3107 lh_cu = this_cu;
3108 slot = NULL;
3109
3110 line_header_up lh;
3111 sect_offset line_offset {};
3112
3113 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3114 if (attr != nullptr)
3115 {
3116 struct quick_file_names find_entry;
3117
3118 line_offset = (sect_offset) DW_UNSND (attr);
3119
3120 /* We may have already read in this line header (TU line header sharing).
3121 If we have we're done. */
3122 find_entry.hash.dwo_unit = cu->dwo_unit;
3123 find_entry.hash.line_sect_off = line_offset;
3124 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3125 &find_entry, INSERT);
3126 if (*slot != NULL)
3127 {
3128 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3129 return;
3130 }
3131
3132 lh = dwarf_decode_line_header (line_offset, cu);
3133 }
3134 if (lh == NULL)
3135 {
3136 lh_cu->v.quick->no_file_data = 1;
3137 return;
3138 }
3139
3140 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3141 qfn->hash.dwo_unit = cu->dwo_unit;
3142 qfn->hash.line_sect_off = line_offset;
3143 gdb_assert (slot != NULL);
3144 *slot = qfn;
3145
3146 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3147
3148 int offset = 0;
3149 if (strcmp (fnd.name, "<unknown>") != 0)
3150 ++offset;
3151
3152 qfn->num_file_names = offset + lh->file_names_size ();
3153 qfn->file_names =
3154 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3155 if (offset != 0)
3156 qfn->file_names[0] = xstrdup (fnd.name);
3157 for (int i = 0; i < lh->file_names_size (); ++i)
3158 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3159 fnd.comp_dir).release ();
3160 qfn->real_names = NULL;
3161
3162 lh_cu->v.quick->file_names = qfn;
3163 }
3164
3165 /* A helper for the "quick" functions which attempts to read the line
3166 table for THIS_CU. */
3167
3168 static struct quick_file_names *
3169 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3170 {
3171 /* This should never be called for TUs. */
3172 gdb_assert (! this_cu->is_debug_types);
3173 /* Nor type unit groups. */
3174 gdb_assert (! this_cu->type_unit_group_p ());
3175
3176 if (this_cu->v.quick->file_names != NULL)
3177 return this_cu->v.quick->file_names;
3178 /* If we know there is no line data, no point in looking again. */
3179 if (this_cu->v.quick->no_file_data)
3180 return NULL;
3181
3182 cutu_reader reader (this_cu);
3183 if (!reader.dummy_p)
3184 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3185
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188 return this_cu->v.quick->file_names;
3189 }
3190
3191 /* A helper for the "quick" functions which computes and caches the
3192 real path for a given file name from the line table. */
3193
3194 static const char *
3195 dw2_get_real_path (struct objfile *objfile,
3196 struct quick_file_names *qfn, int index)
3197 {
3198 if (qfn->real_names == NULL)
3199 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3200 qfn->num_file_names, const char *);
3201
3202 if (qfn->real_names[index] == NULL)
3203 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3204
3205 return qfn->real_names[index];
3206 }
3207
3208 static struct symtab *
3209 dw2_find_last_source_symtab (struct objfile *objfile)
3210 {
3211 struct dwarf2_per_objfile *dwarf2_per_objfile
3212 = get_dwarf2_per_objfile (objfile);
3213 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3214 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3215
3216 if (cust == NULL)
3217 return NULL;
3218
3219 return compunit_primary_filetab (cust);
3220 }
3221
3222 /* Traversal function for dw2_forget_cached_source_info. */
3223
3224 static int
3225 dw2_free_cached_file_names (void **slot, void *info)
3226 {
3227 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3228
3229 if (file_data->real_names)
3230 {
3231 int i;
3232
3233 for (i = 0; i < file_data->num_file_names; ++i)
3234 {
3235 xfree ((void*) file_data->real_names[i]);
3236 file_data->real_names[i] = NULL;
3237 }
3238 }
3239
3240 return 1;
3241 }
3242
3243 static void
3244 dw2_forget_cached_source_info (struct objfile *objfile)
3245 {
3246 struct dwarf2_per_objfile *dwarf2_per_objfile
3247 = get_dwarf2_per_objfile (objfile);
3248
3249 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3250 dw2_free_cached_file_names, NULL);
3251 }
3252
3253 /* Helper function for dw2_map_symtabs_matching_filename that expands
3254 the symtabs and calls the iterator. */
3255
3256 static int
3257 dw2_map_expand_apply (struct objfile *objfile,
3258 struct dwarf2_per_cu_data *per_cu,
3259 const char *name, const char *real_path,
3260 gdb::function_view<bool (symtab *)> callback)
3261 {
3262 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3263
3264 /* Don't visit already-expanded CUs. */
3265 if (per_cu->v.quick->compunit_symtab)
3266 return 0;
3267
3268 /* This may expand more than one symtab, and we want to iterate over
3269 all of them. */
3270 dw2_instantiate_symtab (per_cu, false);
3271
3272 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3273 last_made, callback);
3274 }
3275
3276 /* Implementation of the map_symtabs_matching_filename method. */
3277
3278 static bool
3279 dw2_map_symtabs_matching_filename
3280 (struct objfile *objfile, const char *name, const char *real_path,
3281 gdb::function_view<bool (symtab *)> callback)
3282 {
3283 const char *name_basename = lbasename (name);
3284 struct dwarf2_per_objfile *dwarf2_per_objfile
3285 = get_dwarf2_per_objfile (objfile);
3286
3287 /* The rule is CUs specify all the files, including those used by
3288 any TU, so there's no need to scan TUs here. */
3289
3290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3291 {
3292 /* We only need to look at symtabs not already expanded. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 continue;
3295
3296 quick_file_names *file_data = dw2_get_file_names (per_cu);
3297 if (file_data == NULL)
3298 continue;
3299
3300 for (int j = 0; j < file_data->num_file_names; ++j)
3301 {
3302 const char *this_name = file_data->file_names[j];
3303 const char *this_real_name;
3304
3305 if (compare_filenames_for_search (this_name, name))
3306 {
3307 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3308 callback))
3309 return true;
3310 continue;
3311 }
3312
3313 /* Before we invoke realpath, which can get expensive when many
3314 files are involved, do a quick comparison of the basenames. */
3315 if (! basenames_may_differ
3316 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3317 continue;
3318
3319 this_real_name = dw2_get_real_path (objfile, file_data, j);
3320 if (compare_filenames_for_search (this_real_name, name))
3321 {
3322 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3323 callback))
3324 return true;
3325 continue;
3326 }
3327
3328 if (real_path != NULL)
3329 {
3330 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3331 gdb_assert (IS_ABSOLUTE_PATH (name));
3332 if (this_real_name != NULL
3333 && FILENAME_CMP (real_path, this_real_name) == 0)
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Struct used to manage iterating over all CUs looking for a symbol. */
3348
3349 struct dw2_symtab_iterator
3350 {
3351 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3352 struct dwarf2_per_objfile *dwarf2_per_objfile;
3353 /* If set, only look for symbols that match that block. Valid values are
3354 GLOBAL_BLOCK and STATIC_BLOCK. */
3355 gdb::optional<block_enum> block_index;
3356 /* The kind of symbol we're looking for. */
3357 domain_enum domain;
3358 /* The list of CUs from the index entry of the symbol,
3359 or NULL if not found. */
3360 offset_type *vec;
3361 /* The next element in VEC to look at. */
3362 int next;
3363 /* The number of elements in VEC, or zero if there is no match. */
3364 int length;
3365 /* Have we seen a global version of the symbol?
3366 If so we can ignore all further global instances.
3367 This is to work around gold/15646, inefficient gold-generated
3368 indices. */
3369 int global_seen;
3370 };
3371
3372 /* Initialize the index symtab iterator ITER. */
3373
3374 static void
3375 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3376 struct dwarf2_per_objfile *dwarf2_per_objfile,
3377 gdb::optional<block_enum> block_index,
3378 domain_enum domain,
3379 const char *name)
3380 {
3381 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3382 iter->block_index = block_index;
3383 iter->domain = domain;
3384 iter->next = 0;
3385 iter->global_seen = 0;
3386
3387 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3388
3389 /* index is NULL if OBJF_READNOW. */
3390 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3391 iter->length = MAYBE_SWAP (*iter->vec);
3392 else
3393 {
3394 iter->vec = NULL;
3395 iter->length = 0;
3396 }
3397 }
3398
3399 /* Return the next matching CU or NULL if there are no more. */
3400
3401 static struct dwarf2_per_cu_data *
3402 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3403 {
3404 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3405
3406 for ( ; iter->next < iter->length; ++iter->next)
3407 {
3408 offset_type cu_index_and_attrs =
3409 MAYBE_SWAP (iter->vec[iter->next + 1]);
3410 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3411 gdb_index_symbol_kind symbol_kind =
3412 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3413 /* Only check the symbol attributes if they're present.
3414 Indices prior to version 7 don't record them,
3415 and indices >= 7 may elide them for certain symbols
3416 (gold does this). */
3417 int attrs_valid =
3418 (dwarf2_per_objfile->index_table->version >= 7
3419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3420
3421 /* Don't crash on bad data. */
3422 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3423 + dwarf2_per_objfile->all_type_units.size ()))
3424 {
3425 complaint (_(".gdb_index entry has bad CU index"
3426 " [in module %s]"),
3427 objfile_name (dwarf2_per_objfile->objfile));
3428 continue;
3429 }
3430
3431 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3432
3433 /* Skip if already read in. */
3434 if (per_cu->v.quick->compunit_symtab)
3435 continue;
3436
3437 /* Check static vs global. */
3438 if (attrs_valid)
3439 {
3440 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3441
3442 if (iter->block_index.has_value ())
3443 {
3444 bool want_static = *iter->block_index == STATIC_BLOCK;
3445
3446 if (is_static != want_static)
3447 continue;
3448 }
3449
3450 /* Work around gold/15646. */
3451 if (!is_static && iter->global_seen)
3452 continue;
3453 if (!is_static)
3454 iter->global_seen = 1;
3455 }
3456
3457 /* Only check the symbol's kind if it has one. */
3458 if (attrs_valid)
3459 {
3460 switch (iter->domain)
3461 {
3462 case VAR_DOMAIN:
3463 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3464 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3465 /* Some types are also in VAR_DOMAIN. */
3466 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3467 continue;
3468 break;
3469 case STRUCT_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3471 continue;
3472 break;
3473 case LABEL_DOMAIN:
3474 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3475 continue;
3476 break;
3477 case MODULE_DOMAIN:
3478 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3479 continue;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485
3486 ++iter->next;
3487 return per_cu;
3488 }
3489
3490 return NULL;
3491 }
3492
3493 static struct compunit_symtab *
3494 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3495 const char *name, domain_enum domain)
3496 {
3497 struct compunit_symtab *stab_best = NULL;
3498 struct dwarf2_per_objfile *dwarf2_per_objfile
3499 = get_dwarf2_per_objfile (objfile);
3500
3501 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3502
3503 struct dw2_symtab_iterator iter;
3504 struct dwarf2_per_cu_data *per_cu;
3505
3506 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3507
3508 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3509 {
3510 struct symbol *sym, *with_opaque = NULL;
3511 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3512 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3513 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3514
3515 sym = block_find_symbol (block, name, domain,
3516 block_find_non_opaque_type_preferred,
3517 &with_opaque);
3518
3519 /* Some caution must be observed with overloaded functions
3520 and methods, since the index will not contain any overload
3521 information (but NAME might contain it). */
3522
3523 if (sym != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3525 return stab;
3526 if (with_opaque != NULL
3527 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3528 stab_best = stab;
3529
3530 /* Keep looking through other CUs. */
3531 }
3532
3533 return stab_best;
3534 }
3535
3536 static void
3537 dw2_print_stats (struct objfile *objfile)
3538 {
3539 struct dwarf2_per_objfile *dwarf2_per_objfile
3540 = get_dwarf2_per_objfile (objfile);
3541 int total = (dwarf2_per_objfile->all_comp_units.size ()
3542 + dwarf2_per_objfile->all_type_units.size ());
3543 int count = 0;
3544
3545 for (int i = 0; i < total; ++i)
3546 {
3547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3548
3549 if (!per_cu->v.quick->compunit_symtab)
3550 ++count;
3551 }
3552 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3553 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3554 }
3555
3556 /* This dumps minimal information about the index.
3557 It is called via "mt print objfiles".
3558 One use is to verify .gdb_index has been loaded by the
3559 gdb.dwarf2/gdb-index.exp testcase. */
3560
3561 static void
3562 dw2_dump (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566
3567 gdb_assert (dwarf2_per_objfile->using_index);
3568 printf_filtered (".gdb_index:");
3569 if (dwarf2_per_objfile->index_table != NULL)
3570 {
3571 printf_filtered (" version %d\n",
3572 dwarf2_per_objfile->index_table->version);
3573 }
3574 else
3575 printf_filtered (" faked for \"readnow\"\n");
3576 printf_filtered ("\n");
3577 }
3578
3579 static void
3580 dw2_expand_symtabs_for_function (struct objfile *objfile,
3581 const char *func_name)
3582 {
3583 struct dwarf2_per_objfile *dwarf2_per_objfile
3584 = get_dwarf2_per_objfile (objfile);
3585
3586 struct dw2_symtab_iterator iter;
3587 struct dwarf2_per_cu_data *per_cu;
3588
3589 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3590
3591 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3592 dw2_instantiate_symtab (per_cu, false);
3593
3594 }
3595
3596 static void
3597 dw2_expand_all_symtabs (struct objfile *objfile)
3598 {
3599 struct dwarf2_per_objfile *dwarf2_per_objfile
3600 = get_dwarf2_per_objfile (objfile);
3601 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3602 + dwarf2_per_objfile->all_type_units.size ());
3603
3604 for (int i = 0; i < total_units; ++i)
3605 {
3606 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3607
3608 /* We don't want to directly expand a partial CU, because if we
3609 read it with the wrong language, then assertion failures can
3610 be triggered later on. See PR symtab/23010. So, tell
3611 dw2_instantiate_symtab to skip partial CUs -- any important
3612 partial CU will be read via DW_TAG_imported_unit anyway. */
3613 dw2_instantiate_symtab (per_cu, true);
3614 }
3615 }
3616
3617 static void
3618 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3619 const char *fullname)
3620 {
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = get_dwarf2_per_objfile (objfile);
3623
3624 /* We don't need to consider type units here.
3625 This is only called for examining code, e.g. expand_line_sal.
3626 There can be an order of magnitude (or more) more type units
3627 than comp units, and we avoid them if we can. */
3628
3629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3630 {
3631 /* We only need to look at symtabs not already expanded. */
3632 if (per_cu->v.quick->compunit_symtab)
3633 continue;
3634
3635 quick_file_names *file_data = dw2_get_file_names (per_cu);
3636 if (file_data == NULL)
3637 continue;
3638
3639 for (int j = 0; j < file_data->num_file_names; ++j)
3640 {
3641 const char *this_fullname = file_data->file_names[j];
3642
3643 if (filename_cmp (this_fullname, fullname) == 0)
3644 {
3645 dw2_instantiate_symtab (per_cu, false);
3646 break;
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 dw2_map_matching_symbols
3654 (struct objfile *objfile,
3655 const lookup_name_info &name, domain_enum domain,
3656 int global,
3657 gdb::function_view<symbol_found_callback_ftype> callback,
3658 symbol_compare_ftype *ordered_compare)
3659 {
3660 /* Used for Ada. */
3661 struct dwarf2_per_objfile *dwarf2_per_objfile
3662 = get_dwarf2_per_objfile (objfile);
3663
3664 if (dwarf2_per_objfile->index_table != nullptr)
3665 {
3666 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3667 here though if the current language is Ada for a non-Ada objfile
3668 using GNU index. As Ada does not look for non-Ada symbols this
3669 function should just return. */
3670 return;
3671 }
3672
3673 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3674 inline psym_map_matching_symbols here, assuming all partial symtabs have
3675 been read in. */
3676 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3677
3678 for (compunit_symtab *cust : objfile->compunits ())
3679 {
3680 const struct block *block;
3681
3682 if (cust == NULL)
3683 continue;
3684 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3685 if (!iterate_over_symbols_terminated (block, name,
3686 domain, callback))
3687 return;
3688 }
3689 }
3690
3691 /* Starting from a search name, return the string that finds the upper
3692 bound of all strings that start with SEARCH_NAME in a sorted name
3693 list. Returns the empty string to indicate that the upper bound is
3694 the end of the list. */
3695
3696 static std::string
3697 make_sort_after_prefix_name (const char *search_name)
3698 {
3699 /* When looking to complete "func", we find the upper bound of all
3700 symbols that start with "func" by looking for where we'd insert
3701 the closest string that would follow "func" in lexicographical
3702 order. Usually, that's "func"-with-last-character-incremented,
3703 i.e. "fund". Mind non-ASCII characters, though. Usually those
3704 will be UTF-8 multi-byte sequences, but we can't be certain.
3705 Especially mind the 0xff character, which is a valid character in
3706 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3707 rule out compilers allowing it in identifiers. Note that
3708 conveniently, strcmp/strcasecmp are specified to compare
3709 characters interpreted as unsigned char. So what we do is treat
3710 the whole string as a base 256 number composed of a sequence of
3711 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3712 to 0, and carries 1 to the following more-significant position.
3713 If the very first character in SEARCH_NAME ends up incremented
3714 and carries/overflows, then the upper bound is the end of the
3715 list. The string after the empty string is also the empty
3716 string.
3717
3718 Some examples of this operation:
3719
3720 SEARCH_NAME => "+1" RESULT
3721
3722 "abc" => "abd"
3723 "ab\xff" => "ac"
3724 "\xff" "a" "\xff" => "\xff" "b"
3725 "\xff" => ""
3726 "\xff\xff" => ""
3727 "" => ""
3728
3729 Then, with these symbols for example:
3730
3731 func
3732 func1
3733 fund
3734
3735 completing "func" looks for symbols between "func" and
3736 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3737 which finds "func" and "func1", but not "fund".
3738
3739 And with:
3740
3741 funcÿ (Latin1 'ÿ' [0xff])
3742 funcÿ1
3743 fund
3744
3745 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3746 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3747
3748 And with:
3749
3750 ÿÿ (Latin1 'ÿ' [0xff])
3751 ÿÿ1
3752
3753 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3754 the end of the list.
3755 */
3756 std::string after = search_name;
3757 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 after.pop_back ();
3759 if (!after.empty ())
3760 after.back () = (unsigned char) after.back () + 1;
3761 return after;
3762 }
3763
3764 /* See declaration. */
3765
3766 std::pair<std::vector<name_component>::const_iterator,
3767 std::vector<name_component>::const_iterator>
3768 mapped_index_base::find_name_components_bounds
3769 (const lookup_name_info &lookup_name_without_params, language lang) const
3770 {
3771 auto *name_cmp
3772 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773
3774 const char *lang_name
3775 = lookup_name_without_params.language_lookup_name (lang);
3776
3777 /* Comparison function object for lower_bound that matches against a
3778 given symbol name. */
3779 auto lookup_compare_lower = [&] (const name_component &elem,
3780 const char *name)
3781 {
3782 const char *elem_qualified = this->symbol_name_at (elem.idx);
3783 const char *elem_name = elem_qualified + elem.name_offset;
3784 return name_cmp (elem_name, name) < 0;
3785 };
3786
3787 /* Comparison function object for upper_bound that matches against a
3788 given symbol name. */
3789 auto lookup_compare_upper = [&] (const char *name,
3790 const name_component &elem)
3791 {
3792 const char *elem_qualified = this->symbol_name_at (elem.idx);
3793 const char *elem_name = elem_qualified + elem.name_offset;
3794 return name_cmp (name, elem_name) < 0;
3795 };
3796
3797 auto begin = this->name_components.begin ();
3798 auto end = this->name_components.end ();
3799
3800 /* Find the lower bound. */
3801 auto lower = [&] ()
3802 {
3803 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3804 return begin;
3805 else
3806 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3807 } ();
3808
3809 /* Find the upper bound. */
3810 auto upper = [&] ()
3811 {
3812 if (lookup_name_without_params.completion_mode ())
3813 {
3814 /* In completion mode, we want UPPER to point past all
3815 symbols names that have the same prefix. I.e., with
3816 these symbols, and completing "func":
3817
3818 function << lower bound
3819 function1
3820 other_function << upper bound
3821
3822 We find the upper bound by looking for the insertion
3823 point of "func"-with-last-character-incremented,
3824 i.e. "fund". */
3825 std::string after = make_sort_after_prefix_name (lang_name);
3826 if (after.empty ())
3827 return end;
3828 return std::lower_bound (lower, end, after.c_str (),
3829 lookup_compare_lower);
3830 }
3831 else
3832 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3833 } ();
3834
3835 return {lower, upper};
3836 }
3837
3838 /* See declaration. */
3839
3840 void
3841 mapped_index_base::build_name_components ()
3842 {
3843 if (!this->name_components.empty ())
3844 return;
3845
3846 this->name_components_casing = case_sensitivity;
3847 auto *name_cmp
3848 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849
3850 /* The code below only knows how to break apart components of C++
3851 symbol names (and other languages that use '::' as
3852 namespace/module separator) and Ada symbol names. */
3853 auto count = this->symbol_name_count ();
3854 for (offset_type idx = 0; idx < count; idx++)
3855 {
3856 if (this->symbol_name_slot_invalid (idx))
3857 continue;
3858
3859 const char *name = this->symbol_name_at (idx);
3860
3861 /* Add each name component to the name component table. */
3862 unsigned int previous_len = 0;
3863
3864 if (strstr (name, "::") != nullptr)
3865 {
3866 for (unsigned int current_len = cp_find_first_component (name);
3867 name[current_len] != '\0';
3868 current_len += cp_find_first_component (name + current_len))
3869 {
3870 gdb_assert (name[current_len] == ':');
3871 this->name_components.push_back ({previous_len, idx});
3872 /* Skip the '::'. */
3873 current_len += 2;
3874 previous_len = current_len;
3875 }
3876 }
3877 else
3878 {
3879 /* Handle the Ada encoded (aka mangled) form here. */
3880 for (const char *iter = strstr (name, "__");
3881 iter != nullptr;
3882 iter = strstr (iter, "__"))
3883 {
3884 this->name_components.push_back ({previous_len, idx});
3885 iter += 2;
3886 previous_len = iter - name;
3887 }
3888 }
3889
3890 this->name_components.push_back ({previous_len, idx});
3891 }
3892
3893 /* Sort name_components elements by name. */
3894 auto name_comp_compare = [&] (const name_component &left,
3895 const name_component &right)
3896 {
3897 const char *left_qualified = this->symbol_name_at (left.idx);
3898 const char *right_qualified = this->symbol_name_at (right.idx);
3899
3900 const char *left_name = left_qualified + left.name_offset;
3901 const char *right_name = right_qualified + right.name_offset;
3902
3903 return name_cmp (left_name, right_name) < 0;
3904 };
3905
3906 std::sort (this->name_components.begin (),
3907 this->name_components.end (),
3908 name_comp_compare);
3909 }
3910
3911 /* Helper for dw2_expand_symtabs_matching that works with a
3912 mapped_index_base instead of the containing objfile. This is split
3913 to a separate function in order to be able to unit test the
3914 name_components matching using a mock mapped_index_base. For each
3915 symbol name that matches, calls MATCH_CALLBACK, passing it the
3916 symbol's index in the mapped_index_base symbol table. */
3917
3918 static void
3919 dw2_expand_symtabs_matching_symbol
3920 (mapped_index_base &index,
3921 const lookup_name_info &lookup_name_in,
3922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3923 enum search_domain kind,
3924 gdb::function_view<bool (offset_type)> match_callback)
3925 {
3926 lookup_name_info lookup_name_without_params
3927 = lookup_name_in.make_ignore_params ();
3928
3929 /* Build the symbol name component sorted vector, if we haven't
3930 yet. */
3931 index.build_name_components ();
3932
3933 /* The same symbol may appear more than once in the range though.
3934 E.g., if we're looking for symbols that complete "w", and we have
3935 a symbol named "w1::w2", we'll find the two name components for
3936 that same symbol in the range. To be sure we only call the
3937 callback once per symbol, we first collect the symbol name
3938 indexes that matched in a temporary vector and ignore
3939 duplicates. */
3940 std::vector<offset_type> matches;
3941
3942 struct name_and_matcher
3943 {
3944 symbol_name_matcher_ftype *matcher;
3945 const char *name;
3946
3947 bool operator== (const name_and_matcher &other) const
3948 {
3949 return matcher == other.matcher && strcmp (name, other.name) == 0;
3950 }
3951 };
3952
3953 /* A vector holding all the different symbol name matchers, for all
3954 languages. */
3955 std::vector<name_and_matcher> matchers;
3956
3957 for (int i = 0; i < nr_languages; i++)
3958 {
3959 enum language lang_e = (enum language) i;
3960
3961 const language_defn *lang = language_def (lang_e);
3962 symbol_name_matcher_ftype *name_matcher
3963 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964
3965 name_and_matcher key {
3966 name_matcher,
3967 lookup_name_without_params.language_lookup_name (lang_e)
3968 };
3969
3970 /* Don't insert the same comparison routine more than once.
3971 Note that we do this linear walk. This is not a problem in
3972 practice because the number of supported languages is
3973 low. */
3974 if (std::find (matchers.begin (), matchers.end (), key)
3975 != matchers.end ())
3976 continue;
3977 matchers.push_back (std::move (key));
3978
3979 auto bounds
3980 = index.find_name_components_bounds (lookup_name_without_params,
3981 lang_e);
3982
3983 /* Now for each symbol name in range, check to see if we have a name
3984 match, and if so, call the MATCH_CALLBACK callback. */
3985
3986 for (; bounds.first != bounds.second; ++bounds.first)
3987 {
3988 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989
3990 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3991 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3992 continue;
3993
3994 matches.push_back (bounds.first->idx);
3995 }
3996 }
3997
3998 std::sort (matches.begin (), matches.end ());
3999
4000 /* Finally call the callback, once per match. */
4001 ULONGEST prev = -1;
4002 for (offset_type idx : matches)
4003 {
4004 if (prev != idx)
4005 {
4006 if (!match_callback (idx))
4007 break;
4008 prev = idx;
4009 }
4010 }
4011
4012 /* Above we use a type wider than idx's for 'prev', since 0 and
4013 (offset_type)-1 are both possible values. */
4014 static_assert (sizeof (prev) > sizeof (offset_type), "");
4015 }
4016
4017 #if GDB_SELF_TEST
4018
4019 namespace selftests { namespace dw2_expand_symtabs_matching {
4020
4021 /* A mock .gdb_index/.debug_names-like name index table, enough to
4022 exercise dw2_expand_symtabs_matching_symbol, which works with the
4023 mapped_index_base interface. Builds an index from the symbol list
4024 passed as parameter to the constructor. */
4025 class mock_mapped_index : public mapped_index_base
4026 {
4027 public:
4028 mock_mapped_index (gdb::array_view<const char *> symbols)
4029 : m_symbol_table (symbols)
4030 {}
4031
4032 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033
4034 /* Return the number of names in the symbol table. */
4035 size_t symbol_name_count () const override
4036 {
4037 return m_symbol_table.size ();
4038 }
4039
4040 /* Get the name of the symbol at IDX in the symbol table. */
4041 const char *symbol_name_at (offset_type idx) const override
4042 {
4043 return m_symbol_table[idx];
4044 }
4045
4046 private:
4047 gdb::array_view<const char *> m_symbol_table;
4048 };
4049
4050 /* Convenience function that converts a NULL pointer to a "<null>"
4051 string, to pass to print routines. */
4052
4053 static const char *
4054 string_or_null (const char *str)
4055 {
4056 return str != NULL ? str : "<null>";
4057 }
4058
4059 /* Check if a lookup_name_info built from
4060 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4061 index. EXPECTED_LIST is the list of expected matches, in expected
4062 matching order. If no match expected, then an empty list is
4063 specified. Returns true on success. On failure prints a warning
4064 indicating the file:line that failed, and returns false. */
4065
4066 static bool
4067 check_match (const char *file, int line,
4068 mock_mapped_index &mock_index,
4069 const char *name, symbol_name_match_type match_type,
4070 bool completion_mode,
4071 std::initializer_list<const char *> expected_list)
4072 {
4073 lookup_name_info lookup_name (name, match_type, completion_mode);
4074
4075 bool matched = true;
4076
4077 auto mismatch = [&] (const char *expected_str,
4078 const char *got)
4079 {
4080 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4081 "expected=\"%s\", got=\"%s\"\n"),
4082 file, line,
4083 (match_type == symbol_name_match_type::FULL
4084 ? "FULL" : "WILD"),
4085 name, string_or_null (expected_str), string_or_null (got));
4086 matched = false;
4087 };
4088
4089 auto expected_it = expected_list.begin ();
4090 auto expected_end = expected_list.end ();
4091
4092 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 NULL, ALL_DOMAIN,
4094 [&] (offset_type idx)
4095 {
4096 const char *matched_name = mock_index.symbol_name_at (idx);
4097 const char *expected_str
4098 = expected_it == expected_end ? NULL : *expected_it++;
4099
4100 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4101 mismatch (expected_str, matched_name);
4102 return true;
4103 });
4104
4105 const char *expected_str
4106 = expected_it == expected_end ? NULL : *expected_it++;
4107 if (expected_str != NULL)
4108 mismatch (expected_str, NULL);
4109
4110 return matched;
4111 }
4112
4113 /* The symbols added to the mock mapped_index for testing (in
4114 canonical form). */
4115 static const char *test_symbols[] = {
4116 "function",
4117 "std::bar",
4118 "std::zfunction",
4119 "std::zfunction2",
4120 "w1::w2",
4121 "ns::foo<char*>",
4122 "ns::foo<int>",
4123 "ns::foo<long>",
4124 "ns2::tmpl<int>::foo2",
4125 "(anonymous namespace)::A::B::C",
4126
4127 /* These are used to check that the increment-last-char in the
4128 matching algorithm for completion doesn't match "t1_fund" when
4129 completing "t1_func". */
4130 "t1_func",
4131 "t1_func1",
4132 "t1_fund",
4133 "t1_fund1",
4134
4135 /* A UTF-8 name with multi-byte sequences to make sure that
4136 cp-name-parser understands this as a single identifier ("função"
4137 is "function" in PT). */
4138 u8"u8função",
4139
4140 /* \377 (0xff) is Latin1 'ÿ'. */
4141 "yfunc\377",
4142
4143 /* \377 (0xff) is Latin1 'ÿ'. */
4144 "\377",
4145 "\377\377123",
4146
4147 /* A name with all sorts of complications. Starts with "z" to make
4148 it easier for the completion tests below. */
4149 #define Z_SYM_NAME \
4150 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4151 "::tuple<(anonymous namespace)::ui*, " \
4152 "std::default_delete<(anonymous namespace)::ui>, void>"
4153
4154 Z_SYM_NAME
4155 };
4156
4157 /* Returns true if the mapped_index_base::find_name_component_bounds
4158 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4159 in completion mode. */
4160
4161 static bool
4162 check_find_bounds_finds (mapped_index_base &index,
4163 const char *search_name,
4164 gdb::array_view<const char *> expected_syms)
4165 {
4166 lookup_name_info lookup_name (search_name,
4167 symbol_name_match_type::FULL, true);
4168
4169 auto bounds = index.find_name_components_bounds (lookup_name,
4170 language_cplus);
4171
4172 size_t distance = std::distance (bounds.first, bounds.second);
4173 if (distance != expected_syms.size ())
4174 return false;
4175
4176 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 {
4178 auto nc_elem = bounds.first + exp_elem;
4179 const char *qualified = index.symbol_name_at (nc_elem->idx);
4180 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4181 return false;
4182 }
4183
4184 return true;
4185 }
4186
4187 /* Test the lower-level mapped_index::find_name_component_bounds
4188 method. */
4189
4190 static void
4191 test_mapped_index_find_name_component_bounds ()
4192 {
4193 mock_mapped_index mock_index (test_symbols);
4194
4195 mock_index.build_name_components ();
4196
4197 /* Test the lower-level mapped_index::find_name_component_bounds
4198 method in completion mode. */
4199 {
4200 static const char *expected_syms[] = {
4201 "t1_func",
4202 "t1_func1",
4203 };
4204
4205 SELF_CHECK (check_find_bounds_finds (mock_index,
4206 "t1_func", expected_syms));
4207 }
4208
4209 /* Check that the increment-last-char in the name matching algorithm
4210 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 {
4212 static const char *expected_syms1[] = {
4213 "\377",
4214 "\377\377123",
4215 };
4216 SELF_CHECK (check_find_bounds_finds (mock_index,
4217 "\377", expected_syms1));
4218
4219 static const char *expected_syms2[] = {
4220 "\377\377123",
4221 };
4222 SELF_CHECK (check_find_bounds_finds (mock_index,
4223 "\377\377", expected_syms2));
4224 }
4225 }
4226
4227 /* Test dw2_expand_symtabs_matching_symbol. */
4228
4229 static void
4230 test_dw2_expand_symtabs_matching_symbol ()
4231 {
4232 mock_mapped_index mock_index (test_symbols);
4233
4234 /* We let all tests run until the end even if some fails, for debug
4235 convenience. */
4236 bool any_mismatch = false;
4237
4238 /* Create the expected symbols list (an initializer_list). Needed
4239 because lists have commas, and we need to pass them to CHECK,
4240 which is a macro. */
4241 #define EXPECT(...) { __VA_ARGS__ }
4242
4243 /* Wrapper for check_match that passes down the current
4244 __FILE__/__LINE__. */
4245 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4246 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 mock_index, \
4248 NAME, MATCH_TYPE, COMPLETION_MODE, \
4249 EXPECTED_LIST)
4250
4251 /* Identity checks. */
4252 for (const char *sym : test_symbols)
4253 {
4254 /* Should be able to match all existing symbols. */
4255 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4256 EXPECT (sym));
4257
4258 /* Should be able to match all existing symbols with
4259 parameters. */
4260 std::string with_params = std::string (sym) + "(int)";
4261 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4262 EXPECT (sym));
4263
4264 /* Should be able to match all existing symbols with
4265 parameters and qualifiers. */
4266 with_params = std::string (sym) + " ( int ) const";
4267 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4268 EXPECT (sym));
4269
4270 /* This should really find sym, but cp-name-parser.y doesn't
4271 know about lvalue/rvalue qualifiers yet. */
4272 with_params = std::string (sym) + " ( int ) &&";
4273 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4274 {});
4275 }
4276
4277 /* Check that the name matching algorithm for completion doesn't get
4278 confused with Latin1 'ÿ' / 0xff. */
4279 {
4280 static const char str[] = "\377";
4281 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4282 EXPECT ("\377", "\377\377123"));
4283 }
4284
4285 /* Check that the increment-last-char in the matching algorithm for
4286 completion doesn't match "t1_fund" when completing "t1_func". */
4287 {
4288 static const char str[] = "t1_func";
4289 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4290 EXPECT ("t1_func", "t1_func1"));
4291 }
4292
4293 /* Check that completion mode works at each prefix of the expected
4294 symbol name. */
4295 {
4296 static const char str[] = "function(int)";
4297 size_t len = strlen (str);
4298 std::string lookup;
4299
4300 for (size_t i = 1; i < len; i++)
4301 {
4302 lookup.assign (str, i);
4303 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4304 EXPECT ("function"));
4305 }
4306 }
4307
4308 /* While "w" is a prefix of both components, the match function
4309 should still only be called once. */
4310 {
4311 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 EXPECT ("w1::w2"));
4313 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4314 EXPECT ("w1::w2"));
4315 }
4316
4317 /* Same, with a "complicated" symbol. */
4318 {
4319 static const char str[] = Z_SYM_NAME;
4320 size_t len = strlen (str);
4321 std::string lookup;
4322
4323 for (size_t i = 1; i < len; i++)
4324 {
4325 lookup.assign (str, i);
4326 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4327 EXPECT (Z_SYM_NAME));
4328 }
4329 }
4330
4331 /* In FULL mode, an incomplete symbol doesn't match. */
4332 {
4333 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4334 {});
4335 }
4336
4337 /* A complete symbol with parameters matches any overload, since the
4338 index has no overload info. */
4339 {
4340 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4341 EXPECT ("std::zfunction", "std::zfunction2"));
4342 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 }
4347
4348 /* Check that whitespace is ignored appropriately. A symbol with a
4349 template argument list. */
4350 {
4351 static const char expected[] = "ns::foo<int>";
4352 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 EXPECT (expected));
4354 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4355 EXPECT (expected));
4356 }
4357
4358 /* Check that whitespace is ignored appropriately. A symbol with a
4359 template argument list that includes a pointer. */
4360 {
4361 static const char expected[] = "ns::foo<char*>";
4362 /* Try both completion and non-completion modes. */
4363 static const bool completion_mode[2] = {false, true};
4364 for (size_t i = 0; i < 2; i++)
4365 {
4366 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4367 completion_mode[i], EXPECT (expected));
4368 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4369 completion_mode[i], EXPECT (expected));
4370
4371 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4372 completion_mode[i], EXPECT (expected));
4373 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4374 completion_mode[i], EXPECT (expected));
4375 }
4376 }
4377
4378 {
4379 /* Check method qualifiers are ignored. */
4380 static const char expected[] = "ns::foo<char*>";
4381 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4382 symbol_name_match_type::FULL, true, EXPECT (expected));
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("foo < char * > ( int ) const",
4386 symbol_name_match_type::WILD, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) &&",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 }
4390
4391 /* Test lookup names that don't match anything. */
4392 {
4393 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4394 {});
4395
4396 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4397 {});
4398 }
4399
4400 /* Some wild matching tests, exercising "(anonymous namespace)",
4401 which should not be confused with a parameter list. */
4402 {
4403 static const char *syms[] = {
4404 "A::B::C",
4405 "B::C",
4406 "C",
4407 "A :: B :: C ( int )",
4408 "B :: C ( int )",
4409 "C ( int )",
4410 };
4411
4412 for (const char *s : syms)
4413 {
4414 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4415 EXPECT ("(anonymous namespace)::A::B::C"));
4416 }
4417 }
4418
4419 {
4420 static const char expected[] = "ns2::tmpl<int>::foo2";
4421 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 EXPECT (expected));
4423 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 }
4426
4427 SELF_CHECK (!any_mismatch);
4428
4429 #undef EXPECT
4430 #undef CHECK_MATCH
4431 }
4432
4433 static void
4434 run_test ()
4435 {
4436 test_mapped_index_find_name_component_bounds ();
4437 test_dw2_expand_symtabs_matching_symbol ();
4438 }
4439
4440 }} // namespace selftests::dw2_expand_symtabs_matching
4441
4442 #endif /* GDB_SELF_TEST */
4443
4444 /* If FILE_MATCHER is NULL or if PER_CU has
4445 dwarf2_per_cu_quick_data::MARK set (see
4446 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4447 EXPANSION_NOTIFY on it. */
4448
4449 static void
4450 dw2_expand_symtabs_matching_one
4451 (struct dwarf2_per_cu_data *per_cu,
4452 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4453 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 {
4455 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 {
4457 bool symtab_was_null
4458 = (per_cu->v.quick->compunit_symtab == NULL);
4459
4460 dw2_instantiate_symtab (per_cu, false);
4461
4462 if (expansion_notify != NULL
4463 && symtab_was_null
4464 && per_cu->v.quick->compunit_symtab != NULL)
4465 expansion_notify (per_cu->v.quick->compunit_symtab);
4466 }
4467 }
4468
4469 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4470 matched, to expand corresponding CUs that were marked. IDX is the
4471 index of the symbol name that matched. */
4472
4473 static void
4474 dw2_expand_marked_cus
4475 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4476 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4477 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4478 search_domain kind)
4479 {
4480 offset_type *vec, vec_len, vec_idx;
4481 bool global_seen = false;
4482 mapped_index &index = *dwarf2_per_objfile->index_table;
4483
4484 vec = (offset_type *) (index.constant_pool
4485 + MAYBE_SWAP (index.symbol_table[idx].vec));
4486 vec_len = MAYBE_SWAP (vec[0]);
4487 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 {
4489 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4490 /* This value is only valid for index versions >= 7. */
4491 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4492 gdb_index_symbol_kind symbol_kind =
4493 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4494 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4495 /* Only check the symbol attributes if they're present.
4496 Indices prior to version 7 don't record them,
4497 and indices >= 7 may elide them for certain symbols
4498 (gold does this). */
4499 int attrs_valid =
4500 (index.version >= 7
4501 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502
4503 /* Work around gold/15646. */
4504 if (attrs_valid)
4505 {
4506 if (!is_static && global_seen)
4507 continue;
4508 if (!is_static)
4509 global_seen = true;
4510 }
4511
4512 /* Only check the symbol's kind if it has one. */
4513 if (attrs_valid)
4514 {
4515 switch (kind)
4516 {
4517 case VARIABLES_DOMAIN:
4518 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4519 continue;
4520 break;
4521 case FUNCTIONS_DOMAIN:
4522 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4523 continue;
4524 break;
4525 case TYPES_DOMAIN:
4526 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4527 continue;
4528 break;
4529 case MODULES_DOMAIN:
4530 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4531 continue;
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* Don't crash on bad data. */
4539 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4540 + dwarf2_per_objfile->all_type_units.size ()))
4541 {
4542 complaint (_(".gdb_index entry has bad CU index"
4543 " [in module %s]"),
4544 objfile_name (dwarf2_per_objfile->objfile));
4545 continue;
4546 }
4547
4548 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4549 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4550 expansion_notify);
4551 }
4552 }
4553
4554 /* If FILE_MATCHER is non-NULL, set all the
4555 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4556 that match FILE_MATCHER. */
4557
4558 static void
4559 dw_expand_symtabs_matching_file_matcher
4560 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4561 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 {
4563 if (file_matcher == NULL)
4564 return;
4565
4566 objfile *const objfile = dwarf2_per_objfile->objfile;
4567
4568 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 htab_eq_pointer,
4570 NULL, xcalloc, xfree));
4571 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 htab_eq_pointer,
4573 NULL, xcalloc, xfree));
4574
4575 /* The rule is CUs specify all the files, including those used by
4576 any TU, so there's no need to scan TUs here. */
4577
4578 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4579 {
4580 QUIT;
4581
4582 per_cu->v.quick->mark = 0;
4583
4584 /* We only need to look at symtabs not already expanded. */
4585 if (per_cu->v.quick->compunit_symtab)
4586 continue;
4587
4588 quick_file_names *file_data = dw2_get_file_names (per_cu);
4589 if (file_data == NULL)
4590 continue;
4591
4592 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 continue;
4594 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 {
4596 per_cu->v.quick->mark = 1;
4597 continue;
4598 }
4599
4600 for (int j = 0; j < file_data->num_file_names; ++j)
4601 {
4602 const char *this_real_name;
4603
4604 if (file_matcher (file_data->file_names[j], false))
4605 {
4606 per_cu->v.quick->mark = 1;
4607 break;
4608 }
4609
4610 /* Before we invoke realpath, which can get expensive when many
4611 files are involved, do a quick comparison of the basenames. */
4612 if (!basenames_may_differ
4613 && !file_matcher (lbasename (file_data->file_names[j]),
4614 true))
4615 continue;
4616
4617 this_real_name = dw2_get_real_path (objfile, file_data, j);
4618 if (file_matcher (this_real_name, false))
4619 {
4620 per_cu->v.quick->mark = 1;
4621 break;
4622 }
4623 }
4624
4625 void **slot = htab_find_slot (per_cu->v.quick->mark
4626 ? visited_found.get ()
4627 : visited_not_found.get (),
4628 file_data, INSERT);
4629 *slot = file_data;
4630 }
4631 }
4632
4633 static void
4634 dw2_expand_symtabs_matching
4635 (struct objfile *objfile,
4636 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4637 const lookup_name_info *lookup_name,
4638 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4639 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4640 enum search_domain kind)
4641 {
4642 struct dwarf2_per_objfile *dwarf2_per_objfile
4643 = get_dwarf2_per_objfile (objfile);
4644
4645 /* index_table is NULL if OBJF_READNOW. */
4646 if (!dwarf2_per_objfile->index_table)
4647 return;
4648
4649 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650
4651 if (symbol_matcher == NULL && lookup_name == NULL)
4652 {
4653 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4654 {
4655 QUIT;
4656
4657 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4658 expansion_notify);
4659 }
4660 return;
4661 }
4662
4663 mapped_index &index = *dwarf2_per_objfile->index_table;
4664
4665 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4666 symbol_matcher,
4667 kind, [&] (offset_type idx)
4668 {
4669 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4670 expansion_notify, kind);
4671 return true;
4672 });
4673 }
4674
4675 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4676 symtab. */
4677
4678 static struct compunit_symtab *
4679 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4680 CORE_ADDR pc)
4681 {
4682 int i;
4683
4684 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4685 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4686 return cust;
4687
4688 if (cust->includes == NULL)
4689 return NULL;
4690
4691 for (i = 0; cust->includes[i]; ++i)
4692 {
4693 struct compunit_symtab *s = cust->includes[i];
4694
4695 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4696 if (s != NULL)
4697 return s;
4698 }
4699
4700 return NULL;
4701 }
4702
4703 static struct compunit_symtab *
4704 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4705 struct bound_minimal_symbol msymbol,
4706 CORE_ADDR pc,
4707 struct obj_section *section,
4708 int warn_if_readin)
4709 {
4710 struct dwarf2_per_cu_data *data;
4711 struct compunit_symtab *result;
4712
4713 if (!objfile->partial_symtabs->psymtabs_addrmap)
4714 return NULL;
4715
4716 CORE_ADDR baseaddr = objfile->text_section_offset ();
4717 data = (struct dwarf2_per_cu_data *) addrmap_find
4718 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4719 if (!data)
4720 return NULL;
4721
4722 if (warn_if_readin && data->v.quick->compunit_symtab)
4723 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4724 paddress (objfile->arch (), pc));
4725
4726 result
4727 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4728 false),
4729 pc);
4730 gdb_assert (result != NULL);
4731 return result;
4732 }
4733
4734 static void
4735 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4736 void *data, int need_fullname)
4737 {
4738 struct dwarf2_per_objfile *dwarf2_per_objfile
4739 = get_dwarf2_per_objfile (objfile);
4740
4741 if (!dwarf2_per_objfile->filenames_cache)
4742 {
4743 dwarf2_per_objfile->filenames_cache.emplace ();
4744
4745 htab_up visited (htab_create_alloc (10,
4746 htab_hash_pointer, htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748
4749 /* The rule is CUs specify all the files, including those used
4750 by any TU, so there's no need to scan TUs here. We can
4751 ignore file names coming from already-expanded CUs. */
4752
4753 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 {
4755 if (per_cu->v.quick->compunit_symtab)
4756 {
4757 void **slot = htab_find_slot (visited.get (),
4758 per_cu->v.quick->file_names,
4759 INSERT);
4760
4761 *slot = per_cu->v.quick->file_names;
4762 }
4763 }
4764
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4766 {
4767 /* We only need to look at symtabs not already expanded. */
4768 if (per_cu->v.quick->compunit_symtab)
4769 continue;
4770
4771 quick_file_names *file_data = dw2_get_file_names (per_cu);
4772 if (file_data == NULL)
4773 continue;
4774
4775 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4776 if (*slot)
4777 {
4778 /* Already visited. */
4779 continue;
4780 }
4781 *slot = file_data;
4782
4783 for (int j = 0; j < file_data->num_file_names; ++j)
4784 {
4785 const char *filename = file_data->file_names[j];
4786 dwarf2_per_objfile->filenames_cache->seen (filename);
4787 }
4788 }
4789 }
4790
4791 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4792 {
4793 gdb::unique_xmalloc_ptr<char> this_real_name;
4794
4795 if (need_fullname)
4796 this_real_name = gdb_realpath (filename);
4797 (*fun) (filename, this_real_name.get (), data);
4798 });
4799 }
4800
4801 static int
4802 dw2_has_symbols (struct objfile *objfile)
4803 {
4804 return 1;
4805 }
4806
4807 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4808 {
4809 dw2_has_symbols,
4810 dw2_find_last_source_symtab,
4811 dw2_forget_cached_source_info,
4812 dw2_map_symtabs_matching_filename,
4813 dw2_lookup_symbol,
4814 NULL,
4815 dw2_print_stats,
4816 dw2_dump,
4817 dw2_expand_symtabs_for_function,
4818 dw2_expand_all_symtabs,
4819 dw2_expand_symtabs_with_fullname,
4820 dw2_map_matching_symbols,
4821 dw2_expand_symtabs_matching,
4822 dw2_find_pc_sect_compunit_symtab,
4823 NULL,
4824 dw2_map_symbol_filenames
4825 };
4826
4827 /* DWARF-5 debug_names reader. */
4828
4829 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4830 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4831
4832 /* A helper function that reads the .debug_names section in SECTION
4833 and fills in MAP. FILENAME is the name of the file containing the
4834 section; it is used for error reporting.
4835
4836 Returns true if all went well, false otherwise. */
4837
4838 static bool
4839 read_debug_names_from_section (struct objfile *objfile,
4840 const char *filename,
4841 struct dwarf2_section_info *section,
4842 mapped_debug_names &map)
4843 {
4844 if (section->empty ())
4845 return false;
4846
4847 /* Older elfutils strip versions could keep the section in the main
4848 executable while splitting it for the separate debug info file. */
4849 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4850 return false;
4851
4852 section->read (objfile);
4853
4854 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4855
4856 const gdb_byte *addr = section->buffer;
4857
4858 bfd *const abfd = section->get_bfd_owner ();
4859
4860 unsigned int bytes_read;
4861 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4862 addr += bytes_read;
4863
4864 map.dwarf5_is_dwarf64 = bytes_read != 4;
4865 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4866 if (bytes_read + length != section->size)
4867 {
4868 /* There may be multiple per-CU indices. */
4869 warning (_("Section .debug_names in %s length %s does not match "
4870 "section length %s, ignoring .debug_names."),
4871 filename, plongest (bytes_read + length),
4872 pulongest (section->size));
4873 return false;
4874 }
4875
4876 /* The version number. */
4877 uint16_t version = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (version != 5)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported version %d, "
4882 "ignoring .debug_names."),
4883 filename, version);
4884 return false;
4885 }
4886
4887 /* Padding. */
4888 uint16_t padding = read_2_bytes (abfd, addr);
4889 addr += 2;
4890 if (padding != 0)
4891 {
4892 warning (_("Section .debug_names in %s has unsupported padding %d, "
4893 "ignoring .debug_names."),
4894 filename, padding);
4895 return false;
4896 }
4897
4898 /* comp_unit_count - The number of CUs in the CU list. */
4899 map.cu_count = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* local_type_unit_count - The number of TUs in the local TU
4903 list. */
4904 map.tu_count = read_4_bytes (abfd, addr);
4905 addr += 4;
4906
4907 /* foreign_type_unit_count - The number of TUs in the foreign TU
4908 list. */
4909 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4910 addr += 4;
4911 if (foreign_tu_count != 0)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4914 "ignoring .debug_names."),
4915 filename, static_cast<unsigned long> (foreign_tu_count));
4916 return false;
4917 }
4918
4919 /* bucket_count - The number of hash buckets in the hash lookup
4920 table. */
4921 map.bucket_count = read_4_bytes (abfd, addr);
4922 addr += 4;
4923
4924 /* name_count - The number of unique names in the index. */
4925 map.name_count = read_4_bytes (abfd, addr);
4926 addr += 4;
4927
4928 /* abbrev_table_size - The size in bytes of the abbreviations
4929 table. */
4930 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4931 addr += 4;
4932
4933 /* augmentation_string_size - The size in bytes of the augmentation
4934 string. This value is rounded up to a multiple of 4. */
4935 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4936 addr += 4;
4937 map.augmentation_is_gdb = ((augmentation_string_size
4938 == sizeof (dwarf5_augmentation))
4939 && memcmp (addr, dwarf5_augmentation,
4940 sizeof (dwarf5_augmentation)) == 0);
4941 augmentation_string_size += (-augmentation_string_size) & 3;
4942 addr += augmentation_string_size;
4943
4944 /* List of CUs */
4945 map.cu_table_reordered = addr;
4946 addr += map.cu_count * map.offset_size;
4947
4948 /* List of Local TUs */
4949 map.tu_table_reordered = addr;
4950 addr += map.tu_count * map.offset_size;
4951
4952 /* Hash Lookup Table */
4953 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4954 addr += map.bucket_count * 4;
4955 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4956 addr += map.name_count * 4;
4957
4958 /* Name Table */
4959 map.name_table_string_offs_reordered = addr;
4960 addr += map.name_count * map.offset_size;
4961 map.name_table_entry_offs_reordered = addr;
4962 addr += map.name_count * map.offset_size;
4963
4964 const gdb_byte *abbrev_table_start = addr;
4965 for (;;)
4966 {
4967 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4968 addr += bytes_read;
4969 if (index_num == 0)
4970 break;
4971
4972 const auto insertpair
4973 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4974 if (!insertpair.second)
4975 {
4976 warning (_("Section .debug_names in %s has duplicate index %s, "
4977 "ignoring .debug_names."),
4978 filename, pulongest (index_num));
4979 return false;
4980 }
4981 mapped_debug_names::index_val &indexval = insertpair.first->second;
4982 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4983 addr += bytes_read;
4984
4985 for (;;)
4986 {
4987 mapped_debug_names::index_val::attr attr;
4988 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4989 addr += bytes_read;
4990 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4991 addr += bytes_read;
4992 if (attr.form == DW_FORM_implicit_const)
4993 {
4994 attr.implicit_const = read_signed_leb128 (abfd, addr,
4995 &bytes_read);
4996 addr += bytes_read;
4997 }
4998 if (attr.dw_idx == 0 && attr.form == 0)
4999 break;
5000 indexval.attr_vec.push_back (std::move (attr));
5001 }
5002 }
5003 if (addr != abbrev_table_start + abbrev_table_size)
5004 {
5005 warning (_("Section .debug_names in %s has abbreviation_table "
5006 "of size %s vs. written as %u, ignoring .debug_names."),
5007 filename, plongest (addr - abbrev_table_start),
5008 abbrev_table_size);
5009 return false;
5010 }
5011 map.entry_pool = addr;
5012
5013 return true;
5014 }
5015
5016 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5017 list. */
5018
5019 static void
5020 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5021 const mapped_debug_names &map,
5022 dwarf2_section_info &section,
5023 bool is_dwz)
5024 {
5025 sect_offset sect_off_prev;
5026 for (uint32_t i = 0; i <= map.cu_count; ++i)
5027 {
5028 sect_offset sect_off_next;
5029 if (i < map.cu_count)
5030 {
5031 sect_off_next
5032 = (sect_offset) (extract_unsigned_integer
5033 (map.cu_table_reordered + i * map.offset_size,
5034 map.offset_size,
5035 map.dwarf5_byte_order));
5036 }
5037 else
5038 sect_off_next = (sect_offset) section.size;
5039 if (i >= 1)
5040 {
5041 const ULONGEST length = sect_off_next - sect_off_prev;
5042 dwarf2_per_cu_data *per_cu
5043 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5044 sect_off_prev, length);
5045 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5046 }
5047 sect_off_prev = sect_off_next;
5048 }
5049 }
5050
5051 /* Read the CU list from the mapped index, and use it to create all
5052 the CU objects for this dwarf2_per_objfile. */
5053
5054 static void
5055 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5056 const mapped_debug_names &map,
5057 const mapped_debug_names &dwz_map)
5058 {
5059 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5060 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5061
5062 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5063 dwarf2_per_objfile->info,
5064 false /* is_dwz */);
5065
5066 if (dwz_map.cu_count == 0)
5067 return;
5068
5069 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5070 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5071 true /* is_dwz */);
5072 }
5073
5074 /* Read .debug_names. If everything went ok, initialize the "quick"
5075 elements of all the CUs and return true. Otherwise, return false. */
5076
5077 static bool
5078 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5079 {
5080 std::unique_ptr<mapped_debug_names> map
5081 (new mapped_debug_names (dwarf2_per_objfile));
5082 mapped_debug_names dwz_map (dwarf2_per_objfile);
5083 struct objfile *objfile = dwarf2_per_objfile->objfile;
5084
5085 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5086 &dwarf2_per_objfile->debug_names,
5087 *map))
5088 return false;
5089
5090 /* Don't use the index if it's empty. */
5091 if (map->name_count == 0)
5092 return false;
5093
5094 /* If there is a .dwz file, read it so we can get its CU list as
5095 well. */
5096 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5097 if (dwz != NULL)
5098 {
5099 if (!read_debug_names_from_section (objfile,
5100 bfd_get_filename (dwz->dwz_bfd.get ()),
5101 &dwz->debug_names, dwz_map))
5102 {
5103 warning (_("could not read '.debug_names' section from %s; skipping"),
5104 bfd_get_filename (dwz->dwz_bfd.get ()));
5105 return false;
5106 }
5107 }
5108
5109 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5110
5111 if (map->tu_count != 0)
5112 {
5113 /* We can only handle a single .debug_types when we have an
5114 index. */
5115 if (dwarf2_per_objfile->types.size () != 1)
5116 return false;
5117
5118 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5119
5120 create_signatured_type_table_from_debug_names
5121 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5122 }
5123
5124 create_addrmap_from_aranges (dwarf2_per_objfile,
5125 &dwarf2_per_objfile->debug_aranges);
5126
5127 dwarf2_per_objfile->debug_names_table = std::move (map);
5128 dwarf2_per_objfile->using_index = 1;
5129 dwarf2_per_objfile->quick_file_names_table =
5130 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5131
5132 return true;
5133 }
5134
5135 /* Type used to manage iterating over all CUs looking for a symbol for
5136 .debug_names. */
5137
5138 class dw2_debug_names_iterator
5139 {
5140 public:
5141 dw2_debug_names_iterator (const mapped_debug_names &map,
5142 gdb::optional<block_enum> block_index,
5143 domain_enum domain,
5144 const char *name)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, name))
5147 {}
5148
5149 dw2_debug_names_iterator (const mapped_debug_names &map,
5150 search_domain search, uint32_t namei)
5151 : m_map (map),
5152 m_search (search),
5153 m_addr (find_vec_in_debug_names (map, namei))
5154 {}
5155
5156 dw2_debug_names_iterator (const mapped_debug_names &map,
5157 block_enum block_index, domain_enum domain,
5158 uint32_t namei)
5159 : m_map (map), m_block_index (block_index), m_domain (domain),
5160 m_addr (find_vec_in_debug_names (map, namei))
5161 {}
5162
5163 /* Return the next matching CU or NULL if there are no more. */
5164 dwarf2_per_cu_data *next ();
5165
5166 private:
5167 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5168 const char *name);
5169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5170 uint32_t namei);
5171
5172 /* The internalized form of .debug_names. */
5173 const mapped_debug_names &m_map;
5174
5175 /* If set, only look for symbols that match that block. Valid values are
5176 GLOBAL_BLOCK and STATIC_BLOCK. */
5177 const gdb::optional<block_enum> m_block_index;
5178
5179 /* The kind of symbol we're looking for. */
5180 const domain_enum m_domain = UNDEF_DOMAIN;
5181 const search_domain m_search = ALL_DOMAIN;
5182
5183 /* The list of CUs from the index entry of the symbol, or NULL if
5184 not found. */
5185 const gdb_byte *m_addr;
5186 };
5187
5188 const char *
5189 mapped_debug_names::namei_to_name (uint32_t namei) const
5190 {
5191 const ULONGEST namei_string_offs
5192 = extract_unsigned_integer ((name_table_string_offs_reordered
5193 + namei * offset_size),
5194 offset_size,
5195 dwarf5_byte_order);
5196 return read_indirect_string_at_offset (dwarf2_per_objfile,
5197 namei_string_offs);
5198 }
5199
5200 /* Find a slot in .debug_names for the object named NAME. If NAME is
5201 found, return pointer to its pool data. If NAME cannot be found,
5202 return NULL. */
5203
5204 const gdb_byte *
5205 dw2_debug_names_iterator::find_vec_in_debug_names
5206 (const mapped_debug_names &map, const char *name)
5207 {
5208 int (*cmp) (const char *, const char *);
5209
5210 gdb::unique_xmalloc_ptr<char> without_params;
5211 if (current_language->la_language == language_cplus
5212 || current_language->la_language == language_fortran
5213 || current_language->la_language == language_d)
5214 {
5215 /* NAME is already canonical. Drop any qualifiers as
5216 .debug_names does not contain any. */
5217
5218 if (strchr (name, '(') != NULL)
5219 {
5220 without_params = cp_remove_params (name);
5221 if (without_params != NULL)
5222 name = without_params.get ();
5223 }
5224 }
5225
5226 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5227
5228 const uint32_t full_hash = dwarf5_djb_hash (name);
5229 uint32_t namei
5230 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5231 (map.bucket_table_reordered
5232 + (full_hash % map.bucket_count)), 4,
5233 map.dwarf5_byte_order);
5234 if (namei == 0)
5235 return NULL;
5236 --namei;
5237 if (namei >= map.name_count)
5238 {
5239 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5240 "[in module %s]"),
5241 namei, map.name_count,
5242 objfile_name (map.dwarf2_per_objfile->objfile));
5243 return NULL;
5244 }
5245
5246 for (;;)
5247 {
5248 const uint32_t namei_full_hash
5249 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5250 (map.hash_table_reordered + namei), 4,
5251 map.dwarf5_byte_order);
5252 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5253 return NULL;
5254
5255 if (full_hash == namei_full_hash)
5256 {
5257 const char *const namei_string = map.namei_to_name (namei);
5258
5259 #if 0 /* An expensive sanity check. */
5260 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5261 {
5262 complaint (_("Wrong .debug_names hash for string at index %u "
5263 "[in module %s]"),
5264 namei, objfile_name (dwarf2_per_objfile->objfile));
5265 return NULL;
5266 }
5267 #endif
5268
5269 if (cmp (namei_string, name) == 0)
5270 {
5271 const ULONGEST namei_entry_offs
5272 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5273 + namei * map.offset_size),
5274 map.offset_size, map.dwarf5_byte_order);
5275 return map.entry_pool + namei_entry_offs;
5276 }
5277 }
5278
5279 ++namei;
5280 if (namei >= map.name_count)
5281 return NULL;
5282 }
5283 }
5284
5285 const gdb_byte *
5286 dw2_debug_names_iterator::find_vec_in_debug_names
5287 (const mapped_debug_names &map, uint32_t namei)
5288 {
5289 if (namei >= map.name_count)
5290 {
5291 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5292 "[in module %s]"),
5293 namei, map.name_count,
5294 objfile_name (map.dwarf2_per_objfile->objfile));
5295 return NULL;
5296 }
5297
5298 const ULONGEST namei_entry_offs
5299 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5300 + namei * map.offset_size),
5301 map.offset_size, map.dwarf5_byte_order);
5302 return map.entry_pool + namei_entry_offs;
5303 }
5304
5305 /* See dw2_debug_names_iterator. */
5306
5307 dwarf2_per_cu_data *
5308 dw2_debug_names_iterator::next ()
5309 {
5310 if (m_addr == NULL)
5311 return NULL;
5312
5313 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 bfd *const abfd = objfile->obfd;
5316
5317 again:
5318
5319 unsigned int bytes_read;
5320 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5321 m_addr += bytes_read;
5322 if (abbrev == 0)
5323 return NULL;
5324
5325 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5326 if (indexval_it == m_map.abbrev_map.cend ())
5327 {
5328 complaint (_("Wrong .debug_names undefined abbrev code %s "
5329 "[in module %s]"),
5330 pulongest (abbrev), objfile_name (objfile));
5331 return NULL;
5332 }
5333 const mapped_debug_names::index_val &indexval = indexval_it->second;
5334 enum class symbol_linkage {
5335 unknown,
5336 static_,
5337 extern_,
5338 } symbol_linkage_ = symbol_linkage::unknown;
5339 dwarf2_per_cu_data *per_cu = NULL;
5340 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5341 {
5342 ULONGEST ull;
5343 switch (attr.form)
5344 {
5345 case DW_FORM_implicit_const:
5346 ull = attr.implicit_const;
5347 break;
5348 case DW_FORM_flag_present:
5349 ull = 1;
5350 break;
5351 case DW_FORM_udata:
5352 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5353 m_addr += bytes_read;
5354 break;
5355 default:
5356 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5357 dwarf_form_name (attr.form),
5358 objfile_name (objfile));
5359 return NULL;
5360 }
5361 switch (attr.dw_idx)
5362 {
5363 case DW_IDX_compile_unit:
5364 /* Don't crash on bad data. */
5365 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5366 {
5367 complaint (_(".debug_names entry has bad CU index %s"
5368 " [in module %s]"),
5369 pulongest (ull),
5370 objfile_name (dwarf2_per_objfile->objfile));
5371 continue;
5372 }
5373 per_cu = dwarf2_per_objfile->get_cutu (ull);
5374 break;
5375 case DW_IDX_type_unit:
5376 /* Don't crash on bad data. */
5377 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5378 {
5379 complaint (_(".debug_names entry has bad TU index %s"
5380 " [in module %s]"),
5381 pulongest (ull),
5382 objfile_name (dwarf2_per_objfile->objfile));
5383 continue;
5384 }
5385 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5386 break;
5387 case DW_IDX_GNU_internal:
5388 if (!m_map.augmentation_is_gdb)
5389 break;
5390 symbol_linkage_ = symbol_linkage::static_;
5391 break;
5392 case DW_IDX_GNU_external:
5393 if (!m_map.augmentation_is_gdb)
5394 break;
5395 symbol_linkage_ = symbol_linkage::extern_;
5396 break;
5397 }
5398 }
5399
5400 /* Skip if already read in. */
5401 if (per_cu->v.quick->compunit_symtab)
5402 goto again;
5403
5404 /* Check static vs global. */
5405 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5406 {
5407 const bool want_static = *m_block_index == STATIC_BLOCK;
5408 const bool symbol_is_static =
5409 symbol_linkage_ == symbol_linkage::static_;
5410 if (want_static != symbol_is_static)
5411 goto again;
5412 }
5413
5414 /* Match dw2_symtab_iter_next, symbol_kind
5415 and debug_names::psymbol_tag. */
5416 switch (m_domain)
5417 {
5418 case VAR_DOMAIN:
5419 switch (indexval.dwarf_tag)
5420 {
5421 case DW_TAG_variable:
5422 case DW_TAG_subprogram:
5423 /* Some types are also in VAR_DOMAIN. */
5424 case DW_TAG_typedef:
5425 case DW_TAG_structure_type:
5426 break;
5427 default:
5428 goto again;
5429 }
5430 break;
5431 case STRUCT_DOMAIN:
5432 switch (indexval.dwarf_tag)
5433 {
5434 case DW_TAG_typedef:
5435 case DW_TAG_structure_type:
5436 break;
5437 default:
5438 goto again;
5439 }
5440 break;
5441 case LABEL_DOMAIN:
5442 switch (indexval.dwarf_tag)
5443 {
5444 case 0:
5445 case DW_TAG_variable:
5446 break;
5447 default:
5448 goto again;
5449 }
5450 break;
5451 case MODULE_DOMAIN:
5452 switch (indexval.dwarf_tag)
5453 {
5454 case DW_TAG_module:
5455 break;
5456 default:
5457 goto again;
5458 }
5459 break;
5460 default:
5461 break;
5462 }
5463
5464 /* Match dw2_expand_symtabs_matching, symbol_kind and
5465 debug_names::psymbol_tag. */
5466 switch (m_search)
5467 {
5468 case VARIABLES_DOMAIN:
5469 switch (indexval.dwarf_tag)
5470 {
5471 case DW_TAG_variable:
5472 break;
5473 default:
5474 goto again;
5475 }
5476 break;
5477 case FUNCTIONS_DOMAIN:
5478 switch (indexval.dwarf_tag)
5479 {
5480 case DW_TAG_subprogram:
5481 break;
5482 default:
5483 goto again;
5484 }
5485 break;
5486 case TYPES_DOMAIN:
5487 switch (indexval.dwarf_tag)
5488 {
5489 case DW_TAG_typedef:
5490 case DW_TAG_structure_type:
5491 break;
5492 default:
5493 goto again;
5494 }
5495 break;
5496 case MODULES_DOMAIN:
5497 switch (indexval.dwarf_tag)
5498 {
5499 case DW_TAG_module:
5500 break;
5501 default:
5502 goto again;
5503 }
5504 default:
5505 break;
5506 }
5507
5508 return per_cu;
5509 }
5510
5511 static struct compunit_symtab *
5512 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5513 const char *name, domain_enum domain)
5514 {
5515 struct dwarf2_per_objfile *dwarf2_per_objfile
5516 = get_dwarf2_per_objfile (objfile);
5517
5518 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5519 if (!mapp)
5520 {
5521 /* index is NULL if OBJF_READNOW. */
5522 return NULL;
5523 }
5524 const auto &map = *mapp;
5525
5526 dw2_debug_names_iterator iter (map, block_index, domain, name);
5527
5528 struct compunit_symtab *stab_best = NULL;
5529 struct dwarf2_per_cu_data *per_cu;
5530 while ((per_cu = iter.next ()) != NULL)
5531 {
5532 struct symbol *sym, *with_opaque = NULL;
5533 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5534 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5535 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5536
5537 sym = block_find_symbol (block, name, domain,
5538 block_find_non_opaque_type_preferred,
5539 &with_opaque);
5540
5541 /* Some caution must be observed with overloaded functions and
5542 methods, since the index will not contain any overload
5543 information (but NAME might contain it). */
5544
5545 if (sym != NULL
5546 && strcmp_iw (sym->search_name (), name) == 0)
5547 return stab;
5548 if (with_opaque != NULL
5549 && strcmp_iw (with_opaque->search_name (), name) == 0)
5550 stab_best = stab;
5551
5552 /* Keep looking through other CUs. */
5553 }
5554
5555 return stab_best;
5556 }
5557
5558 /* This dumps minimal information about .debug_names. It is called
5559 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5560 uses this to verify that .debug_names has been loaded. */
5561
5562 static void
5563 dw2_debug_names_dump (struct objfile *objfile)
5564 {
5565 struct dwarf2_per_objfile *dwarf2_per_objfile
5566 = get_dwarf2_per_objfile (objfile);
5567
5568 gdb_assert (dwarf2_per_objfile->using_index);
5569 printf_filtered (".debug_names:");
5570 if (dwarf2_per_objfile->debug_names_table)
5571 printf_filtered (" exists\n");
5572 else
5573 printf_filtered (" faked for \"readnow\"\n");
5574 printf_filtered ("\n");
5575 }
5576
5577 static void
5578 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5579 const char *func_name)
5580 {
5581 struct dwarf2_per_objfile *dwarf2_per_objfile
5582 = get_dwarf2_per_objfile (objfile);
5583
5584 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5585 if (dwarf2_per_objfile->debug_names_table)
5586 {
5587 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5588
5589 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5590
5591 struct dwarf2_per_cu_data *per_cu;
5592 while ((per_cu = iter.next ()) != NULL)
5593 dw2_instantiate_symtab (per_cu, false);
5594 }
5595 }
5596
5597 static void
5598 dw2_debug_names_map_matching_symbols
5599 (struct objfile *objfile,
5600 const lookup_name_info &name, domain_enum domain,
5601 int global,
5602 gdb::function_view<symbol_found_callback_ftype> callback,
5603 symbol_compare_ftype *ordered_compare)
5604 {
5605 struct dwarf2_per_objfile *dwarf2_per_objfile
5606 = get_dwarf2_per_objfile (objfile);
5607
5608 /* debug_names_table is NULL if OBJF_READNOW. */
5609 if (!dwarf2_per_objfile->debug_names_table)
5610 return;
5611
5612 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5613 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5614
5615 const char *match_name = name.ada ().lookup_name ().c_str ();
5616 auto matcher = [&] (const char *symname)
5617 {
5618 if (ordered_compare == nullptr)
5619 return true;
5620 return ordered_compare (symname, match_name) == 0;
5621 };
5622
5623 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5624 [&] (offset_type namei)
5625 {
5626 /* The name was matched, now expand corresponding CUs that were
5627 marked. */
5628 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5629
5630 struct dwarf2_per_cu_data *per_cu;
5631 while ((per_cu = iter.next ()) != NULL)
5632 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5633 return true;
5634 });
5635
5636 /* It's a shame we couldn't do this inside the
5637 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5638 that have already been expanded. Instead, this loop matches what
5639 the psymtab code does. */
5640 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5641 {
5642 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5643 if (cust != nullptr)
5644 {
5645 const struct block *block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5647 if (!iterate_over_symbols_terminated (block, name,
5648 domain, callback))
5649 break;
5650 }
5651 }
5652 }
5653
5654 static void
5655 dw2_debug_names_expand_symtabs_matching
5656 (struct objfile *objfile,
5657 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5658 const lookup_name_info *lookup_name,
5659 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5660 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5661 enum search_domain kind)
5662 {
5663 struct dwarf2_per_objfile *dwarf2_per_objfile
5664 = get_dwarf2_per_objfile (objfile);
5665
5666 /* debug_names_table is NULL if OBJF_READNOW. */
5667 if (!dwarf2_per_objfile->debug_names_table)
5668 return;
5669
5670 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5671
5672 if (symbol_matcher == NULL && lookup_name == NULL)
5673 {
5674 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5675 {
5676 QUIT;
5677
5678 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5679 expansion_notify);
5680 }
5681 return;
5682 }
5683
5684 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5685
5686 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5687 symbol_matcher,
5688 kind, [&] (offset_type namei)
5689 {
5690 /* The name was matched, now expand corresponding CUs that were
5691 marked. */
5692 dw2_debug_names_iterator iter (map, kind, namei);
5693
5694 struct dwarf2_per_cu_data *per_cu;
5695 while ((per_cu = iter.next ()) != NULL)
5696 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5697 expansion_notify);
5698 return true;
5699 });
5700 }
5701
5702 const struct quick_symbol_functions dwarf2_debug_names_functions =
5703 {
5704 dw2_has_symbols,
5705 dw2_find_last_source_symtab,
5706 dw2_forget_cached_source_info,
5707 dw2_map_symtabs_matching_filename,
5708 dw2_debug_names_lookup_symbol,
5709 NULL,
5710 dw2_print_stats,
5711 dw2_debug_names_dump,
5712 dw2_debug_names_expand_symtabs_for_function,
5713 dw2_expand_all_symtabs,
5714 dw2_expand_symtabs_with_fullname,
5715 dw2_debug_names_map_matching_symbols,
5716 dw2_debug_names_expand_symtabs_matching,
5717 dw2_find_pc_sect_compunit_symtab,
5718 NULL,
5719 dw2_map_symbol_filenames
5720 };
5721
5722 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5723 to either a dwarf2_per_objfile or dwz_file object. */
5724
5725 template <typename T>
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5728 {
5729 dwarf2_section_info *section = &section_owner->gdb_index;
5730
5731 if (section->empty ())
5732 return {};
5733
5734 /* Older elfutils strip versions could keep the section in the main
5735 executable while splitting it for the separate debug info file. */
5736 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5737 return {};
5738
5739 section->read (obj);
5740
5741 /* dwarf2_section_info::size is a bfd_size_type, while
5742 gdb::array_view works with size_t. On 32-bit hosts, with
5743 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5744 is 32-bit. So we need an explicit narrowing conversion here.
5745 This is fine, because it's impossible to allocate or mmap an
5746 array/buffer larger than what size_t can represent. */
5747 return gdb::make_array_view (section->buffer, section->size);
5748 }
5749
5750 /* Lookup the index cache for the contents of the index associated to
5751 DWARF2_OBJ. */
5752
5753 static gdb::array_view<const gdb_byte>
5754 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5755 {
5756 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5757 if (build_id == nullptr)
5758 return {};
5759
5760 return global_index_cache.lookup_gdb_index (build_id,
5761 &dwarf2_obj->index_cache_res);
5762 }
5763
5764 /* Same as the above, but for DWZ. */
5765
5766 static gdb::array_view<const gdb_byte>
5767 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5768 {
5769 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5770 if (build_id == nullptr)
5771 return {};
5772
5773 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5774 }
5775
5776 /* See symfile.h. */
5777
5778 bool
5779 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5780 {
5781 struct dwarf2_per_objfile *dwarf2_per_objfile
5782 = get_dwarf2_per_objfile (objfile);
5783
5784 /* If we're about to read full symbols, don't bother with the
5785 indices. In this case we also don't care if some other debug
5786 format is making psymtabs, because they are all about to be
5787 expanded anyway. */
5788 if ((objfile->flags & OBJF_READNOW))
5789 {
5790 dwarf2_per_objfile->using_index = 1;
5791 create_all_comp_units (dwarf2_per_objfile);
5792 create_all_type_units (dwarf2_per_objfile);
5793 dwarf2_per_objfile->quick_file_names_table
5794 = create_quick_file_names_table
5795 (dwarf2_per_objfile->all_comp_units.size ());
5796
5797 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5798 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5799 {
5800 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5801
5802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5803 struct dwarf2_per_cu_quick_data);
5804 }
5805
5806 /* Return 1 so that gdb sees the "quick" functions. However,
5807 these functions will be no-ops because we will have expanded
5808 all symtabs. */
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5814 {
5815 *index_kind = dw_index_kind::DEBUG_NAMES;
5816 return true;
5817 }
5818
5819 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5820 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5821 get_gdb_index_contents_from_section<dwz_file>))
5822 {
5823 *index_kind = dw_index_kind::GDB_INDEX;
5824 return true;
5825 }
5826
5827 /* ... otherwise, try to find the index in the index cache. */
5828 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5829 get_gdb_index_contents_from_cache,
5830 get_gdb_index_contents_from_cache_dwz))
5831 {
5832 global_index_cache.hit ();
5833 *index_kind = dw_index_kind::GDB_INDEX;
5834 return true;
5835 }
5836
5837 global_index_cache.miss ();
5838 return false;
5839 }
5840
5841 \f
5842
5843 /* Build a partial symbol table. */
5844
5845 void
5846 dwarf2_build_psymtabs (struct objfile *objfile)
5847 {
5848 struct dwarf2_per_objfile *dwarf2_per_objfile
5849 = get_dwarf2_per_objfile (objfile);
5850
5851 init_psymbol_list (objfile, 1024);
5852
5853 try
5854 {
5855 /* This isn't really ideal: all the data we allocate on the
5856 objfile's obstack is still uselessly kept around. However,
5857 freeing it seems unsafe. */
5858 psymtab_discarder psymtabs (objfile);
5859 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5860 psymtabs.keep ();
5861
5862 /* (maybe) store an index in the cache. */
5863 global_index_cache.store (dwarf2_per_objfile);
5864 }
5865 catch (const gdb_exception_error &except)
5866 {
5867 exception_print (gdb_stderr, except);
5868 }
5869 }
5870
5871 /* Find the base address of the compilation unit for range lists and
5872 location lists. It will normally be specified by DW_AT_low_pc.
5873 In DWARF-3 draft 4, the base address could be overridden by
5874 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5875 compilation units with discontinuous ranges. */
5876
5877 static void
5878 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5879 {
5880 struct attribute *attr;
5881
5882 cu->base_address.reset ();
5883
5884 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5885 if (attr != nullptr)
5886 cu->base_address = attr->value_as_address ();
5887 else
5888 {
5889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5890 if (attr != nullptr)
5891 cu->base_address = attr->value_as_address ();
5892 }
5893 }
5894
5895 /* Helper function that returns the proper abbrev section for
5896 THIS_CU. */
5897
5898 static struct dwarf2_section_info *
5899 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5900 {
5901 struct dwarf2_section_info *abbrev;
5902 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5903
5904 if (this_cu->is_dwz)
5905 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5906 else
5907 abbrev = &dwarf2_per_objfile->abbrev;
5908
5909 return abbrev;
5910 }
5911
5912 /* Fetch the abbreviation table offset from a comp or type unit header. */
5913
5914 static sect_offset
5915 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5916 struct dwarf2_section_info *section,
5917 sect_offset sect_off)
5918 {
5919 bfd *abfd = section->get_bfd_owner ();
5920 const gdb_byte *info_ptr;
5921 unsigned int initial_length_size, offset_size;
5922 uint16_t version;
5923
5924 section->read (dwarf2_per_objfile->objfile);
5925 info_ptr = section->buffer + to_underlying (sect_off);
5926 read_initial_length (abfd, info_ptr, &initial_length_size);
5927 offset_size = initial_length_size == 4 ? 4 : 8;
5928 info_ptr += initial_length_size;
5929
5930 version = read_2_bytes (abfd, info_ptr);
5931 info_ptr += 2;
5932 if (version >= 5)
5933 {
5934 /* Skip unit type and address size. */
5935 info_ptr += 2;
5936 }
5937
5938 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5939 }
5940
5941 /* A partial symtab that is used only for include files. */
5942 struct dwarf2_include_psymtab : public partial_symtab
5943 {
5944 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5945 : partial_symtab (filename, objfile)
5946 {
5947 }
5948
5949 void read_symtab (struct objfile *objfile) override
5950 {
5951 /* It's an include file, no symbols to read for it.
5952 Everything is in the includer symtab. */
5953
5954 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5955 expansion of the includer psymtab. We use the dependencies[0] field to
5956 model the includer. But if we go the regular route of calling
5957 expand_psymtab here, and having expand_psymtab call expand_dependencies
5958 to expand the includer, we'll only use expand_psymtab on the includer
5959 (making it a non-toplevel psymtab), while if we expand the includer via
5960 another path, we'll use read_symtab (making it a toplevel psymtab).
5961 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5962 psymtab, and trigger read_symtab on the includer here directly. */
5963 includer ()->read_symtab (objfile);
5964 }
5965
5966 void expand_psymtab (struct objfile *objfile) override
5967 {
5968 /* This is not called by read_symtab, and should not be called by any
5969 expand_dependencies. */
5970 gdb_assert (false);
5971 }
5972
5973 bool readin_p () const override
5974 {
5975 return includer ()->readin_p ();
5976 }
5977
5978 struct compunit_symtab *get_compunit_symtab () const override
5979 {
5980 return nullptr;
5981 }
5982
5983 private:
5984 partial_symtab *includer () const
5985 {
5986 /* An include psymtab has exactly one dependency: the psymtab that
5987 includes it. */
5988 gdb_assert (this->number_of_dependencies == 1);
5989 return this->dependencies[0];
5990 }
5991 };
5992
5993 /* Allocate a new partial symtab for file named NAME and mark this new
5994 partial symtab as being an include of PST. */
5995
5996 static void
5997 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5998 struct objfile *objfile)
5999 {
6000 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6001
6002 if (!IS_ABSOLUTE_PATH (subpst->filename))
6003 {
6004 /* It shares objfile->objfile_obstack. */
6005 subpst->dirname = pst->dirname;
6006 }
6007
6008 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6009 subpst->dependencies[0] = pst;
6010 subpst->number_of_dependencies = 1;
6011 }
6012
6013 /* Read the Line Number Program data and extract the list of files
6014 included by the source file represented by PST. Build an include
6015 partial symtab for each of these included files. */
6016
6017 static void
6018 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6019 struct die_info *die,
6020 dwarf2_psymtab *pst)
6021 {
6022 line_header_up lh;
6023 struct attribute *attr;
6024
6025 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6026 if (attr != nullptr)
6027 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6028 if (lh == NULL)
6029 return; /* No linetable, so no includes. */
6030
6031 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6032 that we pass in the raw text_low here; that is ok because we're
6033 only decoding the line table to make include partial symtabs, and
6034 so the addresses aren't really used. */
6035 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6036 pst->raw_text_low (), 1);
6037 }
6038
6039 static hashval_t
6040 hash_signatured_type (const void *item)
6041 {
6042 const struct signatured_type *sig_type
6043 = (const struct signatured_type *) item;
6044
6045 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6046 return sig_type->signature;
6047 }
6048
6049 static int
6050 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6051 {
6052 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6053 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6054
6055 return lhs->signature == rhs->signature;
6056 }
6057
6058 /* Allocate a hash table for signatured types. */
6059
6060 static htab_up
6061 allocate_signatured_type_table ()
6062 {
6063 return htab_up (htab_create_alloc (41,
6064 hash_signatured_type,
6065 eq_signatured_type,
6066 NULL, xcalloc, xfree));
6067 }
6068
6069 /* A helper function to add a signatured type CU to a table. */
6070
6071 static int
6072 add_signatured_type_cu_to_table (void **slot, void *datum)
6073 {
6074 struct signatured_type *sigt = (struct signatured_type *) *slot;
6075 std::vector<signatured_type *> *all_type_units
6076 = (std::vector<signatured_type *> *) datum;
6077
6078 all_type_units->push_back (sigt);
6079
6080 return 1;
6081 }
6082
6083 /* A helper for create_debug_types_hash_table. Read types from SECTION
6084 and fill them into TYPES_HTAB. It will process only type units,
6085 therefore DW_UT_type. */
6086
6087 static void
6088 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6089 struct dwo_file *dwo_file,
6090 dwarf2_section_info *section, htab_up &types_htab,
6091 rcuh_kind section_kind)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_section_info *abbrev_section;
6095 bfd *abfd;
6096 const gdb_byte *info_ptr, *end_ptr;
6097
6098 abbrev_section = (dwo_file != NULL
6099 ? &dwo_file->sections.abbrev
6100 : &dwarf2_per_objfile->abbrev);
6101
6102 if (dwarf_read_debug)
6103 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6104 section->get_name (),
6105 abbrev_section->get_file_name ());
6106
6107 section->read (objfile);
6108 info_ptr = section->buffer;
6109
6110 if (info_ptr == NULL)
6111 return;
6112
6113 /* We can't set abfd until now because the section may be empty or
6114 not present, in which case the bfd is unknown. */
6115 abfd = section->get_bfd_owner ();
6116
6117 /* We don't use cutu_reader here because we don't need to read
6118 any dies: the signature is in the header. */
6119
6120 end_ptr = info_ptr + section->size;
6121 while (info_ptr < end_ptr)
6122 {
6123 struct signatured_type *sig_type;
6124 struct dwo_unit *dwo_tu;
6125 void **slot;
6126 const gdb_byte *ptr = info_ptr;
6127 struct comp_unit_head header;
6128 unsigned int length;
6129
6130 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6131
6132 /* Initialize it due to a false compiler warning. */
6133 header.signature = -1;
6134 header.type_cu_offset_in_tu = (cu_offset) -1;
6135
6136 /* We need to read the type's signature in order to build the hash
6137 table, but we don't need anything else just yet. */
6138
6139 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6140 abbrev_section, ptr, section_kind);
6141
6142 length = header.get_length ();
6143
6144 /* Skip dummy type units. */
6145 if (ptr >= info_ptr + length
6146 || peek_abbrev_code (abfd, ptr) == 0
6147 || header.unit_type != DW_UT_type)
6148 {
6149 info_ptr += length;
6150 continue;
6151 }
6152
6153 if (types_htab == NULL)
6154 {
6155 if (dwo_file)
6156 types_htab = allocate_dwo_unit_table ();
6157 else
6158 types_htab = allocate_signatured_type_table ();
6159 }
6160
6161 if (dwo_file)
6162 {
6163 sig_type = NULL;
6164 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6165 struct dwo_unit);
6166 dwo_tu->dwo_file = dwo_file;
6167 dwo_tu->signature = header.signature;
6168 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6169 dwo_tu->section = section;
6170 dwo_tu->sect_off = sect_off;
6171 dwo_tu->length = length;
6172 }
6173 else
6174 {
6175 /* N.B.: type_offset is not usable if this type uses a DWO file.
6176 The real type_offset is in the DWO file. */
6177 dwo_tu = NULL;
6178 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6179 struct signatured_type);
6180 sig_type->signature = header.signature;
6181 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6182 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6183 sig_type->per_cu.is_debug_types = 1;
6184 sig_type->per_cu.section = section;
6185 sig_type->per_cu.sect_off = sect_off;
6186 sig_type->per_cu.length = length;
6187 }
6188
6189 slot = htab_find_slot (types_htab.get (),
6190 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6191 INSERT);
6192 gdb_assert (slot != NULL);
6193 if (*slot != NULL)
6194 {
6195 sect_offset dup_sect_off;
6196
6197 if (dwo_file)
6198 {
6199 const struct dwo_unit *dup_tu
6200 = (const struct dwo_unit *) *slot;
6201
6202 dup_sect_off = dup_tu->sect_off;
6203 }
6204 else
6205 {
6206 const struct signatured_type *dup_tu
6207 = (const struct signatured_type *) *slot;
6208
6209 dup_sect_off = dup_tu->per_cu.sect_off;
6210 }
6211
6212 complaint (_("debug type entry at offset %s is duplicate to"
6213 " the entry at offset %s, signature %s"),
6214 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6215 hex_string (header.signature));
6216 }
6217 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6218
6219 if (dwarf_read_debug > 1)
6220 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6221 sect_offset_str (sect_off),
6222 hex_string (header.signature));
6223
6224 info_ptr += length;
6225 }
6226 }
6227
6228 /* Create the hash table of all entries in the .debug_types
6229 (or .debug_types.dwo) section(s).
6230 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6231 otherwise it is NULL.
6232
6233 The result is a pointer to the hash table or NULL if there are no types.
6234
6235 Note: This function processes DWO files only, not DWP files. */
6236
6237 static void
6238 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6239 struct dwo_file *dwo_file,
6240 gdb::array_view<dwarf2_section_info> type_sections,
6241 htab_up &types_htab)
6242 {
6243 for (dwarf2_section_info &section : type_sections)
6244 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6245 types_htab, rcuh_kind::TYPE);
6246 }
6247
6248 /* Create the hash table of all entries in the .debug_types section,
6249 and initialize all_type_units.
6250 The result is zero if there is an error (e.g. missing .debug_types section),
6251 otherwise non-zero. */
6252
6253 static int
6254 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6255 {
6256 htab_up types_htab;
6257
6258 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6259 &dwarf2_per_objfile->info, types_htab,
6260 rcuh_kind::COMPILE);
6261 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6262 dwarf2_per_objfile->types, types_htab);
6263 if (types_htab == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types = NULL;
6266 return 0;
6267 }
6268
6269 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6270
6271 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6272 dwarf2_per_objfile->all_type_units.reserve
6273 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6274
6275 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6276 add_signatured_type_cu_to_table,
6277 &dwarf2_per_objfile->all_type_units);
6278
6279 return 1;
6280 }
6281
6282 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6283 If SLOT is non-NULL, it is the entry to use in the hash table.
6284 Otherwise we find one. */
6285
6286 static struct signatured_type *
6287 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6288 void **slot)
6289 {
6290 struct objfile *objfile = dwarf2_per_objfile->objfile;
6291
6292 if (dwarf2_per_objfile->all_type_units.size ()
6293 == dwarf2_per_objfile->all_type_units.capacity ())
6294 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6295
6296 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6297 struct signatured_type);
6298
6299 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6300 sig_type->signature = sig;
6301 sig_type->per_cu.is_debug_types = 1;
6302 if (dwarf2_per_objfile->using_index)
6303 {
6304 sig_type->per_cu.v.quick =
6305 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6306 struct dwarf2_per_cu_quick_data);
6307 }
6308
6309 if (slot == NULL)
6310 {
6311 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6312 sig_type, INSERT);
6313 }
6314 gdb_assert (*slot == NULL);
6315 *slot = sig_type;
6316 /* The rest of sig_type must be filled in by the caller. */
6317 return sig_type;
6318 }
6319
6320 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6321 Fill in SIG_ENTRY with DWO_ENTRY. */
6322
6323 static void
6324 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6325 struct signatured_type *sig_entry,
6326 struct dwo_unit *dwo_entry)
6327 {
6328 /* Make sure we're not clobbering something we don't expect to. */
6329 gdb_assert (! sig_entry->per_cu.queued);
6330 gdb_assert (sig_entry->per_cu.cu == NULL);
6331 if (dwarf2_per_objfile->using_index)
6332 {
6333 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6334 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6335 }
6336 else
6337 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6338 gdb_assert (sig_entry->signature == dwo_entry->signature);
6339 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6340 gdb_assert (sig_entry->type_unit_group == NULL);
6341 gdb_assert (sig_entry->dwo_unit == NULL);
6342
6343 sig_entry->per_cu.section = dwo_entry->section;
6344 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6345 sig_entry->per_cu.length = dwo_entry->length;
6346 sig_entry->per_cu.reading_dwo_directly = 1;
6347 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6348 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6349 sig_entry->dwo_unit = dwo_entry;
6350 }
6351
6352 /* Subroutine of lookup_signatured_type.
6353 If we haven't read the TU yet, create the signatured_type data structure
6354 for a TU to be read in directly from a DWO file, bypassing the stub.
6355 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6356 using .gdb_index, then when reading a CU we want to stay in the DWO file
6357 containing that CU. Otherwise we could end up reading several other DWO
6358 files (due to comdat folding) to process the transitive closure of all the
6359 mentioned TUs, and that can be slow. The current DWO file will have every
6360 type signature that it needs.
6361 We only do this for .gdb_index because in the psymtab case we already have
6362 to read all the DWOs to build the type unit groups. */
6363
6364 static struct signatured_type *
6365 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6366 {
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwo_file *dwo_file;
6370 struct dwo_unit find_dwo_entry, *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6372 void **slot;
6373
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375
6376 /* If TU skeletons have been removed then we may not have read in any
6377 TUs yet. */
6378 if (dwarf2_per_objfile->signatured_types == NULL)
6379 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6380
6381 /* We only ever need to read in one copy of a signatured type.
6382 Use the global signatured_types array to do our own comdat-folding
6383 of types. If this is the first time we're reading this TU, and
6384 the TU has an entry in .gdb_index, replace the recorded data from
6385 .gdb_index with this TU. */
6386
6387 find_sig_entry.signature = sig;
6388 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6389 &find_sig_entry, INSERT);
6390 sig_entry = (struct signatured_type *) *slot;
6391
6392 /* We can get here with the TU already read, *or* in the process of being
6393 read. Don't reassign the global entry to point to this DWO if that's
6394 the case. Also note that if the TU is already being read, it may not
6395 have come from a DWO, the program may be a mix of Fission-compiled
6396 code and non-Fission-compiled code. */
6397
6398 /* Have we already tried to read this TU?
6399 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6400 needn't exist in the global table yet). */
6401 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6402 return sig_entry;
6403
6404 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6405 dwo_unit of the TU itself. */
6406 dwo_file = cu->dwo_unit->dwo_file;
6407
6408 /* Ok, this is the first time we're reading this TU. */
6409 if (dwo_file->tus == NULL)
6410 return NULL;
6411 find_dwo_entry.signature = sig;
6412 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6413 &find_dwo_entry);
6414 if (dwo_entry == NULL)
6415 return NULL;
6416
6417 /* If the global table doesn't have an entry for this TU, add one. */
6418 if (sig_entry == NULL)
6419 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6420
6421 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6422 sig_entry->per_cu.tu_read = 1;
6423 return sig_entry;
6424 }
6425
6426 /* Subroutine of lookup_signatured_type.
6427 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6428 then try the DWP file. If the TU stub (skeleton) has been removed then
6429 it won't be in .gdb_index. */
6430
6431 static struct signatured_type *
6432 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6433 {
6434 struct dwarf2_per_objfile *dwarf2_per_objfile
6435 = cu->per_cu->dwarf2_per_objfile;
6436 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6437 struct dwo_unit *dwo_entry;
6438 struct signatured_type find_sig_entry, *sig_entry;
6439 void **slot;
6440
6441 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6442 gdb_assert (dwp_file != NULL);
6443
6444 /* If TU skeletons have been removed then we may not have read in any
6445 TUs yet. */
6446 if (dwarf2_per_objfile->signatured_types == NULL)
6447 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6448
6449 find_sig_entry.signature = sig;
6450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6451 &find_sig_entry, INSERT);
6452 sig_entry = (struct signatured_type *) *slot;
6453
6454 /* Have we already tried to read this TU?
6455 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6456 needn't exist in the global table yet). */
6457 if (sig_entry != NULL)
6458 return sig_entry;
6459
6460 if (dwp_file->tus == NULL)
6461 return NULL;
6462 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6463 sig, 1 /* is_debug_types */);
6464 if (dwo_entry == NULL)
6465 return NULL;
6466
6467 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6468 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6469
6470 return sig_entry;
6471 }
6472
6473 /* Lookup a signature based type for DW_FORM_ref_sig8.
6474 Returns NULL if signature SIG is not present in the table.
6475 It is up to the caller to complain about this. */
6476
6477 static struct signatured_type *
6478 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6479 {
6480 struct dwarf2_per_objfile *dwarf2_per_objfile
6481 = cu->per_cu->dwarf2_per_objfile;
6482
6483 if (cu->dwo_unit
6484 && dwarf2_per_objfile->using_index)
6485 {
6486 /* We're in a DWO/DWP file, and we're using .gdb_index.
6487 These cases require special processing. */
6488 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6489 return lookup_dwo_signatured_type (cu, sig);
6490 else
6491 return lookup_dwp_signatured_type (cu, sig);
6492 }
6493 else
6494 {
6495 struct signatured_type find_entry, *entry;
6496
6497 if (dwarf2_per_objfile->signatured_types == NULL)
6498 return NULL;
6499 find_entry.signature = sig;
6500 entry = ((struct signatured_type *)
6501 htab_find (dwarf2_per_objfile->signatured_types.get (),
6502 &find_entry));
6503 return entry;
6504 }
6505 }
6506
6507 /* Low level DIE reading support. */
6508
6509 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6510
6511 static void
6512 init_cu_die_reader (struct die_reader_specs *reader,
6513 struct dwarf2_cu *cu,
6514 struct dwarf2_section_info *section,
6515 struct dwo_file *dwo_file,
6516 struct abbrev_table *abbrev_table)
6517 {
6518 gdb_assert (section->readin && section->buffer != NULL);
6519 reader->abfd = section->get_bfd_owner ();
6520 reader->cu = cu;
6521 reader->dwo_file = dwo_file;
6522 reader->die_section = section;
6523 reader->buffer = section->buffer;
6524 reader->buffer_end = section->buffer + section->size;
6525 reader->abbrev_table = abbrev_table;
6526 }
6527
6528 /* Subroutine of cutu_reader to simplify it.
6529 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6530 There's just a lot of work to do, and cutu_reader is big enough
6531 already.
6532
6533 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6534 from it to the DIE in the DWO. If NULL we are skipping the stub.
6535 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6536 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6537 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6538 STUB_COMP_DIR may be non-NULL.
6539 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6540 are filled in with the info of the DIE from the DWO file.
6541 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6542 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6543 kept around for at least as long as *RESULT_READER.
6544
6545 The result is non-zero if a valid (non-dummy) DIE was found. */
6546
6547 static int
6548 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6549 struct dwo_unit *dwo_unit,
6550 struct die_info *stub_comp_unit_die,
6551 const char *stub_comp_dir,
6552 struct die_reader_specs *result_reader,
6553 const gdb_byte **result_info_ptr,
6554 struct die_info **result_comp_unit_die,
6555 abbrev_table_up *result_dwo_abbrev_table)
6556 {
6557 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6558 struct objfile *objfile = dwarf2_per_objfile->objfile;
6559 struct dwarf2_cu *cu = this_cu->cu;
6560 bfd *abfd;
6561 const gdb_byte *begin_info_ptr, *info_ptr;
6562 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6563 int i,num_extra_attrs;
6564 struct dwarf2_section_info *dwo_abbrev_section;
6565 struct die_info *comp_unit_die;
6566
6567 /* At most one of these may be provided. */
6568 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6569
6570 /* These attributes aren't processed until later:
6571 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6572 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6573 referenced later. However, these attributes are found in the stub
6574 which we won't have later. In order to not impose this complication
6575 on the rest of the code, we read them here and copy them to the
6576 DWO CU/TU die. */
6577
6578 stmt_list = NULL;
6579 low_pc = NULL;
6580 high_pc = NULL;
6581 ranges = NULL;
6582 comp_dir = NULL;
6583
6584 if (stub_comp_unit_die != NULL)
6585 {
6586 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6587 DWO file. */
6588 if (! this_cu->is_debug_types)
6589 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6590 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6591 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6592 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6593 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6594
6595 cu->addr_base = stub_comp_unit_die->addr_base ();
6596
6597 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6598 here (if needed). We need the value before we can process
6599 DW_AT_ranges. */
6600 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6601 }
6602 else if (stub_comp_dir != NULL)
6603 {
6604 /* Reconstruct the comp_dir attribute to simplify the code below. */
6605 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6606 comp_dir->name = DW_AT_comp_dir;
6607 comp_dir->form = DW_FORM_string;
6608 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6609 DW_STRING (comp_dir) = stub_comp_dir;
6610 }
6611
6612 /* Set up for reading the DWO CU/TU. */
6613 cu->dwo_unit = dwo_unit;
6614 dwarf2_section_info *section = dwo_unit->section;
6615 section->read (objfile);
6616 abfd = section->get_bfd_owner ();
6617 begin_info_ptr = info_ptr = (section->buffer
6618 + to_underlying (dwo_unit->sect_off));
6619 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6620
6621 if (this_cu->is_debug_types)
6622 {
6623 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6624
6625 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6626 &cu->header, section,
6627 dwo_abbrev_section,
6628 info_ptr, rcuh_kind::TYPE);
6629 /* This is not an assert because it can be caused by bad debug info. */
6630 if (sig_type->signature != cu->header.signature)
6631 {
6632 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6633 " TU at offset %s [in module %s]"),
6634 hex_string (sig_type->signature),
6635 hex_string (cu->header.signature),
6636 sect_offset_str (dwo_unit->sect_off),
6637 bfd_get_filename (abfd));
6638 }
6639 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6640 /* For DWOs coming from DWP files, we don't know the CU length
6641 nor the type's offset in the TU until now. */
6642 dwo_unit->length = cu->header.get_length ();
6643 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6644
6645 /* Establish the type offset that can be used to lookup the type.
6646 For DWO files, we don't know it until now. */
6647 sig_type->type_offset_in_section
6648 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6649 }
6650 else
6651 {
6652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6653 &cu->header, section,
6654 dwo_abbrev_section,
6655 info_ptr, rcuh_kind::COMPILE);
6656 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6657 /* For DWOs coming from DWP files, we don't know the CU length
6658 until now. */
6659 dwo_unit->length = cu->header.get_length ();
6660 }
6661
6662 *result_dwo_abbrev_table
6663 = abbrev_table::read (objfile, dwo_abbrev_section,
6664 cu->header.abbrev_sect_off);
6665 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6666 result_dwo_abbrev_table->get ());
6667
6668 /* Read in the die, but leave space to copy over the attributes
6669 from the stub. This has the benefit of simplifying the rest of
6670 the code - all the work to maintain the illusion of a single
6671 DW_TAG_{compile,type}_unit DIE is done here. */
6672 num_extra_attrs = ((stmt_list != NULL)
6673 + (low_pc != NULL)
6674 + (high_pc != NULL)
6675 + (ranges != NULL)
6676 + (comp_dir != NULL));
6677 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6678 num_extra_attrs);
6679
6680 /* Copy over the attributes from the stub to the DIE we just read in. */
6681 comp_unit_die = *result_comp_unit_die;
6682 i = comp_unit_die->num_attrs;
6683 if (stmt_list != NULL)
6684 comp_unit_die->attrs[i++] = *stmt_list;
6685 if (low_pc != NULL)
6686 comp_unit_die->attrs[i++] = *low_pc;
6687 if (high_pc != NULL)
6688 comp_unit_die->attrs[i++] = *high_pc;
6689 if (ranges != NULL)
6690 comp_unit_die->attrs[i++] = *ranges;
6691 if (comp_dir != NULL)
6692 comp_unit_die->attrs[i++] = *comp_dir;
6693 comp_unit_die->num_attrs += num_extra_attrs;
6694
6695 if (dwarf_die_debug)
6696 {
6697 fprintf_unfiltered (gdb_stdlog,
6698 "Read die from %s@0x%x of %s:\n",
6699 section->get_name (),
6700 (unsigned) (begin_info_ptr - section->buffer),
6701 bfd_get_filename (abfd));
6702 dump_die (comp_unit_die, dwarf_die_debug);
6703 }
6704
6705 /* Skip dummy compilation units. */
6706 if (info_ptr >= begin_info_ptr + dwo_unit->length
6707 || peek_abbrev_code (abfd, info_ptr) == 0)
6708 return 0;
6709
6710 *result_info_ptr = info_ptr;
6711 return 1;
6712 }
6713
6714 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6715 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6716 signature is part of the header. */
6717 static gdb::optional<ULONGEST>
6718 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6719 {
6720 if (cu->header.version >= 5)
6721 return cu->header.signature;
6722 struct attribute *attr;
6723 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6724 if (attr == nullptr)
6725 return gdb::optional<ULONGEST> ();
6726 return DW_UNSND (attr);
6727 }
6728
6729 /* Subroutine of cutu_reader to simplify it.
6730 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6731 Returns NULL if the specified DWO unit cannot be found. */
6732
6733 static struct dwo_unit *
6734 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6735 struct die_info *comp_unit_die,
6736 const char *dwo_name)
6737 {
6738 struct dwarf2_cu *cu = this_cu->cu;
6739 struct dwo_unit *dwo_unit;
6740 const char *comp_dir;
6741
6742 gdb_assert (cu != NULL);
6743
6744 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6745 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6746 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6747
6748 if (this_cu->is_debug_types)
6749 {
6750 struct signatured_type *sig_type;
6751
6752 /* Since this_cu is the first member of struct signatured_type,
6753 we can go from a pointer to one to a pointer to the other. */
6754 sig_type = (struct signatured_type *) this_cu;
6755 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6756 }
6757 else
6758 {
6759 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6760 if (!signature.has_value ())
6761 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6762 " [in module %s]"),
6763 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6764 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6765 *signature);
6766 }
6767
6768 return dwo_unit;
6769 }
6770
6771 /* Subroutine of cutu_reader to simplify it.
6772 See it for a description of the parameters.
6773 Read a TU directly from a DWO file, bypassing the stub. */
6774
6775 void
6776 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6777 int use_existing_cu)
6778 {
6779 struct signatured_type *sig_type;
6780
6781 /* Verify we can do the following downcast, and that we have the
6782 data we need. */
6783 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6784 sig_type = (struct signatured_type *) this_cu;
6785 gdb_assert (sig_type->dwo_unit != NULL);
6786
6787 if (use_existing_cu && this_cu->cu != NULL)
6788 {
6789 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6790 /* There's no need to do the rereading_dwo_cu handling that
6791 cutu_reader does since we don't read the stub. */
6792 }
6793 else
6794 {
6795 /* If !use_existing_cu, this_cu->cu must be NULL. */
6796 gdb_assert (this_cu->cu == NULL);
6797 m_new_cu.reset (new dwarf2_cu (this_cu));
6798 }
6799
6800 /* A future optimization, if needed, would be to use an existing
6801 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6802 could share abbrev tables. */
6803
6804 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6805 NULL /* stub_comp_unit_die */,
6806 sig_type->dwo_unit->dwo_file->comp_dir,
6807 this, &info_ptr,
6808 &comp_unit_die,
6809 &m_dwo_abbrev_table) == 0)
6810 {
6811 /* Dummy die. */
6812 dummy_p = true;
6813 }
6814 }
6815
6816 /* Initialize a CU (or TU) and read its DIEs.
6817 If the CU defers to a DWO file, read the DWO file as well.
6818
6819 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6820 Otherwise the table specified in the comp unit header is read in and used.
6821 This is an optimization for when we already have the abbrev table.
6822
6823 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6824 Otherwise, a new CU is allocated with xmalloc. */
6825
6826 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6827 struct abbrev_table *abbrev_table,
6828 int use_existing_cu,
6829 bool skip_partial)
6830 : die_reader_specs {},
6831 m_this_cu (this_cu)
6832 {
6833 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6834 struct objfile *objfile = dwarf2_per_objfile->objfile;
6835 struct dwarf2_section_info *section = this_cu->section;
6836 bfd *abfd = section->get_bfd_owner ();
6837 struct dwarf2_cu *cu;
6838 const gdb_byte *begin_info_ptr;
6839 struct signatured_type *sig_type = NULL;
6840 struct dwarf2_section_info *abbrev_section;
6841 /* Non-zero if CU currently points to a DWO file and we need to
6842 reread it. When this happens we need to reread the skeleton die
6843 before we can reread the DWO file (this only applies to CUs, not TUs). */
6844 int rereading_dwo_cu = 0;
6845
6846 if (dwarf_die_debug)
6847 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6848 this_cu->is_debug_types ? "type" : "comp",
6849 sect_offset_str (this_cu->sect_off));
6850
6851 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6852 file (instead of going through the stub), short-circuit all of this. */
6853 if (this_cu->reading_dwo_directly)
6854 {
6855 /* Narrow down the scope of possibilities to have to understand. */
6856 gdb_assert (this_cu->is_debug_types);
6857 gdb_assert (abbrev_table == NULL);
6858 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6859 return;
6860 }
6861
6862 /* This is cheap if the section is already read in. */
6863 section->read (objfile);
6864
6865 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6866
6867 abbrev_section = get_abbrev_section_for_cu (this_cu);
6868
6869 if (use_existing_cu && this_cu->cu != NULL)
6870 {
6871 cu = this_cu->cu;
6872 /* If this CU is from a DWO file we need to start over, we need to
6873 refetch the attributes from the skeleton CU.
6874 This could be optimized by retrieving those attributes from when we
6875 were here the first time: the previous comp_unit_die was stored in
6876 comp_unit_obstack. But there's no data yet that we need this
6877 optimization. */
6878 if (cu->dwo_unit != NULL)
6879 rereading_dwo_cu = 1;
6880 }
6881 else
6882 {
6883 /* If !use_existing_cu, this_cu->cu must be NULL. */
6884 gdb_assert (this_cu->cu == NULL);
6885 m_new_cu.reset (new dwarf2_cu (this_cu));
6886 cu = m_new_cu.get ();
6887 }
6888
6889 /* Get the header. */
6890 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6891 {
6892 /* We already have the header, there's no need to read it in again. */
6893 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6894 }
6895 else
6896 {
6897 if (this_cu->is_debug_types)
6898 {
6899 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6900 &cu->header, section,
6901 abbrev_section, info_ptr,
6902 rcuh_kind::TYPE);
6903
6904 /* Since per_cu is the first member of struct signatured_type,
6905 we can go from a pointer to one to a pointer to the other. */
6906 sig_type = (struct signatured_type *) this_cu;
6907 gdb_assert (sig_type->signature == cu->header.signature);
6908 gdb_assert (sig_type->type_offset_in_tu
6909 == cu->header.type_cu_offset_in_tu);
6910 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6911
6912 /* LENGTH has not been set yet for type units if we're
6913 using .gdb_index. */
6914 this_cu->length = cu->header.get_length ();
6915
6916 /* Establish the type offset that can be used to lookup the type. */
6917 sig_type->type_offset_in_section =
6918 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6919
6920 this_cu->dwarf_version = cu->header.version;
6921 }
6922 else
6923 {
6924 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6925 &cu->header, section,
6926 abbrev_section,
6927 info_ptr,
6928 rcuh_kind::COMPILE);
6929
6930 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6931 gdb_assert (this_cu->length == cu->header.get_length ());
6932 this_cu->dwarf_version = cu->header.version;
6933 }
6934 }
6935
6936 /* Skip dummy compilation units. */
6937 if (info_ptr >= begin_info_ptr + this_cu->length
6938 || peek_abbrev_code (abfd, info_ptr) == 0)
6939 {
6940 dummy_p = true;
6941 return;
6942 }
6943
6944 /* If we don't have them yet, read the abbrevs for this compilation unit.
6945 And if we need to read them now, make sure they're freed when we're
6946 done. */
6947 if (abbrev_table != NULL)
6948 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6949 else
6950 {
6951 m_abbrev_table_holder
6952 = abbrev_table::read (objfile, abbrev_section,
6953 cu->header.abbrev_sect_off);
6954 abbrev_table = m_abbrev_table_holder.get ();
6955 }
6956
6957 /* Read the top level CU/TU die. */
6958 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6959 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6960
6961 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6962 {
6963 dummy_p = true;
6964 return;
6965 }
6966
6967 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6968 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6969 table from the DWO file and pass the ownership over to us. It will be
6970 referenced from READER, so we must make sure to free it after we're done
6971 with READER.
6972
6973 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6974 DWO CU, that this test will fail (the attribute will not be present). */
6975 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6976 if (dwo_name != nullptr)
6977 {
6978 struct dwo_unit *dwo_unit;
6979 struct die_info *dwo_comp_unit_die;
6980
6981 if (comp_unit_die->has_children)
6982 {
6983 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6984 " has children (offset %s) [in module %s]"),
6985 sect_offset_str (this_cu->sect_off),
6986 bfd_get_filename (abfd));
6987 }
6988 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6989 if (dwo_unit != NULL)
6990 {
6991 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6992 comp_unit_die, NULL,
6993 this, &info_ptr,
6994 &dwo_comp_unit_die,
6995 &m_dwo_abbrev_table) == 0)
6996 {
6997 /* Dummy die. */
6998 dummy_p = true;
6999 return;
7000 }
7001 comp_unit_die = dwo_comp_unit_die;
7002 }
7003 else
7004 {
7005 /* Yikes, we couldn't find the rest of the DIE, we only have
7006 the stub. A complaint has already been logged. There's
7007 not much more we can do except pass on the stub DIE to
7008 die_reader_func. We don't want to throw an error on bad
7009 debug info. */
7010 }
7011 }
7012 }
7013
7014 void
7015 cutu_reader::keep ()
7016 {
7017 /* Done, clean up. */
7018 gdb_assert (!dummy_p);
7019 if (m_new_cu != NULL)
7020 {
7021 struct dwarf2_per_objfile *dwarf2_per_objfile
7022 = m_this_cu->dwarf2_per_objfile;
7023 /* Link this CU into read_in_chain. */
7024 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7025 dwarf2_per_objfile->read_in_chain = m_this_cu;
7026 /* The chain owns it now. */
7027 m_new_cu.release ();
7028 }
7029 }
7030
7031 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7032 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7033 assumed to have already done the lookup to find the DWO file).
7034
7035 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7036 THIS_CU->is_debug_types, but nothing else.
7037
7038 We fill in THIS_CU->length.
7039
7040 THIS_CU->cu is always freed when done.
7041 This is done in order to not leave THIS_CU->cu in a state where we have
7042 to care whether it refers to the "main" CU or the DWO CU.
7043
7044 When parent_cu is passed, it is used to provide a default value for
7045 str_offsets_base and addr_base from the parent. */
7046
7047 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7048 struct dwarf2_cu *parent_cu,
7049 struct dwo_file *dwo_file)
7050 : die_reader_specs {},
7051 m_this_cu (this_cu)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7054 struct objfile *objfile = dwarf2_per_objfile->objfile;
7055 struct dwarf2_section_info *section = this_cu->section;
7056 bfd *abfd = section->get_bfd_owner ();
7057 struct dwarf2_section_info *abbrev_section;
7058 const gdb_byte *begin_info_ptr, *info_ptr;
7059
7060 if (dwarf_die_debug)
7061 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7062 this_cu->is_debug_types ? "type" : "comp",
7063 sect_offset_str (this_cu->sect_off));
7064
7065 gdb_assert (this_cu->cu == NULL);
7066
7067 abbrev_section = (dwo_file != NULL
7068 ? &dwo_file->sections.abbrev
7069 : get_abbrev_section_for_cu (this_cu));
7070
7071 /* This is cheap if the section is already read in. */
7072 section->read (objfile);
7073
7074 m_new_cu.reset (new dwarf2_cu (this_cu));
7075
7076 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7077 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7078 &m_new_cu->header, section,
7079 abbrev_section, info_ptr,
7080 (this_cu->is_debug_types
7081 ? rcuh_kind::TYPE
7082 : rcuh_kind::COMPILE));
7083
7084 if (parent_cu != nullptr)
7085 {
7086 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7087 m_new_cu->addr_base = parent_cu->addr_base;
7088 }
7089 this_cu->length = m_new_cu->header.get_length ();
7090
7091 /* Skip dummy compilation units. */
7092 if (info_ptr >= begin_info_ptr + this_cu->length
7093 || peek_abbrev_code (abfd, info_ptr) == 0)
7094 {
7095 dummy_p = true;
7096 return;
7097 }
7098
7099 m_abbrev_table_holder
7100 = abbrev_table::read (objfile, abbrev_section,
7101 m_new_cu->header.abbrev_sect_off);
7102
7103 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7104 m_abbrev_table_holder.get ());
7105 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7106 }
7107
7108 \f
7109 /* Type Unit Groups.
7110
7111 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7112 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7113 so that all types coming from the same compilation (.o file) are grouped
7114 together. A future step could be to put the types in the same symtab as
7115 the CU the types ultimately came from. */
7116
7117 static hashval_t
7118 hash_type_unit_group (const void *item)
7119 {
7120 const struct type_unit_group *tu_group
7121 = (const struct type_unit_group *) item;
7122
7123 return hash_stmt_list_entry (&tu_group->hash);
7124 }
7125
7126 static int
7127 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7128 {
7129 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7130 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7131
7132 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7133 }
7134
7135 /* Allocate a hash table for type unit groups. */
7136
7137 static htab_up
7138 allocate_type_unit_groups_table ()
7139 {
7140 return htab_up (htab_create_alloc (3,
7141 hash_type_unit_group,
7142 eq_type_unit_group,
7143 NULL, xcalloc, xfree));
7144 }
7145
7146 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7147 partial symtabs. We combine several TUs per psymtab to not let the size
7148 of any one psymtab grow too big. */
7149 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7150 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7151
7152 /* Helper routine for get_type_unit_group.
7153 Create the type_unit_group object used to hold one or more TUs. */
7154
7155 static struct type_unit_group *
7156 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7157 {
7158 struct dwarf2_per_objfile *dwarf2_per_objfile
7159 = cu->per_cu->dwarf2_per_objfile;
7160 struct objfile *objfile = dwarf2_per_objfile->objfile;
7161 struct dwarf2_per_cu_data *per_cu;
7162 struct type_unit_group *tu_group;
7163
7164 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7165 struct type_unit_group);
7166 per_cu = &tu_group->per_cu;
7167 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7168
7169 if (dwarf2_per_objfile->using_index)
7170 {
7171 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7172 struct dwarf2_per_cu_quick_data);
7173 }
7174 else
7175 {
7176 unsigned int line_offset = to_underlying (line_offset_struct);
7177 dwarf2_psymtab *pst;
7178 std::string name;
7179
7180 /* Give the symtab a useful name for debug purposes. */
7181 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7182 name = string_printf ("<type_units_%d>",
7183 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7184 else
7185 name = string_printf ("<type_units_at_0x%x>", line_offset);
7186
7187 pst = create_partial_symtab (per_cu, name.c_str ());
7188 pst->anonymous = true;
7189 }
7190
7191 tu_group->hash.dwo_unit = cu->dwo_unit;
7192 tu_group->hash.line_sect_off = line_offset_struct;
7193
7194 return tu_group;
7195 }
7196
7197 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7198 STMT_LIST is a DW_AT_stmt_list attribute. */
7199
7200 static struct type_unit_group *
7201 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7202 {
7203 struct dwarf2_per_objfile *dwarf2_per_objfile
7204 = cu->per_cu->dwarf2_per_objfile;
7205 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7206 struct type_unit_group *tu_group;
7207 void **slot;
7208 unsigned int line_offset;
7209 struct type_unit_group type_unit_group_for_lookup;
7210
7211 if (dwarf2_per_objfile->type_unit_groups == NULL)
7212 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7213
7214 /* Do we need to create a new group, or can we use an existing one? */
7215
7216 if (stmt_list)
7217 {
7218 line_offset = DW_UNSND (stmt_list);
7219 ++tu_stats->nr_symtab_sharers;
7220 }
7221 else
7222 {
7223 /* Ugh, no stmt_list. Rare, but we have to handle it.
7224 We can do various things here like create one group per TU or
7225 spread them over multiple groups to split up the expansion work.
7226 To avoid worst case scenarios (too many groups or too large groups)
7227 we, umm, group them in bunches. */
7228 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7229 | (tu_stats->nr_stmt_less_type_units
7230 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7231 ++tu_stats->nr_stmt_less_type_units;
7232 }
7233
7234 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7235 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7236 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7237 &type_unit_group_for_lookup, INSERT);
7238 if (*slot != NULL)
7239 {
7240 tu_group = (struct type_unit_group *) *slot;
7241 gdb_assert (tu_group != NULL);
7242 }
7243 else
7244 {
7245 sect_offset line_offset_struct = (sect_offset) line_offset;
7246 tu_group = create_type_unit_group (cu, line_offset_struct);
7247 *slot = tu_group;
7248 ++tu_stats->nr_symtabs;
7249 }
7250
7251 return tu_group;
7252 }
7253 \f
7254 /* Partial symbol tables. */
7255
7256 /* Create a psymtab named NAME and assign it to PER_CU.
7257
7258 The caller must fill in the following details:
7259 dirname, textlow, texthigh. */
7260
7261 static dwarf2_psymtab *
7262 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7263 {
7264 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7265 dwarf2_psymtab *pst;
7266
7267 pst = new dwarf2_psymtab (name, objfile, per_cu);
7268
7269 pst->psymtabs_addrmap_supported = true;
7270
7271 /* This is the glue that links PST into GDB's symbol API. */
7272 per_cu->v.psymtab = pst;
7273
7274 return pst;
7275 }
7276
7277 /* DIE reader function for process_psymtab_comp_unit. */
7278
7279 static void
7280 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7281 const gdb_byte *info_ptr,
7282 struct die_info *comp_unit_die,
7283 enum language pretend_language)
7284 {
7285 struct dwarf2_cu *cu = reader->cu;
7286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7287 struct gdbarch *gdbarch = objfile->arch ();
7288 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7289 CORE_ADDR baseaddr;
7290 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7291 dwarf2_psymtab *pst;
7292 enum pc_bounds_kind cu_bounds_kind;
7293 const char *filename;
7294
7295 gdb_assert (! per_cu->is_debug_types);
7296
7297 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7298
7299 /* Allocate a new partial symbol table structure. */
7300 gdb::unique_xmalloc_ptr<char> debug_filename;
7301 static const char artificial[] = "<artificial>";
7302 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7303 if (filename == NULL)
7304 filename = "";
7305 else if (strcmp (filename, artificial) == 0)
7306 {
7307 debug_filename.reset (concat (artificial, "@",
7308 sect_offset_str (per_cu->sect_off),
7309 (char *) NULL));
7310 filename = debug_filename.get ();
7311 }
7312
7313 pst = create_partial_symtab (per_cu, filename);
7314
7315 /* This must be done before calling dwarf2_build_include_psymtabs. */
7316 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7317
7318 baseaddr = objfile->text_section_offset ();
7319
7320 dwarf2_find_base_address (comp_unit_die, cu);
7321
7322 /* Possibly set the default values of LOWPC and HIGHPC from
7323 `DW_AT_ranges'. */
7324 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7325 &best_highpc, cu, pst);
7326 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7327 {
7328 CORE_ADDR low
7329 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7330 - baseaddr);
7331 CORE_ADDR high
7332 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7333 - baseaddr - 1);
7334 /* Store the contiguous range if it is not empty; it can be
7335 empty for CUs with no code. */
7336 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7337 low, high, pst);
7338 }
7339
7340 /* Check if comp unit has_children.
7341 If so, read the rest of the partial symbols from this comp unit.
7342 If not, there's no more debug_info for this comp unit. */
7343 if (comp_unit_die->has_children)
7344 {
7345 struct partial_die_info *first_die;
7346 CORE_ADDR lowpc, highpc;
7347
7348 lowpc = ((CORE_ADDR) -1);
7349 highpc = ((CORE_ADDR) 0);
7350
7351 first_die = load_partial_dies (reader, info_ptr, 1);
7352
7353 scan_partial_symbols (first_die, &lowpc, &highpc,
7354 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7355
7356 /* If we didn't find a lowpc, set it to highpc to avoid
7357 complaints from `maint check'. */
7358 if (lowpc == ((CORE_ADDR) -1))
7359 lowpc = highpc;
7360
7361 /* If the compilation unit didn't have an explicit address range,
7362 then use the information extracted from its child dies. */
7363 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7364 {
7365 best_lowpc = lowpc;
7366 best_highpc = highpc;
7367 }
7368 }
7369 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7370 best_lowpc + baseaddr)
7371 - baseaddr);
7372 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7373 best_highpc + baseaddr)
7374 - baseaddr);
7375
7376 end_psymtab_common (objfile, pst);
7377
7378 if (!cu->per_cu->imported_symtabs_empty ())
7379 {
7380 int i;
7381 int len = cu->per_cu->imported_symtabs_size ();
7382
7383 /* Fill in 'dependencies' here; we fill in 'users' in a
7384 post-pass. */
7385 pst->number_of_dependencies = len;
7386 pst->dependencies
7387 = objfile->partial_symtabs->allocate_dependencies (len);
7388 for (i = 0; i < len; ++i)
7389 {
7390 pst->dependencies[i]
7391 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7392 }
7393
7394 cu->per_cu->imported_symtabs_free ();
7395 }
7396
7397 /* Get the list of files included in the current compilation unit,
7398 and build a psymtab for each of them. */
7399 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7400
7401 if (dwarf_read_debug)
7402 fprintf_unfiltered (gdb_stdlog,
7403 "Psymtab for %s unit @%s: %s - %s"
7404 ", %d global, %d static syms\n",
7405 per_cu->is_debug_types ? "type" : "comp",
7406 sect_offset_str (per_cu->sect_off),
7407 paddress (gdbarch, pst->text_low (objfile)),
7408 paddress (gdbarch, pst->text_high (objfile)),
7409 pst->n_global_syms, pst->n_static_syms);
7410 }
7411
7412 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7413 Process compilation unit THIS_CU for a psymtab. */
7414
7415 static void
7416 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7417 bool want_partial_unit,
7418 enum language pretend_language)
7419 {
7420 /* If this compilation unit was already read in, free the
7421 cached copy in order to read it in again. This is
7422 necessary because we skipped some symbols when we first
7423 read in the compilation unit (see load_partial_dies).
7424 This problem could be avoided, but the benefit is unclear. */
7425 if (this_cu->cu != NULL)
7426 free_one_cached_comp_unit (this_cu);
7427
7428 cutu_reader reader (this_cu, NULL, 0, false);
7429
7430 switch (reader.comp_unit_die->tag)
7431 {
7432 case DW_TAG_compile_unit:
7433 this_cu->unit_type = DW_UT_compile;
7434 break;
7435 case DW_TAG_partial_unit:
7436 this_cu->unit_type = DW_UT_partial;
7437 break;
7438 default:
7439 abort ();
7440 }
7441
7442 if (reader.dummy_p)
7443 {
7444 /* Nothing. */
7445 }
7446 else if (this_cu->is_debug_types)
7447 build_type_psymtabs_reader (&reader, reader.info_ptr,
7448 reader.comp_unit_die);
7449 else if (want_partial_unit
7450 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7451 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7452 reader.comp_unit_die,
7453 pretend_language);
7454
7455 this_cu->lang = this_cu->cu->language;
7456
7457 /* Age out any secondary CUs. */
7458 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7459 }
7460
7461 /* Reader function for build_type_psymtabs. */
7462
7463 static void
7464 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7465 const gdb_byte *info_ptr,
7466 struct die_info *type_unit_die)
7467 {
7468 struct dwarf2_per_objfile *dwarf2_per_objfile
7469 = reader->cu->per_cu->dwarf2_per_objfile;
7470 struct objfile *objfile = dwarf2_per_objfile->objfile;
7471 struct dwarf2_cu *cu = reader->cu;
7472 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7473 struct signatured_type *sig_type;
7474 struct type_unit_group *tu_group;
7475 struct attribute *attr;
7476 struct partial_die_info *first_die;
7477 CORE_ADDR lowpc, highpc;
7478 dwarf2_psymtab *pst;
7479
7480 gdb_assert (per_cu->is_debug_types);
7481 sig_type = (struct signatured_type *) per_cu;
7482
7483 if (! type_unit_die->has_children)
7484 return;
7485
7486 attr = type_unit_die->attr (DW_AT_stmt_list);
7487 tu_group = get_type_unit_group (cu, attr);
7488
7489 if (tu_group->tus == nullptr)
7490 tu_group->tus = new std::vector<signatured_type *>;
7491 tu_group->tus->push_back (sig_type);
7492
7493 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7494 pst = create_partial_symtab (per_cu, "");
7495 pst->anonymous = true;
7496
7497 first_die = load_partial_dies (reader, info_ptr, 1);
7498
7499 lowpc = (CORE_ADDR) -1;
7500 highpc = (CORE_ADDR) 0;
7501 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7502
7503 end_psymtab_common (objfile, pst);
7504 }
7505
7506 /* Struct used to sort TUs by their abbreviation table offset. */
7507
7508 struct tu_abbrev_offset
7509 {
7510 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7511 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7512 {}
7513
7514 signatured_type *sig_type;
7515 sect_offset abbrev_offset;
7516 };
7517
7518 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7519
7520 static bool
7521 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7522 const struct tu_abbrev_offset &b)
7523 {
7524 return a.abbrev_offset < b.abbrev_offset;
7525 }
7526
7527 /* Efficiently read all the type units.
7528 This does the bulk of the work for build_type_psymtabs.
7529
7530 The efficiency is because we sort TUs by the abbrev table they use and
7531 only read each abbrev table once. In one program there are 200K TUs
7532 sharing 8K abbrev tables.
7533
7534 The main purpose of this function is to support building the
7535 dwarf2_per_objfile->type_unit_groups table.
7536 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7537 can collapse the search space by grouping them by stmt_list.
7538 The savings can be significant, in the same program from above the 200K TUs
7539 share 8K stmt_list tables.
7540
7541 FUNC is expected to call get_type_unit_group, which will create the
7542 struct type_unit_group if necessary and add it to
7543 dwarf2_per_objfile->type_unit_groups. */
7544
7545 static void
7546 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7547 {
7548 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7549 abbrev_table_up abbrev_table;
7550 sect_offset abbrev_offset;
7551
7552 /* It's up to the caller to not call us multiple times. */
7553 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7554
7555 if (dwarf2_per_objfile->all_type_units.empty ())
7556 return;
7557
7558 /* TUs typically share abbrev tables, and there can be way more TUs than
7559 abbrev tables. Sort by abbrev table to reduce the number of times we
7560 read each abbrev table in.
7561 Alternatives are to punt or to maintain a cache of abbrev tables.
7562 This is simpler and efficient enough for now.
7563
7564 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7565 symtab to use). Typically TUs with the same abbrev offset have the same
7566 stmt_list value too so in practice this should work well.
7567
7568 The basic algorithm here is:
7569
7570 sort TUs by abbrev table
7571 for each TU with same abbrev table:
7572 read abbrev table if first user
7573 read TU top level DIE
7574 [IWBN if DWO skeletons had DW_AT_stmt_list]
7575 call FUNC */
7576
7577 if (dwarf_read_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7579
7580 /* Sort in a separate table to maintain the order of all_type_units
7581 for .gdb_index: TU indices directly index all_type_units. */
7582 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7583 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7584
7585 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7586 sorted_by_abbrev.emplace_back
7587 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7588 sig_type->per_cu.section,
7589 sig_type->per_cu.sect_off));
7590
7591 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7592 sort_tu_by_abbrev_offset);
7593
7594 abbrev_offset = (sect_offset) ~(unsigned) 0;
7595
7596 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7597 {
7598 /* Switch to the next abbrev table if necessary. */
7599 if (abbrev_table == NULL
7600 || tu.abbrev_offset != abbrev_offset)
7601 {
7602 abbrev_offset = tu.abbrev_offset;
7603 abbrev_table =
7604 abbrev_table::read (dwarf2_per_objfile->objfile,
7605 &dwarf2_per_objfile->abbrev,
7606 abbrev_offset);
7607 ++tu_stats->nr_uniq_abbrev_tables;
7608 }
7609
7610 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7611 0, false);
7612 if (!reader.dummy_p)
7613 build_type_psymtabs_reader (&reader, reader.info_ptr,
7614 reader.comp_unit_die);
7615 }
7616 }
7617
7618 /* Print collected type unit statistics. */
7619
7620 static void
7621 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7622 {
7623 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7624
7625 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7626 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7627 dwarf2_per_objfile->all_type_units.size ());
7628 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7629 tu_stats->nr_uniq_abbrev_tables);
7630 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7631 tu_stats->nr_symtabs);
7632 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7633 tu_stats->nr_symtab_sharers);
7634 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7635 tu_stats->nr_stmt_less_type_units);
7636 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7637 tu_stats->nr_all_type_units_reallocs);
7638 }
7639
7640 /* Traversal function for build_type_psymtabs. */
7641
7642 static int
7643 build_type_psymtab_dependencies (void **slot, void *info)
7644 {
7645 struct dwarf2_per_objfile *dwarf2_per_objfile
7646 = (struct dwarf2_per_objfile *) info;
7647 struct objfile *objfile = dwarf2_per_objfile->objfile;
7648 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7649 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7650 dwarf2_psymtab *pst = per_cu->v.psymtab;
7651 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7652 int i;
7653
7654 gdb_assert (len > 0);
7655 gdb_assert (per_cu->type_unit_group_p ());
7656
7657 pst->number_of_dependencies = len;
7658 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7659 for (i = 0; i < len; ++i)
7660 {
7661 struct signatured_type *iter = tu_group->tus->at (i);
7662 gdb_assert (iter->per_cu.is_debug_types);
7663 pst->dependencies[i] = iter->per_cu.v.psymtab;
7664 iter->type_unit_group = tu_group;
7665 }
7666
7667 delete tu_group->tus;
7668 tu_group->tus = nullptr;
7669
7670 return 1;
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Build partial symbol tables for the .debug_types comp-units. */
7675
7676 static void
7677 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7678 {
7679 if (! create_all_type_units (dwarf2_per_objfile))
7680 return;
7681
7682 build_type_psymtabs_1 (dwarf2_per_objfile);
7683 }
7684
7685 /* Traversal function for process_skeletonless_type_unit.
7686 Read a TU in a DWO file and build partial symbols for it. */
7687
7688 static int
7689 process_skeletonless_type_unit (void **slot, void *info)
7690 {
7691 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7692 struct dwarf2_per_objfile *dwarf2_per_objfile
7693 = (struct dwarf2_per_objfile *) info;
7694 struct signatured_type find_entry, *entry;
7695
7696 /* If this TU doesn't exist in the global table, add it and read it in. */
7697
7698 if (dwarf2_per_objfile->signatured_types == NULL)
7699 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7700
7701 find_entry.signature = dwo_unit->signature;
7702 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7703 &find_entry, INSERT);
7704 /* If we've already seen this type there's nothing to do. What's happening
7705 is we're doing our own version of comdat-folding here. */
7706 if (*slot != NULL)
7707 return 1;
7708
7709 /* This does the job that create_all_type_units would have done for
7710 this TU. */
7711 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7712 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7713 *slot = entry;
7714
7715 /* This does the job that build_type_psymtabs_1 would have done. */
7716 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7717 if (!reader.dummy_p)
7718 build_type_psymtabs_reader (&reader, reader.info_ptr,
7719 reader.comp_unit_die);
7720
7721 return 1;
7722 }
7723
7724 /* Traversal function for process_skeletonless_type_units. */
7725
7726 static int
7727 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7728 {
7729 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7730
7731 if (dwo_file->tus != NULL)
7732 htab_traverse_noresize (dwo_file->tus.get (),
7733 process_skeletonless_type_unit, info);
7734
7735 return 1;
7736 }
7737
7738 /* Scan all TUs of DWO files, verifying we've processed them.
7739 This is needed in case a TU was emitted without its skeleton.
7740 Note: This can't be done until we know what all the DWO files are. */
7741
7742 static void
7743 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7744 {
7745 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7746 if (get_dwp_file (dwarf2_per_objfile) == NULL
7747 && dwarf2_per_objfile->dwo_files != NULL)
7748 {
7749 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7750 process_dwo_file_for_skeletonless_type_units,
7751 dwarf2_per_objfile);
7752 }
7753 }
7754
7755 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7756
7757 static void
7758 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7759 {
7760 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7761 {
7762 dwarf2_psymtab *pst = per_cu->v.psymtab;
7763
7764 if (pst == NULL)
7765 continue;
7766
7767 for (int j = 0; j < pst->number_of_dependencies; ++j)
7768 {
7769 /* Set the 'user' field only if it is not already set. */
7770 if (pst->dependencies[j]->user == NULL)
7771 pst->dependencies[j]->user = pst;
7772 }
7773 }
7774 }
7775
7776 /* Build the partial symbol table by doing a quick pass through the
7777 .debug_info and .debug_abbrev sections. */
7778
7779 static void
7780 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783
7784 if (dwarf_read_debug)
7785 {
7786 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7787 objfile_name (objfile));
7788 }
7789
7790 scoped_restore restore_reading_psyms
7791 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7792 true);
7793
7794 dwarf2_per_objfile->info.read (objfile);
7795
7796 /* Any cached compilation units will be linked by the per-objfile
7797 read_in_chain. Make sure to free them when we're done. */
7798 free_cached_comp_units freer (dwarf2_per_objfile);
7799
7800 build_type_psymtabs (dwarf2_per_objfile);
7801
7802 create_all_comp_units (dwarf2_per_objfile);
7803
7804 /* Create a temporary address map on a temporary obstack. We later
7805 copy this to the final obstack. */
7806 auto_obstack temp_obstack;
7807
7808 scoped_restore save_psymtabs_addrmap
7809 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7810 addrmap_create_mutable (&temp_obstack));
7811
7812 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7813 {
7814 if (per_cu->v.psymtab != NULL)
7815 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7816 continue;
7817 process_psymtab_comp_unit (per_cu, false, language_minimal);
7818 }
7819
7820 /* This has to wait until we read the CUs, we need the list of DWOs. */
7821 process_skeletonless_type_units (dwarf2_per_objfile);
7822
7823 /* Now that all TUs have been processed we can fill in the dependencies. */
7824 if (dwarf2_per_objfile->type_unit_groups != NULL)
7825 {
7826 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7827 build_type_psymtab_dependencies, dwarf2_per_objfile);
7828 }
7829
7830 if (dwarf_read_debug)
7831 print_tu_stats (dwarf2_per_objfile);
7832
7833 set_partial_user (dwarf2_per_objfile);
7834
7835 objfile->partial_symtabs->psymtabs_addrmap
7836 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7837 objfile->partial_symtabs->obstack ());
7838 /* At this point we want to keep the address map. */
7839 save_psymtabs_addrmap.release ();
7840
7841 if (dwarf_read_debug)
7842 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7843 objfile_name (objfile));
7844 }
7845
7846 /* Load the partial DIEs for a secondary CU into memory.
7847 This is also used when rereading a primary CU with load_all_dies. */
7848
7849 static void
7850 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7851 {
7852 cutu_reader reader (this_cu, NULL, 1, false);
7853
7854 if (!reader.dummy_p)
7855 {
7856 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7857 language_minimal);
7858
7859 /* Check if comp unit has_children.
7860 If so, read the rest of the partial symbols from this comp unit.
7861 If not, there's no more debug_info for this comp unit. */
7862 if (reader.comp_unit_die->has_children)
7863 load_partial_dies (&reader, reader.info_ptr, 0);
7864
7865 reader.keep ();
7866 }
7867 }
7868
7869 static void
7870 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7871 struct dwarf2_section_info *section,
7872 struct dwarf2_section_info *abbrev_section,
7873 unsigned int is_dwz)
7874 {
7875 const gdb_byte *info_ptr;
7876 struct objfile *objfile = dwarf2_per_objfile->objfile;
7877
7878 if (dwarf_read_debug)
7879 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7880 section->get_name (),
7881 section->get_file_name ());
7882
7883 section->read (objfile);
7884
7885 info_ptr = section->buffer;
7886
7887 while (info_ptr < section->buffer + section->size)
7888 {
7889 struct dwarf2_per_cu_data *this_cu;
7890
7891 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7892
7893 comp_unit_head cu_header;
7894 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7895 abbrev_section, info_ptr,
7896 rcuh_kind::COMPILE);
7897
7898 /* Save the compilation unit for later lookup. */
7899 if (cu_header.unit_type != DW_UT_type)
7900 {
7901 this_cu = XOBNEW (&objfile->objfile_obstack,
7902 struct dwarf2_per_cu_data);
7903 memset (this_cu, 0, sizeof (*this_cu));
7904 }
7905 else
7906 {
7907 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7908 struct signatured_type);
7909 memset (sig_type, 0, sizeof (*sig_type));
7910 sig_type->signature = cu_header.signature;
7911 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7912 this_cu = &sig_type->per_cu;
7913 }
7914 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7915 this_cu->sect_off = sect_off;
7916 this_cu->length = cu_header.length + cu_header.initial_length_size;
7917 this_cu->is_dwz = is_dwz;
7918 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7919 this_cu->section = section;
7920
7921 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7922
7923 info_ptr = info_ptr + this_cu->length;
7924 }
7925 }
7926
7927 /* Create a list of all compilation units in OBJFILE.
7928 This is only done for -readnow and building partial symtabs. */
7929
7930 static void
7931 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7932 {
7933 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7934 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7935 &dwarf2_per_objfile->abbrev, 0);
7936
7937 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7938 if (dwz != NULL)
7939 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7940 1);
7941 }
7942
7943 /* Process all loaded DIEs for compilation unit CU, starting at
7944 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7945 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7946 DW_AT_ranges). See the comments of add_partial_subprogram on how
7947 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7948
7949 static void
7950 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7951 CORE_ADDR *highpc, int set_addrmap,
7952 struct dwarf2_cu *cu)
7953 {
7954 struct partial_die_info *pdi;
7955
7956 /* Now, march along the PDI's, descending into ones which have
7957 interesting children but skipping the children of the other ones,
7958 until we reach the end of the compilation unit. */
7959
7960 pdi = first_die;
7961
7962 while (pdi != NULL)
7963 {
7964 pdi->fixup (cu);
7965
7966 /* Anonymous namespaces or modules have no name but have interesting
7967 children, so we need to look at them. Ditto for anonymous
7968 enums. */
7969
7970 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7971 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7972 || pdi->tag == DW_TAG_imported_unit
7973 || pdi->tag == DW_TAG_inlined_subroutine)
7974 {
7975 switch (pdi->tag)
7976 {
7977 case DW_TAG_subprogram:
7978 case DW_TAG_inlined_subroutine:
7979 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7980 break;
7981 case DW_TAG_constant:
7982 case DW_TAG_variable:
7983 case DW_TAG_typedef:
7984 case DW_TAG_union_type:
7985 if (!pdi->is_declaration
7986 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7987 {
7988 add_partial_symbol (pdi, cu);
7989 }
7990 break;
7991 case DW_TAG_class_type:
7992 case DW_TAG_interface_type:
7993 case DW_TAG_structure_type:
7994 if (!pdi->is_declaration)
7995 {
7996 add_partial_symbol (pdi, cu);
7997 }
7998 if ((cu->language == language_rust
7999 || cu->language == language_cplus) && pdi->has_children)
8000 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8001 set_addrmap, cu);
8002 break;
8003 case DW_TAG_enumeration_type:
8004 if (!pdi->is_declaration)
8005 add_partial_enumeration (pdi, cu);
8006 break;
8007 case DW_TAG_base_type:
8008 case DW_TAG_subrange_type:
8009 /* File scope base type definitions are added to the partial
8010 symbol table. */
8011 add_partial_symbol (pdi, cu);
8012 break;
8013 case DW_TAG_namespace:
8014 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8015 break;
8016 case DW_TAG_module:
8017 if (!pdi->is_declaration)
8018 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8019 break;
8020 case DW_TAG_imported_unit:
8021 {
8022 struct dwarf2_per_cu_data *per_cu;
8023
8024 /* For now we don't handle imported units in type units. */
8025 if (cu->per_cu->is_debug_types)
8026 {
8027 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8028 " supported in type units [in module %s]"),
8029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8030 }
8031
8032 per_cu = dwarf2_find_containing_comp_unit
8033 (pdi->d.sect_off, pdi->is_dwz,
8034 cu->per_cu->dwarf2_per_objfile);
8035
8036 /* Go read the partial unit, if needed. */
8037 if (per_cu->v.psymtab == NULL)
8038 process_psymtab_comp_unit (per_cu, true, cu->language);
8039
8040 cu->per_cu->imported_symtabs_push (per_cu);
8041 }
8042 break;
8043 case DW_TAG_imported_declaration:
8044 add_partial_symbol (pdi, cu);
8045 break;
8046 default:
8047 break;
8048 }
8049 }
8050
8051 /* If the die has a sibling, skip to the sibling. */
8052
8053 pdi = pdi->die_sibling;
8054 }
8055 }
8056
8057 /* Functions used to compute the fully scoped name of a partial DIE.
8058
8059 Normally, this is simple. For C++, the parent DIE's fully scoped
8060 name is concatenated with "::" and the partial DIE's name.
8061 Enumerators are an exception; they use the scope of their parent
8062 enumeration type, i.e. the name of the enumeration type is not
8063 prepended to the enumerator.
8064
8065 There are two complexities. One is DW_AT_specification; in this
8066 case "parent" means the parent of the target of the specification,
8067 instead of the direct parent of the DIE. The other is compilers
8068 which do not emit DW_TAG_namespace; in this case we try to guess
8069 the fully qualified name of structure types from their members'
8070 linkage names. This must be done using the DIE's children rather
8071 than the children of any DW_AT_specification target. We only need
8072 to do this for structures at the top level, i.e. if the target of
8073 any DW_AT_specification (if any; otherwise the DIE itself) does not
8074 have a parent. */
8075
8076 /* Compute the scope prefix associated with PDI's parent, in
8077 compilation unit CU. The result will be allocated on CU's
8078 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8079 field. NULL is returned if no prefix is necessary. */
8080 static const char *
8081 partial_die_parent_scope (struct partial_die_info *pdi,
8082 struct dwarf2_cu *cu)
8083 {
8084 const char *grandparent_scope;
8085 struct partial_die_info *parent, *real_pdi;
8086
8087 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8088 then this means the parent of the specification DIE. */
8089
8090 real_pdi = pdi;
8091 while (real_pdi->has_specification)
8092 {
8093 auto res = find_partial_die (real_pdi->spec_offset,
8094 real_pdi->spec_is_dwz, cu);
8095 real_pdi = res.pdi;
8096 cu = res.cu;
8097 }
8098
8099 parent = real_pdi->die_parent;
8100 if (parent == NULL)
8101 return NULL;
8102
8103 if (parent->scope_set)
8104 return parent->scope;
8105
8106 parent->fixup (cu);
8107
8108 grandparent_scope = partial_die_parent_scope (parent, cu);
8109
8110 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8111 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8112 Work around this problem here. */
8113 if (cu->language == language_cplus
8114 && parent->tag == DW_TAG_namespace
8115 && strcmp (parent->name, "::") == 0
8116 && grandparent_scope == NULL)
8117 {
8118 parent->scope = NULL;
8119 parent->scope_set = 1;
8120 return NULL;
8121 }
8122
8123 /* Nested subroutines in Fortran get a prefix. */
8124 if (pdi->tag == DW_TAG_enumerator)
8125 /* Enumerators should not get the name of the enumeration as a prefix. */
8126 parent->scope = grandparent_scope;
8127 else if (parent->tag == DW_TAG_namespace
8128 || parent->tag == DW_TAG_module
8129 || parent->tag == DW_TAG_structure_type
8130 || parent->tag == DW_TAG_class_type
8131 || parent->tag == DW_TAG_interface_type
8132 || parent->tag == DW_TAG_union_type
8133 || parent->tag == DW_TAG_enumeration_type
8134 || (cu->language == language_fortran
8135 && parent->tag == DW_TAG_subprogram
8136 && pdi->tag == DW_TAG_subprogram))
8137 {
8138 if (grandparent_scope == NULL)
8139 parent->scope = parent->name;
8140 else
8141 parent->scope = typename_concat (&cu->comp_unit_obstack,
8142 grandparent_scope,
8143 parent->name, 0, cu);
8144 }
8145 else
8146 {
8147 /* FIXME drow/2004-04-01: What should we be doing with
8148 function-local names? For partial symbols, we should probably be
8149 ignoring them. */
8150 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8151 dwarf_tag_name (parent->tag),
8152 sect_offset_str (pdi->sect_off));
8153 parent->scope = grandparent_scope;
8154 }
8155
8156 parent->scope_set = 1;
8157 return parent->scope;
8158 }
8159
8160 /* Return the fully scoped name associated with PDI, from compilation unit
8161 CU. The result will be allocated with malloc. */
8162
8163 static gdb::unique_xmalloc_ptr<char>
8164 partial_die_full_name (struct partial_die_info *pdi,
8165 struct dwarf2_cu *cu)
8166 {
8167 const char *parent_scope;
8168
8169 /* If this is a template instantiation, we can not work out the
8170 template arguments from partial DIEs. So, unfortunately, we have
8171 to go through the full DIEs. At least any work we do building
8172 types here will be reused if full symbols are loaded later. */
8173 if (pdi->has_template_arguments)
8174 {
8175 pdi->fixup (cu);
8176
8177 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8178 {
8179 struct die_info *die;
8180 struct attribute attr;
8181 struct dwarf2_cu *ref_cu = cu;
8182
8183 /* DW_FORM_ref_addr is using section offset. */
8184 attr.name = (enum dwarf_attribute) 0;
8185 attr.form = DW_FORM_ref_addr;
8186 attr.u.unsnd = to_underlying (pdi->sect_off);
8187 die = follow_die_ref (NULL, &attr, &ref_cu);
8188
8189 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8190 }
8191 }
8192
8193 parent_scope = partial_die_parent_scope (pdi, cu);
8194 if (parent_scope == NULL)
8195 return NULL;
8196 else
8197 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8198 pdi->name, 0, cu));
8199 }
8200
8201 static void
8202 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8203 {
8204 struct dwarf2_per_objfile *dwarf2_per_objfile
8205 = cu->per_cu->dwarf2_per_objfile;
8206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8207 struct gdbarch *gdbarch = objfile->arch ();
8208 CORE_ADDR addr = 0;
8209 const char *actual_name = NULL;
8210 CORE_ADDR baseaddr;
8211
8212 baseaddr = objfile->text_section_offset ();
8213
8214 gdb::unique_xmalloc_ptr<char> built_actual_name
8215 = partial_die_full_name (pdi, cu);
8216 if (built_actual_name != NULL)
8217 actual_name = built_actual_name.get ();
8218
8219 if (actual_name == NULL)
8220 actual_name = pdi->name;
8221
8222 switch (pdi->tag)
8223 {
8224 case DW_TAG_inlined_subroutine:
8225 case DW_TAG_subprogram:
8226 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8227 - baseaddr);
8228 if (pdi->is_external
8229 || cu->language == language_ada
8230 || (cu->language == language_fortran
8231 && pdi->die_parent != NULL
8232 && pdi->die_parent->tag == DW_TAG_subprogram))
8233 {
8234 /* Normally, only "external" DIEs are part of the global scope.
8235 But in Ada and Fortran, we want to be able to access nested
8236 procedures globally. So all Ada and Fortran subprograms are
8237 stored in the global scope. */
8238 add_psymbol_to_list (actual_name,
8239 built_actual_name != NULL,
8240 VAR_DOMAIN, LOC_BLOCK,
8241 SECT_OFF_TEXT (objfile),
8242 psymbol_placement::GLOBAL,
8243 addr,
8244 cu->language, objfile);
8245 }
8246 else
8247 {
8248 add_psymbol_to_list (actual_name,
8249 built_actual_name != NULL,
8250 VAR_DOMAIN, LOC_BLOCK,
8251 SECT_OFF_TEXT (objfile),
8252 psymbol_placement::STATIC,
8253 addr, cu->language, objfile);
8254 }
8255
8256 if (pdi->main_subprogram && actual_name != NULL)
8257 set_objfile_main_name (objfile, actual_name, cu->language);
8258 break;
8259 case DW_TAG_constant:
8260 add_psymbol_to_list (actual_name,
8261 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8262 -1, (pdi->is_external
8263 ? psymbol_placement::GLOBAL
8264 : psymbol_placement::STATIC),
8265 0, cu->language, objfile);
8266 break;
8267 case DW_TAG_variable:
8268 if (pdi->d.locdesc)
8269 addr = decode_locdesc (pdi->d.locdesc, cu);
8270
8271 if (pdi->d.locdesc
8272 && addr == 0
8273 && !dwarf2_per_objfile->has_section_at_zero)
8274 {
8275 /* A global or static variable may also have been stripped
8276 out by the linker if unused, in which case its address
8277 will be nullified; do not add such variables into partial
8278 symbol table then. */
8279 }
8280 else if (pdi->is_external)
8281 {
8282 /* Global Variable.
8283 Don't enter into the minimal symbol tables as there is
8284 a minimal symbol table entry from the ELF symbols already.
8285 Enter into partial symbol table if it has a location
8286 descriptor or a type.
8287 If the location descriptor is missing, new_symbol will create
8288 a LOC_UNRESOLVED symbol, the address of the variable will then
8289 be determined from the minimal symbol table whenever the variable
8290 is referenced.
8291 The address for the partial symbol table entry is not
8292 used by GDB, but it comes in handy for debugging partial symbol
8293 table building. */
8294
8295 if (pdi->d.locdesc || pdi->has_type)
8296 add_psymbol_to_list (actual_name,
8297 built_actual_name != NULL,
8298 VAR_DOMAIN, LOC_STATIC,
8299 SECT_OFF_TEXT (objfile),
8300 psymbol_placement::GLOBAL,
8301 addr, cu->language, objfile);
8302 }
8303 else
8304 {
8305 int has_loc = pdi->d.locdesc != NULL;
8306
8307 /* Static Variable. Skip symbols whose value we cannot know (those
8308 without location descriptors or constant values). */
8309 if (!has_loc && !pdi->has_const_value)
8310 return;
8311
8312 add_psymbol_to_list (actual_name,
8313 built_actual_name != NULL,
8314 VAR_DOMAIN, LOC_STATIC,
8315 SECT_OFF_TEXT (objfile),
8316 psymbol_placement::STATIC,
8317 has_loc ? addr : 0,
8318 cu->language, objfile);
8319 }
8320 break;
8321 case DW_TAG_typedef:
8322 case DW_TAG_base_type:
8323 case DW_TAG_subrange_type:
8324 add_psymbol_to_list (actual_name,
8325 built_actual_name != NULL,
8326 VAR_DOMAIN, LOC_TYPEDEF, -1,
8327 psymbol_placement::STATIC,
8328 0, cu->language, objfile);
8329 break;
8330 case DW_TAG_imported_declaration:
8331 case DW_TAG_namespace:
8332 add_psymbol_to_list (actual_name,
8333 built_actual_name != NULL,
8334 VAR_DOMAIN, LOC_TYPEDEF, -1,
8335 psymbol_placement::GLOBAL,
8336 0, cu->language, objfile);
8337 break;
8338 case DW_TAG_module:
8339 /* With Fortran 77 there might be a "BLOCK DATA" module
8340 available without any name. If so, we skip the module as it
8341 doesn't bring any value. */
8342 if (actual_name != nullptr)
8343 add_psymbol_to_list (actual_name,
8344 built_actual_name != NULL,
8345 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8346 psymbol_placement::GLOBAL,
8347 0, cu->language, objfile);
8348 break;
8349 case DW_TAG_class_type:
8350 case DW_TAG_interface_type:
8351 case DW_TAG_structure_type:
8352 case DW_TAG_union_type:
8353 case DW_TAG_enumeration_type:
8354 /* Skip external references. The DWARF standard says in the section
8355 about "Structure, Union, and Class Type Entries": "An incomplete
8356 structure, union or class type is represented by a structure,
8357 union or class entry that does not have a byte size attribute
8358 and that has a DW_AT_declaration attribute." */
8359 if (!pdi->has_byte_size && pdi->is_declaration)
8360 return;
8361
8362 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8363 static vs. global. */
8364 add_psymbol_to_list (actual_name,
8365 built_actual_name != NULL,
8366 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8367 cu->language == language_cplus
8368 ? psymbol_placement::GLOBAL
8369 : psymbol_placement::STATIC,
8370 0, cu->language, objfile);
8371
8372 break;
8373 case DW_TAG_enumerator:
8374 add_psymbol_to_list (actual_name,
8375 built_actual_name != NULL,
8376 VAR_DOMAIN, LOC_CONST, -1,
8377 cu->language == language_cplus
8378 ? psymbol_placement::GLOBAL
8379 : psymbol_placement::STATIC,
8380 0, cu->language, objfile);
8381 break;
8382 default:
8383 break;
8384 }
8385 }
8386
8387 /* Read a partial die corresponding to a namespace; also, add a symbol
8388 corresponding to that namespace to the symbol table. NAMESPACE is
8389 the name of the enclosing namespace. */
8390
8391 static void
8392 add_partial_namespace (struct partial_die_info *pdi,
8393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8394 int set_addrmap, struct dwarf2_cu *cu)
8395 {
8396 /* Add a symbol for the namespace. */
8397
8398 add_partial_symbol (pdi, cu);
8399
8400 /* Now scan partial symbols in that namespace. */
8401
8402 if (pdi->has_children)
8403 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8404 }
8405
8406 /* Read a partial die corresponding to a Fortran module. */
8407
8408 static void
8409 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8410 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8411 {
8412 /* Add a symbol for the namespace. */
8413
8414 add_partial_symbol (pdi, cu);
8415
8416 /* Now scan partial symbols in that module. */
8417
8418 if (pdi->has_children)
8419 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8420 }
8421
8422 /* Read a partial die corresponding to a subprogram or an inlined
8423 subprogram and create a partial symbol for that subprogram.
8424 When the CU language allows it, this routine also defines a partial
8425 symbol for each nested subprogram that this subprogram contains.
8426 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8427 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8428
8429 PDI may also be a lexical block, in which case we simply search
8430 recursively for subprograms defined inside that lexical block.
8431 Again, this is only performed when the CU language allows this
8432 type of definitions. */
8433
8434 static void
8435 add_partial_subprogram (struct partial_die_info *pdi,
8436 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8437 int set_addrmap, struct dwarf2_cu *cu)
8438 {
8439 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8440 {
8441 if (pdi->has_pc_info)
8442 {
8443 if (pdi->lowpc < *lowpc)
8444 *lowpc = pdi->lowpc;
8445 if (pdi->highpc > *highpc)
8446 *highpc = pdi->highpc;
8447 if (set_addrmap)
8448 {
8449 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8450 struct gdbarch *gdbarch = objfile->arch ();
8451 CORE_ADDR baseaddr;
8452 CORE_ADDR this_highpc;
8453 CORE_ADDR this_lowpc;
8454
8455 baseaddr = objfile->text_section_offset ();
8456 this_lowpc
8457 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8458 pdi->lowpc + baseaddr)
8459 - baseaddr);
8460 this_highpc
8461 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8462 pdi->highpc + baseaddr)
8463 - baseaddr);
8464 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8465 this_lowpc, this_highpc - 1,
8466 cu->per_cu->v.psymtab);
8467 }
8468 }
8469
8470 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8471 {
8472 if (!pdi->is_declaration)
8473 /* Ignore subprogram DIEs that do not have a name, they are
8474 illegal. Do not emit a complaint at this point, we will
8475 do so when we convert this psymtab into a symtab. */
8476 if (pdi->name)
8477 add_partial_symbol (pdi, cu);
8478 }
8479 }
8480
8481 if (! pdi->has_children)
8482 return;
8483
8484 if (cu->language == language_ada || cu->language == language_fortran)
8485 {
8486 pdi = pdi->die_child;
8487 while (pdi != NULL)
8488 {
8489 pdi->fixup (cu);
8490 if (pdi->tag == DW_TAG_subprogram
8491 || pdi->tag == DW_TAG_inlined_subroutine
8492 || pdi->tag == DW_TAG_lexical_block)
8493 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8494 pdi = pdi->die_sibling;
8495 }
8496 }
8497 }
8498
8499 /* Read a partial die corresponding to an enumeration type. */
8500
8501 static void
8502 add_partial_enumeration (struct partial_die_info *enum_pdi,
8503 struct dwarf2_cu *cu)
8504 {
8505 struct partial_die_info *pdi;
8506
8507 if (enum_pdi->name != NULL)
8508 add_partial_symbol (enum_pdi, cu);
8509
8510 pdi = enum_pdi->die_child;
8511 while (pdi)
8512 {
8513 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8514 complaint (_("malformed enumerator DIE ignored"));
8515 else
8516 add_partial_symbol (pdi, cu);
8517 pdi = pdi->die_sibling;
8518 }
8519 }
8520
8521 /* Return the initial uleb128 in the die at INFO_PTR. */
8522
8523 static unsigned int
8524 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8525 {
8526 unsigned int bytes_read;
8527
8528 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8529 }
8530
8531 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8532 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8533
8534 Return the corresponding abbrev, or NULL if the number is zero (indicating
8535 an empty DIE). In either case *BYTES_READ will be set to the length of
8536 the initial number. */
8537
8538 static struct abbrev_info *
8539 peek_die_abbrev (const die_reader_specs &reader,
8540 const gdb_byte *info_ptr, unsigned int *bytes_read)
8541 {
8542 dwarf2_cu *cu = reader.cu;
8543 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8544 unsigned int abbrev_number
8545 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8546
8547 if (abbrev_number == 0)
8548 return NULL;
8549
8550 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8551 if (!abbrev)
8552 {
8553 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8554 " at offset %s [in module %s]"),
8555 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8556 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8557 }
8558
8559 return abbrev;
8560 }
8561
8562 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8563 Returns a pointer to the end of a series of DIEs, terminated by an empty
8564 DIE. Any children of the skipped DIEs will also be skipped. */
8565
8566 static const gdb_byte *
8567 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8568 {
8569 while (1)
8570 {
8571 unsigned int bytes_read;
8572 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8573
8574 if (abbrev == NULL)
8575 return info_ptr + bytes_read;
8576 else
8577 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8578 }
8579 }
8580
8581 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8582 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8583 abbrev corresponding to that skipped uleb128 should be passed in
8584 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8585 children. */
8586
8587 static const gdb_byte *
8588 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8589 struct abbrev_info *abbrev)
8590 {
8591 unsigned int bytes_read;
8592 struct attribute attr;
8593 bfd *abfd = reader->abfd;
8594 struct dwarf2_cu *cu = reader->cu;
8595 const gdb_byte *buffer = reader->buffer;
8596 const gdb_byte *buffer_end = reader->buffer_end;
8597 unsigned int form, i;
8598
8599 for (i = 0; i < abbrev->num_attrs; i++)
8600 {
8601 /* The only abbrev we care about is DW_AT_sibling. */
8602 if (abbrev->attrs[i].name == DW_AT_sibling)
8603 {
8604 bool ignored;
8605 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8606 &ignored);
8607 if (attr.form == DW_FORM_ref_addr)
8608 complaint (_("ignoring absolute DW_AT_sibling"));
8609 else
8610 {
8611 sect_offset off = attr.get_ref_die_offset ();
8612 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8613
8614 if (sibling_ptr < info_ptr)
8615 complaint (_("DW_AT_sibling points backwards"));
8616 else if (sibling_ptr > reader->buffer_end)
8617 reader->die_section->overflow_complaint ();
8618 else
8619 return sibling_ptr;
8620 }
8621 }
8622
8623 /* If it isn't DW_AT_sibling, skip this attribute. */
8624 form = abbrev->attrs[i].form;
8625 skip_attribute:
8626 switch (form)
8627 {
8628 case DW_FORM_ref_addr:
8629 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8630 and later it is offset sized. */
8631 if (cu->header.version == 2)
8632 info_ptr += cu->header.addr_size;
8633 else
8634 info_ptr += cu->header.offset_size;
8635 break;
8636 case DW_FORM_GNU_ref_alt:
8637 info_ptr += cu->header.offset_size;
8638 break;
8639 case DW_FORM_addr:
8640 info_ptr += cu->header.addr_size;
8641 break;
8642 case DW_FORM_data1:
8643 case DW_FORM_ref1:
8644 case DW_FORM_flag:
8645 case DW_FORM_strx1:
8646 info_ptr += 1;
8647 break;
8648 case DW_FORM_flag_present:
8649 case DW_FORM_implicit_const:
8650 break;
8651 case DW_FORM_data2:
8652 case DW_FORM_ref2:
8653 case DW_FORM_strx2:
8654 info_ptr += 2;
8655 break;
8656 case DW_FORM_strx3:
8657 info_ptr += 3;
8658 break;
8659 case DW_FORM_data4:
8660 case DW_FORM_ref4:
8661 case DW_FORM_strx4:
8662 info_ptr += 4;
8663 break;
8664 case DW_FORM_data8:
8665 case DW_FORM_ref8:
8666 case DW_FORM_ref_sig8:
8667 info_ptr += 8;
8668 break;
8669 case DW_FORM_data16:
8670 info_ptr += 16;
8671 break;
8672 case DW_FORM_string:
8673 read_direct_string (abfd, info_ptr, &bytes_read);
8674 info_ptr += bytes_read;
8675 break;
8676 case DW_FORM_sec_offset:
8677 case DW_FORM_strp:
8678 case DW_FORM_GNU_strp_alt:
8679 info_ptr += cu->header.offset_size;
8680 break;
8681 case DW_FORM_exprloc:
8682 case DW_FORM_block:
8683 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8684 info_ptr += bytes_read;
8685 break;
8686 case DW_FORM_block1:
8687 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8688 break;
8689 case DW_FORM_block2:
8690 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8691 break;
8692 case DW_FORM_block4:
8693 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8694 break;
8695 case DW_FORM_addrx:
8696 case DW_FORM_strx:
8697 case DW_FORM_sdata:
8698 case DW_FORM_udata:
8699 case DW_FORM_ref_udata:
8700 case DW_FORM_GNU_addr_index:
8701 case DW_FORM_GNU_str_index:
8702 case DW_FORM_rnglistx:
8703 case DW_FORM_loclistx:
8704 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8705 break;
8706 case DW_FORM_indirect:
8707 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8708 info_ptr += bytes_read;
8709 /* We need to continue parsing from here, so just go back to
8710 the top. */
8711 goto skip_attribute;
8712
8713 default:
8714 error (_("Dwarf Error: Cannot handle %s "
8715 "in DWARF reader [in module %s]"),
8716 dwarf_form_name (form),
8717 bfd_get_filename (abfd));
8718 }
8719 }
8720
8721 if (abbrev->has_children)
8722 return skip_children (reader, info_ptr);
8723 else
8724 return info_ptr;
8725 }
8726
8727 /* Locate ORIG_PDI's sibling.
8728 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8729
8730 static const gdb_byte *
8731 locate_pdi_sibling (const struct die_reader_specs *reader,
8732 struct partial_die_info *orig_pdi,
8733 const gdb_byte *info_ptr)
8734 {
8735 /* Do we know the sibling already? */
8736
8737 if (orig_pdi->sibling)
8738 return orig_pdi->sibling;
8739
8740 /* Are there any children to deal with? */
8741
8742 if (!orig_pdi->has_children)
8743 return info_ptr;
8744
8745 /* Skip the children the long way. */
8746
8747 return skip_children (reader, info_ptr);
8748 }
8749
8750 /* Expand this partial symbol table into a full symbol table. SELF is
8751 not NULL. */
8752
8753 void
8754 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8755 {
8756 struct dwarf2_per_objfile *dwarf2_per_objfile
8757 = get_dwarf2_per_objfile (objfile);
8758
8759 gdb_assert (!readin);
8760 /* If this psymtab is constructed from a debug-only objfile, the
8761 has_section_at_zero flag will not necessarily be correct. We
8762 can get the correct value for this flag by looking at the data
8763 associated with the (presumably stripped) associated objfile. */
8764 if (objfile->separate_debug_objfile_backlink)
8765 {
8766 struct dwarf2_per_objfile *dpo_backlink
8767 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8768
8769 dwarf2_per_objfile->has_section_at_zero
8770 = dpo_backlink->has_section_at_zero;
8771 }
8772
8773 expand_psymtab (objfile);
8774
8775 process_cu_includes (dwarf2_per_objfile);
8776 }
8777 \f
8778 /* Reading in full CUs. */
8779
8780 /* Add PER_CU to the queue. */
8781
8782 static void
8783 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8784 enum language pretend_language)
8785 {
8786 per_cu->queued = 1;
8787 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8788 }
8789
8790 /* If PER_CU is not yet queued, add it to the queue.
8791 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8792 dependency.
8793 The result is non-zero if PER_CU was queued, otherwise the result is zero
8794 meaning either PER_CU is already queued or it is already loaded.
8795
8796 N.B. There is an invariant here that if a CU is queued then it is loaded.
8797 The caller is required to load PER_CU if we return non-zero. */
8798
8799 static int
8800 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8801 struct dwarf2_per_cu_data *per_cu,
8802 enum language pretend_language)
8803 {
8804 /* We may arrive here during partial symbol reading, if we need full
8805 DIEs to process an unusual case (e.g. template arguments). Do
8806 not queue PER_CU, just tell our caller to load its DIEs. */
8807 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8808 {
8809 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8810 return 1;
8811 return 0;
8812 }
8813
8814 /* Mark the dependence relation so that we don't flush PER_CU
8815 too early. */
8816 if (dependent_cu != NULL)
8817 dwarf2_add_dependence (dependent_cu, per_cu);
8818
8819 /* If it's already on the queue, we have nothing to do. */
8820 if (per_cu->queued)
8821 return 0;
8822
8823 /* If the compilation unit is already loaded, just mark it as
8824 used. */
8825 if (per_cu->cu != NULL)
8826 {
8827 per_cu->cu->last_used = 0;
8828 return 0;
8829 }
8830
8831 /* Add it to the queue. */
8832 queue_comp_unit (per_cu, pretend_language);
8833
8834 return 1;
8835 }
8836
8837 /* Process the queue. */
8838
8839 static void
8840 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8841 {
8842 if (dwarf_read_debug)
8843 {
8844 fprintf_unfiltered (gdb_stdlog,
8845 "Expanding one or more symtabs of objfile %s ...\n",
8846 objfile_name (dwarf2_per_objfile->objfile));
8847 }
8848
8849 /* The queue starts out with one item, but following a DIE reference
8850 may load a new CU, adding it to the end of the queue. */
8851 while (!dwarf2_per_objfile->queue.empty ())
8852 {
8853 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8854
8855 if ((dwarf2_per_objfile->using_index
8856 ? !item.per_cu->v.quick->compunit_symtab
8857 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8858 /* Skip dummy CUs. */
8859 && item.per_cu->cu != NULL)
8860 {
8861 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8862 unsigned int debug_print_threshold;
8863 char buf[100];
8864
8865 if (per_cu->is_debug_types)
8866 {
8867 struct signatured_type *sig_type =
8868 (struct signatured_type *) per_cu;
8869
8870 sprintf (buf, "TU %s at offset %s",
8871 hex_string (sig_type->signature),
8872 sect_offset_str (per_cu->sect_off));
8873 /* There can be 100s of TUs.
8874 Only print them in verbose mode. */
8875 debug_print_threshold = 2;
8876 }
8877 else
8878 {
8879 sprintf (buf, "CU at offset %s",
8880 sect_offset_str (per_cu->sect_off));
8881 debug_print_threshold = 1;
8882 }
8883
8884 if (dwarf_read_debug >= debug_print_threshold)
8885 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8886
8887 if (per_cu->is_debug_types)
8888 process_full_type_unit (per_cu, item.pretend_language);
8889 else
8890 process_full_comp_unit (per_cu, item.pretend_language);
8891
8892 if (dwarf_read_debug >= debug_print_threshold)
8893 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8894 }
8895
8896 item.per_cu->queued = 0;
8897 dwarf2_per_objfile->queue.pop ();
8898 }
8899
8900 if (dwarf_read_debug)
8901 {
8902 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8903 objfile_name (dwarf2_per_objfile->objfile));
8904 }
8905 }
8906
8907 /* Read in full symbols for PST, and anything it depends on. */
8908
8909 void
8910 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8911 {
8912 gdb_assert (!readin);
8913
8914 expand_dependencies (objfile);
8915
8916 dw2_do_instantiate_symtab (per_cu_data, false);
8917 gdb_assert (get_compunit_symtab () != nullptr);
8918 }
8919
8920 /* Trivial hash function for die_info: the hash value of a DIE
8921 is its offset in .debug_info for this objfile. */
8922
8923 static hashval_t
8924 die_hash (const void *item)
8925 {
8926 const struct die_info *die = (const struct die_info *) item;
8927
8928 return to_underlying (die->sect_off);
8929 }
8930
8931 /* Trivial comparison function for die_info structures: two DIEs
8932 are equal if they have the same offset. */
8933
8934 static int
8935 die_eq (const void *item_lhs, const void *item_rhs)
8936 {
8937 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8938 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8939
8940 return die_lhs->sect_off == die_rhs->sect_off;
8941 }
8942
8943 /* Load the DIEs associated with PER_CU into memory. */
8944
8945 static void
8946 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8947 bool skip_partial,
8948 enum language pretend_language)
8949 {
8950 gdb_assert (! this_cu->is_debug_types);
8951
8952 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8953 if (reader.dummy_p)
8954 return;
8955
8956 struct dwarf2_cu *cu = reader.cu;
8957 const gdb_byte *info_ptr = reader.info_ptr;
8958
8959 gdb_assert (cu->die_hash == NULL);
8960 cu->die_hash =
8961 htab_create_alloc_ex (cu->header.length / 12,
8962 die_hash,
8963 die_eq,
8964 NULL,
8965 &cu->comp_unit_obstack,
8966 hashtab_obstack_allocate,
8967 dummy_obstack_deallocate);
8968
8969 if (reader.comp_unit_die->has_children)
8970 reader.comp_unit_die->child
8971 = read_die_and_siblings (&reader, reader.info_ptr,
8972 &info_ptr, reader.comp_unit_die);
8973 cu->dies = reader.comp_unit_die;
8974 /* comp_unit_die is not stored in die_hash, no need. */
8975
8976 /* We try not to read any attributes in this function, because not
8977 all CUs needed for references have been loaded yet, and symbol
8978 table processing isn't initialized. But we have to set the CU language,
8979 or we won't be able to build types correctly.
8980 Similarly, if we do not read the producer, we can not apply
8981 producer-specific interpretation. */
8982 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8983
8984 reader.keep ();
8985 }
8986
8987 /* Add a DIE to the delayed physname list. */
8988
8989 static void
8990 add_to_method_list (struct type *type, int fnfield_index, int index,
8991 const char *name, struct die_info *die,
8992 struct dwarf2_cu *cu)
8993 {
8994 struct delayed_method_info mi;
8995 mi.type = type;
8996 mi.fnfield_index = fnfield_index;
8997 mi.index = index;
8998 mi.name = name;
8999 mi.die = die;
9000 cu->method_list.push_back (mi);
9001 }
9002
9003 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9004 "const" / "volatile". If so, decrements LEN by the length of the
9005 modifier and return true. Otherwise return false. */
9006
9007 template<size_t N>
9008 static bool
9009 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9010 {
9011 size_t mod_len = sizeof (mod) - 1;
9012 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9013 {
9014 len -= mod_len;
9015 return true;
9016 }
9017 return false;
9018 }
9019
9020 /* Compute the physnames of any methods on the CU's method list.
9021
9022 The computation of method physnames is delayed in order to avoid the
9023 (bad) condition that one of the method's formal parameters is of an as yet
9024 incomplete type. */
9025
9026 static void
9027 compute_delayed_physnames (struct dwarf2_cu *cu)
9028 {
9029 /* Only C++ delays computing physnames. */
9030 if (cu->method_list.empty ())
9031 return;
9032 gdb_assert (cu->language == language_cplus);
9033
9034 for (const delayed_method_info &mi : cu->method_list)
9035 {
9036 const char *physname;
9037 struct fn_fieldlist *fn_flp
9038 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9039 physname = dwarf2_physname (mi.name, mi.die, cu);
9040 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9041 = physname ? physname : "";
9042
9043 /* Since there's no tag to indicate whether a method is a
9044 const/volatile overload, extract that information out of the
9045 demangled name. */
9046 if (physname != NULL)
9047 {
9048 size_t len = strlen (physname);
9049
9050 while (1)
9051 {
9052 if (physname[len] == ')') /* shortcut */
9053 break;
9054 else if (check_modifier (physname, len, " const"))
9055 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9056 else if (check_modifier (physname, len, " volatile"))
9057 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9058 else
9059 break;
9060 }
9061 }
9062 }
9063
9064 /* The list is no longer needed. */
9065 cu->method_list.clear ();
9066 }
9067
9068 /* Go objects should be embedded in a DW_TAG_module DIE,
9069 and it's not clear if/how imported objects will appear.
9070 To keep Go support simple until that's worked out,
9071 go back through what we've read and create something usable.
9072 We could do this while processing each DIE, and feels kinda cleaner,
9073 but that way is more invasive.
9074 This is to, for example, allow the user to type "p var" or "b main"
9075 without having to specify the package name, and allow lookups
9076 of module.object to work in contexts that use the expression
9077 parser. */
9078
9079 static void
9080 fixup_go_packaging (struct dwarf2_cu *cu)
9081 {
9082 gdb::unique_xmalloc_ptr<char> package_name;
9083 struct pending *list;
9084 int i;
9085
9086 for (list = *cu->get_builder ()->get_global_symbols ();
9087 list != NULL;
9088 list = list->next)
9089 {
9090 for (i = 0; i < list->nsyms; ++i)
9091 {
9092 struct symbol *sym = list->symbol[i];
9093
9094 if (sym->language () == language_go
9095 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9096 {
9097 gdb::unique_xmalloc_ptr<char> this_package_name
9098 (go_symbol_package_name (sym));
9099
9100 if (this_package_name == NULL)
9101 continue;
9102 if (package_name == NULL)
9103 package_name = std::move (this_package_name);
9104 else
9105 {
9106 struct objfile *objfile
9107 = cu->per_cu->dwarf2_per_objfile->objfile;
9108 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9109 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9110 (symbol_symtab (sym) != NULL
9111 ? symtab_to_filename_for_display
9112 (symbol_symtab (sym))
9113 : objfile_name (objfile)),
9114 this_package_name.get (), package_name.get ());
9115 }
9116 }
9117 }
9118 }
9119
9120 if (package_name != NULL)
9121 {
9122 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9123 const char *saved_package_name = objfile->intern (package_name.get ());
9124 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9125 saved_package_name);
9126 struct symbol *sym;
9127
9128 sym = allocate_symbol (objfile);
9129 sym->set_language (language_go, &objfile->objfile_obstack);
9130 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9131 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9132 e.g., "main" finds the "main" module and not C's main(). */
9133 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9134 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9135 SYMBOL_TYPE (sym) = type;
9136
9137 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9138 }
9139 }
9140
9141 /* Allocate a fully-qualified name consisting of the two parts on the
9142 obstack. */
9143
9144 static const char *
9145 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9146 {
9147 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9148 }
9149
9150 /* A helper that allocates a variant part to attach to a Rust enum
9151 type. OBSTACK is where the results should be allocated. TYPE is
9152 the type we're processing. DISCRIMINANT_INDEX is the index of the
9153 discriminant. It must be the index of one of the fields of TYPE.
9154 DEFAULT_INDEX is the index of the default field; or -1 if there is
9155 no default. RANGES is indexed by "effective" field number (the
9156 field index, but omitting the discriminant and default fields) and
9157 must hold the discriminant values used by the variants. Note that
9158 RANGES must have a lifetime at least as long as OBSTACK -- either
9159 already allocated on it, or static. */
9160
9161 static void
9162 alloc_rust_variant (struct obstack *obstack, struct type *type,
9163 int discriminant_index, int default_index,
9164 gdb::array_view<discriminant_range> ranges)
9165 {
9166 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9167 must be handled by the caller. */
9168 gdb_assert (discriminant_index >= 0
9169 && discriminant_index < TYPE_NFIELDS (type));
9170 gdb_assert (default_index == -1
9171 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9172
9173 /* We have one variant for each non-discriminant field. */
9174 int n_variants = TYPE_NFIELDS (type) - 1;
9175
9176 variant *variants = new (obstack) variant[n_variants];
9177 int var_idx = 0;
9178 int range_idx = 0;
9179 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9180 {
9181 if (i == discriminant_index)
9182 continue;
9183
9184 variants[var_idx].first_field = i;
9185 variants[var_idx].last_field = i + 1;
9186
9187 /* The default field does not need a range, but other fields do.
9188 We skipped the discriminant above. */
9189 if (i != default_index)
9190 {
9191 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9192 ++range_idx;
9193 }
9194
9195 ++var_idx;
9196 }
9197
9198 gdb_assert (range_idx == ranges.size ());
9199 gdb_assert (var_idx == n_variants);
9200
9201 variant_part *part = new (obstack) variant_part;
9202 part->discriminant_index = discriminant_index;
9203 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9204 discriminant_index));
9205 part->variants = gdb::array_view<variant> (variants, n_variants);
9206
9207 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9208 gdb::array_view<variant_part> *prop_value
9209 = new (storage) gdb::array_view<variant_part> (part, 1);
9210
9211 struct dynamic_prop prop;
9212 prop.kind = PROP_VARIANT_PARTS;
9213 prop.data.variant_parts = prop_value;
9214
9215 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
9216 }
9217
9218 /* Some versions of rustc emitted enums in an unusual way.
9219
9220 Ordinary enums were emitted as unions. The first element of each
9221 structure in the union was named "RUST$ENUM$DISR". This element
9222 held the discriminant.
9223
9224 These versions of Rust also implemented the "non-zero"
9225 optimization. When the enum had two values, and one is empty and
9226 the other holds a pointer that cannot be zero, the pointer is used
9227 as the discriminant, with a zero value meaning the empty variant.
9228 Here, the union's first member is of the form
9229 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9230 where the fieldnos are the indices of the fields that should be
9231 traversed in order to find the field (which may be several fields deep)
9232 and the variantname is the name of the variant of the case when the
9233 field is zero.
9234
9235 This function recognizes whether TYPE is of one of these forms,
9236 and, if so, smashes it to be a variant type. */
9237
9238 static void
9239 quirk_rust_enum (struct type *type, struct objfile *objfile)
9240 {
9241 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9242
9243 /* We don't need to deal with empty enums. */
9244 if (TYPE_NFIELDS (type) == 0)
9245 return;
9246
9247 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9248 if (TYPE_NFIELDS (type) == 1
9249 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9250 {
9251 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9252
9253 /* Decode the field name to find the offset of the
9254 discriminant. */
9255 ULONGEST bit_offset = 0;
9256 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9257 while (name[0] >= '0' && name[0] <= '9')
9258 {
9259 char *tail;
9260 unsigned long index = strtoul (name, &tail, 10);
9261 name = tail;
9262 if (*name != '$'
9263 || index >= TYPE_NFIELDS (field_type)
9264 || (TYPE_FIELD_LOC_KIND (field_type, index)
9265 != FIELD_LOC_KIND_BITPOS))
9266 {
9267 complaint (_("Could not parse Rust enum encoding string \"%s\""
9268 "[in module %s]"),
9269 TYPE_FIELD_NAME (type, 0),
9270 objfile_name (objfile));
9271 return;
9272 }
9273 ++name;
9274
9275 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9276 field_type = TYPE_FIELD_TYPE (field_type, index);
9277 }
9278
9279 /* Smash this type to be a structure type. We have to do this
9280 because the type has already been recorded. */
9281 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9282 TYPE_NFIELDS (type) = 3;
9283 /* Save the field we care about. */
9284 struct field saved_field = TYPE_FIELD (type, 0);
9285 TYPE_FIELDS (type)
9286 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9287
9288 /* Put the discriminant at index 0. */
9289 TYPE_FIELD_TYPE (type, 0) = field_type;
9290 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9291 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9292 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), bit_offset);
9293
9294 /* The order of fields doesn't really matter, so put the real
9295 field at index 1 and the data-less field at index 2. */
9296 TYPE_FIELD (type, 1) = saved_field;
9297 TYPE_FIELD_NAME (type, 1)
9298 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, 1)));
9299 TYPE_NAME (TYPE_FIELD_TYPE (type, 1))
9300 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9301 TYPE_FIELD_NAME (type, 1));
9302
9303 const char *dataless_name
9304 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9305 name);
9306 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9307 dataless_name);
9308 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9309 /* NAME points into the original discriminant name, which
9310 already has the correct lifetime. */
9311 TYPE_FIELD_NAME (type, 2) = name;
9312 SET_FIELD_BITPOS (TYPE_FIELD (type, 2), 0);
9313
9314 /* Indicate that this is a variant type. */
9315 static discriminant_range ranges[1] = { { 0, 0 } };
9316 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9317 }
9318 /* A union with a single anonymous field is probably an old-style
9319 univariant enum. */
9320 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9321 {
9322 /* Smash this type to be a structure type. We have to do this
9323 because the type has already been recorded. */
9324 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9325
9326 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9327 const char *variant_name
9328 = rust_last_path_segment (TYPE_NAME (field_type));
9329 TYPE_FIELD_NAME (type, 0) = variant_name;
9330 TYPE_NAME (field_type)
9331 = rust_fully_qualify (&objfile->objfile_obstack,
9332 TYPE_NAME (type), variant_name);
9333 }
9334 else
9335 {
9336 struct type *disr_type = nullptr;
9337 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9338 {
9339 disr_type = TYPE_FIELD_TYPE (type, i);
9340
9341 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9342 {
9343 /* All fields of a true enum will be structs. */
9344 return;
9345 }
9346 else if (TYPE_NFIELDS (disr_type) == 0)
9347 {
9348 /* Could be data-less variant, so keep going. */
9349 disr_type = nullptr;
9350 }
9351 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9352 "RUST$ENUM$DISR") != 0)
9353 {
9354 /* Not a Rust enum. */
9355 return;
9356 }
9357 else
9358 {
9359 /* Found one. */
9360 break;
9361 }
9362 }
9363
9364 /* If we got here without a discriminant, then it's probably
9365 just a union. */
9366 if (disr_type == nullptr)
9367 return;
9368
9369 /* Smash this type to be a structure type. We have to do this
9370 because the type has already been recorded. */
9371 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9372
9373 /* Make space for the discriminant field. */
9374 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9375 field *new_fields
9376 = (struct field *) TYPE_ZALLOC (type, (TYPE_NFIELDS (type)
9377 * sizeof (struct field)));
9378 memcpy (new_fields + 1, TYPE_FIELDS (type),
9379 TYPE_NFIELDS (type) * sizeof (struct field));
9380 TYPE_FIELDS (type) = new_fields;
9381 TYPE_NFIELDS (type) = TYPE_NFIELDS (type) + 1;
9382
9383 /* Install the discriminant at index 0 in the union. */
9384 TYPE_FIELD (type, 0) = *disr_field;
9385 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9386 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9387
9388 /* We need a way to find the correct discriminant given a
9389 variant name. For convenience we build a map here. */
9390 struct type *enum_type = FIELD_TYPE (*disr_field);
9391 std::unordered_map<std::string, ULONGEST> discriminant_map;
9392 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9393 {
9394 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9395 {
9396 const char *name
9397 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9398 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9399 }
9400 }
9401
9402 int n_fields = TYPE_NFIELDS (type);
9403 /* We don't need a range entry for the discriminant, but we do
9404 need one for every other field, as there is no default
9405 variant. */
9406 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9407 discriminant_range,
9408 n_fields - 1);
9409 /* Skip the discriminant here. */
9410 for (int i = 1; i < n_fields; ++i)
9411 {
9412 /* Find the final word in the name of this variant's type.
9413 That name can be used to look up the correct
9414 discriminant. */
9415 const char *variant_name
9416 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, i)));
9417
9418 auto iter = discriminant_map.find (variant_name);
9419 if (iter != discriminant_map.end ())
9420 {
9421 ranges[i].low = iter->second;
9422 ranges[i].high = iter->second;
9423 }
9424
9425 /* Remove the discriminant field, if it exists. */
9426 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9427 if (TYPE_NFIELDS (sub_type) > 0)
9428 {
9429 --TYPE_NFIELDS (sub_type);
9430 ++TYPE_FIELDS (sub_type);
9431 }
9432 TYPE_FIELD_NAME (type, i) = variant_name;
9433 TYPE_NAME (sub_type)
9434 = rust_fully_qualify (&objfile->objfile_obstack,
9435 TYPE_NAME (type), variant_name);
9436 }
9437
9438 /* Indicate that this is a variant type. */
9439 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9440 gdb::array_view<discriminant_range> (ranges,
9441 n_fields - 1));
9442 }
9443 }
9444
9445 /* Rewrite some Rust unions to be structures with variants parts. */
9446
9447 static void
9448 rust_union_quirks (struct dwarf2_cu *cu)
9449 {
9450 gdb_assert (cu->language == language_rust);
9451 for (type *type_ : cu->rust_unions)
9452 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9453 /* We don't need this any more. */
9454 cu->rust_unions.clear ();
9455 }
9456
9457 /* Return the symtab for PER_CU. This works properly regardless of
9458 whether we're using the index or psymtabs. */
9459
9460 static struct compunit_symtab *
9461 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9462 {
9463 return (per_cu->dwarf2_per_objfile->using_index
9464 ? per_cu->v.quick->compunit_symtab
9465 : per_cu->v.psymtab->compunit_symtab);
9466 }
9467
9468 /* A helper function for computing the list of all symbol tables
9469 included by PER_CU. */
9470
9471 static void
9472 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9473 htab_t all_children, htab_t all_type_symtabs,
9474 struct dwarf2_per_cu_data *per_cu,
9475 struct compunit_symtab *immediate_parent)
9476 {
9477 void **slot;
9478 struct compunit_symtab *cust;
9479
9480 slot = htab_find_slot (all_children, per_cu, INSERT);
9481 if (*slot != NULL)
9482 {
9483 /* This inclusion and its children have been processed. */
9484 return;
9485 }
9486
9487 *slot = per_cu;
9488 /* Only add a CU if it has a symbol table. */
9489 cust = get_compunit_symtab (per_cu);
9490 if (cust != NULL)
9491 {
9492 /* If this is a type unit only add its symbol table if we haven't
9493 seen it yet (type unit per_cu's can share symtabs). */
9494 if (per_cu->is_debug_types)
9495 {
9496 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9497 if (*slot == NULL)
9498 {
9499 *slot = cust;
9500 result->push_back (cust);
9501 if (cust->user == NULL)
9502 cust->user = immediate_parent;
9503 }
9504 }
9505 else
9506 {
9507 result->push_back (cust);
9508 if (cust->user == NULL)
9509 cust->user = immediate_parent;
9510 }
9511 }
9512
9513 if (!per_cu->imported_symtabs_empty ())
9514 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9515 {
9516 recursively_compute_inclusions (result, all_children,
9517 all_type_symtabs, ptr, cust);
9518 }
9519 }
9520
9521 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9522 PER_CU. */
9523
9524 static void
9525 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9526 {
9527 gdb_assert (! per_cu->is_debug_types);
9528
9529 if (!per_cu->imported_symtabs_empty ())
9530 {
9531 int len;
9532 std::vector<compunit_symtab *> result_symtabs;
9533 htab_t all_children, all_type_symtabs;
9534 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9535
9536 /* If we don't have a symtab, we can just skip this case. */
9537 if (cust == NULL)
9538 return;
9539
9540 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9541 NULL, xcalloc, xfree);
9542 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9543 NULL, xcalloc, xfree);
9544
9545 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9546 {
9547 recursively_compute_inclusions (&result_symtabs, all_children,
9548 all_type_symtabs, ptr, cust);
9549 }
9550
9551 /* Now we have a transitive closure of all the included symtabs. */
9552 len = result_symtabs.size ();
9553 cust->includes
9554 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9555 struct compunit_symtab *, len + 1);
9556 memcpy (cust->includes, result_symtabs.data (),
9557 len * sizeof (compunit_symtab *));
9558 cust->includes[len] = NULL;
9559
9560 htab_delete (all_children);
9561 htab_delete (all_type_symtabs);
9562 }
9563 }
9564
9565 /* Compute the 'includes' field for the symtabs of all the CUs we just
9566 read. */
9567
9568 static void
9569 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9570 {
9571 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9572 {
9573 if (! iter->is_debug_types)
9574 compute_compunit_symtab_includes (iter);
9575 }
9576
9577 dwarf2_per_objfile->just_read_cus.clear ();
9578 }
9579
9580 /* Generate full symbol information for PER_CU, whose DIEs have
9581 already been loaded into memory. */
9582
9583 static void
9584 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9585 enum language pretend_language)
9586 {
9587 struct dwarf2_cu *cu = per_cu->cu;
9588 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9589 struct objfile *objfile = dwarf2_per_objfile->objfile;
9590 struct gdbarch *gdbarch = objfile->arch ();
9591 CORE_ADDR lowpc, highpc;
9592 struct compunit_symtab *cust;
9593 CORE_ADDR baseaddr;
9594 struct block *static_block;
9595 CORE_ADDR addr;
9596
9597 baseaddr = objfile->text_section_offset ();
9598
9599 /* Clear the list here in case something was left over. */
9600 cu->method_list.clear ();
9601
9602 cu->language = pretend_language;
9603 cu->language_defn = language_def (cu->language);
9604
9605 /* Do line number decoding in read_file_scope () */
9606 process_die (cu->dies, cu);
9607
9608 /* For now fudge the Go package. */
9609 if (cu->language == language_go)
9610 fixup_go_packaging (cu);
9611
9612 /* Now that we have processed all the DIEs in the CU, all the types
9613 should be complete, and it should now be safe to compute all of the
9614 physnames. */
9615 compute_delayed_physnames (cu);
9616
9617 if (cu->language == language_rust)
9618 rust_union_quirks (cu);
9619
9620 /* Some compilers don't define a DW_AT_high_pc attribute for the
9621 compilation unit. If the DW_AT_high_pc is missing, synthesize
9622 it, by scanning the DIE's below the compilation unit. */
9623 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9624
9625 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9626 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9627
9628 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9629 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9630 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9631 addrmap to help ensure it has an accurate map of pc values belonging to
9632 this comp unit. */
9633 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9634
9635 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9636 SECT_OFF_TEXT (objfile),
9637 0);
9638
9639 if (cust != NULL)
9640 {
9641 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9642
9643 /* Set symtab language to language from DW_AT_language. If the
9644 compilation is from a C file generated by language preprocessors, do
9645 not set the language if it was already deduced by start_subfile. */
9646 if (!(cu->language == language_c
9647 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9648 COMPUNIT_FILETABS (cust)->language = cu->language;
9649
9650 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9651 produce DW_AT_location with location lists but it can be possibly
9652 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9653 there were bugs in prologue debug info, fixed later in GCC-4.5
9654 by "unwind info for epilogues" patch (which is not directly related).
9655
9656 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9657 needed, it would be wrong due to missing DW_AT_producer there.
9658
9659 Still one can confuse GDB by using non-standard GCC compilation
9660 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9661 */
9662 if (cu->has_loclist && gcc_4_minor >= 5)
9663 cust->locations_valid = 1;
9664
9665 if (gcc_4_minor >= 5)
9666 cust->epilogue_unwind_valid = 1;
9667
9668 cust->call_site_htab = cu->call_site_htab;
9669 }
9670
9671 if (dwarf2_per_objfile->using_index)
9672 per_cu->v.quick->compunit_symtab = cust;
9673 else
9674 {
9675 dwarf2_psymtab *pst = per_cu->v.psymtab;
9676 pst->compunit_symtab = cust;
9677 pst->readin = true;
9678 }
9679
9680 /* Push it for inclusion processing later. */
9681 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9682
9683 /* Not needed any more. */
9684 cu->reset_builder ();
9685 }
9686
9687 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9688 already been loaded into memory. */
9689
9690 static void
9691 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9692 enum language pretend_language)
9693 {
9694 struct dwarf2_cu *cu = per_cu->cu;
9695 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9696 struct objfile *objfile = dwarf2_per_objfile->objfile;
9697 struct compunit_symtab *cust;
9698 struct signatured_type *sig_type;
9699
9700 gdb_assert (per_cu->is_debug_types);
9701 sig_type = (struct signatured_type *) per_cu;
9702
9703 /* Clear the list here in case something was left over. */
9704 cu->method_list.clear ();
9705
9706 cu->language = pretend_language;
9707 cu->language_defn = language_def (cu->language);
9708
9709 /* The symbol tables are set up in read_type_unit_scope. */
9710 process_die (cu->dies, cu);
9711
9712 /* For now fudge the Go package. */
9713 if (cu->language == language_go)
9714 fixup_go_packaging (cu);
9715
9716 /* Now that we have processed all the DIEs in the CU, all the types
9717 should be complete, and it should now be safe to compute all of the
9718 physnames. */
9719 compute_delayed_physnames (cu);
9720
9721 if (cu->language == language_rust)
9722 rust_union_quirks (cu);
9723
9724 /* TUs share symbol tables.
9725 If this is the first TU to use this symtab, complete the construction
9726 of it with end_expandable_symtab. Otherwise, complete the addition of
9727 this TU's symbols to the existing symtab. */
9728 if (sig_type->type_unit_group->compunit_symtab == NULL)
9729 {
9730 buildsym_compunit *builder = cu->get_builder ();
9731 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9732 sig_type->type_unit_group->compunit_symtab = cust;
9733
9734 if (cust != NULL)
9735 {
9736 /* Set symtab language to language from DW_AT_language. If the
9737 compilation is from a C file generated by language preprocessors,
9738 do not set the language if it was already deduced by
9739 start_subfile. */
9740 if (!(cu->language == language_c
9741 && COMPUNIT_FILETABS (cust)->language != language_c))
9742 COMPUNIT_FILETABS (cust)->language = cu->language;
9743 }
9744 }
9745 else
9746 {
9747 cu->get_builder ()->augment_type_symtab ();
9748 cust = sig_type->type_unit_group->compunit_symtab;
9749 }
9750
9751 if (dwarf2_per_objfile->using_index)
9752 per_cu->v.quick->compunit_symtab = cust;
9753 else
9754 {
9755 dwarf2_psymtab *pst = per_cu->v.psymtab;
9756 pst->compunit_symtab = cust;
9757 pst->readin = true;
9758 }
9759
9760 /* Not needed any more. */
9761 cu->reset_builder ();
9762 }
9763
9764 /* Process an imported unit DIE. */
9765
9766 static void
9767 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9768 {
9769 struct attribute *attr;
9770
9771 /* For now we don't handle imported units in type units. */
9772 if (cu->per_cu->is_debug_types)
9773 {
9774 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9775 " supported in type units [in module %s]"),
9776 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9777 }
9778
9779 attr = dwarf2_attr (die, DW_AT_import, cu);
9780 if (attr != NULL)
9781 {
9782 sect_offset sect_off = attr->get_ref_die_offset ();
9783 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9784 dwarf2_per_cu_data *per_cu
9785 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9786 cu->per_cu->dwarf2_per_objfile);
9787
9788 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9789 into another compilation unit, at root level. Regard this as a hint,
9790 and ignore it. */
9791 if (die->parent && die->parent->parent == NULL
9792 && per_cu->unit_type == DW_UT_compile
9793 && per_cu->lang == language_cplus)
9794 return;
9795
9796 /* If necessary, add it to the queue and load its DIEs. */
9797 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9798 load_full_comp_unit (per_cu, false, cu->language);
9799
9800 cu->per_cu->imported_symtabs_push (per_cu);
9801 }
9802 }
9803
9804 /* RAII object that represents a process_die scope: i.e.,
9805 starts/finishes processing a DIE. */
9806 class process_die_scope
9807 {
9808 public:
9809 process_die_scope (die_info *die, dwarf2_cu *cu)
9810 : m_die (die), m_cu (cu)
9811 {
9812 /* We should only be processing DIEs not already in process. */
9813 gdb_assert (!m_die->in_process);
9814 m_die->in_process = true;
9815 }
9816
9817 ~process_die_scope ()
9818 {
9819 m_die->in_process = false;
9820
9821 /* If we're done processing the DIE for the CU that owns the line
9822 header, we don't need the line header anymore. */
9823 if (m_cu->line_header_die_owner == m_die)
9824 {
9825 delete m_cu->line_header;
9826 m_cu->line_header = NULL;
9827 m_cu->line_header_die_owner = NULL;
9828 }
9829 }
9830
9831 private:
9832 die_info *m_die;
9833 dwarf2_cu *m_cu;
9834 };
9835
9836 /* Process a die and its children. */
9837
9838 static void
9839 process_die (struct die_info *die, struct dwarf2_cu *cu)
9840 {
9841 process_die_scope scope (die, cu);
9842
9843 switch (die->tag)
9844 {
9845 case DW_TAG_padding:
9846 break;
9847 case DW_TAG_compile_unit:
9848 case DW_TAG_partial_unit:
9849 read_file_scope (die, cu);
9850 break;
9851 case DW_TAG_type_unit:
9852 read_type_unit_scope (die, cu);
9853 break;
9854 case DW_TAG_subprogram:
9855 /* Nested subprograms in Fortran get a prefix. */
9856 if (cu->language == language_fortran
9857 && die->parent != NULL
9858 && die->parent->tag == DW_TAG_subprogram)
9859 cu->processing_has_namespace_info = true;
9860 /* Fall through. */
9861 case DW_TAG_inlined_subroutine:
9862 read_func_scope (die, cu);
9863 break;
9864 case DW_TAG_lexical_block:
9865 case DW_TAG_try_block:
9866 case DW_TAG_catch_block:
9867 read_lexical_block_scope (die, cu);
9868 break;
9869 case DW_TAG_call_site:
9870 case DW_TAG_GNU_call_site:
9871 read_call_site_scope (die, cu);
9872 break;
9873 case DW_TAG_class_type:
9874 case DW_TAG_interface_type:
9875 case DW_TAG_structure_type:
9876 case DW_TAG_union_type:
9877 process_structure_scope (die, cu);
9878 break;
9879 case DW_TAG_enumeration_type:
9880 process_enumeration_scope (die, cu);
9881 break;
9882
9883 /* These dies have a type, but processing them does not create
9884 a symbol or recurse to process the children. Therefore we can
9885 read them on-demand through read_type_die. */
9886 case DW_TAG_subroutine_type:
9887 case DW_TAG_set_type:
9888 case DW_TAG_array_type:
9889 case DW_TAG_pointer_type:
9890 case DW_TAG_ptr_to_member_type:
9891 case DW_TAG_reference_type:
9892 case DW_TAG_rvalue_reference_type:
9893 case DW_TAG_string_type:
9894 break;
9895
9896 case DW_TAG_base_type:
9897 case DW_TAG_subrange_type:
9898 case DW_TAG_typedef:
9899 /* Add a typedef symbol for the type definition, if it has a
9900 DW_AT_name. */
9901 new_symbol (die, read_type_die (die, cu), cu);
9902 break;
9903 case DW_TAG_common_block:
9904 read_common_block (die, cu);
9905 break;
9906 case DW_TAG_common_inclusion:
9907 break;
9908 case DW_TAG_namespace:
9909 cu->processing_has_namespace_info = true;
9910 read_namespace (die, cu);
9911 break;
9912 case DW_TAG_module:
9913 cu->processing_has_namespace_info = true;
9914 read_module (die, cu);
9915 break;
9916 case DW_TAG_imported_declaration:
9917 cu->processing_has_namespace_info = true;
9918 if (read_namespace_alias (die, cu))
9919 break;
9920 /* The declaration is not a global namespace alias. */
9921 /* Fall through. */
9922 case DW_TAG_imported_module:
9923 cu->processing_has_namespace_info = true;
9924 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9925 || cu->language != language_fortran))
9926 complaint (_("Tag '%s' has unexpected children"),
9927 dwarf_tag_name (die->tag));
9928 read_import_statement (die, cu);
9929 break;
9930
9931 case DW_TAG_imported_unit:
9932 process_imported_unit_die (die, cu);
9933 break;
9934
9935 case DW_TAG_variable:
9936 read_variable (die, cu);
9937 break;
9938
9939 default:
9940 new_symbol (die, NULL, cu);
9941 break;
9942 }
9943 }
9944 \f
9945 /* DWARF name computation. */
9946
9947 /* A helper function for dwarf2_compute_name which determines whether DIE
9948 needs to have the name of the scope prepended to the name listed in the
9949 die. */
9950
9951 static int
9952 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9953 {
9954 struct attribute *attr;
9955
9956 switch (die->tag)
9957 {
9958 case DW_TAG_namespace:
9959 case DW_TAG_typedef:
9960 case DW_TAG_class_type:
9961 case DW_TAG_interface_type:
9962 case DW_TAG_structure_type:
9963 case DW_TAG_union_type:
9964 case DW_TAG_enumeration_type:
9965 case DW_TAG_enumerator:
9966 case DW_TAG_subprogram:
9967 case DW_TAG_inlined_subroutine:
9968 case DW_TAG_member:
9969 case DW_TAG_imported_declaration:
9970 return 1;
9971
9972 case DW_TAG_variable:
9973 case DW_TAG_constant:
9974 /* We only need to prefix "globally" visible variables. These include
9975 any variable marked with DW_AT_external or any variable that
9976 lives in a namespace. [Variables in anonymous namespaces
9977 require prefixing, but they are not DW_AT_external.] */
9978
9979 if (dwarf2_attr (die, DW_AT_specification, cu))
9980 {
9981 struct dwarf2_cu *spec_cu = cu;
9982
9983 return die_needs_namespace (die_specification (die, &spec_cu),
9984 spec_cu);
9985 }
9986
9987 attr = dwarf2_attr (die, DW_AT_external, cu);
9988 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9989 && die->parent->tag != DW_TAG_module)
9990 return 0;
9991 /* A variable in a lexical block of some kind does not need a
9992 namespace, even though in C++ such variables may be external
9993 and have a mangled name. */
9994 if (die->parent->tag == DW_TAG_lexical_block
9995 || die->parent->tag == DW_TAG_try_block
9996 || die->parent->tag == DW_TAG_catch_block
9997 || die->parent->tag == DW_TAG_subprogram)
9998 return 0;
9999 return 1;
10000
10001 default:
10002 return 0;
10003 }
10004 }
10005
10006 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10007 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10008 defined for the given DIE. */
10009
10010 static struct attribute *
10011 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10012 {
10013 struct attribute *attr;
10014
10015 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10016 if (attr == NULL)
10017 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10018
10019 return attr;
10020 }
10021
10022 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10023 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10024 defined for the given DIE. */
10025
10026 static const char *
10027 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10028 {
10029 const char *linkage_name;
10030
10031 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10032 if (linkage_name == NULL)
10033 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10034
10035 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10036 See https://github.com/rust-lang/rust/issues/32925. */
10037 if (cu->language == language_rust && linkage_name != NULL
10038 && strchr (linkage_name, '{') != NULL)
10039 linkage_name = NULL;
10040
10041 return linkage_name;
10042 }
10043
10044 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10045 compute the physname for the object, which include a method's:
10046 - formal parameters (C++),
10047 - receiver type (Go),
10048
10049 The term "physname" is a bit confusing.
10050 For C++, for example, it is the demangled name.
10051 For Go, for example, it's the mangled name.
10052
10053 For Ada, return the DIE's linkage name rather than the fully qualified
10054 name. PHYSNAME is ignored..
10055
10056 The result is allocated on the objfile_obstack and canonicalized. */
10057
10058 static const char *
10059 dwarf2_compute_name (const char *name,
10060 struct die_info *die, struct dwarf2_cu *cu,
10061 int physname)
10062 {
10063 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10064
10065 if (name == NULL)
10066 name = dwarf2_name (die, cu);
10067
10068 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10069 but otherwise compute it by typename_concat inside GDB.
10070 FIXME: Actually this is not really true, or at least not always true.
10071 It's all very confusing. compute_and_set_names doesn't try to demangle
10072 Fortran names because there is no mangling standard. So new_symbol
10073 will set the demangled name to the result of dwarf2_full_name, and it is
10074 the demangled name that GDB uses if it exists. */
10075 if (cu->language == language_ada
10076 || (cu->language == language_fortran && physname))
10077 {
10078 /* For Ada unit, we prefer the linkage name over the name, as
10079 the former contains the exported name, which the user expects
10080 to be able to reference. Ideally, we want the user to be able
10081 to reference this entity using either natural or linkage name,
10082 but we haven't started looking at this enhancement yet. */
10083 const char *linkage_name = dw2_linkage_name (die, cu);
10084
10085 if (linkage_name != NULL)
10086 return linkage_name;
10087 }
10088
10089 /* These are the only languages we know how to qualify names in. */
10090 if (name != NULL
10091 && (cu->language == language_cplus
10092 || cu->language == language_fortran || cu->language == language_d
10093 || cu->language == language_rust))
10094 {
10095 if (die_needs_namespace (die, cu))
10096 {
10097 const char *prefix;
10098 const char *canonical_name = NULL;
10099
10100 string_file buf;
10101
10102 prefix = determine_prefix (die, cu);
10103 if (*prefix != '\0')
10104 {
10105 gdb::unique_xmalloc_ptr<char> prefixed_name
10106 (typename_concat (NULL, prefix, name, physname, cu));
10107
10108 buf.puts (prefixed_name.get ());
10109 }
10110 else
10111 buf.puts (name);
10112
10113 /* Template parameters may be specified in the DIE's DW_AT_name, or
10114 as children with DW_TAG_template_type_param or
10115 DW_TAG_value_type_param. If the latter, add them to the name
10116 here. If the name already has template parameters, then
10117 skip this step; some versions of GCC emit both, and
10118 it is more efficient to use the pre-computed name.
10119
10120 Something to keep in mind about this process: it is very
10121 unlikely, or in some cases downright impossible, to produce
10122 something that will match the mangled name of a function.
10123 If the definition of the function has the same debug info,
10124 we should be able to match up with it anyway. But fallbacks
10125 using the minimal symbol, for instance to find a method
10126 implemented in a stripped copy of libstdc++, will not work.
10127 If we do not have debug info for the definition, we will have to
10128 match them up some other way.
10129
10130 When we do name matching there is a related problem with function
10131 templates; two instantiated function templates are allowed to
10132 differ only by their return types, which we do not add here. */
10133
10134 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10135 {
10136 struct attribute *attr;
10137 struct die_info *child;
10138 int first = 1;
10139
10140 die->building_fullname = 1;
10141
10142 for (child = die->child; child != NULL; child = child->sibling)
10143 {
10144 struct type *type;
10145 LONGEST value;
10146 const gdb_byte *bytes;
10147 struct dwarf2_locexpr_baton *baton;
10148 struct value *v;
10149
10150 if (child->tag != DW_TAG_template_type_param
10151 && child->tag != DW_TAG_template_value_param)
10152 continue;
10153
10154 if (first)
10155 {
10156 buf.puts ("<");
10157 first = 0;
10158 }
10159 else
10160 buf.puts (", ");
10161
10162 attr = dwarf2_attr (child, DW_AT_type, cu);
10163 if (attr == NULL)
10164 {
10165 complaint (_("template parameter missing DW_AT_type"));
10166 buf.puts ("UNKNOWN_TYPE");
10167 continue;
10168 }
10169 type = die_type (child, cu);
10170
10171 if (child->tag == DW_TAG_template_type_param)
10172 {
10173 c_print_type (type, "", &buf, -1, 0, cu->language,
10174 &type_print_raw_options);
10175 continue;
10176 }
10177
10178 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10179 if (attr == NULL)
10180 {
10181 complaint (_("template parameter missing "
10182 "DW_AT_const_value"));
10183 buf.puts ("UNKNOWN_VALUE");
10184 continue;
10185 }
10186
10187 dwarf2_const_value_attr (attr, type, name,
10188 &cu->comp_unit_obstack, cu,
10189 &value, &bytes, &baton);
10190
10191 if (TYPE_NOSIGN (type))
10192 /* GDB prints characters as NUMBER 'CHAR'. If that's
10193 changed, this can use value_print instead. */
10194 c_printchar (value, type, &buf);
10195 else
10196 {
10197 struct value_print_options opts;
10198
10199 if (baton != NULL)
10200 v = dwarf2_evaluate_loc_desc (type, NULL,
10201 baton->data,
10202 baton->size,
10203 baton->per_cu);
10204 else if (bytes != NULL)
10205 {
10206 v = allocate_value (type);
10207 memcpy (value_contents_writeable (v), bytes,
10208 TYPE_LENGTH (type));
10209 }
10210 else
10211 v = value_from_longest (type, value);
10212
10213 /* Specify decimal so that we do not depend on
10214 the radix. */
10215 get_formatted_print_options (&opts, 'd');
10216 opts.raw = 1;
10217 value_print (v, &buf, &opts);
10218 release_value (v);
10219 }
10220 }
10221
10222 die->building_fullname = 0;
10223
10224 if (!first)
10225 {
10226 /* Close the argument list, with a space if necessary
10227 (nested templates). */
10228 if (!buf.empty () && buf.string ().back () == '>')
10229 buf.puts (" >");
10230 else
10231 buf.puts (">");
10232 }
10233 }
10234
10235 /* For C++ methods, append formal parameter type
10236 information, if PHYSNAME. */
10237
10238 if (physname && die->tag == DW_TAG_subprogram
10239 && cu->language == language_cplus)
10240 {
10241 struct type *type = read_type_die (die, cu);
10242
10243 c_type_print_args (type, &buf, 1, cu->language,
10244 &type_print_raw_options);
10245
10246 if (cu->language == language_cplus)
10247 {
10248 /* Assume that an artificial first parameter is
10249 "this", but do not crash if it is not. RealView
10250 marks unnamed (and thus unused) parameters as
10251 artificial; there is no way to differentiate
10252 the two cases. */
10253 if (TYPE_NFIELDS (type) > 0
10254 && TYPE_FIELD_ARTIFICIAL (type, 0)
10255 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10256 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10257 0))))
10258 buf.puts (" const");
10259 }
10260 }
10261
10262 const std::string &intermediate_name = buf.string ();
10263
10264 if (cu->language == language_cplus)
10265 canonical_name
10266 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10267 objfile);
10268
10269 /* If we only computed INTERMEDIATE_NAME, or if
10270 INTERMEDIATE_NAME is already canonical, then we need to
10271 intern it. */
10272 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10273 name = objfile->intern (intermediate_name);
10274 else
10275 name = canonical_name;
10276 }
10277 }
10278
10279 return name;
10280 }
10281
10282 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10283 If scope qualifiers are appropriate they will be added. The result
10284 will be allocated on the storage_obstack, or NULL if the DIE does
10285 not have a name. NAME may either be from a previous call to
10286 dwarf2_name or NULL.
10287
10288 The output string will be canonicalized (if C++). */
10289
10290 static const char *
10291 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10292 {
10293 return dwarf2_compute_name (name, die, cu, 0);
10294 }
10295
10296 /* Construct a physname for the given DIE in CU. NAME may either be
10297 from a previous call to dwarf2_name or NULL. The result will be
10298 allocated on the objfile_objstack or NULL if the DIE does not have a
10299 name.
10300
10301 The output string will be canonicalized (if C++). */
10302
10303 static const char *
10304 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10305 {
10306 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10307 const char *retval, *mangled = NULL, *canon = NULL;
10308 int need_copy = 1;
10309
10310 /* In this case dwarf2_compute_name is just a shortcut not building anything
10311 on its own. */
10312 if (!die_needs_namespace (die, cu))
10313 return dwarf2_compute_name (name, die, cu, 1);
10314
10315 mangled = dw2_linkage_name (die, cu);
10316
10317 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10318 has computed. */
10319 gdb::unique_xmalloc_ptr<char> demangled;
10320 if (mangled != NULL)
10321 {
10322
10323 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10324 {
10325 /* Do nothing (do not demangle the symbol name). */
10326 }
10327 else if (cu->language == language_go)
10328 {
10329 /* This is a lie, but we already lie to the caller new_symbol.
10330 new_symbol assumes we return the mangled name.
10331 This just undoes that lie until things are cleaned up. */
10332 }
10333 else
10334 {
10335 /* Use DMGL_RET_DROP for C++ template functions to suppress
10336 their return type. It is easier for GDB users to search
10337 for such functions as `name(params)' than `long name(params)'.
10338 In such case the minimal symbol names do not match the full
10339 symbol names but for template functions there is never a need
10340 to look up their definition from their declaration so
10341 the only disadvantage remains the minimal symbol variant
10342 `long name(params)' does not have the proper inferior type. */
10343 demangled.reset (gdb_demangle (mangled,
10344 (DMGL_PARAMS | DMGL_ANSI
10345 | DMGL_RET_DROP)));
10346 }
10347 if (demangled)
10348 canon = demangled.get ();
10349 else
10350 {
10351 canon = mangled;
10352 need_copy = 0;
10353 }
10354 }
10355
10356 if (canon == NULL || check_physname)
10357 {
10358 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10359
10360 if (canon != NULL && strcmp (physname, canon) != 0)
10361 {
10362 /* It may not mean a bug in GDB. The compiler could also
10363 compute DW_AT_linkage_name incorrectly. But in such case
10364 GDB would need to be bug-to-bug compatible. */
10365
10366 complaint (_("Computed physname <%s> does not match demangled <%s> "
10367 "(from linkage <%s>) - DIE at %s [in module %s]"),
10368 physname, canon, mangled, sect_offset_str (die->sect_off),
10369 objfile_name (objfile));
10370
10371 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10372 is available here - over computed PHYSNAME. It is safer
10373 against both buggy GDB and buggy compilers. */
10374
10375 retval = canon;
10376 }
10377 else
10378 {
10379 retval = physname;
10380 need_copy = 0;
10381 }
10382 }
10383 else
10384 retval = canon;
10385
10386 if (need_copy)
10387 retval = objfile->intern (retval);
10388
10389 return retval;
10390 }
10391
10392 /* Inspect DIE in CU for a namespace alias. If one exists, record
10393 a new symbol for it.
10394
10395 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10396
10397 static int
10398 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10399 {
10400 struct attribute *attr;
10401
10402 /* If the die does not have a name, this is not a namespace
10403 alias. */
10404 attr = dwarf2_attr (die, DW_AT_name, cu);
10405 if (attr != NULL)
10406 {
10407 int num;
10408 struct die_info *d = die;
10409 struct dwarf2_cu *imported_cu = cu;
10410
10411 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10412 keep inspecting DIEs until we hit the underlying import. */
10413 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10414 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10415 {
10416 attr = dwarf2_attr (d, DW_AT_import, cu);
10417 if (attr == NULL)
10418 break;
10419
10420 d = follow_die_ref (d, attr, &imported_cu);
10421 if (d->tag != DW_TAG_imported_declaration)
10422 break;
10423 }
10424
10425 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10426 {
10427 complaint (_("DIE at %s has too many recursively imported "
10428 "declarations"), sect_offset_str (d->sect_off));
10429 return 0;
10430 }
10431
10432 if (attr != NULL)
10433 {
10434 struct type *type;
10435 sect_offset sect_off = attr->get_ref_die_offset ();
10436
10437 type = get_die_type_at_offset (sect_off, cu->per_cu);
10438 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10439 {
10440 /* This declaration is a global namespace alias. Add
10441 a symbol for it whose type is the aliased namespace. */
10442 new_symbol (die, type, cu);
10443 return 1;
10444 }
10445 }
10446 }
10447
10448 return 0;
10449 }
10450
10451 /* Return the using directives repository (global or local?) to use in the
10452 current context for CU.
10453
10454 For Ada, imported declarations can materialize renamings, which *may* be
10455 global. However it is impossible (for now?) in DWARF to distinguish
10456 "external" imported declarations and "static" ones. As all imported
10457 declarations seem to be static in all other languages, make them all CU-wide
10458 global only in Ada. */
10459
10460 static struct using_direct **
10461 using_directives (struct dwarf2_cu *cu)
10462 {
10463 if (cu->language == language_ada
10464 && cu->get_builder ()->outermost_context_p ())
10465 return cu->get_builder ()->get_global_using_directives ();
10466 else
10467 return cu->get_builder ()->get_local_using_directives ();
10468 }
10469
10470 /* Read the import statement specified by the given die and record it. */
10471
10472 static void
10473 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10474 {
10475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10476 struct attribute *import_attr;
10477 struct die_info *imported_die, *child_die;
10478 struct dwarf2_cu *imported_cu;
10479 const char *imported_name;
10480 const char *imported_name_prefix;
10481 const char *canonical_name;
10482 const char *import_alias;
10483 const char *imported_declaration = NULL;
10484 const char *import_prefix;
10485 std::vector<const char *> excludes;
10486
10487 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10488 if (import_attr == NULL)
10489 {
10490 complaint (_("Tag '%s' has no DW_AT_import"),
10491 dwarf_tag_name (die->tag));
10492 return;
10493 }
10494
10495 imported_cu = cu;
10496 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10497 imported_name = dwarf2_name (imported_die, imported_cu);
10498 if (imported_name == NULL)
10499 {
10500 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10501
10502 The import in the following code:
10503 namespace A
10504 {
10505 typedef int B;
10506 }
10507
10508 int main ()
10509 {
10510 using A::B;
10511 B b;
10512 return b;
10513 }
10514
10515 ...
10516 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10517 <52> DW_AT_decl_file : 1
10518 <53> DW_AT_decl_line : 6
10519 <54> DW_AT_import : <0x75>
10520 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10521 <59> DW_AT_name : B
10522 <5b> DW_AT_decl_file : 1
10523 <5c> DW_AT_decl_line : 2
10524 <5d> DW_AT_type : <0x6e>
10525 ...
10526 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10527 <76> DW_AT_byte_size : 4
10528 <77> DW_AT_encoding : 5 (signed)
10529
10530 imports the wrong die ( 0x75 instead of 0x58 ).
10531 This case will be ignored until the gcc bug is fixed. */
10532 return;
10533 }
10534
10535 /* Figure out the local name after import. */
10536 import_alias = dwarf2_name (die, cu);
10537
10538 /* Figure out where the statement is being imported to. */
10539 import_prefix = determine_prefix (die, cu);
10540
10541 /* Figure out what the scope of the imported die is and prepend it
10542 to the name of the imported die. */
10543 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10544
10545 if (imported_die->tag != DW_TAG_namespace
10546 && imported_die->tag != DW_TAG_module)
10547 {
10548 imported_declaration = imported_name;
10549 canonical_name = imported_name_prefix;
10550 }
10551 else if (strlen (imported_name_prefix) > 0)
10552 canonical_name = obconcat (&objfile->objfile_obstack,
10553 imported_name_prefix,
10554 (cu->language == language_d ? "." : "::"),
10555 imported_name, (char *) NULL);
10556 else
10557 canonical_name = imported_name;
10558
10559 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10560 for (child_die = die->child; child_die && child_die->tag;
10561 child_die = child_die->sibling)
10562 {
10563 /* DWARF-4: A Fortran use statement with a “rename list” may be
10564 represented by an imported module entry with an import attribute
10565 referring to the module and owned entries corresponding to those
10566 entities that are renamed as part of being imported. */
10567
10568 if (child_die->tag != DW_TAG_imported_declaration)
10569 {
10570 complaint (_("child DW_TAG_imported_declaration expected "
10571 "- DIE at %s [in module %s]"),
10572 sect_offset_str (child_die->sect_off),
10573 objfile_name (objfile));
10574 continue;
10575 }
10576
10577 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10578 if (import_attr == NULL)
10579 {
10580 complaint (_("Tag '%s' has no DW_AT_import"),
10581 dwarf_tag_name (child_die->tag));
10582 continue;
10583 }
10584
10585 imported_cu = cu;
10586 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10587 &imported_cu);
10588 imported_name = dwarf2_name (imported_die, imported_cu);
10589 if (imported_name == NULL)
10590 {
10591 complaint (_("child DW_TAG_imported_declaration has unknown "
10592 "imported name - DIE at %s [in module %s]"),
10593 sect_offset_str (child_die->sect_off),
10594 objfile_name (objfile));
10595 continue;
10596 }
10597
10598 excludes.push_back (imported_name);
10599
10600 process_die (child_die, cu);
10601 }
10602
10603 add_using_directive (using_directives (cu),
10604 import_prefix,
10605 canonical_name,
10606 import_alias,
10607 imported_declaration,
10608 excludes,
10609 0,
10610 &objfile->objfile_obstack);
10611 }
10612
10613 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10614 types, but gives them a size of zero. Starting with version 14,
10615 ICC is compatible with GCC. */
10616
10617 static bool
10618 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10619 {
10620 if (!cu->checked_producer)
10621 check_producer (cu);
10622
10623 return cu->producer_is_icc_lt_14;
10624 }
10625
10626 /* ICC generates a DW_AT_type for C void functions. This was observed on
10627 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10628 which says that void functions should not have a DW_AT_type. */
10629
10630 static bool
10631 producer_is_icc (struct dwarf2_cu *cu)
10632 {
10633 if (!cu->checked_producer)
10634 check_producer (cu);
10635
10636 return cu->producer_is_icc;
10637 }
10638
10639 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10640 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10641 this, it was first present in GCC release 4.3.0. */
10642
10643 static bool
10644 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10645 {
10646 if (!cu->checked_producer)
10647 check_producer (cu);
10648
10649 return cu->producer_is_gcc_lt_4_3;
10650 }
10651
10652 static file_and_directory
10653 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10654 {
10655 file_and_directory res;
10656
10657 /* Find the filename. Do not use dwarf2_name here, since the filename
10658 is not a source language identifier. */
10659 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10660 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10661
10662 if (res.comp_dir == NULL
10663 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10664 && IS_ABSOLUTE_PATH (res.name))
10665 {
10666 res.comp_dir_storage = ldirname (res.name);
10667 if (!res.comp_dir_storage.empty ())
10668 res.comp_dir = res.comp_dir_storage.c_str ();
10669 }
10670 if (res.comp_dir != NULL)
10671 {
10672 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10673 directory, get rid of it. */
10674 const char *cp = strchr (res.comp_dir, ':');
10675
10676 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10677 res.comp_dir = cp + 1;
10678 }
10679
10680 if (res.name == NULL)
10681 res.name = "<unknown>";
10682
10683 return res;
10684 }
10685
10686 /* Handle DW_AT_stmt_list for a compilation unit.
10687 DIE is the DW_TAG_compile_unit die for CU.
10688 COMP_DIR is the compilation directory. LOWPC is passed to
10689 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10690
10691 static void
10692 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10693 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10694 {
10695 struct dwarf2_per_objfile *dwarf2_per_objfile
10696 = cu->per_cu->dwarf2_per_objfile;
10697 struct attribute *attr;
10698 struct line_header line_header_local;
10699 hashval_t line_header_local_hash;
10700 void **slot;
10701 int decode_mapping;
10702
10703 gdb_assert (! cu->per_cu->is_debug_types);
10704
10705 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10706 if (attr == NULL)
10707 return;
10708
10709 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10710
10711 /* The line header hash table is only created if needed (it exists to
10712 prevent redundant reading of the line table for partial_units).
10713 If we're given a partial_unit, we'll need it. If we're given a
10714 compile_unit, then use the line header hash table if it's already
10715 created, but don't create one just yet. */
10716
10717 if (dwarf2_per_objfile->line_header_hash == NULL
10718 && die->tag == DW_TAG_partial_unit)
10719 {
10720 dwarf2_per_objfile->line_header_hash
10721 .reset (htab_create_alloc (127, line_header_hash_voidp,
10722 line_header_eq_voidp,
10723 free_line_header_voidp,
10724 xcalloc, xfree));
10725 }
10726
10727 line_header_local.sect_off = line_offset;
10728 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10729 line_header_local_hash = line_header_hash (&line_header_local);
10730 if (dwarf2_per_objfile->line_header_hash != NULL)
10731 {
10732 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10733 &line_header_local,
10734 line_header_local_hash, NO_INSERT);
10735
10736 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10737 is not present in *SLOT (since if there is something in *SLOT then
10738 it will be for a partial_unit). */
10739 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10740 {
10741 gdb_assert (*slot != NULL);
10742 cu->line_header = (struct line_header *) *slot;
10743 return;
10744 }
10745 }
10746
10747 /* dwarf_decode_line_header does not yet provide sufficient information.
10748 We always have to call also dwarf_decode_lines for it. */
10749 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10750 if (lh == NULL)
10751 return;
10752
10753 cu->line_header = lh.release ();
10754 cu->line_header_die_owner = die;
10755
10756 if (dwarf2_per_objfile->line_header_hash == NULL)
10757 slot = NULL;
10758 else
10759 {
10760 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10761 &line_header_local,
10762 line_header_local_hash, INSERT);
10763 gdb_assert (slot != NULL);
10764 }
10765 if (slot != NULL && *slot == NULL)
10766 {
10767 /* This newly decoded line number information unit will be owned
10768 by line_header_hash hash table. */
10769 *slot = cu->line_header;
10770 cu->line_header_die_owner = NULL;
10771 }
10772 else
10773 {
10774 /* We cannot free any current entry in (*slot) as that struct line_header
10775 may be already used by multiple CUs. Create only temporary decoded
10776 line_header for this CU - it may happen at most once for each line
10777 number information unit. And if we're not using line_header_hash
10778 then this is what we want as well. */
10779 gdb_assert (die->tag != DW_TAG_partial_unit);
10780 }
10781 decode_mapping = (die->tag != DW_TAG_partial_unit);
10782 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10783 decode_mapping);
10784
10785 }
10786
10787 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10788
10789 static void
10790 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10791 {
10792 struct dwarf2_per_objfile *dwarf2_per_objfile
10793 = cu->per_cu->dwarf2_per_objfile;
10794 struct objfile *objfile = dwarf2_per_objfile->objfile;
10795 struct gdbarch *gdbarch = objfile->arch ();
10796 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10797 CORE_ADDR highpc = ((CORE_ADDR) 0);
10798 struct attribute *attr;
10799 struct die_info *child_die;
10800 CORE_ADDR baseaddr;
10801
10802 prepare_one_comp_unit (cu, die, cu->language);
10803 baseaddr = objfile->text_section_offset ();
10804
10805 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10806
10807 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10808 from finish_block. */
10809 if (lowpc == ((CORE_ADDR) -1))
10810 lowpc = highpc;
10811 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10812
10813 file_and_directory fnd = find_file_and_directory (die, cu);
10814
10815 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10816 standardised yet. As a workaround for the language detection we fall
10817 back to the DW_AT_producer string. */
10818 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10819 cu->language = language_opencl;
10820
10821 /* Similar hack for Go. */
10822 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10823 set_cu_language (DW_LANG_Go, cu);
10824
10825 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10826
10827 /* Decode line number information if present. We do this before
10828 processing child DIEs, so that the line header table is available
10829 for DW_AT_decl_file. */
10830 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10831
10832 /* Process all dies in compilation unit. */
10833 if (die->child != NULL)
10834 {
10835 child_die = die->child;
10836 while (child_die && child_die->tag)
10837 {
10838 process_die (child_die, cu);
10839 child_die = child_die->sibling;
10840 }
10841 }
10842
10843 /* Decode macro information, if present. Dwarf 2 macro information
10844 refers to information in the line number info statement program
10845 header, so we can only read it if we've read the header
10846 successfully. */
10847 attr = dwarf2_attr (die, DW_AT_macros, cu);
10848 if (attr == NULL)
10849 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10850 if (attr && cu->line_header)
10851 {
10852 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10853 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10854
10855 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10856 }
10857 else
10858 {
10859 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10860 if (attr && cu->line_header)
10861 {
10862 unsigned int macro_offset = DW_UNSND (attr);
10863
10864 dwarf_decode_macros (cu, macro_offset, 0);
10865 }
10866 }
10867 }
10868
10869 void
10870 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10871 {
10872 struct type_unit_group *tu_group;
10873 int first_time;
10874 struct attribute *attr;
10875 unsigned int i;
10876 struct signatured_type *sig_type;
10877
10878 gdb_assert (per_cu->is_debug_types);
10879 sig_type = (struct signatured_type *) per_cu;
10880
10881 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10882
10883 /* If we're using .gdb_index (includes -readnow) then
10884 per_cu->type_unit_group may not have been set up yet. */
10885 if (sig_type->type_unit_group == NULL)
10886 sig_type->type_unit_group = get_type_unit_group (this, attr);
10887 tu_group = sig_type->type_unit_group;
10888
10889 /* If we've already processed this stmt_list there's no real need to
10890 do it again, we could fake it and just recreate the part we need
10891 (file name,index -> symtab mapping). If data shows this optimization
10892 is useful we can do it then. */
10893 first_time = tu_group->compunit_symtab == NULL;
10894
10895 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10896 debug info. */
10897 line_header_up lh;
10898 if (attr != NULL)
10899 {
10900 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10901 lh = dwarf_decode_line_header (line_offset, this);
10902 }
10903 if (lh == NULL)
10904 {
10905 if (first_time)
10906 start_symtab ("", NULL, 0);
10907 else
10908 {
10909 gdb_assert (tu_group->symtabs == NULL);
10910 gdb_assert (m_builder == nullptr);
10911 struct compunit_symtab *cust = tu_group->compunit_symtab;
10912 m_builder.reset (new struct buildsym_compunit
10913 (COMPUNIT_OBJFILE (cust), "",
10914 COMPUNIT_DIRNAME (cust),
10915 compunit_language (cust),
10916 0, cust));
10917 }
10918 return;
10919 }
10920
10921 line_header = lh.release ();
10922 line_header_die_owner = die;
10923
10924 if (first_time)
10925 {
10926 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10927
10928 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10929 still initializing it, and our caller (a few levels up)
10930 process_full_type_unit still needs to know if this is the first
10931 time. */
10932
10933 tu_group->symtabs
10934 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10935 struct symtab *, line_header->file_names_size ());
10936
10937 auto &file_names = line_header->file_names ();
10938 for (i = 0; i < file_names.size (); ++i)
10939 {
10940 file_entry &fe = file_names[i];
10941 dwarf2_start_subfile (this, fe.name,
10942 fe.include_dir (line_header));
10943 buildsym_compunit *b = get_builder ();
10944 if (b->get_current_subfile ()->symtab == NULL)
10945 {
10946 /* NOTE: start_subfile will recognize when it's been
10947 passed a file it has already seen. So we can't
10948 assume there's a simple mapping from
10949 cu->line_header->file_names to subfiles, plus
10950 cu->line_header->file_names may contain dups. */
10951 b->get_current_subfile ()->symtab
10952 = allocate_symtab (cust, b->get_current_subfile ()->name);
10953 }
10954
10955 fe.symtab = b->get_current_subfile ()->symtab;
10956 tu_group->symtabs[i] = fe.symtab;
10957 }
10958 }
10959 else
10960 {
10961 gdb_assert (m_builder == nullptr);
10962 struct compunit_symtab *cust = tu_group->compunit_symtab;
10963 m_builder.reset (new struct buildsym_compunit
10964 (COMPUNIT_OBJFILE (cust), "",
10965 COMPUNIT_DIRNAME (cust),
10966 compunit_language (cust),
10967 0, cust));
10968
10969 auto &file_names = line_header->file_names ();
10970 for (i = 0; i < file_names.size (); ++i)
10971 {
10972 file_entry &fe = file_names[i];
10973 fe.symtab = tu_group->symtabs[i];
10974 }
10975 }
10976
10977 /* The main symtab is allocated last. Type units don't have DW_AT_name
10978 so they don't have a "real" (so to speak) symtab anyway.
10979 There is later code that will assign the main symtab to all symbols
10980 that don't have one. We need to handle the case of a symbol with a
10981 missing symtab (DW_AT_decl_file) anyway. */
10982 }
10983
10984 /* Process DW_TAG_type_unit.
10985 For TUs we want to skip the first top level sibling if it's not the
10986 actual type being defined by this TU. In this case the first top
10987 level sibling is there to provide context only. */
10988
10989 static void
10990 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10991 {
10992 struct die_info *child_die;
10993
10994 prepare_one_comp_unit (cu, die, language_minimal);
10995
10996 /* Initialize (or reinitialize) the machinery for building symtabs.
10997 We do this before processing child DIEs, so that the line header table
10998 is available for DW_AT_decl_file. */
10999 cu->setup_type_unit_groups (die);
11000
11001 if (die->child != NULL)
11002 {
11003 child_die = die->child;
11004 while (child_die && child_die->tag)
11005 {
11006 process_die (child_die, cu);
11007 child_die = child_die->sibling;
11008 }
11009 }
11010 }
11011 \f
11012 /* DWO/DWP files.
11013
11014 http://gcc.gnu.org/wiki/DebugFission
11015 http://gcc.gnu.org/wiki/DebugFissionDWP
11016
11017 To simplify handling of both DWO files ("object" files with the DWARF info)
11018 and DWP files (a file with the DWOs packaged up into one file), we treat
11019 DWP files as having a collection of virtual DWO files. */
11020
11021 static hashval_t
11022 hash_dwo_file (const void *item)
11023 {
11024 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11025 hashval_t hash;
11026
11027 hash = htab_hash_string (dwo_file->dwo_name);
11028 if (dwo_file->comp_dir != NULL)
11029 hash += htab_hash_string (dwo_file->comp_dir);
11030 return hash;
11031 }
11032
11033 static int
11034 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11035 {
11036 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11037 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11038
11039 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11040 return 0;
11041 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11042 return lhs->comp_dir == rhs->comp_dir;
11043 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11044 }
11045
11046 /* Allocate a hash table for DWO files. */
11047
11048 static htab_up
11049 allocate_dwo_file_hash_table ()
11050 {
11051 auto delete_dwo_file = [] (void *item)
11052 {
11053 struct dwo_file *dwo_file = (struct dwo_file *) item;
11054
11055 delete dwo_file;
11056 };
11057
11058 return htab_up (htab_create_alloc (41,
11059 hash_dwo_file,
11060 eq_dwo_file,
11061 delete_dwo_file,
11062 xcalloc, xfree));
11063 }
11064
11065 /* Lookup DWO file DWO_NAME. */
11066
11067 static void **
11068 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11069 const char *dwo_name,
11070 const char *comp_dir)
11071 {
11072 struct dwo_file find_entry;
11073 void **slot;
11074
11075 if (dwarf2_per_objfile->dwo_files == NULL)
11076 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11077
11078 find_entry.dwo_name = dwo_name;
11079 find_entry.comp_dir = comp_dir;
11080 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11081 INSERT);
11082
11083 return slot;
11084 }
11085
11086 static hashval_t
11087 hash_dwo_unit (const void *item)
11088 {
11089 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11090
11091 /* This drops the top 32 bits of the id, but is ok for a hash. */
11092 return dwo_unit->signature;
11093 }
11094
11095 static int
11096 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11097 {
11098 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11099 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11100
11101 /* The signature is assumed to be unique within the DWO file.
11102 So while object file CU dwo_id's always have the value zero,
11103 that's OK, assuming each object file DWO file has only one CU,
11104 and that's the rule for now. */
11105 return lhs->signature == rhs->signature;
11106 }
11107
11108 /* Allocate a hash table for DWO CUs,TUs.
11109 There is one of these tables for each of CUs,TUs for each DWO file. */
11110
11111 static htab_up
11112 allocate_dwo_unit_table ()
11113 {
11114 /* Start out with a pretty small number.
11115 Generally DWO files contain only one CU and maybe some TUs. */
11116 return htab_up (htab_create_alloc (3,
11117 hash_dwo_unit,
11118 eq_dwo_unit,
11119 NULL, xcalloc, xfree));
11120 }
11121
11122 /* die_reader_func for create_dwo_cu. */
11123
11124 static void
11125 create_dwo_cu_reader (const struct die_reader_specs *reader,
11126 const gdb_byte *info_ptr,
11127 struct die_info *comp_unit_die,
11128 struct dwo_file *dwo_file,
11129 struct dwo_unit *dwo_unit)
11130 {
11131 struct dwarf2_cu *cu = reader->cu;
11132 sect_offset sect_off = cu->per_cu->sect_off;
11133 struct dwarf2_section_info *section = cu->per_cu->section;
11134
11135 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11136 if (!signature.has_value ())
11137 {
11138 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11139 " its dwo_id [in module %s]"),
11140 sect_offset_str (sect_off), dwo_file->dwo_name);
11141 return;
11142 }
11143
11144 dwo_unit->dwo_file = dwo_file;
11145 dwo_unit->signature = *signature;
11146 dwo_unit->section = section;
11147 dwo_unit->sect_off = sect_off;
11148 dwo_unit->length = cu->per_cu->length;
11149
11150 if (dwarf_read_debug)
11151 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11152 sect_offset_str (sect_off),
11153 hex_string (dwo_unit->signature));
11154 }
11155
11156 /* Create the dwo_units for the CUs in a DWO_FILE.
11157 Note: This function processes DWO files only, not DWP files. */
11158
11159 static void
11160 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11161 dwarf2_cu *cu, struct dwo_file &dwo_file,
11162 dwarf2_section_info &section, htab_up &cus_htab)
11163 {
11164 struct objfile *objfile = dwarf2_per_objfile->objfile;
11165 const gdb_byte *info_ptr, *end_ptr;
11166
11167 section.read (objfile);
11168 info_ptr = section.buffer;
11169
11170 if (info_ptr == NULL)
11171 return;
11172
11173 if (dwarf_read_debug)
11174 {
11175 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11176 section.get_name (),
11177 section.get_file_name ());
11178 }
11179
11180 end_ptr = info_ptr + section.size;
11181 while (info_ptr < end_ptr)
11182 {
11183 struct dwarf2_per_cu_data per_cu;
11184 struct dwo_unit read_unit {};
11185 struct dwo_unit *dwo_unit;
11186 void **slot;
11187 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11188
11189 memset (&per_cu, 0, sizeof (per_cu));
11190 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11191 per_cu.is_debug_types = 0;
11192 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11193 per_cu.section = &section;
11194
11195 cutu_reader reader (&per_cu, cu, &dwo_file);
11196 if (!reader.dummy_p)
11197 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11198 &dwo_file, &read_unit);
11199 info_ptr += per_cu.length;
11200
11201 // If the unit could not be parsed, skip it.
11202 if (read_unit.dwo_file == NULL)
11203 continue;
11204
11205 if (cus_htab == NULL)
11206 cus_htab = allocate_dwo_unit_table ();
11207
11208 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11209 *dwo_unit = read_unit;
11210 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11211 gdb_assert (slot != NULL);
11212 if (*slot != NULL)
11213 {
11214 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11215 sect_offset dup_sect_off = dup_cu->sect_off;
11216
11217 complaint (_("debug cu entry at offset %s is duplicate to"
11218 " the entry at offset %s, signature %s"),
11219 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11220 hex_string (dwo_unit->signature));
11221 }
11222 *slot = (void *)dwo_unit;
11223 }
11224 }
11225
11226 /* DWP file .debug_{cu,tu}_index section format:
11227 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11228
11229 DWP Version 1:
11230
11231 Both index sections have the same format, and serve to map a 64-bit
11232 signature to a set of section numbers. Each section begins with a header,
11233 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11234 indexes, and a pool of 32-bit section numbers. The index sections will be
11235 aligned at 8-byte boundaries in the file.
11236
11237 The index section header consists of:
11238
11239 V, 32 bit version number
11240 -, 32 bits unused
11241 N, 32 bit number of compilation units or type units in the index
11242 M, 32 bit number of slots in the hash table
11243
11244 Numbers are recorded using the byte order of the application binary.
11245
11246 The hash table begins at offset 16 in the section, and consists of an array
11247 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11248 order of the application binary). Unused slots in the hash table are 0.
11249 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11250
11251 The parallel table begins immediately after the hash table
11252 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11253 array of 32-bit indexes (using the byte order of the application binary),
11254 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11255 table contains a 32-bit index into the pool of section numbers. For unused
11256 hash table slots, the corresponding entry in the parallel table will be 0.
11257
11258 The pool of section numbers begins immediately following the hash table
11259 (at offset 16 + 12 * M from the beginning of the section). The pool of
11260 section numbers consists of an array of 32-bit words (using the byte order
11261 of the application binary). Each item in the array is indexed starting
11262 from 0. The hash table entry provides the index of the first section
11263 number in the set. Additional section numbers in the set follow, and the
11264 set is terminated by a 0 entry (section number 0 is not used in ELF).
11265
11266 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11267 section must be the first entry in the set, and the .debug_abbrev.dwo must
11268 be the second entry. Other members of the set may follow in any order.
11269
11270 ---
11271
11272 DWP Version 2:
11273
11274 DWP Version 2 combines all the .debug_info, etc. sections into one,
11275 and the entries in the index tables are now offsets into these sections.
11276 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11277 section.
11278
11279 Index Section Contents:
11280 Header
11281 Hash Table of Signatures dwp_hash_table.hash_table
11282 Parallel Table of Indices dwp_hash_table.unit_table
11283 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11284 Table of Section Sizes dwp_hash_table.v2.sizes
11285
11286 The index section header consists of:
11287
11288 V, 32 bit version number
11289 L, 32 bit number of columns in the table of section offsets
11290 N, 32 bit number of compilation units or type units in the index
11291 M, 32 bit number of slots in the hash table
11292
11293 Numbers are recorded using the byte order of the application binary.
11294
11295 The hash table has the same format as version 1.
11296 The parallel table of indices has the same format as version 1,
11297 except that the entries are origin-1 indices into the table of sections
11298 offsets and the table of section sizes.
11299
11300 The table of offsets begins immediately following the parallel table
11301 (at offset 16 + 12 * M from the beginning of the section). The table is
11302 a two-dimensional array of 32-bit words (using the byte order of the
11303 application binary), with L columns and N+1 rows, in row-major order.
11304 Each row in the array is indexed starting from 0. The first row provides
11305 a key to the remaining rows: each column in this row provides an identifier
11306 for a debug section, and the offsets in the same column of subsequent rows
11307 refer to that section. The section identifiers are:
11308
11309 DW_SECT_INFO 1 .debug_info.dwo
11310 DW_SECT_TYPES 2 .debug_types.dwo
11311 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11312 DW_SECT_LINE 4 .debug_line.dwo
11313 DW_SECT_LOC 5 .debug_loc.dwo
11314 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11315 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11316 DW_SECT_MACRO 8 .debug_macro.dwo
11317
11318 The offsets provided by the CU and TU index sections are the base offsets
11319 for the contributions made by each CU or TU to the corresponding section
11320 in the package file. Each CU and TU header contains an abbrev_offset
11321 field, used to find the abbreviations table for that CU or TU within the
11322 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11323 be interpreted as relative to the base offset given in the index section.
11324 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11325 should be interpreted as relative to the base offset for .debug_line.dwo,
11326 and offsets into other debug sections obtained from DWARF attributes should
11327 also be interpreted as relative to the corresponding base offset.
11328
11329 The table of sizes begins immediately following the table of offsets.
11330 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11331 with L columns and N rows, in row-major order. Each row in the array is
11332 indexed starting from 1 (row 0 is shared by the two tables).
11333
11334 ---
11335
11336 Hash table lookup is handled the same in version 1 and 2:
11337
11338 We assume that N and M will not exceed 2^32 - 1.
11339 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11340
11341 Given a 64-bit compilation unit signature or a type signature S, an entry
11342 in the hash table is located as follows:
11343
11344 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11345 the low-order k bits all set to 1.
11346
11347 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11348
11349 3) If the hash table entry at index H matches the signature, use that
11350 entry. If the hash table entry at index H is unused (all zeroes),
11351 terminate the search: the signature is not present in the table.
11352
11353 4) Let H = (H + H') modulo M. Repeat at Step 3.
11354
11355 Because M > N and H' and M are relatively prime, the search is guaranteed
11356 to stop at an unused slot or find the match. */
11357
11358 /* Create a hash table to map DWO IDs to their CU/TU entry in
11359 .debug_{info,types}.dwo in DWP_FILE.
11360 Returns NULL if there isn't one.
11361 Note: This function processes DWP files only, not DWO files. */
11362
11363 static struct dwp_hash_table *
11364 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11365 struct dwp_file *dwp_file, int is_debug_types)
11366 {
11367 struct objfile *objfile = dwarf2_per_objfile->objfile;
11368 bfd *dbfd = dwp_file->dbfd.get ();
11369 const gdb_byte *index_ptr, *index_end;
11370 struct dwarf2_section_info *index;
11371 uint32_t version, nr_columns, nr_units, nr_slots;
11372 struct dwp_hash_table *htab;
11373
11374 if (is_debug_types)
11375 index = &dwp_file->sections.tu_index;
11376 else
11377 index = &dwp_file->sections.cu_index;
11378
11379 if (index->empty ())
11380 return NULL;
11381 index->read (objfile);
11382
11383 index_ptr = index->buffer;
11384 index_end = index_ptr + index->size;
11385
11386 version = read_4_bytes (dbfd, index_ptr);
11387 index_ptr += 4;
11388 if (version == 2)
11389 nr_columns = read_4_bytes (dbfd, index_ptr);
11390 else
11391 nr_columns = 0;
11392 index_ptr += 4;
11393 nr_units = read_4_bytes (dbfd, index_ptr);
11394 index_ptr += 4;
11395 nr_slots = read_4_bytes (dbfd, index_ptr);
11396 index_ptr += 4;
11397
11398 if (version != 1 && version != 2)
11399 {
11400 error (_("Dwarf Error: unsupported DWP file version (%s)"
11401 " [in module %s]"),
11402 pulongest (version), dwp_file->name);
11403 }
11404 if (nr_slots != (nr_slots & -nr_slots))
11405 {
11406 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11407 " is not power of 2 [in module %s]"),
11408 pulongest (nr_slots), dwp_file->name);
11409 }
11410
11411 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11412 htab->version = version;
11413 htab->nr_columns = nr_columns;
11414 htab->nr_units = nr_units;
11415 htab->nr_slots = nr_slots;
11416 htab->hash_table = index_ptr;
11417 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11418
11419 /* Exit early if the table is empty. */
11420 if (nr_slots == 0 || nr_units == 0
11421 || (version == 2 && nr_columns == 0))
11422 {
11423 /* All must be zero. */
11424 if (nr_slots != 0 || nr_units != 0
11425 || (version == 2 && nr_columns != 0))
11426 {
11427 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11428 " all zero [in modules %s]"),
11429 dwp_file->name);
11430 }
11431 return htab;
11432 }
11433
11434 if (version == 1)
11435 {
11436 htab->section_pool.v1.indices =
11437 htab->unit_table + sizeof (uint32_t) * nr_slots;
11438 /* It's harder to decide whether the section is too small in v1.
11439 V1 is deprecated anyway so we punt. */
11440 }
11441 else
11442 {
11443 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11444 int *ids = htab->section_pool.v2.section_ids;
11445 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11446 /* Reverse map for error checking. */
11447 int ids_seen[DW_SECT_MAX + 1];
11448 int i;
11449
11450 if (nr_columns < 2)
11451 {
11452 error (_("Dwarf Error: bad DWP hash table, too few columns"
11453 " in section table [in module %s]"),
11454 dwp_file->name);
11455 }
11456 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11457 {
11458 error (_("Dwarf Error: bad DWP hash table, too many columns"
11459 " in section table [in module %s]"),
11460 dwp_file->name);
11461 }
11462 memset (ids, 255, sizeof_ids);
11463 memset (ids_seen, 255, sizeof (ids_seen));
11464 for (i = 0; i < nr_columns; ++i)
11465 {
11466 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11467
11468 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11469 {
11470 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11471 " in section table [in module %s]"),
11472 id, dwp_file->name);
11473 }
11474 if (ids_seen[id] != -1)
11475 {
11476 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11477 " id %d in section table [in module %s]"),
11478 id, dwp_file->name);
11479 }
11480 ids_seen[id] = i;
11481 ids[i] = id;
11482 }
11483 /* Must have exactly one info or types section. */
11484 if (((ids_seen[DW_SECT_INFO] != -1)
11485 + (ids_seen[DW_SECT_TYPES] != -1))
11486 != 1)
11487 {
11488 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11489 " DWO info/types section [in module %s]"),
11490 dwp_file->name);
11491 }
11492 /* Must have an abbrev section. */
11493 if (ids_seen[DW_SECT_ABBREV] == -1)
11494 {
11495 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11496 " section [in module %s]"),
11497 dwp_file->name);
11498 }
11499 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11500 htab->section_pool.v2.sizes =
11501 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11502 * nr_units * nr_columns);
11503 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11504 * nr_units * nr_columns))
11505 > index_end)
11506 {
11507 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11508 " [in module %s]"),
11509 dwp_file->name);
11510 }
11511 }
11512
11513 return htab;
11514 }
11515
11516 /* Update SECTIONS with the data from SECTP.
11517
11518 This function is like the other "locate" section routines that are
11519 passed to bfd_map_over_sections, but in this context the sections to
11520 read comes from the DWP V1 hash table, not the full ELF section table.
11521
11522 The result is non-zero for success, or zero if an error was found. */
11523
11524 static int
11525 locate_v1_virtual_dwo_sections (asection *sectp,
11526 struct virtual_v1_dwo_sections *sections)
11527 {
11528 const struct dwop_section_names *names = &dwop_section_names;
11529
11530 if (section_is_p (sectp->name, &names->abbrev_dwo))
11531 {
11532 /* There can be only one. */
11533 if (sections->abbrev.s.section != NULL)
11534 return 0;
11535 sections->abbrev.s.section = sectp;
11536 sections->abbrev.size = bfd_section_size (sectp);
11537 }
11538 else if (section_is_p (sectp->name, &names->info_dwo)
11539 || section_is_p (sectp->name, &names->types_dwo))
11540 {
11541 /* There can be only one. */
11542 if (sections->info_or_types.s.section != NULL)
11543 return 0;
11544 sections->info_or_types.s.section = sectp;
11545 sections->info_or_types.size = bfd_section_size (sectp);
11546 }
11547 else if (section_is_p (sectp->name, &names->line_dwo))
11548 {
11549 /* There can be only one. */
11550 if (sections->line.s.section != NULL)
11551 return 0;
11552 sections->line.s.section = sectp;
11553 sections->line.size = bfd_section_size (sectp);
11554 }
11555 else if (section_is_p (sectp->name, &names->loc_dwo))
11556 {
11557 /* There can be only one. */
11558 if (sections->loc.s.section != NULL)
11559 return 0;
11560 sections->loc.s.section = sectp;
11561 sections->loc.size = bfd_section_size (sectp);
11562 }
11563 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11564 {
11565 /* There can be only one. */
11566 if (sections->macinfo.s.section != NULL)
11567 return 0;
11568 sections->macinfo.s.section = sectp;
11569 sections->macinfo.size = bfd_section_size (sectp);
11570 }
11571 else if (section_is_p (sectp->name, &names->macro_dwo))
11572 {
11573 /* There can be only one. */
11574 if (sections->macro.s.section != NULL)
11575 return 0;
11576 sections->macro.s.section = sectp;
11577 sections->macro.size = bfd_section_size (sectp);
11578 }
11579 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11580 {
11581 /* There can be only one. */
11582 if (sections->str_offsets.s.section != NULL)
11583 return 0;
11584 sections->str_offsets.s.section = sectp;
11585 sections->str_offsets.size = bfd_section_size (sectp);
11586 }
11587 else
11588 {
11589 /* No other kind of section is valid. */
11590 return 0;
11591 }
11592
11593 return 1;
11594 }
11595
11596 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11597 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11598 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11599 This is for DWP version 1 files. */
11600
11601 static struct dwo_unit *
11602 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11603 struct dwp_file *dwp_file,
11604 uint32_t unit_index,
11605 const char *comp_dir,
11606 ULONGEST signature, int is_debug_types)
11607 {
11608 struct objfile *objfile = dwarf2_per_objfile->objfile;
11609 const struct dwp_hash_table *dwp_htab =
11610 is_debug_types ? dwp_file->tus : dwp_file->cus;
11611 bfd *dbfd = dwp_file->dbfd.get ();
11612 const char *kind = is_debug_types ? "TU" : "CU";
11613 struct dwo_file *dwo_file;
11614 struct dwo_unit *dwo_unit;
11615 struct virtual_v1_dwo_sections sections;
11616 void **dwo_file_slot;
11617 int i;
11618
11619 gdb_assert (dwp_file->version == 1);
11620
11621 if (dwarf_read_debug)
11622 {
11623 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11624 kind,
11625 pulongest (unit_index), hex_string (signature),
11626 dwp_file->name);
11627 }
11628
11629 /* Fetch the sections of this DWO unit.
11630 Put a limit on the number of sections we look for so that bad data
11631 doesn't cause us to loop forever. */
11632
11633 #define MAX_NR_V1_DWO_SECTIONS \
11634 (1 /* .debug_info or .debug_types */ \
11635 + 1 /* .debug_abbrev */ \
11636 + 1 /* .debug_line */ \
11637 + 1 /* .debug_loc */ \
11638 + 1 /* .debug_str_offsets */ \
11639 + 1 /* .debug_macro or .debug_macinfo */ \
11640 + 1 /* trailing zero */)
11641
11642 memset (&sections, 0, sizeof (sections));
11643
11644 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11645 {
11646 asection *sectp;
11647 uint32_t section_nr =
11648 read_4_bytes (dbfd,
11649 dwp_htab->section_pool.v1.indices
11650 + (unit_index + i) * sizeof (uint32_t));
11651
11652 if (section_nr == 0)
11653 break;
11654 if (section_nr >= dwp_file->num_sections)
11655 {
11656 error (_("Dwarf Error: bad DWP hash table, section number too large"
11657 " [in module %s]"),
11658 dwp_file->name);
11659 }
11660
11661 sectp = dwp_file->elf_sections[section_nr];
11662 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11663 {
11664 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11665 " [in module %s]"),
11666 dwp_file->name);
11667 }
11668 }
11669
11670 if (i < 2
11671 || sections.info_or_types.empty ()
11672 || sections.abbrev.empty ())
11673 {
11674 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11675 " [in module %s]"),
11676 dwp_file->name);
11677 }
11678 if (i == MAX_NR_V1_DWO_SECTIONS)
11679 {
11680 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11681 " [in module %s]"),
11682 dwp_file->name);
11683 }
11684
11685 /* It's easier for the rest of the code if we fake a struct dwo_file and
11686 have dwo_unit "live" in that. At least for now.
11687
11688 The DWP file can be made up of a random collection of CUs and TUs.
11689 However, for each CU + set of TUs that came from the same original DWO
11690 file, we can combine them back into a virtual DWO file to save space
11691 (fewer struct dwo_file objects to allocate). Remember that for really
11692 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11693
11694 std::string virtual_dwo_name =
11695 string_printf ("virtual-dwo/%d-%d-%d-%d",
11696 sections.abbrev.get_id (),
11697 sections.line.get_id (),
11698 sections.loc.get_id (),
11699 sections.str_offsets.get_id ());
11700 /* Can we use an existing virtual DWO file? */
11701 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11702 virtual_dwo_name.c_str (),
11703 comp_dir);
11704 /* Create one if necessary. */
11705 if (*dwo_file_slot == NULL)
11706 {
11707 if (dwarf_read_debug)
11708 {
11709 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11710 virtual_dwo_name.c_str ());
11711 }
11712 dwo_file = new struct dwo_file;
11713 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11714 dwo_file->comp_dir = comp_dir;
11715 dwo_file->sections.abbrev = sections.abbrev;
11716 dwo_file->sections.line = sections.line;
11717 dwo_file->sections.loc = sections.loc;
11718 dwo_file->sections.macinfo = sections.macinfo;
11719 dwo_file->sections.macro = sections.macro;
11720 dwo_file->sections.str_offsets = sections.str_offsets;
11721 /* The "str" section is global to the entire DWP file. */
11722 dwo_file->sections.str = dwp_file->sections.str;
11723 /* The info or types section is assigned below to dwo_unit,
11724 there's no need to record it in dwo_file.
11725 Also, we can't simply record type sections in dwo_file because
11726 we record a pointer into the vector in dwo_unit. As we collect more
11727 types we'll grow the vector and eventually have to reallocate space
11728 for it, invalidating all copies of pointers into the previous
11729 contents. */
11730 *dwo_file_slot = dwo_file;
11731 }
11732 else
11733 {
11734 if (dwarf_read_debug)
11735 {
11736 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11737 virtual_dwo_name.c_str ());
11738 }
11739 dwo_file = (struct dwo_file *) *dwo_file_slot;
11740 }
11741
11742 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11743 dwo_unit->dwo_file = dwo_file;
11744 dwo_unit->signature = signature;
11745 dwo_unit->section =
11746 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11747 *dwo_unit->section = sections.info_or_types;
11748 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11749
11750 return dwo_unit;
11751 }
11752
11753 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11754 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11755 piece within that section used by a TU/CU, return a virtual section
11756 of just that piece. */
11757
11758 static struct dwarf2_section_info
11759 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11760 struct dwarf2_section_info *section,
11761 bfd_size_type offset, bfd_size_type size)
11762 {
11763 struct dwarf2_section_info result;
11764 asection *sectp;
11765
11766 gdb_assert (section != NULL);
11767 gdb_assert (!section->is_virtual);
11768
11769 memset (&result, 0, sizeof (result));
11770 result.s.containing_section = section;
11771 result.is_virtual = true;
11772
11773 if (size == 0)
11774 return result;
11775
11776 sectp = section->get_bfd_section ();
11777
11778 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11779 bounds of the real section. This is a pretty-rare event, so just
11780 flag an error (easier) instead of a warning and trying to cope. */
11781 if (sectp == NULL
11782 || offset + size > bfd_section_size (sectp))
11783 {
11784 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11785 " in section %s [in module %s]"),
11786 sectp ? bfd_section_name (sectp) : "<unknown>",
11787 objfile_name (dwarf2_per_objfile->objfile));
11788 }
11789
11790 result.virtual_offset = offset;
11791 result.size = size;
11792 return result;
11793 }
11794
11795 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11796 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11797 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11798 This is for DWP version 2 files. */
11799
11800 static struct dwo_unit *
11801 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11802 struct dwp_file *dwp_file,
11803 uint32_t unit_index,
11804 const char *comp_dir,
11805 ULONGEST signature, int is_debug_types)
11806 {
11807 struct objfile *objfile = dwarf2_per_objfile->objfile;
11808 const struct dwp_hash_table *dwp_htab =
11809 is_debug_types ? dwp_file->tus : dwp_file->cus;
11810 bfd *dbfd = dwp_file->dbfd.get ();
11811 const char *kind = is_debug_types ? "TU" : "CU";
11812 struct dwo_file *dwo_file;
11813 struct dwo_unit *dwo_unit;
11814 struct virtual_v2_dwo_sections sections;
11815 void **dwo_file_slot;
11816 int i;
11817
11818 gdb_assert (dwp_file->version == 2);
11819
11820 if (dwarf_read_debug)
11821 {
11822 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11823 kind,
11824 pulongest (unit_index), hex_string (signature),
11825 dwp_file->name);
11826 }
11827
11828 /* Fetch the section offsets of this DWO unit. */
11829
11830 memset (&sections, 0, sizeof (sections));
11831
11832 for (i = 0; i < dwp_htab->nr_columns; ++i)
11833 {
11834 uint32_t offset = read_4_bytes (dbfd,
11835 dwp_htab->section_pool.v2.offsets
11836 + (((unit_index - 1) * dwp_htab->nr_columns
11837 + i)
11838 * sizeof (uint32_t)));
11839 uint32_t size = read_4_bytes (dbfd,
11840 dwp_htab->section_pool.v2.sizes
11841 + (((unit_index - 1) * dwp_htab->nr_columns
11842 + i)
11843 * sizeof (uint32_t)));
11844
11845 switch (dwp_htab->section_pool.v2.section_ids[i])
11846 {
11847 case DW_SECT_INFO:
11848 case DW_SECT_TYPES:
11849 sections.info_or_types_offset = offset;
11850 sections.info_or_types_size = size;
11851 break;
11852 case DW_SECT_ABBREV:
11853 sections.abbrev_offset = offset;
11854 sections.abbrev_size = size;
11855 break;
11856 case DW_SECT_LINE:
11857 sections.line_offset = offset;
11858 sections.line_size = size;
11859 break;
11860 case DW_SECT_LOC:
11861 sections.loc_offset = offset;
11862 sections.loc_size = size;
11863 break;
11864 case DW_SECT_STR_OFFSETS:
11865 sections.str_offsets_offset = offset;
11866 sections.str_offsets_size = size;
11867 break;
11868 case DW_SECT_MACINFO:
11869 sections.macinfo_offset = offset;
11870 sections.macinfo_size = size;
11871 break;
11872 case DW_SECT_MACRO:
11873 sections.macro_offset = offset;
11874 sections.macro_size = size;
11875 break;
11876 }
11877 }
11878
11879 /* It's easier for the rest of the code if we fake a struct dwo_file and
11880 have dwo_unit "live" in that. At least for now.
11881
11882 The DWP file can be made up of a random collection of CUs and TUs.
11883 However, for each CU + set of TUs that came from the same original DWO
11884 file, we can combine them back into a virtual DWO file to save space
11885 (fewer struct dwo_file objects to allocate). Remember that for really
11886 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11887
11888 std::string virtual_dwo_name =
11889 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11890 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11891 (long) (sections.line_size ? sections.line_offset : 0),
11892 (long) (sections.loc_size ? sections.loc_offset : 0),
11893 (long) (sections.str_offsets_size
11894 ? sections.str_offsets_offset : 0));
11895 /* Can we use an existing virtual DWO file? */
11896 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11897 virtual_dwo_name.c_str (),
11898 comp_dir);
11899 /* Create one if necessary. */
11900 if (*dwo_file_slot == NULL)
11901 {
11902 if (dwarf_read_debug)
11903 {
11904 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11905 virtual_dwo_name.c_str ());
11906 }
11907 dwo_file = new struct dwo_file;
11908 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11909 dwo_file->comp_dir = comp_dir;
11910 dwo_file->sections.abbrev =
11911 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11912 sections.abbrev_offset, sections.abbrev_size);
11913 dwo_file->sections.line =
11914 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11915 sections.line_offset, sections.line_size);
11916 dwo_file->sections.loc =
11917 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11918 sections.loc_offset, sections.loc_size);
11919 dwo_file->sections.macinfo =
11920 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11921 sections.macinfo_offset, sections.macinfo_size);
11922 dwo_file->sections.macro =
11923 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11924 sections.macro_offset, sections.macro_size);
11925 dwo_file->sections.str_offsets =
11926 create_dwp_v2_section (dwarf2_per_objfile,
11927 &dwp_file->sections.str_offsets,
11928 sections.str_offsets_offset,
11929 sections.str_offsets_size);
11930 /* The "str" section is global to the entire DWP file. */
11931 dwo_file->sections.str = dwp_file->sections.str;
11932 /* The info or types section is assigned below to dwo_unit,
11933 there's no need to record it in dwo_file.
11934 Also, we can't simply record type sections in dwo_file because
11935 we record a pointer into the vector in dwo_unit. As we collect more
11936 types we'll grow the vector and eventually have to reallocate space
11937 for it, invalidating all copies of pointers into the previous
11938 contents. */
11939 *dwo_file_slot = dwo_file;
11940 }
11941 else
11942 {
11943 if (dwarf_read_debug)
11944 {
11945 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11946 virtual_dwo_name.c_str ());
11947 }
11948 dwo_file = (struct dwo_file *) *dwo_file_slot;
11949 }
11950
11951 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11952 dwo_unit->dwo_file = dwo_file;
11953 dwo_unit->signature = signature;
11954 dwo_unit->section =
11955 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11956 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11957 is_debug_types
11958 ? &dwp_file->sections.types
11959 : &dwp_file->sections.info,
11960 sections.info_or_types_offset,
11961 sections.info_or_types_size);
11962 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11963
11964 return dwo_unit;
11965 }
11966
11967 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11968 Returns NULL if the signature isn't found. */
11969
11970 static struct dwo_unit *
11971 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11972 struct dwp_file *dwp_file, const char *comp_dir,
11973 ULONGEST signature, int is_debug_types)
11974 {
11975 const struct dwp_hash_table *dwp_htab =
11976 is_debug_types ? dwp_file->tus : dwp_file->cus;
11977 bfd *dbfd = dwp_file->dbfd.get ();
11978 uint32_t mask = dwp_htab->nr_slots - 1;
11979 uint32_t hash = signature & mask;
11980 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11981 unsigned int i;
11982 void **slot;
11983 struct dwo_unit find_dwo_cu;
11984
11985 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11986 find_dwo_cu.signature = signature;
11987 slot = htab_find_slot (is_debug_types
11988 ? dwp_file->loaded_tus.get ()
11989 : dwp_file->loaded_cus.get (),
11990 &find_dwo_cu, INSERT);
11991
11992 if (*slot != NULL)
11993 return (struct dwo_unit *) *slot;
11994
11995 /* Use a for loop so that we don't loop forever on bad debug info. */
11996 for (i = 0; i < dwp_htab->nr_slots; ++i)
11997 {
11998 ULONGEST signature_in_table;
11999
12000 signature_in_table =
12001 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12002 if (signature_in_table == signature)
12003 {
12004 uint32_t unit_index =
12005 read_4_bytes (dbfd,
12006 dwp_htab->unit_table + hash * sizeof (uint32_t));
12007
12008 if (dwp_file->version == 1)
12009 {
12010 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12011 dwp_file, unit_index,
12012 comp_dir, signature,
12013 is_debug_types);
12014 }
12015 else
12016 {
12017 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12018 dwp_file, unit_index,
12019 comp_dir, signature,
12020 is_debug_types);
12021 }
12022 return (struct dwo_unit *) *slot;
12023 }
12024 if (signature_in_table == 0)
12025 return NULL;
12026 hash = (hash + hash2) & mask;
12027 }
12028
12029 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12030 " [in module %s]"),
12031 dwp_file->name);
12032 }
12033
12034 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12035 Open the file specified by FILE_NAME and hand it off to BFD for
12036 preliminary analysis. Return a newly initialized bfd *, which
12037 includes a canonicalized copy of FILE_NAME.
12038 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12039 SEARCH_CWD is true if the current directory is to be searched.
12040 It will be searched before debug-file-directory.
12041 If successful, the file is added to the bfd include table of the
12042 objfile's bfd (see gdb_bfd_record_inclusion).
12043 If unable to find/open the file, return NULL.
12044 NOTE: This function is derived from symfile_bfd_open. */
12045
12046 static gdb_bfd_ref_ptr
12047 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12048 const char *file_name, int is_dwp, int search_cwd)
12049 {
12050 int desc;
12051 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12052 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12053 to debug_file_directory. */
12054 const char *search_path;
12055 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12056
12057 gdb::unique_xmalloc_ptr<char> search_path_holder;
12058 if (search_cwd)
12059 {
12060 if (*debug_file_directory != '\0')
12061 {
12062 search_path_holder.reset (concat (".", dirname_separator_string,
12063 debug_file_directory,
12064 (char *) NULL));
12065 search_path = search_path_holder.get ();
12066 }
12067 else
12068 search_path = ".";
12069 }
12070 else
12071 search_path = debug_file_directory;
12072
12073 openp_flags flags = OPF_RETURN_REALPATH;
12074 if (is_dwp)
12075 flags |= OPF_SEARCH_IN_PATH;
12076
12077 gdb::unique_xmalloc_ptr<char> absolute_name;
12078 desc = openp (search_path, flags, file_name,
12079 O_RDONLY | O_BINARY, &absolute_name);
12080 if (desc < 0)
12081 return NULL;
12082
12083 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12084 gnutarget, desc));
12085 if (sym_bfd == NULL)
12086 return NULL;
12087 bfd_set_cacheable (sym_bfd.get (), 1);
12088
12089 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12090 return NULL;
12091
12092 /* Success. Record the bfd as having been included by the objfile's bfd.
12093 This is important because things like demangled_names_hash lives in the
12094 objfile's per_bfd space and may have references to things like symbol
12095 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12096 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12097
12098 return sym_bfd;
12099 }
12100
12101 /* Try to open DWO file FILE_NAME.
12102 COMP_DIR is the DW_AT_comp_dir attribute.
12103 The result is the bfd handle of the file.
12104 If there is a problem finding or opening the file, return NULL.
12105 Upon success, the canonicalized path of the file is stored in the bfd,
12106 same as symfile_bfd_open. */
12107
12108 static gdb_bfd_ref_ptr
12109 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12110 const char *file_name, const char *comp_dir)
12111 {
12112 if (IS_ABSOLUTE_PATH (file_name))
12113 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12114 0 /*is_dwp*/, 0 /*search_cwd*/);
12115
12116 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12117
12118 if (comp_dir != NULL)
12119 {
12120 gdb::unique_xmalloc_ptr<char> path_to_try
12121 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12122
12123 /* NOTE: If comp_dir is a relative path, this will also try the
12124 search path, which seems useful. */
12125 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12126 path_to_try.get (),
12127 0 /*is_dwp*/,
12128 1 /*search_cwd*/));
12129 if (abfd != NULL)
12130 return abfd;
12131 }
12132
12133 /* That didn't work, try debug-file-directory, which, despite its name,
12134 is a list of paths. */
12135
12136 if (*debug_file_directory == '\0')
12137 return NULL;
12138
12139 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12140 0 /*is_dwp*/, 1 /*search_cwd*/);
12141 }
12142
12143 /* This function is mapped across the sections and remembers the offset and
12144 size of each of the DWO debugging sections we are interested in. */
12145
12146 static void
12147 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12148 {
12149 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12150 const struct dwop_section_names *names = &dwop_section_names;
12151
12152 if (section_is_p (sectp->name, &names->abbrev_dwo))
12153 {
12154 dwo_sections->abbrev.s.section = sectp;
12155 dwo_sections->abbrev.size = bfd_section_size (sectp);
12156 }
12157 else if (section_is_p (sectp->name, &names->info_dwo))
12158 {
12159 dwo_sections->info.s.section = sectp;
12160 dwo_sections->info.size = bfd_section_size (sectp);
12161 }
12162 else if (section_is_p (sectp->name, &names->line_dwo))
12163 {
12164 dwo_sections->line.s.section = sectp;
12165 dwo_sections->line.size = bfd_section_size (sectp);
12166 }
12167 else if (section_is_p (sectp->name, &names->loc_dwo))
12168 {
12169 dwo_sections->loc.s.section = sectp;
12170 dwo_sections->loc.size = bfd_section_size (sectp);
12171 }
12172 else if (section_is_p (sectp->name, &names->loclists_dwo))
12173 {
12174 dwo_sections->loclists.s.section = sectp;
12175 dwo_sections->loclists.size = bfd_section_size (sectp);
12176 }
12177 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12178 {
12179 dwo_sections->macinfo.s.section = sectp;
12180 dwo_sections->macinfo.size = bfd_section_size (sectp);
12181 }
12182 else if (section_is_p (sectp->name, &names->macro_dwo))
12183 {
12184 dwo_sections->macro.s.section = sectp;
12185 dwo_sections->macro.size = bfd_section_size (sectp);
12186 }
12187 else if (section_is_p (sectp->name, &names->str_dwo))
12188 {
12189 dwo_sections->str.s.section = sectp;
12190 dwo_sections->str.size = bfd_section_size (sectp);
12191 }
12192 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12193 {
12194 dwo_sections->str_offsets.s.section = sectp;
12195 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12196 }
12197 else if (section_is_p (sectp->name, &names->types_dwo))
12198 {
12199 struct dwarf2_section_info type_section;
12200
12201 memset (&type_section, 0, sizeof (type_section));
12202 type_section.s.section = sectp;
12203 type_section.size = bfd_section_size (sectp);
12204 dwo_sections->types.push_back (type_section);
12205 }
12206 }
12207
12208 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12209 by PER_CU. This is for the non-DWP case.
12210 The result is NULL if DWO_NAME can't be found. */
12211
12212 static struct dwo_file *
12213 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12214 const char *dwo_name, const char *comp_dir)
12215 {
12216 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12217
12218 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12219 if (dbfd == NULL)
12220 {
12221 if (dwarf_read_debug)
12222 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12223 return NULL;
12224 }
12225
12226 dwo_file_up dwo_file (new struct dwo_file);
12227 dwo_file->dwo_name = dwo_name;
12228 dwo_file->comp_dir = comp_dir;
12229 dwo_file->dbfd = std::move (dbfd);
12230
12231 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12232 &dwo_file->sections);
12233
12234 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12235 dwo_file->sections.info, dwo_file->cus);
12236
12237 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12238 dwo_file->sections.types, dwo_file->tus);
12239
12240 if (dwarf_read_debug)
12241 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12242
12243 return dwo_file.release ();
12244 }
12245
12246 /* This function is mapped across the sections and remembers the offset and
12247 size of each of the DWP debugging sections common to version 1 and 2 that
12248 we are interested in. */
12249
12250 static void
12251 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12252 void *dwp_file_ptr)
12253 {
12254 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12255 const struct dwop_section_names *names = &dwop_section_names;
12256 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12257
12258 /* Record the ELF section number for later lookup: this is what the
12259 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12260 gdb_assert (elf_section_nr < dwp_file->num_sections);
12261 dwp_file->elf_sections[elf_section_nr] = sectp;
12262
12263 /* Look for specific sections that we need. */
12264 if (section_is_p (sectp->name, &names->str_dwo))
12265 {
12266 dwp_file->sections.str.s.section = sectp;
12267 dwp_file->sections.str.size = bfd_section_size (sectp);
12268 }
12269 else if (section_is_p (sectp->name, &names->cu_index))
12270 {
12271 dwp_file->sections.cu_index.s.section = sectp;
12272 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12273 }
12274 else if (section_is_p (sectp->name, &names->tu_index))
12275 {
12276 dwp_file->sections.tu_index.s.section = sectp;
12277 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12278 }
12279 }
12280
12281 /* This function is mapped across the sections and remembers the offset and
12282 size of each of the DWP version 2 debugging sections that we are interested
12283 in. This is split into a separate function because we don't know if we
12284 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12285
12286 static void
12287 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12288 {
12289 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12290 const struct dwop_section_names *names = &dwop_section_names;
12291 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12292
12293 /* Record the ELF section number for later lookup: this is what the
12294 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12295 gdb_assert (elf_section_nr < dwp_file->num_sections);
12296 dwp_file->elf_sections[elf_section_nr] = sectp;
12297
12298 /* Look for specific sections that we need. */
12299 if (section_is_p (sectp->name, &names->abbrev_dwo))
12300 {
12301 dwp_file->sections.abbrev.s.section = sectp;
12302 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12303 }
12304 else if (section_is_p (sectp->name, &names->info_dwo))
12305 {
12306 dwp_file->sections.info.s.section = sectp;
12307 dwp_file->sections.info.size = bfd_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->line_dwo))
12310 {
12311 dwp_file->sections.line.s.section = sectp;
12312 dwp_file->sections.line.size = bfd_section_size (sectp);
12313 }
12314 else if (section_is_p (sectp->name, &names->loc_dwo))
12315 {
12316 dwp_file->sections.loc.s.section = sectp;
12317 dwp_file->sections.loc.size = bfd_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12320 {
12321 dwp_file->sections.macinfo.s.section = sectp;
12322 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12323 }
12324 else if (section_is_p (sectp->name, &names->macro_dwo))
12325 {
12326 dwp_file->sections.macro.s.section = sectp;
12327 dwp_file->sections.macro.size = bfd_section_size (sectp);
12328 }
12329 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12330 {
12331 dwp_file->sections.str_offsets.s.section = sectp;
12332 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12333 }
12334 else if (section_is_p (sectp->name, &names->types_dwo))
12335 {
12336 dwp_file->sections.types.s.section = sectp;
12337 dwp_file->sections.types.size = bfd_section_size (sectp);
12338 }
12339 }
12340
12341 /* Hash function for dwp_file loaded CUs/TUs. */
12342
12343 static hashval_t
12344 hash_dwp_loaded_cutus (const void *item)
12345 {
12346 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12347
12348 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12349 return dwo_unit->signature;
12350 }
12351
12352 /* Equality function for dwp_file loaded CUs/TUs. */
12353
12354 static int
12355 eq_dwp_loaded_cutus (const void *a, const void *b)
12356 {
12357 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12358 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12359
12360 return dua->signature == dub->signature;
12361 }
12362
12363 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12364
12365 static htab_up
12366 allocate_dwp_loaded_cutus_table ()
12367 {
12368 return htab_up (htab_create_alloc (3,
12369 hash_dwp_loaded_cutus,
12370 eq_dwp_loaded_cutus,
12371 NULL, xcalloc, xfree));
12372 }
12373
12374 /* Try to open DWP file FILE_NAME.
12375 The result is the bfd handle of the file.
12376 If there is a problem finding or opening the file, return NULL.
12377 Upon success, the canonicalized path of the file is stored in the bfd,
12378 same as symfile_bfd_open. */
12379
12380 static gdb_bfd_ref_ptr
12381 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12382 const char *file_name)
12383 {
12384 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12385 1 /*is_dwp*/,
12386 1 /*search_cwd*/));
12387 if (abfd != NULL)
12388 return abfd;
12389
12390 /* Work around upstream bug 15652.
12391 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12392 [Whether that's a "bug" is debatable, but it is getting in our way.]
12393 We have no real idea where the dwp file is, because gdb's realpath-ing
12394 of the executable's path may have discarded the needed info.
12395 [IWBN if the dwp file name was recorded in the executable, akin to
12396 .gnu_debuglink, but that doesn't exist yet.]
12397 Strip the directory from FILE_NAME and search again. */
12398 if (*debug_file_directory != '\0')
12399 {
12400 /* Don't implicitly search the current directory here.
12401 If the user wants to search "." to handle this case,
12402 it must be added to debug-file-directory. */
12403 return try_open_dwop_file (dwarf2_per_objfile,
12404 lbasename (file_name), 1 /*is_dwp*/,
12405 0 /*search_cwd*/);
12406 }
12407
12408 return NULL;
12409 }
12410
12411 /* Initialize the use of the DWP file for the current objfile.
12412 By convention the name of the DWP file is ${objfile}.dwp.
12413 The result is NULL if it can't be found. */
12414
12415 static std::unique_ptr<struct dwp_file>
12416 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12417 {
12418 struct objfile *objfile = dwarf2_per_objfile->objfile;
12419
12420 /* Try to find first .dwp for the binary file before any symbolic links
12421 resolving. */
12422
12423 /* If the objfile is a debug file, find the name of the real binary
12424 file and get the name of dwp file from there. */
12425 std::string dwp_name;
12426 if (objfile->separate_debug_objfile_backlink != NULL)
12427 {
12428 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12429 const char *backlink_basename = lbasename (backlink->original_name);
12430
12431 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12432 }
12433 else
12434 dwp_name = objfile->original_name;
12435
12436 dwp_name += ".dwp";
12437
12438 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12439 if (dbfd == NULL
12440 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12441 {
12442 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12443 dwp_name = objfile_name (objfile);
12444 dwp_name += ".dwp";
12445 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12446 }
12447
12448 if (dbfd == NULL)
12449 {
12450 if (dwarf_read_debug)
12451 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12452 return std::unique_ptr<dwp_file> ();
12453 }
12454
12455 const char *name = bfd_get_filename (dbfd.get ());
12456 std::unique_ptr<struct dwp_file> dwp_file
12457 (new struct dwp_file (name, std::move (dbfd)));
12458
12459 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12460 dwp_file->elf_sections =
12461 OBSTACK_CALLOC (&objfile->objfile_obstack,
12462 dwp_file->num_sections, asection *);
12463
12464 bfd_map_over_sections (dwp_file->dbfd.get (),
12465 dwarf2_locate_common_dwp_sections,
12466 dwp_file.get ());
12467
12468 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12469 0);
12470
12471 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12472 1);
12473
12474 /* The DWP file version is stored in the hash table. Oh well. */
12475 if (dwp_file->cus && dwp_file->tus
12476 && dwp_file->cus->version != dwp_file->tus->version)
12477 {
12478 /* Technically speaking, we should try to limp along, but this is
12479 pretty bizarre. We use pulongest here because that's the established
12480 portability solution (e.g, we cannot use %u for uint32_t). */
12481 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12482 " TU version %s [in DWP file %s]"),
12483 pulongest (dwp_file->cus->version),
12484 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12485 }
12486
12487 if (dwp_file->cus)
12488 dwp_file->version = dwp_file->cus->version;
12489 else if (dwp_file->tus)
12490 dwp_file->version = dwp_file->tus->version;
12491 else
12492 dwp_file->version = 2;
12493
12494 if (dwp_file->version == 2)
12495 bfd_map_over_sections (dwp_file->dbfd.get (),
12496 dwarf2_locate_v2_dwp_sections,
12497 dwp_file.get ());
12498
12499 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12500 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12501
12502 if (dwarf_read_debug)
12503 {
12504 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12505 fprintf_unfiltered (gdb_stdlog,
12506 " %s CUs, %s TUs\n",
12507 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12508 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12509 }
12510
12511 return dwp_file;
12512 }
12513
12514 /* Wrapper around open_and_init_dwp_file, only open it once. */
12515
12516 static struct dwp_file *
12517 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12518 {
12519 if (! dwarf2_per_objfile->dwp_checked)
12520 {
12521 dwarf2_per_objfile->dwp_file
12522 = open_and_init_dwp_file (dwarf2_per_objfile);
12523 dwarf2_per_objfile->dwp_checked = 1;
12524 }
12525 return dwarf2_per_objfile->dwp_file.get ();
12526 }
12527
12528 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12529 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12530 or in the DWP file for the objfile, referenced by THIS_UNIT.
12531 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12532 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12533
12534 This is called, for example, when wanting to read a variable with a
12535 complex location. Therefore we don't want to do file i/o for every call.
12536 Therefore we don't want to look for a DWO file on every call.
12537 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12538 then we check if we've already seen DWO_NAME, and only THEN do we check
12539 for a DWO file.
12540
12541 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12542 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12543
12544 static struct dwo_unit *
12545 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12546 const char *dwo_name, const char *comp_dir,
12547 ULONGEST signature, int is_debug_types)
12548 {
12549 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12550 struct objfile *objfile = dwarf2_per_objfile->objfile;
12551 const char *kind = is_debug_types ? "TU" : "CU";
12552 void **dwo_file_slot;
12553 struct dwo_file *dwo_file;
12554 struct dwp_file *dwp_file;
12555
12556 /* First see if there's a DWP file.
12557 If we have a DWP file but didn't find the DWO inside it, don't
12558 look for the original DWO file. It makes gdb behave differently
12559 depending on whether one is debugging in the build tree. */
12560
12561 dwp_file = get_dwp_file (dwarf2_per_objfile);
12562 if (dwp_file != NULL)
12563 {
12564 const struct dwp_hash_table *dwp_htab =
12565 is_debug_types ? dwp_file->tus : dwp_file->cus;
12566
12567 if (dwp_htab != NULL)
12568 {
12569 struct dwo_unit *dwo_cutu =
12570 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12571 signature, is_debug_types);
12572
12573 if (dwo_cutu != NULL)
12574 {
12575 if (dwarf_read_debug)
12576 {
12577 fprintf_unfiltered (gdb_stdlog,
12578 "Virtual DWO %s %s found: @%s\n",
12579 kind, hex_string (signature),
12580 host_address_to_string (dwo_cutu));
12581 }
12582 return dwo_cutu;
12583 }
12584 }
12585 }
12586 else
12587 {
12588 /* No DWP file, look for the DWO file. */
12589
12590 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12591 dwo_name, comp_dir);
12592 if (*dwo_file_slot == NULL)
12593 {
12594 /* Read in the file and build a table of the CUs/TUs it contains. */
12595 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12596 }
12597 /* NOTE: This will be NULL if unable to open the file. */
12598 dwo_file = (struct dwo_file *) *dwo_file_slot;
12599
12600 if (dwo_file != NULL)
12601 {
12602 struct dwo_unit *dwo_cutu = NULL;
12603
12604 if (is_debug_types && dwo_file->tus)
12605 {
12606 struct dwo_unit find_dwo_cutu;
12607
12608 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12609 find_dwo_cutu.signature = signature;
12610 dwo_cutu
12611 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12612 &find_dwo_cutu);
12613 }
12614 else if (!is_debug_types && dwo_file->cus)
12615 {
12616 struct dwo_unit find_dwo_cutu;
12617
12618 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12619 find_dwo_cutu.signature = signature;
12620 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12621 &find_dwo_cutu);
12622 }
12623
12624 if (dwo_cutu != NULL)
12625 {
12626 if (dwarf_read_debug)
12627 {
12628 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12629 kind, dwo_name, hex_string (signature),
12630 host_address_to_string (dwo_cutu));
12631 }
12632 return dwo_cutu;
12633 }
12634 }
12635 }
12636
12637 /* We didn't find it. This could mean a dwo_id mismatch, or
12638 someone deleted the DWO/DWP file, or the search path isn't set up
12639 correctly to find the file. */
12640
12641 if (dwarf_read_debug)
12642 {
12643 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12644 kind, dwo_name, hex_string (signature));
12645 }
12646
12647 /* This is a warning and not a complaint because it can be caused by
12648 pilot error (e.g., user accidentally deleting the DWO). */
12649 {
12650 /* Print the name of the DWP file if we looked there, helps the user
12651 better diagnose the problem. */
12652 std::string dwp_text;
12653
12654 if (dwp_file != NULL)
12655 dwp_text = string_printf (" [in DWP file %s]",
12656 lbasename (dwp_file->name));
12657
12658 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12659 " [in module %s]"),
12660 kind, dwo_name, hex_string (signature),
12661 dwp_text.c_str (),
12662 this_unit->is_debug_types ? "TU" : "CU",
12663 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12664 }
12665 return NULL;
12666 }
12667
12668 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12669 See lookup_dwo_cutu_unit for details. */
12670
12671 static struct dwo_unit *
12672 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12673 const char *dwo_name, const char *comp_dir,
12674 ULONGEST signature)
12675 {
12676 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12677 }
12678
12679 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12680 See lookup_dwo_cutu_unit for details. */
12681
12682 static struct dwo_unit *
12683 lookup_dwo_type_unit (struct signatured_type *this_tu,
12684 const char *dwo_name, const char *comp_dir)
12685 {
12686 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12687 }
12688
12689 /* Traversal function for queue_and_load_all_dwo_tus. */
12690
12691 static int
12692 queue_and_load_dwo_tu (void **slot, void *info)
12693 {
12694 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12695 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12696 ULONGEST signature = dwo_unit->signature;
12697 struct signatured_type *sig_type =
12698 lookup_dwo_signatured_type (per_cu->cu, signature);
12699
12700 if (sig_type != NULL)
12701 {
12702 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12703
12704 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12705 a real dependency of PER_CU on SIG_TYPE. That is detected later
12706 while processing PER_CU. */
12707 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12708 load_full_type_unit (sig_cu);
12709 per_cu->imported_symtabs_push (sig_cu);
12710 }
12711
12712 return 1;
12713 }
12714
12715 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12716 The DWO may have the only definition of the type, though it may not be
12717 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12718 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12719
12720 static void
12721 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12722 {
12723 struct dwo_unit *dwo_unit;
12724 struct dwo_file *dwo_file;
12725
12726 gdb_assert (!per_cu->is_debug_types);
12727 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12728 gdb_assert (per_cu->cu != NULL);
12729
12730 dwo_unit = per_cu->cu->dwo_unit;
12731 gdb_assert (dwo_unit != NULL);
12732
12733 dwo_file = dwo_unit->dwo_file;
12734 if (dwo_file->tus != NULL)
12735 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12736 per_cu);
12737 }
12738
12739 /* Read in various DIEs. */
12740
12741 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12742 Inherit only the children of the DW_AT_abstract_origin DIE not being
12743 already referenced by DW_AT_abstract_origin from the children of the
12744 current DIE. */
12745
12746 static void
12747 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12748 {
12749 struct die_info *child_die;
12750 sect_offset *offsetp;
12751 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12752 struct die_info *origin_die;
12753 /* Iterator of the ORIGIN_DIE children. */
12754 struct die_info *origin_child_die;
12755 struct attribute *attr;
12756 struct dwarf2_cu *origin_cu;
12757 struct pending **origin_previous_list_in_scope;
12758
12759 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12760 if (!attr)
12761 return;
12762
12763 /* Note that following die references may follow to a die in a
12764 different cu. */
12765
12766 origin_cu = cu;
12767 origin_die = follow_die_ref (die, attr, &origin_cu);
12768
12769 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12770 symbols in. */
12771 origin_previous_list_in_scope = origin_cu->list_in_scope;
12772 origin_cu->list_in_scope = cu->list_in_scope;
12773
12774 if (die->tag != origin_die->tag
12775 && !(die->tag == DW_TAG_inlined_subroutine
12776 && origin_die->tag == DW_TAG_subprogram))
12777 complaint (_("DIE %s and its abstract origin %s have different tags"),
12778 sect_offset_str (die->sect_off),
12779 sect_offset_str (origin_die->sect_off));
12780
12781 std::vector<sect_offset> offsets;
12782
12783 for (child_die = die->child;
12784 child_die && child_die->tag;
12785 child_die = child_die->sibling)
12786 {
12787 struct die_info *child_origin_die;
12788 struct dwarf2_cu *child_origin_cu;
12789
12790 /* We are trying to process concrete instance entries:
12791 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12792 it's not relevant to our analysis here. i.e. detecting DIEs that are
12793 present in the abstract instance but not referenced in the concrete
12794 one. */
12795 if (child_die->tag == DW_TAG_call_site
12796 || child_die->tag == DW_TAG_GNU_call_site)
12797 continue;
12798
12799 /* For each CHILD_DIE, find the corresponding child of
12800 ORIGIN_DIE. If there is more than one layer of
12801 DW_AT_abstract_origin, follow them all; there shouldn't be,
12802 but GCC versions at least through 4.4 generate this (GCC PR
12803 40573). */
12804 child_origin_die = child_die;
12805 child_origin_cu = cu;
12806 while (1)
12807 {
12808 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12809 child_origin_cu);
12810 if (attr == NULL)
12811 break;
12812 child_origin_die = follow_die_ref (child_origin_die, attr,
12813 &child_origin_cu);
12814 }
12815
12816 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12817 counterpart may exist. */
12818 if (child_origin_die != child_die)
12819 {
12820 if (child_die->tag != child_origin_die->tag
12821 && !(child_die->tag == DW_TAG_inlined_subroutine
12822 && child_origin_die->tag == DW_TAG_subprogram))
12823 complaint (_("Child DIE %s and its abstract origin %s have "
12824 "different tags"),
12825 sect_offset_str (child_die->sect_off),
12826 sect_offset_str (child_origin_die->sect_off));
12827 if (child_origin_die->parent != origin_die)
12828 complaint (_("Child DIE %s and its abstract origin %s have "
12829 "different parents"),
12830 sect_offset_str (child_die->sect_off),
12831 sect_offset_str (child_origin_die->sect_off));
12832 else
12833 offsets.push_back (child_origin_die->sect_off);
12834 }
12835 }
12836 std::sort (offsets.begin (), offsets.end ());
12837 sect_offset *offsets_end = offsets.data () + offsets.size ();
12838 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12839 if (offsetp[-1] == *offsetp)
12840 complaint (_("Multiple children of DIE %s refer "
12841 "to DIE %s as their abstract origin"),
12842 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12843
12844 offsetp = offsets.data ();
12845 origin_child_die = origin_die->child;
12846 while (origin_child_die && origin_child_die->tag)
12847 {
12848 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12849 while (offsetp < offsets_end
12850 && *offsetp < origin_child_die->sect_off)
12851 offsetp++;
12852 if (offsetp >= offsets_end
12853 || *offsetp > origin_child_die->sect_off)
12854 {
12855 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12856 Check whether we're already processing ORIGIN_CHILD_DIE.
12857 This can happen with mutually referenced abstract_origins.
12858 PR 16581. */
12859 if (!origin_child_die->in_process)
12860 process_die (origin_child_die, origin_cu);
12861 }
12862 origin_child_die = origin_child_die->sibling;
12863 }
12864 origin_cu->list_in_scope = origin_previous_list_in_scope;
12865
12866 if (cu != origin_cu)
12867 compute_delayed_physnames (origin_cu);
12868 }
12869
12870 static void
12871 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12872 {
12873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12874 struct gdbarch *gdbarch = objfile->arch ();
12875 struct context_stack *newobj;
12876 CORE_ADDR lowpc;
12877 CORE_ADDR highpc;
12878 struct die_info *child_die;
12879 struct attribute *attr, *call_line, *call_file;
12880 const char *name;
12881 CORE_ADDR baseaddr;
12882 struct block *block;
12883 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12884 std::vector<struct symbol *> template_args;
12885 struct template_symbol *templ_func = NULL;
12886
12887 if (inlined_func)
12888 {
12889 /* If we do not have call site information, we can't show the
12890 caller of this inlined function. That's too confusing, so
12891 only use the scope for local variables. */
12892 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12893 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12894 if (call_line == NULL || call_file == NULL)
12895 {
12896 read_lexical_block_scope (die, cu);
12897 return;
12898 }
12899 }
12900
12901 baseaddr = objfile->text_section_offset ();
12902
12903 name = dwarf2_name (die, cu);
12904
12905 /* Ignore functions with missing or empty names. These are actually
12906 illegal according to the DWARF standard. */
12907 if (name == NULL)
12908 {
12909 complaint (_("missing name for subprogram DIE at %s"),
12910 sect_offset_str (die->sect_off));
12911 return;
12912 }
12913
12914 /* Ignore functions with missing or invalid low and high pc attributes. */
12915 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12916 <= PC_BOUNDS_INVALID)
12917 {
12918 attr = dwarf2_attr (die, DW_AT_external, cu);
12919 if (!attr || !DW_UNSND (attr))
12920 complaint (_("cannot get low and high bounds "
12921 "for subprogram DIE at %s"),
12922 sect_offset_str (die->sect_off));
12923 return;
12924 }
12925
12926 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12927 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12928
12929 /* If we have any template arguments, then we must allocate a
12930 different sort of symbol. */
12931 for (child_die = die->child; child_die; child_die = child_die->sibling)
12932 {
12933 if (child_die->tag == DW_TAG_template_type_param
12934 || child_die->tag == DW_TAG_template_value_param)
12935 {
12936 templ_func = allocate_template_symbol (objfile);
12937 templ_func->subclass = SYMBOL_TEMPLATE;
12938 break;
12939 }
12940 }
12941
12942 newobj = cu->get_builder ()->push_context (0, lowpc);
12943 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12944 (struct symbol *) templ_func);
12945
12946 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12947 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12948 cu->language);
12949
12950 /* If there is a location expression for DW_AT_frame_base, record
12951 it. */
12952 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12953 if (attr != nullptr)
12954 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12955
12956 /* If there is a location for the static link, record it. */
12957 newobj->static_link = NULL;
12958 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12959 if (attr != nullptr)
12960 {
12961 newobj->static_link
12962 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12963 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12964 cu->per_cu->addr_type ());
12965 }
12966
12967 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12968
12969 if (die->child != NULL)
12970 {
12971 child_die = die->child;
12972 while (child_die && child_die->tag)
12973 {
12974 if (child_die->tag == DW_TAG_template_type_param
12975 || child_die->tag == DW_TAG_template_value_param)
12976 {
12977 struct symbol *arg = new_symbol (child_die, NULL, cu);
12978
12979 if (arg != NULL)
12980 template_args.push_back (arg);
12981 }
12982 else
12983 process_die (child_die, cu);
12984 child_die = child_die->sibling;
12985 }
12986 }
12987
12988 inherit_abstract_dies (die, cu);
12989
12990 /* If we have a DW_AT_specification, we might need to import using
12991 directives from the context of the specification DIE. See the
12992 comment in determine_prefix. */
12993 if (cu->language == language_cplus
12994 && dwarf2_attr (die, DW_AT_specification, cu))
12995 {
12996 struct dwarf2_cu *spec_cu = cu;
12997 struct die_info *spec_die = die_specification (die, &spec_cu);
12998
12999 while (spec_die)
13000 {
13001 child_die = spec_die->child;
13002 while (child_die && child_die->tag)
13003 {
13004 if (child_die->tag == DW_TAG_imported_module)
13005 process_die (child_die, spec_cu);
13006 child_die = child_die->sibling;
13007 }
13008
13009 /* In some cases, GCC generates specification DIEs that
13010 themselves contain DW_AT_specification attributes. */
13011 spec_die = die_specification (spec_die, &spec_cu);
13012 }
13013 }
13014
13015 struct context_stack cstk = cu->get_builder ()->pop_context ();
13016 /* Make a block for the local symbols within. */
13017 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13018 cstk.static_link, lowpc, highpc);
13019
13020 /* For C++, set the block's scope. */
13021 if ((cu->language == language_cplus
13022 || cu->language == language_fortran
13023 || cu->language == language_d
13024 || cu->language == language_rust)
13025 && cu->processing_has_namespace_info)
13026 block_set_scope (block, determine_prefix (die, cu),
13027 &objfile->objfile_obstack);
13028
13029 /* If we have address ranges, record them. */
13030 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13031
13032 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13033
13034 /* Attach template arguments to function. */
13035 if (!template_args.empty ())
13036 {
13037 gdb_assert (templ_func != NULL);
13038
13039 templ_func->n_template_arguments = template_args.size ();
13040 templ_func->template_arguments
13041 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13042 templ_func->n_template_arguments);
13043 memcpy (templ_func->template_arguments,
13044 template_args.data (),
13045 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13046
13047 /* Make sure that the symtab is set on the new symbols. Even
13048 though they don't appear in this symtab directly, other parts
13049 of gdb assume that symbols do, and this is reasonably
13050 true. */
13051 for (symbol *sym : template_args)
13052 symbol_set_symtab (sym, symbol_symtab (templ_func));
13053 }
13054
13055 /* In C++, we can have functions nested inside functions (e.g., when
13056 a function declares a class that has methods). This means that
13057 when we finish processing a function scope, we may need to go
13058 back to building a containing block's symbol lists. */
13059 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13060 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13061
13062 /* If we've finished processing a top-level function, subsequent
13063 symbols go in the file symbol list. */
13064 if (cu->get_builder ()->outermost_context_p ())
13065 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13066 }
13067
13068 /* Process all the DIES contained within a lexical block scope. Start
13069 a new scope, process the dies, and then close the scope. */
13070
13071 static void
13072 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13073 {
13074 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13075 struct gdbarch *gdbarch = objfile->arch ();
13076 CORE_ADDR lowpc, highpc;
13077 struct die_info *child_die;
13078 CORE_ADDR baseaddr;
13079
13080 baseaddr = objfile->text_section_offset ();
13081
13082 /* Ignore blocks with missing or invalid low and high pc attributes. */
13083 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13084 as multiple lexical blocks? Handling children in a sane way would
13085 be nasty. Might be easier to properly extend generic blocks to
13086 describe ranges. */
13087 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13088 {
13089 case PC_BOUNDS_NOT_PRESENT:
13090 /* DW_TAG_lexical_block has no attributes, process its children as if
13091 there was no wrapping by that DW_TAG_lexical_block.
13092 GCC does no longer produces such DWARF since GCC r224161. */
13093 for (child_die = die->child;
13094 child_die != NULL && child_die->tag;
13095 child_die = child_die->sibling)
13096 process_die (child_die, cu);
13097 return;
13098 case PC_BOUNDS_INVALID:
13099 return;
13100 }
13101 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13102 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13103
13104 cu->get_builder ()->push_context (0, lowpc);
13105 if (die->child != NULL)
13106 {
13107 child_die = die->child;
13108 while (child_die && child_die->tag)
13109 {
13110 process_die (child_die, cu);
13111 child_die = child_die->sibling;
13112 }
13113 }
13114 inherit_abstract_dies (die, cu);
13115 struct context_stack cstk = cu->get_builder ()->pop_context ();
13116
13117 if (*cu->get_builder ()->get_local_symbols () != NULL
13118 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13119 {
13120 struct block *block
13121 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13122 cstk.start_addr, highpc);
13123
13124 /* Note that recording ranges after traversing children, as we
13125 do here, means that recording a parent's ranges entails
13126 walking across all its children's ranges as they appear in
13127 the address map, which is quadratic behavior.
13128
13129 It would be nicer to record the parent's ranges before
13130 traversing its children, simply overriding whatever you find
13131 there. But since we don't even decide whether to create a
13132 block until after we've traversed its children, that's hard
13133 to do. */
13134 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13135 }
13136 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13137 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13138 }
13139
13140 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13141
13142 static void
13143 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13144 {
13145 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13146 struct gdbarch *gdbarch = objfile->arch ();
13147 CORE_ADDR pc, baseaddr;
13148 struct attribute *attr;
13149 struct call_site *call_site, call_site_local;
13150 void **slot;
13151 int nparams;
13152 struct die_info *child_die;
13153
13154 baseaddr = objfile->text_section_offset ();
13155
13156 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13157 if (attr == NULL)
13158 {
13159 /* This was a pre-DWARF-5 GNU extension alias
13160 for DW_AT_call_return_pc. */
13161 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13162 }
13163 if (!attr)
13164 {
13165 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13166 "DIE %s [in module %s]"),
13167 sect_offset_str (die->sect_off), objfile_name (objfile));
13168 return;
13169 }
13170 pc = attr->value_as_address () + baseaddr;
13171 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13172
13173 if (cu->call_site_htab == NULL)
13174 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13175 NULL, &objfile->objfile_obstack,
13176 hashtab_obstack_allocate, NULL);
13177 call_site_local.pc = pc;
13178 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13179 if (*slot != NULL)
13180 {
13181 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13182 "DIE %s [in module %s]"),
13183 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13184 objfile_name (objfile));
13185 return;
13186 }
13187
13188 /* Count parameters at the caller. */
13189
13190 nparams = 0;
13191 for (child_die = die->child; child_die && child_die->tag;
13192 child_die = child_die->sibling)
13193 {
13194 if (child_die->tag != DW_TAG_call_site_parameter
13195 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13196 {
13197 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13198 "DW_TAG_call_site child DIE %s [in module %s]"),
13199 child_die->tag, sect_offset_str (child_die->sect_off),
13200 objfile_name (objfile));
13201 continue;
13202 }
13203
13204 nparams++;
13205 }
13206
13207 call_site
13208 = ((struct call_site *)
13209 obstack_alloc (&objfile->objfile_obstack,
13210 sizeof (*call_site)
13211 + (sizeof (*call_site->parameter) * (nparams - 1))));
13212 *slot = call_site;
13213 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13214 call_site->pc = pc;
13215
13216 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13217 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13218 {
13219 struct die_info *func_die;
13220
13221 /* Skip also over DW_TAG_inlined_subroutine. */
13222 for (func_die = die->parent;
13223 func_die && func_die->tag != DW_TAG_subprogram
13224 && func_die->tag != DW_TAG_subroutine_type;
13225 func_die = func_die->parent);
13226
13227 /* DW_AT_call_all_calls is a superset
13228 of DW_AT_call_all_tail_calls. */
13229 if (func_die
13230 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13231 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13232 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13233 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13234 {
13235 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13236 not complete. But keep CALL_SITE for look ups via call_site_htab,
13237 both the initial caller containing the real return address PC and
13238 the final callee containing the current PC of a chain of tail
13239 calls do not need to have the tail call list complete. But any
13240 function candidate for a virtual tail call frame searched via
13241 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13242 determined unambiguously. */
13243 }
13244 else
13245 {
13246 struct type *func_type = NULL;
13247
13248 if (func_die)
13249 func_type = get_die_type (func_die, cu);
13250 if (func_type != NULL)
13251 {
13252 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13253
13254 /* Enlist this call site to the function. */
13255 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13256 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13257 }
13258 else
13259 complaint (_("Cannot find function owning DW_TAG_call_site "
13260 "DIE %s [in module %s]"),
13261 sect_offset_str (die->sect_off), objfile_name (objfile));
13262 }
13263 }
13264
13265 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13266 if (attr == NULL)
13267 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13268 if (attr == NULL)
13269 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13270 if (attr == NULL)
13271 {
13272 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13273 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13274 }
13275 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13276 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13277 /* Keep NULL DWARF_BLOCK. */;
13278 else if (attr->form_is_block ())
13279 {
13280 struct dwarf2_locexpr_baton *dlbaton;
13281
13282 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13283 dlbaton->data = DW_BLOCK (attr)->data;
13284 dlbaton->size = DW_BLOCK (attr)->size;
13285 dlbaton->per_cu = cu->per_cu;
13286
13287 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13288 }
13289 else if (attr->form_is_ref ())
13290 {
13291 struct dwarf2_cu *target_cu = cu;
13292 struct die_info *target_die;
13293
13294 target_die = follow_die_ref (die, attr, &target_cu);
13295 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13296 if (die_is_declaration (target_die, target_cu))
13297 {
13298 const char *target_physname;
13299
13300 /* Prefer the mangled name; otherwise compute the demangled one. */
13301 target_physname = dw2_linkage_name (target_die, target_cu);
13302 if (target_physname == NULL)
13303 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13304 if (target_physname == NULL)
13305 complaint (_("DW_AT_call_target target DIE has invalid "
13306 "physname, for referencing DIE %s [in module %s]"),
13307 sect_offset_str (die->sect_off), objfile_name (objfile));
13308 else
13309 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13310 }
13311 else
13312 {
13313 CORE_ADDR lowpc;
13314
13315 /* DW_AT_entry_pc should be preferred. */
13316 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13317 <= PC_BOUNDS_INVALID)
13318 complaint (_("DW_AT_call_target target DIE has invalid "
13319 "low pc, for referencing DIE %s [in module %s]"),
13320 sect_offset_str (die->sect_off), objfile_name (objfile));
13321 else
13322 {
13323 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13324 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13325 }
13326 }
13327 }
13328 else
13329 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13330 "block nor reference, for DIE %s [in module %s]"),
13331 sect_offset_str (die->sect_off), objfile_name (objfile));
13332
13333 call_site->per_cu = cu->per_cu;
13334
13335 for (child_die = die->child;
13336 child_die && child_die->tag;
13337 child_die = child_die->sibling)
13338 {
13339 struct call_site_parameter *parameter;
13340 struct attribute *loc, *origin;
13341
13342 if (child_die->tag != DW_TAG_call_site_parameter
13343 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13344 {
13345 /* Already printed the complaint above. */
13346 continue;
13347 }
13348
13349 gdb_assert (call_site->parameter_count < nparams);
13350 parameter = &call_site->parameter[call_site->parameter_count];
13351
13352 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13353 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13354 register is contained in DW_AT_call_value. */
13355
13356 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13357 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13358 if (origin == NULL)
13359 {
13360 /* This was a pre-DWARF-5 GNU extension alias
13361 for DW_AT_call_parameter. */
13362 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13363 }
13364 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13365 {
13366 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13367
13368 sect_offset sect_off = origin->get_ref_die_offset ();
13369 if (!cu->header.offset_in_cu_p (sect_off))
13370 {
13371 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13372 binding can be done only inside one CU. Such referenced DIE
13373 therefore cannot be even moved to DW_TAG_partial_unit. */
13374 complaint (_("DW_AT_call_parameter offset is not in CU for "
13375 "DW_TAG_call_site child DIE %s [in module %s]"),
13376 sect_offset_str (child_die->sect_off),
13377 objfile_name (objfile));
13378 continue;
13379 }
13380 parameter->u.param_cu_off
13381 = (cu_offset) (sect_off - cu->header.sect_off);
13382 }
13383 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13384 {
13385 complaint (_("No DW_FORM_block* DW_AT_location for "
13386 "DW_TAG_call_site child DIE %s [in module %s]"),
13387 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13388 continue;
13389 }
13390 else
13391 {
13392 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13393 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13394 if (parameter->u.dwarf_reg != -1)
13395 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13396 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13397 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13398 &parameter->u.fb_offset))
13399 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13400 else
13401 {
13402 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13403 "for DW_FORM_block* DW_AT_location is supported for "
13404 "DW_TAG_call_site child DIE %s "
13405 "[in module %s]"),
13406 sect_offset_str (child_die->sect_off),
13407 objfile_name (objfile));
13408 continue;
13409 }
13410 }
13411
13412 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13413 if (attr == NULL)
13414 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13415 if (attr == NULL || !attr->form_is_block ())
13416 {
13417 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13418 "DW_TAG_call_site child DIE %s [in module %s]"),
13419 sect_offset_str (child_die->sect_off),
13420 objfile_name (objfile));
13421 continue;
13422 }
13423 parameter->value = DW_BLOCK (attr)->data;
13424 parameter->value_size = DW_BLOCK (attr)->size;
13425
13426 /* Parameters are not pre-cleared by memset above. */
13427 parameter->data_value = NULL;
13428 parameter->data_value_size = 0;
13429 call_site->parameter_count++;
13430
13431 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13432 if (attr == NULL)
13433 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13434 if (attr != nullptr)
13435 {
13436 if (!attr->form_is_block ())
13437 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13438 "DW_TAG_call_site child DIE %s [in module %s]"),
13439 sect_offset_str (child_die->sect_off),
13440 objfile_name (objfile));
13441 else
13442 {
13443 parameter->data_value = DW_BLOCK (attr)->data;
13444 parameter->data_value_size = DW_BLOCK (attr)->size;
13445 }
13446 }
13447 }
13448 }
13449
13450 /* Helper function for read_variable. If DIE represents a virtual
13451 table, then return the type of the concrete object that is
13452 associated with the virtual table. Otherwise, return NULL. */
13453
13454 static struct type *
13455 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13456 {
13457 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13458 if (attr == NULL)
13459 return NULL;
13460
13461 /* Find the type DIE. */
13462 struct die_info *type_die = NULL;
13463 struct dwarf2_cu *type_cu = cu;
13464
13465 if (attr->form_is_ref ())
13466 type_die = follow_die_ref (die, attr, &type_cu);
13467 if (type_die == NULL)
13468 return NULL;
13469
13470 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13471 return NULL;
13472 return die_containing_type (type_die, type_cu);
13473 }
13474
13475 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13476
13477 static void
13478 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13479 {
13480 struct rust_vtable_symbol *storage = NULL;
13481
13482 if (cu->language == language_rust)
13483 {
13484 struct type *containing_type = rust_containing_type (die, cu);
13485
13486 if (containing_type != NULL)
13487 {
13488 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13489
13490 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13491 initialize_objfile_symbol (storage);
13492 storage->concrete_type = containing_type;
13493 storage->subclass = SYMBOL_RUST_VTABLE;
13494 }
13495 }
13496
13497 struct symbol *res = new_symbol (die, NULL, cu, storage);
13498 struct attribute *abstract_origin
13499 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13500 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13501 if (res == NULL && loc && abstract_origin)
13502 {
13503 /* We have a variable without a name, but with a location and an abstract
13504 origin. This may be a concrete instance of an abstract variable
13505 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13506 later. */
13507 struct dwarf2_cu *origin_cu = cu;
13508 struct die_info *origin_die
13509 = follow_die_ref (die, abstract_origin, &origin_cu);
13510 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13511 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13512 }
13513 }
13514
13515 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13516 reading .debug_rnglists.
13517 Callback's type should be:
13518 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13519 Return true if the attributes are present and valid, otherwise,
13520 return false. */
13521
13522 template <typename Callback>
13523 static bool
13524 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13525 Callback &&callback)
13526 {
13527 struct dwarf2_per_objfile *dwarf2_per_objfile
13528 = cu->per_cu->dwarf2_per_objfile;
13529 struct objfile *objfile = dwarf2_per_objfile->objfile;
13530 bfd *obfd = objfile->obfd;
13531 /* Base address selection entry. */
13532 gdb::optional<CORE_ADDR> base;
13533 const gdb_byte *buffer;
13534 CORE_ADDR baseaddr;
13535 bool overflow = false;
13536
13537 base = cu->base_address;
13538
13539 dwarf2_per_objfile->rnglists.read (objfile);
13540 if (offset >= dwarf2_per_objfile->rnglists.size)
13541 {
13542 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13543 offset);
13544 return false;
13545 }
13546 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13547
13548 baseaddr = objfile->text_section_offset ();
13549
13550 while (1)
13551 {
13552 /* Initialize it due to a false compiler warning. */
13553 CORE_ADDR range_beginning = 0, range_end = 0;
13554 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13555 + dwarf2_per_objfile->rnglists.size);
13556 unsigned int bytes_read;
13557
13558 if (buffer == buf_end)
13559 {
13560 overflow = true;
13561 break;
13562 }
13563 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13564 switch (rlet)
13565 {
13566 case DW_RLE_end_of_list:
13567 break;
13568 case DW_RLE_base_address:
13569 if (buffer + cu->header.addr_size > buf_end)
13570 {
13571 overflow = true;
13572 break;
13573 }
13574 base = cu->header.read_address (obfd, buffer, &bytes_read);
13575 buffer += bytes_read;
13576 break;
13577 case DW_RLE_start_length:
13578 if (buffer + cu->header.addr_size > buf_end)
13579 {
13580 overflow = true;
13581 break;
13582 }
13583 range_beginning = cu->header.read_address (obfd, buffer,
13584 &bytes_read);
13585 buffer += bytes_read;
13586 range_end = (range_beginning
13587 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13588 buffer += bytes_read;
13589 if (buffer > buf_end)
13590 {
13591 overflow = true;
13592 break;
13593 }
13594 break;
13595 case DW_RLE_offset_pair:
13596 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13597 buffer += bytes_read;
13598 if (buffer > buf_end)
13599 {
13600 overflow = true;
13601 break;
13602 }
13603 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13604 buffer += bytes_read;
13605 if (buffer > buf_end)
13606 {
13607 overflow = true;
13608 break;
13609 }
13610 break;
13611 case DW_RLE_start_end:
13612 if (buffer + 2 * cu->header.addr_size > buf_end)
13613 {
13614 overflow = true;
13615 break;
13616 }
13617 range_beginning = cu->header.read_address (obfd, buffer,
13618 &bytes_read);
13619 buffer += bytes_read;
13620 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13621 buffer += bytes_read;
13622 break;
13623 default:
13624 complaint (_("Invalid .debug_rnglists data (no base address)"));
13625 return false;
13626 }
13627 if (rlet == DW_RLE_end_of_list || overflow)
13628 break;
13629 if (rlet == DW_RLE_base_address)
13630 continue;
13631
13632 if (!base.has_value ())
13633 {
13634 /* We have no valid base address for the ranges
13635 data. */
13636 complaint (_("Invalid .debug_rnglists data (no base address)"));
13637 return false;
13638 }
13639
13640 if (range_beginning > range_end)
13641 {
13642 /* Inverted range entries are invalid. */
13643 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13644 return false;
13645 }
13646
13647 /* Empty range entries have no effect. */
13648 if (range_beginning == range_end)
13649 continue;
13650
13651 range_beginning += *base;
13652 range_end += *base;
13653
13654 /* A not-uncommon case of bad debug info.
13655 Don't pollute the addrmap with bad data. */
13656 if (range_beginning + baseaddr == 0
13657 && !dwarf2_per_objfile->has_section_at_zero)
13658 {
13659 complaint (_(".debug_rnglists entry has start address of zero"
13660 " [in module %s]"), objfile_name (objfile));
13661 continue;
13662 }
13663
13664 callback (range_beginning, range_end);
13665 }
13666
13667 if (overflow)
13668 {
13669 complaint (_("Offset %d is not terminated "
13670 "for DW_AT_ranges attribute"),
13671 offset);
13672 return false;
13673 }
13674
13675 return true;
13676 }
13677
13678 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13679 Callback's type should be:
13680 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13681 Return 1 if the attributes are present and valid, otherwise, return 0. */
13682
13683 template <typename Callback>
13684 static int
13685 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13686 Callback &&callback)
13687 {
13688 struct dwarf2_per_objfile *dwarf2_per_objfile
13689 = cu->per_cu->dwarf2_per_objfile;
13690 struct objfile *objfile = dwarf2_per_objfile->objfile;
13691 struct comp_unit_head *cu_header = &cu->header;
13692 bfd *obfd = objfile->obfd;
13693 unsigned int addr_size = cu_header->addr_size;
13694 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13695 /* Base address selection entry. */
13696 gdb::optional<CORE_ADDR> base;
13697 unsigned int dummy;
13698 const gdb_byte *buffer;
13699 CORE_ADDR baseaddr;
13700
13701 if (cu_header->version >= 5)
13702 return dwarf2_rnglists_process (offset, cu, callback);
13703
13704 base = cu->base_address;
13705
13706 dwarf2_per_objfile->ranges.read (objfile);
13707 if (offset >= dwarf2_per_objfile->ranges.size)
13708 {
13709 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13710 offset);
13711 return 0;
13712 }
13713 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13714
13715 baseaddr = objfile->text_section_offset ();
13716
13717 while (1)
13718 {
13719 CORE_ADDR range_beginning, range_end;
13720
13721 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13722 buffer += addr_size;
13723 range_end = cu->header.read_address (obfd, buffer, &dummy);
13724 buffer += addr_size;
13725 offset += 2 * addr_size;
13726
13727 /* An end of list marker is a pair of zero addresses. */
13728 if (range_beginning == 0 && range_end == 0)
13729 /* Found the end of list entry. */
13730 break;
13731
13732 /* Each base address selection entry is a pair of 2 values.
13733 The first is the largest possible address, the second is
13734 the base address. Check for a base address here. */
13735 if ((range_beginning & mask) == mask)
13736 {
13737 /* If we found the largest possible address, then we already
13738 have the base address in range_end. */
13739 base = range_end;
13740 continue;
13741 }
13742
13743 if (!base.has_value ())
13744 {
13745 /* We have no valid base address for the ranges
13746 data. */
13747 complaint (_("Invalid .debug_ranges data (no base address)"));
13748 return 0;
13749 }
13750
13751 if (range_beginning > range_end)
13752 {
13753 /* Inverted range entries are invalid. */
13754 complaint (_("Invalid .debug_ranges data (inverted range)"));
13755 return 0;
13756 }
13757
13758 /* Empty range entries have no effect. */
13759 if (range_beginning == range_end)
13760 continue;
13761
13762 range_beginning += *base;
13763 range_end += *base;
13764
13765 /* A not-uncommon case of bad debug info.
13766 Don't pollute the addrmap with bad data. */
13767 if (range_beginning + baseaddr == 0
13768 && !dwarf2_per_objfile->has_section_at_zero)
13769 {
13770 complaint (_(".debug_ranges entry has start address of zero"
13771 " [in module %s]"), objfile_name (objfile));
13772 continue;
13773 }
13774
13775 callback (range_beginning, range_end);
13776 }
13777
13778 return 1;
13779 }
13780
13781 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13782 Return 1 if the attributes are present and valid, otherwise, return 0.
13783 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13784
13785 static int
13786 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13787 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13788 dwarf2_psymtab *ranges_pst)
13789 {
13790 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13791 struct gdbarch *gdbarch = objfile->arch ();
13792 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13793 int low_set = 0;
13794 CORE_ADDR low = 0;
13795 CORE_ADDR high = 0;
13796 int retval;
13797
13798 retval = dwarf2_ranges_process (offset, cu,
13799 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13800 {
13801 if (ranges_pst != NULL)
13802 {
13803 CORE_ADDR lowpc;
13804 CORE_ADDR highpc;
13805
13806 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13807 range_beginning + baseaddr)
13808 - baseaddr);
13809 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13810 range_end + baseaddr)
13811 - baseaddr);
13812 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13813 lowpc, highpc - 1, ranges_pst);
13814 }
13815
13816 /* FIXME: This is recording everything as a low-high
13817 segment of consecutive addresses. We should have a
13818 data structure for discontiguous block ranges
13819 instead. */
13820 if (! low_set)
13821 {
13822 low = range_beginning;
13823 high = range_end;
13824 low_set = 1;
13825 }
13826 else
13827 {
13828 if (range_beginning < low)
13829 low = range_beginning;
13830 if (range_end > high)
13831 high = range_end;
13832 }
13833 });
13834 if (!retval)
13835 return 0;
13836
13837 if (! low_set)
13838 /* If the first entry is an end-of-list marker, the range
13839 describes an empty scope, i.e. no instructions. */
13840 return 0;
13841
13842 if (low_return)
13843 *low_return = low;
13844 if (high_return)
13845 *high_return = high;
13846 return 1;
13847 }
13848
13849 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13850 definition for the return value. *LOWPC and *HIGHPC are set iff
13851 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13852
13853 static enum pc_bounds_kind
13854 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13855 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13856 dwarf2_psymtab *pst)
13857 {
13858 struct dwarf2_per_objfile *dwarf2_per_objfile
13859 = cu->per_cu->dwarf2_per_objfile;
13860 struct attribute *attr;
13861 struct attribute *attr_high;
13862 CORE_ADDR low = 0;
13863 CORE_ADDR high = 0;
13864 enum pc_bounds_kind ret;
13865
13866 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13867 if (attr_high)
13868 {
13869 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13870 if (attr != nullptr)
13871 {
13872 low = attr->value_as_address ();
13873 high = attr_high->value_as_address ();
13874 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13875 high += low;
13876 }
13877 else
13878 /* Found high w/o low attribute. */
13879 return PC_BOUNDS_INVALID;
13880
13881 /* Found consecutive range of addresses. */
13882 ret = PC_BOUNDS_HIGH_LOW;
13883 }
13884 else
13885 {
13886 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13887 if (attr != NULL)
13888 {
13889 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13890 We take advantage of the fact that DW_AT_ranges does not appear
13891 in DW_TAG_compile_unit of DWO files. */
13892 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13893 unsigned int ranges_offset = (DW_UNSND (attr)
13894 + (need_ranges_base
13895 ? cu->ranges_base
13896 : 0));
13897
13898 /* Value of the DW_AT_ranges attribute is the offset in the
13899 .debug_ranges section. */
13900 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13901 return PC_BOUNDS_INVALID;
13902 /* Found discontinuous range of addresses. */
13903 ret = PC_BOUNDS_RANGES;
13904 }
13905 else
13906 return PC_BOUNDS_NOT_PRESENT;
13907 }
13908
13909 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13910 if (high <= low)
13911 return PC_BOUNDS_INVALID;
13912
13913 /* When using the GNU linker, .gnu.linkonce. sections are used to
13914 eliminate duplicate copies of functions and vtables and such.
13915 The linker will arbitrarily choose one and discard the others.
13916 The AT_*_pc values for such functions refer to local labels in
13917 these sections. If the section from that file was discarded, the
13918 labels are not in the output, so the relocs get a value of 0.
13919 If this is a discarded function, mark the pc bounds as invalid,
13920 so that GDB will ignore it. */
13921 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13922 return PC_BOUNDS_INVALID;
13923
13924 *lowpc = low;
13925 if (highpc)
13926 *highpc = high;
13927 return ret;
13928 }
13929
13930 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13931 its low and high PC addresses. Do nothing if these addresses could not
13932 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13933 and HIGHPC to the high address if greater than HIGHPC. */
13934
13935 static void
13936 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13937 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13938 struct dwarf2_cu *cu)
13939 {
13940 CORE_ADDR low, high;
13941 struct die_info *child = die->child;
13942
13943 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13944 {
13945 *lowpc = std::min (*lowpc, low);
13946 *highpc = std::max (*highpc, high);
13947 }
13948
13949 /* If the language does not allow nested subprograms (either inside
13950 subprograms or lexical blocks), we're done. */
13951 if (cu->language != language_ada)
13952 return;
13953
13954 /* Check all the children of the given DIE. If it contains nested
13955 subprograms, then check their pc bounds. Likewise, we need to
13956 check lexical blocks as well, as they may also contain subprogram
13957 definitions. */
13958 while (child && child->tag)
13959 {
13960 if (child->tag == DW_TAG_subprogram
13961 || child->tag == DW_TAG_lexical_block)
13962 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13963 child = child->sibling;
13964 }
13965 }
13966
13967 /* Get the low and high pc's represented by the scope DIE, and store
13968 them in *LOWPC and *HIGHPC. If the correct values can't be
13969 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13970
13971 static void
13972 get_scope_pc_bounds (struct die_info *die,
13973 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13974 struct dwarf2_cu *cu)
13975 {
13976 CORE_ADDR best_low = (CORE_ADDR) -1;
13977 CORE_ADDR best_high = (CORE_ADDR) 0;
13978 CORE_ADDR current_low, current_high;
13979
13980 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13981 >= PC_BOUNDS_RANGES)
13982 {
13983 best_low = current_low;
13984 best_high = current_high;
13985 }
13986 else
13987 {
13988 struct die_info *child = die->child;
13989
13990 while (child && child->tag)
13991 {
13992 switch (child->tag) {
13993 case DW_TAG_subprogram:
13994 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13995 break;
13996 case DW_TAG_namespace:
13997 case DW_TAG_module:
13998 /* FIXME: carlton/2004-01-16: Should we do this for
13999 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14000 that current GCC's always emit the DIEs corresponding
14001 to definitions of methods of classes as children of a
14002 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14003 the DIEs giving the declarations, which could be
14004 anywhere). But I don't see any reason why the
14005 standards says that they have to be there. */
14006 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14007
14008 if (current_low != ((CORE_ADDR) -1))
14009 {
14010 best_low = std::min (best_low, current_low);
14011 best_high = std::max (best_high, current_high);
14012 }
14013 break;
14014 default:
14015 /* Ignore. */
14016 break;
14017 }
14018
14019 child = child->sibling;
14020 }
14021 }
14022
14023 *lowpc = best_low;
14024 *highpc = best_high;
14025 }
14026
14027 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14028 in DIE. */
14029
14030 static void
14031 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14032 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14033 {
14034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14035 struct gdbarch *gdbarch = objfile->arch ();
14036 struct attribute *attr;
14037 struct attribute *attr_high;
14038
14039 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14040 if (attr_high)
14041 {
14042 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14043 if (attr != nullptr)
14044 {
14045 CORE_ADDR low = attr->value_as_address ();
14046 CORE_ADDR high = attr_high->value_as_address ();
14047
14048 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14049 high += low;
14050
14051 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14052 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14053 cu->get_builder ()->record_block_range (block, low, high - 1);
14054 }
14055 }
14056
14057 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14058 if (attr != nullptr)
14059 {
14060 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14061 We take advantage of the fact that DW_AT_ranges does not appear
14062 in DW_TAG_compile_unit of DWO files. */
14063 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14064
14065 /* The value of the DW_AT_ranges attribute is the offset of the
14066 address range list in the .debug_ranges section. */
14067 unsigned long offset = (DW_UNSND (attr)
14068 + (need_ranges_base ? cu->ranges_base : 0));
14069
14070 std::vector<blockrange> blockvec;
14071 dwarf2_ranges_process (offset, cu,
14072 [&] (CORE_ADDR start, CORE_ADDR end)
14073 {
14074 start += baseaddr;
14075 end += baseaddr;
14076 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14077 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14078 cu->get_builder ()->record_block_range (block, start, end - 1);
14079 blockvec.emplace_back (start, end);
14080 });
14081
14082 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14083 }
14084 }
14085
14086 /* Check whether the producer field indicates either of GCC < 4.6, or the
14087 Intel C/C++ compiler, and cache the result in CU. */
14088
14089 static void
14090 check_producer (struct dwarf2_cu *cu)
14091 {
14092 int major, minor;
14093
14094 if (cu->producer == NULL)
14095 {
14096 /* For unknown compilers expect their behavior is DWARF version
14097 compliant.
14098
14099 GCC started to support .debug_types sections by -gdwarf-4 since
14100 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14101 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14102 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14103 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14104 }
14105 else if (producer_is_gcc (cu->producer, &major, &minor))
14106 {
14107 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14108 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14109 }
14110 else if (producer_is_icc (cu->producer, &major, &minor))
14111 {
14112 cu->producer_is_icc = true;
14113 cu->producer_is_icc_lt_14 = major < 14;
14114 }
14115 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14116 cu->producer_is_codewarrior = true;
14117 else
14118 {
14119 /* For other non-GCC compilers, expect their behavior is DWARF version
14120 compliant. */
14121 }
14122
14123 cu->checked_producer = true;
14124 }
14125
14126 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14127 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14128 during 4.6.0 experimental. */
14129
14130 static bool
14131 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14132 {
14133 if (!cu->checked_producer)
14134 check_producer (cu);
14135
14136 return cu->producer_is_gxx_lt_4_6;
14137 }
14138
14139
14140 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14141 with incorrect is_stmt attributes. */
14142
14143 static bool
14144 producer_is_codewarrior (struct dwarf2_cu *cu)
14145 {
14146 if (!cu->checked_producer)
14147 check_producer (cu);
14148
14149 return cu->producer_is_codewarrior;
14150 }
14151
14152 /* Return the default accessibility type if it is not overridden by
14153 DW_AT_accessibility. */
14154
14155 static enum dwarf_access_attribute
14156 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14157 {
14158 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14159 {
14160 /* The default DWARF 2 accessibility for members is public, the default
14161 accessibility for inheritance is private. */
14162
14163 if (die->tag != DW_TAG_inheritance)
14164 return DW_ACCESS_public;
14165 else
14166 return DW_ACCESS_private;
14167 }
14168 else
14169 {
14170 /* DWARF 3+ defines the default accessibility a different way. The same
14171 rules apply now for DW_TAG_inheritance as for the members and it only
14172 depends on the container kind. */
14173
14174 if (die->parent->tag == DW_TAG_class_type)
14175 return DW_ACCESS_private;
14176 else
14177 return DW_ACCESS_public;
14178 }
14179 }
14180
14181 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14182 offset. If the attribute was not found return 0, otherwise return
14183 1. If it was found but could not properly be handled, set *OFFSET
14184 to 0. */
14185
14186 static int
14187 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14188 LONGEST *offset)
14189 {
14190 struct attribute *attr;
14191
14192 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14193 if (attr != NULL)
14194 {
14195 *offset = 0;
14196
14197 /* Note that we do not check for a section offset first here.
14198 This is because DW_AT_data_member_location is new in DWARF 4,
14199 so if we see it, we can assume that a constant form is really
14200 a constant and not a section offset. */
14201 if (attr->form_is_constant ())
14202 *offset = attr->constant_value (0);
14203 else if (attr->form_is_section_offset ())
14204 dwarf2_complex_location_expr_complaint ();
14205 else if (attr->form_is_block ())
14206 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14207 else
14208 dwarf2_complex_location_expr_complaint ();
14209
14210 return 1;
14211 }
14212
14213 return 0;
14214 }
14215
14216 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14217
14218 static void
14219 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14220 struct field *field)
14221 {
14222 struct attribute *attr;
14223
14224 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14225 if (attr != NULL)
14226 {
14227 if (attr->form_is_constant ())
14228 {
14229 LONGEST offset = attr->constant_value (0);
14230 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14231 }
14232 else if (attr->form_is_section_offset ())
14233 dwarf2_complex_location_expr_complaint ();
14234 else if (attr->form_is_block ())
14235 {
14236 bool handled;
14237 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14238 if (handled)
14239 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14240 else
14241 {
14242 struct objfile *objfile
14243 = cu->per_cu->dwarf2_per_objfile->objfile;
14244 struct dwarf2_locexpr_baton *dlbaton
14245 = XOBNEW (&objfile->objfile_obstack,
14246 struct dwarf2_locexpr_baton);
14247 dlbaton->data = DW_BLOCK (attr)->data;
14248 dlbaton->size = DW_BLOCK (attr)->size;
14249 /* When using this baton, we want to compute the address
14250 of the field, not the value. This is why
14251 is_reference is set to false here. */
14252 dlbaton->is_reference = false;
14253 dlbaton->per_cu = cu->per_cu;
14254
14255 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14256 }
14257 }
14258 else
14259 dwarf2_complex_location_expr_complaint ();
14260 }
14261 }
14262
14263 /* Add an aggregate field to the field list. */
14264
14265 static void
14266 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14267 struct dwarf2_cu *cu)
14268 {
14269 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14270 struct gdbarch *gdbarch = objfile->arch ();
14271 struct nextfield *new_field;
14272 struct attribute *attr;
14273 struct field *fp;
14274 const char *fieldname = "";
14275
14276 if (die->tag == DW_TAG_inheritance)
14277 {
14278 fip->baseclasses.emplace_back ();
14279 new_field = &fip->baseclasses.back ();
14280 }
14281 else
14282 {
14283 fip->fields.emplace_back ();
14284 new_field = &fip->fields.back ();
14285 }
14286
14287 new_field->offset = die->sect_off;
14288
14289 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14290 if (attr != nullptr)
14291 new_field->accessibility = DW_UNSND (attr);
14292 else
14293 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14294 if (new_field->accessibility != DW_ACCESS_public)
14295 fip->non_public_fields = 1;
14296
14297 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14298 if (attr != nullptr)
14299 new_field->virtuality = DW_UNSND (attr);
14300 else
14301 new_field->virtuality = DW_VIRTUALITY_none;
14302
14303 fp = &new_field->field;
14304
14305 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14306 {
14307 /* Data member other than a C++ static data member. */
14308
14309 /* Get type of field. */
14310 fp->type = die_type (die, cu);
14311
14312 SET_FIELD_BITPOS (*fp, 0);
14313
14314 /* Get bit size of field (zero if none). */
14315 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14316 if (attr != nullptr)
14317 {
14318 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14319 }
14320 else
14321 {
14322 FIELD_BITSIZE (*fp) = 0;
14323 }
14324
14325 /* Get bit offset of field. */
14326 handle_data_member_location (die, cu, fp);
14327 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14328 if (attr != nullptr)
14329 {
14330 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14331 {
14332 /* For big endian bits, the DW_AT_bit_offset gives the
14333 additional bit offset from the MSB of the containing
14334 anonymous object to the MSB of the field. We don't
14335 have to do anything special since we don't need to
14336 know the size of the anonymous object. */
14337 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14338 }
14339 else
14340 {
14341 /* For little endian bits, compute the bit offset to the
14342 MSB of the anonymous object, subtract off the number of
14343 bits from the MSB of the field to the MSB of the
14344 object, and then subtract off the number of bits of
14345 the field itself. The result is the bit offset of
14346 the LSB of the field. */
14347 int anonymous_size;
14348 int bit_offset = DW_UNSND (attr);
14349
14350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14351 if (attr != nullptr)
14352 {
14353 /* The size of the anonymous object containing
14354 the bit field is explicit, so use the
14355 indicated size (in bytes). */
14356 anonymous_size = DW_UNSND (attr);
14357 }
14358 else
14359 {
14360 /* The size of the anonymous object containing
14361 the bit field must be inferred from the type
14362 attribute of the data member containing the
14363 bit field. */
14364 anonymous_size = TYPE_LENGTH (fp->type);
14365 }
14366 SET_FIELD_BITPOS (*fp,
14367 (FIELD_BITPOS (*fp)
14368 + anonymous_size * bits_per_byte
14369 - bit_offset - FIELD_BITSIZE (*fp)));
14370 }
14371 }
14372 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14373 if (attr != NULL)
14374 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14375 + attr->constant_value (0)));
14376
14377 /* Get name of field. */
14378 fieldname = dwarf2_name (die, cu);
14379 if (fieldname == NULL)
14380 fieldname = "";
14381
14382 /* The name is already allocated along with this objfile, so we don't
14383 need to duplicate it for the type. */
14384 fp->name = fieldname;
14385
14386 /* Change accessibility for artificial fields (e.g. virtual table
14387 pointer or virtual base class pointer) to private. */
14388 if (dwarf2_attr (die, DW_AT_artificial, cu))
14389 {
14390 FIELD_ARTIFICIAL (*fp) = 1;
14391 new_field->accessibility = DW_ACCESS_private;
14392 fip->non_public_fields = 1;
14393 }
14394 }
14395 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14396 {
14397 /* C++ static member. */
14398
14399 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14400 is a declaration, but all versions of G++ as of this writing
14401 (so through at least 3.2.1) incorrectly generate
14402 DW_TAG_variable tags. */
14403
14404 const char *physname;
14405
14406 /* Get name of field. */
14407 fieldname = dwarf2_name (die, cu);
14408 if (fieldname == NULL)
14409 return;
14410
14411 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14412 if (attr
14413 /* Only create a symbol if this is an external value.
14414 new_symbol checks this and puts the value in the global symbol
14415 table, which we want. If it is not external, new_symbol
14416 will try to put the value in cu->list_in_scope which is wrong. */
14417 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14418 {
14419 /* A static const member, not much different than an enum as far as
14420 we're concerned, except that we can support more types. */
14421 new_symbol (die, NULL, cu);
14422 }
14423
14424 /* Get physical name. */
14425 physname = dwarf2_physname (fieldname, die, cu);
14426
14427 /* The name is already allocated along with this objfile, so we don't
14428 need to duplicate it for the type. */
14429 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14430 FIELD_TYPE (*fp) = die_type (die, cu);
14431 FIELD_NAME (*fp) = fieldname;
14432 }
14433 else if (die->tag == DW_TAG_inheritance)
14434 {
14435 /* C++ base class field. */
14436 handle_data_member_location (die, cu, fp);
14437 FIELD_BITSIZE (*fp) = 0;
14438 FIELD_TYPE (*fp) = die_type (die, cu);
14439 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14440 }
14441 else
14442 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14443 }
14444
14445 /* Can the type given by DIE define another type? */
14446
14447 static bool
14448 type_can_define_types (const struct die_info *die)
14449 {
14450 switch (die->tag)
14451 {
14452 case DW_TAG_typedef:
14453 case DW_TAG_class_type:
14454 case DW_TAG_structure_type:
14455 case DW_TAG_union_type:
14456 case DW_TAG_enumeration_type:
14457 return true;
14458
14459 default:
14460 return false;
14461 }
14462 }
14463
14464 /* Add a type definition defined in the scope of the FIP's class. */
14465
14466 static void
14467 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14468 struct dwarf2_cu *cu)
14469 {
14470 struct decl_field fp;
14471 memset (&fp, 0, sizeof (fp));
14472
14473 gdb_assert (type_can_define_types (die));
14474
14475 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14476 fp.name = dwarf2_name (die, cu);
14477 fp.type = read_type_die (die, cu);
14478
14479 /* Save accessibility. */
14480 enum dwarf_access_attribute accessibility;
14481 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14482 if (attr != NULL)
14483 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14484 else
14485 accessibility = dwarf2_default_access_attribute (die, cu);
14486 switch (accessibility)
14487 {
14488 case DW_ACCESS_public:
14489 /* The assumed value if neither private nor protected. */
14490 break;
14491 case DW_ACCESS_private:
14492 fp.is_private = 1;
14493 break;
14494 case DW_ACCESS_protected:
14495 fp.is_protected = 1;
14496 break;
14497 default:
14498 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14499 }
14500
14501 if (die->tag == DW_TAG_typedef)
14502 fip->typedef_field_list.push_back (fp);
14503 else
14504 fip->nested_types_list.push_back (fp);
14505 }
14506
14507 /* A convenience typedef that's used when finding the discriminant
14508 field for a variant part. */
14509 typedef std::unordered_map<sect_offset, int> offset_map_type;
14510
14511 /* Compute the discriminant range for a given variant. OBSTACK is
14512 where the results will be stored. VARIANT is the variant to
14513 process. IS_UNSIGNED indicates whether the discriminant is signed
14514 or unsigned. */
14515
14516 static const gdb::array_view<discriminant_range>
14517 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14518 bool is_unsigned)
14519 {
14520 std::vector<discriminant_range> ranges;
14521
14522 if (variant.default_branch)
14523 return {};
14524
14525 if (variant.discr_list_data == nullptr)
14526 {
14527 discriminant_range r
14528 = {variant.discriminant_value, variant.discriminant_value};
14529 ranges.push_back (r);
14530 }
14531 else
14532 {
14533 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14534 variant.discr_list_data->size);
14535 while (!data.empty ())
14536 {
14537 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14538 {
14539 complaint (_("invalid discriminant marker: %d"), data[0]);
14540 break;
14541 }
14542 bool is_range = data[0] == DW_DSC_range;
14543 data = data.slice (1);
14544
14545 ULONGEST low, high;
14546 unsigned int bytes_read;
14547
14548 if (data.empty ())
14549 {
14550 complaint (_("DW_AT_discr_list missing low value"));
14551 break;
14552 }
14553 if (is_unsigned)
14554 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14555 else
14556 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14557 &bytes_read);
14558 data = data.slice (bytes_read);
14559
14560 if (is_range)
14561 {
14562 if (data.empty ())
14563 {
14564 complaint (_("DW_AT_discr_list missing high value"));
14565 break;
14566 }
14567 if (is_unsigned)
14568 high = read_unsigned_leb128 (nullptr, data.data (),
14569 &bytes_read);
14570 else
14571 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14572 &bytes_read);
14573 data = data.slice (bytes_read);
14574 }
14575 else
14576 high = low;
14577
14578 ranges.push_back ({ low, high });
14579 }
14580 }
14581
14582 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14583 ranges.size ());
14584 std::copy (ranges.begin (), ranges.end (), result);
14585 return gdb::array_view<discriminant_range> (result, ranges.size ());
14586 }
14587
14588 static const gdb::array_view<variant_part> create_variant_parts
14589 (struct obstack *obstack,
14590 const offset_map_type &offset_map,
14591 struct field_info *fi,
14592 const std::vector<variant_part_builder> &variant_parts);
14593
14594 /* Fill in a "struct variant" for a given variant field. RESULT is
14595 the variant to fill in. OBSTACK is where any needed allocations
14596 will be done. OFFSET_MAP holds the mapping from section offsets to
14597 fields for the type. FI describes the fields of the type we're
14598 processing. FIELD is the variant field we're converting. */
14599
14600 static void
14601 create_one_variant (variant &result, struct obstack *obstack,
14602 const offset_map_type &offset_map,
14603 struct field_info *fi, const variant_field &field)
14604 {
14605 result.discriminants = convert_variant_range (obstack, field, false);
14606 result.first_field = field.first_field + fi->baseclasses.size ();
14607 result.last_field = field.last_field + fi->baseclasses.size ();
14608 result.parts = create_variant_parts (obstack, offset_map, fi,
14609 field.variant_parts);
14610 }
14611
14612 /* Fill in a "struct variant_part" for a given variant part. RESULT
14613 is the variant part to fill in. OBSTACK is where any needed
14614 allocations will be done. OFFSET_MAP holds the mapping from
14615 section offsets to fields for the type. FI describes the fields of
14616 the type we're processing. BUILDER is the variant part to be
14617 converted. */
14618
14619 static void
14620 create_one_variant_part (variant_part &result,
14621 struct obstack *obstack,
14622 const offset_map_type &offset_map,
14623 struct field_info *fi,
14624 const variant_part_builder &builder)
14625 {
14626 auto iter = offset_map.find (builder.discriminant_offset);
14627 if (iter == offset_map.end ())
14628 {
14629 result.discriminant_index = -1;
14630 /* Doesn't matter. */
14631 result.is_unsigned = false;
14632 }
14633 else
14634 {
14635 result.discriminant_index = iter->second;
14636 result.is_unsigned
14637 = TYPE_UNSIGNED (FIELD_TYPE
14638 (fi->fields[result.discriminant_index].field));
14639 }
14640
14641 size_t n = builder.variants.size ();
14642 variant *output = new (obstack) variant[n];
14643 for (size_t i = 0; i < n; ++i)
14644 create_one_variant (output[i], obstack, offset_map, fi,
14645 builder.variants[i]);
14646
14647 result.variants = gdb::array_view<variant> (output, n);
14648 }
14649
14650 /* Create a vector of variant parts that can be attached to a type.
14651 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14652 holds the mapping from section offsets to fields for the type. FI
14653 describes the fields of the type we're processing. VARIANT_PARTS
14654 is the vector to convert. */
14655
14656 static const gdb::array_view<variant_part>
14657 create_variant_parts (struct obstack *obstack,
14658 const offset_map_type &offset_map,
14659 struct field_info *fi,
14660 const std::vector<variant_part_builder> &variant_parts)
14661 {
14662 if (variant_parts.empty ())
14663 return {};
14664
14665 size_t n = variant_parts.size ();
14666 variant_part *result = new (obstack) variant_part[n];
14667 for (size_t i = 0; i < n; ++i)
14668 create_one_variant_part (result[i], obstack, offset_map, fi,
14669 variant_parts[i]);
14670
14671 return gdb::array_view<variant_part> (result, n);
14672 }
14673
14674 /* Compute the variant part vector for FIP, attaching it to TYPE when
14675 done. */
14676
14677 static void
14678 add_variant_property (struct field_info *fip, struct type *type,
14679 struct dwarf2_cu *cu)
14680 {
14681 /* Map section offsets of fields to their field index. Note the
14682 field index here does not take the number of baseclasses into
14683 account. */
14684 offset_map_type offset_map;
14685 for (int i = 0; i < fip->fields.size (); ++i)
14686 offset_map[fip->fields[i].offset] = i;
14687
14688 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14689 gdb::array_view<variant_part> parts
14690 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14691 fip->variant_parts);
14692
14693 struct dynamic_prop prop;
14694 prop.kind = PROP_VARIANT_PARTS;
14695 prop.data.variant_parts
14696 = ((gdb::array_view<variant_part> *)
14697 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14698
14699 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
14700 }
14701
14702 /* Create the vector of fields, and attach it to the type. */
14703
14704 static void
14705 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14706 struct dwarf2_cu *cu)
14707 {
14708 int nfields = fip->nfields ();
14709
14710 /* Record the field count, allocate space for the array of fields,
14711 and create blank accessibility bitfields if necessary. */
14712 TYPE_NFIELDS (type) = nfields;
14713 TYPE_FIELDS (type) = (struct field *)
14714 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14715
14716 if (fip->non_public_fields && cu->language != language_ada)
14717 {
14718 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14719
14720 TYPE_FIELD_PRIVATE_BITS (type) =
14721 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14722 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14723
14724 TYPE_FIELD_PROTECTED_BITS (type) =
14725 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14726 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14727
14728 TYPE_FIELD_IGNORE_BITS (type) =
14729 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14730 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14731 }
14732
14733 /* If the type has baseclasses, allocate and clear a bit vector for
14734 TYPE_FIELD_VIRTUAL_BITS. */
14735 if (!fip->baseclasses.empty () && cu->language != language_ada)
14736 {
14737 int num_bytes = B_BYTES (fip->baseclasses.size ());
14738 unsigned char *pointer;
14739
14740 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14741 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14742 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14743 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14744 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14745 }
14746
14747 if (!fip->variant_parts.empty ())
14748 add_variant_property (fip, type, cu);
14749
14750 /* Copy the saved-up fields into the field vector. */
14751 for (int i = 0; i < nfields; ++i)
14752 {
14753 struct nextfield &field
14754 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14755 : fip->fields[i - fip->baseclasses.size ()]);
14756
14757 TYPE_FIELD (type, i) = field.field;
14758 switch (field.accessibility)
14759 {
14760 case DW_ACCESS_private:
14761 if (cu->language != language_ada)
14762 SET_TYPE_FIELD_PRIVATE (type, i);
14763 break;
14764
14765 case DW_ACCESS_protected:
14766 if (cu->language != language_ada)
14767 SET_TYPE_FIELD_PROTECTED (type, i);
14768 break;
14769
14770 case DW_ACCESS_public:
14771 break;
14772
14773 default:
14774 /* Unknown accessibility. Complain and treat it as public. */
14775 {
14776 complaint (_("unsupported accessibility %d"),
14777 field.accessibility);
14778 }
14779 break;
14780 }
14781 if (i < fip->baseclasses.size ())
14782 {
14783 switch (field.virtuality)
14784 {
14785 case DW_VIRTUALITY_virtual:
14786 case DW_VIRTUALITY_pure_virtual:
14787 if (cu->language == language_ada)
14788 error (_("unexpected virtuality in component of Ada type"));
14789 SET_TYPE_FIELD_VIRTUAL (type, i);
14790 break;
14791 }
14792 }
14793 }
14794 }
14795
14796 /* Return true if this member function is a constructor, false
14797 otherwise. */
14798
14799 static int
14800 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14801 {
14802 const char *fieldname;
14803 const char *type_name;
14804 int len;
14805
14806 if (die->parent == NULL)
14807 return 0;
14808
14809 if (die->parent->tag != DW_TAG_structure_type
14810 && die->parent->tag != DW_TAG_union_type
14811 && die->parent->tag != DW_TAG_class_type)
14812 return 0;
14813
14814 fieldname = dwarf2_name (die, cu);
14815 type_name = dwarf2_name (die->parent, cu);
14816 if (fieldname == NULL || type_name == NULL)
14817 return 0;
14818
14819 len = strlen (fieldname);
14820 return (strncmp (fieldname, type_name, len) == 0
14821 && (type_name[len] == '\0' || type_name[len] == '<'));
14822 }
14823
14824 /* Check if the given VALUE is a recognized enum
14825 dwarf_defaulted_attribute constant according to DWARF5 spec,
14826 Table 7.24. */
14827
14828 static bool
14829 is_valid_DW_AT_defaulted (ULONGEST value)
14830 {
14831 switch (value)
14832 {
14833 case DW_DEFAULTED_no:
14834 case DW_DEFAULTED_in_class:
14835 case DW_DEFAULTED_out_of_class:
14836 return true;
14837 }
14838
14839 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14840 return false;
14841 }
14842
14843 /* Add a member function to the proper fieldlist. */
14844
14845 static void
14846 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14847 struct type *type, struct dwarf2_cu *cu)
14848 {
14849 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14850 struct attribute *attr;
14851 int i;
14852 struct fnfieldlist *flp = nullptr;
14853 struct fn_field *fnp;
14854 const char *fieldname;
14855 struct type *this_type;
14856 enum dwarf_access_attribute accessibility;
14857
14858 if (cu->language == language_ada)
14859 error (_("unexpected member function in Ada type"));
14860
14861 /* Get name of member function. */
14862 fieldname = dwarf2_name (die, cu);
14863 if (fieldname == NULL)
14864 return;
14865
14866 /* Look up member function name in fieldlist. */
14867 for (i = 0; i < fip->fnfieldlists.size (); i++)
14868 {
14869 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14870 {
14871 flp = &fip->fnfieldlists[i];
14872 break;
14873 }
14874 }
14875
14876 /* Create a new fnfieldlist if necessary. */
14877 if (flp == nullptr)
14878 {
14879 fip->fnfieldlists.emplace_back ();
14880 flp = &fip->fnfieldlists.back ();
14881 flp->name = fieldname;
14882 i = fip->fnfieldlists.size () - 1;
14883 }
14884
14885 /* Create a new member function field and add it to the vector of
14886 fnfieldlists. */
14887 flp->fnfields.emplace_back ();
14888 fnp = &flp->fnfields.back ();
14889
14890 /* Delay processing of the physname until later. */
14891 if (cu->language == language_cplus)
14892 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14893 die, cu);
14894 else
14895 {
14896 const char *physname = dwarf2_physname (fieldname, die, cu);
14897 fnp->physname = physname ? physname : "";
14898 }
14899
14900 fnp->type = alloc_type (objfile);
14901 this_type = read_type_die (die, cu);
14902 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14903 {
14904 int nparams = TYPE_NFIELDS (this_type);
14905
14906 /* TYPE is the domain of this method, and THIS_TYPE is the type
14907 of the method itself (TYPE_CODE_METHOD). */
14908 smash_to_method_type (fnp->type, type,
14909 TYPE_TARGET_TYPE (this_type),
14910 TYPE_FIELDS (this_type),
14911 TYPE_NFIELDS (this_type),
14912 TYPE_VARARGS (this_type));
14913
14914 /* Handle static member functions.
14915 Dwarf2 has no clean way to discern C++ static and non-static
14916 member functions. G++ helps GDB by marking the first
14917 parameter for non-static member functions (which is the this
14918 pointer) as artificial. We obtain this information from
14919 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14920 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14921 fnp->voffset = VOFFSET_STATIC;
14922 }
14923 else
14924 complaint (_("member function type missing for '%s'"),
14925 dwarf2_full_name (fieldname, die, cu));
14926
14927 /* Get fcontext from DW_AT_containing_type if present. */
14928 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14929 fnp->fcontext = die_containing_type (die, cu);
14930
14931 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14932 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14933
14934 /* Get accessibility. */
14935 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14936 if (attr != nullptr)
14937 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14938 else
14939 accessibility = dwarf2_default_access_attribute (die, cu);
14940 switch (accessibility)
14941 {
14942 case DW_ACCESS_private:
14943 fnp->is_private = 1;
14944 break;
14945 case DW_ACCESS_protected:
14946 fnp->is_protected = 1;
14947 break;
14948 }
14949
14950 /* Check for artificial methods. */
14951 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14952 if (attr && DW_UNSND (attr) != 0)
14953 fnp->is_artificial = 1;
14954
14955 /* Check for defaulted methods. */
14956 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14957 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14958 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14959
14960 /* Check for deleted methods. */
14961 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14962 if (attr != nullptr && DW_UNSND (attr) != 0)
14963 fnp->is_deleted = 1;
14964
14965 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14966
14967 /* Get index in virtual function table if it is a virtual member
14968 function. For older versions of GCC, this is an offset in the
14969 appropriate virtual table, as specified by DW_AT_containing_type.
14970 For everyone else, it is an expression to be evaluated relative
14971 to the object address. */
14972
14973 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14974 if (attr != nullptr)
14975 {
14976 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14977 {
14978 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14979 {
14980 /* Old-style GCC. */
14981 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14982 }
14983 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14984 || (DW_BLOCK (attr)->size > 1
14985 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14986 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14987 {
14988 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14989 if ((fnp->voffset % cu->header.addr_size) != 0)
14990 dwarf2_complex_location_expr_complaint ();
14991 else
14992 fnp->voffset /= cu->header.addr_size;
14993 fnp->voffset += 2;
14994 }
14995 else
14996 dwarf2_complex_location_expr_complaint ();
14997
14998 if (!fnp->fcontext)
14999 {
15000 /* If there is no `this' field and no DW_AT_containing_type,
15001 we cannot actually find a base class context for the
15002 vtable! */
15003 if (TYPE_NFIELDS (this_type) == 0
15004 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15005 {
15006 complaint (_("cannot determine context for virtual member "
15007 "function \"%s\" (offset %s)"),
15008 fieldname, sect_offset_str (die->sect_off));
15009 }
15010 else
15011 {
15012 fnp->fcontext
15013 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15014 }
15015 }
15016 }
15017 else if (attr->form_is_section_offset ())
15018 {
15019 dwarf2_complex_location_expr_complaint ();
15020 }
15021 else
15022 {
15023 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15024 fieldname);
15025 }
15026 }
15027 else
15028 {
15029 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15030 if (attr && DW_UNSND (attr))
15031 {
15032 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15033 complaint (_("Member function \"%s\" (offset %s) is virtual "
15034 "but the vtable offset is not specified"),
15035 fieldname, sect_offset_str (die->sect_off));
15036 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15037 TYPE_CPLUS_DYNAMIC (type) = 1;
15038 }
15039 }
15040 }
15041
15042 /* Create the vector of member function fields, and attach it to the type. */
15043
15044 static void
15045 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15046 struct dwarf2_cu *cu)
15047 {
15048 if (cu->language == language_ada)
15049 error (_("unexpected member functions in Ada type"));
15050
15051 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15052 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15053 TYPE_ALLOC (type,
15054 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15055
15056 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15057 {
15058 struct fnfieldlist &nf = fip->fnfieldlists[i];
15059 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15060
15061 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15062 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15063 fn_flp->fn_fields = (struct fn_field *)
15064 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15065
15066 for (int k = 0; k < nf.fnfields.size (); ++k)
15067 fn_flp->fn_fields[k] = nf.fnfields[k];
15068 }
15069
15070 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15071 }
15072
15073 /* Returns non-zero if NAME is the name of a vtable member in CU's
15074 language, zero otherwise. */
15075 static int
15076 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15077 {
15078 static const char vptr[] = "_vptr";
15079
15080 /* Look for the C++ form of the vtable. */
15081 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15082 return 1;
15083
15084 return 0;
15085 }
15086
15087 /* GCC outputs unnamed structures that are really pointers to member
15088 functions, with the ABI-specified layout. If TYPE describes
15089 such a structure, smash it into a member function type.
15090
15091 GCC shouldn't do this; it should just output pointer to member DIEs.
15092 This is GCC PR debug/28767. */
15093
15094 static void
15095 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15096 {
15097 struct type *pfn_type, *self_type, *new_type;
15098
15099 /* Check for a structure with no name and two children. */
15100 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15101 return;
15102
15103 /* Check for __pfn and __delta members. */
15104 if (TYPE_FIELD_NAME (type, 0) == NULL
15105 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15106 || TYPE_FIELD_NAME (type, 1) == NULL
15107 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15108 return;
15109
15110 /* Find the type of the method. */
15111 pfn_type = TYPE_FIELD_TYPE (type, 0);
15112 if (pfn_type == NULL
15113 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15114 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15115 return;
15116
15117 /* Look for the "this" argument. */
15118 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15119 if (TYPE_NFIELDS (pfn_type) == 0
15120 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15121 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15122 return;
15123
15124 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15125 new_type = alloc_type (objfile);
15126 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15127 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15128 TYPE_VARARGS (pfn_type));
15129 smash_to_methodptr_type (type, new_type);
15130 }
15131
15132 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15133 appropriate error checking and issuing complaints if there is a
15134 problem. */
15135
15136 static ULONGEST
15137 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15138 {
15139 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15140
15141 if (attr == nullptr)
15142 return 0;
15143
15144 if (!attr->form_is_constant ())
15145 {
15146 complaint (_("DW_AT_alignment must have constant form"
15147 " - DIE at %s [in module %s]"),
15148 sect_offset_str (die->sect_off),
15149 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15150 return 0;
15151 }
15152
15153 ULONGEST align;
15154 if (attr->form == DW_FORM_sdata)
15155 {
15156 LONGEST val = DW_SND (attr);
15157 if (val < 0)
15158 {
15159 complaint (_("DW_AT_alignment value must not be negative"
15160 " - DIE at %s [in module %s]"),
15161 sect_offset_str (die->sect_off),
15162 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15163 return 0;
15164 }
15165 align = val;
15166 }
15167 else
15168 align = DW_UNSND (attr);
15169
15170 if (align == 0)
15171 {
15172 complaint (_("DW_AT_alignment value must not be zero"
15173 " - DIE at %s [in module %s]"),
15174 sect_offset_str (die->sect_off),
15175 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15176 return 0;
15177 }
15178 if ((align & (align - 1)) != 0)
15179 {
15180 complaint (_("DW_AT_alignment value must be a power of 2"
15181 " - DIE at %s [in module %s]"),
15182 sect_offset_str (die->sect_off),
15183 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15184 return 0;
15185 }
15186
15187 return align;
15188 }
15189
15190 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15191 the alignment for TYPE. */
15192
15193 static void
15194 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15195 struct type *type)
15196 {
15197 if (!set_type_align (type, get_alignment (cu, die)))
15198 complaint (_("DW_AT_alignment value too large"
15199 " - DIE at %s [in module %s]"),
15200 sect_offset_str (die->sect_off),
15201 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15202 }
15203
15204 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15205 constant for a type, according to DWARF5 spec, Table 5.5. */
15206
15207 static bool
15208 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15209 {
15210 switch (value)
15211 {
15212 case DW_CC_normal:
15213 case DW_CC_pass_by_reference:
15214 case DW_CC_pass_by_value:
15215 return true;
15216
15217 default:
15218 complaint (_("unrecognized DW_AT_calling_convention value "
15219 "(%s) for a type"), pulongest (value));
15220 return false;
15221 }
15222 }
15223
15224 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15225 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15226 also according to GNU-specific values (see include/dwarf2.h). */
15227
15228 static bool
15229 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15230 {
15231 switch (value)
15232 {
15233 case DW_CC_normal:
15234 case DW_CC_program:
15235 case DW_CC_nocall:
15236 return true;
15237
15238 case DW_CC_GNU_renesas_sh:
15239 case DW_CC_GNU_borland_fastcall_i386:
15240 case DW_CC_GDB_IBM_OpenCL:
15241 return true;
15242
15243 default:
15244 complaint (_("unrecognized DW_AT_calling_convention value "
15245 "(%s) for a subroutine"), pulongest (value));
15246 return false;
15247 }
15248 }
15249
15250 /* Called when we find the DIE that starts a structure or union scope
15251 (definition) to create a type for the structure or union. Fill in
15252 the type's name and general properties; the members will not be
15253 processed until process_structure_scope. A symbol table entry for
15254 the type will also not be done until process_structure_scope (assuming
15255 the type has a name).
15256
15257 NOTE: we need to call these functions regardless of whether or not the
15258 DIE has a DW_AT_name attribute, since it might be an anonymous
15259 structure or union. This gets the type entered into our set of
15260 user defined types. */
15261
15262 static struct type *
15263 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15264 {
15265 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15266 struct type *type;
15267 struct attribute *attr;
15268 const char *name;
15269
15270 /* If the definition of this type lives in .debug_types, read that type.
15271 Don't follow DW_AT_specification though, that will take us back up
15272 the chain and we want to go down. */
15273 attr = die->attr (DW_AT_signature);
15274 if (attr != nullptr)
15275 {
15276 type = get_DW_AT_signature_type (die, attr, cu);
15277
15278 /* The type's CU may not be the same as CU.
15279 Ensure TYPE is recorded with CU in die_type_hash. */
15280 return set_die_type (die, type, cu);
15281 }
15282
15283 type = alloc_type (objfile);
15284 INIT_CPLUS_SPECIFIC (type);
15285
15286 name = dwarf2_name (die, cu);
15287 if (name != NULL)
15288 {
15289 if (cu->language == language_cplus
15290 || cu->language == language_d
15291 || cu->language == language_rust)
15292 {
15293 const char *full_name = dwarf2_full_name (name, die, cu);
15294
15295 /* dwarf2_full_name might have already finished building the DIE's
15296 type. If so, there is no need to continue. */
15297 if (get_die_type (die, cu) != NULL)
15298 return get_die_type (die, cu);
15299
15300 TYPE_NAME (type) = full_name;
15301 }
15302 else
15303 {
15304 /* The name is already allocated along with this objfile, so
15305 we don't need to duplicate it for the type. */
15306 TYPE_NAME (type) = name;
15307 }
15308 }
15309
15310 if (die->tag == DW_TAG_structure_type)
15311 {
15312 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15313 }
15314 else if (die->tag == DW_TAG_union_type)
15315 {
15316 TYPE_CODE (type) = TYPE_CODE_UNION;
15317 }
15318 else
15319 {
15320 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15321 }
15322
15323 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15324 TYPE_DECLARED_CLASS (type) = 1;
15325
15326 /* Store the calling convention in the type if it's available in
15327 the die. Otherwise the calling convention remains set to
15328 the default value DW_CC_normal. */
15329 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15330 if (attr != nullptr
15331 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15332 {
15333 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15334 TYPE_CPLUS_CALLING_CONVENTION (type)
15335 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15336 }
15337
15338 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15339 if (attr != nullptr)
15340 {
15341 if (attr->form_is_constant ())
15342 TYPE_LENGTH (type) = DW_UNSND (attr);
15343 else
15344 {
15345 struct dynamic_prop prop;
15346 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15347 cu->per_cu->addr_type ()))
15348 add_dyn_prop (DYN_PROP_BYTE_SIZE, prop, type);
15349 TYPE_LENGTH (type) = 0;
15350 }
15351 }
15352 else
15353 {
15354 TYPE_LENGTH (type) = 0;
15355 }
15356
15357 maybe_set_alignment (cu, die, type);
15358
15359 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15360 {
15361 /* ICC<14 does not output the required DW_AT_declaration on
15362 incomplete types, but gives them a size of zero. */
15363 TYPE_STUB (type) = 1;
15364 }
15365 else
15366 TYPE_STUB_SUPPORTED (type) = 1;
15367
15368 if (die_is_declaration (die, cu))
15369 TYPE_STUB (type) = 1;
15370 else if (attr == NULL && die->child == NULL
15371 && producer_is_realview (cu->producer))
15372 /* RealView does not output the required DW_AT_declaration
15373 on incomplete types. */
15374 TYPE_STUB (type) = 1;
15375
15376 /* We need to add the type field to the die immediately so we don't
15377 infinitely recurse when dealing with pointers to the structure
15378 type within the structure itself. */
15379 set_die_type (die, type, cu);
15380
15381 /* set_die_type should be already done. */
15382 set_descriptive_type (type, die, cu);
15383
15384 return type;
15385 }
15386
15387 static void handle_struct_member_die
15388 (struct die_info *child_die,
15389 struct type *type,
15390 struct field_info *fi,
15391 std::vector<struct symbol *> *template_args,
15392 struct dwarf2_cu *cu);
15393
15394 /* A helper for handle_struct_member_die that handles
15395 DW_TAG_variant_part. */
15396
15397 static void
15398 handle_variant_part (struct die_info *die, struct type *type,
15399 struct field_info *fi,
15400 std::vector<struct symbol *> *template_args,
15401 struct dwarf2_cu *cu)
15402 {
15403 variant_part_builder *new_part;
15404 if (fi->current_variant_part == nullptr)
15405 {
15406 fi->variant_parts.emplace_back ();
15407 new_part = &fi->variant_parts.back ();
15408 }
15409 else if (!fi->current_variant_part->processing_variant)
15410 {
15411 complaint (_("nested DW_TAG_variant_part seen "
15412 "- DIE at %s [in module %s]"),
15413 sect_offset_str (die->sect_off),
15414 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15415 return;
15416 }
15417 else
15418 {
15419 variant_field &current = fi->current_variant_part->variants.back ();
15420 current.variant_parts.emplace_back ();
15421 new_part = &current.variant_parts.back ();
15422 }
15423
15424 /* When we recurse, we want callees to add to this new variant
15425 part. */
15426 scoped_restore save_current_variant_part
15427 = make_scoped_restore (&fi->current_variant_part, new_part);
15428
15429 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15430 if (discr == NULL)
15431 {
15432 /* It's a univariant form, an extension we support. */
15433 }
15434 else if (discr->form_is_ref ())
15435 {
15436 struct dwarf2_cu *target_cu = cu;
15437 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15438
15439 new_part->discriminant_offset = target_die->sect_off;
15440 }
15441 else
15442 {
15443 complaint (_("DW_AT_discr does not have DIE reference form"
15444 " - DIE at %s [in module %s]"),
15445 sect_offset_str (die->sect_off),
15446 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15447 }
15448
15449 for (die_info *child_die = die->child;
15450 child_die != NULL;
15451 child_die = child_die->sibling)
15452 handle_struct_member_die (child_die, type, fi, template_args, cu);
15453 }
15454
15455 /* A helper for handle_struct_member_die that handles
15456 DW_TAG_variant. */
15457
15458 static void
15459 handle_variant (struct die_info *die, struct type *type,
15460 struct field_info *fi,
15461 std::vector<struct symbol *> *template_args,
15462 struct dwarf2_cu *cu)
15463 {
15464 if (fi->current_variant_part == nullptr)
15465 {
15466 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15467 "- DIE at %s [in module %s]"),
15468 sect_offset_str (die->sect_off),
15469 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15470 return;
15471 }
15472 if (fi->current_variant_part->processing_variant)
15473 {
15474 complaint (_("nested DW_TAG_variant seen "
15475 "- DIE at %s [in module %s]"),
15476 sect_offset_str (die->sect_off),
15477 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15478 return;
15479 }
15480
15481 scoped_restore save_processing_variant
15482 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15483 true);
15484
15485 fi->current_variant_part->variants.emplace_back ();
15486 variant_field &variant = fi->current_variant_part->variants.back ();
15487 variant.first_field = fi->fields.size ();
15488
15489 /* In a variant we want to get the discriminant and also add a
15490 field for our sole member child. */
15491 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15492 if (discr == nullptr)
15493 {
15494 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15495 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15496 variant.default_branch = true;
15497 else
15498 variant.discr_list_data = DW_BLOCK (discr);
15499 }
15500 else
15501 variant.discriminant_value = DW_UNSND (discr);
15502
15503 for (die_info *variant_child = die->child;
15504 variant_child != NULL;
15505 variant_child = variant_child->sibling)
15506 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15507
15508 variant.last_field = fi->fields.size ();
15509 }
15510
15511 /* A helper for process_structure_scope that handles a single member
15512 DIE. */
15513
15514 static void
15515 handle_struct_member_die (struct die_info *child_die, struct type *type,
15516 struct field_info *fi,
15517 std::vector<struct symbol *> *template_args,
15518 struct dwarf2_cu *cu)
15519 {
15520 if (child_die->tag == DW_TAG_member
15521 || child_die->tag == DW_TAG_variable)
15522 {
15523 /* NOTE: carlton/2002-11-05: A C++ static data member
15524 should be a DW_TAG_member that is a declaration, but
15525 all versions of G++ as of this writing (so through at
15526 least 3.2.1) incorrectly generate DW_TAG_variable
15527 tags for them instead. */
15528 dwarf2_add_field (fi, child_die, cu);
15529 }
15530 else if (child_die->tag == DW_TAG_subprogram)
15531 {
15532 /* Rust doesn't have member functions in the C++ sense.
15533 However, it does emit ordinary functions as children
15534 of a struct DIE. */
15535 if (cu->language == language_rust)
15536 read_func_scope (child_die, cu);
15537 else
15538 {
15539 /* C++ member function. */
15540 dwarf2_add_member_fn (fi, child_die, type, cu);
15541 }
15542 }
15543 else if (child_die->tag == DW_TAG_inheritance)
15544 {
15545 /* C++ base class field. */
15546 dwarf2_add_field (fi, child_die, cu);
15547 }
15548 else if (type_can_define_types (child_die))
15549 dwarf2_add_type_defn (fi, child_die, cu);
15550 else if (child_die->tag == DW_TAG_template_type_param
15551 || child_die->tag == DW_TAG_template_value_param)
15552 {
15553 struct symbol *arg = new_symbol (child_die, NULL, cu);
15554
15555 if (arg != NULL)
15556 template_args->push_back (arg);
15557 }
15558 else if (child_die->tag == DW_TAG_variant_part)
15559 handle_variant_part (child_die, type, fi, template_args, cu);
15560 else if (child_die->tag == DW_TAG_variant)
15561 handle_variant (child_die, type, fi, template_args, cu);
15562 }
15563
15564 /* Finish creating a structure or union type, including filling in
15565 its members and creating a symbol for it. */
15566
15567 static void
15568 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15569 {
15570 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15571 struct die_info *child_die;
15572 struct type *type;
15573
15574 type = get_die_type (die, cu);
15575 if (type == NULL)
15576 type = read_structure_type (die, cu);
15577
15578 bool has_template_parameters = false;
15579 if (die->child != NULL && ! die_is_declaration (die, cu))
15580 {
15581 struct field_info fi;
15582 std::vector<struct symbol *> template_args;
15583
15584 child_die = die->child;
15585
15586 while (child_die && child_die->tag)
15587 {
15588 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15589 child_die = child_die->sibling;
15590 }
15591
15592 /* Attach template arguments to type. */
15593 if (!template_args.empty ())
15594 {
15595 has_template_parameters = true;
15596 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15597 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15598 TYPE_TEMPLATE_ARGUMENTS (type)
15599 = XOBNEWVEC (&objfile->objfile_obstack,
15600 struct symbol *,
15601 TYPE_N_TEMPLATE_ARGUMENTS (type));
15602 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15603 template_args.data (),
15604 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15605 * sizeof (struct symbol *)));
15606 }
15607
15608 /* Attach fields and member functions to the type. */
15609 if (fi.nfields () > 0)
15610 dwarf2_attach_fields_to_type (&fi, type, cu);
15611 if (!fi.fnfieldlists.empty ())
15612 {
15613 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15614
15615 /* Get the type which refers to the base class (possibly this
15616 class itself) which contains the vtable pointer for the current
15617 class from the DW_AT_containing_type attribute. This use of
15618 DW_AT_containing_type is a GNU extension. */
15619
15620 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15621 {
15622 struct type *t = die_containing_type (die, cu);
15623
15624 set_type_vptr_basetype (type, t);
15625 if (type == t)
15626 {
15627 int i;
15628
15629 /* Our own class provides vtbl ptr. */
15630 for (i = TYPE_NFIELDS (t) - 1;
15631 i >= TYPE_N_BASECLASSES (t);
15632 --i)
15633 {
15634 const char *fieldname = TYPE_FIELD_NAME (t, i);
15635
15636 if (is_vtable_name (fieldname, cu))
15637 {
15638 set_type_vptr_fieldno (type, i);
15639 break;
15640 }
15641 }
15642
15643 /* Complain if virtual function table field not found. */
15644 if (i < TYPE_N_BASECLASSES (t))
15645 complaint (_("virtual function table pointer "
15646 "not found when defining class '%s'"),
15647 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15648 }
15649 else
15650 {
15651 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15652 }
15653 }
15654 else if (cu->producer
15655 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15656 {
15657 /* The IBM XLC compiler does not provide direct indication
15658 of the containing type, but the vtable pointer is
15659 always named __vfp. */
15660
15661 int i;
15662
15663 for (i = TYPE_NFIELDS (type) - 1;
15664 i >= TYPE_N_BASECLASSES (type);
15665 --i)
15666 {
15667 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15668 {
15669 set_type_vptr_fieldno (type, i);
15670 set_type_vptr_basetype (type, type);
15671 break;
15672 }
15673 }
15674 }
15675 }
15676
15677 /* Copy fi.typedef_field_list linked list elements content into the
15678 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15679 if (!fi.typedef_field_list.empty ())
15680 {
15681 int count = fi.typedef_field_list.size ();
15682
15683 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15684 TYPE_TYPEDEF_FIELD_ARRAY (type)
15685 = ((struct decl_field *)
15686 TYPE_ALLOC (type,
15687 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15688 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15689
15690 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15691 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15692 }
15693
15694 /* Copy fi.nested_types_list linked list elements content into the
15695 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15696 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15697 {
15698 int count = fi.nested_types_list.size ();
15699
15700 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15701 TYPE_NESTED_TYPES_ARRAY (type)
15702 = ((struct decl_field *)
15703 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15704 TYPE_NESTED_TYPES_COUNT (type) = count;
15705
15706 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15707 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15708 }
15709 }
15710
15711 quirk_gcc_member_function_pointer (type, objfile);
15712 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15713 cu->rust_unions.push_back (type);
15714
15715 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15716 snapshots) has been known to create a die giving a declaration
15717 for a class that has, as a child, a die giving a definition for a
15718 nested class. So we have to process our children even if the
15719 current die is a declaration. Normally, of course, a declaration
15720 won't have any children at all. */
15721
15722 child_die = die->child;
15723
15724 while (child_die != NULL && child_die->tag)
15725 {
15726 if (child_die->tag == DW_TAG_member
15727 || child_die->tag == DW_TAG_variable
15728 || child_die->tag == DW_TAG_inheritance
15729 || child_die->tag == DW_TAG_template_value_param
15730 || child_die->tag == DW_TAG_template_type_param)
15731 {
15732 /* Do nothing. */
15733 }
15734 else
15735 process_die (child_die, cu);
15736
15737 child_die = child_die->sibling;
15738 }
15739
15740 /* Do not consider external references. According to the DWARF standard,
15741 these DIEs are identified by the fact that they have no byte_size
15742 attribute, and a declaration attribute. */
15743 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15744 || !die_is_declaration (die, cu))
15745 {
15746 struct symbol *sym = new_symbol (die, type, cu);
15747
15748 if (has_template_parameters)
15749 {
15750 struct symtab *symtab;
15751 if (sym != nullptr)
15752 symtab = symbol_symtab (sym);
15753 else if (cu->line_header != nullptr)
15754 {
15755 /* Any related symtab will do. */
15756 symtab
15757 = cu->line_header->file_names ()[0].symtab;
15758 }
15759 else
15760 {
15761 symtab = nullptr;
15762 complaint (_("could not find suitable "
15763 "symtab for template parameter"
15764 " - DIE at %s [in module %s]"),
15765 sect_offset_str (die->sect_off),
15766 objfile_name (objfile));
15767 }
15768
15769 if (symtab != nullptr)
15770 {
15771 /* Make sure that the symtab is set on the new symbols.
15772 Even though they don't appear in this symtab directly,
15773 other parts of gdb assume that symbols do, and this is
15774 reasonably true. */
15775 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15776 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15777 }
15778 }
15779 }
15780 }
15781
15782 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15783 update TYPE using some information only available in DIE's children. */
15784
15785 static void
15786 update_enumeration_type_from_children (struct die_info *die,
15787 struct type *type,
15788 struct dwarf2_cu *cu)
15789 {
15790 struct die_info *child_die;
15791 int unsigned_enum = 1;
15792 int flag_enum = 1;
15793
15794 auto_obstack obstack;
15795
15796 for (child_die = die->child;
15797 child_die != NULL && child_die->tag;
15798 child_die = child_die->sibling)
15799 {
15800 struct attribute *attr;
15801 LONGEST value;
15802 const gdb_byte *bytes;
15803 struct dwarf2_locexpr_baton *baton;
15804 const char *name;
15805
15806 if (child_die->tag != DW_TAG_enumerator)
15807 continue;
15808
15809 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15810 if (attr == NULL)
15811 continue;
15812
15813 name = dwarf2_name (child_die, cu);
15814 if (name == NULL)
15815 name = "<anonymous enumerator>";
15816
15817 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15818 &value, &bytes, &baton);
15819 if (value < 0)
15820 {
15821 unsigned_enum = 0;
15822 flag_enum = 0;
15823 }
15824 else
15825 {
15826 if (count_one_bits_ll (value) >= 2)
15827 flag_enum = 0;
15828 }
15829
15830 /* If we already know that the enum type is neither unsigned, nor
15831 a flag type, no need to look at the rest of the enumerates. */
15832 if (!unsigned_enum && !flag_enum)
15833 break;
15834 }
15835
15836 if (unsigned_enum)
15837 TYPE_UNSIGNED (type) = 1;
15838 if (flag_enum)
15839 TYPE_FLAG_ENUM (type) = 1;
15840 }
15841
15842 /* Given a DW_AT_enumeration_type die, set its type. We do not
15843 complete the type's fields yet, or create any symbols. */
15844
15845 static struct type *
15846 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15847 {
15848 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15849 struct type *type;
15850 struct attribute *attr;
15851 const char *name;
15852
15853 /* If the definition of this type lives in .debug_types, read that type.
15854 Don't follow DW_AT_specification though, that will take us back up
15855 the chain and we want to go down. */
15856 attr = die->attr (DW_AT_signature);
15857 if (attr != nullptr)
15858 {
15859 type = get_DW_AT_signature_type (die, attr, cu);
15860
15861 /* The type's CU may not be the same as CU.
15862 Ensure TYPE is recorded with CU in die_type_hash. */
15863 return set_die_type (die, type, cu);
15864 }
15865
15866 type = alloc_type (objfile);
15867
15868 TYPE_CODE (type) = TYPE_CODE_ENUM;
15869 name = dwarf2_full_name (NULL, die, cu);
15870 if (name != NULL)
15871 TYPE_NAME (type) = name;
15872
15873 attr = dwarf2_attr (die, DW_AT_type, cu);
15874 if (attr != NULL)
15875 {
15876 struct type *underlying_type = die_type (die, cu);
15877
15878 TYPE_TARGET_TYPE (type) = underlying_type;
15879 }
15880
15881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15882 if (attr != nullptr)
15883 {
15884 TYPE_LENGTH (type) = DW_UNSND (attr);
15885 }
15886 else
15887 {
15888 TYPE_LENGTH (type) = 0;
15889 }
15890
15891 maybe_set_alignment (cu, die, type);
15892
15893 /* The enumeration DIE can be incomplete. In Ada, any type can be
15894 declared as private in the package spec, and then defined only
15895 inside the package body. Such types are known as Taft Amendment
15896 Types. When another package uses such a type, an incomplete DIE
15897 may be generated by the compiler. */
15898 if (die_is_declaration (die, cu))
15899 TYPE_STUB (type) = 1;
15900
15901 /* Finish the creation of this type by using the enum's children.
15902 We must call this even when the underlying type has been provided
15903 so that we can determine if we're looking at a "flag" enum. */
15904 update_enumeration_type_from_children (die, type, cu);
15905
15906 /* If this type has an underlying type that is not a stub, then we
15907 may use its attributes. We always use the "unsigned" attribute
15908 in this situation, because ordinarily we guess whether the type
15909 is unsigned -- but the guess can be wrong and the underlying type
15910 can tell us the reality. However, we defer to a local size
15911 attribute if one exists, because this lets the compiler override
15912 the underlying type if needed. */
15913 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15914 {
15915 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15916 underlying_type = check_typedef (underlying_type);
15917 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15918 if (TYPE_LENGTH (type) == 0)
15919 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15920 if (TYPE_RAW_ALIGN (type) == 0
15921 && TYPE_RAW_ALIGN (underlying_type) != 0)
15922 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15923 }
15924
15925 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15926
15927 return set_die_type (die, type, cu);
15928 }
15929
15930 /* Given a pointer to a die which begins an enumeration, process all
15931 the dies that define the members of the enumeration, and create the
15932 symbol for the enumeration type.
15933
15934 NOTE: We reverse the order of the element list. */
15935
15936 static void
15937 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15938 {
15939 struct type *this_type;
15940
15941 this_type = get_die_type (die, cu);
15942 if (this_type == NULL)
15943 this_type = read_enumeration_type (die, cu);
15944
15945 if (die->child != NULL)
15946 {
15947 struct die_info *child_die;
15948 struct symbol *sym;
15949 std::vector<struct field> fields;
15950 const char *name;
15951
15952 child_die = die->child;
15953 while (child_die && child_die->tag)
15954 {
15955 if (child_die->tag != DW_TAG_enumerator)
15956 {
15957 process_die (child_die, cu);
15958 }
15959 else
15960 {
15961 name = dwarf2_name (child_die, cu);
15962 if (name)
15963 {
15964 sym = new_symbol (child_die, this_type, cu);
15965
15966 fields.emplace_back ();
15967 struct field &field = fields.back ();
15968
15969 FIELD_NAME (field) = sym->linkage_name ();
15970 FIELD_TYPE (field) = NULL;
15971 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15972 FIELD_BITSIZE (field) = 0;
15973 }
15974 }
15975
15976 child_die = child_die->sibling;
15977 }
15978
15979 if (!fields.empty ())
15980 {
15981 TYPE_NFIELDS (this_type) = fields.size ();
15982 TYPE_FIELDS (this_type) = (struct field *)
15983 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15984 memcpy (TYPE_FIELDS (this_type), fields.data (),
15985 sizeof (struct field) * fields.size ());
15986 }
15987 }
15988
15989 /* If we are reading an enum from a .debug_types unit, and the enum
15990 is a declaration, and the enum is not the signatured type in the
15991 unit, then we do not want to add a symbol for it. Adding a
15992 symbol would in some cases obscure the true definition of the
15993 enum, giving users an incomplete type when the definition is
15994 actually available. Note that we do not want to do this for all
15995 enums which are just declarations, because C++0x allows forward
15996 enum declarations. */
15997 if (cu->per_cu->is_debug_types
15998 && die_is_declaration (die, cu))
15999 {
16000 struct signatured_type *sig_type;
16001
16002 sig_type = (struct signatured_type *) cu->per_cu;
16003 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16004 if (sig_type->type_offset_in_section != die->sect_off)
16005 return;
16006 }
16007
16008 new_symbol (die, this_type, cu);
16009 }
16010
16011 /* Extract all information from a DW_TAG_array_type DIE and put it in
16012 the DIE's type field. For now, this only handles one dimensional
16013 arrays. */
16014
16015 static struct type *
16016 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16017 {
16018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16019 struct die_info *child_die;
16020 struct type *type;
16021 struct type *element_type, *range_type, *index_type;
16022 struct attribute *attr;
16023 const char *name;
16024 struct dynamic_prop *byte_stride_prop = NULL;
16025 unsigned int bit_stride = 0;
16026
16027 element_type = die_type (die, cu);
16028
16029 /* The die_type call above may have already set the type for this DIE. */
16030 type = get_die_type (die, cu);
16031 if (type)
16032 return type;
16033
16034 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16035 if (attr != NULL)
16036 {
16037 int stride_ok;
16038 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16039
16040 byte_stride_prop
16041 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16042 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16043 prop_type);
16044 if (!stride_ok)
16045 {
16046 complaint (_("unable to read array DW_AT_byte_stride "
16047 " - DIE at %s [in module %s]"),
16048 sect_offset_str (die->sect_off),
16049 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16050 /* Ignore this attribute. We will likely not be able to print
16051 arrays of this type correctly, but there is little we can do
16052 to help if we cannot read the attribute's value. */
16053 byte_stride_prop = NULL;
16054 }
16055 }
16056
16057 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16058 if (attr != NULL)
16059 bit_stride = DW_UNSND (attr);
16060
16061 /* Irix 6.2 native cc creates array types without children for
16062 arrays with unspecified length. */
16063 if (die->child == NULL)
16064 {
16065 index_type = objfile_type (objfile)->builtin_int;
16066 range_type = create_static_range_type (NULL, index_type, 0, -1);
16067 type = create_array_type_with_stride (NULL, element_type, range_type,
16068 byte_stride_prop, bit_stride);
16069 return set_die_type (die, type, cu);
16070 }
16071
16072 std::vector<struct type *> range_types;
16073 child_die = die->child;
16074 while (child_die && child_die->tag)
16075 {
16076 if (child_die->tag == DW_TAG_subrange_type)
16077 {
16078 struct type *child_type = read_type_die (child_die, cu);
16079
16080 if (child_type != NULL)
16081 {
16082 /* The range type was succesfully read. Save it for the
16083 array type creation. */
16084 range_types.push_back (child_type);
16085 }
16086 }
16087 child_die = child_die->sibling;
16088 }
16089
16090 /* Dwarf2 dimensions are output from left to right, create the
16091 necessary array types in backwards order. */
16092
16093 type = element_type;
16094
16095 if (read_array_order (die, cu) == DW_ORD_col_major)
16096 {
16097 int i = 0;
16098
16099 while (i < range_types.size ())
16100 type = create_array_type_with_stride (NULL, type, range_types[i++],
16101 byte_stride_prop, bit_stride);
16102 }
16103 else
16104 {
16105 size_t ndim = range_types.size ();
16106 while (ndim-- > 0)
16107 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16108 byte_stride_prop, bit_stride);
16109 }
16110
16111 /* Understand Dwarf2 support for vector types (like they occur on
16112 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16113 array type. This is not part of the Dwarf2/3 standard yet, but a
16114 custom vendor extension. The main difference between a regular
16115 array and the vector variant is that vectors are passed by value
16116 to functions. */
16117 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16118 if (attr != nullptr)
16119 make_vector_type (type);
16120
16121 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16122 implementation may choose to implement triple vectors using this
16123 attribute. */
16124 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16125 if (attr != nullptr)
16126 {
16127 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16128 TYPE_LENGTH (type) = DW_UNSND (attr);
16129 else
16130 complaint (_("DW_AT_byte_size for array type smaller "
16131 "than the total size of elements"));
16132 }
16133
16134 name = dwarf2_name (die, cu);
16135 if (name)
16136 TYPE_NAME (type) = name;
16137
16138 maybe_set_alignment (cu, die, type);
16139
16140 /* Install the type in the die. */
16141 set_die_type (die, type, cu);
16142
16143 /* set_die_type should be already done. */
16144 set_descriptive_type (type, die, cu);
16145
16146 return type;
16147 }
16148
16149 static enum dwarf_array_dim_ordering
16150 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16151 {
16152 struct attribute *attr;
16153
16154 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16155
16156 if (attr != nullptr)
16157 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16158
16159 /* GNU F77 is a special case, as at 08/2004 array type info is the
16160 opposite order to the dwarf2 specification, but data is still
16161 laid out as per normal fortran.
16162
16163 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16164 version checking. */
16165
16166 if (cu->language == language_fortran
16167 && cu->producer && strstr (cu->producer, "GNU F77"))
16168 {
16169 return DW_ORD_row_major;
16170 }
16171
16172 switch (cu->language_defn->la_array_ordering)
16173 {
16174 case array_column_major:
16175 return DW_ORD_col_major;
16176 case array_row_major:
16177 default:
16178 return DW_ORD_row_major;
16179 };
16180 }
16181
16182 /* Extract all information from a DW_TAG_set_type DIE and put it in
16183 the DIE's type field. */
16184
16185 static struct type *
16186 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16187 {
16188 struct type *domain_type, *set_type;
16189 struct attribute *attr;
16190
16191 domain_type = die_type (die, cu);
16192
16193 /* The die_type call above may have already set the type for this DIE. */
16194 set_type = get_die_type (die, cu);
16195 if (set_type)
16196 return set_type;
16197
16198 set_type = create_set_type (NULL, domain_type);
16199
16200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16201 if (attr != nullptr)
16202 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16203
16204 maybe_set_alignment (cu, die, set_type);
16205
16206 return set_die_type (die, set_type, cu);
16207 }
16208
16209 /* A helper for read_common_block that creates a locexpr baton.
16210 SYM is the symbol which we are marking as computed.
16211 COMMON_DIE is the DIE for the common block.
16212 COMMON_LOC is the location expression attribute for the common
16213 block itself.
16214 MEMBER_LOC is the location expression attribute for the particular
16215 member of the common block that we are processing.
16216 CU is the CU from which the above come. */
16217
16218 static void
16219 mark_common_block_symbol_computed (struct symbol *sym,
16220 struct die_info *common_die,
16221 struct attribute *common_loc,
16222 struct attribute *member_loc,
16223 struct dwarf2_cu *cu)
16224 {
16225 struct dwarf2_per_objfile *dwarf2_per_objfile
16226 = cu->per_cu->dwarf2_per_objfile;
16227 struct objfile *objfile = dwarf2_per_objfile->objfile;
16228 struct dwarf2_locexpr_baton *baton;
16229 gdb_byte *ptr;
16230 unsigned int cu_off;
16231 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16232 LONGEST offset = 0;
16233
16234 gdb_assert (common_loc && member_loc);
16235 gdb_assert (common_loc->form_is_block ());
16236 gdb_assert (member_loc->form_is_block ()
16237 || member_loc->form_is_constant ());
16238
16239 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16240 baton->per_cu = cu->per_cu;
16241 gdb_assert (baton->per_cu);
16242
16243 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16244
16245 if (member_loc->form_is_constant ())
16246 {
16247 offset = member_loc->constant_value (0);
16248 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16249 }
16250 else
16251 baton->size += DW_BLOCK (member_loc)->size;
16252
16253 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16254 baton->data = ptr;
16255
16256 *ptr++ = DW_OP_call4;
16257 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16258 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16259 ptr += 4;
16260
16261 if (member_loc->form_is_constant ())
16262 {
16263 *ptr++ = DW_OP_addr;
16264 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16265 ptr += cu->header.addr_size;
16266 }
16267 else
16268 {
16269 /* We have to copy the data here, because DW_OP_call4 will only
16270 use a DW_AT_location attribute. */
16271 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16272 ptr += DW_BLOCK (member_loc)->size;
16273 }
16274
16275 *ptr++ = DW_OP_plus;
16276 gdb_assert (ptr - baton->data == baton->size);
16277
16278 SYMBOL_LOCATION_BATON (sym) = baton;
16279 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16280 }
16281
16282 /* Create appropriate locally-scoped variables for all the
16283 DW_TAG_common_block entries. Also create a struct common_block
16284 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16285 is used to separate the common blocks name namespace from regular
16286 variable names. */
16287
16288 static void
16289 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16290 {
16291 struct attribute *attr;
16292
16293 attr = dwarf2_attr (die, DW_AT_location, cu);
16294 if (attr != nullptr)
16295 {
16296 /* Support the .debug_loc offsets. */
16297 if (attr->form_is_block ())
16298 {
16299 /* Ok. */
16300 }
16301 else if (attr->form_is_section_offset ())
16302 {
16303 dwarf2_complex_location_expr_complaint ();
16304 attr = NULL;
16305 }
16306 else
16307 {
16308 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16309 "common block member");
16310 attr = NULL;
16311 }
16312 }
16313
16314 if (die->child != NULL)
16315 {
16316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16317 struct die_info *child_die;
16318 size_t n_entries = 0, size;
16319 struct common_block *common_block;
16320 struct symbol *sym;
16321
16322 for (child_die = die->child;
16323 child_die && child_die->tag;
16324 child_die = child_die->sibling)
16325 ++n_entries;
16326
16327 size = (sizeof (struct common_block)
16328 + (n_entries - 1) * sizeof (struct symbol *));
16329 common_block
16330 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16331 size);
16332 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16333 common_block->n_entries = 0;
16334
16335 for (child_die = die->child;
16336 child_die && child_die->tag;
16337 child_die = child_die->sibling)
16338 {
16339 /* Create the symbol in the DW_TAG_common_block block in the current
16340 symbol scope. */
16341 sym = new_symbol (child_die, NULL, cu);
16342 if (sym != NULL)
16343 {
16344 struct attribute *member_loc;
16345
16346 common_block->contents[common_block->n_entries++] = sym;
16347
16348 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16349 cu);
16350 if (member_loc)
16351 {
16352 /* GDB has handled this for a long time, but it is
16353 not specified by DWARF. It seems to have been
16354 emitted by gfortran at least as recently as:
16355 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16356 complaint (_("Variable in common block has "
16357 "DW_AT_data_member_location "
16358 "- DIE at %s [in module %s]"),
16359 sect_offset_str (child_die->sect_off),
16360 objfile_name (objfile));
16361
16362 if (member_loc->form_is_section_offset ())
16363 dwarf2_complex_location_expr_complaint ();
16364 else if (member_loc->form_is_constant ()
16365 || member_loc->form_is_block ())
16366 {
16367 if (attr != nullptr)
16368 mark_common_block_symbol_computed (sym, die, attr,
16369 member_loc, cu);
16370 }
16371 else
16372 dwarf2_complex_location_expr_complaint ();
16373 }
16374 }
16375 }
16376
16377 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16378 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16379 }
16380 }
16381
16382 /* Create a type for a C++ namespace. */
16383
16384 static struct type *
16385 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16386 {
16387 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16388 const char *previous_prefix, *name;
16389 int is_anonymous;
16390 struct type *type;
16391
16392 /* For extensions, reuse the type of the original namespace. */
16393 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16394 {
16395 struct die_info *ext_die;
16396 struct dwarf2_cu *ext_cu = cu;
16397
16398 ext_die = dwarf2_extension (die, &ext_cu);
16399 type = read_type_die (ext_die, ext_cu);
16400
16401 /* EXT_CU may not be the same as CU.
16402 Ensure TYPE is recorded with CU in die_type_hash. */
16403 return set_die_type (die, type, cu);
16404 }
16405
16406 name = namespace_name (die, &is_anonymous, cu);
16407
16408 /* Now build the name of the current namespace. */
16409
16410 previous_prefix = determine_prefix (die, cu);
16411 if (previous_prefix[0] != '\0')
16412 name = typename_concat (&objfile->objfile_obstack,
16413 previous_prefix, name, 0, cu);
16414
16415 /* Create the type. */
16416 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16417
16418 return set_die_type (die, type, cu);
16419 }
16420
16421 /* Read a namespace scope. */
16422
16423 static void
16424 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16425 {
16426 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16427 int is_anonymous;
16428
16429 /* Add a symbol associated to this if we haven't seen the namespace
16430 before. Also, add a using directive if it's an anonymous
16431 namespace. */
16432
16433 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16434 {
16435 struct type *type;
16436
16437 type = read_type_die (die, cu);
16438 new_symbol (die, type, cu);
16439
16440 namespace_name (die, &is_anonymous, cu);
16441 if (is_anonymous)
16442 {
16443 const char *previous_prefix = determine_prefix (die, cu);
16444
16445 std::vector<const char *> excludes;
16446 add_using_directive (using_directives (cu),
16447 previous_prefix, TYPE_NAME (type), NULL,
16448 NULL, excludes, 0, &objfile->objfile_obstack);
16449 }
16450 }
16451
16452 if (die->child != NULL)
16453 {
16454 struct die_info *child_die = die->child;
16455
16456 while (child_die && child_die->tag)
16457 {
16458 process_die (child_die, cu);
16459 child_die = child_die->sibling;
16460 }
16461 }
16462 }
16463
16464 /* Read a Fortran module as type. This DIE can be only a declaration used for
16465 imported module. Still we need that type as local Fortran "use ... only"
16466 declaration imports depend on the created type in determine_prefix. */
16467
16468 static struct type *
16469 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16470 {
16471 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16472 const char *module_name;
16473 struct type *type;
16474
16475 module_name = dwarf2_name (die, cu);
16476 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16477
16478 return set_die_type (die, type, cu);
16479 }
16480
16481 /* Read a Fortran module. */
16482
16483 static void
16484 read_module (struct die_info *die, struct dwarf2_cu *cu)
16485 {
16486 struct die_info *child_die = die->child;
16487 struct type *type;
16488
16489 type = read_type_die (die, cu);
16490 new_symbol (die, type, cu);
16491
16492 while (child_die && child_die->tag)
16493 {
16494 process_die (child_die, cu);
16495 child_die = child_die->sibling;
16496 }
16497 }
16498
16499 /* Return the name of the namespace represented by DIE. Set
16500 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16501 namespace. */
16502
16503 static const char *
16504 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16505 {
16506 struct die_info *current_die;
16507 const char *name = NULL;
16508
16509 /* Loop through the extensions until we find a name. */
16510
16511 for (current_die = die;
16512 current_die != NULL;
16513 current_die = dwarf2_extension (die, &cu))
16514 {
16515 /* We don't use dwarf2_name here so that we can detect the absence
16516 of a name -> anonymous namespace. */
16517 name = dwarf2_string_attr (die, DW_AT_name, cu);
16518
16519 if (name != NULL)
16520 break;
16521 }
16522
16523 /* Is it an anonymous namespace? */
16524
16525 *is_anonymous = (name == NULL);
16526 if (*is_anonymous)
16527 name = CP_ANONYMOUS_NAMESPACE_STR;
16528
16529 return name;
16530 }
16531
16532 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16533 the user defined type vector. */
16534
16535 static struct type *
16536 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16537 {
16538 struct gdbarch *gdbarch
16539 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16540 struct comp_unit_head *cu_header = &cu->header;
16541 struct type *type;
16542 struct attribute *attr_byte_size;
16543 struct attribute *attr_address_class;
16544 int byte_size, addr_class;
16545 struct type *target_type;
16546
16547 target_type = die_type (die, cu);
16548
16549 /* The die_type call above may have already set the type for this DIE. */
16550 type = get_die_type (die, cu);
16551 if (type)
16552 return type;
16553
16554 type = lookup_pointer_type (target_type);
16555
16556 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16557 if (attr_byte_size)
16558 byte_size = DW_UNSND (attr_byte_size);
16559 else
16560 byte_size = cu_header->addr_size;
16561
16562 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16563 if (attr_address_class)
16564 addr_class = DW_UNSND (attr_address_class);
16565 else
16566 addr_class = DW_ADDR_none;
16567
16568 ULONGEST alignment = get_alignment (cu, die);
16569
16570 /* If the pointer size, alignment, or address class is different
16571 than the default, create a type variant marked as such and set
16572 the length accordingly. */
16573 if (TYPE_LENGTH (type) != byte_size
16574 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16575 && alignment != TYPE_RAW_ALIGN (type))
16576 || addr_class != DW_ADDR_none)
16577 {
16578 if (gdbarch_address_class_type_flags_p (gdbarch))
16579 {
16580 int type_flags;
16581
16582 type_flags = gdbarch_address_class_type_flags
16583 (gdbarch, byte_size, addr_class);
16584 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16585 == 0);
16586 type = make_type_with_address_space (type, type_flags);
16587 }
16588 else if (TYPE_LENGTH (type) != byte_size)
16589 {
16590 complaint (_("invalid pointer size %d"), byte_size);
16591 }
16592 else if (TYPE_RAW_ALIGN (type) != alignment)
16593 {
16594 complaint (_("Invalid DW_AT_alignment"
16595 " - DIE at %s [in module %s]"),
16596 sect_offset_str (die->sect_off),
16597 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16598 }
16599 else
16600 {
16601 /* Should we also complain about unhandled address classes? */
16602 }
16603 }
16604
16605 TYPE_LENGTH (type) = byte_size;
16606 set_type_align (type, alignment);
16607 return set_die_type (die, type, cu);
16608 }
16609
16610 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16611 the user defined type vector. */
16612
16613 static struct type *
16614 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16615 {
16616 struct type *type;
16617 struct type *to_type;
16618 struct type *domain;
16619
16620 to_type = die_type (die, cu);
16621 domain = die_containing_type (die, cu);
16622
16623 /* The calls above may have already set the type for this DIE. */
16624 type = get_die_type (die, cu);
16625 if (type)
16626 return type;
16627
16628 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16629 type = lookup_methodptr_type (to_type);
16630 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16631 {
16632 struct type *new_type
16633 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16634
16635 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16636 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16637 TYPE_VARARGS (to_type));
16638 type = lookup_methodptr_type (new_type);
16639 }
16640 else
16641 type = lookup_memberptr_type (to_type, domain);
16642
16643 return set_die_type (die, type, cu);
16644 }
16645
16646 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16647 the user defined type vector. */
16648
16649 static struct type *
16650 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16651 enum type_code refcode)
16652 {
16653 struct comp_unit_head *cu_header = &cu->header;
16654 struct type *type, *target_type;
16655 struct attribute *attr;
16656
16657 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16658
16659 target_type = die_type (die, cu);
16660
16661 /* The die_type call above may have already set the type for this DIE. */
16662 type = get_die_type (die, cu);
16663 if (type)
16664 return type;
16665
16666 type = lookup_reference_type (target_type, refcode);
16667 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16668 if (attr != nullptr)
16669 {
16670 TYPE_LENGTH (type) = DW_UNSND (attr);
16671 }
16672 else
16673 {
16674 TYPE_LENGTH (type) = cu_header->addr_size;
16675 }
16676 maybe_set_alignment (cu, die, type);
16677 return set_die_type (die, type, cu);
16678 }
16679
16680 /* Add the given cv-qualifiers to the element type of the array. GCC
16681 outputs DWARF type qualifiers that apply to an array, not the
16682 element type. But GDB relies on the array element type to carry
16683 the cv-qualifiers. This mimics section 6.7.3 of the C99
16684 specification. */
16685
16686 static struct type *
16687 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16688 struct type *base_type, int cnst, int voltl)
16689 {
16690 struct type *el_type, *inner_array;
16691
16692 base_type = copy_type (base_type);
16693 inner_array = base_type;
16694
16695 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16696 {
16697 TYPE_TARGET_TYPE (inner_array) =
16698 copy_type (TYPE_TARGET_TYPE (inner_array));
16699 inner_array = TYPE_TARGET_TYPE (inner_array);
16700 }
16701
16702 el_type = TYPE_TARGET_TYPE (inner_array);
16703 cnst |= TYPE_CONST (el_type);
16704 voltl |= TYPE_VOLATILE (el_type);
16705 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16706
16707 return set_die_type (die, base_type, cu);
16708 }
16709
16710 static struct type *
16711 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16712 {
16713 struct type *base_type, *cv_type;
16714
16715 base_type = die_type (die, cu);
16716
16717 /* The die_type call above may have already set the type for this DIE. */
16718 cv_type = get_die_type (die, cu);
16719 if (cv_type)
16720 return cv_type;
16721
16722 /* In case the const qualifier is applied to an array type, the element type
16723 is so qualified, not the array type (section 6.7.3 of C99). */
16724 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16725 return add_array_cv_type (die, cu, base_type, 1, 0);
16726
16727 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16728 return set_die_type (die, cv_type, cu);
16729 }
16730
16731 static struct type *
16732 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16733 {
16734 struct type *base_type, *cv_type;
16735
16736 base_type = die_type (die, cu);
16737
16738 /* The die_type call above may have already set the type for this DIE. */
16739 cv_type = get_die_type (die, cu);
16740 if (cv_type)
16741 return cv_type;
16742
16743 /* In case the volatile qualifier is applied to an array type, the
16744 element type is so qualified, not the array type (section 6.7.3
16745 of C99). */
16746 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16747 return add_array_cv_type (die, cu, base_type, 0, 1);
16748
16749 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16750 return set_die_type (die, cv_type, cu);
16751 }
16752
16753 /* Handle DW_TAG_restrict_type. */
16754
16755 static struct type *
16756 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16757 {
16758 struct type *base_type, *cv_type;
16759
16760 base_type = die_type (die, cu);
16761
16762 /* The die_type call above may have already set the type for this DIE. */
16763 cv_type = get_die_type (die, cu);
16764 if (cv_type)
16765 return cv_type;
16766
16767 cv_type = make_restrict_type (base_type);
16768 return set_die_type (die, cv_type, cu);
16769 }
16770
16771 /* Handle DW_TAG_atomic_type. */
16772
16773 static struct type *
16774 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16775 {
16776 struct type *base_type, *cv_type;
16777
16778 base_type = die_type (die, cu);
16779
16780 /* The die_type call above may have already set the type for this DIE. */
16781 cv_type = get_die_type (die, cu);
16782 if (cv_type)
16783 return cv_type;
16784
16785 cv_type = make_atomic_type (base_type);
16786 return set_die_type (die, cv_type, cu);
16787 }
16788
16789 /* Extract all information from a DW_TAG_string_type DIE and add to
16790 the user defined type vector. It isn't really a user defined type,
16791 but it behaves like one, with other DIE's using an AT_user_def_type
16792 attribute to reference it. */
16793
16794 static struct type *
16795 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16796 {
16797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16798 struct gdbarch *gdbarch = objfile->arch ();
16799 struct type *type, *range_type, *index_type, *char_type;
16800 struct attribute *attr;
16801 struct dynamic_prop prop;
16802 bool length_is_constant = true;
16803 LONGEST length;
16804
16805 /* There are a couple of places where bit sizes might be made use of
16806 when parsing a DW_TAG_string_type, however, no producer that we know
16807 of make use of these. Handling bit sizes that are a multiple of the
16808 byte size is easy enough, but what about other bit sizes? Lets deal
16809 with that problem when we have to. Warn about these attributes being
16810 unsupported, then parse the type and ignore them like we always
16811 have. */
16812 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16813 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16814 {
16815 static bool warning_printed = false;
16816 if (!warning_printed)
16817 {
16818 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16819 "currently supported on DW_TAG_string_type."));
16820 warning_printed = true;
16821 }
16822 }
16823
16824 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16825 if (attr != nullptr && !attr->form_is_constant ())
16826 {
16827 /* The string length describes the location at which the length of
16828 the string can be found. The size of the length field can be
16829 specified with one of the attributes below. */
16830 struct type *prop_type;
16831 struct attribute *len
16832 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16833 if (len == nullptr)
16834 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16835 if (len != nullptr && len->form_is_constant ())
16836 {
16837 /* Pass 0 as the default as we know this attribute is constant
16838 and the default value will not be returned. */
16839 LONGEST sz = len->constant_value (0);
16840 prop_type = cu->per_cu->int_type (sz, true);
16841 }
16842 else
16843 {
16844 /* If the size is not specified then we assume it is the size of
16845 an address on this target. */
16846 prop_type = cu->per_cu->addr_sized_int_type (true);
16847 }
16848
16849 /* Convert the attribute into a dynamic property. */
16850 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16851 length = 1;
16852 else
16853 length_is_constant = false;
16854 }
16855 else if (attr != nullptr)
16856 {
16857 /* This DW_AT_string_length just contains the length with no
16858 indirection. There's no need to create a dynamic property in this
16859 case. Pass 0 for the default value as we know it will not be
16860 returned in this case. */
16861 length = attr->constant_value (0);
16862 }
16863 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16864 {
16865 /* We don't currently support non-constant byte sizes for strings. */
16866 length = attr->constant_value (1);
16867 }
16868 else
16869 {
16870 /* Use 1 as a fallback length if we have nothing else. */
16871 length = 1;
16872 }
16873
16874 index_type = objfile_type (objfile)->builtin_int;
16875 if (length_is_constant)
16876 range_type = create_static_range_type (NULL, index_type, 1, length);
16877 else
16878 {
16879 struct dynamic_prop low_bound;
16880
16881 low_bound.kind = PROP_CONST;
16882 low_bound.data.const_val = 1;
16883 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16884 }
16885 char_type = language_string_char_type (cu->language_defn, gdbarch);
16886 type = create_string_type (NULL, char_type, range_type);
16887
16888 return set_die_type (die, type, cu);
16889 }
16890
16891 /* Assuming that DIE corresponds to a function, returns nonzero
16892 if the function is prototyped. */
16893
16894 static int
16895 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16896 {
16897 struct attribute *attr;
16898
16899 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16900 if (attr && (DW_UNSND (attr) != 0))
16901 return 1;
16902
16903 /* The DWARF standard implies that the DW_AT_prototyped attribute
16904 is only meaningful for C, but the concept also extends to other
16905 languages that allow unprototyped functions (Eg: Objective C).
16906 For all other languages, assume that functions are always
16907 prototyped. */
16908 if (cu->language != language_c
16909 && cu->language != language_objc
16910 && cu->language != language_opencl)
16911 return 1;
16912
16913 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16914 prototyped and unprototyped functions; default to prototyped,
16915 since that is more common in modern code (and RealView warns
16916 about unprototyped functions). */
16917 if (producer_is_realview (cu->producer))
16918 return 1;
16919
16920 return 0;
16921 }
16922
16923 /* Handle DIES due to C code like:
16924
16925 struct foo
16926 {
16927 int (*funcp)(int a, long l);
16928 int b;
16929 };
16930
16931 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16932
16933 static struct type *
16934 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16935 {
16936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16937 struct type *type; /* Type that this function returns. */
16938 struct type *ftype; /* Function that returns above type. */
16939 struct attribute *attr;
16940
16941 type = die_type (die, cu);
16942
16943 /* The die_type call above may have already set the type for this DIE. */
16944 ftype = get_die_type (die, cu);
16945 if (ftype)
16946 return ftype;
16947
16948 ftype = lookup_function_type (type);
16949
16950 if (prototyped_function_p (die, cu))
16951 TYPE_PROTOTYPED (ftype) = 1;
16952
16953 /* Store the calling convention in the type if it's available in
16954 the subroutine die. Otherwise set the calling convention to
16955 the default value DW_CC_normal. */
16956 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16957 if (attr != nullptr
16958 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16959 TYPE_CALLING_CONVENTION (ftype)
16960 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16961 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16962 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16963 else
16964 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16965
16966 /* Record whether the function returns normally to its caller or not
16967 if the DWARF producer set that information. */
16968 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16969 if (attr && (DW_UNSND (attr) != 0))
16970 TYPE_NO_RETURN (ftype) = 1;
16971
16972 /* We need to add the subroutine type to the die immediately so
16973 we don't infinitely recurse when dealing with parameters
16974 declared as the same subroutine type. */
16975 set_die_type (die, ftype, cu);
16976
16977 if (die->child != NULL)
16978 {
16979 struct type *void_type = objfile_type (objfile)->builtin_void;
16980 struct die_info *child_die;
16981 int nparams, iparams;
16982
16983 /* Count the number of parameters.
16984 FIXME: GDB currently ignores vararg functions, but knows about
16985 vararg member functions. */
16986 nparams = 0;
16987 child_die = die->child;
16988 while (child_die && child_die->tag)
16989 {
16990 if (child_die->tag == DW_TAG_formal_parameter)
16991 nparams++;
16992 else if (child_die->tag == DW_TAG_unspecified_parameters)
16993 TYPE_VARARGS (ftype) = 1;
16994 child_die = child_die->sibling;
16995 }
16996
16997 /* Allocate storage for parameters and fill them in. */
16998 TYPE_NFIELDS (ftype) = nparams;
16999 TYPE_FIELDS (ftype) = (struct field *)
17000 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17001
17002 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17003 even if we error out during the parameters reading below. */
17004 for (iparams = 0; iparams < nparams; iparams++)
17005 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17006
17007 iparams = 0;
17008 child_die = die->child;
17009 while (child_die && child_die->tag)
17010 {
17011 if (child_die->tag == DW_TAG_formal_parameter)
17012 {
17013 struct type *arg_type;
17014
17015 /* DWARF version 2 has no clean way to discern C++
17016 static and non-static member functions. G++ helps
17017 GDB by marking the first parameter for non-static
17018 member functions (which is the this pointer) as
17019 artificial. We pass this information to
17020 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17021
17022 DWARF version 3 added DW_AT_object_pointer, which GCC
17023 4.5 does not yet generate. */
17024 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17025 if (attr != nullptr)
17026 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17027 else
17028 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17029 arg_type = die_type (child_die, cu);
17030
17031 /* RealView does not mark THIS as const, which the testsuite
17032 expects. GCC marks THIS as const in method definitions,
17033 but not in the class specifications (GCC PR 43053). */
17034 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17035 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17036 {
17037 int is_this = 0;
17038 struct dwarf2_cu *arg_cu = cu;
17039 const char *name = dwarf2_name (child_die, cu);
17040
17041 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17042 if (attr != nullptr)
17043 {
17044 /* If the compiler emits this, use it. */
17045 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17046 is_this = 1;
17047 }
17048 else if (name && strcmp (name, "this") == 0)
17049 /* Function definitions will have the argument names. */
17050 is_this = 1;
17051 else if (name == NULL && iparams == 0)
17052 /* Declarations may not have the names, so like
17053 elsewhere in GDB, assume an artificial first
17054 argument is "this". */
17055 is_this = 1;
17056
17057 if (is_this)
17058 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17059 arg_type, 0);
17060 }
17061
17062 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17063 iparams++;
17064 }
17065 child_die = child_die->sibling;
17066 }
17067 }
17068
17069 return ftype;
17070 }
17071
17072 static struct type *
17073 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17074 {
17075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17076 const char *name = NULL;
17077 struct type *this_type, *target_type;
17078
17079 name = dwarf2_full_name (NULL, die, cu);
17080 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17081 TYPE_TARGET_STUB (this_type) = 1;
17082 set_die_type (die, this_type, cu);
17083 target_type = die_type (die, cu);
17084 if (target_type != this_type)
17085 TYPE_TARGET_TYPE (this_type) = target_type;
17086 else
17087 {
17088 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17089 spec and cause infinite loops in GDB. */
17090 complaint (_("Self-referential DW_TAG_typedef "
17091 "- DIE at %s [in module %s]"),
17092 sect_offset_str (die->sect_off), objfile_name (objfile));
17093 TYPE_TARGET_TYPE (this_type) = NULL;
17094 }
17095 if (name == NULL)
17096 {
17097 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17098 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17099 Handle these by just returning the target type, rather than
17100 constructing an anonymous typedef type and trying to handle this
17101 elsewhere. */
17102 set_die_type (die, target_type, cu);
17103 return target_type;
17104 }
17105 return this_type;
17106 }
17107
17108 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17109 (which may be different from NAME) to the architecture back-end to allow
17110 it to guess the correct format if necessary. */
17111
17112 static struct type *
17113 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17114 const char *name_hint, enum bfd_endian byte_order)
17115 {
17116 struct gdbarch *gdbarch = objfile->arch ();
17117 const struct floatformat **format;
17118 struct type *type;
17119
17120 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17121 if (format)
17122 type = init_float_type (objfile, bits, name, format, byte_order);
17123 else
17124 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17125
17126 return type;
17127 }
17128
17129 /* Allocate an integer type of size BITS and name NAME. */
17130
17131 static struct type *
17132 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17133 int bits, int unsigned_p, const char *name)
17134 {
17135 struct type *type;
17136
17137 /* Versions of Intel's C Compiler generate an integer type called "void"
17138 instead of using DW_TAG_unspecified_type. This has been seen on
17139 at least versions 14, 17, and 18. */
17140 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17141 && strcmp (name, "void") == 0)
17142 type = objfile_type (objfile)->builtin_void;
17143 else
17144 type = init_integer_type (objfile, bits, unsigned_p, name);
17145
17146 return type;
17147 }
17148
17149 /* Initialise and return a floating point type of size BITS suitable for
17150 use as a component of a complex number. The NAME_HINT is passed through
17151 when initialising the floating point type and is the name of the complex
17152 type.
17153
17154 As DWARF doesn't currently provide an explicit name for the components
17155 of a complex number, but it can be helpful to have these components
17156 named, we try to select a suitable name based on the size of the
17157 component. */
17158 static struct type *
17159 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17160 struct objfile *objfile,
17161 int bits, const char *name_hint,
17162 enum bfd_endian byte_order)
17163 {
17164 gdbarch *gdbarch = objfile->arch ();
17165 struct type *tt = nullptr;
17166
17167 /* Try to find a suitable floating point builtin type of size BITS.
17168 We're going to use the name of this type as the name for the complex
17169 target type that we are about to create. */
17170 switch (cu->language)
17171 {
17172 case language_fortran:
17173 switch (bits)
17174 {
17175 case 32:
17176 tt = builtin_f_type (gdbarch)->builtin_real;
17177 break;
17178 case 64:
17179 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17180 break;
17181 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17182 case 128:
17183 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17184 break;
17185 }
17186 break;
17187 default:
17188 switch (bits)
17189 {
17190 case 32:
17191 tt = builtin_type (gdbarch)->builtin_float;
17192 break;
17193 case 64:
17194 tt = builtin_type (gdbarch)->builtin_double;
17195 break;
17196 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17197 case 128:
17198 tt = builtin_type (gdbarch)->builtin_long_double;
17199 break;
17200 }
17201 break;
17202 }
17203
17204 /* If the type we found doesn't match the size we were looking for, then
17205 pretend we didn't find a type at all, the complex target type we
17206 create will then be nameless. */
17207 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17208 tt = nullptr;
17209
17210 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17211 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17212 }
17213
17214 /* Find a representation of a given base type and install
17215 it in the TYPE field of the die. */
17216
17217 static struct type *
17218 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17219 {
17220 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17221 struct type *type;
17222 struct attribute *attr;
17223 int encoding = 0, bits = 0;
17224 const char *name;
17225 gdbarch *arch;
17226
17227 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17228 if (attr != nullptr)
17229 encoding = DW_UNSND (attr);
17230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17231 if (attr != nullptr)
17232 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17233 name = dwarf2_name (die, cu);
17234 if (!name)
17235 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17236
17237 arch = objfile->arch ();
17238 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17239
17240 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17241 if (attr)
17242 {
17243 int endianity = DW_UNSND (attr);
17244
17245 switch (endianity)
17246 {
17247 case DW_END_big:
17248 byte_order = BFD_ENDIAN_BIG;
17249 break;
17250 case DW_END_little:
17251 byte_order = BFD_ENDIAN_LITTLE;
17252 break;
17253 default:
17254 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17255 break;
17256 }
17257 }
17258
17259 switch (encoding)
17260 {
17261 case DW_ATE_address:
17262 /* Turn DW_ATE_address into a void * pointer. */
17263 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17264 type = init_pointer_type (objfile, bits, name, type);
17265 break;
17266 case DW_ATE_boolean:
17267 type = init_boolean_type (objfile, bits, 1, name);
17268 break;
17269 case DW_ATE_complex_float:
17270 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17271 byte_order);
17272 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
17273 {
17274 if (name == nullptr)
17275 {
17276 struct obstack *obstack
17277 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17278 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17279 nullptr);
17280 }
17281 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17282 }
17283 else
17284 type = init_complex_type (name, type);
17285 break;
17286 case DW_ATE_decimal_float:
17287 type = init_decfloat_type (objfile, bits, name);
17288 break;
17289 case DW_ATE_float:
17290 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17291 break;
17292 case DW_ATE_signed:
17293 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17294 break;
17295 case DW_ATE_unsigned:
17296 if (cu->language == language_fortran
17297 && name
17298 && startswith (name, "character("))
17299 type = init_character_type (objfile, bits, 1, name);
17300 else
17301 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17302 break;
17303 case DW_ATE_signed_char:
17304 if (cu->language == language_ada || cu->language == language_m2
17305 || cu->language == language_pascal
17306 || cu->language == language_fortran)
17307 type = init_character_type (objfile, bits, 0, name);
17308 else
17309 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17310 break;
17311 case DW_ATE_unsigned_char:
17312 if (cu->language == language_ada || cu->language == language_m2
17313 || cu->language == language_pascal
17314 || cu->language == language_fortran
17315 || cu->language == language_rust)
17316 type = init_character_type (objfile, bits, 1, name);
17317 else
17318 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17319 break;
17320 case DW_ATE_UTF:
17321 {
17322 if (bits == 16)
17323 type = builtin_type (arch)->builtin_char16;
17324 else if (bits == 32)
17325 type = builtin_type (arch)->builtin_char32;
17326 else
17327 {
17328 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17329 bits);
17330 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17331 }
17332 return set_die_type (die, type, cu);
17333 }
17334 break;
17335
17336 default:
17337 complaint (_("unsupported DW_AT_encoding: '%s'"),
17338 dwarf_type_encoding_name (encoding));
17339 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17340 break;
17341 }
17342
17343 if (name && strcmp (name, "char") == 0)
17344 TYPE_NOSIGN (type) = 1;
17345
17346 maybe_set_alignment (cu, die, type);
17347
17348 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17349
17350 return set_die_type (die, type, cu);
17351 }
17352
17353 /* Parse dwarf attribute if it's a block, reference or constant and put the
17354 resulting value of the attribute into struct bound_prop.
17355 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17356
17357 static int
17358 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17359 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17360 struct type *default_type)
17361 {
17362 struct dwarf2_property_baton *baton;
17363 struct obstack *obstack
17364 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17365
17366 gdb_assert (default_type != NULL);
17367
17368 if (attr == NULL || prop == NULL)
17369 return 0;
17370
17371 if (attr->form_is_block ())
17372 {
17373 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17374 baton->property_type = default_type;
17375 baton->locexpr.per_cu = cu->per_cu;
17376 baton->locexpr.size = DW_BLOCK (attr)->size;
17377 baton->locexpr.data = DW_BLOCK (attr)->data;
17378 switch (attr->name)
17379 {
17380 case DW_AT_string_length:
17381 baton->locexpr.is_reference = true;
17382 break;
17383 default:
17384 baton->locexpr.is_reference = false;
17385 break;
17386 }
17387 prop->data.baton = baton;
17388 prop->kind = PROP_LOCEXPR;
17389 gdb_assert (prop->data.baton != NULL);
17390 }
17391 else if (attr->form_is_ref ())
17392 {
17393 struct dwarf2_cu *target_cu = cu;
17394 struct die_info *target_die;
17395 struct attribute *target_attr;
17396
17397 target_die = follow_die_ref (die, attr, &target_cu);
17398 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17399 if (target_attr == NULL)
17400 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17401 target_cu);
17402 if (target_attr == NULL)
17403 return 0;
17404
17405 switch (target_attr->name)
17406 {
17407 case DW_AT_location:
17408 if (target_attr->form_is_section_offset ())
17409 {
17410 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17411 baton->property_type = die_type (target_die, target_cu);
17412 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17413 prop->data.baton = baton;
17414 prop->kind = PROP_LOCLIST;
17415 gdb_assert (prop->data.baton != NULL);
17416 }
17417 else if (target_attr->form_is_block ())
17418 {
17419 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17420 baton->property_type = die_type (target_die, target_cu);
17421 baton->locexpr.per_cu = cu->per_cu;
17422 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17423 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17424 baton->locexpr.is_reference = true;
17425 prop->data.baton = baton;
17426 prop->kind = PROP_LOCEXPR;
17427 gdb_assert (prop->data.baton != NULL);
17428 }
17429 else
17430 {
17431 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17432 "dynamic property");
17433 return 0;
17434 }
17435 break;
17436 case DW_AT_data_member_location:
17437 {
17438 LONGEST offset;
17439
17440 if (!handle_data_member_location (target_die, target_cu,
17441 &offset))
17442 return 0;
17443
17444 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17445 baton->property_type = read_type_die (target_die->parent,
17446 target_cu);
17447 baton->offset_info.offset = offset;
17448 baton->offset_info.type = die_type (target_die, target_cu);
17449 prop->data.baton = baton;
17450 prop->kind = PROP_ADDR_OFFSET;
17451 break;
17452 }
17453 }
17454 }
17455 else if (attr->form_is_constant ())
17456 {
17457 prop->data.const_val = attr->constant_value (0);
17458 prop->kind = PROP_CONST;
17459 }
17460 else
17461 {
17462 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17463 dwarf2_name (die, cu));
17464 return 0;
17465 }
17466
17467 return 1;
17468 }
17469
17470 /* See read.h. */
17471
17472 struct type *
17473 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17474 {
17475 struct objfile *objfile = dwarf2_per_objfile->objfile;
17476 struct type *int_type;
17477
17478 /* Helper macro to examine the various builtin types. */
17479 #define TRY_TYPE(F) \
17480 int_type = (unsigned_p \
17481 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17482 : objfile_type (objfile)->builtin_ ## F); \
17483 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17484 return int_type
17485
17486 TRY_TYPE (char);
17487 TRY_TYPE (short);
17488 TRY_TYPE (int);
17489 TRY_TYPE (long);
17490 TRY_TYPE (long_long);
17491
17492 #undef TRY_TYPE
17493
17494 gdb_assert_not_reached ("unable to find suitable integer type");
17495 }
17496
17497 /* See read.h. */
17498
17499 struct type *
17500 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17501 {
17502 int addr_size = this->addr_size ();
17503 return int_type (addr_size, unsigned_p);
17504 }
17505
17506 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17507 present (which is valid) then compute the default type based on the
17508 compilation units address size. */
17509
17510 static struct type *
17511 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17512 {
17513 struct type *index_type = die_type (die, cu);
17514
17515 /* Dwarf-2 specifications explicitly allows to create subrange types
17516 without specifying a base type.
17517 In that case, the base type must be set to the type of
17518 the lower bound, upper bound or count, in that order, if any of these
17519 three attributes references an object that has a type.
17520 If no base type is found, the Dwarf-2 specifications say that
17521 a signed integer type of size equal to the size of an address should
17522 be used.
17523 For the following C code: `extern char gdb_int [];'
17524 GCC produces an empty range DIE.
17525 FIXME: muller/2010-05-28: Possible references to object for low bound,
17526 high bound or count are not yet handled by this code. */
17527 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17528 index_type = cu->per_cu->addr_sized_int_type (false);
17529
17530 return index_type;
17531 }
17532
17533 /* Read the given DW_AT_subrange DIE. */
17534
17535 static struct type *
17536 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17537 {
17538 struct type *base_type, *orig_base_type;
17539 struct type *range_type;
17540 struct attribute *attr;
17541 struct dynamic_prop low, high;
17542 int low_default_is_valid;
17543 int high_bound_is_count = 0;
17544 const char *name;
17545 ULONGEST negative_mask;
17546
17547 orig_base_type = read_subrange_index_type (die, cu);
17548
17549 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17550 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17551 creating the range type, but we use the result of check_typedef
17552 when examining properties of the type. */
17553 base_type = check_typedef (orig_base_type);
17554
17555 /* The die_type call above may have already set the type for this DIE. */
17556 range_type = get_die_type (die, cu);
17557 if (range_type)
17558 return range_type;
17559
17560 low.kind = PROP_CONST;
17561 high.kind = PROP_CONST;
17562 high.data.const_val = 0;
17563
17564 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17565 omitting DW_AT_lower_bound. */
17566 switch (cu->language)
17567 {
17568 case language_c:
17569 case language_cplus:
17570 low.data.const_val = 0;
17571 low_default_is_valid = 1;
17572 break;
17573 case language_fortran:
17574 low.data.const_val = 1;
17575 low_default_is_valid = 1;
17576 break;
17577 case language_d:
17578 case language_objc:
17579 case language_rust:
17580 low.data.const_val = 0;
17581 low_default_is_valid = (cu->header.version >= 4);
17582 break;
17583 case language_ada:
17584 case language_m2:
17585 case language_pascal:
17586 low.data.const_val = 1;
17587 low_default_is_valid = (cu->header.version >= 4);
17588 break;
17589 default:
17590 low.data.const_val = 0;
17591 low_default_is_valid = 0;
17592 break;
17593 }
17594
17595 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17596 if (attr != nullptr)
17597 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17598 else if (!low_default_is_valid)
17599 complaint (_("Missing DW_AT_lower_bound "
17600 "- DIE at %s [in module %s]"),
17601 sect_offset_str (die->sect_off),
17602 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17603
17604 struct attribute *attr_ub, *attr_count;
17605 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17606 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17607 {
17608 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17609 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17610 {
17611 /* If bounds are constant do the final calculation here. */
17612 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17613 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17614 else
17615 high_bound_is_count = 1;
17616 }
17617 else
17618 {
17619 if (attr_ub != NULL)
17620 complaint (_("Unresolved DW_AT_upper_bound "
17621 "- DIE at %s [in module %s]"),
17622 sect_offset_str (die->sect_off),
17623 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17624 if (attr_count != NULL)
17625 complaint (_("Unresolved DW_AT_count "
17626 "- DIE at %s [in module %s]"),
17627 sect_offset_str (die->sect_off),
17628 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17629 }
17630 }
17631
17632 LONGEST bias = 0;
17633 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17634 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17635 bias = bias_attr->constant_value (0);
17636
17637 /* Normally, the DWARF producers are expected to use a signed
17638 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17639 But this is unfortunately not always the case, as witnessed
17640 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17641 is used instead. To work around that ambiguity, we treat
17642 the bounds as signed, and thus sign-extend their values, when
17643 the base type is signed. */
17644 negative_mask =
17645 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17646 if (low.kind == PROP_CONST
17647 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17648 low.data.const_val |= negative_mask;
17649 if (high.kind == PROP_CONST
17650 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17651 high.data.const_val |= negative_mask;
17652
17653 /* Check for bit and byte strides. */
17654 struct dynamic_prop byte_stride_prop;
17655 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17656 if (attr_byte_stride != nullptr)
17657 {
17658 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17659 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17660 prop_type);
17661 }
17662
17663 struct dynamic_prop bit_stride_prop;
17664 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17665 if (attr_bit_stride != nullptr)
17666 {
17667 /* It only makes sense to have either a bit or byte stride. */
17668 if (attr_byte_stride != nullptr)
17669 {
17670 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17671 "- DIE at %s [in module %s]"),
17672 sect_offset_str (die->sect_off),
17673 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17674 attr_bit_stride = nullptr;
17675 }
17676 else
17677 {
17678 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17679 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17680 prop_type);
17681 }
17682 }
17683
17684 if (attr_byte_stride != nullptr
17685 || attr_bit_stride != nullptr)
17686 {
17687 bool byte_stride_p = (attr_byte_stride != nullptr);
17688 struct dynamic_prop *stride
17689 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17690
17691 range_type
17692 = create_range_type_with_stride (NULL, orig_base_type, &low,
17693 &high, bias, stride, byte_stride_p);
17694 }
17695 else
17696 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17697
17698 if (high_bound_is_count)
17699 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17700
17701 /* Ada expects an empty array on no boundary attributes. */
17702 if (attr == NULL && cu->language != language_ada)
17703 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17704
17705 name = dwarf2_name (die, cu);
17706 if (name)
17707 TYPE_NAME (range_type) = name;
17708
17709 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17710 if (attr != nullptr)
17711 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17712
17713 maybe_set_alignment (cu, die, range_type);
17714
17715 set_die_type (die, range_type, cu);
17716
17717 /* set_die_type should be already done. */
17718 set_descriptive_type (range_type, die, cu);
17719
17720 return range_type;
17721 }
17722
17723 static struct type *
17724 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17725 {
17726 struct type *type;
17727
17728 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17729 NULL);
17730 TYPE_NAME (type) = dwarf2_name (die, cu);
17731
17732 /* In Ada, an unspecified type is typically used when the description
17733 of the type is deferred to a different unit. When encountering
17734 such a type, we treat it as a stub, and try to resolve it later on,
17735 when needed. */
17736 if (cu->language == language_ada)
17737 TYPE_STUB (type) = 1;
17738
17739 return set_die_type (die, type, cu);
17740 }
17741
17742 /* Read a single die and all its descendents. Set the die's sibling
17743 field to NULL; set other fields in the die correctly, and set all
17744 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17745 location of the info_ptr after reading all of those dies. PARENT
17746 is the parent of the die in question. */
17747
17748 static struct die_info *
17749 read_die_and_children (const struct die_reader_specs *reader,
17750 const gdb_byte *info_ptr,
17751 const gdb_byte **new_info_ptr,
17752 struct die_info *parent)
17753 {
17754 struct die_info *die;
17755 const gdb_byte *cur_ptr;
17756
17757 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17758 if (die == NULL)
17759 {
17760 *new_info_ptr = cur_ptr;
17761 return NULL;
17762 }
17763 store_in_ref_table (die, reader->cu);
17764
17765 if (die->has_children)
17766 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17767 else
17768 {
17769 die->child = NULL;
17770 *new_info_ptr = cur_ptr;
17771 }
17772
17773 die->sibling = NULL;
17774 die->parent = parent;
17775 return die;
17776 }
17777
17778 /* Read a die, all of its descendents, and all of its siblings; set
17779 all of the fields of all of the dies correctly. Arguments are as
17780 in read_die_and_children. */
17781
17782 static struct die_info *
17783 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17784 const gdb_byte *info_ptr,
17785 const gdb_byte **new_info_ptr,
17786 struct die_info *parent)
17787 {
17788 struct die_info *first_die, *last_sibling;
17789 const gdb_byte *cur_ptr;
17790
17791 cur_ptr = info_ptr;
17792 first_die = last_sibling = NULL;
17793
17794 while (1)
17795 {
17796 struct die_info *die
17797 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17798
17799 if (die == NULL)
17800 {
17801 *new_info_ptr = cur_ptr;
17802 return first_die;
17803 }
17804
17805 if (!first_die)
17806 first_die = die;
17807 else
17808 last_sibling->sibling = die;
17809
17810 last_sibling = die;
17811 }
17812 }
17813
17814 /* Read a die, all of its descendents, and all of its siblings; set
17815 all of the fields of all of the dies correctly. Arguments are as
17816 in read_die_and_children.
17817 This the main entry point for reading a DIE and all its children. */
17818
17819 static struct die_info *
17820 read_die_and_siblings (const struct die_reader_specs *reader,
17821 const gdb_byte *info_ptr,
17822 const gdb_byte **new_info_ptr,
17823 struct die_info *parent)
17824 {
17825 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17826 new_info_ptr, parent);
17827
17828 if (dwarf_die_debug)
17829 {
17830 fprintf_unfiltered (gdb_stdlog,
17831 "Read die from %s@0x%x of %s:\n",
17832 reader->die_section->get_name (),
17833 (unsigned) (info_ptr - reader->die_section->buffer),
17834 bfd_get_filename (reader->abfd));
17835 dump_die (die, dwarf_die_debug);
17836 }
17837
17838 return die;
17839 }
17840
17841 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17842 attributes.
17843 The caller is responsible for filling in the extra attributes
17844 and updating (*DIEP)->num_attrs.
17845 Set DIEP to point to a newly allocated die with its information,
17846 except for its child, sibling, and parent fields. */
17847
17848 static const gdb_byte *
17849 read_full_die_1 (const struct die_reader_specs *reader,
17850 struct die_info **diep, const gdb_byte *info_ptr,
17851 int num_extra_attrs)
17852 {
17853 unsigned int abbrev_number, bytes_read, i;
17854 struct abbrev_info *abbrev;
17855 struct die_info *die;
17856 struct dwarf2_cu *cu = reader->cu;
17857 bfd *abfd = reader->abfd;
17858
17859 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17860 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17861 info_ptr += bytes_read;
17862 if (!abbrev_number)
17863 {
17864 *diep = NULL;
17865 return info_ptr;
17866 }
17867
17868 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17869 if (!abbrev)
17870 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17871 abbrev_number,
17872 bfd_get_filename (abfd));
17873
17874 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17875 die->sect_off = sect_off;
17876 die->tag = abbrev->tag;
17877 die->abbrev = abbrev_number;
17878 die->has_children = abbrev->has_children;
17879
17880 /* Make the result usable.
17881 The caller needs to update num_attrs after adding the extra
17882 attributes. */
17883 die->num_attrs = abbrev->num_attrs;
17884
17885 std::vector<int> indexes_that_need_reprocess;
17886 for (i = 0; i < abbrev->num_attrs; ++i)
17887 {
17888 bool need_reprocess;
17889 info_ptr =
17890 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17891 info_ptr, &need_reprocess);
17892 if (need_reprocess)
17893 indexes_that_need_reprocess.push_back (i);
17894 }
17895
17896 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17897 if (attr != nullptr)
17898 cu->str_offsets_base = DW_UNSND (attr);
17899
17900 attr = die->attr (DW_AT_loclists_base);
17901 if (attr != nullptr)
17902 cu->loclist_base = DW_UNSND (attr);
17903
17904 auto maybe_addr_base = die->addr_base ();
17905 if (maybe_addr_base.has_value ())
17906 cu->addr_base = *maybe_addr_base;
17907 for (int index : indexes_that_need_reprocess)
17908 read_attribute_reprocess (reader, &die->attrs[index]);
17909 *diep = die;
17910 return info_ptr;
17911 }
17912
17913 /* Read a die and all its attributes.
17914 Set DIEP to point to a newly allocated die with its information,
17915 except for its child, sibling, and parent fields. */
17916
17917 static const gdb_byte *
17918 read_full_die (const struct die_reader_specs *reader,
17919 struct die_info **diep, const gdb_byte *info_ptr)
17920 {
17921 const gdb_byte *result;
17922
17923 result = read_full_die_1 (reader, diep, info_ptr, 0);
17924
17925 if (dwarf_die_debug)
17926 {
17927 fprintf_unfiltered (gdb_stdlog,
17928 "Read die from %s@0x%x of %s:\n",
17929 reader->die_section->get_name (),
17930 (unsigned) (info_ptr - reader->die_section->buffer),
17931 bfd_get_filename (reader->abfd));
17932 dump_die (*diep, dwarf_die_debug);
17933 }
17934
17935 return result;
17936 }
17937 \f
17938
17939 /* Returns nonzero if TAG represents a type that we might generate a partial
17940 symbol for. */
17941
17942 static int
17943 is_type_tag_for_partial (int tag)
17944 {
17945 switch (tag)
17946 {
17947 #if 0
17948 /* Some types that would be reasonable to generate partial symbols for,
17949 that we don't at present. */
17950 case DW_TAG_array_type:
17951 case DW_TAG_file_type:
17952 case DW_TAG_ptr_to_member_type:
17953 case DW_TAG_set_type:
17954 case DW_TAG_string_type:
17955 case DW_TAG_subroutine_type:
17956 #endif
17957 case DW_TAG_base_type:
17958 case DW_TAG_class_type:
17959 case DW_TAG_interface_type:
17960 case DW_TAG_enumeration_type:
17961 case DW_TAG_structure_type:
17962 case DW_TAG_subrange_type:
17963 case DW_TAG_typedef:
17964 case DW_TAG_union_type:
17965 return 1;
17966 default:
17967 return 0;
17968 }
17969 }
17970
17971 /* Load all DIEs that are interesting for partial symbols into memory. */
17972
17973 static struct partial_die_info *
17974 load_partial_dies (const struct die_reader_specs *reader,
17975 const gdb_byte *info_ptr, int building_psymtab)
17976 {
17977 struct dwarf2_cu *cu = reader->cu;
17978 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17979 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17980 unsigned int bytes_read;
17981 unsigned int load_all = 0;
17982 int nesting_level = 1;
17983
17984 parent_die = NULL;
17985 last_die = NULL;
17986
17987 gdb_assert (cu->per_cu != NULL);
17988 if (cu->per_cu->load_all_dies)
17989 load_all = 1;
17990
17991 cu->partial_dies
17992 = htab_create_alloc_ex (cu->header.length / 12,
17993 partial_die_hash,
17994 partial_die_eq,
17995 NULL,
17996 &cu->comp_unit_obstack,
17997 hashtab_obstack_allocate,
17998 dummy_obstack_deallocate);
17999
18000 while (1)
18001 {
18002 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18003
18004 /* A NULL abbrev means the end of a series of children. */
18005 if (abbrev == NULL)
18006 {
18007 if (--nesting_level == 0)
18008 return first_die;
18009
18010 info_ptr += bytes_read;
18011 last_die = parent_die;
18012 parent_die = parent_die->die_parent;
18013 continue;
18014 }
18015
18016 /* Check for template arguments. We never save these; if
18017 they're seen, we just mark the parent, and go on our way. */
18018 if (parent_die != NULL
18019 && cu->language == language_cplus
18020 && (abbrev->tag == DW_TAG_template_type_param
18021 || abbrev->tag == DW_TAG_template_value_param))
18022 {
18023 parent_die->has_template_arguments = 1;
18024
18025 if (!load_all)
18026 {
18027 /* We don't need a partial DIE for the template argument. */
18028 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18029 continue;
18030 }
18031 }
18032
18033 /* We only recurse into c++ subprograms looking for template arguments.
18034 Skip their other children. */
18035 if (!load_all
18036 && cu->language == language_cplus
18037 && parent_die != NULL
18038 && parent_die->tag == DW_TAG_subprogram)
18039 {
18040 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18041 continue;
18042 }
18043
18044 /* Check whether this DIE is interesting enough to save. Normally
18045 we would not be interested in members here, but there may be
18046 later variables referencing them via DW_AT_specification (for
18047 static members). */
18048 if (!load_all
18049 && !is_type_tag_for_partial (abbrev->tag)
18050 && abbrev->tag != DW_TAG_constant
18051 && abbrev->tag != DW_TAG_enumerator
18052 && abbrev->tag != DW_TAG_subprogram
18053 && abbrev->tag != DW_TAG_inlined_subroutine
18054 && abbrev->tag != DW_TAG_lexical_block
18055 && abbrev->tag != DW_TAG_variable
18056 && abbrev->tag != DW_TAG_namespace
18057 && abbrev->tag != DW_TAG_module
18058 && abbrev->tag != DW_TAG_member
18059 && abbrev->tag != DW_TAG_imported_unit
18060 && abbrev->tag != DW_TAG_imported_declaration)
18061 {
18062 /* Otherwise we skip to the next sibling, if any. */
18063 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18064 continue;
18065 }
18066
18067 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18068 abbrev);
18069
18070 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18071
18072 /* This two-pass algorithm for processing partial symbols has a
18073 high cost in cache pressure. Thus, handle some simple cases
18074 here which cover the majority of C partial symbols. DIEs
18075 which neither have specification tags in them, nor could have
18076 specification tags elsewhere pointing at them, can simply be
18077 processed and discarded.
18078
18079 This segment is also optional; scan_partial_symbols and
18080 add_partial_symbol will handle these DIEs if we chain
18081 them in normally. When compilers which do not emit large
18082 quantities of duplicate debug information are more common,
18083 this code can probably be removed. */
18084
18085 /* Any complete simple types at the top level (pretty much all
18086 of them, for a language without namespaces), can be processed
18087 directly. */
18088 if (parent_die == NULL
18089 && pdi.has_specification == 0
18090 && pdi.is_declaration == 0
18091 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18092 || pdi.tag == DW_TAG_base_type
18093 || pdi.tag == DW_TAG_subrange_type))
18094 {
18095 if (building_psymtab && pdi.name != NULL)
18096 add_psymbol_to_list (pdi.name, false,
18097 VAR_DOMAIN, LOC_TYPEDEF, -1,
18098 psymbol_placement::STATIC,
18099 0, cu->language, objfile);
18100 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18101 continue;
18102 }
18103
18104 /* The exception for DW_TAG_typedef with has_children above is
18105 a workaround of GCC PR debug/47510. In the case of this complaint
18106 type_name_or_error will error on such types later.
18107
18108 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18109 it could not find the child DIEs referenced later, this is checked
18110 above. In correct DWARF DW_TAG_typedef should have no children. */
18111
18112 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18113 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18114 "- DIE at %s [in module %s]"),
18115 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18116
18117 /* If we're at the second level, and we're an enumerator, and
18118 our parent has no specification (meaning possibly lives in a
18119 namespace elsewhere), then we can add the partial symbol now
18120 instead of queueing it. */
18121 if (pdi.tag == DW_TAG_enumerator
18122 && parent_die != NULL
18123 && parent_die->die_parent == NULL
18124 && parent_die->tag == DW_TAG_enumeration_type
18125 && parent_die->has_specification == 0)
18126 {
18127 if (pdi.name == NULL)
18128 complaint (_("malformed enumerator DIE ignored"));
18129 else if (building_psymtab)
18130 add_psymbol_to_list (pdi.name, false,
18131 VAR_DOMAIN, LOC_CONST, -1,
18132 cu->language == language_cplus
18133 ? psymbol_placement::GLOBAL
18134 : psymbol_placement::STATIC,
18135 0, cu->language, objfile);
18136
18137 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18138 continue;
18139 }
18140
18141 struct partial_die_info *part_die
18142 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18143
18144 /* We'll save this DIE so link it in. */
18145 part_die->die_parent = parent_die;
18146 part_die->die_sibling = NULL;
18147 part_die->die_child = NULL;
18148
18149 if (last_die && last_die == parent_die)
18150 last_die->die_child = part_die;
18151 else if (last_die)
18152 last_die->die_sibling = part_die;
18153
18154 last_die = part_die;
18155
18156 if (first_die == NULL)
18157 first_die = part_die;
18158
18159 /* Maybe add the DIE to the hash table. Not all DIEs that we
18160 find interesting need to be in the hash table, because we
18161 also have the parent/sibling/child chains; only those that we
18162 might refer to by offset later during partial symbol reading.
18163
18164 For now this means things that might have be the target of a
18165 DW_AT_specification, DW_AT_abstract_origin, or
18166 DW_AT_extension. DW_AT_extension will refer only to
18167 namespaces; DW_AT_abstract_origin refers to functions (and
18168 many things under the function DIE, but we do not recurse
18169 into function DIEs during partial symbol reading) and
18170 possibly variables as well; DW_AT_specification refers to
18171 declarations. Declarations ought to have the DW_AT_declaration
18172 flag. It happens that GCC forgets to put it in sometimes, but
18173 only for functions, not for types.
18174
18175 Adding more things than necessary to the hash table is harmless
18176 except for the performance cost. Adding too few will result in
18177 wasted time in find_partial_die, when we reread the compilation
18178 unit with load_all_dies set. */
18179
18180 if (load_all
18181 || abbrev->tag == DW_TAG_constant
18182 || abbrev->tag == DW_TAG_subprogram
18183 || abbrev->tag == DW_TAG_variable
18184 || abbrev->tag == DW_TAG_namespace
18185 || part_die->is_declaration)
18186 {
18187 void **slot;
18188
18189 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18190 to_underlying (part_die->sect_off),
18191 INSERT);
18192 *slot = part_die;
18193 }
18194
18195 /* For some DIEs we want to follow their children (if any). For C
18196 we have no reason to follow the children of structures; for other
18197 languages we have to, so that we can get at method physnames
18198 to infer fully qualified class names, for DW_AT_specification,
18199 and for C++ template arguments. For C++, we also look one level
18200 inside functions to find template arguments (if the name of the
18201 function does not already contain the template arguments).
18202
18203 For Ada and Fortran, we need to scan the children of subprograms
18204 and lexical blocks as well because these languages allow the
18205 definition of nested entities that could be interesting for the
18206 debugger, such as nested subprograms for instance. */
18207 if (last_die->has_children
18208 && (load_all
18209 || last_die->tag == DW_TAG_namespace
18210 || last_die->tag == DW_TAG_module
18211 || last_die->tag == DW_TAG_enumeration_type
18212 || (cu->language == language_cplus
18213 && last_die->tag == DW_TAG_subprogram
18214 && (last_die->name == NULL
18215 || strchr (last_die->name, '<') == NULL))
18216 || (cu->language != language_c
18217 && (last_die->tag == DW_TAG_class_type
18218 || last_die->tag == DW_TAG_interface_type
18219 || last_die->tag == DW_TAG_structure_type
18220 || last_die->tag == DW_TAG_union_type))
18221 || ((cu->language == language_ada
18222 || cu->language == language_fortran)
18223 && (last_die->tag == DW_TAG_subprogram
18224 || last_die->tag == DW_TAG_lexical_block))))
18225 {
18226 nesting_level++;
18227 parent_die = last_die;
18228 continue;
18229 }
18230
18231 /* Otherwise we skip to the next sibling, if any. */
18232 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18233
18234 /* Back to the top, do it again. */
18235 }
18236 }
18237
18238 partial_die_info::partial_die_info (sect_offset sect_off_,
18239 struct abbrev_info *abbrev)
18240 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18241 {
18242 }
18243
18244 /* Read a minimal amount of information into the minimal die structure.
18245 INFO_PTR should point just after the initial uleb128 of a DIE. */
18246
18247 const gdb_byte *
18248 partial_die_info::read (const struct die_reader_specs *reader,
18249 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18250 {
18251 struct dwarf2_cu *cu = reader->cu;
18252 struct dwarf2_per_objfile *dwarf2_per_objfile
18253 = cu->per_cu->dwarf2_per_objfile;
18254 unsigned int i;
18255 int has_low_pc_attr = 0;
18256 int has_high_pc_attr = 0;
18257 int high_pc_relative = 0;
18258
18259 for (i = 0; i < abbrev.num_attrs; ++i)
18260 {
18261 attribute attr;
18262 bool need_reprocess;
18263 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18264 info_ptr, &need_reprocess);
18265 /* String and address offsets that need to do the reprocessing have
18266 already been read at this point, so there is no need to wait until
18267 the loop terminates to do the reprocessing. */
18268 if (need_reprocess)
18269 read_attribute_reprocess (reader, &attr);
18270 /* Store the data if it is of an attribute we want to keep in a
18271 partial symbol table. */
18272 switch (attr.name)
18273 {
18274 case DW_AT_name:
18275 switch (tag)
18276 {
18277 case DW_TAG_compile_unit:
18278 case DW_TAG_partial_unit:
18279 case DW_TAG_type_unit:
18280 /* Compilation units have a DW_AT_name that is a filename, not
18281 a source language identifier. */
18282 case DW_TAG_enumeration_type:
18283 case DW_TAG_enumerator:
18284 /* These tags always have simple identifiers already; no need
18285 to canonicalize them. */
18286 name = DW_STRING (&attr);
18287 break;
18288 default:
18289 {
18290 struct objfile *objfile = dwarf2_per_objfile->objfile;
18291
18292 name
18293 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18294 }
18295 break;
18296 }
18297 break;
18298 case DW_AT_linkage_name:
18299 case DW_AT_MIPS_linkage_name:
18300 /* Note that both forms of linkage name might appear. We
18301 assume they will be the same, and we only store the last
18302 one we see. */
18303 linkage_name = DW_STRING (&attr);
18304 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18305 See https://github.com/rust-lang/rust/issues/32925. */
18306 if (cu->language == language_rust && linkage_name != NULL
18307 && strchr (linkage_name, '{') != NULL)
18308 linkage_name = NULL;
18309 break;
18310 case DW_AT_low_pc:
18311 has_low_pc_attr = 1;
18312 lowpc = attr.value_as_address ();
18313 break;
18314 case DW_AT_high_pc:
18315 has_high_pc_attr = 1;
18316 highpc = attr.value_as_address ();
18317 if (cu->header.version >= 4 && attr.form_is_constant ())
18318 high_pc_relative = 1;
18319 break;
18320 case DW_AT_location:
18321 /* Support the .debug_loc offsets. */
18322 if (attr.form_is_block ())
18323 {
18324 d.locdesc = DW_BLOCK (&attr);
18325 }
18326 else if (attr.form_is_section_offset ())
18327 {
18328 dwarf2_complex_location_expr_complaint ();
18329 }
18330 else
18331 {
18332 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18333 "partial symbol information");
18334 }
18335 break;
18336 case DW_AT_external:
18337 is_external = DW_UNSND (&attr);
18338 break;
18339 case DW_AT_declaration:
18340 is_declaration = DW_UNSND (&attr);
18341 break;
18342 case DW_AT_type:
18343 has_type = 1;
18344 break;
18345 case DW_AT_abstract_origin:
18346 case DW_AT_specification:
18347 case DW_AT_extension:
18348 has_specification = 1;
18349 spec_offset = attr.get_ref_die_offset ();
18350 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18351 || cu->per_cu->is_dwz);
18352 break;
18353 case DW_AT_sibling:
18354 /* Ignore absolute siblings, they might point outside of
18355 the current compile unit. */
18356 if (attr.form == DW_FORM_ref_addr)
18357 complaint (_("ignoring absolute DW_AT_sibling"));
18358 else
18359 {
18360 const gdb_byte *buffer = reader->buffer;
18361 sect_offset off = attr.get_ref_die_offset ();
18362 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18363
18364 if (sibling_ptr < info_ptr)
18365 complaint (_("DW_AT_sibling points backwards"));
18366 else if (sibling_ptr > reader->buffer_end)
18367 reader->die_section->overflow_complaint ();
18368 else
18369 sibling = sibling_ptr;
18370 }
18371 break;
18372 case DW_AT_byte_size:
18373 has_byte_size = 1;
18374 break;
18375 case DW_AT_const_value:
18376 has_const_value = 1;
18377 break;
18378 case DW_AT_calling_convention:
18379 /* DWARF doesn't provide a way to identify a program's source-level
18380 entry point. DW_AT_calling_convention attributes are only meant
18381 to describe functions' calling conventions.
18382
18383 However, because it's a necessary piece of information in
18384 Fortran, and before DWARF 4 DW_CC_program was the only
18385 piece of debugging information whose definition refers to
18386 a 'main program' at all, several compilers marked Fortran
18387 main programs with DW_CC_program --- even when those
18388 functions use the standard calling conventions.
18389
18390 Although DWARF now specifies a way to provide this
18391 information, we support this practice for backward
18392 compatibility. */
18393 if (DW_UNSND (&attr) == DW_CC_program
18394 && cu->language == language_fortran)
18395 main_subprogram = 1;
18396 break;
18397 case DW_AT_inline:
18398 if (DW_UNSND (&attr) == DW_INL_inlined
18399 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18400 may_be_inlined = 1;
18401 break;
18402
18403 case DW_AT_import:
18404 if (tag == DW_TAG_imported_unit)
18405 {
18406 d.sect_off = attr.get_ref_die_offset ();
18407 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18408 || cu->per_cu->is_dwz);
18409 }
18410 break;
18411
18412 case DW_AT_main_subprogram:
18413 main_subprogram = DW_UNSND (&attr);
18414 break;
18415
18416 case DW_AT_ranges:
18417 {
18418 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18419 but that requires a full DIE, so instead we just
18420 reimplement it. */
18421 int need_ranges_base = tag != DW_TAG_compile_unit;
18422 unsigned int ranges_offset = (DW_UNSND (&attr)
18423 + (need_ranges_base
18424 ? cu->ranges_base
18425 : 0));
18426
18427 /* Value of the DW_AT_ranges attribute is the offset in the
18428 .debug_ranges section. */
18429 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18430 nullptr))
18431 has_pc_info = 1;
18432 }
18433 break;
18434
18435 default:
18436 break;
18437 }
18438 }
18439
18440 /* For Ada, if both the name and the linkage name appear, we prefer
18441 the latter. This lets "catch exception" work better, regardless
18442 of the order in which the name and linkage name were emitted.
18443 Really, though, this is just a workaround for the fact that gdb
18444 doesn't store both the name and the linkage name. */
18445 if (cu->language == language_ada && linkage_name != nullptr)
18446 name = linkage_name;
18447
18448 if (high_pc_relative)
18449 highpc += lowpc;
18450
18451 if (has_low_pc_attr && has_high_pc_attr)
18452 {
18453 /* When using the GNU linker, .gnu.linkonce. sections are used to
18454 eliminate duplicate copies of functions and vtables and such.
18455 The linker will arbitrarily choose one and discard the others.
18456 The AT_*_pc values for such functions refer to local labels in
18457 these sections. If the section from that file was discarded, the
18458 labels are not in the output, so the relocs get a value of 0.
18459 If this is a discarded function, mark the pc bounds as invalid,
18460 so that GDB will ignore it. */
18461 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18462 {
18463 struct objfile *objfile = dwarf2_per_objfile->objfile;
18464 struct gdbarch *gdbarch = objfile->arch ();
18465
18466 complaint (_("DW_AT_low_pc %s is zero "
18467 "for DIE at %s [in module %s]"),
18468 paddress (gdbarch, lowpc),
18469 sect_offset_str (sect_off),
18470 objfile_name (objfile));
18471 }
18472 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18473 else if (lowpc >= highpc)
18474 {
18475 struct objfile *objfile = dwarf2_per_objfile->objfile;
18476 struct gdbarch *gdbarch = objfile->arch ();
18477
18478 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18479 "for DIE at %s [in module %s]"),
18480 paddress (gdbarch, lowpc),
18481 paddress (gdbarch, highpc),
18482 sect_offset_str (sect_off),
18483 objfile_name (objfile));
18484 }
18485 else
18486 has_pc_info = 1;
18487 }
18488
18489 return info_ptr;
18490 }
18491
18492 /* Find a cached partial DIE at OFFSET in CU. */
18493
18494 struct partial_die_info *
18495 dwarf2_cu::find_partial_die (sect_offset sect_off)
18496 {
18497 struct partial_die_info *lookup_die = NULL;
18498 struct partial_die_info part_die (sect_off);
18499
18500 lookup_die = ((struct partial_die_info *)
18501 htab_find_with_hash (partial_dies, &part_die,
18502 to_underlying (sect_off)));
18503
18504 return lookup_die;
18505 }
18506
18507 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18508 except in the case of .debug_types DIEs which do not reference
18509 outside their CU (they do however referencing other types via
18510 DW_FORM_ref_sig8). */
18511
18512 static const struct cu_partial_die_info
18513 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18514 {
18515 struct dwarf2_per_objfile *dwarf2_per_objfile
18516 = cu->per_cu->dwarf2_per_objfile;
18517 struct objfile *objfile = dwarf2_per_objfile->objfile;
18518 struct dwarf2_per_cu_data *per_cu = NULL;
18519 struct partial_die_info *pd = NULL;
18520
18521 if (offset_in_dwz == cu->per_cu->is_dwz
18522 && cu->header.offset_in_cu_p (sect_off))
18523 {
18524 pd = cu->find_partial_die (sect_off);
18525 if (pd != NULL)
18526 return { cu, pd };
18527 /* We missed recording what we needed.
18528 Load all dies and try again. */
18529 per_cu = cu->per_cu;
18530 }
18531 else
18532 {
18533 /* TUs don't reference other CUs/TUs (except via type signatures). */
18534 if (cu->per_cu->is_debug_types)
18535 {
18536 error (_("Dwarf Error: Type Unit at offset %s contains"
18537 " external reference to offset %s [in module %s].\n"),
18538 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18539 bfd_get_filename (objfile->obfd));
18540 }
18541 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18542 dwarf2_per_objfile);
18543
18544 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18545 load_partial_comp_unit (per_cu);
18546
18547 per_cu->cu->last_used = 0;
18548 pd = per_cu->cu->find_partial_die (sect_off);
18549 }
18550
18551 /* If we didn't find it, and not all dies have been loaded,
18552 load them all and try again. */
18553
18554 if (pd == NULL && per_cu->load_all_dies == 0)
18555 {
18556 per_cu->load_all_dies = 1;
18557
18558 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18559 THIS_CU->cu may already be in use. So we can't just free it and
18560 replace its DIEs with the ones we read in. Instead, we leave those
18561 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18562 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18563 set. */
18564 load_partial_comp_unit (per_cu);
18565
18566 pd = per_cu->cu->find_partial_die (sect_off);
18567 }
18568
18569 if (pd == NULL)
18570 internal_error (__FILE__, __LINE__,
18571 _("could not find partial DIE %s "
18572 "in cache [from module %s]\n"),
18573 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18574 return { per_cu->cu, pd };
18575 }
18576
18577 /* See if we can figure out if the class lives in a namespace. We do
18578 this by looking for a member function; its demangled name will
18579 contain namespace info, if there is any. */
18580
18581 static void
18582 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18583 struct dwarf2_cu *cu)
18584 {
18585 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18586 what template types look like, because the demangler
18587 frequently doesn't give the same name as the debug info. We
18588 could fix this by only using the demangled name to get the
18589 prefix (but see comment in read_structure_type). */
18590
18591 struct partial_die_info *real_pdi;
18592 struct partial_die_info *child_pdi;
18593
18594 /* If this DIE (this DIE's specification, if any) has a parent, then
18595 we should not do this. We'll prepend the parent's fully qualified
18596 name when we create the partial symbol. */
18597
18598 real_pdi = struct_pdi;
18599 while (real_pdi->has_specification)
18600 {
18601 auto res = find_partial_die (real_pdi->spec_offset,
18602 real_pdi->spec_is_dwz, cu);
18603 real_pdi = res.pdi;
18604 cu = res.cu;
18605 }
18606
18607 if (real_pdi->die_parent != NULL)
18608 return;
18609
18610 for (child_pdi = struct_pdi->die_child;
18611 child_pdi != NULL;
18612 child_pdi = child_pdi->die_sibling)
18613 {
18614 if (child_pdi->tag == DW_TAG_subprogram
18615 && child_pdi->linkage_name != NULL)
18616 {
18617 gdb::unique_xmalloc_ptr<char> actual_class_name
18618 (language_class_name_from_physname (cu->language_defn,
18619 child_pdi->linkage_name));
18620 if (actual_class_name != NULL)
18621 {
18622 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18623 struct_pdi->name = objfile->intern (actual_class_name.get ());
18624 }
18625 break;
18626 }
18627 }
18628 }
18629
18630 /* Return true if a DIE with TAG may have the DW_AT_const_value
18631 attribute. */
18632
18633 static bool
18634 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18635 {
18636 switch (tag)
18637 {
18638 case DW_TAG_constant:
18639 case DW_TAG_enumerator:
18640 case DW_TAG_formal_parameter:
18641 case DW_TAG_template_value_param:
18642 case DW_TAG_variable:
18643 return true;
18644 }
18645
18646 return false;
18647 }
18648
18649 void
18650 partial_die_info::fixup (struct dwarf2_cu *cu)
18651 {
18652 /* Once we've fixed up a die, there's no point in doing so again.
18653 This also avoids a memory leak if we were to call
18654 guess_partial_die_structure_name multiple times. */
18655 if (fixup_called)
18656 return;
18657
18658 /* If we found a reference attribute and the DIE has no name, try
18659 to find a name in the referred to DIE. */
18660
18661 if (name == NULL && has_specification)
18662 {
18663 struct partial_die_info *spec_die;
18664
18665 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18666 spec_die = res.pdi;
18667 cu = res.cu;
18668
18669 spec_die->fixup (cu);
18670
18671 if (spec_die->name)
18672 {
18673 name = spec_die->name;
18674
18675 /* Copy DW_AT_external attribute if it is set. */
18676 if (spec_die->is_external)
18677 is_external = spec_die->is_external;
18678 }
18679 }
18680
18681 if (!has_const_value && has_specification
18682 && can_have_DW_AT_const_value_p (tag))
18683 {
18684 struct partial_die_info *spec_die;
18685
18686 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18687 spec_die = res.pdi;
18688 cu = res.cu;
18689
18690 spec_die->fixup (cu);
18691
18692 if (spec_die->has_const_value)
18693 {
18694 /* Copy DW_AT_const_value attribute if it is set. */
18695 has_const_value = spec_die->has_const_value;
18696 }
18697 }
18698
18699 /* Set default names for some unnamed DIEs. */
18700
18701 if (name == NULL && tag == DW_TAG_namespace)
18702 name = CP_ANONYMOUS_NAMESPACE_STR;
18703
18704 /* If there is no parent die to provide a namespace, and there are
18705 children, see if we can determine the namespace from their linkage
18706 name. */
18707 if (cu->language == language_cplus
18708 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18709 && die_parent == NULL
18710 && has_children
18711 && (tag == DW_TAG_class_type
18712 || tag == DW_TAG_structure_type
18713 || tag == DW_TAG_union_type))
18714 guess_partial_die_structure_name (this, cu);
18715
18716 /* GCC might emit a nameless struct or union that has a linkage
18717 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18718 if (name == NULL
18719 && (tag == DW_TAG_class_type
18720 || tag == DW_TAG_interface_type
18721 || tag == DW_TAG_structure_type
18722 || tag == DW_TAG_union_type)
18723 && linkage_name != NULL)
18724 {
18725 gdb::unique_xmalloc_ptr<char> demangled
18726 (gdb_demangle (linkage_name, DMGL_TYPES));
18727 if (demangled != nullptr)
18728 {
18729 const char *base;
18730
18731 /* Strip any leading namespaces/classes, keep only the base name.
18732 DW_AT_name for named DIEs does not contain the prefixes. */
18733 base = strrchr (demangled.get (), ':');
18734 if (base && base > demangled.get () && base[-1] == ':')
18735 base++;
18736 else
18737 base = demangled.get ();
18738
18739 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18740 name = objfile->intern (base);
18741 }
18742 }
18743
18744 fixup_called = 1;
18745 }
18746
18747 /* Read the .debug_loclists header contents from the given SECTION in the
18748 HEADER. */
18749 static void
18750 read_loclist_header (struct loclist_header *header,
18751 struct dwarf2_section_info *section)
18752 {
18753 unsigned int bytes_read;
18754 bfd *abfd = section->get_bfd_owner ();
18755 const gdb_byte *info_ptr = section->buffer;
18756 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18757 info_ptr += bytes_read;
18758 header->version = read_2_bytes (abfd, info_ptr);
18759 info_ptr += 2;
18760 header->addr_size = read_1_byte (abfd, info_ptr);
18761 info_ptr += 1;
18762 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18763 info_ptr += 1;
18764 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18765 }
18766
18767 /* Return the DW_AT_loclists_base value for the CU. */
18768 static ULONGEST
18769 lookup_loclist_base (struct dwarf2_cu *cu)
18770 {
18771 /* For the .dwo unit, the loclist_base points to the first offset following
18772 the header. The header consists of the following entities-
18773 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18774 bit format)
18775 2. version (2 bytes)
18776 3. address size (1 byte)
18777 4. segment selector size (1 byte)
18778 5. offset entry count (4 bytes)
18779 These sizes are derived as per the DWARFv5 standard. */
18780 if (cu->dwo_unit != nullptr)
18781 {
18782 if (cu->header.initial_length_size == 4)
18783 return LOCLIST_HEADER_SIZE32;
18784 return LOCLIST_HEADER_SIZE64;
18785 }
18786 return cu->loclist_base;
18787 }
18788
18789 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18790 array of offsets in the .debug_loclists section. */
18791 static CORE_ADDR
18792 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18793 {
18794 struct dwarf2_per_objfile *dwarf2_per_objfile
18795 = cu->per_cu->dwarf2_per_objfile;
18796 struct objfile *objfile = dwarf2_per_objfile->objfile;
18797 bfd *abfd = objfile->obfd;
18798 ULONGEST loclist_base = lookup_loclist_base (cu);
18799 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18800
18801 section->read (objfile);
18802 if (section->buffer == NULL)
18803 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18804 "section [in module %s]"), objfile_name (objfile));
18805 struct loclist_header header;
18806 read_loclist_header (&header, section);
18807 if (loclist_index >= header.offset_entry_count)
18808 complaint (_("DW_FORM_loclistx pointing outside of "
18809 ".debug_loclists offset array [in module %s]"),
18810 objfile_name (objfile));
18811 if (loclist_base + loclist_index * cu->header.offset_size
18812 >= section->size)
18813 complaint (_("DW_FORM_loclistx pointing outside of "
18814 ".debug_loclists section [in module %s]"),
18815 objfile_name (objfile));
18816 const gdb_byte *info_ptr
18817 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18818
18819 if (cu->header.offset_size == 4)
18820 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18821 else
18822 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18823 }
18824
18825 /* Process the attributes that had to be skipped in the first round. These
18826 attributes are the ones that need str_offsets_base or addr_base attributes.
18827 They could not have been processed in the first round, because at the time
18828 the values of str_offsets_base or addr_base may not have been known. */
18829 static void
18830 read_attribute_reprocess (const struct die_reader_specs *reader,
18831 struct attribute *attr)
18832 {
18833 struct dwarf2_cu *cu = reader->cu;
18834 switch (attr->form)
18835 {
18836 case DW_FORM_addrx:
18837 case DW_FORM_GNU_addr_index:
18838 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18839 break;
18840 case DW_FORM_loclistx:
18841 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18842 break;
18843 case DW_FORM_strx:
18844 case DW_FORM_strx1:
18845 case DW_FORM_strx2:
18846 case DW_FORM_strx3:
18847 case DW_FORM_strx4:
18848 case DW_FORM_GNU_str_index:
18849 {
18850 unsigned int str_index = DW_UNSND (attr);
18851 if (reader->dwo_file != NULL)
18852 {
18853 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18854 DW_STRING_IS_CANONICAL (attr) = 0;
18855 }
18856 else
18857 {
18858 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18859 DW_STRING_IS_CANONICAL (attr) = 0;
18860 }
18861 break;
18862 }
18863 default:
18864 gdb_assert_not_reached (_("Unexpected DWARF form."));
18865 }
18866 }
18867
18868 /* Read an attribute value described by an attribute form. */
18869
18870 static const gdb_byte *
18871 read_attribute_value (const struct die_reader_specs *reader,
18872 struct attribute *attr, unsigned form,
18873 LONGEST implicit_const, const gdb_byte *info_ptr,
18874 bool *need_reprocess)
18875 {
18876 struct dwarf2_cu *cu = reader->cu;
18877 struct dwarf2_per_objfile *dwarf2_per_objfile
18878 = cu->per_cu->dwarf2_per_objfile;
18879 struct objfile *objfile = dwarf2_per_objfile->objfile;
18880 bfd *abfd = reader->abfd;
18881 struct comp_unit_head *cu_header = &cu->header;
18882 unsigned int bytes_read;
18883 struct dwarf_block *blk;
18884 *need_reprocess = false;
18885
18886 attr->form = (enum dwarf_form) form;
18887 switch (form)
18888 {
18889 case DW_FORM_ref_addr:
18890 if (cu->header.version == 2)
18891 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18892 &bytes_read);
18893 else
18894 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18895 &bytes_read);
18896 info_ptr += bytes_read;
18897 break;
18898 case DW_FORM_GNU_ref_alt:
18899 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18900 info_ptr += bytes_read;
18901 break;
18902 case DW_FORM_addr:
18903 {
18904 struct gdbarch *gdbarch = objfile->arch ();
18905 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18906 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18907 info_ptr += bytes_read;
18908 }
18909 break;
18910 case DW_FORM_block2:
18911 blk = dwarf_alloc_block (cu);
18912 blk->size = read_2_bytes (abfd, info_ptr);
18913 info_ptr += 2;
18914 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18915 info_ptr += blk->size;
18916 DW_BLOCK (attr) = blk;
18917 break;
18918 case DW_FORM_block4:
18919 blk = dwarf_alloc_block (cu);
18920 blk->size = read_4_bytes (abfd, info_ptr);
18921 info_ptr += 4;
18922 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18923 info_ptr += blk->size;
18924 DW_BLOCK (attr) = blk;
18925 break;
18926 case DW_FORM_data2:
18927 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18928 info_ptr += 2;
18929 break;
18930 case DW_FORM_data4:
18931 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18932 info_ptr += 4;
18933 break;
18934 case DW_FORM_data8:
18935 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18936 info_ptr += 8;
18937 break;
18938 case DW_FORM_data16:
18939 blk = dwarf_alloc_block (cu);
18940 blk->size = 16;
18941 blk->data = read_n_bytes (abfd, info_ptr, 16);
18942 info_ptr += 16;
18943 DW_BLOCK (attr) = blk;
18944 break;
18945 case DW_FORM_sec_offset:
18946 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18947 info_ptr += bytes_read;
18948 break;
18949 case DW_FORM_loclistx:
18950 {
18951 *need_reprocess = true;
18952 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18953 info_ptr += bytes_read;
18954 }
18955 break;
18956 case DW_FORM_string:
18957 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18958 DW_STRING_IS_CANONICAL (attr) = 0;
18959 info_ptr += bytes_read;
18960 break;
18961 case DW_FORM_strp:
18962 if (!cu->per_cu->is_dwz)
18963 {
18964 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18965 abfd, info_ptr, cu_header,
18966 &bytes_read);
18967 DW_STRING_IS_CANONICAL (attr) = 0;
18968 info_ptr += bytes_read;
18969 break;
18970 }
18971 /* FALLTHROUGH */
18972 case DW_FORM_line_strp:
18973 if (!cu->per_cu->is_dwz)
18974 {
18975 DW_STRING (attr)
18976 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18977 &bytes_read);
18978 DW_STRING_IS_CANONICAL (attr) = 0;
18979 info_ptr += bytes_read;
18980 break;
18981 }
18982 /* FALLTHROUGH */
18983 case DW_FORM_GNU_strp_alt:
18984 {
18985 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18986 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18987 &bytes_read);
18988
18989 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
18990 DW_STRING_IS_CANONICAL (attr) = 0;
18991 info_ptr += bytes_read;
18992 }
18993 break;
18994 case DW_FORM_exprloc:
18995 case DW_FORM_block:
18996 blk = dwarf_alloc_block (cu);
18997 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18998 info_ptr += bytes_read;
18999 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19000 info_ptr += blk->size;
19001 DW_BLOCK (attr) = blk;
19002 break;
19003 case DW_FORM_block1:
19004 blk = dwarf_alloc_block (cu);
19005 blk->size = read_1_byte (abfd, info_ptr);
19006 info_ptr += 1;
19007 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19008 info_ptr += blk->size;
19009 DW_BLOCK (attr) = blk;
19010 break;
19011 case DW_FORM_data1:
19012 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19013 info_ptr += 1;
19014 break;
19015 case DW_FORM_flag:
19016 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19017 info_ptr += 1;
19018 break;
19019 case DW_FORM_flag_present:
19020 DW_UNSND (attr) = 1;
19021 break;
19022 case DW_FORM_sdata:
19023 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19024 info_ptr += bytes_read;
19025 break;
19026 case DW_FORM_udata:
19027 case DW_FORM_rnglistx:
19028 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19029 info_ptr += bytes_read;
19030 break;
19031 case DW_FORM_ref1:
19032 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19033 + read_1_byte (abfd, info_ptr));
19034 info_ptr += 1;
19035 break;
19036 case DW_FORM_ref2:
19037 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19038 + read_2_bytes (abfd, info_ptr));
19039 info_ptr += 2;
19040 break;
19041 case DW_FORM_ref4:
19042 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19043 + read_4_bytes (abfd, info_ptr));
19044 info_ptr += 4;
19045 break;
19046 case DW_FORM_ref8:
19047 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19048 + read_8_bytes (abfd, info_ptr));
19049 info_ptr += 8;
19050 break;
19051 case DW_FORM_ref_sig8:
19052 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19053 info_ptr += 8;
19054 break;
19055 case DW_FORM_ref_udata:
19056 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19057 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19058 info_ptr += bytes_read;
19059 break;
19060 case DW_FORM_indirect:
19061 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19062 info_ptr += bytes_read;
19063 if (form == DW_FORM_implicit_const)
19064 {
19065 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19066 info_ptr += bytes_read;
19067 }
19068 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19069 info_ptr, need_reprocess);
19070 break;
19071 case DW_FORM_implicit_const:
19072 DW_SND (attr) = implicit_const;
19073 break;
19074 case DW_FORM_addrx:
19075 case DW_FORM_GNU_addr_index:
19076 *need_reprocess = true;
19077 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19078 info_ptr += bytes_read;
19079 break;
19080 case DW_FORM_strx:
19081 case DW_FORM_strx1:
19082 case DW_FORM_strx2:
19083 case DW_FORM_strx3:
19084 case DW_FORM_strx4:
19085 case DW_FORM_GNU_str_index:
19086 {
19087 ULONGEST str_index;
19088 if (form == DW_FORM_strx1)
19089 {
19090 str_index = read_1_byte (abfd, info_ptr);
19091 info_ptr += 1;
19092 }
19093 else if (form == DW_FORM_strx2)
19094 {
19095 str_index = read_2_bytes (abfd, info_ptr);
19096 info_ptr += 2;
19097 }
19098 else if (form == DW_FORM_strx3)
19099 {
19100 str_index = read_3_bytes (abfd, info_ptr);
19101 info_ptr += 3;
19102 }
19103 else if (form == DW_FORM_strx4)
19104 {
19105 str_index = read_4_bytes (abfd, info_ptr);
19106 info_ptr += 4;
19107 }
19108 else
19109 {
19110 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19111 info_ptr += bytes_read;
19112 }
19113 *need_reprocess = true;
19114 DW_UNSND (attr) = str_index;
19115 }
19116 break;
19117 default:
19118 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19119 dwarf_form_name (form),
19120 bfd_get_filename (abfd));
19121 }
19122
19123 /* Super hack. */
19124 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19125 attr->form = DW_FORM_GNU_ref_alt;
19126
19127 /* We have seen instances where the compiler tried to emit a byte
19128 size attribute of -1 which ended up being encoded as an unsigned
19129 0xffffffff. Although 0xffffffff is technically a valid size value,
19130 an object of this size seems pretty unlikely so we can relatively
19131 safely treat these cases as if the size attribute was invalid and
19132 treat them as zero by default. */
19133 if (attr->name == DW_AT_byte_size
19134 && form == DW_FORM_data4
19135 && DW_UNSND (attr) >= 0xffffffff)
19136 {
19137 complaint
19138 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19139 hex_string (DW_UNSND (attr)));
19140 DW_UNSND (attr) = 0;
19141 }
19142
19143 return info_ptr;
19144 }
19145
19146 /* Read an attribute described by an abbreviated attribute. */
19147
19148 static const gdb_byte *
19149 read_attribute (const struct die_reader_specs *reader,
19150 struct attribute *attr, struct attr_abbrev *abbrev,
19151 const gdb_byte *info_ptr, bool *need_reprocess)
19152 {
19153 attr->name = abbrev->name;
19154 return read_attribute_value (reader, attr, abbrev->form,
19155 abbrev->implicit_const, info_ptr,
19156 need_reprocess);
19157 }
19158
19159 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19160
19161 static const char *
19162 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19163 LONGEST str_offset)
19164 {
19165 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19166 str_offset, "DW_FORM_strp");
19167 }
19168
19169 /* Return pointer to string at .debug_str offset as read from BUF.
19170 BUF is assumed to be in a compilation unit described by CU_HEADER.
19171 Return *BYTES_READ_PTR count of bytes read from BUF. */
19172
19173 static const char *
19174 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19175 const gdb_byte *buf,
19176 const struct comp_unit_head *cu_header,
19177 unsigned int *bytes_read_ptr)
19178 {
19179 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19180
19181 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19182 }
19183
19184 /* See read.h. */
19185
19186 const char *
19187 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19188 const struct comp_unit_head *cu_header,
19189 unsigned int *bytes_read_ptr)
19190 {
19191 bfd *abfd = objfile->obfd;
19192 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19193
19194 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19195 }
19196
19197 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19198 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19199 ADDR_SIZE is the size of addresses from the CU header. */
19200
19201 static CORE_ADDR
19202 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19203 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19204 int addr_size)
19205 {
19206 struct objfile *objfile = dwarf2_per_objfile->objfile;
19207 bfd *abfd = objfile->obfd;
19208 const gdb_byte *info_ptr;
19209 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19210
19211 dwarf2_per_objfile->addr.read (objfile);
19212 if (dwarf2_per_objfile->addr.buffer == NULL)
19213 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19214 objfile_name (objfile));
19215 if (addr_base_or_zero + addr_index * addr_size
19216 >= dwarf2_per_objfile->addr.size)
19217 error (_("DW_FORM_addr_index pointing outside of "
19218 ".debug_addr section [in module %s]"),
19219 objfile_name (objfile));
19220 info_ptr = (dwarf2_per_objfile->addr.buffer
19221 + addr_base_or_zero + addr_index * addr_size);
19222 if (addr_size == 4)
19223 return bfd_get_32 (abfd, info_ptr);
19224 else
19225 return bfd_get_64 (abfd, info_ptr);
19226 }
19227
19228 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19229
19230 static CORE_ADDR
19231 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19232 {
19233 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19234 cu->addr_base, cu->header.addr_size);
19235 }
19236
19237 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19238
19239 static CORE_ADDR
19240 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19241 unsigned int *bytes_read)
19242 {
19243 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19244 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19245
19246 return read_addr_index (cu, addr_index);
19247 }
19248
19249 /* See read.h. */
19250
19251 CORE_ADDR
19252 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19253 {
19254 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19255 struct dwarf2_cu *cu = per_cu->cu;
19256 gdb::optional<ULONGEST> addr_base;
19257 int addr_size;
19258
19259 /* We need addr_base and addr_size.
19260 If we don't have PER_CU->cu, we have to get it.
19261 Nasty, but the alternative is storing the needed info in PER_CU,
19262 which at this point doesn't seem justified: it's not clear how frequently
19263 it would get used and it would increase the size of every PER_CU.
19264 Entry points like dwarf2_per_cu_addr_size do a similar thing
19265 so we're not in uncharted territory here.
19266 Alas we need to be a bit more complicated as addr_base is contained
19267 in the DIE.
19268
19269 We don't need to read the entire CU(/TU).
19270 We just need the header and top level die.
19271
19272 IWBN to use the aging mechanism to let us lazily later discard the CU.
19273 For now we skip this optimization. */
19274
19275 if (cu != NULL)
19276 {
19277 addr_base = cu->addr_base;
19278 addr_size = cu->header.addr_size;
19279 }
19280 else
19281 {
19282 cutu_reader reader (per_cu, NULL, 0, false);
19283 addr_base = reader.cu->addr_base;
19284 addr_size = reader.cu->header.addr_size;
19285 }
19286
19287 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19288 addr_size);
19289 }
19290
19291 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19292 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19293 DWO file. */
19294
19295 static const char *
19296 read_str_index (struct dwarf2_cu *cu,
19297 struct dwarf2_section_info *str_section,
19298 struct dwarf2_section_info *str_offsets_section,
19299 ULONGEST str_offsets_base, ULONGEST str_index)
19300 {
19301 struct dwarf2_per_objfile *dwarf2_per_objfile
19302 = cu->per_cu->dwarf2_per_objfile;
19303 struct objfile *objfile = dwarf2_per_objfile->objfile;
19304 const char *objf_name = objfile_name (objfile);
19305 bfd *abfd = objfile->obfd;
19306 const gdb_byte *info_ptr;
19307 ULONGEST str_offset;
19308 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19309
19310 str_section->read (objfile);
19311 str_offsets_section->read (objfile);
19312 if (str_section->buffer == NULL)
19313 error (_("%s used without %s section"
19314 " in CU at offset %s [in module %s]"),
19315 form_name, str_section->get_name (),
19316 sect_offset_str (cu->header.sect_off), objf_name);
19317 if (str_offsets_section->buffer == NULL)
19318 error (_("%s used without %s section"
19319 " in CU at offset %s [in module %s]"),
19320 form_name, str_section->get_name (),
19321 sect_offset_str (cu->header.sect_off), objf_name);
19322 info_ptr = (str_offsets_section->buffer
19323 + str_offsets_base
19324 + str_index * cu->header.offset_size);
19325 if (cu->header.offset_size == 4)
19326 str_offset = bfd_get_32 (abfd, info_ptr);
19327 else
19328 str_offset = bfd_get_64 (abfd, info_ptr);
19329 if (str_offset >= str_section->size)
19330 error (_("Offset from %s pointing outside of"
19331 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19332 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19333 return (const char *) (str_section->buffer + str_offset);
19334 }
19335
19336 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19337
19338 static const char *
19339 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19340 {
19341 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19342 ? reader->cu->header.addr_size : 0;
19343 return read_str_index (reader->cu,
19344 &reader->dwo_file->sections.str,
19345 &reader->dwo_file->sections.str_offsets,
19346 str_offsets_base, str_index);
19347 }
19348
19349 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19350
19351 static const char *
19352 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19353 {
19354 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19355 const char *objf_name = objfile_name (objfile);
19356 static const char form_name[] = "DW_FORM_GNU_str_index";
19357 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19358
19359 if (!cu->str_offsets_base.has_value ())
19360 error (_("%s used in Fission stub without %s"
19361 " in CU at offset 0x%lx [in module %s]"),
19362 form_name, str_offsets_attr_name,
19363 (long) cu->header.offset_size, objf_name);
19364
19365 return read_str_index (cu,
19366 &cu->per_cu->dwarf2_per_objfile->str,
19367 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19368 *cu->str_offsets_base, str_index);
19369 }
19370
19371 /* Return the length of an LEB128 number in BUF. */
19372
19373 static int
19374 leb128_size (const gdb_byte *buf)
19375 {
19376 const gdb_byte *begin = buf;
19377 gdb_byte byte;
19378
19379 while (1)
19380 {
19381 byte = *buf++;
19382 if ((byte & 128) == 0)
19383 return buf - begin;
19384 }
19385 }
19386
19387 static void
19388 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19389 {
19390 switch (lang)
19391 {
19392 case DW_LANG_C89:
19393 case DW_LANG_C99:
19394 case DW_LANG_C11:
19395 case DW_LANG_C:
19396 case DW_LANG_UPC:
19397 cu->language = language_c;
19398 break;
19399 case DW_LANG_Java:
19400 case DW_LANG_C_plus_plus:
19401 case DW_LANG_C_plus_plus_11:
19402 case DW_LANG_C_plus_plus_14:
19403 cu->language = language_cplus;
19404 break;
19405 case DW_LANG_D:
19406 cu->language = language_d;
19407 break;
19408 case DW_LANG_Fortran77:
19409 case DW_LANG_Fortran90:
19410 case DW_LANG_Fortran95:
19411 case DW_LANG_Fortran03:
19412 case DW_LANG_Fortran08:
19413 cu->language = language_fortran;
19414 break;
19415 case DW_LANG_Go:
19416 cu->language = language_go;
19417 break;
19418 case DW_LANG_Mips_Assembler:
19419 cu->language = language_asm;
19420 break;
19421 case DW_LANG_Ada83:
19422 case DW_LANG_Ada95:
19423 cu->language = language_ada;
19424 break;
19425 case DW_LANG_Modula2:
19426 cu->language = language_m2;
19427 break;
19428 case DW_LANG_Pascal83:
19429 cu->language = language_pascal;
19430 break;
19431 case DW_LANG_ObjC:
19432 cu->language = language_objc;
19433 break;
19434 case DW_LANG_Rust:
19435 case DW_LANG_Rust_old:
19436 cu->language = language_rust;
19437 break;
19438 case DW_LANG_Cobol74:
19439 case DW_LANG_Cobol85:
19440 default:
19441 cu->language = language_minimal;
19442 break;
19443 }
19444 cu->language_defn = language_def (cu->language);
19445 }
19446
19447 /* Return the named attribute or NULL if not there. */
19448
19449 static struct attribute *
19450 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19451 {
19452 for (;;)
19453 {
19454 unsigned int i;
19455 struct attribute *spec = NULL;
19456
19457 for (i = 0; i < die->num_attrs; ++i)
19458 {
19459 if (die->attrs[i].name == name)
19460 return &die->attrs[i];
19461 if (die->attrs[i].name == DW_AT_specification
19462 || die->attrs[i].name == DW_AT_abstract_origin)
19463 spec = &die->attrs[i];
19464 }
19465
19466 if (!spec)
19467 break;
19468
19469 die = follow_die_ref (die, spec, &cu);
19470 }
19471
19472 return NULL;
19473 }
19474
19475 /* Return the string associated with a string-typed attribute, or NULL if it
19476 is either not found or is of an incorrect type. */
19477
19478 static const char *
19479 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19480 {
19481 struct attribute *attr;
19482 const char *str = NULL;
19483
19484 attr = dwarf2_attr (die, name, cu);
19485
19486 if (attr != NULL)
19487 {
19488 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19489 || attr->form == DW_FORM_string
19490 || attr->form == DW_FORM_strx
19491 || attr->form == DW_FORM_strx1
19492 || attr->form == DW_FORM_strx2
19493 || attr->form == DW_FORM_strx3
19494 || attr->form == DW_FORM_strx4
19495 || attr->form == DW_FORM_GNU_str_index
19496 || attr->form == DW_FORM_GNU_strp_alt)
19497 str = DW_STRING (attr);
19498 else
19499 complaint (_("string type expected for attribute %s for "
19500 "DIE at %s in module %s"),
19501 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19502 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19503 }
19504
19505 return str;
19506 }
19507
19508 /* Return the dwo name or NULL if not present. If present, it is in either
19509 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19510 static const char *
19511 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19512 {
19513 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19514 if (dwo_name == nullptr)
19515 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19516 return dwo_name;
19517 }
19518
19519 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19520 and holds a non-zero value. This function should only be used for
19521 DW_FORM_flag or DW_FORM_flag_present attributes. */
19522
19523 static int
19524 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19525 {
19526 struct attribute *attr = dwarf2_attr (die, name, cu);
19527
19528 return (attr && DW_UNSND (attr));
19529 }
19530
19531 static int
19532 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19533 {
19534 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19535 which value is non-zero. However, we have to be careful with
19536 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19537 (via dwarf2_flag_true_p) follows this attribute. So we may
19538 end up accidently finding a declaration attribute that belongs
19539 to a different DIE referenced by the specification attribute,
19540 even though the given DIE does not have a declaration attribute. */
19541 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19542 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19543 }
19544
19545 /* Return the die giving the specification for DIE, if there is
19546 one. *SPEC_CU is the CU containing DIE on input, and the CU
19547 containing the return value on output. If there is no
19548 specification, but there is an abstract origin, that is
19549 returned. */
19550
19551 static struct die_info *
19552 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19553 {
19554 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19555 *spec_cu);
19556
19557 if (spec_attr == NULL)
19558 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19559
19560 if (spec_attr == NULL)
19561 return NULL;
19562 else
19563 return follow_die_ref (die, spec_attr, spec_cu);
19564 }
19565
19566 /* Stub for free_line_header to match void * callback types. */
19567
19568 static void
19569 free_line_header_voidp (void *arg)
19570 {
19571 struct line_header *lh = (struct line_header *) arg;
19572
19573 delete lh;
19574 }
19575
19576 /* A convenience function to find the proper .debug_line section for a CU. */
19577
19578 static struct dwarf2_section_info *
19579 get_debug_line_section (struct dwarf2_cu *cu)
19580 {
19581 struct dwarf2_section_info *section;
19582 struct dwarf2_per_objfile *dwarf2_per_objfile
19583 = cu->per_cu->dwarf2_per_objfile;
19584
19585 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19586 DWO file. */
19587 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19588 section = &cu->dwo_unit->dwo_file->sections.line;
19589 else if (cu->per_cu->is_dwz)
19590 {
19591 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19592
19593 section = &dwz->line;
19594 }
19595 else
19596 section = &dwarf2_per_objfile->line;
19597
19598 return section;
19599 }
19600
19601 /* Read the statement program header starting at OFFSET in
19602 .debug_line, or .debug_line.dwo. Return a pointer
19603 to a struct line_header, allocated using xmalloc.
19604 Returns NULL if there is a problem reading the header, e.g., if it
19605 has a version we don't understand.
19606
19607 NOTE: the strings in the include directory and file name tables of
19608 the returned object point into the dwarf line section buffer,
19609 and must not be freed. */
19610
19611 static line_header_up
19612 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19613 {
19614 struct dwarf2_section_info *section;
19615 struct dwarf2_per_objfile *dwarf2_per_objfile
19616 = cu->per_cu->dwarf2_per_objfile;
19617
19618 section = get_debug_line_section (cu);
19619 section->read (dwarf2_per_objfile->objfile);
19620 if (section->buffer == NULL)
19621 {
19622 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19623 complaint (_("missing .debug_line.dwo section"));
19624 else
19625 complaint (_("missing .debug_line section"));
19626 return 0;
19627 }
19628
19629 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19630 dwarf2_per_objfile, section,
19631 &cu->header);
19632 }
19633
19634 /* Subroutine of dwarf_decode_lines to simplify it.
19635 Return the file name of the psymtab for the given file_entry.
19636 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19637 If space for the result is malloc'd, *NAME_HOLDER will be set.
19638 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19639
19640 static const char *
19641 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19642 const dwarf2_psymtab *pst,
19643 const char *comp_dir,
19644 gdb::unique_xmalloc_ptr<char> *name_holder)
19645 {
19646 const char *include_name = fe.name;
19647 const char *include_name_to_compare = include_name;
19648 const char *pst_filename;
19649 int file_is_pst;
19650
19651 const char *dir_name = fe.include_dir (lh);
19652
19653 gdb::unique_xmalloc_ptr<char> hold_compare;
19654 if (!IS_ABSOLUTE_PATH (include_name)
19655 && (dir_name != NULL || comp_dir != NULL))
19656 {
19657 /* Avoid creating a duplicate psymtab for PST.
19658 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19659 Before we do the comparison, however, we need to account
19660 for DIR_NAME and COMP_DIR.
19661 First prepend dir_name (if non-NULL). If we still don't
19662 have an absolute path prepend comp_dir (if non-NULL).
19663 However, the directory we record in the include-file's
19664 psymtab does not contain COMP_DIR (to match the
19665 corresponding symtab(s)).
19666
19667 Example:
19668
19669 bash$ cd /tmp
19670 bash$ gcc -g ./hello.c
19671 include_name = "hello.c"
19672 dir_name = "."
19673 DW_AT_comp_dir = comp_dir = "/tmp"
19674 DW_AT_name = "./hello.c"
19675
19676 */
19677
19678 if (dir_name != NULL)
19679 {
19680 name_holder->reset (concat (dir_name, SLASH_STRING,
19681 include_name, (char *) NULL));
19682 include_name = name_holder->get ();
19683 include_name_to_compare = include_name;
19684 }
19685 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19686 {
19687 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19688 include_name, (char *) NULL));
19689 include_name_to_compare = hold_compare.get ();
19690 }
19691 }
19692
19693 pst_filename = pst->filename;
19694 gdb::unique_xmalloc_ptr<char> copied_name;
19695 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19696 {
19697 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19698 pst_filename, (char *) NULL));
19699 pst_filename = copied_name.get ();
19700 }
19701
19702 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19703
19704 if (file_is_pst)
19705 return NULL;
19706 return include_name;
19707 }
19708
19709 /* State machine to track the state of the line number program. */
19710
19711 class lnp_state_machine
19712 {
19713 public:
19714 /* Initialize a machine state for the start of a line number
19715 program. */
19716 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19717 bool record_lines_p);
19718
19719 file_entry *current_file ()
19720 {
19721 /* lh->file_names is 0-based, but the file name numbers in the
19722 statement program are 1-based. */
19723 return m_line_header->file_name_at (m_file);
19724 }
19725
19726 /* Record the line in the state machine. END_SEQUENCE is true if
19727 we're processing the end of a sequence. */
19728 void record_line (bool end_sequence);
19729
19730 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19731 nop-out rest of the lines in this sequence. */
19732 void check_line_address (struct dwarf2_cu *cu,
19733 const gdb_byte *line_ptr,
19734 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19735
19736 void handle_set_discriminator (unsigned int discriminator)
19737 {
19738 m_discriminator = discriminator;
19739 m_line_has_non_zero_discriminator |= discriminator != 0;
19740 }
19741
19742 /* Handle DW_LNE_set_address. */
19743 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19744 {
19745 m_op_index = 0;
19746 address += baseaddr;
19747 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19748 }
19749
19750 /* Handle DW_LNS_advance_pc. */
19751 void handle_advance_pc (CORE_ADDR adjust);
19752
19753 /* Handle a special opcode. */
19754 void handle_special_opcode (unsigned char op_code);
19755
19756 /* Handle DW_LNS_advance_line. */
19757 void handle_advance_line (int line_delta)
19758 {
19759 advance_line (line_delta);
19760 }
19761
19762 /* Handle DW_LNS_set_file. */
19763 void handle_set_file (file_name_index file);
19764
19765 /* Handle DW_LNS_negate_stmt. */
19766 void handle_negate_stmt ()
19767 {
19768 m_is_stmt = !m_is_stmt;
19769 }
19770
19771 /* Handle DW_LNS_const_add_pc. */
19772 void handle_const_add_pc ();
19773
19774 /* Handle DW_LNS_fixed_advance_pc. */
19775 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19776 {
19777 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19778 m_op_index = 0;
19779 }
19780
19781 /* Handle DW_LNS_copy. */
19782 void handle_copy ()
19783 {
19784 record_line (false);
19785 m_discriminator = 0;
19786 }
19787
19788 /* Handle DW_LNE_end_sequence. */
19789 void handle_end_sequence ()
19790 {
19791 m_currently_recording_lines = true;
19792 }
19793
19794 private:
19795 /* Advance the line by LINE_DELTA. */
19796 void advance_line (int line_delta)
19797 {
19798 m_line += line_delta;
19799
19800 if (line_delta != 0)
19801 m_line_has_non_zero_discriminator = m_discriminator != 0;
19802 }
19803
19804 struct dwarf2_cu *m_cu;
19805
19806 gdbarch *m_gdbarch;
19807
19808 /* True if we're recording lines.
19809 Otherwise we're building partial symtabs and are just interested in
19810 finding include files mentioned by the line number program. */
19811 bool m_record_lines_p;
19812
19813 /* The line number header. */
19814 line_header *m_line_header;
19815
19816 /* These are part of the standard DWARF line number state machine,
19817 and initialized according to the DWARF spec. */
19818
19819 unsigned char m_op_index = 0;
19820 /* The line table index of the current file. */
19821 file_name_index m_file = 1;
19822 unsigned int m_line = 1;
19823
19824 /* These are initialized in the constructor. */
19825
19826 CORE_ADDR m_address;
19827 bool m_is_stmt;
19828 unsigned int m_discriminator;
19829
19830 /* Additional bits of state we need to track. */
19831
19832 /* The last file that we called dwarf2_start_subfile for.
19833 This is only used for TLLs. */
19834 unsigned int m_last_file = 0;
19835 /* The last file a line number was recorded for. */
19836 struct subfile *m_last_subfile = NULL;
19837
19838 /* When true, record the lines we decode. */
19839 bool m_currently_recording_lines = false;
19840
19841 /* The last line number that was recorded, used to coalesce
19842 consecutive entries for the same line. This can happen, for
19843 example, when discriminators are present. PR 17276. */
19844 unsigned int m_last_line = 0;
19845 bool m_line_has_non_zero_discriminator = false;
19846 };
19847
19848 void
19849 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19850 {
19851 CORE_ADDR addr_adj = (((m_op_index + adjust)
19852 / m_line_header->maximum_ops_per_instruction)
19853 * m_line_header->minimum_instruction_length);
19854 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19855 m_op_index = ((m_op_index + adjust)
19856 % m_line_header->maximum_ops_per_instruction);
19857 }
19858
19859 void
19860 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19861 {
19862 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19863 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19864 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19865 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19866 / m_line_header->maximum_ops_per_instruction)
19867 * m_line_header->minimum_instruction_length);
19868 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19869 m_op_index = ((m_op_index + adj_opcode_d)
19870 % m_line_header->maximum_ops_per_instruction);
19871
19872 int line_delta = m_line_header->line_base + adj_opcode_r;
19873 advance_line (line_delta);
19874 record_line (false);
19875 m_discriminator = 0;
19876 }
19877
19878 void
19879 lnp_state_machine::handle_set_file (file_name_index file)
19880 {
19881 m_file = file;
19882
19883 const file_entry *fe = current_file ();
19884 if (fe == NULL)
19885 dwarf2_debug_line_missing_file_complaint ();
19886 else if (m_record_lines_p)
19887 {
19888 const char *dir = fe->include_dir (m_line_header);
19889
19890 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19891 m_line_has_non_zero_discriminator = m_discriminator != 0;
19892 dwarf2_start_subfile (m_cu, fe->name, dir);
19893 }
19894 }
19895
19896 void
19897 lnp_state_machine::handle_const_add_pc ()
19898 {
19899 CORE_ADDR adjust
19900 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19901
19902 CORE_ADDR addr_adj
19903 = (((m_op_index + adjust)
19904 / m_line_header->maximum_ops_per_instruction)
19905 * m_line_header->minimum_instruction_length);
19906
19907 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19908 m_op_index = ((m_op_index + adjust)
19909 % m_line_header->maximum_ops_per_instruction);
19910 }
19911
19912 /* Return non-zero if we should add LINE to the line number table.
19913 LINE is the line to add, LAST_LINE is the last line that was added,
19914 LAST_SUBFILE is the subfile for LAST_LINE.
19915 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19916 had a non-zero discriminator.
19917
19918 We have to be careful in the presence of discriminators.
19919 E.g., for this line:
19920
19921 for (i = 0; i < 100000; i++);
19922
19923 clang can emit four line number entries for that one line,
19924 each with a different discriminator.
19925 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19926
19927 However, we want gdb to coalesce all four entries into one.
19928 Otherwise the user could stepi into the middle of the line and
19929 gdb would get confused about whether the pc really was in the
19930 middle of the line.
19931
19932 Things are further complicated by the fact that two consecutive
19933 line number entries for the same line is a heuristic used by gcc
19934 to denote the end of the prologue. So we can't just discard duplicate
19935 entries, we have to be selective about it. The heuristic we use is
19936 that we only collapse consecutive entries for the same line if at least
19937 one of those entries has a non-zero discriminator. PR 17276.
19938
19939 Note: Addresses in the line number state machine can never go backwards
19940 within one sequence, thus this coalescing is ok. */
19941
19942 static int
19943 dwarf_record_line_p (struct dwarf2_cu *cu,
19944 unsigned int line, unsigned int last_line,
19945 int line_has_non_zero_discriminator,
19946 struct subfile *last_subfile)
19947 {
19948 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19949 return 1;
19950 if (line != last_line)
19951 return 1;
19952 /* Same line for the same file that we've seen already.
19953 As a last check, for pr 17276, only record the line if the line
19954 has never had a non-zero discriminator. */
19955 if (!line_has_non_zero_discriminator)
19956 return 1;
19957 return 0;
19958 }
19959
19960 /* Use the CU's builder to record line number LINE beginning at
19961 address ADDRESS in the line table of subfile SUBFILE. */
19962
19963 static void
19964 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19965 unsigned int line, CORE_ADDR address, bool is_stmt,
19966 struct dwarf2_cu *cu)
19967 {
19968 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19969
19970 if (dwarf_line_debug)
19971 {
19972 fprintf_unfiltered (gdb_stdlog,
19973 "Recording line %u, file %s, address %s\n",
19974 line, lbasename (subfile->name),
19975 paddress (gdbarch, address));
19976 }
19977
19978 if (cu != nullptr)
19979 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19980 }
19981
19982 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19983 Mark the end of a set of line number records.
19984 The arguments are the same as for dwarf_record_line_1.
19985 If SUBFILE is NULL the request is ignored. */
19986
19987 static void
19988 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19989 CORE_ADDR address, struct dwarf2_cu *cu)
19990 {
19991 if (subfile == NULL)
19992 return;
19993
19994 if (dwarf_line_debug)
19995 {
19996 fprintf_unfiltered (gdb_stdlog,
19997 "Finishing current line, file %s, address %s\n",
19998 lbasename (subfile->name),
19999 paddress (gdbarch, address));
20000 }
20001
20002 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20003 }
20004
20005 void
20006 lnp_state_machine::record_line (bool end_sequence)
20007 {
20008 if (dwarf_line_debug)
20009 {
20010 fprintf_unfiltered (gdb_stdlog,
20011 "Processing actual line %u: file %u,"
20012 " address %s, is_stmt %u, discrim %u%s\n",
20013 m_line, m_file,
20014 paddress (m_gdbarch, m_address),
20015 m_is_stmt, m_discriminator,
20016 (end_sequence ? "\t(end sequence)" : ""));
20017 }
20018
20019 file_entry *fe = current_file ();
20020
20021 if (fe == NULL)
20022 dwarf2_debug_line_missing_file_complaint ();
20023 /* For now we ignore lines not starting on an instruction boundary.
20024 But not when processing end_sequence for compatibility with the
20025 previous version of the code. */
20026 else if (m_op_index == 0 || end_sequence)
20027 {
20028 fe->included_p = 1;
20029 if (m_record_lines_p)
20030 {
20031 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20032 || end_sequence)
20033 {
20034 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20035 m_currently_recording_lines ? m_cu : nullptr);
20036 }
20037
20038 if (!end_sequence)
20039 {
20040 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20041
20042 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20043 m_line_has_non_zero_discriminator,
20044 m_last_subfile))
20045 {
20046 buildsym_compunit *builder = m_cu->get_builder ();
20047 dwarf_record_line_1 (m_gdbarch,
20048 builder->get_current_subfile (),
20049 m_line, m_address, is_stmt,
20050 m_currently_recording_lines ? m_cu : nullptr);
20051 }
20052 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20053 m_last_line = m_line;
20054 }
20055 }
20056 }
20057 }
20058
20059 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20060 line_header *lh, bool record_lines_p)
20061 {
20062 m_cu = cu;
20063 m_gdbarch = arch;
20064 m_record_lines_p = record_lines_p;
20065 m_line_header = lh;
20066
20067 m_currently_recording_lines = true;
20068
20069 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20070 was a line entry for it so that the backend has a chance to adjust it
20071 and also record it in case it needs it. This is currently used by MIPS
20072 code, cf. `mips_adjust_dwarf2_line'. */
20073 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20074 m_is_stmt = lh->default_is_stmt;
20075 m_discriminator = 0;
20076 }
20077
20078 void
20079 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20080 const gdb_byte *line_ptr,
20081 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20082 {
20083 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20084 the pc range of the CU. However, we restrict the test to only ADDRESS
20085 values of zero to preserve GDB's previous behaviour which is to handle
20086 the specific case of a function being GC'd by the linker. */
20087
20088 if (address == 0 && address < unrelocated_lowpc)
20089 {
20090 /* This line table is for a function which has been
20091 GCd by the linker. Ignore it. PR gdb/12528 */
20092
20093 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20094 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20095
20096 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20097 line_offset, objfile_name (objfile));
20098 m_currently_recording_lines = false;
20099 /* Note: m_currently_recording_lines is left as false until we see
20100 DW_LNE_end_sequence. */
20101 }
20102 }
20103
20104 /* Subroutine of dwarf_decode_lines to simplify it.
20105 Process the line number information in LH.
20106 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20107 program in order to set included_p for every referenced header. */
20108
20109 static void
20110 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20111 const int decode_for_pst_p, CORE_ADDR lowpc)
20112 {
20113 const gdb_byte *line_ptr, *extended_end;
20114 const gdb_byte *line_end;
20115 unsigned int bytes_read, extended_len;
20116 unsigned char op_code, extended_op;
20117 CORE_ADDR baseaddr;
20118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20119 bfd *abfd = objfile->obfd;
20120 struct gdbarch *gdbarch = objfile->arch ();
20121 /* True if we're recording line info (as opposed to building partial
20122 symtabs and just interested in finding include files mentioned by
20123 the line number program). */
20124 bool record_lines_p = !decode_for_pst_p;
20125
20126 baseaddr = objfile->text_section_offset ();
20127
20128 line_ptr = lh->statement_program_start;
20129 line_end = lh->statement_program_end;
20130
20131 /* Read the statement sequences until there's nothing left. */
20132 while (line_ptr < line_end)
20133 {
20134 /* The DWARF line number program state machine. Reset the state
20135 machine at the start of each sequence. */
20136 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20137 bool end_sequence = false;
20138
20139 if (record_lines_p)
20140 {
20141 /* Start a subfile for the current file of the state
20142 machine. */
20143 const file_entry *fe = state_machine.current_file ();
20144
20145 if (fe != NULL)
20146 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20147 }
20148
20149 /* Decode the table. */
20150 while (line_ptr < line_end && !end_sequence)
20151 {
20152 op_code = read_1_byte (abfd, line_ptr);
20153 line_ptr += 1;
20154
20155 if (op_code >= lh->opcode_base)
20156 {
20157 /* Special opcode. */
20158 state_machine.handle_special_opcode (op_code);
20159 }
20160 else switch (op_code)
20161 {
20162 case DW_LNS_extended_op:
20163 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20164 &bytes_read);
20165 line_ptr += bytes_read;
20166 extended_end = line_ptr + extended_len;
20167 extended_op = read_1_byte (abfd, line_ptr);
20168 line_ptr += 1;
20169 switch (extended_op)
20170 {
20171 case DW_LNE_end_sequence:
20172 state_machine.handle_end_sequence ();
20173 end_sequence = true;
20174 break;
20175 case DW_LNE_set_address:
20176 {
20177 CORE_ADDR address
20178 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20179 line_ptr += bytes_read;
20180
20181 state_machine.check_line_address (cu, line_ptr,
20182 lowpc - baseaddr, address);
20183 state_machine.handle_set_address (baseaddr, address);
20184 }
20185 break;
20186 case DW_LNE_define_file:
20187 {
20188 const char *cur_file;
20189 unsigned int mod_time, length;
20190 dir_index dindex;
20191
20192 cur_file = read_direct_string (abfd, line_ptr,
20193 &bytes_read);
20194 line_ptr += bytes_read;
20195 dindex = (dir_index)
20196 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20197 line_ptr += bytes_read;
20198 mod_time =
20199 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20200 line_ptr += bytes_read;
20201 length =
20202 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20203 line_ptr += bytes_read;
20204 lh->add_file_name (cur_file, dindex, mod_time, length);
20205 }
20206 break;
20207 case DW_LNE_set_discriminator:
20208 {
20209 /* The discriminator is not interesting to the
20210 debugger; just ignore it. We still need to
20211 check its value though:
20212 if there are consecutive entries for the same
20213 (non-prologue) line we want to coalesce them.
20214 PR 17276. */
20215 unsigned int discr
20216 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20217 line_ptr += bytes_read;
20218
20219 state_machine.handle_set_discriminator (discr);
20220 }
20221 break;
20222 default:
20223 complaint (_("mangled .debug_line section"));
20224 return;
20225 }
20226 /* Make sure that we parsed the extended op correctly. If e.g.
20227 we expected a different address size than the producer used,
20228 we may have read the wrong number of bytes. */
20229 if (line_ptr != extended_end)
20230 {
20231 complaint (_("mangled .debug_line section"));
20232 return;
20233 }
20234 break;
20235 case DW_LNS_copy:
20236 state_machine.handle_copy ();
20237 break;
20238 case DW_LNS_advance_pc:
20239 {
20240 CORE_ADDR adjust
20241 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20242 line_ptr += bytes_read;
20243
20244 state_machine.handle_advance_pc (adjust);
20245 }
20246 break;
20247 case DW_LNS_advance_line:
20248 {
20249 int line_delta
20250 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20251 line_ptr += bytes_read;
20252
20253 state_machine.handle_advance_line (line_delta);
20254 }
20255 break;
20256 case DW_LNS_set_file:
20257 {
20258 file_name_index file
20259 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20260 &bytes_read);
20261 line_ptr += bytes_read;
20262
20263 state_machine.handle_set_file (file);
20264 }
20265 break;
20266 case DW_LNS_set_column:
20267 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20268 line_ptr += bytes_read;
20269 break;
20270 case DW_LNS_negate_stmt:
20271 state_machine.handle_negate_stmt ();
20272 break;
20273 case DW_LNS_set_basic_block:
20274 break;
20275 /* Add to the address register of the state machine the
20276 address increment value corresponding to special opcode
20277 255. I.e., this value is scaled by the minimum
20278 instruction length since special opcode 255 would have
20279 scaled the increment. */
20280 case DW_LNS_const_add_pc:
20281 state_machine.handle_const_add_pc ();
20282 break;
20283 case DW_LNS_fixed_advance_pc:
20284 {
20285 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20286 line_ptr += 2;
20287
20288 state_machine.handle_fixed_advance_pc (addr_adj);
20289 }
20290 break;
20291 default:
20292 {
20293 /* Unknown standard opcode, ignore it. */
20294 int i;
20295
20296 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20297 {
20298 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20299 line_ptr += bytes_read;
20300 }
20301 }
20302 }
20303 }
20304
20305 if (!end_sequence)
20306 dwarf2_debug_line_missing_end_sequence_complaint ();
20307
20308 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20309 in which case we still finish recording the last line). */
20310 state_machine.record_line (true);
20311 }
20312 }
20313
20314 /* Decode the Line Number Program (LNP) for the given line_header
20315 structure and CU. The actual information extracted and the type
20316 of structures created from the LNP depends on the value of PST.
20317
20318 1. If PST is NULL, then this procedure uses the data from the program
20319 to create all necessary symbol tables, and their linetables.
20320
20321 2. If PST is not NULL, this procedure reads the program to determine
20322 the list of files included by the unit represented by PST, and
20323 builds all the associated partial symbol tables.
20324
20325 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20326 It is used for relative paths in the line table.
20327 NOTE: When processing partial symtabs (pst != NULL),
20328 comp_dir == pst->dirname.
20329
20330 NOTE: It is important that psymtabs have the same file name (via strcmp)
20331 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20332 symtab we don't use it in the name of the psymtabs we create.
20333 E.g. expand_line_sal requires this when finding psymtabs to expand.
20334 A good testcase for this is mb-inline.exp.
20335
20336 LOWPC is the lowest address in CU (or 0 if not known).
20337
20338 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20339 for its PC<->lines mapping information. Otherwise only the filename
20340 table is read in. */
20341
20342 static void
20343 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20344 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20345 CORE_ADDR lowpc, int decode_mapping)
20346 {
20347 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20348 const int decode_for_pst_p = (pst != NULL);
20349
20350 if (decode_mapping)
20351 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20352
20353 if (decode_for_pst_p)
20354 {
20355 /* Now that we're done scanning the Line Header Program, we can
20356 create the psymtab of each included file. */
20357 for (auto &file_entry : lh->file_names ())
20358 if (file_entry.included_p == 1)
20359 {
20360 gdb::unique_xmalloc_ptr<char> name_holder;
20361 const char *include_name =
20362 psymtab_include_file_name (lh, file_entry, pst,
20363 comp_dir, &name_holder);
20364 if (include_name != NULL)
20365 dwarf2_create_include_psymtab (include_name, pst, objfile);
20366 }
20367 }
20368 else
20369 {
20370 /* Make sure a symtab is created for every file, even files
20371 which contain only variables (i.e. no code with associated
20372 line numbers). */
20373 buildsym_compunit *builder = cu->get_builder ();
20374 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20375
20376 for (auto &fe : lh->file_names ())
20377 {
20378 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20379 if (builder->get_current_subfile ()->symtab == NULL)
20380 {
20381 builder->get_current_subfile ()->symtab
20382 = allocate_symtab (cust,
20383 builder->get_current_subfile ()->name);
20384 }
20385 fe.symtab = builder->get_current_subfile ()->symtab;
20386 }
20387 }
20388 }
20389
20390 /* Start a subfile for DWARF. FILENAME is the name of the file and
20391 DIRNAME the name of the source directory which contains FILENAME
20392 or NULL if not known.
20393 This routine tries to keep line numbers from identical absolute and
20394 relative file names in a common subfile.
20395
20396 Using the `list' example from the GDB testsuite, which resides in
20397 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20398 of /srcdir/list0.c yields the following debugging information for list0.c:
20399
20400 DW_AT_name: /srcdir/list0.c
20401 DW_AT_comp_dir: /compdir
20402 files.files[0].name: list0.h
20403 files.files[0].dir: /srcdir
20404 files.files[1].name: list0.c
20405 files.files[1].dir: /srcdir
20406
20407 The line number information for list0.c has to end up in a single
20408 subfile, so that `break /srcdir/list0.c:1' works as expected.
20409 start_subfile will ensure that this happens provided that we pass the
20410 concatenation of files.files[1].dir and files.files[1].name as the
20411 subfile's name. */
20412
20413 static void
20414 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20415 const char *dirname)
20416 {
20417 gdb::unique_xmalloc_ptr<char> copy;
20418
20419 /* In order not to lose the line information directory,
20420 we concatenate it to the filename when it makes sense.
20421 Note that the Dwarf3 standard says (speaking of filenames in line
20422 information): ``The directory index is ignored for file names
20423 that represent full path names''. Thus ignoring dirname in the
20424 `else' branch below isn't an issue. */
20425
20426 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20427 {
20428 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20429 filename = copy.get ();
20430 }
20431
20432 cu->get_builder ()->start_subfile (filename);
20433 }
20434
20435 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20436 buildsym_compunit constructor. */
20437
20438 struct compunit_symtab *
20439 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20440 CORE_ADDR low_pc)
20441 {
20442 gdb_assert (m_builder == nullptr);
20443
20444 m_builder.reset (new struct buildsym_compunit
20445 (per_cu->dwarf2_per_objfile->objfile,
20446 name, comp_dir, language, low_pc));
20447
20448 list_in_scope = get_builder ()->get_file_symbols ();
20449
20450 get_builder ()->record_debugformat ("DWARF 2");
20451 get_builder ()->record_producer (producer);
20452
20453 processing_has_namespace_info = false;
20454
20455 return get_builder ()->get_compunit_symtab ();
20456 }
20457
20458 static void
20459 var_decode_location (struct attribute *attr, struct symbol *sym,
20460 struct dwarf2_cu *cu)
20461 {
20462 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20463 struct comp_unit_head *cu_header = &cu->header;
20464
20465 /* NOTE drow/2003-01-30: There used to be a comment and some special
20466 code here to turn a symbol with DW_AT_external and a
20467 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20468 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20469 with some versions of binutils) where shared libraries could have
20470 relocations against symbols in their debug information - the
20471 minimal symbol would have the right address, but the debug info
20472 would not. It's no longer necessary, because we will explicitly
20473 apply relocations when we read in the debug information now. */
20474
20475 /* A DW_AT_location attribute with no contents indicates that a
20476 variable has been optimized away. */
20477 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20478 {
20479 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20480 return;
20481 }
20482
20483 /* Handle one degenerate form of location expression specially, to
20484 preserve GDB's previous behavior when section offsets are
20485 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20486 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20487
20488 if (attr->form_is_block ()
20489 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20490 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20491 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20492 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20493 && (DW_BLOCK (attr)->size
20494 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20495 {
20496 unsigned int dummy;
20497
20498 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20499 SET_SYMBOL_VALUE_ADDRESS
20500 (sym, cu->header.read_address (objfile->obfd,
20501 DW_BLOCK (attr)->data + 1,
20502 &dummy));
20503 else
20504 SET_SYMBOL_VALUE_ADDRESS
20505 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20506 &dummy));
20507 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20508 fixup_symbol_section (sym, objfile);
20509 SET_SYMBOL_VALUE_ADDRESS
20510 (sym,
20511 SYMBOL_VALUE_ADDRESS (sym)
20512 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20513 return;
20514 }
20515
20516 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20517 expression evaluator, and use LOC_COMPUTED only when necessary
20518 (i.e. when the value of a register or memory location is
20519 referenced, or a thread-local block, etc.). Then again, it might
20520 not be worthwhile. I'm assuming that it isn't unless performance
20521 or memory numbers show me otherwise. */
20522
20523 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20524
20525 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20526 cu->has_loclist = true;
20527 }
20528
20529 /* Given a pointer to a DWARF information entry, figure out if we need
20530 to make a symbol table entry for it, and if so, create a new entry
20531 and return a pointer to it.
20532 If TYPE is NULL, determine symbol type from the die, otherwise
20533 used the passed type.
20534 If SPACE is not NULL, use it to hold the new symbol. If it is
20535 NULL, allocate a new symbol on the objfile's obstack. */
20536
20537 static struct symbol *
20538 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20539 struct symbol *space)
20540 {
20541 struct dwarf2_per_objfile *dwarf2_per_objfile
20542 = cu->per_cu->dwarf2_per_objfile;
20543 struct objfile *objfile = dwarf2_per_objfile->objfile;
20544 struct gdbarch *gdbarch = objfile->arch ();
20545 struct symbol *sym = NULL;
20546 const char *name;
20547 struct attribute *attr = NULL;
20548 struct attribute *attr2 = NULL;
20549 CORE_ADDR baseaddr;
20550 struct pending **list_to_add = NULL;
20551
20552 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20553
20554 baseaddr = objfile->text_section_offset ();
20555
20556 name = dwarf2_name (die, cu);
20557 if (name)
20558 {
20559 const char *linkagename;
20560 int suppress_add = 0;
20561
20562 if (space)
20563 sym = space;
20564 else
20565 sym = allocate_symbol (objfile);
20566 OBJSTAT (objfile, n_syms++);
20567
20568 /* Cache this symbol's name and the name's demangled form (if any). */
20569 sym->set_language (cu->language, &objfile->objfile_obstack);
20570 linkagename = dwarf2_physname (name, die, cu);
20571 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20572
20573 /* Fortran does not have mangling standard and the mangling does differ
20574 between gfortran, iFort etc. */
20575 if (cu->language == language_fortran
20576 && symbol_get_demangled_name (sym) == NULL)
20577 sym->set_demangled_name (dwarf2_full_name (name, die, cu), NULL);
20578
20579 /* Default assumptions.
20580 Use the passed type or decode it from the die. */
20581 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20582 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20583 if (type != NULL)
20584 SYMBOL_TYPE (sym) = type;
20585 else
20586 SYMBOL_TYPE (sym) = die_type (die, cu);
20587 attr = dwarf2_attr (die,
20588 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20589 cu);
20590 if (attr != nullptr)
20591 {
20592 SYMBOL_LINE (sym) = DW_UNSND (attr);
20593 }
20594
20595 attr = dwarf2_attr (die,
20596 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20597 cu);
20598 if (attr != nullptr)
20599 {
20600 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20601 struct file_entry *fe;
20602
20603 if (cu->line_header != NULL)
20604 fe = cu->line_header->file_name_at (file_index);
20605 else
20606 fe = NULL;
20607
20608 if (fe == NULL)
20609 complaint (_("file index out of range"));
20610 else
20611 symbol_set_symtab (sym, fe->symtab);
20612 }
20613
20614 switch (die->tag)
20615 {
20616 case DW_TAG_label:
20617 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20618 if (attr != nullptr)
20619 {
20620 CORE_ADDR addr;
20621
20622 addr = attr->value_as_address ();
20623 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20624 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20625 }
20626 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20627 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20628 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20629 add_symbol_to_list (sym, cu->list_in_scope);
20630 break;
20631 case DW_TAG_subprogram:
20632 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20633 finish_block. */
20634 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20635 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20636 if ((attr2 && (DW_UNSND (attr2) != 0))
20637 || cu->language == language_ada
20638 || cu->language == language_fortran)
20639 {
20640 /* Subprograms marked external are stored as a global symbol.
20641 Ada and Fortran subprograms, whether marked external or
20642 not, are always stored as a global symbol, because we want
20643 to be able to access them globally. For instance, we want
20644 to be able to break on a nested subprogram without having
20645 to specify the context. */
20646 list_to_add = cu->get_builder ()->get_global_symbols ();
20647 }
20648 else
20649 {
20650 list_to_add = cu->list_in_scope;
20651 }
20652 break;
20653 case DW_TAG_inlined_subroutine:
20654 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20655 finish_block. */
20656 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20657 SYMBOL_INLINED (sym) = 1;
20658 list_to_add = cu->list_in_scope;
20659 break;
20660 case DW_TAG_template_value_param:
20661 suppress_add = 1;
20662 /* Fall through. */
20663 case DW_TAG_constant:
20664 case DW_TAG_variable:
20665 case DW_TAG_member:
20666 /* Compilation with minimal debug info may result in
20667 variables with missing type entries. Change the
20668 misleading `void' type to something sensible. */
20669 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20670 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20671
20672 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20673 /* In the case of DW_TAG_member, we should only be called for
20674 static const members. */
20675 if (die->tag == DW_TAG_member)
20676 {
20677 /* dwarf2_add_field uses die_is_declaration,
20678 so we do the same. */
20679 gdb_assert (die_is_declaration (die, cu));
20680 gdb_assert (attr);
20681 }
20682 if (attr != nullptr)
20683 {
20684 dwarf2_const_value (attr, sym, cu);
20685 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20686 if (!suppress_add)
20687 {
20688 if (attr2 && (DW_UNSND (attr2) != 0))
20689 list_to_add = cu->get_builder ()->get_global_symbols ();
20690 else
20691 list_to_add = cu->list_in_scope;
20692 }
20693 break;
20694 }
20695 attr = dwarf2_attr (die, DW_AT_location, cu);
20696 if (attr != nullptr)
20697 {
20698 var_decode_location (attr, sym, cu);
20699 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20700
20701 /* Fortran explicitly imports any global symbols to the local
20702 scope by DW_TAG_common_block. */
20703 if (cu->language == language_fortran && die->parent
20704 && die->parent->tag == DW_TAG_common_block)
20705 attr2 = NULL;
20706
20707 if (SYMBOL_CLASS (sym) == LOC_STATIC
20708 && SYMBOL_VALUE_ADDRESS (sym) == 0
20709 && !dwarf2_per_objfile->has_section_at_zero)
20710 {
20711 /* When a static variable is eliminated by the linker,
20712 the corresponding debug information is not stripped
20713 out, but the variable address is set to null;
20714 do not add such variables into symbol table. */
20715 }
20716 else if (attr2 && (DW_UNSND (attr2) != 0))
20717 {
20718 if (SYMBOL_CLASS (sym) == LOC_STATIC
20719 && (objfile->flags & OBJF_MAINLINE) == 0
20720 && dwarf2_per_objfile->can_copy)
20721 {
20722 /* A global static variable might be subject to
20723 copy relocation. We first check for a local
20724 minsym, though, because maybe the symbol was
20725 marked hidden, in which case this would not
20726 apply. */
20727 bound_minimal_symbol found
20728 = (lookup_minimal_symbol_linkage
20729 (sym->linkage_name (), objfile));
20730 if (found.minsym != nullptr)
20731 sym->maybe_copied = 1;
20732 }
20733
20734 /* A variable with DW_AT_external is never static,
20735 but it may be block-scoped. */
20736 list_to_add
20737 = ((cu->list_in_scope
20738 == cu->get_builder ()->get_file_symbols ())
20739 ? cu->get_builder ()->get_global_symbols ()
20740 : cu->list_in_scope);
20741 }
20742 else
20743 list_to_add = cu->list_in_scope;
20744 }
20745 else
20746 {
20747 /* We do not know the address of this symbol.
20748 If it is an external symbol and we have type information
20749 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20750 The address of the variable will then be determined from
20751 the minimal symbol table whenever the variable is
20752 referenced. */
20753 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20754
20755 /* Fortran explicitly imports any global symbols to the local
20756 scope by DW_TAG_common_block. */
20757 if (cu->language == language_fortran && die->parent
20758 && die->parent->tag == DW_TAG_common_block)
20759 {
20760 /* SYMBOL_CLASS doesn't matter here because
20761 read_common_block is going to reset it. */
20762 if (!suppress_add)
20763 list_to_add = cu->list_in_scope;
20764 }
20765 else if (attr2 && (DW_UNSND (attr2) != 0)
20766 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20767 {
20768 /* A variable with DW_AT_external is never static, but it
20769 may be block-scoped. */
20770 list_to_add
20771 = ((cu->list_in_scope
20772 == cu->get_builder ()->get_file_symbols ())
20773 ? cu->get_builder ()->get_global_symbols ()
20774 : cu->list_in_scope);
20775
20776 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20777 }
20778 else if (!die_is_declaration (die, cu))
20779 {
20780 /* Use the default LOC_OPTIMIZED_OUT class. */
20781 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20782 if (!suppress_add)
20783 list_to_add = cu->list_in_scope;
20784 }
20785 }
20786 break;
20787 case DW_TAG_formal_parameter:
20788 {
20789 /* If we are inside a function, mark this as an argument. If
20790 not, we might be looking at an argument to an inlined function
20791 when we do not have enough information to show inlined frames;
20792 pretend it's a local variable in that case so that the user can
20793 still see it. */
20794 struct context_stack *curr
20795 = cu->get_builder ()->get_current_context_stack ();
20796 if (curr != nullptr && curr->name != nullptr)
20797 SYMBOL_IS_ARGUMENT (sym) = 1;
20798 attr = dwarf2_attr (die, DW_AT_location, cu);
20799 if (attr != nullptr)
20800 {
20801 var_decode_location (attr, sym, cu);
20802 }
20803 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20804 if (attr != nullptr)
20805 {
20806 dwarf2_const_value (attr, sym, cu);
20807 }
20808
20809 list_to_add = cu->list_in_scope;
20810 }
20811 break;
20812 case DW_TAG_unspecified_parameters:
20813 /* From varargs functions; gdb doesn't seem to have any
20814 interest in this information, so just ignore it for now.
20815 (FIXME?) */
20816 break;
20817 case DW_TAG_template_type_param:
20818 suppress_add = 1;
20819 /* Fall through. */
20820 case DW_TAG_class_type:
20821 case DW_TAG_interface_type:
20822 case DW_TAG_structure_type:
20823 case DW_TAG_union_type:
20824 case DW_TAG_set_type:
20825 case DW_TAG_enumeration_type:
20826 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20827 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20828
20829 {
20830 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20831 really ever be static objects: otherwise, if you try
20832 to, say, break of a class's method and you're in a file
20833 which doesn't mention that class, it won't work unless
20834 the check for all static symbols in lookup_symbol_aux
20835 saves you. See the OtherFileClass tests in
20836 gdb.c++/namespace.exp. */
20837
20838 if (!suppress_add)
20839 {
20840 buildsym_compunit *builder = cu->get_builder ();
20841 list_to_add
20842 = (cu->list_in_scope == builder->get_file_symbols ()
20843 && cu->language == language_cplus
20844 ? builder->get_global_symbols ()
20845 : cu->list_in_scope);
20846
20847 /* The semantics of C++ state that "struct foo {
20848 ... }" also defines a typedef for "foo". */
20849 if (cu->language == language_cplus
20850 || cu->language == language_ada
20851 || cu->language == language_d
20852 || cu->language == language_rust)
20853 {
20854 /* The symbol's name is already allocated along
20855 with this objfile, so we don't need to
20856 duplicate it for the type. */
20857 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20858 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20859 }
20860 }
20861 }
20862 break;
20863 case DW_TAG_typedef:
20864 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20865 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20866 list_to_add = cu->list_in_scope;
20867 break;
20868 case DW_TAG_base_type:
20869 case DW_TAG_subrange_type:
20870 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20871 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20872 list_to_add = cu->list_in_scope;
20873 break;
20874 case DW_TAG_enumerator:
20875 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20876 if (attr != nullptr)
20877 {
20878 dwarf2_const_value (attr, sym, cu);
20879 }
20880 {
20881 /* NOTE: carlton/2003-11-10: See comment above in the
20882 DW_TAG_class_type, etc. block. */
20883
20884 list_to_add
20885 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20886 && cu->language == language_cplus
20887 ? cu->get_builder ()->get_global_symbols ()
20888 : cu->list_in_scope);
20889 }
20890 break;
20891 case DW_TAG_imported_declaration:
20892 case DW_TAG_namespace:
20893 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20894 list_to_add = cu->get_builder ()->get_global_symbols ();
20895 break;
20896 case DW_TAG_module:
20897 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20898 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20899 list_to_add = cu->get_builder ()->get_global_symbols ();
20900 break;
20901 case DW_TAG_common_block:
20902 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20903 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20904 add_symbol_to_list (sym, cu->list_in_scope);
20905 break;
20906 default:
20907 /* Not a tag we recognize. Hopefully we aren't processing
20908 trash data, but since we must specifically ignore things
20909 we don't recognize, there is nothing else we should do at
20910 this point. */
20911 complaint (_("unsupported tag: '%s'"),
20912 dwarf_tag_name (die->tag));
20913 break;
20914 }
20915
20916 if (suppress_add)
20917 {
20918 sym->hash_next = objfile->template_symbols;
20919 objfile->template_symbols = sym;
20920 list_to_add = NULL;
20921 }
20922
20923 if (list_to_add != NULL)
20924 add_symbol_to_list (sym, list_to_add);
20925
20926 /* For the benefit of old versions of GCC, check for anonymous
20927 namespaces based on the demangled name. */
20928 if (!cu->processing_has_namespace_info
20929 && cu->language == language_cplus)
20930 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20931 }
20932 return (sym);
20933 }
20934
20935 /* Given an attr with a DW_FORM_dataN value in host byte order,
20936 zero-extend it as appropriate for the symbol's type. The DWARF
20937 standard (v4) is not entirely clear about the meaning of using
20938 DW_FORM_dataN for a constant with a signed type, where the type is
20939 wider than the data. The conclusion of a discussion on the DWARF
20940 list was that this is unspecified. We choose to always zero-extend
20941 because that is the interpretation long in use by GCC. */
20942
20943 static gdb_byte *
20944 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20945 struct dwarf2_cu *cu, LONGEST *value, int bits)
20946 {
20947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20948 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20949 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20950 LONGEST l = DW_UNSND (attr);
20951
20952 if (bits < sizeof (*value) * 8)
20953 {
20954 l &= ((LONGEST) 1 << bits) - 1;
20955 *value = l;
20956 }
20957 else if (bits == sizeof (*value) * 8)
20958 *value = l;
20959 else
20960 {
20961 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20962 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20963 return bytes;
20964 }
20965
20966 return NULL;
20967 }
20968
20969 /* Read a constant value from an attribute. Either set *VALUE, or if
20970 the value does not fit in *VALUE, set *BYTES - either already
20971 allocated on the objfile obstack, or newly allocated on OBSTACK,
20972 or, set *BATON, if we translated the constant to a location
20973 expression. */
20974
20975 static void
20976 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20977 const char *name, struct obstack *obstack,
20978 struct dwarf2_cu *cu,
20979 LONGEST *value, const gdb_byte **bytes,
20980 struct dwarf2_locexpr_baton **baton)
20981 {
20982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20983 struct comp_unit_head *cu_header = &cu->header;
20984 struct dwarf_block *blk;
20985 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20986 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20987
20988 *value = 0;
20989 *bytes = NULL;
20990 *baton = NULL;
20991
20992 switch (attr->form)
20993 {
20994 case DW_FORM_addr:
20995 case DW_FORM_addrx:
20996 case DW_FORM_GNU_addr_index:
20997 {
20998 gdb_byte *data;
20999
21000 if (TYPE_LENGTH (type) != cu_header->addr_size)
21001 dwarf2_const_value_length_mismatch_complaint (name,
21002 cu_header->addr_size,
21003 TYPE_LENGTH (type));
21004 /* Symbols of this form are reasonably rare, so we just
21005 piggyback on the existing location code rather than writing
21006 a new implementation of symbol_computed_ops. */
21007 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21008 (*baton)->per_cu = cu->per_cu;
21009 gdb_assert ((*baton)->per_cu);
21010
21011 (*baton)->size = 2 + cu_header->addr_size;
21012 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21013 (*baton)->data = data;
21014
21015 data[0] = DW_OP_addr;
21016 store_unsigned_integer (&data[1], cu_header->addr_size,
21017 byte_order, DW_ADDR (attr));
21018 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21019 }
21020 break;
21021 case DW_FORM_string:
21022 case DW_FORM_strp:
21023 case DW_FORM_strx:
21024 case DW_FORM_GNU_str_index:
21025 case DW_FORM_GNU_strp_alt:
21026 /* DW_STRING is already allocated on the objfile obstack, point
21027 directly to it. */
21028 *bytes = (const gdb_byte *) DW_STRING (attr);
21029 break;
21030 case DW_FORM_block1:
21031 case DW_FORM_block2:
21032 case DW_FORM_block4:
21033 case DW_FORM_block:
21034 case DW_FORM_exprloc:
21035 case DW_FORM_data16:
21036 blk = DW_BLOCK (attr);
21037 if (TYPE_LENGTH (type) != blk->size)
21038 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21039 TYPE_LENGTH (type));
21040 *bytes = blk->data;
21041 break;
21042
21043 /* The DW_AT_const_value attributes are supposed to carry the
21044 symbol's value "represented as it would be on the target
21045 architecture." By the time we get here, it's already been
21046 converted to host endianness, so we just need to sign- or
21047 zero-extend it as appropriate. */
21048 case DW_FORM_data1:
21049 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21050 break;
21051 case DW_FORM_data2:
21052 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21053 break;
21054 case DW_FORM_data4:
21055 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21056 break;
21057 case DW_FORM_data8:
21058 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21059 break;
21060
21061 case DW_FORM_sdata:
21062 case DW_FORM_implicit_const:
21063 *value = DW_SND (attr);
21064 break;
21065
21066 case DW_FORM_udata:
21067 *value = DW_UNSND (attr);
21068 break;
21069
21070 default:
21071 complaint (_("unsupported const value attribute form: '%s'"),
21072 dwarf_form_name (attr->form));
21073 *value = 0;
21074 break;
21075 }
21076 }
21077
21078
21079 /* Copy constant value from an attribute to a symbol. */
21080
21081 static void
21082 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21083 struct dwarf2_cu *cu)
21084 {
21085 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21086 LONGEST value;
21087 const gdb_byte *bytes;
21088 struct dwarf2_locexpr_baton *baton;
21089
21090 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21091 sym->print_name (),
21092 &objfile->objfile_obstack, cu,
21093 &value, &bytes, &baton);
21094
21095 if (baton != NULL)
21096 {
21097 SYMBOL_LOCATION_BATON (sym) = baton;
21098 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21099 }
21100 else if (bytes != NULL)
21101 {
21102 SYMBOL_VALUE_BYTES (sym) = bytes;
21103 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21104 }
21105 else
21106 {
21107 SYMBOL_VALUE (sym) = value;
21108 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21109 }
21110 }
21111
21112 /* Return the type of the die in question using its DW_AT_type attribute. */
21113
21114 static struct type *
21115 die_type (struct die_info *die, struct dwarf2_cu *cu)
21116 {
21117 struct attribute *type_attr;
21118
21119 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21120 if (!type_attr)
21121 {
21122 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21123 /* A missing DW_AT_type represents a void type. */
21124 return objfile_type (objfile)->builtin_void;
21125 }
21126
21127 return lookup_die_type (die, type_attr, cu);
21128 }
21129
21130 /* True iff CU's producer generates GNAT Ada auxiliary information
21131 that allows to find parallel types through that information instead
21132 of having to do expensive parallel lookups by type name. */
21133
21134 static int
21135 need_gnat_info (struct dwarf2_cu *cu)
21136 {
21137 /* Assume that the Ada compiler was GNAT, which always produces
21138 the auxiliary information. */
21139 return (cu->language == language_ada);
21140 }
21141
21142 /* Return the auxiliary type of the die in question using its
21143 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21144 attribute is not present. */
21145
21146 static struct type *
21147 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21148 {
21149 struct attribute *type_attr;
21150
21151 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21152 if (!type_attr)
21153 return NULL;
21154
21155 return lookup_die_type (die, type_attr, cu);
21156 }
21157
21158 /* If DIE has a descriptive_type attribute, then set the TYPE's
21159 descriptive type accordingly. */
21160
21161 static void
21162 set_descriptive_type (struct type *type, struct die_info *die,
21163 struct dwarf2_cu *cu)
21164 {
21165 struct type *descriptive_type = die_descriptive_type (die, cu);
21166
21167 if (descriptive_type)
21168 {
21169 ALLOCATE_GNAT_AUX_TYPE (type);
21170 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21171 }
21172 }
21173
21174 /* Return the containing type of the die in question using its
21175 DW_AT_containing_type attribute. */
21176
21177 static struct type *
21178 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21179 {
21180 struct attribute *type_attr;
21181 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21182
21183 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21184 if (!type_attr)
21185 error (_("Dwarf Error: Problem turning containing type into gdb type "
21186 "[in module %s]"), objfile_name (objfile));
21187
21188 return lookup_die_type (die, type_attr, cu);
21189 }
21190
21191 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21192
21193 static struct type *
21194 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21195 {
21196 struct dwarf2_per_objfile *dwarf2_per_objfile
21197 = cu->per_cu->dwarf2_per_objfile;
21198 struct objfile *objfile = dwarf2_per_objfile->objfile;
21199 char *saved;
21200
21201 std::string message
21202 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21203 objfile_name (objfile),
21204 sect_offset_str (cu->header.sect_off),
21205 sect_offset_str (die->sect_off));
21206 saved = obstack_strdup (&objfile->objfile_obstack, message);
21207
21208 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21209 }
21210
21211 /* Look up the type of DIE in CU using its type attribute ATTR.
21212 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21213 DW_AT_containing_type.
21214 If there is no type substitute an error marker. */
21215
21216 static struct type *
21217 lookup_die_type (struct die_info *die, const struct attribute *attr,
21218 struct dwarf2_cu *cu)
21219 {
21220 struct dwarf2_per_objfile *dwarf2_per_objfile
21221 = cu->per_cu->dwarf2_per_objfile;
21222 struct objfile *objfile = dwarf2_per_objfile->objfile;
21223 struct type *this_type;
21224
21225 gdb_assert (attr->name == DW_AT_type
21226 || attr->name == DW_AT_GNAT_descriptive_type
21227 || attr->name == DW_AT_containing_type);
21228
21229 /* First see if we have it cached. */
21230
21231 if (attr->form == DW_FORM_GNU_ref_alt)
21232 {
21233 struct dwarf2_per_cu_data *per_cu;
21234 sect_offset sect_off = attr->get_ref_die_offset ();
21235
21236 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21237 dwarf2_per_objfile);
21238 this_type = get_die_type_at_offset (sect_off, per_cu);
21239 }
21240 else if (attr->form_is_ref ())
21241 {
21242 sect_offset sect_off = attr->get_ref_die_offset ();
21243
21244 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21245 }
21246 else if (attr->form == DW_FORM_ref_sig8)
21247 {
21248 ULONGEST signature = DW_SIGNATURE (attr);
21249
21250 return get_signatured_type (die, signature, cu);
21251 }
21252 else
21253 {
21254 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21255 " at %s [in module %s]"),
21256 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21257 objfile_name (objfile));
21258 return build_error_marker_type (cu, die);
21259 }
21260
21261 /* If not cached we need to read it in. */
21262
21263 if (this_type == NULL)
21264 {
21265 struct die_info *type_die = NULL;
21266 struct dwarf2_cu *type_cu = cu;
21267
21268 if (attr->form_is_ref ())
21269 type_die = follow_die_ref (die, attr, &type_cu);
21270 if (type_die == NULL)
21271 return build_error_marker_type (cu, die);
21272 /* If we find the type now, it's probably because the type came
21273 from an inter-CU reference and the type's CU got expanded before
21274 ours. */
21275 this_type = read_type_die (type_die, type_cu);
21276 }
21277
21278 /* If we still don't have a type use an error marker. */
21279
21280 if (this_type == NULL)
21281 return build_error_marker_type (cu, die);
21282
21283 return this_type;
21284 }
21285
21286 /* Return the type in DIE, CU.
21287 Returns NULL for invalid types.
21288
21289 This first does a lookup in die_type_hash,
21290 and only reads the die in if necessary.
21291
21292 NOTE: This can be called when reading in partial or full symbols. */
21293
21294 static struct type *
21295 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21296 {
21297 struct type *this_type;
21298
21299 this_type = get_die_type (die, cu);
21300 if (this_type)
21301 return this_type;
21302
21303 return read_type_die_1 (die, cu);
21304 }
21305
21306 /* Read the type in DIE, CU.
21307 Returns NULL for invalid types. */
21308
21309 static struct type *
21310 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21311 {
21312 struct type *this_type = NULL;
21313
21314 switch (die->tag)
21315 {
21316 case DW_TAG_class_type:
21317 case DW_TAG_interface_type:
21318 case DW_TAG_structure_type:
21319 case DW_TAG_union_type:
21320 this_type = read_structure_type (die, cu);
21321 break;
21322 case DW_TAG_enumeration_type:
21323 this_type = read_enumeration_type (die, cu);
21324 break;
21325 case DW_TAG_subprogram:
21326 case DW_TAG_subroutine_type:
21327 case DW_TAG_inlined_subroutine:
21328 this_type = read_subroutine_type (die, cu);
21329 break;
21330 case DW_TAG_array_type:
21331 this_type = read_array_type (die, cu);
21332 break;
21333 case DW_TAG_set_type:
21334 this_type = read_set_type (die, cu);
21335 break;
21336 case DW_TAG_pointer_type:
21337 this_type = read_tag_pointer_type (die, cu);
21338 break;
21339 case DW_TAG_ptr_to_member_type:
21340 this_type = read_tag_ptr_to_member_type (die, cu);
21341 break;
21342 case DW_TAG_reference_type:
21343 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21344 break;
21345 case DW_TAG_rvalue_reference_type:
21346 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21347 break;
21348 case DW_TAG_const_type:
21349 this_type = read_tag_const_type (die, cu);
21350 break;
21351 case DW_TAG_volatile_type:
21352 this_type = read_tag_volatile_type (die, cu);
21353 break;
21354 case DW_TAG_restrict_type:
21355 this_type = read_tag_restrict_type (die, cu);
21356 break;
21357 case DW_TAG_string_type:
21358 this_type = read_tag_string_type (die, cu);
21359 break;
21360 case DW_TAG_typedef:
21361 this_type = read_typedef (die, cu);
21362 break;
21363 case DW_TAG_subrange_type:
21364 this_type = read_subrange_type (die, cu);
21365 break;
21366 case DW_TAG_base_type:
21367 this_type = read_base_type (die, cu);
21368 break;
21369 case DW_TAG_unspecified_type:
21370 this_type = read_unspecified_type (die, cu);
21371 break;
21372 case DW_TAG_namespace:
21373 this_type = read_namespace_type (die, cu);
21374 break;
21375 case DW_TAG_module:
21376 this_type = read_module_type (die, cu);
21377 break;
21378 case DW_TAG_atomic_type:
21379 this_type = read_tag_atomic_type (die, cu);
21380 break;
21381 default:
21382 complaint (_("unexpected tag in read_type_die: '%s'"),
21383 dwarf_tag_name (die->tag));
21384 break;
21385 }
21386
21387 return this_type;
21388 }
21389
21390 /* See if we can figure out if the class lives in a namespace. We do
21391 this by looking for a member function; its demangled name will
21392 contain namespace info, if there is any.
21393 Return the computed name or NULL.
21394 Space for the result is allocated on the objfile's obstack.
21395 This is the full-die version of guess_partial_die_structure_name.
21396 In this case we know DIE has no useful parent. */
21397
21398 static const char *
21399 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21400 {
21401 struct die_info *spec_die;
21402 struct dwarf2_cu *spec_cu;
21403 struct die_info *child;
21404 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21405
21406 spec_cu = cu;
21407 spec_die = die_specification (die, &spec_cu);
21408 if (spec_die != NULL)
21409 {
21410 die = spec_die;
21411 cu = spec_cu;
21412 }
21413
21414 for (child = die->child;
21415 child != NULL;
21416 child = child->sibling)
21417 {
21418 if (child->tag == DW_TAG_subprogram)
21419 {
21420 const char *linkage_name = dw2_linkage_name (child, cu);
21421
21422 if (linkage_name != NULL)
21423 {
21424 gdb::unique_xmalloc_ptr<char> actual_name
21425 (language_class_name_from_physname (cu->language_defn,
21426 linkage_name));
21427 const char *name = NULL;
21428
21429 if (actual_name != NULL)
21430 {
21431 const char *die_name = dwarf2_name (die, cu);
21432
21433 if (die_name != NULL
21434 && strcmp (die_name, actual_name.get ()) != 0)
21435 {
21436 /* Strip off the class name from the full name.
21437 We want the prefix. */
21438 int die_name_len = strlen (die_name);
21439 int actual_name_len = strlen (actual_name.get ());
21440 const char *ptr = actual_name.get ();
21441
21442 /* Test for '::' as a sanity check. */
21443 if (actual_name_len > die_name_len + 2
21444 && ptr[actual_name_len - die_name_len - 1] == ':')
21445 name = obstack_strndup (
21446 &objfile->per_bfd->storage_obstack,
21447 ptr, actual_name_len - die_name_len - 2);
21448 }
21449 }
21450 return name;
21451 }
21452 }
21453 }
21454
21455 return NULL;
21456 }
21457
21458 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21459 prefix part in such case. See
21460 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21461
21462 static const char *
21463 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21464 {
21465 struct attribute *attr;
21466 const char *base;
21467
21468 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21469 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21470 return NULL;
21471
21472 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21473 return NULL;
21474
21475 attr = dw2_linkage_name_attr (die, cu);
21476 if (attr == NULL || DW_STRING (attr) == NULL)
21477 return NULL;
21478
21479 /* dwarf2_name had to be already called. */
21480 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21481
21482 /* Strip the base name, keep any leading namespaces/classes. */
21483 base = strrchr (DW_STRING (attr), ':');
21484 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21485 return "";
21486
21487 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21488 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21489 DW_STRING (attr),
21490 &base[-1] - DW_STRING (attr));
21491 }
21492
21493 /* Return the name of the namespace/class that DIE is defined within,
21494 or "" if we can't tell. The caller should not xfree the result.
21495
21496 For example, if we're within the method foo() in the following
21497 code:
21498
21499 namespace N {
21500 class C {
21501 void foo () {
21502 }
21503 };
21504 }
21505
21506 then determine_prefix on foo's die will return "N::C". */
21507
21508 static const char *
21509 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21510 {
21511 struct dwarf2_per_objfile *dwarf2_per_objfile
21512 = cu->per_cu->dwarf2_per_objfile;
21513 struct die_info *parent, *spec_die;
21514 struct dwarf2_cu *spec_cu;
21515 struct type *parent_type;
21516 const char *retval;
21517
21518 if (cu->language != language_cplus
21519 && cu->language != language_fortran && cu->language != language_d
21520 && cu->language != language_rust)
21521 return "";
21522
21523 retval = anonymous_struct_prefix (die, cu);
21524 if (retval)
21525 return retval;
21526
21527 /* We have to be careful in the presence of DW_AT_specification.
21528 For example, with GCC 3.4, given the code
21529
21530 namespace N {
21531 void foo() {
21532 // Definition of N::foo.
21533 }
21534 }
21535
21536 then we'll have a tree of DIEs like this:
21537
21538 1: DW_TAG_compile_unit
21539 2: DW_TAG_namespace // N
21540 3: DW_TAG_subprogram // declaration of N::foo
21541 4: DW_TAG_subprogram // definition of N::foo
21542 DW_AT_specification // refers to die #3
21543
21544 Thus, when processing die #4, we have to pretend that we're in
21545 the context of its DW_AT_specification, namely the contex of die
21546 #3. */
21547 spec_cu = cu;
21548 spec_die = die_specification (die, &spec_cu);
21549 if (spec_die == NULL)
21550 parent = die->parent;
21551 else
21552 {
21553 parent = spec_die->parent;
21554 cu = spec_cu;
21555 }
21556
21557 if (parent == NULL)
21558 return "";
21559 else if (parent->building_fullname)
21560 {
21561 const char *name;
21562 const char *parent_name;
21563
21564 /* It has been seen on RealView 2.2 built binaries,
21565 DW_TAG_template_type_param types actually _defined_ as
21566 children of the parent class:
21567
21568 enum E {};
21569 template class <class Enum> Class{};
21570 Class<enum E> class_e;
21571
21572 1: DW_TAG_class_type (Class)
21573 2: DW_TAG_enumeration_type (E)
21574 3: DW_TAG_enumerator (enum1:0)
21575 3: DW_TAG_enumerator (enum2:1)
21576 ...
21577 2: DW_TAG_template_type_param
21578 DW_AT_type DW_FORM_ref_udata (E)
21579
21580 Besides being broken debug info, it can put GDB into an
21581 infinite loop. Consider:
21582
21583 When we're building the full name for Class<E>, we'll start
21584 at Class, and go look over its template type parameters,
21585 finding E. We'll then try to build the full name of E, and
21586 reach here. We're now trying to build the full name of E,
21587 and look over the parent DIE for containing scope. In the
21588 broken case, if we followed the parent DIE of E, we'd again
21589 find Class, and once again go look at its template type
21590 arguments, etc., etc. Simply don't consider such parent die
21591 as source-level parent of this die (it can't be, the language
21592 doesn't allow it), and break the loop here. */
21593 name = dwarf2_name (die, cu);
21594 parent_name = dwarf2_name (parent, cu);
21595 complaint (_("template param type '%s' defined within parent '%s'"),
21596 name ? name : "<unknown>",
21597 parent_name ? parent_name : "<unknown>");
21598 return "";
21599 }
21600 else
21601 switch (parent->tag)
21602 {
21603 case DW_TAG_namespace:
21604 parent_type = read_type_die (parent, cu);
21605 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21606 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21607 Work around this problem here. */
21608 if (cu->language == language_cplus
21609 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21610 return "";
21611 /* We give a name to even anonymous namespaces. */
21612 return TYPE_NAME (parent_type);
21613 case DW_TAG_class_type:
21614 case DW_TAG_interface_type:
21615 case DW_TAG_structure_type:
21616 case DW_TAG_union_type:
21617 case DW_TAG_module:
21618 parent_type = read_type_die (parent, cu);
21619 if (TYPE_NAME (parent_type) != NULL)
21620 return TYPE_NAME (parent_type);
21621 else
21622 /* An anonymous structure is only allowed non-static data
21623 members; no typedefs, no member functions, et cetera.
21624 So it does not need a prefix. */
21625 return "";
21626 case DW_TAG_compile_unit:
21627 case DW_TAG_partial_unit:
21628 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21629 if (cu->language == language_cplus
21630 && !dwarf2_per_objfile->types.empty ()
21631 && die->child != NULL
21632 && (die->tag == DW_TAG_class_type
21633 || die->tag == DW_TAG_structure_type
21634 || die->tag == DW_TAG_union_type))
21635 {
21636 const char *name = guess_full_die_structure_name (die, cu);
21637 if (name != NULL)
21638 return name;
21639 }
21640 return "";
21641 case DW_TAG_subprogram:
21642 /* Nested subroutines in Fortran get a prefix with the name
21643 of the parent's subroutine. */
21644 if (cu->language == language_fortran)
21645 {
21646 if ((die->tag == DW_TAG_subprogram)
21647 && (dwarf2_name (parent, cu) != NULL))
21648 return dwarf2_name (parent, cu);
21649 }
21650 return determine_prefix (parent, cu);
21651 case DW_TAG_enumeration_type:
21652 parent_type = read_type_die (parent, cu);
21653 if (TYPE_DECLARED_CLASS (parent_type))
21654 {
21655 if (TYPE_NAME (parent_type) != NULL)
21656 return TYPE_NAME (parent_type);
21657 return "";
21658 }
21659 /* Fall through. */
21660 default:
21661 return determine_prefix (parent, cu);
21662 }
21663 }
21664
21665 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21666 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21667 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21668 an obconcat, otherwise allocate storage for the result. The CU argument is
21669 used to determine the language and hence, the appropriate separator. */
21670
21671 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21672
21673 static char *
21674 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21675 int physname, struct dwarf2_cu *cu)
21676 {
21677 const char *lead = "";
21678 const char *sep;
21679
21680 if (suffix == NULL || suffix[0] == '\0'
21681 || prefix == NULL || prefix[0] == '\0')
21682 sep = "";
21683 else if (cu->language == language_d)
21684 {
21685 /* For D, the 'main' function could be defined in any module, but it
21686 should never be prefixed. */
21687 if (strcmp (suffix, "D main") == 0)
21688 {
21689 prefix = "";
21690 sep = "";
21691 }
21692 else
21693 sep = ".";
21694 }
21695 else if (cu->language == language_fortran && physname)
21696 {
21697 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21698 DW_AT_MIPS_linkage_name is preferred and used instead. */
21699
21700 lead = "__";
21701 sep = "_MOD_";
21702 }
21703 else
21704 sep = "::";
21705
21706 if (prefix == NULL)
21707 prefix = "";
21708 if (suffix == NULL)
21709 suffix = "";
21710
21711 if (obs == NULL)
21712 {
21713 char *retval
21714 = ((char *)
21715 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21716
21717 strcpy (retval, lead);
21718 strcat (retval, prefix);
21719 strcat (retval, sep);
21720 strcat (retval, suffix);
21721 return retval;
21722 }
21723 else
21724 {
21725 /* We have an obstack. */
21726 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21727 }
21728 }
21729
21730 /* Get name of a die, return NULL if not found. */
21731
21732 static const char *
21733 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21734 struct objfile *objfile)
21735 {
21736 if (name && cu->language == language_cplus)
21737 {
21738 std::string canon_name = cp_canonicalize_string (name);
21739
21740 if (!canon_name.empty ())
21741 {
21742 if (canon_name != name)
21743 name = objfile->intern (canon_name);
21744 }
21745 }
21746
21747 return name;
21748 }
21749
21750 /* Get name of a die, return NULL if not found.
21751 Anonymous namespaces are converted to their magic string. */
21752
21753 static const char *
21754 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21755 {
21756 struct attribute *attr;
21757 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21758
21759 attr = dwarf2_attr (die, DW_AT_name, cu);
21760 if ((!attr || !DW_STRING (attr))
21761 && die->tag != DW_TAG_namespace
21762 && die->tag != DW_TAG_class_type
21763 && die->tag != DW_TAG_interface_type
21764 && die->tag != DW_TAG_structure_type
21765 && die->tag != DW_TAG_union_type)
21766 return NULL;
21767
21768 switch (die->tag)
21769 {
21770 case DW_TAG_compile_unit:
21771 case DW_TAG_partial_unit:
21772 /* Compilation units have a DW_AT_name that is a filename, not
21773 a source language identifier. */
21774 case DW_TAG_enumeration_type:
21775 case DW_TAG_enumerator:
21776 /* These tags always have simple identifiers already; no need
21777 to canonicalize them. */
21778 return DW_STRING (attr);
21779
21780 case DW_TAG_namespace:
21781 if (attr != NULL && DW_STRING (attr) != NULL)
21782 return DW_STRING (attr);
21783 return CP_ANONYMOUS_NAMESPACE_STR;
21784
21785 case DW_TAG_class_type:
21786 case DW_TAG_interface_type:
21787 case DW_TAG_structure_type:
21788 case DW_TAG_union_type:
21789 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21790 structures or unions. These were of the form "._%d" in GCC 4.1,
21791 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21792 and GCC 4.4. We work around this problem by ignoring these. */
21793 if (attr && DW_STRING (attr)
21794 && (startswith (DW_STRING (attr), "._")
21795 || startswith (DW_STRING (attr), "<anonymous")))
21796 return NULL;
21797
21798 /* GCC might emit a nameless typedef that has a linkage name. See
21799 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21800 if (!attr || DW_STRING (attr) == NULL)
21801 {
21802 attr = dw2_linkage_name_attr (die, cu);
21803 if (attr == NULL || DW_STRING (attr) == NULL)
21804 return NULL;
21805
21806 /* Avoid demangling DW_STRING (attr) the second time on a second
21807 call for the same DIE. */
21808 if (!DW_STRING_IS_CANONICAL (attr))
21809 {
21810 gdb::unique_xmalloc_ptr<char> demangled
21811 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21812 if (demangled == nullptr)
21813 return nullptr;
21814
21815 DW_STRING (attr) = objfile->intern (demangled.get ());
21816 DW_STRING_IS_CANONICAL (attr) = 1;
21817 }
21818
21819 /* Strip any leading namespaces/classes, keep only the base name.
21820 DW_AT_name for named DIEs does not contain the prefixes. */
21821 const char *base = strrchr (DW_STRING (attr), ':');
21822 if (base && base > DW_STRING (attr) && base[-1] == ':')
21823 return &base[1];
21824 else
21825 return DW_STRING (attr);
21826 }
21827 break;
21828
21829 default:
21830 break;
21831 }
21832
21833 if (!DW_STRING_IS_CANONICAL (attr))
21834 {
21835 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21836 objfile);
21837 DW_STRING_IS_CANONICAL (attr) = 1;
21838 }
21839 return DW_STRING (attr);
21840 }
21841
21842 /* Return the die that this die in an extension of, or NULL if there
21843 is none. *EXT_CU is the CU containing DIE on input, and the CU
21844 containing the return value on output. */
21845
21846 static struct die_info *
21847 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21848 {
21849 struct attribute *attr;
21850
21851 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21852 if (attr == NULL)
21853 return NULL;
21854
21855 return follow_die_ref (die, attr, ext_cu);
21856 }
21857
21858 static void
21859 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21860 {
21861 unsigned int i;
21862
21863 print_spaces (indent, f);
21864 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21865 dwarf_tag_name (die->tag), die->abbrev,
21866 sect_offset_str (die->sect_off));
21867
21868 if (die->parent != NULL)
21869 {
21870 print_spaces (indent, f);
21871 fprintf_unfiltered (f, " parent at offset: %s\n",
21872 sect_offset_str (die->parent->sect_off));
21873 }
21874
21875 print_spaces (indent, f);
21876 fprintf_unfiltered (f, " has children: %s\n",
21877 dwarf_bool_name (die->child != NULL));
21878
21879 print_spaces (indent, f);
21880 fprintf_unfiltered (f, " attributes:\n");
21881
21882 for (i = 0; i < die->num_attrs; ++i)
21883 {
21884 print_spaces (indent, f);
21885 fprintf_unfiltered (f, " %s (%s) ",
21886 dwarf_attr_name (die->attrs[i].name),
21887 dwarf_form_name (die->attrs[i].form));
21888
21889 switch (die->attrs[i].form)
21890 {
21891 case DW_FORM_addr:
21892 case DW_FORM_addrx:
21893 case DW_FORM_GNU_addr_index:
21894 fprintf_unfiltered (f, "address: ");
21895 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21896 break;
21897 case DW_FORM_block2:
21898 case DW_FORM_block4:
21899 case DW_FORM_block:
21900 case DW_FORM_block1:
21901 fprintf_unfiltered (f, "block: size %s",
21902 pulongest (DW_BLOCK (&die->attrs[i])->size));
21903 break;
21904 case DW_FORM_exprloc:
21905 fprintf_unfiltered (f, "expression: size %s",
21906 pulongest (DW_BLOCK (&die->attrs[i])->size));
21907 break;
21908 case DW_FORM_data16:
21909 fprintf_unfiltered (f, "constant of 16 bytes");
21910 break;
21911 case DW_FORM_ref_addr:
21912 fprintf_unfiltered (f, "ref address: ");
21913 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21914 break;
21915 case DW_FORM_GNU_ref_alt:
21916 fprintf_unfiltered (f, "alt ref address: ");
21917 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21918 break;
21919 case DW_FORM_ref1:
21920 case DW_FORM_ref2:
21921 case DW_FORM_ref4:
21922 case DW_FORM_ref8:
21923 case DW_FORM_ref_udata:
21924 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21925 (long) (DW_UNSND (&die->attrs[i])));
21926 break;
21927 case DW_FORM_data1:
21928 case DW_FORM_data2:
21929 case DW_FORM_data4:
21930 case DW_FORM_data8:
21931 case DW_FORM_udata:
21932 case DW_FORM_sdata:
21933 fprintf_unfiltered (f, "constant: %s",
21934 pulongest (DW_UNSND (&die->attrs[i])));
21935 break;
21936 case DW_FORM_sec_offset:
21937 fprintf_unfiltered (f, "section offset: %s",
21938 pulongest (DW_UNSND (&die->attrs[i])));
21939 break;
21940 case DW_FORM_ref_sig8:
21941 fprintf_unfiltered (f, "signature: %s",
21942 hex_string (DW_SIGNATURE (&die->attrs[i])));
21943 break;
21944 case DW_FORM_string:
21945 case DW_FORM_strp:
21946 case DW_FORM_line_strp:
21947 case DW_FORM_strx:
21948 case DW_FORM_GNU_str_index:
21949 case DW_FORM_GNU_strp_alt:
21950 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21951 DW_STRING (&die->attrs[i])
21952 ? DW_STRING (&die->attrs[i]) : "",
21953 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21954 break;
21955 case DW_FORM_flag:
21956 if (DW_UNSND (&die->attrs[i]))
21957 fprintf_unfiltered (f, "flag: TRUE");
21958 else
21959 fprintf_unfiltered (f, "flag: FALSE");
21960 break;
21961 case DW_FORM_flag_present:
21962 fprintf_unfiltered (f, "flag: TRUE");
21963 break;
21964 case DW_FORM_indirect:
21965 /* The reader will have reduced the indirect form to
21966 the "base form" so this form should not occur. */
21967 fprintf_unfiltered (f,
21968 "unexpected attribute form: DW_FORM_indirect");
21969 break;
21970 case DW_FORM_implicit_const:
21971 fprintf_unfiltered (f, "constant: %s",
21972 plongest (DW_SND (&die->attrs[i])));
21973 break;
21974 default:
21975 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21976 die->attrs[i].form);
21977 break;
21978 }
21979 fprintf_unfiltered (f, "\n");
21980 }
21981 }
21982
21983 static void
21984 dump_die_for_error (struct die_info *die)
21985 {
21986 dump_die_shallow (gdb_stderr, 0, die);
21987 }
21988
21989 static void
21990 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21991 {
21992 int indent = level * 4;
21993
21994 gdb_assert (die != NULL);
21995
21996 if (level >= max_level)
21997 return;
21998
21999 dump_die_shallow (f, indent, die);
22000
22001 if (die->child != NULL)
22002 {
22003 print_spaces (indent, f);
22004 fprintf_unfiltered (f, " Children:");
22005 if (level + 1 < max_level)
22006 {
22007 fprintf_unfiltered (f, "\n");
22008 dump_die_1 (f, level + 1, max_level, die->child);
22009 }
22010 else
22011 {
22012 fprintf_unfiltered (f,
22013 " [not printed, max nesting level reached]\n");
22014 }
22015 }
22016
22017 if (die->sibling != NULL && level > 0)
22018 {
22019 dump_die_1 (f, level, max_level, die->sibling);
22020 }
22021 }
22022
22023 /* This is called from the pdie macro in gdbinit.in.
22024 It's not static so gcc will keep a copy callable from gdb. */
22025
22026 void
22027 dump_die (struct die_info *die, int max_level)
22028 {
22029 dump_die_1 (gdb_stdlog, 0, max_level, die);
22030 }
22031
22032 static void
22033 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22034 {
22035 void **slot;
22036
22037 slot = htab_find_slot_with_hash (cu->die_hash, die,
22038 to_underlying (die->sect_off),
22039 INSERT);
22040
22041 *slot = die;
22042 }
22043
22044 /* Follow reference or signature attribute ATTR of SRC_DIE.
22045 On entry *REF_CU is the CU of SRC_DIE.
22046 On exit *REF_CU is the CU of the result. */
22047
22048 static struct die_info *
22049 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22050 struct dwarf2_cu **ref_cu)
22051 {
22052 struct die_info *die;
22053
22054 if (attr->form_is_ref ())
22055 die = follow_die_ref (src_die, attr, ref_cu);
22056 else if (attr->form == DW_FORM_ref_sig8)
22057 die = follow_die_sig (src_die, attr, ref_cu);
22058 else
22059 {
22060 dump_die_for_error (src_die);
22061 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22062 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22063 }
22064
22065 return die;
22066 }
22067
22068 /* Follow reference OFFSET.
22069 On entry *REF_CU is the CU of the source die referencing OFFSET.
22070 On exit *REF_CU is the CU of the result.
22071 Returns NULL if OFFSET is invalid. */
22072
22073 static struct die_info *
22074 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22075 struct dwarf2_cu **ref_cu)
22076 {
22077 struct die_info temp_die;
22078 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22079 struct dwarf2_per_objfile *dwarf2_per_objfile
22080 = cu->per_cu->dwarf2_per_objfile;
22081
22082 gdb_assert (cu->per_cu != NULL);
22083
22084 target_cu = cu;
22085
22086 if (cu->per_cu->is_debug_types)
22087 {
22088 /* .debug_types CUs cannot reference anything outside their CU.
22089 If they need to, they have to reference a signatured type via
22090 DW_FORM_ref_sig8. */
22091 if (!cu->header.offset_in_cu_p (sect_off))
22092 return NULL;
22093 }
22094 else if (offset_in_dwz != cu->per_cu->is_dwz
22095 || !cu->header.offset_in_cu_p (sect_off))
22096 {
22097 struct dwarf2_per_cu_data *per_cu;
22098
22099 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22100 dwarf2_per_objfile);
22101
22102 /* If necessary, add it to the queue and load its DIEs. */
22103 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22104 load_full_comp_unit (per_cu, false, cu->language);
22105
22106 target_cu = per_cu->cu;
22107 }
22108 else if (cu->dies == NULL)
22109 {
22110 /* We're loading full DIEs during partial symbol reading. */
22111 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22112 load_full_comp_unit (cu->per_cu, false, language_minimal);
22113 }
22114
22115 *ref_cu = target_cu;
22116 temp_die.sect_off = sect_off;
22117
22118 if (target_cu != cu)
22119 target_cu->ancestor = cu;
22120
22121 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22122 &temp_die,
22123 to_underlying (sect_off));
22124 }
22125
22126 /* Follow reference attribute ATTR of SRC_DIE.
22127 On entry *REF_CU is the CU of SRC_DIE.
22128 On exit *REF_CU is the CU of the result. */
22129
22130 static struct die_info *
22131 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22132 struct dwarf2_cu **ref_cu)
22133 {
22134 sect_offset sect_off = attr->get_ref_die_offset ();
22135 struct dwarf2_cu *cu = *ref_cu;
22136 struct die_info *die;
22137
22138 die = follow_die_offset (sect_off,
22139 (attr->form == DW_FORM_GNU_ref_alt
22140 || cu->per_cu->is_dwz),
22141 ref_cu);
22142 if (!die)
22143 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22144 "at %s [in module %s]"),
22145 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22146 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22147
22148 return die;
22149 }
22150
22151 /* See read.h. */
22152
22153 struct dwarf2_locexpr_baton
22154 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22155 dwarf2_per_cu_data *per_cu,
22156 CORE_ADDR (*get_frame_pc) (void *baton),
22157 void *baton, bool resolve_abstract_p)
22158 {
22159 struct dwarf2_cu *cu;
22160 struct die_info *die;
22161 struct attribute *attr;
22162 struct dwarf2_locexpr_baton retval;
22163 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22164 struct objfile *objfile = dwarf2_per_objfile->objfile;
22165
22166 if (per_cu->cu == NULL)
22167 load_cu (per_cu, false);
22168 cu = per_cu->cu;
22169 if (cu == NULL)
22170 {
22171 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22172 Instead just throw an error, not much else we can do. */
22173 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22174 sect_offset_str (sect_off), objfile_name (objfile));
22175 }
22176
22177 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22178 if (!die)
22179 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22180 sect_offset_str (sect_off), objfile_name (objfile));
22181
22182 attr = dwarf2_attr (die, DW_AT_location, cu);
22183 if (!attr && resolve_abstract_p
22184 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22185 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22186 {
22187 CORE_ADDR pc = (*get_frame_pc) (baton);
22188 CORE_ADDR baseaddr = objfile->text_section_offset ();
22189 struct gdbarch *gdbarch = objfile->arch ();
22190
22191 for (const auto &cand_off
22192 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22193 {
22194 struct dwarf2_cu *cand_cu = cu;
22195 struct die_info *cand
22196 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22197 if (!cand
22198 || !cand->parent
22199 || cand->parent->tag != DW_TAG_subprogram)
22200 continue;
22201
22202 CORE_ADDR pc_low, pc_high;
22203 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22204 if (pc_low == ((CORE_ADDR) -1))
22205 continue;
22206 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22207 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22208 if (!(pc_low <= pc && pc < pc_high))
22209 continue;
22210
22211 die = cand;
22212 attr = dwarf2_attr (die, DW_AT_location, cu);
22213 break;
22214 }
22215 }
22216
22217 if (!attr)
22218 {
22219 /* DWARF: "If there is no such attribute, then there is no effect.".
22220 DATA is ignored if SIZE is 0. */
22221
22222 retval.data = NULL;
22223 retval.size = 0;
22224 }
22225 else if (attr->form_is_section_offset ())
22226 {
22227 struct dwarf2_loclist_baton loclist_baton;
22228 CORE_ADDR pc = (*get_frame_pc) (baton);
22229 size_t size;
22230
22231 fill_in_loclist_baton (cu, &loclist_baton, attr);
22232
22233 retval.data = dwarf2_find_location_expression (&loclist_baton,
22234 &size, pc);
22235 retval.size = size;
22236 }
22237 else
22238 {
22239 if (!attr->form_is_block ())
22240 error (_("Dwarf Error: DIE at %s referenced in module %s "
22241 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22242 sect_offset_str (sect_off), objfile_name (objfile));
22243
22244 retval.data = DW_BLOCK (attr)->data;
22245 retval.size = DW_BLOCK (attr)->size;
22246 }
22247 retval.per_cu = cu->per_cu;
22248
22249 age_cached_comp_units (dwarf2_per_objfile);
22250
22251 return retval;
22252 }
22253
22254 /* See read.h. */
22255
22256 struct dwarf2_locexpr_baton
22257 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22258 dwarf2_per_cu_data *per_cu,
22259 CORE_ADDR (*get_frame_pc) (void *baton),
22260 void *baton)
22261 {
22262 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22263
22264 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22265 }
22266
22267 /* Write a constant of a given type as target-ordered bytes into
22268 OBSTACK. */
22269
22270 static const gdb_byte *
22271 write_constant_as_bytes (struct obstack *obstack,
22272 enum bfd_endian byte_order,
22273 struct type *type,
22274 ULONGEST value,
22275 LONGEST *len)
22276 {
22277 gdb_byte *result;
22278
22279 *len = TYPE_LENGTH (type);
22280 result = (gdb_byte *) obstack_alloc (obstack, *len);
22281 store_unsigned_integer (result, *len, byte_order, value);
22282
22283 return result;
22284 }
22285
22286 /* See read.h. */
22287
22288 const gdb_byte *
22289 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22290 dwarf2_per_cu_data *per_cu,
22291 obstack *obstack,
22292 LONGEST *len)
22293 {
22294 struct dwarf2_cu *cu;
22295 struct die_info *die;
22296 struct attribute *attr;
22297 const gdb_byte *result = NULL;
22298 struct type *type;
22299 LONGEST value;
22300 enum bfd_endian byte_order;
22301 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22302
22303 if (per_cu->cu == NULL)
22304 load_cu (per_cu, false);
22305 cu = per_cu->cu;
22306 if (cu == NULL)
22307 {
22308 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22309 Instead just throw an error, not much else we can do. */
22310 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22311 sect_offset_str (sect_off), objfile_name (objfile));
22312 }
22313
22314 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22315 if (!die)
22316 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22317 sect_offset_str (sect_off), objfile_name (objfile));
22318
22319 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22320 if (attr == NULL)
22321 return NULL;
22322
22323 byte_order = (bfd_big_endian (objfile->obfd)
22324 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22325
22326 switch (attr->form)
22327 {
22328 case DW_FORM_addr:
22329 case DW_FORM_addrx:
22330 case DW_FORM_GNU_addr_index:
22331 {
22332 gdb_byte *tem;
22333
22334 *len = cu->header.addr_size;
22335 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22336 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22337 result = tem;
22338 }
22339 break;
22340 case DW_FORM_string:
22341 case DW_FORM_strp:
22342 case DW_FORM_strx:
22343 case DW_FORM_GNU_str_index:
22344 case DW_FORM_GNU_strp_alt:
22345 /* DW_STRING is already allocated on the objfile obstack, point
22346 directly to it. */
22347 result = (const gdb_byte *) DW_STRING (attr);
22348 *len = strlen (DW_STRING (attr));
22349 break;
22350 case DW_FORM_block1:
22351 case DW_FORM_block2:
22352 case DW_FORM_block4:
22353 case DW_FORM_block:
22354 case DW_FORM_exprloc:
22355 case DW_FORM_data16:
22356 result = DW_BLOCK (attr)->data;
22357 *len = DW_BLOCK (attr)->size;
22358 break;
22359
22360 /* The DW_AT_const_value attributes are supposed to carry the
22361 symbol's value "represented as it would be on the target
22362 architecture." By the time we get here, it's already been
22363 converted to host endianness, so we just need to sign- or
22364 zero-extend it as appropriate. */
22365 case DW_FORM_data1:
22366 type = die_type (die, cu);
22367 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22368 if (result == NULL)
22369 result = write_constant_as_bytes (obstack, byte_order,
22370 type, value, len);
22371 break;
22372 case DW_FORM_data2:
22373 type = die_type (die, cu);
22374 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22375 if (result == NULL)
22376 result = write_constant_as_bytes (obstack, byte_order,
22377 type, value, len);
22378 break;
22379 case DW_FORM_data4:
22380 type = die_type (die, cu);
22381 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22382 if (result == NULL)
22383 result = write_constant_as_bytes (obstack, byte_order,
22384 type, value, len);
22385 break;
22386 case DW_FORM_data8:
22387 type = die_type (die, cu);
22388 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22389 if (result == NULL)
22390 result = write_constant_as_bytes (obstack, byte_order,
22391 type, value, len);
22392 break;
22393
22394 case DW_FORM_sdata:
22395 case DW_FORM_implicit_const:
22396 type = die_type (die, cu);
22397 result = write_constant_as_bytes (obstack, byte_order,
22398 type, DW_SND (attr), len);
22399 break;
22400
22401 case DW_FORM_udata:
22402 type = die_type (die, cu);
22403 result = write_constant_as_bytes (obstack, byte_order,
22404 type, DW_UNSND (attr), len);
22405 break;
22406
22407 default:
22408 complaint (_("unsupported const value attribute form: '%s'"),
22409 dwarf_form_name (attr->form));
22410 break;
22411 }
22412
22413 return result;
22414 }
22415
22416 /* See read.h. */
22417
22418 struct type *
22419 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22420 dwarf2_per_cu_data *per_cu)
22421 {
22422 struct dwarf2_cu *cu;
22423 struct die_info *die;
22424
22425 if (per_cu->cu == NULL)
22426 load_cu (per_cu, false);
22427 cu = per_cu->cu;
22428 if (!cu)
22429 return NULL;
22430
22431 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22432 if (!die)
22433 return NULL;
22434
22435 return die_type (die, cu);
22436 }
22437
22438 /* See read.h. */
22439
22440 struct type *
22441 dwarf2_get_die_type (cu_offset die_offset,
22442 struct dwarf2_per_cu_data *per_cu)
22443 {
22444 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22445 return get_die_type_at_offset (die_offset_sect, per_cu);
22446 }
22447
22448 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22449 On entry *REF_CU is the CU of SRC_DIE.
22450 On exit *REF_CU is the CU of the result.
22451 Returns NULL if the referenced DIE isn't found. */
22452
22453 static struct die_info *
22454 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22455 struct dwarf2_cu **ref_cu)
22456 {
22457 struct die_info temp_die;
22458 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22459 struct die_info *die;
22460
22461 /* While it might be nice to assert sig_type->type == NULL here,
22462 we can get here for DW_AT_imported_declaration where we need
22463 the DIE not the type. */
22464
22465 /* If necessary, add it to the queue and load its DIEs. */
22466
22467 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22468 read_signatured_type (sig_type);
22469
22470 sig_cu = sig_type->per_cu.cu;
22471 gdb_assert (sig_cu != NULL);
22472 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22473 temp_die.sect_off = sig_type->type_offset_in_section;
22474 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22475 to_underlying (temp_die.sect_off));
22476 if (die)
22477 {
22478 struct dwarf2_per_objfile *dwarf2_per_objfile
22479 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22480
22481 /* For .gdb_index version 7 keep track of included TUs.
22482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22483 if (dwarf2_per_objfile->index_table != NULL
22484 && dwarf2_per_objfile->index_table->version <= 7)
22485 {
22486 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22487 }
22488
22489 *ref_cu = sig_cu;
22490 if (sig_cu != cu)
22491 sig_cu->ancestor = cu;
22492
22493 return die;
22494 }
22495
22496 return NULL;
22497 }
22498
22499 /* Follow signatured type referenced by ATTR in SRC_DIE.
22500 On entry *REF_CU is the CU of SRC_DIE.
22501 On exit *REF_CU is the CU of the result.
22502 The result is the DIE of the type.
22503 If the referenced type cannot be found an error is thrown. */
22504
22505 static struct die_info *
22506 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22507 struct dwarf2_cu **ref_cu)
22508 {
22509 ULONGEST signature = DW_SIGNATURE (attr);
22510 struct signatured_type *sig_type;
22511 struct die_info *die;
22512
22513 gdb_assert (attr->form == DW_FORM_ref_sig8);
22514
22515 sig_type = lookup_signatured_type (*ref_cu, signature);
22516 /* sig_type will be NULL if the signatured type is missing from
22517 the debug info. */
22518 if (sig_type == NULL)
22519 {
22520 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22521 " from DIE at %s [in module %s]"),
22522 hex_string (signature), sect_offset_str (src_die->sect_off),
22523 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22524 }
22525
22526 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22527 if (die == NULL)
22528 {
22529 dump_die_for_error (src_die);
22530 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22531 " from DIE at %s [in module %s]"),
22532 hex_string (signature), sect_offset_str (src_die->sect_off),
22533 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22534 }
22535
22536 return die;
22537 }
22538
22539 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22540 reading in and processing the type unit if necessary. */
22541
22542 static struct type *
22543 get_signatured_type (struct die_info *die, ULONGEST signature,
22544 struct dwarf2_cu *cu)
22545 {
22546 struct dwarf2_per_objfile *dwarf2_per_objfile
22547 = cu->per_cu->dwarf2_per_objfile;
22548 struct signatured_type *sig_type;
22549 struct dwarf2_cu *type_cu;
22550 struct die_info *type_die;
22551 struct type *type;
22552
22553 sig_type = lookup_signatured_type (cu, signature);
22554 /* sig_type will be NULL if the signatured type is missing from
22555 the debug info. */
22556 if (sig_type == NULL)
22557 {
22558 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22559 " from DIE at %s [in module %s]"),
22560 hex_string (signature), sect_offset_str (die->sect_off),
22561 objfile_name (dwarf2_per_objfile->objfile));
22562 return build_error_marker_type (cu, die);
22563 }
22564
22565 /* If we already know the type we're done. */
22566 if (sig_type->type != NULL)
22567 return sig_type->type;
22568
22569 type_cu = cu;
22570 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22571 if (type_die != NULL)
22572 {
22573 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22574 is created. This is important, for example, because for c++ classes
22575 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22576 type = read_type_die (type_die, type_cu);
22577 if (type == NULL)
22578 {
22579 complaint (_("Dwarf Error: Cannot build signatured type %s"
22580 " referenced from DIE at %s [in module %s]"),
22581 hex_string (signature), sect_offset_str (die->sect_off),
22582 objfile_name (dwarf2_per_objfile->objfile));
22583 type = build_error_marker_type (cu, die);
22584 }
22585 }
22586 else
22587 {
22588 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22589 " from DIE at %s [in module %s]"),
22590 hex_string (signature), sect_offset_str (die->sect_off),
22591 objfile_name (dwarf2_per_objfile->objfile));
22592 type = build_error_marker_type (cu, die);
22593 }
22594 sig_type->type = type;
22595
22596 return type;
22597 }
22598
22599 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22600 reading in and processing the type unit if necessary. */
22601
22602 static struct type *
22603 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22604 struct dwarf2_cu *cu) /* ARI: editCase function */
22605 {
22606 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22607 if (attr->form_is_ref ())
22608 {
22609 struct dwarf2_cu *type_cu = cu;
22610 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22611
22612 return read_type_die (type_die, type_cu);
22613 }
22614 else if (attr->form == DW_FORM_ref_sig8)
22615 {
22616 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22617 }
22618 else
22619 {
22620 struct dwarf2_per_objfile *dwarf2_per_objfile
22621 = cu->per_cu->dwarf2_per_objfile;
22622
22623 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22624 " at %s [in module %s]"),
22625 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22626 objfile_name (dwarf2_per_objfile->objfile));
22627 return build_error_marker_type (cu, die);
22628 }
22629 }
22630
22631 /* Load the DIEs associated with type unit PER_CU into memory. */
22632
22633 static void
22634 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22635 {
22636 struct signatured_type *sig_type;
22637
22638 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22639 gdb_assert (! per_cu->type_unit_group_p ());
22640
22641 /* We have the per_cu, but we need the signatured_type.
22642 Fortunately this is an easy translation. */
22643 gdb_assert (per_cu->is_debug_types);
22644 sig_type = (struct signatured_type *) per_cu;
22645
22646 gdb_assert (per_cu->cu == NULL);
22647
22648 read_signatured_type (sig_type);
22649
22650 gdb_assert (per_cu->cu != NULL);
22651 }
22652
22653 /* Read in a signatured type and build its CU and DIEs.
22654 If the type is a stub for the real type in a DWO file,
22655 read in the real type from the DWO file as well. */
22656
22657 static void
22658 read_signatured_type (struct signatured_type *sig_type)
22659 {
22660 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22661
22662 gdb_assert (per_cu->is_debug_types);
22663 gdb_assert (per_cu->cu == NULL);
22664
22665 cutu_reader reader (per_cu, NULL, 0, false);
22666
22667 if (!reader.dummy_p)
22668 {
22669 struct dwarf2_cu *cu = reader.cu;
22670 const gdb_byte *info_ptr = reader.info_ptr;
22671
22672 gdb_assert (cu->die_hash == NULL);
22673 cu->die_hash =
22674 htab_create_alloc_ex (cu->header.length / 12,
22675 die_hash,
22676 die_eq,
22677 NULL,
22678 &cu->comp_unit_obstack,
22679 hashtab_obstack_allocate,
22680 dummy_obstack_deallocate);
22681
22682 if (reader.comp_unit_die->has_children)
22683 reader.comp_unit_die->child
22684 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22685 reader.comp_unit_die);
22686 cu->dies = reader.comp_unit_die;
22687 /* comp_unit_die is not stored in die_hash, no need. */
22688
22689 /* We try not to read any attributes in this function, because
22690 not all CUs needed for references have been loaded yet, and
22691 symbol table processing isn't initialized. But we have to
22692 set the CU language, or we won't be able to build types
22693 correctly. Similarly, if we do not read the producer, we can
22694 not apply producer-specific interpretation. */
22695 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22696
22697 reader.keep ();
22698 }
22699
22700 sig_type->per_cu.tu_read = 1;
22701 }
22702
22703 /* Decode simple location descriptions.
22704 Given a pointer to a dwarf block that defines a location, compute
22705 the location and return the value. If COMPUTED is non-null, it is
22706 set to true to indicate that decoding was successful, and false
22707 otherwise. If COMPUTED is null, then this function may emit a
22708 complaint. */
22709
22710 static CORE_ADDR
22711 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22712 {
22713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22714 size_t i;
22715 size_t size = blk->size;
22716 const gdb_byte *data = blk->data;
22717 CORE_ADDR stack[64];
22718 int stacki;
22719 unsigned int bytes_read, unsnd;
22720 gdb_byte op;
22721
22722 if (computed != nullptr)
22723 *computed = false;
22724
22725 i = 0;
22726 stacki = 0;
22727 stack[stacki] = 0;
22728 stack[++stacki] = 0;
22729
22730 while (i < size)
22731 {
22732 op = data[i++];
22733 switch (op)
22734 {
22735 case DW_OP_lit0:
22736 case DW_OP_lit1:
22737 case DW_OP_lit2:
22738 case DW_OP_lit3:
22739 case DW_OP_lit4:
22740 case DW_OP_lit5:
22741 case DW_OP_lit6:
22742 case DW_OP_lit7:
22743 case DW_OP_lit8:
22744 case DW_OP_lit9:
22745 case DW_OP_lit10:
22746 case DW_OP_lit11:
22747 case DW_OP_lit12:
22748 case DW_OP_lit13:
22749 case DW_OP_lit14:
22750 case DW_OP_lit15:
22751 case DW_OP_lit16:
22752 case DW_OP_lit17:
22753 case DW_OP_lit18:
22754 case DW_OP_lit19:
22755 case DW_OP_lit20:
22756 case DW_OP_lit21:
22757 case DW_OP_lit22:
22758 case DW_OP_lit23:
22759 case DW_OP_lit24:
22760 case DW_OP_lit25:
22761 case DW_OP_lit26:
22762 case DW_OP_lit27:
22763 case DW_OP_lit28:
22764 case DW_OP_lit29:
22765 case DW_OP_lit30:
22766 case DW_OP_lit31:
22767 stack[++stacki] = op - DW_OP_lit0;
22768 break;
22769
22770 case DW_OP_reg0:
22771 case DW_OP_reg1:
22772 case DW_OP_reg2:
22773 case DW_OP_reg3:
22774 case DW_OP_reg4:
22775 case DW_OP_reg5:
22776 case DW_OP_reg6:
22777 case DW_OP_reg7:
22778 case DW_OP_reg8:
22779 case DW_OP_reg9:
22780 case DW_OP_reg10:
22781 case DW_OP_reg11:
22782 case DW_OP_reg12:
22783 case DW_OP_reg13:
22784 case DW_OP_reg14:
22785 case DW_OP_reg15:
22786 case DW_OP_reg16:
22787 case DW_OP_reg17:
22788 case DW_OP_reg18:
22789 case DW_OP_reg19:
22790 case DW_OP_reg20:
22791 case DW_OP_reg21:
22792 case DW_OP_reg22:
22793 case DW_OP_reg23:
22794 case DW_OP_reg24:
22795 case DW_OP_reg25:
22796 case DW_OP_reg26:
22797 case DW_OP_reg27:
22798 case DW_OP_reg28:
22799 case DW_OP_reg29:
22800 case DW_OP_reg30:
22801 case DW_OP_reg31:
22802 stack[++stacki] = op - DW_OP_reg0;
22803 if (i < size)
22804 {
22805 if (computed == nullptr)
22806 dwarf2_complex_location_expr_complaint ();
22807 else
22808 return 0;
22809 }
22810 break;
22811
22812 case DW_OP_regx:
22813 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22814 i += bytes_read;
22815 stack[++stacki] = unsnd;
22816 if (i < size)
22817 {
22818 if (computed == nullptr)
22819 dwarf2_complex_location_expr_complaint ();
22820 else
22821 return 0;
22822 }
22823 break;
22824
22825 case DW_OP_addr:
22826 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22827 &bytes_read);
22828 i += bytes_read;
22829 break;
22830
22831 case DW_OP_const1u:
22832 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22833 i += 1;
22834 break;
22835
22836 case DW_OP_const1s:
22837 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22838 i += 1;
22839 break;
22840
22841 case DW_OP_const2u:
22842 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22843 i += 2;
22844 break;
22845
22846 case DW_OP_const2s:
22847 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22848 i += 2;
22849 break;
22850
22851 case DW_OP_const4u:
22852 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22853 i += 4;
22854 break;
22855
22856 case DW_OP_const4s:
22857 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22858 i += 4;
22859 break;
22860
22861 case DW_OP_const8u:
22862 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22863 i += 8;
22864 break;
22865
22866 case DW_OP_constu:
22867 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22868 &bytes_read);
22869 i += bytes_read;
22870 break;
22871
22872 case DW_OP_consts:
22873 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22874 i += bytes_read;
22875 break;
22876
22877 case DW_OP_dup:
22878 stack[stacki + 1] = stack[stacki];
22879 stacki++;
22880 break;
22881
22882 case DW_OP_plus:
22883 stack[stacki - 1] += stack[stacki];
22884 stacki--;
22885 break;
22886
22887 case DW_OP_plus_uconst:
22888 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22889 &bytes_read);
22890 i += bytes_read;
22891 break;
22892
22893 case DW_OP_minus:
22894 stack[stacki - 1] -= stack[stacki];
22895 stacki--;
22896 break;
22897
22898 case DW_OP_deref:
22899 /* If we're not the last op, then we definitely can't encode
22900 this using GDB's address_class enum. This is valid for partial
22901 global symbols, although the variable's address will be bogus
22902 in the psymtab. */
22903 if (i < size)
22904 {
22905 if (computed == nullptr)
22906 dwarf2_complex_location_expr_complaint ();
22907 else
22908 return 0;
22909 }
22910 break;
22911
22912 case DW_OP_GNU_push_tls_address:
22913 case DW_OP_form_tls_address:
22914 /* The top of the stack has the offset from the beginning
22915 of the thread control block at which the variable is located. */
22916 /* Nothing should follow this operator, so the top of stack would
22917 be returned. */
22918 /* This is valid for partial global symbols, but the variable's
22919 address will be bogus in the psymtab. Make it always at least
22920 non-zero to not look as a variable garbage collected by linker
22921 which have DW_OP_addr 0. */
22922 if (i < size)
22923 {
22924 if (computed == nullptr)
22925 dwarf2_complex_location_expr_complaint ();
22926 else
22927 return 0;
22928 }
22929 stack[stacki]++;
22930 break;
22931
22932 case DW_OP_GNU_uninit:
22933 if (computed != nullptr)
22934 return 0;
22935 break;
22936
22937 case DW_OP_addrx:
22938 case DW_OP_GNU_addr_index:
22939 case DW_OP_GNU_const_index:
22940 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22941 &bytes_read);
22942 i += bytes_read;
22943 break;
22944
22945 default:
22946 if (computed == nullptr)
22947 {
22948 const char *name = get_DW_OP_name (op);
22949
22950 if (name)
22951 complaint (_("unsupported stack op: '%s'"),
22952 name);
22953 else
22954 complaint (_("unsupported stack op: '%02x'"),
22955 op);
22956 }
22957
22958 return (stack[stacki]);
22959 }
22960
22961 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22962 outside of the allocated space. Also enforce minimum>0. */
22963 if (stacki >= ARRAY_SIZE (stack) - 1)
22964 {
22965 if (computed == nullptr)
22966 complaint (_("location description stack overflow"));
22967 return 0;
22968 }
22969
22970 if (stacki <= 0)
22971 {
22972 if (computed == nullptr)
22973 complaint (_("location description stack underflow"));
22974 return 0;
22975 }
22976 }
22977
22978 if (computed != nullptr)
22979 *computed = true;
22980 return (stack[stacki]);
22981 }
22982
22983 /* memory allocation interface */
22984
22985 static struct dwarf_block *
22986 dwarf_alloc_block (struct dwarf2_cu *cu)
22987 {
22988 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22989 }
22990
22991 static struct die_info *
22992 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22993 {
22994 struct die_info *die;
22995 size_t size = sizeof (struct die_info);
22996
22997 if (num_attrs > 1)
22998 size += (num_attrs - 1) * sizeof (struct attribute);
22999
23000 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23001 memset (die, 0, sizeof (struct die_info));
23002 return (die);
23003 }
23004
23005 \f
23006
23007 /* Macro support. */
23008
23009 /* An overload of dwarf_decode_macros that finds the correct section
23010 and ensures it is read in before calling the other overload. */
23011
23012 static void
23013 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23014 int section_is_gnu)
23015 {
23016 struct dwarf2_per_objfile *dwarf2_per_objfile
23017 = cu->per_cu->dwarf2_per_objfile;
23018 struct objfile *objfile = dwarf2_per_objfile->objfile;
23019 const struct line_header *lh = cu->line_header;
23020 unsigned int offset_size = cu->header.offset_size;
23021 struct dwarf2_section_info *section;
23022 const char *section_name;
23023
23024 if (cu->dwo_unit != nullptr)
23025 {
23026 if (section_is_gnu)
23027 {
23028 section = &cu->dwo_unit->dwo_file->sections.macro;
23029 section_name = ".debug_macro.dwo";
23030 }
23031 else
23032 {
23033 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23034 section_name = ".debug_macinfo.dwo";
23035 }
23036 }
23037 else
23038 {
23039 if (section_is_gnu)
23040 {
23041 section = &dwarf2_per_objfile->macro;
23042 section_name = ".debug_macro";
23043 }
23044 else
23045 {
23046 section = &dwarf2_per_objfile->macinfo;
23047 section_name = ".debug_macinfo";
23048 }
23049 }
23050
23051 section->read (objfile);
23052 if (section->buffer == nullptr)
23053 {
23054 complaint (_("missing %s section"), section_name);
23055 return;
23056 }
23057
23058 buildsym_compunit *builder = cu->get_builder ();
23059
23060 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23061 offset_size, offset, section_is_gnu);
23062 }
23063
23064 /* Return the .debug_loc section to use for CU.
23065 For DWO files use .debug_loc.dwo. */
23066
23067 static struct dwarf2_section_info *
23068 cu_debug_loc_section (struct dwarf2_cu *cu)
23069 {
23070 struct dwarf2_per_objfile *dwarf2_per_objfile
23071 = cu->per_cu->dwarf2_per_objfile;
23072
23073 if (cu->dwo_unit)
23074 {
23075 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23076
23077 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23078 }
23079 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23080 : &dwarf2_per_objfile->loc);
23081 }
23082
23083 /* A helper function that fills in a dwarf2_loclist_baton. */
23084
23085 static void
23086 fill_in_loclist_baton (struct dwarf2_cu *cu,
23087 struct dwarf2_loclist_baton *baton,
23088 const struct attribute *attr)
23089 {
23090 struct dwarf2_per_objfile *dwarf2_per_objfile
23091 = cu->per_cu->dwarf2_per_objfile;
23092 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23093
23094 section->read (dwarf2_per_objfile->objfile);
23095
23096 baton->per_cu = cu->per_cu;
23097 gdb_assert (baton->per_cu);
23098 /* We don't know how long the location list is, but make sure we
23099 don't run off the edge of the section. */
23100 baton->size = section->size - DW_UNSND (attr);
23101 baton->data = section->buffer + DW_UNSND (attr);
23102 if (cu->base_address.has_value ())
23103 baton->base_address = *cu->base_address;
23104 else
23105 baton->base_address = 0;
23106 baton->from_dwo = cu->dwo_unit != NULL;
23107 }
23108
23109 static void
23110 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23111 struct dwarf2_cu *cu, int is_block)
23112 {
23113 struct dwarf2_per_objfile *dwarf2_per_objfile
23114 = cu->per_cu->dwarf2_per_objfile;
23115 struct objfile *objfile = dwarf2_per_objfile->objfile;
23116 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23117
23118 if (attr->form_is_section_offset ()
23119 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23120 the section. If so, fall through to the complaint in the
23121 other branch. */
23122 && DW_UNSND (attr) < section->get_size (objfile))
23123 {
23124 struct dwarf2_loclist_baton *baton;
23125
23126 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23127
23128 fill_in_loclist_baton (cu, baton, attr);
23129
23130 if (!cu->base_address.has_value ())
23131 complaint (_("Location list used without "
23132 "specifying the CU base address."));
23133
23134 SYMBOL_ACLASS_INDEX (sym) = (is_block
23135 ? dwarf2_loclist_block_index
23136 : dwarf2_loclist_index);
23137 SYMBOL_LOCATION_BATON (sym) = baton;
23138 }
23139 else
23140 {
23141 struct dwarf2_locexpr_baton *baton;
23142
23143 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23144 baton->per_cu = cu->per_cu;
23145 gdb_assert (baton->per_cu);
23146
23147 if (attr->form_is_block ())
23148 {
23149 /* Note that we're just copying the block's data pointer
23150 here, not the actual data. We're still pointing into the
23151 info_buffer for SYM's objfile; right now we never release
23152 that buffer, but when we do clean up properly this may
23153 need to change. */
23154 baton->size = DW_BLOCK (attr)->size;
23155 baton->data = DW_BLOCK (attr)->data;
23156 }
23157 else
23158 {
23159 dwarf2_invalid_attrib_class_complaint ("location description",
23160 sym->natural_name ());
23161 baton->size = 0;
23162 }
23163
23164 SYMBOL_ACLASS_INDEX (sym) = (is_block
23165 ? dwarf2_locexpr_block_index
23166 : dwarf2_locexpr_index);
23167 SYMBOL_LOCATION_BATON (sym) = baton;
23168 }
23169 }
23170
23171 /* See read.h. */
23172
23173 struct objfile *
23174 dwarf2_per_cu_data::objfile () const
23175 {
23176 struct objfile *objfile = dwarf2_per_objfile->objfile;
23177
23178 /* Return the master objfile, so that we can report and look up the
23179 correct file containing this variable. */
23180 if (objfile->separate_debug_objfile_backlink)
23181 objfile = objfile->separate_debug_objfile_backlink;
23182
23183 return objfile;
23184 }
23185
23186 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23187 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23188 CU_HEADERP first. */
23189
23190 static const struct comp_unit_head *
23191 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23192 const struct dwarf2_per_cu_data *per_cu)
23193 {
23194 const gdb_byte *info_ptr;
23195
23196 if (per_cu->cu)
23197 return &per_cu->cu->header;
23198
23199 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23200
23201 memset (cu_headerp, 0, sizeof (*cu_headerp));
23202 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23203 rcuh_kind::COMPILE);
23204
23205 return cu_headerp;
23206 }
23207
23208 /* See read.h. */
23209
23210 int
23211 dwarf2_per_cu_data::addr_size () const
23212 {
23213 struct comp_unit_head cu_header_local;
23214 const struct comp_unit_head *cu_headerp;
23215
23216 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23217
23218 return cu_headerp->addr_size;
23219 }
23220
23221 /* See read.h. */
23222
23223 int
23224 dwarf2_per_cu_data::offset_size () const
23225 {
23226 struct comp_unit_head cu_header_local;
23227 const struct comp_unit_head *cu_headerp;
23228
23229 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23230
23231 return cu_headerp->offset_size;
23232 }
23233
23234 /* See read.h. */
23235
23236 int
23237 dwarf2_per_cu_data::ref_addr_size () const
23238 {
23239 struct comp_unit_head cu_header_local;
23240 const struct comp_unit_head *cu_headerp;
23241
23242 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23243
23244 if (cu_headerp->version == 2)
23245 return cu_headerp->addr_size;
23246 else
23247 return cu_headerp->offset_size;
23248 }
23249
23250 /* See read.h. */
23251
23252 CORE_ADDR
23253 dwarf2_per_cu_data::text_offset () const
23254 {
23255 struct objfile *objfile = dwarf2_per_objfile->objfile;
23256
23257 return objfile->text_section_offset ();
23258 }
23259
23260 /* See read.h. */
23261
23262 struct type *
23263 dwarf2_per_cu_data::addr_type () const
23264 {
23265 struct objfile *objfile = dwarf2_per_objfile->objfile;
23266 struct type *void_type = objfile_type (objfile)->builtin_void;
23267 struct type *addr_type = lookup_pointer_type (void_type);
23268 int addr_size = this->addr_size ();
23269
23270 if (TYPE_LENGTH (addr_type) == addr_size)
23271 return addr_type;
23272
23273 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23274 return addr_type;
23275 }
23276
23277 /* A helper function for dwarf2_find_containing_comp_unit that returns
23278 the index of the result, and that searches a vector. It will
23279 return a result even if the offset in question does not actually
23280 occur in any CU. This is separate so that it can be unit
23281 tested. */
23282
23283 static int
23284 dwarf2_find_containing_comp_unit
23285 (sect_offset sect_off,
23286 unsigned int offset_in_dwz,
23287 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23288 {
23289 int low, high;
23290
23291 low = 0;
23292 high = all_comp_units.size () - 1;
23293 while (high > low)
23294 {
23295 struct dwarf2_per_cu_data *mid_cu;
23296 int mid = low + (high - low) / 2;
23297
23298 mid_cu = all_comp_units[mid];
23299 if (mid_cu->is_dwz > offset_in_dwz
23300 || (mid_cu->is_dwz == offset_in_dwz
23301 && mid_cu->sect_off + mid_cu->length > sect_off))
23302 high = mid;
23303 else
23304 low = mid + 1;
23305 }
23306 gdb_assert (low == high);
23307 return low;
23308 }
23309
23310 /* Locate the .debug_info compilation unit from CU's objfile which contains
23311 the DIE at OFFSET. Raises an error on failure. */
23312
23313 static struct dwarf2_per_cu_data *
23314 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23315 unsigned int offset_in_dwz,
23316 struct dwarf2_per_objfile *dwarf2_per_objfile)
23317 {
23318 int low
23319 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23320 dwarf2_per_objfile->all_comp_units);
23321 struct dwarf2_per_cu_data *this_cu
23322 = dwarf2_per_objfile->all_comp_units[low];
23323
23324 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23325 {
23326 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23327 error (_("Dwarf Error: could not find partial DIE containing "
23328 "offset %s [in module %s]"),
23329 sect_offset_str (sect_off),
23330 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23331
23332 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23333 <= sect_off);
23334 return dwarf2_per_objfile->all_comp_units[low-1];
23335 }
23336 else
23337 {
23338 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23339 && sect_off >= this_cu->sect_off + this_cu->length)
23340 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23341 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23342 return this_cu;
23343 }
23344 }
23345
23346 #if GDB_SELF_TEST
23347
23348 namespace selftests {
23349 namespace find_containing_comp_unit {
23350
23351 static void
23352 run_test ()
23353 {
23354 struct dwarf2_per_cu_data one {};
23355 struct dwarf2_per_cu_data two {};
23356 struct dwarf2_per_cu_data three {};
23357 struct dwarf2_per_cu_data four {};
23358
23359 one.length = 5;
23360 two.sect_off = sect_offset (one.length);
23361 two.length = 7;
23362
23363 three.length = 5;
23364 three.is_dwz = 1;
23365 four.sect_off = sect_offset (three.length);
23366 four.length = 7;
23367 four.is_dwz = 1;
23368
23369 std::vector<dwarf2_per_cu_data *> units;
23370 units.push_back (&one);
23371 units.push_back (&two);
23372 units.push_back (&three);
23373 units.push_back (&four);
23374
23375 int result;
23376
23377 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23378 SELF_CHECK (units[result] == &one);
23379 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23380 SELF_CHECK (units[result] == &one);
23381 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23382 SELF_CHECK (units[result] == &two);
23383
23384 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23385 SELF_CHECK (units[result] == &three);
23386 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23387 SELF_CHECK (units[result] == &three);
23388 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23389 SELF_CHECK (units[result] == &four);
23390 }
23391
23392 }
23393 }
23394
23395 #endif /* GDB_SELF_TEST */
23396
23397 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23398
23399 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23400 : per_cu (per_cu_),
23401 mark (false),
23402 has_loclist (false),
23403 checked_producer (false),
23404 producer_is_gxx_lt_4_6 (false),
23405 producer_is_gcc_lt_4_3 (false),
23406 producer_is_icc (false),
23407 producer_is_icc_lt_14 (false),
23408 producer_is_codewarrior (false),
23409 processing_has_namespace_info (false)
23410 {
23411 per_cu->cu = this;
23412 }
23413
23414 /* Destroy a dwarf2_cu. */
23415
23416 dwarf2_cu::~dwarf2_cu ()
23417 {
23418 per_cu->cu = NULL;
23419 }
23420
23421 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23422
23423 static void
23424 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23425 enum language pretend_language)
23426 {
23427 struct attribute *attr;
23428
23429 /* Set the language we're debugging. */
23430 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23431 if (attr != nullptr)
23432 set_cu_language (DW_UNSND (attr), cu);
23433 else
23434 {
23435 cu->language = pretend_language;
23436 cu->language_defn = language_def (cu->language);
23437 }
23438
23439 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23440 }
23441
23442 /* Increase the age counter on each cached compilation unit, and free
23443 any that are too old. */
23444
23445 static void
23446 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23447 {
23448 struct dwarf2_per_cu_data *per_cu, **last_chain;
23449
23450 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23451 per_cu = dwarf2_per_objfile->read_in_chain;
23452 while (per_cu != NULL)
23453 {
23454 per_cu->cu->last_used ++;
23455 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23456 dwarf2_mark (per_cu->cu);
23457 per_cu = per_cu->cu->read_in_chain;
23458 }
23459
23460 per_cu = dwarf2_per_objfile->read_in_chain;
23461 last_chain = &dwarf2_per_objfile->read_in_chain;
23462 while (per_cu != NULL)
23463 {
23464 struct dwarf2_per_cu_data *next_cu;
23465
23466 next_cu = per_cu->cu->read_in_chain;
23467
23468 if (!per_cu->cu->mark)
23469 {
23470 delete per_cu->cu;
23471 *last_chain = next_cu;
23472 }
23473 else
23474 last_chain = &per_cu->cu->read_in_chain;
23475
23476 per_cu = next_cu;
23477 }
23478 }
23479
23480 /* Remove a single compilation unit from the cache. */
23481
23482 static void
23483 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23484 {
23485 struct dwarf2_per_cu_data *per_cu, **last_chain;
23486 struct dwarf2_per_objfile *dwarf2_per_objfile
23487 = target_per_cu->dwarf2_per_objfile;
23488
23489 per_cu = dwarf2_per_objfile->read_in_chain;
23490 last_chain = &dwarf2_per_objfile->read_in_chain;
23491 while (per_cu != NULL)
23492 {
23493 struct dwarf2_per_cu_data *next_cu;
23494
23495 next_cu = per_cu->cu->read_in_chain;
23496
23497 if (per_cu == target_per_cu)
23498 {
23499 delete per_cu->cu;
23500 per_cu->cu = NULL;
23501 *last_chain = next_cu;
23502 break;
23503 }
23504 else
23505 last_chain = &per_cu->cu->read_in_chain;
23506
23507 per_cu = next_cu;
23508 }
23509 }
23510
23511 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23512 We store these in a hash table separate from the DIEs, and preserve them
23513 when the DIEs are flushed out of cache.
23514
23515 The CU "per_cu" pointer is needed because offset alone is not enough to
23516 uniquely identify the type. A file may have multiple .debug_types sections,
23517 or the type may come from a DWO file. Furthermore, while it's more logical
23518 to use per_cu->section+offset, with Fission the section with the data is in
23519 the DWO file but we don't know that section at the point we need it.
23520 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23521 because we can enter the lookup routine, get_die_type_at_offset, from
23522 outside this file, and thus won't necessarily have PER_CU->cu.
23523 Fortunately, PER_CU is stable for the life of the objfile. */
23524
23525 struct dwarf2_per_cu_offset_and_type
23526 {
23527 const struct dwarf2_per_cu_data *per_cu;
23528 sect_offset sect_off;
23529 struct type *type;
23530 };
23531
23532 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23533
23534 static hashval_t
23535 per_cu_offset_and_type_hash (const void *item)
23536 {
23537 const struct dwarf2_per_cu_offset_and_type *ofs
23538 = (const struct dwarf2_per_cu_offset_and_type *) item;
23539
23540 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23541 }
23542
23543 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23544
23545 static int
23546 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23547 {
23548 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23549 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23550 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23551 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23552
23553 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23554 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23555 }
23556
23557 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23558 table if necessary. For convenience, return TYPE.
23559
23560 The DIEs reading must have careful ordering to:
23561 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23562 reading current DIE.
23563 * Not trying to dereference contents of still incompletely read in types
23564 while reading in other DIEs.
23565 * Enable referencing still incompletely read in types just by a pointer to
23566 the type without accessing its fields.
23567
23568 Therefore caller should follow these rules:
23569 * Try to fetch any prerequisite types we may need to build this DIE type
23570 before building the type and calling set_die_type.
23571 * After building type call set_die_type for current DIE as soon as
23572 possible before fetching more types to complete the current type.
23573 * Make the type as complete as possible before fetching more types. */
23574
23575 static struct type *
23576 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23577 {
23578 struct dwarf2_per_objfile *dwarf2_per_objfile
23579 = cu->per_cu->dwarf2_per_objfile;
23580 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23581 struct objfile *objfile = dwarf2_per_objfile->objfile;
23582 struct attribute *attr;
23583 struct dynamic_prop prop;
23584
23585 /* For Ada types, make sure that the gnat-specific data is always
23586 initialized (if not already set). There are a few types where
23587 we should not be doing so, because the type-specific area is
23588 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23589 where the type-specific area is used to store the floatformat).
23590 But this is not a problem, because the gnat-specific information
23591 is actually not needed for these types. */
23592 if (need_gnat_info (cu)
23593 && TYPE_CODE (type) != TYPE_CODE_FUNC
23594 && TYPE_CODE (type) != TYPE_CODE_FLT
23595 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23596 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23597 && TYPE_CODE (type) != TYPE_CODE_METHOD
23598 && !HAVE_GNAT_AUX_INFO (type))
23599 INIT_GNAT_SPECIFIC (type);
23600
23601 /* Read DW_AT_allocated and set in type. */
23602 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23603 if (attr != NULL && attr->form_is_block ())
23604 {
23605 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23606 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23607 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
23608 }
23609 else if (attr != NULL)
23610 {
23611 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23612 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23613 sect_offset_str (die->sect_off));
23614 }
23615
23616 /* Read DW_AT_associated and set in type. */
23617 attr = dwarf2_attr (die, DW_AT_associated, cu);
23618 if (attr != NULL && attr->form_is_block ())
23619 {
23620 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23621 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23622 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
23623 }
23624 else if (attr != NULL)
23625 {
23626 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23627 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23628 sect_offset_str (die->sect_off));
23629 }
23630
23631 /* Read DW_AT_data_location and set in type. */
23632 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23633 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23634 cu->per_cu->addr_type ()))
23635 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
23636
23637 if (dwarf2_per_objfile->die_type_hash == NULL)
23638 dwarf2_per_objfile->die_type_hash
23639 = htab_up (htab_create_alloc (127,
23640 per_cu_offset_and_type_hash,
23641 per_cu_offset_and_type_eq,
23642 NULL, xcalloc, xfree));
23643
23644 ofs.per_cu = cu->per_cu;
23645 ofs.sect_off = die->sect_off;
23646 ofs.type = type;
23647 slot = (struct dwarf2_per_cu_offset_and_type **)
23648 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23649 if (*slot)
23650 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23651 sect_offset_str (die->sect_off));
23652 *slot = XOBNEW (&objfile->objfile_obstack,
23653 struct dwarf2_per_cu_offset_and_type);
23654 **slot = ofs;
23655 return type;
23656 }
23657
23658 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23659 or return NULL if the die does not have a saved type. */
23660
23661 static struct type *
23662 get_die_type_at_offset (sect_offset sect_off,
23663 struct dwarf2_per_cu_data *per_cu)
23664 {
23665 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23666 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23667
23668 if (dwarf2_per_objfile->die_type_hash == NULL)
23669 return NULL;
23670
23671 ofs.per_cu = per_cu;
23672 ofs.sect_off = sect_off;
23673 slot = ((struct dwarf2_per_cu_offset_and_type *)
23674 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23675 if (slot)
23676 return slot->type;
23677 else
23678 return NULL;
23679 }
23680
23681 /* Look up the type for DIE in CU in die_type_hash,
23682 or return NULL if DIE does not have a saved type. */
23683
23684 static struct type *
23685 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23686 {
23687 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23688 }
23689
23690 /* Add a dependence relationship from CU to REF_PER_CU. */
23691
23692 static void
23693 dwarf2_add_dependence (struct dwarf2_cu *cu,
23694 struct dwarf2_per_cu_data *ref_per_cu)
23695 {
23696 void **slot;
23697
23698 if (cu->dependencies == NULL)
23699 cu->dependencies
23700 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23701 NULL, &cu->comp_unit_obstack,
23702 hashtab_obstack_allocate,
23703 dummy_obstack_deallocate);
23704
23705 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23706 if (*slot == NULL)
23707 *slot = ref_per_cu;
23708 }
23709
23710 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23711 Set the mark field in every compilation unit in the
23712 cache that we must keep because we are keeping CU. */
23713
23714 static int
23715 dwarf2_mark_helper (void **slot, void *data)
23716 {
23717 struct dwarf2_per_cu_data *per_cu;
23718
23719 per_cu = (struct dwarf2_per_cu_data *) *slot;
23720
23721 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23722 reading of the chain. As such dependencies remain valid it is not much
23723 useful to track and undo them during QUIT cleanups. */
23724 if (per_cu->cu == NULL)
23725 return 1;
23726
23727 if (per_cu->cu->mark)
23728 return 1;
23729 per_cu->cu->mark = true;
23730
23731 if (per_cu->cu->dependencies != NULL)
23732 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23733
23734 return 1;
23735 }
23736
23737 /* Set the mark field in CU and in every other compilation unit in the
23738 cache that we must keep because we are keeping CU. */
23739
23740 static void
23741 dwarf2_mark (struct dwarf2_cu *cu)
23742 {
23743 if (cu->mark)
23744 return;
23745 cu->mark = true;
23746 if (cu->dependencies != NULL)
23747 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23748 }
23749
23750 static void
23751 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23752 {
23753 while (per_cu)
23754 {
23755 per_cu->cu->mark = false;
23756 per_cu = per_cu->cu->read_in_chain;
23757 }
23758 }
23759
23760 /* Trivial hash function for partial_die_info: the hash value of a DIE
23761 is its offset in .debug_info for this objfile. */
23762
23763 static hashval_t
23764 partial_die_hash (const void *item)
23765 {
23766 const struct partial_die_info *part_die
23767 = (const struct partial_die_info *) item;
23768
23769 return to_underlying (part_die->sect_off);
23770 }
23771
23772 /* Trivial comparison function for partial_die_info structures: two DIEs
23773 are equal if they have the same offset. */
23774
23775 static int
23776 partial_die_eq (const void *item_lhs, const void *item_rhs)
23777 {
23778 const struct partial_die_info *part_die_lhs
23779 = (const struct partial_die_info *) item_lhs;
23780 const struct partial_die_info *part_die_rhs
23781 = (const struct partial_die_info *) item_rhs;
23782
23783 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23784 }
23785
23786 struct cmd_list_element *set_dwarf_cmdlist;
23787 struct cmd_list_element *show_dwarf_cmdlist;
23788
23789 static void
23790 show_check_physname (struct ui_file *file, int from_tty,
23791 struct cmd_list_element *c, const char *value)
23792 {
23793 fprintf_filtered (file,
23794 _("Whether to check \"physname\" is %s.\n"),
23795 value);
23796 }
23797
23798 void _initialize_dwarf2_read ();
23799 void
23800 _initialize_dwarf2_read ()
23801 {
23802 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23803 Set DWARF specific variables.\n\
23804 Configure DWARF variables such as the cache size."),
23805 &set_dwarf_cmdlist, "maintenance set dwarf ",
23806 0/*allow-unknown*/, &maintenance_set_cmdlist);
23807
23808 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23809 Show DWARF specific variables.\n\
23810 Show DWARF variables such as the cache size."),
23811 &show_dwarf_cmdlist, "maintenance show dwarf ",
23812 0/*allow-unknown*/, &maintenance_show_cmdlist);
23813
23814 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23815 &dwarf_max_cache_age, _("\
23816 Set the upper bound on the age of cached DWARF compilation units."), _("\
23817 Show the upper bound on the age of cached DWARF compilation units."), _("\
23818 A higher limit means that cached compilation units will be stored\n\
23819 in memory longer, and more total memory will be used. Zero disables\n\
23820 caching, which can slow down startup."),
23821 NULL,
23822 show_dwarf_max_cache_age,
23823 &set_dwarf_cmdlist,
23824 &show_dwarf_cmdlist);
23825
23826 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23827 Set debugging of the DWARF reader."), _("\
23828 Show debugging of the DWARF reader."), _("\
23829 When enabled (non-zero), debugging messages are printed during DWARF\n\
23830 reading and symtab expansion. A value of 1 (one) provides basic\n\
23831 information. A value greater than 1 provides more verbose information."),
23832 NULL,
23833 NULL,
23834 &setdebuglist, &showdebuglist);
23835
23836 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23837 Set debugging of the DWARF DIE reader."), _("\
23838 Show debugging of the DWARF DIE reader."), _("\
23839 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23840 The value is the maximum depth to print."),
23841 NULL,
23842 NULL,
23843 &setdebuglist, &showdebuglist);
23844
23845 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23846 Set debugging of the dwarf line reader."), _("\
23847 Show debugging of the dwarf line reader."), _("\
23848 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23849 A value of 1 (one) provides basic information.\n\
23850 A value greater than 1 provides more verbose information."),
23851 NULL,
23852 NULL,
23853 &setdebuglist, &showdebuglist);
23854
23855 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23856 Set cross-checking of \"physname\" code against demangler."), _("\
23857 Show cross-checking of \"physname\" code against demangler."), _("\
23858 When enabled, GDB's internal \"physname\" code is checked against\n\
23859 the demangler."),
23860 NULL, show_check_physname,
23861 &setdebuglist, &showdebuglist);
23862
23863 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23864 no_class, &use_deprecated_index_sections, _("\
23865 Set whether to use deprecated gdb_index sections."), _("\
23866 Show whether to use deprecated gdb_index sections."), _("\
23867 When enabled, deprecated .gdb_index sections are used anyway.\n\
23868 Normally they are ignored either because of a missing feature or\n\
23869 performance issue.\n\
23870 Warning: This option must be enabled before gdb reads the file."),
23871 NULL,
23872 NULL,
23873 &setlist, &showlist);
23874
23875 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23876 &dwarf2_locexpr_funcs);
23877 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23878 &dwarf2_loclist_funcs);
23879
23880 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23881 &dwarf2_block_frame_base_locexpr_funcs);
23882 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23883 &dwarf2_block_frame_base_loclist_funcs);
23884
23885 #if GDB_SELF_TEST
23886 selftests::register_test ("dw2_expand_symtabs_matching",
23887 selftests::dw2_expand_symtabs_matching::run_test);
23888 selftests::register_test ("dwarf2_find_containing_comp_unit",
23889 selftests::find_containing_comp_unit::run_test);
23890 #endif
23891 }
This page took 0.579382 seconds and 4 git commands to generate.