47915921b024f43e456c671af0531e593fdc2643
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41 #include "ax.h"
42 #include "dwarf2loc.h"
43 #include "exceptions.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 gdb_byte *initial_instructions;
72 gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 gdb_byte *instructions;
120 gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
311 {
312 read_memory (addr, buf, len);
313 }
314
315 static void
316 no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
317 {
318 internal_error (__FILE__, __LINE__,
319 _("Support for DW_OP_fbreg is unimplemented"));
320 }
321
322 /* Helper function for execute_stack_op. */
323
324 static CORE_ADDR
325 no_get_frame_cfa (void *baton)
326 {
327 internal_error (__FILE__, __LINE__,
328 _("Support for DW_OP_call_frame_cfa is unimplemented"));
329 }
330
331 /* Helper function for execute_stack_op. */
332
333 static CORE_ADDR
334 no_get_frame_pc (void *baton)
335 {
336 internal_error (__FILE__, __LINE__, _("\
337 Support for DW_OP_GNU_implicit_pointer is unimplemented"));
338 }
339
340 static CORE_ADDR
341 no_get_tls_address (void *baton, CORE_ADDR offset)
342 {
343 internal_error (__FILE__, __LINE__, _("\
344 Support for DW_OP_GNU_push_tls_address is unimplemented"));
345 }
346
347 /* Helper function for execute_stack_op. */
348
349 static void
350 no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
351 {
352 internal_error (__FILE__, __LINE__,
353 _("Support for DW_OP_call* is invalid in CFI"));
354 }
355
356 /* Helper function for execute_stack_op. */
357
358 static struct type *
359 no_base_type (struct dwarf_expr_context *ctx, size_t die)
360 {
361 error (_("Support for typed DWARF is not supported in CFI"));
362 }
363
364 /* Execute the required actions for both the DW_CFA_restore and
365 DW_CFA_restore_extended instructions. */
366 static void
367 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
368 struct dwarf2_frame_state *fs, int eh_frame_p)
369 {
370 ULONGEST reg;
371
372 gdb_assert (fs->initial.reg);
373 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
374 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
375
376 /* Check if this register was explicitly initialized in the
377 CIE initial instructions. If not, default the rule to
378 UNSPECIFIED. */
379 if (reg < fs->initial.num_regs)
380 fs->regs.reg[reg] = fs->initial.reg[reg];
381 else
382 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
383
384 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
385 complaint (&symfile_complaints, _("\
386 incomplete CFI data; DW_CFA_restore unspecified\n\
387 register %s (#%d) at %s"),
388 gdbarch_register_name
389 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
390 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
391 paddress (gdbarch, fs->pc));
392 }
393
394 static CORE_ADDR
395 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
396 CORE_ADDR offset, struct frame_info *this_frame,
397 CORE_ADDR initial, int initial_in_stack_memory)
398 {
399 struct dwarf_expr_context *ctx;
400 CORE_ADDR result;
401 struct cleanup *old_chain;
402
403 ctx = new_dwarf_expr_context ();
404 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
405 make_cleanup_value_free_to_mark (value_mark ());
406
407 ctx->gdbarch = get_frame_arch (this_frame);
408 ctx->addr_size = addr_size;
409 ctx->offset = offset;
410 ctx->baton = this_frame;
411 ctx->read_reg = read_reg;
412 ctx->read_mem = read_mem;
413 ctx->get_frame_base = no_get_frame_base;
414 ctx->get_frame_cfa = no_get_frame_cfa;
415 ctx->get_frame_pc = no_get_frame_pc;
416 ctx->get_tls_address = no_get_tls_address;
417 ctx->dwarf_call = no_dwarf_call;
418 ctx->get_base_type = no_base_type;
419
420 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
421 dwarf_expr_eval (ctx, exp, len);
422
423 if (ctx->location == DWARF_VALUE_MEMORY)
424 result = dwarf_expr_fetch_address (ctx, 0);
425 else if (ctx->location == DWARF_VALUE_REGISTER)
426 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
427 else
428 {
429 /* This is actually invalid DWARF, but if we ever do run across
430 it somehow, we might as well support it. So, instead, report
431 it as unimplemented. */
432 error (_("\
433 Not implemented: computing unwound register using explicit value operator"));
434 }
435
436 do_cleanups (old_chain);
437
438 return result;
439 }
440 \f
441
442 static void
443 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
444 const gdb_byte *insn_end, struct gdbarch *gdbarch,
445 CORE_ADDR pc, struct dwarf2_frame_state *fs)
446 {
447 int eh_frame_p = fde->eh_frame_p;
448 int bytes_read;
449 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
450
451 while (insn_ptr < insn_end && fs->pc <= pc)
452 {
453 gdb_byte insn = *insn_ptr++;
454 ULONGEST utmp, reg;
455 LONGEST offset;
456
457 if ((insn & 0xc0) == DW_CFA_advance_loc)
458 fs->pc += (insn & 0x3f) * fs->code_align;
459 else if ((insn & 0xc0) == DW_CFA_offset)
460 {
461 reg = insn & 0x3f;
462 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
463 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
464 offset = utmp * fs->data_align;
465 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
466 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
467 fs->regs.reg[reg].loc.offset = offset;
468 }
469 else if ((insn & 0xc0) == DW_CFA_restore)
470 {
471 reg = insn & 0x3f;
472 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
473 }
474 else
475 {
476 switch (insn)
477 {
478 case DW_CFA_set_loc:
479 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
480 fde->cie->ptr_size, insn_ptr,
481 &bytes_read, fde->initial_location);
482 /* Apply the objfile offset for relocatable objects. */
483 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
484 SECT_OFF_TEXT (fde->cie->unit->objfile));
485 insn_ptr += bytes_read;
486 break;
487
488 case DW_CFA_advance_loc1:
489 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
490 fs->pc += utmp * fs->code_align;
491 insn_ptr++;
492 break;
493 case DW_CFA_advance_loc2:
494 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
495 fs->pc += utmp * fs->code_align;
496 insn_ptr += 2;
497 break;
498 case DW_CFA_advance_loc4:
499 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
500 fs->pc += utmp * fs->code_align;
501 insn_ptr += 4;
502 break;
503
504 case DW_CFA_offset_extended:
505 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
506 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
508 offset = utmp * fs->data_align;
509 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
510 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
511 fs->regs.reg[reg].loc.offset = offset;
512 break;
513
514 case DW_CFA_restore_extended:
515 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
516 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
517 break;
518
519 case DW_CFA_undefined:
520 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
521 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
522 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
523 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
524 break;
525
526 case DW_CFA_same_value:
527 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
528 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
529 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
530 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
531 break;
532
533 case DW_CFA_register:
534 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
535 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
536 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
537 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
538 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
539 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
540 fs->regs.reg[reg].loc.reg = utmp;
541 break;
542
543 case DW_CFA_remember_state:
544 {
545 struct dwarf2_frame_state_reg_info *new_rs;
546
547 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
548 *new_rs = fs->regs;
549 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
550 fs->regs.prev = new_rs;
551 }
552 break;
553
554 case DW_CFA_restore_state:
555 {
556 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
557
558 if (old_rs == NULL)
559 {
560 complaint (&symfile_complaints, _("\
561 bad CFI data; mismatched DW_CFA_restore_state at %s"),
562 paddress (gdbarch, fs->pc));
563 }
564 else
565 {
566 xfree (fs->regs.reg);
567 fs->regs = *old_rs;
568 xfree (old_rs);
569 }
570 }
571 break;
572
573 case DW_CFA_def_cfa:
574 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
576
577 if (fs->armcc_cfa_offsets_sf)
578 utmp *= fs->data_align;
579
580 fs->regs.cfa_offset = utmp;
581 fs->regs.cfa_how = CFA_REG_OFFSET;
582 break;
583
584 case DW_CFA_def_cfa_register:
585 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
586 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
587 fs->regs.cfa_reg,
588 eh_frame_p);
589 fs->regs.cfa_how = CFA_REG_OFFSET;
590 break;
591
592 case DW_CFA_def_cfa_offset:
593 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
594
595 if (fs->armcc_cfa_offsets_sf)
596 utmp *= fs->data_align;
597
598 fs->regs.cfa_offset = utmp;
599 /* cfa_how deliberately not set. */
600 break;
601
602 case DW_CFA_nop:
603 break;
604
605 case DW_CFA_def_cfa_expression:
606 insn_ptr = read_uleb128 (insn_ptr, insn_end,
607 &fs->regs.cfa_exp_len);
608 fs->regs.cfa_exp = insn_ptr;
609 fs->regs.cfa_how = CFA_EXP;
610 insn_ptr += fs->regs.cfa_exp_len;
611 break;
612
613 case DW_CFA_expression:
614 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
615 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
616 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
617 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
618 fs->regs.reg[reg].loc.exp = insn_ptr;
619 fs->regs.reg[reg].exp_len = utmp;
620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
621 insn_ptr += utmp;
622 break;
623
624 case DW_CFA_offset_extended_sf:
625 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
626 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
627 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
628 offset *= fs->data_align;
629 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
630 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
631 fs->regs.reg[reg].loc.offset = offset;
632 break;
633
634 case DW_CFA_val_offset:
635 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
636 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
637 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
638 offset = utmp * fs->data_align;
639 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
640 fs->regs.reg[reg].loc.offset = offset;
641 break;
642
643 case DW_CFA_val_offset_sf:
644 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
645 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
646 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
647 offset *= fs->data_align;
648 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
649 fs->regs.reg[reg].loc.offset = offset;
650 break;
651
652 case DW_CFA_val_expression:
653 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
654 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
655 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
656 fs->regs.reg[reg].loc.exp = insn_ptr;
657 fs->regs.reg[reg].exp_len = utmp;
658 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
659 insn_ptr += utmp;
660 break;
661
662 case DW_CFA_def_cfa_sf:
663 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
664 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
665 fs->regs.cfa_reg,
666 eh_frame_p);
667 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
668 fs->regs.cfa_offset = offset * fs->data_align;
669 fs->regs.cfa_how = CFA_REG_OFFSET;
670 break;
671
672 case DW_CFA_def_cfa_offset_sf:
673 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
674 fs->regs.cfa_offset = offset * fs->data_align;
675 /* cfa_how deliberately not set. */
676 break;
677
678 case DW_CFA_GNU_window_save:
679 /* This is SPARC-specific code, and contains hard-coded
680 constants for the register numbering scheme used by
681 GCC. Rather than having a architecture-specific
682 operation that's only ever used by a single
683 architecture, we provide the implementation here.
684 Incidentally that's what GCC does too in its
685 unwinder. */
686 {
687 int size = register_size (gdbarch, 0);
688
689 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
690 for (reg = 8; reg < 16; reg++)
691 {
692 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
693 fs->regs.reg[reg].loc.reg = reg + 16;
694 }
695 for (reg = 16; reg < 32; reg++)
696 {
697 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
698 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
699 }
700 }
701 break;
702
703 case DW_CFA_GNU_args_size:
704 /* Ignored. */
705 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
706 break;
707
708 case DW_CFA_GNU_negative_offset_extended:
709 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
710 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
711 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
712 offset *= fs->data_align;
713 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
714 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
715 fs->regs.reg[reg].loc.offset = -offset;
716 break;
717
718 default:
719 internal_error (__FILE__, __LINE__,
720 _("Unknown CFI encountered."));
721 }
722 }
723 }
724
725 /* Don't allow remember/restore between CIE and FDE programs. */
726 dwarf2_frame_state_free_regs (fs->regs.prev);
727 fs->regs.prev = NULL;
728 }
729 \f
730
731 /* Architecture-specific operations. */
732
733 /* Per-architecture data key. */
734 static struct gdbarch_data *dwarf2_frame_data;
735
736 struct dwarf2_frame_ops
737 {
738 /* Pre-initialize the register state REG for register REGNUM. */
739 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
740 struct frame_info *);
741
742 /* Check whether the THIS_FRAME is a signal trampoline. */
743 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
744
745 /* Convert .eh_frame register number to DWARF register number, or
746 adjust .debug_frame register number. */
747 int (*adjust_regnum) (struct gdbarch *, int, int);
748 };
749
750 /* Default architecture-specific register state initialization
751 function. */
752
753 static void
754 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
755 struct dwarf2_frame_state_reg *reg,
756 struct frame_info *this_frame)
757 {
758 /* If we have a register that acts as a program counter, mark it as
759 a destination for the return address. If we have a register that
760 serves as the stack pointer, arrange for it to be filled with the
761 call frame address (CFA). The other registers are marked as
762 unspecified.
763
764 We copy the return address to the program counter, since many
765 parts in GDB assume that it is possible to get the return address
766 by unwinding the program counter register. However, on ISA's
767 with a dedicated return address register, the CFI usually only
768 contains information to unwind that return address register.
769
770 The reason we're treating the stack pointer special here is
771 because in many cases GCC doesn't emit CFI for the stack pointer
772 and implicitly assumes that it is equal to the CFA. This makes
773 some sense since the DWARF specification (version 3, draft 8,
774 p. 102) says that:
775
776 "Typically, the CFA is defined to be the value of the stack
777 pointer at the call site in the previous frame (which may be
778 different from its value on entry to the current frame)."
779
780 However, this isn't true for all platforms supported by GCC
781 (e.g. IBM S/390 and zSeries). Those architectures should provide
782 their own architecture-specific initialization function. */
783
784 if (regnum == gdbarch_pc_regnum (gdbarch))
785 reg->how = DWARF2_FRAME_REG_RA;
786 else if (regnum == gdbarch_sp_regnum (gdbarch))
787 reg->how = DWARF2_FRAME_REG_CFA;
788 }
789
790 /* Return a default for the architecture-specific operations. */
791
792 static void *
793 dwarf2_frame_init (struct obstack *obstack)
794 {
795 struct dwarf2_frame_ops *ops;
796
797 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
798 ops->init_reg = dwarf2_frame_default_init_reg;
799 return ops;
800 }
801
802 /* Set the architecture-specific register state initialization
803 function for GDBARCH to INIT_REG. */
804
805 void
806 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
807 void (*init_reg) (struct gdbarch *, int,
808 struct dwarf2_frame_state_reg *,
809 struct frame_info *))
810 {
811 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
812
813 ops->init_reg = init_reg;
814 }
815
816 /* Pre-initialize the register state REG for register REGNUM. */
817
818 static void
819 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
820 struct dwarf2_frame_state_reg *reg,
821 struct frame_info *this_frame)
822 {
823 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
824
825 ops->init_reg (gdbarch, regnum, reg, this_frame);
826 }
827
828 /* Set the architecture-specific signal trampoline recognition
829 function for GDBARCH to SIGNAL_FRAME_P. */
830
831 void
832 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
833 int (*signal_frame_p) (struct gdbarch *,
834 struct frame_info *))
835 {
836 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
837
838 ops->signal_frame_p = signal_frame_p;
839 }
840
841 /* Query the architecture-specific signal frame recognizer for
842 THIS_FRAME. */
843
844 static int
845 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
846 struct frame_info *this_frame)
847 {
848 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
849
850 if (ops->signal_frame_p == NULL)
851 return 0;
852 return ops->signal_frame_p (gdbarch, this_frame);
853 }
854
855 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
856 register numbers. */
857
858 void
859 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
860 int (*adjust_regnum) (struct gdbarch *,
861 int, int))
862 {
863 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
864
865 ops->adjust_regnum = adjust_regnum;
866 }
867
868 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
869 register. */
870
871 static int
872 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
873 int regnum, int eh_frame_p)
874 {
875 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
876
877 if (ops->adjust_regnum == NULL)
878 return regnum;
879 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
880 }
881
882 static void
883 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
884 struct dwarf2_fde *fde)
885 {
886 struct symtab *s;
887
888 s = find_pc_symtab (fs->pc);
889 if (s == NULL)
890 return;
891
892 if (producer_is_realview (s->producer))
893 {
894 if (fde->cie->version == 1)
895 fs->armcc_cfa_offsets_sf = 1;
896
897 if (fde->cie->version == 1)
898 fs->armcc_cfa_offsets_reversed = 1;
899
900 /* The reversed offset problem is present in some compilers
901 using DWARF3, but it was eventually fixed. Check the ARM
902 defined augmentations, which are in the format "armcc" followed
903 by a list of one-character options. The "+" option means
904 this problem is fixed (no quirk needed). If the armcc
905 augmentation is missing, the quirk is needed. */
906 if (fde->cie->version == 3
907 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
908 || strchr (fde->cie->augmentation + 5, '+') == NULL))
909 fs->armcc_cfa_offsets_reversed = 1;
910
911 return;
912 }
913 }
914 \f
915
916 void
917 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
918 struct gdbarch *gdbarch,
919 CORE_ADDR pc,
920 struct dwarf2_per_cu_data *data)
921 {
922 const int num_regs = gdbarch_num_regs (gdbarch)
923 + gdbarch_num_pseudo_regs (gdbarch);
924 struct dwarf2_fde *fde;
925 CORE_ADDR text_offset, cfa;
926 struct dwarf2_frame_state fs;
927 int addr_size;
928
929 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
930
931 fs.pc = pc;
932
933 /* Find the correct FDE. */
934 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
935 if (fde == NULL)
936 error (_("Could not compute CFA; needed to translate this expression"));
937
938 /* Extract any interesting information from the CIE. */
939 fs.data_align = fde->cie->data_alignment_factor;
940 fs.code_align = fde->cie->code_alignment_factor;
941 fs.retaddr_column = fde->cie->return_address_register;
942 addr_size = fde->cie->addr_size;
943
944 /* Check for "quirks" - known bugs in producers. */
945 dwarf2_frame_find_quirks (&fs, fde);
946
947 /* First decode all the insns in the CIE. */
948 execute_cfa_program (fde, fde->cie->initial_instructions,
949 fde->cie->end, gdbarch, pc, &fs);
950
951 /* Save the initialized register set. */
952 fs.initial = fs.regs;
953 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
954
955 /* Then decode the insns in the FDE up to our target PC. */
956 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
957
958 /* Calculate the CFA. */
959 switch (fs.regs.cfa_how)
960 {
961 case CFA_REG_OFFSET:
962 {
963 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
964
965 if (regnum == -1)
966 error (_("Unable to access DWARF register number %d"),
967 (int) fs.regs.cfa_reg); /* FIXME */
968 ax_reg (expr, regnum);
969
970 if (fs.regs.cfa_offset != 0)
971 {
972 if (fs.armcc_cfa_offsets_reversed)
973 ax_const_l (expr, -fs.regs.cfa_offset);
974 else
975 ax_const_l (expr, fs.regs.cfa_offset);
976 ax_simple (expr, aop_add);
977 }
978 }
979 break;
980
981 case CFA_EXP:
982 ax_const_l (expr, text_offset);
983 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
984 fs.regs.cfa_exp,
985 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
986 data);
987 break;
988
989 default:
990 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
991 }
992 }
993
994 \f
995 struct dwarf2_frame_cache
996 {
997 /* DWARF Call Frame Address. */
998 CORE_ADDR cfa;
999
1000 /* Set if the return address column was marked as unavailable
1001 (required non-collected memory or registers to compute). */
1002 int unavailable_retaddr;
1003
1004 /* Set if the return address column was marked as undefined. */
1005 int undefined_retaddr;
1006
1007 /* Saved registers, indexed by GDB register number, not by DWARF
1008 register number. */
1009 struct dwarf2_frame_state_reg *reg;
1010
1011 /* Return address register. */
1012 struct dwarf2_frame_state_reg retaddr_reg;
1013
1014 /* Target address size in bytes. */
1015 int addr_size;
1016
1017 /* The .text offset. */
1018 CORE_ADDR text_offset;
1019 };
1020
1021 static struct dwarf2_frame_cache *
1022 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1023 {
1024 struct cleanup *old_chain;
1025 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1026 const int num_regs = gdbarch_num_regs (gdbarch)
1027 + gdbarch_num_pseudo_regs (gdbarch);
1028 struct dwarf2_frame_cache *cache;
1029 struct dwarf2_frame_state *fs;
1030 struct dwarf2_fde *fde;
1031 volatile struct gdb_exception ex;
1032
1033 if (*this_cache)
1034 return *this_cache;
1035
1036 /* Allocate a new cache. */
1037 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1038 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1039 *this_cache = cache;
1040
1041 /* Allocate and initialize the frame state. */
1042 fs = XZALLOC (struct dwarf2_frame_state);
1043 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1044
1045 /* Unwind the PC.
1046
1047 Note that if the next frame is never supposed to return (i.e. a call
1048 to abort), the compiler might optimize away the instruction at
1049 its return address. As a result the return address will
1050 point at some random instruction, and the CFI for that
1051 instruction is probably worthless to us. GCC's unwinder solves
1052 this problem by substracting 1 from the return address to get an
1053 address in the middle of a presumed call instruction (or the
1054 instruction in the associated delay slot). This should only be
1055 done for "normal" frames and not for resume-type frames (signal
1056 handlers, sentinel frames, dummy frames). The function
1057 get_frame_address_in_block does just this. It's not clear how
1058 reliable the method is though; there is the potential for the
1059 register state pre-call being different to that on return. */
1060 fs->pc = get_frame_address_in_block (this_frame);
1061
1062 /* Find the correct FDE. */
1063 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1064 gdb_assert (fde != NULL);
1065
1066 /* Extract any interesting information from the CIE. */
1067 fs->data_align = fde->cie->data_alignment_factor;
1068 fs->code_align = fde->cie->code_alignment_factor;
1069 fs->retaddr_column = fde->cie->return_address_register;
1070 cache->addr_size = fde->cie->addr_size;
1071
1072 /* Check for "quirks" - known bugs in producers. */
1073 dwarf2_frame_find_quirks (fs, fde);
1074
1075 /* First decode all the insns in the CIE. */
1076 execute_cfa_program (fde, fde->cie->initial_instructions,
1077 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
1078
1079 /* Save the initialized register set. */
1080 fs->initial = fs->regs;
1081 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1082
1083 /* Then decode the insns in the FDE up to our target PC. */
1084 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1085 get_frame_pc (this_frame), fs);
1086
1087 TRY_CATCH (ex, RETURN_MASK_ERROR)
1088 {
1089 /* Calculate the CFA. */
1090 switch (fs->regs.cfa_how)
1091 {
1092 case CFA_REG_OFFSET:
1093 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1094 if (fs->armcc_cfa_offsets_reversed)
1095 cache->cfa -= fs->regs.cfa_offset;
1096 else
1097 cache->cfa += fs->regs.cfa_offset;
1098 break;
1099
1100 case CFA_EXP:
1101 cache->cfa =
1102 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1103 cache->addr_size, cache->text_offset,
1104 this_frame, 0, 0);
1105 break;
1106
1107 default:
1108 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1109 }
1110 }
1111 if (ex.reason < 0)
1112 {
1113 if (ex.error == NOT_AVAILABLE_ERROR)
1114 {
1115 cache->unavailable_retaddr = 1;
1116 return cache;
1117 }
1118
1119 throw_exception (ex);
1120 }
1121
1122 /* Initialize the register state. */
1123 {
1124 int regnum;
1125
1126 for (regnum = 0; regnum < num_regs; regnum++)
1127 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1128 }
1129
1130 /* Go through the DWARF2 CFI generated table and save its register
1131 location information in the cache. Note that we don't skip the
1132 return address column; it's perfectly all right for it to
1133 correspond to a real register. If it doesn't correspond to a
1134 real register, or if we shouldn't treat it as such,
1135 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1136 the range [0, gdbarch_num_regs). */
1137 {
1138 int column; /* CFI speak for "register number". */
1139
1140 for (column = 0; column < fs->regs.num_regs; column++)
1141 {
1142 /* Use the GDB register number as the destination index. */
1143 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1144
1145 /* If there's no corresponding GDB register, ignore it. */
1146 if (regnum < 0 || regnum >= num_regs)
1147 continue;
1148
1149 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1150 of all debug info registers. If it doesn't, complain (but
1151 not too loudly). It turns out that GCC assumes that an
1152 unspecified register implies "same value" when CFI (draft
1153 7) specifies nothing at all. Such a register could equally
1154 be interpreted as "undefined". Also note that this check
1155 isn't sufficient; it only checks that all registers in the
1156 range [0 .. max column] are specified, and won't detect
1157 problems when a debug info register falls outside of the
1158 table. We need a way of iterating through all the valid
1159 DWARF2 register numbers. */
1160 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1161 {
1162 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1163 complaint (&symfile_complaints, _("\
1164 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1165 gdbarch_register_name (gdbarch, regnum),
1166 paddress (gdbarch, fs->pc));
1167 }
1168 else
1169 cache->reg[regnum] = fs->regs.reg[column];
1170 }
1171 }
1172
1173 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1174 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1175 {
1176 int regnum;
1177
1178 for (regnum = 0; regnum < num_regs; regnum++)
1179 {
1180 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1181 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1182 {
1183 struct dwarf2_frame_state_reg *retaddr_reg =
1184 &fs->regs.reg[fs->retaddr_column];
1185
1186 /* It seems rather bizarre to specify an "empty" column as
1187 the return adress column. However, this is exactly
1188 what GCC does on some targets. It turns out that GCC
1189 assumes that the return address can be found in the
1190 register corresponding to the return address column.
1191 Incidentally, that's how we should treat a return
1192 address column specifying "same value" too. */
1193 if (fs->retaddr_column < fs->regs.num_regs
1194 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1195 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1196 {
1197 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1198 cache->reg[regnum] = *retaddr_reg;
1199 else
1200 cache->retaddr_reg = *retaddr_reg;
1201 }
1202 else
1203 {
1204 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1205 {
1206 cache->reg[regnum].loc.reg = fs->retaddr_column;
1207 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1208 }
1209 else
1210 {
1211 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1212 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1213 }
1214 }
1215 }
1216 }
1217 }
1218
1219 if (fs->retaddr_column < fs->regs.num_regs
1220 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1221 cache->undefined_retaddr = 1;
1222
1223 do_cleanups (old_chain);
1224
1225 return cache;
1226 }
1227
1228 static enum unwind_stop_reason
1229 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1230 void **this_cache)
1231 {
1232 struct dwarf2_frame_cache *cache
1233 = dwarf2_frame_cache (this_frame, this_cache);
1234
1235 if (cache->unavailable_retaddr)
1236 return UNWIND_UNAVAILABLE;
1237
1238 if (cache->undefined_retaddr)
1239 return UNWIND_OUTERMOST;
1240
1241 return UNWIND_NO_REASON;
1242 }
1243
1244 static void
1245 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1246 struct frame_id *this_id)
1247 {
1248 struct dwarf2_frame_cache *cache =
1249 dwarf2_frame_cache (this_frame, this_cache);
1250
1251 if (cache->unavailable_retaddr)
1252 return;
1253
1254 if (cache->undefined_retaddr)
1255 return;
1256
1257 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1258 }
1259
1260 static struct value *
1261 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1262 int regnum)
1263 {
1264 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1265 struct dwarf2_frame_cache *cache =
1266 dwarf2_frame_cache (this_frame, this_cache);
1267 CORE_ADDR addr;
1268 int realnum;
1269
1270 switch (cache->reg[regnum].how)
1271 {
1272 case DWARF2_FRAME_REG_UNDEFINED:
1273 /* If CFI explicitly specified that the value isn't defined,
1274 mark it as optimized away; the value isn't available. */
1275 return frame_unwind_got_optimized (this_frame, regnum);
1276
1277 case DWARF2_FRAME_REG_SAVED_OFFSET:
1278 addr = cache->cfa + cache->reg[regnum].loc.offset;
1279 return frame_unwind_got_memory (this_frame, regnum, addr);
1280
1281 case DWARF2_FRAME_REG_SAVED_REG:
1282 realnum
1283 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1284 return frame_unwind_got_register (this_frame, regnum, realnum);
1285
1286 case DWARF2_FRAME_REG_SAVED_EXP:
1287 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1288 cache->reg[regnum].exp_len,
1289 cache->addr_size, cache->text_offset,
1290 this_frame, cache->cfa, 1);
1291 return frame_unwind_got_memory (this_frame, regnum, addr);
1292
1293 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1294 addr = cache->cfa + cache->reg[regnum].loc.offset;
1295 return frame_unwind_got_constant (this_frame, regnum, addr);
1296
1297 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1298 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1299 cache->reg[regnum].exp_len,
1300 cache->addr_size, cache->text_offset,
1301 this_frame, cache->cfa, 1);
1302 return frame_unwind_got_constant (this_frame, regnum, addr);
1303
1304 case DWARF2_FRAME_REG_UNSPECIFIED:
1305 /* GCC, in its infinite wisdom decided to not provide unwind
1306 information for registers that are "same value". Since
1307 DWARF2 (3 draft 7) doesn't define such behavior, said
1308 registers are actually undefined (which is different to CFI
1309 "undefined"). Code above issues a complaint about this.
1310 Here just fudge the books, assume GCC, and that the value is
1311 more inner on the stack. */
1312 return frame_unwind_got_register (this_frame, regnum, regnum);
1313
1314 case DWARF2_FRAME_REG_SAME_VALUE:
1315 return frame_unwind_got_register (this_frame, regnum, regnum);
1316
1317 case DWARF2_FRAME_REG_CFA:
1318 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1319
1320 case DWARF2_FRAME_REG_CFA_OFFSET:
1321 addr = cache->cfa + cache->reg[regnum].loc.offset;
1322 return frame_unwind_got_address (this_frame, regnum, addr);
1323
1324 case DWARF2_FRAME_REG_RA_OFFSET:
1325 addr = cache->reg[regnum].loc.offset;
1326 regnum = gdbarch_dwarf2_reg_to_regnum
1327 (gdbarch, cache->retaddr_reg.loc.reg);
1328 addr += get_frame_register_unsigned (this_frame, regnum);
1329 return frame_unwind_got_address (this_frame, regnum, addr);
1330
1331 case DWARF2_FRAME_REG_FN:
1332 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1333
1334 default:
1335 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1336 }
1337 }
1338
1339 static int
1340 dwarf2_frame_sniffer (const struct frame_unwind *self,
1341 struct frame_info *this_frame, void **this_cache)
1342 {
1343 /* Grab an address that is guarenteed to reside somewhere within the
1344 function. get_frame_pc(), with a no-return next function, can
1345 end up returning something past the end of this function's body.
1346 If the frame we're sniffing for is a signal frame whose start
1347 address is placed on the stack by the OS, its FDE must
1348 extend one byte before its start address or we could potentially
1349 select the FDE of the previous function. */
1350 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1351 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1352
1353 if (!fde)
1354 return 0;
1355
1356 /* On some targets, signal trampolines may have unwind information.
1357 We need to recognize them so that we set the frame type
1358 correctly. */
1359
1360 if (fde->cie->signal_frame
1361 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1362 this_frame))
1363 return self->type == SIGTRAMP_FRAME;
1364
1365 return self->type != SIGTRAMP_FRAME;
1366 }
1367
1368 static const struct frame_unwind dwarf2_frame_unwind =
1369 {
1370 NORMAL_FRAME,
1371 dwarf2_frame_unwind_stop_reason,
1372 dwarf2_frame_this_id,
1373 dwarf2_frame_prev_register,
1374 NULL,
1375 dwarf2_frame_sniffer
1376 };
1377
1378 static const struct frame_unwind dwarf2_signal_frame_unwind =
1379 {
1380 SIGTRAMP_FRAME,
1381 dwarf2_frame_unwind_stop_reason,
1382 dwarf2_frame_this_id,
1383 dwarf2_frame_prev_register,
1384 NULL,
1385 dwarf2_frame_sniffer
1386 };
1387
1388 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1389
1390 void
1391 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1392 {
1393 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1394 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1395 }
1396 \f
1397
1398 /* There is no explicitly defined relationship between the CFA and the
1399 location of frame's local variables and arguments/parameters.
1400 Therefore, frame base methods on this page should probably only be
1401 used as a last resort, just to avoid printing total garbage as a
1402 response to the "info frame" command. */
1403
1404 static CORE_ADDR
1405 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1406 {
1407 struct dwarf2_frame_cache *cache =
1408 dwarf2_frame_cache (this_frame, this_cache);
1409
1410 return cache->cfa;
1411 }
1412
1413 static const struct frame_base dwarf2_frame_base =
1414 {
1415 &dwarf2_frame_unwind,
1416 dwarf2_frame_base_address,
1417 dwarf2_frame_base_address,
1418 dwarf2_frame_base_address
1419 };
1420
1421 const struct frame_base *
1422 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1423 {
1424 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1425
1426 if (dwarf2_frame_find_fde (&block_addr, NULL))
1427 return &dwarf2_frame_base;
1428
1429 return NULL;
1430 }
1431
1432 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1433 the DWARF unwinder. This is used to implement
1434 DW_OP_call_frame_cfa. */
1435
1436 CORE_ADDR
1437 dwarf2_frame_cfa (struct frame_info *this_frame)
1438 {
1439 while (get_frame_type (this_frame) == INLINE_FRAME)
1440 this_frame = get_prev_frame (this_frame);
1441 /* This restriction could be lifted if other unwinders are known to
1442 compute the frame base in a way compatible with the DWARF
1443 unwinder. */
1444 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1445 error (_("can't compute CFA for this frame"));
1446 return get_frame_base (this_frame);
1447 }
1448 \f
1449 const struct objfile_data *dwarf2_frame_objfile_data;
1450
1451 static unsigned int
1452 read_1_byte (bfd *abfd, gdb_byte *buf)
1453 {
1454 return bfd_get_8 (abfd, buf);
1455 }
1456
1457 static unsigned int
1458 read_4_bytes (bfd *abfd, gdb_byte *buf)
1459 {
1460 return bfd_get_32 (abfd, buf);
1461 }
1462
1463 static ULONGEST
1464 read_8_bytes (bfd *abfd, gdb_byte *buf)
1465 {
1466 return bfd_get_64 (abfd, buf);
1467 }
1468
1469 static ULONGEST
1470 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1471 {
1472 ULONGEST result;
1473 unsigned int num_read;
1474 int shift;
1475 gdb_byte byte;
1476
1477 result = 0;
1478 shift = 0;
1479 num_read = 0;
1480
1481 do
1482 {
1483 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1484 buf++;
1485 num_read++;
1486 result |= ((byte & 0x7f) << shift);
1487 shift += 7;
1488 }
1489 while (byte & 0x80);
1490
1491 *bytes_read_ptr = num_read;
1492
1493 return result;
1494 }
1495
1496 static LONGEST
1497 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1498 {
1499 LONGEST result;
1500 int shift;
1501 unsigned int num_read;
1502 gdb_byte byte;
1503
1504 result = 0;
1505 shift = 0;
1506 num_read = 0;
1507
1508 do
1509 {
1510 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1511 buf++;
1512 num_read++;
1513 result |= ((byte & 0x7f) << shift);
1514 shift += 7;
1515 }
1516 while (byte & 0x80);
1517
1518 if (shift < 8 * sizeof (result) && (byte & 0x40))
1519 result |= -(((LONGEST)1) << shift);
1520
1521 *bytes_read_ptr = num_read;
1522
1523 return result;
1524 }
1525
1526 static ULONGEST
1527 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1528 {
1529 LONGEST result;
1530
1531 result = bfd_get_32 (abfd, buf);
1532 if (result == 0xffffffff)
1533 {
1534 result = bfd_get_64 (abfd, buf + 4);
1535 *bytes_read_ptr = 12;
1536 }
1537 else
1538 *bytes_read_ptr = 4;
1539
1540 return result;
1541 }
1542 \f
1543
1544 /* Pointer encoding helper functions. */
1545
1546 /* GCC supports exception handling based on DWARF2 CFI. However, for
1547 technical reasons, it encodes addresses in its FDE's in a different
1548 way. Several "pointer encodings" are supported. The encoding
1549 that's used for a particular FDE is determined by the 'R'
1550 augmentation in the associated CIE. The argument of this
1551 augmentation is a single byte.
1552
1553 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1554 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1555 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1556 address should be interpreted (absolute, relative to the current
1557 position in the FDE, ...). Bit 7, indicates that the address
1558 should be dereferenced. */
1559
1560 static gdb_byte
1561 encoding_for_size (unsigned int size)
1562 {
1563 switch (size)
1564 {
1565 case 2:
1566 return DW_EH_PE_udata2;
1567 case 4:
1568 return DW_EH_PE_udata4;
1569 case 8:
1570 return DW_EH_PE_udata8;
1571 default:
1572 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1573 }
1574 }
1575
1576 static CORE_ADDR
1577 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1578 int ptr_len, const gdb_byte *buf,
1579 unsigned int *bytes_read_ptr,
1580 CORE_ADDR func_base)
1581 {
1582 ptrdiff_t offset;
1583 CORE_ADDR base;
1584
1585 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1586 FDE's. */
1587 if (encoding & DW_EH_PE_indirect)
1588 internal_error (__FILE__, __LINE__,
1589 _("Unsupported encoding: DW_EH_PE_indirect"));
1590
1591 *bytes_read_ptr = 0;
1592
1593 switch (encoding & 0x70)
1594 {
1595 case DW_EH_PE_absptr:
1596 base = 0;
1597 break;
1598 case DW_EH_PE_pcrel:
1599 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1600 base += (buf - unit->dwarf_frame_buffer);
1601 break;
1602 case DW_EH_PE_datarel:
1603 base = unit->dbase;
1604 break;
1605 case DW_EH_PE_textrel:
1606 base = unit->tbase;
1607 break;
1608 case DW_EH_PE_funcrel:
1609 base = func_base;
1610 break;
1611 case DW_EH_PE_aligned:
1612 base = 0;
1613 offset = buf - unit->dwarf_frame_buffer;
1614 if ((offset % ptr_len) != 0)
1615 {
1616 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1617 buf += *bytes_read_ptr;
1618 }
1619 break;
1620 default:
1621 internal_error (__FILE__, __LINE__,
1622 _("Invalid or unsupported encoding"));
1623 }
1624
1625 if ((encoding & 0x07) == 0x00)
1626 {
1627 encoding |= encoding_for_size (ptr_len);
1628 if (bfd_get_sign_extend_vma (unit->abfd))
1629 encoding |= DW_EH_PE_signed;
1630 }
1631
1632 switch (encoding & 0x0f)
1633 {
1634 case DW_EH_PE_uleb128:
1635 {
1636 ULONGEST value;
1637 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1638
1639 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1640 return base + value;
1641 }
1642 case DW_EH_PE_udata2:
1643 *bytes_read_ptr += 2;
1644 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1645 case DW_EH_PE_udata4:
1646 *bytes_read_ptr += 4;
1647 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1648 case DW_EH_PE_udata8:
1649 *bytes_read_ptr += 8;
1650 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1651 case DW_EH_PE_sleb128:
1652 {
1653 LONGEST value;
1654 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1655
1656 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1657 return base + value;
1658 }
1659 case DW_EH_PE_sdata2:
1660 *bytes_read_ptr += 2;
1661 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1662 case DW_EH_PE_sdata4:
1663 *bytes_read_ptr += 4;
1664 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1665 case DW_EH_PE_sdata8:
1666 *bytes_read_ptr += 8;
1667 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1668 default:
1669 internal_error (__FILE__, __LINE__,
1670 _("Invalid or unsupported encoding"));
1671 }
1672 }
1673 \f
1674
1675 static int
1676 bsearch_cie_cmp (const void *key, const void *element)
1677 {
1678 ULONGEST cie_pointer = *(ULONGEST *) key;
1679 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1680
1681 if (cie_pointer == cie->cie_pointer)
1682 return 0;
1683
1684 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1685 }
1686
1687 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1688 static struct dwarf2_cie *
1689 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1690 {
1691 struct dwarf2_cie **p_cie;
1692
1693 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1694 bsearch be non-NULL. */
1695 if (cie_table->entries == NULL)
1696 {
1697 gdb_assert (cie_table->num_entries == 0);
1698 return NULL;
1699 }
1700
1701 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1702 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1703 if (p_cie != NULL)
1704 return *p_cie;
1705 return NULL;
1706 }
1707
1708 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1709 static void
1710 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1711 {
1712 const int n = cie_table->num_entries;
1713
1714 gdb_assert (n < 1
1715 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1716
1717 cie_table->entries =
1718 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1719 cie_table->entries[n] = cie;
1720 cie_table->num_entries = n + 1;
1721 }
1722
1723 static int
1724 bsearch_fde_cmp (const void *key, const void *element)
1725 {
1726 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1727 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1728
1729 if (seek_pc < fde->initial_location)
1730 return -1;
1731 if (seek_pc < fde->initial_location + fde->address_range)
1732 return 0;
1733 return 1;
1734 }
1735
1736 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1737 inital location associated with it into *PC. */
1738
1739 static struct dwarf2_fde *
1740 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1741 {
1742 struct objfile *objfile;
1743
1744 ALL_OBJFILES (objfile)
1745 {
1746 struct dwarf2_fde_table *fde_table;
1747 struct dwarf2_fde **p_fde;
1748 CORE_ADDR offset;
1749 CORE_ADDR seek_pc;
1750
1751 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1752 if (fde_table == NULL)
1753 {
1754 dwarf2_build_frame_info (objfile);
1755 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1756 }
1757 gdb_assert (fde_table != NULL);
1758
1759 if (fde_table->num_entries == 0)
1760 continue;
1761
1762 gdb_assert (objfile->section_offsets);
1763 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1764
1765 gdb_assert (fde_table->num_entries > 0);
1766 if (*pc < offset + fde_table->entries[0]->initial_location)
1767 continue;
1768
1769 seek_pc = *pc - offset;
1770 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1771 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1772 if (p_fde != NULL)
1773 {
1774 *pc = (*p_fde)->initial_location + offset;
1775 if (out_offset)
1776 *out_offset = offset;
1777 return *p_fde;
1778 }
1779 }
1780 return NULL;
1781 }
1782
1783 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1784 static void
1785 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1786 {
1787 if (fde->address_range == 0)
1788 /* Discard useless FDEs. */
1789 return;
1790
1791 fde_table->num_entries += 1;
1792 fde_table->entries =
1793 xrealloc (fde_table->entries,
1794 fde_table->num_entries * sizeof (fde_table->entries[0]));
1795 fde_table->entries[fde_table->num_entries - 1] = fde;
1796 }
1797
1798 #ifdef CC_HAS_LONG_LONG
1799 #define DW64_CIE_ID 0xffffffffffffffffULL
1800 #else
1801 #define DW64_CIE_ID ~0
1802 #endif
1803
1804 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1805 or any of them. */
1806
1807 enum eh_frame_type
1808 {
1809 EH_CIE_TYPE_ID = 1 << 0,
1810 EH_FDE_TYPE_ID = 1 << 1,
1811 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1812 };
1813
1814 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1815 int eh_frame_p,
1816 struct dwarf2_cie_table *cie_table,
1817 struct dwarf2_fde_table *fde_table,
1818 enum eh_frame_type entry_type);
1819
1820 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1821 Return NULL if invalid input, otherwise the next byte to be processed. */
1822
1823 static gdb_byte *
1824 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1825 struct dwarf2_cie_table *cie_table,
1826 struct dwarf2_fde_table *fde_table,
1827 enum eh_frame_type entry_type)
1828 {
1829 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1830 gdb_byte *buf, *end;
1831 LONGEST length;
1832 unsigned int bytes_read;
1833 int dwarf64_p;
1834 ULONGEST cie_id;
1835 ULONGEST cie_pointer;
1836
1837 buf = start;
1838 length = read_initial_length (unit->abfd, buf, &bytes_read);
1839 buf += bytes_read;
1840 end = buf + length;
1841
1842 /* Are we still within the section? */
1843 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1844 return NULL;
1845
1846 if (length == 0)
1847 return end;
1848
1849 /* Distinguish between 32 and 64-bit encoded frame info. */
1850 dwarf64_p = (bytes_read == 12);
1851
1852 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1853 if (eh_frame_p)
1854 cie_id = 0;
1855 else if (dwarf64_p)
1856 cie_id = DW64_CIE_ID;
1857 else
1858 cie_id = DW_CIE_ID;
1859
1860 if (dwarf64_p)
1861 {
1862 cie_pointer = read_8_bytes (unit->abfd, buf);
1863 buf += 8;
1864 }
1865 else
1866 {
1867 cie_pointer = read_4_bytes (unit->abfd, buf);
1868 buf += 4;
1869 }
1870
1871 if (cie_pointer == cie_id)
1872 {
1873 /* This is a CIE. */
1874 struct dwarf2_cie *cie;
1875 char *augmentation;
1876 unsigned int cie_version;
1877
1878 /* Check that a CIE was expected. */
1879 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1880 error (_("Found a CIE when not expecting it."));
1881
1882 /* Record the offset into the .debug_frame section of this CIE. */
1883 cie_pointer = start - unit->dwarf_frame_buffer;
1884
1885 /* Check whether we've already read it. */
1886 if (find_cie (cie_table, cie_pointer))
1887 return end;
1888
1889 cie = (struct dwarf2_cie *)
1890 obstack_alloc (&unit->objfile->objfile_obstack,
1891 sizeof (struct dwarf2_cie));
1892 cie->initial_instructions = NULL;
1893 cie->cie_pointer = cie_pointer;
1894
1895 /* The encoding for FDE's in a normal .debug_frame section
1896 depends on the target address size. */
1897 cie->encoding = DW_EH_PE_absptr;
1898
1899 /* We'll determine the final value later, but we need to
1900 initialize it conservatively. */
1901 cie->signal_frame = 0;
1902
1903 /* Check version number. */
1904 cie_version = read_1_byte (unit->abfd, buf);
1905 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1906 return NULL;
1907 cie->version = cie_version;
1908 buf += 1;
1909
1910 /* Interpret the interesting bits of the augmentation. */
1911 cie->augmentation = augmentation = (char *) buf;
1912 buf += (strlen (augmentation) + 1);
1913
1914 /* Ignore armcc augmentations. We only use them for quirks,
1915 and that doesn't happen until later. */
1916 if (strncmp (augmentation, "armcc", 5) == 0)
1917 augmentation += strlen (augmentation);
1918
1919 /* The GCC 2.x "eh" augmentation has a pointer immediately
1920 following the augmentation string, so it must be handled
1921 first. */
1922 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1923 {
1924 /* Skip. */
1925 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1926 augmentation += 2;
1927 }
1928
1929 if (cie->version >= 4)
1930 {
1931 /* FIXME: check that this is the same as from the CU header. */
1932 cie->addr_size = read_1_byte (unit->abfd, buf);
1933 ++buf;
1934 cie->segment_size = read_1_byte (unit->abfd, buf);
1935 ++buf;
1936 }
1937 else
1938 {
1939 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1940 cie->segment_size = 0;
1941 }
1942 /* Address values in .eh_frame sections are defined to have the
1943 target's pointer size. Watchout: This breaks frame info for
1944 targets with pointer size < address size, unless a .debug_frame
1945 section exists as well. */
1946 if (eh_frame_p)
1947 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1948 else
1949 cie->ptr_size = cie->addr_size;
1950
1951 cie->code_alignment_factor =
1952 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1953 buf += bytes_read;
1954
1955 cie->data_alignment_factor =
1956 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1957 buf += bytes_read;
1958
1959 if (cie_version == 1)
1960 {
1961 cie->return_address_register = read_1_byte (unit->abfd, buf);
1962 bytes_read = 1;
1963 }
1964 else
1965 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1966 &bytes_read);
1967 cie->return_address_register
1968 = dwarf2_frame_adjust_regnum (gdbarch,
1969 cie->return_address_register,
1970 eh_frame_p);
1971
1972 buf += bytes_read;
1973
1974 cie->saw_z_augmentation = (*augmentation == 'z');
1975 if (cie->saw_z_augmentation)
1976 {
1977 ULONGEST length;
1978
1979 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1980 buf += bytes_read;
1981 if (buf > end)
1982 return NULL;
1983 cie->initial_instructions = buf + length;
1984 augmentation++;
1985 }
1986
1987 while (*augmentation)
1988 {
1989 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1990 if (*augmentation == 'L')
1991 {
1992 /* Skip. */
1993 buf++;
1994 augmentation++;
1995 }
1996
1997 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1998 else if (*augmentation == 'R')
1999 {
2000 cie->encoding = *buf++;
2001 augmentation++;
2002 }
2003
2004 /* "P" indicates a personality routine in the CIE augmentation. */
2005 else if (*augmentation == 'P')
2006 {
2007 /* Skip. Avoid indirection since we throw away the result. */
2008 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2009 read_encoded_value (unit, encoding, cie->ptr_size,
2010 buf, &bytes_read, 0);
2011 buf += bytes_read;
2012 augmentation++;
2013 }
2014
2015 /* "S" indicates a signal frame, such that the return
2016 address must not be decremented to locate the call frame
2017 info for the previous frame; it might even be the first
2018 instruction of a function, so decrementing it would take
2019 us to a different function. */
2020 else if (*augmentation == 'S')
2021 {
2022 cie->signal_frame = 1;
2023 augmentation++;
2024 }
2025
2026 /* Otherwise we have an unknown augmentation. Assume that either
2027 there is no augmentation data, or we saw a 'z' prefix. */
2028 else
2029 {
2030 if (cie->initial_instructions)
2031 buf = cie->initial_instructions;
2032 break;
2033 }
2034 }
2035
2036 cie->initial_instructions = buf;
2037 cie->end = end;
2038 cie->unit = unit;
2039
2040 add_cie (cie_table, cie);
2041 }
2042 else
2043 {
2044 /* This is a FDE. */
2045 struct dwarf2_fde *fde;
2046
2047 /* Check that an FDE was expected. */
2048 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2049 error (_("Found an FDE when not expecting it."));
2050
2051 /* In an .eh_frame section, the CIE pointer is the delta between the
2052 address within the FDE where the CIE pointer is stored and the
2053 address of the CIE. Convert it to an offset into the .eh_frame
2054 section. */
2055 if (eh_frame_p)
2056 {
2057 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2058 cie_pointer -= (dwarf64_p ? 8 : 4);
2059 }
2060
2061 /* In either case, validate the result is still within the section. */
2062 if (cie_pointer >= unit->dwarf_frame_size)
2063 return NULL;
2064
2065 fde = (struct dwarf2_fde *)
2066 obstack_alloc (&unit->objfile->objfile_obstack,
2067 sizeof (struct dwarf2_fde));
2068 fde->cie = find_cie (cie_table, cie_pointer);
2069 if (fde->cie == NULL)
2070 {
2071 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2072 eh_frame_p, cie_table, fde_table,
2073 EH_CIE_TYPE_ID);
2074 fde->cie = find_cie (cie_table, cie_pointer);
2075 }
2076
2077 gdb_assert (fde->cie != NULL);
2078
2079 fde->initial_location =
2080 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2081 buf, &bytes_read, 0);
2082 buf += bytes_read;
2083
2084 fde->address_range =
2085 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2086 fde->cie->ptr_size, buf, &bytes_read, 0);
2087 buf += bytes_read;
2088
2089 /* A 'z' augmentation in the CIE implies the presence of an
2090 augmentation field in the FDE as well. The only thing known
2091 to be in here at present is the LSDA entry for EH. So we
2092 can skip the whole thing. */
2093 if (fde->cie->saw_z_augmentation)
2094 {
2095 ULONGEST length;
2096
2097 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2098 buf += bytes_read + length;
2099 if (buf > end)
2100 return NULL;
2101 }
2102
2103 fde->instructions = buf;
2104 fde->end = end;
2105
2106 fde->eh_frame_p = eh_frame_p;
2107
2108 add_fde (fde_table, fde);
2109 }
2110
2111 return end;
2112 }
2113
2114 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2115 expect an FDE or a CIE. */
2116
2117 static gdb_byte *
2118 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2119 struct dwarf2_cie_table *cie_table,
2120 struct dwarf2_fde_table *fde_table,
2121 enum eh_frame_type entry_type)
2122 {
2123 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2124 gdb_byte *ret;
2125 ptrdiff_t start_offset;
2126
2127 while (1)
2128 {
2129 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2130 cie_table, fde_table, entry_type);
2131 if (ret != NULL)
2132 break;
2133
2134 /* We have corrupt input data of some form. */
2135
2136 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2137 and mismatches wrt padding and alignment of debug sections. */
2138 /* Note that there is no requirement in the standard for any
2139 alignment at all in the frame unwind sections. Testing for
2140 alignment before trying to interpret data would be incorrect.
2141
2142 However, GCC traditionally arranged for frame sections to be
2143 sized such that the FDE length and CIE fields happen to be
2144 aligned (in theory, for performance). This, unfortunately,
2145 was done with .align directives, which had the side effect of
2146 forcing the section to be aligned by the linker.
2147
2148 This becomes a problem when you have some other producer that
2149 creates frame sections that are not as strictly aligned. That
2150 produces a hole in the frame info that gets filled by the
2151 linker with zeros.
2152
2153 The GCC behaviour is arguably a bug, but it's effectively now
2154 part of the ABI, so we're now stuck with it, at least at the
2155 object file level. A smart linker may decide, in the process
2156 of compressing duplicate CIE information, that it can rewrite
2157 the entire output section without this extra padding. */
2158
2159 start_offset = start - unit->dwarf_frame_buffer;
2160 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2161 {
2162 start += 4 - (start_offset & 3);
2163 workaround = ALIGN4;
2164 continue;
2165 }
2166 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2167 {
2168 start += 8 - (start_offset & 7);
2169 workaround = ALIGN8;
2170 continue;
2171 }
2172
2173 /* Nothing left to try. Arrange to return as if we've consumed
2174 the entire input section. Hopefully we'll get valid info from
2175 the other of .debug_frame/.eh_frame. */
2176 workaround = FAIL;
2177 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2178 break;
2179 }
2180
2181 switch (workaround)
2182 {
2183 case NONE:
2184 break;
2185
2186 case ALIGN4:
2187 complaint (&symfile_complaints, _("\
2188 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2189 unit->dwarf_frame_section->owner->filename,
2190 unit->dwarf_frame_section->name);
2191 break;
2192
2193 case ALIGN8:
2194 complaint (&symfile_complaints, _("\
2195 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2196 unit->dwarf_frame_section->owner->filename,
2197 unit->dwarf_frame_section->name);
2198 break;
2199
2200 default:
2201 complaint (&symfile_complaints,
2202 _("Corrupt data in %s:%s"),
2203 unit->dwarf_frame_section->owner->filename,
2204 unit->dwarf_frame_section->name);
2205 break;
2206 }
2207
2208 return ret;
2209 }
2210 \f
2211 static int
2212 qsort_fde_cmp (const void *a, const void *b)
2213 {
2214 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2215 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2216
2217 if (aa->initial_location == bb->initial_location)
2218 {
2219 if (aa->address_range != bb->address_range
2220 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2221 /* Linker bug, e.g. gold/10400.
2222 Work around it by keeping stable sort order. */
2223 return (a < b) ? -1 : 1;
2224 else
2225 /* Put eh_frame entries after debug_frame ones. */
2226 return aa->eh_frame_p - bb->eh_frame_p;
2227 }
2228
2229 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2230 }
2231
2232 void
2233 dwarf2_build_frame_info (struct objfile *objfile)
2234 {
2235 struct comp_unit *unit;
2236 gdb_byte *frame_ptr;
2237 struct dwarf2_cie_table cie_table;
2238 struct dwarf2_fde_table fde_table;
2239 struct dwarf2_fde_table *fde_table2;
2240 volatile struct gdb_exception e;
2241
2242 cie_table.num_entries = 0;
2243 cie_table.entries = NULL;
2244
2245 fde_table.num_entries = 0;
2246 fde_table.entries = NULL;
2247
2248 /* Build a minimal decoding of the DWARF2 compilation unit. */
2249 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2250 sizeof (struct comp_unit));
2251 unit->abfd = objfile->obfd;
2252 unit->objfile = objfile;
2253 unit->dbase = 0;
2254 unit->tbase = 0;
2255
2256 if (objfile->separate_debug_objfile_backlink == NULL)
2257 {
2258 /* Do not read .eh_frame from separate file as they must be also
2259 present in the main file. */
2260 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2261 &unit->dwarf_frame_section,
2262 &unit->dwarf_frame_buffer,
2263 &unit->dwarf_frame_size);
2264 if (unit->dwarf_frame_size)
2265 {
2266 asection *got, *txt;
2267
2268 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2269 that is used for the i386/amd64 target, which currently is
2270 the only target in GCC that supports/uses the
2271 DW_EH_PE_datarel encoding. */
2272 got = bfd_get_section_by_name (unit->abfd, ".got");
2273 if (got)
2274 unit->dbase = got->vma;
2275
2276 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2277 so far. */
2278 txt = bfd_get_section_by_name (unit->abfd, ".text");
2279 if (txt)
2280 unit->tbase = txt->vma;
2281
2282 TRY_CATCH (e, RETURN_MASK_ERROR)
2283 {
2284 frame_ptr = unit->dwarf_frame_buffer;
2285 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2286 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2287 &cie_table, &fde_table,
2288 EH_CIE_OR_FDE_TYPE_ID);
2289 }
2290
2291 if (e.reason < 0)
2292 {
2293 warning (_("skipping .eh_frame info of %s: %s"),
2294 objfile->name, e.message);
2295
2296 if (fde_table.num_entries != 0)
2297 {
2298 xfree (fde_table.entries);
2299 fde_table.entries = NULL;
2300 fde_table.num_entries = 0;
2301 }
2302 /* The cie_table is discarded by the next if. */
2303 }
2304
2305 if (cie_table.num_entries != 0)
2306 {
2307 /* Reinit cie_table: debug_frame has different CIEs. */
2308 xfree (cie_table.entries);
2309 cie_table.num_entries = 0;
2310 cie_table.entries = NULL;
2311 }
2312 }
2313 }
2314
2315 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2316 &unit->dwarf_frame_section,
2317 &unit->dwarf_frame_buffer,
2318 &unit->dwarf_frame_size);
2319 if (unit->dwarf_frame_size)
2320 {
2321 int num_old_fde_entries = fde_table.num_entries;
2322
2323 TRY_CATCH (e, RETURN_MASK_ERROR)
2324 {
2325 frame_ptr = unit->dwarf_frame_buffer;
2326 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2327 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2328 &cie_table, &fde_table,
2329 EH_CIE_OR_FDE_TYPE_ID);
2330 }
2331 if (e.reason < 0)
2332 {
2333 warning (_("skipping .debug_frame info of %s: %s"),
2334 objfile->name, e.message);
2335
2336 if (fde_table.num_entries != 0)
2337 {
2338 fde_table.num_entries = num_old_fde_entries;
2339 if (num_old_fde_entries == 0)
2340 {
2341 xfree (fde_table.entries);
2342 fde_table.entries = NULL;
2343 }
2344 else
2345 {
2346 fde_table.entries = xrealloc (fde_table.entries,
2347 fde_table.num_entries *
2348 sizeof (fde_table.entries[0]));
2349 }
2350 }
2351 fde_table.num_entries = num_old_fde_entries;
2352 /* The cie_table is discarded by the next if. */
2353 }
2354 }
2355
2356 /* Discard the cie_table, it is no longer needed. */
2357 if (cie_table.num_entries != 0)
2358 {
2359 xfree (cie_table.entries);
2360 cie_table.entries = NULL; /* Paranoia. */
2361 cie_table.num_entries = 0; /* Paranoia. */
2362 }
2363
2364 /* Copy fde_table to obstack: it is needed at runtime. */
2365 fde_table2 = (struct dwarf2_fde_table *)
2366 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2367
2368 if (fde_table.num_entries == 0)
2369 {
2370 fde_table2->entries = NULL;
2371 fde_table2->num_entries = 0;
2372 }
2373 else
2374 {
2375 struct dwarf2_fde *fde_prev = NULL;
2376 struct dwarf2_fde *first_non_zero_fde = NULL;
2377 int i;
2378
2379 /* Prepare FDE table for lookups. */
2380 qsort (fde_table.entries, fde_table.num_entries,
2381 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2382
2383 /* Check for leftovers from --gc-sections. The GNU linker sets
2384 the relevant symbols to zero, but doesn't zero the FDE *end*
2385 ranges because there's no relocation there. It's (offset,
2386 length), not (start, end). On targets where address zero is
2387 just another valid address this can be a problem, since the
2388 FDEs appear to be non-empty in the output --- we could pick
2389 out the wrong FDE. To work around this, when overlaps are
2390 detected, we prefer FDEs that do not start at zero.
2391
2392 Start by finding the first FDE with non-zero start. Below
2393 we'll discard all FDEs that start at zero and overlap this
2394 one. */
2395 for (i = 0; i < fde_table.num_entries; i++)
2396 {
2397 struct dwarf2_fde *fde = fde_table.entries[i];
2398
2399 if (fde->initial_location != 0)
2400 {
2401 first_non_zero_fde = fde;
2402 break;
2403 }
2404 }
2405
2406 /* Since we'll be doing bsearch, squeeze out identical (except
2407 for eh_frame_p) fde entries so bsearch result is predictable.
2408 Also discard leftovers from --gc-sections. */
2409 fde_table2->num_entries = 0;
2410 for (i = 0; i < fde_table.num_entries; i++)
2411 {
2412 struct dwarf2_fde *fde = fde_table.entries[i];
2413
2414 if (fde->initial_location == 0
2415 && first_non_zero_fde != NULL
2416 && (first_non_zero_fde->initial_location
2417 < fde->initial_location + fde->address_range))
2418 continue;
2419
2420 if (fde_prev != NULL
2421 && fde_prev->initial_location == fde->initial_location)
2422 continue;
2423
2424 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2425 sizeof (fde_table.entries[0]));
2426 ++fde_table2->num_entries;
2427 fde_prev = fde;
2428 }
2429 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2430
2431 /* Discard the original fde_table. */
2432 xfree (fde_table.entries);
2433 }
2434
2435 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2436 }
2437
2438 /* Provide a prototype to silence -Wmissing-prototypes. */
2439 void _initialize_dwarf2_frame (void);
2440
2441 void
2442 _initialize_dwarf2_frame (void)
2443 {
2444 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2445 dwarf2_frame_objfile_data = register_objfile_data ();
2446 }
This page took 0.109034 seconds and 3 git commands to generate.