* sparc-tdep.c: Fix typo in comment.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96 \f
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201 \f
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = (char *) alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
227 no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231 }
232
233 static CORE_ADDR
234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238 }
239
240 static CORE_ADDR
241 execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265 \f
266
267 static void
268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 gdb_assert (old_rs);
376
377 xfree (fs->regs.reg);
378 fs->regs = *old_rs;
379 xfree (old_rs);
380 }
381 break;
382
383 case DW_CFA_def_cfa:
384 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
385 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
386 fs->cfa_offset = utmp;
387 fs->cfa_how = CFA_REG_OFFSET;
388 break;
389
390 case DW_CFA_def_cfa_register:
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
392 fs->cfa_how = CFA_REG_OFFSET;
393 break;
394
395 case DW_CFA_def_cfa_offset:
396 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
397 /* cfa_how deliberately not set. */
398 break;
399
400 case DW_CFA_nop:
401 break;
402
403 case DW_CFA_def_cfa_expression:
404 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
405 fs->cfa_exp = insn_ptr;
406 fs->cfa_how = CFA_EXP;
407 insn_ptr += fs->cfa_exp_len;
408 break;
409
410 case DW_CFA_expression:
411 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
412 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
413 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
414 fs->regs.reg[reg].loc.exp = insn_ptr;
415 fs->regs.reg[reg].exp_len = utmp;
416 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
417 insn_ptr += utmp;
418 break;
419
420 case DW_CFA_offset_extended_sf:
421 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
422 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
423 offset += fs->data_align;
424 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
426 fs->regs.reg[reg].loc.offset = offset;
427 break;
428
429 case DW_CFA_def_cfa_sf:
430 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
431 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
432 fs->cfa_offset = offset * fs->data_align;
433 fs->cfa_how = CFA_REG_OFFSET;
434 break;
435
436 case DW_CFA_def_cfa_offset_sf:
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 /* cfa_how deliberately not set. */
440 break;
441
442 case DW_CFA_GNU_args_size:
443 /* Ignored. */
444 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
445 break;
446
447 default:
448 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
449 }
450 }
451 }
452
453 /* Don't allow remember/restore between CIE and FDE programs. */
454 dwarf2_frame_state_free_regs (fs->regs.prev);
455 fs->regs.prev = NULL;
456 }
457 \f
458
459 /* Architecture-specific operations. */
460
461 /* Per-architecture data key. */
462 static struct gdbarch_data *dwarf2_frame_data;
463
464 struct dwarf2_frame_ops
465 {
466 /* Pre-initialize the register state REG for register REGNUM. */
467 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
468 };
469
470 /* Default architecture-specific register state initialization
471 function. */
472
473 static void
474 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
475 struct dwarf2_frame_state_reg *reg)
476 {
477 /* If we have a register that acts as a program counter, mark it as
478 a destination for the return address. If we have a register that
479 serves as the stack pointer, arrange for it to be filled with the
480 call frame address (CFA). The other registers are marked as
481 unspecified.
482
483 We copy the return address to the program counter, since many
484 parts in GDB assume that it is possible to get the return address
485 by unwinding the program counter register. However, on ISA's
486 with a dedicated return address register, the CFI usually only
487 contains information to unwind that return address register.
488
489 The reason we're treating the stack pointer special here is
490 because in many cases GCC doesn't emit CFI for the stack pointer
491 and implicitly assumes that it is equal to the CFA. This makes
492 some sense since the DWARF specification (version 3, draft 8,
493 p. 102) says that:
494
495 "Typically, the CFA is defined to be the value of the stack
496 pointer at the call site in the previous frame (which may be
497 different from its value on entry to the current frame)."
498
499 However, this isn't true for all platforms supported by GCC
500 (e.g. IBM S/390 and zSeries). Those architectures should provide
501 their own architecture-specific initialization function. */
502
503 if (regnum == PC_REGNUM)
504 reg->how = DWARF2_FRAME_REG_RA;
505 else if (regnum == SP_REGNUM)
506 reg->how = DWARF2_FRAME_REG_CFA;
507 }
508
509 /* Return a default for the architecture-specific operations. */
510
511 static void *
512 dwarf2_frame_init (struct gdbarch *gdbarch)
513 {
514 struct dwarf2_frame_ops *ops;
515
516 ops = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf2_frame_ops);
517 ops->init_reg = dwarf2_frame_default_init_reg;
518 return ops;
519 }
520
521 static struct dwarf2_frame_ops *
522 dwarf2_frame_ops (struct gdbarch *gdbarch)
523 {
524 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
525 if (ops == NULL)
526 {
527 /* ULGH, called during architecture initialization. Patch
528 things up. */
529 ops = dwarf2_frame_init (gdbarch);
530 set_gdbarch_data (gdbarch, dwarf2_frame_data, ops);
531 }
532 return ops;
533 }
534
535 /* Set the architecture-specific register state initialization
536 function for GDBARCH to INIT_REG. */
537
538 void
539 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
540 void (*init_reg) (struct gdbarch *, int,
541 struct dwarf2_frame_state_reg *))
542 {
543 struct dwarf2_frame_ops *ops;
544
545 ops = dwarf2_frame_ops (gdbarch);
546 ops->init_reg = init_reg;
547 }
548
549 /* Pre-initialize the register state REG for register REGNUM. */
550
551 static void
552 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
553 struct dwarf2_frame_state_reg *reg)
554 {
555 struct dwarf2_frame_ops *ops;
556
557 ops = dwarf2_frame_ops (gdbarch);
558 ops->init_reg (gdbarch, regnum, reg);
559 }
560 \f
561
562 struct dwarf2_frame_cache
563 {
564 /* DWARF Call Frame Address. */
565 CORE_ADDR cfa;
566
567 /* Saved registers, indexed by GDB register number, not by DWARF
568 register number. */
569 struct dwarf2_frame_state_reg *reg;
570 };
571
572 static struct dwarf2_frame_cache *
573 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
574 {
575 struct cleanup *old_chain;
576 struct gdbarch *gdbarch = get_frame_arch (next_frame);
577 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
578 struct dwarf2_frame_cache *cache;
579 struct dwarf2_frame_state *fs;
580 struct dwarf2_fde *fde;
581
582 if (*this_cache)
583 return *this_cache;
584
585 /* Allocate a new cache. */
586 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
587 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
588
589 /* Allocate and initialize the frame state. */
590 fs = XMALLOC (struct dwarf2_frame_state);
591 memset (fs, 0, sizeof (struct dwarf2_frame_state));
592 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
593
594 /* Unwind the PC.
595
596 Note that if NEXT_FRAME is never supposed to return (i.e. a call
597 to abort), the compiler might optimize away the instruction at
598 NEXT_FRAME's return address. As a result the return address will
599 point at some random instruction, and the CFI for that
600 instruction is probably worthless to us. GCC's unwinder solves
601 this problem by substracting 1 from the return address to get an
602 address in the middle of a presumed call instruction (or the
603 instruction in the associated delay slot). This should only be
604 done for "normal" frames and not for resume-type frames (signal
605 handlers, sentinel frames, dummy frames). The function
606 frame_unwind_address_in_block does just this. It's not clear how
607 reliable the method is though; there is the potential for the
608 register state pre-call being different to that on return. */
609 fs->pc = frame_unwind_address_in_block (next_frame);
610
611 /* Find the correct FDE. */
612 fde = dwarf2_frame_find_fde (&fs->pc);
613 gdb_assert (fde != NULL);
614
615 /* Extract any interesting information from the CIE. */
616 fs->data_align = fde->cie->data_alignment_factor;
617 fs->code_align = fde->cie->code_alignment_factor;
618 fs->retaddr_column = fde->cie->return_address_register;
619
620 /* First decode all the insns in the CIE. */
621 execute_cfa_program (fde->cie->initial_instructions,
622 fde->cie->end, next_frame, fs);
623
624 /* Save the initialized register set. */
625 fs->initial = fs->regs;
626 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
627
628 /* Then decode the insns in the FDE up to our target PC. */
629 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
630
631 /* Caclulate the CFA. */
632 switch (fs->cfa_how)
633 {
634 case CFA_REG_OFFSET:
635 cache->cfa = read_reg (next_frame, fs->cfa_reg);
636 cache->cfa += fs->cfa_offset;
637 break;
638
639 case CFA_EXP:
640 cache->cfa =
641 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
642 break;
643
644 default:
645 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
646 }
647
648 /* Initialize the register state. */
649 {
650 int regnum;
651
652 for (regnum = 0; regnum < num_regs; regnum++)
653 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
654 }
655
656 /* Go through the DWARF2 CFI generated table and save its register
657 location information in the cache. Note that we don't skip the
658 return address column; it's perfectly all right for it to
659 correspond to a real register. If it doesn't correspond to a
660 real register, or if we shouldn't treat it as such,
661 DWARF2_REG_TO_REGNUM should be defined to return a number outside
662 the range [0, NUM_REGS). */
663 {
664 int column; /* CFI speak for "register number". */
665
666 for (column = 0; column < fs->regs.num_regs; column++)
667 {
668 /* Use the GDB register number as the destination index. */
669 int regnum = DWARF2_REG_TO_REGNUM (column);
670
671 /* If there's no corresponding GDB register, ignore it. */
672 if (regnum < 0 || regnum >= num_regs)
673 continue;
674
675 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
676 of all debug info registers. If it doesn't, complain (but
677 not too loudly). It turns out that GCC assumes that an
678 unspecified register implies "same value" when CFI (draft
679 7) specifies nothing at all. Such a register could equally
680 be interpreted as "undefined". Also note that this check
681 isn't sufficient; it only checks that all registers in the
682 range [0 .. max column] are specified, and won't detect
683 problems when a debug info register falls outside of the
684 table. We need a way of iterating through all the valid
685 DWARF2 register numbers. */
686 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
687 complaint (&symfile_complaints,
688 "Incomplete CFI data; unspecified registers at 0x%s",
689 paddr (fs->pc));
690 else
691 cache->reg[regnum] = fs->regs.reg[column];
692 }
693 }
694
695 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
696 {
697 int regnum;
698
699 for (regnum = 0; regnum < num_regs; regnum++)
700 {
701 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
702 {
703 struct dwarf2_frame_state_reg *retaddr_reg =
704 &fs->regs.reg[fs->retaddr_column];
705
706 /* It seems rather bizarre to specify an "empty" column as
707 the return adress column. However, this is exactly
708 what GCC does on some targets. It turns out that GCC
709 assumes that the return address can be found in the
710 register corresponding to the return address column.
711 Incidentally, that's how should treat a return address
712 column specifying "same value" too. */
713 if (fs->retaddr_column < fs->regs.num_regs
714 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
715 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
716 cache->reg[regnum] = *retaddr_reg;
717 else
718 {
719 cache->reg[regnum].loc.reg = fs->retaddr_column;
720 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
721 }
722 }
723 }
724 }
725
726 do_cleanups (old_chain);
727
728 *this_cache = cache;
729 return cache;
730 }
731
732 static void
733 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
734 struct frame_id *this_id)
735 {
736 struct dwarf2_frame_cache *cache =
737 dwarf2_frame_cache (next_frame, this_cache);
738
739 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
740 }
741
742 static void
743 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
744 int regnum, int *optimizedp,
745 enum lval_type *lvalp, CORE_ADDR *addrp,
746 int *realnump, void *valuep)
747 {
748 struct gdbarch *gdbarch = get_frame_arch (next_frame);
749 struct dwarf2_frame_cache *cache =
750 dwarf2_frame_cache (next_frame, this_cache);
751
752 switch (cache->reg[regnum].how)
753 {
754 case DWARF2_FRAME_REG_UNDEFINED:
755 /* If CFI explicitly specified that the value isn't defined,
756 mark it as optimized away; the value isn't available. */
757 *optimizedp = 1;
758 *lvalp = not_lval;
759 *addrp = 0;
760 *realnump = -1;
761 if (valuep)
762 {
763 /* In some cases, for example %eflags on the i386, we have
764 to provide a sane value, even though this register wasn't
765 saved. Assume we can get it from NEXT_FRAME. */
766 frame_unwind_register (next_frame, regnum, valuep);
767 }
768 break;
769
770 case DWARF2_FRAME_REG_SAVED_OFFSET:
771 *optimizedp = 0;
772 *lvalp = lval_memory;
773 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
774 *realnump = -1;
775 if (valuep)
776 {
777 /* Read the value in from memory. */
778 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
779 }
780 break;
781
782 case DWARF2_FRAME_REG_SAVED_REG:
783 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
784 frame_register_unwind (next_frame, regnum,
785 optimizedp, lvalp, addrp, realnump, valuep);
786 break;
787
788 case DWARF2_FRAME_REG_SAVED_EXP:
789 *optimizedp = 0;
790 *lvalp = lval_memory;
791 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
792 cache->reg[regnum].exp_len,
793 next_frame, cache->cfa);
794 *realnump = -1;
795 if (valuep)
796 {
797 /* Read the value in from memory. */
798 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
799 }
800 break;
801
802 case DWARF2_FRAME_REG_UNSPECIFIED:
803 /* GCC, in its infinite wisdom decided to not provide unwind
804 information for registers that are "same value". Since
805 DWARF2 (3 draft 7) doesn't define such behavior, said
806 registers are actually undefined (which is different to CFI
807 "undefined"). Code above issues a complaint about this.
808 Here just fudge the books, assume GCC, and that the value is
809 more inner on the stack. */
810 frame_register_unwind (next_frame, regnum,
811 optimizedp, lvalp, addrp, realnump, valuep);
812 break;
813
814 case DWARF2_FRAME_REG_SAME_VALUE:
815 frame_register_unwind (next_frame, regnum,
816 optimizedp, lvalp, addrp, realnump, valuep);
817 break;
818
819 case DWARF2_FRAME_REG_CFA:
820 *optimizedp = 0;
821 *lvalp = not_lval;
822 *addrp = 0;
823 *realnump = -1;
824 if (valuep)
825 {
826 /* Store the value. */
827 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
828 }
829 break;
830
831 default:
832 internal_error (__FILE__, __LINE__, "Unknown register rule.");
833 }
834 }
835
836 static const struct frame_unwind dwarf2_frame_unwind =
837 {
838 NORMAL_FRAME,
839 dwarf2_frame_this_id,
840 dwarf2_frame_prev_register
841 };
842
843 const struct frame_unwind *
844 dwarf2_frame_sniffer (struct frame_info *next_frame)
845 {
846 /* Grab an address that is guarenteed to reside somewhere within the
847 function. frame_pc_unwind(), for a no-return next function, can
848 end up returning something past the end of this function's body. */
849 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
850 if (dwarf2_frame_find_fde (&block_addr))
851 return &dwarf2_frame_unwind;
852
853 return NULL;
854 }
855 \f
856
857 /* There is no explicitly defined relationship between the CFA and the
858 location of frame's local variables and arguments/parameters.
859 Therefore, frame base methods on this page should probably only be
860 used as a last resort, just to avoid printing total garbage as a
861 response to the "info frame" command. */
862
863 static CORE_ADDR
864 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
865 {
866 struct dwarf2_frame_cache *cache =
867 dwarf2_frame_cache (next_frame, this_cache);
868
869 return cache->cfa;
870 }
871
872 static const struct frame_base dwarf2_frame_base =
873 {
874 &dwarf2_frame_unwind,
875 dwarf2_frame_base_address,
876 dwarf2_frame_base_address,
877 dwarf2_frame_base_address
878 };
879
880 const struct frame_base *
881 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
882 {
883 CORE_ADDR pc = frame_pc_unwind (next_frame);
884 if (dwarf2_frame_find_fde (&pc))
885 return &dwarf2_frame_base;
886
887 return NULL;
888 }
889 \f
890 /* A minimal decoding of DWARF2 compilation units. We only decode
891 what's needed to get to the call frame information. */
892
893 struct comp_unit
894 {
895 /* Keep the bfd convenient. */
896 bfd *abfd;
897
898 struct objfile *objfile;
899
900 /* Linked list of CIEs for this object. */
901 struct dwarf2_cie *cie;
902
903 /* Address size for this unit - from unit header. */
904 unsigned char addr_size;
905
906 /* Pointer to the .debug_frame section loaded into memory. */
907 char *dwarf_frame_buffer;
908
909 /* Length of the loaded .debug_frame section. */
910 unsigned long dwarf_frame_size;
911
912 /* Pointer to the .debug_frame section. */
913 asection *dwarf_frame_section;
914
915 /* Base for DW_EH_PE_datarel encodings. */
916 bfd_vma dbase;
917
918 /* Base for DW_EH_PE_textrel encodings. */
919 bfd_vma tbase;
920 };
921
922 const struct objfile_data *dwarf2_frame_objfile_data;
923
924 static unsigned int
925 read_1_byte (bfd *bfd, char *buf)
926 {
927 return bfd_get_8 (abfd, (bfd_byte *) buf);
928 }
929
930 static unsigned int
931 read_4_bytes (bfd *abfd, char *buf)
932 {
933 return bfd_get_32 (abfd, (bfd_byte *) buf);
934 }
935
936 static ULONGEST
937 read_8_bytes (bfd *abfd, char *buf)
938 {
939 return bfd_get_64 (abfd, (bfd_byte *) buf);
940 }
941
942 static ULONGEST
943 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
944 {
945 ULONGEST result;
946 unsigned int num_read;
947 int shift;
948 unsigned char byte;
949
950 result = 0;
951 shift = 0;
952 num_read = 0;
953
954 do
955 {
956 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
957 buf++;
958 num_read++;
959 result |= ((byte & 0x7f) << shift);
960 shift += 7;
961 }
962 while (byte & 0x80);
963
964 *bytes_read_ptr = num_read;
965
966 return result;
967 }
968
969 static LONGEST
970 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
971 {
972 LONGEST result;
973 int shift;
974 unsigned int num_read;
975 unsigned char byte;
976
977 result = 0;
978 shift = 0;
979 num_read = 0;
980
981 do
982 {
983 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
984 buf++;
985 num_read++;
986 result |= ((byte & 0x7f) << shift);
987 shift += 7;
988 }
989 while (byte & 0x80);
990
991 if ((shift < 32) && (byte & 0x40))
992 result |= -(1 << shift);
993
994 *bytes_read_ptr = num_read;
995
996 return result;
997 }
998
999 static ULONGEST
1000 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1001 {
1002 LONGEST result;
1003
1004 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1005 if (result == 0xffffffff)
1006 {
1007 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1008 *bytes_read_ptr = 12;
1009 }
1010 else
1011 *bytes_read_ptr = 4;
1012
1013 return result;
1014 }
1015 \f
1016
1017 /* Pointer encoding helper functions. */
1018
1019 /* GCC supports exception handling based on DWARF2 CFI. However, for
1020 technical reasons, it encodes addresses in its FDE's in a different
1021 way. Several "pointer encodings" are supported. The encoding
1022 that's used for a particular FDE is determined by the 'R'
1023 augmentation in the associated CIE. The argument of this
1024 augmentation is a single byte.
1025
1026 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1027 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1028 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1029 address should be interpreted (absolute, relative to the current
1030 position in the FDE, ...). Bit 7, indicates that the address
1031 should be dereferenced. */
1032
1033 static unsigned char
1034 encoding_for_size (unsigned int size)
1035 {
1036 switch (size)
1037 {
1038 case 2:
1039 return DW_EH_PE_udata2;
1040 case 4:
1041 return DW_EH_PE_udata4;
1042 case 8:
1043 return DW_EH_PE_udata8;
1044 default:
1045 internal_error (__FILE__, __LINE__, "Unsupported address size");
1046 }
1047 }
1048
1049 static unsigned int
1050 size_of_encoded_value (unsigned char encoding)
1051 {
1052 if (encoding == DW_EH_PE_omit)
1053 return 0;
1054
1055 switch (encoding & 0x07)
1056 {
1057 case DW_EH_PE_absptr:
1058 return TYPE_LENGTH (builtin_type_void_data_ptr);
1059 case DW_EH_PE_udata2:
1060 return 2;
1061 case DW_EH_PE_udata4:
1062 return 4;
1063 case DW_EH_PE_udata8:
1064 return 8;
1065 default:
1066 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1067 }
1068 }
1069
1070 static CORE_ADDR
1071 read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1072 char *buf, unsigned int *bytes_read_ptr)
1073 {
1074 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1075 ptrdiff_t offset;
1076 CORE_ADDR base;
1077
1078 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1079 FDE's. */
1080 if (encoding & DW_EH_PE_indirect)
1081 internal_error (__FILE__, __LINE__,
1082 "Unsupported encoding: DW_EH_PE_indirect");
1083
1084 *bytes_read_ptr = 0;
1085
1086 switch (encoding & 0x70)
1087 {
1088 case DW_EH_PE_absptr:
1089 base = 0;
1090 break;
1091 case DW_EH_PE_pcrel:
1092 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1093 base += (buf - unit->dwarf_frame_buffer);
1094 break;
1095 case DW_EH_PE_datarel:
1096 base = unit->dbase;
1097 break;
1098 case DW_EH_PE_textrel:
1099 base = unit->tbase;
1100 break;
1101 case DW_EH_PE_aligned:
1102 base = 0;
1103 offset = buf - unit->dwarf_frame_buffer;
1104 if ((offset % ptr_len) != 0)
1105 {
1106 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1107 buf += *bytes_read_ptr;
1108 }
1109 break;
1110 default:
1111 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1112 }
1113
1114 if ((encoding & 0x0f) == 0x00)
1115 encoding |= encoding_for_size (ptr_len);
1116
1117 switch (encoding & 0x0f)
1118 {
1119 case DW_EH_PE_udata2:
1120 *bytes_read_ptr += 2;
1121 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1122 case DW_EH_PE_udata4:
1123 *bytes_read_ptr += 4;
1124 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1125 case DW_EH_PE_udata8:
1126 *bytes_read_ptr += 8;
1127 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1128 case DW_EH_PE_sdata2:
1129 *bytes_read_ptr += 2;
1130 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1131 case DW_EH_PE_sdata4:
1132 *bytes_read_ptr += 4;
1133 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1134 case DW_EH_PE_sdata8:
1135 *bytes_read_ptr += 8;
1136 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1137 default:
1138 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1139 }
1140 }
1141 \f
1142
1143 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1144 That's why we use a simple linked list here. */
1145
1146 static struct dwarf2_cie *
1147 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1148 {
1149 struct dwarf2_cie *cie = unit->cie;
1150
1151 while (cie)
1152 {
1153 if (cie->cie_pointer == cie_pointer)
1154 return cie;
1155
1156 cie = cie->next;
1157 }
1158
1159 return NULL;
1160 }
1161
1162 static void
1163 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1164 {
1165 cie->next = unit->cie;
1166 unit->cie = cie;
1167 }
1168
1169 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1170 inital location associated with it into *PC. */
1171
1172 static struct dwarf2_fde *
1173 dwarf2_frame_find_fde (CORE_ADDR *pc)
1174 {
1175 struct objfile *objfile;
1176
1177 ALL_OBJFILES (objfile)
1178 {
1179 struct dwarf2_fde *fde;
1180 CORE_ADDR offset;
1181
1182 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1183 if (fde == NULL)
1184 continue;
1185
1186 gdb_assert (objfile->section_offsets);
1187 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1188
1189 while (fde)
1190 {
1191 if (*pc >= fde->initial_location + offset
1192 && *pc < fde->initial_location + offset + fde->address_range)
1193 {
1194 *pc = fde->initial_location + offset;
1195 return fde;
1196 }
1197
1198 fde = fde->next;
1199 }
1200 }
1201
1202 return NULL;
1203 }
1204
1205 static void
1206 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1207 {
1208 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1209 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1210 }
1211
1212 #ifdef CC_HAS_LONG_LONG
1213 #define DW64_CIE_ID 0xffffffffffffffffULL
1214 #else
1215 #define DW64_CIE_ID ~0
1216 #endif
1217
1218 static char *decode_frame_entry (struct comp_unit *unit, char *start,
1219 int eh_frame_p);
1220
1221 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1222 the next byte to be processed. */
1223 static char *
1224 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1225 {
1226 char *buf;
1227 LONGEST length;
1228 unsigned int bytes_read;
1229 int dwarf64_p;
1230 ULONGEST cie_id;
1231 ULONGEST cie_pointer;
1232 char *end;
1233
1234 buf = start;
1235 length = read_initial_length (unit->abfd, buf, &bytes_read);
1236 buf += bytes_read;
1237 end = buf + length;
1238
1239 /* Are we still within the section? */
1240 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1241 return NULL;
1242
1243 if (length == 0)
1244 return end;
1245
1246 /* Distinguish between 32 and 64-bit encoded frame info. */
1247 dwarf64_p = (bytes_read == 12);
1248
1249 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1250 if (eh_frame_p)
1251 cie_id = 0;
1252 else if (dwarf64_p)
1253 cie_id = DW64_CIE_ID;
1254 else
1255 cie_id = DW_CIE_ID;
1256
1257 if (dwarf64_p)
1258 {
1259 cie_pointer = read_8_bytes (unit->abfd, buf);
1260 buf += 8;
1261 }
1262 else
1263 {
1264 cie_pointer = read_4_bytes (unit->abfd, buf);
1265 buf += 4;
1266 }
1267
1268 if (cie_pointer == cie_id)
1269 {
1270 /* This is a CIE. */
1271 struct dwarf2_cie *cie;
1272 char *augmentation;
1273
1274 /* Record the offset into the .debug_frame section of this CIE. */
1275 cie_pointer = start - unit->dwarf_frame_buffer;
1276
1277 /* Check whether we've already read it. */
1278 if (find_cie (unit, cie_pointer))
1279 return end;
1280
1281 cie = (struct dwarf2_cie *)
1282 obstack_alloc (&unit->objfile->objfile_obstack,
1283 sizeof (struct dwarf2_cie));
1284 cie->initial_instructions = NULL;
1285 cie->cie_pointer = cie_pointer;
1286
1287 /* The encoding for FDE's in a normal .debug_frame section
1288 depends on the target address size as specified in the
1289 Compilation Unit Header. */
1290 cie->encoding = encoding_for_size (unit->addr_size);
1291
1292 /* Check version number. */
1293 if (read_1_byte (unit->abfd, buf) != DW_CIE_VERSION)
1294 return NULL;
1295 buf += 1;
1296
1297 /* Interpret the interesting bits of the augmentation. */
1298 augmentation = buf;
1299 buf = augmentation + strlen (augmentation) + 1;
1300
1301 /* The GCC 2.x "eh" augmentation has a pointer immediately
1302 following the augmentation string, so it must be handled
1303 first. */
1304 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1305 {
1306 /* Skip. */
1307 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1308 augmentation += 2;
1309 }
1310
1311 cie->code_alignment_factor =
1312 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1313 buf += bytes_read;
1314
1315 cie->data_alignment_factor =
1316 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1317 buf += bytes_read;
1318
1319 cie->return_address_register = read_1_byte (unit->abfd, buf);
1320 buf += 1;
1321
1322 cie->saw_z_augmentation = (*augmentation == 'z');
1323 if (cie->saw_z_augmentation)
1324 {
1325 ULONGEST length;
1326
1327 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1328 buf += bytes_read;
1329 if (buf > end)
1330 return NULL;
1331 cie->initial_instructions = buf + length;
1332 augmentation++;
1333 }
1334
1335 while (*augmentation)
1336 {
1337 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1338 if (*augmentation == 'L')
1339 {
1340 /* Skip. */
1341 buf++;
1342 augmentation++;
1343 }
1344
1345 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1346 else if (*augmentation == 'R')
1347 {
1348 cie->encoding = *buf++;
1349 augmentation++;
1350 }
1351
1352 /* "P" indicates a personality routine in the CIE augmentation. */
1353 else if (*augmentation == 'P')
1354 {
1355 /* Skip. */
1356 buf += size_of_encoded_value (*buf++);
1357 augmentation++;
1358 }
1359
1360 /* Otherwise we have an unknown augmentation.
1361 Bail out unless we saw a 'z' prefix. */
1362 else
1363 {
1364 if (cie->initial_instructions == NULL)
1365 return end;
1366
1367 /* Skip unknown augmentations. */
1368 buf = cie->initial_instructions;
1369 break;
1370 }
1371 }
1372
1373 cie->initial_instructions = buf;
1374 cie->end = end;
1375
1376 add_cie (unit, cie);
1377 }
1378 else
1379 {
1380 /* This is a FDE. */
1381 struct dwarf2_fde *fde;
1382
1383 /* In an .eh_frame section, the CIE pointer is the delta between the
1384 address within the FDE where the CIE pointer is stored and the
1385 address of the CIE. Convert it to an offset into the .eh_frame
1386 section. */
1387 if (eh_frame_p)
1388 {
1389 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1390 cie_pointer -= (dwarf64_p ? 8 : 4);
1391 }
1392
1393 /* In either case, validate the result is still within the section. */
1394 if (cie_pointer >= unit->dwarf_frame_size)
1395 return NULL;
1396
1397 fde = (struct dwarf2_fde *)
1398 obstack_alloc (&unit->objfile->objfile_obstack,
1399 sizeof (struct dwarf2_fde));
1400 fde->cie = find_cie (unit, cie_pointer);
1401 if (fde->cie == NULL)
1402 {
1403 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1404 eh_frame_p);
1405 fde->cie = find_cie (unit, cie_pointer);
1406 }
1407
1408 gdb_assert (fde->cie != NULL);
1409
1410 fde->initial_location =
1411 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1412 buf += bytes_read;
1413
1414 fde->address_range =
1415 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1416 buf += bytes_read;
1417
1418 /* A 'z' augmentation in the CIE implies the presence of an
1419 augmentation field in the FDE as well. The only thing known
1420 to be in here at present is the LSDA entry for EH. So we
1421 can skip the whole thing. */
1422 if (fde->cie->saw_z_augmentation)
1423 {
1424 ULONGEST length;
1425
1426 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1427 buf += bytes_read + length;
1428 if (buf > end)
1429 return NULL;
1430 }
1431
1432 fde->instructions = buf;
1433 fde->end = end;
1434
1435 add_fde (unit, fde);
1436 }
1437
1438 return end;
1439 }
1440
1441 /* Read a CIE or FDE in BUF and decode it. */
1442 static char *
1443 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1444 {
1445 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1446 char *ret;
1447 const char *msg;
1448 ptrdiff_t start_offset;
1449
1450 while (1)
1451 {
1452 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1453 if (ret != NULL)
1454 break;
1455
1456 /* We have corrupt input data of some form. */
1457
1458 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1459 and mismatches wrt padding and alignment of debug sections. */
1460 /* Note that there is no requirement in the standard for any
1461 alignment at all in the frame unwind sections. Testing for
1462 alignment before trying to interpret data would be incorrect.
1463
1464 However, GCC traditionally arranged for frame sections to be
1465 sized such that the FDE length and CIE fields happen to be
1466 aligned (in theory, for performance). This, unfortunately,
1467 was done with .align directives, which had the side effect of
1468 forcing the section to be aligned by the linker.
1469
1470 This becomes a problem when you have some other producer that
1471 creates frame sections that are not as strictly aligned. That
1472 produces a hole in the frame info that gets filled by the
1473 linker with zeros.
1474
1475 The GCC behaviour is arguably a bug, but it's effectively now
1476 part of the ABI, so we're now stuck with it, at least at the
1477 object file level. A smart linker may decide, in the process
1478 of compressing duplicate CIE information, that it can rewrite
1479 the entire output section without this extra padding. */
1480
1481 start_offset = start - unit->dwarf_frame_buffer;
1482 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1483 {
1484 start += 4 - (start_offset & 3);
1485 workaround = ALIGN4;
1486 continue;
1487 }
1488 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1489 {
1490 start += 8 - (start_offset & 7);
1491 workaround = ALIGN8;
1492 continue;
1493 }
1494
1495 /* Nothing left to try. Arrange to return as if we've consumed
1496 the entire input section. Hopefully we'll get valid info from
1497 the other of .debug_frame/.eh_frame. */
1498 workaround = FAIL;
1499 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1500 break;
1501 }
1502
1503 switch (workaround)
1504 {
1505 case NONE:
1506 break;
1507
1508 case ALIGN4:
1509 complaint (&symfile_complaints,
1510 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1511 unit->dwarf_frame_section->owner->filename,
1512 unit->dwarf_frame_section->name);
1513 break;
1514
1515 case ALIGN8:
1516 complaint (&symfile_complaints,
1517 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1518 unit->dwarf_frame_section->owner->filename,
1519 unit->dwarf_frame_section->name);
1520 break;
1521
1522 default:
1523 complaint (&symfile_complaints,
1524 "Corrupt data in %s:%s",
1525 unit->dwarf_frame_section->owner->filename,
1526 unit->dwarf_frame_section->name);
1527 break;
1528 }
1529
1530 return ret;
1531 }
1532 \f
1533
1534 /* FIXME: kettenis/20030504: This still needs to be integrated with
1535 dwarf2read.c in a better way. */
1536
1537 /* Imported from dwarf2read.c. */
1538 extern asection *dwarf_frame_section;
1539 extern asection *dwarf_eh_frame_section;
1540
1541 /* Imported from dwarf2read.c. */
1542 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1543
1544 void
1545 dwarf2_build_frame_info (struct objfile *objfile)
1546 {
1547 struct comp_unit unit;
1548 char *frame_ptr;
1549
1550 /* Build a minimal decoding of the DWARF2 compilation unit. */
1551 unit.abfd = objfile->obfd;
1552 unit.objfile = objfile;
1553 unit.addr_size = objfile->obfd->arch_info->bits_per_address / 8;
1554 unit.dbase = 0;
1555 unit.tbase = 0;
1556
1557 /* First add the information from the .eh_frame section. That way,
1558 the FDEs from that section are searched last. */
1559 if (dwarf_eh_frame_section)
1560 {
1561 asection *got, *txt;
1562
1563 unit.cie = NULL;
1564 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1565 dwarf_eh_frame_section);
1566
1567 unit.dwarf_frame_size
1568 = bfd_get_section_size_before_reloc (dwarf_eh_frame_section);
1569 unit.dwarf_frame_section = dwarf_eh_frame_section;
1570
1571 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1572 that is used for the i386/amd64 target, which currently is
1573 the only target in GCC that supports/uses the
1574 DW_EH_PE_datarel encoding. */
1575 got = bfd_get_section_by_name (unit.abfd, ".got");
1576 if (got)
1577 unit.dbase = got->vma;
1578
1579 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1580 so far. */
1581 txt = bfd_get_section_by_name (unit.abfd, ".text");
1582 if (txt)
1583 unit.tbase = txt->vma;
1584
1585 frame_ptr = unit.dwarf_frame_buffer;
1586 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1587 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1588 }
1589
1590 if (dwarf_frame_section)
1591 {
1592 unit.cie = NULL;
1593 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1594 dwarf_frame_section);
1595 unit.dwarf_frame_size
1596 = bfd_get_section_size_before_reloc (dwarf_frame_section);
1597 unit.dwarf_frame_section = dwarf_frame_section;
1598
1599 frame_ptr = unit.dwarf_frame_buffer;
1600 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1601 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1602 }
1603 }
1604
1605 /* Provide a prototype to silence -Wmissing-prototypes. */
1606 void _initialize_dwarf2_frame (void);
1607
1608 void
1609 _initialize_dwarf2_frame (void)
1610 {
1611 dwarf2_frame_data = register_gdbarch_data (dwarf2_frame_init);
1612 dwarf2_frame_objfile_data = register_objfile_data ();
1613 }
This page took 0.062536 seconds and 4 git commands to generate.