Fix gdb.trace/entry-values.exp for thumb mode
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "gdb_assert.h"
37 #include <string.h>
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41 #include "ax.h"
42 #include "dwarf2loc.h"
43 #include "exceptions.h"
44 #include "dwarf2-frame-tailcall.h"
45
46 struct comp_unit;
47
48 /* Call Frame Information (CFI). */
49
50 /* Common Information Entry (CIE). */
51
52 struct dwarf2_cie
53 {
54 /* Computation Unit for this CIE. */
55 struct comp_unit *unit;
56
57 /* Offset into the .debug_frame section where this CIE was found.
58 Used to identify this CIE. */
59 ULONGEST cie_pointer;
60
61 /* Constant that is factored out of all advance location
62 instructions. */
63 ULONGEST code_alignment_factor;
64
65 /* Constants that is factored out of all offset instructions. */
66 LONGEST data_alignment_factor;
67
68 /* Return address column. */
69 ULONGEST return_address_register;
70
71 /* Instruction sequence to initialize a register set. */
72 const gdb_byte *initial_instructions;
73 const gdb_byte *end;
74
75 /* Saved augmentation, in case it's needed later. */
76 char *augmentation;
77
78 /* Encoding of addresses. */
79 gdb_byte encoding;
80
81 /* Target address size in bytes. */
82 int addr_size;
83
84 /* Target pointer size in bytes. */
85 int ptr_size;
86
87 /* True if a 'z' augmentation existed. */
88 unsigned char saw_z_augmentation;
89
90 /* True if an 'S' augmentation existed. */
91 unsigned char signal_frame;
92
93 /* The version recorded in the CIE. */
94 unsigned char version;
95
96 /* The segment size. */
97 unsigned char segment_size;
98 };
99
100 struct dwarf2_cie_table
101 {
102 int num_entries;
103 struct dwarf2_cie **entries;
104 };
105
106 /* Frame Description Entry (FDE). */
107
108 struct dwarf2_fde
109 {
110 /* CIE for this FDE. */
111 struct dwarf2_cie *cie;
112
113 /* First location associated with this FDE. */
114 CORE_ADDR initial_location;
115
116 /* Number of bytes of program instructions described by this FDE. */
117 CORE_ADDR address_range;
118
119 /* Instruction sequence. */
120 const gdb_byte *instructions;
121 const gdb_byte *end;
122
123 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
124 section. */
125 unsigned char eh_frame_p;
126 };
127
128 struct dwarf2_fde_table
129 {
130 int num_entries;
131 struct dwarf2_fde **entries;
132 };
133
134 /* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
136
137 struct comp_unit
138 {
139 /* Keep the bfd convenient. */
140 bfd *abfd;
141
142 struct objfile *objfile;
143
144 /* Pointer to the .debug_frame section loaded into memory. */
145 const gdb_byte *dwarf_frame_buffer;
146
147 /* Length of the loaded .debug_frame section. */
148 bfd_size_type dwarf_frame_size;
149
150 /* Pointer to the .debug_frame section. */
151 asection *dwarf_frame_section;
152
153 /* Base for DW_EH_PE_datarel encodings. */
154 bfd_vma dbase;
155
156 /* Base for DW_EH_PE_textrel encodings. */
157 bfd_vma tbase;
158 };
159
160 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
161 CORE_ADDR *out_offset);
162
163 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
164 int eh_frame_p);
165
166 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
167 int ptr_len, const gdb_byte *buf,
168 unsigned int *bytes_read_ptr,
169 CORE_ADDR func_base);
170 \f
171
172 /* Structure describing a frame state. */
173
174 struct dwarf2_frame_state
175 {
176 /* Each register save state can be described in terms of a CFA slot,
177 another register, or a location expression. */
178 struct dwarf2_frame_state_reg_info
179 {
180 struct dwarf2_frame_state_reg *reg;
181 int num_regs;
182
183 LONGEST cfa_offset;
184 ULONGEST cfa_reg;
185 enum {
186 CFA_UNSET,
187 CFA_REG_OFFSET,
188 CFA_EXP
189 } cfa_how;
190 const gdb_byte *cfa_exp;
191
192 /* Used to implement DW_CFA_remember_state. */
193 struct dwarf2_frame_state_reg_info *prev;
194 } regs;
195
196 /* The PC described by the current frame state. */
197 CORE_ADDR pc;
198
199 /* Initial register set from the CIE.
200 Used to implement DW_CFA_restore. */
201 struct dwarf2_frame_state_reg_info initial;
202
203 /* The information we care about from the CIE. */
204 LONGEST data_align;
205 ULONGEST code_align;
206 ULONGEST retaddr_column;
207
208 /* Flags for known producer quirks. */
209
210 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
211 and DW_CFA_def_cfa_offset takes a factored offset. */
212 int armcc_cfa_offsets_sf;
213
214 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
215 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
216 int armcc_cfa_offsets_reversed;
217 };
218
219 /* Store the length the expression for the CFA in the `cfa_reg' field,
220 which is unused in that case. */
221 #define cfa_exp_len cfa_reg
222
223 /* Assert that the register set RS is large enough to store gdbarch_num_regs
224 columns. If necessary, enlarge the register set. */
225
226 static void
227 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
228 int num_regs)
229 {
230 size_t size = sizeof (struct dwarf2_frame_state_reg);
231
232 if (num_regs <= rs->num_regs)
233 return;
234
235 rs->reg = (struct dwarf2_frame_state_reg *)
236 xrealloc (rs->reg, num_regs * size);
237
238 /* Initialize newly allocated registers. */
239 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
240 rs->num_regs = num_regs;
241 }
242
243 /* Copy the register columns in register set RS into newly allocated
244 memory and return a pointer to this newly created copy. */
245
246 static struct dwarf2_frame_state_reg *
247 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
248 {
249 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
250 struct dwarf2_frame_state_reg *reg;
251
252 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
253 memcpy (reg, rs->reg, size);
254
255 return reg;
256 }
257
258 /* Release the memory allocated to register set RS. */
259
260 static void
261 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
262 {
263 if (rs)
264 {
265 dwarf2_frame_state_free_regs (rs->prev);
266
267 xfree (rs->reg);
268 xfree (rs);
269 }
270 }
271
272 /* Release the memory allocated to the frame state FS. */
273
274 static void
275 dwarf2_frame_state_free (void *p)
276 {
277 struct dwarf2_frame_state *fs = p;
278
279 dwarf2_frame_state_free_regs (fs->initial.prev);
280 dwarf2_frame_state_free_regs (fs->regs.prev);
281 xfree (fs->initial.reg);
282 xfree (fs->regs.reg);
283 xfree (fs);
284 }
285 \f
286
287 /* Helper functions for execute_stack_op. */
288
289 static CORE_ADDR
290 read_addr_from_reg (void *baton, int reg)
291 {
292 struct frame_info *this_frame = (struct frame_info *) baton;
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
295
296 return address_from_register (regnum, this_frame);
297 }
298
299 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
300
301 static struct value *
302 get_reg_value (void *baton, struct type *type, int reg)
303 {
304 struct frame_info *this_frame = (struct frame_info *) baton;
305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
306 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
307
308 return value_from_register (type, regnum, this_frame);
309 }
310
311 static void
312 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
313 {
314 read_memory (addr, buf, len);
315 }
316
317 /* Execute the required actions for both the DW_CFA_restore and
318 DW_CFA_restore_extended instructions. */
319 static void
320 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
321 struct dwarf2_frame_state *fs, int eh_frame_p)
322 {
323 ULONGEST reg;
324
325 gdb_assert (fs->initial.reg);
326 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
327 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
328
329 /* Check if this register was explicitly initialized in the
330 CIE initial instructions. If not, default the rule to
331 UNSPECIFIED. */
332 if (reg < fs->initial.num_regs)
333 fs->regs.reg[reg] = fs->initial.reg[reg];
334 else
335 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
336
337 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
338 complaint (&symfile_complaints, _("\
339 incomplete CFI data; DW_CFA_restore unspecified\n\
340 register %s (#%d) at %s"),
341 gdbarch_register_name
342 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
343 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
344 paddress (gdbarch, fs->pc));
345 }
346
347 /* Virtual method table for execute_stack_op below. */
348
349 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
350 {
351 read_addr_from_reg,
352 get_reg_value,
353 read_mem,
354 ctx_no_get_frame_base,
355 ctx_no_get_frame_cfa,
356 ctx_no_get_frame_pc,
357 ctx_no_get_tls_address,
358 ctx_no_dwarf_call,
359 ctx_no_get_base_type,
360 ctx_no_push_dwarf_reg_entry_value,
361 ctx_no_get_addr_index
362 };
363
364 static CORE_ADDR
365 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
366 CORE_ADDR offset, struct frame_info *this_frame,
367 CORE_ADDR initial, int initial_in_stack_memory)
368 {
369 struct dwarf_expr_context *ctx;
370 CORE_ADDR result;
371 struct cleanup *old_chain;
372
373 ctx = new_dwarf_expr_context ();
374 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
375 make_cleanup_value_free_to_mark (value_mark ());
376
377 ctx->gdbarch = get_frame_arch (this_frame);
378 ctx->addr_size = addr_size;
379 ctx->ref_addr_size = -1;
380 ctx->offset = offset;
381 ctx->baton = this_frame;
382 ctx->funcs = &dwarf2_frame_ctx_funcs;
383
384 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
385 dwarf_expr_eval (ctx, exp, len);
386
387 if (ctx->location == DWARF_VALUE_MEMORY)
388 result = dwarf_expr_fetch_address (ctx, 0);
389 else if (ctx->location == DWARF_VALUE_REGISTER)
390 result = read_addr_from_reg (this_frame,
391 value_as_long (dwarf_expr_fetch (ctx, 0)));
392 else
393 {
394 /* This is actually invalid DWARF, but if we ever do run across
395 it somehow, we might as well support it. So, instead, report
396 it as unimplemented. */
397 error (_("\
398 Not implemented: computing unwound register using explicit value operator"));
399 }
400
401 do_cleanups (old_chain);
402
403 return result;
404 }
405 \f
406
407 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
408 PC. Modify FS state accordingly. Return current INSN_PTR where the
409 execution has stopped, one can resume it on the next call. */
410
411 static const gdb_byte *
412 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
413 const gdb_byte *insn_end, struct gdbarch *gdbarch,
414 CORE_ADDR pc, struct dwarf2_frame_state *fs)
415 {
416 int eh_frame_p = fde->eh_frame_p;
417 unsigned int bytes_read;
418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
419
420 while (insn_ptr < insn_end && fs->pc <= pc)
421 {
422 gdb_byte insn = *insn_ptr++;
423 uint64_t utmp, reg;
424 int64_t offset;
425
426 if ((insn & 0xc0) == DW_CFA_advance_loc)
427 fs->pc += (insn & 0x3f) * fs->code_align;
428 else if ((insn & 0xc0) == DW_CFA_offset)
429 {
430 reg = insn & 0x3f;
431 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
432 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
433 offset = utmp * fs->data_align;
434 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
435 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
436 fs->regs.reg[reg].loc.offset = offset;
437 }
438 else if ((insn & 0xc0) == DW_CFA_restore)
439 {
440 reg = insn & 0x3f;
441 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
442 }
443 else
444 {
445 switch (insn)
446 {
447 case DW_CFA_set_loc:
448 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
449 fde->cie->ptr_size, insn_ptr,
450 &bytes_read, fde->initial_location);
451 /* Apply the objfile offset for relocatable objects. */
452 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
453 SECT_OFF_TEXT (fde->cie->unit->objfile));
454 insn_ptr += bytes_read;
455 break;
456
457 case DW_CFA_advance_loc1:
458 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
459 fs->pc += utmp * fs->code_align;
460 insn_ptr++;
461 break;
462 case DW_CFA_advance_loc2:
463 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
464 fs->pc += utmp * fs->code_align;
465 insn_ptr += 2;
466 break;
467 case DW_CFA_advance_loc4:
468 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 4;
471 break;
472
473 case DW_CFA_offset_extended:
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
475 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
476 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
477 offset = utmp * fs->data_align;
478 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
479 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
480 fs->regs.reg[reg].loc.offset = offset;
481 break;
482
483 case DW_CFA_restore_extended:
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
485 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
486 break;
487
488 case DW_CFA_undefined:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
490 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
491 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
492 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
493 break;
494
495 case DW_CFA_same_value:
496 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
497 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
498 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
499 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
500 break;
501
502 case DW_CFA_register:
503 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
504 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
505 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
506 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
507 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
508 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
509 fs->regs.reg[reg].loc.reg = utmp;
510 break;
511
512 case DW_CFA_remember_state:
513 {
514 struct dwarf2_frame_state_reg_info *new_rs;
515
516 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
517 *new_rs = fs->regs;
518 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
519 fs->regs.prev = new_rs;
520 }
521 break;
522
523 case DW_CFA_restore_state:
524 {
525 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
526
527 if (old_rs == NULL)
528 {
529 complaint (&symfile_complaints, _("\
530 bad CFI data; mismatched DW_CFA_restore_state at %s"),
531 paddress (gdbarch, fs->pc));
532 }
533 else
534 {
535 xfree (fs->regs.reg);
536 fs->regs = *old_rs;
537 xfree (old_rs);
538 }
539 }
540 break;
541
542 case DW_CFA_def_cfa:
543 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
544 fs->regs.cfa_reg = reg;
545 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
546
547 if (fs->armcc_cfa_offsets_sf)
548 utmp *= fs->data_align;
549
550 fs->regs.cfa_offset = utmp;
551 fs->regs.cfa_how = CFA_REG_OFFSET;
552 break;
553
554 case DW_CFA_def_cfa_register:
555 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
556 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
557 eh_frame_p);
558 fs->regs.cfa_how = CFA_REG_OFFSET;
559 break;
560
561 case DW_CFA_def_cfa_offset:
562 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
563
564 if (fs->armcc_cfa_offsets_sf)
565 utmp *= fs->data_align;
566
567 fs->regs.cfa_offset = utmp;
568 /* cfa_how deliberately not set. */
569 break;
570
571 case DW_CFA_nop:
572 break;
573
574 case DW_CFA_def_cfa_expression:
575 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
576 fs->regs.cfa_exp_len = utmp;
577 fs->regs.cfa_exp = insn_ptr;
578 fs->regs.cfa_how = CFA_EXP;
579 insn_ptr += fs->regs.cfa_exp_len;
580 break;
581
582 case DW_CFA_expression:
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
584 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
585 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
586 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
587 fs->regs.reg[reg].loc.exp = insn_ptr;
588 fs->regs.reg[reg].exp_len = utmp;
589 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
590 insn_ptr += utmp;
591 break;
592
593 case DW_CFA_offset_extended_sf:
594 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
595 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
596 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
597 offset *= fs->data_align;
598 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
599 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
600 fs->regs.reg[reg].loc.offset = offset;
601 break;
602
603 case DW_CFA_val_offset:
604 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
605 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
606 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
607 offset = utmp * fs->data_align;
608 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
609 fs->regs.reg[reg].loc.offset = offset;
610 break;
611
612 case DW_CFA_val_offset_sf:
613 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
614 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
615 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
616 offset *= fs->data_align;
617 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
618 fs->regs.reg[reg].loc.offset = offset;
619 break;
620
621 case DW_CFA_val_expression:
622 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
623 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
624 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
625 fs->regs.reg[reg].loc.exp = insn_ptr;
626 fs->regs.reg[reg].exp_len = utmp;
627 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
628 insn_ptr += utmp;
629 break;
630
631 case DW_CFA_def_cfa_sf:
632 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
633 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
634 eh_frame_p);
635 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
636 fs->regs.cfa_offset = offset * fs->data_align;
637 fs->regs.cfa_how = CFA_REG_OFFSET;
638 break;
639
640 case DW_CFA_def_cfa_offset_sf:
641 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
642 fs->regs.cfa_offset = offset * fs->data_align;
643 /* cfa_how deliberately not set. */
644 break;
645
646 case DW_CFA_GNU_window_save:
647 /* This is SPARC-specific code, and contains hard-coded
648 constants for the register numbering scheme used by
649 GCC. Rather than having a architecture-specific
650 operation that's only ever used by a single
651 architecture, we provide the implementation here.
652 Incidentally that's what GCC does too in its
653 unwinder. */
654 {
655 int size = register_size (gdbarch, 0);
656
657 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
658 for (reg = 8; reg < 16; reg++)
659 {
660 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
661 fs->regs.reg[reg].loc.reg = reg + 16;
662 }
663 for (reg = 16; reg < 32; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
666 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
667 }
668 }
669 break;
670
671 case DW_CFA_GNU_args_size:
672 /* Ignored. */
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
674 break;
675
676 case DW_CFA_GNU_negative_offset_extended:
677 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
678 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
679 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
680 offset = utmp * fs->data_align;
681 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
682 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
683 fs->regs.reg[reg].loc.offset = -offset;
684 break;
685
686 default:
687 internal_error (__FILE__, __LINE__,
688 _("Unknown CFI encountered."));
689 }
690 }
691 }
692
693 if (fs->initial.reg == NULL)
694 {
695 /* Don't allow remember/restore between CIE and FDE programs. */
696 dwarf2_frame_state_free_regs (fs->regs.prev);
697 fs->regs.prev = NULL;
698 }
699
700 return insn_ptr;
701 }
702 \f
703
704 /* Architecture-specific operations. */
705
706 /* Per-architecture data key. */
707 static struct gdbarch_data *dwarf2_frame_data;
708
709 struct dwarf2_frame_ops
710 {
711 /* Pre-initialize the register state REG for register REGNUM. */
712 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
713 struct frame_info *);
714
715 /* Check whether the THIS_FRAME is a signal trampoline. */
716 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
717
718 /* Convert .eh_frame register number to DWARF register number, or
719 adjust .debug_frame register number. */
720 int (*adjust_regnum) (struct gdbarch *, int, int);
721 };
722
723 /* Default architecture-specific register state initialization
724 function. */
725
726 static void
727 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
728 struct dwarf2_frame_state_reg *reg,
729 struct frame_info *this_frame)
730 {
731 /* If we have a register that acts as a program counter, mark it as
732 a destination for the return address. If we have a register that
733 serves as the stack pointer, arrange for it to be filled with the
734 call frame address (CFA). The other registers are marked as
735 unspecified.
736
737 We copy the return address to the program counter, since many
738 parts in GDB assume that it is possible to get the return address
739 by unwinding the program counter register. However, on ISA's
740 with a dedicated return address register, the CFI usually only
741 contains information to unwind that return address register.
742
743 The reason we're treating the stack pointer special here is
744 because in many cases GCC doesn't emit CFI for the stack pointer
745 and implicitly assumes that it is equal to the CFA. This makes
746 some sense since the DWARF specification (version 3, draft 8,
747 p. 102) says that:
748
749 "Typically, the CFA is defined to be the value of the stack
750 pointer at the call site in the previous frame (which may be
751 different from its value on entry to the current frame)."
752
753 However, this isn't true for all platforms supported by GCC
754 (e.g. IBM S/390 and zSeries). Those architectures should provide
755 their own architecture-specific initialization function. */
756
757 if (regnum == gdbarch_pc_regnum (gdbarch))
758 reg->how = DWARF2_FRAME_REG_RA;
759 else if (regnum == gdbarch_sp_regnum (gdbarch))
760 reg->how = DWARF2_FRAME_REG_CFA;
761 }
762
763 /* Return a default for the architecture-specific operations. */
764
765 static void *
766 dwarf2_frame_init (struct obstack *obstack)
767 {
768 struct dwarf2_frame_ops *ops;
769
770 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
771 ops->init_reg = dwarf2_frame_default_init_reg;
772 return ops;
773 }
774
775 /* Set the architecture-specific register state initialization
776 function for GDBARCH to INIT_REG. */
777
778 void
779 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
780 void (*init_reg) (struct gdbarch *, int,
781 struct dwarf2_frame_state_reg *,
782 struct frame_info *))
783 {
784 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
785
786 ops->init_reg = init_reg;
787 }
788
789 /* Pre-initialize the register state REG for register REGNUM. */
790
791 static void
792 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
793 struct dwarf2_frame_state_reg *reg,
794 struct frame_info *this_frame)
795 {
796 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
797
798 ops->init_reg (gdbarch, regnum, reg, this_frame);
799 }
800
801 /* Set the architecture-specific signal trampoline recognition
802 function for GDBARCH to SIGNAL_FRAME_P. */
803
804 void
805 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
806 int (*signal_frame_p) (struct gdbarch *,
807 struct frame_info *))
808 {
809 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
810
811 ops->signal_frame_p = signal_frame_p;
812 }
813
814 /* Query the architecture-specific signal frame recognizer for
815 THIS_FRAME. */
816
817 static int
818 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
819 struct frame_info *this_frame)
820 {
821 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
822
823 if (ops->signal_frame_p == NULL)
824 return 0;
825 return ops->signal_frame_p (gdbarch, this_frame);
826 }
827
828 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
829 register numbers. */
830
831 void
832 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
833 int (*adjust_regnum) (struct gdbarch *,
834 int, int))
835 {
836 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
837
838 ops->adjust_regnum = adjust_regnum;
839 }
840
841 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
842 register. */
843
844 static int
845 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
846 int regnum, int eh_frame_p)
847 {
848 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
849
850 if (ops->adjust_regnum == NULL)
851 return regnum;
852 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
853 }
854
855 static void
856 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
857 struct dwarf2_fde *fde)
858 {
859 struct symtab *s;
860
861 s = find_pc_symtab (fs->pc);
862 if (s == NULL)
863 return;
864
865 if (producer_is_realview (s->producer))
866 {
867 if (fde->cie->version == 1)
868 fs->armcc_cfa_offsets_sf = 1;
869
870 if (fde->cie->version == 1)
871 fs->armcc_cfa_offsets_reversed = 1;
872
873 /* The reversed offset problem is present in some compilers
874 using DWARF3, but it was eventually fixed. Check the ARM
875 defined augmentations, which are in the format "armcc" followed
876 by a list of one-character options. The "+" option means
877 this problem is fixed (no quirk needed). If the armcc
878 augmentation is missing, the quirk is needed. */
879 if (fde->cie->version == 3
880 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
881 || strchr (fde->cie->augmentation + 5, '+') == NULL))
882 fs->armcc_cfa_offsets_reversed = 1;
883
884 return;
885 }
886 }
887 \f
888
889 void
890 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
891 struct gdbarch *gdbarch,
892 CORE_ADDR pc,
893 struct dwarf2_per_cu_data *data)
894 {
895 struct dwarf2_fde *fde;
896 CORE_ADDR text_offset;
897 struct dwarf2_frame_state fs;
898 int addr_size;
899
900 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
901
902 fs.pc = pc;
903
904 /* Find the correct FDE. */
905 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
906 if (fde == NULL)
907 error (_("Could not compute CFA; needed to translate this expression"));
908
909 /* Extract any interesting information from the CIE. */
910 fs.data_align = fde->cie->data_alignment_factor;
911 fs.code_align = fde->cie->code_alignment_factor;
912 fs.retaddr_column = fde->cie->return_address_register;
913 addr_size = fde->cie->addr_size;
914
915 /* Check for "quirks" - known bugs in producers. */
916 dwarf2_frame_find_quirks (&fs, fde);
917
918 /* First decode all the insns in the CIE. */
919 execute_cfa_program (fde, fde->cie->initial_instructions,
920 fde->cie->end, gdbarch, pc, &fs);
921
922 /* Save the initialized register set. */
923 fs.initial = fs.regs;
924 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
925
926 /* Then decode the insns in the FDE up to our target PC. */
927 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
928
929 /* Calculate the CFA. */
930 switch (fs.regs.cfa_how)
931 {
932 case CFA_REG_OFFSET:
933 {
934 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
935
936 if (regnum == -1)
937 error (_("Unable to access DWARF register number %d"),
938 (int) fs.regs.cfa_reg); /* FIXME */
939 ax_reg (expr, regnum);
940
941 if (fs.regs.cfa_offset != 0)
942 {
943 if (fs.armcc_cfa_offsets_reversed)
944 ax_const_l (expr, -fs.regs.cfa_offset);
945 else
946 ax_const_l (expr, fs.regs.cfa_offset);
947 ax_simple (expr, aop_add);
948 }
949 }
950 break;
951
952 case CFA_EXP:
953 ax_const_l (expr, text_offset);
954 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
955 fs.regs.cfa_exp,
956 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
957 data);
958 break;
959
960 default:
961 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
962 }
963 }
964
965 \f
966 struct dwarf2_frame_cache
967 {
968 /* DWARF Call Frame Address. */
969 CORE_ADDR cfa;
970
971 /* Set if the return address column was marked as unavailable
972 (required non-collected memory or registers to compute). */
973 int unavailable_retaddr;
974
975 /* Set if the return address column was marked as undefined. */
976 int undefined_retaddr;
977
978 /* Saved registers, indexed by GDB register number, not by DWARF
979 register number. */
980 struct dwarf2_frame_state_reg *reg;
981
982 /* Return address register. */
983 struct dwarf2_frame_state_reg retaddr_reg;
984
985 /* Target address size in bytes. */
986 int addr_size;
987
988 /* The .text offset. */
989 CORE_ADDR text_offset;
990
991 /* True if we already checked whether this frame is the bottom frame
992 of a virtual tail call frame chain. */
993 int checked_tailcall_bottom;
994
995 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
996 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
997 involved. Non-bottom frames of a virtual tail call frames chain use
998 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
999 them. */
1000 void *tailcall_cache;
1001
1002 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1003 base to get the SP, to simulate the return address pushed on the
1004 stack. */
1005 LONGEST entry_cfa_sp_offset;
1006 int entry_cfa_sp_offset_p;
1007 };
1008
1009 /* A cleanup that sets a pointer to NULL. */
1010
1011 static void
1012 clear_pointer_cleanup (void *arg)
1013 {
1014 void **ptr = arg;
1015
1016 *ptr = NULL;
1017 }
1018
1019 static struct dwarf2_frame_cache *
1020 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1021 {
1022 struct cleanup *reset_cache_cleanup, *old_chain;
1023 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1024 const int num_regs = gdbarch_num_regs (gdbarch)
1025 + gdbarch_num_pseudo_regs (gdbarch);
1026 struct dwarf2_frame_cache *cache;
1027 struct dwarf2_frame_state *fs;
1028 struct dwarf2_fde *fde;
1029 volatile struct gdb_exception ex;
1030 CORE_ADDR entry_pc;
1031 const gdb_byte *instr;
1032
1033 if (*this_cache)
1034 return *this_cache;
1035
1036 /* Allocate a new cache. */
1037 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1038 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1039 *this_cache = cache;
1040 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1041
1042 /* Allocate and initialize the frame state. */
1043 fs = XCNEW (struct dwarf2_frame_state);
1044 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1045
1046 /* Unwind the PC.
1047
1048 Note that if the next frame is never supposed to return (i.e. a call
1049 to abort), the compiler might optimize away the instruction at
1050 its return address. As a result the return address will
1051 point at some random instruction, and the CFI for that
1052 instruction is probably worthless to us. GCC's unwinder solves
1053 this problem by substracting 1 from the return address to get an
1054 address in the middle of a presumed call instruction (or the
1055 instruction in the associated delay slot). This should only be
1056 done for "normal" frames and not for resume-type frames (signal
1057 handlers, sentinel frames, dummy frames). The function
1058 get_frame_address_in_block does just this. It's not clear how
1059 reliable the method is though; there is the potential for the
1060 register state pre-call being different to that on return. */
1061 fs->pc = get_frame_address_in_block (this_frame);
1062
1063 /* Find the correct FDE. */
1064 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1065 gdb_assert (fde != NULL);
1066
1067 /* Extract any interesting information from the CIE. */
1068 fs->data_align = fde->cie->data_alignment_factor;
1069 fs->code_align = fde->cie->code_alignment_factor;
1070 fs->retaddr_column = fde->cie->return_address_register;
1071 cache->addr_size = fde->cie->addr_size;
1072
1073 /* Check for "quirks" - known bugs in producers. */
1074 dwarf2_frame_find_quirks (fs, fde);
1075
1076 /* First decode all the insns in the CIE. */
1077 execute_cfa_program (fde, fde->cie->initial_instructions,
1078 fde->cie->end, gdbarch,
1079 get_frame_address_in_block (this_frame), fs);
1080
1081 /* Save the initialized register set. */
1082 fs->initial = fs->regs;
1083 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1084
1085 if (get_frame_func_if_available (this_frame, &entry_pc))
1086 {
1087 /* Decode the insns in the FDE up to the entry PC. */
1088 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1089 entry_pc, fs);
1090
1091 if (fs->regs.cfa_how == CFA_REG_OFFSET
1092 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1093 == gdbarch_sp_regnum (gdbarch)))
1094 {
1095 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1096 cache->entry_cfa_sp_offset_p = 1;
1097 }
1098 }
1099 else
1100 instr = fde->instructions;
1101
1102 /* Then decode the insns in the FDE up to our target PC. */
1103 execute_cfa_program (fde, instr, fde->end, gdbarch,
1104 get_frame_address_in_block (this_frame), fs);
1105
1106 TRY_CATCH (ex, RETURN_MASK_ERROR)
1107 {
1108 /* Calculate the CFA. */
1109 switch (fs->regs.cfa_how)
1110 {
1111 case CFA_REG_OFFSET:
1112 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1113 if (fs->armcc_cfa_offsets_reversed)
1114 cache->cfa -= fs->regs.cfa_offset;
1115 else
1116 cache->cfa += fs->regs.cfa_offset;
1117 break;
1118
1119 case CFA_EXP:
1120 cache->cfa =
1121 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1122 cache->addr_size, cache->text_offset,
1123 this_frame, 0, 0);
1124 break;
1125
1126 default:
1127 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1128 }
1129 }
1130 if (ex.reason < 0)
1131 {
1132 if (ex.error == NOT_AVAILABLE_ERROR)
1133 {
1134 cache->unavailable_retaddr = 1;
1135 do_cleanups (old_chain);
1136 discard_cleanups (reset_cache_cleanup);
1137 return cache;
1138 }
1139
1140 throw_exception (ex);
1141 }
1142
1143 /* Initialize the register state. */
1144 {
1145 int regnum;
1146
1147 for (regnum = 0; regnum < num_regs; regnum++)
1148 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1149 }
1150
1151 /* Go through the DWARF2 CFI generated table and save its register
1152 location information in the cache. Note that we don't skip the
1153 return address column; it's perfectly all right for it to
1154 correspond to a real register. If it doesn't correspond to a
1155 real register, or if we shouldn't treat it as such,
1156 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1157 the range [0, gdbarch_num_regs). */
1158 {
1159 int column; /* CFI speak for "register number". */
1160
1161 for (column = 0; column < fs->regs.num_regs; column++)
1162 {
1163 /* Use the GDB register number as the destination index. */
1164 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1165
1166 /* If there's no corresponding GDB register, ignore it. */
1167 if (regnum < 0 || regnum >= num_regs)
1168 continue;
1169
1170 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1171 of all debug info registers. If it doesn't, complain (but
1172 not too loudly). It turns out that GCC assumes that an
1173 unspecified register implies "same value" when CFI (draft
1174 7) specifies nothing at all. Such a register could equally
1175 be interpreted as "undefined". Also note that this check
1176 isn't sufficient; it only checks that all registers in the
1177 range [0 .. max column] are specified, and won't detect
1178 problems when a debug info register falls outside of the
1179 table. We need a way of iterating through all the valid
1180 DWARF2 register numbers. */
1181 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1182 {
1183 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1184 complaint (&symfile_complaints, _("\
1185 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1186 gdbarch_register_name (gdbarch, regnum),
1187 paddress (gdbarch, fs->pc));
1188 }
1189 else
1190 cache->reg[regnum] = fs->regs.reg[column];
1191 }
1192 }
1193
1194 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1195 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1196 {
1197 int regnum;
1198
1199 for (regnum = 0; regnum < num_regs; regnum++)
1200 {
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1202 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1203 {
1204 struct dwarf2_frame_state_reg *retaddr_reg =
1205 &fs->regs.reg[fs->retaddr_column];
1206
1207 /* It seems rather bizarre to specify an "empty" column as
1208 the return adress column. However, this is exactly
1209 what GCC does on some targets. It turns out that GCC
1210 assumes that the return address can be found in the
1211 register corresponding to the return address column.
1212 Incidentally, that's how we should treat a return
1213 address column specifying "same value" too. */
1214 if (fs->retaddr_column < fs->regs.num_regs
1215 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1216 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1217 {
1218 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1219 cache->reg[regnum] = *retaddr_reg;
1220 else
1221 cache->retaddr_reg = *retaddr_reg;
1222 }
1223 else
1224 {
1225 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1226 {
1227 cache->reg[regnum].loc.reg = fs->retaddr_column;
1228 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1229 }
1230 else
1231 {
1232 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1233 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 }
1236 }
1237 }
1238 }
1239
1240 if (fs->retaddr_column < fs->regs.num_regs
1241 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1242 cache->undefined_retaddr = 1;
1243
1244 do_cleanups (old_chain);
1245 discard_cleanups (reset_cache_cleanup);
1246 return cache;
1247 }
1248
1249 static enum unwind_stop_reason
1250 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1251 void **this_cache)
1252 {
1253 struct dwarf2_frame_cache *cache
1254 = dwarf2_frame_cache (this_frame, this_cache);
1255
1256 if (cache->unavailable_retaddr)
1257 return UNWIND_UNAVAILABLE;
1258
1259 if (cache->undefined_retaddr)
1260 return UNWIND_OUTERMOST;
1261
1262 return UNWIND_NO_REASON;
1263 }
1264
1265 static void
1266 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1267 struct frame_id *this_id)
1268 {
1269 struct dwarf2_frame_cache *cache =
1270 dwarf2_frame_cache (this_frame, this_cache);
1271
1272 if (cache->unavailable_retaddr)
1273 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1274 else if (cache->undefined_retaddr)
1275 return;
1276 else
1277 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1278 }
1279
1280 static struct value *
1281 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1282 int regnum)
1283 {
1284 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1285 struct dwarf2_frame_cache *cache =
1286 dwarf2_frame_cache (this_frame, this_cache);
1287 CORE_ADDR addr;
1288 int realnum;
1289
1290 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1291 call frame chain. */
1292 if (!cache->checked_tailcall_bottom)
1293 {
1294 cache->checked_tailcall_bottom = 1;
1295 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1296 (cache->entry_cfa_sp_offset_p
1297 ? &cache->entry_cfa_sp_offset : NULL));
1298 }
1299
1300 /* Non-bottom frames of a virtual tail call frames chain use
1301 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1302 them. If dwarf2_tailcall_prev_register_first does not have specific value
1303 unwind the register, tail call frames are assumed to have the register set
1304 of the top caller. */
1305 if (cache->tailcall_cache)
1306 {
1307 struct value *val;
1308
1309 val = dwarf2_tailcall_prev_register_first (this_frame,
1310 &cache->tailcall_cache,
1311 regnum);
1312 if (val)
1313 return val;
1314 }
1315
1316 switch (cache->reg[regnum].how)
1317 {
1318 case DWARF2_FRAME_REG_UNDEFINED:
1319 /* If CFI explicitly specified that the value isn't defined,
1320 mark it as optimized away; the value isn't available. */
1321 return frame_unwind_got_optimized (this_frame, regnum);
1322
1323 case DWARF2_FRAME_REG_SAVED_OFFSET:
1324 addr = cache->cfa + cache->reg[regnum].loc.offset;
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
1326
1327 case DWARF2_FRAME_REG_SAVED_REG:
1328 realnum
1329 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1330 return frame_unwind_got_register (this_frame, regnum, realnum);
1331
1332 case DWARF2_FRAME_REG_SAVED_EXP:
1333 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1334 cache->reg[regnum].exp_len,
1335 cache->addr_size, cache->text_offset,
1336 this_frame, cache->cfa, 1);
1337 return frame_unwind_got_memory (this_frame, regnum, addr);
1338
1339 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_constant (this_frame, regnum, addr);
1342
1343 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1344 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1345 cache->reg[regnum].exp_len,
1346 cache->addr_size, cache->text_offset,
1347 this_frame, cache->cfa, 1);
1348 return frame_unwind_got_constant (this_frame, regnum, addr);
1349
1350 case DWARF2_FRAME_REG_UNSPECIFIED:
1351 /* GCC, in its infinite wisdom decided to not provide unwind
1352 information for registers that are "same value". Since
1353 DWARF2 (3 draft 7) doesn't define such behavior, said
1354 registers are actually undefined (which is different to CFI
1355 "undefined"). Code above issues a complaint about this.
1356 Here just fudge the books, assume GCC, and that the value is
1357 more inner on the stack. */
1358 return frame_unwind_got_register (this_frame, regnum, regnum);
1359
1360 case DWARF2_FRAME_REG_SAME_VALUE:
1361 return frame_unwind_got_register (this_frame, regnum, regnum);
1362
1363 case DWARF2_FRAME_REG_CFA:
1364 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1365
1366 case DWARF2_FRAME_REG_CFA_OFFSET:
1367 addr = cache->cfa + cache->reg[regnum].loc.offset;
1368 return frame_unwind_got_address (this_frame, regnum, addr);
1369
1370 case DWARF2_FRAME_REG_RA_OFFSET:
1371 addr = cache->reg[regnum].loc.offset;
1372 regnum = gdbarch_dwarf2_reg_to_regnum
1373 (gdbarch, cache->retaddr_reg.loc.reg);
1374 addr += get_frame_register_unsigned (this_frame, regnum);
1375 return frame_unwind_got_address (this_frame, regnum, addr);
1376
1377 case DWARF2_FRAME_REG_FN:
1378 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1379
1380 default:
1381 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1382 }
1383 }
1384
1385 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1386 call frames chain. */
1387
1388 static void
1389 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1390 {
1391 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1392
1393 if (cache->tailcall_cache)
1394 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1395 }
1396
1397 static int
1398 dwarf2_frame_sniffer (const struct frame_unwind *self,
1399 struct frame_info *this_frame, void **this_cache)
1400 {
1401 /* Grab an address that is guarenteed to reside somewhere within the
1402 function. get_frame_pc(), with a no-return next function, can
1403 end up returning something past the end of this function's body.
1404 If the frame we're sniffing for is a signal frame whose start
1405 address is placed on the stack by the OS, its FDE must
1406 extend one byte before its start address or we could potentially
1407 select the FDE of the previous function. */
1408 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1409 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1410
1411 if (!fde)
1412 return 0;
1413
1414 /* On some targets, signal trampolines may have unwind information.
1415 We need to recognize them so that we set the frame type
1416 correctly. */
1417
1418 if (fde->cie->signal_frame
1419 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1420 this_frame))
1421 return self->type == SIGTRAMP_FRAME;
1422
1423 if (self->type != NORMAL_FRAME)
1424 return 0;
1425
1426 return 1;
1427 }
1428
1429 static const struct frame_unwind dwarf2_frame_unwind =
1430 {
1431 NORMAL_FRAME,
1432 dwarf2_frame_unwind_stop_reason,
1433 dwarf2_frame_this_id,
1434 dwarf2_frame_prev_register,
1435 NULL,
1436 dwarf2_frame_sniffer,
1437 dwarf2_frame_dealloc_cache
1438 };
1439
1440 static const struct frame_unwind dwarf2_signal_frame_unwind =
1441 {
1442 SIGTRAMP_FRAME,
1443 dwarf2_frame_unwind_stop_reason,
1444 dwarf2_frame_this_id,
1445 dwarf2_frame_prev_register,
1446 NULL,
1447 dwarf2_frame_sniffer,
1448
1449 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1450 NULL
1451 };
1452
1453 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1454
1455 void
1456 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1457 {
1458 /* TAILCALL_FRAME must be first to find the record by
1459 dwarf2_tailcall_sniffer_first. */
1460 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1461
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1463 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1464 }
1465 \f
1466
1467 /* There is no explicitly defined relationship between the CFA and the
1468 location of frame's local variables and arguments/parameters.
1469 Therefore, frame base methods on this page should probably only be
1470 used as a last resort, just to avoid printing total garbage as a
1471 response to the "info frame" command. */
1472
1473 static CORE_ADDR
1474 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1475 {
1476 struct dwarf2_frame_cache *cache =
1477 dwarf2_frame_cache (this_frame, this_cache);
1478
1479 return cache->cfa;
1480 }
1481
1482 static const struct frame_base dwarf2_frame_base =
1483 {
1484 &dwarf2_frame_unwind,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address,
1487 dwarf2_frame_base_address
1488 };
1489
1490 const struct frame_base *
1491 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1492 {
1493 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1494
1495 if (dwarf2_frame_find_fde (&block_addr, NULL))
1496 return &dwarf2_frame_base;
1497
1498 return NULL;
1499 }
1500
1501 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1502 the DWARF unwinder. This is used to implement
1503 DW_OP_call_frame_cfa. */
1504
1505 CORE_ADDR
1506 dwarf2_frame_cfa (struct frame_info *this_frame)
1507 {
1508 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1509 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1510 throw_error (NOT_AVAILABLE_ERROR,
1511 _("cfa not available for record btrace target"));
1512
1513 while (get_frame_type (this_frame) == INLINE_FRAME)
1514 this_frame = get_prev_frame (this_frame);
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
1519 /* This restriction could be lifted if other unwinders are known to
1520 compute the frame base in a way compatible with the DWARF
1521 unwinder. */
1522 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1523 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1524 error (_("can't compute CFA for this frame"));
1525 return get_frame_base (this_frame);
1526 }
1527 \f
1528 const struct objfile_data *dwarf2_frame_objfile_data;
1529
1530 static unsigned int
1531 read_1_byte (bfd *abfd, const gdb_byte *buf)
1532 {
1533 return bfd_get_8 (abfd, buf);
1534 }
1535
1536 static unsigned int
1537 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1538 {
1539 return bfd_get_32 (abfd, buf);
1540 }
1541
1542 static ULONGEST
1543 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1544 {
1545 return bfd_get_64 (abfd, buf);
1546 }
1547
1548 static ULONGEST
1549 read_initial_length (bfd *abfd, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr)
1551 {
1552 LONGEST result;
1553
1554 result = bfd_get_32 (abfd, buf);
1555 if (result == 0xffffffff)
1556 {
1557 result = bfd_get_64 (abfd, buf + 4);
1558 *bytes_read_ptr = 12;
1559 }
1560 else
1561 *bytes_read_ptr = 4;
1562
1563 return result;
1564 }
1565 \f
1566
1567 /* Pointer encoding helper functions. */
1568
1569 /* GCC supports exception handling based on DWARF2 CFI. However, for
1570 technical reasons, it encodes addresses in its FDE's in a different
1571 way. Several "pointer encodings" are supported. The encoding
1572 that's used for a particular FDE is determined by the 'R'
1573 augmentation in the associated CIE. The argument of this
1574 augmentation is a single byte.
1575
1576 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1577 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1578 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1579 address should be interpreted (absolute, relative to the current
1580 position in the FDE, ...). Bit 7, indicates that the address
1581 should be dereferenced. */
1582
1583 static gdb_byte
1584 encoding_for_size (unsigned int size)
1585 {
1586 switch (size)
1587 {
1588 case 2:
1589 return DW_EH_PE_udata2;
1590 case 4:
1591 return DW_EH_PE_udata4;
1592 case 8:
1593 return DW_EH_PE_udata8;
1594 default:
1595 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1596 }
1597 }
1598
1599 static CORE_ADDR
1600 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1601 int ptr_len, const gdb_byte *buf,
1602 unsigned int *bytes_read_ptr,
1603 CORE_ADDR func_base)
1604 {
1605 ptrdiff_t offset;
1606 CORE_ADDR base;
1607
1608 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1609 FDE's. */
1610 if (encoding & DW_EH_PE_indirect)
1611 internal_error (__FILE__, __LINE__,
1612 _("Unsupported encoding: DW_EH_PE_indirect"));
1613
1614 *bytes_read_ptr = 0;
1615
1616 switch (encoding & 0x70)
1617 {
1618 case DW_EH_PE_absptr:
1619 base = 0;
1620 break;
1621 case DW_EH_PE_pcrel:
1622 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1623 base += (buf - unit->dwarf_frame_buffer);
1624 break;
1625 case DW_EH_PE_datarel:
1626 base = unit->dbase;
1627 break;
1628 case DW_EH_PE_textrel:
1629 base = unit->tbase;
1630 break;
1631 case DW_EH_PE_funcrel:
1632 base = func_base;
1633 break;
1634 case DW_EH_PE_aligned:
1635 base = 0;
1636 offset = buf - unit->dwarf_frame_buffer;
1637 if ((offset % ptr_len) != 0)
1638 {
1639 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1640 buf += *bytes_read_ptr;
1641 }
1642 break;
1643 default:
1644 internal_error (__FILE__, __LINE__,
1645 _("Invalid or unsupported encoding"));
1646 }
1647
1648 if ((encoding & 0x07) == 0x00)
1649 {
1650 encoding |= encoding_for_size (ptr_len);
1651 if (bfd_get_sign_extend_vma (unit->abfd))
1652 encoding |= DW_EH_PE_signed;
1653 }
1654
1655 switch (encoding & 0x0f)
1656 {
1657 case DW_EH_PE_uleb128:
1658 {
1659 uint64_t value;
1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1661
1662 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1663 return base + value;
1664 }
1665 case DW_EH_PE_udata2:
1666 *bytes_read_ptr += 2;
1667 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata4:
1669 *bytes_read_ptr += 4;
1670 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_udata8:
1672 *bytes_read_ptr += 8;
1673 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_sleb128:
1675 {
1676 int64_t value;
1677 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1678
1679 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1680 return base + value;
1681 }
1682 case DW_EH_PE_sdata2:
1683 *bytes_read_ptr += 2;
1684 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata4:
1686 *bytes_read_ptr += 4;
1687 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1688 case DW_EH_PE_sdata8:
1689 *bytes_read_ptr += 8;
1690 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1691 default:
1692 internal_error (__FILE__, __LINE__,
1693 _("Invalid or unsupported encoding"));
1694 }
1695 }
1696 \f
1697
1698 static int
1699 bsearch_cie_cmp (const void *key, const void *element)
1700 {
1701 ULONGEST cie_pointer = *(ULONGEST *) key;
1702 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1703
1704 if (cie_pointer == cie->cie_pointer)
1705 return 0;
1706
1707 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1708 }
1709
1710 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1711 static struct dwarf2_cie *
1712 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1713 {
1714 struct dwarf2_cie **p_cie;
1715
1716 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1717 bsearch be non-NULL. */
1718 if (cie_table->entries == NULL)
1719 {
1720 gdb_assert (cie_table->num_entries == 0);
1721 return NULL;
1722 }
1723
1724 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1725 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1726 if (p_cie != NULL)
1727 return *p_cie;
1728 return NULL;
1729 }
1730
1731 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1732 static void
1733 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1734 {
1735 const int n = cie_table->num_entries;
1736
1737 gdb_assert (n < 1
1738 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1739
1740 cie_table->entries =
1741 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1742 cie_table->entries[n] = cie;
1743 cie_table->num_entries = n + 1;
1744 }
1745
1746 static int
1747 bsearch_fde_cmp (const void *key, const void *element)
1748 {
1749 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1750 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1751
1752 if (seek_pc < fde->initial_location)
1753 return -1;
1754 if (seek_pc < fde->initial_location + fde->address_range)
1755 return 0;
1756 return 1;
1757 }
1758
1759 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1760 inital location associated with it into *PC. */
1761
1762 static struct dwarf2_fde *
1763 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1764 {
1765 struct objfile *objfile;
1766
1767 ALL_OBJFILES (objfile)
1768 {
1769 struct dwarf2_fde_table *fde_table;
1770 struct dwarf2_fde **p_fde;
1771 CORE_ADDR offset;
1772 CORE_ADDR seek_pc;
1773
1774 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1775 if (fde_table == NULL)
1776 {
1777 dwarf2_build_frame_info (objfile);
1778 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1779 }
1780 gdb_assert (fde_table != NULL);
1781
1782 if (fde_table->num_entries == 0)
1783 continue;
1784
1785 gdb_assert (objfile->section_offsets);
1786 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1787
1788 gdb_assert (fde_table->num_entries > 0);
1789 if (*pc < offset + fde_table->entries[0]->initial_location)
1790 continue;
1791
1792 seek_pc = *pc - offset;
1793 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1794 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1795 if (p_fde != NULL)
1796 {
1797 *pc = (*p_fde)->initial_location + offset;
1798 if (out_offset)
1799 *out_offset = offset;
1800 return *p_fde;
1801 }
1802 }
1803 return NULL;
1804 }
1805
1806 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1807 static void
1808 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1809 {
1810 if (fde->address_range == 0)
1811 /* Discard useless FDEs. */
1812 return;
1813
1814 fde_table->num_entries += 1;
1815 fde_table->entries =
1816 xrealloc (fde_table->entries,
1817 fde_table->num_entries * sizeof (fde_table->entries[0]));
1818 fde_table->entries[fde_table->num_entries - 1] = fde;
1819 }
1820
1821 #define DW64_CIE_ID 0xffffffffffffffffULL
1822
1823 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1824 or any of them. */
1825
1826 enum eh_frame_type
1827 {
1828 EH_CIE_TYPE_ID = 1 << 0,
1829 EH_FDE_TYPE_ID = 1 << 1,
1830 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1831 };
1832
1833 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1834 const gdb_byte *start,
1835 int eh_frame_p,
1836 struct dwarf2_cie_table *cie_table,
1837 struct dwarf2_fde_table *fde_table,
1838 enum eh_frame_type entry_type);
1839
1840 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1841 Return NULL if invalid input, otherwise the next byte to be processed. */
1842
1843 static const gdb_byte *
1844 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1845 int eh_frame_p,
1846 struct dwarf2_cie_table *cie_table,
1847 struct dwarf2_fde_table *fde_table,
1848 enum eh_frame_type entry_type)
1849 {
1850 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1851 const gdb_byte *buf, *end;
1852 LONGEST length;
1853 unsigned int bytes_read;
1854 int dwarf64_p;
1855 ULONGEST cie_id;
1856 ULONGEST cie_pointer;
1857 int64_t sleb128;
1858 uint64_t uleb128;
1859
1860 buf = start;
1861 length = read_initial_length (unit->abfd, buf, &bytes_read);
1862 buf += bytes_read;
1863 end = buf + length;
1864
1865 /* Are we still within the section? */
1866 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1867 return NULL;
1868
1869 if (length == 0)
1870 return end;
1871
1872 /* Distinguish between 32 and 64-bit encoded frame info. */
1873 dwarf64_p = (bytes_read == 12);
1874
1875 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1876 if (eh_frame_p)
1877 cie_id = 0;
1878 else if (dwarf64_p)
1879 cie_id = DW64_CIE_ID;
1880 else
1881 cie_id = DW_CIE_ID;
1882
1883 if (dwarf64_p)
1884 {
1885 cie_pointer = read_8_bytes (unit->abfd, buf);
1886 buf += 8;
1887 }
1888 else
1889 {
1890 cie_pointer = read_4_bytes (unit->abfd, buf);
1891 buf += 4;
1892 }
1893
1894 if (cie_pointer == cie_id)
1895 {
1896 /* This is a CIE. */
1897 struct dwarf2_cie *cie;
1898 char *augmentation;
1899 unsigned int cie_version;
1900
1901 /* Check that a CIE was expected. */
1902 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1903 error (_("Found a CIE when not expecting it."));
1904
1905 /* Record the offset into the .debug_frame section of this CIE. */
1906 cie_pointer = start - unit->dwarf_frame_buffer;
1907
1908 /* Check whether we've already read it. */
1909 if (find_cie (cie_table, cie_pointer))
1910 return end;
1911
1912 cie = (struct dwarf2_cie *)
1913 obstack_alloc (&unit->objfile->objfile_obstack,
1914 sizeof (struct dwarf2_cie));
1915 cie->initial_instructions = NULL;
1916 cie->cie_pointer = cie_pointer;
1917
1918 /* The encoding for FDE's in a normal .debug_frame section
1919 depends on the target address size. */
1920 cie->encoding = DW_EH_PE_absptr;
1921
1922 /* We'll determine the final value later, but we need to
1923 initialize it conservatively. */
1924 cie->signal_frame = 0;
1925
1926 /* Check version number. */
1927 cie_version = read_1_byte (unit->abfd, buf);
1928 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1929 return NULL;
1930 cie->version = cie_version;
1931 buf += 1;
1932
1933 /* Interpret the interesting bits of the augmentation. */
1934 cie->augmentation = augmentation = (char *) buf;
1935 buf += (strlen (augmentation) + 1);
1936
1937 /* Ignore armcc augmentations. We only use them for quirks,
1938 and that doesn't happen until later. */
1939 if (strncmp (augmentation, "armcc", 5) == 0)
1940 augmentation += strlen (augmentation);
1941
1942 /* The GCC 2.x "eh" augmentation has a pointer immediately
1943 following the augmentation string, so it must be handled
1944 first. */
1945 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1946 {
1947 /* Skip. */
1948 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1949 augmentation += 2;
1950 }
1951
1952 if (cie->version >= 4)
1953 {
1954 /* FIXME: check that this is the same as from the CU header. */
1955 cie->addr_size = read_1_byte (unit->abfd, buf);
1956 ++buf;
1957 cie->segment_size = read_1_byte (unit->abfd, buf);
1958 ++buf;
1959 }
1960 else
1961 {
1962 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1963 cie->segment_size = 0;
1964 }
1965 /* Address values in .eh_frame sections are defined to have the
1966 target's pointer size. Watchout: This breaks frame info for
1967 targets with pointer size < address size, unless a .debug_frame
1968 section exists as well. */
1969 if (eh_frame_p)
1970 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1971 else
1972 cie->ptr_size = cie->addr_size;
1973
1974 buf = gdb_read_uleb128 (buf, end, &uleb128);
1975 if (buf == NULL)
1976 return NULL;
1977 cie->code_alignment_factor = uleb128;
1978
1979 buf = gdb_read_sleb128 (buf, end, &sleb128);
1980 if (buf == NULL)
1981 return NULL;
1982 cie->data_alignment_factor = sleb128;
1983
1984 if (cie_version == 1)
1985 {
1986 cie->return_address_register = read_1_byte (unit->abfd, buf);
1987 ++buf;
1988 }
1989 else
1990 {
1991 buf = gdb_read_uleb128 (buf, end, &uleb128);
1992 if (buf == NULL)
1993 return NULL;
1994 cie->return_address_register = uleb128;
1995 }
1996
1997 cie->return_address_register
1998 = dwarf2_frame_adjust_regnum (gdbarch,
1999 cie->return_address_register,
2000 eh_frame_p);
2001
2002 cie->saw_z_augmentation = (*augmentation == 'z');
2003 if (cie->saw_z_augmentation)
2004 {
2005 uint64_t length;
2006
2007 buf = gdb_read_uleb128 (buf, end, &length);
2008 if (buf == NULL)
2009 return NULL;
2010 cie->initial_instructions = buf + length;
2011 augmentation++;
2012 }
2013
2014 while (*augmentation)
2015 {
2016 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2017 if (*augmentation == 'L')
2018 {
2019 /* Skip. */
2020 buf++;
2021 augmentation++;
2022 }
2023
2024 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2025 else if (*augmentation == 'R')
2026 {
2027 cie->encoding = *buf++;
2028 augmentation++;
2029 }
2030
2031 /* "P" indicates a personality routine in the CIE augmentation. */
2032 else if (*augmentation == 'P')
2033 {
2034 /* Skip. Avoid indirection since we throw away the result. */
2035 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2036 read_encoded_value (unit, encoding, cie->ptr_size,
2037 buf, &bytes_read, 0);
2038 buf += bytes_read;
2039 augmentation++;
2040 }
2041
2042 /* "S" indicates a signal frame, such that the return
2043 address must not be decremented to locate the call frame
2044 info for the previous frame; it might even be the first
2045 instruction of a function, so decrementing it would take
2046 us to a different function. */
2047 else if (*augmentation == 'S')
2048 {
2049 cie->signal_frame = 1;
2050 augmentation++;
2051 }
2052
2053 /* Otherwise we have an unknown augmentation. Assume that either
2054 there is no augmentation data, or we saw a 'z' prefix. */
2055 else
2056 {
2057 if (cie->initial_instructions)
2058 buf = cie->initial_instructions;
2059 break;
2060 }
2061 }
2062
2063 cie->initial_instructions = buf;
2064 cie->end = end;
2065 cie->unit = unit;
2066
2067 add_cie (cie_table, cie);
2068 }
2069 else
2070 {
2071 /* This is a FDE. */
2072 struct dwarf2_fde *fde;
2073
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2077
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2081 section. */
2082 if (eh_frame_p)
2083 {
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2086 }
2087
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2090 return NULL;
2091
2092 fde = (struct dwarf2_fde *)
2093 obstack_alloc (&unit->objfile->objfile_obstack,
2094 sizeof (struct dwarf2_fde));
2095 fde->cie = find_cie (cie_table, cie_pointer);
2096 if (fde->cie == NULL)
2097 {
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
2101 fde->cie = find_cie (cie_table, cie_pointer);
2102 }
2103
2104 gdb_assert (fde->cie != NULL);
2105
2106 fde->initial_location =
2107 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2108 buf, &bytes_read, 0);
2109 buf += bytes_read;
2110
2111 fde->address_range =
2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2113 fde->cie->ptr_size, buf, &bytes_read, 0);
2114 buf += bytes_read;
2115
2116 /* A 'z' augmentation in the CIE implies the presence of an
2117 augmentation field in the FDE as well. The only thing known
2118 to be in here at present is the LSDA entry for EH. So we
2119 can skip the whole thing. */
2120 if (fde->cie->saw_z_augmentation)
2121 {
2122 uint64_t length;
2123
2124 buf = gdb_read_uleb128 (buf, end, &length);
2125 if (buf == NULL)
2126 return NULL;
2127 buf += length;
2128 if (buf > end)
2129 return NULL;
2130 }
2131
2132 fde->instructions = buf;
2133 fde->end = end;
2134
2135 fde->eh_frame_p = eh_frame_p;
2136
2137 add_fde (fde_table, fde);
2138 }
2139
2140 return end;
2141 }
2142
2143 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2144 expect an FDE or a CIE. */
2145
2146 static const gdb_byte *
2147 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2148 int eh_frame_p,
2149 struct dwarf2_cie_table *cie_table,
2150 struct dwarf2_fde_table *fde_table,
2151 enum eh_frame_type entry_type)
2152 {
2153 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2154 const gdb_byte *ret;
2155 ptrdiff_t start_offset;
2156
2157 while (1)
2158 {
2159 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2160 cie_table, fde_table, entry_type);
2161 if (ret != NULL)
2162 break;
2163
2164 /* We have corrupt input data of some form. */
2165
2166 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2167 and mismatches wrt padding and alignment of debug sections. */
2168 /* Note that there is no requirement in the standard for any
2169 alignment at all in the frame unwind sections. Testing for
2170 alignment before trying to interpret data would be incorrect.
2171
2172 However, GCC traditionally arranged for frame sections to be
2173 sized such that the FDE length and CIE fields happen to be
2174 aligned (in theory, for performance). This, unfortunately,
2175 was done with .align directives, which had the side effect of
2176 forcing the section to be aligned by the linker.
2177
2178 This becomes a problem when you have some other producer that
2179 creates frame sections that are not as strictly aligned. That
2180 produces a hole in the frame info that gets filled by the
2181 linker with zeros.
2182
2183 The GCC behaviour is arguably a bug, but it's effectively now
2184 part of the ABI, so we're now stuck with it, at least at the
2185 object file level. A smart linker may decide, in the process
2186 of compressing duplicate CIE information, that it can rewrite
2187 the entire output section without this extra padding. */
2188
2189 start_offset = start - unit->dwarf_frame_buffer;
2190 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2191 {
2192 start += 4 - (start_offset & 3);
2193 workaround = ALIGN4;
2194 continue;
2195 }
2196 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2197 {
2198 start += 8 - (start_offset & 7);
2199 workaround = ALIGN8;
2200 continue;
2201 }
2202
2203 /* Nothing left to try. Arrange to return as if we've consumed
2204 the entire input section. Hopefully we'll get valid info from
2205 the other of .debug_frame/.eh_frame. */
2206 workaround = FAIL;
2207 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2208 break;
2209 }
2210
2211 switch (workaround)
2212 {
2213 case NONE:
2214 break;
2215
2216 case ALIGN4:
2217 complaint (&symfile_complaints, _("\
2218 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2219 unit->dwarf_frame_section->owner->filename,
2220 unit->dwarf_frame_section->name);
2221 break;
2222
2223 case ALIGN8:
2224 complaint (&symfile_complaints, _("\
2225 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2228 break;
2229
2230 default:
2231 complaint (&symfile_complaints,
2232 _("Corrupt data in %s:%s"),
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2235 break;
2236 }
2237
2238 return ret;
2239 }
2240 \f
2241 static int
2242 qsort_fde_cmp (const void *a, const void *b)
2243 {
2244 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2245 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2246
2247 if (aa->initial_location == bb->initial_location)
2248 {
2249 if (aa->address_range != bb->address_range
2250 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2251 /* Linker bug, e.g. gold/10400.
2252 Work around it by keeping stable sort order. */
2253 return (a < b) ? -1 : 1;
2254 else
2255 /* Put eh_frame entries after debug_frame ones. */
2256 return aa->eh_frame_p - bb->eh_frame_p;
2257 }
2258
2259 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2260 }
2261
2262 void
2263 dwarf2_build_frame_info (struct objfile *objfile)
2264 {
2265 struct comp_unit *unit;
2266 const gdb_byte *frame_ptr;
2267 struct dwarf2_cie_table cie_table;
2268 struct dwarf2_fde_table fde_table;
2269 struct dwarf2_fde_table *fde_table2;
2270 volatile struct gdb_exception e;
2271
2272 cie_table.num_entries = 0;
2273 cie_table.entries = NULL;
2274
2275 fde_table.num_entries = 0;
2276 fde_table.entries = NULL;
2277
2278 /* Build a minimal decoding of the DWARF2 compilation unit. */
2279 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2280 sizeof (struct comp_unit));
2281 unit->abfd = objfile->obfd;
2282 unit->objfile = objfile;
2283 unit->dbase = 0;
2284 unit->tbase = 0;
2285
2286 if (objfile->separate_debug_objfile_backlink == NULL)
2287 {
2288 /* Do not read .eh_frame from separate file as they must be also
2289 present in the main file. */
2290 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2291 &unit->dwarf_frame_section,
2292 &unit->dwarf_frame_buffer,
2293 &unit->dwarf_frame_size);
2294 if (unit->dwarf_frame_size)
2295 {
2296 asection *got, *txt;
2297
2298 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2299 that is used for the i386/amd64 target, which currently is
2300 the only target in GCC that supports/uses the
2301 DW_EH_PE_datarel encoding. */
2302 got = bfd_get_section_by_name (unit->abfd, ".got");
2303 if (got)
2304 unit->dbase = got->vma;
2305
2306 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2307 so far. */
2308 txt = bfd_get_section_by_name (unit->abfd, ".text");
2309 if (txt)
2310 unit->tbase = txt->vma;
2311
2312 TRY_CATCH (e, RETURN_MASK_ERROR)
2313 {
2314 frame_ptr = unit->dwarf_frame_buffer;
2315 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2316 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2317 &cie_table, &fde_table,
2318 EH_CIE_OR_FDE_TYPE_ID);
2319 }
2320
2321 if (e.reason < 0)
2322 {
2323 warning (_("skipping .eh_frame info of %s: %s"),
2324 objfile_name (objfile), e.message);
2325
2326 if (fde_table.num_entries != 0)
2327 {
2328 xfree (fde_table.entries);
2329 fde_table.entries = NULL;
2330 fde_table.num_entries = 0;
2331 }
2332 /* The cie_table is discarded by the next if. */
2333 }
2334
2335 if (cie_table.num_entries != 0)
2336 {
2337 /* Reinit cie_table: debug_frame has different CIEs. */
2338 xfree (cie_table.entries);
2339 cie_table.num_entries = 0;
2340 cie_table.entries = NULL;
2341 }
2342 }
2343 }
2344
2345 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2346 &unit->dwarf_frame_section,
2347 &unit->dwarf_frame_buffer,
2348 &unit->dwarf_frame_size);
2349 if (unit->dwarf_frame_size)
2350 {
2351 int num_old_fde_entries = fde_table.num_entries;
2352
2353 TRY_CATCH (e, RETURN_MASK_ERROR)
2354 {
2355 frame_ptr = unit->dwarf_frame_buffer;
2356 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2357 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2358 &cie_table, &fde_table,
2359 EH_CIE_OR_FDE_TYPE_ID);
2360 }
2361 if (e.reason < 0)
2362 {
2363 warning (_("skipping .debug_frame info of %s: %s"),
2364 objfile_name (objfile), e.message);
2365
2366 if (fde_table.num_entries != 0)
2367 {
2368 fde_table.num_entries = num_old_fde_entries;
2369 if (num_old_fde_entries == 0)
2370 {
2371 xfree (fde_table.entries);
2372 fde_table.entries = NULL;
2373 }
2374 else
2375 {
2376 fde_table.entries = xrealloc (fde_table.entries,
2377 fde_table.num_entries *
2378 sizeof (fde_table.entries[0]));
2379 }
2380 }
2381 fde_table.num_entries = num_old_fde_entries;
2382 /* The cie_table is discarded by the next if. */
2383 }
2384 }
2385
2386 /* Discard the cie_table, it is no longer needed. */
2387 if (cie_table.num_entries != 0)
2388 {
2389 xfree (cie_table.entries);
2390 cie_table.entries = NULL; /* Paranoia. */
2391 cie_table.num_entries = 0; /* Paranoia. */
2392 }
2393
2394 /* Copy fde_table to obstack: it is needed at runtime. */
2395 fde_table2 = (struct dwarf2_fde_table *)
2396 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2397
2398 if (fde_table.num_entries == 0)
2399 {
2400 fde_table2->entries = NULL;
2401 fde_table2->num_entries = 0;
2402 }
2403 else
2404 {
2405 struct dwarf2_fde *fde_prev = NULL;
2406 struct dwarf2_fde *first_non_zero_fde = NULL;
2407 int i;
2408
2409 /* Prepare FDE table for lookups. */
2410 qsort (fde_table.entries, fde_table.num_entries,
2411 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2412
2413 /* Check for leftovers from --gc-sections. The GNU linker sets
2414 the relevant symbols to zero, but doesn't zero the FDE *end*
2415 ranges because there's no relocation there. It's (offset,
2416 length), not (start, end). On targets where address zero is
2417 just another valid address this can be a problem, since the
2418 FDEs appear to be non-empty in the output --- we could pick
2419 out the wrong FDE. To work around this, when overlaps are
2420 detected, we prefer FDEs that do not start at zero.
2421
2422 Start by finding the first FDE with non-zero start. Below
2423 we'll discard all FDEs that start at zero and overlap this
2424 one. */
2425 for (i = 0; i < fde_table.num_entries; i++)
2426 {
2427 struct dwarf2_fde *fde = fde_table.entries[i];
2428
2429 if (fde->initial_location != 0)
2430 {
2431 first_non_zero_fde = fde;
2432 break;
2433 }
2434 }
2435
2436 /* Since we'll be doing bsearch, squeeze out identical (except
2437 for eh_frame_p) fde entries so bsearch result is predictable.
2438 Also discard leftovers from --gc-sections. */
2439 fde_table2->num_entries = 0;
2440 for (i = 0; i < fde_table.num_entries; i++)
2441 {
2442 struct dwarf2_fde *fde = fde_table.entries[i];
2443
2444 if (fde->initial_location == 0
2445 && first_non_zero_fde != NULL
2446 && (first_non_zero_fde->initial_location
2447 < fde->initial_location + fde->address_range))
2448 continue;
2449
2450 if (fde_prev != NULL
2451 && fde_prev->initial_location == fde->initial_location)
2452 continue;
2453
2454 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2455 sizeof (fde_table.entries[0]));
2456 ++fde_table2->num_entries;
2457 fde_prev = fde;
2458 }
2459 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2460
2461 /* Discard the original fde_table. */
2462 xfree (fde_table.entries);
2463 }
2464
2465 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2466 }
2467
2468 /* Provide a prototype to silence -Wmissing-prototypes. */
2469 void _initialize_dwarf2_frame (void);
2470
2471 void
2472 _initialize_dwarf2_frame (void)
2473 {
2474 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2475 dwarf2_frame_objfile_data = register_objfile_data ();
2476 }
This page took 0.084532 seconds and 4 git commands to generate.