Create dwarf2/leb.[ch]
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "dwarf2/leb.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35 #include "record.h"
36
37 #include "complaints.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2read.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "dwarf2-frame-tailcall.h"
43 #include "gdbsupport/gdb_binary_search.h"
44 #if GDB_SELF_TEST
45 #include "gdbsupport/selftest.h"
46 #include "selftest-arch.h"
47 #endif
48 #include <unordered_map>
49
50 #include <algorithm>
51
52 struct comp_unit;
53
54 /* Call Frame Information (CFI). */
55
56 /* Common Information Entry (CIE). */
57
58 struct dwarf2_cie
59 {
60 /* Computation Unit for this CIE. */
61 struct comp_unit *unit;
62
63 /* Offset into the .debug_frame section where this CIE was found.
64 Used to identify this CIE. */
65 ULONGEST cie_pointer;
66
67 /* Constant that is factored out of all advance location
68 instructions. */
69 ULONGEST code_alignment_factor;
70
71 /* Constants that is factored out of all offset instructions. */
72 LONGEST data_alignment_factor;
73
74 /* Return address column. */
75 ULONGEST return_address_register;
76
77 /* Instruction sequence to initialize a register set. */
78 const gdb_byte *initial_instructions;
79 const gdb_byte *end;
80
81 /* Saved augmentation, in case it's needed later. */
82 char *augmentation;
83
84 /* Encoding of addresses. */
85 gdb_byte encoding;
86
87 /* Target address size in bytes. */
88 int addr_size;
89
90 /* Target pointer size in bytes. */
91 int ptr_size;
92
93 /* True if a 'z' augmentation existed. */
94 unsigned char saw_z_augmentation;
95
96 /* True if an 'S' augmentation existed. */
97 unsigned char signal_frame;
98
99 /* The version recorded in the CIE. */
100 unsigned char version;
101
102 /* The segment size. */
103 unsigned char segment_size;
104 };
105
106 /* The CIE table is used to find CIEs during parsing, but then
107 discarded. It maps from the CIE's offset to the CIE. */
108 typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table;
109
110 /* Frame Description Entry (FDE). */
111
112 struct dwarf2_fde
113 {
114 /* CIE for this FDE. */
115 struct dwarf2_cie *cie;
116
117 /* First location associated with this FDE. */
118 CORE_ADDR initial_location;
119
120 /* Number of bytes of program instructions described by this FDE. */
121 CORE_ADDR address_range;
122
123 /* Instruction sequence. */
124 const gdb_byte *instructions;
125 const gdb_byte *end;
126
127 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
128 section. */
129 unsigned char eh_frame_p;
130 };
131
132 struct dwarf2_fde_table
133 {
134 int num_entries;
135 struct dwarf2_fde **entries;
136 };
137
138 /* A minimal decoding of DWARF2 compilation units. We only decode
139 what's needed to get to the call frame information. */
140
141 struct comp_unit
142 {
143 /* Keep the bfd convenient. */
144 bfd *abfd;
145
146 struct objfile *objfile;
147
148 /* Pointer to the .debug_frame section loaded into memory. */
149 const gdb_byte *dwarf_frame_buffer;
150
151 /* Length of the loaded .debug_frame section. */
152 bfd_size_type dwarf_frame_size;
153
154 /* Pointer to the .debug_frame section. */
155 asection *dwarf_frame_section;
156
157 /* Base for DW_EH_PE_datarel encodings. */
158 bfd_vma dbase;
159
160 /* Base for DW_EH_PE_textrel encodings. */
161 bfd_vma tbase;
162 };
163
164 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
165 CORE_ADDR *out_offset);
166
167 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
168 int eh_frame_p);
169
170 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
171 int ptr_len, const gdb_byte *buf,
172 unsigned int *bytes_read_ptr,
173 CORE_ADDR func_base);
174 \f
175
176 /* See dwarf2-frame.h. */
177 bool dwarf2_frame_unwinders_enabled_p = true;
178
179 /* Store the length the expression for the CFA in the `cfa_reg' field,
180 which is unused in that case. */
181 #define cfa_exp_len cfa_reg
182
183 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
184 : pc (pc_), data_align (cie->data_alignment_factor),
185 code_align (cie->code_alignment_factor),
186 retaddr_column (cie->return_address_register)
187 {
188 }
189 \f
190
191 /* Helper functions for execute_stack_op. */
192
193 static CORE_ADDR
194 read_addr_from_reg (struct frame_info *this_frame, int reg)
195 {
196 struct gdbarch *gdbarch = get_frame_arch (this_frame);
197 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
198
199 return address_from_register (regnum, this_frame);
200 }
201
202 /* Execute the required actions for both the DW_CFA_restore and
203 DW_CFA_restore_extended instructions. */
204 static void
205 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
206 struct dwarf2_frame_state *fs, int eh_frame_p)
207 {
208 ULONGEST reg;
209
210 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
211 fs->regs.alloc_regs (reg + 1);
212
213 /* Check if this register was explicitly initialized in the
214 CIE initial instructions. If not, default the rule to
215 UNSPECIFIED. */
216 if (reg < fs->initial.reg.size ())
217 fs->regs.reg[reg] = fs->initial.reg[reg];
218 else
219 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
220
221 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
222 {
223 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
224
225 complaint (_("\
226 incomplete CFI data; DW_CFA_restore unspecified\n\
227 register %s (#%d) at %s"),
228 gdbarch_register_name (gdbarch, regnum), regnum,
229 paddress (gdbarch, fs->pc));
230 }
231 }
232
233 class dwarf_expr_executor : public dwarf_expr_context
234 {
235 public:
236
237 struct frame_info *this_frame;
238
239 CORE_ADDR read_addr_from_reg (int reg) override
240 {
241 return ::read_addr_from_reg (this_frame, reg);
242 }
243
244 struct value *get_reg_value (struct type *type, int reg) override
245 {
246 struct gdbarch *gdbarch = get_frame_arch (this_frame);
247 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
248
249 return value_from_register (type, regnum, this_frame);
250 }
251
252 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
253 {
254 read_memory (addr, buf, len);
255 }
256
257 void get_frame_base (const gdb_byte **start, size_t *length) override
258 {
259 invalid ("DW_OP_fbreg");
260 }
261
262 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
263 union call_site_parameter_u kind_u,
264 int deref_size) override
265 {
266 invalid ("DW_OP_entry_value");
267 }
268
269 CORE_ADDR get_object_address () override
270 {
271 invalid ("DW_OP_push_object_address");
272 }
273
274 CORE_ADDR get_frame_cfa () override
275 {
276 invalid ("DW_OP_call_frame_cfa");
277 }
278
279 CORE_ADDR get_tls_address (CORE_ADDR offset) override
280 {
281 invalid ("DW_OP_form_tls_address");
282 }
283
284 void dwarf_call (cu_offset die_offset) override
285 {
286 invalid ("DW_OP_call*");
287 }
288
289 struct value *dwarf_variable_value (sect_offset sect_off) override
290 {
291 invalid ("DW_OP_GNU_variable_value");
292 }
293
294 CORE_ADDR get_addr_index (unsigned int index) override
295 {
296 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
297 }
298
299 private:
300
301 void invalid (const char *op) ATTRIBUTE_NORETURN
302 {
303 error (_("%s is invalid in this context"), op);
304 }
305 };
306
307 static CORE_ADDR
308 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
309 CORE_ADDR offset, struct frame_info *this_frame,
310 CORE_ADDR initial, int initial_in_stack_memory)
311 {
312 CORE_ADDR result;
313
314 dwarf_expr_executor ctx;
315 scoped_value_mark free_values;
316
317 ctx.this_frame = this_frame;
318 ctx.gdbarch = get_frame_arch (this_frame);
319 ctx.addr_size = addr_size;
320 ctx.ref_addr_size = -1;
321 ctx.offset = offset;
322
323 ctx.push_address (initial, initial_in_stack_memory);
324 ctx.eval (exp, len);
325
326 if (ctx.location == DWARF_VALUE_MEMORY)
327 result = ctx.fetch_address (0);
328 else if (ctx.location == DWARF_VALUE_REGISTER)
329 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
330 else
331 {
332 /* This is actually invalid DWARF, but if we ever do run across
333 it somehow, we might as well support it. So, instead, report
334 it as unimplemented. */
335 error (_("\
336 Not implemented: computing unwound register using explicit value operator"));
337 }
338
339 return result;
340 }
341 \f
342
343 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
344 PC. Modify FS state accordingly. Return current INSN_PTR where the
345 execution has stopped, one can resume it on the next call. */
346
347 static const gdb_byte *
348 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
349 const gdb_byte *insn_end, struct gdbarch *gdbarch,
350 CORE_ADDR pc, struct dwarf2_frame_state *fs)
351 {
352 int eh_frame_p = fde->eh_frame_p;
353 unsigned int bytes_read;
354 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
355
356 while (insn_ptr < insn_end && fs->pc <= pc)
357 {
358 gdb_byte insn = *insn_ptr++;
359 uint64_t utmp, reg;
360 int64_t offset;
361
362 if ((insn & 0xc0) == DW_CFA_advance_loc)
363 fs->pc += (insn & 0x3f) * fs->code_align;
364 else if ((insn & 0xc0) == DW_CFA_offset)
365 {
366 reg = insn & 0x3f;
367 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
368 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
369 offset = utmp * fs->data_align;
370 fs->regs.alloc_regs (reg + 1);
371 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
372 fs->regs.reg[reg].loc.offset = offset;
373 }
374 else if ((insn & 0xc0) == DW_CFA_restore)
375 {
376 reg = insn & 0x3f;
377 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
378 }
379 else
380 {
381 switch (insn)
382 {
383 case DW_CFA_set_loc:
384 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
385 fde->cie->ptr_size, insn_ptr,
386 &bytes_read, fde->initial_location);
387 /* Apply the objfile offset for relocatable objects. */
388 fs->pc += fde->cie->unit->objfile->text_section_offset ();
389 insn_ptr += bytes_read;
390 break;
391
392 case DW_CFA_advance_loc1:
393 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
394 fs->pc += utmp * fs->code_align;
395 insn_ptr++;
396 break;
397 case DW_CFA_advance_loc2:
398 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
399 fs->pc += utmp * fs->code_align;
400 insn_ptr += 2;
401 break;
402 case DW_CFA_advance_loc4:
403 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
404 fs->pc += utmp * fs->code_align;
405 insn_ptr += 4;
406 break;
407
408 case DW_CFA_offset_extended:
409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
410 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
411 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
412 offset = utmp * fs->data_align;
413 fs->regs.alloc_regs (reg + 1);
414 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
415 fs->regs.reg[reg].loc.offset = offset;
416 break;
417
418 case DW_CFA_restore_extended:
419 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
420 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
421 break;
422
423 case DW_CFA_undefined:
424 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
425 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
426 fs->regs.alloc_regs (reg + 1);
427 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
428 break;
429
430 case DW_CFA_same_value:
431 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
433 fs->regs.alloc_regs (reg + 1);
434 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
435 break;
436
437 case DW_CFA_register:
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
439 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
440 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
441 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
442 fs->regs.alloc_regs (reg + 1);
443 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
444 fs->regs.reg[reg].loc.reg = utmp;
445 break;
446
447 case DW_CFA_remember_state:
448 {
449 struct dwarf2_frame_state_reg_info *new_rs;
450
451 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
452 fs->regs.prev = new_rs;
453 }
454 break;
455
456 case DW_CFA_restore_state:
457 {
458 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
459
460 if (old_rs == NULL)
461 {
462 complaint (_("\
463 bad CFI data; mismatched DW_CFA_restore_state at %s"),
464 paddress (gdbarch, fs->pc));
465 }
466 else
467 fs->regs = std::move (*old_rs);
468 }
469 break;
470
471 case DW_CFA_def_cfa:
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
473 fs->regs.cfa_reg = reg;
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
475
476 if (fs->armcc_cfa_offsets_sf)
477 utmp *= fs->data_align;
478
479 fs->regs.cfa_offset = utmp;
480 fs->regs.cfa_how = CFA_REG_OFFSET;
481 break;
482
483 case DW_CFA_def_cfa_register:
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
485 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
486 eh_frame_p);
487 fs->regs.cfa_how = CFA_REG_OFFSET;
488 break;
489
490 case DW_CFA_def_cfa_offset:
491 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
492
493 if (fs->armcc_cfa_offsets_sf)
494 utmp *= fs->data_align;
495
496 fs->regs.cfa_offset = utmp;
497 /* cfa_how deliberately not set. */
498 break;
499
500 case DW_CFA_nop:
501 break;
502
503 case DW_CFA_def_cfa_expression:
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
505 fs->regs.cfa_exp_len = utmp;
506 fs->regs.cfa_exp = insn_ptr;
507 fs->regs.cfa_how = CFA_EXP;
508 insn_ptr += fs->regs.cfa_exp_len;
509 break;
510
511 case DW_CFA_expression:
512 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
513 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
514 fs->regs.alloc_regs (reg + 1);
515 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
516 fs->regs.reg[reg].loc.exp.start = insn_ptr;
517 fs->regs.reg[reg].loc.exp.len = utmp;
518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
519 insn_ptr += utmp;
520 break;
521
522 case DW_CFA_offset_extended_sf:
523 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
524 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
525 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
526 offset *= fs->data_align;
527 fs->regs.alloc_regs (reg + 1);
528 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
529 fs->regs.reg[reg].loc.offset = offset;
530 break;
531
532 case DW_CFA_val_offset:
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
534 fs->regs.alloc_regs (reg + 1);
535 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
536 offset = utmp * fs->data_align;
537 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
538 fs->regs.reg[reg].loc.offset = offset;
539 break;
540
541 case DW_CFA_val_offset_sf:
542 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
543 fs->regs.alloc_regs (reg + 1);
544 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
545 offset *= fs->data_align;
546 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
547 fs->regs.reg[reg].loc.offset = offset;
548 break;
549
550 case DW_CFA_val_expression:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.alloc_regs (reg + 1);
553 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
554 fs->regs.reg[reg].loc.exp.start = insn_ptr;
555 fs->regs.reg[reg].loc.exp.len = utmp;
556 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
557 insn_ptr += utmp;
558 break;
559
560 case DW_CFA_def_cfa_sf:
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
562 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
563 eh_frame_p);
564 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
565 fs->regs.cfa_offset = offset * fs->data_align;
566 fs->regs.cfa_how = CFA_REG_OFFSET;
567 break;
568
569 case DW_CFA_def_cfa_offset_sf:
570 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
571 fs->regs.cfa_offset = offset * fs->data_align;
572 /* cfa_how deliberately not set. */
573 break;
574
575 case DW_CFA_GNU_args_size:
576 /* Ignored. */
577 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
578 break;
579
580 case DW_CFA_GNU_negative_offset_extended:
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
582 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
584 offset = utmp * fs->data_align;
585 fs->regs.alloc_regs (reg + 1);
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
587 fs->regs.reg[reg].loc.offset = -offset;
588 break;
589
590 default:
591 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
592 {
593 /* Handle vendor-specific CFI for different architectures. */
594 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
595 error (_("Call Frame Instruction op %d in vendor extension "
596 "space is not handled on this architecture."),
597 insn);
598 }
599 else
600 internal_error (__FILE__, __LINE__,
601 _("Unknown CFI encountered."));
602 }
603 }
604 }
605
606 if (fs->initial.reg.empty ())
607 {
608 /* Don't allow remember/restore between CIE and FDE programs. */
609 delete fs->regs.prev;
610 fs->regs.prev = NULL;
611 }
612
613 return insn_ptr;
614 }
615
616 #if GDB_SELF_TEST
617
618 namespace selftests {
619
620 /* Unit test to function execute_cfa_program. */
621
622 static void
623 execute_cfa_program_test (struct gdbarch *gdbarch)
624 {
625 struct dwarf2_fde fde;
626 struct dwarf2_cie cie;
627
628 memset (&fde, 0, sizeof fde);
629 memset (&cie, 0, sizeof cie);
630
631 cie.data_alignment_factor = -4;
632 cie.code_alignment_factor = 2;
633 fde.cie = &cie;
634
635 dwarf2_frame_state fs (0, fde.cie);
636
637 gdb_byte insns[] =
638 {
639 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
640 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
641 DW_CFA_remember_state,
642 DW_CFA_restore_state,
643 };
644
645 const gdb_byte *insn_end = insns + sizeof (insns);
646 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
647 0, &fs);
648
649 SELF_CHECK (out == insn_end);
650 SELF_CHECK (fs.pc == 0);
651
652 /* The instructions above only use r1 and r2, but the register numbers
653 used are adjusted by dwarf2_frame_adjust_regnum. */
654 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
655 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
656
657 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
658
659 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
660 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
661
662 for (auto i = 0; i < fs.regs.reg.size (); i++)
663 if (i != r2)
664 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
665
666 SELF_CHECK (fs.regs.cfa_reg == 1);
667 SELF_CHECK (fs.regs.cfa_offset == 4);
668 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
669 SELF_CHECK (fs.regs.cfa_exp == NULL);
670 SELF_CHECK (fs.regs.prev == NULL);
671 }
672
673 } // namespace selftests
674 #endif /* GDB_SELF_TEST */
675
676 \f
677
678 /* Architecture-specific operations. */
679
680 /* Per-architecture data key. */
681 static struct gdbarch_data *dwarf2_frame_data;
682
683 struct dwarf2_frame_ops
684 {
685 /* Pre-initialize the register state REG for register REGNUM. */
686 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
687 struct frame_info *);
688
689 /* Check whether the THIS_FRAME is a signal trampoline. */
690 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
691
692 /* Convert .eh_frame register number to DWARF register number, or
693 adjust .debug_frame register number. */
694 int (*adjust_regnum) (struct gdbarch *, int, int);
695 };
696
697 /* Default architecture-specific register state initialization
698 function. */
699
700 static void
701 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
702 struct dwarf2_frame_state_reg *reg,
703 struct frame_info *this_frame)
704 {
705 /* If we have a register that acts as a program counter, mark it as
706 a destination for the return address. If we have a register that
707 serves as the stack pointer, arrange for it to be filled with the
708 call frame address (CFA). The other registers are marked as
709 unspecified.
710
711 We copy the return address to the program counter, since many
712 parts in GDB assume that it is possible to get the return address
713 by unwinding the program counter register. However, on ISA's
714 with a dedicated return address register, the CFI usually only
715 contains information to unwind that return address register.
716
717 The reason we're treating the stack pointer special here is
718 because in many cases GCC doesn't emit CFI for the stack pointer
719 and implicitly assumes that it is equal to the CFA. This makes
720 some sense since the DWARF specification (version 3, draft 8,
721 p. 102) says that:
722
723 "Typically, the CFA is defined to be the value of the stack
724 pointer at the call site in the previous frame (which may be
725 different from its value on entry to the current frame)."
726
727 However, this isn't true for all platforms supported by GCC
728 (e.g. IBM S/390 and zSeries). Those architectures should provide
729 their own architecture-specific initialization function. */
730
731 if (regnum == gdbarch_pc_regnum (gdbarch))
732 reg->how = DWARF2_FRAME_REG_RA;
733 else if (regnum == gdbarch_sp_regnum (gdbarch))
734 reg->how = DWARF2_FRAME_REG_CFA;
735 }
736
737 /* Return a default for the architecture-specific operations. */
738
739 static void *
740 dwarf2_frame_init (struct obstack *obstack)
741 {
742 struct dwarf2_frame_ops *ops;
743
744 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
745 ops->init_reg = dwarf2_frame_default_init_reg;
746 return ops;
747 }
748
749 /* Set the architecture-specific register state initialization
750 function for GDBARCH to INIT_REG. */
751
752 void
753 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
754 void (*init_reg) (struct gdbarch *, int,
755 struct dwarf2_frame_state_reg *,
756 struct frame_info *))
757 {
758 struct dwarf2_frame_ops *ops
759 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
760
761 ops->init_reg = init_reg;
762 }
763
764 /* Pre-initialize the register state REG for register REGNUM. */
765
766 static void
767 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
768 struct dwarf2_frame_state_reg *reg,
769 struct frame_info *this_frame)
770 {
771 struct dwarf2_frame_ops *ops
772 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
773
774 ops->init_reg (gdbarch, regnum, reg, this_frame);
775 }
776
777 /* Set the architecture-specific signal trampoline recognition
778 function for GDBARCH to SIGNAL_FRAME_P. */
779
780 void
781 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
782 int (*signal_frame_p) (struct gdbarch *,
783 struct frame_info *))
784 {
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
787
788 ops->signal_frame_p = signal_frame_p;
789 }
790
791 /* Query the architecture-specific signal frame recognizer for
792 THIS_FRAME. */
793
794 static int
795 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
796 struct frame_info *this_frame)
797 {
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
800
801 if (ops->signal_frame_p == NULL)
802 return 0;
803 return ops->signal_frame_p (gdbarch, this_frame);
804 }
805
806 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
807 register numbers. */
808
809 void
810 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
811 int (*adjust_regnum) (struct gdbarch *,
812 int, int))
813 {
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
816
817 ops->adjust_regnum = adjust_regnum;
818 }
819
820 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
821 register. */
822
823 static int
824 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
825 int regnum, int eh_frame_p)
826 {
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
829
830 if (ops->adjust_regnum == NULL)
831 return regnum;
832 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
833 }
834
835 static void
836 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
837 struct dwarf2_fde *fde)
838 {
839 struct compunit_symtab *cust;
840
841 cust = find_pc_compunit_symtab (fs->pc);
842 if (cust == NULL)
843 return;
844
845 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
846 {
847 if (fde->cie->version == 1)
848 fs->armcc_cfa_offsets_sf = 1;
849
850 if (fde->cie->version == 1)
851 fs->armcc_cfa_offsets_reversed = 1;
852
853 /* The reversed offset problem is present in some compilers
854 using DWARF3, but it was eventually fixed. Check the ARM
855 defined augmentations, which are in the format "armcc" followed
856 by a list of one-character options. The "+" option means
857 this problem is fixed (no quirk needed). If the armcc
858 augmentation is missing, the quirk is needed. */
859 if (fde->cie->version == 3
860 && (!startswith (fde->cie->augmentation, "armcc")
861 || strchr (fde->cie->augmentation + 5, '+') == NULL))
862 fs->armcc_cfa_offsets_reversed = 1;
863
864 return;
865 }
866 }
867 \f
868
869 /* See dwarf2-frame.h. */
870
871 int
872 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
873 struct dwarf2_per_cu_data *data,
874 int *regnum_out, LONGEST *offset_out,
875 CORE_ADDR *text_offset_out,
876 const gdb_byte **cfa_start_out,
877 const gdb_byte **cfa_end_out)
878 {
879 struct dwarf2_fde *fde;
880 CORE_ADDR text_offset;
881 CORE_ADDR pc1 = pc;
882
883 /* Find the correct FDE. */
884 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
885 if (fde == NULL)
886 error (_("Could not compute CFA; needed to translate this expression"));
887
888 dwarf2_frame_state fs (pc1, fde->cie);
889
890 /* Check for "quirks" - known bugs in producers. */
891 dwarf2_frame_find_quirks (&fs, fde);
892
893 /* First decode all the insns in the CIE. */
894 execute_cfa_program (fde, fde->cie->initial_instructions,
895 fde->cie->end, gdbarch, pc, &fs);
896
897 /* Save the initialized register set. */
898 fs.initial = fs.regs;
899
900 /* Then decode the insns in the FDE up to our target PC. */
901 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
902
903 /* Calculate the CFA. */
904 switch (fs.regs.cfa_how)
905 {
906 case CFA_REG_OFFSET:
907 {
908 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
909
910 *regnum_out = regnum;
911 if (fs.armcc_cfa_offsets_reversed)
912 *offset_out = -fs.regs.cfa_offset;
913 else
914 *offset_out = fs.regs.cfa_offset;
915 return 1;
916 }
917
918 case CFA_EXP:
919 *text_offset_out = text_offset;
920 *cfa_start_out = fs.regs.cfa_exp;
921 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
922 return 0;
923
924 default:
925 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
926 }
927 }
928
929 \f
930 struct dwarf2_frame_cache
931 {
932 /* DWARF Call Frame Address. */
933 CORE_ADDR cfa;
934
935 /* Set if the return address column was marked as unavailable
936 (required non-collected memory or registers to compute). */
937 int unavailable_retaddr;
938
939 /* Set if the return address column was marked as undefined. */
940 int undefined_retaddr;
941
942 /* Saved registers, indexed by GDB register number, not by DWARF
943 register number. */
944 struct dwarf2_frame_state_reg *reg;
945
946 /* Return address register. */
947 struct dwarf2_frame_state_reg retaddr_reg;
948
949 /* Target address size in bytes. */
950 int addr_size;
951
952 /* The .text offset. */
953 CORE_ADDR text_offset;
954
955 /* True if we already checked whether this frame is the bottom frame
956 of a virtual tail call frame chain. */
957 int checked_tailcall_bottom;
958
959 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
960 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
961 involved. Non-bottom frames of a virtual tail call frames chain use
962 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
963 them. */
964 void *tailcall_cache;
965
966 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
967 base to get the SP, to simulate the return address pushed on the
968 stack. */
969 LONGEST entry_cfa_sp_offset;
970 int entry_cfa_sp_offset_p;
971 };
972
973 static struct dwarf2_frame_cache *
974 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
975 {
976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
977 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
978 struct dwarf2_frame_cache *cache;
979 struct dwarf2_fde *fde;
980 CORE_ADDR entry_pc;
981 const gdb_byte *instr;
982
983 if (*this_cache)
984 return (struct dwarf2_frame_cache *) *this_cache;
985
986 /* Allocate a new cache. */
987 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
988 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
989 *this_cache = cache;
990
991 /* Unwind the PC.
992
993 Note that if the next frame is never supposed to return (i.e. a call
994 to abort), the compiler might optimize away the instruction at
995 its return address. As a result the return address will
996 point at some random instruction, and the CFI for that
997 instruction is probably worthless to us. GCC's unwinder solves
998 this problem by substracting 1 from the return address to get an
999 address in the middle of a presumed call instruction (or the
1000 instruction in the associated delay slot). This should only be
1001 done for "normal" frames and not for resume-type frames (signal
1002 handlers, sentinel frames, dummy frames). The function
1003 get_frame_address_in_block does just this. It's not clear how
1004 reliable the method is though; there is the potential for the
1005 register state pre-call being different to that on return. */
1006 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1007
1008 /* Find the correct FDE. */
1009 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1010 gdb_assert (fde != NULL);
1011
1012 /* Allocate and initialize the frame state. */
1013 struct dwarf2_frame_state fs (pc1, fde->cie);
1014
1015 cache->addr_size = fde->cie->addr_size;
1016
1017 /* Check for "quirks" - known bugs in producers. */
1018 dwarf2_frame_find_quirks (&fs, fde);
1019
1020 /* First decode all the insns in the CIE. */
1021 execute_cfa_program (fde, fde->cie->initial_instructions,
1022 fde->cie->end, gdbarch,
1023 get_frame_address_in_block (this_frame), &fs);
1024
1025 /* Save the initialized register set. */
1026 fs.initial = fs.regs;
1027
1028 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1029 in an address that's within the range of FDE locations. This
1030 is due to the possibility of the function occupying non-contiguous
1031 ranges. */
1032 if (get_frame_func_if_available (this_frame, &entry_pc)
1033 && fde->initial_location <= entry_pc
1034 && entry_pc < fde->initial_location + fde->address_range)
1035 {
1036 /* Decode the insns in the FDE up to the entry PC. */
1037 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1038 entry_pc, &fs);
1039
1040 if (fs.regs.cfa_how == CFA_REG_OFFSET
1041 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1042 == gdbarch_sp_regnum (gdbarch)))
1043 {
1044 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1045 cache->entry_cfa_sp_offset_p = 1;
1046 }
1047 }
1048 else
1049 instr = fde->instructions;
1050
1051 /* Then decode the insns in the FDE up to our target PC. */
1052 execute_cfa_program (fde, instr, fde->end, gdbarch,
1053 get_frame_address_in_block (this_frame), &fs);
1054
1055 try
1056 {
1057 /* Calculate the CFA. */
1058 switch (fs.regs.cfa_how)
1059 {
1060 case CFA_REG_OFFSET:
1061 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1062 if (fs.armcc_cfa_offsets_reversed)
1063 cache->cfa -= fs.regs.cfa_offset;
1064 else
1065 cache->cfa += fs.regs.cfa_offset;
1066 break;
1067
1068 case CFA_EXP:
1069 cache->cfa =
1070 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1071 cache->addr_size, cache->text_offset,
1072 this_frame, 0, 0);
1073 break;
1074
1075 default:
1076 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1077 }
1078 }
1079 catch (const gdb_exception_error &ex)
1080 {
1081 if (ex.error == NOT_AVAILABLE_ERROR)
1082 {
1083 cache->unavailable_retaddr = 1;
1084 return cache;
1085 }
1086
1087 throw;
1088 }
1089
1090 /* Initialize the register state. */
1091 {
1092 int regnum;
1093
1094 for (regnum = 0; regnum < num_regs; regnum++)
1095 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1096 }
1097
1098 /* Go through the DWARF2 CFI generated table and save its register
1099 location information in the cache. Note that we don't skip the
1100 return address column; it's perfectly all right for it to
1101 correspond to a real register. */
1102 {
1103 int column; /* CFI speak for "register number". */
1104
1105 for (column = 0; column < fs.regs.reg.size (); column++)
1106 {
1107 /* Use the GDB register number as the destination index. */
1108 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1109
1110 /* Protect against a target returning a bad register. */
1111 if (regnum < 0 || regnum >= num_regs)
1112 continue;
1113
1114 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1115 of all debug info registers. If it doesn't, complain (but
1116 not too loudly). It turns out that GCC assumes that an
1117 unspecified register implies "same value" when CFI (draft
1118 7) specifies nothing at all. Such a register could equally
1119 be interpreted as "undefined". Also note that this check
1120 isn't sufficient; it only checks that all registers in the
1121 range [0 .. max column] are specified, and won't detect
1122 problems when a debug info register falls outside of the
1123 table. We need a way of iterating through all the valid
1124 DWARF2 register numbers. */
1125 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1126 {
1127 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1128 complaint (_("\
1129 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1130 gdbarch_register_name (gdbarch, regnum),
1131 paddress (gdbarch, fs.pc));
1132 }
1133 else
1134 cache->reg[regnum] = fs.regs.reg[column];
1135 }
1136 }
1137
1138 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1139 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1140 {
1141 int regnum;
1142
1143 for (regnum = 0; regnum < num_regs; regnum++)
1144 {
1145 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1146 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1147 {
1148 const std::vector<struct dwarf2_frame_state_reg> &regs
1149 = fs.regs.reg;
1150 ULONGEST retaddr_column = fs.retaddr_column;
1151
1152 /* It seems rather bizarre to specify an "empty" column as
1153 the return adress column. However, this is exactly
1154 what GCC does on some targets. It turns out that GCC
1155 assumes that the return address can be found in the
1156 register corresponding to the return address column.
1157 Incidentally, that's how we should treat a return
1158 address column specifying "same value" too. */
1159 if (fs.retaddr_column < fs.regs.reg.size ()
1160 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1161 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1162 {
1163 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1164 cache->reg[regnum] = regs[retaddr_column];
1165 else
1166 cache->retaddr_reg = regs[retaddr_column];
1167 }
1168 else
1169 {
1170 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1171 {
1172 cache->reg[regnum].loc.reg = fs.retaddr_column;
1173 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1174 }
1175 else
1176 {
1177 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1178 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1179 }
1180 }
1181 }
1182 }
1183 }
1184
1185 if (fs.retaddr_column < fs.regs.reg.size ()
1186 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1187 cache->undefined_retaddr = 1;
1188
1189 return cache;
1190 }
1191
1192 static enum unwind_stop_reason
1193 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1194 void **this_cache)
1195 {
1196 struct dwarf2_frame_cache *cache
1197 = dwarf2_frame_cache (this_frame, this_cache);
1198
1199 if (cache->unavailable_retaddr)
1200 return UNWIND_UNAVAILABLE;
1201
1202 if (cache->undefined_retaddr)
1203 return UNWIND_OUTERMOST;
1204
1205 return UNWIND_NO_REASON;
1206 }
1207
1208 static void
1209 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1210 struct frame_id *this_id)
1211 {
1212 struct dwarf2_frame_cache *cache =
1213 dwarf2_frame_cache (this_frame, this_cache);
1214
1215 if (cache->unavailable_retaddr)
1216 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1217 else if (cache->undefined_retaddr)
1218 return;
1219 else
1220 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1221 }
1222
1223 static struct value *
1224 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1225 int regnum)
1226 {
1227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1228 struct dwarf2_frame_cache *cache =
1229 dwarf2_frame_cache (this_frame, this_cache);
1230 CORE_ADDR addr;
1231 int realnum;
1232
1233 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1234 call frame chain. */
1235 if (!cache->checked_tailcall_bottom)
1236 {
1237 cache->checked_tailcall_bottom = 1;
1238 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1239 (cache->entry_cfa_sp_offset_p
1240 ? &cache->entry_cfa_sp_offset : NULL));
1241 }
1242
1243 /* Non-bottom frames of a virtual tail call frames chain use
1244 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1245 them. If dwarf2_tailcall_prev_register_first does not have specific value
1246 unwind the register, tail call frames are assumed to have the register set
1247 of the top caller. */
1248 if (cache->tailcall_cache)
1249 {
1250 struct value *val;
1251
1252 val = dwarf2_tailcall_prev_register_first (this_frame,
1253 &cache->tailcall_cache,
1254 regnum);
1255 if (val)
1256 return val;
1257 }
1258
1259 switch (cache->reg[regnum].how)
1260 {
1261 case DWARF2_FRAME_REG_UNDEFINED:
1262 /* If CFI explicitly specified that the value isn't defined,
1263 mark it as optimized away; the value isn't available. */
1264 return frame_unwind_got_optimized (this_frame, regnum);
1265
1266 case DWARF2_FRAME_REG_SAVED_OFFSET:
1267 addr = cache->cfa + cache->reg[regnum].loc.offset;
1268 return frame_unwind_got_memory (this_frame, regnum, addr);
1269
1270 case DWARF2_FRAME_REG_SAVED_REG:
1271 realnum = dwarf_reg_to_regnum_or_error
1272 (gdbarch, cache->reg[regnum].loc.reg);
1273 return frame_unwind_got_register (this_frame, regnum, realnum);
1274
1275 case DWARF2_FRAME_REG_SAVED_EXP:
1276 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1277 cache->reg[regnum].loc.exp.len,
1278 cache->addr_size, cache->text_offset,
1279 this_frame, cache->cfa, 1);
1280 return frame_unwind_got_memory (this_frame, regnum, addr);
1281
1282 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1283 addr = cache->cfa + cache->reg[regnum].loc.offset;
1284 return frame_unwind_got_constant (this_frame, regnum, addr);
1285
1286 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1287 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1288 cache->reg[regnum].loc.exp.len,
1289 cache->addr_size, cache->text_offset,
1290 this_frame, cache->cfa, 1);
1291 return frame_unwind_got_constant (this_frame, regnum, addr);
1292
1293 case DWARF2_FRAME_REG_UNSPECIFIED:
1294 /* GCC, in its infinite wisdom decided to not provide unwind
1295 information for registers that are "same value". Since
1296 DWARF2 (3 draft 7) doesn't define such behavior, said
1297 registers are actually undefined (which is different to CFI
1298 "undefined"). Code above issues a complaint about this.
1299 Here just fudge the books, assume GCC, and that the value is
1300 more inner on the stack. */
1301 return frame_unwind_got_register (this_frame, regnum, regnum);
1302
1303 case DWARF2_FRAME_REG_SAME_VALUE:
1304 return frame_unwind_got_register (this_frame, regnum, regnum);
1305
1306 case DWARF2_FRAME_REG_CFA:
1307 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1308
1309 case DWARF2_FRAME_REG_CFA_OFFSET:
1310 addr = cache->cfa + cache->reg[regnum].loc.offset;
1311 return frame_unwind_got_address (this_frame, regnum, addr);
1312
1313 case DWARF2_FRAME_REG_RA_OFFSET:
1314 addr = cache->reg[regnum].loc.offset;
1315 regnum = dwarf_reg_to_regnum_or_error
1316 (gdbarch, cache->retaddr_reg.loc.reg);
1317 addr += get_frame_register_unsigned (this_frame, regnum);
1318 return frame_unwind_got_address (this_frame, regnum, addr);
1319
1320 case DWARF2_FRAME_REG_FN:
1321 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1322
1323 default:
1324 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1325 }
1326 }
1327
1328 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1329 call frames chain. */
1330
1331 static void
1332 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1333 {
1334 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1335
1336 if (cache->tailcall_cache)
1337 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1338 }
1339
1340 static int
1341 dwarf2_frame_sniffer (const struct frame_unwind *self,
1342 struct frame_info *this_frame, void **this_cache)
1343 {
1344 if (!dwarf2_frame_unwinders_enabled_p)
1345 return 0;
1346
1347 /* Grab an address that is guaranteed to reside somewhere within the
1348 function. get_frame_pc(), with a no-return next function, can
1349 end up returning something past the end of this function's body.
1350 If the frame we're sniffing for is a signal frame whose start
1351 address is placed on the stack by the OS, its FDE must
1352 extend one byte before its start address or we could potentially
1353 select the FDE of the previous function. */
1354 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1355 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1356
1357 if (!fde)
1358 return 0;
1359
1360 /* On some targets, signal trampolines may have unwind information.
1361 We need to recognize them so that we set the frame type
1362 correctly. */
1363
1364 if (fde->cie->signal_frame
1365 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1366 this_frame))
1367 return self->type == SIGTRAMP_FRAME;
1368
1369 if (self->type != NORMAL_FRAME)
1370 return 0;
1371
1372 return 1;
1373 }
1374
1375 static const struct frame_unwind dwarf2_frame_unwind =
1376 {
1377 NORMAL_FRAME,
1378 dwarf2_frame_unwind_stop_reason,
1379 dwarf2_frame_this_id,
1380 dwarf2_frame_prev_register,
1381 NULL,
1382 dwarf2_frame_sniffer,
1383 dwarf2_frame_dealloc_cache
1384 };
1385
1386 static const struct frame_unwind dwarf2_signal_frame_unwind =
1387 {
1388 SIGTRAMP_FRAME,
1389 dwarf2_frame_unwind_stop_reason,
1390 dwarf2_frame_this_id,
1391 dwarf2_frame_prev_register,
1392 NULL,
1393 dwarf2_frame_sniffer,
1394
1395 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1396 NULL
1397 };
1398
1399 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1400
1401 void
1402 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1403 {
1404 /* TAILCALL_FRAME must be first to find the record by
1405 dwarf2_tailcall_sniffer_first. */
1406 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1407
1408 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1409 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1410 }
1411 \f
1412
1413 /* There is no explicitly defined relationship between the CFA and the
1414 location of frame's local variables and arguments/parameters.
1415 Therefore, frame base methods on this page should probably only be
1416 used as a last resort, just to avoid printing total garbage as a
1417 response to the "info frame" command. */
1418
1419 static CORE_ADDR
1420 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1421 {
1422 struct dwarf2_frame_cache *cache =
1423 dwarf2_frame_cache (this_frame, this_cache);
1424
1425 return cache->cfa;
1426 }
1427
1428 static const struct frame_base dwarf2_frame_base =
1429 {
1430 &dwarf2_frame_unwind,
1431 dwarf2_frame_base_address,
1432 dwarf2_frame_base_address,
1433 dwarf2_frame_base_address
1434 };
1435
1436 const struct frame_base *
1437 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1438 {
1439 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1440
1441 if (dwarf2_frame_find_fde (&block_addr, NULL))
1442 return &dwarf2_frame_base;
1443
1444 return NULL;
1445 }
1446
1447 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1448 the DWARF unwinder. This is used to implement
1449 DW_OP_call_frame_cfa. */
1450
1451 CORE_ADDR
1452 dwarf2_frame_cfa (struct frame_info *this_frame)
1453 {
1454 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1455 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1456 throw_error (NOT_AVAILABLE_ERROR,
1457 _("cfa not available for record btrace target"));
1458
1459 while (get_frame_type (this_frame) == INLINE_FRAME)
1460 this_frame = get_prev_frame (this_frame);
1461 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1462 throw_error (NOT_AVAILABLE_ERROR,
1463 _("can't compute CFA for this frame: "
1464 "required registers or memory are unavailable"));
1465
1466 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1467 throw_error (NOT_AVAILABLE_ERROR,
1468 _("can't compute CFA for this frame: "
1469 "frame base not available"));
1470
1471 return get_frame_base (this_frame);
1472 }
1473 \f
1474 const struct objfile_key<dwarf2_fde_table,
1475 gdb::noop_deleter<dwarf2_fde_table>>
1476 dwarf2_frame_objfile_data;
1477
1478
1479 static ULONGEST
1480 read_initial_length (bfd *abfd, const gdb_byte *buf,
1481 unsigned int *bytes_read_ptr)
1482 {
1483 ULONGEST result;
1484
1485 result = bfd_get_32 (abfd, buf);
1486 if (result == 0xffffffff)
1487 {
1488 result = bfd_get_64 (abfd, buf + 4);
1489 *bytes_read_ptr = 12;
1490 }
1491 else
1492 *bytes_read_ptr = 4;
1493
1494 return result;
1495 }
1496 \f
1497
1498 /* Pointer encoding helper functions. */
1499
1500 /* GCC supports exception handling based on DWARF2 CFI. However, for
1501 technical reasons, it encodes addresses in its FDE's in a different
1502 way. Several "pointer encodings" are supported. The encoding
1503 that's used for a particular FDE is determined by the 'R'
1504 augmentation in the associated CIE. The argument of this
1505 augmentation is a single byte.
1506
1507 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1508 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1509 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1510 address should be interpreted (absolute, relative to the current
1511 position in the FDE, ...). Bit 7, indicates that the address
1512 should be dereferenced. */
1513
1514 static gdb_byte
1515 encoding_for_size (unsigned int size)
1516 {
1517 switch (size)
1518 {
1519 case 2:
1520 return DW_EH_PE_udata2;
1521 case 4:
1522 return DW_EH_PE_udata4;
1523 case 8:
1524 return DW_EH_PE_udata8;
1525 default:
1526 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1527 }
1528 }
1529
1530 static CORE_ADDR
1531 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1532 int ptr_len, const gdb_byte *buf,
1533 unsigned int *bytes_read_ptr,
1534 CORE_ADDR func_base)
1535 {
1536 ptrdiff_t offset;
1537 CORE_ADDR base;
1538
1539 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1540 FDE's. */
1541 if (encoding & DW_EH_PE_indirect)
1542 internal_error (__FILE__, __LINE__,
1543 _("Unsupported encoding: DW_EH_PE_indirect"));
1544
1545 *bytes_read_ptr = 0;
1546
1547 switch (encoding & 0x70)
1548 {
1549 case DW_EH_PE_absptr:
1550 base = 0;
1551 break;
1552 case DW_EH_PE_pcrel:
1553 base = bfd_section_vma (unit->dwarf_frame_section);
1554 base += (buf - unit->dwarf_frame_buffer);
1555 break;
1556 case DW_EH_PE_datarel:
1557 base = unit->dbase;
1558 break;
1559 case DW_EH_PE_textrel:
1560 base = unit->tbase;
1561 break;
1562 case DW_EH_PE_funcrel:
1563 base = func_base;
1564 break;
1565 case DW_EH_PE_aligned:
1566 base = 0;
1567 offset = buf - unit->dwarf_frame_buffer;
1568 if ((offset % ptr_len) != 0)
1569 {
1570 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1571 buf += *bytes_read_ptr;
1572 }
1573 break;
1574 default:
1575 internal_error (__FILE__, __LINE__,
1576 _("Invalid or unsupported encoding"));
1577 }
1578
1579 if ((encoding & 0x07) == 0x00)
1580 {
1581 encoding |= encoding_for_size (ptr_len);
1582 if (bfd_get_sign_extend_vma (unit->abfd))
1583 encoding |= DW_EH_PE_signed;
1584 }
1585
1586 switch (encoding & 0x0f)
1587 {
1588 case DW_EH_PE_uleb128:
1589 {
1590 uint64_t value;
1591 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1592
1593 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1594 return base + value;
1595 }
1596 case DW_EH_PE_udata2:
1597 *bytes_read_ptr += 2;
1598 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1599 case DW_EH_PE_udata4:
1600 *bytes_read_ptr += 4;
1601 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1602 case DW_EH_PE_udata8:
1603 *bytes_read_ptr += 8;
1604 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1605 case DW_EH_PE_sleb128:
1606 {
1607 int64_t value;
1608 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1609
1610 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1611 return base + value;
1612 }
1613 case DW_EH_PE_sdata2:
1614 *bytes_read_ptr += 2;
1615 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1616 case DW_EH_PE_sdata4:
1617 *bytes_read_ptr += 4;
1618 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1619 case DW_EH_PE_sdata8:
1620 *bytes_read_ptr += 8;
1621 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1622 default:
1623 internal_error (__FILE__, __LINE__,
1624 _("Invalid or unsupported encoding"));
1625 }
1626 }
1627 \f
1628
1629 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1630 static struct dwarf2_cie *
1631 find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer)
1632 {
1633 auto iter = cie_table.find (cie_pointer);
1634 if (iter != cie_table.end ())
1635 return iter->second;
1636 return NULL;
1637 }
1638
1639 static inline int
1640 bsearch_fde_cmp (const dwarf2_fde *fde, CORE_ADDR seek_pc)
1641 {
1642 if (fde->initial_location + fde->address_range <= seek_pc)
1643 return -1;
1644 if (fde->initial_location <= seek_pc)
1645 return 0;
1646 return 1;
1647 }
1648
1649 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1650 initial location associated with it into *PC. */
1651
1652 static struct dwarf2_fde *
1653 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1654 {
1655 for (objfile *objfile : current_program_space->objfiles ())
1656 {
1657 struct dwarf2_fde_table *fde_table;
1658 CORE_ADDR offset;
1659 CORE_ADDR seek_pc;
1660
1661 fde_table = dwarf2_frame_objfile_data.get (objfile);
1662 if (fde_table == NULL)
1663 {
1664 dwarf2_build_frame_info (objfile);
1665 fde_table = dwarf2_frame_objfile_data.get (objfile);
1666 }
1667 gdb_assert (fde_table != NULL);
1668
1669 if (fde_table->num_entries == 0)
1670 continue;
1671
1672 gdb_assert (!objfile->section_offsets.empty ());
1673 offset = objfile->text_section_offset ();
1674
1675 gdb_assert (fde_table->num_entries > 0);
1676 if (*pc < offset + fde_table->entries[0]->initial_location)
1677 continue;
1678
1679 seek_pc = *pc - offset;
1680 auto end = fde_table->entries + fde_table->num_entries;
1681 auto it = gdb::binary_search (fde_table->entries, end, seek_pc, bsearch_fde_cmp);
1682 if (it != end)
1683 {
1684 *pc = (*it)->initial_location + offset;
1685 if (out_offset)
1686 *out_offset = offset;
1687 return *it;
1688 }
1689 }
1690 return NULL;
1691 }
1692
1693 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1694 static void
1695 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1696 {
1697 if (fde->address_range == 0)
1698 /* Discard useless FDEs. */
1699 return;
1700
1701 fde_table->num_entries += 1;
1702 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1703 fde_table->num_entries);
1704 fde_table->entries[fde_table->num_entries - 1] = fde;
1705 }
1706
1707 #define DW64_CIE_ID 0xffffffffffffffffULL
1708
1709 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1710 or any of them. */
1711
1712 enum eh_frame_type
1713 {
1714 EH_CIE_TYPE_ID = 1 << 0,
1715 EH_FDE_TYPE_ID = 1 << 1,
1716 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1717 };
1718
1719 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1720 const gdb_byte *start,
1721 int eh_frame_p,
1722 dwarf2_cie_table &cie_table,
1723 struct dwarf2_fde_table *fde_table,
1724 enum eh_frame_type entry_type);
1725
1726 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1727 Return NULL if invalid input, otherwise the next byte to be processed. */
1728
1729 static const gdb_byte *
1730 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1731 int eh_frame_p,
1732 dwarf2_cie_table &cie_table,
1733 struct dwarf2_fde_table *fde_table,
1734 enum eh_frame_type entry_type)
1735 {
1736 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1737 const gdb_byte *buf, *end;
1738 ULONGEST length;
1739 unsigned int bytes_read;
1740 int dwarf64_p;
1741 ULONGEST cie_id;
1742 ULONGEST cie_pointer;
1743 int64_t sleb128;
1744 uint64_t uleb128;
1745
1746 buf = start;
1747 length = read_initial_length (unit->abfd, buf, &bytes_read);
1748 buf += bytes_read;
1749 end = buf + (size_t) length;
1750
1751 if (length == 0)
1752 return end;
1753
1754 /* Are we still within the section? */
1755 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1756 return NULL;
1757
1758 /* Distinguish between 32 and 64-bit encoded frame info. */
1759 dwarf64_p = (bytes_read == 12);
1760
1761 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1762 if (eh_frame_p)
1763 cie_id = 0;
1764 else if (dwarf64_p)
1765 cie_id = DW64_CIE_ID;
1766 else
1767 cie_id = DW_CIE_ID;
1768
1769 if (dwarf64_p)
1770 {
1771 cie_pointer = read_8_bytes (unit->abfd, buf);
1772 buf += 8;
1773 }
1774 else
1775 {
1776 cie_pointer = read_4_bytes (unit->abfd, buf);
1777 buf += 4;
1778 }
1779
1780 if (cie_pointer == cie_id)
1781 {
1782 /* This is a CIE. */
1783 struct dwarf2_cie *cie;
1784 char *augmentation;
1785 unsigned int cie_version;
1786
1787 /* Check that a CIE was expected. */
1788 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1789 error (_("Found a CIE when not expecting it."));
1790
1791 /* Record the offset into the .debug_frame section of this CIE. */
1792 cie_pointer = start - unit->dwarf_frame_buffer;
1793
1794 /* Check whether we've already read it. */
1795 if (find_cie (cie_table, cie_pointer))
1796 return end;
1797
1798 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1799 cie->initial_instructions = NULL;
1800 cie->cie_pointer = cie_pointer;
1801
1802 /* The encoding for FDE's in a normal .debug_frame section
1803 depends on the target address size. */
1804 cie->encoding = DW_EH_PE_absptr;
1805
1806 /* We'll determine the final value later, but we need to
1807 initialize it conservatively. */
1808 cie->signal_frame = 0;
1809
1810 /* Check version number. */
1811 cie_version = read_1_byte (unit->abfd, buf);
1812 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1813 return NULL;
1814 cie->version = cie_version;
1815 buf += 1;
1816
1817 /* Interpret the interesting bits of the augmentation. */
1818 cie->augmentation = augmentation = (char *) buf;
1819 buf += (strlen (augmentation) + 1);
1820
1821 /* Ignore armcc augmentations. We only use them for quirks,
1822 and that doesn't happen until later. */
1823 if (startswith (augmentation, "armcc"))
1824 augmentation += strlen (augmentation);
1825
1826 /* The GCC 2.x "eh" augmentation has a pointer immediately
1827 following the augmentation string, so it must be handled
1828 first. */
1829 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1830 {
1831 /* Skip. */
1832 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1833 augmentation += 2;
1834 }
1835
1836 if (cie->version >= 4)
1837 {
1838 /* FIXME: check that this is the same as from the CU header. */
1839 cie->addr_size = read_1_byte (unit->abfd, buf);
1840 ++buf;
1841 cie->segment_size = read_1_byte (unit->abfd, buf);
1842 ++buf;
1843 }
1844 else
1845 {
1846 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1847 cie->segment_size = 0;
1848 }
1849 /* Address values in .eh_frame sections are defined to have the
1850 target's pointer size. Watchout: This breaks frame info for
1851 targets with pointer size < address size, unless a .debug_frame
1852 section exists as well. */
1853 if (eh_frame_p)
1854 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1855 else
1856 cie->ptr_size = cie->addr_size;
1857
1858 buf = gdb_read_uleb128 (buf, end, &uleb128);
1859 if (buf == NULL)
1860 return NULL;
1861 cie->code_alignment_factor = uleb128;
1862
1863 buf = gdb_read_sleb128 (buf, end, &sleb128);
1864 if (buf == NULL)
1865 return NULL;
1866 cie->data_alignment_factor = sleb128;
1867
1868 if (cie_version == 1)
1869 {
1870 cie->return_address_register = read_1_byte (unit->abfd, buf);
1871 ++buf;
1872 }
1873 else
1874 {
1875 buf = gdb_read_uleb128 (buf, end, &uleb128);
1876 if (buf == NULL)
1877 return NULL;
1878 cie->return_address_register = uleb128;
1879 }
1880
1881 cie->return_address_register
1882 = dwarf2_frame_adjust_regnum (gdbarch,
1883 cie->return_address_register,
1884 eh_frame_p);
1885
1886 cie->saw_z_augmentation = (*augmentation == 'z');
1887 if (cie->saw_z_augmentation)
1888 {
1889 uint64_t uleb_length;
1890
1891 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1892 if (buf == NULL)
1893 return NULL;
1894 cie->initial_instructions = buf + uleb_length;
1895 augmentation++;
1896 }
1897
1898 while (*augmentation)
1899 {
1900 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1901 if (*augmentation == 'L')
1902 {
1903 /* Skip. */
1904 buf++;
1905 augmentation++;
1906 }
1907
1908 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1909 else if (*augmentation == 'R')
1910 {
1911 cie->encoding = *buf++;
1912 augmentation++;
1913 }
1914
1915 /* "P" indicates a personality routine in the CIE augmentation. */
1916 else if (*augmentation == 'P')
1917 {
1918 /* Skip. Avoid indirection since we throw away the result. */
1919 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1920 read_encoded_value (unit, encoding, cie->ptr_size,
1921 buf, &bytes_read, 0);
1922 buf += bytes_read;
1923 augmentation++;
1924 }
1925
1926 /* "S" indicates a signal frame, such that the return
1927 address must not be decremented to locate the call frame
1928 info for the previous frame; it might even be the first
1929 instruction of a function, so decrementing it would take
1930 us to a different function. */
1931 else if (*augmentation == 'S')
1932 {
1933 cie->signal_frame = 1;
1934 augmentation++;
1935 }
1936
1937 /* Otherwise we have an unknown augmentation. Assume that either
1938 there is no augmentation data, or we saw a 'z' prefix. */
1939 else
1940 {
1941 if (cie->initial_instructions)
1942 buf = cie->initial_instructions;
1943 break;
1944 }
1945 }
1946
1947 cie->initial_instructions = buf;
1948 cie->end = end;
1949 cie->unit = unit;
1950
1951 cie_table[cie->cie_pointer] = cie;
1952 }
1953 else
1954 {
1955 /* This is a FDE. */
1956 struct dwarf2_fde *fde;
1957 CORE_ADDR addr;
1958
1959 /* Check that an FDE was expected. */
1960 if ((entry_type & EH_FDE_TYPE_ID) == 0)
1961 error (_("Found an FDE when not expecting it."));
1962
1963 /* In an .eh_frame section, the CIE pointer is the delta between the
1964 address within the FDE where the CIE pointer is stored and the
1965 address of the CIE. Convert it to an offset into the .eh_frame
1966 section. */
1967 if (eh_frame_p)
1968 {
1969 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1970 cie_pointer -= (dwarf64_p ? 8 : 4);
1971 }
1972
1973 /* In either case, validate the result is still within the section. */
1974 if (cie_pointer >= unit->dwarf_frame_size)
1975 return NULL;
1976
1977 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
1978 fde->cie = find_cie (cie_table, cie_pointer);
1979 if (fde->cie == NULL)
1980 {
1981 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1982 eh_frame_p, cie_table, fde_table,
1983 EH_CIE_TYPE_ID);
1984 fde->cie = find_cie (cie_table, cie_pointer);
1985 }
1986
1987 gdb_assert (fde->cie != NULL);
1988
1989 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
1990 buf, &bytes_read, 0);
1991 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
1992 buf += bytes_read;
1993
1994 fde->address_range =
1995 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1996 fde->cie->ptr_size, buf, &bytes_read, 0);
1997 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
1998 fde->address_range = addr - fde->initial_location;
1999 buf += bytes_read;
2000
2001 /* A 'z' augmentation in the CIE implies the presence of an
2002 augmentation field in the FDE as well. The only thing known
2003 to be in here at present is the LSDA entry for EH. So we
2004 can skip the whole thing. */
2005 if (fde->cie->saw_z_augmentation)
2006 {
2007 uint64_t uleb_length;
2008
2009 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2010 if (buf == NULL)
2011 return NULL;
2012 buf += uleb_length;
2013 if (buf > end)
2014 return NULL;
2015 }
2016
2017 fde->instructions = buf;
2018 fde->end = end;
2019
2020 fde->eh_frame_p = eh_frame_p;
2021
2022 add_fde (fde_table, fde);
2023 }
2024
2025 return end;
2026 }
2027
2028 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2029 expect an FDE or a CIE. */
2030
2031 static const gdb_byte *
2032 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2033 int eh_frame_p,
2034 dwarf2_cie_table &cie_table,
2035 struct dwarf2_fde_table *fde_table,
2036 enum eh_frame_type entry_type)
2037 {
2038 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2039 const gdb_byte *ret;
2040 ptrdiff_t start_offset;
2041
2042 while (1)
2043 {
2044 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2045 cie_table, fde_table, entry_type);
2046 if (ret != NULL)
2047 break;
2048
2049 /* We have corrupt input data of some form. */
2050
2051 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2052 and mismatches wrt padding and alignment of debug sections. */
2053 /* Note that there is no requirement in the standard for any
2054 alignment at all in the frame unwind sections. Testing for
2055 alignment before trying to interpret data would be incorrect.
2056
2057 However, GCC traditionally arranged for frame sections to be
2058 sized such that the FDE length and CIE fields happen to be
2059 aligned (in theory, for performance). This, unfortunately,
2060 was done with .align directives, which had the side effect of
2061 forcing the section to be aligned by the linker.
2062
2063 This becomes a problem when you have some other producer that
2064 creates frame sections that are not as strictly aligned. That
2065 produces a hole in the frame info that gets filled by the
2066 linker with zeros.
2067
2068 The GCC behaviour is arguably a bug, but it's effectively now
2069 part of the ABI, so we're now stuck with it, at least at the
2070 object file level. A smart linker may decide, in the process
2071 of compressing duplicate CIE information, that it can rewrite
2072 the entire output section without this extra padding. */
2073
2074 start_offset = start - unit->dwarf_frame_buffer;
2075 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2076 {
2077 start += 4 - (start_offset & 3);
2078 workaround = ALIGN4;
2079 continue;
2080 }
2081 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2082 {
2083 start += 8 - (start_offset & 7);
2084 workaround = ALIGN8;
2085 continue;
2086 }
2087
2088 /* Nothing left to try. Arrange to return as if we've consumed
2089 the entire input section. Hopefully we'll get valid info from
2090 the other of .debug_frame/.eh_frame. */
2091 workaround = FAIL;
2092 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2093 break;
2094 }
2095
2096 switch (workaround)
2097 {
2098 case NONE:
2099 break;
2100
2101 case ALIGN4:
2102 complaint (_("\
2103 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2104 unit->dwarf_frame_section->owner->filename,
2105 unit->dwarf_frame_section->name);
2106 break;
2107
2108 case ALIGN8:
2109 complaint (_("\
2110 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2111 unit->dwarf_frame_section->owner->filename,
2112 unit->dwarf_frame_section->name);
2113 break;
2114
2115 default:
2116 complaint (_("Corrupt data in %s:%s"),
2117 unit->dwarf_frame_section->owner->filename,
2118 unit->dwarf_frame_section->name);
2119 break;
2120 }
2121
2122 return ret;
2123 }
2124 \f
2125 static bool
2126 fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
2127 {
2128 if (aa->initial_location == bb->initial_location)
2129 {
2130 if (aa->address_range != bb->address_range
2131 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2132 /* Linker bug, e.g. gold/10400.
2133 Work around it by keeping stable sort order. */
2134 return aa < bb;
2135 else
2136 /* Put eh_frame entries after debug_frame ones. */
2137 return aa->eh_frame_p < bb->eh_frame_p;
2138 }
2139
2140 return aa->initial_location < bb->initial_location;
2141 }
2142
2143 void
2144 dwarf2_build_frame_info (struct objfile *objfile)
2145 {
2146 struct comp_unit *unit;
2147 const gdb_byte *frame_ptr;
2148 dwarf2_cie_table cie_table;
2149 struct dwarf2_fde_table fde_table;
2150 struct dwarf2_fde_table *fde_table2;
2151
2152 fde_table.num_entries = 0;
2153 fde_table.entries = NULL;
2154
2155 /* Build a minimal decoding of the DWARF2 compilation unit. */
2156 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2157 unit->abfd = objfile->obfd;
2158 unit->objfile = objfile;
2159 unit->dbase = 0;
2160 unit->tbase = 0;
2161
2162 if (objfile->separate_debug_objfile_backlink == NULL)
2163 {
2164 /* Do not read .eh_frame from separate file as they must be also
2165 present in the main file. */
2166 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2167 &unit->dwarf_frame_section,
2168 &unit->dwarf_frame_buffer,
2169 &unit->dwarf_frame_size);
2170 if (unit->dwarf_frame_size)
2171 {
2172 asection *got, *txt;
2173
2174 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2175 that is used for the i386/amd64 target, which currently is
2176 the only target in GCC that supports/uses the
2177 DW_EH_PE_datarel encoding. */
2178 got = bfd_get_section_by_name (unit->abfd, ".got");
2179 if (got)
2180 unit->dbase = got->vma;
2181
2182 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2183 so far. */
2184 txt = bfd_get_section_by_name (unit->abfd, ".text");
2185 if (txt)
2186 unit->tbase = txt->vma;
2187
2188 try
2189 {
2190 frame_ptr = unit->dwarf_frame_buffer;
2191 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2192 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2193 cie_table, &fde_table,
2194 EH_CIE_OR_FDE_TYPE_ID);
2195 }
2196
2197 catch (const gdb_exception_error &e)
2198 {
2199 warning (_("skipping .eh_frame info of %s: %s"),
2200 objfile_name (objfile), e.what ());
2201
2202 if (fde_table.num_entries != 0)
2203 {
2204 xfree (fde_table.entries);
2205 fde_table.entries = NULL;
2206 fde_table.num_entries = 0;
2207 }
2208 /* The cie_table is discarded below. */
2209 }
2210
2211 cie_table.clear ();
2212 }
2213 }
2214
2215 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2216 &unit->dwarf_frame_section,
2217 &unit->dwarf_frame_buffer,
2218 &unit->dwarf_frame_size);
2219 if (unit->dwarf_frame_size)
2220 {
2221 int num_old_fde_entries = fde_table.num_entries;
2222
2223 try
2224 {
2225 frame_ptr = unit->dwarf_frame_buffer;
2226 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2227 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2228 cie_table, &fde_table,
2229 EH_CIE_OR_FDE_TYPE_ID);
2230 }
2231 catch (const gdb_exception_error &e)
2232 {
2233 warning (_("skipping .debug_frame info of %s: %s"),
2234 objfile_name (objfile), e.what ());
2235
2236 if (fde_table.num_entries != 0)
2237 {
2238 fde_table.num_entries = num_old_fde_entries;
2239 if (num_old_fde_entries == 0)
2240 {
2241 xfree (fde_table.entries);
2242 fde_table.entries = NULL;
2243 }
2244 else
2245 {
2246 fde_table.entries
2247 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2248 fde_table.num_entries);
2249 }
2250 }
2251 fde_table.num_entries = num_old_fde_entries;
2252 }
2253 }
2254
2255 /* Copy fde_table to obstack: it is needed at runtime. */
2256 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2257
2258 if (fde_table.num_entries == 0)
2259 {
2260 fde_table2->entries = NULL;
2261 fde_table2->num_entries = 0;
2262 }
2263 else
2264 {
2265 struct dwarf2_fde *fde_prev = NULL;
2266 struct dwarf2_fde *first_non_zero_fde = NULL;
2267 int i;
2268
2269 /* Prepare FDE table for lookups. */
2270 std::sort (fde_table.entries, fde_table.entries + fde_table.num_entries,
2271 fde_is_less_than);
2272
2273 /* Check for leftovers from --gc-sections. The GNU linker sets
2274 the relevant symbols to zero, but doesn't zero the FDE *end*
2275 ranges because there's no relocation there. It's (offset,
2276 length), not (start, end). On targets where address zero is
2277 just another valid address this can be a problem, since the
2278 FDEs appear to be non-empty in the output --- we could pick
2279 out the wrong FDE. To work around this, when overlaps are
2280 detected, we prefer FDEs that do not start at zero.
2281
2282 Start by finding the first FDE with non-zero start. Below
2283 we'll discard all FDEs that start at zero and overlap this
2284 one. */
2285 for (i = 0; i < fde_table.num_entries; i++)
2286 {
2287 struct dwarf2_fde *fde = fde_table.entries[i];
2288
2289 if (fde->initial_location != 0)
2290 {
2291 first_non_zero_fde = fde;
2292 break;
2293 }
2294 }
2295
2296 /* Since we'll be doing bsearch, squeeze out identical (except
2297 for eh_frame_p) fde entries so bsearch result is predictable.
2298 Also discard leftovers from --gc-sections. */
2299 fde_table2->num_entries = 0;
2300 for (i = 0; i < fde_table.num_entries; i++)
2301 {
2302 struct dwarf2_fde *fde = fde_table.entries[i];
2303
2304 if (fde->initial_location == 0
2305 && first_non_zero_fde != NULL
2306 && (first_non_zero_fde->initial_location
2307 < fde->initial_location + fde->address_range))
2308 continue;
2309
2310 if (fde_prev != NULL
2311 && fde_prev->initial_location == fde->initial_location)
2312 continue;
2313
2314 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2315 sizeof (fde_table.entries[0]));
2316 ++fde_table2->num_entries;
2317 fde_prev = fde;
2318 }
2319 fde_table2->entries
2320 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2321
2322 /* Discard the original fde_table. */
2323 xfree (fde_table.entries);
2324 }
2325
2326 dwarf2_frame_objfile_data.set (objfile, fde_table2);
2327 }
2328
2329 /* Handle 'maintenance show dwarf unwinders'. */
2330
2331 static void
2332 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2333 struct cmd_list_element *c,
2334 const char *value)
2335 {
2336 fprintf_filtered (file,
2337 _("The DWARF stack unwinders are currently %s.\n"),
2338 value);
2339 }
2340
2341 void _initialize_dwarf2_frame ();
2342 void
2343 _initialize_dwarf2_frame ()
2344 {
2345 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2346
2347 add_setshow_boolean_cmd ("unwinders", class_obscure,
2348 &dwarf2_frame_unwinders_enabled_p , _("\
2349 Set whether the DWARF stack frame unwinders are used."), _("\
2350 Show whether the DWARF stack frame unwinders are used."), _("\
2351 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2352 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2353 architecture that doesn't support them will have no effect."),
2354 NULL,
2355 show_dwarf_unwinders_enabled_p,
2356 &set_dwarf_cmdlist,
2357 &show_dwarf_cmdlist);
2358
2359 #if GDB_SELF_TEST
2360 selftests::register_test_foreach_arch ("execute_cfa_program",
2361 selftests::execute_cfa_program_test);
2362 #endif
2363 }
This page took 0.081088 seconds and 4 git commands to generate.