Remove field_info::nfields member
[deliverable/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "bfd.h"
41 #include "elf-bfd.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "objfiles.h"
45 #include "dwarf2.h"
46 #include "buildsym.h"
47 #include "demangle.h"
48 #include "gdb-demangle.h"
49 #include "filenames.h" /* for DOSish file names */
50 #include "macrotab.h"
51 #include "language.h"
52 #include "complaints.h"
53 #include "dwarf2/expr.h"
54 #include "dwarf2/loc.h"
55 #include "cp-support.h"
56 #include "hashtab.h"
57 #include "command.h"
58 #include "gdbcmd.h"
59 #include "block.h"
60 #include "addrmap.h"
61 #include "typeprint.h"
62 #include "psympriv.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "build-id.h"
72 #include "namespace.h"
73 #include "gdbsupport/function-view.h"
74 #include "gdbsupport/gdb_optional.h"
75 #include "gdbsupport/underlying.h"
76 #include "gdbsupport/hash_enum.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <algorithm>
81 #include <unordered_map>
82 #include "gdbsupport/selftest.h"
83 #include "rust-lang.h"
84 #include "gdbsupport/pathstuff.h"
85 #include "count-one-bits.h"
86 #include "debuginfod-support.h"
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 unsigned int dwarf_line_debug = 0;
98
99 /* When true, cross-check physname against demangler. */
100 static bool check_physname = false;
101
102 /* When true, do not reject deprecated .gdb_index sections. */
103 static bool use_deprecated_index_sections = false;
104
105 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* An index into a (C++) symbol name component in a symbol name as
115 recorded in the mapped_index's symbol table. For each C++ symbol
116 in the symbol table, we record one entry for the start of each
117 component in the symbol in a table of name components, and then
118 sort the table, in order to be able to binary search symbol names,
119 ignoring leading namespaces, both completion and regular look up.
120 For example, for symbol "A::B::C", we'll have an entry that points
121 to "A::B::C", another that points to "B::C", and another for "C".
122 Note that function symbols in GDB index have no parameter
123 information, just the function/method names. You can convert a
124 name_component to a "const char *" using the
125 'mapped_index::symbol_name_at(offset_type)' method. */
126
127 struct name_component
128 {
129 /* Offset in the symbol name where the component starts. Stored as
130 a (32-bit) offset instead of a pointer to save memory and improve
131 locality on 64-bit architectures. */
132 offset_type name_offset;
133
134 /* The symbol's index in the symbol and constant pool tables of a
135 mapped_index. */
136 offset_type idx;
137 };
138
139 /* Base class containing bits shared by both .gdb_index and
140 .debug_name indexes. */
141
142 struct mapped_index_base
143 {
144 mapped_index_base () = default;
145 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
146
147 /* The name_component table (a sorted vector). See name_component's
148 description above. */
149 std::vector<name_component> name_components;
150
151 /* How NAME_COMPONENTS is sorted. */
152 enum case_sensitivity name_components_casing;
153
154 /* Return the number of names in the symbol table. */
155 virtual size_t symbol_name_count () const = 0;
156
157 /* Get the name of the symbol at IDX in the symbol table. */
158 virtual const char *symbol_name_at (offset_type idx) const = 0;
159
160 /* Return whether the name at IDX in the symbol table should be
161 ignored. */
162 virtual bool symbol_name_slot_invalid (offset_type idx) const
163 {
164 return false;
165 }
166
167 /* Build the symbol name component sorted vector, if we haven't
168 yet. */
169 void build_name_components ();
170
171 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
172 possible matches for LN_NO_PARAMS in the name component
173 vector. */
174 std::pair<std::vector<name_component>::const_iterator,
175 std::vector<name_component>::const_iterator>
176 find_name_components_bounds (const lookup_name_info &ln_no_params,
177 enum language lang) const;
178
179 /* Prevent deleting/destroying via a base class pointer. */
180 protected:
181 ~mapped_index_base() = default;
182 };
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index final : public mapped_index_base
187 {
188 /* A slot/bucket in the symbol table hash. */
189 struct symbol_table_slot
190 {
191 const offset_type name;
192 const offset_type vec;
193 };
194
195 /* Index data format version. */
196 int version = 0;
197
198 /* The address table data. */
199 gdb::array_view<const gdb_byte> address_table;
200
201 /* The symbol table, implemented as a hash table. */
202 gdb::array_view<symbol_table_slot> symbol_table;
203
204 /* A pointer to the constant pool. */
205 const char *constant_pool = nullptr;
206
207 bool symbol_name_slot_invalid (offset_type idx) const override
208 {
209 const auto &bucket = this->symbol_table[idx];
210 return bucket.name == 0 && bucket.vec == 0;
211 }
212
213 /* Convenience method to get at the name of the symbol at IDX in the
214 symbol table. */
215 const char *symbol_name_at (offset_type idx) const override
216 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
217
218 size_t symbol_name_count () const override
219 { return this->symbol_table.size (); }
220 };
221
222 /* A description of the mapped .debug_names.
223 Uninitialized map has CU_COUNT 0. */
224 struct mapped_debug_names final : public mapped_index_base
225 {
226 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
227 : dwarf2_per_objfile (dwarf2_per_objfile_)
228 {}
229
230 struct dwarf2_per_objfile *dwarf2_per_objfile;
231 bfd_endian dwarf5_byte_order;
232 bool dwarf5_is_dwarf64;
233 bool augmentation_is_gdb;
234 uint8_t offset_size;
235 uint32_t cu_count = 0;
236 uint32_t tu_count, bucket_count, name_count;
237 const gdb_byte *cu_table_reordered, *tu_table_reordered;
238 const uint32_t *bucket_table_reordered, *hash_table_reordered;
239 const gdb_byte *name_table_string_offs_reordered;
240 const gdb_byte *name_table_entry_offs_reordered;
241 const gdb_byte *entry_pool;
242
243 struct index_val
244 {
245 ULONGEST dwarf_tag;
246 struct attr
247 {
248 /* Attribute name DW_IDX_*. */
249 ULONGEST dw_idx;
250
251 /* Attribute form DW_FORM_*. */
252 ULONGEST form;
253
254 /* Value if FORM is DW_FORM_implicit_const. */
255 LONGEST implicit_const;
256 };
257 std::vector<attr> attr_vec;
258 };
259
260 std::unordered_map<ULONGEST, index_val> abbrev_map;
261
262 const char *namei_to_name (uint32_t namei) const;
263
264 /* Implementation of the mapped_index_base virtual interface, for
265 the name_components cache. */
266
267 const char *symbol_name_at (offset_type idx) const override
268 { return namei_to_name (idx); }
269
270 size_t symbol_name_count () const override
271 { return this->name_count; }
272 };
273
274 /* See dwarf2read.h. */
275
276 dwarf2_per_objfile *
277 get_dwarf2_per_objfile (struct objfile *objfile)
278 {
279 return dwarf2_objfile_data_key.get (objfile);
280 }
281
282 /* Default names of the debugging sections. */
283
284 /* Note that if the debugging section has been compressed, it might
285 have a name like .zdebug_info. */
286
287 static const struct dwarf2_debug_sections dwarf2_elf_names =
288 {
289 { ".debug_info", ".zdebug_info" },
290 { ".debug_abbrev", ".zdebug_abbrev" },
291 { ".debug_line", ".zdebug_line" },
292 { ".debug_loc", ".zdebug_loc" },
293 { ".debug_loclists", ".zdebug_loclists" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_str_offsets", ".zdebug_str_offsets" },
298 { ".debug_line_str", ".zdebug_line_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_rnglists", ".zdebug_rnglists" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 { ".debug_names", ".zdebug_names" },
307 { ".debug_aranges", ".zdebug_aranges" },
308 23
309 };
310
311 /* List of DWO/DWP sections. */
312
313 static const struct dwop_section_names
314 {
315 struct dwarf2_section_names abbrev_dwo;
316 struct dwarf2_section_names info_dwo;
317 struct dwarf2_section_names line_dwo;
318 struct dwarf2_section_names loc_dwo;
319 struct dwarf2_section_names loclists_dwo;
320 struct dwarf2_section_names macinfo_dwo;
321 struct dwarf2_section_names macro_dwo;
322 struct dwarf2_section_names str_dwo;
323 struct dwarf2_section_names str_offsets_dwo;
324 struct dwarf2_section_names types_dwo;
325 struct dwarf2_section_names cu_index;
326 struct dwarf2_section_names tu_index;
327 }
328 dwop_section_names =
329 {
330 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
331 { ".debug_info.dwo", ".zdebug_info.dwo" },
332 { ".debug_line.dwo", ".zdebug_line.dwo" },
333 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
334 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
335 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
336 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
337 { ".debug_str.dwo", ".zdebug_str.dwo" },
338 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
339 { ".debug_types.dwo", ".zdebug_types.dwo" },
340 { ".debug_cu_index", ".zdebug_cu_index" },
341 { ".debug_tu_index", ".zdebug_tu_index" },
342 };
343
344 /* local data types */
345
346 /* Type used for delaying computation of method physnames.
347 See comments for compute_delayed_physnames. */
348 struct delayed_method_info
349 {
350 /* The type to which the method is attached, i.e., its parent class. */
351 struct type *type;
352
353 /* The index of the method in the type's function fieldlists. */
354 int fnfield_index;
355
356 /* The index of the method in the fieldlist. */
357 int index;
358
359 /* The name of the DIE. */
360 const char *name;
361
362 /* The DIE associated with this method. */
363 struct die_info *die;
364 };
365
366 /* Internal state when decoding a particular compilation unit. */
367 struct dwarf2_cu
368 {
369 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
370 ~dwarf2_cu ();
371
372 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
373
374 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
375 Create the set of symtabs used by this TU, or if this TU is sharing
376 symtabs with another TU and the symtabs have already been created
377 then restore those symtabs in the line header.
378 We don't need the pc/line-number mapping for type units. */
379 void setup_type_unit_groups (struct die_info *die);
380
381 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
382 buildsym_compunit constructor. */
383 struct compunit_symtab *start_symtab (const char *name,
384 const char *comp_dir,
385 CORE_ADDR low_pc);
386
387 /* Reset the builder. */
388 void reset_builder () { m_builder.reset (); }
389
390 /* The header of the compilation unit. */
391 struct comp_unit_head header {};
392
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address = 0;
395
396 /* Non-zero if base_address has been set. */
397 int base_known = 0;
398
399 /* The language we are debugging. */
400 enum language language = language_unknown;
401 const struct language_defn *language_defn = nullptr;
402
403 const char *producer = nullptr;
404
405 private:
406 /* The symtab builder for this CU. This is only non-NULL when full
407 symbols are being read. */
408 std::unique_ptr<buildsym_compunit> m_builder;
409
410 public:
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope = nullptr;
421
422 /* Hash table holding all the loaded partial DIEs
423 with partial_die->offset.SECT_OFF as hash. */
424 htab_t partial_dies = nullptr;
425
426 /* Storage for things with the same lifetime as this read-in compilation
427 unit, including partial DIEs. */
428 auto_obstack comp_unit_obstack;
429
430 /* When multiple dwarf2_cu structures are living in memory, this field
431 chains them all together, so that they can be released efficiently.
432 We will probably also want a generation counter so that most-recently-used
433 compilation units are cached... */
434 struct dwarf2_per_cu_data *read_in_chain = nullptr;
435
436 /* Backlink to our per_cu entry. */
437 struct dwarf2_per_cu_data *per_cu;
438
439 /* How many compilation units ago was this CU last referenced? */
440 int last_used = 0;
441
442 /* A hash table of DIE cu_offset for following references with
443 die_info->offset.sect_off as hash. */
444 htab_t die_hash = nullptr;
445
446 /* Full DIEs if read in. */
447 struct die_info *dies = nullptr;
448
449 /* A set of pointers to dwarf2_per_cu_data objects for compilation
450 units referenced by this one. Only set during full symbol processing;
451 partial symbol tables do not have dependencies. */
452 htab_t dependencies = nullptr;
453
454 /* Header data from the line table, during full symbol processing. */
455 struct line_header *line_header = nullptr;
456 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
457 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
458 this is the DW_TAG_compile_unit die for this CU. We'll hold on
459 to the line header as long as this DIE is being processed. See
460 process_die_scope. */
461 die_info *line_header_die_owner = nullptr;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 std::vector<delayed_method_info> method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab = nullptr;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit = nullptr;
480
481 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
482 Note this value comes from the Fission stub CU/TU's DIE. */
483 gdb::optional<ULONGEST> addr_base;
484
485 /* The DW_AT_rnglists_base attribute if present.
486 Note this value comes from the Fission stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base = 0;
495
496 /* When reading debug info generated by older versions of rustc, we
497 have to rewrite some union types to be struct types with a
498 variant part. This rewriting must be done after the CU is fully
499 read in, because otherwise at the point of rewriting some struct
500 type might not have been fully processed. So, we keep a list of
501 all such types here and process them after expansion. */
502 std::vector<struct type *> rust_unions;
503
504 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
505 files, the value is implicitly zero. For DWARF 5 version DWO files, the
506 value is often implicit and is the size of the header of
507 .debug_str_offsets section (8 or 4, depending on the address size). */
508 gdb::optional<ULONGEST> str_offsets_base;
509
510 /* Mark used when releasing cached dies. */
511 bool mark : 1;
512
513 /* This CU references .debug_loc. See the symtab->locations_valid field.
514 This test is imperfect as there may exist optimized debug code not using
515 any location list and still facing inlining issues if handled as
516 unoptimized code. For a future better test see GCC PR other/32998. */
517 bool has_loclist : 1;
518
519 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
520 if all the producer_is_* fields are valid. This information is cached
521 because profiling CU expansion showed excessive time spent in
522 producer_is_gxx_lt_4_6. */
523 bool checked_producer : 1;
524 bool producer_is_gxx_lt_4_6 : 1;
525 bool producer_is_gcc_lt_4_3 : 1;
526 bool producer_is_icc : 1;
527 bool producer_is_icc_lt_14 : 1;
528 bool producer_is_codewarrior : 1;
529
530 /* When true, the file that we're processing is known to have
531 debugging info for C++ namespaces. GCC 3.3.x did not produce
532 this information, but later versions do. */
533
534 bool processing_has_namespace_info : 1;
535
536 struct partial_die_info *find_partial_die (sect_offset sect_off);
537
538 /* If this CU was inherited by another CU (via specification,
539 abstract_origin, etc), this is the ancestor CU. */
540 dwarf2_cu *ancestor;
541
542 /* Get the buildsym_compunit for this CU. */
543 buildsym_compunit *get_builder ()
544 {
545 /* If this CU has a builder associated with it, use that. */
546 if (m_builder != nullptr)
547 return m_builder.get ();
548
549 /* Otherwise, search ancestors for a valid builder. */
550 if (ancestor != nullptr)
551 return ancestor->get_builder ();
552
553 return nullptr;
554 }
555 };
556
557 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
558 This includes type_unit_group and quick_file_names. */
559
560 struct stmt_list_hash
561 {
562 /* The DWO unit this table is from or NULL if there is none. */
563 struct dwo_unit *dwo_unit;
564
565 /* Offset in .debug_line or .debug_line.dwo. */
566 sect_offset line_sect_off;
567 };
568
569 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
570 an object of this type. */
571
572 struct type_unit_group
573 {
574 /* dwarf2read.c's main "handle" on a TU symtab.
575 To simplify things we create an artificial CU that "includes" all the
576 type units using this stmt_list so that the rest of the code still has
577 a "per_cu" handle on the symtab. */
578 struct dwarf2_per_cu_data per_cu;
579
580 /* The TUs that share this DW_AT_stmt_list entry.
581 This is added to while parsing type units to build partial symtabs,
582 and is deleted afterwards and not used again. */
583 std::vector<signatured_type *> *tus;
584
585 /* The compunit symtab.
586 Type units in a group needn't all be defined in the same source file,
587 so we create an essentially anonymous symtab as the compunit symtab. */
588 struct compunit_symtab *compunit_symtab;
589
590 /* The data used to construct the hash key. */
591 struct stmt_list_hash hash;
592
593 /* The symbol tables for this TU (obtained from the files listed in
594 DW_AT_stmt_list).
595 WARNING: The order of entries here must match the order of entries
596 in the line header. After the first TU using this type_unit_group, the
597 line header for the subsequent TUs is recreated from this. This is done
598 because we need to use the same symtabs for each TU using the same
599 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
600 there's no guarantee the line header doesn't have duplicate entries. */
601 struct symtab **symtabs;
602 };
603
604 /* These sections are what may appear in a (real or virtual) DWO file. */
605
606 struct dwo_sections
607 {
608 struct dwarf2_section_info abbrev;
609 struct dwarf2_section_info line;
610 struct dwarf2_section_info loc;
611 struct dwarf2_section_info loclists;
612 struct dwarf2_section_info macinfo;
613 struct dwarf2_section_info macro;
614 struct dwarf2_section_info str;
615 struct dwarf2_section_info str_offsets;
616 /* In the case of a virtual DWO file, these two are unused. */
617 struct dwarf2_section_info info;
618 std::vector<dwarf2_section_info> types;
619 };
620
621 /* CUs/TUs in DWP/DWO files. */
622
623 struct dwo_unit
624 {
625 /* Backlink to the containing struct dwo_file. */
626 struct dwo_file *dwo_file;
627
628 /* The "id" that distinguishes this CU/TU.
629 .debug_info calls this "dwo_id", .debug_types calls this "signature".
630 Since signatures came first, we stick with it for consistency. */
631 ULONGEST signature;
632
633 /* The section this CU/TU lives in, in the DWO file. */
634 struct dwarf2_section_info *section;
635
636 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
637 sect_offset sect_off;
638 unsigned int length;
639
640 /* For types, offset in the type's DIE of the type defined by this TU. */
641 cu_offset type_offset_in_tu;
642 };
643
644 /* include/dwarf2.h defines the DWP section codes.
645 It defines a max value but it doesn't define a min value, which we
646 use for error checking, so provide one. */
647
648 enum dwp_v2_section_ids
649 {
650 DW_SECT_MIN = 1
651 };
652
653 /* Data for one DWO file.
654
655 This includes virtual DWO files (a virtual DWO file is a DWO file as it
656 appears in a DWP file). DWP files don't really have DWO files per se -
657 comdat folding of types "loses" the DWO file they came from, and from
658 a high level view DWP files appear to contain a mass of random types.
659 However, to maintain consistency with the non-DWP case we pretend DWP
660 files contain virtual DWO files, and we assign each TU with one virtual
661 DWO file (generally based on the line and abbrev section offsets -
662 a heuristic that seems to work in practice). */
663
664 struct dwo_file
665 {
666 dwo_file () = default;
667 DISABLE_COPY_AND_ASSIGN (dwo_file);
668
669 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
670 For virtual DWO files the name is constructed from the section offsets
671 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
672 from related CU+TUs. */
673 const char *dwo_name = nullptr;
674
675 /* The DW_AT_comp_dir attribute. */
676 const char *comp_dir = nullptr;
677
678 /* The bfd, when the file is open. Otherwise this is NULL.
679 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
680 gdb_bfd_ref_ptr dbfd;
681
682 /* The sections that make up this DWO file.
683 Remember that for virtual DWO files in DWP V2, these are virtual
684 sections (for lack of a better name). */
685 struct dwo_sections sections {};
686
687 /* The CUs in the file.
688 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
689 an extension to handle LLVM's Link Time Optimization output (where
690 multiple source files may be compiled into a single object/dwo pair). */
691 htab_up cus;
692
693 /* Table of TUs in the file.
694 Each element is a struct dwo_unit. */
695 htab_up tus;
696 };
697
698 /* These sections are what may appear in a DWP file. */
699
700 struct dwp_sections
701 {
702 /* These are used by both DWP version 1 and 2. */
703 struct dwarf2_section_info str;
704 struct dwarf2_section_info cu_index;
705 struct dwarf2_section_info tu_index;
706
707 /* These are only used by DWP version 2 files.
708 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
709 sections are referenced by section number, and are not recorded here.
710 In DWP version 2 there is at most one copy of all these sections, each
711 section being (effectively) comprised of the concatenation of all of the
712 individual sections that exist in the version 1 format.
713 To keep the code simple we treat each of these concatenated pieces as a
714 section itself (a virtual section?). */
715 struct dwarf2_section_info abbrev;
716 struct dwarf2_section_info info;
717 struct dwarf2_section_info line;
718 struct dwarf2_section_info loc;
719 struct dwarf2_section_info macinfo;
720 struct dwarf2_section_info macro;
721 struct dwarf2_section_info str_offsets;
722 struct dwarf2_section_info types;
723 };
724
725 /* These sections are what may appear in a virtual DWO file in DWP version 1.
726 A virtual DWO file is a DWO file as it appears in a DWP file. */
727
728 struct virtual_v1_dwo_sections
729 {
730 struct dwarf2_section_info abbrev;
731 struct dwarf2_section_info line;
732 struct dwarf2_section_info loc;
733 struct dwarf2_section_info macinfo;
734 struct dwarf2_section_info macro;
735 struct dwarf2_section_info str_offsets;
736 /* Each DWP hash table entry records one CU or one TU.
737 That is recorded here, and copied to dwo_unit.section. */
738 struct dwarf2_section_info info_or_types;
739 };
740
741 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
742 In version 2, the sections of the DWO files are concatenated together
743 and stored in one section of that name. Thus each ELF section contains
744 several "virtual" sections. */
745
746 struct virtual_v2_dwo_sections
747 {
748 bfd_size_type abbrev_offset;
749 bfd_size_type abbrev_size;
750
751 bfd_size_type line_offset;
752 bfd_size_type line_size;
753
754 bfd_size_type loc_offset;
755 bfd_size_type loc_size;
756
757 bfd_size_type macinfo_offset;
758 bfd_size_type macinfo_size;
759
760 bfd_size_type macro_offset;
761 bfd_size_type macro_size;
762
763 bfd_size_type str_offsets_offset;
764 bfd_size_type str_offsets_size;
765
766 /* Each DWP hash table entry records one CU or one TU.
767 That is recorded here, and copied to dwo_unit.section. */
768 bfd_size_type info_or_types_offset;
769 bfd_size_type info_or_types_size;
770 };
771
772 /* Contents of DWP hash tables. */
773
774 struct dwp_hash_table
775 {
776 uint32_t version, nr_columns;
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table;
779 union
780 {
781 struct
782 {
783 const gdb_byte *indices;
784 } v1;
785 struct
786 {
787 /* This is indexed by column number and gives the id of the section
788 in that column. */
789 #define MAX_NR_V2_DWO_SECTIONS \
790 (1 /* .debug_info or .debug_types */ \
791 + 1 /* .debug_abbrev */ \
792 + 1 /* .debug_line */ \
793 + 1 /* .debug_loc */ \
794 + 1 /* .debug_str_offsets */ \
795 + 1 /* .debug_macro or .debug_macinfo */)
796 int section_ids[MAX_NR_V2_DWO_SECTIONS];
797 const gdb_byte *offsets;
798 const gdb_byte *sizes;
799 } v2;
800 } section_pool;
801 };
802
803 /* Data for one DWP file. */
804
805 struct dwp_file
806 {
807 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
808 : name (name_),
809 dbfd (std::move (abfd))
810 {
811 }
812
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version = 0;
818
819 /* The bfd. */
820 gdb_bfd_ref_ptr dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections {};
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus = nullptr;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus = nullptr;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_up loaded_cus;
833 htab_up loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections = 0;
838 asection **elf_sections = nullptr;
839 };
840
841 /* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
845
846 struct die_reader_specs
847 {
848 /* The bfd of die_section. */
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
856
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
866
867 /* The abbreviation table to use when reading the DIEs. */
868 struct abbrev_table *abbrev_table;
869 };
870
871 /* A subclass of die_reader_specs that holds storage and has complex
872 constructor and destructor behavior. */
873
874 class cutu_reader : public die_reader_specs
875 {
876 public:
877
878 cutu_reader (struct dwarf2_per_cu_data *this_cu,
879 struct abbrev_table *abbrev_table,
880 int use_existing_cu,
881 bool skip_partial);
882
883 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
884 struct dwarf2_cu *parent_cu = nullptr,
885 struct dwo_file *dwo_file = nullptr);
886
887 DISABLE_COPY_AND_ASSIGN (cutu_reader);
888
889 const gdb_byte *info_ptr = nullptr;
890 struct die_info *comp_unit_die = nullptr;
891 bool dummy_p = false;
892
893 /* Release the new CU, putting it on the chain. This cannot be done
894 for dummy CUs. */
895 void keep ();
896
897 private:
898 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
899 int use_existing_cu);
900
901 struct dwarf2_per_cu_data *m_this_cu;
902 std::unique_ptr<dwarf2_cu> m_new_cu;
903
904 /* The ordinary abbreviation table. */
905 abbrev_table_up m_abbrev_table_holder;
906
907 /* The DWO abbreviation table. */
908 abbrev_table_up m_dwo_abbrev_table;
909 };
910
911 /* When we construct a partial symbol table entry we only
912 need this much information. */
913 struct partial_die_info : public allocate_on_obstack
914 {
915 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
916
917 /* Disable assign but still keep copy ctor, which is needed
918 load_partial_dies. */
919 partial_die_info& operator=(const partial_die_info& rhs) = delete;
920
921 /* Adjust the partial die before generating a symbol for it. This
922 function may set the is_external flag or change the DIE's
923 name. */
924 void fixup (struct dwarf2_cu *cu);
925
926 /* Read a minimal amount of information into the minimal die
927 structure. */
928 const gdb_byte *read (const struct die_reader_specs *reader,
929 const struct abbrev_info &abbrev,
930 const gdb_byte *info_ptr);
931
932 /* Offset of this DIE. */
933 const sect_offset sect_off;
934
935 /* DWARF-2 tag for this DIE. */
936 const ENUM_BITFIELD(dwarf_tag) tag : 16;
937
938 /* Assorted flags describing the data found in this DIE. */
939 const unsigned int has_children : 1;
940
941 unsigned int is_external : 1;
942 unsigned int is_declaration : 1;
943 unsigned int has_type : 1;
944 unsigned int has_specification : 1;
945 unsigned int has_pc_info : 1;
946 unsigned int may_be_inlined : 1;
947
948 /* This DIE has been marked DW_AT_main_subprogram. */
949 unsigned int main_subprogram : 1;
950
951 /* Flag set if the SCOPE field of this structure has been
952 computed. */
953 unsigned int scope_set : 1;
954
955 /* Flag set if the DIE has a byte_size attribute. */
956 unsigned int has_byte_size : 1;
957
958 /* Flag set if the DIE has a DW_AT_const_value attribute. */
959 unsigned int has_const_value : 1;
960
961 /* Flag set if any of the DIE's children are template arguments. */
962 unsigned int has_template_arguments : 1;
963
964 /* Flag set if fixup has been called on this die. */
965 unsigned int fixup_called : 1;
966
967 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
968 unsigned int is_dwz : 1;
969
970 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
971 unsigned int spec_is_dwz : 1;
972
973 /* The name of this DIE. Normally the value of DW_AT_name, but
974 sometimes a default name for unnamed DIEs. */
975 const char *name = nullptr;
976
977 /* The linkage name, if present. */
978 const char *linkage_name = nullptr;
979
980 /* The scope to prepend to our children. This is generally
981 allocated on the comp_unit_obstack, so will disappear
982 when this compilation unit leaves the cache. */
983 const char *scope = nullptr;
984
985 /* Some data associated with the partial DIE. The tag determines
986 which field is live. */
987 union
988 {
989 /* The location description associated with this DIE, if any. */
990 struct dwarf_block *locdesc;
991 /* The offset of an import, for DW_TAG_imported_unit. */
992 sect_offset sect_off;
993 } d {};
994
995 /* If HAS_PC_INFO, the PC range associated with this DIE. */
996 CORE_ADDR lowpc = 0;
997 CORE_ADDR highpc = 0;
998
999 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1000 DW_AT_sibling, if any. */
1001 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1002 could return DW_AT_sibling values to its caller load_partial_dies. */
1003 const gdb_byte *sibling = nullptr;
1004
1005 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1006 DW_AT_specification (or DW_AT_abstract_origin or
1007 DW_AT_extension). */
1008 sect_offset spec_offset {};
1009
1010 /* Pointers to this DIE's parent, first child, and next sibling,
1011 if any. */
1012 struct partial_die_info *die_parent = nullptr;
1013 struct partial_die_info *die_child = nullptr;
1014 struct partial_die_info *die_sibling = nullptr;
1015
1016 friend struct partial_die_info *
1017 dwarf2_cu::find_partial_die (sect_offset sect_off);
1018
1019 private:
1020 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1021 partial_die_info (sect_offset sect_off)
1022 : partial_die_info (sect_off, DW_TAG_padding, 0)
1023 {
1024 }
1025
1026 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1027 int has_children_)
1028 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1029 {
1030 is_external = 0;
1031 is_declaration = 0;
1032 has_type = 0;
1033 has_specification = 0;
1034 has_pc_info = 0;
1035 may_be_inlined = 0;
1036 main_subprogram = 0;
1037 scope_set = 0;
1038 has_byte_size = 0;
1039 has_const_value = 0;
1040 has_template_arguments = 0;
1041 fixup_called = 0;
1042 is_dwz = 0;
1043 spec_is_dwz = 0;
1044 }
1045 };
1046
1047 /* This data structure holds a complete die structure. */
1048 struct die_info
1049 {
1050 /* DWARF-2 tag for this DIE. */
1051 ENUM_BITFIELD(dwarf_tag) tag : 16;
1052
1053 /* Number of attributes */
1054 unsigned char num_attrs;
1055
1056 /* True if we're presently building the full type name for the
1057 type derived from this DIE. */
1058 unsigned char building_fullname : 1;
1059
1060 /* True if this die is in process. PR 16581. */
1061 unsigned char in_process : 1;
1062
1063 /* True if this DIE has children. */
1064 unsigned char has_children : 1;
1065
1066 /* Abbrev number */
1067 unsigned int abbrev;
1068
1069 /* Offset in .debug_info or .debug_types section. */
1070 sect_offset sect_off;
1071
1072 /* The dies in a compilation unit form an n-ary tree. PARENT
1073 points to this die's parent; CHILD points to the first child of
1074 this node; and all the children of a given node are chained
1075 together via their SIBLING fields. */
1076 struct die_info *child; /* Its first child, if any. */
1077 struct die_info *sibling; /* Its next sibling, if any. */
1078 struct die_info *parent; /* Its parent, if any. */
1079
1080 /* An array of attributes, with NUM_ATTRS elements. There may be
1081 zero, but it's not common and zero-sized arrays are not
1082 sufficiently portable C. */
1083 struct attribute attrs[1];
1084 };
1085
1086 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1087 but this would require a corresponding change in unpack_field_as_long
1088 and friends. */
1089 static int bits_per_byte = 8;
1090
1091 /* When reading a variant or variant part, we track a bit more
1092 information about the field, and store it in an object of this
1093 type. */
1094
1095 struct variant_field
1096 {
1097 /* If we see a DW_TAG_variant, then this will be the discriminant
1098 value. */
1099 ULONGEST discriminant_value;
1100 /* If we see a DW_TAG_variant, then this will be set if this is the
1101 default branch. */
1102 bool default_branch;
1103 /* While reading a DW_TAG_variant_part, this will be set if this
1104 field is the discriminant. */
1105 bool is_discriminant;
1106 };
1107
1108 struct nextfield
1109 {
1110 int accessibility = 0;
1111 int virtuality = 0;
1112 /* Extra information to describe a variant or variant part. */
1113 struct variant_field variant {};
1114 struct field field {};
1115 };
1116
1117 struct fnfieldlist
1118 {
1119 const char *name = nullptr;
1120 std::vector<struct fn_field> fnfields;
1121 };
1122
1123 /* The routines that read and process dies for a C struct or C++ class
1124 pass lists of data member fields and lists of member function fields
1125 in an instance of a field_info structure, as defined below. */
1126 struct field_info
1127 {
1128 /* List of data member and baseclasses fields. */
1129 std::vector<struct nextfield> fields;
1130 std::vector<struct nextfield> baseclasses;
1131
1132 /* Set if the accessibility of one of the fields is not public. */
1133 int non_public_fields = 0;
1134
1135 /* Member function fieldlist array, contains name of possibly overloaded
1136 member function, number of overloaded member functions and a pointer
1137 to the head of the member function field chain. */
1138 std::vector<struct fnfieldlist> fnfieldlists;
1139
1140 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1141 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1142 std::vector<struct decl_field> typedef_field_list;
1143
1144 /* Nested types defined by this class and the number of elements in this
1145 list. */
1146 std::vector<struct decl_field> nested_types_list;
1147
1148 /* Return the total number of fields (including baseclasses). */
1149 int nfields () const
1150 {
1151 return fields.size () + baseclasses.size ();
1152 }
1153 };
1154
1155 /* Loaded secondary compilation units are kept in memory until they
1156 have not been referenced for the processing of this many
1157 compilation units. Set this to zero to disable caching. Cache
1158 sizes of up to at least twenty will improve startup time for
1159 typical inter-CU-reference binaries, at an obvious memory cost. */
1160 static int dwarf_max_cache_age = 5;
1161 static void
1162 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164 {
1165 fprintf_filtered (file, _("The upper bound on the age of cached "
1166 "DWARF compilation units is %s.\n"),
1167 value);
1168 }
1169 \f
1170 /* local function prototypes */
1171
1172 static void dwarf2_find_base_address (struct die_info *die,
1173 struct dwarf2_cu *cu);
1174
1175 static dwarf2_psymtab *create_partial_symtab
1176 (struct dwarf2_per_cu_data *per_cu, const char *name);
1177
1178 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1179 const gdb_byte *info_ptr,
1180 struct die_info *type_unit_die);
1181
1182 static void dwarf2_build_psymtabs_hard
1183 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1184
1185 static void scan_partial_symbols (struct partial_die_info *,
1186 CORE_ADDR *, CORE_ADDR *,
1187 int, struct dwarf2_cu *);
1188
1189 static void add_partial_symbol (struct partial_die_info *,
1190 struct dwarf2_cu *);
1191
1192 static void add_partial_namespace (struct partial_die_info *pdi,
1193 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1194 int set_addrmap, struct dwarf2_cu *cu);
1195
1196 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1197 CORE_ADDR *highpc, int set_addrmap,
1198 struct dwarf2_cu *cu);
1199
1200 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1201 struct dwarf2_cu *cu);
1202
1203 static void add_partial_subprogram (struct partial_die_info *pdi,
1204 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1205 int need_pc, struct dwarf2_cu *cu);
1206
1207 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1208
1209 static struct partial_die_info *load_partial_dies
1210 (const struct die_reader_specs *, const gdb_byte *, int);
1211
1212 /* A pair of partial_die_info and compilation unit. */
1213 struct cu_partial_die_info
1214 {
1215 /* The compilation unit of the partial_die_info. */
1216 struct dwarf2_cu *cu;
1217 /* A partial_die_info. */
1218 struct partial_die_info *pdi;
1219
1220 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1221 : cu (cu),
1222 pdi (pdi)
1223 { /* Nothing. */ }
1224
1225 private:
1226 cu_partial_die_info () = delete;
1227 };
1228
1229 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1230 struct dwarf2_cu *);
1231
1232 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1233 struct attribute *, struct attr_abbrev *,
1234 const gdb_byte *, bool *need_reprocess);
1235
1236 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1237 struct attribute *attr);
1238
1239 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1240
1241 static LONGEST read_checked_initial_length_and_offset
1242 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1243 unsigned int *, unsigned int *);
1244
1245 static sect_offset read_abbrev_offset
1246 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1247 struct dwarf2_section_info *, sect_offset);
1248
1249 static const char *read_indirect_string
1250 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1251 const struct comp_unit_head *, unsigned int *);
1252
1253 static const char *read_indirect_line_string
1254 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1255 const struct comp_unit_head *, unsigned int *);
1256
1257 static const char *read_indirect_string_at_offset
1258 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1259 LONGEST str_offset);
1260
1261 static const char *read_indirect_string_from_dwz
1262 (struct objfile *objfile, struct dwz_file *, LONGEST);
1263
1264 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1265 const gdb_byte *,
1266 unsigned int *);
1267
1268 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1269 ULONGEST str_index);
1270
1271 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1272 ULONGEST str_index);
1273
1274 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1275
1276 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1277 struct dwarf2_cu *);
1278
1279 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1280 unsigned int);
1281
1282 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1283 struct dwarf2_cu *cu);
1284
1285 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1286
1287 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1288 struct dwarf2_cu *cu);
1289
1290 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1291
1292 static struct die_info *die_specification (struct die_info *die,
1293 struct dwarf2_cu **);
1294
1295 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1296 struct dwarf2_cu *cu);
1297
1298 static void dwarf_decode_lines (struct line_header *, const char *,
1299 struct dwarf2_cu *, dwarf2_psymtab *,
1300 CORE_ADDR, int decode_mapping);
1301
1302 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1303 const char *);
1304
1305 static struct symbol *new_symbol (struct die_info *, struct type *,
1306 struct dwarf2_cu *, struct symbol * = NULL);
1307
1308 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1309 struct dwarf2_cu *);
1310
1311 static void dwarf2_const_value_attr (const struct attribute *attr,
1312 struct type *type,
1313 const char *name,
1314 struct obstack *obstack,
1315 struct dwarf2_cu *cu, LONGEST *value,
1316 const gdb_byte **bytes,
1317 struct dwarf2_locexpr_baton **baton);
1318
1319 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1320
1321 static int need_gnat_info (struct dwarf2_cu *);
1322
1323 static struct type *die_descriptive_type (struct die_info *,
1324 struct dwarf2_cu *);
1325
1326 static void set_descriptive_type (struct type *, struct die_info *,
1327 struct dwarf2_cu *);
1328
1329 static struct type *die_containing_type (struct die_info *,
1330 struct dwarf2_cu *);
1331
1332 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1333 struct dwarf2_cu *);
1334
1335 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1336
1337 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1338
1339 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1340
1341 static char *typename_concat (struct obstack *obs, const char *prefix,
1342 const char *suffix, int physname,
1343 struct dwarf2_cu *cu);
1344
1345 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1346
1347 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1348
1349 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1350
1351 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1352
1353 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1354
1355 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1356
1357 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1358 struct dwarf2_cu *, dwarf2_psymtab *);
1359
1360 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1361 values. Keep the items ordered with increasing constraints compliance. */
1362 enum pc_bounds_kind
1363 {
1364 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1365 PC_BOUNDS_NOT_PRESENT,
1366
1367 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1368 were present but they do not form a valid range of PC addresses. */
1369 PC_BOUNDS_INVALID,
1370
1371 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1372 PC_BOUNDS_RANGES,
1373
1374 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1375 PC_BOUNDS_HIGH_LOW,
1376 };
1377
1378 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1379 CORE_ADDR *, CORE_ADDR *,
1380 struct dwarf2_cu *,
1381 dwarf2_psymtab *);
1382
1383 static void get_scope_pc_bounds (struct die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
1385 struct dwarf2_cu *);
1386
1387 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1388 CORE_ADDR, struct dwarf2_cu *);
1389
1390 static void dwarf2_add_field (struct field_info *, struct die_info *,
1391 struct dwarf2_cu *);
1392
1393 static void dwarf2_attach_fields_to_type (struct field_info *,
1394 struct type *, struct dwarf2_cu *);
1395
1396 static void dwarf2_add_member_fn (struct field_info *,
1397 struct die_info *, struct type *,
1398 struct dwarf2_cu *);
1399
1400 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1401 struct type *,
1402 struct dwarf2_cu *);
1403
1404 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1405
1406 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1407
1408 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1409
1410 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1411
1412 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1413
1414 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1415
1416 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1417
1418 static struct type *read_module_type (struct die_info *die,
1419 struct dwarf2_cu *cu);
1420
1421 static const char *namespace_name (struct die_info *die,
1422 int *is_anonymous, struct dwarf2_cu *);
1423
1424 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1425
1426 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1427
1428 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1429 struct dwarf2_cu *);
1430
1431 static struct die_info *read_die_and_siblings_1
1432 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1433 struct die_info *);
1434
1435 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1436 const gdb_byte *info_ptr,
1437 const gdb_byte **new_info_ptr,
1438 struct die_info *parent);
1439
1440 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1441 struct die_info **, const gdb_byte *,
1442 int);
1443
1444 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1445 struct die_info **, const gdb_byte *);
1446
1447 static void process_die (struct die_info *, struct dwarf2_cu *);
1448
1449 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1450 struct obstack *);
1451
1452 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1453
1454 static const char *dwarf2_full_name (const char *name,
1455 struct die_info *die,
1456 struct dwarf2_cu *cu);
1457
1458 static const char *dwarf2_physname (const char *name, struct die_info *die,
1459 struct dwarf2_cu *cu);
1460
1461 static struct die_info *dwarf2_extension (struct die_info *die,
1462 struct dwarf2_cu **);
1463
1464 static const char *dwarf_tag_name (unsigned int);
1465
1466 static const char *dwarf_attr_name (unsigned int);
1467
1468 static const char *dwarf_form_name (unsigned int);
1469
1470 static const char *dwarf_bool_name (unsigned int);
1471
1472 static const char *dwarf_type_encoding_name (unsigned int);
1473
1474 static struct die_info *sibling_die (struct die_info *);
1475
1476 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1477
1478 static void dump_die_for_error (struct die_info *);
1479
1480 static void dump_die_1 (struct ui_file *, int level, int max_level,
1481 struct die_info *);
1482
1483 /*static*/ void dump_die (struct die_info *, int max_level);
1484
1485 static void store_in_ref_table (struct die_info *,
1486 struct dwarf2_cu *);
1487
1488 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1489
1490 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1491
1492 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1493 const struct attribute *,
1494 struct dwarf2_cu **);
1495
1496 static struct die_info *follow_die_ref (struct die_info *,
1497 const struct attribute *,
1498 struct dwarf2_cu **);
1499
1500 static struct die_info *follow_die_sig (struct die_info *,
1501 const struct attribute *,
1502 struct dwarf2_cu **);
1503
1504 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1505 struct dwarf2_cu *);
1506
1507 static struct type *get_DW_AT_signature_type (struct die_info *,
1508 const struct attribute *,
1509 struct dwarf2_cu *);
1510
1511 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1512
1513 static void read_signatured_type (struct signatured_type *);
1514
1515 static int attr_to_dynamic_prop (const struct attribute *attr,
1516 struct die_info *die, struct dwarf2_cu *cu,
1517 struct dynamic_prop *prop, struct type *type);
1518
1519 /* memory allocation interface */
1520
1521 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1522
1523 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1524
1525 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1526
1527 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1528 struct dwarf2_loclist_baton *baton,
1529 const struct attribute *attr);
1530
1531 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1532 struct symbol *sym,
1533 struct dwarf2_cu *cu,
1534 int is_block);
1535
1536 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1537 const gdb_byte *info_ptr,
1538 struct abbrev_info *abbrev);
1539
1540 static hashval_t partial_die_hash (const void *item);
1541
1542 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1543
1544 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1545 (sect_offset sect_off, unsigned int offset_in_dwz,
1546 struct dwarf2_per_objfile *dwarf2_per_objfile);
1547
1548 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1549 struct die_info *comp_unit_die,
1550 enum language pretend_language);
1551
1552 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1553
1554 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1555
1556 static struct type *set_die_type (struct die_info *, struct type *,
1557 struct dwarf2_cu *);
1558
1559 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1560
1561 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1562
1563 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1564 enum language);
1565
1566 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1570 enum language);
1571
1572 static void dwarf2_add_dependence (struct dwarf2_cu *,
1573 struct dwarf2_per_cu_data *);
1574
1575 static void dwarf2_mark (struct dwarf2_cu *);
1576
1577 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type_at_offset (sect_offset,
1580 struct dwarf2_per_cu_data *);
1581
1582 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1583
1584 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1585 enum language pretend_language);
1586
1587 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1588
1589 /* Class, the destructor of which frees all allocated queue entries. This
1590 will only have work to do if an error was thrown while processing the
1591 dwarf. If no error was thrown then the queue entries should have all
1592 been processed, and freed, as we went along. */
1593
1594 class dwarf2_queue_guard
1595 {
1596 public:
1597 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1598 : m_per_objfile (per_objfile)
1599 {
1600 }
1601
1602 /* Free any entries remaining on the queue. There should only be
1603 entries left if we hit an error while processing the dwarf. */
1604 ~dwarf2_queue_guard ()
1605 {
1606 /* Ensure that no memory is allocated by the queue. */
1607 std::queue<dwarf2_queue_item> empty;
1608 std::swap (m_per_objfile->queue, empty);
1609 }
1610
1611 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1612
1613 private:
1614 dwarf2_per_objfile *m_per_objfile;
1615 };
1616
1617 dwarf2_queue_item::~dwarf2_queue_item ()
1618 {
1619 /* Anything still marked queued is likely to be in an
1620 inconsistent state, so discard it. */
1621 if (per_cu->queued)
1622 {
1623 if (per_cu->cu != NULL)
1624 free_one_cached_comp_unit (per_cu);
1625 per_cu->queued = 0;
1626 }
1627 }
1628
1629 /* The return type of find_file_and_directory. Note, the enclosed
1630 string pointers are only valid while this object is valid. */
1631
1632 struct file_and_directory
1633 {
1634 /* The filename. This is never NULL. */
1635 const char *name;
1636
1637 /* The compilation directory. NULL if not known. If we needed to
1638 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1639 points directly to the DW_AT_comp_dir string attribute owned by
1640 the obstack that owns the DIE. */
1641 const char *comp_dir;
1642
1643 /* If we needed to build a new string for comp_dir, this is what
1644 owns the storage. */
1645 std::string comp_dir_storage;
1646 };
1647
1648 static file_and_directory find_file_and_directory (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static htab_up allocate_signatured_type_table ();
1652
1653 static htab_up allocate_dwo_unit_table ();
1654
1655 static struct dwo_unit *lookup_dwo_unit_in_dwp
1656 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1657 struct dwp_file *dwp_file, const char *comp_dir,
1658 ULONGEST signature, int is_debug_types);
1659
1660 static struct dwp_file *get_dwp_file
1661 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1662
1663 static struct dwo_unit *lookup_dwo_comp_unit
1664 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1665
1666 static struct dwo_unit *lookup_dwo_type_unit
1667 (struct signatured_type *, const char *, const char *);
1668
1669 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1670
1671 /* A unique pointer to a dwo_file. */
1672
1673 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1674
1675 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1676
1677 static void check_producer (struct dwarf2_cu *cu);
1678
1679 static void free_line_header_voidp (void *arg);
1680 \f
1681 /* Various complaints about symbol reading that don't abort the process. */
1682
1683 static void
1684 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1685 {
1686 complaint (_("statement list doesn't fit in .debug_line section"));
1687 }
1688
1689 static void
1690 dwarf2_debug_line_missing_file_complaint (void)
1691 {
1692 complaint (_(".debug_line section has line data without a file"));
1693 }
1694
1695 static void
1696 dwarf2_debug_line_missing_end_sequence_complaint (void)
1697 {
1698 complaint (_(".debug_line section has line "
1699 "program sequence without an end"));
1700 }
1701
1702 static void
1703 dwarf2_complex_location_expr_complaint (void)
1704 {
1705 complaint (_("location expression too complex"));
1706 }
1707
1708 static void
1709 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1710 int arg3)
1711 {
1712 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1713 arg1, arg2, arg3);
1714 }
1715
1716 static void
1717 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1718 {
1719 complaint (_("debug info runs off end of %s section"
1720 " [in module %s]"),
1721 section->get_name (),
1722 section->get_file_name ());
1723 }
1724
1725 static void
1726 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1727 {
1728 complaint (_("macro debug info contains a "
1729 "malformed macro definition:\n`%s'"),
1730 arg1);
1731 }
1732
1733 static void
1734 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1735 {
1736 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1737 arg1, arg2);
1738 }
1739
1740 /* Hash function for line_header_hash. */
1741
1742 static hashval_t
1743 line_header_hash (const struct line_header *ofs)
1744 {
1745 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1746 }
1747
1748 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1749
1750 static hashval_t
1751 line_header_hash_voidp (const void *item)
1752 {
1753 const struct line_header *ofs = (const struct line_header *) item;
1754
1755 return line_header_hash (ofs);
1756 }
1757
1758 /* Equality function for line_header_hash. */
1759
1760 static int
1761 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1762 {
1763 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1764 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1765
1766 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1767 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1768 }
1769
1770 \f
1771
1772 /* See declaration. */
1773
1774 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1775 const dwarf2_debug_sections *names,
1776 bool can_copy_)
1777 : objfile (objfile_),
1778 can_copy (can_copy_)
1779 {
1780 if (names == NULL)
1781 names = &dwarf2_elf_names;
1782
1783 bfd *obfd = objfile->obfd;
1784
1785 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1786 locate_sections (obfd, sec, *names);
1787 }
1788
1789 dwarf2_per_objfile::~dwarf2_per_objfile ()
1790 {
1791 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1792 free_cached_comp_units ();
1793
1794 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1795 per_cu->imported_symtabs_free ();
1796
1797 for (signatured_type *sig_type : all_type_units)
1798 sig_type->per_cu.imported_symtabs_free ();
1799
1800 /* Everything else should be on the objfile obstack. */
1801 }
1802
1803 /* See declaration. */
1804
1805 void
1806 dwarf2_per_objfile::free_cached_comp_units ()
1807 {
1808 dwarf2_per_cu_data *per_cu = read_in_chain;
1809 dwarf2_per_cu_data **last_chain = &read_in_chain;
1810 while (per_cu != NULL)
1811 {
1812 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1813
1814 delete per_cu->cu;
1815 *last_chain = next_cu;
1816 per_cu = next_cu;
1817 }
1818 }
1819
1820 /* A helper class that calls free_cached_comp_units on
1821 destruction. */
1822
1823 class free_cached_comp_units
1824 {
1825 public:
1826
1827 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1828 : m_per_objfile (per_objfile)
1829 {
1830 }
1831
1832 ~free_cached_comp_units ()
1833 {
1834 m_per_objfile->free_cached_comp_units ();
1835 }
1836
1837 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1838
1839 private:
1840
1841 dwarf2_per_objfile *m_per_objfile;
1842 };
1843
1844 /* Try to locate the sections we need for DWARF 2 debugging
1845 information and return true if we have enough to do something.
1846 NAMES points to the dwarf2 section names, or is NULL if the standard
1847 ELF names are used. CAN_COPY is true for formats where symbol
1848 interposition is possible and so symbol values must follow copy
1849 relocation rules. */
1850
1851 int
1852 dwarf2_has_info (struct objfile *objfile,
1853 const struct dwarf2_debug_sections *names,
1854 bool can_copy)
1855 {
1856 if (objfile->flags & OBJF_READNEVER)
1857 return 0;
1858
1859 struct dwarf2_per_objfile *dwarf2_per_objfile
1860 = get_dwarf2_per_objfile (objfile);
1861
1862 if (dwarf2_per_objfile == NULL)
1863 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1864 names,
1865 can_copy);
1866
1867 return (!dwarf2_per_objfile->info.is_virtual
1868 && dwarf2_per_objfile->info.s.section != NULL
1869 && !dwarf2_per_objfile->abbrev.is_virtual
1870 && dwarf2_per_objfile->abbrev.s.section != NULL);
1871 }
1872
1873 /* When loading sections, we look either for uncompressed section or for
1874 compressed section names. */
1875
1876 static int
1877 section_is_p (const char *section_name,
1878 const struct dwarf2_section_names *names)
1879 {
1880 if (names->normal != NULL
1881 && strcmp (section_name, names->normal) == 0)
1882 return 1;
1883 if (names->compressed != NULL
1884 && strcmp (section_name, names->compressed) == 0)
1885 return 1;
1886 return 0;
1887 }
1888
1889 /* See declaration. */
1890
1891 void
1892 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1893 const dwarf2_debug_sections &names)
1894 {
1895 flagword aflag = bfd_section_flags (sectp);
1896
1897 if ((aflag & SEC_HAS_CONTENTS) == 0)
1898 {
1899 }
1900 else if (elf_section_data (sectp)->this_hdr.sh_size
1901 > bfd_get_file_size (abfd))
1902 {
1903 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1904 warning (_("Discarding section %s which has a section size (%s"
1905 ") larger than the file size [in module %s]"),
1906 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1907 bfd_get_filename (abfd));
1908 }
1909 else if (section_is_p (sectp->name, &names.info))
1910 {
1911 this->info.s.section = sectp;
1912 this->info.size = bfd_section_size (sectp);
1913 }
1914 else if (section_is_p (sectp->name, &names.abbrev))
1915 {
1916 this->abbrev.s.section = sectp;
1917 this->abbrev.size = bfd_section_size (sectp);
1918 }
1919 else if (section_is_p (sectp->name, &names.line))
1920 {
1921 this->line.s.section = sectp;
1922 this->line.size = bfd_section_size (sectp);
1923 }
1924 else if (section_is_p (sectp->name, &names.loc))
1925 {
1926 this->loc.s.section = sectp;
1927 this->loc.size = bfd_section_size (sectp);
1928 }
1929 else if (section_is_p (sectp->name, &names.loclists))
1930 {
1931 this->loclists.s.section = sectp;
1932 this->loclists.size = bfd_section_size (sectp);
1933 }
1934 else if (section_is_p (sectp->name, &names.macinfo))
1935 {
1936 this->macinfo.s.section = sectp;
1937 this->macinfo.size = bfd_section_size (sectp);
1938 }
1939 else if (section_is_p (sectp->name, &names.macro))
1940 {
1941 this->macro.s.section = sectp;
1942 this->macro.size = bfd_section_size (sectp);
1943 }
1944 else if (section_is_p (sectp->name, &names.str))
1945 {
1946 this->str.s.section = sectp;
1947 this->str.size = bfd_section_size (sectp);
1948 }
1949 else if (section_is_p (sectp->name, &names.str_offsets))
1950 {
1951 this->str_offsets.s.section = sectp;
1952 this->str_offsets.size = bfd_section_size (sectp);
1953 }
1954 else if (section_is_p (sectp->name, &names.line_str))
1955 {
1956 this->line_str.s.section = sectp;
1957 this->line_str.size = bfd_section_size (sectp);
1958 }
1959 else if (section_is_p (sectp->name, &names.addr))
1960 {
1961 this->addr.s.section = sectp;
1962 this->addr.size = bfd_section_size (sectp);
1963 }
1964 else if (section_is_p (sectp->name, &names.frame))
1965 {
1966 this->frame.s.section = sectp;
1967 this->frame.size = bfd_section_size (sectp);
1968 }
1969 else if (section_is_p (sectp->name, &names.eh_frame))
1970 {
1971 this->eh_frame.s.section = sectp;
1972 this->eh_frame.size = bfd_section_size (sectp);
1973 }
1974 else if (section_is_p (sectp->name, &names.ranges))
1975 {
1976 this->ranges.s.section = sectp;
1977 this->ranges.size = bfd_section_size (sectp);
1978 }
1979 else if (section_is_p (sectp->name, &names.rnglists))
1980 {
1981 this->rnglists.s.section = sectp;
1982 this->rnglists.size = bfd_section_size (sectp);
1983 }
1984 else if (section_is_p (sectp->name, &names.types))
1985 {
1986 struct dwarf2_section_info type_section;
1987
1988 memset (&type_section, 0, sizeof (type_section));
1989 type_section.s.section = sectp;
1990 type_section.size = bfd_section_size (sectp);
1991
1992 this->types.push_back (type_section);
1993 }
1994 else if (section_is_p (sectp->name, &names.gdb_index))
1995 {
1996 this->gdb_index.s.section = sectp;
1997 this->gdb_index.size = bfd_section_size (sectp);
1998 }
1999 else if (section_is_p (sectp->name, &names.debug_names))
2000 {
2001 this->debug_names.s.section = sectp;
2002 this->debug_names.size = bfd_section_size (sectp);
2003 }
2004 else if (section_is_p (sectp->name, &names.debug_aranges))
2005 {
2006 this->debug_aranges.s.section = sectp;
2007 this->debug_aranges.size = bfd_section_size (sectp);
2008 }
2009
2010 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2011 && bfd_section_vma (sectp) == 0)
2012 this->has_section_at_zero = true;
2013 }
2014
2015 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2016 SECTION_NAME. */
2017
2018 void
2019 dwarf2_get_section_info (struct objfile *objfile,
2020 enum dwarf2_section_enum sect,
2021 asection **sectp, const gdb_byte **bufp,
2022 bfd_size_type *sizep)
2023 {
2024 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2025 struct dwarf2_section_info *info;
2026
2027 /* We may see an objfile without any DWARF, in which case we just
2028 return nothing. */
2029 if (data == NULL)
2030 {
2031 *sectp = NULL;
2032 *bufp = NULL;
2033 *sizep = 0;
2034 return;
2035 }
2036 switch (sect)
2037 {
2038 case DWARF2_DEBUG_FRAME:
2039 info = &data->frame;
2040 break;
2041 case DWARF2_EH_FRAME:
2042 info = &data->eh_frame;
2043 break;
2044 default:
2045 gdb_assert_not_reached ("unexpected section");
2046 }
2047
2048 info->read (objfile);
2049
2050 *sectp = info->get_bfd_section ();
2051 *bufp = info->buffer;
2052 *sizep = info->size;
2053 }
2054
2055 /* A helper function to find the sections for a .dwz file. */
2056
2057 static void
2058 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2059 {
2060 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2061
2062 /* Note that we only support the standard ELF names, because .dwz
2063 is ELF-only (at the time of writing). */
2064 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2065 {
2066 dwz_file->abbrev.s.section = sectp;
2067 dwz_file->abbrev.size = bfd_section_size (sectp);
2068 }
2069 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2070 {
2071 dwz_file->info.s.section = sectp;
2072 dwz_file->info.size = bfd_section_size (sectp);
2073 }
2074 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2075 {
2076 dwz_file->str.s.section = sectp;
2077 dwz_file->str.size = bfd_section_size (sectp);
2078 }
2079 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2080 {
2081 dwz_file->line.s.section = sectp;
2082 dwz_file->line.size = bfd_section_size (sectp);
2083 }
2084 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2085 {
2086 dwz_file->macro.s.section = sectp;
2087 dwz_file->macro.size = bfd_section_size (sectp);
2088 }
2089 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2090 {
2091 dwz_file->gdb_index.s.section = sectp;
2092 dwz_file->gdb_index.size = bfd_section_size (sectp);
2093 }
2094 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2095 {
2096 dwz_file->debug_names.s.section = sectp;
2097 dwz_file->debug_names.size = bfd_section_size (sectp);
2098 }
2099 }
2100
2101 /* See dwarf2read.h. */
2102
2103 struct dwz_file *
2104 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2105 {
2106 const char *filename;
2107 bfd_size_type buildid_len_arg;
2108 size_t buildid_len;
2109 bfd_byte *buildid;
2110
2111 if (dwarf2_per_objfile->dwz_file != NULL)
2112 return dwarf2_per_objfile->dwz_file.get ();
2113
2114 bfd_set_error (bfd_error_no_error);
2115 gdb::unique_xmalloc_ptr<char> data
2116 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2117 &buildid_len_arg, &buildid));
2118 if (data == NULL)
2119 {
2120 if (bfd_get_error () == bfd_error_no_error)
2121 return NULL;
2122 error (_("could not read '.gnu_debugaltlink' section: %s"),
2123 bfd_errmsg (bfd_get_error ()));
2124 }
2125
2126 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2127
2128 buildid_len = (size_t) buildid_len_arg;
2129
2130 filename = data.get ();
2131
2132 std::string abs_storage;
2133 if (!IS_ABSOLUTE_PATH (filename))
2134 {
2135 gdb::unique_xmalloc_ptr<char> abs
2136 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2137
2138 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2139 filename = abs_storage.c_str ();
2140 }
2141
2142 /* First try the file name given in the section. If that doesn't
2143 work, try to use the build-id instead. */
2144 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2145 if (dwz_bfd != NULL)
2146 {
2147 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2148 dwz_bfd.reset (nullptr);
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2153
2154 if (dwz_bfd == nullptr)
2155 {
2156 gdb::unique_xmalloc_ptr<char> alt_filename;
2157 const char *origname = dwarf2_per_objfile->objfile->original_name;
2158
2159 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2160 buildid_len,
2161 origname,
2162 &alt_filename));
2163
2164 if (fd.get () >= 0)
2165 {
2166 /* File successfully retrieved from server. */
2167 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2168
2169 if (dwz_bfd == nullptr)
2170 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2171 alt_filename.get ());
2172 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2173 dwz_bfd.reset (nullptr);
2174 }
2175 }
2176
2177 if (dwz_bfd == NULL)
2178 error (_("could not find '.gnu_debugaltlink' file for %s"),
2179 objfile_name (dwarf2_per_objfile->objfile));
2180
2181 std::unique_ptr<struct dwz_file> result
2182 (new struct dwz_file (std::move (dwz_bfd)));
2183
2184 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2185 result.get ());
2186
2187 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2188 result->dwz_bfd.get ());
2189 dwarf2_per_objfile->dwz_file = std::move (result);
2190 return dwarf2_per_objfile->dwz_file.get ();
2191 }
2192 \f
2193 /* DWARF quick_symbols_functions support. */
2194
2195 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2196 unique line tables, so we maintain a separate table of all .debug_line
2197 derived entries to support the sharing.
2198 All the quick functions need is the list of file names. We discard the
2199 line_header when we're done and don't need to record it here. */
2200 struct quick_file_names
2201 {
2202 /* The data used to construct the hash key. */
2203 struct stmt_list_hash hash;
2204
2205 /* The number of entries in file_names, real_names. */
2206 unsigned int num_file_names;
2207
2208 /* The file names from the line table, after being run through
2209 file_full_name. */
2210 const char **file_names;
2211
2212 /* The file names from the line table after being run through
2213 gdb_realpath. These are computed lazily. */
2214 const char **real_names;
2215 };
2216
2217 /* When using the index (and thus not using psymtabs), each CU has an
2218 object of this type. This is used to hold information needed by
2219 the various "quick" methods. */
2220 struct dwarf2_per_cu_quick_data
2221 {
2222 /* The file table. This can be NULL if there was no file table
2223 or it's currently not read in.
2224 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2225 struct quick_file_names *file_names;
2226
2227 /* The corresponding symbol table. This is NULL if symbols for this
2228 CU have not yet been read. */
2229 struct compunit_symtab *compunit_symtab;
2230
2231 /* A temporary mark bit used when iterating over all CUs in
2232 expand_symtabs_matching. */
2233 unsigned int mark : 1;
2234
2235 /* True if we've tried to read the file table and found there isn't one.
2236 There will be no point in trying to read it again next time. */
2237 unsigned int no_file_data : 1;
2238 };
2239
2240 /* Utility hash function for a stmt_list_hash. */
2241
2242 static hashval_t
2243 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2244 {
2245 hashval_t v = 0;
2246
2247 if (stmt_list_hash->dwo_unit != NULL)
2248 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2249 v += to_underlying (stmt_list_hash->line_sect_off);
2250 return v;
2251 }
2252
2253 /* Utility equality function for a stmt_list_hash. */
2254
2255 static int
2256 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2257 const struct stmt_list_hash *rhs)
2258 {
2259 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2260 return 0;
2261 if (lhs->dwo_unit != NULL
2262 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2263 return 0;
2264
2265 return lhs->line_sect_off == rhs->line_sect_off;
2266 }
2267
2268 /* Hash function for a quick_file_names. */
2269
2270 static hashval_t
2271 hash_file_name_entry (const void *e)
2272 {
2273 const struct quick_file_names *file_data
2274 = (const struct quick_file_names *) e;
2275
2276 return hash_stmt_list_entry (&file_data->hash);
2277 }
2278
2279 /* Equality function for a quick_file_names. */
2280
2281 static int
2282 eq_file_name_entry (const void *a, const void *b)
2283 {
2284 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2285 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2286
2287 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2288 }
2289
2290 /* Delete function for a quick_file_names. */
2291
2292 static void
2293 delete_file_name_entry (void *e)
2294 {
2295 struct quick_file_names *file_data = (struct quick_file_names *) e;
2296 int i;
2297
2298 for (i = 0; i < file_data->num_file_names; ++i)
2299 {
2300 xfree ((void*) file_data->file_names[i]);
2301 if (file_data->real_names)
2302 xfree ((void*) file_data->real_names[i]);
2303 }
2304
2305 /* The space for the struct itself lives on objfile_obstack,
2306 so we don't free it here. */
2307 }
2308
2309 /* Create a quick_file_names hash table. */
2310
2311 static htab_up
2312 create_quick_file_names_table (unsigned int nr_initial_entries)
2313 {
2314 return htab_up (htab_create_alloc (nr_initial_entries,
2315 hash_file_name_entry, eq_file_name_entry,
2316 delete_file_name_entry, xcalloc, xfree));
2317 }
2318
2319 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2320 have to be created afterwards. You should call age_cached_comp_units after
2321 processing PER_CU->CU. dw2_setup must have been already called. */
2322
2323 static void
2324 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2325 {
2326 if (per_cu->is_debug_types)
2327 load_full_type_unit (per_cu);
2328 else
2329 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2330
2331 if (per_cu->cu == NULL)
2332 return; /* Dummy CU. */
2333
2334 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2335 }
2336
2337 /* Read in the symbols for PER_CU. */
2338
2339 static void
2340 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2341 {
2342 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2343
2344 /* Skip type_unit_groups, reading the type units they contain
2345 is handled elsewhere. */
2346 if (per_cu->type_unit_group_p ())
2347 return;
2348
2349 /* The destructor of dwarf2_queue_guard frees any entries left on
2350 the queue. After this point we're guaranteed to leave this function
2351 with the dwarf queue empty. */
2352 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2353
2354 if (dwarf2_per_objfile->using_index
2355 ? per_cu->v.quick->compunit_symtab == NULL
2356 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2357 {
2358 queue_comp_unit (per_cu, language_minimal);
2359 load_cu (per_cu, skip_partial);
2360
2361 /* If we just loaded a CU from a DWO, and we're working with an index
2362 that may badly handle TUs, load all the TUs in that DWO as well.
2363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2364 if (!per_cu->is_debug_types
2365 && per_cu->cu != NULL
2366 && per_cu->cu->dwo_unit != NULL
2367 && dwarf2_per_objfile->index_table != NULL
2368 && dwarf2_per_objfile->index_table->version <= 7
2369 /* DWP files aren't supported yet. */
2370 && get_dwp_file (dwarf2_per_objfile) == NULL)
2371 queue_and_load_all_dwo_tus (per_cu);
2372 }
2373
2374 process_queue (dwarf2_per_objfile);
2375
2376 /* Age the cache, releasing compilation units that have not
2377 been used recently. */
2378 age_cached_comp_units (dwarf2_per_objfile);
2379 }
2380
2381 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2382 the objfile from which this CU came. Returns the resulting symbol
2383 table. */
2384
2385 static struct compunit_symtab *
2386 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2387 {
2388 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2389
2390 gdb_assert (dwarf2_per_objfile->using_index);
2391 if (!per_cu->v.quick->compunit_symtab)
2392 {
2393 free_cached_comp_units freer (dwarf2_per_objfile);
2394 scoped_restore decrementer = increment_reading_symtab ();
2395 dw2_do_instantiate_symtab (per_cu, skip_partial);
2396 process_cu_includes (dwarf2_per_objfile);
2397 }
2398
2399 return per_cu->v.quick->compunit_symtab;
2400 }
2401
2402 /* See declaration. */
2403
2404 dwarf2_per_cu_data *
2405 dwarf2_per_objfile::get_cutu (int index)
2406 {
2407 if (index >= this->all_comp_units.size ())
2408 {
2409 index -= this->all_comp_units.size ();
2410 gdb_assert (index < this->all_type_units.size ());
2411 return &this->all_type_units[index]->per_cu;
2412 }
2413
2414 return this->all_comp_units[index];
2415 }
2416
2417 /* See declaration. */
2418
2419 dwarf2_per_cu_data *
2420 dwarf2_per_objfile::get_cu (int index)
2421 {
2422 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2423
2424 return this->all_comp_units[index];
2425 }
2426
2427 /* See declaration. */
2428
2429 signatured_type *
2430 dwarf2_per_objfile::get_tu (int index)
2431 {
2432 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2433
2434 return this->all_type_units[index];
2435 }
2436
2437 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2438 objfile_obstack, and constructed with the specified field
2439 values. */
2440
2441 static dwarf2_per_cu_data *
2442 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2443 struct dwarf2_section_info *section,
2444 int is_dwz,
2445 sect_offset sect_off, ULONGEST length)
2446 {
2447 struct objfile *objfile = dwarf2_per_objfile->objfile;
2448 dwarf2_per_cu_data *the_cu
2449 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2450 struct dwarf2_per_cu_data);
2451 the_cu->sect_off = sect_off;
2452 the_cu->length = length;
2453 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2454 the_cu->section = section;
2455 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2456 struct dwarf2_per_cu_quick_data);
2457 the_cu->is_dwz = is_dwz;
2458 return the_cu;
2459 }
2460
2461 /* A helper for create_cus_from_index that handles a given list of
2462 CUs. */
2463
2464 static void
2465 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2466 const gdb_byte *cu_list, offset_type n_elements,
2467 struct dwarf2_section_info *section,
2468 int is_dwz)
2469 {
2470 for (offset_type i = 0; i < n_elements; i += 2)
2471 {
2472 gdb_static_assert (sizeof (ULONGEST) >= 8);
2473
2474 sect_offset sect_off
2475 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2476 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2477 cu_list += 2 * 8;
2478
2479 dwarf2_per_cu_data *per_cu
2480 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2481 sect_off, length);
2482 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2483 }
2484 }
2485
2486 /* Read the CU list from the mapped index, and use it to create all
2487 the CU objects for this objfile. */
2488
2489 static void
2490 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2491 const gdb_byte *cu_list, offset_type cu_list_elements,
2492 const gdb_byte *dwz_list, offset_type dwz_elements)
2493 {
2494 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2495 dwarf2_per_objfile->all_comp_units.reserve
2496 ((cu_list_elements + dwz_elements) / 2);
2497
2498 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2499 &dwarf2_per_objfile->info, 0);
2500
2501 if (dwz_elements == 0)
2502 return;
2503
2504 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2505 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2506 &dwz->info, 1);
2507 }
2508
2509 /* Create the signatured type hash table from the index. */
2510
2511 static void
2512 create_signatured_type_table_from_index
2513 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2514 struct dwarf2_section_info *section,
2515 const gdb_byte *bytes,
2516 offset_type elements)
2517 {
2518 struct objfile *objfile = dwarf2_per_objfile->objfile;
2519
2520 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2521 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2522
2523 htab_up sig_types_hash = allocate_signatured_type_table ();
2524
2525 for (offset_type i = 0; i < elements; i += 3)
2526 {
2527 struct signatured_type *sig_type;
2528 ULONGEST signature;
2529 void **slot;
2530 cu_offset type_offset_in_tu;
2531
2532 gdb_static_assert (sizeof (ULONGEST) >= 8);
2533 sect_offset sect_off
2534 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2535 type_offset_in_tu
2536 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2537 BFD_ENDIAN_LITTLE);
2538 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2539 bytes += 3 * 8;
2540
2541 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2542 struct signatured_type);
2543 sig_type->signature = signature;
2544 sig_type->type_offset_in_tu = type_offset_in_tu;
2545 sig_type->per_cu.is_debug_types = 1;
2546 sig_type->per_cu.section = section;
2547 sig_type->per_cu.sect_off = sect_off;
2548 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2549 sig_type->per_cu.v.quick
2550 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2551 struct dwarf2_per_cu_quick_data);
2552
2553 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2554 *slot = sig_type;
2555
2556 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2557 }
2558
2559 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2560 }
2561
2562 /* Create the signatured type hash table from .debug_names. */
2563
2564 static void
2565 create_signatured_type_table_from_debug_names
2566 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2567 const mapped_debug_names &map,
2568 struct dwarf2_section_info *section,
2569 struct dwarf2_section_info *abbrev_section)
2570 {
2571 struct objfile *objfile = dwarf2_per_objfile->objfile;
2572
2573 section->read (objfile);
2574 abbrev_section->read (objfile);
2575
2576 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2577 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2578
2579 htab_up sig_types_hash = allocate_signatured_type_table ();
2580
2581 for (uint32_t i = 0; i < map.tu_count; ++i)
2582 {
2583 struct signatured_type *sig_type;
2584 void **slot;
2585
2586 sect_offset sect_off
2587 = (sect_offset) (extract_unsigned_integer
2588 (map.tu_table_reordered + i * map.offset_size,
2589 map.offset_size,
2590 map.dwarf5_byte_order));
2591
2592 comp_unit_head cu_header;
2593 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2594 abbrev_section,
2595 section->buffer + to_underlying (sect_off),
2596 rcuh_kind::TYPE);
2597
2598 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2599 struct signatured_type);
2600 sig_type->signature = cu_header.signature;
2601 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2602 sig_type->per_cu.is_debug_types = 1;
2603 sig_type->per_cu.section = section;
2604 sig_type->per_cu.sect_off = sect_off;
2605 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2606 sig_type->per_cu.v.quick
2607 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2608 struct dwarf2_per_cu_quick_data);
2609
2610 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2611 *slot = sig_type;
2612
2613 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2614 }
2615
2616 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2617 }
2618
2619 /* Read the address map data from the mapped index, and use it to
2620 populate the objfile's psymtabs_addrmap. */
2621
2622 static void
2623 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2624 struct mapped_index *index)
2625 {
2626 struct objfile *objfile = dwarf2_per_objfile->objfile;
2627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2628 const gdb_byte *iter, *end;
2629 struct addrmap *mutable_map;
2630 CORE_ADDR baseaddr;
2631
2632 auto_obstack temp_obstack;
2633
2634 mutable_map = addrmap_create_mutable (&temp_obstack);
2635
2636 iter = index->address_table.data ();
2637 end = iter + index->address_table.size ();
2638
2639 baseaddr = objfile->text_section_offset ();
2640
2641 while (iter < end)
2642 {
2643 ULONGEST hi, lo, cu_index;
2644 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2645 iter += 8;
2646 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2647 iter += 8;
2648 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2649 iter += 4;
2650
2651 if (lo > hi)
2652 {
2653 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2654 hex_string (lo), hex_string (hi));
2655 continue;
2656 }
2657
2658 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2659 {
2660 complaint (_(".gdb_index address table has invalid CU number %u"),
2661 (unsigned) cu_index);
2662 continue;
2663 }
2664
2665 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2666 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2667 addrmap_set_empty (mutable_map, lo, hi - 1,
2668 dwarf2_per_objfile->get_cu (cu_index));
2669 }
2670
2671 objfile->partial_symtabs->psymtabs_addrmap
2672 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2673 }
2674
2675 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2676 populate the objfile's psymtabs_addrmap. */
2677
2678 static void
2679 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2680 struct dwarf2_section_info *section)
2681 {
2682 struct objfile *objfile = dwarf2_per_objfile->objfile;
2683 bfd *abfd = objfile->obfd;
2684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2685 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2686
2687 auto_obstack temp_obstack;
2688 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2689
2690 std::unordered_map<sect_offset,
2691 dwarf2_per_cu_data *,
2692 gdb::hash_enum<sect_offset>>
2693 debug_info_offset_to_per_cu;
2694 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2695 {
2696 const auto insertpair
2697 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2698 if (!insertpair.second)
2699 {
2700 warning (_("Section .debug_aranges in %s has duplicate "
2701 "debug_info_offset %s, ignoring .debug_aranges."),
2702 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2703 return;
2704 }
2705 }
2706
2707 section->read (objfile);
2708
2709 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2710
2711 const gdb_byte *addr = section->buffer;
2712
2713 while (addr < section->buffer + section->size)
2714 {
2715 const gdb_byte *const entry_addr = addr;
2716 unsigned int bytes_read;
2717
2718 const LONGEST entry_length = read_initial_length (abfd, addr,
2719 &bytes_read);
2720 addr += bytes_read;
2721
2722 const gdb_byte *const entry_end = addr + entry_length;
2723 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2724 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2725 if (addr + entry_length > section->buffer + section->size)
2726 {
2727 warning (_("Section .debug_aranges in %s entry at offset %s "
2728 "length %s exceeds section length %s, "
2729 "ignoring .debug_aranges."),
2730 objfile_name (objfile),
2731 plongest (entry_addr - section->buffer),
2732 plongest (bytes_read + entry_length),
2733 pulongest (section->size));
2734 return;
2735 }
2736
2737 /* The version number. */
2738 const uint16_t version = read_2_bytes (abfd, addr);
2739 addr += 2;
2740 if (version != 2)
2741 {
2742 warning (_("Section .debug_aranges in %s entry at offset %s "
2743 "has unsupported version %d, ignoring .debug_aranges."),
2744 objfile_name (objfile),
2745 plongest (entry_addr - section->buffer), version);
2746 return;
2747 }
2748
2749 const uint64_t debug_info_offset
2750 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2751 addr += offset_size;
2752 const auto per_cu_it
2753 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2754 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2755 {
2756 warning (_("Section .debug_aranges in %s entry at offset %s "
2757 "debug_info_offset %s does not exists, "
2758 "ignoring .debug_aranges."),
2759 objfile_name (objfile),
2760 plongest (entry_addr - section->buffer),
2761 pulongest (debug_info_offset));
2762 return;
2763 }
2764 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2765
2766 const uint8_t address_size = *addr++;
2767 if (address_size < 1 || address_size > 8)
2768 {
2769 warning (_("Section .debug_aranges in %s entry at offset %s "
2770 "address_size %u is invalid, ignoring .debug_aranges."),
2771 objfile_name (objfile),
2772 plongest (entry_addr - section->buffer), address_size);
2773 return;
2774 }
2775
2776 const uint8_t segment_selector_size = *addr++;
2777 if (segment_selector_size != 0)
2778 {
2779 warning (_("Section .debug_aranges in %s entry at offset %s "
2780 "segment_selector_size %u is not supported, "
2781 "ignoring .debug_aranges."),
2782 objfile_name (objfile),
2783 plongest (entry_addr - section->buffer),
2784 segment_selector_size);
2785 return;
2786 }
2787
2788 /* Must pad to an alignment boundary that is twice the address
2789 size. It is undocumented by the DWARF standard but GCC does
2790 use it. */
2791 for (size_t padding = ((-(addr - section->buffer))
2792 & (2 * address_size - 1));
2793 padding > 0; padding--)
2794 if (*addr++ != 0)
2795 {
2796 warning (_("Section .debug_aranges in %s entry at offset %s "
2797 "padding is not zero, ignoring .debug_aranges."),
2798 objfile_name (objfile),
2799 plongest (entry_addr - section->buffer));
2800 return;
2801 }
2802
2803 for (;;)
2804 {
2805 if (addr + 2 * address_size > entry_end)
2806 {
2807 warning (_("Section .debug_aranges in %s entry at offset %s "
2808 "address list is not properly terminated, "
2809 "ignoring .debug_aranges."),
2810 objfile_name (objfile),
2811 plongest (entry_addr - section->buffer));
2812 return;
2813 }
2814 ULONGEST start = extract_unsigned_integer (addr, address_size,
2815 dwarf5_byte_order);
2816 addr += address_size;
2817 ULONGEST length = extract_unsigned_integer (addr, address_size,
2818 dwarf5_byte_order);
2819 addr += address_size;
2820 if (start == 0 && length == 0)
2821 break;
2822 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2823 {
2824 /* Symbol was eliminated due to a COMDAT group. */
2825 continue;
2826 }
2827 ULONGEST end = start + length;
2828 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2829 - baseaddr);
2830 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2831 - baseaddr);
2832 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2833 }
2834 }
2835
2836 objfile->partial_symtabs->psymtabs_addrmap
2837 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2838 }
2839
2840 /* Find a slot in the mapped index INDEX for the object named NAME.
2841 If NAME is found, set *VEC_OUT to point to the CU vector in the
2842 constant pool and return true. If NAME cannot be found, return
2843 false. */
2844
2845 static bool
2846 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2847 offset_type **vec_out)
2848 {
2849 offset_type hash;
2850 offset_type slot, step;
2851 int (*cmp) (const char *, const char *);
2852
2853 gdb::unique_xmalloc_ptr<char> without_params;
2854 if (current_language->la_language == language_cplus
2855 || current_language->la_language == language_fortran
2856 || current_language->la_language == language_d)
2857 {
2858 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2859 not contain any. */
2860
2861 if (strchr (name, '(') != NULL)
2862 {
2863 without_params = cp_remove_params (name);
2864
2865 if (without_params != NULL)
2866 name = without_params.get ();
2867 }
2868 }
2869
2870 /* Index version 4 did not support case insensitive searches. But the
2871 indices for case insensitive languages are built in lowercase, therefore
2872 simulate our NAME being searched is also lowercased. */
2873 hash = mapped_index_string_hash ((index->version == 4
2874 && case_sensitivity == case_sensitive_off
2875 ? 5 : index->version),
2876 name);
2877
2878 slot = hash & (index->symbol_table.size () - 1);
2879 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2880 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2881
2882 for (;;)
2883 {
2884 const char *str;
2885
2886 const auto &bucket = index->symbol_table[slot];
2887 if (bucket.name == 0 && bucket.vec == 0)
2888 return false;
2889
2890 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2891 if (!cmp (name, str))
2892 {
2893 *vec_out = (offset_type *) (index->constant_pool
2894 + MAYBE_SWAP (bucket.vec));
2895 return true;
2896 }
2897
2898 slot = (slot + step) & (index->symbol_table.size () - 1);
2899 }
2900 }
2901
2902 /* A helper function that reads the .gdb_index from BUFFER and fills
2903 in MAP. FILENAME is the name of the file containing the data;
2904 it is used for error reporting. DEPRECATED_OK is true if it is
2905 ok to use deprecated sections.
2906
2907 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2908 out parameters that are filled in with information about the CU and
2909 TU lists in the section.
2910
2911 Returns true if all went well, false otherwise. */
2912
2913 static bool
2914 read_gdb_index_from_buffer (struct objfile *objfile,
2915 const char *filename,
2916 bool deprecated_ok,
2917 gdb::array_view<const gdb_byte> buffer,
2918 struct mapped_index *map,
2919 const gdb_byte **cu_list,
2920 offset_type *cu_list_elements,
2921 const gdb_byte **types_list,
2922 offset_type *types_list_elements)
2923 {
2924 const gdb_byte *addr = &buffer[0];
2925
2926 /* Version check. */
2927 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2928 /* Versions earlier than 3 emitted every copy of a psymbol. This
2929 causes the index to behave very poorly for certain requests. Version 3
2930 contained incomplete addrmap. So, it seems better to just ignore such
2931 indices. */
2932 if (version < 4)
2933 {
2934 static int warning_printed = 0;
2935 if (!warning_printed)
2936 {
2937 warning (_("Skipping obsolete .gdb_index section in %s."),
2938 filename);
2939 warning_printed = 1;
2940 }
2941 return 0;
2942 }
2943 /* Index version 4 uses a different hash function than index version
2944 5 and later.
2945
2946 Versions earlier than 6 did not emit psymbols for inlined
2947 functions. Using these files will cause GDB not to be able to
2948 set breakpoints on inlined functions by name, so we ignore these
2949 indices unless the user has done
2950 "set use-deprecated-index-sections on". */
2951 if (version < 6 && !deprecated_ok)
2952 {
2953 static int warning_printed = 0;
2954 if (!warning_printed)
2955 {
2956 warning (_("\
2957 Skipping deprecated .gdb_index section in %s.\n\
2958 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2959 to use the section anyway."),
2960 filename);
2961 warning_printed = 1;
2962 }
2963 return 0;
2964 }
2965 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2966 of the TU (for symbols coming from TUs),
2967 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2968 Plus gold-generated indices can have duplicate entries for global symbols,
2969 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2970 These are just performance bugs, and we can't distinguish gdb-generated
2971 indices from gold-generated ones, so issue no warning here. */
2972
2973 /* Indexes with higher version than the one supported by GDB may be no
2974 longer backward compatible. */
2975 if (version > 8)
2976 return 0;
2977
2978 map->version = version;
2979
2980 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2981
2982 int i = 0;
2983 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2984 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2985 / 8);
2986 ++i;
2987
2988 *types_list = addr + MAYBE_SWAP (metadata[i]);
2989 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2990 - MAYBE_SWAP (metadata[i]))
2991 / 8);
2992 ++i;
2993
2994 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2995 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2996 map->address_table
2997 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2998 ++i;
2999
3000 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3001 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3002 map->symbol_table
3003 = gdb::array_view<mapped_index::symbol_table_slot>
3004 ((mapped_index::symbol_table_slot *) symbol_table,
3005 (mapped_index::symbol_table_slot *) symbol_table_end);
3006
3007 ++i;
3008 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3009
3010 return 1;
3011 }
3012
3013 /* Callback types for dwarf2_read_gdb_index. */
3014
3015 typedef gdb::function_view
3016 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3017 get_gdb_index_contents_ftype;
3018 typedef gdb::function_view
3019 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3020 get_gdb_index_contents_dwz_ftype;
3021
3022 /* Read .gdb_index. If everything went ok, initialize the "quick"
3023 elements of all the CUs and return 1. Otherwise, return 0. */
3024
3025 static int
3026 dwarf2_read_gdb_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 get_gdb_index_contents_ftype get_gdb_index_contents,
3029 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3030 {
3031 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3032 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3033 struct dwz_file *dwz;
3034 struct objfile *objfile = dwarf2_per_objfile->objfile;
3035
3036 gdb::array_view<const gdb_byte> main_index_contents
3037 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3038
3039 if (main_index_contents.empty ())
3040 return 0;
3041
3042 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3043 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3044 use_deprecated_index_sections,
3045 main_index_contents, map.get (), &cu_list,
3046 &cu_list_elements, &types_list,
3047 &types_list_elements))
3048 return 0;
3049
3050 /* Don't use the index if it's empty. */
3051 if (map->symbol_table.empty ())
3052 return 0;
3053
3054 /* If there is a .dwz file, read it so we can get its CU list as
3055 well. */
3056 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3057 if (dwz != NULL)
3058 {
3059 struct mapped_index dwz_map;
3060 const gdb_byte *dwz_types_ignore;
3061 offset_type dwz_types_elements_ignore;
3062
3063 gdb::array_view<const gdb_byte> dwz_index_content
3064 = get_gdb_index_contents_dwz (objfile, dwz);
3065
3066 if (dwz_index_content.empty ())
3067 return 0;
3068
3069 if (!read_gdb_index_from_buffer (objfile,
3070 bfd_get_filename (dwz->dwz_bfd.get ()),
3071 1, dwz_index_content, &dwz_map,
3072 &dwz_list, &dwz_list_elements,
3073 &dwz_types_ignore,
3074 &dwz_types_elements_ignore))
3075 {
3076 warning (_("could not read '.gdb_index' section from %s; skipping"),
3077 bfd_get_filename (dwz->dwz_bfd.get ()));
3078 return 0;
3079 }
3080 }
3081
3082 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3083 dwz_list, dwz_list_elements);
3084
3085 if (types_list_elements)
3086 {
3087 /* We can only handle a single .debug_types when we have an
3088 index. */
3089 if (dwarf2_per_objfile->types.size () != 1)
3090 return 0;
3091
3092 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3093
3094 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3095 types_list, types_list_elements);
3096 }
3097
3098 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3099
3100 dwarf2_per_objfile->index_table = std::move (map);
3101 dwarf2_per_objfile->using_index = 1;
3102 dwarf2_per_objfile->quick_file_names_table =
3103 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3104
3105 return 1;
3106 }
3107
3108 /* die_reader_func for dw2_get_file_names. */
3109
3110 static void
3111 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3112 const gdb_byte *info_ptr,
3113 struct die_info *comp_unit_die)
3114 {
3115 struct dwarf2_cu *cu = reader->cu;
3116 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3117 struct dwarf2_per_objfile *dwarf2_per_objfile
3118 = cu->per_cu->dwarf2_per_objfile;
3119 struct objfile *objfile = dwarf2_per_objfile->objfile;
3120 struct dwarf2_per_cu_data *lh_cu;
3121 struct attribute *attr;
3122 void **slot;
3123 struct quick_file_names *qfn;
3124
3125 gdb_assert (! this_cu->is_debug_types);
3126
3127 /* Our callers never want to match partial units -- instead they
3128 will match the enclosing full CU. */
3129 if (comp_unit_die->tag == DW_TAG_partial_unit)
3130 {
3131 this_cu->v.quick->no_file_data = 1;
3132 return;
3133 }
3134
3135 lh_cu = this_cu;
3136 slot = NULL;
3137
3138 line_header_up lh;
3139 sect_offset line_offset {};
3140
3141 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3142 if (attr != nullptr)
3143 {
3144 struct quick_file_names find_entry;
3145
3146 line_offset = (sect_offset) DW_UNSND (attr);
3147
3148 /* We may have already read in this line header (TU line header sharing).
3149 If we have we're done. */
3150 find_entry.hash.dwo_unit = cu->dwo_unit;
3151 find_entry.hash.line_sect_off = line_offset;
3152 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3153 &find_entry, INSERT);
3154 if (*slot != NULL)
3155 {
3156 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3157 return;
3158 }
3159
3160 lh = dwarf_decode_line_header (line_offset, cu);
3161 }
3162 if (lh == NULL)
3163 {
3164 lh_cu->v.quick->no_file_data = 1;
3165 return;
3166 }
3167
3168 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3169 qfn->hash.dwo_unit = cu->dwo_unit;
3170 qfn->hash.line_sect_off = line_offset;
3171 gdb_assert (slot != NULL);
3172 *slot = qfn;
3173
3174 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3175
3176 int offset = 0;
3177 if (strcmp (fnd.name, "<unknown>") != 0)
3178 ++offset;
3179
3180 qfn->num_file_names = offset + lh->file_names_size ();
3181 qfn->file_names =
3182 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3183 if (offset != 0)
3184 qfn->file_names[0] = xstrdup (fnd.name);
3185 for (int i = 0; i < lh->file_names_size (); ++i)
3186 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3187 fnd.comp_dir).release ();
3188 qfn->real_names = NULL;
3189
3190 lh_cu->v.quick->file_names = qfn;
3191 }
3192
3193 /* A helper for the "quick" functions which attempts to read the line
3194 table for THIS_CU. */
3195
3196 static struct quick_file_names *
3197 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3198 {
3199 /* This should never be called for TUs. */
3200 gdb_assert (! this_cu->is_debug_types);
3201 /* Nor type unit groups. */
3202 gdb_assert (! this_cu->type_unit_group_p ());
3203
3204 if (this_cu->v.quick->file_names != NULL)
3205 return this_cu->v.quick->file_names;
3206 /* If we know there is no line data, no point in looking again. */
3207 if (this_cu->v.quick->no_file_data)
3208 return NULL;
3209
3210 cutu_reader reader (this_cu);
3211 if (!reader.dummy_p)
3212 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3213
3214 if (this_cu->v.quick->no_file_data)
3215 return NULL;
3216 return this_cu->v.quick->file_names;
3217 }
3218
3219 /* A helper for the "quick" functions which computes and caches the
3220 real path for a given file name from the line table. */
3221
3222 static const char *
3223 dw2_get_real_path (struct objfile *objfile,
3224 struct quick_file_names *qfn, int index)
3225 {
3226 if (qfn->real_names == NULL)
3227 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3228 qfn->num_file_names, const char *);
3229
3230 if (qfn->real_names[index] == NULL)
3231 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3232
3233 return qfn->real_names[index];
3234 }
3235
3236 static struct symtab *
3237 dw2_find_last_source_symtab (struct objfile *objfile)
3238 {
3239 struct dwarf2_per_objfile *dwarf2_per_objfile
3240 = get_dwarf2_per_objfile (objfile);
3241 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3242 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3243
3244 if (cust == NULL)
3245 return NULL;
3246
3247 return compunit_primary_filetab (cust);
3248 }
3249
3250 /* Traversal function for dw2_forget_cached_source_info. */
3251
3252 static int
3253 dw2_free_cached_file_names (void **slot, void *info)
3254 {
3255 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3256
3257 if (file_data->real_names)
3258 {
3259 int i;
3260
3261 for (i = 0; i < file_data->num_file_names; ++i)
3262 {
3263 xfree ((void*) file_data->real_names[i]);
3264 file_data->real_names[i] = NULL;
3265 }
3266 }
3267
3268 return 1;
3269 }
3270
3271 static void
3272 dw2_forget_cached_source_info (struct objfile *objfile)
3273 {
3274 struct dwarf2_per_objfile *dwarf2_per_objfile
3275 = get_dwarf2_per_objfile (objfile);
3276
3277 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3278 dw2_free_cached_file_names, NULL);
3279 }
3280
3281 /* Helper function for dw2_map_symtabs_matching_filename that expands
3282 the symtabs and calls the iterator. */
3283
3284 static int
3285 dw2_map_expand_apply (struct objfile *objfile,
3286 struct dwarf2_per_cu_data *per_cu,
3287 const char *name, const char *real_path,
3288 gdb::function_view<bool (symtab *)> callback)
3289 {
3290 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3291
3292 /* Don't visit already-expanded CUs. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 return 0;
3295
3296 /* This may expand more than one symtab, and we want to iterate over
3297 all of them. */
3298 dw2_instantiate_symtab (per_cu, false);
3299
3300 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3301 last_made, callback);
3302 }
3303
3304 /* Implementation of the map_symtabs_matching_filename method. */
3305
3306 static bool
3307 dw2_map_symtabs_matching_filename
3308 (struct objfile *objfile, const char *name, const char *real_path,
3309 gdb::function_view<bool (symtab *)> callback)
3310 {
3311 const char *name_basename = lbasename (name);
3312 struct dwarf2_per_objfile *dwarf2_per_objfile
3313 = get_dwarf2_per_objfile (objfile);
3314
3315 /* The rule is CUs specify all the files, including those used by
3316 any TU, so there's no need to scan TUs here. */
3317
3318 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3319 {
3320 /* We only need to look at symtabs not already expanded. */
3321 if (per_cu->v.quick->compunit_symtab)
3322 continue;
3323
3324 quick_file_names *file_data = dw2_get_file_names (per_cu);
3325 if (file_data == NULL)
3326 continue;
3327
3328 for (int j = 0; j < file_data->num_file_names; ++j)
3329 {
3330 const char *this_name = file_data->file_names[j];
3331 const char *this_real_name;
3332
3333 if (compare_filenames_for_search (this_name, name))
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340
3341 /* Before we invoke realpath, which can get expensive when many
3342 files are involved, do a quick comparison of the basenames. */
3343 if (! basenames_may_differ
3344 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3345 continue;
3346
3347 this_real_name = dw2_get_real_path (objfile, file_data, j);
3348 if (compare_filenames_for_search (this_real_name, name))
3349 {
3350 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3351 callback))
3352 return true;
3353 continue;
3354 }
3355
3356 if (real_path != NULL)
3357 {
3358 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3359 gdb_assert (IS_ABSOLUTE_PATH (name));
3360 if (this_real_name != NULL
3361 && FILENAME_CMP (real_path, this_real_name) == 0)
3362 {
3363 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3364 callback))
3365 return true;
3366 continue;
3367 }
3368 }
3369 }
3370 }
3371
3372 return false;
3373 }
3374
3375 /* Struct used to manage iterating over all CUs looking for a symbol. */
3376
3377 struct dw2_symtab_iterator
3378 {
3379 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3380 struct dwarf2_per_objfile *dwarf2_per_objfile;
3381 /* If set, only look for symbols that match that block. Valid values are
3382 GLOBAL_BLOCK and STATIC_BLOCK. */
3383 gdb::optional<block_enum> block_index;
3384 /* The kind of symbol we're looking for. */
3385 domain_enum domain;
3386 /* The list of CUs from the index entry of the symbol,
3387 or NULL if not found. */
3388 offset_type *vec;
3389 /* The next element in VEC to look at. */
3390 int next;
3391 /* The number of elements in VEC, or zero if there is no match. */
3392 int length;
3393 /* Have we seen a global version of the symbol?
3394 If so we can ignore all further global instances.
3395 This is to work around gold/15646, inefficient gold-generated
3396 indices. */
3397 int global_seen;
3398 };
3399
3400 /* Initialize the index symtab iterator ITER. */
3401
3402 static void
3403 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3404 struct dwarf2_per_objfile *dwarf2_per_objfile,
3405 gdb::optional<block_enum> block_index,
3406 domain_enum domain,
3407 const char *name)
3408 {
3409 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3410 iter->block_index = block_index;
3411 iter->domain = domain;
3412 iter->next = 0;
3413 iter->global_seen = 0;
3414
3415 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3416
3417 /* index is NULL if OBJF_READNOW. */
3418 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3419 iter->length = MAYBE_SWAP (*iter->vec);
3420 else
3421 {
3422 iter->vec = NULL;
3423 iter->length = 0;
3424 }
3425 }
3426
3427 /* Return the next matching CU or NULL if there are no more. */
3428
3429 static struct dwarf2_per_cu_data *
3430 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3431 {
3432 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3433
3434 for ( ; iter->next < iter->length; ++iter->next)
3435 {
3436 offset_type cu_index_and_attrs =
3437 MAYBE_SWAP (iter->vec[iter->next + 1]);
3438 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3439 gdb_index_symbol_kind symbol_kind =
3440 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3441 /* Only check the symbol attributes if they're present.
3442 Indices prior to version 7 don't record them,
3443 and indices >= 7 may elide them for certain symbols
3444 (gold does this). */
3445 int attrs_valid =
3446 (dwarf2_per_objfile->index_table->version >= 7
3447 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3448
3449 /* Don't crash on bad data. */
3450 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3451 + dwarf2_per_objfile->all_type_units.size ()))
3452 {
3453 complaint (_(".gdb_index entry has bad CU index"
3454 " [in module %s]"),
3455 objfile_name (dwarf2_per_objfile->objfile));
3456 continue;
3457 }
3458
3459 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3460
3461 /* Skip if already read in. */
3462 if (per_cu->v.quick->compunit_symtab)
3463 continue;
3464
3465 /* Check static vs global. */
3466 if (attrs_valid)
3467 {
3468 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3469
3470 if (iter->block_index.has_value ())
3471 {
3472 bool want_static = *iter->block_index == STATIC_BLOCK;
3473
3474 if (is_static != want_static)
3475 continue;
3476 }
3477
3478 /* Work around gold/15646. */
3479 if (!is_static && iter->global_seen)
3480 continue;
3481 if (!is_static)
3482 iter->global_seen = 1;
3483 }
3484
3485 /* Only check the symbol's kind if it has one. */
3486 if (attrs_valid)
3487 {
3488 switch (iter->domain)
3489 {
3490 case VAR_DOMAIN:
3491 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3492 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3493 /* Some types are also in VAR_DOMAIN. */
3494 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3495 continue;
3496 break;
3497 case STRUCT_DOMAIN:
3498 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3499 continue;
3500 break;
3501 case LABEL_DOMAIN:
3502 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3503 continue;
3504 break;
3505 case MODULE_DOMAIN:
3506 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3507 continue;
3508 break;
3509 default:
3510 break;
3511 }
3512 }
3513
3514 ++iter->next;
3515 return per_cu;
3516 }
3517
3518 return NULL;
3519 }
3520
3521 static struct compunit_symtab *
3522 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3523 const char *name, domain_enum domain)
3524 {
3525 struct compunit_symtab *stab_best = NULL;
3526 struct dwarf2_per_objfile *dwarf2_per_objfile
3527 = get_dwarf2_per_objfile (objfile);
3528
3529 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3530
3531 struct dw2_symtab_iterator iter;
3532 struct dwarf2_per_cu_data *per_cu;
3533
3534 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3535
3536 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3537 {
3538 struct symbol *sym, *with_opaque = NULL;
3539 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3540 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3541 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3542
3543 sym = block_find_symbol (block, name, domain,
3544 block_find_non_opaque_type_preferred,
3545 &with_opaque);
3546
3547 /* Some caution must be observed with overloaded functions
3548 and methods, since the index will not contain any overload
3549 information (but NAME might contain it). */
3550
3551 if (sym != NULL
3552 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3553 return stab;
3554 if (with_opaque != NULL
3555 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3556 stab_best = stab;
3557
3558 /* Keep looking through other CUs. */
3559 }
3560
3561 return stab_best;
3562 }
3563
3564 static void
3565 dw2_print_stats (struct objfile *objfile)
3566 {
3567 struct dwarf2_per_objfile *dwarf2_per_objfile
3568 = get_dwarf2_per_objfile (objfile);
3569 int total = (dwarf2_per_objfile->all_comp_units.size ()
3570 + dwarf2_per_objfile->all_type_units.size ());
3571 int count = 0;
3572
3573 for (int i = 0; i < total; ++i)
3574 {
3575 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3576
3577 if (!per_cu->v.quick->compunit_symtab)
3578 ++count;
3579 }
3580 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3581 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3582 }
3583
3584 /* This dumps minimal information about the index.
3585 It is called via "mt print objfiles".
3586 One use is to verify .gdb_index has been loaded by the
3587 gdb.dwarf2/gdb-index.exp testcase. */
3588
3589 static void
3590 dw2_dump (struct objfile *objfile)
3591 {
3592 struct dwarf2_per_objfile *dwarf2_per_objfile
3593 = get_dwarf2_per_objfile (objfile);
3594
3595 gdb_assert (dwarf2_per_objfile->using_index);
3596 printf_filtered (".gdb_index:");
3597 if (dwarf2_per_objfile->index_table != NULL)
3598 {
3599 printf_filtered (" version %d\n",
3600 dwarf2_per_objfile->index_table->version);
3601 }
3602 else
3603 printf_filtered (" faked for \"readnow\"\n");
3604 printf_filtered ("\n");
3605 }
3606
3607 static void
3608 dw2_expand_symtabs_for_function (struct objfile *objfile,
3609 const char *func_name)
3610 {
3611 struct dwarf2_per_objfile *dwarf2_per_objfile
3612 = get_dwarf2_per_objfile (objfile);
3613
3614 struct dw2_symtab_iterator iter;
3615 struct dwarf2_per_cu_data *per_cu;
3616
3617 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3618
3619 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3620 dw2_instantiate_symtab (per_cu, false);
3621
3622 }
3623
3624 static void
3625 dw2_expand_all_symtabs (struct objfile *objfile)
3626 {
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = get_dwarf2_per_objfile (objfile);
3629 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3630 + dwarf2_per_objfile->all_type_units.size ());
3631
3632 for (int i = 0; i < total_units; ++i)
3633 {
3634 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3635
3636 /* We don't want to directly expand a partial CU, because if we
3637 read it with the wrong language, then assertion failures can
3638 be triggered later on. See PR symtab/23010. So, tell
3639 dw2_instantiate_symtab to skip partial CUs -- any important
3640 partial CU will be read via DW_TAG_imported_unit anyway. */
3641 dw2_instantiate_symtab (per_cu, true);
3642 }
3643 }
3644
3645 static void
3646 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3647 const char *fullname)
3648 {
3649 struct dwarf2_per_objfile *dwarf2_per_objfile
3650 = get_dwarf2_per_objfile (objfile);
3651
3652 /* We don't need to consider type units here.
3653 This is only called for examining code, e.g. expand_line_sal.
3654 There can be an order of magnitude (or more) more type units
3655 than comp units, and we avoid them if we can. */
3656
3657 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3658 {
3659 /* We only need to look at symtabs not already expanded. */
3660 if (per_cu->v.quick->compunit_symtab)
3661 continue;
3662
3663 quick_file_names *file_data = dw2_get_file_names (per_cu);
3664 if (file_data == NULL)
3665 continue;
3666
3667 for (int j = 0; j < file_data->num_file_names; ++j)
3668 {
3669 const char *this_fullname = file_data->file_names[j];
3670
3671 if (filename_cmp (this_fullname, fullname) == 0)
3672 {
3673 dw2_instantiate_symtab (per_cu, false);
3674 break;
3675 }
3676 }
3677 }
3678 }
3679
3680 static void
3681 dw2_map_matching_symbols
3682 (struct objfile *objfile,
3683 const lookup_name_info &name, domain_enum domain,
3684 int global,
3685 gdb::function_view<symbol_found_callback_ftype> callback,
3686 symbol_compare_ftype *ordered_compare)
3687 {
3688 /* Currently unimplemented; used for Ada. The function can be called if the
3689 current language is Ada for a non-Ada objfile using GNU index. As Ada
3690 does not look for non-Ada symbols this function should just return. */
3691 }
3692
3693 /* Starting from a search name, return the string that finds the upper
3694 bound of all strings that start with SEARCH_NAME in a sorted name
3695 list. Returns the empty string to indicate that the upper bound is
3696 the end of the list. */
3697
3698 static std::string
3699 make_sort_after_prefix_name (const char *search_name)
3700 {
3701 /* When looking to complete "func", we find the upper bound of all
3702 symbols that start with "func" by looking for where we'd insert
3703 the closest string that would follow "func" in lexicographical
3704 order. Usually, that's "func"-with-last-character-incremented,
3705 i.e. "fund". Mind non-ASCII characters, though. Usually those
3706 will be UTF-8 multi-byte sequences, but we can't be certain.
3707 Especially mind the 0xff character, which is a valid character in
3708 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3709 rule out compilers allowing it in identifiers. Note that
3710 conveniently, strcmp/strcasecmp are specified to compare
3711 characters interpreted as unsigned char. So what we do is treat
3712 the whole string as a base 256 number composed of a sequence of
3713 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3714 to 0, and carries 1 to the following more-significant position.
3715 If the very first character in SEARCH_NAME ends up incremented
3716 and carries/overflows, then the upper bound is the end of the
3717 list. The string after the empty string is also the empty
3718 string.
3719
3720 Some examples of this operation:
3721
3722 SEARCH_NAME => "+1" RESULT
3723
3724 "abc" => "abd"
3725 "ab\xff" => "ac"
3726 "\xff" "a" "\xff" => "\xff" "b"
3727 "\xff" => ""
3728 "\xff\xff" => ""
3729 "" => ""
3730
3731 Then, with these symbols for example:
3732
3733 func
3734 func1
3735 fund
3736
3737 completing "func" looks for symbols between "func" and
3738 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3739 which finds "func" and "func1", but not "fund".
3740
3741 And with:
3742
3743 funcÿ (Latin1 'ÿ' [0xff])
3744 funcÿ1
3745 fund
3746
3747 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3748 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3749
3750 And with:
3751
3752 ÿÿ (Latin1 'ÿ' [0xff])
3753 ÿÿ1
3754
3755 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3756 the end of the list.
3757 */
3758 std::string after = search_name;
3759 while (!after.empty () && (unsigned char) after.back () == 0xff)
3760 after.pop_back ();
3761 if (!after.empty ())
3762 after.back () = (unsigned char) after.back () + 1;
3763 return after;
3764 }
3765
3766 /* See declaration. */
3767
3768 std::pair<std::vector<name_component>::const_iterator,
3769 std::vector<name_component>::const_iterator>
3770 mapped_index_base::find_name_components_bounds
3771 (const lookup_name_info &lookup_name_without_params, language lang) const
3772 {
3773 auto *name_cmp
3774 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3775
3776 const char *lang_name
3777 = lookup_name_without_params.language_lookup_name (lang).c_str ();
3778
3779 /* Comparison function object for lower_bound that matches against a
3780 given symbol name. */
3781 auto lookup_compare_lower = [&] (const name_component &elem,
3782 const char *name)
3783 {
3784 const char *elem_qualified = this->symbol_name_at (elem.idx);
3785 const char *elem_name = elem_qualified + elem.name_offset;
3786 return name_cmp (elem_name, name) < 0;
3787 };
3788
3789 /* Comparison function object for upper_bound that matches against a
3790 given symbol name. */
3791 auto lookup_compare_upper = [&] (const char *name,
3792 const name_component &elem)
3793 {
3794 const char *elem_qualified = this->symbol_name_at (elem.idx);
3795 const char *elem_name = elem_qualified + elem.name_offset;
3796 return name_cmp (name, elem_name) < 0;
3797 };
3798
3799 auto begin = this->name_components.begin ();
3800 auto end = this->name_components.end ();
3801
3802 /* Find the lower bound. */
3803 auto lower = [&] ()
3804 {
3805 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3806 return begin;
3807 else
3808 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3809 } ();
3810
3811 /* Find the upper bound. */
3812 auto upper = [&] ()
3813 {
3814 if (lookup_name_without_params.completion_mode ())
3815 {
3816 /* In completion mode, we want UPPER to point past all
3817 symbols names that have the same prefix. I.e., with
3818 these symbols, and completing "func":
3819
3820 function << lower bound
3821 function1
3822 other_function << upper bound
3823
3824 We find the upper bound by looking for the insertion
3825 point of "func"-with-last-character-incremented,
3826 i.e. "fund". */
3827 std::string after = make_sort_after_prefix_name (lang_name);
3828 if (after.empty ())
3829 return end;
3830 return std::lower_bound (lower, end, after.c_str (),
3831 lookup_compare_lower);
3832 }
3833 else
3834 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3835 } ();
3836
3837 return {lower, upper};
3838 }
3839
3840 /* See declaration. */
3841
3842 void
3843 mapped_index_base::build_name_components ()
3844 {
3845 if (!this->name_components.empty ())
3846 return;
3847
3848 this->name_components_casing = case_sensitivity;
3849 auto *name_cmp
3850 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3851
3852 /* The code below only knows how to break apart components of C++
3853 symbol names (and other languages that use '::' as
3854 namespace/module separator) and Ada symbol names. */
3855 auto count = this->symbol_name_count ();
3856 for (offset_type idx = 0; idx < count; idx++)
3857 {
3858 if (this->symbol_name_slot_invalid (idx))
3859 continue;
3860
3861 const char *name = this->symbol_name_at (idx);
3862
3863 /* Add each name component to the name component table. */
3864 unsigned int previous_len = 0;
3865
3866 if (strstr (name, "::") != nullptr)
3867 {
3868 for (unsigned int current_len = cp_find_first_component (name);
3869 name[current_len] != '\0';
3870 current_len += cp_find_first_component (name + current_len))
3871 {
3872 gdb_assert (name[current_len] == ':');
3873 this->name_components.push_back ({previous_len, idx});
3874 /* Skip the '::'. */
3875 current_len += 2;
3876 previous_len = current_len;
3877 }
3878 }
3879 else
3880 {
3881 /* Handle the Ada encoded (aka mangled) form here. */
3882 for (const char *iter = strstr (name, "__");
3883 iter != nullptr;
3884 iter = strstr (iter, "__"))
3885 {
3886 this->name_components.push_back ({previous_len, idx});
3887 iter += 2;
3888 previous_len = iter - name;
3889 }
3890 }
3891
3892 this->name_components.push_back ({previous_len, idx});
3893 }
3894
3895 /* Sort name_components elements by name. */
3896 auto name_comp_compare = [&] (const name_component &left,
3897 const name_component &right)
3898 {
3899 const char *left_qualified = this->symbol_name_at (left.idx);
3900 const char *right_qualified = this->symbol_name_at (right.idx);
3901
3902 const char *left_name = left_qualified + left.name_offset;
3903 const char *right_name = right_qualified + right.name_offset;
3904
3905 return name_cmp (left_name, right_name) < 0;
3906 };
3907
3908 std::sort (this->name_components.begin (),
3909 this->name_components.end (),
3910 name_comp_compare);
3911 }
3912
3913 /* Helper for dw2_expand_symtabs_matching that works with a
3914 mapped_index_base instead of the containing objfile. This is split
3915 to a separate function in order to be able to unit test the
3916 name_components matching using a mock mapped_index_base. For each
3917 symbol name that matches, calls MATCH_CALLBACK, passing it the
3918 symbol's index in the mapped_index_base symbol table. */
3919
3920 static void
3921 dw2_expand_symtabs_matching_symbol
3922 (mapped_index_base &index,
3923 const lookup_name_info &lookup_name_in,
3924 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3925 enum search_domain kind,
3926 gdb::function_view<bool (offset_type)> match_callback)
3927 {
3928 lookup_name_info lookup_name_without_params
3929 = lookup_name_in.make_ignore_params ();
3930
3931 /* Build the symbol name component sorted vector, if we haven't
3932 yet. */
3933 index.build_name_components ();
3934
3935 /* The same symbol may appear more than once in the range though.
3936 E.g., if we're looking for symbols that complete "w", and we have
3937 a symbol named "w1::w2", we'll find the two name components for
3938 that same symbol in the range. To be sure we only call the
3939 callback once per symbol, we first collect the symbol name
3940 indexes that matched in a temporary vector and ignore
3941 duplicates. */
3942 std::vector<offset_type> matches;
3943
3944 struct name_and_matcher
3945 {
3946 symbol_name_matcher_ftype *matcher;
3947 const std::string &name;
3948
3949 bool operator== (const name_and_matcher &other) const
3950 {
3951 return matcher == other.matcher && name == other.name;
3952 }
3953 };
3954
3955 /* A vector holding all the different symbol name matchers, for all
3956 languages. */
3957 std::vector<name_and_matcher> matchers;
3958
3959 for (int i = 0; i < nr_languages; i++)
3960 {
3961 enum language lang_e = (enum language) i;
3962
3963 const language_defn *lang = language_def (lang_e);
3964 symbol_name_matcher_ftype *name_matcher
3965 = get_symbol_name_matcher (lang, lookup_name_without_params);
3966
3967 name_and_matcher key {
3968 name_matcher,
3969 lookup_name_without_params.language_lookup_name (lang_e)
3970 };
3971
3972 /* Don't insert the same comparison routine more than once.
3973 Note that we do this linear walk. This is not a problem in
3974 practice because the number of supported languages is
3975 low. */
3976 if (std::find (matchers.begin (), matchers.end (), key)
3977 != matchers.end ())
3978 continue;
3979 matchers.push_back (std::move (key));
3980
3981 auto bounds
3982 = index.find_name_components_bounds (lookup_name_without_params,
3983 lang_e);
3984
3985 /* Now for each symbol name in range, check to see if we have a name
3986 match, and if so, call the MATCH_CALLBACK callback. */
3987
3988 for (; bounds.first != bounds.second; ++bounds.first)
3989 {
3990 const char *qualified = index.symbol_name_at (bounds.first->idx);
3991
3992 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3993 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3994 continue;
3995
3996 matches.push_back (bounds.first->idx);
3997 }
3998 }
3999
4000 std::sort (matches.begin (), matches.end ());
4001
4002 /* Finally call the callback, once per match. */
4003 ULONGEST prev = -1;
4004 for (offset_type idx : matches)
4005 {
4006 if (prev != idx)
4007 {
4008 if (!match_callback (idx))
4009 break;
4010 prev = idx;
4011 }
4012 }
4013
4014 /* Above we use a type wider than idx's for 'prev', since 0 and
4015 (offset_type)-1 are both possible values. */
4016 static_assert (sizeof (prev) > sizeof (offset_type), "");
4017 }
4018
4019 #if GDB_SELF_TEST
4020
4021 namespace selftests { namespace dw2_expand_symtabs_matching {
4022
4023 /* A mock .gdb_index/.debug_names-like name index table, enough to
4024 exercise dw2_expand_symtabs_matching_symbol, which works with the
4025 mapped_index_base interface. Builds an index from the symbol list
4026 passed as parameter to the constructor. */
4027 class mock_mapped_index : public mapped_index_base
4028 {
4029 public:
4030 mock_mapped_index (gdb::array_view<const char *> symbols)
4031 : m_symbol_table (symbols)
4032 {}
4033
4034 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4035
4036 /* Return the number of names in the symbol table. */
4037 size_t symbol_name_count () const override
4038 {
4039 return m_symbol_table.size ();
4040 }
4041
4042 /* Get the name of the symbol at IDX in the symbol table. */
4043 const char *symbol_name_at (offset_type idx) const override
4044 {
4045 return m_symbol_table[idx];
4046 }
4047
4048 private:
4049 gdb::array_view<const char *> m_symbol_table;
4050 };
4051
4052 /* Convenience function that converts a NULL pointer to a "<null>"
4053 string, to pass to print routines. */
4054
4055 static const char *
4056 string_or_null (const char *str)
4057 {
4058 return str != NULL ? str : "<null>";
4059 }
4060
4061 /* Check if a lookup_name_info built from
4062 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4063 index. EXPECTED_LIST is the list of expected matches, in expected
4064 matching order. If no match expected, then an empty list is
4065 specified. Returns true on success. On failure prints a warning
4066 indicating the file:line that failed, and returns false. */
4067
4068 static bool
4069 check_match (const char *file, int line,
4070 mock_mapped_index &mock_index,
4071 const char *name, symbol_name_match_type match_type,
4072 bool completion_mode,
4073 std::initializer_list<const char *> expected_list)
4074 {
4075 lookup_name_info lookup_name (name, match_type, completion_mode);
4076
4077 bool matched = true;
4078
4079 auto mismatch = [&] (const char *expected_str,
4080 const char *got)
4081 {
4082 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4083 "expected=\"%s\", got=\"%s\"\n"),
4084 file, line,
4085 (match_type == symbol_name_match_type::FULL
4086 ? "FULL" : "WILD"),
4087 name, string_or_null (expected_str), string_or_null (got));
4088 matched = false;
4089 };
4090
4091 auto expected_it = expected_list.begin ();
4092 auto expected_end = expected_list.end ();
4093
4094 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4095 NULL, ALL_DOMAIN,
4096 [&] (offset_type idx)
4097 {
4098 const char *matched_name = mock_index.symbol_name_at (idx);
4099 const char *expected_str
4100 = expected_it == expected_end ? NULL : *expected_it++;
4101
4102 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4103 mismatch (expected_str, matched_name);
4104 return true;
4105 });
4106
4107 const char *expected_str
4108 = expected_it == expected_end ? NULL : *expected_it++;
4109 if (expected_str != NULL)
4110 mismatch (expected_str, NULL);
4111
4112 return matched;
4113 }
4114
4115 /* The symbols added to the mock mapped_index for testing (in
4116 canonical form). */
4117 static const char *test_symbols[] = {
4118 "function",
4119 "std::bar",
4120 "std::zfunction",
4121 "std::zfunction2",
4122 "w1::w2",
4123 "ns::foo<char*>",
4124 "ns::foo<int>",
4125 "ns::foo<long>",
4126 "ns2::tmpl<int>::foo2",
4127 "(anonymous namespace)::A::B::C",
4128
4129 /* These are used to check that the increment-last-char in the
4130 matching algorithm for completion doesn't match "t1_fund" when
4131 completing "t1_func". */
4132 "t1_func",
4133 "t1_func1",
4134 "t1_fund",
4135 "t1_fund1",
4136
4137 /* A UTF-8 name with multi-byte sequences to make sure that
4138 cp-name-parser understands this as a single identifier ("função"
4139 is "function" in PT). */
4140 u8"u8função",
4141
4142 /* \377 (0xff) is Latin1 'ÿ'. */
4143 "yfunc\377",
4144
4145 /* \377 (0xff) is Latin1 'ÿ'. */
4146 "\377",
4147 "\377\377123",
4148
4149 /* A name with all sorts of complications. Starts with "z" to make
4150 it easier for the completion tests below. */
4151 #define Z_SYM_NAME \
4152 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4153 "::tuple<(anonymous namespace)::ui*, " \
4154 "std::default_delete<(anonymous namespace)::ui>, void>"
4155
4156 Z_SYM_NAME
4157 };
4158
4159 /* Returns true if the mapped_index_base::find_name_component_bounds
4160 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4161 in completion mode. */
4162
4163 static bool
4164 check_find_bounds_finds (mapped_index_base &index,
4165 const char *search_name,
4166 gdb::array_view<const char *> expected_syms)
4167 {
4168 lookup_name_info lookup_name (search_name,
4169 symbol_name_match_type::FULL, true);
4170
4171 auto bounds = index.find_name_components_bounds (lookup_name,
4172 language_cplus);
4173
4174 size_t distance = std::distance (bounds.first, bounds.second);
4175 if (distance != expected_syms.size ())
4176 return false;
4177
4178 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4179 {
4180 auto nc_elem = bounds.first + exp_elem;
4181 const char *qualified = index.symbol_name_at (nc_elem->idx);
4182 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4183 return false;
4184 }
4185
4186 return true;
4187 }
4188
4189 /* Test the lower-level mapped_index::find_name_component_bounds
4190 method. */
4191
4192 static void
4193 test_mapped_index_find_name_component_bounds ()
4194 {
4195 mock_mapped_index mock_index (test_symbols);
4196
4197 mock_index.build_name_components ();
4198
4199 /* Test the lower-level mapped_index::find_name_component_bounds
4200 method in completion mode. */
4201 {
4202 static const char *expected_syms[] = {
4203 "t1_func",
4204 "t1_func1",
4205 };
4206
4207 SELF_CHECK (check_find_bounds_finds (mock_index,
4208 "t1_func", expected_syms));
4209 }
4210
4211 /* Check that the increment-last-char in the name matching algorithm
4212 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4213 {
4214 static const char *expected_syms1[] = {
4215 "\377",
4216 "\377\377123",
4217 };
4218 SELF_CHECK (check_find_bounds_finds (mock_index,
4219 "\377", expected_syms1));
4220
4221 static const char *expected_syms2[] = {
4222 "\377\377123",
4223 };
4224 SELF_CHECK (check_find_bounds_finds (mock_index,
4225 "\377\377", expected_syms2));
4226 }
4227 }
4228
4229 /* Test dw2_expand_symtabs_matching_symbol. */
4230
4231 static void
4232 test_dw2_expand_symtabs_matching_symbol ()
4233 {
4234 mock_mapped_index mock_index (test_symbols);
4235
4236 /* We let all tests run until the end even if some fails, for debug
4237 convenience. */
4238 bool any_mismatch = false;
4239
4240 /* Create the expected symbols list (an initializer_list). Needed
4241 because lists have commas, and we need to pass them to CHECK,
4242 which is a macro. */
4243 #define EXPECT(...) { __VA_ARGS__ }
4244
4245 /* Wrapper for check_match that passes down the current
4246 __FILE__/__LINE__. */
4247 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4248 any_mismatch |= !check_match (__FILE__, __LINE__, \
4249 mock_index, \
4250 NAME, MATCH_TYPE, COMPLETION_MODE, \
4251 EXPECTED_LIST)
4252
4253 /* Identity checks. */
4254 for (const char *sym : test_symbols)
4255 {
4256 /* Should be able to match all existing symbols. */
4257 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4258 EXPECT (sym));
4259
4260 /* Should be able to match all existing symbols with
4261 parameters. */
4262 std::string with_params = std::string (sym) + "(int)";
4263 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4264 EXPECT (sym));
4265
4266 /* Should be able to match all existing symbols with
4267 parameters and qualifiers. */
4268 with_params = std::string (sym) + " ( int ) const";
4269 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4270 EXPECT (sym));
4271
4272 /* This should really find sym, but cp-name-parser.y doesn't
4273 know about lvalue/rvalue qualifiers yet. */
4274 with_params = std::string (sym) + " ( int ) &&";
4275 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4276 {});
4277 }
4278
4279 /* Check that the name matching algorithm for completion doesn't get
4280 confused with Latin1 'ÿ' / 0xff. */
4281 {
4282 static const char str[] = "\377";
4283 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4284 EXPECT ("\377", "\377\377123"));
4285 }
4286
4287 /* Check that the increment-last-char in the matching algorithm for
4288 completion doesn't match "t1_fund" when completing "t1_func". */
4289 {
4290 static const char str[] = "t1_func";
4291 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4292 EXPECT ("t1_func", "t1_func1"));
4293 }
4294
4295 /* Check that completion mode works at each prefix of the expected
4296 symbol name. */
4297 {
4298 static const char str[] = "function(int)";
4299 size_t len = strlen (str);
4300 std::string lookup;
4301
4302 for (size_t i = 1; i < len; i++)
4303 {
4304 lookup.assign (str, i);
4305 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4306 EXPECT ("function"));
4307 }
4308 }
4309
4310 /* While "w" is a prefix of both components, the match function
4311 should still only be called once. */
4312 {
4313 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4314 EXPECT ("w1::w2"));
4315 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4316 EXPECT ("w1::w2"));
4317 }
4318
4319 /* Same, with a "complicated" symbol. */
4320 {
4321 static const char str[] = Z_SYM_NAME;
4322 size_t len = strlen (str);
4323 std::string lookup;
4324
4325 for (size_t i = 1; i < len; i++)
4326 {
4327 lookup.assign (str, i);
4328 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4329 EXPECT (Z_SYM_NAME));
4330 }
4331 }
4332
4333 /* In FULL mode, an incomplete symbol doesn't match. */
4334 {
4335 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4336 {});
4337 }
4338
4339 /* A complete symbol with parameters matches any overload, since the
4340 index has no overload info. */
4341 {
4342 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4347 EXPECT ("std::zfunction", "std::zfunction2"));
4348 }
4349
4350 /* Check that whitespace is ignored appropriately. A symbol with a
4351 template argument list. */
4352 {
4353 static const char expected[] = "ns::foo<int>";
4354 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4355 EXPECT (expected));
4356 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4357 EXPECT (expected));
4358 }
4359
4360 /* Check that whitespace is ignored appropriately. A symbol with a
4361 template argument list that includes a pointer. */
4362 {
4363 static const char expected[] = "ns::foo<char*>";
4364 /* Try both completion and non-completion modes. */
4365 static const bool completion_mode[2] = {false, true};
4366 for (size_t i = 0; i < 2; i++)
4367 {
4368 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4369 completion_mode[i], EXPECT (expected));
4370 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4371 completion_mode[i], EXPECT (expected));
4372
4373 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4374 completion_mode[i], EXPECT (expected));
4375 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4376 completion_mode[i], EXPECT (expected));
4377 }
4378 }
4379
4380 {
4381 /* Check method qualifiers are ignored. */
4382 static const char expected[] = "ns::foo<char*>";
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4386 symbol_name_match_type::FULL, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) const",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 CHECK_MATCH ("foo < char * > ( int ) &&",
4390 symbol_name_match_type::WILD, true, EXPECT (expected));
4391 }
4392
4393 /* Test lookup names that don't match anything. */
4394 {
4395 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4396 {});
4397
4398 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4399 {});
4400 }
4401
4402 /* Some wild matching tests, exercising "(anonymous namespace)",
4403 which should not be confused with a parameter list. */
4404 {
4405 static const char *syms[] = {
4406 "A::B::C",
4407 "B::C",
4408 "C",
4409 "A :: B :: C ( int )",
4410 "B :: C ( int )",
4411 "C ( int )",
4412 };
4413
4414 for (const char *s : syms)
4415 {
4416 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4417 EXPECT ("(anonymous namespace)::A::B::C"));
4418 }
4419 }
4420
4421 {
4422 static const char expected[] = "ns2::tmpl<int>::foo2";
4423 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4426 EXPECT (expected));
4427 }
4428
4429 SELF_CHECK (!any_mismatch);
4430
4431 #undef EXPECT
4432 #undef CHECK_MATCH
4433 }
4434
4435 static void
4436 run_test ()
4437 {
4438 test_mapped_index_find_name_component_bounds ();
4439 test_dw2_expand_symtabs_matching_symbol ();
4440 }
4441
4442 }} // namespace selftests::dw2_expand_symtabs_matching
4443
4444 #endif /* GDB_SELF_TEST */
4445
4446 /* If FILE_MATCHER is NULL or if PER_CU has
4447 dwarf2_per_cu_quick_data::MARK set (see
4448 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4449 EXPANSION_NOTIFY on it. */
4450
4451 static void
4452 dw2_expand_symtabs_matching_one
4453 (struct dwarf2_per_cu_data *per_cu,
4454 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4455 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4456 {
4457 if (file_matcher == NULL || per_cu->v.quick->mark)
4458 {
4459 bool symtab_was_null
4460 = (per_cu->v.quick->compunit_symtab == NULL);
4461
4462 dw2_instantiate_symtab (per_cu, false);
4463
4464 if (expansion_notify != NULL
4465 && symtab_was_null
4466 && per_cu->v.quick->compunit_symtab != NULL)
4467 expansion_notify (per_cu->v.quick->compunit_symtab);
4468 }
4469 }
4470
4471 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4472 matched, to expand corresponding CUs that were marked. IDX is the
4473 index of the symbol name that matched. */
4474
4475 static void
4476 dw2_expand_marked_cus
4477 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4478 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4479 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4480 search_domain kind)
4481 {
4482 offset_type *vec, vec_len, vec_idx;
4483 bool global_seen = false;
4484 mapped_index &index = *dwarf2_per_objfile->index_table;
4485
4486 vec = (offset_type *) (index.constant_pool
4487 + MAYBE_SWAP (index.symbol_table[idx].vec));
4488 vec_len = MAYBE_SWAP (vec[0]);
4489 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4490 {
4491 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4492 /* This value is only valid for index versions >= 7. */
4493 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4494 gdb_index_symbol_kind symbol_kind =
4495 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4496 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4497 /* Only check the symbol attributes if they're present.
4498 Indices prior to version 7 don't record them,
4499 and indices >= 7 may elide them for certain symbols
4500 (gold does this). */
4501 int attrs_valid =
4502 (index.version >= 7
4503 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4504
4505 /* Work around gold/15646. */
4506 if (attrs_valid)
4507 {
4508 if (!is_static && global_seen)
4509 continue;
4510 if (!is_static)
4511 global_seen = true;
4512 }
4513
4514 /* Only check the symbol's kind if it has one. */
4515 if (attrs_valid)
4516 {
4517 switch (kind)
4518 {
4519 case VARIABLES_DOMAIN:
4520 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4521 continue;
4522 break;
4523 case FUNCTIONS_DOMAIN:
4524 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4525 continue;
4526 break;
4527 case TYPES_DOMAIN:
4528 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4529 continue;
4530 break;
4531 case MODULES_DOMAIN:
4532 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4533 continue;
4534 break;
4535 default:
4536 break;
4537 }
4538 }
4539
4540 /* Don't crash on bad data. */
4541 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4542 + dwarf2_per_objfile->all_type_units.size ()))
4543 {
4544 complaint (_(".gdb_index entry has bad CU index"
4545 " [in module %s]"),
4546 objfile_name (dwarf2_per_objfile->objfile));
4547 continue;
4548 }
4549
4550 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4551 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4552 expansion_notify);
4553 }
4554 }
4555
4556 /* If FILE_MATCHER is non-NULL, set all the
4557 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4558 that match FILE_MATCHER. */
4559
4560 static void
4561 dw_expand_symtabs_matching_file_matcher
4562 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4563 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4564 {
4565 if (file_matcher == NULL)
4566 return;
4567
4568 objfile *const objfile = dwarf2_per_objfile->objfile;
4569
4570 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4571 htab_eq_pointer,
4572 NULL, xcalloc, xfree));
4573 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4574 htab_eq_pointer,
4575 NULL, xcalloc, xfree));
4576
4577 /* The rule is CUs specify all the files, including those used by
4578 any TU, so there's no need to scan TUs here. */
4579
4580 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4581 {
4582 QUIT;
4583
4584 per_cu->v.quick->mark = 0;
4585
4586 /* We only need to look at symtabs not already expanded. */
4587 if (per_cu->v.quick->compunit_symtab)
4588 continue;
4589
4590 quick_file_names *file_data = dw2_get_file_names (per_cu);
4591 if (file_data == NULL)
4592 continue;
4593
4594 if (htab_find (visited_not_found.get (), file_data) != NULL)
4595 continue;
4596 else if (htab_find (visited_found.get (), file_data) != NULL)
4597 {
4598 per_cu->v.quick->mark = 1;
4599 continue;
4600 }
4601
4602 for (int j = 0; j < file_data->num_file_names; ++j)
4603 {
4604 const char *this_real_name;
4605
4606 if (file_matcher (file_data->file_names[j], false))
4607 {
4608 per_cu->v.quick->mark = 1;
4609 break;
4610 }
4611
4612 /* Before we invoke realpath, which can get expensive when many
4613 files are involved, do a quick comparison of the basenames. */
4614 if (!basenames_may_differ
4615 && !file_matcher (lbasename (file_data->file_names[j]),
4616 true))
4617 continue;
4618
4619 this_real_name = dw2_get_real_path (objfile, file_data, j);
4620 if (file_matcher (this_real_name, false))
4621 {
4622 per_cu->v.quick->mark = 1;
4623 break;
4624 }
4625 }
4626
4627 void **slot = htab_find_slot (per_cu->v.quick->mark
4628 ? visited_found.get ()
4629 : visited_not_found.get (),
4630 file_data, INSERT);
4631 *slot = file_data;
4632 }
4633 }
4634
4635 static void
4636 dw2_expand_symtabs_matching
4637 (struct objfile *objfile,
4638 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4639 const lookup_name_info &lookup_name,
4640 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4641 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4642 enum search_domain kind)
4643 {
4644 struct dwarf2_per_objfile *dwarf2_per_objfile
4645 = get_dwarf2_per_objfile (objfile);
4646
4647 /* index_table is NULL if OBJF_READNOW. */
4648 if (!dwarf2_per_objfile->index_table)
4649 return;
4650
4651 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4652
4653 mapped_index &index = *dwarf2_per_objfile->index_table;
4654
4655 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4656 symbol_matcher,
4657 kind, [&] (offset_type idx)
4658 {
4659 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4660 expansion_notify, kind);
4661 return true;
4662 });
4663 }
4664
4665 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4666 symtab. */
4667
4668 static struct compunit_symtab *
4669 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4670 CORE_ADDR pc)
4671 {
4672 int i;
4673
4674 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4675 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4676 return cust;
4677
4678 if (cust->includes == NULL)
4679 return NULL;
4680
4681 for (i = 0; cust->includes[i]; ++i)
4682 {
4683 struct compunit_symtab *s = cust->includes[i];
4684
4685 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4686 if (s != NULL)
4687 return s;
4688 }
4689
4690 return NULL;
4691 }
4692
4693 static struct compunit_symtab *
4694 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4695 struct bound_minimal_symbol msymbol,
4696 CORE_ADDR pc,
4697 struct obj_section *section,
4698 int warn_if_readin)
4699 {
4700 struct dwarf2_per_cu_data *data;
4701 struct compunit_symtab *result;
4702
4703 if (!objfile->partial_symtabs->psymtabs_addrmap)
4704 return NULL;
4705
4706 CORE_ADDR baseaddr = objfile->text_section_offset ();
4707 data = (struct dwarf2_per_cu_data *) addrmap_find
4708 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4709 if (!data)
4710 return NULL;
4711
4712 if (warn_if_readin && data->v.quick->compunit_symtab)
4713 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4714 paddress (get_objfile_arch (objfile), pc));
4715
4716 result
4717 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4718 false),
4719 pc);
4720 gdb_assert (result != NULL);
4721 return result;
4722 }
4723
4724 static void
4725 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4726 void *data, int need_fullname)
4727 {
4728 struct dwarf2_per_objfile *dwarf2_per_objfile
4729 = get_dwarf2_per_objfile (objfile);
4730
4731 if (!dwarf2_per_objfile->filenames_cache)
4732 {
4733 dwarf2_per_objfile->filenames_cache.emplace ();
4734
4735 htab_up visited (htab_create_alloc (10,
4736 htab_hash_pointer, htab_eq_pointer,
4737 NULL, xcalloc, xfree));
4738
4739 /* The rule is CUs specify all the files, including those used
4740 by any TU, so there's no need to scan TUs here. We can
4741 ignore file names coming from already-expanded CUs. */
4742
4743 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4744 {
4745 if (per_cu->v.quick->compunit_symtab)
4746 {
4747 void **slot = htab_find_slot (visited.get (),
4748 per_cu->v.quick->file_names,
4749 INSERT);
4750
4751 *slot = per_cu->v.quick->file_names;
4752 }
4753 }
4754
4755 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4756 {
4757 /* We only need to look at symtabs not already expanded. */
4758 if (per_cu->v.quick->compunit_symtab)
4759 continue;
4760
4761 quick_file_names *file_data = dw2_get_file_names (per_cu);
4762 if (file_data == NULL)
4763 continue;
4764
4765 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4766 if (*slot)
4767 {
4768 /* Already visited. */
4769 continue;
4770 }
4771 *slot = file_data;
4772
4773 for (int j = 0; j < file_data->num_file_names; ++j)
4774 {
4775 const char *filename = file_data->file_names[j];
4776 dwarf2_per_objfile->filenames_cache->seen (filename);
4777 }
4778 }
4779 }
4780
4781 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4782 {
4783 gdb::unique_xmalloc_ptr<char> this_real_name;
4784
4785 if (need_fullname)
4786 this_real_name = gdb_realpath (filename);
4787 (*fun) (filename, this_real_name.get (), data);
4788 });
4789 }
4790
4791 static int
4792 dw2_has_symbols (struct objfile *objfile)
4793 {
4794 return 1;
4795 }
4796
4797 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4798 {
4799 dw2_has_symbols,
4800 dw2_find_last_source_symtab,
4801 dw2_forget_cached_source_info,
4802 dw2_map_symtabs_matching_filename,
4803 dw2_lookup_symbol,
4804 dw2_print_stats,
4805 dw2_dump,
4806 dw2_expand_symtabs_for_function,
4807 dw2_expand_all_symtabs,
4808 dw2_expand_symtabs_with_fullname,
4809 dw2_map_matching_symbols,
4810 dw2_expand_symtabs_matching,
4811 dw2_find_pc_sect_compunit_symtab,
4812 NULL,
4813 dw2_map_symbol_filenames
4814 };
4815
4816 /* DWARF-5 debug_names reader. */
4817
4818 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4819 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4820
4821 /* A helper function that reads the .debug_names section in SECTION
4822 and fills in MAP. FILENAME is the name of the file containing the
4823 section; it is used for error reporting.
4824
4825 Returns true if all went well, false otherwise. */
4826
4827 static bool
4828 read_debug_names_from_section (struct objfile *objfile,
4829 const char *filename,
4830 struct dwarf2_section_info *section,
4831 mapped_debug_names &map)
4832 {
4833 if (section->empty ())
4834 return false;
4835
4836 /* Older elfutils strip versions could keep the section in the main
4837 executable while splitting it for the separate debug info file. */
4838 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4839 return false;
4840
4841 section->read (objfile);
4842
4843 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
4844
4845 const gdb_byte *addr = section->buffer;
4846
4847 bfd *const abfd = section->get_bfd_owner ();
4848
4849 unsigned int bytes_read;
4850 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4851 addr += bytes_read;
4852
4853 map.dwarf5_is_dwarf64 = bytes_read != 4;
4854 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4855 if (bytes_read + length != section->size)
4856 {
4857 /* There may be multiple per-CU indices. */
4858 warning (_("Section .debug_names in %s length %s does not match "
4859 "section length %s, ignoring .debug_names."),
4860 filename, plongest (bytes_read + length),
4861 pulongest (section->size));
4862 return false;
4863 }
4864
4865 /* The version number. */
4866 uint16_t version = read_2_bytes (abfd, addr);
4867 addr += 2;
4868 if (version != 5)
4869 {
4870 warning (_("Section .debug_names in %s has unsupported version %d, "
4871 "ignoring .debug_names."),
4872 filename, version);
4873 return false;
4874 }
4875
4876 /* Padding. */
4877 uint16_t padding = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (padding != 0)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported padding %d, "
4882 "ignoring .debug_names."),
4883 filename, padding);
4884 return false;
4885 }
4886
4887 /* comp_unit_count - The number of CUs in the CU list. */
4888 map.cu_count = read_4_bytes (abfd, addr);
4889 addr += 4;
4890
4891 /* local_type_unit_count - The number of TUs in the local TU
4892 list. */
4893 map.tu_count = read_4_bytes (abfd, addr);
4894 addr += 4;
4895
4896 /* foreign_type_unit_count - The number of TUs in the foreign TU
4897 list. */
4898 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4899 addr += 4;
4900 if (foreign_tu_count != 0)
4901 {
4902 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4903 "ignoring .debug_names."),
4904 filename, static_cast<unsigned long> (foreign_tu_count));
4905 return false;
4906 }
4907
4908 /* bucket_count - The number of hash buckets in the hash lookup
4909 table. */
4910 map.bucket_count = read_4_bytes (abfd, addr);
4911 addr += 4;
4912
4913 /* name_count - The number of unique names in the index. */
4914 map.name_count = read_4_bytes (abfd, addr);
4915 addr += 4;
4916
4917 /* abbrev_table_size - The size in bytes of the abbreviations
4918 table. */
4919 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4920 addr += 4;
4921
4922 /* augmentation_string_size - The size in bytes of the augmentation
4923 string. This value is rounded up to a multiple of 4. */
4924 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4925 addr += 4;
4926 map.augmentation_is_gdb = ((augmentation_string_size
4927 == sizeof (dwarf5_augmentation))
4928 && memcmp (addr, dwarf5_augmentation,
4929 sizeof (dwarf5_augmentation)) == 0);
4930 augmentation_string_size += (-augmentation_string_size) & 3;
4931 addr += augmentation_string_size;
4932
4933 /* List of CUs */
4934 map.cu_table_reordered = addr;
4935 addr += map.cu_count * map.offset_size;
4936
4937 /* List of Local TUs */
4938 map.tu_table_reordered = addr;
4939 addr += map.tu_count * map.offset_size;
4940
4941 /* Hash Lookup Table */
4942 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4943 addr += map.bucket_count * 4;
4944 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4945 addr += map.name_count * 4;
4946
4947 /* Name Table */
4948 map.name_table_string_offs_reordered = addr;
4949 addr += map.name_count * map.offset_size;
4950 map.name_table_entry_offs_reordered = addr;
4951 addr += map.name_count * map.offset_size;
4952
4953 const gdb_byte *abbrev_table_start = addr;
4954 for (;;)
4955 {
4956 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4957 addr += bytes_read;
4958 if (index_num == 0)
4959 break;
4960
4961 const auto insertpair
4962 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4963 if (!insertpair.second)
4964 {
4965 warning (_("Section .debug_names in %s has duplicate index %s, "
4966 "ignoring .debug_names."),
4967 filename, pulongest (index_num));
4968 return false;
4969 }
4970 mapped_debug_names::index_val &indexval = insertpair.first->second;
4971 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4972 addr += bytes_read;
4973
4974 for (;;)
4975 {
4976 mapped_debug_names::index_val::attr attr;
4977 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4978 addr += bytes_read;
4979 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4980 addr += bytes_read;
4981 if (attr.form == DW_FORM_implicit_const)
4982 {
4983 attr.implicit_const = read_signed_leb128 (abfd, addr,
4984 &bytes_read);
4985 addr += bytes_read;
4986 }
4987 if (attr.dw_idx == 0 && attr.form == 0)
4988 break;
4989 indexval.attr_vec.push_back (std::move (attr));
4990 }
4991 }
4992 if (addr != abbrev_table_start + abbrev_table_size)
4993 {
4994 warning (_("Section .debug_names in %s has abbreviation_table "
4995 "of size %s vs. written as %u, ignoring .debug_names."),
4996 filename, plongest (addr - abbrev_table_start),
4997 abbrev_table_size);
4998 return false;
4999 }
5000 map.entry_pool = addr;
5001
5002 return true;
5003 }
5004
5005 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5006 list. */
5007
5008 static void
5009 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5010 const mapped_debug_names &map,
5011 dwarf2_section_info &section,
5012 bool is_dwz)
5013 {
5014 sect_offset sect_off_prev;
5015 for (uint32_t i = 0; i <= map.cu_count; ++i)
5016 {
5017 sect_offset sect_off_next;
5018 if (i < map.cu_count)
5019 {
5020 sect_off_next
5021 = (sect_offset) (extract_unsigned_integer
5022 (map.cu_table_reordered + i * map.offset_size,
5023 map.offset_size,
5024 map.dwarf5_byte_order));
5025 }
5026 else
5027 sect_off_next = (sect_offset) section.size;
5028 if (i >= 1)
5029 {
5030 const ULONGEST length = sect_off_next - sect_off_prev;
5031 dwarf2_per_cu_data *per_cu
5032 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5033 sect_off_prev, length);
5034 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5035 }
5036 sect_off_prev = sect_off_next;
5037 }
5038 }
5039
5040 /* Read the CU list from the mapped index, and use it to create all
5041 the CU objects for this dwarf2_per_objfile. */
5042
5043 static void
5044 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5045 const mapped_debug_names &map,
5046 const mapped_debug_names &dwz_map)
5047 {
5048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5049 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5050
5051 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5052 dwarf2_per_objfile->info,
5053 false /* is_dwz */);
5054
5055 if (dwz_map.cu_count == 0)
5056 return;
5057
5058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5059 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5060 true /* is_dwz */);
5061 }
5062
5063 /* Read .debug_names. If everything went ok, initialize the "quick"
5064 elements of all the CUs and return true. Otherwise, return false. */
5065
5066 static bool
5067 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5068 {
5069 std::unique_ptr<mapped_debug_names> map
5070 (new mapped_debug_names (dwarf2_per_objfile));
5071 mapped_debug_names dwz_map (dwarf2_per_objfile);
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073
5074 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5075 &dwarf2_per_objfile->debug_names,
5076 *map))
5077 return false;
5078
5079 /* Don't use the index if it's empty. */
5080 if (map->name_count == 0)
5081 return false;
5082
5083 /* If there is a .dwz file, read it so we can get its CU list as
5084 well. */
5085 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5086 if (dwz != NULL)
5087 {
5088 if (!read_debug_names_from_section (objfile,
5089 bfd_get_filename (dwz->dwz_bfd.get ()),
5090 &dwz->debug_names, dwz_map))
5091 {
5092 warning (_("could not read '.debug_names' section from %s; skipping"),
5093 bfd_get_filename (dwz->dwz_bfd.get ()));
5094 return false;
5095 }
5096 }
5097
5098 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5099
5100 if (map->tu_count != 0)
5101 {
5102 /* We can only handle a single .debug_types when we have an
5103 index. */
5104 if (dwarf2_per_objfile->types.size () != 1)
5105 return false;
5106
5107 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5108
5109 create_signatured_type_table_from_debug_names
5110 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5111 }
5112
5113 create_addrmap_from_aranges (dwarf2_per_objfile,
5114 &dwarf2_per_objfile->debug_aranges);
5115
5116 dwarf2_per_objfile->debug_names_table = std::move (map);
5117 dwarf2_per_objfile->using_index = 1;
5118 dwarf2_per_objfile->quick_file_names_table =
5119 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5120
5121 return true;
5122 }
5123
5124 /* Type used to manage iterating over all CUs looking for a symbol for
5125 .debug_names. */
5126
5127 class dw2_debug_names_iterator
5128 {
5129 public:
5130 dw2_debug_names_iterator (const mapped_debug_names &map,
5131 gdb::optional<block_enum> block_index,
5132 domain_enum domain,
5133 const char *name)
5134 : m_map (map), m_block_index (block_index), m_domain (domain),
5135 m_addr (find_vec_in_debug_names (map, name))
5136 {}
5137
5138 dw2_debug_names_iterator (const mapped_debug_names &map,
5139 search_domain search, uint32_t namei)
5140 : m_map (map),
5141 m_search (search),
5142 m_addr (find_vec_in_debug_names (map, namei))
5143 {}
5144
5145 dw2_debug_names_iterator (const mapped_debug_names &map,
5146 block_enum block_index, domain_enum domain,
5147 uint32_t namei)
5148 : m_map (map), m_block_index (block_index), m_domain (domain),
5149 m_addr (find_vec_in_debug_names (map, namei))
5150 {}
5151
5152 /* Return the next matching CU or NULL if there are no more. */
5153 dwarf2_per_cu_data *next ();
5154
5155 private:
5156 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5157 const char *name);
5158 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5159 uint32_t namei);
5160
5161 /* The internalized form of .debug_names. */
5162 const mapped_debug_names &m_map;
5163
5164 /* If set, only look for symbols that match that block. Valid values are
5165 GLOBAL_BLOCK and STATIC_BLOCK. */
5166 const gdb::optional<block_enum> m_block_index;
5167
5168 /* The kind of symbol we're looking for. */
5169 const domain_enum m_domain = UNDEF_DOMAIN;
5170 const search_domain m_search = ALL_DOMAIN;
5171
5172 /* The list of CUs from the index entry of the symbol, or NULL if
5173 not found. */
5174 const gdb_byte *m_addr;
5175 };
5176
5177 const char *
5178 mapped_debug_names::namei_to_name (uint32_t namei) const
5179 {
5180 const ULONGEST namei_string_offs
5181 = extract_unsigned_integer ((name_table_string_offs_reordered
5182 + namei * offset_size),
5183 offset_size,
5184 dwarf5_byte_order);
5185 return read_indirect_string_at_offset
5186 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5187 }
5188
5189 /* Find a slot in .debug_names for the object named NAME. If NAME is
5190 found, return pointer to its pool data. If NAME cannot be found,
5191 return NULL. */
5192
5193 const gdb_byte *
5194 dw2_debug_names_iterator::find_vec_in_debug_names
5195 (const mapped_debug_names &map, const char *name)
5196 {
5197 int (*cmp) (const char *, const char *);
5198
5199 gdb::unique_xmalloc_ptr<char> without_params;
5200 if (current_language->la_language == language_cplus
5201 || current_language->la_language == language_fortran
5202 || current_language->la_language == language_d)
5203 {
5204 /* NAME is already canonical. Drop any qualifiers as
5205 .debug_names does not contain any. */
5206
5207 if (strchr (name, '(') != NULL)
5208 {
5209 without_params = cp_remove_params (name);
5210 if (without_params != NULL)
5211 name = without_params.get ();
5212 }
5213 }
5214
5215 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5216
5217 const uint32_t full_hash = dwarf5_djb_hash (name);
5218 uint32_t namei
5219 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5220 (map.bucket_table_reordered
5221 + (full_hash % map.bucket_count)), 4,
5222 map.dwarf5_byte_order);
5223 if (namei == 0)
5224 return NULL;
5225 --namei;
5226 if (namei >= map.name_count)
5227 {
5228 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5229 "[in module %s]"),
5230 namei, map.name_count,
5231 objfile_name (map.dwarf2_per_objfile->objfile));
5232 return NULL;
5233 }
5234
5235 for (;;)
5236 {
5237 const uint32_t namei_full_hash
5238 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5239 (map.hash_table_reordered + namei), 4,
5240 map.dwarf5_byte_order);
5241 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5242 return NULL;
5243
5244 if (full_hash == namei_full_hash)
5245 {
5246 const char *const namei_string = map.namei_to_name (namei);
5247
5248 #if 0 /* An expensive sanity check. */
5249 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5250 {
5251 complaint (_("Wrong .debug_names hash for string at index %u "
5252 "[in module %s]"),
5253 namei, objfile_name (dwarf2_per_objfile->objfile));
5254 return NULL;
5255 }
5256 #endif
5257
5258 if (cmp (namei_string, name) == 0)
5259 {
5260 const ULONGEST namei_entry_offs
5261 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5262 + namei * map.offset_size),
5263 map.offset_size, map.dwarf5_byte_order);
5264 return map.entry_pool + namei_entry_offs;
5265 }
5266 }
5267
5268 ++namei;
5269 if (namei >= map.name_count)
5270 return NULL;
5271 }
5272 }
5273
5274 const gdb_byte *
5275 dw2_debug_names_iterator::find_vec_in_debug_names
5276 (const mapped_debug_names &map, uint32_t namei)
5277 {
5278 if (namei >= map.name_count)
5279 {
5280 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5281 "[in module %s]"),
5282 namei, map.name_count,
5283 objfile_name (map.dwarf2_per_objfile->objfile));
5284 return NULL;
5285 }
5286
5287 const ULONGEST namei_entry_offs
5288 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5289 + namei * map.offset_size),
5290 map.offset_size, map.dwarf5_byte_order);
5291 return map.entry_pool + namei_entry_offs;
5292 }
5293
5294 /* See dw2_debug_names_iterator. */
5295
5296 dwarf2_per_cu_data *
5297 dw2_debug_names_iterator::next ()
5298 {
5299 if (m_addr == NULL)
5300 return NULL;
5301
5302 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5303 struct objfile *objfile = dwarf2_per_objfile->objfile;
5304 bfd *const abfd = objfile->obfd;
5305
5306 again:
5307
5308 unsigned int bytes_read;
5309 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5310 m_addr += bytes_read;
5311 if (abbrev == 0)
5312 return NULL;
5313
5314 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5315 if (indexval_it == m_map.abbrev_map.cend ())
5316 {
5317 complaint (_("Wrong .debug_names undefined abbrev code %s "
5318 "[in module %s]"),
5319 pulongest (abbrev), objfile_name (objfile));
5320 return NULL;
5321 }
5322 const mapped_debug_names::index_val &indexval = indexval_it->second;
5323 enum class symbol_linkage {
5324 unknown,
5325 static_,
5326 extern_,
5327 } symbol_linkage_ = symbol_linkage::unknown;
5328 dwarf2_per_cu_data *per_cu = NULL;
5329 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5330 {
5331 ULONGEST ull;
5332 switch (attr.form)
5333 {
5334 case DW_FORM_implicit_const:
5335 ull = attr.implicit_const;
5336 break;
5337 case DW_FORM_flag_present:
5338 ull = 1;
5339 break;
5340 case DW_FORM_udata:
5341 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5342 m_addr += bytes_read;
5343 break;
5344 default:
5345 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5346 dwarf_form_name (attr.form),
5347 objfile_name (objfile));
5348 return NULL;
5349 }
5350 switch (attr.dw_idx)
5351 {
5352 case DW_IDX_compile_unit:
5353 /* Don't crash on bad data. */
5354 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5355 {
5356 complaint (_(".debug_names entry has bad CU index %s"
5357 " [in module %s]"),
5358 pulongest (ull),
5359 objfile_name (dwarf2_per_objfile->objfile));
5360 continue;
5361 }
5362 per_cu = dwarf2_per_objfile->get_cutu (ull);
5363 break;
5364 case DW_IDX_type_unit:
5365 /* Don't crash on bad data. */
5366 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5367 {
5368 complaint (_(".debug_names entry has bad TU index %s"
5369 " [in module %s]"),
5370 pulongest (ull),
5371 objfile_name (dwarf2_per_objfile->objfile));
5372 continue;
5373 }
5374 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5375 break;
5376 case DW_IDX_GNU_internal:
5377 if (!m_map.augmentation_is_gdb)
5378 break;
5379 symbol_linkage_ = symbol_linkage::static_;
5380 break;
5381 case DW_IDX_GNU_external:
5382 if (!m_map.augmentation_is_gdb)
5383 break;
5384 symbol_linkage_ = symbol_linkage::extern_;
5385 break;
5386 }
5387 }
5388
5389 /* Skip if already read in. */
5390 if (per_cu->v.quick->compunit_symtab)
5391 goto again;
5392
5393 /* Check static vs global. */
5394 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5395 {
5396 const bool want_static = *m_block_index == STATIC_BLOCK;
5397 const bool symbol_is_static =
5398 symbol_linkage_ == symbol_linkage::static_;
5399 if (want_static != symbol_is_static)
5400 goto again;
5401 }
5402
5403 /* Match dw2_symtab_iter_next, symbol_kind
5404 and debug_names::psymbol_tag. */
5405 switch (m_domain)
5406 {
5407 case VAR_DOMAIN:
5408 switch (indexval.dwarf_tag)
5409 {
5410 case DW_TAG_variable:
5411 case DW_TAG_subprogram:
5412 /* Some types are also in VAR_DOMAIN. */
5413 case DW_TAG_typedef:
5414 case DW_TAG_structure_type:
5415 break;
5416 default:
5417 goto again;
5418 }
5419 break;
5420 case STRUCT_DOMAIN:
5421 switch (indexval.dwarf_tag)
5422 {
5423 case DW_TAG_typedef:
5424 case DW_TAG_structure_type:
5425 break;
5426 default:
5427 goto again;
5428 }
5429 break;
5430 case LABEL_DOMAIN:
5431 switch (indexval.dwarf_tag)
5432 {
5433 case 0:
5434 case DW_TAG_variable:
5435 break;
5436 default:
5437 goto again;
5438 }
5439 break;
5440 case MODULE_DOMAIN:
5441 switch (indexval.dwarf_tag)
5442 {
5443 case DW_TAG_module:
5444 break;
5445 default:
5446 goto again;
5447 }
5448 break;
5449 default:
5450 break;
5451 }
5452
5453 /* Match dw2_expand_symtabs_matching, symbol_kind and
5454 debug_names::psymbol_tag. */
5455 switch (m_search)
5456 {
5457 case VARIABLES_DOMAIN:
5458 switch (indexval.dwarf_tag)
5459 {
5460 case DW_TAG_variable:
5461 break;
5462 default:
5463 goto again;
5464 }
5465 break;
5466 case FUNCTIONS_DOMAIN:
5467 switch (indexval.dwarf_tag)
5468 {
5469 case DW_TAG_subprogram:
5470 break;
5471 default:
5472 goto again;
5473 }
5474 break;
5475 case TYPES_DOMAIN:
5476 switch (indexval.dwarf_tag)
5477 {
5478 case DW_TAG_typedef:
5479 case DW_TAG_structure_type:
5480 break;
5481 default:
5482 goto again;
5483 }
5484 break;
5485 case MODULES_DOMAIN:
5486 switch (indexval.dwarf_tag)
5487 {
5488 case DW_TAG_module:
5489 break;
5490 default:
5491 goto again;
5492 }
5493 default:
5494 break;
5495 }
5496
5497 return per_cu;
5498 }
5499
5500 static struct compunit_symtab *
5501 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5502 const char *name, domain_enum domain)
5503 {
5504 struct dwarf2_per_objfile *dwarf2_per_objfile
5505 = get_dwarf2_per_objfile (objfile);
5506
5507 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5508 if (!mapp)
5509 {
5510 /* index is NULL if OBJF_READNOW. */
5511 return NULL;
5512 }
5513 const auto &map = *mapp;
5514
5515 dw2_debug_names_iterator iter (map, block_index, domain, name);
5516
5517 struct compunit_symtab *stab_best = NULL;
5518 struct dwarf2_per_cu_data *per_cu;
5519 while ((per_cu = iter.next ()) != NULL)
5520 {
5521 struct symbol *sym, *with_opaque = NULL;
5522 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5523 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5524 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5525
5526 sym = block_find_symbol (block, name, domain,
5527 block_find_non_opaque_type_preferred,
5528 &with_opaque);
5529
5530 /* Some caution must be observed with overloaded functions and
5531 methods, since the index will not contain any overload
5532 information (but NAME might contain it). */
5533
5534 if (sym != NULL
5535 && strcmp_iw (sym->search_name (), name) == 0)
5536 return stab;
5537 if (with_opaque != NULL
5538 && strcmp_iw (with_opaque->search_name (), name) == 0)
5539 stab_best = stab;
5540
5541 /* Keep looking through other CUs. */
5542 }
5543
5544 return stab_best;
5545 }
5546
5547 /* This dumps minimal information about .debug_names. It is called
5548 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5549 uses this to verify that .debug_names has been loaded. */
5550
5551 static void
5552 dw2_debug_names_dump (struct objfile *objfile)
5553 {
5554 struct dwarf2_per_objfile *dwarf2_per_objfile
5555 = get_dwarf2_per_objfile (objfile);
5556
5557 gdb_assert (dwarf2_per_objfile->using_index);
5558 printf_filtered (".debug_names:");
5559 if (dwarf2_per_objfile->debug_names_table)
5560 printf_filtered (" exists\n");
5561 else
5562 printf_filtered (" faked for \"readnow\"\n");
5563 printf_filtered ("\n");
5564 }
5565
5566 static void
5567 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5568 const char *func_name)
5569 {
5570 struct dwarf2_per_objfile *dwarf2_per_objfile
5571 = get_dwarf2_per_objfile (objfile);
5572
5573 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5574 if (dwarf2_per_objfile->debug_names_table)
5575 {
5576 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5577
5578 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5579
5580 struct dwarf2_per_cu_data *per_cu;
5581 while ((per_cu = iter.next ()) != NULL)
5582 dw2_instantiate_symtab (per_cu, false);
5583 }
5584 }
5585
5586 static void
5587 dw2_debug_names_map_matching_symbols
5588 (struct objfile *objfile,
5589 const lookup_name_info &name, domain_enum domain,
5590 int global,
5591 gdb::function_view<symbol_found_callback_ftype> callback,
5592 symbol_compare_ftype *ordered_compare)
5593 {
5594 struct dwarf2_per_objfile *dwarf2_per_objfile
5595 = get_dwarf2_per_objfile (objfile);
5596
5597 /* debug_names_table is NULL if OBJF_READNOW. */
5598 if (!dwarf2_per_objfile->debug_names_table)
5599 return;
5600
5601 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5602 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5603
5604 const char *match_name = name.ada ().lookup_name ().c_str ();
5605 auto matcher = [&] (const char *symname)
5606 {
5607 if (ordered_compare == nullptr)
5608 return true;
5609 return ordered_compare (symname, match_name) == 0;
5610 };
5611
5612 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5613 [&] (offset_type namei)
5614 {
5615 /* The name was matched, now expand corresponding CUs that were
5616 marked. */
5617 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5618
5619 struct dwarf2_per_cu_data *per_cu;
5620 while ((per_cu = iter.next ()) != NULL)
5621 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5622 return true;
5623 });
5624
5625 /* It's a shame we couldn't do this inside the
5626 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5627 that have already been expanded. Instead, this loop matches what
5628 the psymtab code does. */
5629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5630 {
5631 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5632 if (cust != nullptr)
5633 {
5634 const struct block *block
5635 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5636 if (!iterate_over_symbols_terminated (block, name,
5637 domain, callback))
5638 break;
5639 }
5640 }
5641 }
5642
5643 static void
5644 dw2_debug_names_expand_symtabs_matching
5645 (struct objfile *objfile,
5646 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5647 const lookup_name_info &lookup_name,
5648 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5649 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5650 enum search_domain kind)
5651 {
5652 struct dwarf2_per_objfile *dwarf2_per_objfile
5653 = get_dwarf2_per_objfile (objfile);
5654
5655 /* debug_names_table is NULL if OBJF_READNOW. */
5656 if (!dwarf2_per_objfile->debug_names_table)
5657 return;
5658
5659 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5660
5661 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5662
5663 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5664 symbol_matcher,
5665 kind, [&] (offset_type namei)
5666 {
5667 /* The name was matched, now expand corresponding CUs that were
5668 marked. */
5669 dw2_debug_names_iterator iter (map, kind, namei);
5670
5671 struct dwarf2_per_cu_data *per_cu;
5672 while ((per_cu = iter.next ()) != NULL)
5673 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5674 expansion_notify);
5675 return true;
5676 });
5677 }
5678
5679 const struct quick_symbol_functions dwarf2_debug_names_functions =
5680 {
5681 dw2_has_symbols,
5682 dw2_find_last_source_symtab,
5683 dw2_forget_cached_source_info,
5684 dw2_map_symtabs_matching_filename,
5685 dw2_debug_names_lookup_symbol,
5686 dw2_print_stats,
5687 dw2_debug_names_dump,
5688 dw2_debug_names_expand_symtabs_for_function,
5689 dw2_expand_all_symtabs,
5690 dw2_expand_symtabs_with_fullname,
5691 dw2_debug_names_map_matching_symbols,
5692 dw2_debug_names_expand_symtabs_matching,
5693 dw2_find_pc_sect_compunit_symtab,
5694 NULL,
5695 dw2_map_symbol_filenames
5696 };
5697
5698 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5699 to either a dwarf2_per_objfile or dwz_file object. */
5700
5701 template <typename T>
5702 static gdb::array_view<const gdb_byte>
5703 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5704 {
5705 dwarf2_section_info *section = &section_owner->gdb_index;
5706
5707 if (section->empty ())
5708 return {};
5709
5710 /* Older elfutils strip versions could keep the section in the main
5711 executable while splitting it for the separate debug info file. */
5712 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5713 return {};
5714
5715 section->read (obj);
5716
5717 /* dwarf2_section_info::size is a bfd_size_type, while
5718 gdb::array_view works with size_t. On 32-bit hosts, with
5719 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5720 is 32-bit. So we need an explicit narrowing conversion here.
5721 This is fine, because it's impossible to allocate or mmap an
5722 array/buffer larger than what size_t can represent. */
5723 return gdb::make_array_view (section->buffer, section->size);
5724 }
5725
5726 /* Lookup the index cache for the contents of the index associated to
5727 DWARF2_OBJ. */
5728
5729 static gdb::array_view<const gdb_byte>
5730 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5731 {
5732 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5733 if (build_id == nullptr)
5734 return {};
5735
5736 return global_index_cache.lookup_gdb_index (build_id,
5737 &dwarf2_obj->index_cache_res);
5738 }
5739
5740 /* Same as the above, but for DWZ. */
5741
5742 static gdb::array_view<const gdb_byte>
5743 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5744 {
5745 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5746 if (build_id == nullptr)
5747 return {};
5748
5749 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5750 }
5751
5752 /* See symfile.h. */
5753
5754 bool
5755 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5756 {
5757 struct dwarf2_per_objfile *dwarf2_per_objfile
5758 = get_dwarf2_per_objfile (objfile);
5759
5760 /* If we're about to read full symbols, don't bother with the
5761 indices. In this case we also don't care if some other debug
5762 format is making psymtabs, because they are all about to be
5763 expanded anyway. */
5764 if ((objfile->flags & OBJF_READNOW))
5765 {
5766 dwarf2_per_objfile->using_index = 1;
5767 create_all_comp_units (dwarf2_per_objfile);
5768 create_all_type_units (dwarf2_per_objfile);
5769 dwarf2_per_objfile->quick_file_names_table
5770 = create_quick_file_names_table
5771 (dwarf2_per_objfile->all_comp_units.size ());
5772
5773 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5774 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5775 {
5776 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5777
5778 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5779 struct dwarf2_per_cu_quick_data);
5780 }
5781
5782 /* Return 1 so that gdb sees the "quick" functions. However,
5783 these functions will be no-ops because we will have expanded
5784 all symtabs. */
5785 *index_kind = dw_index_kind::GDB_INDEX;
5786 return true;
5787 }
5788
5789 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5790 {
5791 *index_kind = dw_index_kind::DEBUG_NAMES;
5792 return true;
5793 }
5794
5795 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5796 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5797 get_gdb_index_contents_from_section<dwz_file>))
5798 {
5799 *index_kind = dw_index_kind::GDB_INDEX;
5800 return true;
5801 }
5802
5803 /* ... otherwise, try to find the index in the index cache. */
5804 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5805 get_gdb_index_contents_from_cache,
5806 get_gdb_index_contents_from_cache_dwz))
5807 {
5808 global_index_cache.hit ();
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 global_index_cache.miss ();
5814 return false;
5815 }
5816
5817 \f
5818
5819 /* Build a partial symbol table. */
5820
5821 void
5822 dwarf2_build_psymtabs (struct objfile *objfile)
5823 {
5824 struct dwarf2_per_objfile *dwarf2_per_objfile
5825 = get_dwarf2_per_objfile (objfile);
5826
5827 init_psymbol_list (objfile, 1024);
5828
5829 try
5830 {
5831 /* This isn't really ideal: all the data we allocate on the
5832 objfile's obstack is still uselessly kept around. However,
5833 freeing it seems unsafe. */
5834 psymtab_discarder psymtabs (objfile);
5835 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5836 psymtabs.keep ();
5837
5838 /* (maybe) store an index in the cache. */
5839 global_index_cache.store (dwarf2_per_objfile);
5840 }
5841 catch (const gdb_exception_error &except)
5842 {
5843 exception_print (gdb_stderr, except);
5844 }
5845 }
5846
5847 /* Find the base address of the compilation unit for range lists and
5848 location lists. It will normally be specified by DW_AT_low_pc.
5849 In DWARF-3 draft 4, the base address could be overridden by
5850 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5851 compilation units with discontinuous ranges. */
5852
5853 static void
5854 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5855 {
5856 struct attribute *attr;
5857
5858 cu->base_known = 0;
5859 cu->base_address = 0;
5860
5861 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5862 if (attr != nullptr)
5863 {
5864 cu->base_address = attr->value_as_address ();
5865 cu->base_known = 1;
5866 }
5867 else
5868 {
5869 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5870 if (attr != nullptr)
5871 {
5872 cu->base_address = attr->value_as_address ();
5873 cu->base_known = 1;
5874 }
5875 }
5876 }
5877
5878 /* Helper function that returns the proper abbrev section for
5879 THIS_CU. */
5880
5881 static struct dwarf2_section_info *
5882 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5883 {
5884 struct dwarf2_section_info *abbrev;
5885 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5886
5887 if (this_cu->is_dwz)
5888 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5889 else
5890 abbrev = &dwarf2_per_objfile->abbrev;
5891
5892 return abbrev;
5893 }
5894
5895 /* Fetch the abbreviation table offset from a comp or type unit header. */
5896
5897 static sect_offset
5898 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5899 struct dwarf2_section_info *section,
5900 sect_offset sect_off)
5901 {
5902 bfd *abfd = section->get_bfd_owner ();
5903 const gdb_byte *info_ptr;
5904 unsigned int initial_length_size, offset_size;
5905 uint16_t version;
5906
5907 section->read (dwarf2_per_objfile->objfile);
5908 info_ptr = section->buffer + to_underlying (sect_off);
5909 read_initial_length (abfd, info_ptr, &initial_length_size);
5910 offset_size = initial_length_size == 4 ? 4 : 8;
5911 info_ptr += initial_length_size;
5912
5913 version = read_2_bytes (abfd, info_ptr);
5914 info_ptr += 2;
5915 if (version >= 5)
5916 {
5917 /* Skip unit type and address size. */
5918 info_ptr += 2;
5919 }
5920
5921 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5922 }
5923
5924 /* A partial symtab that is used only for include files. */
5925 struct dwarf2_include_psymtab : public partial_symtab
5926 {
5927 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5928 : partial_symtab (filename, objfile)
5929 {
5930 }
5931
5932 void read_symtab (struct objfile *objfile) override
5933 {
5934 expand_psymtab (objfile);
5935 }
5936
5937 void expand_psymtab (struct objfile *objfile) override
5938 {
5939 if (m_readin)
5940 return;
5941 /* It's an include file, no symbols to read for it.
5942 Everything is in the parent symtab. */
5943 read_dependencies (objfile);
5944 m_readin = true;
5945 }
5946
5947 bool readin_p () const override
5948 {
5949 return m_readin;
5950 }
5951
5952 struct compunit_symtab *get_compunit_symtab () const override
5953 {
5954 return nullptr;
5955 }
5956
5957 private:
5958
5959 bool m_readin = false;
5960 };
5961
5962 /* Allocate a new partial symtab for file named NAME and mark this new
5963 partial symtab as being an include of PST. */
5964
5965 static void
5966 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5967 struct objfile *objfile)
5968 {
5969 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
5970
5971 if (!IS_ABSOLUTE_PATH (subpst->filename))
5972 {
5973 /* It shares objfile->objfile_obstack. */
5974 subpst->dirname = pst->dirname;
5975 }
5976
5977 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5978 subpst->dependencies[0] = pst;
5979 subpst->number_of_dependencies = 1;
5980 }
5981
5982 /* Read the Line Number Program data and extract the list of files
5983 included by the source file represented by PST. Build an include
5984 partial symtab for each of these included files. */
5985
5986 static void
5987 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5988 struct die_info *die,
5989 dwarf2_psymtab *pst)
5990 {
5991 line_header_up lh;
5992 struct attribute *attr;
5993
5994 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5995 if (attr != nullptr)
5996 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5997 if (lh == NULL)
5998 return; /* No linetable, so no includes. */
5999
6000 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6001 that we pass in the raw text_low here; that is ok because we're
6002 only decoding the line table to make include partial symtabs, and
6003 so the addresses aren't really used. */
6004 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6005 pst->raw_text_low (), 1);
6006 }
6007
6008 static hashval_t
6009 hash_signatured_type (const void *item)
6010 {
6011 const struct signatured_type *sig_type
6012 = (const struct signatured_type *) item;
6013
6014 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6015 return sig_type->signature;
6016 }
6017
6018 static int
6019 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6020 {
6021 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6022 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6023
6024 return lhs->signature == rhs->signature;
6025 }
6026
6027 /* Allocate a hash table for signatured types. */
6028
6029 static htab_up
6030 allocate_signatured_type_table ()
6031 {
6032 return htab_up (htab_create_alloc (41,
6033 hash_signatured_type,
6034 eq_signatured_type,
6035 NULL, xcalloc, xfree));
6036 }
6037
6038 /* A helper function to add a signatured type CU to a table. */
6039
6040 static int
6041 add_signatured_type_cu_to_table (void **slot, void *datum)
6042 {
6043 struct signatured_type *sigt = (struct signatured_type *) *slot;
6044 std::vector<signatured_type *> *all_type_units
6045 = (std::vector<signatured_type *> *) datum;
6046
6047 all_type_units->push_back (sigt);
6048
6049 return 1;
6050 }
6051
6052 /* A helper for create_debug_types_hash_table. Read types from SECTION
6053 and fill them into TYPES_HTAB. It will process only type units,
6054 therefore DW_UT_type. */
6055
6056 static void
6057 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6058 struct dwo_file *dwo_file,
6059 dwarf2_section_info *section, htab_up &types_htab,
6060 rcuh_kind section_kind)
6061 {
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_section_info *abbrev_section;
6064 bfd *abfd;
6065 const gdb_byte *info_ptr, *end_ptr;
6066
6067 abbrev_section = (dwo_file != NULL
6068 ? &dwo_file->sections.abbrev
6069 : &dwarf2_per_objfile->abbrev);
6070
6071 if (dwarf_read_debug)
6072 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6073 section->get_name (),
6074 abbrev_section->get_file_name ());
6075
6076 section->read (objfile);
6077 info_ptr = section->buffer;
6078
6079 if (info_ptr == NULL)
6080 return;
6081
6082 /* We can't set abfd until now because the section may be empty or
6083 not present, in which case the bfd is unknown. */
6084 abfd = section->get_bfd_owner ();
6085
6086 /* We don't use cutu_reader here because we don't need to read
6087 any dies: the signature is in the header. */
6088
6089 end_ptr = info_ptr + section->size;
6090 while (info_ptr < end_ptr)
6091 {
6092 struct signatured_type *sig_type;
6093 struct dwo_unit *dwo_tu;
6094 void **slot;
6095 const gdb_byte *ptr = info_ptr;
6096 struct comp_unit_head header;
6097 unsigned int length;
6098
6099 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6100
6101 /* Initialize it due to a false compiler warning. */
6102 header.signature = -1;
6103 header.type_cu_offset_in_tu = (cu_offset) -1;
6104
6105 /* We need to read the type's signature in order to build the hash
6106 table, but we don't need anything else just yet. */
6107
6108 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6109 abbrev_section, ptr, section_kind);
6110
6111 length = header.get_length ();
6112
6113 /* Skip dummy type units. */
6114 if (ptr >= info_ptr + length
6115 || peek_abbrev_code (abfd, ptr) == 0
6116 || header.unit_type != DW_UT_type)
6117 {
6118 info_ptr += length;
6119 continue;
6120 }
6121
6122 if (types_htab == NULL)
6123 {
6124 if (dwo_file)
6125 types_htab = allocate_dwo_unit_table ();
6126 else
6127 types_htab = allocate_signatured_type_table ();
6128 }
6129
6130 if (dwo_file)
6131 {
6132 sig_type = NULL;
6133 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6134 struct dwo_unit);
6135 dwo_tu->dwo_file = dwo_file;
6136 dwo_tu->signature = header.signature;
6137 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6138 dwo_tu->section = section;
6139 dwo_tu->sect_off = sect_off;
6140 dwo_tu->length = length;
6141 }
6142 else
6143 {
6144 /* N.B.: type_offset is not usable if this type uses a DWO file.
6145 The real type_offset is in the DWO file. */
6146 dwo_tu = NULL;
6147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6148 struct signatured_type);
6149 sig_type->signature = header.signature;
6150 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6151 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6152 sig_type->per_cu.is_debug_types = 1;
6153 sig_type->per_cu.section = section;
6154 sig_type->per_cu.sect_off = sect_off;
6155 sig_type->per_cu.length = length;
6156 }
6157
6158 slot = htab_find_slot (types_htab.get (),
6159 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6160 INSERT);
6161 gdb_assert (slot != NULL);
6162 if (*slot != NULL)
6163 {
6164 sect_offset dup_sect_off;
6165
6166 if (dwo_file)
6167 {
6168 const struct dwo_unit *dup_tu
6169 = (const struct dwo_unit *) *slot;
6170
6171 dup_sect_off = dup_tu->sect_off;
6172 }
6173 else
6174 {
6175 const struct signatured_type *dup_tu
6176 = (const struct signatured_type *) *slot;
6177
6178 dup_sect_off = dup_tu->per_cu.sect_off;
6179 }
6180
6181 complaint (_("debug type entry at offset %s is duplicate to"
6182 " the entry at offset %s, signature %s"),
6183 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6184 hex_string (header.signature));
6185 }
6186 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6187
6188 if (dwarf_read_debug > 1)
6189 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6190 sect_offset_str (sect_off),
6191 hex_string (header.signature));
6192
6193 info_ptr += length;
6194 }
6195 }
6196
6197 /* Create the hash table of all entries in the .debug_types
6198 (or .debug_types.dwo) section(s).
6199 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6200 otherwise it is NULL.
6201
6202 The result is a pointer to the hash table or NULL if there are no types.
6203
6204 Note: This function processes DWO files only, not DWP files. */
6205
6206 static void
6207 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6208 struct dwo_file *dwo_file,
6209 gdb::array_view<dwarf2_section_info> type_sections,
6210 htab_up &types_htab)
6211 {
6212 for (dwarf2_section_info &section : type_sections)
6213 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6214 types_htab, rcuh_kind::TYPE);
6215 }
6216
6217 /* Create the hash table of all entries in the .debug_types section,
6218 and initialize all_type_units.
6219 The result is zero if there is an error (e.g. missing .debug_types section),
6220 otherwise non-zero. */
6221
6222 static int
6223 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6224 {
6225 htab_up types_htab;
6226
6227 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6228 &dwarf2_per_objfile->info, types_htab,
6229 rcuh_kind::COMPILE);
6230 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6231 dwarf2_per_objfile->types, types_htab);
6232 if (types_htab == NULL)
6233 {
6234 dwarf2_per_objfile->signatured_types = NULL;
6235 return 0;
6236 }
6237
6238 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6239
6240 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6241 dwarf2_per_objfile->all_type_units.reserve
6242 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6243
6244 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6245 add_signatured_type_cu_to_table,
6246 &dwarf2_per_objfile->all_type_units);
6247
6248 return 1;
6249 }
6250
6251 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6252 If SLOT is non-NULL, it is the entry to use in the hash table.
6253 Otherwise we find one. */
6254
6255 static struct signatured_type *
6256 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6257 void **slot)
6258 {
6259 struct objfile *objfile = dwarf2_per_objfile->objfile;
6260
6261 if (dwarf2_per_objfile->all_type_units.size ()
6262 == dwarf2_per_objfile->all_type_units.capacity ())
6263 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6264
6265 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6266 struct signatured_type);
6267
6268 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6269 sig_type->signature = sig;
6270 sig_type->per_cu.is_debug_types = 1;
6271 if (dwarf2_per_objfile->using_index)
6272 {
6273 sig_type->per_cu.v.quick =
6274 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6275 struct dwarf2_per_cu_quick_data);
6276 }
6277
6278 if (slot == NULL)
6279 {
6280 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6281 sig_type, INSERT);
6282 }
6283 gdb_assert (*slot == NULL);
6284 *slot = sig_type;
6285 /* The rest of sig_type must be filled in by the caller. */
6286 return sig_type;
6287 }
6288
6289 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6290 Fill in SIG_ENTRY with DWO_ENTRY. */
6291
6292 static void
6293 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6294 struct signatured_type *sig_entry,
6295 struct dwo_unit *dwo_entry)
6296 {
6297 /* Make sure we're not clobbering something we don't expect to. */
6298 gdb_assert (! sig_entry->per_cu.queued);
6299 gdb_assert (sig_entry->per_cu.cu == NULL);
6300 if (dwarf2_per_objfile->using_index)
6301 {
6302 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6303 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6304 }
6305 else
6306 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6307 gdb_assert (sig_entry->signature == dwo_entry->signature);
6308 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6309 gdb_assert (sig_entry->type_unit_group == NULL);
6310 gdb_assert (sig_entry->dwo_unit == NULL);
6311
6312 sig_entry->per_cu.section = dwo_entry->section;
6313 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6314 sig_entry->per_cu.length = dwo_entry->length;
6315 sig_entry->per_cu.reading_dwo_directly = 1;
6316 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6317 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6318 sig_entry->dwo_unit = dwo_entry;
6319 }
6320
6321 /* Subroutine of lookup_signatured_type.
6322 If we haven't read the TU yet, create the signatured_type data structure
6323 for a TU to be read in directly from a DWO file, bypassing the stub.
6324 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6325 using .gdb_index, then when reading a CU we want to stay in the DWO file
6326 containing that CU. Otherwise we could end up reading several other DWO
6327 files (due to comdat folding) to process the transitive closure of all the
6328 mentioned TUs, and that can be slow. The current DWO file will have every
6329 type signature that it needs.
6330 We only do this for .gdb_index because in the psymtab case we already have
6331 to read all the DWOs to build the type unit groups. */
6332
6333 static struct signatured_type *
6334 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6335 {
6336 struct dwarf2_per_objfile *dwarf2_per_objfile
6337 = cu->per_cu->dwarf2_per_objfile;
6338 struct dwo_file *dwo_file;
6339 struct dwo_unit find_dwo_entry, *dwo_entry;
6340 struct signatured_type find_sig_entry, *sig_entry;
6341 void **slot;
6342
6343 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6344
6345 /* If TU skeletons have been removed then we may not have read in any
6346 TUs yet. */
6347 if (dwarf2_per_objfile->signatured_types == NULL)
6348 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6349
6350 /* We only ever need to read in one copy of a signatured type.
6351 Use the global signatured_types array to do our own comdat-folding
6352 of types. If this is the first time we're reading this TU, and
6353 the TU has an entry in .gdb_index, replace the recorded data from
6354 .gdb_index with this TU. */
6355
6356 find_sig_entry.signature = sig;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6358 &find_sig_entry, INSERT);
6359 sig_entry = (struct signatured_type *) *slot;
6360
6361 /* We can get here with the TU already read, *or* in the process of being
6362 read. Don't reassign the global entry to point to this DWO if that's
6363 the case. Also note that if the TU is already being read, it may not
6364 have come from a DWO, the program may be a mix of Fission-compiled
6365 code and non-Fission-compiled code. */
6366
6367 /* Have we already tried to read this TU?
6368 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6369 needn't exist in the global table yet). */
6370 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6371 return sig_entry;
6372
6373 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6374 dwo_unit of the TU itself. */
6375 dwo_file = cu->dwo_unit->dwo_file;
6376
6377 /* Ok, this is the first time we're reading this TU. */
6378 if (dwo_file->tus == NULL)
6379 return NULL;
6380 find_dwo_entry.signature = sig;
6381 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6382 &find_dwo_entry);
6383 if (dwo_entry == NULL)
6384 return NULL;
6385
6386 /* If the global table doesn't have an entry for this TU, add one. */
6387 if (sig_entry == NULL)
6388 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6389
6390 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6391 sig_entry->per_cu.tu_read = 1;
6392 return sig_entry;
6393 }
6394
6395 /* Subroutine of lookup_signatured_type.
6396 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6397 then try the DWP file. If the TU stub (skeleton) has been removed then
6398 it won't be in .gdb_index. */
6399
6400 static struct signatured_type *
6401 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6402 {
6403 struct dwarf2_per_objfile *dwarf2_per_objfile
6404 = cu->per_cu->dwarf2_per_objfile;
6405 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6406 struct dwo_unit *dwo_entry;
6407 struct signatured_type find_sig_entry, *sig_entry;
6408 void **slot;
6409
6410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6411 gdb_assert (dwp_file != NULL);
6412
6413 /* If TU skeletons have been removed then we may not have read in any
6414 TUs yet. */
6415 if (dwarf2_per_objfile->signatured_types == NULL)
6416 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6417
6418 find_sig_entry.signature = sig;
6419 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6420 &find_sig_entry, INSERT);
6421 sig_entry = (struct signatured_type *) *slot;
6422
6423 /* Have we already tried to read this TU?
6424 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6425 needn't exist in the global table yet). */
6426 if (sig_entry != NULL)
6427 return sig_entry;
6428
6429 if (dwp_file->tus == NULL)
6430 return NULL;
6431 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6432 sig, 1 /* is_debug_types */);
6433 if (dwo_entry == NULL)
6434 return NULL;
6435
6436 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6437 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6438
6439 return sig_entry;
6440 }
6441
6442 /* Lookup a signature based type for DW_FORM_ref_sig8.
6443 Returns NULL if signature SIG is not present in the table.
6444 It is up to the caller to complain about this. */
6445
6446 static struct signatured_type *
6447 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6448 {
6449 struct dwarf2_per_objfile *dwarf2_per_objfile
6450 = cu->per_cu->dwarf2_per_objfile;
6451
6452 if (cu->dwo_unit
6453 && dwarf2_per_objfile->using_index)
6454 {
6455 /* We're in a DWO/DWP file, and we're using .gdb_index.
6456 These cases require special processing. */
6457 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6458 return lookup_dwo_signatured_type (cu, sig);
6459 else
6460 return lookup_dwp_signatured_type (cu, sig);
6461 }
6462 else
6463 {
6464 struct signatured_type find_entry, *entry;
6465
6466 if (dwarf2_per_objfile->signatured_types == NULL)
6467 return NULL;
6468 find_entry.signature = sig;
6469 entry = ((struct signatured_type *)
6470 htab_find (dwarf2_per_objfile->signatured_types.get (),
6471 &find_entry));
6472 return entry;
6473 }
6474 }
6475
6476 /* Return the address base of the compile unit, which, if exists, is stored
6477 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6478 static gdb::optional<ULONGEST>
6479 lookup_addr_base (struct die_info *comp_unit_die)
6480 {
6481 struct attribute *attr;
6482 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6483 if (attr == nullptr)
6484 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6485 if (attr == nullptr)
6486 return gdb::optional<ULONGEST> ();
6487 return DW_UNSND (attr);
6488 }
6489
6490 /* Return range lists base of the compile unit, which, if exists, is stored
6491 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6492 static ULONGEST
6493 lookup_ranges_base (struct die_info *comp_unit_die)
6494 {
6495 struct attribute *attr;
6496 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6497 if (attr == nullptr)
6498 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6499 if (attr == nullptr)
6500 return 0;
6501 return DW_UNSND (attr);
6502 }
6503
6504 /* Low level DIE reading support. */
6505
6506 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6507
6508 static void
6509 init_cu_die_reader (struct die_reader_specs *reader,
6510 struct dwarf2_cu *cu,
6511 struct dwarf2_section_info *section,
6512 struct dwo_file *dwo_file,
6513 struct abbrev_table *abbrev_table)
6514 {
6515 gdb_assert (section->readin && section->buffer != NULL);
6516 reader->abfd = section->get_bfd_owner ();
6517 reader->cu = cu;
6518 reader->dwo_file = dwo_file;
6519 reader->die_section = section;
6520 reader->buffer = section->buffer;
6521 reader->buffer_end = section->buffer + section->size;
6522 reader->abbrev_table = abbrev_table;
6523 }
6524
6525 /* Subroutine of cutu_reader to simplify it.
6526 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6527 There's just a lot of work to do, and cutu_reader is big enough
6528 already.
6529
6530 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6531 from it to the DIE in the DWO. If NULL we are skipping the stub.
6532 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6533 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6534 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6535 STUB_COMP_DIR may be non-NULL.
6536 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6537 are filled in with the info of the DIE from the DWO file.
6538 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6539 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6540 kept around for at least as long as *RESULT_READER.
6541
6542 The result is non-zero if a valid (non-dummy) DIE was found. */
6543
6544 static int
6545 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6546 struct dwo_unit *dwo_unit,
6547 struct die_info *stub_comp_unit_die,
6548 const char *stub_comp_dir,
6549 struct die_reader_specs *result_reader,
6550 const gdb_byte **result_info_ptr,
6551 struct die_info **result_comp_unit_die,
6552 abbrev_table_up *result_dwo_abbrev_table)
6553 {
6554 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6555 struct objfile *objfile = dwarf2_per_objfile->objfile;
6556 struct dwarf2_cu *cu = this_cu->cu;
6557 bfd *abfd;
6558 const gdb_byte *begin_info_ptr, *info_ptr;
6559 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6560 int i,num_extra_attrs;
6561 struct dwarf2_section_info *dwo_abbrev_section;
6562 struct die_info *comp_unit_die;
6563
6564 /* At most one of these may be provided. */
6565 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6566
6567 /* These attributes aren't processed until later:
6568 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6569 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6570 referenced later. However, these attributes are found in the stub
6571 which we won't have later. In order to not impose this complication
6572 on the rest of the code, we read them here and copy them to the
6573 DWO CU/TU die. */
6574
6575 stmt_list = NULL;
6576 low_pc = NULL;
6577 high_pc = NULL;
6578 ranges = NULL;
6579 comp_dir = NULL;
6580
6581 if (stub_comp_unit_die != NULL)
6582 {
6583 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6584 DWO file. */
6585 if (! this_cu->is_debug_types)
6586 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6587 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6588 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6589 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6590 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6591
6592 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6593
6594 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6595 here (if needed). We need the value before we can process
6596 DW_AT_ranges. */
6597 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6598 }
6599 else if (stub_comp_dir != NULL)
6600 {
6601 /* Reconstruct the comp_dir attribute to simplify the code below. */
6602 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6603 comp_dir->name = DW_AT_comp_dir;
6604 comp_dir->form = DW_FORM_string;
6605 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6606 DW_STRING (comp_dir) = stub_comp_dir;
6607 }
6608
6609 /* Set up for reading the DWO CU/TU. */
6610 cu->dwo_unit = dwo_unit;
6611 dwarf2_section_info *section = dwo_unit->section;
6612 section->read (objfile);
6613 abfd = section->get_bfd_owner ();
6614 begin_info_ptr = info_ptr = (section->buffer
6615 + to_underlying (dwo_unit->sect_off));
6616 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6617
6618 if (this_cu->is_debug_types)
6619 {
6620 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6621
6622 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6623 &cu->header, section,
6624 dwo_abbrev_section,
6625 info_ptr, rcuh_kind::TYPE);
6626 /* This is not an assert because it can be caused by bad debug info. */
6627 if (sig_type->signature != cu->header.signature)
6628 {
6629 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6630 " TU at offset %s [in module %s]"),
6631 hex_string (sig_type->signature),
6632 hex_string (cu->header.signature),
6633 sect_offset_str (dwo_unit->sect_off),
6634 bfd_get_filename (abfd));
6635 }
6636 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6637 /* For DWOs coming from DWP files, we don't know the CU length
6638 nor the type's offset in the TU until now. */
6639 dwo_unit->length = cu->header.get_length ();
6640 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6641
6642 /* Establish the type offset that can be used to lookup the type.
6643 For DWO files, we don't know it until now. */
6644 sig_type->type_offset_in_section
6645 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6646 }
6647 else
6648 {
6649 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6650 &cu->header, section,
6651 dwo_abbrev_section,
6652 info_ptr, rcuh_kind::COMPILE);
6653 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6654 /* For DWOs coming from DWP files, we don't know the CU length
6655 until now. */
6656 dwo_unit->length = cu->header.get_length ();
6657 }
6658
6659 *result_dwo_abbrev_table
6660 = abbrev_table::read (objfile, dwo_abbrev_section,
6661 cu->header.abbrev_sect_off);
6662 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6663 result_dwo_abbrev_table->get ());
6664
6665 /* Read in the die, but leave space to copy over the attributes
6666 from the stub. This has the benefit of simplifying the rest of
6667 the code - all the work to maintain the illusion of a single
6668 DW_TAG_{compile,type}_unit DIE is done here. */
6669 num_extra_attrs = ((stmt_list != NULL)
6670 + (low_pc != NULL)
6671 + (high_pc != NULL)
6672 + (ranges != NULL)
6673 + (comp_dir != NULL));
6674 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6675 num_extra_attrs);
6676
6677 /* Copy over the attributes from the stub to the DIE we just read in. */
6678 comp_unit_die = *result_comp_unit_die;
6679 i = comp_unit_die->num_attrs;
6680 if (stmt_list != NULL)
6681 comp_unit_die->attrs[i++] = *stmt_list;
6682 if (low_pc != NULL)
6683 comp_unit_die->attrs[i++] = *low_pc;
6684 if (high_pc != NULL)
6685 comp_unit_die->attrs[i++] = *high_pc;
6686 if (ranges != NULL)
6687 comp_unit_die->attrs[i++] = *ranges;
6688 if (comp_dir != NULL)
6689 comp_unit_die->attrs[i++] = *comp_dir;
6690 comp_unit_die->num_attrs += num_extra_attrs;
6691
6692 if (dwarf_die_debug)
6693 {
6694 fprintf_unfiltered (gdb_stdlog,
6695 "Read die from %s@0x%x of %s:\n",
6696 section->get_name (),
6697 (unsigned) (begin_info_ptr - section->buffer),
6698 bfd_get_filename (abfd));
6699 dump_die (comp_unit_die, dwarf_die_debug);
6700 }
6701
6702 /* Skip dummy compilation units. */
6703 if (info_ptr >= begin_info_ptr + dwo_unit->length
6704 || peek_abbrev_code (abfd, info_ptr) == 0)
6705 return 0;
6706
6707 *result_info_ptr = info_ptr;
6708 return 1;
6709 }
6710
6711 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6712 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6713 signature is part of the header. */
6714 static gdb::optional<ULONGEST>
6715 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6716 {
6717 if (cu->header.version >= 5)
6718 return cu->header.signature;
6719 struct attribute *attr;
6720 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6721 if (attr == nullptr)
6722 return gdb::optional<ULONGEST> ();
6723 return DW_UNSND (attr);
6724 }
6725
6726 /* Subroutine of cutu_reader to simplify it.
6727 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6728 Returns NULL if the specified DWO unit cannot be found. */
6729
6730 static struct dwo_unit *
6731 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6732 struct die_info *comp_unit_die,
6733 const char *dwo_name)
6734 {
6735 struct dwarf2_cu *cu = this_cu->cu;
6736 struct dwo_unit *dwo_unit;
6737 const char *comp_dir;
6738
6739 gdb_assert (cu != NULL);
6740
6741 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6742 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6743 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6744
6745 if (this_cu->is_debug_types)
6746 {
6747 struct signatured_type *sig_type;
6748
6749 /* Since this_cu is the first member of struct signatured_type,
6750 we can go from a pointer to one to a pointer to the other. */
6751 sig_type = (struct signatured_type *) this_cu;
6752 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6753 }
6754 else
6755 {
6756 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6757 if (!signature.has_value ())
6758 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6759 " [in module %s]"),
6760 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6761 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6762 *signature);
6763 }
6764
6765 return dwo_unit;
6766 }
6767
6768 /* Subroutine of cutu_reader to simplify it.
6769 See it for a description of the parameters.
6770 Read a TU directly from a DWO file, bypassing the stub. */
6771
6772 void
6773 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6774 int use_existing_cu)
6775 {
6776 struct signatured_type *sig_type;
6777 struct die_reader_specs reader;
6778
6779 /* Verify we can do the following downcast, and that we have the
6780 data we need. */
6781 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6782 sig_type = (struct signatured_type *) this_cu;
6783 gdb_assert (sig_type->dwo_unit != NULL);
6784
6785 if (use_existing_cu && this_cu->cu != NULL)
6786 {
6787 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6788 /* There's no need to do the rereading_dwo_cu handling that
6789 cutu_reader does since we don't read the stub. */
6790 }
6791 else
6792 {
6793 /* If !use_existing_cu, this_cu->cu must be NULL. */
6794 gdb_assert (this_cu->cu == NULL);
6795 m_new_cu.reset (new dwarf2_cu (this_cu));
6796 }
6797
6798 /* A future optimization, if needed, would be to use an existing
6799 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6800 could share abbrev tables. */
6801
6802 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6803 NULL /* stub_comp_unit_die */,
6804 sig_type->dwo_unit->dwo_file->comp_dir,
6805 &reader, &info_ptr,
6806 &comp_unit_die,
6807 &m_dwo_abbrev_table) == 0)
6808 {
6809 /* Dummy die. */
6810 dummy_p = true;
6811 }
6812 }
6813
6814 /* Initialize a CU (or TU) and read its DIEs.
6815 If the CU defers to a DWO file, read the DWO file as well.
6816
6817 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6818 Otherwise the table specified in the comp unit header is read in and used.
6819 This is an optimization for when we already have the abbrev table.
6820
6821 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6822 Otherwise, a new CU is allocated with xmalloc. */
6823
6824 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6825 struct abbrev_table *abbrev_table,
6826 int use_existing_cu,
6827 bool skip_partial)
6828 : die_reader_specs {},
6829 m_this_cu (this_cu)
6830 {
6831 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6832 struct objfile *objfile = dwarf2_per_objfile->objfile;
6833 struct dwarf2_section_info *section = this_cu->section;
6834 bfd *abfd = section->get_bfd_owner ();
6835 struct dwarf2_cu *cu;
6836 const gdb_byte *begin_info_ptr;
6837 struct signatured_type *sig_type = NULL;
6838 struct dwarf2_section_info *abbrev_section;
6839 /* Non-zero if CU currently points to a DWO file and we need to
6840 reread it. When this happens we need to reread the skeleton die
6841 before we can reread the DWO file (this only applies to CUs, not TUs). */
6842 int rereading_dwo_cu = 0;
6843
6844 if (dwarf_die_debug)
6845 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6846 this_cu->is_debug_types ? "type" : "comp",
6847 sect_offset_str (this_cu->sect_off));
6848
6849 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6850 file (instead of going through the stub), short-circuit all of this. */
6851 if (this_cu->reading_dwo_directly)
6852 {
6853 /* Narrow down the scope of possibilities to have to understand. */
6854 gdb_assert (this_cu->is_debug_types);
6855 gdb_assert (abbrev_table == NULL);
6856 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6857 return;
6858 }
6859
6860 /* This is cheap if the section is already read in. */
6861 section->read (objfile);
6862
6863 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6864
6865 abbrev_section = get_abbrev_section_for_cu (this_cu);
6866
6867 if (use_existing_cu && this_cu->cu != NULL)
6868 {
6869 cu = this_cu->cu;
6870 /* If this CU is from a DWO file we need to start over, we need to
6871 refetch the attributes from the skeleton CU.
6872 This could be optimized by retrieving those attributes from when we
6873 were here the first time: the previous comp_unit_die was stored in
6874 comp_unit_obstack. But there's no data yet that we need this
6875 optimization. */
6876 if (cu->dwo_unit != NULL)
6877 rereading_dwo_cu = 1;
6878 }
6879 else
6880 {
6881 /* If !use_existing_cu, this_cu->cu must be NULL. */
6882 gdb_assert (this_cu->cu == NULL);
6883 m_new_cu.reset (new dwarf2_cu (this_cu));
6884 cu = m_new_cu.get ();
6885 }
6886
6887 /* Get the header. */
6888 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6889 {
6890 /* We already have the header, there's no need to read it in again. */
6891 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6892 }
6893 else
6894 {
6895 if (this_cu->is_debug_types)
6896 {
6897 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6898 &cu->header, section,
6899 abbrev_section, info_ptr,
6900 rcuh_kind::TYPE);
6901
6902 /* Since per_cu is the first member of struct signatured_type,
6903 we can go from a pointer to one to a pointer to the other. */
6904 sig_type = (struct signatured_type *) this_cu;
6905 gdb_assert (sig_type->signature == cu->header.signature);
6906 gdb_assert (sig_type->type_offset_in_tu
6907 == cu->header.type_cu_offset_in_tu);
6908 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6909
6910 /* LENGTH has not been set yet for type units if we're
6911 using .gdb_index. */
6912 this_cu->length = cu->header.get_length ();
6913
6914 /* Establish the type offset that can be used to lookup the type. */
6915 sig_type->type_offset_in_section =
6916 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6917
6918 this_cu->dwarf_version = cu->header.version;
6919 }
6920 else
6921 {
6922 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6923 &cu->header, section,
6924 abbrev_section,
6925 info_ptr,
6926 rcuh_kind::COMPILE);
6927
6928 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6929 gdb_assert (this_cu->length == cu->header.get_length ());
6930 this_cu->dwarf_version = cu->header.version;
6931 }
6932 }
6933
6934 /* Skip dummy compilation units. */
6935 if (info_ptr >= begin_info_ptr + this_cu->length
6936 || peek_abbrev_code (abfd, info_ptr) == 0)
6937 {
6938 dummy_p = true;
6939 return;
6940 }
6941
6942 /* If we don't have them yet, read the abbrevs for this compilation unit.
6943 And if we need to read them now, make sure they're freed when we're
6944 done. */
6945 if (abbrev_table != NULL)
6946 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6947 else
6948 {
6949 m_abbrev_table_holder
6950 = abbrev_table::read (objfile, abbrev_section,
6951 cu->header.abbrev_sect_off);
6952 abbrev_table = m_abbrev_table_holder.get ();
6953 }
6954
6955 /* Read the top level CU/TU die. */
6956 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6957 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6958
6959 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6960 {
6961 dummy_p = true;
6962 return;
6963 }
6964
6965 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6966 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6967 table from the DWO file and pass the ownership over to us. It will be
6968 referenced from READER, so we must make sure to free it after we're done
6969 with READER.
6970
6971 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6972 DWO CU, that this test will fail (the attribute will not be present). */
6973 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6974 if (dwo_name != nullptr)
6975 {
6976 struct dwo_unit *dwo_unit;
6977 struct die_info *dwo_comp_unit_die;
6978
6979 if (comp_unit_die->has_children)
6980 {
6981 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6982 " has children (offset %s) [in module %s]"),
6983 sect_offset_str (this_cu->sect_off),
6984 bfd_get_filename (abfd));
6985 }
6986 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6987 if (dwo_unit != NULL)
6988 {
6989 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6990 comp_unit_die, NULL,
6991 this, &info_ptr,
6992 &dwo_comp_unit_die,
6993 &m_dwo_abbrev_table) == 0)
6994 {
6995 /* Dummy die. */
6996 dummy_p = true;
6997 return;
6998 }
6999 comp_unit_die = dwo_comp_unit_die;
7000 }
7001 else
7002 {
7003 /* Yikes, we couldn't find the rest of the DIE, we only have
7004 the stub. A complaint has already been logged. There's
7005 not much more we can do except pass on the stub DIE to
7006 die_reader_func. We don't want to throw an error on bad
7007 debug info. */
7008 }
7009 }
7010 }
7011
7012 void
7013 cutu_reader::keep ()
7014 {
7015 /* Done, clean up. */
7016 gdb_assert (!dummy_p);
7017 if (m_new_cu != NULL)
7018 {
7019 struct dwarf2_per_objfile *dwarf2_per_objfile
7020 = m_this_cu->dwarf2_per_objfile;
7021 /* Link this CU into read_in_chain. */
7022 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7023 dwarf2_per_objfile->read_in_chain = m_this_cu;
7024 /* The chain owns it now. */
7025 m_new_cu.release ();
7026 }
7027 }
7028
7029 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7030 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7031 assumed to have already done the lookup to find the DWO file).
7032
7033 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7034 THIS_CU->is_debug_types, but nothing else.
7035
7036 We fill in THIS_CU->length.
7037
7038 THIS_CU->cu is always freed when done.
7039 This is done in order to not leave THIS_CU->cu in a state where we have
7040 to care whether it refers to the "main" CU or the DWO CU.
7041
7042 When parent_cu is passed, it is used to provide a default value for
7043 str_offsets_base and addr_base from the parent. */
7044
7045 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7046 struct dwarf2_cu *parent_cu,
7047 struct dwo_file *dwo_file)
7048 : die_reader_specs {},
7049 m_this_cu (this_cu)
7050 {
7051 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7052 struct objfile *objfile = dwarf2_per_objfile->objfile;
7053 struct dwarf2_section_info *section = this_cu->section;
7054 bfd *abfd = section->get_bfd_owner ();
7055 struct dwarf2_section_info *abbrev_section;
7056 const gdb_byte *begin_info_ptr, *info_ptr;
7057
7058 if (dwarf_die_debug)
7059 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7060 this_cu->is_debug_types ? "type" : "comp",
7061 sect_offset_str (this_cu->sect_off));
7062
7063 gdb_assert (this_cu->cu == NULL);
7064
7065 abbrev_section = (dwo_file != NULL
7066 ? &dwo_file->sections.abbrev
7067 : get_abbrev_section_for_cu (this_cu));
7068
7069 /* This is cheap if the section is already read in. */
7070 section->read (objfile);
7071
7072 m_new_cu.reset (new dwarf2_cu (this_cu));
7073
7074 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7075 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7076 &m_new_cu->header, section,
7077 abbrev_section, info_ptr,
7078 (this_cu->is_debug_types
7079 ? rcuh_kind::TYPE
7080 : rcuh_kind::COMPILE));
7081
7082 if (parent_cu != nullptr)
7083 {
7084 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7085 m_new_cu->addr_base = parent_cu->addr_base;
7086 }
7087 this_cu->length = m_new_cu->header.get_length ();
7088
7089 /* Skip dummy compilation units. */
7090 if (info_ptr >= begin_info_ptr + this_cu->length
7091 || peek_abbrev_code (abfd, info_ptr) == 0)
7092 {
7093 dummy_p = true;
7094 return;
7095 }
7096
7097 m_abbrev_table_holder
7098 = abbrev_table::read (objfile, abbrev_section,
7099 m_new_cu->header.abbrev_sect_off);
7100
7101 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7102 m_abbrev_table_holder.get ());
7103 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7104 }
7105
7106 \f
7107 /* Type Unit Groups.
7108
7109 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7110 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7111 so that all types coming from the same compilation (.o file) are grouped
7112 together. A future step could be to put the types in the same symtab as
7113 the CU the types ultimately came from. */
7114
7115 static hashval_t
7116 hash_type_unit_group (const void *item)
7117 {
7118 const struct type_unit_group *tu_group
7119 = (const struct type_unit_group *) item;
7120
7121 return hash_stmt_list_entry (&tu_group->hash);
7122 }
7123
7124 static int
7125 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7126 {
7127 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7128 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7129
7130 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7131 }
7132
7133 /* Allocate a hash table for type unit groups. */
7134
7135 static htab_up
7136 allocate_type_unit_groups_table ()
7137 {
7138 return htab_up (htab_create_alloc (3,
7139 hash_type_unit_group,
7140 eq_type_unit_group,
7141 NULL, xcalloc, xfree));
7142 }
7143
7144 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7145 partial symtabs. We combine several TUs per psymtab to not let the size
7146 of any one psymtab grow too big. */
7147 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7148 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7149
7150 /* Helper routine for get_type_unit_group.
7151 Create the type_unit_group object used to hold one or more TUs. */
7152
7153 static struct type_unit_group *
7154 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7155 {
7156 struct dwarf2_per_objfile *dwarf2_per_objfile
7157 = cu->per_cu->dwarf2_per_objfile;
7158 struct objfile *objfile = dwarf2_per_objfile->objfile;
7159 struct dwarf2_per_cu_data *per_cu;
7160 struct type_unit_group *tu_group;
7161
7162 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7163 struct type_unit_group);
7164 per_cu = &tu_group->per_cu;
7165 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7166
7167 if (dwarf2_per_objfile->using_index)
7168 {
7169 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7170 struct dwarf2_per_cu_quick_data);
7171 }
7172 else
7173 {
7174 unsigned int line_offset = to_underlying (line_offset_struct);
7175 dwarf2_psymtab *pst;
7176 std::string name;
7177
7178 /* Give the symtab a useful name for debug purposes. */
7179 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7180 name = string_printf ("<type_units_%d>",
7181 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7182 else
7183 name = string_printf ("<type_units_at_0x%x>", line_offset);
7184
7185 pst = create_partial_symtab (per_cu, name.c_str ());
7186 pst->anonymous = true;
7187 }
7188
7189 tu_group->hash.dwo_unit = cu->dwo_unit;
7190 tu_group->hash.line_sect_off = line_offset_struct;
7191
7192 return tu_group;
7193 }
7194
7195 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7196 STMT_LIST is a DW_AT_stmt_list attribute. */
7197
7198 static struct type_unit_group *
7199 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7200 {
7201 struct dwarf2_per_objfile *dwarf2_per_objfile
7202 = cu->per_cu->dwarf2_per_objfile;
7203 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7204 struct type_unit_group *tu_group;
7205 void **slot;
7206 unsigned int line_offset;
7207 struct type_unit_group type_unit_group_for_lookup;
7208
7209 if (dwarf2_per_objfile->type_unit_groups == NULL)
7210 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7211
7212 /* Do we need to create a new group, or can we use an existing one? */
7213
7214 if (stmt_list)
7215 {
7216 line_offset = DW_UNSND (stmt_list);
7217 ++tu_stats->nr_symtab_sharers;
7218 }
7219 else
7220 {
7221 /* Ugh, no stmt_list. Rare, but we have to handle it.
7222 We can do various things here like create one group per TU or
7223 spread them over multiple groups to split up the expansion work.
7224 To avoid worst case scenarios (too many groups or too large groups)
7225 we, umm, group them in bunches. */
7226 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7227 | (tu_stats->nr_stmt_less_type_units
7228 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7229 ++tu_stats->nr_stmt_less_type_units;
7230 }
7231
7232 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7233 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7234 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7235 &type_unit_group_for_lookup, INSERT);
7236 if (*slot != NULL)
7237 {
7238 tu_group = (struct type_unit_group *) *slot;
7239 gdb_assert (tu_group != NULL);
7240 }
7241 else
7242 {
7243 sect_offset line_offset_struct = (sect_offset) line_offset;
7244 tu_group = create_type_unit_group (cu, line_offset_struct);
7245 *slot = tu_group;
7246 ++tu_stats->nr_symtabs;
7247 }
7248
7249 return tu_group;
7250 }
7251 \f
7252 /* Partial symbol tables. */
7253
7254 /* Create a psymtab named NAME and assign it to PER_CU.
7255
7256 The caller must fill in the following details:
7257 dirname, textlow, texthigh. */
7258
7259 static dwarf2_psymtab *
7260 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7261 {
7262 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7263 dwarf2_psymtab *pst;
7264
7265 pst = new dwarf2_psymtab (name, objfile, 0);
7266
7267 pst->psymtabs_addrmap_supported = true;
7268
7269 /* This is the glue that links PST into GDB's symbol API. */
7270 pst->per_cu_data = per_cu;
7271 per_cu->v.psymtab = pst;
7272
7273 return pst;
7274 }
7275
7276 /* DIE reader function for process_psymtab_comp_unit. */
7277
7278 static void
7279 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7280 const gdb_byte *info_ptr,
7281 struct die_info *comp_unit_die,
7282 enum language pretend_language)
7283 {
7284 struct dwarf2_cu *cu = reader->cu;
7285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7286 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7287 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7288 CORE_ADDR baseaddr;
7289 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7290 dwarf2_psymtab *pst;
7291 enum pc_bounds_kind cu_bounds_kind;
7292 const char *filename;
7293
7294 gdb_assert (! per_cu->is_debug_types);
7295
7296 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7297
7298 /* Allocate a new partial symbol table structure. */
7299 gdb::unique_xmalloc_ptr<char> debug_filename;
7300 static const char artificial[] = "<artificial>";
7301 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7302 if (filename == NULL)
7303 filename = "";
7304 else if (strcmp (filename, artificial) == 0)
7305 {
7306 debug_filename.reset (concat (artificial, "@",
7307 sect_offset_str (per_cu->sect_off),
7308 (char *) NULL));
7309 filename = debug_filename.get ();
7310 }
7311
7312 pst = create_partial_symtab (per_cu, filename);
7313
7314 /* This must be done before calling dwarf2_build_include_psymtabs. */
7315 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7316
7317 baseaddr = objfile->text_section_offset ();
7318
7319 dwarf2_find_base_address (comp_unit_die, cu);
7320
7321 /* Possibly set the default values of LOWPC and HIGHPC from
7322 `DW_AT_ranges'. */
7323 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7324 &best_highpc, cu, pst);
7325 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7326 {
7327 CORE_ADDR low
7328 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7329 - baseaddr);
7330 CORE_ADDR high
7331 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7332 - baseaddr - 1);
7333 /* Store the contiguous range if it is not empty; it can be
7334 empty for CUs with no code. */
7335 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7336 low, high, pst);
7337 }
7338
7339 /* Check if comp unit has_children.
7340 If so, read the rest of the partial symbols from this comp unit.
7341 If not, there's no more debug_info for this comp unit. */
7342 if (comp_unit_die->has_children)
7343 {
7344 struct partial_die_info *first_die;
7345 CORE_ADDR lowpc, highpc;
7346
7347 lowpc = ((CORE_ADDR) -1);
7348 highpc = ((CORE_ADDR) 0);
7349
7350 first_die = load_partial_dies (reader, info_ptr, 1);
7351
7352 scan_partial_symbols (first_die, &lowpc, &highpc,
7353 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7354
7355 /* If we didn't find a lowpc, set it to highpc to avoid
7356 complaints from `maint check'. */
7357 if (lowpc == ((CORE_ADDR) -1))
7358 lowpc = highpc;
7359
7360 /* If the compilation unit didn't have an explicit address range,
7361 then use the information extracted from its child dies. */
7362 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7363 {
7364 best_lowpc = lowpc;
7365 best_highpc = highpc;
7366 }
7367 }
7368 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7369 best_lowpc + baseaddr)
7370 - baseaddr);
7371 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7372 best_highpc + baseaddr)
7373 - baseaddr);
7374
7375 end_psymtab_common (objfile, pst);
7376
7377 if (!cu->per_cu->imported_symtabs_empty ())
7378 {
7379 int i;
7380 int len = cu->per_cu->imported_symtabs_size ();
7381
7382 /* Fill in 'dependencies' here; we fill in 'users' in a
7383 post-pass. */
7384 pst->number_of_dependencies = len;
7385 pst->dependencies
7386 = objfile->partial_symtabs->allocate_dependencies (len);
7387 for (i = 0; i < len; ++i)
7388 {
7389 pst->dependencies[i]
7390 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7391 }
7392
7393 cu->per_cu->imported_symtabs_free ();
7394 }
7395
7396 /* Get the list of files included in the current compilation unit,
7397 and build a psymtab for each of them. */
7398 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7399
7400 if (dwarf_read_debug)
7401 fprintf_unfiltered (gdb_stdlog,
7402 "Psymtab for %s unit @%s: %s - %s"
7403 ", %d global, %d static syms\n",
7404 per_cu->is_debug_types ? "type" : "comp",
7405 sect_offset_str (per_cu->sect_off),
7406 paddress (gdbarch, pst->text_low (objfile)),
7407 paddress (gdbarch, pst->text_high (objfile)),
7408 pst->n_global_syms, pst->n_static_syms);
7409 }
7410
7411 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7412 Process compilation unit THIS_CU for a psymtab. */
7413
7414 static void
7415 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7416 bool want_partial_unit,
7417 enum language pretend_language)
7418 {
7419 /* If this compilation unit was already read in, free the
7420 cached copy in order to read it in again. This is
7421 necessary because we skipped some symbols when we first
7422 read in the compilation unit (see load_partial_dies).
7423 This problem could be avoided, but the benefit is unclear. */
7424 if (this_cu->cu != NULL)
7425 free_one_cached_comp_unit (this_cu);
7426
7427 cutu_reader reader (this_cu, NULL, 0, false);
7428
7429 if (reader.dummy_p)
7430 {
7431 /* Nothing. */
7432 }
7433 else if (this_cu->is_debug_types)
7434 build_type_psymtabs_reader (&reader, reader.info_ptr,
7435 reader.comp_unit_die);
7436 else if (want_partial_unit
7437 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7438 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7439 reader.comp_unit_die,
7440 pretend_language);
7441
7442 /* Age out any secondary CUs. */
7443 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7444 }
7445
7446 /* Reader function for build_type_psymtabs. */
7447
7448 static void
7449 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7450 const gdb_byte *info_ptr,
7451 struct die_info *type_unit_die)
7452 {
7453 struct dwarf2_per_objfile *dwarf2_per_objfile
7454 = reader->cu->per_cu->dwarf2_per_objfile;
7455 struct objfile *objfile = dwarf2_per_objfile->objfile;
7456 struct dwarf2_cu *cu = reader->cu;
7457 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7458 struct signatured_type *sig_type;
7459 struct type_unit_group *tu_group;
7460 struct attribute *attr;
7461 struct partial_die_info *first_die;
7462 CORE_ADDR lowpc, highpc;
7463 dwarf2_psymtab *pst;
7464
7465 gdb_assert (per_cu->is_debug_types);
7466 sig_type = (struct signatured_type *) per_cu;
7467
7468 if (! type_unit_die->has_children)
7469 return;
7470
7471 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7472 tu_group = get_type_unit_group (cu, attr);
7473
7474 if (tu_group->tus == nullptr)
7475 tu_group->tus = new std::vector<signatured_type *>;
7476 tu_group->tus->push_back (sig_type);
7477
7478 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7479 pst = create_partial_symtab (per_cu, "");
7480 pst->anonymous = true;
7481
7482 first_die = load_partial_dies (reader, info_ptr, 1);
7483
7484 lowpc = (CORE_ADDR) -1;
7485 highpc = (CORE_ADDR) 0;
7486 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7487
7488 end_psymtab_common (objfile, pst);
7489 }
7490
7491 /* Struct used to sort TUs by their abbreviation table offset. */
7492
7493 struct tu_abbrev_offset
7494 {
7495 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7496 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7497 {}
7498
7499 signatured_type *sig_type;
7500 sect_offset abbrev_offset;
7501 };
7502
7503 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7504
7505 static bool
7506 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7507 const struct tu_abbrev_offset &b)
7508 {
7509 return a.abbrev_offset < b.abbrev_offset;
7510 }
7511
7512 /* Efficiently read all the type units.
7513 This does the bulk of the work for build_type_psymtabs.
7514
7515 The efficiency is because we sort TUs by the abbrev table they use and
7516 only read each abbrev table once. In one program there are 200K TUs
7517 sharing 8K abbrev tables.
7518
7519 The main purpose of this function is to support building the
7520 dwarf2_per_objfile->type_unit_groups table.
7521 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7522 can collapse the search space by grouping them by stmt_list.
7523 The savings can be significant, in the same program from above the 200K TUs
7524 share 8K stmt_list tables.
7525
7526 FUNC is expected to call get_type_unit_group, which will create the
7527 struct type_unit_group if necessary and add it to
7528 dwarf2_per_objfile->type_unit_groups. */
7529
7530 static void
7531 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7532 {
7533 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7534 abbrev_table_up abbrev_table;
7535 sect_offset abbrev_offset;
7536
7537 /* It's up to the caller to not call us multiple times. */
7538 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7539
7540 if (dwarf2_per_objfile->all_type_units.empty ())
7541 return;
7542
7543 /* TUs typically share abbrev tables, and there can be way more TUs than
7544 abbrev tables. Sort by abbrev table to reduce the number of times we
7545 read each abbrev table in.
7546 Alternatives are to punt or to maintain a cache of abbrev tables.
7547 This is simpler and efficient enough for now.
7548
7549 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7550 symtab to use). Typically TUs with the same abbrev offset have the same
7551 stmt_list value too so in practice this should work well.
7552
7553 The basic algorithm here is:
7554
7555 sort TUs by abbrev table
7556 for each TU with same abbrev table:
7557 read abbrev table if first user
7558 read TU top level DIE
7559 [IWBN if DWO skeletons had DW_AT_stmt_list]
7560 call FUNC */
7561
7562 if (dwarf_read_debug)
7563 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7564
7565 /* Sort in a separate table to maintain the order of all_type_units
7566 for .gdb_index: TU indices directly index all_type_units. */
7567 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7568 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7569
7570 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7571 sorted_by_abbrev.emplace_back
7572 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7573 sig_type->per_cu.section,
7574 sig_type->per_cu.sect_off));
7575
7576 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7577 sort_tu_by_abbrev_offset);
7578
7579 abbrev_offset = (sect_offset) ~(unsigned) 0;
7580
7581 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7582 {
7583 /* Switch to the next abbrev table if necessary. */
7584 if (abbrev_table == NULL
7585 || tu.abbrev_offset != abbrev_offset)
7586 {
7587 abbrev_offset = tu.abbrev_offset;
7588 abbrev_table =
7589 abbrev_table::read (dwarf2_per_objfile->objfile,
7590 &dwarf2_per_objfile->abbrev,
7591 abbrev_offset);
7592 ++tu_stats->nr_uniq_abbrev_tables;
7593 }
7594
7595 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7596 0, false);
7597 if (!reader.dummy_p)
7598 build_type_psymtabs_reader (&reader, reader.info_ptr,
7599 reader.comp_unit_die);
7600 }
7601 }
7602
7603 /* Print collected type unit statistics. */
7604
7605 static void
7606 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7607 {
7608 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7609
7610 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7611 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7612 dwarf2_per_objfile->all_type_units.size ());
7613 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7614 tu_stats->nr_uniq_abbrev_tables);
7615 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7616 tu_stats->nr_symtabs);
7617 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7618 tu_stats->nr_symtab_sharers);
7619 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7620 tu_stats->nr_stmt_less_type_units);
7621 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7622 tu_stats->nr_all_type_units_reallocs);
7623 }
7624
7625 /* Traversal function for build_type_psymtabs. */
7626
7627 static int
7628 build_type_psymtab_dependencies (void **slot, void *info)
7629 {
7630 struct dwarf2_per_objfile *dwarf2_per_objfile
7631 = (struct dwarf2_per_objfile *) info;
7632 struct objfile *objfile = dwarf2_per_objfile->objfile;
7633 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7634 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7635 dwarf2_psymtab *pst = per_cu->v.psymtab;
7636 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7637 int i;
7638
7639 gdb_assert (len > 0);
7640 gdb_assert (per_cu->type_unit_group_p ());
7641
7642 pst->number_of_dependencies = len;
7643 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7644 for (i = 0; i < len; ++i)
7645 {
7646 struct signatured_type *iter = tu_group->tus->at (i);
7647 gdb_assert (iter->per_cu.is_debug_types);
7648 pst->dependencies[i] = iter->per_cu.v.psymtab;
7649 iter->type_unit_group = tu_group;
7650 }
7651
7652 delete tu_group->tus;
7653 tu_group->tus = nullptr;
7654
7655 return 1;
7656 }
7657
7658 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7659 Build partial symbol tables for the .debug_types comp-units. */
7660
7661 static void
7662 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7663 {
7664 if (! create_all_type_units (dwarf2_per_objfile))
7665 return;
7666
7667 build_type_psymtabs_1 (dwarf2_per_objfile);
7668 }
7669
7670 /* Traversal function for process_skeletonless_type_unit.
7671 Read a TU in a DWO file and build partial symbols for it. */
7672
7673 static int
7674 process_skeletonless_type_unit (void **slot, void *info)
7675 {
7676 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7677 struct dwarf2_per_objfile *dwarf2_per_objfile
7678 = (struct dwarf2_per_objfile *) info;
7679 struct signatured_type find_entry, *entry;
7680
7681 /* If this TU doesn't exist in the global table, add it and read it in. */
7682
7683 if (dwarf2_per_objfile->signatured_types == NULL)
7684 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7685
7686 find_entry.signature = dwo_unit->signature;
7687 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7688 &find_entry, INSERT);
7689 /* If we've already seen this type there's nothing to do. What's happening
7690 is we're doing our own version of comdat-folding here. */
7691 if (*slot != NULL)
7692 return 1;
7693
7694 /* This does the job that create_all_type_units would have done for
7695 this TU. */
7696 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7697 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7698 *slot = entry;
7699
7700 /* This does the job that build_type_psymtabs_1 would have done. */
7701 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7702 if (!reader.dummy_p)
7703 build_type_psymtabs_reader (&reader, reader.info_ptr,
7704 reader.comp_unit_die);
7705
7706 return 1;
7707 }
7708
7709 /* Traversal function for process_skeletonless_type_units. */
7710
7711 static int
7712 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7713 {
7714 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7715
7716 if (dwo_file->tus != NULL)
7717 htab_traverse_noresize (dwo_file->tus.get (),
7718 process_skeletonless_type_unit, info);
7719
7720 return 1;
7721 }
7722
7723 /* Scan all TUs of DWO files, verifying we've processed them.
7724 This is needed in case a TU was emitted without its skeleton.
7725 Note: This can't be done until we know what all the DWO files are. */
7726
7727 static void
7728 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7729 {
7730 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7731 if (get_dwp_file (dwarf2_per_objfile) == NULL
7732 && dwarf2_per_objfile->dwo_files != NULL)
7733 {
7734 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7735 process_dwo_file_for_skeletonless_type_units,
7736 dwarf2_per_objfile);
7737 }
7738 }
7739
7740 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7741
7742 static void
7743 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7744 {
7745 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7746 {
7747 dwarf2_psymtab *pst = per_cu->v.psymtab;
7748
7749 if (pst == NULL)
7750 continue;
7751
7752 for (int j = 0; j < pst->number_of_dependencies; ++j)
7753 {
7754 /* Set the 'user' field only if it is not already set. */
7755 if (pst->dependencies[j]->user == NULL)
7756 pst->dependencies[j]->user = pst;
7757 }
7758 }
7759 }
7760
7761 /* Build the partial symbol table by doing a quick pass through the
7762 .debug_info and .debug_abbrev sections. */
7763
7764 static void
7765 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7766 {
7767 struct objfile *objfile = dwarf2_per_objfile->objfile;
7768
7769 if (dwarf_read_debug)
7770 {
7771 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7772 objfile_name (objfile));
7773 }
7774
7775 scoped_restore restore_reading_psyms
7776 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7777 true);
7778
7779 dwarf2_per_objfile->info.read (objfile);
7780
7781 /* Any cached compilation units will be linked by the per-objfile
7782 read_in_chain. Make sure to free them when we're done. */
7783 free_cached_comp_units freer (dwarf2_per_objfile);
7784
7785 build_type_psymtabs (dwarf2_per_objfile);
7786
7787 create_all_comp_units (dwarf2_per_objfile);
7788
7789 /* Create a temporary address map on a temporary obstack. We later
7790 copy this to the final obstack. */
7791 auto_obstack temp_obstack;
7792
7793 scoped_restore save_psymtabs_addrmap
7794 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7795 addrmap_create_mutable (&temp_obstack));
7796
7797 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7798 process_psymtab_comp_unit (per_cu, false, language_minimal);
7799
7800 /* This has to wait until we read the CUs, we need the list of DWOs. */
7801 process_skeletonless_type_units (dwarf2_per_objfile);
7802
7803 /* Now that all TUs have been processed we can fill in the dependencies. */
7804 if (dwarf2_per_objfile->type_unit_groups != NULL)
7805 {
7806 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7807 build_type_psymtab_dependencies, dwarf2_per_objfile);
7808 }
7809
7810 if (dwarf_read_debug)
7811 print_tu_stats (dwarf2_per_objfile);
7812
7813 set_partial_user (dwarf2_per_objfile);
7814
7815 objfile->partial_symtabs->psymtabs_addrmap
7816 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7817 objfile->partial_symtabs->obstack ());
7818 /* At this point we want to keep the address map. */
7819 save_psymtabs_addrmap.release ();
7820
7821 if (dwarf_read_debug)
7822 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7823 objfile_name (objfile));
7824 }
7825
7826 /* Load the partial DIEs for a secondary CU into memory.
7827 This is also used when rereading a primary CU with load_all_dies. */
7828
7829 static void
7830 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7831 {
7832 cutu_reader reader (this_cu, NULL, 1, false);
7833
7834 if (!reader.dummy_p)
7835 {
7836 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7837 language_minimal);
7838
7839 /* Check if comp unit has_children.
7840 If so, read the rest of the partial symbols from this comp unit.
7841 If not, there's no more debug_info for this comp unit. */
7842 if (reader.comp_unit_die->has_children)
7843 load_partial_dies (&reader, reader.info_ptr, 0);
7844
7845 reader.keep ();
7846 }
7847 }
7848
7849 static void
7850 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7851 struct dwarf2_section_info *section,
7852 struct dwarf2_section_info *abbrev_section,
7853 unsigned int is_dwz)
7854 {
7855 const gdb_byte *info_ptr;
7856 struct objfile *objfile = dwarf2_per_objfile->objfile;
7857
7858 if (dwarf_read_debug)
7859 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7860 section->get_name (),
7861 section->get_file_name ());
7862
7863 section->read (objfile);
7864
7865 info_ptr = section->buffer;
7866
7867 while (info_ptr < section->buffer + section->size)
7868 {
7869 struct dwarf2_per_cu_data *this_cu;
7870
7871 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7872
7873 comp_unit_head cu_header;
7874 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7875 abbrev_section, info_ptr,
7876 rcuh_kind::COMPILE);
7877
7878 /* Save the compilation unit for later lookup. */
7879 if (cu_header.unit_type != DW_UT_type)
7880 {
7881 this_cu = XOBNEW (&objfile->objfile_obstack,
7882 struct dwarf2_per_cu_data);
7883 memset (this_cu, 0, sizeof (*this_cu));
7884 }
7885 else
7886 {
7887 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7888 struct signatured_type);
7889 memset (sig_type, 0, sizeof (*sig_type));
7890 sig_type->signature = cu_header.signature;
7891 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7892 this_cu = &sig_type->per_cu;
7893 }
7894 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7895 this_cu->sect_off = sect_off;
7896 this_cu->length = cu_header.length + cu_header.initial_length_size;
7897 this_cu->is_dwz = is_dwz;
7898 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7899 this_cu->section = section;
7900
7901 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7902
7903 info_ptr = info_ptr + this_cu->length;
7904 }
7905 }
7906
7907 /* Create a list of all compilation units in OBJFILE.
7908 This is only done for -readnow and building partial symtabs. */
7909
7910 static void
7911 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7912 {
7913 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7914 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7915 &dwarf2_per_objfile->abbrev, 0);
7916
7917 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7918 if (dwz != NULL)
7919 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7920 1);
7921 }
7922
7923 /* Process all loaded DIEs for compilation unit CU, starting at
7924 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7925 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7926 DW_AT_ranges). See the comments of add_partial_subprogram on how
7927 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7928
7929 static void
7930 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7931 CORE_ADDR *highpc, int set_addrmap,
7932 struct dwarf2_cu *cu)
7933 {
7934 struct partial_die_info *pdi;
7935
7936 /* Now, march along the PDI's, descending into ones which have
7937 interesting children but skipping the children of the other ones,
7938 until we reach the end of the compilation unit. */
7939
7940 pdi = first_die;
7941
7942 while (pdi != NULL)
7943 {
7944 pdi->fixup (cu);
7945
7946 /* Anonymous namespaces or modules have no name but have interesting
7947 children, so we need to look at them. Ditto for anonymous
7948 enums. */
7949
7950 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7951 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7952 || pdi->tag == DW_TAG_imported_unit
7953 || pdi->tag == DW_TAG_inlined_subroutine)
7954 {
7955 switch (pdi->tag)
7956 {
7957 case DW_TAG_subprogram:
7958 case DW_TAG_inlined_subroutine:
7959 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7960 break;
7961 case DW_TAG_constant:
7962 case DW_TAG_variable:
7963 case DW_TAG_typedef:
7964 case DW_TAG_union_type:
7965 if (!pdi->is_declaration)
7966 {
7967 add_partial_symbol (pdi, cu);
7968 }
7969 break;
7970 case DW_TAG_class_type:
7971 case DW_TAG_interface_type:
7972 case DW_TAG_structure_type:
7973 if (!pdi->is_declaration)
7974 {
7975 add_partial_symbol (pdi, cu);
7976 }
7977 if ((cu->language == language_rust
7978 || cu->language == language_cplus) && pdi->has_children)
7979 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7980 set_addrmap, cu);
7981 break;
7982 case DW_TAG_enumeration_type:
7983 if (!pdi->is_declaration)
7984 add_partial_enumeration (pdi, cu);
7985 break;
7986 case DW_TAG_base_type:
7987 case DW_TAG_subrange_type:
7988 /* File scope base type definitions are added to the partial
7989 symbol table. */
7990 add_partial_symbol (pdi, cu);
7991 break;
7992 case DW_TAG_namespace:
7993 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7994 break;
7995 case DW_TAG_module:
7996 if (!pdi->is_declaration)
7997 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7998 break;
7999 case DW_TAG_imported_unit:
8000 {
8001 struct dwarf2_per_cu_data *per_cu;
8002
8003 /* For now we don't handle imported units in type units. */
8004 if (cu->per_cu->is_debug_types)
8005 {
8006 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8007 " supported in type units [in module %s]"),
8008 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8009 }
8010
8011 per_cu = dwarf2_find_containing_comp_unit
8012 (pdi->d.sect_off, pdi->is_dwz,
8013 cu->per_cu->dwarf2_per_objfile);
8014
8015 /* Go read the partial unit, if needed. */
8016 if (per_cu->v.psymtab == NULL)
8017 process_psymtab_comp_unit (per_cu, true, cu->language);
8018
8019 cu->per_cu->imported_symtabs_push (per_cu);
8020 }
8021 break;
8022 case DW_TAG_imported_declaration:
8023 add_partial_symbol (pdi, cu);
8024 break;
8025 default:
8026 break;
8027 }
8028 }
8029
8030 /* If the die has a sibling, skip to the sibling. */
8031
8032 pdi = pdi->die_sibling;
8033 }
8034 }
8035
8036 /* Functions used to compute the fully scoped name of a partial DIE.
8037
8038 Normally, this is simple. For C++, the parent DIE's fully scoped
8039 name is concatenated with "::" and the partial DIE's name.
8040 Enumerators are an exception; they use the scope of their parent
8041 enumeration type, i.e. the name of the enumeration type is not
8042 prepended to the enumerator.
8043
8044 There are two complexities. One is DW_AT_specification; in this
8045 case "parent" means the parent of the target of the specification,
8046 instead of the direct parent of the DIE. The other is compilers
8047 which do not emit DW_TAG_namespace; in this case we try to guess
8048 the fully qualified name of structure types from their members'
8049 linkage names. This must be done using the DIE's children rather
8050 than the children of any DW_AT_specification target. We only need
8051 to do this for structures at the top level, i.e. if the target of
8052 any DW_AT_specification (if any; otherwise the DIE itself) does not
8053 have a parent. */
8054
8055 /* Compute the scope prefix associated with PDI's parent, in
8056 compilation unit CU. The result will be allocated on CU's
8057 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8058 field. NULL is returned if no prefix is necessary. */
8059 static const char *
8060 partial_die_parent_scope (struct partial_die_info *pdi,
8061 struct dwarf2_cu *cu)
8062 {
8063 const char *grandparent_scope;
8064 struct partial_die_info *parent, *real_pdi;
8065
8066 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8067 then this means the parent of the specification DIE. */
8068
8069 real_pdi = pdi;
8070 while (real_pdi->has_specification)
8071 {
8072 auto res = find_partial_die (real_pdi->spec_offset,
8073 real_pdi->spec_is_dwz, cu);
8074 real_pdi = res.pdi;
8075 cu = res.cu;
8076 }
8077
8078 parent = real_pdi->die_parent;
8079 if (parent == NULL)
8080 return NULL;
8081
8082 if (parent->scope_set)
8083 return parent->scope;
8084
8085 parent->fixup (cu);
8086
8087 grandparent_scope = partial_die_parent_scope (parent, cu);
8088
8089 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8090 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8091 Work around this problem here. */
8092 if (cu->language == language_cplus
8093 && parent->tag == DW_TAG_namespace
8094 && strcmp (parent->name, "::") == 0
8095 && grandparent_scope == NULL)
8096 {
8097 parent->scope = NULL;
8098 parent->scope_set = 1;
8099 return NULL;
8100 }
8101
8102 /* Nested subroutines in Fortran get a prefix. */
8103 if (pdi->tag == DW_TAG_enumerator)
8104 /* Enumerators should not get the name of the enumeration as a prefix. */
8105 parent->scope = grandparent_scope;
8106 else if (parent->tag == DW_TAG_namespace
8107 || parent->tag == DW_TAG_module
8108 || parent->tag == DW_TAG_structure_type
8109 || parent->tag == DW_TAG_class_type
8110 || parent->tag == DW_TAG_interface_type
8111 || parent->tag == DW_TAG_union_type
8112 || parent->tag == DW_TAG_enumeration_type
8113 || (cu->language == language_fortran
8114 && parent->tag == DW_TAG_subprogram
8115 && pdi->tag == DW_TAG_subprogram))
8116 {
8117 if (grandparent_scope == NULL)
8118 parent->scope = parent->name;
8119 else
8120 parent->scope = typename_concat (&cu->comp_unit_obstack,
8121 grandparent_scope,
8122 parent->name, 0, cu);
8123 }
8124 else
8125 {
8126 /* FIXME drow/2004-04-01: What should we be doing with
8127 function-local names? For partial symbols, we should probably be
8128 ignoring them. */
8129 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8130 dwarf_tag_name (parent->tag),
8131 sect_offset_str (pdi->sect_off));
8132 parent->scope = grandparent_scope;
8133 }
8134
8135 parent->scope_set = 1;
8136 return parent->scope;
8137 }
8138
8139 /* Return the fully scoped name associated with PDI, from compilation unit
8140 CU. The result will be allocated with malloc. */
8141
8142 static gdb::unique_xmalloc_ptr<char>
8143 partial_die_full_name (struct partial_die_info *pdi,
8144 struct dwarf2_cu *cu)
8145 {
8146 const char *parent_scope;
8147
8148 /* If this is a template instantiation, we can not work out the
8149 template arguments from partial DIEs. So, unfortunately, we have
8150 to go through the full DIEs. At least any work we do building
8151 types here will be reused if full symbols are loaded later. */
8152 if (pdi->has_template_arguments)
8153 {
8154 pdi->fixup (cu);
8155
8156 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8157 {
8158 struct die_info *die;
8159 struct attribute attr;
8160 struct dwarf2_cu *ref_cu = cu;
8161
8162 /* DW_FORM_ref_addr is using section offset. */
8163 attr.name = (enum dwarf_attribute) 0;
8164 attr.form = DW_FORM_ref_addr;
8165 attr.u.unsnd = to_underlying (pdi->sect_off);
8166 die = follow_die_ref (NULL, &attr, &ref_cu);
8167
8168 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8169 }
8170 }
8171
8172 parent_scope = partial_die_parent_scope (pdi, cu);
8173 if (parent_scope == NULL)
8174 return NULL;
8175 else
8176 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8177 pdi->name, 0, cu));
8178 }
8179
8180 static void
8181 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8182 {
8183 struct dwarf2_per_objfile *dwarf2_per_objfile
8184 = cu->per_cu->dwarf2_per_objfile;
8185 struct objfile *objfile = dwarf2_per_objfile->objfile;
8186 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8187 CORE_ADDR addr = 0;
8188 const char *actual_name = NULL;
8189 CORE_ADDR baseaddr;
8190
8191 baseaddr = objfile->text_section_offset ();
8192
8193 gdb::unique_xmalloc_ptr<char> built_actual_name
8194 = partial_die_full_name (pdi, cu);
8195 if (built_actual_name != NULL)
8196 actual_name = built_actual_name.get ();
8197
8198 if (actual_name == NULL)
8199 actual_name = pdi->name;
8200
8201 switch (pdi->tag)
8202 {
8203 case DW_TAG_inlined_subroutine:
8204 case DW_TAG_subprogram:
8205 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8206 - baseaddr);
8207 if (pdi->is_external
8208 || cu->language == language_ada
8209 || (cu->language == language_fortran
8210 && pdi->die_parent != NULL
8211 && pdi->die_parent->tag == DW_TAG_subprogram))
8212 {
8213 /* Normally, only "external" DIEs are part of the global scope.
8214 But in Ada and Fortran, we want to be able to access nested
8215 procedures globally. So all Ada and Fortran subprograms are
8216 stored in the global scope. */
8217 add_psymbol_to_list (actual_name,
8218 built_actual_name != NULL,
8219 VAR_DOMAIN, LOC_BLOCK,
8220 SECT_OFF_TEXT (objfile),
8221 psymbol_placement::GLOBAL,
8222 addr,
8223 cu->language, objfile);
8224 }
8225 else
8226 {
8227 add_psymbol_to_list (actual_name,
8228 built_actual_name != NULL,
8229 VAR_DOMAIN, LOC_BLOCK,
8230 SECT_OFF_TEXT (objfile),
8231 psymbol_placement::STATIC,
8232 addr, cu->language, objfile);
8233 }
8234
8235 if (pdi->main_subprogram && actual_name != NULL)
8236 set_objfile_main_name (objfile, actual_name, cu->language);
8237 break;
8238 case DW_TAG_constant:
8239 add_psymbol_to_list (actual_name,
8240 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8241 -1, (pdi->is_external
8242 ? psymbol_placement::GLOBAL
8243 : psymbol_placement::STATIC),
8244 0, cu->language, objfile);
8245 break;
8246 case DW_TAG_variable:
8247 if (pdi->d.locdesc)
8248 addr = decode_locdesc (pdi->d.locdesc, cu);
8249
8250 if (pdi->d.locdesc
8251 && addr == 0
8252 && !dwarf2_per_objfile->has_section_at_zero)
8253 {
8254 /* A global or static variable may also have been stripped
8255 out by the linker if unused, in which case its address
8256 will be nullified; do not add such variables into partial
8257 symbol table then. */
8258 }
8259 else if (pdi->is_external)
8260 {
8261 /* Global Variable.
8262 Don't enter into the minimal symbol tables as there is
8263 a minimal symbol table entry from the ELF symbols already.
8264 Enter into partial symbol table if it has a location
8265 descriptor or a type.
8266 If the location descriptor is missing, new_symbol will create
8267 a LOC_UNRESOLVED symbol, the address of the variable will then
8268 be determined from the minimal symbol table whenever the variable
8269 is referenced.
8270 The address for the partial symbol table entry is not
8271 used by GDB, but it comes in handy for debugging partial symbol
8272 table building. */
8273
8274 if (pdi->d.locdesc || pdi->has_type)
8275 add_psymbol_to_list (actual_name,
8276 built_actual_name != NULL,
8277 VAR_DOMAIN, LOC_STATIC,
8278 SECT_OFF_TEXT (objfile),
8279 psymbol_placement::GLOBAL,
8280 addr, cu->language, objfile);
8281 }
8282 else
8283 {
8284 int has_loc = pdi->d.locdesc != NULL;
8285
8286 /* Static Variable. Skip symbols whose value we cannot know (those
8287 without location descriptors or constant values). */
8288 if (!has_loc && !pdi->has_const_value)
8289 return;
8290
8291 add_psymbol_to_list (actual_name,
8292 built_actual_name != NULL,
8293 VAR_DOMAIN, LOC_STATIC,
8294 SECT_OFF_TEXT (objfile),
8295 psymbol_placement::STATIC,
8296 has_loc ? addr : 0,
8297 cu->language, objfile);
8298 }
8299 break;
8300 case DW_TAG_typedef:
8301 case DW_TAG_base_type:
8302 case DW_TAG_subrange_type:
8303 add_psymbol_to_list (actual_name,
8304 built_actual_name != NULL,
8305 VAR_DOMAIN, LOC_TYPEDEF, -1,
8306 psymbol_placement::STATIC,
8307 0, cu->language, objfile);
8308 break;
8309 case DW_TAG_imported_declaration:
8310 case DW_TAG_namespace:
8311 add_psymbol_to_list (actual_name,
8312 built_actual_name != NULL,
8313 VAR_DOMAIN, LOC_TYPEDEF, -1,
8314 psymbol_placement::GLOBAL,
8315 0, cu->language, objfile);
8316 break;
8317 case DW_TAG_module:
8318 /* With Fortran 77 there might be a "BLOCK DATA" module
8319 available without any name. If so, we skip the module as it
8320 doesn't bring any value. */
8321 if (actual_name != nullptr)
8322 add_psymbol_to_list (actual_name,
8323 built_actual_name != NULL,
8324 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8325 psymbol_placement::GLOBAL,
8326 0, cu->language, objfile);
8327 break;
8328 case DW_TAG_class_type:
8329 case DW_TAG_interface_type:
8330 case DW_TAG_structure_type:
8331 case DW_TAG_union_type:
8332 case DW_TAG_enumeration_type:
8333 /* Skip external references. The DWARF standard says in the section
8334 about "Structure, Union, and Class Type Entries": "An incomplete
8335 structure, union or class type is represented by a structure,
8336 union or class entry that does not have a byte size attribute
8337 and that has a DW_AT_declaration attribute." */
8338 if (!pdi->has_byte_size && pdi->is_declaration)
8339 return;
8340
8341 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8342 static vs. global. */
8343 add_psymbol_to_list (actual_name,
8344 built_actual_name != NULL,
8345 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8346 cu->language == language_cplus
8347 ? psymbol_placement::GLOBAL
8348 : psymbol_placement::STATIC,
8349 0, cu->language, objfile);
8350
8351 break;
8352 case DW_TAG_enumerator:
8353 add_psymbol_to_list (actual_name,
8354 built_actual_name != NULL,
8355 VAR_DOMAIN, LOC_CONST, -1,
8356 cu->language == language_cplus
8357 ? psymbol_placement::GLOBAL
8358 : psymbol_placement::STATIC,
8359 0, cu->language, objfile);
8360 break;
8361 default:
8362 break;
8363 }
8364 }
8365
8366 /* Read a partial die corresponding to a namespace; also, add a symbol
8367 corresponding to that namespace to the symbol table. NAMESPACE is
8368 the name of the enclosing namespace. */
8369
8370 static void
8371 add_partial_namespace (struct partial_die_info *pdi,
8372 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8373 int set_addrmap, struct dwarf2_cu *cu)
8374 {
8375 /* Add a symbol for the namespace. */
8376
8377 add_partial_symbol (pdi, cu);
8378
8379 /* Now scan partial symbols in that namespace. */
8380
8381 if (pdi->has_children)
8382 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8383 }
8384
8385 /* Read a partial die corresponding to a Fortran module. */
8386
8387 static void
8388 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8389 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8390 {
8391 /* Add a symbol for the namespace. */
8392
8393 add_partial_symbol (pdi, cu);
8394
8395 /* Now scan partial symbols in that module. */
8396
8397 if (pdi->has_children)
8398 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8399 }
8400
8401 /* Read a partial die corresponding to a subprogram or an inlined
8402 subprogram and create a partial symbol for that subprogram.
8403 When the CU language allows it, this routine also defines a partial
8404 symbol for each nested subprogram that this subprogram contains.
8405 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8406 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8407
8408 PDI may also be a lexical block, in which case we simply search
8409 recursively for subprograms defined inside that lexical block.
8410 Again, this is only performed when the CU language allows this
8411 type of definitions. */
8412
8413 static void
8414 add_partial_subprogram (struct partial_die_info *pdi,
8415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8416 int set_addrmap, struct dwarf2_cu *cu)
8417 {
8418 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8419 {
8420 if (pdi->has_pc_info)
8421 {
8422 if (pdi->lowpc < *lowpc)
8423 *lowpc = pdi->lowpc;
8424 if (pdi->highpc > *highpc)
8425 *highpc = pdi->highpc;
8426 if (set_addrmap)
8427 {
8428 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8429 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8430 CORE_ADDR baseaddr;
8431 CORE_ADDR this_highpc;
8432 CORE_ADDR this_lowpc;
8433
8434 baseaddr = objfile->text_section_offset ();
8435 this_lowpc
8436 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8437 pdi->lowpc + baseaddr)
8438 - baseaddr);
8439 this_highpc
8440 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8441 pdi->highpc + baseaddr)
8442 - baseaddr);
8443 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8444 this_lowpc, this_highpc - 1,
8445 cu->per_cu->v.psymtab);
8446 }
8447 }
8448
8449 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8450 {
8451 if (!pdi->is_declaration)
8452 /* Ignore subprogram DIEs that do not have a name, they are
8453 illegal. Do not emit a complaint at this point, we will
8454 do so when we convert this psymtab into a symtab. */
8455 if (pdi->name)
8456 add_partial_symbol (pdi, cu);
8457 }
8458 }
8459
8460 if (! pdi->has_children)
8461 return;
8462
8463 if (cu->language == language_ada || cu->language == language_fortran)
8464 {
8465 pdi = pdi->die_child;
8466 while (pdi != NULL)
8467 {
8468 pdi->fixup (cu);
8469 if (pdi->tag == DW_TAG_subprogram
8470 || pdi->tag == DW_TAG_inlined_subroutine
8471 || pdi->tag == DW_TAG_lexical_block)
8472 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8473 pdi = pdi->die_sibling;
8474 }
8475 }
8476 }
8477
8478 /* Read a partial die corresponding to an enumeration type. */
8479
8480 static void
8481 add_partial_enumeration (struct partial_die_info *enum_pdi,
8482 struct dwarf2_cu *cu)
8483 {
8484 struct partial_die_info *pdi;
8485
8486 if (enum_pdi->name != NULL)
8487 add_partial_symbol (enum_pdi, cu);
8488
8489 pdi = enum_pdi->die_child;
8490 while (pdi)
8491 {
8492 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8493 complaint (_("malformed enumerator DIE ignored"));
8494 else
8495 add_partial_symbol (pdi, cu);
8496 pdi = pdi->die_sibling;
8497 }
8498 }
8499
8500 /* Return the initial uleb128 in the die at INFO_PTR. */
8501
8502 static unsigned int
8503 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8504 {
8505 unsigned int bytes_read;
8506
8507 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8508 }
8509
8510 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8511 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8512
8513 Return the corresponding abbrev, or NULL if the number is zero (indicating
8514 an empty DIE). In either case *BYTES_READ will be set to the length of
8515 the initial number. */
8516
8517 static struct abbrev_info *
8518 peek_die_abbrev (const die_reader_specs &reader,
8519 const gdb_byte *info_ptr, unsigned int *bytes_read)
8520 {
8521 dwarf2_cu *cu = reader.cu;
8522 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8523 unsigned int abbrev_number
8524 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8525
8526 if (abbrev_number == 0)
8527 return NULL;
8528
8529 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8530 if (!abbrev)
8531 {
8532 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8533 " at offset %s [in module %s]"),
8534 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8535 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8536 }
8537
8538 return abbrev;
8539 }
8540
8541 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8542 Returns a pointer to the end of a series of DIEs, terminated by an empty
8543 DIE. Any children of the skipped DIEs will also be skipped. */
8544
8545 static const gdb_byte *
8546 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8547 {
8548 while (1)
8549 {
8550 unsigned int bytes_read;
8551 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8552
8553 if (abbrev == NULL)
8554 return info_ptr + bytes_read;
8555 else
8556 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8557 }
8558 }
8559
8560 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8561 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8562 abbrev corresponding to that skipped uleb128 should be passed in
8563 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8564 children. */
8565
8566 static const gdb_byte *
8567 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8568 struct abbrev_info *abbrev)
8569 {
8570 unsigned int bytes_read;
8571 struct attribute attr;
8572 bfd *abfd = reader->abfd;
8573 struct dwarf2_cu *cu = reader->cu;
8574 const gdb_byte *buffer = reader->buffer;
8575 const gdb_byte *buffer_end = reader->buffer_end;
8576 unsigned int form, i;
8577
8578 for (i = 0; i < abbrev->num_attrs; i++)
8579 {
8580 /* The only abbrev we care about is DW_AT_sibling. */
8581 if (abbrev->attrs[i].name == DW_AT_sibling)
8582 {
8583 bool ignored;
8584 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8585 &ignored);
8586 if (attr.form == DW_FORM_ref_addr)
8587 complaint (_("ignoring absolute DW_AT_sibling"));
8588 else
8589 {
8590 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8591 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8592
8593 if (sibling_ptr < info_ptr)
8594 complaint (_("DW_AT_sibling points backwards"));
8595 else if (sibling_ptr > reader->buffer_end)
8596 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8597 else
8598 return sibling_ptr;
8599 }
8600 }
8601
8602 /* If it isn't DW_AT_sibling, skip this attribute. */
8603 form = abbrev->attrs[i].form;
8604 skip_attribute:
8605 switch (form)
8606 {
8607 case DW_FORM_ref_addr:
8608 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8609 and later it is offset sized. */
8610 if (cu->header.version == 2)
8611 info_ptr += cu->header.addr_size;
8612 else
8613 info_ptr += cu->header.offset_size;
8614 break;
8615 case DW_FORM_GNU_ref_alt:
8616 info_ptr += cu->header.offset_size;
8617 break;
8618 case DW_FORM_addr:
8619 info_ptr += cu->header.addr_size;
8620 break;
8621 case DW_FORM_data1:
8622 case DW_FORM_ref1:
8623 case DW_FORM_flag:
8624 case DW_FORM_strx1:
8625 info_ptr += 1;
8626 break;
8627 case DW_FORM_flag_present:
8628 case DW_FORM_implicit_const:
8629 break;
8630 case DW_FORM_data2:
8631 case DW_FORM_ref2:
8632 case DW_FORM_strx2:
8633 info_ptr += 2;
8634 break;
8635 case DW_FORM_strx3:
8636 info_ptr += 3;
8637 break;
8638 case DW_FORM_data4:
8639 case DW_FORM_ref4:
8640 case DW_FORM_strx4:
8641 info_ptr += 4;
8642 break;
8643 case DW_FORM_data8:
8644 case DW_FORM_ref8:
8645 case DW_FORM_ref_sig8:
8646 info_ptr += 8;
8647 break;
8648 case DW_FORM_data16:
8649 info_ptr += 16;
8650 break;
8651 case DW_FORM_string:
8652 read_direct_string (abfd, info_ptr, &bytes_read);
8653 info_ptr += bytes_read;
8654 break;
8655 case DW_FORM_sec_offset:
8656 case DW_FORM_strp:
8657 case DW_FORM_GNU_strp_alt:
8658 info_ptr += cu->header.offset_size;
8659 break;
8660 case DW_FORM_exprloc:
8661 case DW_FORM_block:
8662 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8663 info_ptr += bytes_read;
8664 break;
8665 case DW_FORM_block1:
8666 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8667 break;
8668 case DW_FORM_block2:
8669 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8670 break;
8671 case DW_FORM_block4:
8672 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8673 break;
8674 case DW_FORM_addrx:
8675 case DW_FORM_strx:
8676 case DW_FORM_sdata:
8677 case DW_FORM_udata:
8678 case DW_FORM_ref_udata:
8679 case DW_FORM_GNU_addr_index:
8680 case DW_FORM_GNU_str_index:
8681 case DW_FORM_rnglistx:
8682 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8683 break;
8684 case DW_FORM_indirect:
8685 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8686 info_ptr += bytes_read;
8687 /* We need to continue parsing from here, so just go back to
8688 the top. */
8689 goto skip_attribute;
8690
8691 default:
8692 error (_("Dwarf Error: Cannot handle %s "
8693 "in DWARF reader [in module %s]"),
8694 dwarf_form_name (form),
8695 bfd_get_filename (abfd));
8696 }
8697 }
8698
8699 if (abbrev->has_children)
8700 return skip_children (reader, info_ptr);
8701 else
8702 return info_ptr;
8703 }
8704
8705 /* Locate ORIG_PDI's sibling.
8706 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8707
8708 static const gdb_byte *
8709 locate_pdi_sibling (const struct die_reader_specs *reader,
8710 struct partial_die_info *orig_pdi,
8711 const gdb_byte *info_ptr)
8712 {
8713 /* Do we know the sibling already? */
8714
8715 if (orig_pdi->sibling)
8716 return orig_pdi->sibling;
8717
8718 /* Are there any children to deal with? */
8719
8720 if (!orig_pdi->has_children)
8721 return info_ptr;
8722
8723 /* Skip the children the long way. */
8724
8725 return skip_children (reader, info_ptr);
8726 }
8727
8728 /* Expand this partial symbol table into a full symbol table. SELF is
8729 not NULL. */
8730
8731 void
8732 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8733 {
8734 struct dwarf2_per_objfile *dwarf2_per_objfile
8735 = get_dwarf2_per_objfile (objfile);
8736
8737 gdb_assert (!readin);
8738 /* If this psymtab is constructed from a debug-only objfile, the
8739 has_section_at_zero flag will not necessarily be correct. We
8740 can get the correct value for this flag by looking at the data
8741 associated with the (presumably stripped) associated objfile. */
8742 if (objfile->separate_debug_objfile_backlink)
8743 {
8744 struct dwarf2_per_objfile *dpo_backlink
8745 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8746
8747 dwarf2_per_objfile->has_section_at_zero
8748 = dpo_backlink->has_section_at_zero;
8749 }
8750
8751 expand_psymtab (objfile);
8752
8753 process_cu_includes (dwarf2_per_objfile);
8754 }
8755 \f
8756 /* Reading in full CUs. */
8757
8758 /* Add PER_CU to the queue. */
8759
8760 static void
8761 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8762 enum language pretend_language)
8763 {
8764 per_cu->queued = 1;
8765 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8766 }
8767
8768 /* If PER_CU is not yet queued, add it to the queue.
8769 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8770 dependency.
8771 The result is non-zero if PER_CU was queued, otherwise the result is zero
8772 meaning either PER_CU is already queued or it is already loaded.
8773
8774 N.B. There is an invariant here that if a CU is queued then it is loaded.
8775 The caller is required to load PER_CU if we return non-zero. */
8776
8777 static int
8778 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8779 struct dwarf2_per_cu_data *per_cu,
8780 enum language pretend_language)
8781 {
8782 /* We may arrive here during partial symbol reading, if we need full
8783 DIEs to process an unusual case (e.g. template arguments). Do
8784 not queue PER_CU, just tell our caller to load its DIEs. */
8785 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8786 {
8787 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8788 return 1;
8789 return 0;
8790 }
8791
8792 /* Mark the dependence relation so that we don't flush PER_CU
8793 too early. */
8794 if (dependent_cu != NULL)
8795 dwarf2_add_dependence (dependent_cu, per_cu);
8796
8797 /* If it's already on the queue, we have nothing to do. */
8798 if (per_cu->queued)
8799 return 0;
8800
8801 /* If the compilation unit is already loaded, just mark it as
8802 used. */
8803 if (per_cu->cu != NULL)
8804 {
8805 per_cu->cu->last_used = 0;
8806 return 0;
8807 }
8808
8809 /* Add it to the queue. */
8810 queue_comp_unit (per_cu, pretend_language);
8811
8812 return 1;
8813 }
8814
8815 /* Process the queue. */
8816
8817 static void
8818 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8819 {
8820 if (dwarf_read_debug)
8821 {
8822 fprintf_unfiltered (gdb_stdlog,
8823 "Expanding one or more symtabs of objfile %s ...\n",
8824 objfile_name (dwarf2_per_objfile->objfile));
8825 }
8826
8827 /* The queue starts out with one item, but following a DIE reference
8828 may load a new CU, adding it to the end of the queue. */
8829 while (!dwarf2_per_objfile->queue.empty ())
8830 {
8831 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8832
8833 if ((dwarf2_per_objfile->using_index
8834 ? !item.per_cu->v.quick->compunit_symtab
8835 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8836 /* Skip dummy CUs. */
8837 && item.per_cu->cu != NULL)
8838 {
8839 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8840 unsigned int debug_print_threshold;
8841 char buf[100];
8842
8843 if (per_cu->is_debug_types)
8844 {
8845 struct signatured_type *sig_type =
8846 (struct signatured_type *) per_cu;
8847
8848 sprintf (buf, "TU %s at offset %s",
8849 hex_string (sig_type->signature),
8850 sect_offset_str (per_cu->sect_off));
8851 /* There can be 100s of TUs.
8852 Only print them in verbose mode. */
8853 debug_print_threshold = 2;
8854 }
8855 else
8856 {
8857 sprintf (buf, "CU at offset %s",
8858 sect_offset_str (per_cu->sect_off));
8859 debug_print_threshold = 1;
8860 }
8861
8862 if (dwarf_read_debug >= debug_print_threshold)
8863 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8864
8865 if (per_cu->is_debug_types)
8866 process_full_type_unit (per_cu, item.pretend_language);
8867 else
8868 process_full_comp_unit (per_cu, item.pretend_language);
8869
8870 if (dwarf_read_debug >= debug_print_threshold)
8871 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8872 }
8873
8874 item.per_cu->queued = 0;
8875 dwarf2_per_objfile->queue.pop ();
8876 }
8877
8878 if (dwarf_read_debug)
8879 {
8880 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8881 objfile_name (dwarf2_per_objfile->objfile));
8882 }
8883 }
8884
8885 /* Read in full symbols for PST, and anything it depends on. */
8886
8887 void
8888 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8889 {
8890 if (readin)
8891 return;
8892
8893 read_dependencies (objfile);
8894
8895 dw2_do_instantiate_symtab (per_cu_data, false);
8896 gdb_assert (get_compunit_symtab () != nullptr);
8897 }
8898
8899 /* Trivial hash function for die_info: the hash value of a DIE
8900 is its offset in .debug_info for this objfile. */
8901
8902 static hashval_t
8903 die_hash (const void *item)
8904 {
8905 const struct die_info *die = (const struct die_info *) item;
8906
8907 return to_underlying (die->sect_off);
8908 }
8909
8910 /* Trivial comparison function for die_info structures: two DIEs
8911 are equal if they have the same offset. */
8912
8913 static int
8914 die_eq (const void *item_lhs, const void *item_rhs)
8915 {
8916 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8917 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8918
8919 return die_lhs->sect_off == die_rhs->sect_off;
8920 }
8921
8922 /* Load the DIEs associated with PER_CU into memory. */
8923
8924 static void
8925 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8926 bool skip_partial,
8927 enum language pretend_language)
8928 {
8929 gdb_assert (! this_cu->is_debug_types);
8930
8931 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8932 if (reader.dummy_p)
8933 return;
8934
8935 struct dwarf2_cu *cu = reader.cu;
8936 const gdb_byte *info_ptr = reader.info_ptr;
8937
8938 gdb_assert (cu->die_hash == NULL);
8939 cu->die_hash =
8940 htab_create_alloc_ex (cu->header.length / 12,
8941 die_hash,
8942 die_eq,
8943 NULL,
8944 &cu->comp_unit_obstack,
8945 hashtab_obstack_allocate,
8946 dummy_obstack_deallocate);
8947
8948 if (reader.comp_unit_die->has_children)
8949 reader.comp_unit_die->child
8950 = read_die_and_siblings (&reader, reader.info_ptr,
8951 &info_ptr, reader.comp_unit_die);
8952 cu->dies = reader.comp_unit_die;
8953 /* comp_unit_die is not stored in die_hash, no need. */
8954
8955 /* We try not to read any attributes in this function, because not
8956 all CUs needed for references have been loaded yet, and symbol
8957 table processing isn't initialized. But we have to set the CU language,
8958 or we won't be able to build types correctly.
8959 Similarly, if we do not read the producer, we can not apply
8960 producer-specific interpretation. */
8961 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8962
8963 reader.keep ();
8964 }
8965
8966 /* Add a DIE to the delayed physname list. */
8967
8968 static void
8969 add_to_method_list (struct type *type, int fnfield_index, int index,
8970 const char *name, struct die_info *die,
8971 struct dwarf2_cu *cu)
8972 {
8973 struct delayed_method_info mi;
8974 mi.type = type;
8975 mi.fnfield_index = fnfield_index;
8976 mi.index = index;
8977 mi.name = name;
8978 mi.die = die;
8979 cu->method_list.push_back (mi);
8980 }
8981
8982 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8983 "const" / "volatile". If so, decrements LEN by the length of the
8984 modifier and return true. Otherwise return false. */
8985
8986 template<size_t N>
8987 static bool
8988 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8989 {
8990 size_t mod_len = sizeof (mod) - 1;
8991 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8992 {
8993 len -= mod_len;
8994 return true;
8995 }
8996 return false;
8997 }
8998
8999 /* Compute the physnames of any methods on the CU's method list.
9000
9001 The computation of method physnames is delayed in order to avoid the
9002 (bad) condition that one of the method's formal parameters is of an as yet
9003 incomplete type. */
9004
9005 static void
9006 compute_delayed_physnames (struct dwarf2_cu *cu)
9007 {
9008 /* Only C++ delays computing physnames. */
9009 if (cu->method_list.empty ())
9010 return;
9011 gdb_assert (cu->language == language_cplus);
9012
9013 for (const delayed_method_info &mi : cu->method_list)
9014 {
9015 const char *physname;
9016 struct fn_fieldlist *fn_flp
9017 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9018 physname = dwarf2_physname (mi.name, mi.die, cu);
9019 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9020 = physname ? physname : "";
9021
9022 /* Since there's no tag to indicate whether a method is a
9023 const/volatile overload, extract that information out of the
9024 demangled name. */
9025 if (physname != NULL)
9026 {
9027 size_t len = strlen (physname);
9028
9029 while (1)
9030 {
9031 if (physname[len] == ')') /* shortcut */
9032 break;
9033 else if (check_modifier (physname, len, " const"))
9034 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9035 else if (check_modifier (physname, len, " volatile"))
9036 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9037 else
9038 break;
9039 }
9040 }
9041 }
9042
9043 /* The list is no longer needed. */
9044 cu->method_list.clear ();
9045 }
9046
9047 /* Go objects should be embedded in a DW_TAG_module DIE,
9048 and it's not clear if/how imported objects will appear.
9049 To keep Go support simple until that's worked out,
9050 go back through what we've read and create something usable.
9051 We could do this while processing each DIE, and feels kinda cleaner,
9052 but that way is more invasive.
9053 This is to, for example, allow the user to type "p var" or "b main"
9054 without having to specify the package name, and allow lookups
9055 of module.object to work in contexts that use the expression
9056 parser. */
9057
9058 static void
9059 fixup_go_packaging (struct dwarf2_cu *cu)
9060 {
9061 gdb::unique_xmalloc_ptr<char> package_name;
9062 struct pending *list;
9063 int i;
9064
9065 for (list = *cu->get_builder ()->get_global_symbols ();
9066 list != NULL;
9067 list = list->next)
9068 {
9069 for (i = 0; i < list->nsyms; ++i)
9070 {
9071 struct symbol *sym = list->symbol[i];
9072
9073 if (sym->language () == language_go
9074 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9075 {
9076 gdb::unique_xmalloc_ptr<char> this_package_name
9077 (go_symbol_package_name (sym));
9078
9079 if (this_package_name == NULL)
9080 continue;
9081 if (package_name == NULL)
9082 package_name = std::move (this_package_name);
9083 else
9084 {
9085 struct objfile *objfile
9086 = cu->per_cu->dwarf2_per_objfile->objfile;
9087 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9088 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9089 (symbol_symtab (sym) != NULL
9090 ? symtab_to_filename_for_display
9091 (symbol_symtab (sym))
9092 : objfile_name (objfile)),
9093 this_package_name.get (), package_name.get ());
9094 }
9095 }
9096 }
9097 }
9098
9099 if (package_name != NULL)
9100 {
9101 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9102 const char *saved_package_name
9103 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9104 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9105 saved_package_name);
9106 struct symbol *sym;
9107
9108 sym = allocate_symbol (objfile);
9109 sym->set_language (language_go, &objfile->objfile_obstack);
9110 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9111 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9112 e.g., "main" finds the "main" module and not C's main(). */
9113 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9114 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9115 SYMBOL_TYPE (sym) = type;
9116
9117 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9118 }
9119 }
9120
9121 /* Allocate a fully-qualified name consisting of the two parts on the
9122 obstack. */
9123
9124 static const char *
9125 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9126 {
9127 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9128 }
9129
9130 /* A helper that allocates a struct discriminant_info to attach to a
9131 union type. */
9132
9133 static struct discriminant_info *
9134 alloc_discriminant_info (struct type *type, int discriminant_index,
9135 int default_index)
9136 {
9137 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9138 gdb_assert (discriminant_index == -1
9139 || (discriminant_index >= 0
9140 && discriminant_index < TYPE_NFIELDS (type)));
9141 gdb_assert (default_index == -1
9142 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9143
9144 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9145
9146 struct discriminant_info *disc
9147 = ((struct discriminant_info *)
9148 TYPE_ZALLOC (type,
9149 offsetof (struct discriminant_info, discriminants)
9150 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9151 disc->default_index = default_index;
9152 disc->discriminant_index = discriminant_index;
9153
9154 struct dynamic_prop prop;
9155 prop.kind = PROP_UNDEFINED;
9156 prop.data.baton = disc;
9157
9158 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9159
9160 return disc;
9161 }
9162
9163 /* Some versions of rustc emitted enums in an unusual way.
9164
9165 Ordinary enums were emitted as unions. The first element of each
9166 structure in the union was named "RUST$ENUM$DISR". This element
9167 held the discriminant.
9168
9169 These versions of Rust also implemented the "non-zero"
9170 optimization. When the enum had two values, and one is empty and
9171 the other holds a pointer that cannot be zero, the pointer is used
9172 as the discriminant, with a zero value meaning the empty variant.
9173 Here, the union's first member is of the form
9174 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9175 where the fieldnos are the indices of the fields that should be
9176 traversed in order to find the field (which may be several fields deep)
9177 and the variantname is the name of the variant of the case when the
9178 field is zero.
9179
9180 This function recognizes whether TYPE is of one of these forms,
9181 and, if so, smashes it to be a variant type. */
9182
9183 static void
9184 quirk_rust_enum (struct type *type, struct objfile *objfile)
9185 {
9186 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9187
9188 /* We don't need to deal with empty enums. */
9189 if (TYPE_NFIELDS (type) == 0)
9190 return;
9191
9192 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9193 if (TYPE_NFIELDS (type) == 1
9194 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9195 {
9196 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9197
9198 /* Decode the field name to find the offset of the
9199 discriminant. */
9200 ULONGEST bit_offset = 0;
9201 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9202 while (name[0] >= '0' && name[0] <= '9')
9203 {
9204 char *tail;
9205 unsigned long index = strtoul (name, &tail, 10);
9206 name = tail;
9207 if (*name != '$'
9208 || index >= TYPE_NFIELDS (field_type)
9209 || (TYPE_FIELD_LOC_KIND (field_type, index)
9210 != FIELD_LOC_KIND_BITPOS))
9211 {
9212 complaint (_("Could not parse Rust enum encoding string \"%s\""
9213 "[in module %s]"),
9214 TYPE_FIELD_NAME (type, 0),
9215 objfile_name (objfile));
9216 return;
9217 }
9218 ++name;
9219
9220 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9221 field_type = TYPE_FIELD_TYPE (field_type, index);
9222 }
9223
9224 /* Make a union to hold the variants. */
9225 struct type *union_type = alloc_type (objfile);
9226 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9227 TYPE_NFIELDS (union_type) = 3;
9228 TYPE_FIELDS (union_type)
9229 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9230 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9231 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9232
9233 /* Put the discriminant must at index 0. */
9234 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9235 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9236 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9237 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9238
9239 /* The order of fields doesn't really matter, so put the real
9240 field at index 1 and the data-less field at index 2. */
9241 struct discriminant_info *disc
9242 = alloc_discriminant_info (union_type, 0, 1);
9243 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9244 TYPE_FIELD_NAME (union_type, 1)
9245 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9246 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9247 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9248 TYPE_FIELD_NAME (union_type, 1));
9249
9250 const char *dataless_name
9251 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9252 name);
9253 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9254 dataless_name);
9255 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9256 /* NAME points into the original discriminant name, which
9257 already has the correct lifetime. */
9258 TYPE_FIELD_NAME (union_type, 2) = name;
9259 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9260 disc->discriminants[2] = 0;
9261
9262 /* Smash this type to be a structure type. We have to do this
9263 because the type has already been recorded. */
9264 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9265 TYPE_NFIELDS (type) = 1;
9266 TYPE_FIELDS (type)
9267 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9268
9269 /* Install the variant part. */
9270 TYPE_FIELD_TYPE (type, 0) = union_type;
9271 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9272 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9273 }
9274 /* A union with a single anonymous field is probably an old-style
9275 univariant enum. */
9276 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9277 {
9278 /* Smash this type to be a structure type. We have to do this
9279 because the type has already been recorded. */
9280 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9281
9282 /* Make a union to hold the variants. */
9283 struct type *union_type = alloc_type (objfile);
9284 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9285 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9286 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9287 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9288 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9289
9290 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9291 const char *variant_name
9292 = rust_last_path_segment (TYPE_NAME (field_type));
9293 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9294 TYPE_NAME (field_type)
9295 = rust_fully_qualify (&objfile->objfile_obstack,
9296 TYPE_NAME (type), variant_name);
9297
9298 /* Install the union in the outer struct type. */
9299 TYPE_NFIELDS (type) = 1;
9300 TYPE_FIELDS (type)
9301 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9302 TYPE_FIELD_TYPE (type, 0) = union_type;
9303 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9304 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9305
9306 alloc_discriminant_info (union_type, -1, 0);
9307 }
9308 else
9309 {
9310 struct type *disr_type = nullptr;
9311 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9312 {
9313 disr_type = TYPE_FIELD_TYPE (type, i);
9314
9315 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9316 {
9317 /* All fields of a true enum will be structs. */
9318 return;
9319 }
9320 else if (TYPE_NFIELDS (disr_type) == 0)
9321 {
9322 /* Could be data-less variant, so keep going. */
9323 disr_type = nullptr;
9324 }
9325 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9326 "RUST$ENUM$DISR") != 0)
9327 {
9328 /* Not a Rust enum. */
9329 return;
9330 }
9331 else
9332 {
9333 /* Found one. */
9334 break;
9335 }
9336 }
9337
9338 /* If we got here without a discriminant, then it's probably
9339 just a union. */
9340 if (disr_type == nullptr)
9341 return;
9342
9343 /* Smash this type to be a structure type. We have to do this
9344 because the type has already been recorded. */
9345 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9346
9347 /* Make a union to hold the variants. */
9348 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9349 struct type *union_type = alloc_type (objfile);
9350 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9351 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9352 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9353 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9354 TYPE_FIELDS (union_type)
9355 = (struct field *) TYPE_ZALLOC (union_type,
9356 (TYPE_NFIELDS (union_type)
9357 * sizeof (struct field)));
9358
9359 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9360 TYPE_NFIELDS (type) * sizeof (struct field));
9361
9362 /* Install the discriminant at index 0 in the union. */
9363 TYPE_FIELD (union_type, 0) = *disr_field;
9364 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9365 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9366
9367 /* Install the union in the outer struct type. */
9368 TYPE_FIELD_TYPE (type, 0) = union_type;
9369 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9370 TYPE_NFIELDS (type) = 1;
9371
9372 /* Set the size and offset of the union type. */
9373 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9374
9375 /* We need a way to find the correct discriminant given a
9376 variant name. For convenience we build a map here. */
9377 struct type *enum_type = FIELD_TYPE (*disr_field);
9378 std::unordered_map<std::string, ULONGEST> discriminant_map;
9379 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9380 {
9381 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9382 {
9383 const char *name
9384 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9385 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9386 }
9387 }
9388
9389 int n_fields = TYPE_NFIELDS (union_type);
9390 struct discriminant_info *disc
9391 = alloc_discriminant_info (union_type, 0, -1);
9392 /* Skip the discriminant here. */
9393 for (int i = 1; i < n_fields; ++i)
9394 {
9395 /* Find the final word in the name of this variant's type.
9396 That name can be used to look up the correct
9397 discriminant. */
9398 const char *variant_name
9399 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9400 i)));
9401
9402 auto iter = discriminant_map.find (variant_name);
9403 if (iter != discriminant_map.end ())
9404 disc->discriminants[i] = iter->second;
9405
9406 /* Remove the discriminant field, if it exists. */
9407 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9408 if (TYPE_NFIELDS (sub_type) > 0)
9409 {
9410 --TYPE_NFIELDS (sub_type);
9411 ++TYPE_FIELDS (sub_type);
9412 }
9413 TYPE_FIELD_NAME (union_type, i) = variant_name;
9414 TYPE_NAME (sub_type)
9415 = rust_fully_qualify (&objfile->objfile_obstack,
9416 TYPE_NAME (type), variant_name);
9417 }
9418 }
9419 }
9420
9421 /* Rewrite some Rust unions to be structures with variants parts. */
9422
9423 static void
9424 rust_union_quirks (struct dwarf2_cu *cu)
9425 {
9426 gdb_assert (cu->language == language_rust);
9427 for (type *type_ : cu->rust_unions)
9428 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9429 /* We don't need this any more. */
9430 cu->rust_unions.clear ();
9431 }
9432
9433 /* Return the symtab for PER_CU. This works properly regardless of
9434 whether we're using the index or psymtabs. */
9435
9436 static struct compunit_symtab *
9437 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9438 {
9439 return (per_cu->dwarf2_per_objfile->using_index
9440 ? per_cu->v.quick->compunit_symtab
9441 : per_cu->v.psymtab->compunit_symtab);
9442 }
9443
9444 /* A helper function for computing the list of all symbol tables
9445 included by PER_CU. */
9446
9447 static void
9448 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9449 htab_t all_children, htab_t all_type_symtabs,
9450 struct dwarf2_per_cu_data *per_cu,
9451 struct compunit_symtab *immediate_parent)
9452 {
9453 void **slot;
9454 struct compunit_symtab *cust;
9455
9456 slot = htab_find_slot (all_children, per_cu, INSERT);
9457 if (*slot != NULL)
9458 {
9459 /* This inclusion and its children have been processed. */
9460 return;
9461 }
9462
9463 *slot = per_cu;
9464 /* Only add a CU if it has a symbol table. */
9465 cust = get_compunit_symtab (per_cu);
9466 if (cust != NULL)
9467 {
9468 /* If this is a type unit only add its symbol table if we haven't
9469 seen it yet (type unit per_cu's can share symtabs). */
9470 if (per_cu->is_debug_types)
9471 {
9472 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9473 if (*slot == NULL)
9474 {
9475 *slot = cust;
9476 result->push_back (cust);
9477 if (cust->user == NULL)
9478 cust->user = immediate_parent;
9479 }
9480 }
9481 else
9482 {
9483 result->push_back (cust);
9484 if (cust->user == NULL)
9485 cust->user = immediate_parent;
9486 }
9487 }
9488
9489 if (!per_cu->imported_symtabs_empty ())
9490 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9491 {
9492 recursively_compute_inclusions (result, all_children,
9493 all_type_symtabs, ptr, cust);
9494 }
9495 }
9496
9497 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9498 PER_CU. */
9499
9500 static void
9501 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9502 {
9503 gdb_assert (! per_cu->is_debug_types);
9504
9505 if (!per_cu->imported_symtabs_empty ())
9506 {
9507 int len;
9508 std::vector<compunit_symtab *> result_symtabs;
9509 htab_t all_children, all_type_symtabs;
9510 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9511
9512 /* If we don't have a symtab, we can just skip this case. */
9513 if (cust == NULL)
9514 return;
9515
9516 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9517 NULL, xcalloc, xfree);
9518 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9519 NULL, xcalloc, xfree);
9520
9521 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9522 {
9523 recursively_compute_inclusions (&result_symtabs, all_children,
9524 all_type_symtabs, ptr, cust);
9525 }
9526
9527 /* Now we have a transitive closure of all the included symtabs. */
9528 len = result_symtabs.size ();
9529 cust->includes
9530 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9531 struct compunit_symtab *, len + 1);
9532 memcpy (cust->includes, result_symtabs.data (),
9533 len * sizeof (compunit_symtab *));
9534 cust->includes[len] = NULL;
9535
9536 htab_delete (all_children);
9537 htab_delete (all_type_symtabs);
9538 }
9539 }
9540
9541 /* Compute the 'includes' field for the symtabs of all the CUs we just
9542 read. */
9543
9544 static void
9545 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9546 {
9547 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9548 {
9549 if (! iter->is_debug_types)
9550 compute_compunit_symtab_includes (iter);
9551 }
9552
9553 dwarf2_per_objfile->just_read_cus.clear ();
9554 }
9555
9556 /* Generate full symbol information for PER_CU, whose DIEs have
9557 already been loaded into memory. */
9558
9559 static void
9560 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9561 enum language pretend_language)
9562 {
9563 struct dwarf2_cu *cu = per_cu->cu;
9564 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9565 struct objfile *objfile = dwarf2_per_objfile->objfile;
9566 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9567 CORE_ADDR lowpc, highpc;
9568 struct compunit_symtab *cust;
9569 CORE_ADDR baseaddr;
9570 struct block *static_block;
9571 CORE_ADDR addr;
9572
9573 baseaddr = objfile->text_section_offset ();
9574
9575 /* Clear the list here in case something was left over. */
9576 cu->method_list.clear ();
9577
9578 cu->language = pretend_language;
9579 cu->language_defn = language_def (cu->language);
9580
9581 /* Do line number decoding in read_file_scope () */
9582 process_die (cu->dies, cu);
9583
9584 /* For now fudge the Go package. */
9585 if (cu->language == language_go)
9586 fixup_go_packaging (cu);
9587
9588 /* Now that we have processed all the DIEs in the CU, all the types
9589 should be complete, and it should now be safe to compute all of the
9590 physnames. */
9591 compute_delayed_physnames (cu);
9592
9593 if (cu->language == language_rust)
9594 rust_union_quirks (cu);
9595
9596 /* Some compilers don't define a DW_AT_high_pc attribute for the
9597 compilation unit. If the DW_AT_high_pc is missing, synthesize
9598 it, by scanning the DIE's below the compilation unit. */
9599 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9600
9601 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9602 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9603
9604 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9605 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9606 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9607 addrmap to help ensure it has an accurate map of pc values belonging to
9608 this comp unit. */
9609 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9610
9611 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9612 SECT_OFF_TEXT (objfile),
9613 0);
9614
9615 if (cust != NULL)
9616 {
9617 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9618
9619 /* Set symtab language to language from DW_AT_language. If the
9620 compilation is from a C file generated by language preprocessors, do
9621 not set the language if it was already deduced by start_subfile. */
9622 if (!(cu->language == language_c
9623 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9624 COMPUNIT_FILETABS (cust)->language = cu->language;
9625
9626 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9627 produce DW_AT_location with location lists but it can be possibly
9628 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9629 there were bugs in prologue debug info, fixed later in GCC-4.5
9630 by "unwind info for epilogues" patch (which is not directly related).
9631
9632 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9633 needed, it would be wrong due to missing DW_AT_producer there.
9634
9635 Still one can confuse GDB by using non-standard GCC compilation
9636 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9637 */
9638 if (cu->has_loclist && gcc_4_minor >= 5)
9639 cust->locations_valid = 1;
9640
9641 if (gcc_4_minor >= 5)
9642 cust->epilogue_unwind_valid = 1;
9643
9644 cust->call_site_htab = cu->call_site_htab;
9645 }
9646
9647 if (dwarf2_per_objfile->using_index)
9648 per_cu->v.quick->compunit_symtab = cust;
9649 else
9650 {
9651 dwarf2_psymtab *pst = per_cu->v.psymtab;
9652 pst->compunit_symtab = cust;
9653 pst->readin = true;
9654 }
9655
9656 /* Push it for inclusion processing later. */
9657 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9658
9659 /* Not needed any more. */
9660 cu->reset_builder ();
9661 }
9662
9663 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9664 already been loaded into memory. */
9665
9666 static void
9667 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9668 enum language pretend_language)
9669 {
9670 struct dwarf2_cu *cu = per_cu->cu;
9671 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9672 struct objfile *objfile = dwarf2_per_objfile->objfile;
9673 struct compunit_symtab *cust;
9674 struct signatured_type *sig_type;
9675
9676 gdb_assert (per_cu->is_debug_types);
9677 sig_type = (struct signatured_type *) per_cu;
9678
9679 /* Clear the list here in case something was left over. */
9680 cu->method_list.clear ();
9681
9682 cu->language = pretend_language;
9683 cu->language_defn = language_def (cu->language);
9684
9685 /* The symbol tables are set up in read_type_unit_scope. */
9686 process_die (cu->dies, cu);
9687
9688 /* For now fudge the Go package. */
9689 if (cu->language == language_go)
9690 fixup_go_packaging (cu);
9691
9692 /* Now that we have processed all the DIEs in the CU, all the types
9693 should be complete, and it should now be safe to compute all of the
9694 physnames. */
9695 compute_delayed_physnames (cu);
9696
9697 if (cu->language == language_rust)
9698 rust_union_quirks (cu);
9699
9700 /* TUs share symbol tables.
9701 If this is the first TU to use this symtab, complete the construction
9702 of it with end_expandable_symtab. Otherwise, complete the addition of
9703 this TU's symbols to the existing symtab. */
9704 if (sig_type->type_unit_group->compunit_symtab == NULL)
9705 {
9706 buildsym_compunit *builder = cu->get_builder ();
9707 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9708 sig_type->type_unit_group->compunit_symtab = cust;
9709
9710 if (cust != NULL)
9711 {
9712 /* Set symtab language to language from DW_AT_language. If the
9713 compilation is from a C file generated by language preprocessors,
9714 do not set the language if it was already deduced by
9715 start_subfile. */
9716 if (!(cu->language == language_c
9717 && COMPUNIT_FILETABS (cust)->language != language_c))
9718 COMPUNIT_FILETABS (cust)->language = cu->language;
9719 }
9720 }
9721 else
9722 {
9723 cu->get_builder ()->augment_type_symtab ();
9724 cust = sig_type->type_unit_group->compunit_symtab;
9725 }
9726
9727 if (dwarf2_per_objfile->using_index)
9728 per_cu->v.quick->compunit_symtab = cust;
9729 else
9730 {
9731 dwarf2_psymtab *pst = per_cu->v.psymtab;
9732 pst->compunit_symtab = cust;
9733 pst->readin = true;
9734 }
9735
9736 /* Not needed any more. */
9737 cu->reset_builder ();
9738 }
9739
9740 /* Process an imported unit DIE. */
9741
9742 static void
9743 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9744 {
9745 struct attribute *attr;
9746
9747 /* For now we don't handle imported units in type units. */
9748 if (cu->per_cu->is_debug_types)
9749 {
9750 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9751 " supported in type units [in module %s]"),
9752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9753 }
9754
9755 attr = dwarf2_attr (die, DW_AT_import, cu);
9756 if (attr != NULL)
9757 {
9758 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9759 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9760 dwarf2_per_cu_data *per_cu
9761 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9762 cu->per_cu->dwarf2_per_objfile);
9763
9764 /* If necessary, add it to the queue and load its DIEs. */
9765 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9766 load_full_comp_unit (per_cu, false, cu->language);
9767
9768 cu->per_cu->imported_symtabs_push (per_cu);
9769 }
9770 }
9771
9772 /* RAII object that represents a process_die scope: i.e.,
9773 starts/finishes processing a DIE. */
9774 class process_die_scope
9775 {
9776 public:
9777 process_die_scope (die_info *die, dwarf2_cu *cu)
9778 : m_die (die), m_cu (cu)
9779 {
9780 /* We should only be processing DIEs not already in process. */
9781 gdb_assert (!m_die->in_process);
9782 m_die->in_process = true;
9783 }
9784
9785 ~process_die_scope ()
9786 {
9787 m_die->in_process = false;
9788
9789 /* If we're done processing the DIE for the CU that owns the line
9790 header, we don't need the line header anymore. */
9791 if (m_cu->line_header_die_owner == m_die)
9792 {
9793 delete m_cu->line_header;
9794 m_cu->line_header = NULL;
9795 m_cu->line_header_die_owner = NULL;
9796 }
9797 }
9798
9799 private:
9800 die_info *m_die;
9801 dwarf2_cu *m_cu;
9802 };
9803
9804 /* Process a die and its children. */
9805
9806 static void
9807 process_die (struct die_info *die, struct dwarf2_cu *cu)
9808 {
9809 process_die_scope scope (die, cu);
9810
9811 switch (die->tag)
9812 {
9813 case DW_TAG_padding:
9814 break;
9815 case DW_TAG_compile_unit:
9816 case DW_TAG_partial_unit:
9817 read_file_scope (die, cu);
9818 break;
9819 case DW_TAG_type_unit:
9820 read_type_unit_scope (die, cu);
9821 break;
9822 case DW_TAG_subprogram:
9823 /* Nested subprograms in Fortran get a prefix. */
9824 if (cu->language == language_fortran
9825 && die->parent != NULL
9826 && die->parent->tag == DW_TAG_subprogram)
9827 cu->processing_has_namespace_info = true;
9828 /* Fall through. */
9829 case DW_TAG_inlined_subroutine:
9830 read_func_scope (die, cu);
9831 break;
9832 case DW_TAG_lexical_block:
9833 case DW_TAG_try_block:
9834 case DW_TAG_catch_block:
9835 read_lexical_block_scope (die, cu);
9836 break;
9837 case DW_TAG_call_site:
9838 case DW_TAG_GNU_call_site:
9839 read_call_site_scope (die, cu);
9840 break;
9841 case DW_TAG_class_type:
9842 case DW_TAG_interface_type:
9843 case DW_TAG_structure_type:
9844 case DW_TAG_union_type:
9845 process_structure_scope (die, cu);
9846 break;
9847 case DW_TAG_enumeration_type:
9848 process_enumeration_scope (die, cu);
9849 break;
9850
9851 /* These dies have a type, but processing them does not create
9852 a symbol or recurse to process the children. Therefore we can
9853 read them on-demand through read_type_die. */
9854 case DW_TAG_subroutine_type:
9855 case DW_TAG_set_type:
9856 case DW_TAG_array_type:
9857 case DW_TAG_pointer_type:
9858 case DW_TAG_ptr_to_member_type:
9859 case DW_TAG_reference_type:
9860 case DW_TAG_rvalue_reference_type:
9861 case DW_TAG_string_type:
9862 break;
9863
9864 case DW_TAG_base_type:
9865 case DW_TAG_subrange_type:
9866 case DW_TAG_typedef:
9867 /* Add a typedef symbol for the type definition, if it has a
9868 DW_AT_name. */
9869 new_symbol (die, read_type_die (die, cu), cu);
9870 break;
9871 case DW_TAG_common_block:
9872 read_common_block (die, cu);
9873 break;
9874 case DW_TAG_common_inclusion:
9875 break;
9876 case DW_TAG_namespace:
9877 cu->processing_has_namespace_info = true;
9878 read_namespace (die, cu);
9879 break;
9880 case DW_TAG_module:
9881 cu->processing_has_namespace_info = true;
9882 read_module (die, cu);
9883 break;
9884 case DW_TAG_imported_declaration:
9885 cu->processing_has_namespace_info = true;
9886 if (read_namespace_alias (die, cu))
9887 break;
9888 /* The declaration is not a global namespace alias. */
9889 /* Fall through. */
9890 case DW_TAG_imported_module:
9891 cu->processing_has_namespace_info = true;
9892 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9893 || cu->language != language_fortran))
9894 complaint (_("Tag '%s' has unexpected children"),
9895 dwarf_tag_name (die->tag));
9896 read_import_statement (die, cu);
9897 break;
9898
9899 case DW_TAG_imported_unit:
9900 process_imported_unit_die (die, cu);
9901 break;
9902
9903 case DW_TAG_variable:
9904 read_variable (die, cu);
9905 break;
9906
9907 default:
9908 new_symbol (die, NULL, cu);
9909 break;
9910 }
9911 }
9912 \f
9913 /* DWARF name computation. */
9914
9915 /* A helper function for dwarf2_compute_name which determines whether DIE
9916 needs to have the name of the scope prepended to the name listed in the
9917 die. */
9918
9919 static int
9920 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9921 {
9922 struct attribute *attr;
9923
9924 switch (die->tag)
9925 {
9926 case DW_TAG_namespace:
9927 case DW_TAG_typedef:
9928 case DW_TAG_class_type:
9929 case DW_TAG_interface_type:
9930 case DW_TAG_structure_type:
9931 case DW_TAG_union_type:
9932 case DW_TAG_enumeration_type:
9933 case DW_TAG_enumerator:
9934 case DW_TAG_subprogram:
9935 case DW_TAG_inlined_subroutine:
9936 case DW_TAG_member:
9937 case DW_TAG_imported_declaration:
9938 return 1;
9939
9940 case DW_TAG_variable:
9941 case DW_TAG_constant:
9942 /* We only need to prefix "globally" visible variables. These include
9943 any variable marked with DW_AT_external or any variable that
9944 lives in a namespace. [Variables in anonymous namespaces
9945 require prefixing, but they are not DW_AT_external.] */
9946
9947 if (dwarf2_attr (die, DW_AT_specification, cu))
9948 {
9949 struct dwarf2_cu *spec_cu = cu;
9950
9951 return die_needs_namespace (die_specification (die, &spec_cu),
9952 spec_cu);
9953 }
9954
9955 attr = dwarf2_attr (die, DW_AT_external, cu);
9956 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9957 && die->parent->tag != DW_TAG_module)
9958 return 0;
9959 /* A variable in a lexical block of some kind does not need a
9960 namespace, even though in C++ such variables may be external
9961 and have a mangled name. */
9962 if (die->parent->tag == DW_TAG_lexical_block
9963 || die->parent->tag == DW_TAG_try_block
9964 || die->parent->tag == DW_TAG_catch_block
9965 || die->parent->tag == DW_TAG_subprogram)
9966 return 0;
9967 return 1;
9968
9969 default:
9970 return 0;
9971 }
9972 }
9973
9974 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9975 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9976 defined for the given DIE. */
9977
9978 static struct attribute *
9979 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9980 {
9981 struct attribute *attr;
9982
9983 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9984 if (attr == NULL)
9985 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9986
9987 return attr;
9988 }
9989
9990 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9991 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9992 defined for the given DIE. */
9993
9994 static const char *
9995 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9996 {
9997 const char *linkage_name;
9998
9999 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10000 if (linkage_name == NULL)
10001 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10002
10003 return linkage_name;
10004 }
10005
10006 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10007 compute the physname for the object, which include a method's:
10008 - formal parameters (C++),
10009 - receiver type (Go),
10010
10011 The term "physname" is a bit confusing.
10012 For C++, for example, it is the demangled name.
10013 For Go, for example, it's the mangled name.
10014
10015 For Ada, return the DIE's linkage name rather than the fully qualified
10016 name. PHYSNAME is ignored..
10017
10018 The result is allocated on the objfile_obstack and canonicalized. */
10019
10020 static const char *
10021 dwarf2_compute_name (const char *name,
10022 struct die_info *die, struct dwarf2_cu *cu,
10023 int physname)
10024 {
10025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10026
10027 if (name == NULL)
10028 name = dwarf2_name (die, cu);
10029
10030 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10031 but otherwise compute it by typename_concat inside GDB.
10032 FIXME: Actually this is not really true, or at least not always true.
10033 It's all very confusing. compute_and_set_names doesn't try to demangle
10034 Fortran names because there is no mangling standard. So new_symbol
10035 will set the demangled name to the result of dwarf2_full_name, and it is
10036 the demangled name that GDB uses if it exists. */
10037 if (cu->language == language_ada
10038 || (cu->language == language_fortran && physname))
10039 {
10040 /* For Ada unit, we prefer the linkage name over the name, as
10041 the former contains the exported name, which the user expects
10042 to be able to reference. Ideally, we want the user to be able
10043 to reference this entity using either natural or linkage name,
10044 but we haven't started looking at this enhancement yet. */
10045 const char *linkage_name = dw2_linkage_name (die, cu);
10046
10047 if (linkage_name != NULL)
10048 return linkage_name;
10049 }
10050
10051 /* These are the only languages we know how to qualify names in. */
10052 if (name != NULL
10053 && (cu->language == language_cplus
10054 || cu->language == language_fortran || cu->language == language_d
10055 || cu->language == language_rust))
10056 {
10057 if (die_needs_namespace (die, cu))
10058 {
10059 const char *prefix;
10060 const char *canonical_name = NULL;
10061
10062 string_file buf;
10063
10064 prefix = determine_prefix (die, cu);
10065 if (*prefix != '\0')
10066 {
10067 gdb::unique_xmalloc_ptr<char> prefixed_name
10068 (typename_concat (NULL, prefix, name, physname, cu));
10069
10070 buf.puts (prefixed_name.get ());
10071 }
10072 else
10073 buf.puts (name);
10074
10075 /* Template parameters may be specified in the DIE's DW_AT_name, or
10076 as children with DW_TAG_template_type_param or
10077 DW_TAG_value_type_param. If the latter, add them to the name
10078 here. If the name already has template parameters, then
10079 skip this step; some versions of GCC emit both, and
10080 it is more efficient to use the pre-computed name.
10081
10082 Something to keep in mind about this process: it is very
10083 unlikely, or in some cases downright impossible, to produce
10084 something that will match the mangled name of a function.
10085 If the definition of the function has the same debug info,
10086 we should be able to match up with it anyway. But fallbacks
10087 using the minimal symbol, for instance to find a method
10088 implemented in a stripped copy of libstdc++, will not work.
10089 If we do not have debug info for the definition, we will have to
10090 match them up some other way.
10091
10092 When we do name matching there is a related problem with function
10093 templates; two instantiated function templates are allowed to
10094 differ only by their return types, which we do not add here. */
10095
10096 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10097 {
10098 struct attribute *attr;
10099 struct die_info *child;
10100 int first = 1;
10101
10102 die->building_fullname = 1;
10103
10104 for (child = die->child; child != NULL; child = child->sibling)
10105 {
10106 struct type *type;
10107 LONGEST value;
10108 const gdb_byte *bytes;
10109 struct dwarf2_locexpr_baton *baton;
10110 struct value *v;
10111
10112 if (child->tag != DW_TAG_template_type_param
10113 && child->tag != DW_TAG_template_value_param)
10114 continue;
10115
10116 if (first)
10117 {
10118 buf.puts ("<");
10119 first = 0;
10120 }
10121 else
10122 buf.puts (", ");
10123
10124 attr = dwarf2_attr (child, DW_AT_type, cu);
10125 if (attr == NULL)
10126 {
10127 complaint (_("template parameter missing DW_AT_type"));
10128 buf.puts ("UNKNOWN_TYPE");
10129 continue;
10130 }
10131 type = die_type (child, cu);
10132
10133 if (child->tag == DW_TAG_template_type_param)
10134 {
10135 c_print_type (type, "", &buf, -1, 0, cu->language,
10136 &type_print_raw_options);
10137 continue;
10138 }
10139
10140 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10141 if (attr == NULL)
10142 {
10143 complaint (_("template parameter missing "
10144 "DW_AT_const_value"));
10145 buf.puts ("UNKNOWN_VALUE");
10146 continue;
10147 }
10148
10149 dwarf2_const_value_attr (attr, type, name,
10150 &cu->comp_unit_obstack, cu,
10151 &value, &bytes, &baton);
10152
10153 if (TYPE_NOSIGN (type))
10154 /* GDB prints characters as NUMBER 'CHAR'. If that's
10155 changed, this can use value_print instead. */
10156 c_printchar (value, type, &buf);
10157 else
10158 {
10159 struct value_print_options opts;
10160
10161 if (baton != NULL)
10162 v = dwarf2_evaluate_loc_desc (type, NULL,
10163 baton->data,
10164 baton->size,
10165 baton->per_cu);
10166 else if (bytes != NULL)
10167 {
10168 v = allocate_value (type);
10169 memcpy (value_contents_writeable (v), bytes,
10170 TYPE_LENGTH (type));
10171 }
10172 else
10173 v = value_from_longest (type, value);
10174
10175 /* Specify decimal so that we do not depend on
10176 the radix. */
10177 get_formatted_print_options (&opts, 'd');
10178 opts.raw = 1;
10179 value_print (v, &buf, &opts);
10180 release_value (v);
10181 }
10182 }
10183
10184 die->building_fullname = 0;
10185
10186 if (!first)
10187 {
10188 /* Close the argument list, with a space if necessary
10189 (nested templates). */
10190 if (!buf.empty () && buf.string ().back () == '>')
10191 buf.puts (" >");
10192 else
10193 buf.puts (">");
10194 }
10195 }
10196
10197 /* For C++ methods, append formal parameter type
10198 information, if PHYSNAME. */
10199
10200 if (physname && die->tag == DW_TAG_subprogram
10201 && cu->language == language_cplus)
10202 {
10203 struct type *type = read_type_die (die, cu);
10204
10205 c_type_print_args (type, &buf, 1, cu->language,
10206 &type_print_raw_options);
10207
10208 if (cu->language == language_cplus)
10209 {
10210 /* Assume that an artificial first parameter is
10211 "this", but do not crash if it is not. RealView
10212 marks unnamed (and thus unused) parameters as
10213 artificial; there is no way to differentiate
10214 the two cases. */
10215 if (TYPE_NFIELDS (type) > 0
10216 && TYPE_FIELD_ARTIFICIAL (type, 0)
10217 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10218 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10219 0))))
10220 buf.puts (" const");
10221 }
10222 }
10223
10224 const std::string &intermediate_name = buf.string ();
10225
10226 if (cu->language == language_cplus)
10227 canonical_name
10228 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10229 &objfile->per_bfd->storage_obstack);
10230
10231 /* If we only computed INTERMEDIATE_NAME, or if
10232 INTERMEDIATE_NAME is already canonical, then we need to
10233 copy it to the appropriate obstack. */
10234 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10235 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10236 intermediate_name);
10237 else
10238 name = canonical_name;
10239 }
10240 }
10241
10242 return name;
10243 }
10244
10245 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10246 If scope qualifiers are appropriate they will be added. The result
10247 will be allocated on the storage_obstack, or NULL if the DIE does
10248 not have a name. NAME may either be from a previous call to
10249 dwarf2_name or NULL.
10250
10251 The output string will be canonicalized (if C++). */
10252
10253 static const char *
10254 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10255 {
10256 return dwarf2_compute_name (name, die, cu, 0);
10257 }
10258
10259 /* Construct a physname for the given DIE in CU. NAME may either be
10260 from a previous call to dwarf2_name or NULL. The result will be
10261 allocated on the objfile_objstack or NULL if the DIE does not have a
10262 name.
10263
10264 The output string will be canonicalized (if C++). */
10265
10266 static const char *
10267 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10268 {
10269 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10270 const char *retval, *mangled = NULL, *canon = NULL;
10271 int need_copy = 1;
10272
10273 /* In this case dwarf2_compute_name is just a shortcut not building anything
10274 on its own. */
10275 if (!die_needs_namespace (die, cu))
10276 return dwarf2_compute_name (name, die, cu, 1);
10277
10278 mangled = dw2_linkage_name (die, cu);
10279
10280 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10281 See https://github.com/rust-lang/rust/issues/32925. */
10282 if (cu->language == language_rust && mangled != NULL
10283 && strchr (mangled, '{') != NULL)
10284 mangled = NULL;
10285
10286 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10287 has computed. */
10288 gdb::unique_xmalloc_ptr<char> demangled;
10289 if (mangled != NULL)
10290 {
10291
10292 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10293 {
10294 /* Do nothing (do not demangle the symbol name). */
10295 }
10296 else if (cu->language == language_go)
10297 {
10298 /* This is a lie, but we already lie to the caller new_symbol.
10299 new_symbol assumes we return the mangled name.
10300 This just undoes that lie until things are cleaned up. */
10301 }
10302 else
10303 {
10304 /* Use DMGL_RET_DROP for C++ template functions to suppress
10305 their return type. It is easier for GDB users to search
10306 for such functions as `name(params)' than `long name(params)'.
10307 In such case the minimal symbol names do not match the full
10308 symbol names but for template functions there is never a need
10309 to look up their definition from their declaration so
10310 the only disadvantage remains the minimal symbol variant
10311 `long name(params)' does not have the proper inferior type. */
10312 demangled.reset (gdb_demangle (mangled,
10313 (DMGL_PARAMS | DMGL_ANSI
10314 | DMGL_RET_DROP)));
10315 }
10316 if (demangled)
10317 canon = demangled.get ();
10318 else
10319 {
10320 canon = mangled;
10321 need_copy = 0;
10322 }
10323 }
10324
10325 if (canon == NULL || check_physname)
10326 {
10327 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10328
10329 if (canon != NULL && strcmp (physname, canon) != 0)
10330 {
10331 /* It may not mean a bug in GDB. The compiler could also
10332 compute DW_AT_linkage_name incorrectly. But in such case
10333 GDB would need to be bug-to-bug compatible. */
10334
10335 complaint (_("Computed physname <%s> does not match demangled <%s> "
10336 "(from linkage <%s>) - DIE at %s [in module %s]"),
10337 physname, canon, mangled, sect_offset_str (die->sect_off),
10338 objfile_name (objfile));
10339
10340 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10341 is available here - over computed PHYSNAME. It is safer
10342 against both buggy GDB and buggy compilers. */
10343
10344 retval = canon;
10345 }
10346 else
10347 {
10348 retval = physname;
10349 need_copy = 0;
10350 }
10351 }
10352 else
10353 retval = canon;
10354
10355 if (need_copy)
10356 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10357
10358 return retval;
10359 }
10360
10361 /* Inspect DIE in CU for a namespace alias. If one exists, record
10362 a new symbol for it.
10363
10364 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10365
10366 static int
10367 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10368 {
10369 struct attribute *attr;
10370
10371 /* If the die does not have a name, this is not a namespace
10372 alias. */
10373 attr = dwarf2_attr (die, DW_AT_name, cu);
10374 if (attr != NULL)
10375 {
10376 int num;
10377 struct die_info *d = die;
10378 struct dwarf2_cu *imported_cu = cu;
10379
10380 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10381 keep inspecting DIEs until we hit the underlying import. */
10382 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10383 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10384 {
10385 attr = dwarf2_attr (d, DW_AT_import, cu);
10386 if (attr == NULL)
10387 break;
10388
10389 d = follow_die_ref (d, attr, &imported_cu);
10390 if (d->tag != DW_TAG_imported_declaration)
10391 break;
10392 }
10393
10394 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10395 {
10396 complaint (_("DIE at %s has too many recursively imported "
10397 "declarations"), sect_offset_str (d->sect_off));
10398 return 0;
10399 }
10400
10401 if (attr != NULL)
10402 {
10403 struct type *type;
10404 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10405
10406 type = get_die_type_at_offset (sect_off, cu->per_cu);
10407 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10408 {
10409 /* This declaration is a global namespace alias. Add
10410 a symbol for it whose type is the aliased namespace. */
10411 new_symbol (die, type, cu);
10412 return 1;
10413 }
10414 }
10415 }
10416
10417 return 0;
10418 }
10419
10420 /* Return the using directives repository (global or local?) to use in the
10421 current context for CU.
10422
10423 For Ada, imported declarations can materialize renamings, which *may* be
10424 global. However it is impossible (for now?) in DWARF to distinguish
10425 "external" imported declarations and "static" ones. As all imported
10426 declarations seem to be static in all other languages, make them all CU-wide
10427 global only in Ada. */
10428
10429 static struct using_direct **
10430 using_directives (struct dwarf2_cu *cu)
10431 {
10432 if (cu->language == language_ada
10433 && cu->get_builder ()->outermost_context_p ())
10434 return cu->get_builder ()->get_global_using_directives ();
10435 else
10436 return cu->get_builder ()->get_local_using_directives ();
10437 }
10438
10439 /* Read the import statement specified by the given die and record it. */
10440
10441 static void
10442 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10443 {
10444 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10445 struct attribute *import_attr;
10446 struct die_info *imported_die, *child_die;
10447 struct dwarf2_cu *imported_cu;
10448 const char *imported_name;
10449 const char *imported_name_prefix;
10450 const char *canonical_name;
10451 const char *import_alias;
10452 const char *imported_declaration = NULL;
10453 const char *import_prefix;
10454 std::vector<const char *> excludes;
10455
10456 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10457 if (import_attr == NULL)
10458 {
10459 complaint (_("Tag '%s' has no DW_AT_import"),
10460 dwarf_tag_name (die->tag));
10461 return;
10462 }
10463
10464 imported_cu = cu;
10465 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10466 imported_name = dwarf2_name (imported_die, imported_cu);
10467 if (imported_name == NULL)
10468 {
10469 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10470
10471 The import in the following code:
10472 namespace A
10473 {
10474 typedef int B;
10475 }
10476
10477 int main ()
10478 {
10479 using A::B;
10480 B b;
10481 return b;
10482 }
10483
10484 ...
10485 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10486 <52> DW_AT_decl_file : 1
10487 <53> DW_AT_decl_line : 6
10488 <54> DW_AT_import : <0x75>
10489 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10490 <59> DW_AT_name : B
10491 <5b> DW_AT_decl_file : 1
10492 <5c> DW_AT_decl_line : 2
10493 <5d> DW_AT_type : <0x6e>
10494 ...
10495 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10496 <76> DW_AT_byte_size : 4
10497 <77> DW_AT_encoding : 5 (signed)
10498
10499 imports the wrong die ( 0x75 instead of 0x58 ).
10500 This case will be ignored until the gcc bug is fixed. */
10501 return;
10502 }
10503
10504 /* Figure out the local name after import. */
10505 import_alias = dwarf2_name (die, cu);
10506
10507 /* Figure out where the statement is being imported to. */
10508 import_prefix = determine_prefix (die, cu);
10509
10510 /* Figure out what the scope of the imported die is and prepend it
10511 to the name of the imported die. */
10512 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10513
10514 if (imported_die->tag != DW_TAG_namespace
10515 && imported_die->tag != DW_TAG_module)
10516 {
10517 imported_declaration = imported_name;
10518 canonical_name = imported_name_prefix;
10519 }
10520 else if (strlen (imported_name_prefix) > 0)
10521 canonical_name = obconcat (&objfile->objfile_obstack,
10522 imported_name_prefix,
10523 (cu->language == language_d ? "." : "::"),
10524 imported_name, (char *) NULL);
10525 else
10526 canonical_name = imported_name;
10527
10528 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10529 for (child_die = die->child; child_die && child_die->tag;
10530 child_die = sibling_die (child_die))
10531 {
10532 /* DWARF-4: A Fortran use statement with a “rename list” may be
10533 represented by an imported module entry with an import attribute
10534 referring to the module and owned entries corresponding to those
10535 entities that are renamed as part of being imported. */
10536
10537 if (child_die->tag != DW_TAG_imported_declaration)
10538 {
10539 complaint (_("child DW_TAG_imported_declaration expected "
10540 "- DIE at %s [in module %s]"),
10541 sect_offset_str (child_die->sect_off),
10542 objfile_name (objfile));
10543 continue;
10544 }
10545
10546 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10547 if (import_attr == NULL)
10548 {
10549 complaint (_("Tag '%s' has no DW_AT_import"),
10550 dwarf_tag_name (child_die->tag));
10551 continue;
10552 }
10553
10554 imported_cu = cu;
10555 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10556 &imported_cu);
10557 imported_name = dwarf2_name (imported_die, imported_cu);
10558 if (imported_name == NULL)
10559 {
10560 complaint (_("child DW_TAG_imported_declaration has unknown "
10561 "imported name - DIE at %s [in module %s]"),
10562 sect_offset_str (child_die->sect_off),
10563 objfile_name (objfile));
10564 continue;
10565 }
10566
10567 excludes.push_back (imported_name);
10568
10569 process_die (child_die, cu);
10570 }
10571
10572 add_using_directive (using_directives (cu),
10573 import_prefix,
10574 canonical_name,
10575 import_alias,
10576 imported_declaration,
10577 excludes,
10578 0,
10579 &objfile->objfile_obstack);
10580 }
10581
10582 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10583 types, but gives them a size of zero. Starting with version 14,
10584 ICC is compatible with GCC. */
10585
10586 static bool
10587 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10588 {
10589 if (!cu->checked_producer)
10590 check_producer (cu);
10591
10592 return cu->producer_is_icc_lt_14;
10593 }
10594
10595 /* ICC generates a DW_AT_type for C void functions. This was observed on
10596 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10597 which says that void functions should not have a DW_AT_type. */
10598
10599 static bool
10600 producer_is_icc (struct dwarf2_cu *cu)
10601 {
10602 if (!cu->checked_producer)
10603 check_producer (cu);
10604
10605 return cu->producer_is_icc;
10606 }
10607
10608 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10609 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10610 this, it was first present in GCC release 4.3.0. */
10611
10612 static bool
10613 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10614 {
10615 if (!cu->checked_producer)
10616 check_producer (cu);
10617
10618 return cu->producer_is_gcc_lt_4_3;
10619 }
10620
10621 static file_and_directory
10622 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10623 {
10624 file_and_directory res;
10625
10626 /* Find the filename. Do not use dwarf2_name here, since the filename
10627 is not a source language identifier. */
10628 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10629 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10630
10631 if (res.comp_dir == NULL
10632 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10633 && IS_ABSOLUTE_PATH (res.name))
10634 {
10635 res.comp_dir_storage = ldirname (res.name);
10636 if (!res.comp_dir_storage.empty ())
10637 res.comp_dir = res.comp_dir_storage.c_str ();
10638 }
10639 if (res.comp_dir != NULL)
10640 {
10641 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10642 directory, get rid of it. */
10643 const char *cp = strchr (res.comp_dir, ':');
10644
10645 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10646 res.comp_dir = cp + 1;
10647 }
10648
10649 if (res.name == NULL)
10650 res.name = "<unknown>";
10651
10652 return res;
10653 }
10654
10655 /* Handle DW_AT_stmt_list for a compilation unit.
10656 DIE is the DW_TAG_compile_unit die for CU.
10657 COMP_DIR is the compilation directory. LOWPC is passed to
10658 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10659
10660 static void
10661 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10662 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10663 {
10664 struct dwarf2_per_objfile *dwarf2_per_objfile
10665 = cu->per_cu->dwarf2_per_objfile;
10666 struct attribute *attr;
10667 struct line_header line_header_local;
10668 hashval_t line_header_local_hash;
10669 void **slot;
10670 int decode_mapping;
10671
10672 gdb_assert (! cu->per_cu->is_debug_types);
10673
10674 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10675 if (attr == NULL)
10676 return;
10677
10678 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10679
10680 /* The line header hash table is only created if needed (it exists to
10681 prevent redundant reading of the line table for partial_units).
10682 If we're given a partial_unit, we'll need it. If we're given a
10683 compile_unit, then use the line header hash table if it's already
10684 created, but don't create one just yet. */
10685
10686 if (dwarf2_per_objfile->line_header_hash == NULL
10687 && die->tag == DW_TAG_partial_unit)
10688 {
10689 dwarf2_per_objfile->line_header_hash
10690 .reset (htab_create_alloc (127, line_header_hash_voidp,
10691 line_header_eq_voidp,
10692 free_line_header_voidp,
10693 xcalloc, xfree));
10694 }
10695
10696 line_header_local.sect_off = line_offset;
10697 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10698 line_header_local_hash = line_header_hash (&line_header_local);
10699 if (dwarf2_per_objfile->line_header_hash != NULL)
10700 {
10701 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10702 &line_header_local,
10703 line_header_local_hash, NO_INSERT);
10704
10705 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10706 is not present in *SLOT (since if there is something in *SLOT then
10707 it will be for a partial_unit). */
10708 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10709 {
10710 gdb_assert (*slot != NULL);
10711 cu->line_header = (struct line_header *) *slot;
10712 return;
10713 }
10714 }
10715
10716 /* dwarf_decode_line_header does not yet provide sufficient information.
10717 We always have to call also dwarf_decode_lines for it. */
10718 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10719 if (lh == NULL)
10720 return;
10721
10722 cu->line_header = lh.release ();
10723 cu->line_header_die_owner = die;
10724
10725 if (dwarf2_per_objfile->line_header_hash == NULL)
10726 slot = NULL;
10727 else
10728 {
10729 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10730 &line_header_local,
10731 line_header_local_hash, INSERT);
10732 gdb_assert (slot != NULL);
10733 }
10734 if (slot != NULL && *slot == NULL)
10735 {
10736 /* This newly decoded line number information unit will be owned
10737 by line_header_hash hash table. */
10738 *slot = cu->line_header;
10739 cu->line_header_die_owner = NULL;
10740 }
10741 else
10742 {
10743 /* We cannot free any current entry in (*slot) as that struct line_header
10744 may be already used by multiple CUs. Create only temporary decoded
10745 line_header for this CU - it may happen at most once for each line
10746 number information unit. And if we're not using line_header_hash
10747 then this is what we want as well. */
10748 gdb_assert (die->tag != DW_TAG_partial_unit);
10749 }
10750 decode_mapping = (die->tag != DW_TAG_partial_unit);
10751 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10752 decode_mapping);
10753
10754 }
10755
10756 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10757
10758 static void
10759 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10760 {
10761 struct dwarf2_per_objfile *dwarf2_per_objfile
10762 = cu->per_cu->dwarf2_per_objfile;
10763 struct objfile *objfile = dwarf2_per_objfile->objfile;
10764 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10765 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10766 CORE_ADDR highpc = ((CORE_ADDR) 0);
10767 struct attribute *attr;
10768 struct die_info *child_die;
10769 CORE_ADDR baseaddr;
10770
10771 prepare_one_comp_unit (cu, die, cu->language);
10772 baseaddr = objfile->text_section_offset ();
10773
10774 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10775
10776 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10777 from finish_block. */
10778 if (lowpc == ((CORE_ADDR) -1))
10779 lowpc = highpc;
10780 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10781
10782 file_and_directory fnd = find_file_and_directory (die, cu);
10783
10784 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10785 standardised yet. As a workaround for the language detection we fall
10786 back to the DW_AT_producer string. */
10787 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10788 cu->language = language_opencl;
10789
10790 /* Similar hack for Go. */
10791 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10792 set_cu_language (DW_LANG_Go, cu);
10793
10794 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10795
10796 /* Decode line number information if present. We do this before
10797 processing child DIEs, so that the line header table is available
10798 for DW_AT_decl_file. */
10799 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10800
10801 /* Process all dies in compilation unit. */
10802 if (die->child != NULL)
10803 {
10804 child_die = die->child;
10805 while (child_die && child_die->tag)
10806 {
10807 process_die (child_die, cu);
10808 child_die = sibling_die (child_die);
10809 }
10810 }
10811
10812 /* Decode macro information, if present. Dwarf 2 macro information
10813 refers to information in the line number info statement program
10814 header, so we can only read it if we've read the header
10815 successfully. */
10816 attr = dwarf2_attr (die, DW_AT_macros, cu);
10817 if (attr == NULL)
10818 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10819 if (attr && cu->line_header)
10820 {
10821 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10822 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10823
10824 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10825 }
10826 else
10827 {
10828 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10829 if (attr && cu->line_header)
10830 {
10831 unsigned int macro_offset = DW_UNSND (attr);
10832
10833 dwarf_decode_macros (cu, macro_offset, 0);
10834 }
10835 }
10836 }
10837
10838 void
10839 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10840 {
10841 struct type_unit_group *tu_group;
10842 int first_time;
10843 struct attribute *attr;
10844 unsigned int i;
10845 struct signatured_type *sig_type;
10846
10847 gdb_assert (per_cu->is_debug_types);
10848 sig_type = (struct signatured_type *) per_cu;
10849
10850 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10851
10852 /* If we're using .gdb_index (includes -readnow) then
10853 per_cu->type_unit_group may not have been set up yet. */
10854 if (sig_type->type_unit_group == NULL)
10855 sig_type->type_unit_group = get_type_unit_group (this, attr);
10856 tu_group = sig_type->type_unit_group;
10857
10858 /* If we've already processed this stmt_list there's no real need to
10859 do it again, we could fake it and just recreate the part we need
10860 (file name,index -> symtab mapping). If data shows this optimization
10861 is useful we can do it then. */
10862 first_time = tu_group->compunit_symtab == NULL;
10863
10864 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10865 debug info. */
10866 line_header_up lh;
10867 if (attr != NULL)
10868 {
10869 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10870 lh = dwarf_decode_line_header (line_offset, this);
10871 }
10872 if (lh == NULL)
10873 {
10874 if (first_time)
10875 start_symtab ("", NULL, 0);
10876 else
10877 {
10878 gdb_assert (tu_group->symtabs == NULL);
10879 gdb_assert (m_builder == nullptr);
10880 struct compunit_symtab *cust = tu_group->compunit_symtab;
10881 m_builder.reset (new struct buildsym_compunit
10882 (COMPUNIT_OBJFILE (cust), "",
10883 COMPUNIT_DIRNAME (cust),
10884 compunit_language (cust),
10885 0, cust));
10886 }
10887 return;
10888 }
10889
10890 line_header = lh.release ();
10891 line_header_die_owner = die;
10892
10893 if (first_time)
10894 {
10895 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10896
10897 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10898 still initializing it, and our caller (a few levels up)
10899 process_full_type_unit still needs to know if this is the first
10900 time. */
10901
10902 tu_group->symtabs
10903 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10904 struct symtab *, line_header->file_names_size ());
10905
10906 auto &file_names = line_header->file_names ();
10907 for (i = 0; i < file_names.size (); ++i)
10908 {
10909 file_entry &fe = file_names[i];
10910 dwarf2_start_subfile (this, fe.name,
10911 fe.include_dir (line_header));
10912 buildsym_compunit *b = get_builder ();
10913 if (b->get_current_subfile ()->symtab == NULL)
10914 {
10915 /* NOTE: start_subfile will recognize when it's been
10916 passed a file it has already seen. So we can't
10917 assume there's a simple mapping from
10918 cu->line_header->file_names to subfiles, plus
10919 cu->line_header->file_names may contain dups. */
10920 b->get_current_subfile ()->symtab
10921 = allocate_symtab (cust, b->get_current_subfile ()->name);
10922 }
10923
10924 fe.symtab = b->get_current_subfile ()->symtab;
10925 tu_group->symtabs[i] = fe.symtab;
10926 }
10927 }
10928 else
10929 {
10930 gdb_assert (m_builder == nullptr);
10931 struct compunit_symtab *cust = tu_group->compunit_symtab;
10932 m_builder.reset (new struct buildsym_compunit
10933 (COMPUNIT_OBJFILE (cust), "",
10934 COMPUNIT_DIRNAME (cust),
10935 compunit_language (cust),
10936 0, cust));
10937
10938 auto &file_names = line_header->file_names ();
10939 for (i = 0; i < file_names.size (); ++i)
10940 {
10941 file_entry &fe = file_names[i];
10942 fe.symtab = tu_group->symtabs[i];
10943 }
10944 }
10945
10946 /* The main symtab is allocated last. Type units don't have DW_AT_name
10947 so they don't have a "real" (so to speak) symtab anyway.
10948 There is later code that will assign the main symtab to all symbols
10949 that don't have one. We need to handle the case of a symbol with a
10950 missing symtab (DW_AT_decl_file) anyway. */
10951 }
10952
10953 /* Process DW_TAG_type_unit.
10954 For TUs we want to skip the first top level sibling if it's not the
10955 actual type being defined by this TU. In this case the first top
10956 level sibling is there to provide context only. */
10957
10958 static void
10959 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10960 {
10961 struct die_info *child_die;
10962
10963 prepare_one_comp_unit (cu, die, language_minimal);
10964
10965 /* Initialize (or reinitialize) the machinery for building symtabs.
10966 We do this before processing child DIEs, so that the line header table
10967 is available for DW_AT_decl_file. */
10968 cu->setup_type_unit_groups (die);
10969
10970 if (die->child != NULL)
10971 {
10972 child_die = die->child;
10973 while (child_die && child_die->tag)
10974 {
10975 process_die (child_die, cu);
10976 child_die = sibling_die (child_die);
10977 }
10978 }
10979 }
10980 \f
10981 /* DWO/DWP files.
10982
10983 http://gcc.gnu.org/wiki/DebugFission
10984 http://gcc.gnu.org/wiki/DebugFissionDWP
10985
10986 To simplify handling of both DWO files ("object" files with the DWARF info)
10987 and DWP files (a file with the DWOs packaged up into one file), we treat
10988 DWP files as having a collection of virtual DWO files. */
10989
10990 static hashval_t
10991 hash_dwo_file (const void *item)
10992 {
10993 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10994 hashval_t hash;
10995
10996 hash = htab_hash_string (dwo_file->dwo_name);
10997 if (dwo_file->comp_dir != NULL)
10998 hash += htab_hash_string (dwo_file->comp_dir);
10999 return hash;
11000 }
11001
11002 static int
11003 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11004 {
11005 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11006 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11007
11008 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11009 return 0;
11010 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11011 return lhs->comp_dir == rhs->comp_dir;
11012 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11013 }
11014
11015 /* Allocate a hash table for DWO files. */
11016
11017 static htab_up
11018 allocate_dwo_file_hash_table ()
11019 {
11020 auto delete_dwo_file = [] (void *item)
11021 {
11022 struct dwo_file *dwo_file = (struct dwo_file *) item;
11023
11024 delete dwo_file;
11025 };
11026
11027 return htab_up (htab_create_alloc (41,
11028 hash_dwo_file,
11029 eq_dwo_file,
11030 delete_dwo_file,
11031 xcalloc, xfree));
11032 }
11033
11034 /* Lookup DWO file DWO_NAME. */
11035
11036 static void **
11037 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11038 const char *dwo_name,
11039 const char *comp_dir)
11040 {
11041 struct dwo_file find_entry;
11042 void **slot;
11043
11044 if (dwarf2_per_objfile->dwo_files == NULL)
11045 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11046
11047 find_entry.dwo_name = dwo_name;
11048 find_entry.comp_dir = comp_dir;
11049 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11050 INSERT);
11051
11052 return slot;
11053 }
11054
11055 static hashval_t
11056 hash_dwo_unit (const void *item)
11057 {
11058 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11059
11060 /* This drops the top 32 bits of the id, but is ok for a hash. */
11061 return dwo_unit->signature;
11062 }
11063
11064 static int
11065 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11066 {
11067 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11068 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11069
11070 /* The signature is assumed to be unique within the DWO file.
11071 So while object file CU dwo_id's always have the value zero,
11072 that's OK, assuming each object file DWO file has only one CU,
11073 and that's the rule for now. */
11074 return lhs->signature == rhs->signature;
11075 }
11076
11077 /* Allocate a hash table for DWO CUs,TUs.
11078 There is one of these tables for each of CUs,TUs for each DWO file. */
11079
11080 static htab_up
11081 allocate_dwo_unit_table ()
11082 {
11083 /* Start out with a pretty small number.
11084 Generally DWO files contain only one CU and maybe some TUs. */
11085 return htab_up (htab_create_alloc (3,
11086 hash_dwo_unit,
11087 eq_dwo_unit,
11088 NULL, xcalloc, xfree));
11089 }
11090
11091 /* die_reader_func for create_dwo_cu. */
11092
11093 static void
11094 create_dwo_cu_reader (const struct die_reader_specs *reader,
11095 const gdb_byte *info_ptr,
11096 struct die_info *comp_unit_die,
11097 struct dwo_file *dwo_file,
11098 struct dwo_unit *dwo_unit)
11099 {
11100 struct dwarf2_cu *cu = reader->cu;
11101 sect_offset sect_off = cu->per_cu->sect_off;
11102 struct dwarf2_section_info *section = cu->per_cu->section;
11103
11104 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11105 if (!signature.has_value ())
11106 {
11107 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11108 " its dwo_id [in module %s]"),
11109 sect_offset_str (sect_off), dwo_file->dwo_name);
11110 return;
11111 }
11112
11113 dwo_unit->dwo_file = dwo_file;
11114 dwo_unit->signature = *signature;
11115 dwo_unit->section = section;
11116 dwo_unit->sect_off = sect_off;
11117 dwo_unit->length = cu->per_cu->length;
11118
11119 if (dwarf_read_debug)
11120 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11121 sect_offset_str (sect_off),
11122 hex_string (dwo_unit->signature));
11123 }
11124
11125 /* Create the dwo_units for the CUs in a DWO_FILE.
11126 Note: This function processes DWO files only, not DWP files. */
11127
11128 static void
11129 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11130 dwarf2_cu *cu, struct dwo_file &dwo_file,
11131 dwarf2_section_info &section, htab_up &cus_htab)
11132 {
11133 struct objfile *objfile = dwarf2_per_objfile->objfile;
11134 const gdb_byte *info_ptr, *end_ptr;
11135
11136 section.read (objfile);
11137 info_ptr = section.buffer;
11138
11139 if (info_ptr == NULL)
11140 return;
11141
11142 if (dwarf_read_debug)
11143 {
11144 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11145 section.get_name (),
11146 section.get_file_name ());
11147 }
11148
11149 end_ptr = info_ptr + section.size;
11150 while (info_ptr < end_ptr)
11151 {
11152 struct dwarf2_per_cu_data per_cu;
11153 struct dwo_unit read_unit {};
11154 struct dwo_unit *dwo_unit;
11155 void **slot;
11156 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11157
11158 memset (&per_cu, 0, sizeof (per_cu));
11159 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11160 per_cu.is_debug_types = 0;
11161 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11162 per_cu.section = &section;
11163
11164 cutu_reader reader (&per_cu, cu, &dwo_file);
11165 if (!reader.dummy_p)
11166 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11167 &dwo_file, &read_unit);
11168 info_ptr += per_cu.length;
11169
11170 // If the unit could not be parsed, skip it.
11171 if (read_unit.dwo_file == NULL)
11172 continue;
11173
11174 if (cus_htab == NULL)
11175 cus_htab = allocate_dwo_unit_table ();
11176
11177 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11178 *dwo_unit = read_unit;
11179 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11180 gdb_assert (slot != NULL);
11181 if (*slot != NULL)
11182 {
11183 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11184 sect_offset dup_sect_off = dup_cu->sect_off;
11185
11186 complaint (_("debug cu entry at offset %s is duplicate to"
11187 " the entry at offset %s, signature %s"),
11188 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11189 hex_string (dwo_unit->signature));
11190 }
11191 *slot = (void *)dwo_unit;
11192 }
11193 }
11194
11195 /* DWP file .debug_{cu,tu}_index section format:
11196 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11197
11198 DWP Version 1:
11199
11200 Both index sections have the same format, and serve to map a 64-bit
11201 signature to a set of section numbers. Each section begins with a header,
11202 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11203 indexes, and a pool of 32-bit section numbers. The index sections will be
11204 aligned at 8-byte boundaries in the file.
11205
11206 The index section header consists of:
11207
11208 V, 32 bit version number
11209 -, 32 bits unused
11210 N, 32 bit number of compilation units or type units in the index
11211 M, 32 bit number of slots in the hash table
11212
11213 Numbers are recorded using the byte order of the application binary.
11214
11215 The hash table begins at offset 16 in the section, and consists of an array
11216 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11217 order of the application binary). Unused slots in the hash table are 0.
11218 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11219
11220 The parallel table begins immediately after the hash table
11221 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11222 array of 32-bit indexes (using the byte order of the application binary),
11223 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11224 table contains a 32-bit index into the pool of section numbers. For unused
11225 hash table slots, the corresponding entry in the parallel table will be 0.
11226
11227 The pool of section numbers begins immediately following the hash table
11228 (at offset 16 + 12 * M from the beginning of the section). The pool of
11229 section numbers consists of an array of 32-bit words (using the byte order
11230 of the application binary). Each item in the array is indexed starting
11231 from 0. The hash table entry provides the index of the first section
11232 number in the set. Additional section numbers in the set follow, and the
11233 set is terminated by a 0 entry (section number 0 is not used in ELF).
11234
11235 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11236 section must be the first entry in the set, and the .debug_abbrev.dwo must
11237 be the second entry. Other members of the set may follow in any order.
11238
11239 ---
11240
11241 DWP Version 2:
11242
11243 DWP Version 2 combines all the .debug_info, etc. sections into one,
11244 and the entries in the index tables are now offsets into these sections.
11245 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11246 section.
11247
11248 Index Section Contents:
11249 Header
11250 Hash Table of Signatures dwp_hash_table.hash_table
11251 Parallel Table of Indices dwp_hash_table.unit_table
11252 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11253 Table of Section Sizes dwp_hash_table.v2.sizes
11254
11255 The index section header consists of:
11256
11257 V, 32 bit version number
11258 L, 32 bit number of columns in the table of section offsets
11259 N, 32 bit number of compilation units or type units in the index
11260 M, 32 bit number of slots in the hash table
11261
11262 Numbers are recorded using the byte order of the application binary.
11263
11264 The hash table has the same format as version 1.
11265 The parallel table of indices has the same format as version 1,
11266 except that the entries are origin-1 indices into the table of sections
11267 offsets and the table of section sizes.
11268
11269 The table of offsets begins immediately following the parallel table
11270 (at offset 16 + 12 * M from the beginning of the section). The table is
11271 a two-dimensional array of 32-bit words (using the byte order of the
11272 application binary), with L columns and N+1 rows, in row-major order.
11273 Each row in the array is indexed starting from 0. The first row provides
11274 a key to the remaining rows: each column in this row provides an identifier
11275 for a debug section, and the offsets in the same column of subsequent rows
11276 refer to that section. The section identifiers are:
11277
11278 DW_SECT_INFO 1 .debug_info.dwo
11279 DW_SECT_TYPES 2 .debug_types.dwo
11280 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11281 DW_SECT_LINE 4 .debug_line.dwo
11282 DW_SECT_LOC 5 .debug_loc.dwo
11283 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11284 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11285 DW_SECT_MACRO 8 .debug_macro.dwo
11286
11287 The offsets provided by the CU and TU index sections are the base offsets
11288 for the contributions made by each CU or TU to the corresponding section
11289 in the package file. Each CU and TU header contains an abbrev_offset
11290 field, used to find the abbreviations table for that CU or TU within the
11291 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11292 be interpreted as relative to the base offset given in the index section.
11293 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11294 should be interpreted as relative to the base offset for .debug_line.dwo,
11295 and offsets into other debug sections obtained from DWARF attributes should
11296 also be interpreted as relative to the corresponding base offset.
11297
11298 The table of sizes begins immediately following the table of offsets.
11299 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11300 with L columns and N rows, in row-major order. Each row in the array is
11301 indexed starting from 1 (row 0 is shared by the two tables).
11302
11303 ---
11304
11305 Hash table lookup is handled the same in version 1 and 2:
11306
11307 We assume that N and M will not exceed 2^32 - 1.
11308 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11309
11310 Given a 64-bit compilation unit signature or a type signature S, an entry
11311 in the hash table is located as follows:
11312
11313 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11314 the low-order k bits all set to 1.
11315
11316 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11317
11318 3) If the hash table entry at index H matches the signature, use that
11319 entry. If the hash table entry at index H is unused (all zeroes),
11320 terminate the search: the signature is not present in the table.
11321
11322 4) Let H = (H + H') modulo M. Repeat at Step 3.
11323
11324 Because M > N and H' and M are relatively prime, the search is guaranteed
11325 to stop at an unused slot or find the match. */
11326
11327 /* Create a hash table to map DWO IDs to their CU/TU entry in
11328 .debug_{info,types}.dwo in DWP_FILE.
11329 Returns NULL if there isn't one.
11330 Note: This function processes DWP files only, not DWO files. */
11331
11332 static struct dwp_hash_table *
11333 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11334 struct dwp_file *dwp_file, int is_debug_types)
11335 {
11336 struct objfile *objfile = dwarf2_per_objfile->objfile;
11337 bfd *dbfd = dwp_file->dbfd.get ();
11338 const gdb_byte *index_ptr, *index_end;
11339 struct dwarf2_section_info *index;
11340 uint32_t version, nr_columns, nr_units, nr_slots;
11341 struct dwp_hash_table *htab;
11342
11343 if (is_debug_types)
11344 index = &dwp_file->sections.tu_index;
11345 else
11346 index = &dwp_file->sections.cu_index;
11347
11348 if (index->empty ())
11349 return NULL;
11350 index->read (objfile);
11351
11352 index_ptr = index->buffer;
11353 index_end = index_ptr + index->size;
11354
11355 version = read_4_bytes (dbfd, index_ptr);
11356 index_ptr += 4;
11357 if (version == 2)
11358 nr_columns = read_4_bytes (dbfd, index_ptr);
11359 else
11360 nr_columns = 0;
11361 index_ptr += 4;
11362 nr_units = read_4_bytes (dbfd, index_ptr);
11363 index_ptr += 4;
11364 nr_slots = read_4_bytes (dbfd, index_ptr);
11365 index_ptr += 4;
11366
11367 if (version != 1 && version != 2)
11368 {
11369 error (_("Dwarf Error: unsupported DWP file version (%s)"
11370 " [in module %s]"),
11371 pulongest (version), dwp_file->name);
11372 }
11373 if (nr_slots != (nr_slots & -nr_slots))
11374 {
11375 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11376 " is not power of 2 [in module %s]"),
11377 pulongest (nr_slots), dwp_file->name);
11378 }
11379
11380 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11381 htab->version = version;
11382 htab->nr_columns = nr_columns;
11383 htab->nr_units = nr_units;
11384 htab->nr_slots = nr_slots;
11385 htab->hash_table = index_ptr;
11386 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11387
11388 /* Exit early if the table is empty. */
11389 if (nr_slots == 0 || nr_units == 0
11390 || (version == 2 && nr_columns == 0))
11391 {
11392 /* All must be zero. */
11393 if (nr_slots != 0 || nr_units != 0
11394 || (version == 2 && nr_columns != 0))
11395 {
11396 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11397 " all zero [in modules %s]"),
11398 dwp_file->name);
11399 }
11400 return htab;
11401 }
11402
11403 if (version == 1)
11404 {
11405 htab->section_pool.v1.indices =
11406 htab->unit_table + sizeof (uint32_t) * nr_slots;
11407 /* It's harder to decide whether the section is too small in v1.
11408 V1 is deprecated anyway so we punt. */
11409 }
11410 else
11411 {
11412 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11413 int *ids = htab->section_pool.v2.section_ids;
11414 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11415 /* Reverse map for error checking. */
11416 int ids_seen[DW_SECT_MAX + 1];
11417 int i;
11418
11419 if (nr_columns < 2)
11420 {
11421 error (_("Dwarf Error: bad DWP hash table, too few columns"
11422 " in section table [in module %s]"),
11423 dwp_file->name);
11424 }
11425 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11426 {
11427 error (_("Dwarf Error: bad DWP hash table, too many columns"
11428 " in section table [in module %s]"),
11429 dwp_file->name);
11430 }
11431 memset (ids, 255, sizeof_ids);
11432 memset (ids_seen, 255, sizeof (ids_seen));
11433 for (i = 0; i < nr_columns; ++i)
11434 {
11435 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11436
11437 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11438 {
11439 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11440 " in section table [in module %s]"),
11441 id, dwp_file->name);
11442 }
11443 if (ids_seen[id] != -1)
11444 {
11445 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11446 " id %d in section table [in module %s]"),
11447 id, dwp_file->name);
11448 }
11449 ids_seen[id] = i;
11450 ids[i] = id;
11451 }
11452 /* Must have exactly one info or types section. */
11453 if (((ids_seen[DW_SECT_INFO] != -1)
11454 + (ids_seen[DW_SECT_TYPES] != -1))
11455 != 1)
11456 {
11457 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11458 " DWO info/types section [in module %s]"),
11459 dwp_file->name);
11460 }
11461 /* Must have an abbrev section. */
11462 if (ids_seen[DW_SECT_ABBREV] == -1)
11463 {
11464 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11465 " section [in module %s]"),
11466 dwp_file->name);
11467 }
11468 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11469 htab->section_pool.v2.sizes =
11470 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11471 * nr_units * nr_columns);
11472 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11473 * nr_units * nr_columns))
11474 > index_end)
11475 {
11476 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11477 " [in module %s]"),
11478 dwp_file->name);
11479 }
11480 }
11481
11482 return htab;
11483 }
11484
11485 /* Update SECTIONS with the data from SECTP.
11486
11487 This function is like the other "locate" section routines that are
11488 passed to bfd_map_over_sections, but in this context the sections to
11489 read comes from the DWP V1 hash table, not the full ELF section table.
11490
11491 The result is non-zero for success, or zero if an error was found. */
11492
11493 static int
11494 locate_v1_virtual_dwo_sections (asection *sectp,
11495 struct virtual_v1_dwo_sections *sections)
11496 {
11497 const struct dwop_section_names *names = &dwop_section_names;
11498
11499 if (section_is_p (sectp->name, &names->abbrev_dwo))
11500 {
11501 /* There can be only one. */
11502 if (sections->abbrev.s.section != NULL)
11503 return 0;
11504 sections->abbrev.s.section = sectp;
11505 sections->abbrev.size = bfd_section_size (sectp);
11506 }
11507 else if (section_is_p (sectp->name, &names->info_dwo)
11508 || section_is_p (sectp->name, &names->types_dwo))
11509 {
11510 /* There can be only one. */
11511 if (sections->info_or_types.s.section != NULL)
11512 return 0;
11513 sections->info_or_types.s.section = sectp;
11514 sections->info_or_types.size = bfd_section_size (sectp);
11515 }
11516 else if (section_is_p (sectp->name, &names->line_dwo))
11517 {
11518 /* There can be only one. */
11519 if (sections->line.s.section != NULL)
11520 return 0;
11521 sections->line.s.section = sectp;
11522 sections->line.size = bfd_section_size (sectp);
11523 }
11524 else if (section_is_p (sectp->name, &names->loc_dwo))
11525 {
11526 /* There can be only one. */
11527 if (sections->loc.s.section != NULL)
11528 return 0;
11529 sections->loc.s.section = sectp;
11530 sections->loc.size = bfd_section_size (sectp);
11531 }
11532 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11533 {
11534 /* There can be only one. */
11535 if (sections->macinfo.s.section != NULL)
11536 return 0;
11537 sections->macinfo.s.section = sectp;
11538 sections->macinfo.size = bfd_section_size (sectp);
11539 }
11540 else if (section_is_p (sectp->name, &names->macro_dwo))
11541 {
11542 /* There can be only one. */
11543 if (sections->macro.s.section != NULL)
11544 return 0;
11545 sections->macro.s.section = sectp;
11546 sections->macro.size = bfd_section_size (sectp);
11547 }
11548 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11549 {
11550 /* There can be only one. */
11551 if (sections->str_offsets.s.section != NULL)
11552 return 0;
11553 sections->str_offsets.s.section = sectp;
11554 sections->str_offsets.size = bfd_section_size (sectp);
11555 }
11556 else
11557 {
11558 /* No other kind of section is valid. */
11559 return 0;
11560 }
11561
11562 return 1;
11563 }
11564
11565 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11566 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11567 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11568 This is for DWP version 1 files. */
11569
11570 static struct dwo_unit *
11571 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11572 struct dwp_file *dwp_file,
11573 uint32_t unit_index,
11574 const char *comp_dir,
11575 ULONGEST signature, int is_debug_types)
11576 {
11577 struct objfile *objfile = dwarf2_per_objfile->objfile;
11578 const struct dwp_hash_table *dwp_htab =
11579 is_debug_types ? dwp_file->tus : dwp_file->cus;
11580 bfd *dbfd = dwp_file->dbfd.get ();
11581 const char *kind = is_debug_types ? "TU" : "CU";
11582 struct dwo_file *dwo_file;
11583 struct dwo_unit *dwo_unit;
11584 struct virtual_v1_dwo_sections sections;
11585 void **dwo_file_slot;
11586 int i;
11587
11588 gdb_assert (dwp_file->version == 1);
11589
11590 if (dwarf_read_debug)
11591 {
11592 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11593 kind,
11594 pulongest (unit_index), hex_string (signature),
11595 dwp_file->name);
11596 }
11597
11598 /* Fetch the sections of this DWO unit.
11599 Put a limit on the number of sections we look for so that bad data
11600 doesn't cause us to loop forever. */
11601
11602 #define MAX_NR_V1_DWO_SECTIONS \
11603 (1 /* .debug_info or .debug_types */ \
11604 + 1 /* .debug_abbrev */ \
11605 + 1 /* .debug_line */ \
11606 + 1 /* .debug_loc */ \
11607 + 1 /* .debug_str_offsets */ \
11608 + 1 /* .debug_macro or .debug_macinfo */ \
11609 + 1 /* trailing zero */)
11610
11611 memset (&sections, 0, sizeof (sections));
11612
11613 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11614 {
11615 asection *sectp;
11616 uint32_t section_nr =
11617 read_4_bytes (dbfd,
11618 dwp_htab->section_pool.v1.indices
11619 + (unit_index + i) * sizeof (uint32_t));
11620
11621 if (section_nr == 0)
11622 break;
11623 if (section_nr >= dwp_file->num_sections)
11624 {
11625 error (_("Dwarf Error: bad DWP hash table, section number too large"
11626 " [in module %s]"),
11627 dwp_file->name);
11628 }
11629
11630 sectp = dwp_file->elf_sections[section_nr];
11631 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11632 {
11633 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11634 " [in module %s]"),
11635 dwp_file->name);
11636 }
11637 }
11638
11639 if (i < 2
11640 || sections.info_or_types.empty ()
11641 || sections.abbrev.empty ())
11642 {
11643 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11644 " [in module %s]"),
11645 dwp_file->name);
11646 }
11647 if (i == MAX_NR_V1_DWO_SECTIONS)
11648 {
11649 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11650 " [in module %s]"),
11651 dwp_file->name);
11652 }
11653
11654 /* It's easier for the rest of the code if we fake a struct dwo_file and
11655 have dwo_unit "live" in that. At least for now.
11656
11657 The DWP file can be made up of a random collection of CUs and TUs.
11658 However, for each CU + set of TUs that came from the same original DWO
11659 file, we can combine them back into a virtual DWO file to save space
11660 (fewer struct dwo_file objects to allocate). Remember that for really
11661 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11662
11663 std::string virtual_dwo_name =
11664 string_printf ("virtual-dwo/%d-%d-%d-%d",
11665 sections.abbrev.get_id (),
11666 sections.line.get_id (),
11667 sections.loc.get_id (),
11668 sections.str_offsets.get_id ());
11669 /* Can we use an existing virtual DWO file? */
11670 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11671 virtual_dwo_name.c_str (),
11672 comp_dir);
11673 /* Create one if necessary. */
11674 if (*dwo_file_slot == NULL)
11675 {
11676 if (dwarf_read_debug)
11677 {
11678 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11679 virtual_dwo_name.c_str ());
11680 }
11681 dwo_file = new struct dwo_file;
11682 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11683 virtual_dwo_name);
11684 dwo_file->comp_dir = comp_dir;
11685 dwo_file->sections.abbrev = sections.abbrev;
11686 dwo_file->sections.line = sections.line;
11687 dwo_file->sections.loc = sections.loc;
11688 dwo_file->sections.macinfo = sections.macinfo;
11689 dwo_file->sections.macro = sections.macro;
11690 dwo_file->sections.str_offsets = sections.str_offsets;
11691 /* The "str" section is global to the entire DWP file. */
11692 dwo_file->sections.str = dwp_file->sections.str;
11693 /* The info or types section is assigned below to dwo_unit,
11694 there's no need to record it in dwo_file.
11695 Also, we can't simply record type sections in dwo_file because
11696 we record a pointer into the vector in dwo_unit. As we collect more
11697 types we'll grow the vector and eventually have to reallocate space
11698 for it, invalidating all copies of pointers into the previous
11699 contents. */
11700 *dwo_file_slot = dwo_file;
11701 }
11702 else
11703 {
11704 if (dwarf_read_debug)
11705 {
11706 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11707 virtual_dwo_name.c_str ());
11708 }
11709 dwo_file = (struct dwo_file *) *dwo_file_slot;
11710 }
11711
11712 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11713 dwo_unit->dwo_file = dwo_file;
11714 dwo_unit->signature = signature;
11715 dwo_unit->section =
11716 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11717 *dwo_unit->section = sections.info_or_types;
11718 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11719
11720 return dwo_unit;
11721 }
11722
11723 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11724 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11725 piece within that section used by a TU/CU, return a virtual section
11726 of just that piece. */
11727
11728 static struct dwarf2_section_info
11729 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11730 struct dwarf2_section_info *section,
11731 bfd_size_type offset, bfd_size_type size)
11732 {
11733 struct dwarf2_section_info result;
11734 asection *sectp;
11735
11736 gdb_assert (section != NULL);
11737 gdb_assert (!section->is_virtual);
11738
11739 memset (&result, 0, sizeof (result));
11740 result.s.containing_section = section;
11741 result.is_virtual = true;
11742
11743 if (size == 0)
11744 return result;
11745
11746 sectp = section->get_bfd_section ();
11747
11748 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11749 bounds of the real section. This is a pretty-rare event, so just
11750 flag an error (easier) instead of a warning and trying to cope. */
11751 if (sectp == NULL
11752 || offset + size > bfd_section_size (sectp))
11753 {
11754 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11755 " in section %s [in module %s]"),
11756 sectp ? bfd_section_name (sectp) : "<unknown>",
11757 objfile_name (dwarf2_per_objfile->objfile));
11758 }
11759
11760 result.virtual_offset = offset;
11761 result.size = size;
11762 return result;
11763 }
11764
11765 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11766 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11767 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11768 This is for DWP version 2 files. */
11769
11770 static struct dwo_unit *
11771 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11772 struct dwp_file *dwp_file,
11773 uint32_t unit_index,
11774 const char *comp_dir,
11775 ULONGEST signature, int is_debug_types)
11776 {
11777 struct objfile *objfile = dwarf2_per_objfile->objfile;
11778 const struct dwp_hash_table *dwp_htab =
11779 is_debug_types ? dwp_file->tus : dwp_file->cus;
11780 bfd *dbfd = dwp_file->dbfd.get ();
11781 const char *kind = is_debug_types ? "TU" : "CU";
11782 struct dwo_file *dwo_file;
11783 struct dwo_unit *dwo_unit;
11784 struct virtual_v2_dwo_sections sections;
11785 void **dwo_file_slot;
11786 int i;
11787
11788 gdb_assert (dwp_file->version == 2);
11789
11790 if (dwarf_read_debug)
11791 {
11792 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11793 kind,
11794 pulongest (unit_index), hex_string (signature),
11795 dwp_file->name);
11796 }
11797
11798 /* Fetch the section offsets of this DWO unit. */
11799
11800 memset (&sections, 0, sizeof (sections));
11801
11802 for (i = 0; i < dwp_htab->nr_columns; ++i)
11803 {
11804 uint32_t offset = read_4_bytes (dbfd,
11805 dwp_htab->section_pool.v2.offsets
11806 + (((unit_index - 1) * dwp_htab->nr_columns
11807 + i)
11808 * sizeof (uint32_t)));
11809 uint32_t size = read_4_bytes (dbfd,
11810 dwp_htab->section_pool.v2.sizes
11811 + (((unit_index - 1) * dwp_htab->nr_columns
11812 + i)
11813 * sizeof (uint32_t)));
11814
11815 switch (dwp_htab->section_pool.v2.section_ids[i])
11816 {
11817 case DW_SECT_INFO:
11818 case DW_SECT_TYPES:
11819 sections.info_or_types_offset = offset;
11820 sections.info_or_types_size = size;
11821 break;
11822 case DW_SECT_ABBREV:
11823 sections.abbrev_offset = offset;
11824 sections.abbrev_size = size;
11825 break;
11826 case DW_SECT_LINE:
11827 sections.line_offset = offset;
11828 sections.line_size = size;
11829 break;
11830 case DW_SECT_LOC:
11831 sections.loc_offset = offset;
11832 sections.loc_size = size;
11833 break;
11834 case DW_SECT_STR_OFFSETS:
11835 sections.str_offsets_offset = offset;
11836 sections.str_offsets_size = size;
11837 break;
11838 case DW_SECT_MACINFO:
11839 sections.macinfo_offset = offset;
11840 sections.macinfo_size = size;
11841 break;
11842 case DW_SECT_MACRO:
11843 sections.macro_offset = offset;
11844 sections.macro_size = size;
11845 break;
11846 }
11847 }
11848
11849 /* It's easier for the rest of the code if we fake a struct dwo_file and
11850 have dwo_unit "live" in that. At least for now.
11851
11852 The DWP file can be made up of a random collection of CUs and TUs.
11853 However, for each CU + set of TUs that came from the same original DWO
11854 file, we can combine them back into a virtual DWO file to save space
11855 (fewer struct dwo_file objects to allocate). Remember that for really
11856 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11857
11858 std::string virtual_dwo_name =
11859 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11860 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11861 (long) (sections.line_size ? sections.line_offset : 0),
11862 (long) (sections.loc_size ? sections.loc_offset : 0),
11863 (long) (sections.str_offsets_size
11864 ? sections.str_offsets_offset : 0));
11865 /* Can we use an existing virtual DWO file? */
11866 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11867 virtual_dwo_name.c_str (),
11868 comp_dir);
11869 /* Create one if necessary. */
11870 if (*dwo_file_slot == NULL)
11871 {
11872 if (dwarf_read_debug)
11873 {
11874 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11875 virtual_dwo_name.c_str ());
11876 }
11877 dwo_file = new struct dwo_file;
11878 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
11879 virtual_dwo_name);
11880 dwo_file->comp_dir = comp_dir;
11881 dwo_file->sections.abbrev =
11882 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11883 sections.abbrev_offset, sections.abbrev_size);
11884 dwo_file->sections.line =
11885 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11886 sections.line_offset, sections.line_size);
11887 dwo_file->sections.loc =
11888 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11889 sections.loc_offset, sections.loc_size);
11890 dwo_file->sections.macinfo =
11891 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11892 sections.macinfo_offset, sections.macinfo_size);
11893 dwo_file->sections.macro =
11894 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11895 sections.macro_offset, sections.macro_size);
11896 dwo_file->sections.str_offsets =
11897 create_dwp_v2_section (dwarf2_per_objfile,
11898 &dwp_file->sections.str_offsets,
11899 sections.str_offsets_offset,
11900 sections.str_offsets_size);
11901 /* The "str" section is global to the entire DWP file. */
11902 dwo_file->sections.str = dwp_file->sections.str;
11903 /* The info or types section is assigned below to dwo_unit,
11904 there's no need to record it in dwo_file.
11905 Also, we can't simply record type sections in dwo_file because
11906 we record a pointer into the vector in dwo_unit. As we collect more
11907 types we'll grow the vector and eventually have to reallocate space
11908 for it, invalidating all copies of pointers into the previous
11909 contents. */
11910 *dwo_file_slot = dwo_file;
11911 }
11912 else
11913 {
11914 if (dwarf_read_debug)
11915 {
11916 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11917 virtual_dwo_name.c_str ());
11918 }
11919 dwo_file = (struct dwo_file *) *dwo_file_slot;
11920 }
11921
11922 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11923 dwo_unit->dwo_file = dwo_file;
11924 dwo_unit->signature = signature;
11925 dwo_unit->section =
11926 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11927 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11928 is_debug_types
11929 ? &dwp_file->sections.types
11930 : &dwp_file->sections.info,
11931 sections.info_or_types_offset,
11932 sections.info_or_types_size);
11933 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11934
11935 return dwo_unit;
11936 }
11937
11938 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11939 Returns NULL if the signature isn't found. */
11940
11941 static struct dwo_unit *
11942 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11943 struct dwp_file *dwp_file, const char *comp_dir,
11944 ULONGEST signature, int is_debug_types)
11945 {
11946 const struct dwp_hash_table *dwp_htab =
11947 is_debug_types ? dwp_file->tus : dwp_file->cus;
11948 bfd *dbfd = dwp_file->dbfd.get ();
11949 uint32_t mask = dwp_htab->nr_slots - 1;
11950 uint32_t hash = signature & mask;
11951 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11952 unsigned int i;
11953 void **slot;
11954 struct dwo_unit find_dwo_cu;
11955
11956 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11957 find_dwo_cu.signature = signature;
11958 slot = htab_find_slot (is_debug_types
11959 ? dwp_file->loaded_tus.get ()
11960 : dwp_file->loaded_cus.get (),
11961 &find_dwo_cu, INSERT);
11962
11963 if (*slot != NULL)
11964 return (struct dwo_unit *) *slot;
11965
11966 /* Use a for loop so that we don't loop forever on bad debug info. */
11967 for (i = 0; i < dwp_htab->nr_slots; ++i)
11968 {
11969 ULONGEST signature_in_table;
11970
11971 signature_in_table =
11972 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11973 if (signature_in_table == signature)
11974 {
11975 uint32_t unit_index =
11976 read_4_bytes (dbfd,
11977 dwp_htab->unit_table + hash * sizeof (uint32_t));
11978
11979 if (dwp_file->version == 1)
11980 {
11981 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11982 dwp_file, unit_index,
11983 comp_dir, signature,
11984 is_debug_types);
11985 }
11986 else
11987 {
11988 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11989 dwp_file, unit_index,
11990 comp_dir, signature,
11991 is_debug_types);
11992 }
11993 return (struct dwo_unit *) *slot;
11994 }
11995 if (signature_in_table == 0)
11996 return NULL;
11997 hash = (hash + hash2) & mask;
11998 }
11999
12000 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12001 " [in module %s]"),
12002 dwp_file->name);
12003 }
12004
12005 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12006 Open the file specified by FILE_NAME and hand it off to BFD for
12007 preliminary analysis. Return a newly initialized bfd *, which
12008 includes a canonicalized copy of FILE_NAME.
12009 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12010 SEARCH_CWD is true if the current directory is to be searched.
12011 It will be searched before debug-file-directory.
12012 If successful, the file is added to the bfd include table of the
12013 objfile's bfd (see gdb_bfd_record_inclusion).
12014 If unable to find/open the file, return NULL.
12015 NOTE: This function is derived from symfile_bfd_open. */
12016
12017 static gdb_bfd_ref_ptr
12018 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12019 const char *file_name, int is_dwp, int search_cwd)
12020 {
12021 int desc;
12022 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12023 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12024 to debug_file_directory. */
12025 const char *search_path;
12026 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12027
12028 gdb::unique_xmalloc_ptr<char> search_path_holder;
12029 if (search_cwd)
12030 {
12031 if (*debug_file_directory != '\0')
12032 {
12033 search_path_holder.reset (concat (".", dirname_separator_string,
12034 debug_file_directory,
12035 (char *) NULL));
12036 search_path = search_path_holder.get ();
12037 }
12038 else
12039 search_path = ".";
12040 }
12041 else
12042 search_path = debug_file_directory;
12043
12044 openp_flags flags = OPF_RETURN_REALPATH;
12045 if (is_dwp)
12046 flags |= OPF_SEARCH_IN_PATH;
12047
12048 gdb::unique_xmalloc_ptr<char> absolute_name;
12049 desc = openp (search_path, flags, file_name,
12050 O_RDONLY | O_BINARY, &absolute_name);
12051 if (desc < 0)
12052 return NULL;
12053
12054 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12055 gnutarget, desc));
12056 if (sym_bfd == NULL)
12057 return NULL;
12058 bfd_set_cacheable (sym_bfd.get (), 1);
12059
12060 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12061 return NULL;
12062
12063 /* Success. Record the bfd as having been included by the objfile's bfd.
12064 This is important because things like demangled_names_hash lives in the
12065 objfile's per_bfd space and may have references to things like symbol
12066 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12067 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12068
12069 return sym_bfd;
12070 }
12071
12072 /* Try to open DWO file FILE_NAME.
12073 COMP_DIR is the DW_AT_comp_dir attribute.
12074 The result is the bfd handle of the file.
12075 If there is a problem finding or opening the file, return NULL.
12076 Upon success, the canonicalized path of the file is stored in the bfd,
12077 same as symfile_bfd_open. */
12078
12079 static gdb_bfd_ref_ptr
12080 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12081 const char *file_name, const char *comp_dir)
12082 {
12083 if (IS_ABSOLUTE_PATH (file_name))
12084 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12085 0 /*is_dwp*/, 0 /*search_cwd*/);
12086
12087 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12088
12089 if (comp_dir != NULL)
12090 {
12091 gdb::unique_xmalloc_ptr<char> path_to_try
12092 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12093
12094 /* NOTE: If comp_dir is a relative path, this will also try the
12095 search path, which seems useful. */
12096 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12097 path_to_try.get (),
12098 0 /*is_dwp*/,
12099 1 /*search_cwd*/));
12100 if (abfd != NULL)
12101 return abfd;
12102 }
12103
12104 /* That didn't work, try debug-file-directory, which, despite its name,
12105 is a list of paths. */
12106
12107 if (*debug_file_directory == '\0')
12108 return NULL;
12109
12110 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12111 0 /*is_dwp*/, 1 /*search_cwd*/);
12112 }
12113
12114 /* This function is mapped across the sections and remembers the offset and
12115 size of each of the DWO debugging sections we are interested in. */
12116
12117 static void
12118 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12119 {
12120 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12121 const struct dwop_section_names *names = &dwop_section_names;
12122
12123 if (section_is_p (sectp->name, &names->abbrev_dwo))
12124 {
12125 dwo_sections->abbrev.s.section = sectp;
12126 dwo_sections->abbrev.size = bfd_section_size (sectp);
12127 }
12128 else if (section_is_p (sectp->name, &names->info_dwo))
12129 {
12130 dwo_sections->info.s.section = sectp;
12131 dwo_sections->info.size = bfd_section_size (sectp);
12132 }
12133 else if (section_is_p (sectp->name, &names->line_dwo))
12134 {
12135 dwo_sections->line.s.section = sectp;
12136 dwo_sections->line.size = bfd_section_size (sectp);
12137 }
12138 else if (section_is_p (sectp->name, &names->loc_dwo))
12139 {
12140 dwo_sections->loc.s.section = sectp;
12141 dwo_sections->loc.size = bfd_section_size (sectp);
12142 }
12143 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12144 {
12145 dwo_sections->macinfo.s.section = sectp;
12146 dwo_sections->macinfo.size = bfd_section_size (sectp);
12147 }
12148 else if (section_is_p (sectp->name, &names->macro_dwo))
12149 {
12150 dwo_sections->macro.s.section = sectp;
12151 dwo_sections->macro.size = bfd_section_size (sectp);
12152 }
12153 else if (section_is_p (sectp->name, &names->str_dwo))
12154 {
12155 dwo_sections->str.s.section = sectp;
12156 dwo_sections->str.size = bfd_section_size (sectp);
12157 }
12158 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12159 {
12160 dwo_sections->str_offsets.s.section = sectp;
12161 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12162 }
12163 else if (section_is_p (sectp->name, &names->types_dwo))
12164 {
12165 struct dwarf2_section_info type_section;
12166
12167 memset (&type_section, 0, sizeof (type_section));
12168 type_section.s.section = sectp;
12169 type_section.size = bfd_section_size (sectp);
12170 dwo_sections->types.push_back (type_section);
12171 }
12172 }
12173
12174 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12175 by PER_CU. This is for the non-DWP case.
12176 The result is NULL if DWO_NAME can't be found. */
12177
12178 static struct dwo_file *
12179 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12180 const char *dwo_name, const char *comp_dir)
12181 {
12182 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12183
12184 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12185 if (dbfd == NULL)
12186 {
12187 if (dwarf_read_debug)
12188 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12189 return NULL;
12190 }
12191
12192 dwo_file_up dwo_file (new struct dwo_file);
12193 dwo_file->dwo_name = dwo_name;
12194 dwo_file->comp_dir = comp_dir;
12195 dwo_file->dbfd = std::move (dbfd);
12196
12197 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12198 &dwo_file->sections);
12199
12200 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12201 dwo_file->sections.info, dwo_file->cus);
12202
12203 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12204 dwo_file->sections.types, dwo_file->tus);
12205
12206 if (dwarf_read_debug)
12207 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12208
12209 return dwo_file.release ();
12210 }
12211
12212 /* This function is mapped across the sections and remembers the offset and
12213 size of each of the DWP debugging sections common to version 1 and 2 that
12214 we are interested in. */
12215
12216 static void
12217 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12218 void *dwp_file_ptr)
12219 {
12220 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12221 const struct dwop_section_names *names = &dwop_section_names;
12222 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12223
12224 /* Record the ELF section number for later lookup: this is what the
12225 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12226 gdb_assert (elf_section_nr < dwp_file->num_sections);
12227 dwp_file->elf_sections[elf_section_nr] = sectp;
12228
12229 /* Look for specific sections that we need. */
12230 if (section_is_p (sectp->name, &names->str_dwo))
12231 {
12232 dwp_file->sections.str.s.section = sectp;
12233 dwp_file->sections.str.size = bfd_section_size (sectp);
12234 }
12235 else if (section_is_p (sectp->name, &names->cu_index))
12236 {
12237 dwp_file->sections.cu_index.s.section = sectp;
12238 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12239 }
12240 else if (section_is_p (sectp->name, &names->tu_index))
12241 {
12242 dwp_file->sections.tu_index.s.section = sectp;
12243 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12244 }
12245 }
12246
12247 /* This function is mapped across the sections and remembers the offset and
12248 size of each of the DWP version 2 debugging sections that we are interested
12249 in. This is split into a separate function because we don't know if we
12250 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12251
12252 static void
12253 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12254 {
12255 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12256 const struct dwop_section_names *names = &dwop_section_names;
12257 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12258
12259 /* Record the ELF section number for later lookup: this is what the
12260 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12261 gdb_assert (elf_section_nr < dwp_file->num_sections);
12262 dwp_file->elf_sections[elf_section_nr] = sectp;
12263
12264 /* Look for specific sections that we need. */
12265 if (section_is_p (sectp->name, &names->abbrev_dwo))
12266 {
12267 dwp_file->sections.abbrev.s.section = sectp;
12268 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12269 }
12270 else if (section_is_p (sectp->name, &names->info_dwo))
12271 {
12272 dwp_file->sections.info.s.section = sectp;
12273 dwp_file->sections.info.size = bfd_section_size (sectp);
12274 }
12275 else if (section_is_p (sectp->name, &names->line_dwo))
12276 {
12277 dwp_file->sections.line.s.section = sectp;
12278 dwp_file->sections.line.size = bfd_section_size (sectp);
12279 }
12280 else if (section_is_p (sectp->name, &names->loc_dwo))
12281 {
12282 dwp_file->sections.loc.s.section = sectp;
12283 dwp_file->sections.loc.size = bfd_section_size (sectp);
12284 }
12285 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12286 {
12287 dwp_file->sections.macinfo.s.section = sectp;
12288 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12289 }
12290 else if (section_is_p (sectp->name, &names->macro_dwo))
12291 {
12292 dwp_file->sections.macro.s.section = sectp;
12293 dwp_file->sections.macro.size = bfd_section_size (sectp);
12294 }
12295 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12296 {
12297 dwp_file->sections.str_offsets.s.section = sectp;
12298 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12299 }
12300 else if (section_is_p (sectp->name, &names->types_dwo))
12301 {
12302 dwp_file->sections.types.s.section = sectp;
12303 dwp_file->sections.types.size = bfd_section_size (sectp);
12304 }
12305 }
12306
12307 /* Hash function for dwp_file loaded CUs/TUs. */
12308
12309 static hashval_t
12310 hash_dwp_loaded_cutus (const void *item)
12311 {
12312 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12313
12314 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12315 return dwo_unit->signature;
12316 }
12317
12318 /* Equality function for dwp_file loaded CUs/TUs. */
12319
12320 static int
12321 eq_dwp_loaded_cutus (const void *a, const void *b)
12322 {
12323 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12324 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12325
12326 return dua->signature == dub->signature;
12327 }
12328
12329 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12330
12331 static htab_up
12332 allocate_dwp_loaded_cutus_table ()
12333 {
12334 return htab_up (htab_create_alloc (3,
12335 hash_dwp_loaded_cutus,
12336 eq_dwp_loaded_cutus,
12337 NULL, xcalloc, xfree));
12338 }
12339
12340 /* Try to open DWP file FILE_NAME.
12341 The result is the bfd handle of the file.
12342 If there is a problem finding or opening the file, return NULL.
12343 Upon success, the canonicalized path of the file is stored in the bfd,
12344 same as symfile_bfd_open. */
12345
12346 static gdb_bfd_ref_ptr
12347 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12348 const char *file_name)
12349 {
12350 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12351 1 /*is_dwp*/,
12352 1 /*search_cwd*/));
12353 if (abfd != NULL)
12354 return abfd;
12355
12356 /* Work around upstream bug 15652.
12357 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12358 [Whether that's a "bug" is debatable, but it is getting in our way.]
12359 We have no real idea where the dwp file is, because gdb's realpath-ing
12360 of the executable's path may have discarded the needed info.
12361 [IWBN if the dwp file name was recorded in the executable, akin to
12362 .gnu_debuglink, but that doesn't exist yet.]
12363 Strip the directory from FILE_NAME and search again. */
12364 if (*debug_file_directory != '\0')
12365 {
12366 /* Don't implicitly search the current directory here.
12367 If the user wants to search "." to handle this case,
12368 it must be added to debug-file-directory. */
12369 return try_open_dwop_file (dwarf2_per_objfile,
12370 lbasename (file_name), 1 /*is_dwp*/,
12371 0 /*search_cwd*/);
12372 }
12373
12374 return NULL;
12375 }
12376
12377 /* Initialize the use of the DWP file for the current objfile.
12378 By convention the name of the DWP file is ${objfile}.dwp.
12379 The result is NULL if it can't be found. */
12380
12381 static std::unique_ptr<struct dwp_file>
12382 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12383 {
12384 struct objfile *objfile = dwarf2_per_objfile->objfile;
12385
12386 /* Try to find first .dwp for the binary file before any symbolic links
12387 resolving. */
12388
12389 /* If the objfile is a debug file, find the name of the real binary
12390 file and get the name of dwp file from there. */
12391 std::string dwp_name;
12392 if (objfile->separate_debug_objfile_backlink != NULL)
12393 {
12394 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12395 const char *backlink_basename = lbasename (backlink->original_name);
12396
12397 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12398 }
12399 else
12400 dwp_name = objfile->original_name;
12401
12402 dwp_name += ".dwp";
12403
12404 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12405 if (dbfd == NULL
12406 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12407 {
12408 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12409 dwp_name = objfile_name (objfile);
12410 dwp_name += ".dwp";
12411 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12412 }
12413
12414 if (dbfd == NULL)
12415 {
12416 if (dwarf_read_debug)
12417 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12418 return std::unique_ptr<dwp_file> ();
12419 }
12420
12421 const char *name = bfd_get_filename (dbfd.get ());
12422 std::unique_ptr<struct dwp_file> dwp_file
12423 (new struct dwp_file (name, std::move (dbfd)));
12424
12425 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12426 dwp_file->elf_sections =
12427 OBSTACK_CALLOC (&objfile->objfile_obstack,
12428 dwp_file->num_sections, asection *);
12429
12430 bfd_map_over_sections (dwp_file->dbfd.get (),
12431 dwarf2_locate_common_dwp_sections,
12432 dwp_file.get ());
12433
12434 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12435 0);
12436
12437 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12438 1);
12439
12440 /* The DWP file version is stored in the hash table. Oh well. */
12441 if (dwp_file->cus && dwp_file->tus
12442 && dwp_file->cus->version != dwp_file->tus->version)
12443 {
12444 /* Technically speaking, we should try to limp along, but this is
12445 pretty bizarre. We use pulongest here because that's the established
12446 portability solution (e.g, we cannot use %u for uint32_t). */
12447 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12448 " TU version %s [in DWP file %s]"),
12449 pulongest (dwp_file->cus->version),
12450 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12451 }
12452
12453 if (dwp_file->cus)
12454 dwp_file->version = dwp_file->cus->version;
12455 else if (dwp_file->tus)
12456 dwp_file->version = dwp_file->tus->version;
12457 else
12458 dwp_file->version = 2;
12459
12460 if (dwp_file->version == 2)
12461 bfd_map_over_sections (dwp_file->dbfd.get (),
12462 dwarf2_locate_v2_dwp_sections,
12463 dwp_file.get ());
12464
12465 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12466 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12467
12468 if (dwarf_read_debug)
12469 {
12470 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12471 fprintf_unfiltered (gdb_stdlog,
12472 " %s CUs, %s TUs\n",
12473 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12474 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12475 }
12476
12477 return dwp_file;
12478 }
12479
12480 /* Wrapper around open_and_init_dwp_file, only open it once. */
12481
12482 static struct dwp_file *
12483 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12484 {
12485 if (! dwarf2_per_objfile->dwp_checked)
12486 {
12487 dwarf2_per_objfile->dwp_file
12488 = open_and_init_dwp_file (dwarf2_per_objfile);
12489 dwarf2_per_objfile->dwp_checked = 1;
12490 }
12491 return dwarf2_per_objfile->dwp_file.get ();
12492 }
12493
12494 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12495 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12496 or in the DWP file for the objfile, referenced by THIS_UNIT.
12497 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12498 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12499
12500 This is called, for example, when wanting to read a variable with a
12501 complex location. Therefore we don't want to do file i/o for every call.
12502 Therefore we don't want to look for a DWO file on every call.
12503 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12504 then we check if we've already seen DWO_NAME, and only THEN do we check
12505 for a DWO file.
12506
12507 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12508 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12509
12510 static struct dwo_unit *
12511 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12512 const char *dwo_name, const char *comp_dir,
12513 ULONGEST signature, int is_debug_types)
12514 {
12515 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12516 struct objfile *objfile = dwarf2_per_objfile->objfile;
12517 const char *kind = is_debug_types ? "TU" : "CU";
12518 void **dwo_file_slot;
12519 struct dwo_file *dwo_file;
12520 struct dwp_file *dwp_file;
12521
12522 /* First see if there's a DWP file.
12523 If we have a DWP file but didn't find the DWO inside it, don't
12524 look for the original DWO file. It makes gdb behave differently
12525 depending on whether one is debugging in the build tree. */
12526
12527 dwp_file = get_dwp_file (dwarf2_per_objfile);
12528 if (dwp_file != NULL)
12529 {
12530 const struct dwp_hash_table *dwp_htab =
12531 is_debug_types ? dwp_file->tus : dwp_file->cus;
12532
12533 if (dwp_htab != NULL)
12534 {
12535 struct dwo_unit *dwo_cutu =
12536 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12537 signature, is_debug_types);
12538
12539 if (dwo_cutu != NULL)
12540 {
12541 if (dwarf_read_debug)
12542 {
12543 fprintf_unfiltered (gdb_stdlog,
12544 "Virtual DWO %s %s found: @%s\n",
12545 kind, hex_string (signature),
12546 host_address_to_string (dwo_cutu));
12547 }
12548 return dwo_cutu;
12549 }
12550 }
12551 }
12552 else
12553 {
12554 /* No DWP file, look for the DWO file. */
12555
12556 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12557 dwo_name, comp_dir);
12558 if (*dwo_file_slot == NULL)
12559 {
12560 /* Read in the file and build a table of the CUs/TUs it contains. */
12561 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12562 }
12563 /* NOTE: This will be NULL if unable to open the file. */
12564 dwo_file = (struct dwo_file *) *dwo_file_slot;
12565
12566 if (dwo_file != NULL)
12567 {
12568 struct dwo_unit *dwo_cutu = NULL;
12569
12570 if (is_debug_types && dwo_file->tus)
12571 {
12572 struct dwo_unit find_dwo_cutu;
12573
12574 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12575 find_dwo_cutu.signature = signature;
12576 dwo_cutu
12577 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12578 &find_dwo_cutu);
12579 }
12580 else if (!is_debug_types && dwo_file->cus)
12581 {
12582 struct dwo_unit find_dwo_cutu;
12583
12584 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12585 find_dwo_cutu.signature = signature;
12586 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12587 &find_dwo_cutu);
12588 }
12589
12590 if (dwo_cutu != NULL)
12591 {
12592 if (dwarf_read_debug)
12593 {
12594 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12595 kind, dwo_name, hex_string (signature),
12596 host_address_to_string (dwo_cutu));
12597 }
12598 return dwo_cutu;
12599 }
12600 }
12601 }
12602
12603 /* We didn't find it. This could mean a dwo_id mismatch, or
12604 someone deleted the DWO/DWP file, or the search path isn't set up
12605 correctly to find the file. */
12606
12607 if (dwarf_read_debug)
12608 {
12609 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12610 kind, dwo_name, hex_string (signature));
12611 }
12612
12613 /* This is a warning and not a complaint because it can be caused by
12614 pilot error (e.g., user accidentally deleting the DWO). */
12615 {
12616 /* Print the name of the DWP file if we looked there, helps the user
12617 better diagnose the problem. */
12618 std::string dwp_text;
12619
12620 if (dwp_file != NULL)
12621 dwp_text = string_printf (" [in DWP file %s]",
12622 lbasename (dwp_file->name));
12623
12624 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12625 " [in module %s]"),
12626 kind, dwo_name, hex_string (signature),
12627 dwp_text.c_str (),
12628 this_unit->is_debug_types ? "TU" : "CU",
12629 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12630 }
12631 return NULL;
12632 }
12633
12634 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12635 See lookup_dwo_cutu_unit for details. */
12636
12637 static struct dwo_unit *
12638 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12639 const char *dwo_name, const char *comp_dir,
12640 ULONGEST signature)
12641 {
12642 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12643 }
12644
12645 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12646 See lookup_dwo_cutu_unit for details. */
12647
12648 static struct dwo_unit *
12649 lookup_dwo_type_unit (struct signatured_type *this_tu,
12650 const char *dwo_name, const char *comp_dir)
12651 {
12652 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12653 }
12654
12655 /* Traversal function for queue_and_load_all_dwo_tus. */
12656
12657 static int
12658 queue_and_load_dwo_tu (void **slot, void *info)
12659 {
12660 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12661 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12662 ULONGEST signature = dwo_unit->signature;
12663 struct signatured_type *sig_type =
12664 lookup_dwo_signatured_type (per_cu->cu, signature);
12665
12666 if (sig_type != NULL)
12667 {
12668 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12669
12670 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12671 a real dependency of PER_CU on SIG_TYPE. That is detected later
12672 while processing PER_CU. */
12673 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12674 load_full_type_unit (sig_cu);
12675 per_cu->imported_symtabs_push (sig_cu);
12676 }
12677
12678 return 1;
12679 }
12680
12681 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12682 The DWO may have the only definition of the type, though it may not be
12683 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12684 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12685
12686 static void
12687 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12688 {
12689 struct dwo_unit *dwo_unit;
12690 struct dwo_file *dwo_file;
12691
12692 gdb_assert (!per_cu->is_debug_types);
12693 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12694 gdb_assert (per_cu->cu != NULL);
12695
12696 dwo_unit = per_cu->cu->dwo_unit;
12697 gdb_assert (dwo_unit != NULL);
12698
12699 dwo_file = dwo_unit->dwo_file;
12700 if (dwo_file->tus != NULL)
12701 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12702 per_cu);
12703 }
12704
12705 /* Read in various DIEs. */
12706
12707 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12708 Inherit only the children of the DW_AT_abstract_origin DIE not being
12709 already referenced by DW_AT_abstract_origin from the children of the
12710 current DIE. */
12711
12712 static void
12713 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12714 {
12715 struct die_info *child_die;
12716 sect_offset *offsetp;
12717 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12718 struct die_info *origin_die;
12719 /* Iterator of the ORIGIN_DIE children. */
12720 struct die_info *origin_child_die;
12721 struct attribute *attr;
12722 struct dwarf2_cu *origin_cu;
12723 struct pending **origin_previous_list_in_scope;
12724
12725 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12726 if (!attr)
12727 return;
12728
12729 /* Note that following die references may follow to a die in a
12730 different cu. */
12731
12732 origin_cu = cu;
12733 origin_die = follow_die_ref (die, attr, &origin_cu);
12734
12735 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12736 symbols in. */
12737 origin_previous_list_in_scope = origin_cu->list_in_scope;
12738 origin_cu->list_in_scope = cu->list_in_scope;
12739
12740 if (die->tag != origin_die->tag
12741 && !(die->tag == DW_TAG_inlined_subroutine
12742 && origin_die->tag == DW_TAG_subprogram))
12743 complaint (_("DIE %s and its abstract origin %s have different tags"),
12744 sect_offset_str (die->sect_off),
12745 sect_offset_str (origin_die->sect_off));
12746
12747 std::vector<sect_offset> offsets;
12748
12749 for (child_die = die->child;
12750 child_die && child_die->tag;
12751 child_die = sibling_die (child_die))
12752 {
12753 struct die_info *child_origin_die;
12754 struct dwarf2_cu *child_origin_cu;
12755
12756 /* We are trying to process concrete instance entries:
12757 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12758 it's not relevant to our analysis here. i.e. detecting DIEs that are
12759 present in the abstract instance but not referenced in the concrete
12760 one. */
12761 if (child_die->tag == DW_TAG_call_site
12762 || child_die->tag == DW_TAG_GNU_call_site)
12763 continue;
12764
12765 /* For each CHILD_DIE, find the corresponding child of
12766 ORIGIN_DIE. If there is more than one layer of
12767 DW_AT_abstract_origin, follow them all; there shouldn't be,
12768 but GCC versions at least through 4.4 generate this (GCC PR
12769 40573). */
12770 child_origin_die = child_die;
12771 child_origin_cu = cu;
12772 while (1)
12773 {
12774 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12775 child_origin_cu);
12776 if (attr == NULL)
12777 break;
12778 child_origin_die = follow_die_ref (child_origin_die, attr,
12779 &child_origin_cu);
12780 }
12781
12782 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12783 counterpart may exist. */
12784 if (child_origin_die != child_die)
12785 {
12786 if (child_die->tag != child_origin_die->tag
12787 && !(child_die->tag == DW_TAG_inlined_subroutine
12788 && child_origin_die->tag == DW_TAG_subprogram))
12789 complaint (_("Child DIE %s and its abstract origin %s have "
12790 "different tags"),
12791 sect_offset_str (child_die->sect_off),
12792 sect_offset_str (child_origin_die->sect_off));
12793 if (child_origin_die->parent != origin_die)
12794 complaint (_("Child DIE %s and its abstract origin %s have "
12795 "different parents"),
12796 sect_offset_str (child_die->sect_off),
12797 sect_offset_str (child_origin_die->sect_off));
12798 else
12799 offsets.push_back (child_origin_die->sect_off);
12800 }
12801 }
12802 std::sort (offsets.begin (), offsets.end ());
12803 sect_offset *offsets_end = offsets.data () + offsets.size ();
12804 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12805 if (offsetp[-1] == *offsetp)
12806 complaint (_("Multiple children of DIE %s refer "
12807 "to DIE %s as their abstract origin"),
12808 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12809
12810 offsetp = offsets.data ();
12811 origin_child_die = origin_die->child;
12812 while (origin_child_die && origin_child_die->tag)
12813 {
12814 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12815 while (offsetp < offsets_end
12816 && *offsetp < origin_child_die->sect_off)
12817 offsetp++;
12818 if (offsetp >= offsets_end
12819 || *offsetp > origin_child_die->sect_off)
12820 {
12821 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12822 Check whether we're already processing ORIGIN_CHILD_DIE.
12823 This can happen with mutually referenced abstract_origins.
12824 PR 16581. */
12825 if (!origin_child_die->in_process)
12826 process_die (origin_child_die, origin_cu);
12827 }
12828 origin_child_die = sibling_die (origin_child_die);
12829 }
12830 origin_cu->list_in_scope = origin_previous_list_in_scope;
12831
12832 if (cu != origin_cu)
12833 compute_delayed_physnames (origin_cu);
12834 }
12835
12836 static void
12837 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12838 {
12839 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12841 struct context_stack *newobj;
12842 CORE_ADDR lowpc;
12843 CORE_ADDR highpc;
12844 struct die_info *child_die;
12845 struct attribute *attr, *call_line, *call_file;
12846 const char *name;
12847 CORE_ADDR baseaddr;
12848 struct block *block;
12849 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12850 std::vector<struct symbol *> template_args;
12851 struct template_symbol *templ_func = NULL;
12852
12853 if (inlined_func)
12854 {
12855 /* If we do not have call site information, we can't show the
12856 caller of this inlined function. That's too confusing, so
12857 only use the scope for local variables. */
12858 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12859 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12860 if (call_line == NULL || call_file == NULL)
12861 {
12862 read_lexical_block_scope (die, cu);
12863 return;
12864 }
12865 }
12866
12867 baseaddr = objfile->text_section_offset ();
12868
12869 name = dwarf2_name (die, cu);
12870
12871 /* Ignore functions with missing or empty names. These are actually
12872 illegal according to the DWARF standard. */
12873 if (name == NULL)
12874 {
12875 complaint (_("missing name for subprogram DIE at %s"),
12876 sect_offset_str (die->sect_off));
12877 return;
12878 }
12879
12880 /* Ignore functions with missing or invalid low and high pc attributes. */
12881 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12882 <= PC_BOUNDS_INVALID)
12883 {
12884 attr = dwarf2_attr (die, DW_AT_external, cu);
12885 if (!attr || !DW_UNSND (attr))
12886 complaint (_("cannot get low and high bounds "
12887 "for subprogram DIE at %s"),
12888 sect_offset_str (die->sect_off));
12889 return;
12890 }
12891
12892 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12893 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12894
12895 /* If we have any template arguments, then we must allocate a
12896 different sort of symbol. */
12897 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12898 {
12899 if (child_die->tag == DW_TAG_template_type_param
12900 || child_die->tag == DW_TAG_template_value_param)
12901 {
12902 templ_func = allocate_template_symbol (objfile);
12903 templ_func->subclass = SYMBOL_TEMPLATE;
12904 break;
12905 }
12906 }
12907
12908 newobj = cu->get_builder ()->push_context (0, lowpc);
12909 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12910 (struct symbol *) templ_func);
12911
12912 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12913 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12914 cu->language);
12915
12916 /* If there is a location expression for DW_AT_frame_base, record
12917 it. */
12918 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12919 if (attr != nullptr)
12920 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12921
12922 /* If there is a location for the static link, record it. */
12923 newobj->static_link = NULL;
12924 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12925 if (attr != nullptr)
12926 {
12927 newobj->static_link
12928 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12929 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12930 cu->per_cu->addr_type ());
12931 }
12932
12933 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12934
12935 if (die->child != NULL)
12936 {
12937 child_die = die->child;
12938 while (child_die && child_die->tag)
12939 {
12940 if (child_die->tag == DW_TAG_template_type_param
12941 || child_die->tag == DW_TAG_template_value_param)
12942 {
12943 struct symbol *arg = new_symbol (child_die, NULL, cu);
12944
12945 if (arg != NULL)
12946 template_args.push_back (arg);
12947 }
12948 else
12949 process_die (child_die, cu);
12950 child_die = sibling_die (child_die);
12951 }
12952 }
12953
12954 inherit_abstract_dies (die, cu);
12955
12956 /* If we have a DW_AT_specification, we might need to import using
12957 directives from the context of the specification DIE. See the
12958 comment in determine_prefix. */
12959 if (cu->language == language_cplus
12960 && dwarf2_attr (die, DW_AT_specification, cu))
12961 {
12962 struct dwarf2_cu *spec_cu = cu;
12963 struct die_info *spec_die = die_specification (die, &spec_cu);
12964
12965 while (spec_die)
12966 {
12967 child_die = spec_die->child;
12968 while (child_die && child_die->tag)
12969 {
12970 if (child_die->tag == DW_TAG_imported_module)
12971 process_die (child_die, spec_cu);
12972 child_die = sibling_die (child_die);
12973 }
12974
12975 /* In some cases, GCC generates specification DIEs that
12976 themselves contain DW_AT_specification attributes. */
12977 spec_die = die_specification (spec_die, &spec_cu);
12978 }
12979 }
12980
12981 struct context_stack cstk = cu->get_builder ()->pop_context ();
12982 /* Make a block for the local symbols within. */
12983 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12984 cstk.static_link, lowpc, highpc);
12985
12986 /* For C++, set the block's scope. */
12987 if ((cu->language == language_cplus
12988 || cu->language == language_fortran
12989 || cu->language == language_d
12990 || cu->language == language_rust)
12991 && cu->processing_has_namespace_info)
12992 block_set_scope (block, determine_prefix (die, cu),
12993 &objfile->objfile_obstack);
12994
12995 /* If we have address ranges, record them. */
12996 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12997
12998 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12999
13000 /* Attach template arguments to function. */
13001 if (!template_args.empty ())
13002 {
13003 gdb_assert (templ_func != NULL);
13004
13005 templ_func->n_template_arguments = template_args.size ();
13006 templ_func->template_arguments
13007 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13008 templ_func->n_template_arguments);
13009 memcpy (templ_func->template_arguments,
13010 template_args.data (),
13011 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13012
13013 /* Make sure that the symtab is set on the new symbols. Even
13014 though they don't appear in this symtab directly, other parts
13015 of gdb assume that symbols do, and this is reasonably
13016 true. */
13017 for (symbol *sym : template_args)
13018 symbol_set_symtab (sym, symbol_symtab (templ_func));
13019 }
13020
13021 /* In C++, we can have functions nested inside functions (e.g., when
13022 a function declares a class that has methods). This means that
13023 when we finish processing a function scope, we may need to go
13024 back to building a containing block's symbol lists. */
13025 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13026 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13027
13028 /* If we've finished processing a top-level function, subsequent
13029 symbols go in the file symbol list. */
13030 if (cu->get_builder ()->outermost_context_p ())
13031 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13032 }
13033
13034 /* Process all the DIES contained within a lexical block scope. Start
13035 a new scope, process the dies, and then close the scope. */
13036
13037 static void
13038 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13039 {
13040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13042 CORE_ADDR lowpc, highpc;
13043 struct die_info *child_die;
13044 CORE_ADDR baseaddr;
13045
13046 baseaddr = objfile->text_section_offset ();
13047
13048 /* Ignore blocks with missing or invalid low and high pc attributes. */
13049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13050 as multiple lexical blocks? Handling children in a sane way would
13051 be nasty. Might be easier to properly extend generic blocks to
13052 describe ranges. */
13053 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13054 {
13055 case PC_BOUNDS_NOT_PRESENT:
13056 /* DW_TAG_lexical_block has no attributes, process its children as if
13057 there was no wrapping by that DW_TAG_lexical_block.
13058 GCC does no longer produces such DWARF since GCC r224161. */
13059 for (child_die = die->child;
13060 child_die != NULL && child_die->tag;
13061 child_die = sibling_die (child_die))
13062 process_die (child_die, cu);
13063 return;
13064 case PC_BOUNDS_INVALID:
13065 return;
13066 }
13067 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13068 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13069
13070 cu->get_builder ()->push_context (0, lowpc);
13071 if (die->child != NULL)
13072 {
13073 child_die = die->child;
13074 while (child_die && child_die->tag)
13075 {
13076 process_die (child_die, cu);
13077 child_die = sibling_die (child_die);
13078 }
13079 }
13080 inherit_abstract_dies (die, cu);
13081 struct context_stack cstk = cu->get_builder ()->pop_context ();
13082
13083 if (*cu->get_builder ()->get_local_symbols () != NULL
13084 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13085 {
13086 struct block *block
13087 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13088 cstk.start_addr, highpc);
13089
13090 /* Note that recording ranges after traversing children, as we
13091 do here, means that recording a parent's ranges entails
13092 walking across all its children's ranges as they appear in
13093 the address map, which is quadratic behavior.
13094
13095 It would be nicer to record the parent's ranges before
13096 traversing its children, simply overriding whatever you find
13097 there. But since we don't even decide whether to create a
13098 block until after we've traversed its children, that's hard
13099 to do. */
13100 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13101 }
13102 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13103 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13104 }
13105
13106 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13107
13108 static void
13109 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13110 {
13111 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13113 CORE_ADDR pc, baseaddr;
13114 struct attribute *attr;
13115 struct call_site *call_site, call_site_local;
13116 void **slot;
13117 int nparams;
13118 struct die_info *child_die;
13119
13120 baseaddr = objfile->text_section_offset ();
13121
13122 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13123 if (attr == NULL)
13124 {
13125 /* This was a pre-DWARF-5 GNU extension alias
13126 for DW_AT_call_return_pc. */
13127 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13128 }
13129 if (!attr)
13130 {
13131 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13132 "DIE %s [in module %s]"),
13133 sect_offset_str (die->sect_off), objfile_name (objfile));
13134 return;
13135 }
13136 pc = attr->value_as_address () + baseaddr;
13137 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13138
13139 if (cu->call_site_htab == NULL)
13140 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13141 NULL, &objfile->objfile_obstack,
13142 hashtab_obstack_allocate, NULL);
13143 call_site_local.pc = pc;
13144 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13145 if (*slot != NULL)
13146 {
13147 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13148 "DIE %s [in module %s]"),
13149 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13150 objfile_name (objfile));
13151 return;
13152 }
13153
13154 /* Count parameters at the caller. */
13155
13156 nparams = 0;
13157 for (child_die = die->child; child_die && child_die->tag;
13158 child_die = sibling_die (child_die))
13159 {
13160 if (child_die->tag != DW_TAG_call_site_parameter
13161 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13162 {
13163 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13164 "DW_TAG_call_site child DIE %s [in module %s]"),
13165 child_die->tag, sect_offset_str (child_die->sect_off),
13166 objfile_name (objfile));
13167 continue;
13168 }
13169
13170 nparams++;
13171 }
13172
13173 call_site
13174 = ((struct call_site *)
13175 obstack_alloc (&objfile->objfile_obstack,
13176 sizeof (*call_site)
13177 + (sizeof (*call_site->parameter) * (nparams - 1))));
13178 *slot = call_site;
13179 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13180 call_site->pc = pc;
13181
13182 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13183 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13184 {
13185 struct die_info *func_die;
13186
13187 /* Skip also over DW_TAG_inlined_subroutine. */
13188 for (func_die = die->parent;
13189 func_die && func_die->tag != DW_TAG_subprogram
13190 && func_die->tag != DW_TAG_subroutine_type;
13191 func_die = func_die->parent);
13192
13193 /* DW_AT_call_all_calls is a superset
13194 of DW_AT_call_all_tail_calls. */
13195 if (func_die
13196 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13197 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13198 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13199 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13200 {
13201 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13202 not complete. But keep CALL_SITE for look ups via call_site_htab,
13203 both the initial caller containing the real return address PC and
13204 the final callee containing the current PC of a chain of tail
13205 calls do not need to have the tail call list complete. But any
13206 function candidate for a virtual tail call frame searched via
13207 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13208 determined unambiguously. */
13209 }
13210 else
13211 {
13212 struct type *func_type = NULL;
13213
13214 if (func_die)
13215 func_type = get_die_type (func_die, cu);
13216 if (func_type != NULL)
13217 {
13218 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13219
13220 /* Enlist this call site to the function. */
13221 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13222 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13223 }
13224 else
13225 complaint (_("Cannot find function owning DW_TAG_call_site "
13226 "DIE %s [in module %s]"),
13227 sect_offset_str (die->sect_off), objfile_name (objfile));
13228 }
13229 }
13230
13231 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13232 if (attr == NULL)
13233 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13234 if (attr == NULL)
13235 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13236 if (attr == NULL)
13237 {
13238 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13239 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13240 }
13241 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13242 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13243 /* Keep NULL DWARF_BLOCK. */;
13244 else if (attr->form_is_block ())
13245 {
13246 struct dwarf2_locexpr_baton *dlbaton;
13247
13248 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13249 dlbaton->data = DW_BLOCK (attr)->data;
13250 dlbaton->size = DW_BLOCK (attr)->size;
13251 dlbaton->per_cu = cu->per_cu;
13252
13253 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13254 }
13255 else if (attr->form_is_ref ())
13256 {
13257 struct dwarf2_cu *target_cu = cu;
13258 struct die_info *target_die;
13259
13260 target_die = follow_die_ref (die, attr, &target_cu);
13261 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13262 if (die_is_declaration (target_die, target_cu))
13263 {
13264 const char *target_physname;
13265
13266 /* Prefer the mangled name; otherwise compute the demangled one. */
13267 target_physname = dw2_linkage_name (target_die, target_cu);
13268 if (target_physname == NULL)
13269 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13270 if (target_physname == NULL)
13271 complaint (_("DW_AT_call_target target DIE has invalid "
13272 "physname, for referencing DIE %s [in module %s]"),
13273 sect_offset_str (die->sect_off), objfile_name (objfile));
13274 else
13275 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13276 }
13277 else
13278 {
13279 CORE_ADDR lowpc;
13280
13281 /* DW_AT_entry_pc should be preferred. */
13282 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13283 <= PC_BOUNDS_INVALID)
13284 complaint (_("DW_AT_call_target target DIE has invalid "
13285 "low pc, for referencing DIE %s [in module %s]"),
13286 sect_offset_str (die->sect_off), objfile_name (objfile));
13287 else
13288 {
13289 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13290 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13291 }
13292 }
13293 }
13294 else
13295 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13296 "block nor reference, for DIE %s [in module %s]"),
13297 sect_offset_str (die->sect_off), objfile_name (objfile));
13298
13299 call_site->per_cu = cu->per_cu;
13300
13301 for (child_die = die->child;
13302 child_die && child_die->tag;
13303 child_die = sibling_die (child_die))
13304 {
13305 struct call_site_parameter *parameter;
13306 struct attribute *loc, *origin;
13307
13308 if (child_die->tag != DW_TAG_call_site_parameter
13309 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13310 {
13311 /* Already printed the complaint above. */
13312 continue;
13313 }
13314
13315 gdb_assert (call_site->parameter_count < nparams);
13316 parameter = &call_site->parameter[call_site->parameter_count];
13317
13318 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13319 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13320 register is contained in DW_AT_call_value. */
13321
13322 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13323 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13324 if (origin == NULL)
13325 {
13326 /* This was a pre-DWARF-5 GNU extension alias
13327 for DW_AT_call_parameter. */
13328 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13329 }
13330 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13331 {
13332 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13333
13334 sect_offset sect_off
13335 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13336 if (!cu->header.offset_in_cu_p (sect_off))
13337 {
13338 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13339 binding can be done only inside one CU. Such referenced DIE
13340 therefore cannot be even moved to DW_TAG_partial_unit. */
13341 complaint (_("DW_AT_call_parameter offset is not in CU for "
13342 "DW_TAG_call_site child DIE %s [in module %s]"),
13343 sect_offset_str (child_die->sect_off),
13344 objfile_name (objfile));
13345 continue;
13346 }
13347 parameter->u.param_cu_off
13348 = (cu_offset) (sect_off - cu->header.sect_off);
13349 }
13350 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13351 {
13352 complaint (_("No DW_FORM_block* DW_AT_location for "
13353 "DW_TAG_call_site child DIE %s [in module %s]"),
13354 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13355 continue;
13356 }
13357 else
13358 {
13359 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13360 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13361 if (parameter->u.dwarf_reg != -1)
13362 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13363 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13364 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13365 &parameter->u.fb_offset))
13366 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13367 else
13368 {
13369 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13370 "for DW_FORM_block* DW_AT_location is supported for "
13371 "DW_TAG_call_site child DIE %s "
13372 "[in module %s]"),
13373 sect_offset_str (child_die->sect_off),
13374 objfile_name (objfile));
13375 continue;
13376 }
13377 }
13378
13379 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13380 if (attr == NULL)
13381 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13382 if (attr == NULL || !attr->form_is_block ())
13383 {
13384 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13385 "DW_TAG_call_site child DIE %s [in module %s]"),
13386 sect_offset_str (child_die->sect_off),
13387 objfile_name (objfile));
13388 continue;
13389 }
13390 parameter->value = DW_BLOCK (attr)->data;
13391 parameter->value_size = DW_BLOCK (attr)->size;
13392
13393 /* Parameters are not pre-cleared by memset above. */
13394 parameter->data_value = NULL;
13395 parameter->data_value_size = 0;
13396 call_site->parameter_count++;
13397
13398 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13399 if (attr == NULL)
13400 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13401 if (attr != nullptr)
13402 {
13403 if (!attr->form_is_block ())
13404 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13405 "DW_TAG_call_site child DIE %s [in module %s]"),
13406 sect_offset_str (child_die->sect_off),
13407 objfile_name (objfile));
13408 else
13409 {
13410 parameter->data_value = DW_BLOCK (attr)->data;
13411 parameter->data_value_size = DW_BLOCK (attr)->size;
13412 }
13413 }
13414 }
13415 }
13416
13417 /* Helper function for read_variable. If DIE represents a virtual
13418 table, then return the type of the concrete object that is
13419 associated with the virtual table. Otherwise, return NULL. */
13420
13421 static struct type *
13422 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13423 {
13424 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13425 if (attr == NULL)
13426 return NULL;
13427
13428 /* Find the type DIE. */
13429 struct die_info *type_die = NULL;
13430 struct dwarf2_cu *type_cu = cu;
13431
13432 if (attr->form_is_ref ())
13433 type_die = follow_die_ref (die, attr, &type_cu);
13434 if (type_die == NULL)
13435 return NULL;
13436
13437 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13438 return NULL;
13439 return die_containing_type (type_die, type_cu);
13440 }
13441
13442 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13443
13444 static void
13445 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13446 {
13447 struct rust_vtable_symbol *storage = NULL;
13448
13449 if (cu->language == language_rust)
13450 {
13451 struct type *containing_type = rust_containing_type (die, cu);
13452
13453 if (containing_type != NULL)
13454 {
13455 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13456
13457 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13458 initialize_objfile_symbol (storage);
13459 storage->concrete_type = containing_type;
13460 storage->subclass = SYMBOL_RUST_VTABLE;
13461 }
13462 }
13463
13464 struct symbol *res = new_symbol (die, NULL, cu, storage);
13465 struct attribute *abstract_origin
13466 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13467 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13468 if (res == NULL && loc && abstract_origin)
13469 {
13470 /* We have a variable without a name, but with a location and an abstract
13471 origin. This may be a concrete instance of an abstract variable
13472 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13473 later. */
13474 struct dwarf2_cu *origin_cu = cu;
13475 struct die_info *origin_die
13476 = follow_die_ref (die, abstract_origin, &origin_cu);
13477 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13478 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13479 }
13480 }
13481
13482 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13483 reading .debug_rnglists.
13484 Callback's type should be:
13485 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13486 Return true if the attributes are present and valid, otherwise,
13487 return false. */
13488
13489 template <typename Callback>
13490 static bool
13491 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13492 Callback &&callback)
13493 {
13494 struct dwarf2_per_objfile *dwarf2_per_objfile
13495 = cu->per_cu->dwarf2_per_objfile;
13496 struct objfile *objfile = dwarf2_per_objfile->objfile;
13497 bfd *obfd = objfile->obfd;
13498 /* Base address selection entry. */
13499 CORE_ADDR base;
13500 int found_base;
13501 const gdb_byte *buffer;
13502 CORE_ADDR baseaddr;
13503 bool overflow = false;
13504
13505 found_base = cu->base_known;
13506 base = cu->base_address;
13507
13508 dwarf2_per_objfile->rnglists.read (objfile);
13509 if (offset >= dwarf2_per_objfile->rnglists.size)
13510 {
13511 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13512 offset);
13513 return false;
13514 }
13515 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13516
13517 baseaddr = objfile->text_section_offset ();
13518
13519 while (1)
13520 {
13521 /* Initialize it due to a false compiler warning. */
13522 CORE_ADDR range_beginning = 0, range_end = 0;
13523 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13524 + dwarf2_per_objfile->rnglists.size);
13525 unsigned int bytes_read;
13526
13527 if (buffer == buf_end)
13528 {
13529 overflow = true;
13530 break;
13531 }
13532 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13533 switch (rlet)
13534 {
13535 case DW_RLE_end_of_list:
13536 break;
13537 case DW_RLE_base_address:
13538 if (buffer + cu->header.addr_size > buf_end)
13539 {
13540 overflow = true;
13541 break;
13542 }
13543 base = cu->header.read_address (obfd, buffer, &bytes_read);
13544 found_base = 1;
13545 buffer += bytes_read;
13546 break;
13547 case DW_RLE_start_length:
13548 if (buffer + cu->header.addr_size > buf_end)
13549 {
13550 overflow = true;
13551 break;
13552 }
13553 range_beginning = cu->header.read_address (obfd, buffer,
13554 &bytes_read);
13555 buffer += bytes_read;
13556 range_end = (range_beginning
13557 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13558 buffer += bytes_read;
13559 if (buffer > buf_end)
13560 {
13561 overflow = true;
13562 break;
13563 }
13564 break;
13565 case DW_RLE_offset_pair:
13566 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13567 buffer += bytes_read;
13568 if (buffer > buf_end)
13569 {
13570 overflow = true;
13571 break;
13572 }
13573 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13574 buffer += bytes_read;
13575 if (buffer > buf_end)
13576 {
13577 overflow = true;
13578 break;
13579 }
13580 break;
13581 case DW_RLE_start_end:
13582 if (buffer + 2 * cu->header.addr_size > buf_end)
13583 {
13584 overflow = true;
13585 break;
13586 }
13587 range_beginning = cu->header.read_address (obfd, buffer,
13588 &bytes_read);
13589 buffer += bytes_read;
13590 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13591 buffer += bytes_read;
13592 break;
13593 default:
13594 complaint (_("Invalid .debug_rnglists data (no base address)"));
13595 return false;
13596 }
13597 if (rlet == DW_RLE_end_of_list || overflow)
13598 break;
13599 if (rlet == DW_RLE_base_address)
13600 continue;
13601
13602 if (!found_base)
13603 {
13604 /* We have no valid base address for the ranges
13605 data. */
13606 complaint (_("Invalid .debug_rnglists data (no base address)"));
13607 return false;
13608 }
13609
13610 if (range_beginning > range_end)
13611 {
13612 /* Inverted range entries are invalid. */
13613 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13614 return false;
13615 }
13616
13617 /* Empty range entries have no effect. */
13618 if (range_beginning == range_end)
13619 continue;
13620
13621 range_beginning += base;
13622 range_end += base;
13623
13624 /* A not-uncommon case of bad debug info.
13625 Don't pollute the addrmap with bad data. */
13626 if (range_beginning + baseaddr == 0
13627 && !dwarf2_per_objfile->has_section_at_zero)
13628 {
13629 complaint (_(".debug_rnglists entry has start address of zero"
13630 " [in module %s]"), objfile_name (objfile));
13631 continue;
13632 }
13633
13634 callback (range_beginning, range_end);
13635 }
13636
13637 if (overflow)
13638 {
13639 complaint (_("Offset %d is not terminated "
13640 "for DW_AT_ranges attribute"),
13641 offset);
13642 return false;
13643 }
13644
13645 return true;
13646 }
13647
13648 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13649 Callback's type should be:
13650 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13651 Return 1 if the attributes are present and valid, otherwise, return 0. */
13652
13653 template <typename Callback>
13654 static int
13655 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13656 Callback &&callback)
13657 {
13658 struct dwarf2_per_objfile *dwarf2_per_objfile
13659 = cu->per_cu->dwarf2_per_objfile;
13660 struct objfile *objfile = dwarf2_per_objfile->objfile;
13661 struct comp_unit_head *cu_header = &cu->header;
13662 bfd *obfd = objfile->obfd;
13663 unsigned int addr_size = cu_header->addr_size;
13664 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13665 /* Base address selection entry. */
13666 CORE_ADDR base;
13667 int found_base;
13668 unsigned int dummy;
13669 const gdb_byte *buffer;
13670 CORE_ADDR baseaddr;
13671
13672 if (cu_header->version >= 5)
13673 return dwarf2_rnglists_process (offset, cu, callback);
13674
13675 found_base = cu->base_known;
13676 base = cu->base_address;
13677
13678 dwarf2_per_objfile->ranges.read (objfile);
13679 if (offset >= dwarf2_per_objfile->ranges.size)
13680 {
13681 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13682 offset);
13683 return 0;
13684 }
13685 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13686
13687 baseaddr = objfile->text_section_offset ();
13688
13689 while (1)
13690 {
13691 CORE_ADDR range_beginning, range_end;
13692
13693 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13694 buffer += addr_size;
13695 range_end = cu->header.read_address (obfd, buffer, &dummy);
13696 buffer += addr_size;
13697 offset += 2 * addr_size;
13698
13699 /* An end of list marker is a pair of zero addresses. */
13700 if (range_beginning == 0 && range_end == 0)
13701 /* Found the end of list entry. */
13702 break;
13703
13704 /* Each base address selection entry is a pair of 2 values.
13705 The first is the largest possible address, the second is
13706 the base address. Check for a base address here. */
13707 if ((range_beginning & mask) == mask)
13708 {
13709 /* If we found the largest possible address, then we already
13710 have the base address in range_end. */
13711 base = range_end;
13712 found_base = 1;
13713 continue;
13714 }
13715
13716 if (!found_base)
13717 {
13718 /* We have no valid base address for the ranges
13719 data. */
13720 complaint (_("Invalid .debug_ranges data (no base address)"));
13721 return 0;
13722 }
13723
13724 if (range_beginning > range_end)
13725 {
13726 /* Inverted range entries are invalid. */
13727 complaint (_("Invalid .debug_ranges data (inverted range)"));
13728 return 0;
13729 }
13730
13731 /* Empty range entries have no effect. */
13732 if (range_beginning == range_end)
13733 continue;
13734
13735 range_beginning += base;
13736 range_end += base;
13737
13738 /* A not-uncommon case of bad debug info.
13739 Don't pollute the addrmap with bad data. */
13740 if (range_beginning + baseaddr == 0
13741 && !dwarf2_per_objfile->has_section_at_zero)
13742 {
13743 complaint (_(".debug_ranges entry has start address of zero"
13744 " [in module %s]"), objfile_name (objfile));
13745 continue;
13746 }
13747
13748 callback (range_beginning, range_end);
13749 }
13750
13751 return 1;
13752 }
13753
13754 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13755 Return 1 if the attributes are present and valid, otherwise, return 0.
13756 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13757
13758 static int
13759 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13760 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13761 dwarf2_psymtab *ranges_pst)
13762 {
13763 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13764 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13765 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13766 int low_set = 0;
13767 CORE_ADDR low = 0;
13768 CORE_ADDR high = 0;
13769 int retval;
13770
13771 retval = dwarf2_ranges_process (offset, cu,
13772 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13773 {
13774 if (ranges_pst != NULL)
13775 {
13776 CORE_ADDR lowpc;
13777 CORE_ADDR highpc;
13778
13779 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13780 range_beginning + baseaddr)
13781 - baseaddr);
13782 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13783 range_end + baseaddr)
13784 - baseaddr);
13785 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13786 lowpc, highpc - 1, ranges_pst);
13787 }
13788
13789 /* FIXME: This is recording everything as a low-high
13790 segment of consecutive addresses. We should have a
13791 data structure for discontiguous block ranges
13792 instead. */
13793 if (! low_set)
13794 {
13795 low = range_beginning;
13796 high = range_end;
13797 low_set = 1;
13798 }
13799 else
13800 {
13801 if (range_beginning < low)
13802 low = range_beginning;
13803 if (range_end > high)
13804 high = range_end;
13805 }
13806 });
13807 if (!retval)
13808 return 0;
13809
13810 if (! low_set)
13811 /* If the first entry is an end-of-list marker, the range
13812 describes an empty scope, i.e. no instructions. */
13813 return 0;
13814
13815 if (low_return)
13816 *low_return = low;
13817 if (high_return)
13818 *high_return = high;
13819 return 1;
13820 }
13821
13822 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13823 definition for the return value. *LOWPC and *HIGHPC are set iff
13824 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13825
13826 static enum pc_bounds_kind
13827 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13828 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13829 dwarf2_psymtab *pst)
13830 {
13831 struct dwarf2_per_objfile *dwarf2_per_objfile
13832 = cu->per_cu->dwarf2_per_objfile;
13833 struct attribute *attr;
13834 struct attribute *attr_high;
13835 CORE_ADDR low = 0;
13836 CORE_ADDR high = 0;
13837 enum pc_bounds_kind ret;
13838
13839 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13840 if (attr_high)
13841 {
13842 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13843 if (attr != nullptr)
13844 {
13845 low = attr->value_as_address ();
13846 high = attr_high->value_as_address ();
13847 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13848 high += low;
13849 }
13850 else
13851 /* Found high w/o low attribute. */
13852 return PC_BOUNDS_INVALID;
13853
13854 /* Found consecutive range of addresses. */
13855 ret = PC_BOUNDS_HIGH_LOW;
13856 }
13857 else
13858 {
13859 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13860 if (attr != NULL)
13861 {
13862 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13863 We take advantage of the fact that DW_AT_ranges does not appear
13864 in DW_TAG_compile_unit of DWO files. */
13865 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13866 unsigned int ranges_offset = (DW_UNSND (attr)
13867 + (need_ranges_base
13868 ? cu->ranges_base
13869 : 0));
13870
13871 /* Value of the DW_AT_ranges attribute is the offset in the
13872 .debug_ranges section. */
13873 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13874 return PC_BOUNDS_INVALID;
13875 /* Found discontinuous range of addresses. */
13876 ret = PC_BOUNDS_RANGES;
13877 }
13878 else
13879 return PC_BOUNDS_NOT_PRESENT;
13880 }
13881
13882 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13883 if (high <= low)
13884 return PC_BOUNDS_INVALID;
13885
13886 /* When using the GNU linker, .gnu.linkonce. sections are used to
13887 eliminate duplicate copies of functions and vtables and such.
13888 The linker will arbitrarily choose one and discard the others.
13889 The AT_*_pc values for such functions refer to local labels in
13890 these sections. If the section from that file was discarded, the
13891 labels are not in the output, so the relocs get a value of 0.
13892 If this is a discarded function, mark the pc bounds as invalid,
13893 so that GDB will ignore it. */
13894 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13895 return PC_BOUNDS_INVALID;
13896
13897 *lowpc = low;
13898 if (highpc)
13899 *highpc = high;
13900 return ret;
13901 }
13902
13903 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13904 its low and high PC addresses. Do nothing if these addresses could not
13905 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13906 and HIGHPC to the high address if greater than HIGHPC. */
13907
13908 static void
13909 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13910 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13911 struct dwarf2_cu *cu)
13912 {
13913 CORE_ADDR low, high;
13914 struct die_info *child = die->child;
13915
13916 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13917 {
13918 *lowpc = std::min (*lowpc, low);
13919 *highpc = std::max (*highpc, high);
13920 }
13921
13922 /* If the language does not allow nested subprograms (either inside
13923 subprograms or lexical blocks), we're done. */
13924 if (cu->language != language_ada)
13925 return;
13926
13927 /* Check all the children of the given DIE. If it contains nested
13928 subprograms, then check their pc bounds. Likewise, we need to
13929 check lexical blocks as well, as they may also contain subprogram
13930 definitions. */
13931 while (child && child->tag)
13932 {
13933 if (child->tag == DW_TAG_subprogram
13934 || child->tag == DW_TAG_lexical_block)
13935 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13936 child = sibling_die (child);
13937 }
13938 }
13939
13940 /* Get the low and high pc's represented by the scope DIE, and store
13941 them in *LOWPC and *HIGHPC. If the correct values can't be
13942 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13943
13944 static void
13945 get_scope_pc_bounds (struct die_info *die,
13946 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13947 struct dwarf2_cu *cu)
13948 {
13949 CORE_ADDR best_low = (CORE_ADDR) -1;
13950 CORE_ADDR best_high = (CORE_ADDR) 0;
13951 CORE_ADDR current_low, current_high;
13952
13953 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13954 >= PC_BOUNDS_RANGES)
13955 {
13956 best_low = current_low;
13957 best_high = current_high;
13958 }
13959 else
13960 {
13961 struct die_info *child = die->child;
13962
13963 while (child && child->tag)
13964 {
13965 switch (child->tag) {
13966 case DW_TAG_subprogram:
13967 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13968 break;
13969 case DW_TAG_namespace:
13970 case DW_TAG_module:
13971 /* FIXME: carlton/2004-01-16: Should we do this for
13972 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13973 that current GCC's always emit the DIEs corresponding
13974 to definitions of methods of classes as children of a
13975 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13976 the DIEs giving the declarations, which could be
13977 anywhere). But I don't see any reason why the
13978 standards says that they have to be there. */
13979 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13980
13981 if (current_low != ((CORE_ADDR) -1))
13982 {
13983 best_low = std::min (best_low, current_low);
13984 best_high = std::max (best_high, current_high);
13985 }
13986 break;
13987 default:
13988 /* Ignore. */
13989 break;
13990 }
13991
13992 child = sibling_die (child);
13993 }
13994 }
13995
13996 *lowpc = best_low;
13997 *highpc = best_high;
13998 }
13999
14000 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14001 in DIE. */
14002
14003 static void
14004 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14005 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14006 {
14007 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14009 struct attribute *attr;
14010 struct attribute *attr_high;
14011
14012 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14013 if (attr_high)
14014 {
14015 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14016 if (attr != nullptr)
14017 {
14018 CORE_ADDR low = attr->value_as_address ();
14019 CORE_ADDR high = attr_high->value_as_address ();
14020
14021 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14022 high += low;
14023
14024 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14025 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14026 cu->get_builder ()->record_block_range (block, low, high - 1);
14027 }
14028 }
14029
14030 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14031 if (attr != nullptr)
14032 {
14033 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14034 We take advantage of the fact that DW_AT_ranges does not appear
14035 in DW_TAG_compile_unit of DWO files. */
14036 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14037
14038 /* The value of the DW_AT_ranges attribute is the offset of the
14039 address range list in the .debug_ranges section. */
14040 unsigned long offset = (DW_UNSND (attr)
14041 + (need_ranges_base ? cu->ranges_base : 0));
14042
14043 std::vector<blockrange> blockvec;
14044 dwarf2_ranges_process (offset, cu,
14045 [&] (CORE_ADDR start, CORE_ADDR end)
14046 {
14047 start += baseaddr;
14048 end += baseaddr;
14049 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14050 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14051 cu->get_builder ()->record_block_range (block, start, end - 1);
14052 blockvec.emplace_back (start, end);
14053 });
14054
14055 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14056 }
14057 }
14058
14059 /* Check whether the producer field indicates either of GCC < 4.6, or the
14060 Intel C/C++ compiler, and cache the result in CU. */
14061
14062 static void
14063 check_producer (struct dwarf2_cu *cu)
14064 {
14065 int major, minor;
14066
14067 if (cu->producer == NULL)
14068 {
14069 /* For unknown compilers expect their behavior is DWARF version
14070 compliant.
14071
14072 GCC started to support .debug_types sections by -gdwarf-4 since
14073 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14074 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14075 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14076 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14077 }
14078 else if (producer_is_gcc (cu->producer, &major, &minor))
14079 {
14080 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14081 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14082 }
14083 else if (producer_is_icc (cu->producer, &major, &minor))
14084 {
14085 cu->producer_is_icc = true;
14086 cu->producer_is_icc_lt_14 = major < 14;
14087 }
14088 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14089 cu->producer_is_codewarrior = true;
14090 else
14091 {
14092 /* For other non-GCC compilers, expect their behavior is DWARF version
14093 compliant. */
14094 }
14095
14096 cu->checked_producer = true;
14097 }
14098
14099 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14100 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14101 during 4.6.0 experimental. */
14102
14103 static bool
14104 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14105 {
14106 if (!cu->checked_producer)
14107 check_producer (cu);
14108
14109 return cu->producer_is_gxx_lt_4_6;
14110 }
14111
14112
14113 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14114 with incorrect is_stmt attributes. */
14115
14116 static bool
14117 producer_is_codewarrior (struct dwarf2_cu *cu)
14118 {
14119 if (!cu->checked_producer)
14120 check_producer (cu);
14121
14122 return cu->producer_is_codewarrior;
14123 }
14124
14125 /* Return the default accessibility type if it is not overridden by
14126 DW_AT_accessibility. */
14127
14128 static enum dwarf_access_attribute
14129 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14130 {
14131 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14132 {
14133 /* The default DWARF 2 accessibility for members is public, the default
14134 accessibility for inheritance is private. */
14135
14136 if (die->tag != DW_TAG_inheritance)
14137 return DW_ACCESS_public;
14138 else
14139 return DW_ACCESS_private;
14140 }
14141 else
14142 {
14143 /* DWARF 3+ defines the default accessibility a different way. The same
14144 rules apply now for DW_TAG_inheritance as for the members and it only
14145 depends on the container kind. */
14146
14147 if (die->parent->tag == DW_TAG_class_type)
14148 return DW_ACCESS_private;
14149 else
14150 return DW_ACCESS_public;
14151 }
14152 }
14153
14154 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14155 offset. If the attribute was not found return 0, otherwise return
14156 1. If it was found but could not properly be handled, set *OFFSET
14157 to 0. */
14158
14159 static int
14160 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14161 LONGEST *offset)
14162 {
14163 struct attribute *attr;
14164
14165 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14166 if (attr != NULL)
14167 {
14168 *offset = 0;
14169
14170 /* Note that we do not check for a section offset first here.
14171 This is because DW_AT_data_member_location is new in DWARF 4,
14172 so if we see it, we can assume that a constant form is really
14173 a constant and not a section offset. */
14174 if (attr->form_is_constant ())
14175 *offset = dwarf2_get_attr_constant_value (attr, 0);
14176 else if (attr->form_is_section_offset ())
14177 dwarf2_complex_location_expr_complaint ();
14178 else if (attr->form_is_block ())
14179 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14180 else
14181 dwarf2_complex_location_expr_complaint ();
14182
14183 return 1;
14184 }
14185
14186 return 0;
14187 }
14188
14189 /* Add an aggregate field to the field list. */
14190
14191 static void
14192 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14193 struct dwarf2_cu *cu)
14194 {
14195 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14197 struct nextfield *new_field;
14198 struct attribute *attr;
14199 struct field *fp;
14200 const char *fieldname = "";
14201
14202 if (die->tag == DW_TAG_inheritance)
14203 {
14204 fip->baseclasses.emplace_back ();
14205 new_field = &fip->baseclasses.back ();
14206 }
14207 else
14208 {
14209 fip->fields.emplace_back ();
14210 new_field = &fip->fields.back ();
14211 }
14212
14213 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14214 if (attr != nullptr)
14215 new_field->accessibility = DW_UNSND (attr);
14216 else
14217 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14218 if (new_field->accessibility != DW_ACCESS_public)
14219 fip->non_public_fields = 1;
14220
14221 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14222 if (attr != nullptr)
14223 new_field->virtuality = DW_UNSND (attr);
14224 else
14225 new_field->virtuality = DW_VIRTUALITY_none;
14226
14227 fp = &new_field->field;
14228
14229 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14230 {
14231 LONGEST offset;
14232
14233 /* Data member other than a C++ static data member. */
14234
14235 /* Get type of field. */
14236 fp->type = die_type (die, cu);
14237
14238 SET_FIELD_BITPOS (*fp, 0);
14239
14240 /* Get bit size of field (zero if none). */
14241 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14242 if (attr != nullptr)
14243 {
14244 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14245 }
14246 else
14247 {
14248 FIELD_BITSIZE (*fp) = 0;
14249 }
14250
14251 /* Get bit offset of field. */
14252 if (handle_data_member_location (die, cu, &offset))
14253 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14254 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14255 if (attr != nullptr)
14256 {
14257 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14258 {
14259 /* For big endian bits, the DW_AT_bit_offset gives the
14260 additional bit offset from the MSB of the containing
14261 anonymous object to the MSB of the field. We don't
14262 have to do anything special since we don't need to
14263 know the size of the anonymous object. */
14264 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14265 }
14266 else
14267 {
14268 /* For little endian bits, compute the bit offset to the
14269 MSB of the anonymous object, subtract off the number of
14270 bits from the MSB of the field to the MSB of the
14271 object, and then subtract off the number of bits of
14272 the field itself. The result is the bit offset of
14273 the LSB of the field. */
14274 int anonymous_size;
14275 int bit_offset = DW_UNSND (attr);
14276
14277 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14278 if (attr != nullptr)
14279 {
14280 /* The size of the anonymous object containing
14281 the bit field is explicit, so use the
14282 indicated size (in bytes). */
14283 anonymous_size = DW_UNSND (attr);
14284 }
14285 else
14286 {
14287 /* The size of the anonymous object containing
14288 the bit field must be inferred from the type
14289 attribute of the data member containing the
14290 bit field. */
14291 anonymous_size = TYPE_LENGTH (fp->type);
14292 }
14293 SET_FIELD_BITPOS (*fp,
14294 (FIELD_BITPOS (*fp)
14295 + anonymous_size * bits_per_byte
14296 - bit_offset - FIELD_BITSIZE (*fp)));
14297 }
14298 }
14299 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14300 if (attr != NULL)
14301 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14302 + dwarf2_get_attr_constant_value (attr, 0)));
14303
14304 /* Get name of field. */
14305 fieldname = dwarf2_name (die, cu);
14306 if (fieldname == NULL)
14307 fieldname = "";
14308
14309 /* The name is already allocated along with this objfile, so we don't
14310 need to duplicate it for the type. */
14311 fp->name = fieldname;
14312
14313 /* Change accessibility for artificial fields (e.g. virtual table
14314 pointer or virtual base class pointer) to private. */
14315 if (dwarf2_attr (die, DW_AT_artificial, cu))
14316 {
14317 FIELD_ARTIFICIAL (*fp) = 1;
14318 new_field->accessibility = DW_ACCESS_private;
14319 fip->non_public_fields = 1;
14320 }
14321 }
14322 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14323 {
14324 /* C++ static member. */
14325
14326 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14327 is a declaration, but all versions of G++ as of this writing
14328 (so through at least 3.2.1) incorrectly generate
14329 DW_TAG_variable tags. */
14330
14331 const char *physname;
14332
14333 /* Get name of field. */
14334 fieldname = dwarf2_name (die, cu);
14335 if (fieldname == NULL)
14336 return;
14337
14338 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14339 if (attr
14340 /* Only create a symbol if this is an external value.
14341 new_symbol checks this and puts the value in the global symbol
14342 table, which we want. If it is not external, new_symbol
14343 will try to put the value in cu->list_in_scope which is wrong. */
14344 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14345 {
14346 /* A static const member, not much different than an enum as far as
14347 we're concerned, except that we can support more types. */
14348 new_symbol (die, NULL, cu);
14349 }
14350
14351 /* Get physical name. */
14352 physname = dwarf2_physname (fieldname, die, cu);
14353
14354 /* The name is already allocated along with this objfile, so we don't
14355 need to duplicate it for the type. */
14356 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14357 FIELD_TYPE (*fp) = die_type (die, cu);
14358 FIELD_NAME (*fp) = fieldname;
14359 }
14360 else if (die->tag == DW_TAG_inheritance)
14361 {
14362 LONGEST offset;
14363
14364 /* C++ base class field. */
14365 if (handle_data_member_location (die, cu, &offset))
14366 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14367 FIELD_BITSIZE (*fp) = 0;
14368 FIELD_TYPE (*fp) = die_type (die, cu);
14369 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14370 }
14371 else if (die->tag == DW_TAG_variant_part)
14372 {
14373 /* process_structure_scope will treat this DIE as a union. */
14374 process_structure_scope (die, cu);
14375
14376 /* The variant part is relative to the start of the enclosing
14377 structure. */
14378 SET_FIELD_BITPOS (*fp, 0);
14379 fp->type = get_die_type (die, cu);
14380 fp->artificial = 1;
14381 fp->name = "<<variant>>";
14382
14383 /* Normally a DW_TAG_variant_part won't have a size, but our
14384 representation requires one, so set it to the maximum of the
14385 child sizes, being sure to account for the offset at which
14386 each child is seen. */
14387 if (TYPE_LENGTH (fp->type) == 0)
14388 {
14389 unsigned max = 0;
14390 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14391 {
14392 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14393 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14394 if (len > max)
14395 max = len;
14396 }
14397 TYPE_LENGTH (fp->type) = max;
14398 }
14399 }
14400 else
14401 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14402 }
14403
14404 /* Can the type given by DIE define another type? */
14405
14406 static bool
14407 type_can_define_types (const struct die_info *die)
14408 {
14409 switch (die->tag)
14410 {
14411 case DW_TAG_typedef:
14412 case DW_TAG_class_type:
14413 case DW_TAG_structure_type:
14414 case DW_TAG_union_type:
14415 case DW_TAG_enumeration_type:
14416 return true;
14417
14418 default:
14419 return false;
14420 }
14421 }
14422
14423 /* Add a type definition defined in the scope of the FIP's class. */
14424
14425 static void
14426 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14427 struct dwarf2_cu *cu)
14428 {
14429 struct decl_field fp;
14430 memset (&fp, 0, sizeof (fp));
14431
14432 gdb_assert (type_can_define_types (die));
14433
14434 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14435 fp.name = dwarf2_name (die, cu);
14436 fp.type = read_type_die (die, cu);
14437
14438 /* Save accessibility. */
14439 enum dwarf_access_attribute accessibility;
14440 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14441 if (attr != NULL)
14442 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14443 else
14444 accessibility = dwarf2_default_access_attribute (die, cu);
14445 switch (accessibility)
14446 {
14447 case DW_ACCESS_public:
14448 /* The assumed value if neither private nor protected. */
14449 break;
14450 case DW_ACCESS_private:
14451 fp.is_private = 1;
14452 break;
14453 case DW_ACCESS_protected:
14454 fp.is_protected = 1;
14455 break;
14456 default:
14457 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14458 }
14459
14460 if (die->tag == DW_TAG_typedef)
14461 fip->typedef_field_list.push_back (fp);
14462 else
14463 fip->nested_types_list.push_back (fp);
14464 }
14465
14466 /* Create the vector of fields, and attach it to the type. */
14467
14468 static void
14469 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14470 struct dwarf2_cu *cu)
14471 {
14472 int nfields = fip->nfields ();
14473
14474 /* Record the field count, allocate space for the array of fields,
14475 and create blank accessibility bitfields if necessary. */
14476 TYPE_NFIELDS (type) = nfields;
14477 TYPE_FIELDS (type) = (struct field *)
14478 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14479
14480 if (fip->non_public_fields && cu->language != language_ada)
14481 {
14482 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14483
14484 TYPE_FIELD_PRIVATE_BITS (type) =
14485 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14486 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14487
14488 TYPE_FIELD_PROTECTED_BITS (type) =
14489 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14490 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14491
14492 TYPE_FIELD_IGNORE_BITS (type) =
14493 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14494 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14495 }
14496
14497 /* If the type has baseclasses, allocate and clear a bit vector for
14498 TYPE_FIELD_VIRTUAL_BITS. */
14499 if (!fip->baseclasses.empty () && cu->language != language_ada)
14500 {
14501 int num_bytes = B_BYTES (fip->baseclasses.size ());
14502 unsigned char *pointer;
14503
14504 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14505 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14506 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14507 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14508 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14509 }
14510
14511 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14512 {
14513 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14514
14515 for (int index = 0; index < nfields; ++index)
14516 {
14517 struct nextfield &field = fip->fields[index];
14518
14519 if (field.variant.is_discriminant)
14520 di->discriminant_index = index;
14521 else if (field.variant.default_branch)
14522 di->default_index = index;
14523 else
14524 di->discriminants[index] = field.variant.discriminant_value;
14525 }
14526 }
14527
14528 /* Copy the saved-up fields into the field vector. */
14529 for (int i = 0; i < nfields; ++i)
14530 {
14531 struct nextfield &field
14532 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14533 : fip->fields[i - fip->baseclasses.size ()]);
14534
14535 TYPE_FIELD (type, i) = field.field;
14536 switch (field.accessibility)
14537 {
14538 case DW_ACCESS_private:
14539 if (cu->language != language_ada)
14540 SET_TYPE_FIELD_PRIVATE (type, i);
14541 break;
14542
14543 case DW_ACCESS_protected:
14544 if (cu->language != language_ada)
14545 SET_TYPE_FIELD_PROTECTED (type, i);
14546 break;
14547
14548 case DW_ACCESS_public:
14549 break;
14550
14551 default:
14552 /* Unknown accessibility. Complain and treat it as public. */
14553 {
14554 complaint (_("unsupported accessibility %d"),
14555 field.accessibility);
14556 }
14557 break;
14558 }
14559 if (i < fip->baseclasses.size ())
14560 {
14561 switch (field.virtuality)
14562 {
14563 case DW_VIRTUALITY_virtual:
14564 case DW_VIRTUALITY_pure_virtual:
14565 if (cu->language == language_ada)
14566 error (_("unexpected virtuality in component of Ada type"));
14567 SET_TYPE_FIELD_VIRTUAL (type, i);
14568 break;
14569 }
14570 }
14571 }
14572 }
14573
14574 /* Return true if this member function is a constructor, false
14575 otherwise. */
14576
14577 static int
14578 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14579 {
14580 const char *fieldname;
14581 const char *type_name;
14582 int len;
14583
14584 if (die->parent == NULL)
14585 return 0;
14586
14587 if (die->parent->tag != DW_TAG_structure_type
14588 && die->parent->tag != DW_TAG_union_type
14589 && die->parent->tag != DW_TAG_class_type)
14590 return 0;
14591
14592 fieldname = dwarf2_name (die, cu);
14593 type_name = dwarf2_name (die->parent, cu);
14594 if (fieldname == NULL || type_name == NULL)
14595 return 0;
14596
14597 len = strlen (fieldname);
14598 return (strncmp (fieldname, type_name, len) == 0
14599 && (type_name[len] == '\0' || type_name[len] == '<'));
14600 }
14601
14602 /* Check if the given VALUE is a recognized enum
14603 dwarf_defaulted_attribute constant according to DWARF5 spec,
14604 Table 7.24. */
14605
14606 static bool
14607 is_valid_DW_AT_defaulted (ULONGEST value)
14608 {
14609 switch (value)
14610 {
14611 case DW_DEFAULTED_no:
14612 case DW_DEFAULTED_in_class:
14613 case DW_DEFAULTED_out_of_class:
14614 return true;
14615 }
14616
14617 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14618 return false;
14619 }
14620
14621 /* Add a member function to the proper fieldlist. */
14622
14623 static void
14624 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14625 struct type *type, struct dwarf2_cu *cu)
14626 {
14627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14628 struct attribute *attr;
14629 int i;
14630 struct fnfieldlist *flp = nullptr;
14631 struct fn_field *fnp;
14632 const char *fieldname;
14633 struct type *this_type;
14634 enum dwarf_access_attribute accessibility;
14635
14636 if (cu->language == language_ada)
14637 error (_("unexpected member function in Ada type"));
14638
14639 /* Get name of member function. */
14640 fieldname = dwarf2_name (die, cu);
14641 if (fieldname == NULL)
14642 return;
14643
14644 /* Look up member function name in fieldlist. */
14645 for (i = 0; i < fip->fnfieldlists.size (); i++)
14646 {
14647 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14648 {
14649 flp = &fip->fnfieldlists[i];
14650 break;
14651 }
14652 }
14653
14654 /* Create a new fnfieldlist if necessary. */
14655 if (flp == nullptr)
14656 {
14657 fip->fnfieldlists.emplace_back ();
14658 flp = &fip->fnfieldlists.back ();
14659 flp->name = fieldname;
14660 i = fip->fnfieldlists.size () - 1;
14661 }
14662
14663 /* Create a new member function field and add it to the vector of
14664 fnfieldlists. */
14665 flp->fnfields.emplace_back ();
14666 fnp = &flp->fnfields.back ();
14667
14668 /* Delay processing of the physname until later. */
14669 if (cu->language == language_cplus)
14670 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14671 die, cu);
14672 else
14673 {
14674 const char *physname = dwarf2_physname (fieldname, die, cu);
14675 fnp->physname = physname ? physname : "";
14676 }
14677
14678 fnp->type = alloc_type (objfile);
14679 this_type = read_type_die (die, cu);
14680 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14681 {
14682 int nparams = TYPE_NFIELDS (this_type);
14683
14684 /* TYPE is the domain of this method, and THIS_TYPE is the type
14685 of the method itself (TYPE_CODE_METHOD). */
14686 smash_to_method_type (fnp->type, type,
14687 TYPE_TARGET_TYPE (this_type),
14688 TYPE_FIELDS (this_type),
14689 TYPE_NFIELDS (this_type),
14690 TYPE_VARARGS (this_type));
14691
14692 /* Handle static member functions.
14693 Dwarf2 has no clean way to discern C++ static and non-static
14694 member functions. G++ helps GDB by marking the first
14695 parameter for non-static member functions (which is the this
14696 pointer) as artificial. We obtain this information from
14697 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14698 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14699 fnp->voffset = VOFFSET_STATIC;
14700 }
14701 else
14702 complaint (_("member function type missing for '%s'"),
14703 dwarf2_full_name (fieldname, die, cu));
14704
14705 /* Get fcontext from DW_AT_containing_type if present. */
14706 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14707 fnp->fcontext = die_containing_type (die, cu);
14708
14709 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14710 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14711
14712 /* Get accessibility. */
14713 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14714 if (attr != nullptr)
14715 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14716 else
14717 accessibility = dwarf2_default_access_attribute (die, cu);
14718 switch (accessibility)
14719 {
14720 case DW_ACCESS_private:
14721 fnp->is_private = 1;
14722 break;
14723 case DW_ACCESS_protected:
14724 fnp->is_protected = 1;
14725 break;
14726 }
14727
14728 /* Check for artificial methods. */
14729 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14730 if (attr && DW_UNSND (attr) != 0)
14731 fnp->is_artificial = 1;
14732
14733 /* Check for defaulted methods. */
14734 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14735 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14736 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14737
14738 /* Check for deleted methods. */
14739 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14740 if (attr != nullptr && DW_UNSND (attr) != 0)
14741 fnp->is_deleted = 1;
14742
14743 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14744
14745 /* Get index in virtual function table if it is a virtual member
14746 function. For older versions of GCC, this is an offset in the
14747 appropriate virtual table, as specified by DW_AT_containing_type.
14748 For everyone else, it is an expression to be evaluated relative
14749 to the object address. */
14750
14751 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14752 if (attr != nullptr)
14753 {
14754 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14755 {
14756 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14757 {
14758 /* Old-style GCC. */
14759 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14760 }
14761 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14762 || (DW_BLOCK (attr)->size > 1
14763 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14764 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14765 {
14766 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14767 if ((fnp->voffset % cu->header.addr_size) != 0)
14768 dwarf2_complex_location_expr_complaint ();
14769 else
14770 fnp->voffset /= cu->header.addr_size;
14771 fnp->voffset += 2;
14772 }
14773 else
14774 dwarf2_complex_location_expr_complaint ();
14775
14776 if (!fnp->fcontext)
14777 {
14778 /* If there is no `this' field and no DW_AT_containing_type,
14779 we cannot actually find a base class context for the
14780 vtable! */
14781 if (TYPE_NFIELDS (this_type) == 0
14782 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14783 {
14784 complaint (_("cannot determine context for virtual member "
14785 "function \"%s\" (offset %s)"),
14786 fieldname, sect_offset_str (die->sect_off));
14787 }
14788 else
14789 {
14790 fnp->fcontext
14791 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14792 }
14793 }
14794 }
14795 else if (attr->form_is_section_offset ())
14796 {
14797 dwarf2_complex_location_expr_complaint ();
14798 }
14799 else
14800 {
14801 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14802 fieldname);
14803 }
14804 }
14805 else
14806 {
14807 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14808 if (attr && DW_UNSND (attr))
14809 {
14810 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14811 complaint (_("Member function \"%s\" (offset %s) is virtual "
14812 "but the vtable offset is not specified"),
14813 fieldname, sect_offset_str (die->sect_off));
14814 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14815 TYPE_CPLUS_DYNAMIC (type) = 1;
14816 }
14817 }
14818 }
14819
14820 /* Create the vector of member function fields, and attach it to the type. */
14821
14822 static void
14823 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14824 struct dwarf2_cu *cu)
14825 {
14826 if (cu->language == language_ada)
14827 error (_("unexpected member functions in Ada type"));
14828
14829 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14830 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14831 TYPE_ALLOC (type,
14832 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14833
14834 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14835 {
14836 struct fnfieldlist &nf = fip->fnfieldlists[i];
14837 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14838
14839 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14840 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14841 fn_flp->fn_fields = (struct fn_field *)
14842 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14843
14844 for (int k = 0; k < nf.fnfields.size (); ++k)
14845 fn_flp->fn_fields[k] = nf.fnfields[k];
14846 }
14847
14848 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14849 }
14850
14851 /* Returns non-zero if NAME is the name of a vtable member in CU's
14852 language, zero otherwise. */
14853 static int
14854 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14855 {
14856 static const char vptr[] = "_vptr";
14857
14858 /* Look for the C++ form of the vtable. */
14859 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14860 return 1;
14861
14862 return 0;
14863 }
14864
14865 /* GCC outputs unnamed structures that are really pointers to member
14866 functions, with the ABI-specified layout. If TYPE describes
14867 such a structure, smash it into a member function type.
14868
14869 GCC shouldn't do this; it should just output pointer to member DIEs.
14870 This is GCC PR debug/28767. */
14871
14872 static void
14873 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14874 {
14875 struct type *pfn_type, *self_type, *new_type;
14876
14877 /* Check for a structure with no name and two children. */
14878 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14879 return;
14880
14881 /* Check for __pfn and __delta members. */
14882 if (TYPE_FIELD_NAME (type, 0) == NULL
14883 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14884 || TYPE_FIELD_NAME (type, 1) == NULL
14885 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14886 return;
14887
14888 /* Find the type of the method. */
14889 pfn_type = TYPE_FIELD_TYPE (type, 0);
14890 if (pfn_type == NULL
14891 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14892 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14893 return;
14894
14895 /* Look for the "this" argument. */
14896 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14897 if (TYPE_NFIELDS (pfn_type) == 0
14898 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14899 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14900 return;
14901
14902 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14903 new_type = alloc_type (objfile);
14904 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14905 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14906 TYPE_VARARGS (pfn_type));
14907 smash_to_methodptr_type (type, new_type);
14908 }
14909
14910 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14911 appropriate error checking and issuing complaints if there is a
14912 problem. */
14913
14914 static ULONGEST
14915 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14916 {
14917 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14918
14919 if (attr == nullptr)
14920 return 0;
14921
14922 if (!attr->form_is_constant ())
14923 {
14924 complaint (_("DW_AT_alignment must have constant form"
14925 " - DIE at %s [in module %s]"),
14926 sect_offset_str (die->sect_off),
14927 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14928 return 0;
14929 }
14930
14931 ULONGEST align;
14932 if (attr->form == DW_FORM_sdata)
14933 {
14934 LONGEST val = DW_SND (attr);
14935 if (val < 0)
14936 {
14937 complaint (_("DW_AT_alignment value must not be negative"
14938 " - DIE at %s [in module %s]"),
14939 sect_offset_str (die->sect_off),
14940 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14941 return 0;
14942 }
14943 align = val;
14944 }
14945 else
14946 align = DW_UNSND (attr);
14947
14948 if (align == 0)
14949 {
14950 complaint (_("DW_AT_alignment value must not be zero"
14951 " - DIE at %s [in module %s]"),
14952 sect_offset_str (die->sect_off),
14953 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14954 return 0;
14955 }
14956 if ((align & (align - 1)) != 0)
14957 {
14958 complaint (_("DW_AT_alignment value must be a power of 2"
14959 " - DIE at %s [in module %s]"),
14960 sect_offset_str (die->sect_off),
14961 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14962 return 0;
14963 }
14964
14965 return align;
14966 }
14967
14968 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14969 the alignment for TYPE. */
14970
14971 static void
14972 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14973 struct type *type)
14974 {
14975 if (!set_type_align (type, get_alignment (cu, die)))
14976 complaint (_("DW_AT_alignment value too large"
14977 " - DIE at %s [in module %s]"),
14978 sect_offset_str (die->sect_off),
14979 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14980 }
14981
14982 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14983 constant for a type, according to DWARF5 spec, Table 5.5. */
14984
14985 static bool
14986 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14987 {
14988 switch (value)
14989 {
14990 case DW_CC_normal:
14991 case DW_CC_pass_by_reference:
14992 case DW_CC_pass_by_value:
14993 return true;
14994
14995 default:
14996 complaint (_("unrecognized DW_AT_calling_convention value "
14997 "(%s) for a type"), pulongest (value));
14998 return false;
14999 }
15000 }
15001
15002 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15003 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15004 also according to GNU-specific values (see include/dwarf2.h). */
15005
15006 static bool
15007 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15008 {
15009 switch (value)
15010 {
15011 case DW_CC_normal:
15012 case DW_CC_program:
15013 case DW_CC_nocall:
15014 return true;
15015
15016 case DW_CC_GNU_renesas_sh:
15017 case DW_CC_GNU_borland_fastcall_i386:
15018 case DW_CC_GDB_IBM_OpenCL:
15019 return true;
15020
15021 default:
15022 complaint (_("unrecognized DW_AT_calling_convention value "
15023 "(%s) for a subroutine"), pulongest (value));
15024 return false;
15025 }
15026 }
15027
15028 /* Called when we find the DIE that starts a structure or union scope
15029 (definition) to create a type for the structure or union. Fill in
15030 the type's name and general properties; the members will not be
15031 processed until process_structure_scope. A symbol table entry for
15032 the type will also not be done until process_structure_scope (assuming
15033 the type has a name).
15034
15035 NOTE: we need to call these functions regardless of whether or not the
15036 DIE has a DW_AT_name attribute, since it might be an anonymous
15037 structure or union. This gets the type entered into our set of
15038 user defined types. */
15039
15040 static struct type *
15041 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15042 {
15043 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15044 struct type *type;
15045 struct attribute *attr;
15046 const char *name;
15047
15048 /* If the definition of this type lives in .debug_types, read that type.
15049 Don't follow DW_AT_specification though, that will take us back up
15050 the chain and we want to go down. */
15051 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15052 if (attr != nullptr)
15053 {
15054 type = get_DW_AT_signature_type (die, attr, cu);
15055
15056 /* The type's CU may not be the same as CU.
15057 Ensure TYPE is recorded with CU in die_type_hash. */
15058 return set_die_type (die, type, cu);
15059 }
15060
15061 type = alloc_type (objfile);
15062 INIT_CPLUS_SPECIFIC (type);
15063
15064 name = dwarf2_name (die, cu);
15065 if (name != NULL)
15066 {
15067 if (cu->language == language_cplus
15068 || cu->language == language_d
15069 || cu->language == language_rust)
15070 {
15071 const char *full_name = dwarf2_full_name (name, die, cu);
15072
15073 /* dwarf2_full_name might have already finished building the DIE's
15074 type. If so, there is no need to continue. */
15075 if (get_die_type (die, cu) != NULL)
15076 return get_die_type (die, cu);
15077
15078 TYPE_NAME (type) = full_name;
15079 }
15080 else
15081 {
15082 /* The name is already allocated along with this objfile, so
15083 we don't need to duplicate it for the type. */
15084 TYPE_NAME (type) = name;
15085 }
15086 }
15087
15088 if (die->tag == DW_TAG_structure_type)
15089 {
15090 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15091 }
15092 else if (die->tag == DW_TAG_union_type)
15093 {
15094 TYPE_CODE (type) = TYPE_CODE_UNION;
15095 }
15096 else if (die->tag == DW_TAG_variant_part)
15097 {
15098 TYPE_CODE (type) = TYPE_CODE_UNION;
15099 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15100 }
15101 else
15102 {
15103 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15104 }
15105
15106 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15107 TYPE_DECLARED_CLASS (type) = 1;
15108
15109 /* Store the calling convention in the type if it's available in
15110 the die. Otherwise the calling convention remains set to
15111 the default value DW_CC_normal. */
15112 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15113 if (attr != nullptr
15114 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15115 {
15116 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15117 TYPE_CPLUS_CALLING_CONVENTION (type)
15118 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15119 }
15120
15121 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15122 if (attr != nullptr)
15123 {
15124 if (attr->form_is_constant ())
15125 TYPE_LENGTH (type) = DW_UNSND (attr);
15126 else
15127 {
15128 /* For the moment, dynamic type sizes are not supported
15129 by GDB's struct type. The actual size is determined
15130 on-demand when resolving the type of a given object,
15131 so set the type's length to zero for now. Otherwise,
15132 we record an expression as the length, and that expression
15133 could lead to a very large value, which could eventually
15134 lead to us trying to allocate that much memory when creating
15135 a value of that type. */
15136 TYPE_LENGTH (type) = 0;
15137 }
15138 }
15139 else
15140 {
15141 TYPE_LENGTH (type) = 0;
15142 }
15143
15144 maybe_set_alignment (cu, die, type);
15145
15146 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15147 {
15148 /* ICC<14 does not output the required DW_AT_declaration on
15149 incomplete types, but gives them a size of zero. */
15150 TYPE_STUB (type) = 1;
15151 }
15152 else
15153 TYPE_STUB_SUPPORTED (type) = 1;
15154
15155 if (die_is_declaration (die, cu))
15156 TYPE_STUB (type) = 1;
15157 else if (attr == NULL && die->child == NULL
15158 && producer_is_realview (cu->producer))
15159 /* RealView does not output the required DW_AT_declaration
15160 on incomplete types. */
15161 TYPE_STUB (type) = 1;
15162
15163 /* We need to add the type field to the die immediately so we don't
15164 infinitely recurse when dealing with pointers to the structure
15165 type within the structure itself. */
15166 set_die_type (die, type, cu);
15167
15168 /* set_die_type should be already done. */
15169 set_descriptive_type (type, die, cu);
15170
15171 return type;
15172 }
15173
15174 /* A helper for process_structure_scope that handles a single member
15175 DIE. */
15176
15177 static void
15178 handle_struct_member_die (struct die_info *child_die, struct type *type,
15179 struct field_info *fi,
15180 std::vector<struct symbol *> *template_args,
15181 struct dwarf2_cu *cu)
15182 {
15183 if (child_die->tag == DW_TAG_member
15184 || child_die->tag == DW_TAG_variable
15185 || child_die->tag == DW_TAG_variant_part)
15186 {
15187 /* NOTE: carlton/2002-11-05: A C++ static data member
15188 should be a DW_TAG_member that is a declaration, but
15189 all versions of G++ as of this writing (so through at
15190 least 3.2.1) incorrectly generate DW_TAG_variable
15191 tags for them instead. */
15192 dwarf2_add_field (fi, child_die, cu);
15193 }
15194 else if (child_die->tag == DW_TAG_subprogram)
15195 {
15196 /* Rust doesn't have member functions in the C++ sense.
15197 However, it does emit ordinary functions as children
15198 of a struct DIE. */
15199 if (cu->language == language_rust)
15200 read_func_scope (child_die, cu);
15201 else
15202 {
15203 /* C++ member function. */
15204 dwarf2_add_member_fn (fi, child_die, type, cu);
15205 }
15206 }
15207 else if (child_die->tag == DW_TAG_inheritance)
15208 {
15209 /* C++ base class field. */
15210 dwarf2_add_field (fi, child_die, cu);
15211 }
15212 else if (type_can_define_types (child_die))
15213 dwarf2_add_type_defn (fi, child_die, cu);
15214 else if (child_die->tag == DW_TAG_template_type_param
15215 || child_die->tag == DW_TAG_template_value_param)
15216 {
15217 struct symbol *arg = new_symbol (child_die, NULL, cu);
15218
15219 if (arg != NULL)
15220 template_args->push_back (arg);
15221 }
15222 else if (child_die->tag == DW_TAG_variant)
15223 {
15224 /* In a variant we want to get the discriminant and also add a
15225 field for our sole member child. */
15226 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15227
15228 for (die_info *variant_child = child_die->child;
15229 variant_child != NULL;
15230 variant_child = sibling_die (variant_child))
15231 {
15232 if (variant_child->tag == DW_TAG_member)
15233 {
15234 handle_struct_member_die (variant_child, type, fi,
15235 template_args, cu);
15236 /* Only handle the one. */
15237 break;
15238 }
15239 }
15240
15241 /* We don't handle this but we might as well report it if we see
15242 it. */
15243 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15244 complaint (_("DW_AT_discr_list is not supported yet"
15245 " - DIE at %s [in module %s]"),
15246 sect_offset_str (child_die->sect_off),
15247 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15248
15249 /* The first field was just added, so we can stash the
15250 discriminant there. */
15251 gdb_assert (!fi->fields.empty ());
15252 if (discr == NULL)
15253 fi->fields.back ().variant.default_branch = true;
15254 else
15255 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15256 }
15257 }
15258
15259 /* Finish creating a structure or union type, including filling in
15260 its members and creating a symbol for it. */
15261
15262 static void
15263 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15264 {
15265 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15266 struct die_info *child_die;
15267 struct type *type;
15268
15269 type = get_die_type (die, cu);
15270 if (type == NULL)
15271 type = read_structure_type (die, cu);
15272
15273 /* When reading a DW_TAG_variant_part, we need to notice when we
15274 read the discriminant member, so we can record it later in the
15275 discriminant_info. */
15276 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15277 sect_offset discr_offset {};
15278 bool has_template_parameters = false;
15279
15280 if (is_variant_part)
15281 {
15282 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15283 if (discr == NULL)
15284 {
15285 /* Maybe it's a univariant form, an extension we support.
15286 In this case arrange not to check the offset. */
15287 is_variant_part = false;
15288 }
15289 else if (discr->form_is_ref ())
15290 {
15291 struct dwarf2_cu *target_cu = cu;
15292 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15293
15294 discr_offset = target_die->sect_off;
15295 }
15296 else
15297 {
15298 complaint (_("DW_AT_discr does not have DIE reference form"
15299 " - DIE at %s [in module %s]"),
15300 sect_offset_str (die->sect_off),
15301 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15302 is_variant_part = false;
15303 }
15304 }
15305
15306 if (die->child != NULL && ! die_is_declaration (die, cu))
15307 {
15308 struct field_info fi;
15309 std::vector<struct symbol *> template_args;
15310
15311 child_die = die->child;
15312
15313 while (child_die && child_die->tag)
15314 {
15315 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15316
15317 if (is_variant_part && discr_offset == child_die->sect_off)
15318 fi.fields.back ().variant.is_discriminant = true;
15319
15320 child_die = sibling_die (child_die);
15321 }
15322
15323 /* Attach template arguments to type. */
15324 if (!template_args.empty ())
15325 {
15326 has_template_parameters = true;
15327 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15328 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15329 TYPE_TEMPLATE_ARGUMENTS (type)
15330 = XOBNEWVEC (&objfile->objfile_obstack,
15331 struct symbol *,
15332 TYPE_N_TEMPLATE_ARGUMENTS (type));
15333 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15334 template_args.data (),
15335 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15336 * sizeof (struct symbol *)));
15337 }
15338
15339 /* Attach fields and member functions to the type. */
15340 if (fi.nfields () > 0)
15341 dwarf2_attach_fields_to_type (&fi, type, cu);
15342 if (!fi.fnfieldlists.empty ())
15343 {
15344 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15345
15346 /* Get the type which refers to the base class (possibly this
15347 class itself) which contains the vtable pointer for the current
15348 class from the DW_AT_containing_type attribute. This use of
15349 DW_AT_containing_type is a GNU extension. */
15350
15351 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15352 {
15353 struct type *t = die_containing_type (die, cu);
15354
15355 set_type_vptr_basetype (type, t);
15356 if (type == t)
15357 {
15358 int i;
15359
15360 /* Our own class provides vtbl ptr. */
15361 for (i = TYPE_NFIELDS (t) - 1;
15362 i >= TYPE_N_BASECLASSES (t);
15363 --i)
15364 {
15365 const char *fieldname = TYPE_FIELD_NAME (t, i);
15366
15367 if (is_vtable_name (fieldname, cu))
15368 {
15369 set_type_vptr_fieldno (type, i);
15370 break;
15371 }
15372 }
15373
15374 /* Complain if virtual function table field not found. */
15375 if (i < TYPE_N_BASECLASSES (t))
15376 complaint (_("virtual function table pointer "
15377 "not found when defining class '%s'"),
15378 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15379 }
15380 else
15381 {
15382 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15383 }
15384 }
15385 else if (cu->producer
15386 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15387 {
15388 /* The IBM XLC compiler does not provide direct indication
15389 of the containing type, but the vtable pointer is
15390 always named __vfp. */
15391
15392 int i;
15393
15394 for (i = TYPE_NFIELDS (type) - 1;
15395 i >= TYPE_N_BASECLASSES (type);
15396 --i)
15397 {
15398 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15399 {
15400 set_type_vptr_fieldno (type, i);
15401 set_type_vptr_basetype (type, type);
15402 break;
15403 }
15404 }
15405 }
15406 }
15407
15408 /* Copy fi.typedef_field_list linked list elements content into the
15409 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15410 if (!fi.typedef_field_list.empty ())
15411 {
15412 int count = fi.typedef_field_list.size ();
15413
15414 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15415 TYPE_TYPEDEF_FIELD_ARRAY (type)
15416 = ((struct decl_field *)
15417 TYPE_ALLOC (type,
15418 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15419 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15420
15421 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15422 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15423 }
15424
15425 /* Copy fi.nested_types_list linked list elements content into the
15426 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15427 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15428 {
15429 int count = fi.nested_types_list.size ();
15430
15431 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15432 TYPE_NESTED_TYPES_ARRAY (type)
15433 = ((struct decl_field *)
15434 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15435 TYPE_NESTED_TYPES_COUNT (type) = count;
15436
15437 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15438 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15439 }
15440 }
15441
15442 quirk_gcc_member_function_pointer (type, objfile);
15443 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15444 cu->rust_unions.push_back (type);
15445
15446 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15447 snapshots) has been known to create a die giving a declaration
15448 for a class that has, as a child, a die giving a definition for a
15449 nested class. So we have to process our children even if the
15450 current die is a declaration. Normally, of course, a declaration
15451 won't have any children at all. */
15452
15453 child_die = die->child;
15454
15455 while (child_die != NULL && child_die->tag)
15456 {
15457 if (child_die->tag == DW_TAG_member
15458 || child_die->tag == DW_TAG_variable
15459 || child_die->tag == DW_TAG_inheritance
15460 || child_die->tag == DW_TAG_template_value_param
15461 || child_die->tag == DW_TAG_template_type_param)
15462 {
15463 /* Do nothing. */
15464 }
15465 else
15466 process_die (child_die, cu);
15467
15468 child_die = sibling_die (child_die);
15469 }
15470
15471 /* Do not consider external references. According to the DWARF standard,
15472 these DIEs are identified by the fact that they have no byte_size
15473 attribute, and a declaration attribute. */
15474 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15475 || !die_is_declaration (die, cu))
15476 {
15477 struct symbol *sym = new_symbol (die, type, cu);
15478
15479 if (has_template_parameters)
15480 {
15481 struct symtab *symtab;
15482 if (sym != nullptr)
15483 symtab = symbol_symtab (sym);
15484 else if (cu->line_header != nullptr)
15485 {
15486 /* Any related symtab will do. */
15487 symtab
15488 = cu->line_header->file_names ()[0].symtab;
15489 }
15490 else
15491 {
15492 symtab = nullptr;
15493 complaint (_("could not find suitable "
15494 "symtab for template parameter"
15495 " - DIE at %s [in module %s]"),
15496 sect_offset_str (die->sect_off),
15497 objfile_name (objfile));
15498 }
15499
15500 if (symtab != nullptr)
15501 {
15502 /* Make sure that the symtab is set on the new symbols.
15503 Even though they don't appear in this symtab directly,
15504 other parts of gdb assume that symbols do, and this is
15505 reasonably true. */
15506 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15507 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15508 }
15509 }
15510 }
15511 }
15512
15513 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15514 update TYPE using some information only available in DIE's children. */
15515
15516 static void
15517 update_enumeration_type_from_children (struct die_info *die,
15518 struct type *type,
15519 struct dwarf2_cu *cu)
15520 {
15521 struct die_info *child_die;
15522 int unsigned_enum = 1;
15523 int flag_enum = 1;
15524
15525 auto_obstack obstack;
15526
15527 for (child_die = die->child;
15528 child_die != NULL && child_die->tag;
15529 child_die = sibling_die (child_die))
15530 {
15531 struct attribute *attr;
15532 LONGEST value;
15533 const gdb_byte *bytes;
15534 struct dwarf2_locexpr_baton *baton;
15535 const char *name;
15536
15537 if (child_die->tag != DW_TAG_enumerator)
15538 continue;
15539
15540 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15541 if (attr == NULL)
15542 continue;
15543
15544 name = dwarf2_name (child_die, cu);
15545 if (name == NULL)
15546 name = "<anonymous enumerator>";
15547
15548 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15549 &value, &bytes, &baton);
15550 if (value < 0)
15551 {
15552 unsigned_enum = 0;
15553 flag_enum = 0;
15554 }
15555 else
15556 {
15557 if (count_one_bits_ll (value) >= 2)
15558 flag_enum = 0;
15559 }
15560
15561 /* If we already know that the enum type is neither unsigned, nor
15562 a flag type, no need to look at the rest of the enumerates. */
15563 if (!unsigned_enum && !flag_enum)
15564 break;
15565 }
15566
15567 if (unsigned_enum)
15568 TYPE_UNSIGNED (type) = 1;
15569 if (flag_enum)
15570 TYPE_FLAG_ENUM (type) = 1;
15571 }
15572
15573 /* Given a DW_AT_enumeration_type die, set its type. We do not
15574 complete the type's fields yet, or create any symbols. */
15575
15576 static struct type *
15577 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15578 {
15579 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15580 struct type *type;
15581 struct attribute *attr;
15582 const char *name;
15583
15584 /* If the definition of this type lives in .debug_types, read that type.
15585 Don't follow DW_AT_specification though, that will take us back up
15586 the chain and we want to go down. */
15587 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15588 if (attr != nullptr)
15589 {
15590 type = get_DW_AT_signature_type (die, attr, cu);
15591
15592 /* The type's CU may not be the same as CU.
15593 Ensure TYPE is recorded with CU in die_type_hash. */
15594 return set_die_type (die, type, cu);
15595 }
15596
15597 type = alloc_type (objfile);
15598
15599 TYPE_CODE (type) = TYPE_CODE_ENUM;
15600 name = dwarf2_full_name (NULL, die, cu);
15601 if (name != NULL)
15602 TYPE_NAME (type) = name;
15603
15604 attr = dwarf2_attr (die, DW_AT_type, cu);
15605 if (attr != NULL)
15606 {
15607 struct type *underlying_type = die_type (die, cu);
15608
15609 TYPE_TARGET_TYPE (type) = underlying_type;
15610 }
15611
15612 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15613 if (attr != nullptr)
15614 {
15615 TYPE_LENGTH (type) = DW_UNSND (attr);
15616 }
15617 else
15618 {
15619 TYPE_LENGTH (type) = 0;
15620 }
15621
15622 maybe_set_alignment (cu, die, type);
15623
15624 /* The enumeration DIE can be incomplete. In Ada, any type can be
15625 declared as private in the package spec, and then defined only
15626 inside the package body. Such types are known as Taft Amendment
15627 Types. When another package uses such a type, an incomplete DIE
15628 may be generated by the compiler. */
15629 if (die_is_declaration (die, cu))
15630 TYPE_STUB (type) = 1;
15631
15632 /* Finish the creation of this type by using the enum's children.
15633 We must call this even when the underlying type has been provided
15634 so that we can determine if we're looking at a "flag" enum. */
15635 update_enumeration_type_from_children (die, type, cu);
15636
15637 /* If this type has an underlying type that is not a stub, then we
15638 may use its attributes. We always use the "unsigned" attribute
15639 in this situation, because ordinarily we guess whether the type
15640 is unsigned -- but the guess can be wrong and the underlying type
15641 can tell us the reality. However, we defer to a local size
15642 attribute if one exists, because this lets the compiler override
15643 the underlying type if needed. */
15644 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15645 {
15646 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
15647 if (TYPE_LENGTH (type) == 0)
15648 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
15649 if (TYPE_RAW_ALIGN (type) == 0
15650 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
15651 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
15652 }
15653
15654 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15655
15656 return set_die_type (die, type, cu);
15657 }
15658
15659 /* Given a pointer to a die which begins an enumeration, process all
15660 the dies that define the members of the enumeration, and create the
15661 symbol for the enumeration type.
15662
15663 NOTE: We reverse the order of the element list. */
15664
15665 static void
15666 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15667 {
15668 struct type *this_type;
15669
15670 this_type = get_die_type (die, cu);
15671 if (this_type == NULL)
15672 this_type = read_enumeration_type (die, cu);
15673
15674 if (die->child != NULL)
15675 {
15676 struct die_info *child_die;
15677 struct symbol *sym;
15678 std::vector<struct field> fields;
15679 const char *name;
15680
15681 child_die = die->child;
15682 while (child_die && child_die->tag)
15683 {
15684 if (child_die->tag != DW_TAG_enumerator)
15685 {
15686 process_die (child_die, cu);
15687 }
15688 else
15689 {
15690 name = dwarf2_name (child_die, cu);
15691 if (name)
15692 {
15693 sym = new_symbol (child_die, this_type, cu);
15694
15695 fields.emplace_back ();
15696 struct field &field = fields.back ();
15697
15698 FIELD_NAME (field) = sym->linkage_name ();
15699 FIELD_TYPE (field) = NULL;
15700 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15701 FIELD_BITSIZE (field) = 0;
15702 }
15703 }
15704
15705 child_die = sibling_die (child_die);
15706 }
15707
15708 if (!fields.empty ())
15709 {
15710 TYPE_NFIELDS (this_type) = fields.size ();
15711 TYPE_FIELDS (this_type) = (struct field *)
15712 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15713 memcpy (TYPE_FIELDS (this_type), fields.data (),
15714 sizeof (struct field) * fields.size ());
15715 }
15716 }
15717
15718 /* If we are reading an enum from a .debug_types unit, and the enum
15719 is a declaration, and the enum is not the signatured type in the
15720 unit, then we do not want to add a symbol for it. Adding a
15721 symbol would in some cases obscure the true definition of the
15722 enum, giving users an incomplete type when the definition is
15723 actually available. Note that we do not want to do this for all
15724 enums which are just declarations, because C++0x allows forward
15725 enum declarations. */
15726 if (cu->per_cu->is_debug_types
15727 && die_is_declaration (die, cu))
15728 {
15729 struct signatured_type *sig_type;
15730
15731 sig_type = (struct signatured_type *) cu->per_cu;
15732 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15733 if (sig_type->type_offset_in_section != die->sect_off)
15734 return;
15735 }
15736
15737 new_symbol (die, this_type, cu);
15738 }
15739
15740 /* Extract all information from a DW_TAG_array_type DIE and put it in
15741 the DIE's type field. For now, this only handles one dimensional
15742 arrays. */
15743
15744 static struct type *
15745 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15746 {
15747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15748 struct die_info *child_die;
15749 struct type *type;
15750 struct type *element_type, *range_type, *index_type;
15751 struct attribute *attr;
15752 const char *name;
15753 struct dynamic_prop *byte_stride_prop = NULL;
15754 unsigned int bit_stride = 0;
15755
15756 element_type = die_type (die, cu);
15757
15758 /* The die_type call above may have already set the type for this DIE. */
15759 type = get_die_type (die, cu);
15760 if (type)
15761 return type;
15762
15763 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15764 if (attr != NULL)
15765 {
15766 int stride_ok;
15767 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15768
15769 byte_stride_prop
15770 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15771 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15772 prop_type);
15773 if (!stride_ok)
15774 {
15775 complaint (_("unable to read array DW_AT_byte_stride "
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15779 /* Ignore this attribute. We will likely not be able to print
15780 arrays of this type correctly, but there is little we can do
15781 to help if we cannot read the attribute's value. */
15782 byte_stride_prop = NULL;
15783 }
15784 }
15785
15786 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15787 if (attr != NULL)
15788 bit_stride = DW_UNSND (attr);
15789
15790 /* Irix 6.2 native cc creates array types without children for
15791 arrays with unspecified length. */
15792 if (die->child == NULL)
15793 {
15794 index_type = objfile_type (objfile)->builtin_int;
15795 range_type = create_static_range_type (NULL, index_type, 0, -1);
15796 type = create_array_type_with_stride (NULL, element_type, range_type,
15797 byte_stride_prop, bit_stride);
15798 return set_die_type (die, type, cu);
15799 }
15800
15801 std::vector<struct type *> range_types;
15802 child_die = die->child;
15803 while (child_die && child_die->tag)
15804 {
15805 if (child_die->tag == DW_TAG_subrange_type)
15806 {
15807 struct type *child_type = read_type_die (child_die, cu);
15808
15809 if (child_type != NULL)
15810 {
15811 /* The range type was succesfully read. Save it for the
15812 array type creation. */
15813 range_types.push_back (child_type);
15814 }
15815 }
15816 child_die = sibling_die (child_die);
15817 }
15818
15819 /* Dwarf2 dimensions are output from left to right, create the
15820 necessary array types in backwards order. */
15821
15822 type = element_type;
15823
15824 if (read_array_order (die, cu) == DW_ORD_col_major)
15825 {
15826 int i = 0;
15827
15828 while (i < range_types.size ())
15829 type = create_array_type_with_stride (NULL, type, range_types[i++],
15830 byte_stride_prop, bit_stride);
15831 }
15832 else
15833 {
15834 size_t ndim = range_types.size ();
15835 while (ndim-- > 0)
15836 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15837 byte_stride_prop, bit_stride);
15838 }
15839
15840 /* Understand Dwarf2 support for vector types (like they occur on
15841 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15842 array type. This is not part of the Dwarf2/3 standard yet, but a
15843 custom vendor extension. The main difference between a regular
15844 array and the vector variant is that vectors are passed by value
15845 to functions. */
15846 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15847 if (attr != nullptr)
15848 make_vector_type (type);
15849
15850 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15851 implementation may choose to implement triple vectors using this
15852 attribute. */
15853 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15854 if (attr != nullptr)
15855 {
15856 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15857 TYPE_LENGTH (type) = DW_UNSND (attr);
15858 else
15859 complaint (_("DW_AT_byte_size for array type smaller "
15860 "than the total size of elements"));
15861 }
15862
15863 name = dwarf2_name (die, cu);
15864 if (name)
15865 TYPE_NAME (type) = name;
15866
15867 maybe_set_alignment (cu, die, type);
15868
15869 /* Install the type in the die. */
15870 set_die_type (die, type, cu);
15871
15872 /* set_die_type should be already done. */
15873 set_descriptive_type (type, die, cu);
15874
15875 return type;
15876 }
15877
15878 static enum dwarf_array_dim_ordering
15879 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15880 {
15881 struct attribute *attr;
15882
15883 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15884
15885 if (attr != nullptr)
15886 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15887
15888 /* GNU F77 is a special case, as at 08/2004 array type info is the
15889 opposite order to the dwarf2 specification, but data is still
15890 laid out as per normal fortran.
15891
15892 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15893 version checking. */
15894
15895 if (cu->language == language_fortran
15896 && cu->producer && strstr (cu->producer, "GNU F77"))
15897 {
15898 return DW_ORD_row_major;
15899 }
15900
15901 switch (cu->language_defn->la_array_ordering)
15902 {
15903 case array_column_major:
15904 return DW_ORD_col_major;
15905 case array_row_major:
15906 default:
15907 return DW_ORD_row_major;
15908 };
15909 }
15910
15911 /* Extract all information from a DW_TAG_set_type DIE and put it in
15912 the DIE's type field. */
15913
15914 static struct type *
15915 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15916 {
15917 struct type *domain_type, *set_type;
15918 struct attribute *attr;
15919
15920 domain_type = die_type (die, cu);
15921
15922 /* The die_type call above may have already set the type for this DIE. */
15923 set_type = get_die_type (die, cu);
15924 if (set_type)
15925 return set_type;
15926
15927 set_type = create_set_type (NULL, domain_type);
15928
15929 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15930 if (attr != nullptr)
15931 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15932
15933 maybe_set_alignment (cu, die, set_type);
15934
15935 return set_die_type (die, set_type, cu);
15936 }
15937
15938 /* A helper for read_common_block that creates a locexpr baton.
15939 SYM is the symbol which we are marking as computed.
15940 COMMON_DIE is the DIE for the common block.
15941 COMMON_LOC is the location expression attribute for the common
15942 block itself.
15943 MEMBER_LOC is the location expression attribute for the particular
15944 member of the common block that we are processing.
15945 CU is the CU from which the above come. */
15946
15947 static void
15948 mark_common_block_symbol_computed (struct symbol *sym,
15949 struct die_info *common_die,
15950 struct attribute *common_loc,
15951 struct attribute *member_loc,
15952 struct dwarf2_cu *cu)
15953 {
15954 struct dwarf2_per_objfile *dwarf2_per_objfile
15955 = cu->per_cu->dwarf2_per_objfile;
15956 struct objfile *objfile = dwarf2_per_objfile->objfile;
15957 struct dwarf2_locexpr_baton *baton;
15958 gdb_byte *ptr;
15959 unsigned int cu_off;
15960 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15961 LONGEST offset = 0;
15962
15963 gdb_assert (common_loc && member_loc);
15964 gdb_assert (common_loc->form_is_block ());
15965 gdb_assert (member_loc->form_is_block ()
15966 || member_loc->form_is_constant ());
15967
15968 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15969 baton->per_cu = cu->per_cu;
15970 gdb_assert (baton->per_cu);
15971
15972 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15973
15974 if (member_loc->form_is_constant ())
15975 {
15976 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15977 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15978 }
15979 else
15980 baton->size += DW_BLOCK (member_loc)->size;
15981
15982 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15983 baton->data = ptr;
15984
15985 *ptr++ = DW_OP_call4;
15986 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15987 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15988 ptr += 4;
15989
15990 if (member_loc->form_is_constant ())
15991 {
15992 *ptr++ = DW_OP_addr;
15993 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15994 ptr += cu->header.addr_size;
15995 }
15996 else
15997 {
15998 /* We have to copy the data here, because DW_OP_call4 will only
15999 use a DW_AT_location attribute. */
16000 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16001 ptr += DW_BLOCK (member_loc)->size;
16002 }
16003
16004 *ptr++ = DW_OP_plus;
16005 gdb_assert (ptr - baton->data == baton->size);
16006
16007 SYMBOL_LOCATION_BATON (sym) = baton;
16008 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16009 }
16010
16011 /* Create appropriate locally-scoped variables for all the
16012 DW_TAG_common_block entries. Also create a struct common_block
16013 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16014 is used to separate the common blocks name namespace from regular
16015 variable names. */
16016
16017 static void
16018 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16019 {
16020 struct attribute *attr;
16021
16022 attr = dwarf2_attr (die, DW_AT_location, cu);
16023 if (attr != nullptr)
16024 {
16025 /* Support the .debug_loc offsets. */
16026 if (attr->form_is_block ())
16027 {
16028 /* Ok. */
16029 }
16030 else if (attr->form_is_section_offset ())
16031 {
16032 dwarf2_complex_location_expr_complaint ();
16033 attr = NULL;
16034 }
16035 else
16036 {
16037 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16038 "common block member");
16039 attr = NULL;
16040 }
16041 }
16042
16043 if (die->child != NULL)
16044 {
16045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16046 struct die_info *child_die;
16047 size_t n_entries = 0, size;
16048 struct common_block *common_block;
16049 struct symbol *sym;
16050
16051 for (child_die = die->child;
16052 child_die && child_die->tag;
16053 child_die = sibling_die (child_die))
16054 ++n_entries;
16055
16056 size = (sizeof (struct common_block)
16057 + (n_entries - 1) * sizeof (struct symbol *));
16058 common_block
16059 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16060 size);
16061 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16062 common_block->n_entries = 0;
16063
16064 for (child_die = die->child;
16065 child_die && child_die->tag;
16066 child_die = sibling_die (child_die))
16067 {
16068 /* Create the symbol in the DW_TAG_common_block block in the current
16069 symbol scope. */
16070 sym = new_symbol (child_die, NULL, cu);
16071 if (sym != NULL)
16072 {
16073 struct attribute *member_loc;
16074
16075 common_block->contents[common_block->n_entries++] = sym;
16076
16077 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16078 cu);
16079 if (member_loc)
16080 {
16081 /* GDB has handled this for a long time, but it is
16082 not specified by DWARF. It seems to have been
16083 emitted by gfortran at least as recently as:
16084 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16085 complaint (_("Variable in common block has "
16086 "DW_AT_data_member_location "
16087 "- DIE at %s [in module %s]"),
16088 sect_offset_str (child_die->sect_off),
16089 objfile_name (objfile));
16090
16091 if (member_loc->form_is_section_offset ())
16092 dwarf2_complex_location_expr_complaint ();
16093 else if (member_loc->form_is_constant ()
16094 || member_loc->form_is_block ())
16095 {
16096 if (attr != nullptr)
16097 mark_common_block_symbol_computed (sym, die, attr,
16098 member_loc, cu);
16099 }
16100 else
16101 dwarf2_complex_location_expr_complaint ();
16102 }
16103 }
16104 }
16105
16106 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16107 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16108 }
16109 }
16110
16111 /* Create a type for a C++ namespace. */
16112
16113 static struct type *
16114 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16115 {
16116 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16117 const char *previous_prefix, *name;
16118 int is_anonymous;
16119 struct type *type;
16120
16121 /* For extensions, reuse the type of the original namespace. */
16122 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16123 {
16124 struct die_info *ext_die;
16125 struct dwarf2_cu *ext_cu = cu;
16126
16127 ext_die = dwarf2_extension (die, &ext_cu);
16128 type = read_type_die (ext_die, ext_cu);
16129
16130 /* EXT_CU may not be the same as CU.
16131 Ensure TYPE is recorded with CU in die_type_hash. */
16132 return set_die_type (die, type, cu);
16133 }
16134
16135 name = namespace_name (die, &is_anonymous, cu);
16136
16137 /* Now build the name of the current namespace. */
16138
16139 previous_prefix = determine_prefix (die, cu);
16140 if (previous_prefix[0] != '\0')
16141 name = typename_concat (&objfile->objfile_obstack,
16142 previous_prefix, name, 0, cu);
16143
16144 /* Create the type. */
16145 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16146
16147 return set_die_type (die, type, cu);
16148 }
16149
16150 /* Read a namespace scope. */
16151
16152 static void
16153 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16154 {
16155 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16156 int is_anonymous;
16157
16158 /* Add a symbol associated to this if we haven't seen the namespace
16159 before. Also, add a using directive if it's an anonymous
16160 namespace. */
16161
16162 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16163 {
16164 struct type *type;
16165
16166 type = read_type_die (die, cu);
16167 new_symbol (die, type, cu);
16168
16169 namespace_name (die, &is_anonymous, cu);
16170 if (is_anonymous)
16171 {
16172 const char *previous_prefix = determine_prefix (die, cu);
16173
16174 std::vector<const char *> excludes;
16175 add_using_directive (using_directives (cu),
16176 previous_prefix, TYPE_NAME (type), NULL,
16177 NULL, excludes, 0, &objfile->objfile_obstack);
16178 }
16179 }
16180
16181 if (die->child != NULL)
16182 {
16183 struct die_info *child_die = die->child;
16184
16185 while (child_die && child_die->tag)
16186 {
16187 process_die (child_die, cu);
16188 child_die = sibling_die (child_die);
16189 }
16190 }
16191 }
16192
16193 /* Read a Fortran module as type. This DIE can be only a declaration used for
16194 imported module. Still we need that type as local Fortran "use ... only"
16195 declaration imports depend on the created type in determine_prefix. */
16196
16197 static struct type *
16198 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16199 {
16200 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16201 const char *module_name;
16202 struct type *type;
16203
16204 module_name = dwarf2_name (die, cu);
16205 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16206
16207 return set_die_type (die, type, cu);
16208 }
16209
16210 /* Read a Fortran module. */
16211
16212 static void
16213 read_module (struct die_info *die, struct dwarf2_cu *cu)
16214 {
16215 struct die_info *child_die = die->child;
16216 struct type *type;
16217
16218 type = read_type_die (die, cu);
16219 new_symbol (die, type, cu);
16220
16221 while (child_die && child_die->tag)
16222 {
16223 process_die (child_die, cu);
16224 child_die = sibling_die (child_die);
16225 }
16226 }
16227
16228 /* Return the name of the namespace represented by DIE. Set
16229 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16230 namespace. */
16231
16232 static const char *
16233 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16234 {
16235 struct die_info *current_die;
16236 const char *name = NULL;
16237
16238 /* Loop through the extensions until we find a name. */
16239
16240 for (current_die = die;
16241 current_die != NULL;
16242 current_die = dwarf2_extension (die, &cu))
16243 {
16244 /* We don't use dwarf2_name here so that we can detect the absence
16245 of a name -> anonymous namespace. */
16246 name = dwarf2_string_attr (die, DW_AT_name, cu);
16247
16248 if (name != NULL)
16249 break;
16250 }
16251
16252 /* Is it an anonymous namespace? */
16253
16254 *is_anonymous = (name == NULL);
16255 if (*is_anonymous)
16256 name = CP_ANONYMOUS_NAMESPACE_STR;
16257
16258 return name;
16259 }
16260
16261 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16262 the user defined type vector. */
16263
16264 static struct type *
16265 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16266 {
16267 struct gdbarch *gdbarch
16268 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16269 struct comp_unit_head *cu_header = &cu->header;
16270 struct type *type;
16271 struct attribute *attr_byte_size;
16272 struct attribute *attr_address_class;
16273 int byte_size, addr_class;
16274 struct type *target_type;
16275
16276 target_type = die_type (die, cu);
16277
16278 /* The die_type call above may have already set the type for this DIE. */
16279 type = get_die_type (die, cu);
16280 if (type)
16281 return type;
16282
16283 type = lookup_pointer_type (target_type);
16284
16285 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16286 if (attr_byte_size)
16287 byte_size = DW_UNSND (attr_byte_size);
16288 else
16289 byte_size = cu_header->addr_size;
16290
16291 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16292 if (attr_address_class)
16293 addr_class = DW_UNSND (attr_address_class);
16294 else
16295 addr_class = DW_ADDR_none;
16296
16297 ULONGEST alignment = get_alignment (cu, die);
16298
16299 /* If the pointer size, alignment, or address class is different
16300 than the default, create a type variant marked as such and set
16301 the length accordingly. */
16302 if (TYPE_LENGTH (type) != byte_size
16303 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16304 && alignment != TYPE_RAW_ALIGN (type))
16305 || addr_class != DW_ADDR_none)
16306 {
16307 if (gdbarch_address_class_type_flags_p (gdbarch))
16308 {
16309 int type_flags;
16310
16311 type_flags = gdbarch_address_class_type_flags
16312 (gdbarch, byte_size, addr_class);
16313 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16314 == 0);
16315 type = make_type_with_address_space (type, type_flags);
16316 }
16317 else if (TYPE_LENGTH (type) != byte_size)
16318 {
16319 complaint (_("invalid pointer size %d"), byte_size);
16320 }
16321 else if (TYPE_RAW_ALIGN (type) != alignment)
16322 {
16323 complaint (_("Invalid DW_AT_alignment"
16324 " - DIE at %s [in module %s]"),
16325 sect_offset_str (die->sect_off),
16326 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16327 }
16328 else
16329 {
16330 /* Should we also complain about unhandled address classes? */
16331 }
16332 }
16333
16334 TYPE_LENGTH (type) = byte_size;
16335 set_type_align (type, alignment);
16336 return set_die_type (die, type, cu);
16337 }
16338
16339 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16340 the user defined type vector. */
16341
16342 static struct type *
16343 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16344 {
16345 struct type *type;
16346 struct type *to_type;
16347 struct type *domain;
16348
16349 to_type = die_type (die, cu);
16350 domain = die_containing_type (die, cu);
16351
16352 /* The calls above may have already set the type for this DIE. */
16353 type = get_die_type (die, cu);
16354 if (type)
16355 return type;
16356
16357 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16358 type = lookup_methodptr_type (to_type);
16359 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16360 {
16361 struct type *new_type
16362 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16363
16364 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16365 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16366 TYPE_VARARGS (to_type));
16367 type = lookup_methodptr_type (new_type);
16368 }
16369 else
16370 type = lookup_memberptr_type (to_type, domain);
16371
16372 return set_die_type (die, type, cu);
16373 }
16374
16375 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16376 the user defined type vector. */
16377
16378 static struct type *
16379 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16380 enum type_code refcode)
16381 {
16382 struct comp_unit_head *cu_header = &cu->header;
16383 struct type *type, *target_type;
16384 struct attribute *attr;
16385
16386 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16387
16388 target_type = die_type (die, cu);
16389
16390 /* The die_type call above may have already set the type for this DIE. */
16391 type = get_die_type (die, cu);
16392 if (type)
16393 return type;
16394
16395 type = lookup_reference_type (target_type, refcode);
16396 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16397 if (attr != nullptr)
16398 {
16399 TYPE_LENGTH (type) = DW_UNSND (attr);
16400 }
16401 else
16402 {
16403 TYPE_LENGTH (type) = cu_header->addr_size;
16404 }
16405 maybe_set_alignment (cu, die, type);
16406 return set_die_type (die, type, cu);
16407 }
16408
16409 /* Add the given cv-qualifiers to the element type of the array. GCC
16410 outputs DWARF type qualifiers that apply to an array, not the
16411 element type. But GDB relies on the array element type to carry
16412 the cv-qualifiers. This mimics section 6.7.3 of the C99
16413 specification. */
16414
16415 static struct type *
16416 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16417 struct type *base_type, int cnst, int voltl)
16418 {
16419 struct type *el_type, *inner_array;
16420
16421 base_type = copy_type (base_type);
16422 inner_array = base_type;
16423
16424 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16425 {
16426 TYPE_TARGET_TYPE (inner_array) =
16427 copy_type (TYPE_TARGET_TYPE (inner_array));
16428 inner_array = TYPE_TARGET_TYPE (inner_array);
16429 }
16430
16431 el_type = TYPE_TARGET_TYPE (inner_array);
16432 cnst |= TYPE_CONST (el_type);
16433 voltl |= TYPE_VOLATILE (el_type);
16434 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16435
16436 return set_die_type (die, base_type, cu);
16437 }
16438
16439 static struct type *
16440 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16441 {
16442 struct type *base_type, *cv_type;
16443
16444 base_type = die_type (die, cu);
16445
16446 /* The die_type call above may have already set the type for this DIE. */
16447 cv_type = get_die_type (die, cu);
16448 if (cv_type)
16449 return cv_type;
16450
16451 /* In case the const qualifier is applied to an array type, the element type
16452 is so qualified, not the array type (section 6.7.3 of C99). */
16453 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16454 return add_array_cv_type (die, cu, base_type, 1, 0);
16455
16456 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16457 return set_die_type (die, cv_type, cu);
16458 }
16459
16460 static struct type *
16461 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16462 {
16463 struct type *base_type, *cv_type;
16464
16465 base_type = die_type (die, cu);
16466
16467 /* The die_type call above may have already set the type for this DIE. */
16468 cv_type = get_die_type (die, cu);
16469 if (cv_type)
16470 return cv_type;
16471
16472 /* In case the volatile qualifier is applied to an array type, the
16473 element type is so qualified, not the array type (section 6.7.3
16474 of C99). */
16475 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16476 return add_array_cv_type (die, cu, base_type, 0, 1);
16477
16478 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16479 return set_die_type (die, cv_type, cu);
16480 }
16481
16482 /* Handle DW_TAG_restrict_type. */
16483
16484 static struct type *
16485 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16486 {
16487 struct type *base_type, *cv_type;
16488
16489 base_type = die_type (die, cu);
16490
16491 /* The die_type call above may have already set the type for this DIE. */
16492 cv_type = get_die_type (die, cu);
16493 if (cv_type)
16494 return cv_type;
16495
16496 cv_type = make_restrict_type (base_type);
16497 return set_die_type (die, cv_type, cu);
16498 }
16499
16500 /* Handle DW_TAG_atomic_type. */
16501
16502 static struct type *
16503 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16504 {
16505 struct type *base_type, *cv_type;
16506
16507 base_type = die_type (die, cu);
16508
16509 /* The die_type call above may have already set the type for this DIE. */
16510 cv_type = get_die_type (die, cu);
16511 if (cv_type)
16512 return cv_type;
16513
16514 cv_type = make_atomic_type (base_type);
16515 return set_die_type (die, cv_type, cu);
16516 }
16517
16518 /* Extract all information from a DW_TAG_string_type DIE and add to
16519 the user defined type vector. It isn't really a user defined type,
16520 but it behaves like one, with other DIE's using an AT_user_def_type
16521 attribute to reference it. */
16522
16523 static struct type *
16524 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16525 {
16526 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16528 struct type *type, *range_type, *index_type, *char_type;
16529 struct attribute *attr;
16530 struct dynamic_prop prop;
16531 bool length_is_constant = true;
16532 LONGEST length;
16533
16534 /* There are a couple of places where bit sizes might be made use of
16535 when parsing a DW_TAG_string_type, however, no producer that we know
16536 of make use of these. Handling bit sizes that are a multiple of the
16537 byte size is easy enough, but what about other bit sizes? Lets deal
16538 with that problem when we have to. Warn about these attributes being
16539 unsupported, then parse the type and ignore them like we always
16540 have. */
16541 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16542 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16543 {
16544 static bool warning_printed = false;
16545 if (!warning_printed)
16546 {
16547 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16548 "currently supported on DW_TAG_string_type."));
16549 warning_printed = true;
16550 }
16551 }
16552
16553 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16554 if (attr != nullptr && !attr->form_is_constant ())
16555 {
16556 /* The string length describes the location at which the length of
16557 the string can be found. The size of the length field can be
16558 specified with one of the attributes below. */
16559 struct type *prop_type;
16560 struct attribute *len
16561 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16562 if (len == nullptr)
16563 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16564 if (len != nullptr && len->form_is_constant ())
16565 {
16566 /* Pass 0 as the default as we know this attribute is constant
16567 and the default value will not be returned. */
16568 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16569 prop_type = cu->per_cu->int_type (sz, true);
16570 }
16571 else
16572 {
16573 /* If the size is not specified then we assume it is the size of
16574 an address on this target. */
16575 prop_type = cu->per_cu->addr_sized_int_type (true);
16576 }
16577
16578 /* Convert the attribute into a dynamic property. */
16579 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16580 length = 1;
16581 else
16582 length_is_constant = false;
16583 }
16584 else if (attr != nullptr)
16585 {
16586 /* This DW_AT_string_length just contains the length with no
16587 indirection. There's no need to create a dynamic property in this
16588 case. Pass 0 for the default value as we know it will not be
16589 returned in this case. */
16590 length = dwarf2_get_attr_constant_value (attr, 0);
16591 }
16592 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16593 {
16594 /* We don't currently support non-constant byte sizes for strings. */
16595 length = dwarf2_get_attr_constant_value (attr, 1);
16596 }
16597 else
16598 {
16599 /* Use 1 as a fallback length if we have nothing else. */
16600 length = 1;
16601 }
16602
16603 index_type = objfile_type (objfile)->builtin_int;
16604 if (length_is_constant)
16605 range_type = create_static_range_type (NULL, index_type, 1, length);
16606 else
16607 {
16608 struct dynamic_prop low_bound;
16609
16610 low_bound.kind = PROP_CONST;
16611 low_bound.data.const_val = 1;
16612 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16613 }
16614 char_type = language_string_char_type (cu->language_defn, gdbarch);
16615 type = create_string_type (NULL, char_type, range_type);
16616
16617 return set_die_type (die, type, cu);
16618 }
16619
16620 /* Assuming that DIE corresponds to a function, returns nonzero
16621 if the function is prototyped. */
16622
16623 static int
16624 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16625 {
16626 struct attribute *attr;
16627
16628 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16629 if (attr && (DW_UNSND (attr) != 0))
16630 return 1;
16631
16632 /* The DWARF standard implies that the DW_AT_prototyped attribute
16633 is only meaningful for C, but the concept also extends to other
16634 languages that allow unprototyped functions (Eg: Objective C).
16635 For all other languages, assume that functions are always
16636 prototyped. */
16637 if (cu->language != language_c
16638 && cu->language != language_objc
16639 && cu->language != language_opencl)
16640 return 1;
16641
16642 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16643 prototyped and unprototyped functions; default to prototyped,
16644 since that is more common in modern code (and RealView warns
16645 about unprototyped functions). */
16646 if (producer_is_realview (cu->producer))
16647 return 1;
16648
16649 return 0;
16650 }
16651
16652 /* Handle DIES due to C code like:
16653
16654 struct foo
16655 {
16656 int (*funcp)(int a, long l);
16657 int b;
16658 };
16659
16660 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16661
16662 static struct type *
16663 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16664 {
16665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16666 struct type *type; /* Type that this function returns. */
16667 struct type *ftype; /* Function that returns above type. */
16668 struct attribute *attr;
16669
16670 type = die_type (die, cu);
16671
16672 /* The die_type call above may have already set the type for this DIE. */
16673 ftype = get_die_type (die, cu);
16674 if (ftype)
16675 return ftype;
16676
16677 ftype = lookup_function_type (type);
16678
16679 if (prototyped_function_p (die, cu))
16680 TYPE_PROTOTYPED (ftype) = 1;
16681
16682 /* Store the calling convention in the type if it's available in
16683 the subroutine die. Otherwise set the calling convention to
16684 the default value DW_CC_normal. */
16685 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16686 if (attr != nullptr
16687 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16688 TYPE_CALLING_CONVENTION (ftype)
16689 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16690 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16691 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16692 else
16693 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16694
16695 /* Record whether the function returns normally to its caller or not
16696 if the DWARF producer set that information. */
16697 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16698 if (attr && (DW_UNSND (attr) != 0))
16699 TYPE_NO_RETURN (ftype) = 1;
16700
16701 /* We need to add the subroutine type to the die immediately so
16702 we don't infinitely recurse when dealing with parameters
16703 declared as the same subroutine type. */
16704 set_die_type (die, ftype, cu);
16705
16706 if (die->child != NULL)
16707 {
16708 struct type *void_type = objfile_type (objfile)->builtin_void;
16709 struct die_info *child_die;
16710 int nparams, iparams;
16711
16712 /* Count the number of parameters.
16713 FIXME: GDB currently ignores vararg functions, but knows about
16714 vararg member functions. */
16715 nparams = 0;
16716 child_die = die->child;
16717 while (child_die && child_die->tag)
16718 {
16719 if (child_die->tag == DW_TAG_formal_parameter)
16720 nparams++;
16721 else if (child_die->tag == DW_TAG_unspecified_parameters)
16722 TYPE_VARARGS (ftype) = 1;
16723 child_die = sibling_die (child_die);
16724 }
16725
16726 /* Allocate storage for parameters and fill them in. */
16727 TYPE_NFIELDS (ftype) = nparams;
16728 TYPE_FIELDS (ftype) = (struct field *)
16729 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16730
16731 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16732 even if we error out during the parameters reading below. */
16733 for (iparams = 0; iparams < nparams; iparams++)
16734 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16735
16736 iparams = 0;
16737 child_die = die->child;
16738 while (child_die && child_die->tag)
16739 {
16740 if (child_die->tag == DW_TAG_formal_parameter)
16741 {
16742 struct type *arg_type;
16743
16744 /* DWARF version 2 has no clean way to discern C++
16745 static and non-static member functions. G++ helps
16746 GDB by marking the first parameter for non-static
16747 member functions (which is the this pointer) as
16748 artificial. We pass this information to
16749 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16750
16751 DWARF version 3 added DW_AT_object_pointer, which GCC
16752 4.5 does not yet generate. */
16753 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16754 if (attr != nullptr)
16755 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16756 else
16757 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16758 arg_type = die_type (child_die, cu);
16759
16760 /* RealView does not mark THIS as const, which the testsuite
16761 expects. GCC marks THIS as const in method definitions,
16762 but not in the class specifications (GCC PR 43053). */
16763 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16764 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16765 {
16766 int is_this = 0;
16767 struct dwarf2_cu *arg_cu = cu;
16768 const char *name = dwarf2_name (child_die, cu);
16769
16770 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16771 if (attr != nullptr)
16772 {
16773 /* If the compiler emits this, use it. */
16774 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16775 is_this = 1;
16776 }
16777 else if (name && strcmp (name, "this") == 0)
16778 /* Function definitions will have the argument names. */
16779 is_this = 1;
16780 else if (name == NULL && iparams == 0)
16781 /* Declarations may not have the names, so like
16782 elsewhere in GDB, assume an artificial first
16783 argument is "this". */
16784 is_this = 1;
16785
16786 if (is_this)
16787 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16788 arg_type, 0);
16789 }
16790
16791 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16792 iparams++;
16793 }
16794 child_die = sibling_die (child_die);
16795 }
16796 }
16797
16798 return ftype;
16799 }
16800
16801 static struct type *
16802 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16803 {
16804 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16805 const char *name = NULL;
16806 struct type *this_type, *target_type;
16807
16808 name = dwarf2_full_name (NULL, die, cu);
16809 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16810 TYPE_TARGET_STUB (this_type) = 1;
16811 set_die_type (die, this_type, cu);
16812 target_type = die_type (die, cu);
16813 if (target_type != this_type)
16814 TYPE_TARGET_TYPE (this_type) = target_type;
16815 else
16816 {
16817 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16818 spec and cause infinite loops in GDB. */
16819 complaint (_("Self-referential DW_TAG_typedef "
16820 "- DIE at %s [in module %s]"),
16821 sect_offset_str (die->sect_off), objfile_name (objfile));
16822 TYPE_TARGET_TYPE (this_type) = NULL;
16823 }
16824 return this_type;
16825 }
16826
16827 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16828 (which may be different from NAME) to the architecture back-end to allow
16829 it to guess the correct format if necessary. */
16830
16831 static struct type *
16832 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16833 const char *name_hint, enum bfd_endian byte_order)
16834 {
16835 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16836 const struct floatformat **format;
16837 struct type *type;
16838
16839 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16840 if (format)
16841 type = init_float_type (objfile, bits, name, format, byte_order);
16842 else
16843 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16844
16845 return type;
16846 }
16847
16848 /* Allocate an integer type of size BITS and name NAME. */
16849
16850 static struct type *
16851 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16852 int bits, int unsigned_p, const char *name)
16853 {
16854 struct type *type;
16855
16856 /* Versions of Intel's C Compiler generate an integer type called "void"
16857 instead of using DW_TAG_unspecified_type. This has been seen on
16858 at least versions 14, 17, and 18. */
16859 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16860 && strcmp (name, "void") == 0)
16861 type = objfile_type (objfile)->builtin_void;
16862 else
16863 type = init_integer_type (objfile, bits, unsigned_p, name);
16864
16865 return type;
16866 }
16867
16868 /* Initialise and return a floating point type of size BITS suitable for
16869 use as a component of a complex number. The NAME_HINT is passed through
16870 when initialising the floating point type and is the name of the complex
16871 type.
16872
16873 As DWARF doesn't currently provide an explicit name for the components
16874 of a complex number, but it can be helpful to have these components
16875 named, we try to select a suitable name based on the size of the
16876 component. */
16877 static struct type *
16878 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16879 struct objfile *objfile,
16880 int bits, const char *name_hint,
16881 enum bfd_endian byte_order)
16882 {
16883 gdbarch *gdbarch = get_objfile_arch (objfile);
16884 struct type *tt = nullptr;
16885
16886 /* Try to find a suitable floating point builtin type of size BITS.
16887 We're going to use the name of this type as the name for the complex
16888 target type that we are about to create. */
16889 switch (cu->language)
16890 {
16891 case language_fortran:
16892 switch (bits)
16893 {
16894 case 32:
16895 tt = builtin_f_type (gdbarch)->builtin_real;
16896 break;
16897 case 64:
16898 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16899 break;
16900 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16901 case 128:
16902 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16903 break;
16904 }
16905 break;
16906 default:
16907 switch (bits)
16908 {
16909 case 32:
16910 tt = builtin_type (gdbarch)->builtin_float;
16911 break;
16912 case 64:
16913 tt = builtin_type (gdbarch)->builtin_double;
16914 break;
16915 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16916 case 128:
16917 tt = builtin_type (gdbarch)->builtin_long_double;
16918 break;
16919 }
16920 break;
16921 }
16922
16923 /* If the type we found doesn't match the size we were looking for, then
16924 pretend we didn't find a type at all, the complex target type we
16925 create will then be nameless. */
16926 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16927 tt = nullptr;
16928
16929 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16930 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16931 }
16932
16933 /* Find a representation of a given base type and install
16934 it in the TYPE field of the die. */
16935
16936 static struct type *
16937 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16938 {
16939 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16940 struct type *type;
16941 struct attribute *attr;
16942 int encoding = 0, bits = 0;
16943 const char *name;
16944 gdbarch *arch;
16945
16946 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16947 if (attr != nullptr)
16948 encoding = DW_UNSND (attr);
16949 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16950 if (attr != nullptr)
16951 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16952 name = dwarf2_name (die, cu);
16953 if (!name)
16954 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16955
16956 arch = get_objfile_arch (objfile);
16957 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16958
16959 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16960 if (attr)
16961 {
16962 int endianity = DW_UNSND (attr);
16963
16964 switch (endianity)
16965 {
16966 case DW_END_big:
16967 byte_order = BFD_ENDIAN_BIG;
16968 break;
16969 case DW_END_little:
16970 byte_order = BFD_ENDIAN_LITTLE;
16971 break;
16972 default:
16973 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16974 break;
16975 }
16976 }
16977
16978 switch (encoding)
16979 {
16980 case DW_ATE_address:
16981 /* Turn DW_ATE_address into a void * pointer. */
16982 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16983 type = init_pointer_type (objfile, bits, name, type);
16984 break;
16985 case DW_ATE_boolean:
16986 type = init_boolean_type (objfile, bits, 1, name);
16987 break;
16988 case DW_ATE_complex_float:
16989 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16990 byte_order);
16991 type = init_complex_type (objfile, name, type);
16992 break;
16993 case DW_ATE_decimal_float:
16994 type = init_decfloat_type (objfile, bits, name);
16995 break;
16996 case DW_ATE_float:
16997 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
16998 break;
16999 case DW_ATE_signed:
17000 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17001 break;
17002 case DW_ATE_unsigned:
17003 if (cu->language == language_fortran
17004 && name
17005 && startswith (name, "character("))
17006 type = init_character_type (objfile, bits, 1, name);
17007 else
17008 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17009 break;
17010 case DW_ATE_signed_char:
17011 if (cu->language == language_ada || cu->language == language_m2
17012 || cu->language == language_pascal
17013 || cu->language == language_fortran)
17014 type = init_character_type (objfile, bits, 0, name);
17015 else
17016 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17017 break;
17018 case DW_ATE_unsigned_char:
17019 if (cu->language == language_ada || cu->language == language_m2
17020 || cu->language == language_pascal
17021 || cu->language == language_fortran
17022 || cu->language == language_rust)
17023 type = init_character_type (objfile, bits, 1, name);
17024 else
17025 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17026 break;
17027 case DW_ATE_UTF:
17028 {
17029 if (bits == 16)
17030 type = builtin_type (arch)->builtin_char16;
17031 else if (bits == 32)
17032 type = builtin_type (arch)->builtin_char32;
17033 else
17034 {
17035 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17036 bits);
17037 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17038 }
17039 return set_die_type (die, type, cu);
17040 }
17041 break;
17042
17043 default:
17044 complaint (_("unsupported DW_AT_encoding: '%s'"),
17045 dwarf_type_encoding_name (encoding));
17046 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17047 break;
17048 }
17049
17050 if (name && strcmp (name, "char") == 0)
17051 TYPE_NOSIGN (type) = 1;
17052
17053 maybe_set_alignment (cu, die, type);
17054
17055 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17056
17057 return set_die_type (die, type, cu);
17058 }
17059
17060 /* Parse dwarf attribute if it's a block, reference or constant and put the
17061 resulting value of the attribute into struct bound_prop.
17062 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17063
17064 static int
17065 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17066 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17067 struct type *default_type)
17068 {
17069 struct dwarf2_property_baton *baton;
17070 struct obstack *obstack
17071 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17072
17073 gdb_assert (default_type != NULL);
17074
17075 if (attr == NULL || prop == NULL)
17076 return 0;
17077
17078 if (attr->form_is_block ())
17079 {
17080 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17081 baton->property_type = default_type;
17082 baton->locexpr.per_cu = cu->per_cu;
17083 baton->locexpr.size = DW_BLOCK (attr)->size;
17084 baton->locexpr.data = DW_BLOCK (attr)->data;
17085 switch (attr->name)
17086 {
17087 case DW_AT_string_length:
17088 baton->locexpr.is_reference = true;
17089 break;
17090 default:
17091 baton->locexpr.is_reference = false;
17092 break;
17093 }
17094 prop->data.baton = baton;
17095 prop->kind = PROP_LOCEXPR;
17096 gdb_assert (prop->data.baton != NULL);
17097 }
17098 else if (attr->form_is_ref ())
17099 {
17100 struct dwarf2_cu *target_cu = cu;
17101 struct die_info *target_die;
17102 struct attribute *target_attr;
17103
17104 target_die = follow_die_ref (die, attr, &target_cu);
17105 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17106 if (target_attr == NULL)
17107 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17108 target_cu);
17109 if (target_attr == NULL)
17110 return 0;
17111
17112 switch (target_attr->name)
17113 {
17114 case DW_AT_location:
17115 if (target_attr->form_is_section_offset ())
17116 {
17117 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17118 baton->property_type = die_type (target_die, target_cu);
17119 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17120 prop->data.baton = baton;
17121 prop->kind = PROP_LOCLIST;
17122 gdb_assert (prop->data.baton != NULL);
17123 }
17124 else if (target_attr->form_is_block ())
17125 {
17126 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17127 baton->property_type = die_type (target_die, target_cu);
17128 baton->locexpr.per_cu = cu->per_cu;
17129 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17130 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17131 baton->locexpr.is_reference = true;
17132 prop->data.baton = baton;
17133 prop->kind = PROP_LOCEXPR;
17134 gdb_assert (prop->data.baton != NULL);
17135 }
17136 else
17137 {
17138 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17139 "dynamic property");
17140 return 0;
17141 }
17142 break;
17143 case DW_AT_data_member_location:
17144 {
17145 LONGEST offset;
17146
17147 if (!handle_data_member_location (target_die, target_cu,
17148 &offset))
17149 return 0;
17150
17151 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17152 baton->property_type = read_type_die (target_die->parent,
17153 target_cu);
17154 baton->offset_info.offset = offset;
17155 baton->offset_info.type = die_type (target_die, target_cu);
17156 prop->data.baton = baton;
17157 prop->kind = PROP_ADDR_OFFSET;
17158 break;
17159 }
17160 }
17161 }
17162 else if (attr->form_is_constant ())
17163 {
17164 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17165 prop->kind = PROP_CONST;
17166 }
17167 else
17168 {
17169 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17170 dwarf2_name (die, cu));
17171 return 0;
17172 }
17173
17174 return 1;
17175 }
17176
17177 /* See read.h. */
17178
17179 struct type *
17180 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17181 {
17182 struct objfile *objfile = dwarf2_per_objfile->objfile;
17183 struct type *int_type;
17184
17185 /* Helper macro to examine the various builtin types. */
17186 #define TRY_TYPE(F) \
17187 int_type = (unsigned_p \
17188 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17189 : objfile_type (objfile)->builtin_ ## F); \
17190 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17191 return int_type
17192
17193 TRY_TYPE (char);
17194 TRY_TYPE (short);
17195 TRY_TYPE (int);
17196 TRY_TYPE (long);
17197 TRY_TYPE (long_long);
17198
17199 #undef TRY_TYPE
17200
17201 gdb_assert_not_reached ("unable to find suitable integer type");
17202 }
17203
17204 /* See read.h. */
17205
17206 struct type *
17207 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17208 {
17209 int addr_size = this->addr_size ();
17210 return int_type (addr_size, unsigned_p);
17211 }
17212
17213 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17214 present (which is valid) then compute the default type based on the
17215 compilation units address size. */
17216
17217 static struct type *
17218 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17219 {
17220 struct type *index_type = die_type (die, cu);
17221
17222 /* Dwarf-2 specifications explicitly allows to create subrange types
17223 without specifying a base type.
17224 In that case, the base type must be set to the type of
17225 the lower bound, upper bound or count, in that order, if any of these
17226 three attributes references an object that has a type.
17227 If no base type is found, the Dwarf-2 specifications say that
17228 a signed integer type of size equal to the size of an address should
17229 be used.
17230 For the following C code: `extern char gdb_int [];'
17231 GCC produces an empty range DIE.
17232 FIXME: muller/2010-05-28: Possible references to object for low bound,
17233 high bound or count are not yet handled by this code. */
17234 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17235 index_type = cu->per_cu->addr_sized_int_type (false);
17236
17237 return index_type;
17238 }
17239
17240 /* Read the given DW_AT_subrange DIE. */
17241
17242 static struct type *
17243 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17244 {
17245 struct type *base_type, *orig_base_type;
17246 struct type *range_type;
17247 struct attribute *attr;
17248 struct dynamic_prop low, high;
17249 int low_default_is_valid;
17250 int high_bound_is_count = 0;
17251 const char *name;
17252 ULONGEST negative_mask;
17253
17254 orig_base_type = read_subrange_index_type (die, cu);
17255
17256 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17257 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17258 creating the range type, but we use the result of check_typedef
17259 when examining properties of the type. */
17260 base_type = check_typedef (orig_base_type);
17261
17262 /* The die_type call above may have already set the type for this DIE. */
17263 range_type = get_die_type (die, cu);
17264 if (range_type)
17265 return range_type;
17266
17267 low.kind = PROP_CONST;
17268 high.kind = PROP_CONST;
17269 high.data.const_val = 0;
17270
17271 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17272 omitting DW_AT_lower_bound. */
17273 switch (cu->language)
17274 {
17275 case language_c:
17276 case language_cplus:
17277 low.data.const_val = 0;
17278 low_default_is_valid = 1;
17279 break;
17280 case language_fortran:
17281 low.data.const_val = 1;
17282 low_default_is_valid = 1;
17283 break;
17284 case language_d:
17285 case language_objc:
17286 case language_rust:
17287 low.data.const_val = 0;
17288 low_default_is_valid = (cu->header.version >= 4);
17289 break;
17290 case language_ada:
17291 case language_m2:
17292 case language_pascal:
17293 low.data.const_val = 1;
17294 low_default_is_valid = (cu->header.version >= 4);
17295 break;
17296 default:
17297 low.data.const_val = 0;
17298 low_default_is_valid = 0;
17299 break;
17300 }
17301
17302 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17303 if (attr != nullptr)
17304 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17305 else if (!low_default_is_valid)
17306 complaint (_("Missing DW_AT_lower_bound "
17307 "- DIE at %s [in module %s]"),
17308 sect_offset_str (die->sect_off),
17309 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17310
17311 struct attribute *attr_ub, *attr_count;
17312 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17313 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17314 {
17315 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17316 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17317 {
17318 /* If bounds are constant do the final calculation here. */
17319 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17320 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17321 else
17322 high_bound_is_count = 1;
17323 }
17324 else
17325 {
17326 if (attr_ub != NULL)
17327 complaint (_("Unresolved DW_AT_upper_bound "
17328 "- DIE at %s [in module %s]"),
17329 sect_offset_str (die->sect_off),
17330 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17331 if (attr_count != NULL)
17332 complaint (_("Unresolved DW_AT_count "
17333 "- DIE at %s [in module %s]"),
17334 sect_offset_str (die->sect_off),
17335 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17336 }
17337 }
17338
17339 LONGEST bias = 0;
17340 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17341 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17342 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17343
17344 /* Normally, the DWARF producers are expected to use a signed
17345 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17346 But this is unfortunately not always the case, as witnessed
17347 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17348 is used instead. To work around that ambiguity, we treat
17349 the bounds as signed, and thus sign-extend their values, when
17350 the base type is signed. */
17351 negative_mask =
17352 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17353 if (low.kind == PROP_CONST
17354 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17355 low.data.const_val |= negative_mask;
17356 if (high.kind == PROP_CONST
17357 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17358 high.data.const_val |= negative_mask;
17359
17360 /* Check for bit and byte strides. */
17361 struct dynamic_prop byte_stride_prop;
17362 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17363 if (attr_byte_stride != nullptr)
17364 {
17365 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17366 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17367 prop_type);
17368 }
17369
17370 struct dynamic_prop bit_stride_prop;
17371 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17372 if (attr_bit_stride != nullptr)
17373 {
17374 /* It only makes sense to have either a bit or byte stride. */
17375 if (attr_byte_stride != nullptr)
17376 {
17377 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17378 "- DIE at %s [in module %s]"),
17379 sect_offset_str (die->sect_off),
17380 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17381 attr_bit_stride = nullptr;
17382 }
17383 else
17384 {
17385 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17386 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17387 prop_type);
17388 }
17389 }
17390
17391 if (attr_byte_stride != nullptr
17392 || attr_bit_stride != nullptr)
17393 {
17394 bool byte_stride_p = (attr_byte_stride != nullptr);
17395 struct dynamic_prop *stride
17396 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17397
17398 range_type
17399 = create_range_type_with_stride (NULL, orig_base_type, &low,
17400 &high, bias, stride, byte_stride_p);
17401 }
17402 else
17403 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17404
17405 if (high_bound_is_count)
17406 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17407
17408 /* Ada expects an empty array on no boundary attributes. */
17409 if (attr == NULL && cu->language != language_ada)
17410 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17411
17412 name = dwarf2_name (die, cu);
17413 if (name)
17414 TYPE_NAME (range_type) = name;
17415
17416 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17417 if (attr != nullptr)
17418 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17419
17420 maybe_set_alignment (cu, die, range_type);
17421
17422 set_die_type (die, range_type, cu);
17423
17424 /* set_die_type should be already done. */
17425 set_descriptive_type (range_type, die, cu);
17426
17427 return range_type;
17428 }
17429
17430 static struct type *
17431 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17432 {
17433 struct type *type;
17434
17435 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17436 NULL);
17437 TYPE_NAME (type) = dwarf2_name (die, cu);
17438
17439 /* In Ada, an unspecified type is typically used when the description
17440 of the type is deferred to a different unit. When encountering
17441 such a type, we treat it as a stub, and try to resolve it later on,
17442 when needed. */
17443 if (cu->language == language_ada)
17444 TYPE_STUB (type) = 1;
17445
17446 return set_die_type (die, type, cu);
17447 }
17448
17449 /* Read a single die and all its descendents. Set the die's sibling
17450 field to NULL; set other fields in the die correctly, and set all
17451 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17452 location of the info_ptr after reading all of those dies. PARENT
17453 is the parent of the die in question. */
17454
17455 static struct die_info *
17456 read_die_and_children (const struct die_reader_specs *reader,
17457 const gdb_byte *info_ptr,
17458 const gdb_byte **new_info_ptr,
17459 struct die_info *parent)
17460 {
17461 struct die_info *die;
17462 const gdb_byte *cur_ptr;
17463
17464 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17465 if (die == NULL)
17466 {
17467 *new_info_ptr = cur_ptr;
17468 return NULL;
17469 }
17470 store_in_ref_table (die, reader->cu);
17471
17472 if (die->has_children)
17473 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17474 else
17475 {
17476 die->child = NULL;
17477 *new_info_ptr = cur_ptr;
17478 }
17479
17480 die->sibling = NULL;
17481 die->parent = parent;
17482 return die;
17483 }
17484
17485 /* Read a die, all of its descendents, and all of its siblings; set
17486 all of the fields of all of the dies correctly. Arguments are as
17487 in read_die_and_children. */
17488
17489 static struct die_info *
17490 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17491 const gdb_byte *info_ptr,
17492 const gdb_byte **new_info_ptr,
17493 struct die_info *parent)
17494 {
17495 struct die_info *first_die, *last_sibling;
17496 const gdb_byte *cur_ptr;
17497
17498 cur_ptr = info_ptr;
17499 first_die = last_sibling = NULL;
17500
17501 while (1)
17502 {
17503 struct die_info *die
17504 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17505
17506 if (die == NULL)
17507 {
17508 *new_info_ptr = cur_ptr;
17509 return first_die;
17510 }
17511
17512 if (!first_die)
17513 first_die = die;
17514 else
17515 last_sibling->sibling = die;
17516
17517 last_sibling = die;
17518 }
17519 }
17520
17521 /* Read a die, all of its descendents, and all of its siblings; set
17522 all of the fields of all of the dies correctly. Arguments are as
17523 in read_die_and_children.
17524 This the main entry point for reading a DIE and all its children. */
17525
17526 static struct die_info *
17527 read_die_and_siblings (const struct die_reader_specs *reader,
17528 const gdb_byte *info_ptr,
17529 const gdb_byte **new_info_ptr,
17530 struct die_info *parent)
17531 {
17532 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17533 new_info_ptr, parent);
17534
17535 if (dwarf_die_debug)
17536 {
17537 fprintf_unfiltered (gdb_stdlog,
17538 "Read die from %s@0x%x of %s:\n",
17539 reader->die_section->get_name (),
17540 (unsigned) (info_ptr - reader->die_section->buffer),
17541 bfd_get_filename (reader->abfd));
17542 dump_die (die, dwarf_die_debug);
17543 }
17544
17545 return die;
17546 }
17547
17548 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17549 attributes.
17550 The caller is responsible for filling in the extra attributes
17551 and updating (*DIEP)->num_attrs.
17552 Set DIEP to point to a newly allocated die with its information,
17553 except for its child, sibling, and parent fields. */
17554
17555 static const gdb_byte *
17556 read_full_die_1 (const struct die_reader_specs *reader,
17557 struct die_info **diep, const gdb_byte *info_ptr,
17558 int num_extra_attrs)
17559 {
17560 unsigned int abbrev_number, bytes_read, i;
17561 struct abbrev_info *abbrev;
17562 struct die_info *die;
17563 struct dwarf2_cu *cu = reader->cu;
17564 bfd *abfd = reader->abfd;
17565
17566 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17567 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17568 info_ptr += bytes_read;
17569 if (!abbrev_number)
17570 {
17571 *diep = NULL;
17572 return info_ptr;
17573 }
17574
17575 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17576 if (!abbrev)
17577 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17578 abbrev_number,
17579 bfd_get_filename (abfd));
17580
17581 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17582 die->sect_off = sect_off;
17583 die->tag = abbrev->tag;
17584 die->abbrev = abbrev_number;
17585 die->has_children = abbrev->has_children;
17586
17587 /* Make the result usable.
17588 The caller needs to update num_attrs after adding the extra
17589 attributes. */
17590 die->num_attrs = abbrev->num_attrs;
17591
17592 std::vector<int> indexes_that_need_reprocess;
17593 for (i = 0; i < abbrev->num_attrs; ++i)
17594 {
17595 bool need_reprocess;
17596 info_ptr =
17597 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17598 info_ptr, &need_reprocess);
17599 if (need_reprocess)
17600 indexes_that_need_reprocess.push_back (i);
17601 }
17602
17603 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
17604 if (attr != nullptr)
17605 cu->str_offsets_base = DW_UNSND (attr);
17606
17607 auto maybe_addr_base = lookup_addr_base(die);
17608 if (maybe_addr_base.has_value ())
17609 cu->addr_base = *maybe_addr_base;
17610 for (int index : indexes_that_need_reprocess)
17611 read_attribute_reprocess (reader, &die->attrs[index]);
17612 *diep = die;
17613 return info_ptr;
17614 }
17615
17616 /* Read a die and all its attributes.
17617 Set DIEP to point to a newly allocated die with its information,
17618 except for its child, sibling, and parent fields. */
17619
17620 static const gdb_byte *
17621 read_full_die (const struct die_reader_specs *reader,
17622 struct die_info **diep, const gdb_byte *info_ptr)
17623 {
17624 const gdb_byte *result;
17625
17626 result = read_full_die_1 (reader, diep, info_ptr, 0);
17627
17628 if (dwarf_die_debug)
17629 {
17630 fprintf_unfiltered (gdb_stdlog,
17631 "Read die from %s@0x%x of %s:\n",
17632 reader->die_section->get_name (),
17633 (unsigned) (info_ptr - reader->die_section->buffer),
17634 bfd_get_filename (reader->abfd));
17635 dump_die (*diep, dwarf_die_debug);
17636 }
17637
17638 return result;
17639 }
17640 \f
17641
17642 /* Returns nonzero if TAG represents a type that we might generate a partial
17643 symbol for. */
17644
17645 static int
17646 is_type_tag_for_partial (int tag)
17647 {
17648 switch (tag)
17649 {
17650 #if 0
17651 /* Some types that would be reasonable to generate partial symbols for,
17652 that we don't at present. */
17653 case DW_TAG_array_type:
17654 case DW_TAG_file_type:
17655 case DW_TAG_ptr_to_member_type:
17656 case DW_TAG_set_type:
17657 case DW_TAG_string_type:
17658 case DW_TAG_subroutine_type:
17659 #endif
17660 case DW_TAG_base_type:
17661 case DW_TAG_class_type:
17662 case DW_TAG_interface_type:
17663 case DW_TAG_enumeration_type:
17664 case DW_TAG_structure_type:
17665 case DW_TAG_subrange_type:
17666 case DW_TAG_typedef:
17667 case DW_TAG_union_type:
17668 return 1;
17669 default:
17670 return 0;
17671 }
17672 }
17673
17674 /* Load all DIEs that are interesting for partial symbols into memory. */
17675
17676 static struct partial_die_info *
17677 load_partial_dies (const struct die_reader_specs *reader,
17678 const gdb_byte *info_ptr, int building_psymtab)
17679 {
17680 struct dwarf2_cu *cu = reader->cu;
17681 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17682 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17683 unsigned int bytes_read;
17684 unsigned int load_all = 0;
17685 int nesting_level = 1;
17686
17687 parent_die = NULL;
17688 last_die = NULL;
17689
17690 gdb_assert (cu->per_cu != NULL);
17691 if (cu->per_cu->load_all_dies)
17692 load_all = 1;
17693
17694 cu->partial_dies
17695 = htab_create_alloc_ex (cu->header.length / 12,
17696 partial_die_hash,
17697 partial_die_eq,
17698 NULL,
17699 &cu->comp_unit_obstack,
17700 hashtab_obstack_allocate,
17701 dummy_obstack_deallocate);
17702
17703 while (1)
17704 {
17705 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17706
17707 /* A NULL abbrev means the end of a series of children. */
17708 if (abbrev == NULL)
17709 {
17710 if (--nesting_level == 0)
17711 return first_die;
17712
17713 info_ptr += bytes_read;
17714 last_die = parent_die;
17715 parent_die = parent_die->die_parent;
17716 continue;
17717 }
17718
17719 /* Check for template arguments. We never save these; if
17720 they're seen, we just mark the parent, and go on our way. */
17721 if (parent_die != NULL
17722 && cu->language == language_cplus
17723 && (abbrev->tag == DW_TAG_template_type_param
17724 || abbrev->tag == DW_TAG_template_value_param))
17725 {
17726 parent_die->has_template_arguments = 1;
17727
17728 if (!load_all)
17729 {
17730 /* We don't need a partial DIE for the template argument. */
17731 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17732 continue;
17733 }
17734 }
17735
17736 /* We only recurse into c++ subprograms looking for template arguments.
17737 Skip their other children. */
17738 if (!load_all
17739 && cu->language == language_cplus
17740 && parent_die != NULL
17741 && parent_die->tag == DW_TAG_subprogram)
17742 {
17743 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17744 continue;
17745 }
17746
17747 /* Check whether this DIE is interesting enough to save. Normally
17748 we would not be interested in members here, but there may be
17749 later variables referencing them via DW_AT_specification (for
17750 static members). */
17751 if (!load_all
17752 && !is_type_tag_for_partial (abbrev->tag)
17753 && abbrev->tag != DW_TAG_constant
17754 && abbrev->tag != DW_TAG_enumerator
17755 && abbrev->tag != DW_TAG_subprogram
17756 && abbrev->tag != DW_TAG_inlined_subroutine
17757 && abbrev->tag != DW_TAG_lexical_block
17758 && abbrev->tag != DW_TAG_variable
17759 && abbrev->tag != DW_TAG_namespace
17760 && abbrev->tag != DW_TAG_module
17761 && abbrev->tag != DW_TAG_member
17762 && abbrev->tag != DW_TAG_imported_unit
17763 && abbrev->tag != DW_TAG_imported_declaration)
17764 {
17765 /* Otherwise we skip to the next sibling, if any. */
17766 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17767 continue;
17768 }
17769
17770 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17771 abbrev);
17772
17773 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17774
17775 /* This two-pass algorithm for processing partial symbols has a
17776 high cost in cache pressure. Thus, handle some simple cases
17777 here which cover the majority of C partial symbols. DIEs
17778 which neither have specification tags in them, nor could have
17779 specification tags elsewhere pointing at them, can simply be
17780 processed and discarded.
17781
17782 This segment is also optional; scan_partial_symbols and
17783 add_partial_symbol will handle these DIEs if we chain
17784 them in normally. When compilers which do not emit large
17785 quantities of duplicate debug information are more common,
17786 this code can probably be removed. */
17787
17788 /* Any complete simple types at the top level (pretty much all
17789 of them, for a language without namespaces), can be processed
17790 directly. */
17791 if (parent_die == NULL
17792 && pdi.has_specification == 0
17793 && pdi.is_declaration == 0
17794 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17795 || pdi.tag == DW_TAG_base_type
17796 || pdi.tag == DW_TAG_subrange_type))
17797 {
17798 if (building_psymtab && pdi.name != NULL)
17799 add_psymbol_to_list (pdi.name, false,
17800 VAR_DOMAIN, LOC_TYPEDEF, -1,
17801 psymbol_placement::STATIC,
17802 0, cu->language, objfile);
17803 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17804 continue;
17805 }
17806
17807 /* The exception for DW_TAG_typedef with has_children above is
17808 a workaround of GCC PR debug/47510. In the case of this complaint
17809 type_name_or_error will error on such types later.
17810
17811 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17812 it could not find the child DIEs referenced later, this is checked
17813 above. In correct DWARF DW_TAG_typedef should have no children. */
17814
17815 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17816 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17817 "- DIE at %s [in module %s]"),
17818 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17819
17820 /* If we're at the second level, and we're an enumerator, and
17821 our parent has no specification (meaning possibly lives in a
17822 namespace elsewhere), then we can add the partial symbol now
17823 instead of queueing it. */
17824 if (pdi.tag == DW_TAG_enumerator
17825 && parent_die != NULL
17826 && parent_die->die_parent == NULL
17827 && parent_die->tag == DW_TAG_enumeration_type
17828 && parent_die->has_specification == 0)
17829 {
17830 if (pdi.name == NULL)
17831 complaint (_("malformed enumerator DIE ignored"));
17832 else if (building_psymtab)
17833 add_psymbol_to_list (pdi.name, false,
17834 VAR_DOMAIN, LOC_CONST, -1,
17835 cu->language == language_cplus
17836 ? psymbol_placement::GLOBAL
17837 : psymbol_placement::STATIC,
17838 0, cu->language, objfile);
17839
17840 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17841 continue;
17842 }
17843
17844 struct partial_die_info *part_die
17845 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17846
17847 /* We'll save this DIE so link it in. */
17848 part_die->die_parent = parent_die;
17849 part_die->die_sibling = NULL;
17850 part_die->die_child = NULL;
17851
17852 if (last_die && last_die == parent_die)
17853 last_die->die_child = part_die;
17854 else if (last_die)
17855 last_die->die_sibling = part_die;
17856
17857 last_die = part_die;
17858
17859 if (first_die == NULL)
17860 first_die = part_die;
17861
17862 /* Maybe add the DIE to the hash table. Not all DIEs that we
17863 find interesting need to be in the hash table, because we
17864 also have the parent/sibling/child chains; only those that we
17865 might refer to by offset later during partial symbol reading.
17866
17867 For now this means things that might have be the target of a
17868 DW_AT_specification, DW_AT_abstract_origin, or
17869 DW_AT_extension. DW_AT_extension will refer only to
17870 namespaces; DW_AT_abstract_origin refers to functions (and
17871 many things under the function DIE, but we do not recurse
17872 into function DIEs during partial symbol reading) and
17873 possibly variables as well; DW_AT_specification refers to
17874 declarations. Declarations ought to have the DW_AT_declaration
17875 flag. It happens that GCC forgets to put it in sometimes, but
17876 only for functions, not for types.
17877
17878 Adding more things than necessary to the hash table is harmless
17879 except for the performance cost. Adding too few will result in
17880 wasted time in find_partial_die, when we reread the compilation
17881 unit with load_all_dies set. */
17882
17883 if (load_all
17884 || abbrev->tag == DW_TAG_constant
17885 || abbrev->tag == DW_TAG_subprogram
17886 || abbrev->tag == DW_TAG_variable
17887 || abbrev->tag == DW_TAG_namespace
17888 || part_die->is_declaration)
17889 {
17890 void **slot;
17891
17892 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17893 to_underlying (part_die->sect_off),
17894 INSERT);
17895 *slot = part_die;
17896 }
17897
17898 /* For some DIEs we want to follow their children (if any). For C
17899 we have no reason to follow the children of structures; for other
17900 languages we have to, so that we can get at method physnames
17901 to infer fully qualified class names, for DW_AT_specification,
17902 and for C++ template arguments. For C++, we also look one level
17903 inside functions to find template arguments (if the name of the
17904 function does not already contain the template arguments).
17905
17906 For Ada and Fortran, we need to scan the children of subprograms
17907 and lexical blocks as well because these languages allow the
17908 definition of nested entities that could be interesting for the
17909 debugger, such as nested subprograms for instance. */
17910 if (last_die->has_children
17911 && (load_all
17912 || last_die->tag == DW_TAG_namespace
17913 || last_die->tag == DW_TAG_module
17914 || last_die->tag == DW_TAG_enumeration_type
17915 || (cu->language == language_cplus
17916 && last_die->tag == DW_TAG_subprogram
17917 && (last_die->name == NULL
17918 || strchr (last_die->name, '<') == NULL))
17919 || (cu->language != language_c
17920 && (last_die->tag == DW_TAG_class_type
17921 || last_die->tag == DW_TAG_interface_type
17922 || last_die->tag == DW_TAG_structure_type
17923 || last_die->tag == DW_TAG_union_type))
17924 || ((cu->language == language_ada
17925 || cu->language == language_fortran)
17926 && (last_die->tag == DW_TAG_subprogram
17927 || last_die->tag == DW_TAG_lexical_block))))
17928 {
17929 nesting_level++;
17930 parent_die = last_die;
17931 continue;
17932 }
17933
17934 /* Otherwise we skip to the next sibling, if any. */
17935 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17936
17937 /* Back to the top, do it again. */
17938 }
17939 }
17940
17941 partial_die_info::partial_die_info (sect_offset sect_off_,
17942 struct abbrev_info *abbrev)
17943 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17944 {
17945 }
17946
17947 /* Read a minimal amount of information into the minimal die structure.
17948 INFO_PTR should point just after the initial uleb128 of a DIE. */
17949
17950 const gdb_byte *
17951 partial_die_info::read (const struct die_reader_specs *reader,
17952 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17953 {
17954 struct dwarf2_cu *cu = reader->cu;
17955 struct dwarf2_per_objfile *dwarf2_per_objfile
17956 = cu->per_cu->dwarf2_per_objfile;
17957 unsigned int i;
17958 int has_low_pc_attr = 0;
17959 int has_high_pc_attr = 0;
17960 int high_pc_relative = 0;
17961
17962 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
17963 for (i = 0; i < abbrev.num_attrs; ++i)
17964 {
17965 bool need_reprocess;
17966 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
17967 info_ptr, &need_reprocess);
17968 /* String and address offsets that need to do the reprocessing have
17969 already been read at this point, so there is no need to wait until
17970 the loop terminates to do the reprocessing. */
17971 if (need_reprocess)
17972 read_attribute_reprocess (reader, &attr_vec[i]);
17973 attribute &attr = attr_vec[i];
17974 /* Store the data if it is of an attribute we want to keep in a
17975 partial symbol table. */
17976 switch (attr.name)
17977 {
17978 case DW_AT_name:
17979 switch (tag)
17980 {
17981 case DW_TAG_compile_unit:
17982 case DW_TAG_partial_unit:
17983 case DW_TAG_type_unit:
17984 /* Compilation units have a DW_AT_name that is a filename, not
17985 a source language identifier. */
17986 case DW_TAG_enumeration_type:
17987 case DW_TAG_enumerator:
17988 /* These tags always have simple identifiers already; no need
17989 to canonicalize them. */
17990 name = DW_STRING (&attr);
17991 break;
17992 default:
17993 {
17994 struct objfile *objfile = dwarf2_per_objfile->objfile;
17995
17996 name
17997 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17998 &objfile->per_bfd->storage_obstack);
17999 }
18000 break;
18001 }
18002 break;
18003 case DW_AT_linkage_name:
18004 case DW_AT_MIPS_linkage_name:
18005 /* Note that both forms of linkage name might appear. We
18006 assume they will be the same, and we only store the last
18007 one we see. */
18008 linkage_name = DW_STRING (&attr);
18009 break;
18010 case DW_AT_low_pc:
18011 has_low_pc_attr = 1;
18012 lowpc = attr.value_as_address ();
18013 break;
18014 case DW_AT_high_pc:
18015 has_high_pc_attr = 1;
18016 highpc = attr.value_as_address ();
18017 if (cu->header.version >= 4 && attr.form_is_constant ())
18018 high_pc_relative = 1;
18019 break;
18020 case DW_AT_location:
18021 /* Support the .debug_loc offsets. */
18022 if (attr.form_is_block ())
18023 {
18024 d.locdesc = DW_BLOCK (&attr);
18025 }
18026 else if (attr.form_is_section_offset ())
18027 {
18028 dwarf2_complex_location_expr_complaint ();
18029 }
18030 else
18031 {
18032 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18033 "partial symbol information");
18034 }
18035 break;
18036 case DW_AT_external:
18037 is_external = DW_UNSND (&attr);
18038 break;
18039 case DW_AT_declaration:
18040 is_declaration = DW_UNSND (&attr);
18041 break;
18042 case DW_AT_type:
18043 has_type = 1;
18044 break;
18045 case DW_AT_abstract_origin:
18046 case DW_AT_specification:
18047 case DW_AT_extension:
18048 has_specification = 1;
18049 spec_offset = dwarf2_get_ref_die_offset (&attr);
18050 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18051 || cu->per_cu->is_dwz);
18052 break;
18053 case DW_AT_sibling:
18054 /* Ignore absolute siblings, they might point outside of
18055 the current compile unit. */
18056 if (attr.form == DW_FORM_ref_addr)
18057 complaint (_("ignoring absolute DW_AT_sibling"));
18058 else
18059 {
18060 const gdb_byte *buffer = reader->buffer;
18061 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18062 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18063
18064 if (sibling_ptr < info_ptr)
18065 complaint (_("DW_AT_sibling points backwards"));
18066 else if (sibling_ptr > reader->buffer_end)
18067 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18068 else
18069 sibling = sibling_ptr;
18070 }
18071 break;
18072 case DW_AT_byte_size:
18073 has_byte_size = 1;
18074 break;
18075 case DW_AT_const_value:
18076 has_const_value = 1;
18077 break;
18078 case DW_AT_calling_convention:
18079 /* DWARF doesn't provide a way to identify a program's source-level
18080 entry point. DW_AT_calling_convention attributes are only meant
18081 to describe functions' calling conventions.
18082
18083 However, because it's a necessary piece of information in
18084 Fortran, and before DWARF 4 DW_CC_program was the only
18085 piece of debugging information whose definition refers to
18086 a 'main program' at all, several compilers marked Fortran
18087 main programs with DW_CC_program --- even when those
18088 functions use the standard calling conventions.
18089
18090 Although DWARF now specifies a way to provide this
18091 information, we support this practice for backward
18092 compatibility. */
18093 if (DW_UNSND (&attr) == DW_CC_program
18094 && cu->language == language_fortran)
18095 main_subprogram = 1;
18096 break;
18097 case DW_AT_inline:
18098 if (DW_UNSND (&attr) == DW_INL_inlined
18099 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18100 may_be_inlined = 1;
18101 break;
18102
18103 case DW_AT_import:
18104 if (tag == DW_TAG_imported_unit)
18105 {
18106 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18107 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18108 || cu->per_cu->is_dwz);
18109 }
18110 break;
18111
18112 case DW_AT_main_subprogram:
18113 main_subprogram = DW_UNSND (&attr);
18114 break;
18115
18116 case DW_AT_ranges:
18117 {
18118 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18119 but that requires a full DIE, so instead we just
18120 reimplement it. */
18121 int need_ranges_base = tag != DW_TAG_compile_unit;
18122 unsigned int ranges_offset = (DW_UNSND (&attr)
18123 + (need_ranges_base
18124 ? cu->ranges_base
18125 : 0));
18126
18127 /* Value of the DW_AT_ranges attribute is the offset in the
18128 .debug_ranges section. */
18129 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18130 nullptr))
18131 has_pc_info = 1;
18132 }
18133 break;
18134
18135 default:
18136 break;
18137 }
18138 }
18139
18140 /* For Ada, if both the name and the linkage name appear, we prefer
18141 the latter. This lets "catch exception" work better, regardless
18142 of the order in which the name and linkage name were emitted.
18143 Really, though, this is just a workaround for the fact that gdb
18144 doesn't store both the name and the linkage name. */
18145 if (cu->language == language_ada && linkage_name != nullptr)
18146 name = linkage_name;
18147
18148 if (high_pc_relative)
18149 highpc += lowpc;
18150
18151 if (has_low_pc_attr && has_high_pc_attr)
18152 {
18153 /* When using the GNU linker, .gnu.linkonce. sections are used to
18154 eliminate duplicate copies of functions and vtables and such.
18155 The linker will arbitrarily choose one and discard the others.
18156 The AT_*_pc values for such functions refer to local labels in
18157 these sections. If the section from that file was discarded, the
18158 labels are not in the output, so the relocs get a value of 0.
18159 If this is a discarded function, mark the pc bounds as invalid,
18160 so that GDB will ignore it. */
18161 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18162 {
18163 struct objfile *objfile = dwarf2_per_objfile->objfile;
18164 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18165
18166 complaint (_("DW_AT_low_pc %s is zero "
18167 "for DIE at %s [in module %s]"),
18168 paddress (gdbarch, lowpc),
18169 sect_offset_str (sect_off),
18170 objfile_name (objfile));
18171 }
18172 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18173 else if (lowpc >= highpc)
18174 {
18175 struct objfile *objfile = dwarf2_per_objfile->objfile;
18176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18177
18178 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18179 "for DIE at %s [in module %s]"),
18180 paddress (gdbarch, lowpc),
18181 paddress (gdbarch, highpc),
18182 sect_offset_str (sect_off),
18183 objfile_name (objfile));
18184 }
18185 else
18186 has_pc_info = 1;
18187 }
18188
18189 return info_ptr;
18190 }
18191
18192 /* Find a cached partial DIE at OFFSET in CU. */
18193
18194 struct partial_die_info *
18195 dwarf2_cu::find_partial_die (sect_offset sect_off)
18196 {
18197 struct partial_die_info *lookup_die = NULL;
18198 struct partial_die_info part_die (sect_off);
18199
18200 lookup_die = ((struct partial_die_info *)
18201 htab_find_with_hash (partial_dies, &part_die,
18202 to_underlying (sect_off)));
18203
18204 return lookup_die;
18205 }
18206
18207 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18208 except in the case of .debug_types DIEs which do not reference
18209 outside their CU (they do however referencing other types via
18210 DW_FORM_ref_sig8). */
18211
18212 static const struct cu_partial_die_info
18213 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18214 {
18215 struct dwarf2_per_objfile *dwarf2_per_objfile
18216 = cu->per_cu->dwarf2_per_objfile;
18217 struct objfile *objfile = dwarf2_per_objfile->objfile;
18218 struct dwarf2_per_cu_data *per_cu = NULL;
18219 struct partial_die_info *pd = NULL;
18220
18221 if (offset_in_dwz == cu->per_cu->is_dwz
18222 && cu->header.offset_in_cu_p (sect_off))
18223 {
18224 pd = cu->find_partial_die (sect_off);
18225 if (pd != NULL)
18226 return { cu, pd };
18227 /* We missed recording what we needed.
18228 Load all dies and try again. */
18229 per_cu = cu->per_cu;
18230 }
18231 else
18232 {
18233 /* TUs don't reference other CUs/TUs (except via type signatures). */
18234 if (cu->per_cu->is_debug_types)
18235 {
18236 error (_("Dwarf Error: Type Unit at offset %s contains"
18237 " external reference to offset %s [in module %s].\n"),
18238 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18239 bfd_get_filename (objfile->obfd));
18240 }
18241 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18242 dwarf2_per_objfile);
18243
18244 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18245 load_partial_comp_unit (per_cu);
18246
18247 per_cu->cu->last_used = 0;
18248 pd = per_cu->cu->find_partial_die (sect_off);
18249 }
18250
18251 /* If we didn't find it, and not all dies have been loaded,
18252 load them all and try again. */
18253
18254 if (pd == NULL && per_cu->load_all_dies == 0)
18255 {
18256 per_cu->load_all_dies = 1;
18257
18258 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18259 THIS_CU->cu may already be in use. So we can't just free it and
18260 replace its DIEs with the ones we read in. Instead, we leave those
18261 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18262 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18263 set. */
18264 load_partial_comp_unit (per_cu);
18265
18266 pd = per_cu->cu->find_partial_die (sect_off);
18267 }
18268
18269 if (pd == NULL)
18270 internal_error (__FILE__, __LINE__,
18271 _("could not find partial DIE %s "
18272 "in cache [from module %s]\n"),
18273 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18274 return { per_cu->cu, pd };
18275 }
18276
18277 /* See if we can figure out if the class lives in a namespace. We do
18278 this by looking for a member function; its demangled name will
18279 contain namespace info, if there is any. */
18280
18281 static void
18282 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18283 struct dwarf2_cu *cu)
18284 {
18285 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18286 what template types look like, because the demangler
18287 frequently doesn't give the same name as the debug info. We
18288 could fix this by only using the demangled name to get the
18289 prefix (but see comment in read_structure_type). */
18290
18291 struct partial_die_info *real_pdi;
18292 struct partial_die_info *child_pdi;
18293
18294 /* If this DIE (this DIE's specification, if any) has a parent, then
18295 we should not do this. We'll prepend the parent's fully qualified
18296 name when we create the partial symbol. */
18297
18298 real_pdi = struct_pdi;
18299 while (real_pdi->has_specification)
18300 {
18301 auto res = find_partial_die (real_pdi->spec_offset,
18302 real_pdi->spec_is_dwz, cu);
18303 real_pdi = res.pdi;
18304 cu = res.cu;
18305 }
18306
18307 if (real_pdi->die_parent != NULL)
18308 return;
18309
18310 for (child_pdi = struct_pdi->die_child;
18311 child_pdi != NULL;
18312 child_pdi = child_pdi->die_sibling)
18313 {
18314 if (child_pdi->tag == DW_TAG_subprogram
18315 && child_pdi->linkage_name != NULL)
18316 {
18317 gdb::unique_xmalloc_ptr<char> actual_class_name
18318 (language_class_name_from_physname (cu->language_defn,
18319 child_pdi->linkage_name));
18320 if (actual_class_name != NULL)
18321 {
18322 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18323 struct_pdi->name
18324 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18325 actual_class_name.get ());
18326 }
18327 break;
18328 }
18329 }
18330 }
18331
18332 void
18333 partial_die_info::fixup (struct dwarf2_cu *cu)
18334 {
18335 /* Once we've fixed up a die, there's no point in doing so again.
18336 This also avoids a memory leak if we were to call
18337 guess_partial_die_structure_name multiple times. */
18338 if (fixup_called)
18339 return;
18340
18341 /* If we found a reference attribute and the DIE has no name, try
18342 to find a name in the referred to DIE. */
18343
18344 if (name == NULL && has_specification)
18345 {
18346 struct partial_die_info *spec_die;
18347
18348 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18349 spec_die = res.pdi;
18350 cu = res.cu;
18351
18352 spec_die->fixup (cu);
18353
18354 if (spec_die->name)
18355 {
18356 name = spec_die->name;
18357
18358 /* Copy DW_AT_external attribute if it is set. */
18359 if (spec_die->is_external)
18360 is_external = spec_die->is_external;
18361 }
18362 }
18363
18364 /* Set default names for some unnamed DIEs. */
18365
18366 if (name == NULL && tag == DW_TAG_namespace)
18367 name = CP_ANONYMOUS_NAMESPACE_STR;
18368
18369 /* If there is no parent die to provide a namespace, and there are
18370 children, see if we can determine the namespace from their linkage
18371 name. */
18372 if (cu->language == language_cplus
18373 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18374 && die_parent == NULL
18375 && has_children
18376 && (tag == DW_TAG_class_type
18377 || tag == DW_TAG_structure_type
18378 || tag == DW_TAG_union_type))
18379 guess_partial_die_structure_name (this, cu);
18380
18381 /* GCC might emit a nameless struct or union that has a linkage
18382 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18383 if (name == NULL
18384 && (tag == DW_TAG_class_type
18385 || tag == DW_TAG_interface_type
18386 || tag == DW_TAG_structure_type
18387 || tag == DW_TAG_union_type)
18388 && linkage_name != NULL)
18389 {
18390 gdb::unique_xmalloc_ptr<char> demangled
18391 (gdb_demangle (linkage_name, DMGL_TYPES));
18392 if (demangled != nullptr)
18393 {
18394 const char *base;
18395
18396 /* Strip any leading namespaces/classes, keep only the base name.
18397 DW_AT_name for named DIEs does not contain the prefixes. */
18398 base = strrchr (demangled.get (), ':');
18399 if (base && base > demangled.get () && base[-1] == ':')
18400 base++;
18401 else
18402 base = demangled.get ();
18403
18404 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18405 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18406 }
18407 }
18408
18409 fixup_called = 1;
18410 }
18411
18412 /* Process the attributes that had to be skipped in the first round. These
18413 attributes are the ones that need str_offsets_base or addr_base attributes.
18414 They could not have been processed in the first round, because at the time
18415 the values of str_offsets_base or addr_base may not have been known. */
18416 void read_attribute_reprocess (const struct die_reader_specs *reader,
18417 struct attribute *attr)
18418 {
18419 struct dwarf2_cu *cu = reader->cu;
18420 switch (attr->form)
18421 {
18422 case DW_FORM_addrx:
18423 case DW_FORM_GNU_addr_index:
18424 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18425 break;
18426 case DW_FORM_strx:
18427 case DW_FORM_strx1:
18428 case DW_FORM_strx2:
18429 case DW_FORM_strx3:
18430 case DW_FORM_strx4:
18431 case DW_FORM_GNU_str_index:
18432 {
18433 unsigned int str_index = DW_UNSND (attr);
18434 if (reader->dwo_file != NULL)
18435 {
18436 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18437 DW_STRING_IS_CANONICAL (attr) = 0;
18438 }
18439 else
18440 {
18441 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18442 DW_STRING_IS_CANONICAL (attr) = 0;
18443 }
18444 break;
18445 }
18446 default:
18447 gdb_assert_not_reached (_("Unexpected DWARF form."));
18448 }
18449 }
18450
18451 /* Read an attribute value described by an attribute form. */
18452
18453 static const gdb_byte *
18454 read_attribute_value (const struct die_reader_specs *reader,
18455 struct attribute *attr, unsigned form,
18456 LONGEST implicit_const, const gdb_byte *info_ptr,
18457 bool *need_reprocess)
18458 {
18459 struct dwarf2_cu *cu = reader->cu;
18460 struct dwarf2_per_objfile *dwarf2_per_objfile
18461 = cu->per_cu->dwarf2_per_objfile;
18462 struct objfile *objfile = dwarf2_per_objfile->objfile;
18463 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18464 bfd *abfd = reader->abfd;
18465 struct comp_unit_head *cu_header = &cu->header;
18466 unsigned int bytes_read;
18467 struct dwarf_block *blk;
18468 *need_reprocess = false;
18469
18470 attr->form = (enum dwarf_form) form;
18471 switch (form)
18472 {
18473 case DW_FORM_ref_addr:
18474 if (cu->header.version == 2)
18475 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18476 &bytes_read);
18477 else
18478 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18479 &bytes_read);
18480 info_ptr += bytes_read;
18481 break;
18482 case DW_FORM_GNU_ref_alt:
18483 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18484 info_ptr += bytes_read;
18485 break;
18486 case DW_FORM_addr:
18487 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18488 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18489 info_ptr += bytes_read;
18490 break;
18491 case DW_FORM_block2:
18492 blk = dwarf_alloc_block (cu);
18493 blk->size = read_2_bytes (abfd, info_ptr);
18494 info_ptr += 2;
18495 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18496 info_ptr += blk->size;
18497 DW_BLOCK (attr) = blk;
18498 break;
18499 case DW_FORM_block4:
18500 blk = dwarf_alloc_block (cu);
18501 blk->size = read_4_bytes (abfd, info_ptr);
18502 info_ptr += 4;
18503 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18504 info_ptr += blk->size;
18505 DW_BLOCK (attr) = blk;
18506 break;
18507 case DW_FORM_data2:
18508 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18509 info_ptr += 2;
18510 break;
18511 case DW_FORM_data4:
18512 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18513 info_ptr += 4;
18514 break;
18515 case DW_FORM_data8:
18516 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18517 info_ptr += 8;
18518 break;
18519 case DW_FORM_data16:
18520 blk = dwarf_alloc_block (cu);
18521 blk->size = 16;
18522 blk->data = read_n_bytes (abfd, info_ptr, 16);
18523 info_ptr += 16;
18524 DW_BLOCK (attr) = blk;
18525 break;
18526 case DW_FORM_sec_offset:
18527 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18528 info_ptr += bytes_read;
18529 break;
18530 case DW_FORM_string:
18531 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18532 DW_STRING_IS_CANONICAL (attr) = 0;
18533 info_ptr += bytes_read;
18534 break;
18535 case DW_FORM_strp:
18536 if (!cu->per_cu->is_dwz)
18537 {
18538 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18539 abfd, info_ptr, cu_header,
18540 &bytes_read);
18541 DW_STRING_IS_CANONICAL (attr) = 0;
18542 info_ptr += bytes_read;
18543 break;
18544 }
18545 /* FALLTHROUGH */
18546 case DW_FORM_line_strp:
18547 if (!cu->per_cu->is_dwz)
18548 {
18549 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18550 abfd, info_ptr,
18551 cu_header, &bytes_read);
18552 DW_STRING_IS_CANONICAL (attr) = 0;
18553 info_ptr += bytes_read;
18554 break;
18555 }
18556 /* FALLTHROUGH */
18557 case DW_FORM_GNU_strp_alt:
18558 {
18559 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18560 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18561 &bytes_read);
18562
18563 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18564 dwz, str_offset);
18565 DW_STRING_IS_CANONICAL (attr) = 0;
18566 info_ptr += bytes_read;
18567 }
18568 break;
18569 case DW_FORM_exprloc:
18570 case DW_FORM_block:
18571 blk = dwarf_alloc_block (cu);
18572 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18573 info_ptr += bytes_read;
18574 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18575 info_ptr += blk->size;
18576 DW_BLOCK (attr) = blk;
18577 break;
18578 case DW_FORM_block1:
18579 blk = dwarf_alloc_block (cu);
18580 blk->size = read_1_byte (abfd, info_ptr);
18581 info_ptr += 1;
18582 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18583 info_ptr += blk->size;
18584 DW_BLOCK (attr) = blk;
18585 break;
18586 case DW_FORM_data1:
18587 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18588 info_ptr += 1;
18589 break;
18590 case DW_FORM_flag:
18591 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18592 info_ptr += 1;
18593 break;
18594 case DW_FORM_flag_present:
18595 DW_UNSND (attr) = 1;
18596 break;
18597 case DW_FORM_sdata:
18598 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18599 info_ptr += bytes_read;
18600 break;
18601 case DW_FORM_udata:
18602 case DW_FORM_rnglistx:
18603 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18604 info_ptr += bytes_read;
18605 break;
18606 case DW_FORM_ref1:
18607 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18608 + read_1_byte (abfd, info_ptr));
18609 info_ptr += 1;
18610 break;
18611 case DW_FORM_ref2:
18612 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18613 + read_2_bytes (abfd, info_ptr));
18614 info_ptr += 2;
18615 break;
18616 case DW_FORM_ref4:
18617 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18618 + read_4_bytes (abfd, info_ptr));
18619 info_ptr += 4;
18620 break;
18621 case DW_FORM_ref8:
18622 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18623 + read_8_bytes (abfd, info_ptr));
18624 info_ptr += 8;
18625 break;
18626 case DW_FORM_ref_sig8:
18627 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18628 info_ptr += 8;
18629 break;
18630 case DW_FORM_ref_udata:
18631 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18632 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18633 info_ptr += bytes_read;
18634 break;
18635 case DW_FORM_indirect:
18636 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18637 info_ptr += bytes_read;
18638 if (form == DW_FORM_implicit_const)
18639 {
18640 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18641 info_ptr += bytes_read;
18642 }
18643 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18644 info_ptr, need_reprocess);
18645 break;
18646 case DW_FORM_implicit_const:
18647 DW_SND (attr) = implicit_const;
18648 break;
18649 case DW_FORM_addrx:
18650 case DW_FORM_GNU_addr_index:
18651 *need_reprocess = true;
18652 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18653 info_ptr += bytes_read;
18654 break;
18655 case DW_FORM_strx:
18656 case DW_FORM_strx1:
18657 case DW_FORM_strx2:
18658 case DW_FORM_strx3:
18659 case DW_FORM_strx4:
18660 case DW_FORM_GNU_str_index:
18661 {
18662 ULONGEST str_index;
18663 if (form == DW_FORM_strx1)
18664 {
18665 str_index = read_1_byte (abfd, info_ptr);
18666 info_ptr += 1;
18667 }
18668 else if (form == DW_FORM_strx2)
18669 {
18670 str_index = read_2_bytes (abfd, info_ptr);
18671 info_ptr += 2;
18672 }
18673 else if (form == DW_FORM_strx3)
18674 {
18675 str_index = read_3_bytes (abfd, info_ptr);
18676 info_ptr += 3;
18677 }
18678 else if (form == DW_FORM_strx4)
18679 {
18680 str_index = read_4_bytes (abfd, info_ptr);
18681 info_ptr += 4;
18682 }
18683 else
18684 {
18685 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18686 info_ptr += bytes_read;
18687 }
18688 *need_reprocess = true;
18689 DW_UNSND (attr) = str_index;
18690 }
18691 break;
18692 default:
18693 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18694 dwarf_form_name (form),
18695 bfd_get_filename (abfd));
18696 }
18697
18698 /* Super hack. */
18699 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18700 attr->form = DW_FORM_GNU_ref_alt;
18701
18702 /* We have seen instances where the compiler tried to emit a byte
18703 size attribute of -1 which ended up being encoded as an unsigned
18704 0xffffffff. Although 0xffffffff is technically a valid size value,
18705 an object of this size seems pretty unlikely so we can relatively
18706 safely treat these cases as if the size attribute was invalid and
18707 treat them as zero by default. */
18708 if (attr->name == DW_AT_byte_size
18709 && form == DW_FORM_data4
18710 && DW_UNSND (attr) >= 0xffffffff)
18711 {
18712 complaint
18713 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18714 hex_string (DW_UNSND (attr)));
18715 DW_UNSND (attr) = 0;
18716 }
18717
18718 return info_ptr;
18719 }
18720
18721 /* Read an attribute described by an abbreviated attribute. */
18722
18723 static const gdb_byte *
18724 read_attribute (const struct die_reader_specs *reader,
18725 struct attribute *attr, struct attr_abbrev *abbrev,
18726 const gdb_byte *info_ptr, bool *need_reprocess)
18727 {
18728 attr->name = abbrev->name;
18729 return read_attribute_value (reader, attr, abbrev->form,
18730 abbrev->implicit_const, info_ptr,
18731 need_reprocess);
18732 }
18733
18734 /* Cover function for read_initial_length.
18735 Returns the length of the object at BUF, and stores the size of the
18736 initial length in *BYTES_READ and stores the size that offsets will be in
18737 *OFFSET_SIZE.
18738 If the initial length size is not equivalent to that specified in
18739 CU_HEADER then issue a complaint.
18740 This is useful when reading non-comp-unit headers. */
18741
18742 static LONGEST
18743 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18744 const struct comp_unit_head *cu_header,
18745 unsigned int *bytes_read,
18746 unsigned int *offset_size)
18747 {
18748 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18749
18750 gdb_assert (cu_header->initial_length_size == 4
18751 || cu_header->initial_length_size == 8
18752 || cu_header->initial_length_size == 12);
18753
18754 if (cu_header->initial_length_size != *bytes_read)
18755 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
18756
18757 *offset_size = (*bytes_read == 4) ? 4 : 8;
18758 return length;
18759 }
18760
18761 /* Return pointer to string at section SECT offset STR_OFFSET with error
18762 reporting strings FORM_NAME and SECT_NAME. */
18763
18764 static const char *
18765 read_indirect_string_at_offset_from (struct objfile *objfile,
18766 bfd *abfd, LONGEST str_offset,
18767 struct dwarf2_section_info *sect,
18768 const char *form_name,
18769 const char *sect_name)
18770 {
18771 sect->read (objfile);
18772 if (sect->buffer == NULL)
18773 error (_("%s used without %s section [in module %s]"),
18774 form_name, sect_name, bfd_get_filename (abfd));
18775 if (str_offset >= sect->size)
18776 error (_("%s pointing outside of %s section [in module %s]"),
18777 form_name, sect_name, bfd_get_filename (abfd));
18778 gdb_assert (HOST_CHAR_BIT == 8);
18779 if (sect->buffer[str_offset] == '\0')
18780 return NULL;
18781 return (const char *) (sect->buffer + str_offset);
18782 }
18783
18784 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18785
18786 static const char *
18787 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18788 bfd *abfd, LONGEST str_offset)
18789 {
18790 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18791 abfd, str_offset,
18792 &dwarf2_per_objfile->str,
18793 "DW_FORM_strp", ".debug_str");
18794 }
18795
18796 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18797
18798 static const char *
18799 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18800 bfd *abfd, LONGEST str_offset)
18801 {
18802 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
18803 abfd, str_offset,
18804 &dwarf2_per_objfile->line_str,
18805 "DW_FORM_line_strp",
18806 ".debug_line_str");
18807 }
18808
18809 /* Read a string at offset STR_OFFSET in the .debug_str section from
18810 the .dwz file DWZ. Throw an error if the offset is too large. If
18811 the string consists of a single NUL byte, return NULL; otherwise
18812 return a pointer to the string. */
18813
18814 static const char *
18815 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
18816 LONGEST str_offset)
18817 {
18818 dwz->str.read (objfile);
18819
18820 if (dwz->str.buffer == NULL)
18821 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18822 "section [in module %s]"),
18823 bfd_get_filename (dwz->dwz_bfd.get ()));
18824 if (str_offset >= dwz->str.size)
18825 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18826 ".debug_str section [in module %s]"),
18827 bfd_get_filename (dwz->dwz_bfd.get ()));
18828 gdb_assert (HOST_CHAR_BIT == 8);
18829 if (dwz->str.buffer[str_offset] == '\0')
18830 return NULL;
18831 return (const char *) (dwz->str.buffer + str_offset);
18832 }
18833
18834 /* Return pointer to string at .debug_str offset as read from BUF.
18835 BUF is assumed to be in a compilation unit described by CU_HEADER.
18836 Return *BYTES_READ_PTR count of bytes read from BUF. */
18837
18838 static const char *
18839 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18840 const gdb_byte *buf,
18841 const struct comp_unit_head *cu_header,
18842 unsigned int *bytes_read_ptr)
18843 {
18844 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18845
18846 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
18847 }
18848
18849 /* Return pointer to string at .debug_line_str offset as read from BUF.
18850 BUF is assumed to be in a compilation unit described by CU_HEADER.
18851 Return *BYTES_READ_PTR count of bytes read from BUF. */
18852
18853 static const char *
18854 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
18855 bfd *abfd, const gdb_byte *buf,
18856 const struct comp_unit_head *cu_header,
18857 unsigned int *bytes_read_ptr)
18858 {
18859 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18860
18861 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
18862 str_offset);
18863 }
18864
18865 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18866 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18867 ADDR_SIZE is the size of addresses from the CU header. */
18868
18869 static CORE_ADDR
18870 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18871 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18872 int addr_size)
18873 {
18874 struct objfile *objfile = dwarf2_per_objfile->objfile;
18875 bfd *abfd = objfile->obfd;
18876 const gdb_byte *info_ptr;
18877 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18878
18879 dwarf2_per_objfile->addr.read (objfile);
18880 if (dwarf2_per_objfile->addr.buffer == NULL)
18881 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18882 objfile_name (objfile));
18883 if (addr_base_or_zero + addr_index * addr_size
18884 >= dwarf2_per_objfile->addr.size)
18885 error (_("DW_FORM_addr_index pointing outside of "
18886 ".debug_addr section [in module %s]"),
18887 objfile_name (objfile));
18888 info_ptr = (dwarf2_per_objfile->addr.buffer
18889 + addr_base_or_zero + addr_index * addr_size);
18890 if (addr_size == 4)
18891 return bfd_get_32 (abfd, info_ptr);
18892 else
18893 return bfd_get_64 (abfd, info_ptr);
18894 }
18895
18896 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18897
18898 static CORE_ADDR
18899 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18900 {
18901 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18902 cu->addr_base, cu->header.addr_size);
18903 }
18904
18905 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18906
18907 static CORE_ADDR
18908 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18909 unsigned int *bytes_read)
18910 {
18911 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18912 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18913
18914 return read_addr_index (cu, addr_index);
18915 }
18916
18917 /* See read.h. */
18918
18919 CORE_ADDR
18920 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18921 {
18922 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18923 struct dwarf2_cu *cu = per_cu->cu;
18924 gdb::optional<ULONGEST> addr_base;
18925 int addr_size;
18926
18927 /* We need addr_base and addr_size.
18928 If we don't have PER_CU->cu, we have to get it.
18929 Nasty, but the alternative is storing the needed info in PER_CU,
18930 which at this point doesn't seem justified: it's not clear how frequently
18931 it would get used and it would increase the size of every PER_CU.
18932 Entry points like dwarf2_per_cu_addr_size do a similar thing
18933 so we're not in uncharted territory here.
18934 Alas we need to be a bit more complicated as addr_base is contained
18935 in the DIE.
18936
18937 We don't need to read the entire CU(/TU).
18938 We just need the header and top level die.
18939
18940 IWBN to use the aging mechanism to let us lazily later discard the CU.
18941 For now we skip this optimization. */
18942
18943 if (cu != NULL)
18944 {
18945 addr_base = cu->addr_base;
18946 addr_size = cu->header.addr_size;
18947 }
18948 else
18949 {
18950 cutu_reader reader (per_cu, NULL, 0, false);
18951 addr_base = reader.cu->addr_base;
18952 addr_size = reader.cu->header.addr_size;
18953 }
18954
18955 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
18956 addr_size);
18957 }
18958
18959 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
18960 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
18961 DWO file. */
18962
18963 static const char *
18964 read_str_index (struct dwarf2_cu *cu,
18965 struct dwarf2_section_info *str_section,
18966 struct dwarf2_section_info *str_offsets_section,
18967 ULONGEST str_offsets_base, ULONGEST str_index)
18968 {
18969 struct dwarf2_per_objfile *dwarf2_per_objfile
18970 = cu->per_cu->dwarf2_per_objfile;
18971 struct objfile *objfile = dwarf2_per_objfile->objfile;
18972 const char *objf_name = objfile_name (objfile);
18973 bfd *abfd = objfile->obfd;
18974 const gdb_byte *info_ptr;
18975 ULONGEST str_offset;
18976 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
18977
18978 str_section->read (objfile);
18979 str_offsets_section->read (objfile);
18980 if (str_section->buffer == NULL)
18981 error (_("%s used without %s section"
18982 " in CU at offset %s [in module %s]"),
18983 form_name, str_section->get_name (),
18984 sect_offset_str (cu->header.sect_off), objf_name);
18985 if (str_offsets_section->buffer == NULL)
18986 error (_("%s used without %s section"
18987 " in CU at offset %s [in module %s]"),
18988 form_name, str_section->get_name (),
18989 sect_offset_str (cu->header.sect_off), objf_name);
18990 info_ptr = (str_offsets_section->buffer
18991 + str_offsets_base
18992 + str_index * cu->header.offset_size);
18993 if (cu->header.offset_size == 4)
18994 str_offset = bfd_get_32 (abfd, info_ptr);
18995 else
18996 str_offset = bfd_get_64 (abfd, info_ptr);
18997 if (str_offset >= str_section->size)
18998 error (_("Offset from %s pointing outside of"
18999 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19000 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19001 return (const char *) (str_section->buffer + str_offset);
19002 }
19003
19004 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19005
19006 static const char *
19007 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19008 {
19009 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19010 ? reader->cu->header.addr_size : 0;
19011 return read_str_index (reader->cu,
19012 &reader->dwo_file->sections.str,
19013 &reader->dwo_file->sections.str_offsets,
19014 str_offsets_base, str_index);
19015 }
19016
19017 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19018
19019 static const char *
19020 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19021 {
19022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19023 const char *objf_name = objfile_name (objfile);
19024 static const char form_name[] = "DW_FORM_GNU_str_index";
19025 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19026
19027 if (!cu->str_offsets_base.has_value ())
19028 error (_("%s used in Fission stub without %s"
19029 " in CU at offset 0x%lx [in module %s]"),
19030 form_name, str_offsets_attr_name,
19031 (long) cu->header.offset_size, objf_name);
19032
19033 return read_str_index (cu,
19034 &cu->per_cu->dwarf2_per_objfile->str,
19035 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19036 *cu->str_offsets_base, str_index);
19037 }
19038
19039 /* Return the length of an LEB128 number in BUF. */
19040
19041 static int
19042 leb128_size (const gdb_byte *buf)
19043 {
19044 const gdb_byte *begin = buf;
19045 gdb_byte byte;
19046
19047 while (1)
19048 {
19049 byte = *buf++;
19050 if ((byte & 128) == 0)
19051 return buf - begin;
19052 }
19053 }
19054
19055 static void
19056 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19057 {
19058 switch (lang)
19059 {
19060 case DW_LANG_C89:
19061 case DW_LANG_C99:
19062 case DW_LANG_C11:
19063 case DW_LANG_C:
19064 case DW_LANG_UPC:
19065 cu->language = language_c;
19066 break;
19067 case DW_LANG_Java:
19068 case DW_LANG_C_plus_plus:
19069 case DW_LANG_C_plus_plus_11:
19070 case DW_LANG_C_plus_plus_14:
19071 cu->language = language_cplus;
19072 break;
19073 case DW_LANG_D:
19074 cu->language = language_d;
19075 break;
19076 case DW_LANG_Fortran77:
19077 case DW_LANG_Fortran90:
19078 case DW_LANG_Fortran95:
19079 case DW_LANG_Fortran03:
19080 case DW_LANG_Fortran08:
19081 cu->language = language_fortran;
19082 break;
19083 case DW_LANG_Go:
19084 cu->language = language_go;
19085 break;
19086 case DW_LANG_Mips_Assembler:
19087 cu->language = language_asm;
19088 break;
19089 case DW_LANG_Ada83:
19090 case DW_LANG_Ada95:
19091 cu->language = language_ada;
19092 break;
19093 case DW_LANG_Modula2:
19094 cu->language = language_m2;
19095 break;
19096 case DW_LANG_Pascal83:
19097 cu->language = language_pascal;
19098 break;
19099 case DW_LANG_ObjC:
19100 cu->language = language_objc;
19101 break;
19102 case DW_LANG_Rust:
19103 case DW_LANG_Rust_old:
19104 cu->language = language_rust;
19105 break;
19106 case DW_LANG_Cobol74:
19107 case DW_LANG_Cobol85:
19108 default:
19109 cu->language = language_minimal;
19110 break;
19111 }
19112 cu->language_defn = language_def (cu->language);
19113 }
19114
19115 /* Return the named attribute or NULL if not there. */
19116
19117 static struct attribute *
19118 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19119 {
19120 for (;;)
19121 {
19122 unsigned int i;
19123 struct attribute *spec = NULL;
19124
19125 for (i = 0; i < die->num_attrs; ++i)
19126 {
19127 if (die->attrs[i].name == name)
19128 return &die->attrs[i];
19129 if (die->attrs[i].name == DW_AT_specification
19130 || die->attrs[i].name == DW_AT_abstract_origin)
19131 spec = &die->attrs[i];
19132 }
19133
19134 if (!spec)
19135 break;
19136
19137 die = follow_die_ref (die, spec, &cu);
19138 }
19139
19140 return NULL;
19141 }
19142
19143 /* Return the named attribute or NULL if not there,
19144 but do not follow DW_AT_specification, etc.
19145 This is for use in contexts where we're reading .debug_types dies.
19146 Following DW_AT_specification, DW_AT_abstract_origin will take us
19147 back up the chain, and we want to go down. */
19148
19149 static struct attribute *
19150 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19151 {
19152 unsigned int i;
19153
19154 for (i = 0; i < die->num_attrs; ++i)
19155 if (die->attrs[i].name == name)
19156 return &die->attrs[i];
19157
19158 return NULL;
19159 }
19160
19161 /* Return the string associated with a string-typed attribute, or NULL if it
19162 is either not found or is of an incorrect type. */
19163
19164 static const char *
19165 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19166 {
19167 struct attribute *attr;
19168 const char *str = NULL;
19169
19170 attr = dwarf2_attr (die, name, cu);
19171
19172 if (attr != NULL)
19173 {
19174 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19175 || attr->form == DW_FORM_string
19176 || attr->form == DW_FORM_strx
19177 || attr->form == DW_FORM_strx1
19178 || attr->form == DW_FORM_strx2
19179 || attr->form == DW_FORM_strx3
19180 || attr->form == DW_FORM_strx4
19181 || attr->form == DW_FORM_GNU_str_index
19182 || attr->form == DW_FORM_GNU_strp_alt)
19183 str = DW_STRING (attr);
19184 else
19185 complaint (_("string type expected for attribute %s for "
19186 "DIE at %s in module %s"),
19187 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19188 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19189 }
19190
19191 return str;
19192 }
19193
19194 /* Return the dwo name or NULL if not present. If present, it is in either
19195 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19196 static const char *
19197 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19198 {
19199 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19200 if (dwo_name == nullptr)
19201 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19202 return dwo_name;
19203 }
19204
19205 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19206 and holds a non-zero value. This function should only be used for
19207 DW_FORM_flag or DW_FORM_flag_present attributes. */
19208
19209 static int
19210 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19211 {
19212 struct attribute *attr = dwarf2_attr (die, name, cu);
19213
19214 return (attr && DW_UNSND (attr));
19215 }
19216
19217 static int
19218 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19219 {
19220 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19221 which value is non-zero. However, we have to be careful with
19222 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19223 (via dwarf2_flag_true_p) follows this attribute. So we may
19224 end up accidently finding a declaration attribute that belongs
19225 to a different DIE referenced by the specification attribute,
19226 even though the given DIE does not have a declaration attribute. */
19227 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19228 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19229 }
19230
19231 /* Return the die giving the specification for DIE, if there is
19232 one. *SPEC_CU is the CU containing DIE on input, and the CU
19233 containing the return value on output. If there is no
19234 specification, but there is an abstract origin, that is
19235 returned. */
19236
19237 static struct die_info *
19238 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19239 {
19240 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19241 *spec_cu);
19242
19243 if (spec_attr == NULL)
19244 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19245
19246 if (spec_attr == NULL)
19247 return NULL;
19248 else
19249 return follow_die_ref (die, spec_attr, spec_cu);
19250 }
19251
19252 /* Stub for free_line_header to match void * callback types. */
19253
19254 static void
19255 free_line_header_voidp (void *arg)
19256 {
19257 struct line_header *lh = (struct line_header *) arg;
19258
19259 delete lh;
19260 }
19261
19262 /* A convenience function to find the proper .debug_line section for a CU. */
19263
19264 static struct dwarf2_section_info *
19265 get_debug_line_section (struct dwarf2_cu *cu)
19266 {
19267 struct dwarf2_section_info *section;
19268 struct dwarf2_per_objfile *dwarf2_per_objfile
19269 = cu->per_cu->dwarf2_per_objfile;
19270
19271 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19272 DWO file. */
19273 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19274 section = &cu->dwo_unit->dwo_file->sections.line;
19275 else if (cu->per_cu->is_dwz)
19276 {
19277 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19278
19279 section = &dwz->line;
19280 }
19281 else
19282 section = &dwarf2_per_objfile->line;
19283
19284 return section;
19285 }
19286
19287 /* Read directory or file name entry format, starting with byte of
19288 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19289 entries count and the entries themselves in the described entry
19290 format. */
19291
19292 static void
19293 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19294 bfd *abfd, const gdb_byte **bufp,
19295 struct line_header *lh,
19296 const struct comp_unit_head *cu_header,
19297 void (*callback) (struct line_header *lh,
19298 const char *name,
19299 dir_index d_index,
19300 unsigned int mod_time,
19301 unsigned int length))
19302 {
19303 gdb_byte format_count, formati;
19304 ULONGEST data_count, datai;
19305 const gdb_byte *buf = *bufp;
19306 const gdb_byte *format_header_data;
19307 unsigned int bytes_read;
19308
19309 format_count = read_1_byte (abfd, buf);
19310 buf += 1;
19311 format_header_data = buf;
19312 for (formati = 0; formati < format_count; formati++)
19313 {
19314 read_unsigned_leb128 (abfd, buf, &bytes_read);
19315 buf += bytes_read;
19316 read_unsigned_leb128 (abfd, buf, &bytes_read);
19317 buf += bytes_read;
19318 }
19319
19320 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19321 buf += bytes_read;
19322 for (datai = 0; datai < data_count; datai++)
19323 {
19324 const gdb_byte *format = format_header_data;
19325 struct file_entry fe;
19326
19327 for (formati = 0; formati < format_count; formati++)
19328 {
19329 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19330 format += bytes_read;
19331
19332 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19333 format += bytes_read;
19334
19335 gdb::optional<const char *> string;
19336 gdb::optional<unsigned int> uint;
19337
19338 switch (form)
19339 {
19340 case DW_FORM_string:
19341 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19342 buf += bytes_read;
19343 break;
19344
19345 case DW_FORM_line_strp:
19346 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19347 abfd, buf,
19348 cu_header,
19349 &bytes_read));
19350 buf += bytes_read;
19351 break;
19352
19353 case DW_FORM_data1:
19354 uint.emplace (read_1_byte (abfd, buf));
19355 buf += 1;
19356 break;
19357
19358 case DW_FORM_data2:
19359 uint.emplace (read_2_bytes (abfd, buf));
19360 buf += 2;
19361 break;
19362
19363 case DW_FORM_data4:
19364 uint.emplace (read_4_bytes (abfd, buf));
19365 buf += 4;
19366 break;
19367
19368 case DW_FORM_data8:
19369 uint.emplace (read_8_bytes (abfd, buf));
19370 buf += 8;
19371 break;
19372
19373 case DW_FORM_data16:
19374 /* This is used for MD5, but file_entry does not record MD5s. */
19375 buf += 16;
19376 break;
19377
19378 case DW_FORM_udata:
19379 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19380 buf += bytes_read;
19381 break;
19382
19383 case DW_FORM_block:
19384 /* It is valid only for DW_LNCT_timestamp which is ignored by
19385 current GDB. */
19386 break;
19387 }
19388
19389 switch (content_type)
19390 {
19391 case DW_LNCT_path:
19392 if (string.has_value ())
19393 fe.name = *string;
19394 break;
19395 case DW_LNCT_directory_index:
19396 if (uint.has_value ())
19397 fe.d_index = (dir_index) *uint;
19398 break;
19399 case DW_LNCT_timestamp:
19400 if (uint.has_value ())
19401 fe.mod_time = *uint;
19402 break;
19403 case DW_LNCT_size:
19404 if (uint.has_value ())
19405 fe.length = *uint;
19406 break;
19407 case DW_LNCT_MD5:
19408 break;
19409 default:
19410 complaint (_("Unknown format content type %s"),
19411 pulongest (content_type));
19412 }
19413 }
19414
19415 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
19416 }
19417
19418 *bufp = buf;
19419 }
19420
19421 /* Read the statement program header starting at OFFSET in
19422 .debug_line, or .debug_line.dwo. Return a pointer
19423 to a struct line_header, allocated using xmalloc.
19424 Returns NULL if there is a problem reading the header, e.g., if it
19425 has a version we don't understand.
19426
19427 NOTE: the strings in the include directory and file name tables of
19428 the returned object point into the dwarf line section buffer,
19429 and must not be freed. */
19430
19431 static line_header_up
19432 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19433 {
19434 const gdb_byte *line_ptr;
19435 unsigned int bytes_read, offset_size;
19436 int i;
19437 const char *cur_dir, *cur_file;
19438 struct dwarf2_section_info *section;
19439 bfd *abfd;
19440 struct dwarf2_per_objfile *dwarf2_per_objfile
19441 = cu->per_cu->dwarf2_per_objfile;
19442
19443 section = get_debug_line_section (cu);
19444 section->read (dwarf2_per_objfile->objfile);
19445 if (section->buffer == NULL)
19446 {
19447 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19448 complaint (_("missing .debug_line.dwo section"));
19449 else
19450 complaint (_("missing .debug_line section"));
19451 return 0;
19452 }
19453
19454 /* We can't do this until we know the section is non-empty.
19455 Only then do we know we have such a section. */
19456 abfd = section->get_bfd_owner ();
19457
19458 /* Make sure that at least there's room for the total_length field.
19459 That could be 12 bytes long, but we're just going to fudge that. */
19460 if (to_underlying (sect_off) + 4 >= section->size)
19461 {
19462 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19463 return 0;
19464 }
19465
19466 line_header_up lh (new line_header ());
19467
19468 lh->sect_off = sect_off;
19469 lh->offset_in_dwz = cu->per_cu->is_dwz;
19470
19471 line_ptr = section->buffer + to_underlying (sect_off);
19472
19473 /* Read in the header. */
19474 lh->total_length =
19475 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
19476 &bytes_read, &offset_size);
19477 line_ptr += bytes_read;
19478
19479 const gdb_byte *start_here = line_ptr;
19480
19481 if (line_ptr + lh->total_length > (section->buffer + section->size))
19482 {
19483 dwarf2_statement_list_fits_in_line_number_section_complaint ();
19484 return 0;
19485 }
19486 lh->statement_program_end = start_here + lh->total_length;
19487 lh->version = read_2_bytes (abfd, line_ptr);
19488 line_ptr += 2;
19489 if (lh->version > 5)
19490 {
19491 /* This is a version we don't understand. The format could have
19492 changed in ways we don't handle properly so just punt. */
19493 complaint (_("unsupported version in .debug_line section"));
19494 return NULL;
19495 }
19496 if (lh->version >= 5)
19497 {
19498 gdb_byte segment_selector_size;
19499
19500 /* Skip address size. */
19501 read_1_byte (abfd, line_ptr);
19502 line_ptr += 1;
19503
19504 segment_selector_size = read_1_byte (abfd, line_ptr);
19505 line_ptr += 1;
19506 if (segment_selector_size != 0)
19507 {
19508 complaint (_("unsupported segment selector size %u "
19509 "in .debug_line section"),
19510 segment_selector_size);
19511 return NULL;
19512 }
19513 }
19514 lh->header_length = read_offset (abfd, line_ptr, offset_size);
19515 line_ptr += offset_size;
19516 lh->statement_program_start = line_ptr + lh->header_length;
19517 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
19518 line_ptr += 1;
19519 if (lh->version >= 4)
19520 {
19521 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
19522 line_ptr += 1;
19523 }
19524 else
19525 lh->maximum_ops_per_instruction = 1;
19526
19527 if (lh->maximum_ops_per_instruction == 0)
19528 {
19529 lh->maximum_ops_per_instruction = 1;
19530 complaint (_("invalid maximum_ops_per_instruction "
19531 "in `.debug_line' section"));
19532 }
19533
19534 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
19535 line_ptr += 1;
19536 lh->line_base = read_1_signed_byte (abfd, line_ptr);
19537 line_ptr += 1;
19538 lh->line_range = read_1_byte (abfd, line_ptr);
19539 line_ptr += 1;
19540 lh->opcode_base = read_1_byte (abfd, line_ptr);
19541 line_ptr += 1;
19542 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
19543
19544 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
19545 for (i = 1; i < lh->opcode_base; ++i)
19546 {
19547 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
19548 line_ptr += 1;
19549 }
19550
19551 if (lh->version >= 5)
19552 {
19553 /* Read directory table. */
19554 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19555 &cu->header,
19556 [] (struct line_header *header, const char *name,
19557 dir_index d_index, unsigned int mod_time,
19558 unsigned int length)
19559 {
19560 header->add_include_dir (name);
19561 });
19562
19563 /* Read file name table. */
19564 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
19565 &cu->header,
19566 [] (struct line_header *header, const char *name,
19567 dir_index d_index, unsigned int mod_time,
19568 unsigned int length)
19569 {
19570 header->add_file_name (name, d_index, mod_time, length);
19571 });
19572 }
19573 else
19574 {
19575 /* Read directory table. */
19576 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19577 {
19578 line_ptr += bytes_read;
19579 lh->add_include_dir (cur_dir);
19580 }
19581 line_ptr += bytes_read;
19582
19583 /* Read file name table. */
19584 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19585 {
19586 unsigned int mod_time, length;
19587 dir_index d_index;
19588
19589 line_ptr += bytes_read;
19590 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19591 line_ptr += bytes_read;
19592 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19593 line_ptr += bytes_read;
19594 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19595 line_ptr += bytes_read;
19596
19597 lh->add_file_name (cur_file, d_index, mod_time, length);
19598 }
19599 line_ptr += bytes_read;
19600 }
19601
19602 if (line_ptr > (section->buffer + section->size))
19603 complaint (_("line number info header doesn't "
19604 "fit in `.debug_line' section"));
19605
19606 return lh;
19607 }
19608
19609 /* Subroutine of dwarf_decode_lines to simplify it.
19610 Return the file name of the psymtab for the given file_entry.
19611 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19612 If space for the result is malloc'd, *NAME_HOLDER will be set.
19613 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19614
19615 static const char *
19616 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19617 const dwarf2_psymtab *pst,
19618 const char *comp_dir,
19619 gdb::unique_xmalloc_ptr<char> *name_holder)
19620 {
19621 const char *include_name = fe.name;
19622 const char *include_name_to_compare = include_name;
19623 const char *pst_filename;
19624 int file_is_pst;
19625
19626 const char *dir_name = fe.include_dir (lh);
19627
19628 gdb::unique_xmalloc_ptr<char> hold_compare;
19629 if (!IS_ABSOLUTE_PATH (include_name)
19630 && (dir_name != NULL || comp_dir != NULL))
19631 {
19632 /* Avoid creating a duplicate psymtab for PST.
19633 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19634 Before we do the comparison, however, we need to account
19635 for DIR_NAME and COMP_DIR.
19636 First prepend dir_name (if non-NULL). If we still don't
19637 have an absolute path prepend comp_dir (if non-NULL).
19638 However, the directory we record in the include-file's
19639 psymtab does not contain COMP_DIR (to match the
19640 corresponding symtab(s)).
19641
19642 Example:
19643
19644 bash$ cd /tmp
19645 bash$ gcc -g ./hello.c
19646 include_name = "hello.c"
19647 dir_name = "."
19648 DW_AT_comp_dir = comp_dir = "/tmp"
19649 DW_AT_name = "./hello.c"
19650
19651 */
19652
19653 if (dir_name != NULL)
19654 {
19655 name_holder->reset (concat (dir_name, SLASH_STRING,
19656 include_name, (char *) NULL));
19657 include_name = name_holder->get ();
19658 include_name_to_compare = include_name;
19659 }
19660 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19661 {
19662 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19663 include_name, (char *) NULL));
19664 include_name_to_compare = hold_compare.get ();
19665 }
19666 }
19667
19668 pst_filename = pst->filename;
19669 gdb::unique_xmalloc_ptr<char> copied_name;
19670 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19671 {
19672 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19673 pst_filename, (char *) NULL));
19674 pst_filename = copied_name.get ();
19675 }
19676
19677 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19678
19679 if (file_is_pst)
19680 return NULL;
19681 return include_name;
19682 }
19683
19684 /* State machine to track the state of the line number program. */
19685
19686 class lnp_state_machine
19687 {
19688 public:
19689 /* Initialize a machine state for the start of a line number
19690 program. */
19691 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19692 bool record_lines_p);
19693
19694 file_entry *current_file ()
19695 {
19696 /* lh->file_names is 0-based, but the file name numbers in the
19697 statement program are 1-based. */
19698 return m_line_header->file_name_at (m_file);
19699 }
19700
19701 /* Record the line in the state machine. END_SEQUENCE is true if
19702 we're processing the end of a sequence. */
19703 void record_line (bool end_sequence);
19704
19705 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19706 nop-out rest of the lines in this sequence. */
19707 void check_line_address (struct dwarf2_cu *cu,
19708 const gdb_byte *line_ptr,
19709 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19710
19711 void handle_set_discriminator (unsigned int discriminator)
19712 {
19713 m_discriminator = discriminator;
19714 m_line_has_non_zero_discriminator |= discriminator != 0;
19715 }
19716
19717 /* Handle DW_LNE_set_address. */
19718 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19719 {
19720 m_op_index = 0;
19721 address += baseaddr;
19722 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19723 }
19724
19725 /* Handle DW_LNS_advance_pc. */
19726 void handle_advance_pc (CORE_ADDR adjust);
19727
19728 /* Handle a special opcode. */
19729 void handle_special_opcode (unsigned char op_code);
19730
19731 /* Handle DW_LNS_advance_line. */
19732 void handle_advance_line (int line_delta)
19733 {
19734 advance_line (line_delta);
19735 }
19736
19737 /* Handle DW_LNS_set_file. */
19738 void handle_set_file (file_name_index file);
19739
19740 /* Handle DW_LNS_negate_stmt. */
19741 void handle_negate_stmt ()
19742 {
19743 m_is_stmt = !m_is_stmt;
19744 }
19745
19746 /* Handle DW_LNS_const_add_pc. */
19747 void handle_const_add_pc ();
19748
19749 /* Handle DW_LNS_fixed_advance_pc. */
19750 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19751 {
19752 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19753 m_op_index = 0;
19754 }
19755
19756 /* Handle DW_LNS_copy. */
19757 void handle_copy ()
19758 {
19759 record_line (false);
19760 m_discriminator = 0;
19761 }
19762
19763 /* Handle DW_LNE_end_sequence. */
19764 void handle_end_sequence ()
19765 {
19766 m_currently_recording_lines = true;
19767 }
19768
19769 private:
19770 /* Advance the line by LINE_DELTA. */
19771 void advance_line (int line_delta)
19772 {
19773 m_line += line_delta;
19774
19775 if (line_delta != 0)
19776 m_line_has_non_zero_discriminator = m_discriminator != 0;
19777 }
19778
19779 struct dwarf2_cu *m_cu;
19780
19781 gdbarch *m_gdbarch;
19782
19783 /* True if we're recording lines.
19784 Otherwise we're building partial symtabs and are just interested in
19785 finding include files mentioned by the line number program. */
19786 bool m_record_lines_p;
19787
19788 /* The line number header. */
19789 line_header *m_line_header;
19790
19791 /* These are part of the standard DWARF line number state machine,
19792 and initialized according to the DWARF spec. */
19793
19794 unsigned char m_op_index = 0;
19795 /* The line table index of the current file. */
19796 file_name_index m_file = 1;
19797 unsigned int m_line = 1;
19798
19799 /* These are initialized in the constructor. */
19800
19801 CORE_ADDR m_address;
19802 bool m_is_stmt;
19803 unsigned int m_discriminator;
19804
19805 /* Additional bits of state we need to track. */
19806
19807 /* The last file that we called dwarf2_start_subfile for.
19808 This is only used for TLLs. */
19809 unsigned int m_last_file = 0;
19810 /* The last file a line number was recorded for. */
19811 struct subfile *m_last_subfile = NULL;
19812
19813 /* When true, record the lines we decode. */
19814 bool m_currently_recording_lines = false;
19815
19816 /* The last line number that was recorded, used to coalesce
19817 consecutive entries for the same line. This can happen, for
19818 example, when discriminators are present. PR 17276. */
19819 unsigned int m_last_line = 0;
19820 bool m_line_has_non_zero_discriminator = false;
19821 };
19822
19823 void
19824 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19825 {
19826 CORE_ADDR addr_adj = (((m_op_index + adjust)
19827 / m_line_header->maximum_ops_per_instruction)
19828 * m_line_header->minimum_instruction_length);
19829 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19830 m_op_index = ((m_op_index + adjust)
19831 % m_line_header->maximum_ops_per_instruction);
19832 }
19833
19834 void
19835 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19836 {
19837 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19838 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19839 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19840 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19841 / m_line_header->maximum_ops_per_instruction)
19842 * m_line_header->minimum_instruction_length);
19843 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19844 m_op_index = ((m_op_index + adj_opcode_d)
19845 % m_line_header->maximum_ops_per_instruction);
19846
19847 int line_delta = m_line_header->line_base + adj_opcode_r;
19848 advance_line (line_delta);
19849 record_line (false);
19850 m_discriminator = 0;
19851 }
19852
19853 void
19854 lnp_state_machine::handle_set_file (file_name_index file)
19855 {
19856 m_file = file;
19857
19858 const file_entry *fe = current_file ();
19859 if (fe == NULL)
19860 dwarf2_debug_line_missing_file_complaint ();
19861 else if (m_record_lines_p)
19862 {
19863 const char *dir = fe->include_dir (m_line_header);
19864
19865 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19866 m_line_has_non_zero_discriminator = m_discriminator != 0;
19867 dwarf2_start_subfile (m_cu, fe->name, dir);
19868 }
19869 }
19870
19871 void
19872 lnp_state_machine::handle_const_add_pc ()
19873 {
19874 CORE_ADDR adjust
19875 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19876
19877 CORE_ADDR addr_adj
19878 = (((m_op_index + adjust)
19879 / m_line_header->maximum_ops_per_instruction)
19880 * m_line_header->minimum_instruction_length);
19881
19882 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19883 m_op_index = ((m_op_index + adjust)
19884 % m_line_header->maximum_ops_per_instruction);
19885 }
19886
19887 /* Return non-zero if we should add LINE to the line number table.
19888 LINE is the line to add, LAST_LINE is the last line that was added,
19889 LAST_SUBFILE is the subfile for LAST_LINE.
19890 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19891 had a non-zero discriminator.
19892
19893 We have to be careful in the presence of discriminators.
19894 E.g., for this line:
19895
19896 for (i = 0; i < 100000; i++);
19897
19898 clang can emit four line number entries for that one line,
19899 each with a different discriminator.
19900 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19901
19902 However, we want gdb to coalesce all four entries into one.
19903 Otherwise the user could stepi into the middle of the line and
19904 gdb would get confused about whether the pc really was in the
19905 middle of the line.
19906
19907 Things are further complicated by the fact that two consecutive
19908 line number entries for the same line is a heuristic used by gcc
19909 to denote the end of the prologue. So we can't just discard duplicate
19910 entries, we have to be selective about it. The heuristic we use is
19911 that we only collapse consecutive entries for the same line if at least
19912 one of those entries has a non-zero discriminator. PR 17276.
19913
19914 Note: Addresses in the line number state machine can never go backwards
19915 within one sequence, thus this coalescing is ok. */
19916
19917 static int
19918 dwarf_record_line_p (struct dwarf2_cu *cu,
19919 unsigned int line, unsigned int last_line,
19920 int line_has_non_zero_discriminator,
19921 struct subfile *last_subfile)
19922 {
19923 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19924 return 1;
19925 if (line != last_line)
19926 return 1;
19927 /* Same line for the same file that we've seen already.
19928 As a last check, for pr 17276, only record the line if the line
19929 has never had a non-zero discriminator. */
19930 if (!line_has_non_zero_discriminator)
19931 return 1;
19932 return 0;
19933 }
19934
19935 /* Use the CU's builder to record line number LINE beginning at
19936 address ADDRESS in the line table of subfile SUBFILE. */
19937
19938 static void
19939 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19940 unsigned int line, CORE_ADDR address,
19941 struct dwarf2_cu *cu)
19942 {
19943 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19944
19945 if (dwarf_line_debug)
19946 {
19947 fprintf_unfiltered (gdb_stdlog,
19948 "Recording line %u, file %s, address %s\n",
19949 line, lbasename (subfile->name),
19950 paddress (gdbarch, address));
19951 }
19952
19953 if (cu != nullptr)
19954 cu->get_builder ()->record_line (subfile, line, addr);
19955 }
19956
19957 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19958 Mark the end of a set of line number records.
19959 The arguments are the same as for dwarf_record_line_1.
19960 If SUBFILE is NULL the request is ignored. */
19961
19962 static void
19963 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19964 CORE_ADDR address, struct dwarf2_cu *cu)
19965 {
19966 if (subfile == NULL)
19967 return;
19968
19969 if (dwarf_line_debug)
19970 {
19971 fprintf_unfiltered (gdb_stdlog,
19972 "Finishing current line, file %s, address %s\n",
19973 lbasename (subfile->name),
19974 paddress (gdbarch, address));
19975 }
19976
19977 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
19978 }
19979
19980 void
19981 lnp_state_machine::record_line (bool end_sequence)
19982 {
19983 if (dwarf_line_debug)
19984 {
19985 fprintf_unfiltered (gdb_stdlog,
19986 "Processing actual line %u: file %u,"
19987 " address %s, is_stmt %u, discrim %u%s\n",
19988 m_line, m_file,
19989 paddress (m_gdbarch, m_address),
19990 m_is_stmt, m_discriminator,
19991 (end_sequence ? "\t(end sequence)" : ""));
19992 }
19993
19994 file_entry *fe = current_file ();
19995
19996 if (fe == NULL)
19997 dwarf2_debug_line_missing_file_complaint ();
19998 /* For now we ignore lines not starting on an instruction boundary.
19999 But not when processing end_sequence for compatibility with the
20000 previous version of the code. */
20001 else if (m_op_index == 0 || end_sequence)
20002 {
20003 fe->included_p = 1;
20004 if (m_record_lines_p
20005 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20006 {
20007 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20008 || end_sequence)
20009 {
20010 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20011 m_currently_recording_lines ? m_cu : nullptr);
20012 }
20013
20014 if (!end_sequence)
20015 {
20016 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20017 m_line_has_non_zero_discriminator,
20018 m_last_subfile))
20019 {
20020 buildsym_compunit *builder = m_cu->get_builder ();
20021 dwarf_record_line_1 (m_gdbarch,
20022 builder->get_current_subfile (),
20023 m_line, m_address,
20024 m_currently_recording_lines ? m_cu : nullptr);
20025 }
20026 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20027 m_last_line = m_line;
20028 }
20029 }
20030 }
20031 }
20032
20033 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20034 line_header *lh, bool record_lines_p)
20035 {
20036 m_cu = cu;
20037 m_gdbarch = arch;
20038 m_record_lines_p = record_lines_p;
20039 m_line_header = lh;
20040
20041 m_currently_recording_lines = true;
20042
20043 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20044 was a line entry for it so that the backend has a chance to adjust it
20045 and also record it in case it needs it. This is currently used by MIPS
20046 code, cf. `mips_adjust_dwarf2_line'. */
20047 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20048 m_is_stmt = lh->default_is_stmt;
20049 m_discriminator = 0;
20050 }
20051
20052 void
20053 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20054 const gdb_byte *line_ptr,
20055 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20056 {
20057 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20058 the pc range of the CU. However, we restrict the test to only ADDRESS
20059 values of zero to preserve GDB's previous behaviour which is to handle
20060 the specific case of a function being GC'd by the linker. */
20061
20062 if (address == 0 && address < unrelocated_lowpc)
20063 {
20064 /* This line table is for a function which has been
20065 GCd by the linker. Ignore it. PR gdb/12528 */
20066
20067 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20068 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20069
20070 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20071 line_offset, objfile_name (objfile));
20072 m_currently_recording_lines = false;
20073 /* Note: m_currently_recording_lines is left as false until we see
20074 DW_LNE_end_sequence. */
20075 }
20076 }
20077
20078 /* Subroutine of dwarf_decode_lines to simplify it.
20079 Process the line number information in LH.
20080 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20081 program in order to set included_p for every referenced header. */
20082
20083 static void
20084 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20085 const int decode_for_pst_p, CORE_ADDR lowpc)
20086 {
20087 const gdb_byte *line_ptr, *extended_end;
20088 const gdb_byte *line_end;
20089 unsigned int bytes_read, extended_len;
20090 unsigned char op_code, extended_op;
20091 CORE_ADDR baseaddr;
20092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20093 bfd *abfd = objfile->obfd;
20094 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20095 /* True if we're recording line info (as opposed to building partial
20096 symtabs and just interested in finding include files mentioned by
20097 the line number program). */
20098 bool record_lines_p = !decode_for_pst_p;
20099
20100 baseaddr = objfile->text_section_offset ();
20101
20102 line_ptr = lh->statement_program_start;
20103 line_end = lh->statement_program_end;
20104
20105 /* Read the statement sequences until there's nothing left. */
20106 while (line_ptr < line_end)
20107 {
20108 /* The DWARF line number program state machine. Reset the state
20109 machine at the start of each sequence. */
20110 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20111 bool end_sequence = false;
20112
20113 if (record_lines_p)
20114 {
20115 /* Start a subfile for the current file of the state
20116 machine. */
20117 const file_entry *fe = state_machine.current_file ();
20118
20119 if (fe != NULL)
20120 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20121 }
20122
20123 /* Decode the table. */
20124 while (line_ptr < line_end && !end_sequence)
20125 {
20126 op_code = read_1_byte (abfd, line_ptr);
20127 line_ptr += 1;
20128
20129 if (op_code >= lh->opcode_base)
20130 {
20131 /* Special opcode. */
20132 state_machine.handle_special_opcode (op_code);
20133 }
20134 else switch (op_code)
20135 {
20136 case DW_LNS_extended_op:
20137 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20138 &bytes_read);
20139 line_ptr += bytes_read;
20140 extended_end = line_ptr + extended_len;
20141 extended_op = read_1_byte (abfd, line_ptr);
20142 line_ptr += 1;
20143 switch (extended_op)
20144 {
20145 case DW_LNE_end_sequence:
20146 state_machine.handle_end_sequence ();
20147 end_sequence = true;
20148 break;
20149 case DW_LNE_set_address:
20150 {
20151 CORE_ADDR address
20152 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20153 line_ptr += bytes_read;
20154
20155 state_machine.check_line_address (cu, line_ptr,
20156 lowpc - baseaddr, address);
20157 state_machine.handle_set_address (baseaddr, address);
20158 }
20159 break;
20160 case DW_LNE_define_file:
20161 {
20162 const char *cur_file;
20163 unsigned int mod_time, length;
20164 dir_index dindex;
20165
20166 cur_file = read_direct_string (abfd, line_ptr,
20167 &bytes_read);
20168 line_ptr += bytes_read;
20169 dindex = (dir_index)
20170 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20171 line_ptr += bytes_read;
20172 mod_time =
20173 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20174 line_ptr += bytes_read;
20175 length =
20176 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20177 line_ptr += bytes_read;
20178 lh->add_file_name (cur_file, dindex, mod_time, length);
20179 }
20180 break;
20181 case DW_LNE_set_discriminator:
20182 {
20183 /* The discriminator is not interesting to the
20184 debugger; just ignore it. We still need to
20185 check its value though:
20186 if there are consecutive entries for the same
20187 (non-prologue) line we want to coalesce them.
20188 PR 17276. */
20189 unsigned int discr
20190 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20191 line_ptr += bytes_read;
20192
20193 state_machine.handle_set_discriminator (discr);
20194 }
20195 break;
20196 default:
20197 complaint (_("mangled .debug_line section"));
20198 return;
20199 }
20200 /* Make sure that we parsed the extended op correctly. If e.g.
20201 we expected a different address size than the producer used,
20202 we may have read the wrong number of bytes. */
20203 if (line_ptr != extended_end)
20204 {
20205 complaint (_("mangled .debug_line section"));
20206 return;
20207 }
20208 break;
20209 case DW_LNS_copy:
20210 state_machine.handle_copy ();
20211 break;
20212 case DW_LNS_advance_pc:
20213 {
20214 CORE_ADDR adjust
20215 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20216 line_ptr += bytes_read;
20217
20218 state_machine.handle_advance_pc (adjust);
20219 }
20220 break;
20221 case DW_LNS_advance_line:
20222 {
20223 int line_delta
20224 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20225 line_ptr += bytes_read;
20226
20227 state_machine.handle_advance_line (line_delta);
20228 }
20229 break;
20230 case DW_LNS_set_file:
20231 {
20232 file_name_index file
20233 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20234 &bytes_read);
20235 line_ptr += bytes_read;
20236
20237 state_machine.handle_set_file (file);
20238 }
20239 break;
20240 case DW_LNS_set_column:
20241 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20242 line_ptr += bytes_read;
20243 break;
20244 case DW_LNS_negate_stmt:
20245 state_machine.handle_negate_stmt ();
20246 break;
20247 case DW_LNS_set_basic_block:
20248 break;
20249 /* Add to the address register of the state machine the
20250 address increment value corresponding to special opcode
20251 255. I.e., this value is scaled by the minimum
20252 instruction length since special opcode 255 would have
20253 scaled the increment. */
20254 case DW_LNS_const_add_pc:
20255 state_machine.handle_const_add_pc ();
20256 break;
20257 case DW_LNS_fixed_advance_pc:
20258 {
20259 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20260 line_ptr += 2;
20261
20262 state_machine.handle_fixed_advance_pc (addr_adj);
20263 }
20264 break;
20265 default:
20266 {
20267 /* Unknown standard opcode, ignore it. */
20268 int i;
20269
20270 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20271 {
20272 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20273 line_ptr += bytes_read;
20274 }
20275 }
20276 }
20277 }
20278
20279 if (!end_sequence)
20280 dwarf2_debug_line_missing_end_sequence_complaint ();
20281
20282 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20283 in which case we still finish recording the last line). */
20284 state_machine.record_line (true);
20285 }
20286 }
20287
20288 /* Decode the Line Number Program (LNP) for the given line_header
20289 structure and CU. The actual information extracted and the type
20290 of structures created from the LNP depends on the value of PST.
20291
20292 1. If PST is NULL, then this procedure uses the data from the program
20293 to create all necessary symbol tables, and their linetables.
20294
20295 2. If PST is not NULL, this procedure reads the program to determine
20296 the list of files included by the unit represented by PST, and
20297 builds all the associated partial symbol tables.
20298
20299 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20300 It is used for relative paths in the line table.
20301 NOTE: When processing partial symtabs (pst != NULL),
20302 comp_dir == pst->dirname.
20303
20304 NOTE: It is important that psymtabs have the same file name (via strcmp)
20305 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20306 symtab we don't use it in the name of the psymtabs we create.
20307 E.g. expand_line_sal requires this when finding psymtabs to expand.
20308 A good testcase for this is mb-inline.exp.
20309
20310 LOWPC is the lowest address in CU (or 0 if not known).
20311
20312 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20313 for its PC<->lines mapping information. Otherwise only the filename
20314 table is read in. */
20315
20316 static void
20317 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20318 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20319 CORE_ADDR lowpc, int decode_mapping)
20320 {
20321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20322 const int decode_for_pst_p = (pst != NULL);
20323
20324 if (decode_mapping)
20325 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20326
20327 if (decode_for_pst_p)
20328 {
20329 /* Now that we're done scanning the Line Header Program, we can
20330 create the psymtab of each included file. */
20331 for (auto &file_entry : lh->file_names ())
20332 if (file_entry.included_p == 1)
20333 {
20334 gdb::unique_xmalloc_ptr<char> name_holder;
20335 const char *include_name =
20336 psymtab_include_file_name (lh, file_entry, pst,
20337 comp_dir, &name_holder);
20338 if (include_name != NULL)
20339 dwarf2_create_include_psymtab (include_name, pst, objfile);
20340 }
20341 }
20342 else
20343 {
20344 /* Make sure a symtab is created for every file, even files
20345 which contain only variables (i.e. no code with associated
20346 line numbers). */
20347 buildsym_compunit *builder = cu->get_builder ();
20348 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20349
20350 for (auto &fe : lh->file_names ())
20351 {
20352 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20353 if (builder->get_current_subfile ()->symtab == NULL)
20354 {
20355 builder->get_current_subfile ()->symtab
20356 = allocate_symtab (cust,
20357 builder->get_current_subfile ()->name);
20358 }
20359 fe.symtab = builder->get_current_subfile ()->symtab;
20360 }
20361 }
20362 }
20363
20364 /* Start a subfile for DWARF. FILENAME is the name of the file and
20365 DIRNAME the name of the source directory which contains FILENAME
20366 or NULL if not known.
20367 This routine tries to keep line numbers from identical absolute and
20368 relative file names in a common subfile.
20369
20370 Using the `list' example from the GDB testsuite, which resides in
20371 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20372 of /srcdir/list0.c yields the following debugging information for list0.c:
20373
20374 DW_AT_name: /srcdir/list0.c
20375 DW_AT_comp_dir: /compdir
20376 files.files[0].name: list0.h
20377 files.files[0].dir: /srcdir
20378 files.files[1].name: list0.c
20379 files.files[1].dir: /srcdir
20380
20381 The line number information for list0.c has to end up in a single
20382 subfile, so that `break /srcdir/list0.c:1' works as expected.
20383 start_subfile will ensure that this happens provided that we pass the
20384 concatenation of files.files[1].dir and files.files[1].name as the
20385 subfile's name. */
20386
20387 static void
20388 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20389 const char *dirname)
20390 {
20391 gdb::unique_xmalloc_ptr<char> copy;
20392
20393 /* In order not to lose the line information directory,
20394 we concatenate it to the filename when it makes sense.
20395 Note that the Dwarf3 standard says (speaking of filenames in line
20396 information): ``The directory index is ignored for file names
20397 that represent full path names''. Thus ignoring dirname in the
20398 `else' branch below isn't an issue. */
20399
20400 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20401 {
20402 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20403 filename = copy.get ();
20404 }
20405
20406 cu->get_builder ()->start_subfile (filename);
20407 }
20408
20409 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20410 buildsym_compunit constructor. */
20411
20412 struct compunit_symtab *
20413 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20414 CORE_ADDR low_pc)
20415 {
20416 gdb_assert (m_builder == nullptr);
20417
20418 m_builder.reset (new struct buildsym_compunit
20419 (per_cu->dwarf2_per_objfile->objfile,
20420 name, comp_dir, language, low_pc));
20421
20422 list_in_scope = get_builder ()->get_file_symbols ();
20423
20424 get_builder ()->record_debugformat ("DWARF 2");
20425 get_builder ()->record_producer (producer);
20426
20427 processing_has_namespace_info = false;
20428
20429 return get_builder ()->get_compunit_symtab ();
20430 }
20431
20432 static void
20433 var_decode_location (struct attribute *attr, struct symbol *sym,
20434 struct dwarf2_cu *cu)
20435 {
20436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20437 struct comp_unit_head *cu_header = &cu->header;
20438
20439 /* NOTE drow/2003-01-30: There used to be a comment and some special
20440 code here to turn a symbol with DW_AT_external and a
20441 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20442 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20443 with some versions of binutils) where shared libraries could have
20444 relocations against symbols in their debug information - the
20445 minimal symbol would have the right address, but the debug info
20446 would not. It's no longer necessary, because we will explicitly
20447 apply relocations when we read in the debug information now. */
20448
20449 /* A DW_AT_location attribute with no contents indicates that a
20450 variable has been optimized away. */
20451 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20452 {
20453 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20454 return;
20455 }
20456
20457 /* Handle one degenerate form of location expression specially, to
20458 preserve GDB's previous behavior when section offsets are
20459 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20460 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20461
20462 if (attr->form_is_block ()
20463 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20464 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20465 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20466 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20467 && (DW_BLOCK (attr)->size
20468 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20469 {
20470 unsigned int dummy;
20471
20472 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20473 SET_SYMBOL_VALUE_ADDRESS
20474 (sym, cu->header.read_address (objfile->obfd,
20475 DW_BLOCK (attr)->data + 1,
20476 &dummy));
20477 else
20478 SET_SYMBOL_VALUE_ADDRESS
20479 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20480 &dummy));
20481 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20482 fixup_symbol_section (sym, objfile);
20483 SET_SYMBOL_VALUE_ADDRESS
20484 (sym,
20485 SYMBOL_VALUE_ADDRESS (sym)
20486 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20487 return;
20488 }
20489
20490 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20491 expression evaluator, and use LOC_COMPUTED only when necessary
20492 (i.e. when the value of a register or memory location is
20493 referenced, or a thread-local block, etc.). Then again, it might
20494 not be worthwhile. I'm assuming that it isn't unless performance
20495 or memory numbers show me otherwise. */
20496
20497 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20498
20499 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20500 cu->has_loclist = true;
20501 }
20502
20503 /* Given a pointer to a DWARF information entry, figure out if we need
20504 to make a symbol table entry for it, and if so, create a new entry
20505 and return a pointer to it.
20506 If TYPE is NULL, determine symbol type from the die, otherwise
20507 used the passed type.
20508 If SPACE is not NULL, use it to hold the new symbol. If it is
20509 NULL, allocate a new symbol on the objfile's obstack. */
20510
20511 static struct symbol *
20512 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20513 struct symbol *space)
20514 {
20515 struct dwarf2_per_objfile *dwarf2_per_objfile
20516 = cu->per_cu->dwarf2_per_objfile;
20517 struct objfile *objfile = dwarf2_per_objfile->objfile;
20518 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20519 struct symbol *sym = NULL;
20520 const char *name;
20521 struct attribute *attr = NULL;
20522 struct attribute *attr2 = NULL;
20523 CORE_ADDR baseaddr;
20524 struct pending **list_to_add = NULL;
20525
20526 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20527
20528 baseaddr = objfile->text_section_offset ();
20529
20530 name = dwarf2_name (die, cu);
20531 if (name)
20532 {
20533 const char *linkagename;
20534 int suppress_add = 0;
20535
20536 if (space)
20537 sym = space;
20538 else
20539 sym = allocate_symbol (objfile);
20540 OBJSTAT (objfile, n_syms++);
20541
20542 /* Cache this symbol's name and the name's demangled form (if any). */
20543 sym->set_language (cu->language, &objfile->objfile_obstack);
20544 linkagename = dwarf2_physname (name, die, cu);
20545 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20546
20547 /* Fortran does not have mangling standard and the mangling does differ
20548 between gfortran, iFort etc. */
20549 if (cu->language == language_fortran
20550 && symbol_get_demangled_name (sym) == NULL)
20551 symbol_set_demangled_name (sym,
20552 dwarf2_full_name (name, die, cu),
20553 NULL);
20554
20555 /* Default assumptions.
20556 Use the passed type or decode it from the die. */
20557 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20558 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20559 if (type != NULL)
20560 SYMBOL_TYPE (sym) = type;
20561 else
20562 SYMBOL_TYPE (sym) = die_type (die, cu);
20563 attr = dwarf2_attr (die,
20564 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20565 cu);
20566 if (attr != nullptr)
20567 {
20568 SYMBOL_LINE (sym) = DW_UNSND (attr);
20569 }
20570
20571 attr = dwarf2_attr (die,
20572 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20573 cu);
20574 if (attr != nullptr)
20575 {
20576 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20577 struct file_entry *fe;
20578
20579 if (cu->line_header != NULL)
20580 fe = cu->line_header->file_name_at (file_index);
20581 else
20582 fe = NULL;
20583
20584 if (fe == NULL)
20585 complaint (_("file index out of range"));
20586 else
20587 symbol_set_symtab (sym, fe->symtab);
20588 }
20589
20590 switch (die->tag)
20591 {
20592 case DW_TAG_label:
20593 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20594 if (attr != nullptr)
20595 {
20596 CORE_ADDR addr;
20597
20598 addr = attr->value_as_address ();
20599 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20600 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20601 }
20602 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20603 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20604 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20605 add_symbol_to_list (sym, cu->list_in_scope);
20606 break;
20607 case DW_TAG_subprogram:
20608 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20609 finish_block. */
20610 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20611 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20612 if ((attr2 && (DW_UNSND (attr2) != 0))
20613 || cu->language == language_ada
20614 || cu->language == language_fortran)
20615 {
20616 /* Subprograms marked external are stored as a global symbol.
20617 Ada and Fortran subprograms, whether marked external or
20618 not, are always stored as a global symbol, because we want
20619 to be able to access them globally. For instance, we want
20620 to be able to break on a nested subprogram without having
20621 to specify the context. */
20622 list_to_add = cu->get_builder ()->get_global_symbols ();
20623 }
20624 else
20625 {
20626 list_to_add = cu->list_in_scope;
20627 }
20628 break;
20629 case DW_TAG_inlined_subroutine:
20630 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20631 finish_block. */
20632 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20633 SYMBOL_INLINED (sym) = 1;
20634 list_to_add = cu->list_in_scope;
20635 break;
20636 case DW_TAG_template_value_param:
20637 suppress_add = 1;
20638 /* Fall through. */
20639 case DW_TAG_constant:
20640 case DW_TAG_variable:
20641 case DW_TAG_member:
20642 /* Compilation with minimal debug info may result in
20643 variables with missing type entries. Change the
20644 misleading `void' type to something sensible. */
20645 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20646 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20647
20648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20649 /* In the case of DW_TAG_member, we should only be called for
20650 static const members. */
20651 if (die->tag == DW_TAG_member)
20652 {
20653 /* dwarf2_add_field uses die_is_declaration,
20654 so we do the same. */
20655 gdb_assert (die_is_declaration (die, cu));
20656 gdb_assert (attr);
20657 }
20658 if (attr != nullptr)
20659 {
20660 dwarf2_const_value (attr, sym, cu);
20661 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20662 if (!suppress_add)
20663 {
20664 if (attr2 && (DW_UNSND (attr2) != 0))
20665 list_to_add = cu->get_builder ()->get_global_symbols ();
20666 else
20667 list_to_add = cu->list_in_scope;
20668 }
20669 break;
20670 }
20671 attr = dwarf2_attr (die, DW_AT_location, cu);
20672 if (attr != nullptr)
20673 {
20674 var_decode_location (attr, sym, cu);
20675 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20676
20677 /* Fortran explicitly imports any global symbols to the local
20678 scope by DW_TAG_common_block. */
20679 if (cu->language == language_fortran && die->parent
20680 && die->parent->tag == DW_TAG_common_block)
20681 attr2 = NULL;
20682
20683 if (SYMBOL_CLASS (sym) == LOC_STATIC
20684 && SYMBOL_VALUE_ADDRESS (sym) == 0
20685 && !dwarf2_per_objfile->has_section_at_zero)
20686 {
20687 /* When a static variable is eliminated by the linker,
20688 the corresponding debug information is not stripped
20689 out, but the variable address is set to null;
20690 do not add such variables into symbol table. */
20691 }
20692 else if (attr2 && (DW_UNSND (attr2) != 0))
20693 {
20694 if (SYMBOL_CLASS (sym) == LOC_STATIC
20695 && (objfile->flags & OBJF_MAINLINE) == 0
20696 && dwarf2_per_objfile->can_copy)
20697 {
20698 /* A global static variable might be subject to
20699 copy relocation. We first check for a local
20700 minsym, though, because maybe the symbol was
20701 marked hidden, in which case this would not
20702 apply. */
20703 bound_minimal_symbol found
20704 = (lookup_minimal_symbol_linkage
20705 (sym->linkage_name (), objfile));
20706 if (found.minsym != nullptr)
20707 sym->maybe_copied = 1;
20708 }
20709
20710 /* A variable with DW_AT_external is never static,
20711 but it may be block-scoped. */
20712 list_to_add
20713 = ((cu->list_in_scope
20714 == cu->get_builder ()->get_file_symbols ())
20715 ? cu->get_builder ()->get_global_symbols ()
20716 : cu->list_in_scope);
20717 }
20718 else
20719 list_to_add = cu->list_in_scope;
20720 }
20721 else
20722 {
20723 /* We do not know the address of this symbol.
20724 If it is an external symbol and we have type information
20725 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20726 The address of the variable will then be determined from
20727 the minimal symbol table whenever the variable is
20728 referenced. */
20729 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20730
20731 /* Fortran explicitly imports any global symbols to the local
20732 scope by DW_TAG_common_block. */
20733 if (cu->language == language_fortran && die->parent
20734 && die->parent->tag == DW_TAG_common_block)
20735 {
20736 /* SYMBOL_CLASS doesn't matter here because
20737 read_common_block is going to reset it. */
20738 if (!suppress_add)
20739 list_to_add = cu->list_in_scope;
20740 }
20741 else if (attr2 && (DW_UNSND (attr2) != 0)
20742 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20743 {
20744 /* A variable with DW_AT_external is never static, but it
20745 may be block-scoped. */
20746 list_to_add
20747 = ((cu->list_in_scope
20748 == cu->get_builder ()->get_file_symbols ())
20749 ? cu->get_builder ()->get_global_symbols ()
20750 : cu->list_in_scope);
20751
20752 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20753 }
20754 else if (!die_is_declaration (die, cu))
20755 {
20756 /* Use the default LOC_OPTIMIZED_OUT class. */
20757 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20758 if (!suppress_add)
20759 list_to_add = cu->list_in_scope;
20760 }
20761 }
20762 break;
20763 case DW_TAG_formal_parameter:
20764 {
20765 /* If we are inside a function, mark this as an argument. If
20766 not, we might be looking at an argument to an inlined function
20767 when we do not have enough information to show inlined frames;
20768 pretend it's a local variable in that case so that the user can
20769 still see it. */
20770 struct context_stack *curr
20771 = cu->get_builder ()->get_current_context_stack ();
20772 if (curr != nullptr && curr->name != nullptr)
20773 SYMBOL_IS_ARGUMENT (sym) = 1;
20774 attr = dwarf2_attr (die, DW_AT_location, cu);
20775 if (attr != nullptr)
20776 {
20777 var_decode_location (attr, sym, cu);
20778 }
20779 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20780 if (attr != nullptr)
20781 {
20782 dwarf2_const_value (attr, sym, cu);
20783 }
20784
20785 list_to_add = cu->list_in_scope;
20786 }
20787 break;
20788 case DW_TAG_unspecified_parameters:
20789 /* From varargs functions; gdb doesn't seem to have any
20790 interest in this information, so just ignore it for now.
20791 (FIXME?) */
20792 break;
20793 case DW_TAG_template_type_param:
20794 suppress_add = 1;
20795 /* Fall through. */
20796 case DW_TAG_class_type:
20797 case DW_TAG_interface_type:
20798 case DW_TAG_structure_type:
20799 case DW_TAG_union_type:
20800 case DW_TAG_set_type:
20801 case DW_TAG_enumeration_type:
20802 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20803 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20804
20805 {
20806 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20807 really ever be static objects: otherwise, if you try
20808 to, say, break of a class's method and you're in a file
20809 which doesn't mention that class, it won't work unless
20810 the check for all static symbols in lookup_symbol_aux
20811 saves you. See the OtherFileClass tests in
20812 gdb.c++/namespace.exp. */
20813
20814 if (!suppress_add)
20815 {
20816 buildsym_compunit *builder = cu->get_builder ();
20817 list_to_add
20818 = (cu->list_in_scope == builder->get_file_symbols ()
20819 && cu->language == language_cplus
20820 ? builder->get_global_symbols ()
20821 : cu->list_in_scope);
20822
20823 /* The semantics of C++ state that "struct foo {
20824 ... }" also defines a typedef for "foo". */
20825 if (cu->language == language_cplus
20826 || cu->language == language_ada
20827 || cu->language == language_d
20828 || cu->language == language_rust)
20829 {
20830 /* The symbol's name is already allocated along
20831 with this objfile, so we don't need to
20832 duplicate it for the type. */
20833 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20834 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20835 }
20836 }
20837 }
20838 break;
20839 case DW_TAG_typedef:
20840 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20842 list_to_add = cu->list_in_scope;
20843 break;
20844 case DW_TAG_base_type:
20845 case DW_TAG_subrange_type:
20846 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20847 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20848 list_to_add = cu->list_in_scope;
20849 break;
20850 case DW_TAG_enumerator:
20851 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20852 if (attr != nullptr)
20853 {
20854 dwarf2_const_value (attr, sym, cu);
20855 }
20856 {
20857 /* NOTE: carlton/2003-11-10: See comment above in the
20858 DW_TAG_class_type, etc. block. */
20859
20860 list_to_add
20861 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20862 && cu->language == language_cplus
20863 ? cu->get_builder ()->get_global_symbols ()
20864 : cu->list_in_scope);
20865 }
20866 break;
20867 case DW_TAG_imported_declaration:
20868 case DW_TAG_namespace:
20869 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20870 list_to_add = cu->get_builder ()->get_global_symbols ();
20871 break;
20872 case DW_TAG_module:
20873 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20874 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20875 list_to_add = cu->get_builder ()->get_global_symbols ();
20876 break;
20877 case DW_TAG_common_block:
20878 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20879 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20880 add_symbol_to_list (sym, cu->list_in_scope);
20881 break;
20882 default:
20883 /* Not a tag we recognize. Hopefully we aren't processing
20884 trash data, but since we must specifically ignore things
20885 we don't recognize, there is nothing else we should do at
20886 this point. */
20887 complaint (_("unsupported tag: '%s'"),
20888 dwarf_tag_name (die->tag));
20889 break;
20890 }
20891
20892 if (suppress_add)
20893 {
20894 sym->hash_next = objfile->template_symbols;
20895 objfile->template_symbols = sym;
20896 list_to_add = NULL;
20897 }
20898
20899 if (list_to_add != NULL)
20900 add_symbol_to_list (sym, list_to_add);
20901
20902 /* For the benefit of old versions of GCC, check for anonymous
20903 namespaces based on the demangled name. */
20904 if (!cu->processing_has_namespace_info
20905 && cu->language == language_cplus)
20906 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20907 }
20908 return (sym);
20909 }
20910
20911 /* Given an attr with a DW_FORM_dataN value in host byte order,
20912 zero-extend it as appropriate for the symbol's type. The DWARF
20913 standard (v4) is not entirely clear about the meaning of using
20914 DW_FORM_dataN for a constant with a signed type, where the type is
20915 wider than the data. The conclusion of a discussion on the DWARF
20916 list was that this is unspecified. We choose to always zero-extend
20917 because that is the interpretation long in use by GCC. */
20918
20919 static gdb_byte *
20920 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20921 struct dwarf2_cu *cu, LONGEST *value, int bits)
20922 {
20923 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20924 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20925 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20926 LONGEST l = DW_UNSND (attr);
20927
20928 if (bits < sizeof (*value) * 8)
20929 {
20930 l &= ((LONGEST) 1 << bits) - 1;
20931 *value = l;
20932 }
20933 else if (bits == sizeof (*value) * 8)
20934 *value = l;
20935 else
20936 {
20937 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20938 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20939 return bytes;
20940 }
20941
20942 return NULL;
20943 }
20944
20945 /* Read a constant value from an attribute. Either set *VALUE, or if
20946 the value does not fit in *VALUE, set *BYTES - either already
20947 allocated on the objfile obstack, or newly allocated on OBSTACK,
20948 or, set *BATON, if we translated the constant to a location
20949 expression. */
20950
20951 static void
20952 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20953 const char *name, struct obstack *obstack,
20954 struct dwarf2_cu *cu,
20955 LONGEST *value, const gdb_byte **bytes,
20956 struct dwarf2_locexpr_baton **baton)
20957 {
20958 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20959 struct comp_unit_head *cu_header = &cu->header;
20960 struct dwarf_block *blk;
20961 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20962 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20963
20964 *value = 0;
20965 *bytes = NULL;
20966 *baton = NULL;
20967
20968 switch (attr->form)
20969 {
20970 case DW_FORM_addr:
20971 case DW_FORM_addrx:
20972 case DW_FORM_GNU_addr_index:
20973 {
20974 gdb_byte *data;
20975
20976 if (TYPE_LENGTH (type) != cu_header->addr_size)
20977 dwarf2_const_value_length_mismatch_complaint (name,
20978 cu_header->addr_size,
20979 TYPE_LENGTH (type));
20980 /* Symbols of this form are reasonably rare, so we just
20981 piggyback on the existing location code rather than writing
20982 a new implementation of symbol_computed_ops. */
20983 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20984 (*baton)->per_cu = cu->per_cu;
20985 gdb_assert ((*baton)->per_cu);
20986
20987 (*baton)->size = 2 + cu_header->addr_size;
20988 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20989 (*baton)->data = data;
20990
20991 data[0] = DW_OP_addr;
20992 store_unsigned_integer (&data[1], cu_header->addr_size,
20993 byte_order, DW_ADDR (attr));
20994 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20995 }
20996 break;
20997 case DW_FORM_string:
20998 case DW_FORM_strp:
20999 case DW_FORM_strx:
21000 case DW_FORM_GNU_str_index:
21001 case DW_FORM_GNU_strp_alt:
21002 /* DW_STRING is already allocated on the objfile obstack, point
21003 directly to it. */
21004 *bytes = (const gdb_byte *) DW_STRING (attr);
21005 break;
21006 case DW_FORM_block1:
21007 case DW_FORM_block2:
21008 case DW_FORM_block4:
21009 case DW_FORM_block:
21010 case DW_FORM_exprloc:
21011 case DW_FORM_data16:
21012 blk = DW_BLOCK (attr);
21013 if (TYPE_LENGTH (type) != blk->size)
21014 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21015 TYPE_LENGTH (type));
21016 *bytes = blk->data;
21017 break;
21018
21019 /* The DW_AT_const_value attributes are supposed to carry the
21020 symbol's value "represented as it would be on the target
21021 architecture." By the time we get here, it's already been
21022 converted to host endianness, so we just need to sign- or
21023 zero-extend it as appropriate. */
21024 case DW_FORM_data1:
21025 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21026 break;
21027 case DW_FORM_data2:
21028 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21029 break;
21030 case DW_FORM_data4:
21031 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21032 break;
21033 case DW_FORM_data8:
21034 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21035 break;
21036
21037 case DW_FORM_sdata:
21038 case DW_FORM_implicit_const:
21039 *value = DW_SND (attr);
21040 break;
21041
21042 case DW_FORM_udata:
21043 *value = DW_UNSND (attr);
21044 break;
21045
21046 default:
21047 complaint (_("unsupported const value attribute form: '%s'"),
21048 dwarf_form_name (attr->form));
21049 *value = 0;
21050 break;
21051 }
21052 }
21053
21054
21055 /* Copy constant value from an attribute to a symbol. */
21056
21057 static void
21058 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21059 struct dwarf2_cu *cu)
21060 {
21061 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21062 LONGEST value;
21063 const gdb_byte *bytes;
21064 struct dwarf2_locexpr_baton *baton;
21065
21066 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21067 sym->print_name (),
21068 &objfile->objfile_obstack, cu,
21069 &value, &bytes, &baton);
21070
21071 if (baton != NULL)
21072 {
21073 SYMBOL_LOCATION_BATON (sym) = baton;
21074 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21075 }
21076 else if (bytes != NULL)
21077 {
21078 SYMBOL_VALUE_BYTES (sym) = bytes;
21079 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21080 }
21081 else
21082 {
21083 SYMBOL_VALUE (sym) = value;
21084 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21085 }
21086 }
21087
21088 /* Return the type of the die in question using its DW_AT_type attribute. */
21089
21090 static struct type *
21091 die_type (struct die_info *die, struct dwarf2_cu *cu)
21092 {
21093 struct attribute *type_attr;
21094
21095 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21096 if (!type_attr)
21097 {
21098 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21099 /* A missing DW_AT_type represents a void type. */
21100 return objfile_type (objfile)->builtin_void;
21101 }
21102
21103 return lookup_die_type (die, type_attr, cu);
21104 }
21105
21106 /* True iff CU's producer generates GNAT Ada auxiliary information
21107 that allows to find parallel types through that information instead
21108 of having to do expensive parallel lookups by type name. */
21109
21110 static int
21111 need_gnat_info (struct dwarf2_cu *cu)
21112 {
21113 /* Assume that the Ada compiler was GNAT, which always produces
21114 the auxiliary information. */
21115 return (cu->language == language_ada);
21116 }
21117
21118 /* Return the auxiliary type of the die in question using its
21119 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21120 attribute is not present. */
21121
21122 static struct type *
21123 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21124 {
21125 struct attribute *type_attr;
21126
21127 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21128 if (!type_attr)
21129 return NULL;
21130
21131 return lookup_die_type (die, type_attr, cu);
21132 }
21133
21134 /* If DIE has a descriptive_type attribute, then set the TYPE's
21135 descriptive type accordingly. */
21136
21137 static void
21138 set_descriptive_type (struct type *type, struct die_info *die,
21139 struct dwarf2_cu *cu)
21140 {
21141 struct type *descriptive_type = die_descriptive_type (die, cu);
21142
21143 if (descriptive_type)
21144 {
21145 ALLOCATE_GNAT_AUX_TYPE (type);
21146 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21147 }
21148 }
21149
21150 /* Return the containing type of the die in question using its
21151 DW_AT_containing_type attribute. */
21152
21153 static struct type *
21154 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21155 {
21156 struct attribute *type_attr;
21157 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21158
21159 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21160 if (!type_attr)
21161 error (_("Dwarf Error: Problem turning containing type into gdb type "
21162 "[in module %s]"), objfile_name (objfile));
21163
21164 return lookup_die_type (die, type_attr, cu);
21165 }
21166
21167 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21168
21169 static struct type *
21170 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21171 {
21172 struct dwarf2_per_objfile *dwarf2_per_objfile
21173 = cu->per_cu->dwarf2_per_objfile;
21174 struct objfile *objfile = dwarf2_per_objfile->objfile;
21175 char *saved;
21176
21177 std::string message
21178 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21179 objfile_name (objfile),
21180 sect_offset_str (cu->header.sect_off),
21181 sect_offset_str (die->sect_off));
21182 saved = obstack_strdup (&objfile->objfile_obstack, message);
21183
21184 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21185 }
21186
21187 /* Look up the type of DIE in CU using its type attribute ATTR.
21188 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21189 DW_AT_containing_type.
21190 If there is no type substitute an error marker. */
21191
21192 static struct type *
21193 lookup_die_type (struct die_info *die, const struct attribute *attr,
21194 struct dwarf2_cu *cu)
21195 {
21196 struct dwarf2_per_objfile *dwarf2_per_objfile
21197 = cu->per_cu->dwarf2_per_objfile;
21198 struct objfile *objfile = dwarf2_per_objfile->objfile;
21199 struct type *this_type;
21200
21201 gdb_assert (attr->name == DW_AT_type
21202 || attr->name == DW_AT_GNAT_descriptive_type
21203 || attr->name == DW_AT_containing_type);
21204
21205 /* First see if we have it cached. */
21206
21207 if (attr->form == DW_FORM_GNU_ref_alt)
21208 {
21209 struct dwarf2_per_cu_data *per_cu;
21210 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21211
21212 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21213 dwarf2_per_objfile);
21214 this_type = get_die_type_at_offset (sect_off, per_cu);
21215 }
21216 else if (attr->form_is_ref ())
21217 {
21218 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21219
21220 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21221 }
21222 else if (attr->form == DW_FORM_ref_sig8)
21223 {
21224 ULONGEST signature = DW_SIGNATURE (attr);
21225
21226 return get_signatured_type (die, signature, cu);
21227 }
21228 else
21229 {
21230 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21231 " at %s [in module %s]"),
21232 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21233 objfile_name (objfile));
21234 return build_error_marker_type (cu, die);
21235 }
21236
21237 /* If not cached we need to read it in. */
21238
21239 if (this_type == NULL)
21240 {
21241 struct die_info *type_die = NULL;
21242 struct dwarf2_cu *type_cu = cu;
21243
21244 if (attr->form_is_ref ())
21245 type_die = follow_die_ref (die, attr, &type_cu);
21246 if (type_die == NULL)
21247 return build_error_marker_type (cu, die);
21248 /* If we find the type now, it's probably because the type came
21249 from an inter-CU reference and the type's CU got expanded before
21250 ours. */
21251 this_type = read_type_die (type_die, type_cu);
21252 }
21253
21254 /* If we still don't have a type use an error marker. */
21255
21256 if (this_type == NULL)
21257 return build_error_marker_type (cu, die);
21258
21259 return this_type;
21260 }
21261
21262 /* Return the type in DIE, CU.
21263 Returns NULL for invalid types.
21264
21265 This first does a lookup in die_type_hash,
21266 and only reads the die in if necessary.
21267
21268 NOTE: This can be called when reading in partial or full symbols. */
21269
21270 static struct type *
21271 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21272 {
21273 struct type *this_type;
21274
21275 this_type = get_die_type (die, cu);
21276 if (this_type)
21277 return this_type;
21278
21279 return read_type_die_1 (die, cu);
21280 }
21281
21282 /* Read the type in DIE, CU.
21283 Returns NULL for invalid types. */
21284
21285 static struct type *
21286 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21287 {
21288 struct type *this_type = NULL;
21289
21290 switch (die->tag)
21291 {
21292 case DW_TAG_class_type:
21293 case DW_TAG_interface_type:
21294 case DW_TAG_structure_type:
21295 case DW_TAG_union_type:
21296 this_type = read_structure_type (die, cu);
21297 break;
21298 case DW_TAG_enumeration_type:
21299 this_type = read_enumeration_type (die, cu);
21300 break;
21301 case DW_TAG_subprogram:
21302 case DW_TAG_subroutine_type:
21303 case DW_TAG_inlined_subroutine:
21304 this_type = read_subroutine_type (die, cu);
21305 break;
21306 case DW_TAG_array_type:
21307 this_type = read_array_type (die, cu);
21308 break;
21309 case DW_TAG_set_type:
21310 this_type = read_set_type (die, cu);
21311 break;
21312 case DW_TAG_pointer_type:
21313 this_type = read_tag_pointer_type (die, cu);
21314 break;
21315 case DW_TAG_ptr_to_member_type:
21316 this_type = read_tag_ptr_to_member_type (die, cu);
21317 break;
21318 case DW_TAG_reference_type:
21319 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21320 break;
21321 case DW_TAG_rvalue_reference_type:
21322 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21323 break;
21324 case DW_TAG_const_type:
21325 this_type = read_tag_const_type (die, cu);
21326 break;
21327 case DW_TAG_volatile_type:
21328 this_type = read_tag_volatile_type (die, cu);
21329 break;
21330 case DW_TAG_restrict_type:
21331 this_type = read_tag_restrict_type (die, cu);
21332 break;
21333 case DW_TAG_string_type:
21334 this_type = read_tag_string_type (die, cu);
21335 break;
21336 case DW_TAG_typedef:
21337 this_type = read_typedef (die, cu);
21338 break;
21339 case DW_TAG_subrange_type:
21340 this_type = read_subrange_type (die, cu);
21341 break;
21342 case DW_TAG_base_type:
21343 this_type = read_base_type (die, cu);
21344 break;
21345 case DW_TAG_unspecified_type:
21346 this_type = read_unspecified_type (die, cu);
21347 break;
21348 case DW_TAG_namespace:
21349 this_type = read_namespace_type (die, cu);
21350 break;
21351 case DW_TAG_module:
21352 this_type = read_module_type (die, cu);
21353 break;
21354 case DW_TAG_atomic_type:
21355 this_type = read_tag_atomic_type (die, cu);
21356 break;
21357 default:
21358 complaint (_("unexpected tag in read_type_die: '%s'"),
21359 dwarf_tag_name (die->tag));
21360 break;
21361 }
21362
21363 return this_type;
21364 }
21365
21366 /* See if we can figure out if the class lives in a namespace. We do
21367 this by looking for a member function; its demangled name will
21368 contain namespace info, if there is any.
21369 Return the computed name or NULL.
21370 Space for the result is allocated on the objfile's obstack.
21371 This is the full-die version of guess_partial_die_structure_name.
21372 In this case we know DIE has no useful parent. */
21373
21374 static const char *
21375 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21376 {
21377 struct die_info *spec_die;
21378 struct dwarf2_cu *spec_cu;
21379 struct die_info *child;
21380 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21381
21382 spec_cu = cu;
21383 spec_die = die_specification (die, &spec_cu);
21384 if (spec_die != NULL)
21385 {
21386 die = spec_die;
21387 cu = spec_cu;
21388 }
21389
21390 for (child = die->child;
21391 child != NULL;
21392 child = child->sibling)
21393 {
21394 if (child->tag == DW_TAG_subprogram)
21395 {
21396 const char *linkage_name = dw2_linkage_name (child, cu);
21397
21398 if (linkage_name != NULL)
21399 {
21400 gdb::unique_xmalloc_ptr<char> actual_name
21401 (language_class_name_from_physname (cu->language_defn,
21402 linkage_name));
21403 const char *name = NULL;
21404
21405 if (actual_name != NULL)
21406 {
21407 const char *die_name = dwarf2_name (die, cu);
21408
21409 if (die_name != NULL
21410 && strcmp (die_name, actual_name.get ()) != 0)
21411 {
21412 /* Strip off the class name from the full name.
21413 We want the prefix. */
21414 int die_name_len = strlen (die_name);
21415 int actual_name_len = strlen (actual_name.get ());
21416 const char *ptr = actual_name.get ();
21417
21418 /* Test for '::' as a sanity check. */
21419 if (actual_name_len > die_name_len + 2
21420 && ptr[actual_name_len - die_name_len - 1] == ':')
21421 name = obstack_strndup (
21422 &objfile->per_bfd->storage_obstack,
21423 ptr, actual_name_len - die_name_len - 2);
21424 }
21425 }
21426 return name;
21427 }
21428 }
21429 }
21430
21431 return NULL;
21432 }
21433
21434 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21435 prefix part in such case. See
21436 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21437
21438 static const char *
21439 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21440 {
21441 struct attribute *attr;
21442 const char *base;
21443
21444 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21445 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21446 return NULL;
21447
21448 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21449 return NULL;
21450
21451 attr = dw2_linkage_name_attr (die, cu);
21452 if (attr == NULL || DW_STRING (attr) == NULL)
21453 return NULL;
21454
21455 /* dwarf2_name had to be already called. */
21456 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21457
21458 /* Strip the base name, keep any leading namespaces/classes. */
21459 base = strrchr (DW_STRING (attr), ':');
21460 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21461 return "";
21462
21463 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21464 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21465 DW_STRING (attr),
21466 &base[-1] - DW_STRING (attr));
21467 }
21468
21469 /* Return the name of the namespace/class that DIE is defined within,
21470 or "" if we can't tell. The caller should not xfree the result.
21471
21472 For example, if we're within the method foo() in the following
21473 code:
21474
21475 namespace N {
21476 class C {
21477 void foo () {
21478 }
21479 };
21480 }
21481
21482 then determine_prefix on foo's die will return "N::C". */
21483
21484 static const char *
21485 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21486 {
21487 struct dwarf2_per_objfile *dwarf2_per_objfile
21488 = cu->per_cu->dwarf2_per_objfile;
21489 struct die_info *parent, *spec_die;
21490 struct dwarf2_cu *spec_cu;
21491 struct type *parent_type;
21492 const char *retval;
21493
21494 if (cu->language != language_cplus
21495 && cu->language != language_fortran && cu->language != language_d
21496 && cu->language != language_rust)
21497 return "";
21498
21499 retval = anonymous_struct_prefix (die, cu);
21500 if (retval)
21501 return retval;
21502
21503 /* We have to be careful in the presence of DW_AT_specification.
21504 For example, with GCC 3.4, given the code
21505
21506 namespace N {
21507 void foo() {
21508 // Definition of N::foo.
21509 }
21510 }
21511
21512 then we'll have a tree of DIEs like this:
21513
21514 1: DW_TAG_compile_unit
21515 2: DW_TAG_namespace // N
21516 3: DW_TAG_subprogram // declaration of N::foo
21517 4: DW_TAG_subprogram // definition of N::foo
21518 DW_AT_specification // refers to die #3
21519
21520 Thus, when processing die #4, we have to pretend that we're in
21521 the context of its DW_AT_specification, namely the contex of die
21522 #3. */
21523 spec_cu = cu;
21524 spec_die = die_specification (die, &spec_cu);
21525 if (spec_die == NULL)
21526 parent = die->parent;
21527 else
21528 {
21529 parent = spec_die->parent;
21530 cu = spec_cu;
21531 }
21532
21533 if (parent == NULL)
21534 return "";
21535 else if (parent->building_fullname)
21536 {
21537 const char *name;
21538 const char *parent_name;
21539
21540 /* It has been seen on RealView 2.2 built binaries,
21541 DW_TAG_template_type_param types actually _defined_ as
21542 children of the parent class:
21543
21544 enum E {};
21545 template class <class Enum> Class{};
21546 Class<enum E> class_e;
21547
21548 1: DW_TAG_class_type (Class)
21549 2: DW_TAG_enumeration_type (E)
21550 3: DW_TAG_enumerator (enum1:0)
21551 3: DW_TAG_enumerator (enum2:1)
21552 ...
21553 2: DW_TAG_template_type_param
21554 DW_AT_type DW_FORM_ref_udata (E)
21555
21556 Besides being broken debug info, it can put GDB into an
21557 infinite loop. Consider:
21558
21559 When we're building the full name for Class<E>, we'll start
21560 at Class, and go look over its template type parameters,
21561 finding E. We'll then try to build the full name of E, and
21562 reach here. We're now trying to build the full name of E,
21563 and look over the parent DIE for containing scope. In the
21564 broken case, if we followed the parent DIE of E, we'd again
21565 find Class, and once again go look at its template type
21566 arguments, etc., etc. Simply don't consider such parent die
21567 as source-level parent of this die (it can't be, the language
21568 doesn't allow it), and break the loop here. */
21569 name = dwarf2_name (die, cu);
21570 parent_name = dwarf2_name (parent, cu);
21571 complaint (_("template param type '%s' defined within parent '%s'"),
21572 name ? name : "<unknown>",
21573 parent_name ? parent_name : "<unknown>");
21574 return "";
21575 }
21576 else
21577 switch (parent->tag)
21578 {
21579 case DW_TAG_namespace:
21580 parent_type = read_type_die (parent, cu);
21581 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21582 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21583 Work around this problem here. */
21584 if (cu->language == language_cplus
21585 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21586 return "";
21587 /* We give a name to even anonymous namespaces. */
21588 return TYPE_NAME (parent_type);
21589 case DW_TAG_class_type:
21590 case DW_TAG_interface_type:
21591 case DW_TAG_structure_type:
21592 case DW_TAG_union_type:
21593 case DW_TAG_module:
21594 parent_type = read_type_die (parent, cu);
21595 if (TYPE_NAME (parent_type) != NULL)
21596 return TYPE_NAME (parent_type);
21597 else
21598 /* An anonymous structure is only allowed non-static data
21599 members; no typedefs, no member functions, et cetera.
21600 So it does not need a prefix. */
21601 return "";
21602 case DW_TAG_compile_unit:
21603 case DW_TAG_partial_unit:
21604 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21605 if (cu->language == language_cplus
21606 && !dwarf2_per_objfile->types.empty ()
21607 && die->child != NULL
21608 && (die->tag == DW_TAG_class_type
21609 || die->tag == DW_TAG_structure_type
21610 || die->tag == DW_TAG_union_type))
21611 {
21612 const char *name = guess_full_die_structure_name (die, cu);
21613 if (name != NULL)
21614 return name;
21615 }
21616 return "";
21617 case DW_TAG_subprogram:
21618 /* Nested subroutines in Fortran get a prefix with the name
21619 of the parent's subroutine. */
21620 if (cu->language == language_fortran)
21621 {
21622 if ((die->tag == DW_TAG_subprogram)
21623 && (dwarf2_name (parent, cu) != NULL))
21624 return dwarf2_name (parent, cu);
21625 }
21626 return determine_prefix (parent, cu);
21627 case DW_TAG_enumeration_type:
21628 parent_type = read_type_die (parent, cu);
21629 if (TYPE_DECLARED_CLASS (parent_type))
21630 {
21631 if (TYPE_NAME (parent_type) != NULL)
21632 return TYPE_NAME (parent_type);
21633 return "";
21634 }
21635 /* Fall through. */
21636 default:
21637 return determine_prefix (parent, cu);
21638 }
21639 }
21640
21641 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21642 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21643 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21644 an obconcat, otherwise allocate storage for the result. The CU argument is
21645 used to determine the language and hence, the appropriate separator. */
21646
21647 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21648
21649 static char *
21650 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21651 int physname, struct dwarf2_cu *cu)
21652 {
21653 const char *lead = "";
21654 const char *sep;
21655
21656 if (suffix == NULL || suffix[0] == '\0'
21657 || prefix == NULL || prefix[0] == '\0')
21658 sep = "";
21659 else if (cu->language == language_d)
21660 {
21661 /* For D, the 'main' function could be defined in any module, but it
21662 should never be prefixed. */
21663 if (strcmp (suffix, "D main") == 0)
21664 {
21665 prefix = "";
21666 sep = "";
21667 }
21668 else
21669 sep = ".";
21670 }
21671 else if (cu->language == language_fortran && physname)
21672 {
21673 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21674 DW_AT_MIPS_linkage_name is preferred and used instead. */
21675
21676 lead = "__";
21677 sep = "_MOD_";
21678 }
21679 else
21680 sep = "::";
21681
21682 if (prefix == NULL)
21683 prefix = "";
21684 if (suffix == NULL)
21685 suffix = "";
21686
21687 if (obs == NULL)
21688 {
21689 char *retval
21690 = ((char *)
21691 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21692
21693 strcpy (retval, lead);
21694 strcat (retval, prefix);
21695 strcat (retval, sep);
21696 strcat (retval, suffix);
21697 return retval;
21698 }
21699 else
21700 {
21701 /* We have an obstack. */
21702 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21703 }
21704 }
21705
21706 /* Return sibling of die, NULL if no sibling. */
21707
21708 static struct die_info *
21709 sibling_die (struct die_info *die)
21710 {
21711 return die->sibling;
21712 }
21713
21714 /* Get name of a die, return NULL if not found. */
21715
21716 static const char *
21717 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21718 struct obstack *obstack)
21719 {
21720 if (name && cu->language == language_cplus)
21721 {
21722 std::string canon_name = cp_canonicalize_string (name);
21723
21724 if (!canon_name.empty ())
21725 {
21726 if (canon_name != name)
21727 name = obstack_strdup (obstack, canon_name);
21728 }
21729 }
21730
21731 return name;
21732 }
21733
21734 /* Get name of a die, return NULL if not found.
21735 Anonymous namespaces are converted to their magic string. */
21736
21737 static const char *
21738 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21739 {
21740 struct attribute *attr;
21741 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21742
21743 attr = dwarf2_attr (die, DW_AT_name, cu);
21744 if ((!attr || !DW_STRING (attr))
21745 && die->tag != DW_TAG_namespace
21746 && die->tag != DW_TAG_class_type
21747 && die->tag != DW_TAG_interface_type
21748 && die->tag != DW_TAG_structure_type
21749 && die->tag != DW_TAG_union_type)
21750 return NULL;
21751
21752 switch (die->tag)
21753 {
21754 case DW_TAG_compile_unit:
21755 case DW_TAG_partial_unit:
21756 /* Compilation units have a DW_AT_name that is a filename, not
21757 a source language identifier. */
21758 case DW_TAG_enumeration_type:
21759 case DW_TAG_enumerator:
21760 /* These tags always have simple identifiers already; no need
21761 to canonicalize them. */
21762 return DW_STRING (attr);
21763
21764 case DW_TAG_namespace:
21765 if (attr != NULL && DW_STRING (attr) != NULL)
21766 return DW_STRING (attr);
21767 return CP_ANONYMOUS_NAMESPACE_STR;
21768
21769 case DW_TAG_class_type:
21770 case DW_TAG_interface_type:
21771 case DW_TAG_structure_type:
21772 case DW_TAG_union_type:
21773 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21774 structures or unions. These were of the form "._%d" in GCC 4.1,
21775 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21776 and GCC 4.4. We work around this problem by ignoring these. */
21777 if (attr && DW_STRING (attr)
21778 && (startswith (DW_STRING (attr), "._")
21779 || startswith (DW_STRING (attr), "<anonymous")))
21780 return NULL;
21781
21782 /* GCC might emit a nameless typedef that has a linkage name. See
21783 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21784 if (!attr || DW_STRING (attr) == NULL)
21785 {
21786 attr = dw2_linkage_name_attr (die, cu);
21787 if (attr == NULL || DW_STRING (attr) == NULL)
21788 return NULL;
21789
21790 /* Avoid demangling DW_STRING (attr) the second time on a second
21791 call for the same DIE. */
21792 if (!DW_STRING_IS_CANONICAL (attr))
21793 {
21794 gdb::unique_xmalloc_ptr<char> demangled
21795 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21796 if (demangled == nullptr)
21797 return nullptr;
21798
21799 const char *base;
21800
21801 /* FIXME: we already did this for the partial symbol... */
21802 DW_STRING (attr)
21803 = obstack_strdup (&objfile->per_bfd->storage_obstack,
21804 demangled.get ());
21805 DW_STRING_IS_CANONICAL (attr) = 1;
21806
21807 /* Strip any leading namespaces/classes, keep only the base name.
21808 DW_AT_name for named DIEs does not contain the prefixes. */
21809 base = strrchr (DW_STRING (attr), ':');
21810 if (base && base > DW_STRING (attr) && base[-1] == ':')
21811 return &base[1];
21812 else
21813 return DW_STRING (attr);
21814 }
21815 }
21816 break;
21817
21818 default:
21819 break;
21820 }
21821
21822 if (!DW_STRING_IS_CANONICAL (attr))
21823 {
21824 DW_STRING (attr)
21825 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21826 &objfile->per_bfd->storage_obstack);
21827 DW_STRING_IS_CANONICAL (attr) = 1;
21828 }
21829 return DW_STRING (attr);
21830 }
21831
21832 /* Return the die that this die in an extension of, or NULL if there
21833 is none. *EXT_CU is the CU containing DIE on input, and the CU
21834 containing the return value on output. */
21835
21836 static struct die_info *
21837 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21838 {
21839 struct attribute *attr;
21840
21841 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21842 if (attr == NULL)
21843 return NULL;
21844
21845 return follow_die_ref (die, attr, ext_cu);
21846 }
21847
21848 /* A convenience function that returns an "unknown" DWARF name,
21849 including the value of V. STR is the name of the entity being
21850 printed, e.g., "TAG". */
21851
21852 static const char *
21853 dwarf_unknown (const char *str, unsigned v)
21854 {
21855 char *cell = get_print_cell ();
21856 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
21857 return cell;
21858 }
21859
21860 /* Convert a DIE tag into its string name. */
21861
21862 static const char *
21863 dwarf_tag_name (unsigned tag)
21864 {
21865 const char *name = get_DW_TAG_name (tag);
21866
21867 if (name == NULL)
21868 return dwarf_unknown ("TAG", tag);
21869
21870 return name;
21871 }
21872
21873 /* Convert a DWARF attribute code into its string name. */
21874
21875 static const char *
21876 dwarf_attr_name (unsigned attr)
21877 {
21878 const char *name;
21879
21880 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21881 if (attr == DW_AT_MIPS_fde)
21882 return "DW_AT_MIPS_fde";
21883 #else
21884 if (attr == DW_AT_HP_block_index)
21885 return "DW_AT_HP_block_index";
21886 #endif
21887
21888 name = get_DW_AT_name (attr);
21889
21890 if (name == NULL)
21891 return dwarf_unknown ("AT", attr);
21892
21893 return name;
21894 }
21895
21896 /* Convert a DWARF value form code into its string name. */
21897
21898 static const char *
21899 dwarf_form_name (unsigned form)
21900 {
21901 const char *name = get_DW_FORM_name (form);
21902
21903 if (name == NULL)
21904 return dwarf_unknown ("FORM", form);
21905
21906 return name;
21907 }
21908
21909 static const char *
21910 dwarf_bool_name (unsigned mybool)
21911 {
21912 if (mybool)
21913 return "TRUE";
21914 else
21915 return "FALSE";
21916 }
21917
21918 /* Convert a DWARF type code into its string name. */
21919
21920 static const char *
21921 dwarf_type_encoding_name (unsigned enc)
21922 {
21923 const char *name = get_DW_ATE_name (enc);
21924
21925 if (name == NULL)
21926 return dwarf_unknown ("ATE", enc);
21927
21928 return name;
21929 }
21930
21931 static void
21932 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21933 {
21934 unsigned int i;
21935
21936 print_spaces (indent, f);
21937 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21938 dwarf_tag_name (die->tag), die->abbrev,
21939 sect_offset_str (die->sect_off));
21940
21941 if (die->parent != NULL)
21942 {
21943 print_spaces (indent, f);
21944 fprintf_unfiltered (f, " parent at offset: %s\n",
21945 sect_offset_str (die->parent->sect_off));
21946 }
21947
21948 print_spaces (indent, f);
21949 fprintf_unfiltered (f, " has children: %s\n",
21950 dwarf_bool_name (die->child != NULL));
21951
21952 print_spaces (indent, f);
21953 fprintf_unfiltered (f, " attributes:\n");
21954
21955 for (i = 0; i < die->num_attrs; ++i)
21956 {
21957 print_spaces (indent, f);
21958 fprintf_unfiltered (f, " %s (%s) ",
21959 dwarf_attr_name (die->attrs[i].name),
21960 dwarf_form_name (die->attrs[i].form));
21961
21962 switch (die->attrs[i].form)
21963 {
21964 case DW_FORM_addr:
21965 case DW_FORM_addrx:
21966 case DW_FORM_GNU_addr_index:
21967 fprintf_unfiltered (f, "address: ");
21968 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21969 break;
21970 case DW_FORM_block2:
21971 case DW_FORM_block4:
21972 case DW_FORM_block:
21973 case DW_FORM_block1:
21974 fprintf_unfiltered (f, "block: size %s",
21975 pulongest (DW_BLOCK (&die->attrs[i])->size));
21976 break;
21977 case DW_FORM_exprloc:
21978 fprintf_unfiltered (f, "expression: size %s",
21979 pulongest (DW_BLOCK (&die->attrs[i])->size));
21980 break;
21981 case DW_FORM_data16:
21982 fprintf_unfiltered (f, "constant of 16 bytes");
21983 break;
21984 case DW_FORM_ref_addr:
21985 fprintf_unfiltered (f, "ref address: ");
21986 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21987 break;
21988 case DW_FORM_GNU_ref_alt:
21989 fprintf_unfiltered (f, "alt ref address: ");
21990 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21991 break;
21992 case DW_FORM_ref1:
21993 case DW_FORM_ref2:
21994 case DW_FORM_ref4:
21995 case DW_FORM_ref8:
21996 case DW_FORM_ref_udata:
21997 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21998 (long) (DW_UNSND (&die->attrs[i])));
21999 break;
22000 case DW_FORM_data1:
22001 case DW_FORM_data2:
22002 case DW_FORM_data4:
22003 case DW_FORM_data8:
22004 case DW_FORM_udata:
22005 case DW_FORM_sdata:
22006 fprintf_unfiltered (f, "constant: %s",
22007 pulongest (DW_UNSND (&die->attrs[i])));
22008 break;
22009 case DW_FORM_sec_offset:
22010 fprintf_unfiltered (f, "section offset: %s",
22011 pulongest (DW_UNSND (&die->attrs[i])));
22012 break;
22013 case DW_FORM_ref_sig8:
22014 fprintf_unfiltered (f, "signature: %s",
22015 hex_string (DW_SIGNATURE (&die->attrs[i])));
22016 break;
22017 case DW_FORM_string:
22018 case DW_FORM_strp:
22019 case DW_FORM_line_strp:
22020 case DW_FORM_strx:
22021 case DW_FORM_GNU_str_index:
22022 case DW_FORM_GNU_strp_alt:
22023 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22024 DW_STRING (&die->attrs[i])
22025 ? DW_STRING (&die->attrs[i]) : "",
22026 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22027 break;
22028 case DW_FORM_flag:
22029 if (DW_UNSND (&die->attrs[i]))
22030 fprintf_unfiltered (f, "flag: TRUE");
22031 else
22032 fprintf_unfiltered (f, "flag: FALSE");
22033 break;
22034 case DW_FORM_flag_present:
22035 fprintf_unfiltered (f, "flag: TRUE");
22036 break;
22037 case DW_FORM_indirect:
22038 /* The reader will have reduced the indirect form to
22039 the "base form" so this form should not occur. */
22040 fprintf_unfiltered (f,
22041 "unexpected attribute form: DW_FORM_indirect");
22042 break;
22043 case DW_FORM_implicit_const:
22044 fprintf_unfiltered (f, "constant: %s",
22045 plongest (DW_SND (&die->attrs[i])));
22046 break;
22047 default:
22048 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22049 die->attrs[i].form);
22050 break;
22051 }
22052 fprintf_unfiltered (f, "\n");
22053 }
22054 }
22055
22056 static void
22057 dump_die_for_error (struct die_info *die)
22058 {
22059 dump_die_shallow (gdb_stderr, 0, die);
22060 }
22061
22062 static void
22063 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22064 {
22065 int indent = level * 4;
22066
22067 gdb_assert (die != NULL);
22068
22069 if (level >= max_level)
22070 return;
22071
22072 dump_die_shallow (f, indent, die);
22073
22074 if (die->child != NULL)
22075 {
22076 print_spaces (indent, f);
22077 fprintf_unfiltered (f, " Children:");
22078 if (level + 1 < max_level)
22079 {
22080 fprintf_unfiltered (f, "\n");
22081 dump_die_1 (f, level + 1, max_level, die->child);
22082 }
22083 else
22084 {
22085 fprintf_unfiltered (f,
22086 " [not printed, max nesting level reached]\n");
22087 }
22088 }
22089
22090 if (die->sibling != NULL && level > 0)
22091 {
22092 dump_die_1 (f, level, max_level, die->sibling);
22093 }
22094 }
22095
22096 /* This is called from the pdie macro in gdbinit.in.
22097 It's not static so gcc will keep a copy callable from gdb. */
22098
22099 void
22100 dump_die (struct die_info *die, int max_level)
22101 {
22102 dump_die_1 (gdb_stdlog, 0, max_level, die);
22103 }
22104
22105 static void
22106 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22107 {
22108 void **slot;
22109
22110 slot = htab_find_slot_with_hash (cu->die_hash, die,
22111 to_underlying (die->sect_off),
22112 INSERT);
22113
22114 *slot = die;
22115 }
22116
22117 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22118 required kind. */
22119
22120 static sect_offset
22121 dwarf2_get_ref_die_offset (const struct attribute *attr)
22122 {
22123 if (attr->form_is_ref ())
22124 return (sect_offset) DW_UNSND (attr);
22125
22126 complaint (_("unsupported die ref attribute form: '%s'"),
22127 dwarf_form_name (attr->form));
22128 return {};
22129 }
22130
22131 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22132 * the value held by the attribute is not constant. */
22133
22134 static LONGEST
22135 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22136 {
22137 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22138 return DW_SND (attr);
22139 else if (attr->form == DW_FORM_udata
22140 || attr->form == DW_FORM_data1
22141 || attr->form == DW_FORM_data2
22142 || attr->form == DW_FORM_data4
22143 || attr->form == DW_FORM_data8)
22144 return DW_UNSND (attr);
22145 else
22146 {
22147 /* For DW_FORM_data16 see attribute::form_is_constant. */
22148 complaint (_("Attribute value is not a constant (%s)"),
22149 dwarf_form_name (attr->form));
22150 return default_value;
22151 }
22152 }
22153
22154 /* Follow reference or signature attribute ATTR of SRC_DIE.
22155 On entry *REF_CU is the CU of SRC_DIE.
22156 On exit *REF_CU is the CU of the result. */
22157
22158 static struct die_info *
22159 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22160 struct dwarf2_cu **ref_cu)
22161 {
22162 struct die_info *die;
22163
22164 if (attr->form_is_ref ())
22165 die = follow_die_ref (src_die, attr, ref_cu);
22166 else if (attr->form == DW_FORM_ref_sig8)
22167 die = follow_die_sig (src_die, attr, ref_cu);
22168 else
22169 {
22170 dump_die_for_error (src_die);
22171 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22172 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22173 }
22174
22175 return die;
22176 }
22177
22178 /* Follow reference OFFSET.
22179 On entry *REF_CU is the CU of the source die referencing OFFSET.
22180 On exit *REF_CU is the CU of the result.
22181 Returns NULL if OFFSET is invalid. */
22182
22183 static struct die_info *
22184 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22185 struct dwarf2_cu **ref_cu)
22186 {
22187 struct die_info temp_die;
22188 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22189 struct dwarf2_per_objfile *dwarf2_per_objfile
22190 = cu->per_cu->dwarf2_per_objfile;
22191
22192 gdb_assert (cu->per_cu != NULL);
22193
22194 target_cu = cu;
22195
22196 if (cu->per_cu->is_debug_types)
22197 {
22198 /* .debug_types CUs cannot reference anything outside their CU.
22199 If they need to, they have to reference a signatured type via
22200 DW_FORM_ref_sig8. */
22201 if (!cu->header.offset_in_cu_p (sect_off))
22202 return NULL;
22203 }
22204 else if (offset_in_dwz != cu->per_cu->is_dwz
22205 || !cu->header.offset_in_cu_p (sect_off))
22206 {
22207 struct dwarf2_per_cu_data *per_cu;
22208
22209 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22210 dwarf2_per_objfile);
22211
22212 /* If necessary, add it to the queue and load its DIEs. */
22213 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22214 load_full_comp_unit (per_cu, false, cu->language);
22215
22216 target_cu = per_cu->cu;
22217 }
22218 else if (cu->dies == NULL)
22219 {
22220 /* We're loading full DIEs during partial symbol reading. */
22221 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22222 load_full_comp_unit (cu->per_cu, false, language_minimal);
22223 }
22224
22225 *ref_cu = target_cu;
22226 temp_die.sect_off = sect_off;
22227
22228 if (target_cu != cu)
22229 target_cu->ancestor = cu;
22230
22231 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22232 &temp_die,
22233 to_underlying (sect_off));
22234 }
22235
22236 /* Follow reference attribute ATTR of SRC_DIE.
22237 On entry *REF_CU is the CU of SRC_DIE.
22238 On exit *REF_CU is the CU of the result. */
22239
22240 static struct die_info *
22241 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22242 struct dwarf2_cu **ref_cu)
22243 {
22244 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22245 struct dwarf2_cu *cu = *ref_cu;
22246 struct die_info *die;
22247
22248 die = follow_die_offset (sect_off,
22249 (attr->form == DW_FORM_GNU_ref_alt
22250 || cu->per_cu->is_dwz),
22251 ref_cu);
22252 if (!die)
22253 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22254 "at %s [in module %s]"),
22255 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22256 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22257
22258 return die;
22259 }
22260
22261 /* See read.h. */
22262
22263 struct dwarf2_locexpr_baton
22264 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22265 dwarf2_per_cu_data *per_cu,
22266 CORE_ADDR (*get_frame_pc) (void *baton),
22267 void *baton, bool resolve_abstract_p)
22268 {
22269 struct dwarf2_cu *cu;
22270 struct die_info *die;
22271 struct attribute *attr;
22272 struct dwarf2_locexpr_baton retval;
22273 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22274 struct objfile *objfile = dwarf2_per_objfile->objfile;
22275
22276 if (per_cu->cu == NULL)
22277 load_cu (per_cu, false);
22278 cu = per_cu->cu;
22279 if (cu == NULL)
22280 {
22281 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22282 Instead just throw an error, not much else we can do. */
22283 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22284 sect_offset_str (sect_off), objfile_name (objfile));
22285 }
22286
22287 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22288 if (!die)
22289 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22290 sect_offset_str (sect_off), objfile_name (objfile));
22291
22292 attr = dwarf2_attr (die, DW_AT_location, cu);
22293 if (!attr && resolve_abstract_p
22294 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22295 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22296 {
22297 CORE_ADDR pc = (*get_frame_pc) (baton);
22298 CORE_ADDR baseaddr = objfile->text_section_offset ();
22299 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22300
22301 for (const auto &cand_off
22302 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22303 {
22304 struct dwarf2_cu *cand_cu = cu;
22305 struct die_info *cand
22306 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22307 if (!cand
22308 || !cand->parent
22309 || cand->parent->tag != DW_TAG_subprogram)
22310 continue;
22311
22312 CORE_ADDR pc_low, pc_high;
22313 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22314 if (pc_low == ((CORE_ADDR) -1))
22315 continue;
22316 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22317 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22318 if (!(pc_low <= pc && pc < pc_high))
22319 continue;
22320
22321 die = cand;
22322 attr = dwarf2_attr (die, DW_AT_location, cu);
22323 break;
22324 }
22325 }
22326
22327 if (!attr)
22328 {
22329 /* DWARF: "If there is no such attribute, then there is no effect.".
22330 DATA is ignored if SIZE is 0. */
22331
22332 retval.data = NULL;
22333 retval.size = 0;
22334 }
22335 else if (attr->form_is_section_offset ())
22336 {
22337 struct dwarf2_loclist_baton loclist_baton;
22338 CORE_ADDR pc = (*get_frame_pc) (baton);
22339 size_t size;
22340
22341 fill_in_loclist_baton (cu, &loclist_baton, attr);
22342
22343 retval.data = dwarf2_find_location_expression (&loclist_baton,
22344 &size, pc);
22345 retval.size = size;
22346 }
22347 else
22348 {
22349 if (!attr->form_is_block ())
22350 error (_("Dwarf Error: DIE at %s referenced in module %s "
22351 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22352 sect_offset_str (sect_off), objfile_name (objfile));
22353
22354 retval.data = DW_BLOCK (attr)->data;
22355 retval.size = DW_BLOCK (attr)->size;
22356 }
22357 retval.per_cu = cu->per_cu;
22358
22359 age_cached_comp_units (dwarf2_per_objfile);
22360
22361 return retval;
22362 }
22363
22364 /* See read.h. */
22365
22366 struct dwarf2_locexpr_baton
22367 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22368 dwarf2_per_cu_data *per_cu,
22369 CORE_ADDR (*get_frame_pc) (void *baton),
22370 void *baton)
22371 {
22372 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22373
22374 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22375 }
22376
22377 /* Write a constant of a given type as target-ordered bytes into
22378 OBSTACK. */
22379
22380 static const gdb_byte *
22381 write_constant_as_bytes (struct obstack *obstack,
22382 enum bfd_endian byte_order,
22383 struct type *type,
22384 ULONGEST value,
22385 LONGEST *len)
22386 {
22387 gdb_byte *result;
22388
22389 *len = TYPE_LENGTH (type);
22390 result = (gdb_byte *) obstack_alloc (obstack, *len);
22391 store_unsigned_integer (result, *len, byte_order, value);
22392
22393 return result;
22394 }
22395
22396 /* See read.h. */
22397
22398 const gdb_byte *
22399 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22400 dwarf2_per_cu_data *per_cu,
22401 obstack *obstack,
22402 LONGEST *len)
22403 {
22404 struct dwarf2_cu *cu;
22405 struct die_info *die;
22406 struct attribute *attr;
22407 const gdb_byte *result = NULL;
22408 struct type *type;
22409 LONGEST value;
22410 enum bfd_endian byte_order;
22411 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22412
22413 if (per_cu->cu == NULL)
22414 load_cu (per_cu, false);
22415 cu = per_cu->cu;
22416 if (cu == NULL)
22417 {
22418 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22419 Instead just throw an error, not much else we can do. */
22420 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22421 sect_offset_str (sect_off), objfile_name (objfile));
22422 }
22423
22424 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22425 if (!die)
22426 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22427 sect_offset_str (sect_off), objfile_name (objfile));
22428
22429 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22430 if (attr == NULL)
22431 return NULL;
22432
22433 byte_order = (bfd_big_endian (objfile->obfd)
22434 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22435
22436 switch (attr->form)
22437 {
22438 case DW_FORM_addr:
22439 case DW_FORM_addrx:
22440 case DW_FORM_GNU_addr_index:
22441 {
22442 gdb_byte *tem;
22443
22444 *len = cu->header.addr_size;
22445 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22446 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22447 result = tem;
22448 }
22449 break;
22450 case DW_FORM_string:
22451 case DW_FORM_strp:
22452 case DW_FORM_strx:
22453 case DW_FORM_GNU_str_index:
22454 case DW_FORM_GNU_strp_alt:
22455 /* DW_STRING is already allocated on the objfile obstack, point
22456 directly to it. */
22457 result = (const gdb_byte *) DW_STRING (attr);
22458 *len = strlen (DW_STRING (attr));
22459 break;
22460 case DW_FORM_block1:
22461 case DW_FORM_block2:
22462 case DW_FORM_block4:
22463 case DW_FORM_block:
22464 case DW_FORM_exprloc:
22465 case DW_FORM_data16:
22466 result = DW_BLOCK (attr)->data;
22467 *len = DW_BLOCK (attr)->size;
22468 break;
22469
22470 /* The DW_AT_const_value attributes are supposed to carry the
22471 symbol's value "represented as it would be on the target
22472 architecture." By the time we get here, it's already been
22473 converted to host endianness, so we just need to sign- or
22474 zero-extend it as appropriate. */
22475 case DW_FORM_data1:
22476 type = die_type (die, cu);
22477 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22478 if (result == NULL)
22479 result = write_constant_as_bytes (obstack, byte_order,
22480 type, value, len);
22481 break;
22482 case DW_FORM_data2:
22483 type = die_type (die, cu);
22484 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22485 if (result == NULL)
22486 result = write_constant_as_bytes (obstack, byte_order,
22487 type, value, len);
22488 break;
22489 case DW_FORM_data4:
22490 type = die_type (die, cu);
22491 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22492 if (result == NULL)
22493 result = write_constant_as_bytes (obstack, byte_order,
22494 type, value, len);
22495 break;
22496 case DW_FORM_data8:
22497 type = die_type (die, cu);
22498 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22499 if (result == NULL)
22500 result = write_constant_as_bytes (obstack, byte_order,
22501 type, value, len);
22502 break;
22503
22504 case DW_FORM_sdata:
22505 case DW_FORM_implicit_const:
22506 type = die_type (die, cu);
22507 result = write_constant_as_bytes (obstack, byte_order,
22508 type, DW_SND (attr), len);
22509 break;
22510
22511 case DW_FORM_udata:
22512 type = die_type (die, cu);
22513 result = write_constant_as_bytes (obstack, byte_order,
22514 type, DW_UNSND (attr), len);
22515 break;
22516
22517 default:
22518 complaint (_("unsupported const value attribute form: '%s'"),
22519 dwarf_form_name (attr->form));
22520 break;
22521 }
22522
22523 return result;
22524 }
22525
22526 /* See read.h. */
22527
22528 struct type *
22529 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22530 dwarf2_per_cu_data *per_cu)
22531 {
22532 struct dwarf2_cu *cu;
22533 struct die_info *die;
22534
22535 if (per_cu->cu == NULL)
22536 load_cu (per_cu, false);
22537 cu = per_cu->cu;
22538 if (!cu)
22539 return NULL;
22540
22541 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22542 if (!die)
22543 return NULL;
22544
22545 return die_type (die, cu);
22546 }
22547
22548 /* See read.h. */
22549
22550 struct type *
22551 dwarf2_get_die_type (cu_offset die_offset,
22552 struct dwarf2_per_cu_data *per_cu)
22553 {
22554 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22555 return get_die_type_at_offset (die_offset_sect, per_cu);
22556 }
22557
22558 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22559 On entry *REF_CU is the CU of SRC_DIE.
22560 On exit *REF_CU is the CU of the result.
22561 Returns NULL if the referenced DIE isn't found. */
22562
22563 static struct die_info *
22564 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22565 struct dwarf2_cu **ref_cu)
22566 {
22567 struct die_info temp_die;
22568 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22569 struct die_info *die;
22570
22571 /* While it might be nice to assert sig_type->type == NULL here,
22572 we can get here for DW_AT_imported_declaration where we need
22573 the DIE not the type. */
22574
22575 /* If necessary, add it to the queue and load its DIEs. */
22576
22577 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22578 read_signatured_type (sig_type);
22579
22580 sig_cu = sig_type->per_cu.cu;
22581 gdb_assert (sig_cu != NULL);
22582 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22583 temp_die.sect_off = sig_type->type_offset_in_section;
22584 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22585 to_underlying (temp_die.sect_off));
22586 if (die)
22587 {
22588 struct dwarf2_per_objfile *dwarf2_per_objfile
22589 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22590
22591 /* For .gdb_index version 7 keep track of included TUs.
22592 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22593 if (dwarf2_per_objfile->index_table != NULL
22594 && dwarf2_per_objfile->index_table->version <= 7)
22595 {
22596 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22597 }
22598
22599 *ref_cu = sig_cu;
22600 if (sig_cu != cu)
22601 sig_cu->ancestor = cu;
22602
22603 return die;
22604 }
22605
22606 return NULL;
22607 }
22608
22609 /* Follow signatured type referenced by ATTR in SRC_DIE.
22610 On entry *REF_CU is the CU of SRC_DIE.
22611 On exit *REF_CU is the CU of the result.
22612 The result is the DIE of the type.
22613 If the referenced type cannot be found an error is thrown. */
22614
22615 static struct die_info *
22616 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22617 struct dwarf2_cu **ref_cu)
22618 {
22619 ULONGEST signature = DW_SIGNATURE (attr);
22620 struct signatured_type *sig_type;
22621 struct die_info *die;
22622
22623 gdb_assert (attr->form == DW_FORM_ref_sig8);
22624
22625 sig_type = lookup_signatured_type (*ref_cu, signature);
22626 /* sig_type will be NULL if the signatured type is missing from
22627 the debug info. */
22628 if (sig_type == NULL)
22629 {
22630 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22631 " from DIE at %s [in module %s]"),
22632 hex_string (signature), sect_offset_str (src_die->sect_off),
22633 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22634 }
22635
22636 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22637 if (die == NULL)
22638 {
22639 dump_die_for_error (src_die);
22640 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22641 " from DIE at %s [in module %s]"),
22642 hex_string (signature), sect_offset_str (src_die->sect_off),
22643 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22644 }
22645
22646 return die;
22647 }
22648
22649 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22650 reading in and processing the type unit if necessary. */
22651
22652 static struct type *
22653 get_signatured_type (struct die_info *die, ULONGEST signature,
22654 struct dwarf2_cu *cu)
22655 {
22656 struct dwarf2_per_objfile *dwarf2_per_objfile
22657 = cu->per_cu->dwarf2_per_objfile;
22658 struct signatured_type *sig_type;
22659 struct dwarf2_cu *type_cu;
22660 struct die_info *type_die;
22661 struct type *type;
22662
22663 sig_type = lookup_signatured_type (cu, signature);
22664 /* sig_type will be NULL if the signatured type is missing from
22665 the debug info. */
22666 if (sig_type == NULL)
22667 {
22668 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22669 " from DIE at %s [in module %s]"),
22670 hex_string (signature), sect_offset_str (die->sect_off),
22671 objfile_name (dwarf2_per_objfile->objfile));
22672 return build_error_marker_type (cu, die);
22673 }
22674
22675 /* If we already know the type we're done. */
22676 if (sig_type->type != NULL)
22677 return sig_type->type;
22678
22679 type_cu = cu;
22680 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22681 if (type_die != NULL)
22682 {
22683 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22684 is created. This is important, for example, because for c++ classes
22685 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22686 type = read_type_die (type_die, type_cu);
22687 if (type == NULL)
22688 {
22689 complaint (_("Dwarf Error: Cannot build signatured type %s"
22690 " referenced from DIE at %s [in module %s]"),
22691 hex_string (signature), sect_offset_str (die->sect_off),
22692 objfile_name (dwarf2_per_objfile->objfile));
22693 type = build_error_marker_type (cu, die);
22694 }
22695 }
22696 else
22697 {
22698 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22699 " from DIE at %s [in module %s]"),
22700 hex_string (signature), sect_offset_str (die->sect_off),
22701 objfile_name (dwarf2_per_objfile->objfile));
22702 type = build_error_marker_type (cu, die);
22703 }
22704 sig_type->type = type;
22705
22706 return type;
22707 }
22708
22709 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22710 reading in and processing the type unit if necessary. */
22711
22712 static struct type *
22713 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22714 struct dwarf2_cu *cu) /* ARI: editCase function */
22715 {
22716 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22717 if (attr->form_is_ref ())
22718 {
22719 struct dwarf2_cu *type_cu = cu;
22720 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22721
22722 return read_type_die (type_die, type_cu);
22723 }
22724 else if (attr->form == DW_FORM_ref_sig8)
22725 {
22726 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22727 }
22728 else
22729 {
22730 struct dwarf2_per_objfile *dwarf2_per_objfile
22731 = cu->per_cu->dwarf2_per_objfile;
22732
22733 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22734 " at %s [in module %s]"),
22735 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22736 objfile_name (dwarf2_per_objfile->objfile));
22737 return build_error_marker_type (cu, die);
22738 }
22739 }
22740
22741 /* Load the DIEs associated with type unit PER_CU into memory. */
22742
22743 static void
22744 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22745 {
22746 struct signatured_type *sig_type;
22747
22748 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22749 gdb_assert (! per_cu->type_unit_group_p ());
22750
22751 /* We have the per_cu, but we need the signatured_type.
22752 Fortunately this is an easy translation. */
22753 gdb_assert (per_cu->is_debug_types);
22754 sig_type = (struct signatured_type *) per_cu;
22755
22756 gdb_assert (per_cu->cu == NULL);
22757
22758 read_signatured_type (sig_type);
22759
22760 gdb_assert (per_cu->cu != NULL);
22761 }
22762
22763 /* Read in a signatured type and build its CU and DIEs.
22764 If the type is a stub for the real type in a DWO file,
22765 read in the real type from the DWO file as well. */
22766
22767 static void
22768 read_signatured_type (struct signatured_type *sig_type)
22769 {
22770 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22771
22772 gdb_assert (per_cu->is_debug_types);
22773 gdb_assert (per_cu->cu == NULL);
22774
22775 cutu_reader reader (per_cu, NULL, 0, false);
22776
22777 if (!reader.dummy_p)
22778 {
22779 struct dwarf2_cu *cu = reader.cu;
22780 const gdb_byte *info_ptr = reader.info_ptr;
22781
22782 gdb_assert (cu->die_hash == NULL);
22783 cu->die_hash =
22784 htab_create_alloc_ex (cu->header.length / 12,
22785 die_hash,
22786 die_eq,
22787 NULL,
22788 &cu->comp_unit_obstack,
22789 hashtab_obstack_allocate,
22790 dummy_obstack_deallocate);
22791
22792 if (reader.comp_unit_die->has_children)
22793 reader.comp_unit_die->child
22794 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22795 reader.comp_unit_die);
22796 cu->dies = reader.comp_unit_die;
22797 /* comp_unit_die is not stored in die_hash, no need. */
22798
22799 /* We try not to read any attributes in this function, because
22800 not all CUs needed for references have been loaded yet, and
22801 symbol table processing isn't initialized. But we have to
22802 set the CU language, or we won't be able to build types
22803 correctly. Similarly, if we do not read the producer, we can
22804 not apply producer-specific interpretation. */
22805 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22806
22807 reader.keep ();
22808 }
22809
22810 sig_type->per_cu.tu_read = 1;
22811 }
22812
22813 /* Decode simple location descriptions.
22814 Given a pointer to a dwarf block that defines a location, compute
22815 the location and return the value.
22816
22817 NOTE drow/2003-11-18: This function is called in two situations
22818 now: for the address of static or global variables (partial symbols
22819 only) and for offsets into structures which are expected to be
22820 (more or less) constant. The partial symbol case should go away,
22821 and only the constant case should remain. That will let this
22822 function complain more accurately. A few special modes are allowed
22823 without complaint for global variables (for instance, global
22824 register values and thread-local values).
22825
22826 A location description containing no operations indicates that the
22827 object is optimized out. The return value is 0 for that case.
22828 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22829 callers will only want a very basic result and this can become a
22830 complaint.
22831
22832 Note that stack[0] is unused except as a default error return. */
22833
22834 static CORE_ADDR
22835 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22836 {
22837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22838 size_t i;
22839 size_t size = blk->size;
22840 const gdb_byte *data = blk->data;
22841 CORE_ADDR stack[64];
22842 int stacki;
22843 unsigned int bytes_read, unsnd;
22844 gdb_byte op;
22845
22846 i = 0;
22847 stacki = 0;
22848 stack[stacki] = 0;
22849 stack[++stacki] = 0;
22850
22851 while (i < size)
22852 {
22853 op = data[i++];
22854 switch (op)
22855 {
22856 case DW_OP_lit0:
22857 case DW_OP_lit1:
22858 case DW_OP_lit2:
22859 case DW_OP_lit3:
22860 case DW_OP_lit4:
22861 case DW_OP_lit5:
22862 case DW_OP_lit6:
22863 case DW_OP_lit7:
22864 case DW_OP_lit8:
22865 case DW_OP_lit9:
22866 case DW_OP_lit10:
22867 case DW_OP_lit11:
22868 case DW_OP_lit12:
22869 case DW_OP_lit13:
22870 case DW_OP_lit14:
22871 case DW_OP_lit15:
22872 case DW_OP_lit16:
22873 case DW_OP_lit17:
22874 case DW_OP_lit18:
22875 case DW_OP_lit19:
22876 case DW_OP_lit20:
22877 case DW_OP_lit21:
22878 case DW_OP_lit22:
22879 case DW_OP_lit23:
22880 case DW_OP_lit24:
22881 case DW_OP_lit25:
22882 case DW_OP_lit26:
22883 case DW_OP_lit27:
22884 case DW_OP_lit28:
22885 case DW_OP_lit29:
22886 case DW_OP_lit30:
22887 case DW_OP_lit31:
22888 stack[++stacki] = op - DW_OP_lit0;
22889 break;
22890
22891 case DW_OP_reg0:
22892 case DW_OP_reg1:
22893 case DW_OP_reg2:
22894 case DW_OP_reg3:
22895 case DW_OP_reg4:
22896 case DW_OP_reg5:
22897 case DW_OP_reg6:
22898 case DW_OP_reg7:
22899 case DW_OP_reg8:
22900 case DW_OP_reg9:
22901 case DW_OP_reg10:
22902 case DW_OP_reg11:
22903 case DW_OP_reg12:
22904 case DW_OP_reg13:
22905 case DW_OP_reg14:
22906 case DW_OP_reg15:
22907 case DW_OP_reg16:
22908 case DW_OP_reg17:
22909 case DW_OP_reg18:
22910 case DW_OP_reg19:
22911 case DW_OP_reg20:
22912 case DW_OP_reg21:
22913 case DW_OP_reg22:
22914 case DW_OP_reg23:
22915 case DW_OP_reg24:
22916 case DW_OP_reg25:
22917 case DW_OP_reg26:
22918 case DW_OP_reg27:
22919 case DW_OP_reg28:
22920 case DW_OP_reg29:
22921 case DW_OP_reg30:
22922 case DW_OP_reg31:
22923 stack[++stacki] = op - DW_OP_reg0;
22924 if (i < size)
22925 dwarf2_complex_location_expr_complaint ();
22926 break;
22927
22928 case DW_OP_regx:
22929 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22930 i += bytes_read;
22931 stack[++stacki] = unsnd;
22932 if (i < size)
22933 dwarf2_complex_location_expr_complaint ();
22934 break;
22935
22936 case DW_OP_addr:
22937 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22938 &bytes_read);
22939 i += bytes_read;
22940 break;
22941
22942 case DW_OP_const1u:
22943 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22944 i += 1;
22945 break;
22946
22947 case DW_OP_const1s:
22948 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22949 i += 1;
22950 break;
22951
22952 case DW_OP_const2u:
22953 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22954 i += 2;
22955 break;
22956
22957 case DW_OP_const2s:
22958 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22959 i += 2;
22960 break;
22961
22962 case DW_OP_const4u:
22963 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22964 i += 4;
22965 break;
22966
22967 case DW_OP_const4s:
22968 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22969 i += 4;
22970 break;
22971
22972 case DW_OP_const8u:
22973 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22974 i += 8;
22975 break;
22976
22977 case DW_OP_constu:
22978 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22979 &bytes_read);
22980 i += bytes_read;
22981 break;
22982
22983 case DW_OP_consts:
22984 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22985 i += bytes_read;
22986 break;
22987
22988 case DW_OP_dup:
22989 stack[stacki + 1] = stack[stacki];
22990 stacki++;
22991 break;
22992
22993 case DW_OP_plus:
22994 stack[stacki - 1] += stack[stacki];
22995 stacki--;
22996 break;
22997
22998 case DW_OP_plus_uconst:
22999 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23000 &bytes_read);
23001 i += bytes_read;
23002 break;
23003
23004 case DW_OP_minus:
23005 stack[stacki - 1] -= stack[stacki];
23006 stacki--;
23007 break;
23008
23009 case DW_OP_deref:
23010 /* If we're not the last op, then we definitely can't encode
23011 this using GDB's address_class enum. This is valid for partial
23012 global symbols, although the variable's address will be bogus
23013 in the psymtab. */
23014 if (i < size)
23015 dwarf2_complex_location_expr_complaint ();
23016 break;
23017
23018 case DW_OP_GNU_push_tls_address:
23019 case DW_OP_form_tls_address:
23020 /* The top of the stack has the offset from the beginning
23021 of the thread control block at which the variable is located. */
23022 /* Nothing should follow this operator, so the top of stack would
23023 be returned. */
23024 /* This is valid for partial global symbols, but the variable's
23025 address will be bogus in the psymtab. Make it always at least
23026 non-zero to not look as a variable garbage collected by linker
23027 which have DW_OP_addr 0. */
23028 if (i < size)
23029 dwarf2_complex_location_expr_complaint ();
23030 stack[stacki]++;
23031 break;
23032
23033 case DW_OP_GNU_uninit:
23034 break;
23035
23036 case DW_OP_addrx:
23037 case DW_OP_GNU_addr_index:
23038 case DW_OP_GNU_const_index:
23039 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23040 &bytes_read);
23041 i += bytes_read;
23042 break;
23043
23044 default:
23045 {
23046 const char *name = get_DW_OP_name (op);
23047
23048 if (name)
23049 complaint (_("unsupported stack op: '%s'"),
23050 name);
23051 else
23052 complaint (_("unsupported stack op: '%02x'"),
23053 op);
23054 }
23055
23056 return (stack[stacki]);
23057 }
23058
23059 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23060 outside of the allocated space. Also enforce minimum>0. */
23061 if (stacki >= ARRAY_SIZE (stack) - 1)
23062 {
23063 complaint (_("location description stack overflow"));
23064 return 0;
23065 }
23066
23067 if (stacki <= 0)
23068 {
23069 complaint (_("location description stack underflow"));
23070 return 0;
23071 }
23072 }
23073 return (stack[stacki]);
23074 }
23075
23076 /* memory allocation interface */
23077
23078 static struct dwarf_block *
23079 dwarf_alloc_block (struct dwarf2_cu *cu)
23080 {
23081 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23082 }
23083
23084 static struct die_info *
23085 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23086 {
23087 struct die_info *die;
23088 size_t size = sizeof (struct die_info);
23089
23090 if (num_attrs > 1)
23091 size += (num_attrs - 1) * sizeof (struct attribute);
23092
23093 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23094 memset (die, 0, sizeof (struct die_info));
23095 return (die);
23096 }
23097
23098 \f
23099 /* Macro support. */
23100
23101 static struct macro_source_file *
23102 macro_start_file (struct dwarf2_cu *cu,
23103 int file, int line,
23104 struct macro_source_file *current_file,
23105 struct line_header *lh)
23106 {
23107 /* File name relative to the compilation directory of this source file. */
23108 gdb::unique_xmalloc_ptr<char> file_name = lh->file_file_name (file);
23109
23110 if (! current_file)
23111 {
23112 /* Note: We don't create a macro table for this compilation unit
23113 at all until we actually get a filename. */
23114 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23115
23116 /* If we have no current file, then this must be the start_file
23117 directive for the compilation unit's main source file. */
23118 current_file = macro_set_main (macro_table, file_name.get ());
23119 macro_define_special (macro_table);
23120 }
23121 else
23122 current_file = macro_include (current_file, line, file_name.get ());
23123
23124 return current_file;
23125 }
23126
23127 static const char *
23128 consume_improper_spaces (const char *p, const char *body)
23129 {
23130 if (*p == ' ')
23131 {
23132 complaint (_("macro definition contains spaces "
23133 "in formal argument list:\n`%s'"),
23134 body);
23135
23136 while (*p == ' ')
23137 p++;
23138 }
23139
23140 return p;
23141 }
23142
23143
23144 static void
23145 parse_macro_definition (struct macro_source_file *file, int line,
23146 const char *body)
23147 {
23148 const char *p;
23149
23150 /* The body string takes one of two forms. For object-like macro
23151 definitions, it should be:
23152
23153 <macro name> " " <definition>
23154
23155 For function-like macro definitions, it should be:
23156
23157 <macro name> "() " <definition>
23158 or
23159 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23160
23161 Spaces may appear only where explicitly indicated, and in the
23162 <definition>.
23163
23164 The Dwarf 2 spec says that an object-like macro's name is always
23165 followed by a space, but versions of GCC around March 2002 omit
23166 the space when the macro's definition is the empty string.
23167
23168 The Dwarf 2 spec says that there should be no spaces between the
23169 formal arguments in a function-like macro's formal argument list,
23170 but versions of GCC around March 2002 include spaces after the
23171 commas. */
23172
23173
23174 /* Find the extent of the macro name. The macro name is terminated
23175 by either a space or null character (for an object-like macro) or
23176 an opening paren (for a function-like macro). */
23177 for (p = body; *p; p++)
23178 if (*p == ' ' || *p == '(')
23179 break;
23180
23181 if (*p == ' ' || *p == '\0')
23182 {
23183 /* It's an object-like macro. */
23184 int name_len = p - body;
23185 std::string name (body, name_len);
23186 const char *replacement;
23187
23188 if (*p == ' ')
23189 replacement = body + name_len + 1;
23190 else
23191 {
23192 dwarf2_macro_malformed_definition_complaint (body);
23193 replacement = body + name_len;
23194 }
23195
23196 macro_define_object (file, line, name.c_str (), replacement);
23197 }
23198 else if (*p == '(')
23199 {
23200 /* It's a function-like macro. */
23201 std::string name (body, p - body);
23202 int argc = 0;
23203 int argv_size = 1;
23204 char **argv = XNEWVEC (char *, argv_size);
23205
23206 p++;
23207
23208 p = consume_improper_spaces (p, body);
23209
23210 /* Parse the formal argument list. */
23211 while (*p && *p != ')')
23212 {
23213 /* Find the extent of the current argument name. */
23214 const char *arg_start = p;
23215
23216 while (*p && *p != ',' && *p != ')' && *p != ' ')
23217 p++;
23218
23219 if (! *p || p == arg_start)
23220 dwarf2_macro_malformed_definition_complaint (body);
23221 else
23222 {
23223 /* Make sure argv has room for the new argument. */
23224 if (argc >= argv_size)
23225 {
23226 argv_size *= 2;
23227 argv = XRESIZEVEC (char *, argv, argv_size);
23228 }
23229
23230 argv[argc++] = savestring (arg_start, p - arg_start);
23231 }
23232
23233 p = consume_improper_spaces (p, body);
23234
23235 /* Consume the comma, if present. */
23236 if (*p == ',')
23237 {
23238 p++;
23239
23240 p = consume_improper_spaces (p, body);
23241 }
23242 }
23243
23244 if (*p == ')')
23245 {
23246 p++;
23247
23248 if (*p == ' ')
23249 /* Perfectly formed definition, no complaints. */
23250 macro_define_function (file, line, name.c_str (),
23251 argc, (const char **) argv,
23252 p + 1);
23253 else if (*p == '\0')
23254 {
23255 /* Complain, but do define it. */
23256 dwarf2_macro_malformed_definition_complaint (body);
23257 macro_define_function (file, line, name.c_str (),
23258 argc, (const char **) argv,
23259 p);
23260 }
23261 else
23262 /* Just complain. */
23263 dwarf2_macro_malformed_definition_complaint (body);
23264 }
23265 else
23266 /* Just complain. */
23267 dwarf2_macro_malformed_definition_complaint (body);
23268
23269 {
23270 int i;
23271
23272 for (i = 0; i < argc; i++)
23273 xfree (argv[i]);
23274 }
23275 xfree (argv);
23276 }
23277 else
23278 dwarf2_macro_malformed_definition_complaint (body);
23279 }
23280
23281 /* Skip some bytes from BYTES according to the form given in FORM.
23282 Returns the new pointer. */
23283
23284 static const gdb_byte *
23285 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23286 enum dwarf_form form,
23287 unsigned int offset_size,
23288 struct dwarf2_section_info *section)
23289 {
23290 unsigned int bytes_read;
23291
23292 switch (form)
23293 {
23294 case DW_FORM_data1:
23295 case DW_FORM_flag:
23296 ++bytes;
23297 break;
23298
23299 case DW_FORM_data2:
23300 bytes += 2;
23301 break;
23302
23303 case DW_FORM_data4:
23304 bytes += 4;
23305 break;
23306
23307 case DW_FORM_data8:
23308 bytes += 8;
23309 break;
23310
23311 case DW_FORM_data16:
23312 bytes += 16;
23313 break;
23314
23315 case DW_FORM_string:
23316 read_direct_string (abfd, bytes, &bytes_read);
23317 bytes += bytes_read;
23318 break;
23319
23320 case DW_FORM_sec_offset:
23321 case DW_FORM_strp:
23322 case DW_FORM_GNU_strp_alt:
23323 bytes += offset_size;
23324 break;
23325
23326 case DW_FORM_block:
23327 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23328 bytes += bytes_read;
23329 break;
23330
23331 case DW_FORM_block1:
23332 bytes += 1 + read_1_byte (abfd, bytes);
23333 break;
23334 case DW_FORM_block2:
23335 bytes += 2 + read_2_bytes (abfd, bytes);
23336 break;
23337 case DW_FORM_block4:
23338 bytes += 4 + read_4_bytes (abfd, bytes);
23339 break;
23340
23341 case DW_FORM_addrx:
23342 case DW_FORM_sdata:
23343 case DW_FORM_strx:
23344 case DW_FORM_udata:
23345 case DW_FORM_GNU_addr_index:
23346 case DW_FORM_GNU_str_index:
23347 bytes = gdb_skip_leb128 (bytes, buffer_end);
23348 if (bytes == NULL)
23349 {
23350 dwarf2_section_buffer_overflow_complaint (section);
23351 return NULL;
23352 }
23353 break;
23354
23355 case DW_FORM_implicit_const:
23356 break;
23357
23358 default:
23359 {
23360 complaint (_("invalid form 0x%x in `%s'"),
23361 form, section->get_name ());
23362 return NULL;
23363 }
23364 }
23365
23366 return bytes;
23367 }
23368
23369 /* A helper for dwarf_decode_macros that handles skipping an unknown
23370 opcode. Returns an updated pointer to the macro data buffer; or,
23371 on error, issues a complaint and returns NULL. */
23372
23373 static const gdb_byte *
23374 skip_unknown_opcode (unsigned int opcode,
23375 const gdb_byte **opcode_definitions,
23376 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23377 bfd *abfd,
23378 unsigned int offset_size,
23379 struct dwarf2_section_info *section)
23380 {
23381 unsigned int bytes_read, i;
23382 unsigned long arg;
23383 const gdb_byte *defn;
23384
23385 if (opcode_definitions[opcode] == NULL)
23386 {
23387 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23388 opcode);
23389 return NULL;
23390 }
23391
23392 defn = opcode_definitions[opcode];
23393 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23394 defn += bytes_read;
23395
23396 for (i = 0; i < arg; ++i)
23397 {
23398 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23399 (enum dwarf_form) defn[i], offset_size,
23400 section);
23401 if (mac_ptr == NULL)
23402 {
23403 /* skip_form_bytes already issued the complaint. */
23404 return NULL;
23405 }
23406 }
23407
23408 return mac_ptr;
23409 }
23410
23411 /* A helper function which parses the header of a macro section.
23412 If the macro section is the extended (for now called "GNU") type,
23413 then this updates *OFFSET_SIZE. Returns a pointer to just after
23414 the header, or issues a complaint and returns NULL on error. */
23415
23416 static const gdb_byte *
23417 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
23418 bfd *abfd,
23419 const gdb_byte *mac_ptr,
23420 unsigned int *offset_size,
23421 int section_is_gnu)
23422 {
23423 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
23424
23425 if (section_is_gnu)
23426 {
23427 unsigned int version, flags;
23428
23429 version = read_2_bytes (abfd, mac_ptr);
23430 if (version != 4 && version != 5)
23431 {
23432 complaint (_("unrecognized version `%d' in .debug_macro section"),
23433 version);
23434 return NULL;
23435 }
23436 mac_ptr += 2;
23437
23438 flags = read_1_byte (abfd, mac_ptr);
23439 ++mac_ptr;
23440 *offset_size = (flags & 1) ? 8 : 4;
23441
23442 if ((flags & 2) != 0)
23443 /* We don't need the line table offset. */
23444 mac_ptr += *offset_size;
23445
23446 /* Vendor opcode descriptions. */
23447 if ((flags & 4) != 0)
23448 {
23449 unsigned int i, count;
23450
23451 count = read_1_byte (abfd, mac_ptr);
23452 ++mac_ptr;
23453 for (i = 0; i < count; ++i)
23454 {
23455 unsigned int opcode, bytes_read;
23456 unsigned long arg;
23457
23458 opcode = read_1_byte (abfd, mac_ptr);
23459 ++mac_ptr;
23460 opcode_definitions[opcode] = mac_ptr;
23461 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23462 mac_ptr += bytes_read;
23463 mac_ptr += arg;
23464 }
23465 }
23466 }
23467
23468 return mac_ptr;
23469 }
23470
23471 /* A helper for dwarf_decode_macros that handles the GNU extensions,
23472 including DW_MACRO_import. */
23473
23474 static void
23475 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
23476 bfd *abfd,
23477 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23478 struct macro_source_file *current_file,
23479 struct line_header *lh,
23480 struct dwarf2_section_info *section,
23481 int section_is_gnu, int section_is_dwz,
23482 unsigned int offset_size,
23483 htab_t include_hash)
23484 {
23485 struct dwarf2_per_objfile *dwarf2_per_objfile
23486 = cu->per_cu->dwarf2_per_objfile;
23487 struct objfile *objfile = dwarf2_per_objfile->objfile;
23488 enum dwarf_macro_record_type macinfo_type;
23489 int at_commandline;
23490 const gdb_byte *opcode_definitions[256];
23491
23492 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23493 &offset_size, section_is_gnu);
23494 if (mac_ptr == NULL)
23495 {
23496 /* We already issued a complaint. */
23497 return;
23498 }
23499
23500 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
23501 GDB is still reading the definitions from command line. First
23502 DW_MACINFO_start_file will need to be ignored as it was already executed
23503 to create CURRENT_FILE for the main source holding also the command line
23504 definitions. On first met DW_MACINFO_start_file this flag is reset to
23505 normally execute all the remaining DW_MACINFO_start_file macinfos. */
23506
23507 at_commandline = 1;
23508
23509 do
23510 {
23511 /* Do we at least have room for a macinfo type byte? */
23512 if (mac_ptr >= mac_end)
23513 {
23514 dwarf2_section_buffer_overflow_complaint (section);
23515 break;
23516 }
23517
23518 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23519 mac_ptr++;
23520
23521 /* Note that we rely on the fact that the corresponding GNU and
23522 DWARF constants are the same. */
23523 DIAGNOSTIC_PUSH
23524 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23525 switch (macinfo_type)
23526 {
23527 /* A zero macinfo type indicates the end of the macro
23528 information. */
23529 case 0:
23530 break;
23531
23532 case DW_MACRO_define:
23533 case DW_MACRO_undef:
23534 case DW_MACRO_define_strp:
23535 case DW_MACRO_undef_strp:
23536 case DW_MACRO_define_sup:
23537 case DW_MACRO_undef_sup:
23538 {
23539 unsigned int bytes_read;
23540 int line;
23541 const char *body;
23542 int is_define;
23543
23544 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23545 mac_ptr += bytes_read;
23546
23547 if (macinfo_type == DW_MACRO_define
23548 || macinfo_type == DW_MACRO_undef)
23549 {
23550 body = read_direct_string (abfd, mac_ptr, &bytes_read);
23551 mac_ptr += bytes_read;
23552 }
23553 else
23554 {
23555 LONGEST str_offset;
23556
23557 str_offset = read_offset (abfd, mac_ptr, offset_size);
23558 mac_ptr += offset_size;
23559
23560 if (macinfo_type == DW_MACRO_define_sup
23561 || macinfo_type == DW_MACRO_undef_sup
23562 || section_is_dwz)
23563 {
23564 struct dwz_file *dwz
23565 = dwarf2_get_dwz_file (dwarf2_per_objfile);
23566
23567 body = read_indirect_string_from_dwz (objfile,
23568 dwz, str_offset);
23569 }
23570 else
23571 body = read_indirect_string_at_offset (dwarf2_per_objfile,
23572 abfd, str_offset);
23573 }
23574
23575 is_define = (macinfo_type == DW_MACRO_define
23576 || macinfo_type == DW_MACRO_define_strp
23577 || macinfo_type == DW_MACRO_define_sup);
23578 if (! current_file)
23579 {
23580 /* DWARF violation as no main source is present. */
23581 complaint (_("debug info with no main source gives macro %s "
23582 "on line %d: %s"),
23583 is_define ? _("definition") : _("undefinition"),
23584 line, body);
23585 break;
23586 }
23587 if ((line == 0 && !at_commandline)
23588 || (line != 0 && at_commandline))
23589 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
23590 at_commandline ? _("command-line") : _("in-file"),
23591 is_define ? _("definition") : _("undefinition"),
23592 line == 0 ? _("zero") : _("non-zero"), line, body);
23593
23594 if (body == NULL)
23595 {
23596 /* Fedora's rpm-build's "debugedit" binary
23597 corrupted .debug_macro sections.
23598
23599 For more info, see
23600 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
23601 complaint (_("debug info gives %s invalid macro %s "
23602 "without body (corrupted?) at line %d "
23603 "on file %s"),
23604 at_commandline ? _("command-line") : _("in-file"),
23605 is_define ? _("definition") : _("undefinition"),
23606 line, current_file->filename);
23607 }
23608 else if (is_define)
23609 parse_macro_definition (current_file, line, body);
23610 else
23611 {
23612 gdb_assert (macinfo_type == DW_MACRO_undef
23613 || macinfo_type == DW_MACRO_undef_strp
23614 || macinfo_type == DW_MACRO_undef_sup);
23615 macro_undef (current_file, line, body);
23616 }
23617 }
23618 break;
23619
23620 case DW_MACRO_start_file:
23621 {
23622 unsigned int bytes_read;
23623 int line, file;
23624
23625 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23626 mac_ptr += bytes_read;
23627 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23628 mac_ptr += bytes_read;
23629
23630 if ((line == 0 && !at_commandline)
23631 || (line != 0 && at_commandline))
23632 complaint (_("debug info gives source %d included "
23633 "from %s at %s line %d"),
23634 file, at_commandline ? _("command-line") : _("file"),
23635 line == 0 ? _("zero") : _("non-zero"), line);
23636
23637 if (at_commandline)
23638 {
23639 /* This DW_MACRO_start_file was executed in the
23640 pass one. */
23641 at_commandline = 0;
23642 }
23643 else
23644 current_file = macro_start_file (cu, file, line, current_file,
23645 lh);
23646 }
23647 break;
23648
23649 case DW_MACRO_end_file:
23650 if (! current_file)
23651 complaint (_("macro debug info has an unmatched "
23652 "`close_file' directive"));
23653 else
23654 {
23655 current_file = current_file->included_by;
23656 if (! current_file)
23657 {
23658 enum dwarf_macro_record_type next_type;
23659
23660 /* GCC circa March 2002 doesn't produce the zero
23661 type byte marking the end of the compilation
23662 unit. Complain if it's not there, but exit no
23663 matter what. */
23664
23665 /* Do we at least have room for a macinfo type byte? */
23666 if (mac_ptr >= mac_end)
23667 {
23668 dwarf2_section_buffer_overflow_complaint (section);
23669 return;
23670 }
23671
23672 /* We don't increment mac_ptr here, so this is just
23673 a look-ahead. */
23674 next_type
23675 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23676 mac_ptr);
23677 if (next_type != 0)
23678 complaint (_("no terminating 0-type entry for "
23679 "macros in `.debug_macinfo' section"));
23680
23681 return;
23682 }
23683 }
23684 break;
23685
23686 case DW_MACRO_import:
23687 case DW_MACRO_import_sup:
23688 {
23689 LONGEST offset;
23690 void **slot;
23691 bfd *include_bfd = abfd;
23692 struct dwarf2_section_info *include_section = section;
23693 const gdb_byte *include_mac_end = mac_end;
23694 int is_dwz = section_is_dwz;
23695 const gdb_byte *new_mac_ptr;
23696
23697 offset = read_offset (abfd, mac_ptr, offset_size);
23698 mac_ptr += offset_size;
23699
23700 if (macinfo_type == DW_MACRO_import_sup)
23701 {
23702 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
23703
23704 dwz->macro.read (objfile);
23705
23706 include_section = &dwz->macro;
23707 include_bfd = include_section->get_bfd_owner ();
23708 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23709 is_dwz = 1;
23710 }
23711
23712 new_mac_ptr = include_section->buffer + offset;
23713 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23714
23715 if (*slot != NULL)
23716 {
23717 /* This has actually happened; see
23718 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23719 complaint (_("recursive DW_MACRO_import in "
23720 ".debug_macro section"));
23721 }
23722 else
23723 {
23724 *slot = (void *) new_mac_ptr;
23725
23726 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
23727 include_mac_end, current_file, lh,
23728 section, section_is_gnu, is_dwz,
23729 offset_size, include_hash);
23730
23731 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23732 }
23733 }
23734 break;
23735
23736 case DW_MACINFO_vendor_ext:
23737 if (!section_is_gnu)
23738 {
23739 unsigned int bytes_read;
23740
23741 /* This reads the constant, but since we don't recognize
23742 any vendor extensions, we ignore it. */
23743 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23744 mac_ptr += bytes_read;
23745 read_direct_string (abfd, mac_ptr, &bytes_read);
23746 mac_ptr += bytes_read;
23747
23748 /* We don't recognize any vendor extensions. */
23749 break;
23750 }
23751 /* FALLTHROUGH */
23752
23753 default:
23754 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23755 mac_ptr, mac_end, abfd, offset_size,
23756 section);
23757 if (mac_ptr == NULL)
23758 return;
23759 break;
23760 }
23761 DIAGNOSTIC_POP
23762 } while (macinfo_type != 0);
23763 }
23764
23765 static void
23766 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23767 int section_is_gnu)
23768 {
23769 struct dwarf2_per_objfile *dwarf2_per_objfile
23770 = cu->per_cu->dwarf2_per_objfile;
23771 struct objfile *objfile = dwarf2_per_objfile->objfile;
23772 struct line_header *lh = cu->line_header;
23773 bfd *abfd;
23774 const gdb_byte *mac_ptr, *mac_end;
23775 struct macro_source_file *current_file = 0;
23776 enum dwarf_macro_record_type macinfo_type;
23777 unsigned int offset_size = cu->header.offset_size;
23778 const gdb_byte *opcode_definitions[256];
23779 void **slot;
23780 struct dwarf2_section_info *section;
23781 const char *section_name;
23782
23783 if (cu->dwo_unit != NULL)
23784 {
23785 if (section_is_gnu)
23786 {
23787 section = &cu->dwo_unit->dwo_file->sections.macro;
23788 section_name = ".debug_macro.dwo";
23789 }
23790 else
23791 {
23792 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23793 section_name = ".debug_macinfo.dwo";
23794 }
23795 }
23796 else
23797 {
23798 if (section_is_gnu)
23799 {
23800 section = &dwarf2_per_objfile->macro;
23801 section_name = ".debug_macro";
23802 }
23803 else
23804 {
23805 section = &dwarf2_per_objfile->macinfo;
23806 section_name = ".debug_macinfo";
23807 }
23808 }
23809
23810 section->read (objfile);
23811 if (section->buffer == NULL)
23812 {
23813 complaint (_("missing %s section"), section_name);
23814 return;
23815 }
23816 abfd = section->get_bfd_owner ();
23817
23818 /* First pass: Find the name of the base filename.
23819 This filename is needed in order to process all macros whose definition
23820 (or undefinition) comes from the command line. These macros are defined
23821 before the first DW_MACINFO_start_file entry, and yet still need to be
23822 associated to the base file.
23823
23824 To determine the base file name, we scan the macro definitions until we
23825 reach the first DW_MACINFO_start_file entry. We then initialize
23826 CURRENT_FILE accordingly so that any macro definition found before the
23827 first DW_MACINFO_start_file can still be associated to the base file. */
23828
23829 mac_ptr = section->buffer + offset;
23830 mac_end = section->buffer + section->size;
23831
23832 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23833 &offset_size, section_is_gnu);
23834 if (mac_ptr == NULL)
23835 {
23836 /* We already issued a complaint. */
23837 return;
23838 }
23839
23840 do
23841 {
23842 /* Do we at least have room for a macinfo type byte? */
23843 if (mac_ptr >= mac_end)
23844 {
23845 /* Complaint is printed during the second pass as GDB will probably
23846 stop the first pass earlier upon finding
23847 DW_MACINFO_start_file. */
23848 break;
23849 }
23850
23851 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23852 mac_ptr++;
23853
23854 /* Note that we rely on the fact that the corresponding GNU and
23855 DWARF constants are the same. */
23856 DIAGNOSTIC_PUSH
23857 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
23858 switch (macinfo_type)
23859 {
23860 /* A zero macinfo type indicates the end of the macro
23861 information. */
23862 case 0:
23863 break;
23864
23865 case DW_MACRO_define:
23866 case DW_MACRO_undef:
23867 /* Only skip the data by MAC_PTR. */
23868 {
23869 unsigned int bytes_read;
23870
23871 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23872 mac_ptr += bytes_read;
23873 read_direct_string (abfd, mac_ptr, &bytes_read);
23874 mac_ptr += bytes_read;
23875 }
23876 break;
23877
23878 case DW_MACRO_start_file:
23879 {
23880 unsigned int bytes_read;
23881 int line, file;
23882
23883 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23884 mac_ptr += bytes_read;
23885 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23886 mac_ptr += bytes_read;
23887
23888 current_file = macro_start_file (cu, file, line, current_file, lh);
23889 }
23890 break;
23891
23892 case DW_MACRO_end_file:
23893 /* No data to skip by MAC_PTR. */
23894 break;
23895
23896 case DW_MACRO_define_strp:
23897 case DW_MACRO_undef_strp:
23898 case DW_MACRO_define_sup:
23899 case DW_MACRO_undef_sup:
23900 {
23901 unsigned int bytes_read;
23902
23903 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23904 mac_ptr += bytes_read;
23905 mac_ptr += offset_size;
23906 }
23907 break;
23908
23909 case DW_MACRO_import:
23910 case DW_MACRO_import_sup:
23911 /* Note that, according to the spec, a transparent include
23912 chain cannot call DW_MACRO_start_file. So, we can just
23913 skip this opcode. */
23914 mac_ptr += offset_size;
23915 break;
23916
23917 case DW_MACINFO_vendor_ext:
23918 /* Only skip the data by MAC_PTR. */
23919 if (!section_is_gnu)
23920 {
23921 unsigned int bytes_read;
23922
23923 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23924 mac_ptr += bytes_read;
23925 read_direct_string (abfd, mac_ptr, &bytes_read);
23926 mac_ptr += bytes_read;
23927 }
23928 /* FALLTHROUGH */
23929
23930 default:
23931 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23932 mac_ptr, mac_end, abfd, offset_size,
23933 section);
23934 if (mac_ptr == NULL)
23935 return;
23936 break;
23937 }
23938 DIAGNOSTIC_POP
23939 } while (macinfo_type != 0 && current_file == NULL);
23940
23941 /* Second pass: Process all entries.
23942
23943 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23944 command-line macro definitions/undefinitions. This flag is unset when we
23945 reach the first DW_MACINFO_start_file entry. */
23946
23947 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23948 htab_eq_pointer,
23949 NULL, xcalloc, xfree));
23950 mac_ptr = section->buffer + offset;
23951 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23952 *slot = (void *) mac_ptr;
23953 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
23954 current_file, lh, section,
23955 section_is_gnu, 0, offset_size,
23956 include_hash.get ());
23957 }
23958
23959 /* Return the .debug_loc section to use for CU.
23960 For DWO files use .debug_loc.dwo. */
23961
23962 static struct dwarf2_section_info *
23963 cu_debug_loc_section (struct dwarf2_cu *cu)
23964 {
23965 struct dwarf2_per_objfile *dwarf2_per_objfile
23966 = cu->per_cu->dwarf2_per_objfile;
23967
23968 if (cu->dwo_unit)
23969 {
23970 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23971
23972 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23973 }
23974 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23975 : &dwarf2_per_objfile->loc);
23976 }
23977
23978 /* A helper function that fills in a dwarf2_loclist_baton. */
23979
23980 static void
23981 fill_in_loclist_baton (struct dwarf2_cu *cu,
23982 struct dwarf2_loclist_baton *baton,
23983 const struct attribute *attr)
23984 {
23985 struct dwarf2_per_objfile *dwarf2_per_objfile
23986 = cu->per_cu->dwarf2_per_objfile;
23987 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23988
23989 section->read (dwarf2_per_objfile->objfile);
23990
23991 baton->per_cu = cu->per_cu;
23992 gdb_assert (baton->per_cu);
23993 /* We don't know how long the location list is, but make sure we
23994 don't run off the edge of the section. */
23995 baton->size = section->size - DW_UNSND (attr);
23996 baton->data = section->buffer + DW_UNSND (attr);
23997 baton->base_address = cu->base_address;
23998 baton->from_dwo = cu->dwo_unit != NULL;
23999 }
24000
24001 static void
24002 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24003 struct dwarf2_cu *cu, int is_block)
24004 {
24005 struct dwarf2_per_objfile *dwarf2_per_objfile
24006 = cu->per_cu->dwarf2_per_objfile;
24007 struct objfile *objfile = dwarf2_per_objfile->objfile;
24008 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24009
24010 if (attr->form_is_section_offset ()
24011 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24012 the section. If so, fall through to the complaint in the
24013 other branch. */
24014 && DW_UNSND (attr) < section->get_size (objfile))
24015 {
24016 struct dwarf2_loclist_baton *baton;
24017
24018 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24019
24020 fill_in_loclist_baton (cu, baton, attr);
24021
24022 if (cu->base_known == 0)
24023 complaint (_("Location list used without "
24024 "specifying the CU base address."));
24025
24026 SYMBOL_ACLASS_INDEX (sym) = (is_block
24027 ? dwarf2_loclist_block_index
24028 : dwarf2_loclist_index);
24029 SYMBOL_LOCATION_BATON (sym) = baton;
24030 }
24031 else
24032 {
24033 struct dwarf2_locexpr_baton *baton;
24034
24035 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24036 baton->per_cu = cu->per_cu;
24037 gdb_assert (baton->per_cu);
24038
24039 if (attr->form_is_block ())
24040 {
24041 /* Note that we're just copying the block's data pointer
24042 here, not the actual data. We're still pointing into the
24043 info_buffer for SYM's objfile; right now we never release
24044 that buffer, but when we do clean up properly this may
24045 need to change. */
24046 baton->size = DW_BLOCK (attr)->size;
24047 baton->data = DW_BLOCK (attr)->data;
24048 }
24049 else
24050 {
24051 dwarf2_invalid_attrib_class_complaint ("location description",
24052 sym->natural_name ());
24053 baton->size = 0;
24054 }
24055
24056 SYMBOL_ACLASS_INDEX (sym) = (is_block
24057 ? dwarf2_locexpr_block_index
24058 : dwarf2_locexpr_index);
24059 SYMBOL_LOCATION_BATON (sym) = baton;
24060 }
24061 }
24062
24063 /* See read.h. */
24064
24065 struct objfile *
24066 dwarf2_per_cu_data::objfile () const
24067 {
24068 struct objfile *objfile = dwarf2_per_objfile->objfile;
24069
24070 /* Return the master objfile, so that we can report and look up the
24071 correct file containing this variable. */
24072 if (objfile->separate_debug_objfile_backlink)
24073 objfile = objfile->separate_debug_objfile_backlink;
24074
24075 return objfile;
24076 }
24077
24078 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24079 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24080 CU_HEADERP first. */
24081
24082 static const struct comp_unit_head *
24083 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24084 const struct dwarf2_per_cu_data *per_cu)
24085 {
24086 const gdb_byte *info_ptr;
24087
24088 if (per_cu->cu)
24089 return &per_cu->cu->header;
24090
24091 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24092
24093 memset (cu_headerp, 0, sizeof (*cu_headerp));
24094 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24095 rcuh_kind::COMPILE);
24096
24097 return cu_headerp;
24098 }
24099
24100 /* See read.h. */
24101
24102 int
24103 dwarf2_per_cu_data::addr_size () const
24104 {
24105 struct comp_unit_head cu_header_local;
24106 const struct comp_unit_head *cu_headerp;
24107
24108 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24109
24110 return cu_headerp->addr_size;
24111 }
24112
24113 /* See read.h. */
24114
24115 int
24116 dwarf2_per_cu_data::offset_size () const
24117 {
24118 struct comp_unit_head cu_header_local;
24119 const struct comp_unit_head *cu_headerp;
24120
24121 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24122
24123 return cu_headerp->offset_size;
24124 }
24125
24126 /* See read.h. */
24127
24128 int
24129 dwarf2_per_cu_data::ref_addr_size () const
24130 {
24131 struct comp_unit_head cu_header_local;
24132 const struct comp_unit_head *cu_headerp;
24133
24134 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
24135
24136 if (cu_headerp->version == 2)
24137 return cu_headerp->addr_size;
24138 else
24139 return cu_headerp->offset_size;
24140 }
24141
24142 /* See read.h. */
24143
24144 CORE_ADDR
24145 dwarf2_per_cu_data::text_offset () const
24146 {
24147 struct objfile *objfile = dwarf2_per_objfile->objfile;
24148
24149 return objfile->text_section_offset ();
24150 }
24151
24152 /* See read.h. */
24153
24154 struct type *
24155 dwarf2_per_cu_data::addr_type () const
24156 {
24157 struct objfile *objfile = dwarf2_per_objfile->objfile;
24158 struct type *void_type = objfile_type (objfile)->builtin_void;
24159 struct type *addr_type = lookup_pointer_type (void_type);
24160 int addr_size = this->addr_size ();
24161
24162 if (TYPE_LENGTH (addr_type) == addr_size)
24163 return addr_type;
24164
24165 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
24166 return addr_type;
24167 }
24168
24169 /* A helper function for dwarf2_find_containing_comp_unit that returns
24170 the index of the result, and that searches a vector. It will
24171 return a result even if the offset in question does not actually
24172 occur in any CU. This is separate so that it can be unit
24173 tested. */
24174
24175 static int
24176 dwarf2_find_containing_comp_unit
24177 (sect_offset sect_off,
24178 unsigned int offset_in_dwz,
24179 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
24180 {
24181 int low, high;
24182
24183 low = 0;
24184 high = all_comp_units.size () - 1;
24185 while (high > low)
24186 {
24187 struct dwarf2_per_cu_data *mid_cu;
24188 int mid = low + (high - low) / 2;
24189
24190 mid_cu = all_comp_units[mid];
24191 if (mid_cu->is_dwz > offset_in_dwz
24192 || (mid_cu->is_dwz == offset_in_dwz
24193 && mid_cu->sect_off + mid_cu->length > sect_off))
24194 high = mid;
24195 else
24196 low = mid + 1;
24197 }
24198 gdb_assert (low == high);
24199 return low;
24200 }
24201
24202 /* Locate the .debug_info compilation unit from CU's objfile which contains
24203 the DIE at OFFSET. Raises an error on failure. */
24204
24205 static struct dwarf2_per_cu_data *
24206 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24207 unsigned int offset_in_dwz,
24208 struct dwarf2_per_objfile *dwarf2_per_objfile)
24209 {
24210 int low
24211 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
24212 dwarf2_per_objfile->all_comp_units);
24213 struct dwarf2_per_cu_data *this_cu
24214 = dwarf2_per_objfile->all_comp_units[low];
24215
24216 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24217 {
24218 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24219 error (_("Dwarf Error: could not find partial DIE containing "
24220 "offset %s [in module %s]"),
24221 sect_offset_str (sect_off),
24222 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24223
24224 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24225 <= sect_off);
24226 return dwarf2_per_objfile->all_comp_units[low-1];
24227 }
24228 else
24229 {
24230 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24231 && sect_off >= this_cu->sect_off + this_cu->length)
24232 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24233 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24234 return this_cu;
24235 }
24236 }
24237
24238 #if GDB_SELF_TEST
24239
24240 namespace selftests {
24241 namespace find_containing_comp_unit {
24242
24243 static void
24244 run_test ()
24245 {
24246 struct dwarf2_per_cu_data one {};
24247 struct dwarf2_per_cu_data two {};
24248 struct dwarf2_per_cu_data three {};
24249 struct dwarf2_per_cu_data four {};
24250
24251 one.length = 5;
24252 two.sect_off = sect_offset (one.length);
24253 two.length = 7;
24254
24255 three.length = 5;
24256 three.is_dwz = 1;
24257 four.sect_off = sect_offset (three.length);
24258 four.length = 7;
24259 four.is_dwz = 1;
24260
24261 std::vector<dwarf2_per_cu_data *> units;
24262 units.push_back (&one);
24263 units.push_back (&two);
24264 units.push_back (&three);
24265 units.push_back (&four);
24266
24267 int result;
24268
24269 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24270 SELF_CHECK (units[result] == &one);
24271 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24272 SELF_CHECK (units[result] == &one);
24273 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24274 SELF_CHECK (units[result] == &two);
24275
24276 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24277 SELF_CHECK (units[result] == &three);
24278 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24279 SELF_CHECK (units[result] == &three);
24280 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24281 SELF_CHECK (units[result] == &four);
24282 }
24283
24284 }
24285 }
24286
24287 #endif /* GDB_SELF_TEST */
24288
24289 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24290
24291 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24292 : per_cu (per_cu_),
24293 mark (false),
24294 has_loclist (false),
24295 checked_producer (false),
24296 producer_is_gxx_lt_4_6 (false),
24297 producer_is_gcc_lt_4_3 (false),
24298 producer_is_icc (false),
24299 producer_is_icc_lt_14 (false),
24300 producer_is_codewarrior (false),
24301 processing_has_namespace_info (false)
24302 {
24303 per_cu->cu = this;
24304 }
24305
24306 /* Destroy a dwarf2_cu. */
24307
24308 dwarf2_cu::~dwarf2_cu ()
24309 {
24310 per_cu->cu = NULL;
24311 }
24312
24313 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24314
24315 static void
24316 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24317 enum language pretend_language)
24318 {
24319 struct attribute *attr;
24320
24321 /* Set the language we're debugging. */
24322 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24323 if (attr != nullptr)
24324 set_cu_language (DW_UNSND (attr), cu);
24325 else
24326 {
24327 cu->language = pretend_language;
24328 cu->language_defn = language_def (cu->language);
24329 }
24330
24331 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24332 }
24333
24334 /* Increase the age counter on each cached compilation unit, and free
24335 any that are too old. */
24336
24337 static void
24338 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24339 {
24340 struct dwarf2_per_cu_data *per_cu, **last_chain;
24341
24342 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24343 per_cu = dwarf2_per_objfile->read_in_chain;
24344 while (per_cu != NULL)
24345 {
24346 per_cu->cu->last_used ++;
24347 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24348 dwarf2_mark (per_cu->cu);
24349 per_cu = per_cu->cu->read_in_chain;
24350 }
24351
24352 per_cu = dwarf2_per_objfile->read_in_chain;
24353 last_chain = &dwarf2_per_objfile->read_in_chain;
24354 while (per_cu != NULL)
24355 {
24356 struct dwarf2_per_cu_data *next_cu;
24357
24358 next_cu = per_cu->cu->read_in_chain;
24359
24360 if (!per_cu->cu->mark)
24361 {
24362 delete per_cu->cu;
24363 *last_chain = next_cu;
24364 }
24365 else
24366 last_chain = &per_cu->cu->read_in_chain;
24367
24368 per_cu = next_cu;
24369 }
24370 }
24371
24372 /* Remove a single compilation unit from the cache. */
24373
24374 static void
24375 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24376 {
24377 struct dwarf2_per_cu_data *per_cu, **last_chain;
24378 struct dwarf2_per_objfile *dwarf2_per_objfile
24379 = target_per_cu->dwarf2_per_objfile;
24380
24381 per_cu = dwarf2_per_objfile->read_in_chain;
24382 last_chain = &dwarf2_per_objfile->read_in_chain;
24383 while (per_cu != NULL)
24384 {
24385 struct dwarf2_per_cu_data *next_cu;
24386
24387 next_cu = per_cu->cu->read_in_chain;
24388
24389 if (per_cu == target_per_cu)
24390 {
24391 delete per_cu->cu;
24392 per_cu->cu = NULL;
24393 *last_chain = next_cu;
24394 break;
24395 }
24396 else
24397 last_chain = &per_cu->cu->read_in_chain;
24398
24399 per_cu = next_cu;
24400 }
24401 }
24402
24403 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24404 We store these in a hash table separate from the DIEs, and preserve them
24405 when the DIEs are flushed out of cache.
24406
24407 The CU "per_cu" pointer is needed because offset alone is not enough to
24408 uniquely identify the type. A file may have multiple .debug_types sections,
24409 or the type may come from a DWO file. Furthermore, while it's more logical
24410 to use per_cu->section+offset, with Fission the section with the data is in
24411 the DWO file but we don't know that section at the point we need it.
24412 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24413 because we can enter the lookup routine, get_die_type_at_offset, from
24414 outside this file, and thus won't necessarily have PER_CU->cu.
24415 Fortunately, PER_CU is stable for the life of the objfile. */
24416
24417 struct dwarf2_per_cu_offset_and_type
24418 {
24419 const struct dwarf2_per_cu_data *per_cu;
24420 sect_offset sect_off;
24421 struct type *type;
24422 };
24423
24424 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24425
24426 static hashval_t
24427 per_cu_offset_and_type_hash (const void *item)
24428 {
24429 const struct dwarf2_per_cu_offset_and_type *ofs
24430 = (const struct dwarf2_per_cu_offset_and_type *) item;
24431
24432 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24433 }
24434
24435 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24436
24437 static int
24438 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24439 {
24440 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24441 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24442 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24443 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24444
24445 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24446 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24447 }
24448
24449 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24450 table if necessary. For convenience, return TYPE.
24451
24452 The DIEs reading must have careful ordering to:
24453 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24454 reading current DIE.
24455 * Not trying to dereference contents of still incompletely read in types
24456 while reading in other DIEs.
24457 * Enable referencing still incompletely read in types just by a pointer to
24458 the type without accessing its fields.
24459
24460 Therefore caller should follow these rules:
24461 * Try to fetch any prerequisite types we may need to build this DIE type
24462 before building the type and calling set_die_type.
24463 * After building type call set_die_type for current DIE as soon as
24464 possible before fetching more types to complete the current type.
24465 * Make the type as complete as possible before fetching more types. */
24466
24467 static struct type *
24468 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
24469 {
24470 struct dwarf2_per_objfile *dwarf2_per_objfile
24471 = cu->per_cu->dwarf2_per_objfile;
24472 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24473 struct objfile *objfile = dwarf2_per_objfile->objfile;
24474 struct attribute *attr;
24475 struct dynamic_prop prop;
24476
24477 /* For Ada types, make sure that the gnat-specific data is always
24478 initialized (if not already set). There are a few types where
24479 we should not be doing so, because the type-specific area is
24480 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24481 where the type-specific area is used to store the floatformat).
24482 But this is not a problem, because the gnat-specific information
24483 is actually not needed for these types. */
24484 if (need_gnat_info (cu)
24485 && TYPE_CODE (type) != TYPE_CODE_FUNC
24486 && TYPE_CODE (type) != TYPE_CODE_FLT
24487 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
24488 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
24489 && TYPE_CODE (type) != TYPE_CODE_METHOD
24490 && !HAVE_GNAT_AUX_INFO (type))
24491 INIT_GNAT_SPECIFIC (type);
24492
24493 /* Read DW_AT_allocated and set in type. */
24494 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24495 if (attr != NULL && attr->form_is_block ())
24496 {
24497 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24498 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24499 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
24500 }
24501 else if (attr != NULL)
24502 {
24503 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
24504 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24505 sect_offset_str (die->sect_off));
24506 }
24507
24508 /* Read DW_AT_associated and set in type. */
24509 attr = dwarf2_attr (die, DW_AT_associated, cu);
24510 if (attr != NULL && attr->form_is_block ())
24511 {
24512 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
24513 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24514 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
24515 }
24516 else if (attr != NULL)
24517 {
24518 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
24519 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
24520 sect_offset_str (die->sect_off));
24521 }
24522
24523 /* Read DW_AT_data_location and set in type. */
24524 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24525 if (attr_to_dynamic_prop (attr, die, cu, &prop,
24526 cu->per_cu->addr_type ()))
24527 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
24528
24529 if (dwarf2_per_objfile->die_type_hash == NULL)
24530 dwarf2_per_objfile->die_type_hash
24531 = htab_up (htab_create_alloc (127,
24532 per_cu_offset_and_type_hash,
24533 per_cu_offset_and_type_eq,
24534 NULL, xcalloc, xfree));
24535
24536 ofs.per_cu = cu->per_cu;
24537 ofs.sect_off = die->sect_off;
24538 ofs.type = type;
24539 slot = (struct dwarf2_per_cu_offset_and_type **)
24540 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
24541 if (*slot)
24542 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24543 sect_offset_str (die->sect_off));
24544 *slot = XOBNEW (&objfile->objfile_obstack,
24545 struct dwarf2_per_cu_offset_and_type);
24546 **slot = ofs;
24547 return type;
24548 }
24549
24550 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24551 or return NULL if the die does not have a saved type. */
24552
24553 static struct type *
24554 get_die_type_at_offset (sect_offset sect_off,
24555 struct dwarf2_per_cu_data *per_cu)
24556 {
24557 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24558 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
24559
24560 if (dwarf2_per_objfile->die_type_hash == NULL)
24561 return NULL;
24562
24563 ofs.per_cu = per_cu;
24564 ofs.sect_off = sect_off;
24565 slot = ((struct dwarf2_per_cu_offset_and_type *)
24566 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
24567 if (slot)
24568 return slot->type;
24569 else
24570 return NULL;
24571 }
24572
24573 /* Look up the type for DIE in CU in die_type_hash,
24574 or return NULL if DIE does not have a saved type. */
24575
24576 static struct type *
24577 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24578 {
24579 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24580 }
24581
24582 /* Add a dependence relationship from CU to REF_PER_CU. */
24583
24584 static void
24585 dwarf2_add_dependence (struct dwarf2_cu *cu,
24586 struct dwarf2_per_cu_data *ref_per_cu)
24587 {
24588 void **slot;
24589
24590 if (cu->dependencies == NULL)
24591 cu->dependencies
24592 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24593 NULL, &cu->comp_unit_obstack,
24594 hashtab_obstack_allocate,
24595 dummy_obstack_deallocate);
24596
24597 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24598 if (*slot == NULL)
24599 *slot = ref_per_cu;
24600 }
24601
24602 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24603 Set the mark field in every compilation unit in the
24604 cache that we must keep because we are keeping CU. */
24605
24606 static int
24607 dwarf2_mark_helper (void **slot, void *data)
24608 {
24609 struct dwarf2_per_cu_data *per_cu;
24610
24611 per_cu = (struct dwarf2_per_cu_data *) *slot;
24612
24613 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24614 reading of the chain. As such dependencies remain valid it is not much
24615 useful to track and undo them during QUIT cleanups. */
24616 if (per_cu->cu == NULL)
24617 return 1;
24618
24619 if (per_cu->cu->mark)
24620 return 1;
24621 per_cu->cu->mark = true;
24622
24623 if (per_cu->cu->dependencies != NULL)
24624 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24625
24626 return 1;
24627 }
24628
24629 /* Set the mark field in CU and in every other compilation unit in the
24630 cache that we must keep because we are keeping CU. */
24631
24632 static void
24633 dwarf2_mark (struct dwarf2_cu *cu)
24634 {
24635 if (cu->mark)
24636 return;
24637 cu->mark = true;
24638 if (cu->dependencies != NULL)
24639 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24640 }
24641
24642 static void
24643 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24644 {
24645 while (per_cu)
24646 {
24647 per_cu->cu->mark = false;
24648 per_cu = per_cu->cu->read_in_chain;
24649 }
24650 }
24651
24652 /* Trivial hash function for partial_die_info: the hash value of a DIE
24653 is its offset in .debug_info for this objfile. */
24654
24655 static hashval_t
24656 partial_die_hash (const void *item)
24657 {
24658 const struct partial_die_info *part_die
24659 = (const struct partial_die_info *) item;
24660
24661 return to_underlying (part_die->sect_off);
24662 }
24663
24664 /* Trivial comparison function for partial_die_info structures: two DIEs
24665 are equal if they have the same offset. */
24666
24667 static int
24668 partial_die_eq (const void *item_lhs, const void *item_rhs)
24669 {
24670 const struct partial_die_info *part_die_lhs
24671 = (const struct partial_die_info *) item_lhs;
24672 const struct partial_die_info *part_die_rhs
24673 = (const struct partial_die_info *) item_rhs;
24674
24675 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24676 }
24677
24678 struct cmd_list_element *set_dwarf_cmdlist;
24679 struct cmd_list_element *show_dwarf_cmdlist;
24680
24681 static void
24682 set_dwarf_cmd (const char *args, int from_tty)
24683 {
24684 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24685 gdb_stdout);
24686 }
24687
24688 static void
24689 show_dwarf_cmd (const char *args, int from_tty)
24690 {
24691 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24692 }
24693
24694 static void
24695 show_check_physname (struct ui_file *file, int from_tty,
24696 struct cmd_list_element *c, const char *value)
24697 {
24698 fprintf_filtered (file,
24699 _("Whether to check \"physname\" is %s.\n"),
24700 value);
24701 }
24702
24703 void _initialize_dwarf2_read ();
24704 void
24705 _initialize_dwarf2_read ()
24706 {
24707 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24708 Set DWARF specific variables.\n\
24709 Configure DWARF variables such as the cache size."),
24710 &set_dwarf_cmdlist, "maintenance set dwarf ",
24711 0/*allow-unknown*/, &maintenance_set_cmdlist);
24712
24713 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24714 Show DWARF specific variables.\n\
24715 Show DWARF variables such as the cache size."),
24716 &show_dwarf_cmdlist, "maintenance show dwarf ",
24717 0/*allow-unknown*/, &maintenance_show_cmdlist);
24718
24719 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24720 &dwarf_max_cache_age, _("\
24721 Set the upper bound on the age of cached DWARF compilation units."), _("\
24722 Show the upper bound on the age of cached DWARF compilation units."), _("\
24723 A higher limit means that cached compilation units will be stored\n\
24724 in memory longer, and more total memory will be used. Zero disables\n\
24725 caching, which can slow down startup."),
24726 NULL,
24727 show_dwarf_max_cache_age,
24728 &set_dwarf_cmdlist,
24729 &show_dwarf_cmdlist);
24730
24731 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24732 Set debugging of the DWARF reader."), _("\
24733 Show debugging of the DWARF reader."), _("\
24734 When enabled (non-zero), debugging messages are printed during DWARF\n\
24735 reading and symtab expansion. A value of 1 (one) provides basic\n\
24736 information. A value greater than 1 provides more verbose information."),
24737 NULL,
24738 NULL,
24739 &setdebuglist, &showdebuglist);
24740
24741 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24742 Set debugging of the DWARF DIE reader."), _("\
24743 Show debugging of the DWARF DIE reader."), _("\
24744 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24745 The value is the maximum depth to print."),
24746 NULL,
24747 NULL,
24748 &setdebuglist, &showdebuglist);
24749
24750 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24751 Set debugging of the dwarf line reader."), _("\
24752 Show debugging of the dwarf line reader."), _("\
24753 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24754 A value of 1 (one) provides basic information.\n\
24755 A value greater than 1 provides more verbose information."),
24756 NULL,
24757 NULL,
24758 &setdebuglist, &showdebuglist);
24759
24760 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24761 Set cross-checking of \"physname\" code against demangler."), _("\
24762 Show cross-checking of \"physname\" code against demangler."), _("\
24763 When enabled, GDB's internal \"physname\" code is checked against\n\
24764 the demangler."),
24765 NULL, show_check_physname,
24766 &setdebuglist, &showdebuglist);
24767
24768 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24769 no_class, &use_deprecated_index_sections, _("\
24770 Set whether to use deprecated gdb_index sections."), _("\
24771 Show whether to use deprecated gdb_index sections."), _("\
24772 When enabled, deprecated .gdb_index sections are used anyway.\n\
24773 Normally they are ignored either because of a missing feature or\n\
24774 performance issue.\n\
24775 Warning: This option must be enabled before gdb reads the file."),
24776 NULL,
24777 NULL,
24778 &setlist, &showlist);
24779
24780 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24781 &dwarf2_locexpr_funcs);
24782 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24783 &dwarf2_loclist_funcs);
24784
24785 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24786 &dwarf2_block_frame_base_locexpr_funcs);
24787 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24788 &dwarf2_block_frame_base_loclist_funcs);
24789
24790 #if GDB_SELF_TEST
24791 selftests::register_test ("dw2_expand_symtabs_matching",
24792 selftests::dw2_expand_symtabs_matching::run_test);
24793 selftests::register_test ("dwarf2_find_containing_comp_unit",
24794 selftests::find_containing_comp_unit::run_test);
24795 #endif
24796 }
This page took 0.637507 seconds and 4 git commands to generate.