Fix ARC TLS support.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* Target pointer size in bytes. */
81 int ptr_size;
82
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
89 /* The version recorded in the CIE. */
90 unsigned char version;
91
92 /* The segment size. */
93 unsigned char segment_size;
94 };
95
96 struct dwarf2_cie_table
97 {
98 int num_entries;
99 struct dwarf2_cie **entries;
100 };
101
102 /* Frame Description Entry (FDE). */
103
104 struct dwarf2_fde
105 {
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
118
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
122 };
123
124 struct dwarf2_fde_table
125 {
126 int num_entries;
127 struct dwarf2_fde **entries;
128 };
129
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133 struct comp_unit
134 {
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
142
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154 };
155
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
158
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
161
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
166 \f
167
168 enum cfa_how_kind
169 {
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173 };
174
175 struct dwarf2_frame_state_reg_info
176 {
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187 };
188
189 /* Structure describing a frame state. */
190
191 struct dwarf2_frame_state
192 {
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
195 struct dwarf2_frame_state_reg_info regs;
196
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
218 };
219
220 /* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222 #define cfa_exp_len cfa_reg
223
224 /* Assert that the register set RS is large enough to store gdbarch_num_regs
225 columns. If necessary, enlarge the register set. */
226
227 static void
228 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230 {
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
241 rs->num_regs = num_regs;
242 }
243
244 /* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247 static struct dwarf2_frame_state_reg *
248 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249 {
250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257 }
258
259 /* Release the memory allocated to register set RS. */
260
261 static void
262 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263 {
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271 }
272
273 /* Release the memory allocated to the frame state FS. */
274
275 static void
276 dwarf2_frame_state_free (void *p)
277 {
278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285 }
286 \f
287
288 /* Helper functions for execute_stack_op. */
289
290 static CORE_ADDR
291 read_addr_from_reg (void *baton, int reg)
292 {
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
295 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
296
297 return address_from_register (regnum, this_frame);
298 }
299
300 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302 static struct value *
303 get_reg_value (void *baton, struct type *type, int reg)
304 {
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
308
309 return value_from_register (type, regnum, this_frame);
310 }
311
312 static void
313 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
314 {
315 read_memory (addr, buf, len);
316 }
317
318 /* Execute the required actions for both the DW_CFA_restore and
319 DW_CFA_restore_extended instructions. */
320 static void
321 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323 {
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 {
340 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
341
342 complaint (&symfile_complaints, _("\
343 incomplete CFI data; DW_CFA_restore unspecified\n\
344 register %s (#%d) at %s"),
345 gdbarch_register_name (gdbarch, regnum), regnum,
346 paddress (gdbarch, fs->pc));
347 }
348 }
349
350 /* Virtual method table for execute_stack_op below. */
351
352 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
353 {
354 read_addr_from_reg,
355 get_reg_value,
356 read_mem,
357 ctx_no_get_frame_base,
358 ctx_no_get_frame_cfa,
359 ctx_no_get_frame_pc,
360 ctx_no_get_tls_address,
361 ctx_no_dwarf_call,
362 ctx_no_get_base_type,
363 ctx_no_push_dwarf_reg_entry_value,
364 ctx_no_get_addr_index
365 };
366
367 static CORE_ADDR
368 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
369 CORE_ADDR offset, struct frame_info *this_frame,
370 CORE_ADDR initial, int initial_in_stack_memory)
371 {
372 struct dwarf_expr_context *ctx;
373 CORE_ADDR result;
374 struct cleanup *old_chain;
375
376 ctx = new_dwarf_expr_context ();
377 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
378 make_cleanup_value_free_to_mark (value_mark ());
379
380 ctx->gdbarch = get_frame_arch (this_frame);
381 ctx->addr_size = addr_size;
382 ctx->ref_addr_size = -1;
383 ctx->offset = offset;
384 ctx->baton = this_frame;
385 ctx->funcs = &dwarf2_frame_ctx_funcs;
386
387 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
388 dwarf_expr_eval (ctx, exp, len);
389
390 if (ctx->location == DWARF_VALUE_MEMORY)
391 result = dwarf_expr_fetch_address (ctx, 0);
392 else if (ctx->location == DWARF_VALUE_REGISTER)
393 result = read_addr_from_reg (this_frame,
394 value_as_long (dwarf_expr_fetch (ctx, 0)));
395 else
396 {
397 /* This is actually invalid DWARF, but if we ever do run across
398 it somehow, we might as well support it. So, instead, report
399 it as unimplemented. */
400 error (_("\
401 Not implemented: computing unwound register using explicit value operator"));
402 }
403
404 do_cleanups (old_chain);
405
406 return result;
407 }
408 \f
409
410 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
411 PC. Modify FS state accordingly. Return current INSN_PTR where the
412 execution has stopped, one can resume it on the next call. */
413
414 static const gdb_byte *
415 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
416 const gdb_byte *insn_end, struct gdbarch *gdbarch,
417 CORE_ADDR pc, struct dwarf2_frame_state *fs)
418 {
419 int eh_frame_p = fde->eh_frame_p;
420 unsigned int bytes_read;
421 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
422
423 while (insn_ptr < insn_end && fs->pc <= pc)
424 {
425 gdb_byte insn = *insn_ptr++;
426 uint64_t utmp, reg;
427 int64_t offset;
428
429 if ((insn & 0xc0) == DW_CFA_advance_loc)
430 fs->pc += (insn & 0x3f) * fs->code_align;
431 else if ((insn & 0xc0) == DW_CFA_offset)
432 {
433 reg = insn & 0x3f;
434 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
435 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
436 offset = utmp * fs->data_align;
437 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
438 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
439 fs->regs.reg[reg].loc.offset = offset;
440 }
441 else if ((insn & 0xc0) == DW_CFA_restore)
442 {
443 reg = insn & 0x3f;
444 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
445 }
446 else
447 {
448 switch (insn)
449 {
450 case DW_CFA_set_loc:
451 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
452 fde->cie->ptr_size, insn_ptr,
453 &bytes_read, fde->initial_location);
454 /* Apply the objfile offset for relocatable objects. */
455 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
456 SECT_OFF_TEXT (fde->cie->unit->objfile));
457 insn_ptr += bytes_read;
458 break;
459
460 case DW_CFA_advance_loc1:
461 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
462 fs->pc += utmp * fs->code_align;
463 insn_ptr++;
464 break;
465 case DW_CFA_advance_loc2:
466 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
467 fs->pc += utmp * fs->code_align;
468 insn_ptr += 2;
469 break;
470 case DW_CFA_advance_loc4:
471 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
472 fs->pc += utmp * fs->code_align;
473 insn_ptr += 4;
474 break;
475
476 case DW_CFA_offset_extended:
477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
478 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
480 offset = utmp * fs->data_align;
481 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
482 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
483 fs->regs.reg[reg].loc.offset = offset;
484 break;
485
486 case DW_CFA_restore_extended:
487 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
488 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
489 break;
490
491 case DW_CFA_undefined:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
496 break;
497
498 case DW_CFA_same_value:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
502 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
503 break;
504
505 case DW_CFA_register:
506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
507 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
509 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
510 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
511 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
512 fs->regs.reg[reg].loc.reg = utmp;
513 break;
514
515 case DW_CFA_remember_state:
516 {
517 struct dwarf2_frame_state_reg_info *new_rs;
518
519 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
520 *new_rs = fs->regs;
521 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
522 fs->regs.prev = new_rs;
523 }
524 break;
525
526 case DW_CFA_restore_state:
527 {
528 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
529
530 if (old_rs == NULL)
531 {
532 complaint (&symfile_complaints, _("\
533 bad CFI data; mismatched DW_CFA_restore_state at %s"),
534 paddress (gdbarch, fs->pc));
535 }
536 else
537 {
538 xfree (fs->regs.reg);
539 fs->regs = *old_rs;
540 xfree (old_rs);
541 }
542 }
543 break;
544
545 case DW_CFA_def_cfa:
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
547 fs->regs.cfa_reg = reg;
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
549
550 if (fs->armcc_cfa_offsets_sf)
551 utmp *= fs->data_align;
552
553 fs->regs.cfa_offset = utmp;
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_register:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
559 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
560 eh_frame_p);
561 fs->regs.cfa_how = CFA_REG_OFFSET;
562 break;
563
564 case DW_CFA_def_cfa_offset:
565 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
566
567 if (fs->armcc_cfa_offsets_sf)
568 utmp *= fs->data_align;
569
570 fs->regs.cfa_offset = utmp;
571 /* cfa_how deliberately not set. */
572 break;
573
574 case DW_CFA_nop:
575 break;
576
577 case DW_CFA_def_cfa_expression:
578 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
579 fs->regs.cfa_exp_len = utmp;
580 fs->regs.cfa_exp = insn_ptr;
581 fs->regs.cfa_how = CFA_EXP;
582 insn_ptr += fs->regs.cfa_exp_len;
583 break;
584
585 case DW_CFA_expression:
586 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
587 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
588 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
589 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
590 fs->regs.reg[reg].loc.exp = insn_ptr;
591 fs->regs.reg[reg].exp_len = utmp;
592 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
593 insn_ptr += utmp;
594 break;
595
596 case DW_CFA_offset_extended_sf:
597 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
598 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
599 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
600 offset *= fs->data_align;
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
603 fs->regs.reg[reg].loc.offset = offset;
604 break;
605
606 case DW_CFA_val_offset:
607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
608 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
610 offset = utmp * fs->data_align;
611 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
612 fs->regs.reg[reg].loc.offset = offset;
613 break;
614
615 case DW_CFA_val_offset_sf:
616 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
617 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
618 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
619 offset *= fs->data_align;
620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
621 fs->regs.reg[reg].loc.offset = offset;
622 break;
623
624 case DW_CFA_val_expression:
625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
626 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
628 fs->regs.reg[reg].loc.exp = insn_ptr;
629 fs->regs.reg[reg].exp_len = utmp;
630 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
631 insn_ptr += utmp;
632 break;
633
634 case DW_CFA_def_cfa_sf:
635 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
636 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
637 eh_frame_p);
638 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
639 fs->regs.cfa_offset = offset * fs->data_align;
640 fs->regs.cfa_how = CFA_REG_OFFSET;
641 break;
642
643 case DW_CFA_def_cfa_offset_sf:
644 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
645 fs->regs.cfa_offset = offset * fs->data_align;
646 /* cfa_how deliberately not set. */
647 break;
648
649 case DW_CFA_GNU_window_save:
650 /* This is SPARC-specific code, and contains hard-coded
651 constants for the register numbering scheme used by
652 GCC. Rather than having a architecture-specific
653 operation that's only ever used by a single
654 architecture, we provide the implementation here.
655 Incidentally that's what GCC does too in its
656 unwinder. */
657 {
658 int size = register_size (gdbarch, 0);
659
660 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
661 for (reg = 8; reg < 16; reg++)
662 {
663 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
664 fs->regs.reg[reg].loc.reg = reg + 16;
665 }
666 for (reg = 16; reg < 32; reg++)
667 {
668 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
669 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
670 }
671 }
672 break;
673
674 case DW_CFA_GNU_args_size:
675 /* Ignored. */
676 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
677 break;
678
679 case DW_CFA_GNU_negative_offset_extended:
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
681 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
683 offset = utmp * fs->data_align;
684 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
685 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
686 fs->regs.reg[reg].loc.offset = -offset;
687 break;
688
689 default:
690 internal_error (__FILE__, __LINE__,
691 _("Unknown CFI encountered."));
692 }
693 }
694 }
695
696 if (fs->initial.reg == NULL)
697 {
698 /* Don't allow remember/restore between CIE and FDE programs. */
699 dwarf2_frame_state_free_regs (fs->regs.prev);
700 fs->regs.prev = NULL;
701 }
702
703 return insn_ptr;
704 }
705 \f
706
707 /* Architecture-specific operations. */
708
709 /* Per-architecture data key. */
710 static struct gdbarch_data *dwarf2_frame_data;
711
712 struct dwarf2_frame_ops
713 {
714 /* Pre-initialize the register state REG for register REGNUM. */
715 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
716 struct frame_info *);
717
718 /* Check whether the THIS_FRAME is a signal trampoline. */
719 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
720
721 /* Convert .eh_frame register number to DWARF register number, or
722 adjust .debug_frame register number. */
723 int (*adjust_regnum) (struct gdbarch *, int, int);
724 };
725
726 /* Default architecture-specific register state initialization
727 function. */
728
729 static void
730 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
731 struct dwarf2_frame_state_reg *reg,
732 struct frame_info *this_frame)
733 {
734 /* If we have a register that acts as a program counter, mark it as
735 a destination for the return address. If we have a register that
736 serves as the stack pointer, arrange for it to be filled with the
737 call frame address (CFA). The other registers are marked as
738 unspecified.
739
740 We copy the return address to the program counter, since many
741 parts in GDB assume that it is possible to get the return address
742 by unwinding the program counter register. However, on ISA's
743 with a dedicated return address register, the CFI usually only
744 contains information to unwind that return address register.
745
746 The reason we're treating the stack pointer special here is
747 because in many cases GCC doesn't emit CFI for the stack pointer
748 and implicitly assumes that it is equal to the CFA. This makes
749 some sense since the DWARF specification (version 3, draft 8,
750 p. 102) says that:
751
752 "Typically, the CFA is defined to be the value of the stack
753 pointer at the call site in the previous frame (which may be
754 different from its value on entry to the current frame)."
755
756 However, this isn't true for all platforms supported by GCC
757 (e.g. IBM S/390 and zSeries). Those architectures should provide
758 their own architecture-specific initialization function. */
759
760 if (regnum == gdbarch_pc_regnum (gdbarch))
761 reg->how = DWARF2_FRAME_REG_RA;
762 else if (regnum == gdbarch_sp_regnum (gdbarch))
763 reg->how = DWARF2_FRAME_REG_CFA;
764 }
765
766 /* Return a default for the architecture-specific operations. */
767
768 static void *
769 dwarf2_frame_init (struct obstack *obstack)
770 {
771 struct dwarf2_frame_ops *ops;
772
773 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
774 ops->init_reg = dwarf2_frame_default_init_reg;
775 return ops;
776 }
777
778 /* Set the architecture-specific register state initialization
779 function for GDBARCH to INIT_REG. */
780
781 void
782 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
783 void (*init_reg) (struct gdbarch *, int,
784 struct dwarf2_frame_state_reg *,
785 struct frame_info *))
786 {
787 struct dwarf2_frame_ops *ops
788 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
789
790 ops->init_reg = init_reg;
791 }
792
793 /* Pre-initialize the register state REG for register REGNUM. */
794
795 static void
796 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
797 struct dwarf2_frame_state_reg *reg,
798 struct frame_info *this_frame)
799 {
800 struct dwarf2_frame_ops *ops
801 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
802
803 ops->init_reg (gdbarch, regnum, reg, this_frame);
804 }
805
806 /* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809 void
810 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813 {
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
816
817 ops->signal_frame_p = signal_frame_p;
818 }
819
820 /* Query the architecture-specific signal frame recognizer for
821 THIS_FRAME. */
822
823 static int
824 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
825 struct frame_info *this_frame)
826 {
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
829
830 if (ops->signal_frame_p == NULL)
831 return 0;
832 return ops->signal_frame_p (gdbarch, this_frame);
833 }
834
835 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
836 register numbers. */
837
838 void
839 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
840 int (*adjust_regnum) (struct gdbarch *,
841 int, int))
842 {
843 struct dwarf2_frame_ops *ops
844 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 ops->adjust_regnum = adjust_regnum;
847 }
848
849 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
850 register. */
851
852 static int
853 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
854 int regnum, int eh_frame_p)
855 {
856 struct dwarf2_frame_ops *ops
857 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
858
859 if (ops->adjust_regnum == NULL)
860 return regnum;
861 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
862 }
863
864 static void
865 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
866 struct dwarf2_fde *fde)
867 {
868 struct compunit_symtab *cust;
869
870 cust = find_pc_compunit_symtab (fs->pc);
871 if (cust == NULL)
872 return;
873
874 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
875 {
876 if (fde->cie->version == 1)
877 fs->armcc_cfa_offsets_sf = 1;
878
879 if (fde->cie->version == 1)
880 fs->armcc_cfa_offsets_reversed = 1;
881
882 /* The reversed offset problem is present in some compilers
883 using DWARF3, but it was eventually fixed. Check the ARM
884 defined augmentations, which are in the format "armcc" followed
885 by a list of one-character options. The "+" option means
886 this problem is fixed (no quirk needed). If the armcc
887 augmentation is missing, the quirk is needed. */
888 if (fde->cie->version == 3
889 && (!startswith (fde->cie->augmentation, "armcc")
890 || strchr (fde->cie->augmentation + 5, '+') == NULL))
891 fs->armcc_cfa_offsets_reversed = 1;
892
893 return;
894 }
895 }
896 \f
897
898 /* See dwarf2-frame.h. */
899
900 int
901 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
902 struct dwarf2_per_cu_data *data,
903 int *regnum_out, LONGEST *offset_out,
904 CORE_ADDR *text_offset_out,
905 const gdb_byte **cfa_start_out,
906 const gdb_byte **cfa_end_out)
907 {
908 struct dwarf2_fde *fde;
909 CORE_ADDR text_offset;
910 struct dwarf2_frame_state fs;
911 int addr_size;
912
913 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
914
915 fs.pc = pc;
916
917 /* Find the correct FDE. */
918 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
919 if (fde == NULL)
920 error (_("Could not compute CFA; needed to translate this expression"));
921
922 /* Extract any interesting information from the CIE. */
923 fs.data_align = fde->cie->data_alignment_factor;
924 fs.code_align = fde->cie->code_alignment_factor;
925 fs.retaddr_column = fde->cie->return_address_register;
926 addr_size = fde->cie->addr_size;
927
928 /* Check for "quirks" - known bugs in producers. */
929 dwarf2_frame_find_quirks (&fs, fde);
930
931 /* First decode all the insns in the CIE. */
932 execute_cfa_program (fde, fde->cie->initial_instructions,
933 fde->cie->end, gdbarch, pc, &fs);
934
935 /* Save the initialized register set. */
936 fs.initial = fs.regs;
937 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
938
939 /* Then decode the insns in the FDE up to our target PC. */
940 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
941
942 /* Calculate the CFA. */
943 switch (fs.regs.cfa_how)
944 {
945 case CFA_REG_OFFSET:
946 {
947 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
948
949 *regnum_out = regnum;
950 if (fs.armcc_cfa_offsets_reversed)
951 *offset_out = -fs.regs.cfa_offset;
952 else
953 *offset_out = fs.regs.cfa_offset;
954 return 1;
955 }
956
957 case CFA_EXP:
958 *text_offset_out = text_offset;
959 *cfa_start_out = fs.regs.cfa_exp;
960 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
961 return 0;
962
963 default:
964 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
965 }
966 }
967
968 \f
969 struct dwarf2_frame_cache
970 {
971 /* DWARF Call Frame Address. */
972 CORE_ADDR cfa;
973
974 /* Set if the return address column was marked as unavailable
975 (required non-collected memory or registers to compute). */
976 int unavailable_retaddr;
977
978 /* Set if the return address column was marked as undefined. */
979 int undefined_retaddr;
980
981 /* Saved registers, indexed by GDB register number, not by DWARF
982 register number. */
983 struct dwarf2_frame_state_reg *reg;
984
985 /* Return address register. */
986 struct dwarf2_frame_state_reg retaddr_reg;
987
988 /* Target address size in bytes. */
989 int addr_size;
990
991 /* The .text offset. */
992 CORE_ADDR text_offset;
993
994 /* True if we already checked whether this frame is the bottom frame
995 of a virtual tail call frame chain. */
996 int checked_tailcall_bottom;
997
998 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
999 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1000 involved. Non-bottom frames of a virtual tail call frames chain use
1001 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1002 them. */
1003 void *tailcall_cache;
1004
1005 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1006 base to get the SP, to simulate the return address pushed on the
1007 stack. */
1008 LONGEST entry_cfa_sp_offset;
1009 int entry_cfa_sp_offset_p;
1010 };
1011
1012 /* A cleanup that sets a pointer to NULL. */
1013
1014 static void
1015 clear_pointer_cleanup (void *arg)
1016 {
1017 void **ptr = (void **) arg;
1018
1019 *ptr = NULL;
1020 }
1021
1022 static struct dwarf2_frame_cache *
1023 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1024 {
1025 struct cleanup *reset_cache_cleanup, *old_chain;
1026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1027 const int num_regs = gdbarch_num_regs (gdbarch)
1028 + gdbarch_num_pseudo_regs (gdbarch);
1029 struct dwarf2_frame_cache *cache;
1030 struct dwarf2_frame_state *fs;
1031 struct dwarf2_fde *fde;
1032 CORE_ADDR entry_pc;
1033 const gdb_byte *instr;
1034
1035 if (*this_cache)
1036 return (struct dwarf2_frame_cache *) *this_cache;
1037
1038 /* Allocate a new cache. */
1039 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1040 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1041 *this_cache = cache;
1042 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1043
1044 /* Allocate and initialize the frame state. */
1045 fs = XCNEW (struct dwarf2_frame_state);
1046 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1047
1048 /* Unwind the PC.
1049
1050 Note that if the next frame is never supposed to return (i.e. a call
1051 to abort), the compiler might optimize away the instruction at
1052 its return address. As a result the return address will
1053 point at some random instruction, and the CFI for that
1054 instruction is probably worthless to us. GCC's unwinder solves
1055 this problem by substracting 1 from the return address to get an
1056 address in the middle of a presumed call instruction (or the
1057 instruction in the associated delay slot). This should only be
1058 done for "normal" frames and not for resume-type frames (signal
1059 handlers, sentinel frames, dummy frames). The function
1060 get_frame_address_in_block does just this. It's not clear how
1061 reliable the method is though; there is the potential for the
1062 register state pre-call being different to that on return. */
1063 fs->pc = get_frame_address_in_block (this_frame);
1064
1065 /* Find the correct FDE. */
1066 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1067 gdb_assert (fde != NULL);
1068
1069 /* Extract any interesting information from the CIE. */
1070 fs->data_align = fde->cie->data_alignment_factor;
1071 fs->code_align = fde->cie->code_alignment_factor;
1072 fs->retaddr_column = fde->cie->return_address_register;
1073 cache->addr_size = fde->cie->addr_size;
1074
1075 /* Check for "quirks" - known bugs in producers. */
1076 dwarf2_frame_find_quirks (fs, fde);
1077
1078 /* First decode all the insns in the CIE. */
1079 execute_cfa_program (fde, fde->cie->initial_instructions,
1080 fde->cie->end, gdbarch,
1081 get_frame_address_in_block (this_frame), fs);
1082
1083 /* Save the initialized register set. */
1084 fs->initial = fs->regs;
1085 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1086
1087 if (get_frame_func_if_available (this_frame, &entry_pc))
1088 {
1089 /* Decode the insns in the FDE up to the entry PC. */
1090 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1091 entry_pc, fs);
1092
1093 if (fs->regs.cfa_how == CFA_REG_OFFSET
1094 && (dwarf_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1095 == gdbarch_sp_regnum (gdbarch)))
1096 {
1097 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1098 cache->entry_cfa_sp_offset_p = 1;
1099 }
1100 }
1101 else
1102 instr = fde->instructions;
1103
1104 /* Then decode the insns in the FDE up to our target PC. */
1105 execute_cfa_program (fde, instr, fde->end, gdbarch,
1106 get_frame_address_in_block (this_frame), fs);
1107
1108 TRY
1109 {
1110 /* Calculate the CFA. */
1111 switch (fs->regs.cfa_how)
1112 {
1113 case CFA_REG_OFFSET:
1114 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1115 if (fs->armcc_cfa_offsets_reversed)
1116 cache->cfa -= fs->regs.cfa_offset;
1117 else
1118 cache->cfa += fs->regs.cfa_offset;
1119 break;
1120
1121 case CFA_EXP:
1122 cache->cfa =
1123 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1124 cache->addr_size, cache->text_offset,
1125 this_frame, 0, 0);
1126 break;
1127
1128 default:
1129 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1130 }
1131 }
1132 CATCH (ex, RETURN_MASK_ERROR)
1133 {
1134 if (ex.error == NOT_AVAILABLE_ERROR)
1135 {
1136 cache->unavailable_retaddr = 1;
1137 do_cleanups (old_chain);
1138 discard_cleanups (reset_cache_cleanup);
1139 return cache;
1140 }
1141
1142 throw_exception (ex);
1143 }
1144 END_CATCH
1145
1146 /* Initialize the register state. */
1147 {
1148 int regnum;
1149
1150 for (regnum = 0; regnum < num_regs; regnum++)
1151 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1152 }
1153
1154 /* Go through the DWARF2 CFI generated table and save its register
1155 location information in the cache. Note that we don't skip the
1156 return address column; it's perfectly all right for it to
1157 correspond to a real register. */
1158 {
1159 int column; /* CFI speak for "register number". */
1160
1161 for (column = 0; column < fs->regs.num_regs; column++)
1162 {
1163 /* Use the GDB register number as the destination index. */
1164 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1165
1166 /* Protect against a target returning a bad register. */
1167 if (regnum < 0 || regnum >= num_regs)
1168 continue;
1169
1170 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1171 of all debug info registers. If it doesn't, complain (but
1172 not too loudly). It turns out that GCC assumes that an
1173 unspecified register implies "same value" when CFI (draft
1174 7) specifies nothing at all. Such a register could equally
1175 be interpreted as "undefined". Also note that this check
1176 isn't sufficient; it only checks that all registers in the
1177 range [0 .. max column] are specified, and won't detect
1178 problems when a debug info register falls outside of the
1179 table. We need a way of iterating through all the valid
1180 DWARF2 register numbers. */
1181 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1182 {
1183 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1184 complaint (&symfile_complaints, _("\
1185 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1186 gdbarch_register_name (gdbarch, regnum),
1187 paddress (gdbarch, fs->pc));
1188 }
1189 else
1190 cache->reg[regnum] = fs->regs.reg[column];
1191 }
1192 }
1193
1194 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1195 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1196 {
1197 int regnum;
1198
1199 for (regnum = 0; regnum < num_regs; regnum++)
1200 {
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1202 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1203 {
1204 struct dwarf2_frame_state_reg *retaddr_reg =
1205 &fs->regs.reg[fs->retaddr_column];
1206
1207 /* It seems rather bizarre to specify an "empty" column as
1208 the return adress column. However, this is exactly
1209 what GCC does on some targets. It turns out that GCC
1210 assumes that the return address can be found in the
1211 register corresponding to the return address column.
1212 Incidentally, that's how we should treat a return
1213 address column specifying "same value" too. */
1214 if (fs->retaddr_column < fs->regs.num_regs
1215 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1216 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1217 {
1218 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1219 cache->reg[regnum] = *retaddr_reg;
1220 else
1221 cache->retaddr_reg = *retaddr_reg;
1222 }
1223 else
1224 {
1225 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1226 {
1227 cache->reg[regnum].loc.reg = fs->retaddr_column;
1228 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1229 }
1230 else
1231 {
1232 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1233 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 }
1236 }
1237 }
1238 }
1239
1240 if (fs->retaddr_column < fs->regs.num_regs
1241 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1242 cache->undefined_retaddr = 1;
1243
1244 do_cleanups (old_chain);
1245 discard_cleanups (reset_cache_cleanup);
1246 return cache;
1247 }
1248
1249 static enum unwind_stop_reason
1250 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1251 void **this_cache)
1252 {
1253 struct dwarf2_frame_cache *cache
1254 = dwarf2_frame_cache (this_frame, this_cache);
1255
1256 if (cache->unavailable_retaddr)
1257 return UNWIND_UNAVAILABLE;
1258
1259 if (cache->undefined_retaddr)
1260 return UNWIND_OUTERMOST;
1261
1262 return UNWIND_NO_REASON;
1263 }
1264
1265 static void
1266 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1267 struct frame_id *this_id)
1268 {
1269 struct dwarf2_frame_cache *cache =
1270 dwarf2_frame_cache (this_frame, this_cache);
1271
1272 if (cache->unavailable_retaddr)
1273 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1274 else if (cache->undefined_retaddr)
1275 return;
1276 else
1277 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1278 }
1279
1280 static struct value *
1281 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1282 int regnum)
1283 {
1284 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1285 struct dwarf2_frame_cache *cache =
1286 dwarf2_frame_cache (this_frame, this_cache);
1287 CORE_ADDR addr;
1288 int realnum;
1289
1290 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1291 call frame chain. */
1292 if (!cache->checked_tailcall_bottom)
1293 {
1294 cache->checked_tailcall_bottom = 1;
1295 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1296 (cache->entry_cfa_sp_offset_p
1297 ? &cache->entry_cfa_sp_offset : NULL));
1298 }
1299
1300 /* Non-bottom frames of a virtual tail call frames chain use
1301 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1302 them. If dwarf2_tailcall_prev_register_first does not have specific value
1303 unwind the register, tail call frames are assumed to have the register set
1304 of the top caller. */
1305 if (cache->tailcall_cache)
1306 {
1307 struct value *val;
1308
1309 val = dwarf2_tailcall_prev_register_first (this_frame,
1310 &cache->tailcall_cache,
1311 regnum);
1312 if (val)
1313 return val;
1314 }
1315
1316 switch (cache->reg[regnum].how)
1317 {
1318 case DWARF2_FRAME_REG_UNDEFINED:
1319 /* If CFI explicitly specified that the value isn't defined,
1320 mark it as optimized away; the value isn't available. */
1321 return frame_unwind_got_optimized (this_frame, regnum);
1322
1323 case DWARF2_FRAME_REG_SAVED_OFFSET:
1324 addr = cache->cfa + cache->reg[regnum].loc.offset;
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
1326
1327 case DWARF2_FRAME_REG_SAVED_REG:
1328 realnum = dwarf_reg_to_regnum_or_error
1329 (gdbarch, cache->reg[regnum].loc.reg);
1330 return frame_unwind_got_register (this_frame, regnum, realnum);
1331
1332 case DWARF2_FRAME_REG_SAVED_EXP:
1333 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1334 cache->reg[regnum].exp_len,
1335 cache->addr_size, cache->text_offset,
1336 this_frame, cache->cfa, 1);
1337 return frame_unwind_got_memory (this_frame, regnum, addr);
1338
1339 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_constant (this_frame, regnum, addr);
1342
1343 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1344 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1345 cache->reg[regnum].exp_len,
1346 cache->addr_size, cache->text_offset,
1347 this_frame, cache->cfa, 1);
1348 return frame_unwind_got_constant (this_frame, regnum, addr);
1349
1350 case DWARF2_FRAME_REG_UNSPECIFIED:
1351 /* GCC, in its infinite wisdom decided to not provide unwind
1352 information for registers that are "same value". Since
1353 DWARF2 (3 draft 7) doesn't define such behavior, said
1354 registers are actually undefined (which is different to CFI
1355 "undefined"). Code above issues a complaint about this.
1356 Here just fudge the books, assume GCC, and that the value is
1357 more inner on the stack. */
1358 return frame_unwind_got_register (this_frame, regnum, regnum);
1359
1360 case DWARF2_FRAME_REG_SAME_VALUE:
1361 return frame_unwind_got_register (this_frame, regnum, regnum);
1362
1363 case DWARF2_FRAME_REG_CFA:
1364 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1365
1366 case DWARF2_FRAME_REG_CFA_OFFSET:
1367 addr = cache->cfa + cache->reg[regnum].loc.offset;
1368 return frame_unwind_got_address (this_frame, regnum, addr);
1369
1370 case DWARF2_FRAME_REG_RA_OFFSET:
1371 addr = cache->reg[regnum].loc.offset;
1372 regnum = dwarf_reg_to_regnum_or_error
1373 (gdbarch, cache->retaddr_reg.loc.reg);
1374 addr += get_frame_register_unsigned (this_frame, regnum);
1375 return frame_unwind_got_address (this_frame, regnum, addr);
1376
1377 case DWARF2_FRAME_REG_FN:
1378 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1379
1380 default:
1381 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1382 }
1383 }
1384
1385 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1386 call frames chain. */
1387
1388 static void
1389 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1390 {
1391 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1392
1393 if (cache->tailcall_cache)
1394 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1395 }
1396
1397 static int
1398 dwarf2_frame_sniffer (const struct frame_unwind *self,
1399 struct frame_info *this_frame, void **this_cache)
1400 {
1401 /* Grab an address that is guarenteed to reside somewhere within the
1402 function. get_frame_pc(), with a no-return next function, can
1403 end up returning something past the end of this function's body.
1404 If the frame we're sniffing for is a signal frame whose start
1405 address is placed on the stack by the OS, its FDE must
1406 extend one byte before its start address or we could potentially
1407 select the FDE of the previous function. */
1408 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1409 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1410
1411 if (!fde)
1412 return 0;
1413
1414 /* On some targets, signal trampolines may have unwind information.
1415 We need to recognize them so that we set the frame type
1416 correctly. */
1417
1418 if (fde->cie->signal_frame
1419 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1420 this_frame))
1421 return self->type == SIGTRAMP_FRAME;
1422
1423 if (self->type != NORMAL_FRAME)
1424 return 0;
1425
1426 return 1;
1427 }
1428
1429 static const struct frame_unwind dwarf2_frame_unwind =
1430 {
1431 NORMAL_FRAME,
1432 dwarf2_frame_unwind_stop_reason,
1433 dwarf2_frame_this_id,
1434 dwarf2_frame_prev_register,
1435 NULL,
1436 dwarf2_frame_sniffer,
1437 dwarf2_frame_dealloc_cache
1438 };
1439
1440 static const struct frame_unwind dwarf2_signal_frame_unwind =
1441 {
1442 SIGTRAMP_FRAME,
1443 dwarf2_frame_unwind_stop_reason,
1444 dwarf2_frame_this_id,
1445 dwarf2_frame_prev_register,
1446 NULL,
1447 dwarf2_frame_sniffer,
1448
1449 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1450 NULL
1451 };
1452
1453 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1454
1455 void
1456 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1457 {
1458 /* TAILCALL_FRAME must be first to find the record by
1459 dwarf2_tailcall_sniffer_first. */
1460 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1461
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1463 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1464 }
1465 \f
1466
1467 /* There is no explicitly defined relationship between the CFA and the
1468 location of frame's local variables and arguments/parameters.
1469 Therefore, frame base methods on this page should probably only be
1470 used as a last resort, just to avoid printing total garbage as a
1471 response to the "info frame" command. */
1472
1473 static CORE_ADDR
1474 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1475 {
1476 struct dwarf2_frame_cache *cache =
1477 dwarf2_frame_cache (this_frame, this_cache);
1478
1479 return cache->cfa;
1480 }
1481
1482 static const struct frame_base dwarf2_frame_base =
1483 {
1484 &dwarf2_frame_unwind,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address,
1487 dwarf2_frame_base_address
1488 };
1489
1490 const struct frame_base *
1491 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1492 {
1493 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1494
1495 if (dwarf2_frame_find_fde (&block_addr, NULL))
1496 return &dwarf2_frame_base;
1497
1498 return NULL;
1499 }
1500
1501 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1502 the DWARF unwinder. This is used to implement
1503 DW_OP_call_frame_cfa. */
1504
1505 CORE_ADDR
1506 dwarf2_frame_cfa (struct frame_info *this_frame)
1507 {
1508 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1509 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1510 throw_error (NOT_AVAILABLE_ERROR,
1511 _("cfa not available for record btrace target"));
1512
1513 while (get_frame_type (this_frame) == INLINE_FRAME)
1514 this_frame = get_prev_frame (this_frame);
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
1519
1520 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1521 throw_error (NOT_AVAILABLE_ERROR,
1522 _("can't compute CFA for this frame: "
1523 "frame base not available"));
1524
1525 return get_frame_base (this_frame);
1526 }
1527 \f
1528 const struct objfile_data *dwarf2_frame_objfile_data;
1529
1530 static unsigned int
1531 read_1_byte (bfd *abfd, const gdb_byte *buf)
1532 {
1533 return bfd_get_8 (abfd, buf);
1534 }
1535
1536 static unsigned int
1537 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1538 {
1539 return bfd_get_32 (abfd, buf);
1540 }
1541
1542 static ULONGEST
1543 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1544 {
1545 return bfd_get_64 (abfd, buf);
1546 }
1547
1548 static ULONGEST
1549 read_initial_length (bfd *abfd, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr)
1551 {
1552 LONGEST result;
1553
1554 result = bfd_get_32 (abfd, buf);
1555 if (result == 0xffffffff)
1556 {
1557 result = bfd_get_64 (abfd, buf + 4);
1558 *bytes_read_ptr = 12;
1559 }
1560 else
1561 *bytes_read_ptr = 4;
1562
1563 return result;
1564 }
1565 \f
1566
1567 /* Pointer encoding helper functions. */
1568
1569 /* GCC supports exception handling based on DWARF2 CFI. However, for
1570 technical reasons, it encodes addresses in its FDE's in a different
1571 way. Several "pointer encodings" are supported. The encoding
1572 that's used for a particular FDE is determined by the 'R'
1573 augmentation in the associated CIE. The argument of this
1574 augmentation is a single byte.
1575
1576 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1577 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1578 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1579 address should be interpreted (absolute, relative to the current
1580 position in the FDE, ...). Bit 7, indicates that the address
1581 should be dereferenced. */
1582
1583 static gdb_byte
1584 encoding_for_size (unsigned int size)
1585 {
1586 switch (size)
1587 {
1588 case 2:
1589 return DW_EH_PE_udata2;
1590 case 4:
1591 return DW_EH_PE_udata4;
1592 case 8:
1593 return DW_EH_PE_udata8;
1594 default:
1595 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1596 }
1597 }
1598
1599 static CORE_ADDR
1600 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1601 int ptr_len, const gdb_byte *buf,
1602 unsigned int *bytes_read_ptr,
1603 CORE_ADDR func_base)
1604 {
1605 ptrdiff_t offset;
1606 CORE_ADDR base;
1607
1608 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1609 FDE's. */
1610 if (encoding & DW_EH_PE_indirect)
1611 internal_error (__FILE__, __LINE__,
1612 _("Unsupported encoding: DW_EH_PE_indirect"));
1613
1614 *bytes_read_ptr = 0;
1615
1616 switch (encoding & 0x70)
1617 {
1618 case DW_EH_PE_absptr:
1619 base = 0;
1620 break;
1621 case DW_EH_PE_pcrel:
1622 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1623 base += (buf - unit->dwarf_frame_buffer);
1624 break;
1625 case DW_EH_PE_datarel:
1626 base = unit->dbase;
1627 break;
1628 case DW_EH_PE_textrel:
1629 base = unit->tbase;
1630 break;
1631 case DW_EH_PE_funcrel:
1632 base = func_base;
1633 break;
1634 case DW_EH_PE_aligned:
1635 base = 0;
1636 offset = buf - unit->dwarf_frame_buffer;
1637 if ((offset % ptr_len) != 0)
1638 {
1639 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1640 buf += *bytes_read_ptr;
1641 }
1642 break;
1643 default:
1644 internal_error (__FILE__, __LINE__,
1645 _("Invalid or unsupported encoding"));
1646 }
1647
1648 if ((encoding & 0x07) == 0x00)
1649 {
1650 encoding |= encoding_for_size (ptr_len);
1651 if (bfd_get_sign_extend_vma (unit->abfd))
1652 encoding |= DW_EH_PE_signed;
1653 }
1654
1655 switch (encoding & 0x0f)
1656 {
1657 case DW_EH_PE_uleb128:
1658 {
1659 uint64_t value;
1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1661
1662 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1663 return base + value;
1664 }
1665 case DW_EH_PE_udata2:
1666 *bytes_read_ptr += 2;
1667 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata4:
1669 *bytes_read_ptr += 4;
1670 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_udata8:
1672 *bytes_read_ptr += 8;
1673 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_sleb128:
1675 {
1676 int64_t value;
1677 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1678
1679 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1680 return base + value;
1681 }
1682 case DW_EH_PE_sdata2:
1683 *bytes_read_ptr += 2;
1684 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata4:
1686 *bytes_read_ptr += 4;
1687 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1688 case DW_EH_PE_sdata8:
1689 *bytes_read_ptr += 8;
1690 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1691 default:
1692 internal_error (__FILE__, __LINE__,
1693 _("Invalid or unsupported encoding"));
1694 }
1695 }
1696 \f
1697
1698 static int
1699 bsearch_cie_cmp (const void *key, const void *element)
1700 {
1701 ULONGEST cie_pointer = *(ULONGEST *) key;
1702 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1703
1704 if (cie_pointer == cie->cie_pointer)
1705 return 0;
1706
1707 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1708 }
1709
1710 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1711 static struct dwarf2_cie *
1712 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1713 {
1714 struct dwarf2_cie **p_cie;
1715
1716 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1717 bsearch be non-NULL. */
1718 if (cie_table->entries == NULL)
1719 {
1720 gdb_assert (cie_table->num_entries == 0);
1721 return NULL;
1722 }
1723
1724 p_cie = ((struct dwarf2_cie **)
1725 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1726 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1727 if (p_cie != NULL)
1728 return *p_cie;
1729 return NULL;
1730 }
1731
1732 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1733 static void
1734 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1735 {
1736 const int n = cie_table->num_entries;
1737
1738 gdb_assert (n < 1
1739 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1740
1741 cie_table->entries
1742 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1743 cie_table->entries[n] = cie;
1744 cie_table->num_entries = n + 1;
1745 }
1746
1747 static int
1748 bsearch_fde_cmp (const void *key, const void *element)
1749 {
1750 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1751 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1752
1753 if (seek_pc < fde->initial_location)
1754 return -1;
1755 if (seek_pc < fde->initial_location + fde->address_range)
1756 return 0;
1757 return 1;
1758 }
1759
1760 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1761 inital location associated with it into *PC. */
1762
1763 static struct dwarf2_fde *
1764 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1765 {
1766 struct objfile *objfile;
1767
1768 ALL_OBJFILES (objfile)
1769 {
1770 struct dwarf2_fde_table *fde_table;
1771 struct dwarf2_fde **p_fde;
1772 CORE_ADDR offset;
1773 CORE_ADDR seek_pc;
1774
1775 fde_table = ((struct dwarf2_fde_table *)
1776 objfile_data (objfile, dwarf2_frame_objfile_data));
1777 if (fde_table == NULL)
1778 {
1779 dwarf2_build_frame_info (objfile);
1780 fde_table = ((struct dwarf2_fde_table *)
1781 objfile_data (objfile, dwarf2_frame_objfile_data));
1782 }
1783 gdb_assert (fde_table != NULL);
1784
1785 if (fde_table->num_entries == 0)
1786 continue;
1787
1788 gdb_assert (objfile->section_offsets);
1789 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1790
1791 gdb_assert (fde_table->num_entries > 0);
1792 if (*pc < offset + fde_table->entries[0]->initial_location)
1793 continue;
1794
1795 seek_pc = *pc - offset;
1796 p_fde = ((struct dwarf2_fde **)
1797 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1798 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1799 if (p_fde != NULL)
1800 {
1801 *pc = (*p_fde)->initial_location + offset;
1802 if (out_offset)
1803 *out_offset = offset;
1804 return *p_fde;
1805 }
1806 }
1807 return NULL;
1808 }
1809
1810 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1811 static void
1812 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1813 {
1814 if (fde->address_range == 0)
1815 /* Discard useless FDEs. */
1816 return;
1817
1818 fde_table->num_entries += 1;
1819 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1820 fde_table->num_entries);
1821 fde_table->entries[fde_table->num_entries - 1] = fde;
1822 }
1823
1824 #define DW64_CIE_ID 0xffffffffffffffffULL
1825
1826 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1827 or any of them. */
1828
1829 enum eh_frame_type
1830 {
1831 EH_CIE_TYPE_ID = 1 << 0,
1832 EH_FDE_TYPE_ID = 1 << 1,
1833 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1834 };
1835
1836 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1837 const gdb_byte *start,
1838 int eh_frame_p,
1839 struct dwarf2_cie_table *cie_table,
1840 struct dwarf2_fde_table *fde_table,
1841 enum eh_frame_type entry_type);
1842
1843 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1844 Return NULL if invalid input, otherwise the next byte to be processed. */
1845
1846 static const gdb_byte *
1847 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1848 int eh_frame_p,
1849 struct dwarf2_cie_table *cie_table,
1850 struct dwarf2_fde_table *fde_table,
1851 enum eh_frame_type entry_type)
1852 {
1853 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1854 const gdb_byte *buf, *end;
1855 LONGEST length;
1856 unsigned int bytes_read;
1857 int dwarf64_p;
1858 ULONGEST cie_id;
1859 ULONGEST cie_pointer;
1860 int64_t sleb128;
1861 uint64_t uleb128;
1862
1863 buf = start;
1864 length = read_initial_length (unit->abfd, buf, &bytes_read);
1865 buf += bytes_read;
1866 end = buf + length;
1867
1868 /* Are we still within the section? */
1869 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1870 return NULL;
1871
1872 if (length == 0)
1873 return end;
1874
1875 /* Distinguish between 32 and 64-bit encoded frame info. */
1876 dwarf64_p = (bytes_read == 12);
1877
1878 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1879 if (eh_frame_p)
1880 cie_id = 0;
1881 else if (dwarf64_p)
1882 cie_id = DW64_CIE_ID;
1883 else
1884 cie_id = DW_CIE_ID;
1885
1886 if (dwarf64_p)
1887 {
1888 cie_pointer = read_8_bytes (unit->abfd, buf);
1889 buf += 8;
1890 }
1891 else
1892 {
1893 cie_pointer = read_4_bytes (unit->abfd, buf);
1894 buf += 4;
1895 }
1896
1897 if (cie_pointer == cie_id)
1898 {
1899 /* This is a CIE. */
1900 struct dwarf2_cie *cie;
1901 char *augmentation;
1902 unsigned int cie_version;
1903
1904 /* Check that a CIE was expected. */
1905 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1906 error (_("Found a CIE when not expecting it."));
1907
1908 /* Record the offset into the .debug_frame section of this CIE. */
1909 cie_pointer = start - unit->dwarf_frame_buffer;
1910
1911 /* Check whether we've already read it. */
1912 if (find_cie (cie_table, cie_pointer))
1913 return end;
1914
1915 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1916 cie->initial_instructions = NULL;
1917 cie->cie_pointer = cie_pointer;
1918
1919 /* The encoding for FDE's in a normal .debug_frame section
1920 depends on the target address size. */
1921 cie->encoding = DW_EH_PE_absptr;
1922
1923 /* We'll determine the final value later, but we need to
1924 initialize it conservatively. */
1925 cie->signal_frame = 0;
1926
1927 /* Check version number. */
1928 cie_version = read_1_byte (unit->abfd, buf);
1929 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1930 return NULL;
1931 cie->version = cie_version;
1932 buf += 1;
1933
1934 /* Interpret the interesting bits of the augmentation. */
1935 cie->augmentation = augmentation = (char *) buf;
1936 buf += (strlen (augmentation) + 1);
1937
1938 /* Ignore armcc augmentations. We only use them for quirks,
1939 and that doesn't happen until later. */
1940 if (startswith (augmentation, "armcc"))
1941 augmentation += strlen (augmentation);
1942
1943 /* The GCC 2.x "eh" augmentation has a pointer immediately
1944 following the augmentation string, so it must be handled
1945 first. */
1946 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1947 {
1948 /* Skip. */
1949 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1950 augmentation += 2;
1951 }
1952
1953 if (cie->version >= 4)
1954 {
1955 /* FIXME: check that this is the same as from the CU header. */
1956 cie->addr_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 cie->segment_size = read_1_byte (unit->abfd, buf);
1959 ++buf;
1960 }
1961 else
1962 {
1963 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1964 cie->segment_size = 0;
1965 }
1966 /* Address values in .eh_frame sections are defined to have the
1967 target's pointer size. Watchout: This breaks frame info for
1968 targets with pointer size < address size, unless a .debug_frame
1969 section exists as well. */
1970 if (eh_frame_p)
1971 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1972 else
1973 cie->ptr_size = cie->addr_size;
1974
1975 buf = gdb_read_uleb128 (buf, end, &uleb128);
1976 if (buf == NULL)
1977 return NULL;
1978 cie->code_alignment_factor = uleb128;
1979
1980 buf = gdb_read_sleb128 (buf, end, &sleb128);
1981 if (buf == NULL)
1982 return NULL;
1983 cie->data_alignment_factor = sleb128;
1984
1985 if (cie_version == 1)
1986 {
1987 cie->return_address_register = read_1_byte (unit->abfd, buf);
1988 ++buf;
1989 }
1990 else
1991 {
1992 buf = gdb_read_uleb128 (buf, end, &uleb128);
1993 if (buf == NULL)
1994 return NULL;
1995 cie->return_address_register = uleb128;
1996 }
1997
1998 cie->return_address_register
1999 = dwarf2_frame_adjust_regnum (gdbarch,
2000 cie->return_address_register,
2001 eh_frame_p);
2002
2003 cie->saw_z_augmentation = (*augmentation == 'z');
2004 if (cie->saw_z_augmentation)
2005 {
2006 uint64_t length;
2007
2008 buf = gdb_read_uleb128 (buf, end, &length);
2009 if (buf == NULL)
2010 return NULL;
2011 cie->initial_instructions = buf + length;
2012 augmentation++;
2013 }
2014
2015 while (*augmentation)
2016 {
2017 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2018 if (*augmentation == 'L')
2019 {
2020 /* Skip. */
2021 buf++;
2022 augmentation++;
2023 }
2024
2025 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2026 else if (*augmentation == 'R')
2027 {
2028 cie->encoding = *buf++;
2029 augmentation++;
2030 }
2031
2032 /* "P" indicates a personality routine in the CIE augmentation. */
2033 else if (*augmentation == 'P')
2034 {
2035 /* Skip. Avoid indirection since we throw away the result. */
2036 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2037 read_encoded_value (unit, encoding, cie->ptr_size,
2038 buf, &bytes_read, 0);
2039 buf += bytes_read;
2040 augmentation++;
2041 }
2042
2043 /* "S" indicates a signal frame, such that the return
2044 address must not be decremented to locate the call frame
2045 info for the previous frame; it might even be the first
2046 instruction of a function, so decrementing it would take
2047 us to a different function. */
2048 else if (*augmentation == 'S')
2049 {
2050 cie->signal_frame = 1;
2051 augmentation++;
2052 }
2053
2054 /* Otherwise we have an unknown augmentation. Assume that either
2055 there is no augmentation data, or we saw a 'z' prefix. */
2056 else
2057 {
2058 if (cie->initial_instructions)
2059 buf = cie->initial_instructions;
2060 break;
2061 }
2062 }
2063
2064 cie->initial_instructions = buf;
2065 cie->end = end;
2066 cie->unit = unit;
2067
2068 add_cie (cie_table, cie);
2069 }
2070 else
2071 {
2072 /* This is a FDE. */
2073 struct dwarf2_fde *fde;
2074 CORE_ADDR addr;
2075
2076 /* Check that an FDE was expected. */
2077 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2078 error (_("Found an FDE when not expecting it."));
2079
2080 /* In an .eh_frame section, the CIE pointer is the delta between the
2081 address within the FDE where the CIE pointer is stored and the
2082 address of the CIE. Convert it to an offset into the .eh_frame
2083 section. */
2084 if (eh_frame_p)
2085 {
2086 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2087 cie_pointer -= (dwarf64_p ? 8 : 4);
2088 }
2089
2090 /* In either case, validate the result is still within the section. */
2091 if (cie_pointer >= unit->dwarf_frame_size)
2092 return NULL;
2093
2094 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2095 fde->cie = find_cie (cie_table, cie_pointer);
2096 if (fde->cie == NULL)
2097 {
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
2101 fde->cie = find_cie (cie_table, cie_pointer);
2102 }
2103
2104 gdb_assert (fde->cie != NULL);
2105
2106 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2107 buf, &bytes_read, 0);
2108 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2109 buf += bytes_read;
2110
2111 fde->address_range =
2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2113 fde->cie->ptr_size, buf, &bytes_read, 0);
2114 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2115 fde->address_range = addr - fde->initial_location;
2116 buf += bytes_read;
2117
2118 /* A 'z' augmentation in the CIE implies the presence of an
2119 augmentation field in the FDE as well. The only thing known
2120 to be in here at present is the LSDA entry for EH. So we
2121 can skip the whole thing. */
2122 if (fde->cie->saw_z_augmentation)
2123 {
2124 uint64_t length;
2125
2126 buf = gdb_read_uleb128 (buf, end, &length);
2127 if (buf == NULL)
2128 return NULL;
2129 buf += length;
2130 if (buf > end)
2131 return NULL;
2132 }
2133
2134 fde->instructions = buf;
2135 fde->end = end;
2136
2137 fde->eh_frame_p = eh_frame_p;
2138
2139 add_fde (fde_table, fde);
2140 }
2141
2142 return end;
2143 }
2144
2145 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2146 expect an FDE or a CIE. */
2147
2148 static const gdb_byte *
2149 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2150 int eh_frame_p,
2151 struct dwarf2_cie_table *cie_table,
2152 struct dwarf2_fde_table *fde_table,
2153 enum eh_frame_type entry_type)
2154 {
2155 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2156 const gdb_byte *ret;
2157 ptrdiff_t start_offset;
2158
2159 while (1)
2160 {
2161 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2162 cie_table, fde_table, entry_type);
2163 if (ret != NULL)
2164 break;
2165
2166 /* We have corrupt input data of some form. */
2167
2168 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2169 and mismatches wrt padding and alignment of debug sections. */
2170 /* Note that there is no requirement in the standard for any
2171 alignment at all in the frame unwind sections. Testing for
2172 alignment before trying to interpret data would be incorrect.
2173
2174 However, GCC traditionally arranged for frame sections to be
2175 sized such that the FDE length and CIE fields happen to be
2176 aligned (in theory, for performance). This, unfortunately,
2177 was done with .align directives, which had the side effect of
2178 forcing the section to be aligned by the linker.
2179
2180 This becomes a problem when you have some other producer that
2181 creates frame sections that are not as strictly aligned. That
2182 produces a hole in the frame info that gets filled by the
2183 linker with zeros.
2184
2185 The GCC behaviour is arguably a bug, but it's effectively now
2186 part of the ABI, so we're now stuck with it, at least at the
2187 object file level. A smart linker may decide, in the process
2188 of compressing duplicate CIE information, that it can rewrite
2189 the entire output section without this extra padding. */
2190
2191 start_offset = start - unit->dwarf_frame_buffer;
2192 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2193 {
2194 start += 4 - (start_offset & 3);
2195 workaround = ALIGN4;
2196 continue;
2197 }
2198 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2199 {
2200 start += 8 - (start_offset & 7);
2201 workaround = ALIGN8;
2202 continue;
2203 }
2204
2205 /* Nothing left to try. Arrange to return as if we've consumed
2206 the entire input section. Hopefully we'll get valid info from
2207 the other of .debug_frame/.eh_frame. */
2208 workaround = FAIL;
2209 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2210 break;
2211 }
2212
2213 switch (workaround)
2214 {
2215 case NONE:
2216 break;
2217
2218 case ALIGN4:
2219 complaint (&symfile_complaints, _("\
2220 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2221 unit->dwarf_frame_section->owner->filename,
2222 unit->dwarf_frame_section->name);
2223 break;
2224
2225 case ALIGN8:
2226 complaint (&symfile_complaints, _("\
2227 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2228 unit->dwarf_frame_section->owner->filename,
2229 unit->dwarf_frame_section->name);
2230 break;
2231
2232 default:
2233 complaint (&symfile_complaints,
2234 _("Corrupt data in %s:%s"),
2235 unit->dwarf_frame_section->owner->filename,
2236 unit->dwarf_frame_section->name);
2237 break;
2238 }
2239
2240 return ret;
2241 }
2242 \f
2243 static int
2244 qsort_fde_cmp (const void *a, const void *b)
2245 {
2246 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2247 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2248
2249 if (aa->initial_location == bb->initial_location)
2250 {
2251 if (aa->address_range != bb->address_range
2252 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2253 /* Linker bug, e.g. gold/10400.
2254 Work around it by keeping stable sort order. */
2255 return (a < b) ? -1 : 1;
2256 else
2257 /* Put eh_frame entries after debug_frame ones. */
2258 return aa->eh_frame_p - bb->eh_frame_p;
2259 }
2260
2261 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2262 }
2263
2264 void
2265 dwarf2_build_frame_info (struct objfile *objfile)
2266 {
2267 struct comp_unit *unit;
2268 const gdb_byte *frame_ptr;
2269 struct dwarf2_cie_table cie_table;
2270 struct dwarf2_fde_table fde_table;
2271 struct dwarf2_fde_table *fde_table2;
2272
2273 cie_table.num_entries = 0;
2274 cie_table.entries = NULL;
2275
2276 fde_table.num_entries = 0;
2277 fde_table.entries = NULL;
2278
2279 /* Build a minimal decoding of the DWARF2 compilation unit. */
2280 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2281 sizeof (struct comp_unit));
2282 unit->abfd = objfile->obfd;
2283 unit->objfile = objfile;
2284 unit->dbase = 0;
2285 unit->tbase = 0;
2286
2287 if (objfile->separate_debug_objfile_backlink == NULL)
2288 {
2289 /* Do not read .eh_frame from separate file as they must be also
2290 present in the main file. */
2291 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2292 &unit->dwarf_frame_section,
2293 &unit->dwarf_frame_buffer,
2294 &unit->dwarf_frame_size);
2295 if (unit->dwarf_frame_size)
2296 {
2297 asection *got, *txt;
2298
2299 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2300 that is used for the i386/amd64 target, which currently is
2301 the only target in GCC that supports/uses the
2302 DW_EH_PE_datarel encoding. */
2303 got = bfd_get_section_by_name (unit->abfd, ".got");
2304 if (got)
2305 unit->dbase = got->vma;
2306
2307 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2308 so far. */
2309 txt = bfd_get_section_by_name (unit->abfd, ".text");
2310 if (txt)
2311 unit->tbase = txt->vma;
2312
2313 TRY
2314 {
2315 frame_ptr = unit->dwarf_frame_buffer;
2316 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2317 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2318 &cie_table, &fde_table,
2319 EH_CIE_OR_FDE_TYPE_ID);
2320 }
2321
2322 CATCH (e, RETURN_MASK_ERROR)
2323 {
2324 warning (_("skipping .eh_frame info of %s: %s"),
2325 objfile_name (objfile), e.message);
2326
2327 if (fde_table.num_entries != 0)
2328 {
2329 xfree (fde_table.entries);
2330 fde_table.entries = NULL;
2331 fde_table.num_entries = 0;
2332 }
2333 /* The cie_table is discarded by the next if. */
2334 }
2335 END_CATCH
2336
2337 if (cie_table.num_entries != 0)
2338 {
2339 /* Reinit cie_table: debug_frame has different CIEs. */
2340 xfree (cie_table.entries);
2341 cie_table.num_entries = 0;
2342 cie_table.entries = NULL;
2343 }
2344 }
2345 }
2346
2347 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2348 &unit->dwarf_frame_section,
2349 &unit->dwarf_frame_buffer,
2350 &unit->dwarf_frame_size);
2351 if (unit->dwarf_frame_size)
2352 {
2353 int num_old_fde_entries = fde_table.num_entries;
2354
2355 TRY
2356 {
2357 frame_ptr = unit->dwarf_frame_buffer;
2358 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2359 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2360 &cie_table, &fde_table,
2361 EH_CIE_OR_FDE_TYPE_ID);
2362 }
2363 CATCH (e, RETURN_MASK_ERROR)
2364 {
2365 warning (_("skipping .debug_frame info of %s: %s"),
2366 objfile_name (objfile), e.message);
2367
2368 if (fde_table.num_entries != 0)
2369 {
2370 fde_table.num_entries = num_old_fde_entries;
2371 if (num_old_fde_entries == 0)
2372 {
2373 xfree (fde_table.entries);
2374 fde_table.entries = NULL;
2375 }
2376 else
2377 {
2378 fde_table.entries
2379 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2380 fde_table.num_entries);
2381 }
2382 }
2383 fde_table.num_entries = num_old_fde_entries;
2384 /* The cie_table is discarded by the next if. */
2385 }
2386 END_CATCH
2387 }
2388
2389 /* Discard the cie_table, it is no longer needed. */
2390 if (cie_table.num_entries != 0)
2391 {
2392 xfree (cie_table.entries);
2393 cie_table.entries = NULL; /* Paranoia. */
2394 cie_table.num_entries = 0; /* Paranoia. */
2395 }
2396
2397 /* Copy fde_table to obstack: it is needed at runtime. */
2398 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2399
2400 if (fde_table.num_entries == 0)
2401 {
2402 fde_table2->entries = NULL;
2403 fde_table2->num_entries = 0;
2404 }
2405 else
2406 {
2407 struct dwarf2_fde *fde_prev = NULL;
2408 struct dwarf2_fde *first_non_zero_fde = NULL;
2409 int i;
2410
2411 /* Prepare FDE table for lookups. */
2412 qsort (fde_table.entries, fde_table.num_entries,
2413 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2414
2415 /* Check for leftovers from --gc-sections. The GNU linker sets
2416 the relevant symbols to zero, but doesn't zero the FDE *end*
2417 ranges because there's no relocation there. It's (offset,
2418 length), not (start, end). On targets where address zero is
2419 just another valid address this can be a problem, since the
2420 FDEs appear to be non-empty in the output --- we could pick
2421 out the wrong FDE. To work around this, when overlaps are
2422 detected, we prefer FDEs that do not start at zero.
2423
2424 Start by finding the first FDE with non-zero start. Below
2425 we'll discard all FDEs that start at zero and overlap this
2426 one. */
2427 for (i = 0; i < fde_table.num_entries; i++)
2428 {
2429 struct dwarf2_fde *fde = fde_table.entries[i];
2430
2431 if (fde->initial_location != 0)
2432 {
2433 first_non_zero_fde = fde;
2434 break;
2435 }
2436 }
2437
2438 /* Since we'll be doing bsearch, squeeze out identical (except
2439 for eh_frame_p) fde entries so bsearch result is predictable.
2440 Also discard leftovers from --gc-sections. */
2441 fde_table2->num_entries = 0;
2442 for (i = 0; i < fde_table.num_entries; i++)
2443 {
2444 struct dwarf2_fde *fde = fde_table.entries[i];
2445
2446 if (fde->initial_location == 0
2447 && first_non_zero_fde != NULL
2448 && (first_non_zero_fde->initial_location
2449 < fde->initial_location + fde->address_range))
2450 continue;
2451
2452 if (fde_prev != NULL
2453 && fde_prev->initial_location == fde->initial_location)
2454 continue;
2455
2456 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2457 sizeof (fde_table.entries[0]));
2458 ++fde_table2->num_entries;
2459 fde_prev = fde;
2460 }
2461 fde_table2->entries
2462 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2463
2464 /* Discard the original fde_table. */
2465 xfree (fde_table.entries);
2466 }
2467
2468 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2469 }
2470
2471 /* Provide a prototype to silence -Wmissing-prototypes. */
2472 void _initialize_dwarf2_frame (void);
2473
2474 void
2475 _initialize_dwarf2_frame (void)
2476 {
2477 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2478 dwarf2_frame_objfile_data = register_objfile_data ();
2479 }
This page took 0.082078 seconds and 4 git commands to generate.