[FT32] gdb: Correctly interpret function prologs
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* Target pointer size in bytes. */
81 int ptr_size;
82
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
89 /* The version recorded in the CIE. */
90 unsigned char version;
91
92 /* The segment size. */
93 unsigned char segment_size;
94 };
95
96 struct dwarf2_cie_table
97 {
98 int num_entries;
99 struct dwarf2_cie **entries;
100 };
101
102 /* Frame Description Entry (FDE). */
103
104 struct dwarf2_fde
105 {
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
118
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
122 };
123
124 struct dwarf2_fde_table
125 {
126 int num_entries;
127 struct dwarf2_fde **entries;
128 };
129
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133 struct comp_unit
134 {
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
142
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154 };
155
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
158
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
161
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
166 \f
167
168 enum cfa_how_kind
169 {
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173 };
174
175 struct dwarf2_frame_state_reg_info
176 {
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187 };
188
189 /* Structure describing a frame state. */
190
191 struct dwarf2_frame_state
192 {
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
195 struct dwarf2_frame_state_reg_info regs;
196
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
218 };
219
220 /* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222 #define cfa_exp_len cfa_reg
223
224 /* Assert that the register set RS is large enough to store gdbarch_num_regs
225 columns. If necessary, enlarge the register set. */
226
227 static void
228 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230 {
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
241 rs->num_regs = num_regs;
242 }
243
244 /* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247 static struct dwarf2_frame_state_reg *
248 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249 {
250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257 }
258
259 /* Release the memory allocated to register set RS. */
260
261 static void
262 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263 {
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271 }
272
273 /* Release the memory allocated to the frame state FS. */
274
275 static void
276 dwarf2_frame_state_free (void *p)
277 {
278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285 }
286 \f
287
288 /* Helper functions for execute_stack_op. */
289
290 static CORE_ADDR
291 read_addr_from_reg (void *baton, int reg)
292 {
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
295 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
296
297 return address_from_register (regnum, this_frame);
298 }
299
300 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302 static struct value *
303 get_reg_value (void *baton, struct type *type, int reg)
304 {
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
308
309 return value_from_register (type, regnum, this_frame);
310 }
311
312 static void
313 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
314 {
315 read_memory (addr, buf, len);
316 }
317
318 /* Execute the required actions for both the DW_CFA_restore and
319 DW_CFA_restore_extended instructions. */
320 static void
321 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323 {
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340 incomplete CFI data; DW_CFA_restore unspecified\n\
341 register %s (#%d) at %s"),
342 gdbarch_register_name
343 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
344 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
345 paddress (gdbarch, fs->pc));
346 }
347
348 /* Virtual method table for execute_stack_op below. */
349
350 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
351 {
352 read_addr_from_reg,
353 get_reg_value,
354 read_mem,
355 ctx_no_get_frame_base,
356 ctx_no_get_frame_cfa,
357 ctx_no_get_frame_pc,
358 ctx_no_get_tls_address,
359 ctx_no_dwarf_call,
360 ctx_no_get_base_type,
361 ctx_no_push_dwarf_reg_entry_value,
362 ctx_no_get_addr_index
363 };
364
365 static CORE_ADDR
366 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
367 CORE_ADDR offset, struct frame_info *this_frame,
368 CORE_ADDR initial, int initial_in_stack_memory)
369 {
370 struct dwarf_expr_context *ctx;
371 CORE_ADDR result;
372 struct cleanup *old_chain;
373
374 ctx = new_dwarf_expr_context ();
375 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
376 make_cleanup_value_free_to_mark (value_mark ());
377
378 ctx->gdbarch = get_frame_arch (this_frame);
379 ctx->addr_size = addr_size;
380 ctx->ref_addr_size = -1;
381 ctx->offset = offset;
382 ctx->baton = this_frame;
383 ctx->funcs = &dwarf2_frame_ctx_funcs;
384
385 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
386 dwarf_expr_eval (ctx, exp, len);
387
388 if (ctx->location == DWARF_VALUE_MEMORY)
389 result = dwarf_expr_fetch_address (ctx, 0);
390 else if (ctx->location == DWARF_VALUE_REGISTER)
391 result = read_addr_from_reg (this_frame,
392 value_as_long (dwarf_expr_fetch (ctx, 0)));
393 else
394 {
395 /* This is actually invalid DWARF, but if we ever do run across
396 it somehow, we might as well support it. So, instead, report
397 it as unimplemented. */
398 error (_("\
399 Not implemented: computing unwound register using explicit value operator"));
400 }
401
402 do_cleanups (old_chain);
403
404 return result;
405 }
406 \f
407
408 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
409 PC. Modify FS state accordingly. Return current INSN_PTR where the
410 execution has stopped, one can resume it on the next call. */
411
412 static const gdb_byte *
413 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
414 const gdb_byte *insn_end, struct gdbarch *gdbarch,
415 CORE_ADDR pc, struct dwarf2_frame_state *fs)
416 {
417 int eh_frame_p = fde->eh_frame_p;
418 unsigned int bytes_read;
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420
421 while (insn_ptr < insn_end && fs->pc <= pc)
422 {
423 gdb_byte insn = *insn_ptr++;
424 uint64_t utmp, reg;
425 int64_t offset;
426
427 if ((insn & 0xc0) == DW_CFA_advance_loc)
428 fs->pc += (insn & 0x3f) * fs->code_align;
429 else if ((insn & 0xc0) == DW_CFA_offset)
430 {
431 reg = insn & 0x3f;
432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
433 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
434 offset = utmp * fs->data_align;
435 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
436 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
437 fs->regs.reg[reg].loc.offset = offset;
438 }
439 else if ((insn & 0xc0) == DW_CFA_restore)
440 {
441 reg = insn & 0x3f;
442 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
443 }
444 else
445 {
446 switch (insn)
447 {
448 case DW_CFA_set_loc:
449 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
450 fde->cie->ptr_size, insn_ptr,
451 &bytes_read, fde->initial_location);
452 /* Apply the objfile offset for relocatable objects. */
453 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
454 SECT_OFF_TEXT (fde->cie->unit->objfile));
455 insn_ptr += bytes_read;
456 break;
457
458 case DW_CFA_advance_loc1:
459 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr++;
462 break;
463 case DW_CFA_advance_loc2:
464 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 2;
467 break;
468 case DW_CFA_advance_loc4:
469 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 4;
472 break;
473
474 case DW_CFA_offset_extended:
475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
476 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
478 offset = utmp * fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
483
484 case DW_CFA_restore_extended:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
487 break;
488
489 case DW_CFA_undefined:
490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
491 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
492 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
494 break;
495
496 case DW_CFA_same_value:
497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
498 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
501 break;
502
503 case DW_CFA_register:
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
505 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
507 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
510 fs->regs.reg[reg].loc.reg = utmp;
511 break;
512
513 case DW_CFA_remember_state:
514 {
515 struct dwarf2_frame_state_reg_info *new_rs;
516
517 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
518 *new_rs = fs->regs;
519 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
520 fs->regs.prev = new_rs;
521 }
522 break;
523
524 case DW_CFA_restore_state:
525 {
526 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
527
528 if (old_rs == NULL)
529 {
530 complaint (&symfile_complaints, _("\
531 bad CFI data; mismatched DW_CFA_restore_state at %s"),
532 paddress (gdbarch, fs->pc));
533 }
534 else
535 {
536 xfree (fs->regs.reg);
537 fs->regs = *old_rs;
538 xfree (old_rs);
539 }
540 }
541 break;
542
543 case DW_CFA_def_cfa:
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
545 fs->regs.cfa_reg = reg;
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
547
548 if (fs->armcc_cfa_offsets_sf)
549 utmp *= fs->data_align;
550
551 fs->regs.cfa_offset = utmp;
552 fs->regs.cfa_how = CFA_REG_OFFSET;
553 break;
554
555 case DW_CFA_def_cfa_register:
556 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
557 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
558 eh_frame_p);
559 fs->regs.cfa_how = CFA_REG_OFFSET;
560 break;
561
562 case DW_CFA_def_cfa_offset:
563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
564
565 if (fs->armcc_cfa_offsets_sf)
566 utmp *= fs->data_align;
567
568 fs->regs.cfa_offset = utmp;
569 /* cfa_how deliberately not set. */
570 break;
571
572 case DW_CFA_nop:
573 break;
574
575 case DW_CFA_def_cfa_expression:
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.cfa_exp_len = utmp;
578 fs->regs.cfa_exp = insn_ptr;
579 fs->regs.cfa_how = CFA_EXP;
580 insn_ptr += fs->regs.cfa_exp_len;
581 break;
582
583 case DW_CFA_expression:
584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
591 insn_ptr += utmp;
592 break;
593
594 case DW_CFA_offset_extended_sf:
595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
596 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
597 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
598 offset *= fs->data_align;
599 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
600 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
601 fs->regs.reg[reg].loc.offset = offset;
602 break;
603
604 case DW_CFA_val_offset:
605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
608 offset = utmp * fs->data_align;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
613 case DW_CFA_val_offset_sf:
614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
616 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
617 offset *= fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_expression:
623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
626 fs->regs.reg[reg].loc.exp = insn_ptr;
627 fs->regs.reg[reg].exp_len = utmp;
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
629 insn_ptr += utmp;
630 break;
631
632 case DW_CFA_def_cfa_sf:
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
635 eh_frame_p);
636 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
637 fs->regs.cfa_offset = offset * fs->data_align;
638 fs->regs.cfa_how = CFA_REG_OFFSET;
639 break;
640
641 case DW_CFA_def_cfa_offset_sf:
642 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
643 fs->regs.cfa_offset = offset * fs->data_align;
644 /* cfa_how deliberately not set. */
645 break;
646
647 case DW_CFA_GNU_window_save:
648 /* This is SPARC-specific code, and contains hard-coded
649 constants for the register numbering scheme used by
650 GCC. Rather than having a architecture-specific
651 operation that's only ever used by a single
652 architecture, we provide the implementation here.
653 Incidentally that's what GCC does too in its
654 unwinder. */
655 {
656 int size = register_size (gdbarch, 0);
657
658 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
659 for (reg = 8; reg < 16; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
662 fs->regs.reg[reg].loc.reg = reg + 16;
663 }
664 for (reg = 16; reg < 32; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
667 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
668 }
669 }
670 break;
671
672 case DW_CFA_GNU_args_size:
673 /* Ignored. */
674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
675 break;
676
677 case DW_CFA_GNU_negative_offset_extended:
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
679 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
681 offset = utmp * fs->data_align;
682 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
683 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
684 fs->regs.reg[reg].loc.offset = -offset;
685 break;
686
687 default:
688 internal_error (__FILE__, __LINE__,
689 _("Unknown CFI encountered."));
690 }
691 }
692 }
693
694 if (fs->initial.reg == NULL)
695 {
696 /* Don't allow remember/restore between CIE and FDE programs. */
697 dwarf2_frame_state_free_regs (fs->regs.prev);
698 fs->regs.prev = NULL;
699 }
700
701 return insn_ptr;
702 }
703 \f
704
705 /* Architecture-specific operations. */
706
707 /* Per-architecture data key. */
708 static struct gdbarch_data *dwarf2_frame_data;
709
710 struct dwarf2_frame_ops
711 {
712 /* Pre-initialize the register state REG for register REGNUM. */
713 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
714 struct frame_info *);
715
716 /* Check whether the THIS_FRAME is a signal trampoline. */
717 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
718
719 /* Convert .eh_frame register number to DWARF register number, or
720 adjust .debug_frame register number. */
721 int (*adjust_regnum) (struct gdbarch *, int, int);
722 };
723
724 /* Default architecture-specific register state initialization
725 function. */
726
727 static void
728 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
729 struct dwarf2_frame_state_reg *reg,
730 struct frame_info *this_frame)
731 {
732 /* If we have a register that acts as a program counter, mark it as
733 a destination for the return address. If we have a register that
734 serves as the stack pointer, arrange for it to be filled with the
735 call frame address (CFA). The other registers are marked as
736 unspecified.
737
738 We copy the return address to the program counter, since many
739 parts in GDB assume that it is possible to get the return address
740 by unwinding the program counter register. However, on ISA's
741 with a dedicated return address register, the CFI usually only
742 contains information to unwind that return address register.
743
744 The reason we're treating the stack pointer special here is
745 because in many cases GCC doesn't emit CFI for the stack pointer
746 and implicitly assumes that it is equal to the CFA. This makes
747 some sense since the DWARF specification (version 3, draft 8,
748 p. 102) says that:
749
750 "Typically, the CFA is defined to be the value of the stack
751 pointer at the call site in the previous frame (which may be
752 different from its value on entry to the current frame)."
753
754 However, this isn't true for all platforms supported by GCC
755 (e.g. IBM S/390 and zSeries). Those architectures should provide
756 their own architecture-specific initialization function. */
757
758 if (regnum == gdbarch_pc_regnum (gdbarch))
759 reg->how = DWARF2_FRAME_REG_RA;
760 else if (regnum == gdbarch_sp_regnum (gdbarch))
761 reg->how = DWARF2_FRAME_REG_CFA;
762 }
763
764 /* Return a default for the architecture-specific operations. */
765
766 static void *
767 dwarf2_frame_init (struct obstack *obstack)
768 {
769 struct dwarf2_frame_ops *ops;
770
771 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
772 ops->init_reg = dwarf2_frame_default_init_reg;
773 return ops;
774 }
775
776 /* Set the architecture-specific register state initialization
777 function for GDBARCH to INIT_REG. */
778
779 void
780 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
781 void (*init_reg) (struct gdbarch *, int,
782 struct dwarf2_frame_state_reg *,
783 struct frame_info *))
784 {
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
787
788 ops->init_reg = init_reg;
789 }
790
791 /* Pre-initialize the register state REG for register REGNUM. */
792
793 static void
794 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
795 struct dwarf2_frame_state_reg *reg,
796 struct frame_info *this_frame)
797 {
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
800
801 ops->init_reg (gdbarch, regnum, reg, this_frame);
802 }
803
804 /* Set the architecture-specific signal trampoline recognition
805 function for GDBARCH to SIGNAL_FRAME_P. */
806
807 void
808 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
809 int (*signal_frame_p) (struct gdbarch *,
810 struct frame_info *))
811 {
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
814
815 ops->signal_frame_p = signal_frame_p;
816 }
817
818 /* Query the architecture-specific signal frame recognizer for
819 THIS_FRAME. */
820
821 static int
822 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
823 struct frame_info *this_frame)
824 {
825 struct dwarf2_frame_ops *ops
826 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
830 return ops->signal_frame_p (gdbarch, this_frame);
831 }
832
833 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
835
836 void
837 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
840 {
841 struct dwarf2_frame_ops *ops
842 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
843
844 ops->adjust_regnum = adjust_regnum;
845 }
846
847 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
848 register. */
849
850 static int
851 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
852 int regnum, int eh_frame_p)
853 {
854 struct dwarf2_frame_ops *ops
855 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
856
857 if (ops->adjust_regnum == NULL)
858 return regnum;
859 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
860 }
861
862 static void
863 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
864 struct dwarf2_fde *fde)
865 {
866 struct compunit_symtab *cust;
867
868 cust = find_pc_compunit_symtab (fs->pc);
869 if (cust == NULL)
870 return;
871
872 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
873 {
874 if (fde->cie->version == 1)
875 fs->armcc_cfa_offsets_sf = 1;
876
877 if (fde->cie->version == 1)
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 /* The reversed offset problem is present in some compilers
881 using DWARF3, but it was eventually fixed. Check the ARM
882 defined augmentations, which are in the format "armcc" followed
883 by a list of one-character options. The "+" option means
884 this problem is fixed (no quirk needed). If the armcc
885 augmentation is missing, the quirk is needed. */
886 if (fde->cie->version == 3
887 && (!startswith (fde->cie->augmentation, "armcc")
888 || strchr (fde->cie->augmentation + 5, '+') == NULL))
889 fs->armcc_cfa_offsets_reversed = 1;
890
891 return;
892 }
893 }
894 \f
895
896 /* See dwarf2-frame.h. */
897
898 int
899 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
900 struct dwarf2_per_cu_data *data,
901 int *regnum_out, LONGEST *offset_out,
902 CORE_ADDR *text_offset_out,
903 const gdb_byte **cfa_start_out,
904 const gdb_byte **cfa_end_out)
905 {
906 struct dwarf2_fde *fde;
907 CORE_ADDR text_offset;
908 struct dwarf2_frame_state fs;
909 int addr_size;
910
911 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
912
913 fs.pc = pc;
914
915 /* Find the correct FDE. */
916 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
917 if (fde == NULL)
918 error (_("Could not compute CFA; needed to translate this expression"));
919
920 /* Extract any interesting information from the CIE. */
921 fs.data_align = fde->cie->data_alignment_factor;
922 fs.code_align = fde->cie->code_alignment_factor;
923 fs.retaddr_column = fde->cie->return_address_register;
924 addr_size = fde->cie->addr_size;
925
926 /* Check for "quirks" - known bugs in producers. */
927 dwarf2_frame_find_quirks (&fs, fde);
928
929 /* First decode all the insns in the CIE. */
930 execute_cfa_program (fde, fde->cie->initial_instructions,
931 fde->cie->end, gdbarch, pc, &fs);
932
933 /* Save the initialized register set. */
934 fs.initial = fs.regs;
935 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
936
937 /* Then decode the insns in the FDE up to our target PC. */
938 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
939
940 /* Calculate the CFA. */
941 switch (fs.regs.cfa_how)
942 {
943 case CFA_REG_OFFSET:
944 {
945 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
946
947 if (regnum == -1)
948 error (_("Unable to access DWARF register number %d"),
949 (int) fs.regs.cfa_reg); /* FIXME */
950
951 *regnum_out = regnum;
952 if (fs.armcc_cfa_offsets_reversed)
953 *offset_out = -fs.regs.cfa_offset;
954 else
955 *offset_out = fs.regs.cfa_offset;
956 return 1;
957 }
958
959 case CFA_EXP:
960 *text_offset_out = text_offset;
961 *cfa_start_out = fs.regs.cfa_exp;
962 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
963 return 0;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968 }
969
970 \f
971 struct dwarf2_frame_cache
972 {
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
989
990 /* Target address size in bytes. */
991 int addr_size;
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
995
996 /* True if we already checked whether this frame is the bottom frame
997 of a virtual tail call frame chain. */
998 int checked_tailcall_bottom;
999
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1006
1007 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1008 base to get the SP, to simulate the return address pushed on the
1009 stack. */
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p;
1012 };
1013
1014 /* A cleanup that sets a pointer to NULL. */
1015
1016 static void
1017 clear_pointer_cleanup (void *arg)
1018 {
1019 void **ptr = (void **) arg;
1020
1021 *ptr = NULL;
1022 }
1023
1024 static struct dwarf2_frame_cache *
1025 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1026 {
1027 struct cleanup *reset_cache_cleanup, *old_chain;
1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1029 const int num_regs = gdbarch_num_regs (gdbarch)
1030 + gdbarch_num_pseudo_regs (gdbarch);
1031 struct dwarf2_frame_cache *cache;
1032 struct dwarf2_frame_state *fs;
1033 struct dwarf2_fde *fde;
1034 CORE_ADDR entry_pc;
1035 const gdb_byte *instr;
1036
1037 if (*this_cache)
1038 return (struct dwarf2_frame_cache *) *this_cache;
1039
1040 /* Allocate a new cache. */
1041 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1042 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1043 *this_cache = cache;
1044 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1045
1046 /* Allocate and initialize the frame state. */
1047 fs = XCNEW (struct dwarf2_frame_state);
1048 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1049
1050 /* Unwind the PC.
1051
1052 Note that if the next frame is never supposed to return (i.e. a call
1053 to abort), the compiler might optimize away the instruction at
1054 its return address. As a result the return address will
1055 point at some random instruction, and the CFI for that
1056 instruction is probably worthless to us. GCC's unwinder solves
1057 this problem by substracting 1 from the return address to get an
1058 address in the middle of a presumed call instruction (or the
1059 instruction in the associated delay slot). This should only be
1060 done for "normal" frames and not for resume-type frames (signal
1061 handlers, sentinel frames, dummy frames). The function
1062 get_frame_address_in_block does just this. It's not clear how
1063 reliable the method is though; there is the potential for the
1064 register state pre-call being different to that on return. */
1065 fs->pc = get_frame_address_in_block (this_frame);
1066
1067 /* Find the correct FDE. */
1068 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1069 gdb_assert (fde != NULL);
1070
1071 /* Extract any interesting information from the CIE. */
1072 fs->data_align = fde->cie->data_alignment_factor;
1073 fs->code_align = fde->cie->code_alignment_factor;
1074 fs->retaddr_column = fde->cie->return_address_register;
1075 cache->addr_size = fde->cie->addr_size;
1076
1077 /* Check for "quirks" - known bugs in producers. */
1078 dwarf2_frame_find_quirks (fs, fde);
1079
1080 /* First decode all the insns in the CIE. */
1081 execute_cfa_program (fde, fde->cie->initial_instructions,
1082 fde->cie->end, gdbarch,
1083 get_frame_address_in_block (this_frame), fs);
1084
1085 /* Save the initialized register set. */
1086 fs->initial = fs->regs;
1087 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1088
1089 if (get_frame_func_if_available (this_frame, &entry_pc))
1090 {
1091 /* Decode the insns in the FDE up to the entry PC. */
1092 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1093 entry_pc, fs);
1094
1095 if (fs->regs.cfa_how == CFA_REG_OFFSET
1096 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1097 == gdbarch_sp_regnum (gdbarch)))
1098 {
1099 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1100 cache->entry_cfa_sp_offset_p = 1;
1101 }
1102 }
1103 else
1104 instr = fde->instructions;
1105
1106 /* Then decode the insns in the FDE up to our target PC. */
1107 execute_cfa_program (fde, instr, fde->end, gdbarch,
1108 get_frame_address_in_block (this_frame), fs);
1109
1110 TRY
1111 {
1112 /* Calculate the CFA. */
1113 switch (fs->regs.cfa_how)
1114 {
1115 case CFA_REG_OFFSET:
1116 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1117 if (fs->armcc_cfa_offsets_reversed)
1118 cache->cfa -= fs->regs.cfa_offset;
1119 else
1120 cache->cfa += fs->regs.cfa_offset;
1121 break;
1122
1123 case CFA_EXP:
1124 cache->cfa =
1125 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1126 cache->addr_size, cache->text_offset,
1127 this_frame, 0, 0);
1128 break;
1129
1130 default:
1131 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1132 }
1133 }
1134 CATCH (ex, RETURN_MASK_ERROR)
1135 {
1136 if (ex.error == NOT_AVAILABLE_ERROR)
1137 {
1138 cache->unavailable_retaddr = 1;
1139 do_cleanups (old_chain);
1140 discard_cleanups (reset_cache_cleanup);
1141 return cache;
1142 }
1143
1144 throw_exception (ex);
1145 }
1146 END_CATCH
1147
1148 /* Initialize the register state. */
1149 {
1150 int regnum;
1151
1152 for (regnum = 0; regnum < num_regs; regnum++)
1153 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1154 }
1155
1156 /* Go through the DWARF2 CFI generated table and save its register
1157 location information in the cache. Note that we don't skip the
1158 return address column; it's perfectly all right for it to
1159 correspond to a real register. If it doesn't correspond to a
1160 real register, or if we shouldn't treat it as such,
1161 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1162 the range [0, gdbarch_num_regs). */
1163 {
1164 int column; /* CFI speak for "register number". */
1165
1166 for (column = 0; column < fs->regs.num_regs; column++)
1167 {
1168 /* Use the GDB register number as the destination index. */
1169 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1170
1171 /* If there's no corresponding GDB register, ignore it. */
1172 if (regnum < 0 || regnum >= num_regs)
1173 continue;
1174
1175 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1176 of all debug info registers. If it doesn't, complain (but
1177 not too loudly). It turns out that GCC assumes that an
1178 unspecified register implies "same value" when CFI (draft
1179 7) specifies nothing at all. Such a register could equally
1180 be interpreted as "undefined". Also note that this check
1181 isn't sufficient; it only checks that all registers in the
1182 range [0 .. max column] are specified, and won't detect
1183 problems when a debug info register falls outside of the
1184 table. We need a way of iterating through all the valid
1185 DWARF2 register numbers. */
1186 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1187 {
1188 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1189 complaint (&symfile_complaints, _("\
1190 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1191 gdbarch_register_name (gdbarch, regnum),
1192 paddress (gdbarch, fs->pc));
1193 }
1194 else
1195 cache->reg[regnum] = fs->regs.reg[column];
1196 }
1197 }
1198
1199 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1200 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1201 {
1202 int regnum;
1203
1204 for (regnum = 0; regnum < num_regs; regnum++)
1205 {
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1207 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1208 {
1209 struct dwarf2_frame_state_reg *retaddr_reg =
1210 &fs->regs.reg[fs->retaddr_column];
1211
1212 /* It seems rather bizarre to specify an "empty" column as
1213 the return adress column. However, this is exactly
1214 what GCC does on some targets. It turns out that GCC
1215 assumes that the return address can be found in the
1216 register corresponding to the return address column.
1217 Incidentally, that's how we should treat a return
1218 address column specifying "same value" too. */
1219 if (fs->retaddr_column < fs->regs.num_regs
1220 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1221 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1222 {
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 cache->reg[regnum] = *retaddr_reg;
1225 else
1226 cache->retaddr_reg = *retaddr_reg;
1227 }
1228 else
1229 {
1230 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1231 {
1232 cache->reg[regnum].loc.reg = fs->retaddr_column;
1233 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 else
1236 {
1237 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1238 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 }
1240 }
1241 }
1242 }
1243 }
1244
1245 if (fs->retaddr_column < fs->regs.num_regs
1246 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1247 cache->undefined_retaddr = 1;
1248
1249 do_cleanups (old_chain);
1250 discard_cleanups (reset_cache_cleanup);
1251 return cache;
1252 }
1253
1254 static enum unwind_stop_reason
1255 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1256 void **this_cache)
1257 {
1258 struct dwarf2_frame_cache *cache
1259 = dwarf2_frame_cache (this_frame, this_cache);
1260
1261 if (cache->unavailable_retaddr)
1262 return UNWIND_UNAVAILABLE;
1263
1264 if (cache->undefined_retaddr)
1265 return UNWIND_OUTERMOST;
1266
1267 return UNWIND_NO_REASON;
1268 }
1269
1270 static void
1271 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1272 struct frame_id *this_id)
1273 {
1274 struct dwarf2_frame_cache *cache =
1275 dwarf2_frame_cache (this_frame, this_cache);
1276
1277 if (cache->unavailable_retaddr)
1278 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1279 else if (cache->undefined_retaddr)
1280 return;
1281 else
1282 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1283 }
1284
1285 static struct value *
1286 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1287 int regnum)
1288 {
1289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1290 struct dwarf2_frame_cache *cache =
1291 dwarf2_frame_cache (this_frame, this_cache);
1292 CORE_ADDR addr;
1293 int realnum;
1294
1295 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1296 call frame chain. */
1297 if (!cache->checked_tailcall_bottom)
1298 {
1299 cache->checked_tailcall_bottom = 1;
1300 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1301 (cache->entry_cfa_sp_offset_p
1302 ? &cache->entry_cfa_sp_offset : NULL));
1303 }
1304
1305 /* Non-bottom frames of a virtual tail call frames chain use
1306 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1307 them. If dwarf2_tailcall_prev_register_first does not have specific value
1308 unwind the register, tail call frames are assumed to have the register set
1309 of the top caller. */
1310 if (cache->tailcall_cache)
1311 {
1312 struct value *val;
1313
1314 val = dwarf2_tailcall_prev_register_first (this_frame,
1315 &cache->tailcall_cache,
1316 regnum);
1317 if (val)
1318 return val;
1319 }
1320
1321 switch (cache->reg[regnum].how)
1322 {
1323 case DWARF2_FRAME_REG_UNDEFINED:
1324 /* If CFI explicitly specified that the value isn't defined,
1325 mark it as optimized away; the value isn't available. */
1326 return frame_unwind_got_optimized (this_frame, regnum);
1327
1328 case DWARF2_FRAME_REG_SAVED_OFFSET:
1329 addr = cache->cfa + cache->reg[regnum].loc.offset;
1330 return frame_unwind_got_memory (this_frame, regnum, addr);
1331
1332 case DWARF2_FRAME_REG_SAVED_REG:
1333 realnum
1334 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1335 return frame_unwind_got_register (this_frame, regnum, realnum);
1336
1337 case DWARF2_FRAME_REG_SAVED_EXP:
1338 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1339 cache->reg[regnum].exp_len,
1340 cache->addr_size, cache->text_offset,
1341 this_frame, cache->cfa, 1);
1342 return frame_unwind_got_memory (this_frame, regnum, addr);
1343
1344 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1345 addr = cache->cfa + cache->reg[regnum].loc.offset;
1346 return frame_unwind_got_constant (this_frame, regnum, addr);
1347
1348 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1349 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1350 cache->reg[regnum].exp_len,
1351 cache->addr_size, cache->text_offset,
1352 this_frame, cache->cfa, 1);
1353 return frame_unwind_got_constant (this_frame, regnum, addr);
1354
1355 case DWARF2_FRAME_REG_UNSPECIFIED:
1356 /* GCC, in its infinite wisdom decided to not provide unwind
1357 information for registers that are "same value". Since
1358 DWARF2 (3 draft 7) doesn't define such behavior, said
1359 registers are actually undefined (which is different to CFI
1360 "undefined"). Code above issues a complaint about this.
1361 Here just fudge the books, assume GCC, and that the value is
1362 more inner on the stack. */
1363 return frame_unwind_got_register (this_frame, regnum, regnum);
1364
1365 case DWARF2_FRAME_REG_SAME_VALUE:
1366 return frame_unwind_got_register (this_frame, regnum, regnum);
1367
1368 case DWARF2_FRAME_REG_CFA:
1369 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1370
1371 case DWARF2_FRAME_REG_CFA_OFFSET:
1372 addr = cache->cfa + cache->reg[regnum].loc.offset;
1373 return frame_unwind_got_address (this_frame, regnum, addr);
1374
1375 case DWARF2_FRAME_REG_RA_OFFSET:
1376 addr = cache->reg[regnum].loc.offset;
1377 regnum = gdbarch_dwarf2_reg_to_regnum
1378 (gdbarch, cache->retaddr_reg.loc.reg);
1379 addr += get_frame_register_unsigned (this_frame, regnum);
1380 return frame_unwind_got_address (this_frame, regnum, addr);
1381
1382 case DWARF2_FRAME_REG_FN:
1383 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1384
1385 default:
1386 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1387 }
1388 }
1389
1390 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1391 call frames chain. */
1392
1393 static void
1394 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1395 {
1396 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1397
1398 if (cache->tailcall_cache)
1399 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1400 }
1401
1402 static int
1403 dwarf2_frame_sniffer (const struct frame_unwind *self,
1404 struct frame_info *this_frame, void **this_cache)
1405 {
1406 /* Grab an address that is guarenteed to reside somewhere within the
1407 function. get_frame_pc(), with a no-return next function, can
1408 end up returning something past the end of this function's body.
1409 If the frame we're sniffing for is a signal frame whose start
1410 address is placed on the stack by the OS, its FDE must
1411 extend one byte before its start address or we could potentially
1412 select the FDE of the previous function. */
1413 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1414 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1415
1416 if (!fde)
1417 return 0;
1418
1419 /* On some targets, signal trampolines may have unwind information.
1420 We need to recognize them so that we set the frame type
1421 correctly. */
1422
1423 if (fde->cie->signal_frame
1424 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1425 this_frame))
1426 return self->type == SIGTRAMP_FRAME;
1427
1428 if (self->type != NORMAL_FRAME)
1429 return 0;
1430
1431 return 1;
1432 }
1433
1434 static const struct frame_unwind dwarf2_frame_unwind =
1435 {
1436 NORMAL_FRAME,
1437 dwarf2_frame_unwind_stop_reason,
1438 dwarf2_frame_this_id,
1439 dwarf2_frame_prev_register,
1440 NULL,
1441 dwarf2_frame_sniffer,
1442 dwarf2_frame_dealloc_cache
1443 };
1444
1445 static const struct frame_unwind dwarf2_signal_frame_unwind =
1446 {
1447 SIGTRAMP_FRAME,
1448 dwarf2_frame_unwind_stop_reason,
1449 dwarf2_frame_this_id,
1450 dwarf2_frame_prev_register,
1451 NULL,
1452 dwarf2_frame_sniffer,
1453
1454 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1455 NULL
1456 };
1457
1458 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1459
1460 void
1461 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1462 {
1463 /* TAILCALL_FRAME must be first to find the record by
1464 dwarf2_tailcall_sniffer_first. */
1465 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1466
1467 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1468 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1469 }
1470 \f
1471
1472 /* There is no explicitly defined relationship between the CFA and the
1473 location of frame's local variables and arguments/parameters.
1474 Therefore, frame base methods on this page should probably only be
1475 used as a last resort, just to avoid printing total garbage as a
1476 response to the "info frame" command. */
1477
1478 static CORE_ADDR
1479 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1480 {
1481 struct dwarf2_frame_cache *cache =
1482 dwarf2_frame_cache (this_frame, this_cache);
1483
1484 return cache->cfa;
1485 }
1486
1487 static const struct frame_base dwarf2_frame_base =
1488 {
1489 &dwarf2_frame_unwind,
1490 dwarf2_frame_base_address,
1491 dwarf2_frame_base_address,
1492 dwarf2_frame_base_address
1493 };
1494
1495 const struct frame_base *
1496 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1497 {
1498 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1499
1500 if (dwarf2_frame_find_fde (&block_addr, NULL))
1501 return &dwarf2_frame_base;
1502
1503 return NULL;
1504 }
1505
1506 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1507 the DWARF unwinder. This is used to implement
1508 DW_OP_call_frame_cfa. */
1509
1510 CORE_ADDR
1511 dwarf2_frame_cfa (struct frame_info *this_frame)
1512 {
1513 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1514 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1515 throw_error (NOT_AVAILABLE_ERROR,
1516 _("cfa not available for record btrace target"));
1517
1518 while (get_frame_type (this_frame) == INLINE_FRAME)
1519 this_frame = get_prev_frame (this_frame);
1520 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1521 throw_error (NOT_AVAILABLE_ERROR,
1522 _("can't compute CFA for this frame: "
1523 "required registers or memory are unavailable"));
1524
1525 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1526 throw_error (NOT_AVAILABLE_ERROR,
1527 _("can't compute CFA for this frame: "
1528 "frame base not available"));
1529
1530 return get_frame_base (this_frame);
1531 }
1532 \f
1533 const struct objfile_data *dwarf2_frame_objfile_data;
1534
1535 static unsigned int
1536 read_1_byte (bfd *abfd, const gdb_byte *buf)
1537 {
1538 return bfd_get_8 (abfd, buf);
1539 }
1540
1541 static unsigned int
1542 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1543 {
1544 return bfd_get_32 (abfd, buf);
1545 }
1546
1547 static ULONGEST
1548 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1549 {
1550 return bfd_get_64 (abfd, buf);
1551 }
1552
1553 static ULONGEST
1554 read_initial_length (bfd *abfd, const gdb_byte *buf,
1555 unsigned int *bytes_read_ptr)
1556 {
1557 LONGEST result;
1558
1559 result = bfd_get_32 (abfd, buf);
1560 if (result == 0xffffffff)
1561 {
1562 result = bfd_get_64 (abfd, buf + 4);
1563 *bytes_read_ptr = 12;
1564 }
1565 else
1566 *bytes_read_ptr = 4;
1567
1568 return result;
1569 }
1570 \f
1571
1572 /* Pointer encoding helper functions. */
1573
1574 /* GCC supports exception handling based on DWARF2 CFI. However, for
1575 technical reasons, it encodes addresses in its FDE's in a different
1576 way. Several "pointer encodings" are supported. The encoding
1577 that's used for a particular FDE is determined by the 'R'
1578 augmentation in the associated CIE. The argument of this
1579 augmentation is a single byte.
1580
1581 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1582 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1583 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1584 address should be interpreted (absolute, relative to the current
1585 position in the FDE, ...). Bit 7, indicates that the address
1586 should be dereferenced. */
1587
1588 static gdb_byte
1589 encoding_for_size (unsigned int size)
1590 {
1591 switch (size)
1592 {
1593 case 2:
1594 return DW_EH_PE_udata2;
1595 case 4:
1596 return DW_EH_PE_udata4;
1597 case 8:
1598 return DW_EH_PE_udata8;
1599 default:
1600 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1601 }
1602 }
1603
1604 static CORE_ADDR
1605 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1606 int ptr_len, const gdb_byte *buf,
1607 unsigned int *bytes_read_ptr,
1608 CORE_ADDR func_base)
1609 {
1610 ptrdiff_t offset;
1611 CORE_ADDR base;
1612
1613 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1614 FDE's. */
1615 if (encoding & DW_EH_PE_indirect)
1616 internal_error (__FILE__, __LINE__,
1617 _("Unsupported encoding: DW_EH_PE_indirect"));
1618
1619 *bytes_read_ptr = 0;
1620
1621 switch (encoding & 0x70)
1622 {
1623 case DW_EH_PE_absptr:
1624 base = 0;
1625 break;
1626 case DW_EH_PE_pcrel:
1627 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1628 base += (buf - unit->dwarf_frame_buffer);
1629 break;
1630 case DW_EH_PE_datarel:
1631 base = unit->dbase;
1632 break;
1633 case DW_EH_PE_textrel:
1634 base = unit->tbase;
1635 break;
1636 case DW_EH_PE_funcrel:
1637 base = func_base;
1638 break;
1639 case DW_EH_PE_aligned:
1640 base = 0;
1641 offset = buf - unit->dwarf_frame_buffer;
1642 if ((offset % ptr_len) != 0)
1643 {
1644 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1645 buf += *bytes_read_ptr;
1646 }
1647 break;
1648 default:
1649 internal_error (__FILE__, __LINE__,
1650 _("Invalid or unsupported encoding"));
1651 }
1652
1653 if ((encoding & 0x07) == 0x00)
1654 {
1655 encoding |= encoding_for_size (ptr_len);
1656 if (bfd_get_sign_extend_vma (unit->abfd))
1657 encoding |= DW_EH_PE_signed;
1658 }
1659
1660 switch (encoding & 0x0f)
1661 {
1662 case DW_EH_PE_uleb128:
1663 {
1664 uint64_t value;
1665 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1666
1667 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1668 return base + value;
1669 }
1670 case DW_EH_PE_udata2:
1671 *bytes_read_ptr += 2;
1672 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_udata4:
1674 *bytes_read_ptr += 4;
1675 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1676 case DW_EH_PE_udata8:
1677 *bytes_read_ptr += 8;
1678 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1679 case DW_EH_PE_sleb128:
1680 {
1681 int64_t value;
1682 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1683
1684 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1685 return base + value;
1686 }
1687 case DW_EH_PE_sdata2:
1688 *bytes_read_ptr += 2;
1689 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1690 case DW_EH_PE_sdata4:
1691 *bytes_read_ptr += 4;
1692 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1693 case DW_EH_PE_sdata8:
1694 *bytes_read_ptr += 8;
1695 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1696 default:
1697 internal_error (__FILE__, __LINE__,
1698 _("Invalid or unsupported encoding"));
1699 }
1700 }
1701 \f
1702
1703 static int
1704 bsearch_cie_cmp (const void *key, const void *element)
1705 {
1706 ULONGEST cie_pointer = *(ULONGEST *) key;
1707 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1708
1709 if (cie_pointer == cie->cie_pointer)
1710 return 0;
1711
1712 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1713 }
1714
1715 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1716 static struct dwarf2_cie *
1717 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1718 {
1719 struct dwarf2_cie **p_cie;
1720
1721 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1722 bsearch be non-NULL. */
1723 if (cie_table->entries == NULL)
1724 {
1725 gdb_assert (cie_table->num_entries == 0);
1726 return NULL;
1727 }
1728
1729 p_cie = ((struct dwarf2_cie **)
1730 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1731 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1732 if (p_cie != NULL)
1733 return *p_cie;
1734 return NULL;
1735 }
1736
1737 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1738 static void
1739 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1740 {
1741 const int n = cie_table->num_entries;
1742
1743 gdb_assert (n < 1
1744 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1745
1746 cie_table->entries
1747 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1748 cie_table->entries[n] = cie;
1749 cie_table->num_entries = n + 1;
1750 }
1751
1752 static int
1753 bsearch_fde_cmp (const void *key, const void *element)
1754 {
1755 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1756 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1757
1758 if (seek_pc < fde->initial_location)
1759 return -1;
1760 if (seek_pc < fde->initial_location + fde->address_range)
1761 return 0;
1762 return 1;
1763 }
1764
1765 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1766 inital location associated with it into *PC. */
1767
1768 static struct dwarf2_fde *
1769 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1770 {
1771 struct objfile *objfile;
1772
1773 ALL_OBJFILES (objfile)
1774 {
1775 struct dwarf2_fde_table *fde_table;
1776 struct dwarf2_fde **p_fde;
1777 CORE_ADDR offset;
1778 CORE_ADDR seek_pc;
1779
1780 fde_table = ((struct dwarf2_fde_table *)
1781 objfile_data (objfile, dwarf2_frame_objfile_data));
1782 if (fde_table == NULL)
1783 {
1784 dwarf2_build_frame_info (objfile);
1785 fde_table = ((struct dwarf2_fde_table *)
1786 objfile_data (objfile, dwarf2_frame_objfile_data));
1787 }
1788 gdb_assert (fde_table != NULL);
1789
1790 if (fde_table->num_entries == 0)
1791 continue;
1792
1793 gdb_assert (objfile->section_offsets);
1794 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1795
1796 gdb_assert (fde_table->num_entries > 0);
1797 if (*pc < offset + fde_table->entries[0]->initial_location)
1798 continue;
1799
1800 seek_pc = *pc - offset;
1801 p_fde = ((struct dwarf2_fde **)
1802 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1803 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1804 if (p_fde != NULL)
1805 {
1806 *pc = (*p_fde)->initial_location + offset;
1807 if (out_offset)
1808 *out_offset = offset;
1809 return *p_fde;
1810 }
1811 }
1812 return NULL;
1813 }
1814
1815 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1816 static void
1817 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1818 {
1819 if (fde->address_range == 0)
1820 /* Discard useless FDEs. */
1821 return;
1822
1823 fde_table->num_entries += 1;
1824 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1825 fde_table->num_entries);
1826 fde_table->entries[fde_table->num_entries - 1] = fde;
1827 }
1828
1829 #define DW64_CIE_ID 0xffffffffffffffffULL
1830
1831 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1832 or any of them. */
1833
1834 enum eh_frame_type
1835 {
1836 EH_CIE_TYPE_ID = 1 << 0,
1837 EH_FDE_TYPE_ID = 1 << 1,
1838 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1839 };
1840
1841 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1842 const gdb_byte *start,
1843 int eh_frame_p,
1844 struct dwarf2_cie_table *cie_table,
1845 struct dwarf2_fde_table *fde_table,
1846 enum eh_frame_type entry_type);
1847
1848 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1849 Return NULL if invalid input, otherwise the next byte to be processed. */
1850
1851 static const gdb_byte *
1852 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1853 int eh_frame_p,
1854 struct dwarf2_cie_table *cie_table,
1855 struct dwarf2_fde_table *fde_table,
1856 enum eh_frame_type entry_type)
1857 {
1858 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1859 const gdb_byte *buf, *end;
1860 LONGEST length;
1861 unsigned int bytes_read;
1862 int dwarf64_p;
1863 ULONGEST cie_id;
1864 ULONGEST cie_pointer;
1865 int64_t sleb128;
1866 uint64_t uleb128;
1867
1868 buf = start;
1869 length = read_initial_length (unit->abfd, buf, &bytes_read);
1870 buf += bytes_read;
1871 end = buf + length;
1872
1873 /* Are we still within the section? */
1874 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1875 return NULL;
1876
1877 if (length == 0)
1878 return end;
1879
1880 /* Distinguish between 32 and 64-bit encoded frame info. */
1881 dwarf64_p = (bytes_read == 12);
1882
1883 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1884 if (eh_frame_p)
1885 cie_id = 0;
1886 else if (dwarf64_p)
1887 cie_id = DW64_CIE_ID;
1888 else
1889 cie_id = DW_CIE_ID;
1890
1891 if (dwarf64_p)
1892 {
1893 cie_pointer = read_8_bytes (unit->abfd, buf);
1894 buf += 8;
1895 }
1896 else
1897 {
1898 cie_pointer = read_4_bytes (unit->abfd, buf);
1899 buf += 4;
1900 }
1901
1902 if (cie_pointer == cie_id)
1903 {
1904 /* This is a CIE. */
1905 struct dwarf2_cie *cie;
1906 char *augmentation;
1907 unsigned int cie_version;
1908
1909 /* Check that a CIE was expected. */
1910 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1911 error (_("Found a CIE when not expecting it."));
1912
1913 /* Record the offset into the .debug_frame section of this CIE. */
1914 cie_pointer = start - unit->dwarf_frame_buffer;
1915
1916 /* Check whether we've already read it. */
1917 if (find_cie (cie_table, cie_pointer))
1918 return end;
1919
1920 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1921 cie->initial_instructions = NULL;
1922 cie->cie_pointer = cie_pointer;
1923
1924 /* The encoding for FDE's in a normal .debug_frame section
1925 depends on the target address size. */
1926 cie->encoding = DW_EH_PE_absptr;
1927
1928 /* We'll determine the final value later, but we need to
1929 initialize it conservatively. */
1930 cie->signal_frame = 0;
1931
1932 /* Check version number. */
1933 cie_version = read_1_byte (unit->abfd, buf);
1934 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1935 return NULL;
1936 cie->version = cie_version;
1937 buf += 1;
1938
1939 /* Interpret the interesting bits of the augmentation. */
1940 cie->augmentation = augmentation = (char *) buf;
1941 buf += (strlen (augmentation) + 1);
1942
1943 /* Ignore armcc augmentations. We only use them for quirks,
1944 and that doesn't happen until later. */
1945 if (startswith (augmentation, "armcc"))
1946 augmentation += strlen (augmentation);
1947
1948 /* The GCC 2.x "eh" augmentation has a pointer immediately
1949 following the augmentation string, so it must be handled
1950 first. */
1951 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1952 {
1953 /* Skip. */
1954 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1955 augmentation += 2;
1956 }
1957
1958 if (cie->version >= 4)
1959 {
1960 /* FIXME: check that this is the same as from the CU header. */
1961 cie->addr_size = read_1_byte (unit->abfd, buf);
1962 ++buf;
1963 cie->segment_size = read_1_byte (unit->abfd, buf);
1964 ++buf;
1965 }
1966 else
1967 {
1968 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1969 cie->segment_size = 0;
1970 }
1971 /* Address values in .eh_frame sections are defined to have the
1972 target's pointer size. Watchout: This breaks frame info for
1973 targets with pointer size < address size, unless a .debug_frame
1974 section exists as well. */
1975 if (eh_frame_p)
1976 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1977 else
1978 cie->ptr_size = cie->addr_size;
1979
1980 buf = gdb_read_uleb128 (buf, end, &uleb128);
1981 if (buf == NULL)
1982 return NULL;
1983 cie->code_alignment_factor = uleb128;
1984
1985 buf = gdb_read_sleb128 (buf, end, &sleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->data_alignment_factor = sleb128;
1989
1990 if (cie_version == 1)
1991 {
1992 cie->return_address_register = read_1_byte (unit->abfd, buf);
1993 ++buf;
1994 }
1995 else
1996 {
1997 buf = gdb_read_uleb128 (buf, end, &uleb128);
1998 if (buf == NULL)
1999 return NULL;
2000 cie->return_address_register = uleb128;
2001 }
2002
2003 cie->return_address_register
2004 = dwarf2_frame_adjust_regnum (gdbarch,
2005 cie->return_address_register,
2006 eh_frame_p);
2007
2008 cie->saw_z_augmentation = (*augmentation == 'z');
2009 if (cie->saw_z_augmentation)
2010 {
2011 uint64_t length;
2012
2013 buf = gdb_read_uleb128 (buf, end, &length);
2014 if (buf == NULL)
2015 return NULL;
2016 cie->initial_instructions = buf + length;
2017 augmentation++;
2018 }
2019
2020 while (*augmentation)
2021 {
2022 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2023 if (*augmentation == 'L')
2024 {
2025 /* Skip. */
2026 buf++;
2027 augmentation++;
2028 }
2029
2030 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2031 else if (*augmentation == 'R')
2032 {
2033 cie->encoding = *buf++;
2034 augmentation++;
2035 }
2036
2037 /* "P" indicates a personality routine in the CIE augmentation. */
2038 else if (*augmentation == 'P')
2039 {
2040 /* Skip. Avoid indirection since we throw away the result. */
2041 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2042 read_encoded_value (unit, encoding, cie->ptr_size,
2043 buf, &bytes_read, 0);
2044 buf += bytes_read;
2045 augmentation++;
2046 }
2047
2048 /* "S" indicates a signal frame, such that the return
2049 address must not be decremented to locate the call frame
2050 info for the previous frame; it might even be the first
2051 instruction of a function, so decrementing it would take
2052 us to a different function. */
2053 else if (*augmentation == 'S')
2054 {
2055 cie->signal_frame = 1;
2056 augmentation++;
2057 }
2058
2059 /* Otherwise we have an unknown augmentation. Assume that either
2060 there is no augmentation data, or we saw a 'z' prefix. */
2061 else
2062 {
2063 if (cie->initial_instructions)
2064 buf = cie->initial_instructions;
2065 break;
2066 }
2067 }
2068
2069 cie->initial_instructions = buf;
2070 cie->end = end;
2071 cie->unit = unit;
2072
2073 add_cie (cie_table, cie);
2074 }
2075 else
2076 {
2077 /* This is a FDE. */
2078 struct dwarf2_fde *fde;
2079 CORE_ADDR addr;
2080
2081 /* Check that an FDE was expected. */
2082 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2083 error (_("Found an FDE when not expecting it."));
2084
2085 /* In an .eh_frame section, the CIE pointer is the delta between the
2086 address within the FDE where the CIE pointer is stored and the
2087 address of the CIE. Convert it to an offset into the .eh_frame
2088 section. */
2089 if (eh_frame_p)
2090 {
2091 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2092 cie_pointer -= (dwarf64_p ? 8 : 4);
2093 }
2094
2095 /* In either case, validate the result is still within the section. */
2096 if (cie_pointer >= unit->dwarf_frame_size)
2097 return NULL;
2098
2099 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2100 fde->cie = find_cie (cie_table, cie_pointer);
2101 if (fde->cie == NULL)
2102 {
2103 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2104 eh_frame_p, cie_table, fde_table,
2105 EH_CIE_TYPE_ID);
2106 fde->cie = find_cie (cie_table, cie_pointer);
2107 }
2108
2109 gdb_assert (fde->cie != NULL);
2110
2111 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2112 buf, &bytes_read, 0);
2113 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2114 buf += bytes_read;
2115
2116 fde->address_range =
2117 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2118 fde->cie->ptr_size, buf, &bytes_read, 0);
2119 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2120 fde->address_range = addr - fde->initial_location;
2121 buf += bytes_read;
2122
2123 /* A 'z' augmentation in the CIE implies the presence of an
2124 augmentation field in the FDE as well. The only thing known
2125 to be in here at present is the LSDA entry for EH. So we
2126 can skip the whole thing. */
2127 if (fde->cie->saw_z_augmentation)
2128 {
2129 uint64_t length;
2130
2131 buf = gdb_read_uleb128 (buf, end, &length);
2132 if (buf == NULL)
2133 return NULL;
2134 buf += length;
2135 if (buf > end)
2136 return NULL;
2137 }
2138
2139 fde->instructions = buf;
2140 fde->end = end;
2141
2142 fde->eh_frame_p = eh_frame_p;
2143
2144 add_fde (fde_table, fde);
2145 }
2146
2147 return end;
2148 }
2149
2150 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2151 expect an FDE or a CIE. */
2152
2153 static const gdb_byte *
2154 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2155 int eh_frame_p,
2156 struct dwarf2_cie_table *cie_table,
2157 struct dwarf2_fde_table *fde_table,
2158 enum eh_frame_type entry_type)
2159 {
2160 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2161 const gdb_byte *ret;
2162 ptrdiff_t start_offset;
2163
2164 while (1)
2165 {
2166 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2167 cie_table, fde_table, entry_type);
2168 if (ret != NULL)
2169 break;
2170
2171 /* We have corrupt input data of some form. */
2172
2173 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2174 and mismatches wrt padding and alignment of debug sections. */
2175 /* Note that there is no requirement in the standard for any
2176 alignment at all in the frame unwind sections. Testing for
2177 alignment before trying to interpret data would be incorrect.
2178
2179 However, GCC traditionally arranged for frame sections to be
2180 sized such that the FDE length and CIE fields happen to be
2181 aligned (in theory, for performance). This, unfortunately,
2182 was done with .align directives, which had the side effect of
2183 forcing the section to be aligned by the linker.
2184
2185 This becomes a problem when you have some other producer that
2186 creates frame sections that are not as strictly aligned. That
2187 produces a hole in the frame info that gets filled by the
2188 linker with zeros.
2189
2190 The GCC behaviour is arguably a bug, but it's effectively now
2191 part of the ABI, so we're now stuck with it, at least at the
2192 object file level. A smart linker may decide, in the process
2193 of compressing duplicate CIE information, that it can rewrite
2194 the entire output section without this extra padding. */
2195
2196 start_offset = start - unit->dwarf_frame_buffer;
2197 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2198 {
2199 start += 4 - (start_offset & 3);
2200 workaround = ALIGN4;
2201 continue;
2202 }
2203 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2204 {
2205 start += 8 - (start_offset & 7);
2206 workaround = ALIGN8;
2207 continue;
2208 }
2209
2210 /* Nothing left to try. Arrange to return as if we've consumed
2211 the entire input section. Hopefully we'll get valid info from
2212 the other of .debug_frame/.eh_frame. */
2213 workaround = FAIL;
2214 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2215 break;
2216 }
2217
2218 switch (workaround)
2219 {
2220 case NONE:
2221 break;
2222
2223 case ALIGN4:
2224 complaint (&symfile_complaints, _("\
2225 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2228 break;
2229
2230 case ALIGN8:
2231 complaint (&symfile_complaints, _("\
2232 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2235 break;
2236
2237 default:
2238 complaint (&symfile_complaints,
2239 _("Corrupt data in %s:%s"),
2240 unit->dwarf_frame_section->owner->filename,
2241 unit->dwarf_frame_section->name);
2242 break;
2243 }
2244
2245 return ret;
2246 }
2247 \f
2248 static int
2249 qsort_fde_cmp (const void *a, const void *b)
2250 {
2251 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2252 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2253
2254 if (aa->initial_location == bb->initial_location)
2255 {
2256 if (aa->address_range != bb->address_range
2257 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2258 /* Linker bug, e.g. gold/10400.
2259 Work around it by keeping stable sort order. */
2260 return (a < b) ? -1 : 1;
2261 else
2262 /* Put eh_frame entries after debug_frame ones. */
2263 return aa->eh_frame_p - bb->eh_frame_p;
2264 }
2265
2266 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2267 }
2268
2269 void
2270 dwarf2_build_frame_info (struct objfile *objfile)
2271 {
2272 struct comp_unit *unit;
2273 const gdb_byte *frame_ptr;
2274 struct dwarf2_cie_table cie_table;
2275 struct dwarf2_fde_table fde_table;
2276 struct dwarf2_fde_table *fde_table2;
2277
2278 cie_table.num_entries = 0;
2279 cie_table.entries = NULL;
2280
2281 fde_table.num_entries = 0;
2282 fde_table.entries = NULL;
2283
2284 /* Build a minimal decoding of the DWARF2 compilation unit. */
2285 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2286 sizeof (struct comp_unit));
2287 unit->abfd = objfile->obfd;
2288 unit->objfile = objfile;
2289 unit->dbase = 0;
2290 unit->tbase = 0;
2291
2292 if (objfile->separate_debug_objfile_backlink == NULL)
2293 {
2294 /* Do not read .eh_frame from separate file as they must be also
2295 present in the main file. */
2296 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2297 &unit->dwarf_frame_section,
2298 &unit->dwarf_frame_buffer,
2299 &unit->dwarf_frame_size);
2300 if (unit->dwarf_frame_size)
2301 {
2302 asection *got, *txt;
2303
2304 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2305 that is used for the i386/amd64 target, which currently is
2306 the only target in GCC that supports/uses the
2307 DW_EH_PE_datarel encoding. */
2308 got = bfd_get_section_by_name (unit->abfd, ".got");
2309 if (got)
2310 unit->dbase = got->vma;
2311
2312 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2313 so far. */
2314 txt = bfd_get_section_by_name (unit->abfd, ".text");
2315 if (txt)
2316 unit->tbase = txt->vma;
2317
2318 TRY
2319 {
2320 frame_ptr = unit->dwarf_frame_buffer;
2321 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2322 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2323 &cie_table, &fde_table,
2324 EH_CIE_OR_FDE_TYPE_ID);
2325 }
2326
2327 CATCH (e, RETURN_MASK_ERROR)
2328 {
2329 warning (_("skipping .eh_frame info of %s: %s"),
2330 objfile_name (objfile), e.message);
2331
2332 if (fde_table.num_entries != 0)
2333 {
2334 xfree (fde_table.entries);
2335 fde_table.entries = NULL;
2336 fde_table.num_entries = 0;
2337 }
2338 /* The cie_table is discarded by the next if. */
2339 }
2340 END_CATCH
2341
2342 if (cie_table.num_entries != 0)
2343 {
2344 /* Reinit cie_table: debug_frame has different CIEs. */
2345 xfree (cie_table.entries);
2346 cie_table.num_entries = 0;
2347 cie_table.entries = NULL;
2348 }
2349 }
2350 }
2351
2352 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2353 &unit->dwarf_frame_section,
2354 &unit->dwarf_frame_buffer,
2355 &unit->dwarf_frame_size);
2356 if (unit->dwarf_frame_size)
2357 {
2358 int num_old_fde_entries = fde_table.num_entries;
2359
2360 TRY
2361 {
2362 frame_ptr = unit->dwarf_frame_buffer;
2363 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2364 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2365 &cie_table, &fde_table,
2366 EH_CIE_OR_FDE_TYPE_ID);
2367 }
2368 CATCH (e, RETURN_MASK_ERROR)
2369 {
2370 warning (_("skipping .debug_frame info of %s: %s"),
2371 objfile_name (objfile), e.message);
2372
2373 if (fde_table.num_entries != 0)
2374 {
2375 fde_table.num_entries = num_old_fde_entries;
2376 if (num_old_fde_entries == 0)
2377 {
2378 xfree (fde_table.entries);
2379 fde_table.entries = NULL;
2380 }
2381 else
2382 {
2383 fde_table.entries
2384 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2385 fde_table.num_entries);
2386 }
2387 }
2388 fde_table.num_entries = num_old_fde_entries;
2389 /* The cie_table is discarded by the next if. */
2390 }
2391 END_CATCH
2392 }
2393
2394 /* Discard the cie_table, it is no longer needed. */
2395 if (cie_table.num_entries != 0)
2396 {
2397 xfree (cie_table.entries);
2398 cie_table.entries = NULL; /* Paranoia. */
2399 cie_table.num_entries = 0; /* Paranoia. */
2400 }
2401
2402 /* Copy fde_table to obstack: it is needed at runtime. */
2403 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2404
2405 if (fde_table.num_entries == 0)
2406 {
2407 fde_table2->entries = NULL;
2408 fde_table2->num_entries = 0;
2409 }
2410 else
2411 {
2412 struct dwarf2_fde *fde_prev = NULL;
2413 struct dwarf2_fde *first_non_zero_fde = NULL;
2414 int i;
2415
2416 /* Prepare FDE table for lookups. */
2417 qsort (fde_table.entries, fde_table.num_entries,
2418 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2419
2420 /* Check for leftovers from --gc-sections. The GNU linker sets
2421 the relevant symbols to zero, but doesn't zero the FDE *end*
2422 ranges because there's no relocation there. It's (offset,
2423 length), not (start, end). On targets where address zero is
2424 just another valid address this can be a problem, since the
2425 FDEs appear to be non-empty in the output --- we could pick
2426 out the wrong FDE. To work around this, when overlaps are
2427 detected, we prefer FDEs that do not start at zero.
2428
2429 Start by finding the first FDE with non-zero start. Below
2430 we'll discard all FDEs that start at zero and overlap this
2431 one. */
2432 for (i = 0; i < fde_table.num_entries; i++)
2433 {
2434 struct dwarf2_fde *fde = fde_table.entries[i];
2435
2436 if (fde->initial_location != 0)
2437 {
2438 first_non_zero_fde = fde;
2439 break;
2440 }
2441 }
2442
2443 /* Since we'll be doing bsearch, squeeze out identical (except
2444 for eh_frame_p) fde entries so bsearch result is predictable.
2445 Also discard leftovers from --gc-sections. */
2446 fde_table2->num_entries = 0;
2447 for (i = 0; i < fde_table.num_entries; i++)
2448 {
2449 struct dwarf2_fde *fde = fde_table.entries[i];
2450
2451 if (fde->initial_location == 0
2452 && first_non_zero_fde != NULL
2453 && (first_non_zero_fde->initial_location
2454 < fde->initial_location + fde->address_range))
2455 continue;
2456
2457 if (fde_prev != NULL
2458 && fde_prev->initial_location == fde->initial_location)
2459 continue;
2460
2461 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2462 sizeof (fde_table.entries[0]));
2463 ++fde_table2->num_entries;
2464 fde_prev = fde;
2465 }
2466 fde_table2->entries
2467 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2468
2469 /* Discard the original fde_table. */
2470 xfree (fde_table.entries);
2471 }
2472
2473 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2474 }
2475
2476 /* Provide a prototype to silence -Wmissing-prototypes. */
2477 void _initialize_dwarf2_frame (void);
2478
2479 void
2480 _initialize_dwarf2_frame (void)
2481 {
2482 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2483 dwarf2_frame_objfile_data = register_objfile_data ();
2484 }
This page took 0.082216 seconds and 4 git commands to generate.