1 /* Frame unwinder for frames with DWARF Call Frame Information.
3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Mark Kettenis.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
42 /* Call Frame Information (CFI). */
44 /* Common Information Entry (CIE). */
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
52 /* Constant that is factored out of all advance location
54 ULONGEST code_alignment_factor
;
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor
;
59 /* Return address column. */
60 ULONGEST return_address_register
;
62 /* Instruction sequence to initialize a register set. */
63 gdb_byte
*initial_instructions
;
66 /* Encoding of addresses. */
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation
;
72 struct dwarf2_cie
*next
;
75 /* Frame Description Entry (FDE). */
79 /* CIE for this FDE. */
80 struct dwarf2_cie
*cie
;
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location
;
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range
;
88 /* Instruction sequence. */
89 gdb_byte
*instructions
;
92 struct dwarf2_fde
*next
;
95 static struct dwarf2_fde
*dwarf2_frame_find_fde (CORE_ADDR
*pc
);
98 /* Structure describing a frame state. */
100 struct dwarf2_frame_state
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
106 struct dwarf2_frame_state_reg
*reg
;
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info
*prev
;
122 /* The PC described by the current frame state. */
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial
;
129 /* The information we care about from the CIE. */
132 ULONGEST retaddr_column
;
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info
*rs
,
146 size_t size
= sizeof (struct dwarf2_frame_state_reg
);
148 if (num_regs
<= rs
->num_regs
)
151 rs
->reg
= (struct dwarf2_frame_state_reg
*)
152 xrealloc (rs
->reg
, num_regs
* size
);
154 /* Initialize newly allocated registers. */
155 memset (rs
->reg
+ rs
->num_regs
, 0, (num_regs
- rs
->num_regs
) * size
);
156 rs
->num_regs
= num_regs
;
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
162 static struct dwarf2_frame_state_reg
*
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info
*rs
)
165 size_t size
= rs
->num_regs
* sizeof (struct dwarf2_frame_state_reg
);
166 struct dwarf2_frame_state_reg
*reg
;
168 reg
= (struct dwarf2_frame_state_reg
*) xmalloc (size
);
169 memcpy (reg
, rs
->reg
, size
);
174 /* Release the memory allocated to register set RS. */
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info
*rs
)
181 dwarf2_frame_state_free_regs (rs
->prev
);
188 /* Release the memory allocated to the frame state FS. */
191 dwarf2_frame_state_free (void *p
)
193 struct dwarf2_frame_state
*fs
= p
;
195 dwarf2_frame_state_free_regs (fs
->initial
.prev
);
196 dwarf2_frame_state_free_regs (fs
->regs
.prev
);
197 xfree (fs
->initial
.reg
);
198 xfree (fs
->regs
.reg
);
203 /* Helper functions for execute_stack_op. */
206 read_reg (void *baton
, int reg
)
208 struct frame_info
*next_frame
= (struct frame_info
*) baton
;
209 struct gdbarch
*gdbarch
= get_frame_arch (next_frame
);
213 regnum
= DWARF2_REG_TO_REGNUM (reg
);
215 buf
= alloca (register_size (gdbarch
, regnum
));
216 frame_unwind_register (next_frame
, regnum
, buf
);
217 return extract_typed_address (buf
, builtin_type_void_data_ptr
);
221 read_mem (void *baton
, gdb_byte
*buf
, CORE_ADDR addr
, size_t len
)
223 read_memory (addr
, buf
, len
);
227 no_get_frame_base (void *baton
, gdb_byte
**start
, size_t *length
)
229 internal_error (__FILE__
, __LINE__
,
230 _("Support for DW_OP_fbreg is unimplemented"));
234 no_get_tls_address (void *baton
, CORE_ADDR offset
)
236 internal_error (__FILE__
, __LINE__
,
237 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
241 execute_stack_op (gdb_byte
*exp
, ULONGEST len
,
242 struct frame_info
*next_frame
, CORE_ADDR initial
)
244 struct dwarf_expr_context
*ctx
;
247 ctx
= new_dwarf_expr_context ();
248 ctx
->baton
= next_frame
;
249 ctx
->read_reg
= read_reg
;
250 ctx
->read_mem
= read_mem
;
251 ctx
->get_frame_base
= no_get_frame_base
;
252 ctx
->get_tls_address
= no_get_tls_address
;
254 dwarf_expr_push (ctx
, initial
);
255 dwarf_expr_eval (ctx
, exp
, len
);
256 result
= dwarf_expr_fetch (ctx
, 0);
259 result
= read_reg (next_frame
, result
);
261 free_dwarf_expr_context (ctx
);
268 execute_cfa_program (gdb_byte
*insn_ptr
, gdb_byte
*insn_end
,
269 struct frame_info
*next_frame
,
270 struct dwarf2_frame_state
*fs
)
272 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
275 while (insn_ptr
< insn_end
&& fs
->pc
<= pc
)
277 gdb_byte insn
= *insn_ptr
++;
281 if ((insn
& 0xc0) == DW_CFA_advance_loc
)
282 fs
->pc
+= (insn
& 0x3f) * fs
->code_align
;
283 else if ((insn
& 0xc0) == DW_CFA_offset
)
286 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
287 offset
= utmp
* fs
->data_align
;
288 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
289 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_OFFSET
;
290 fs
->regs
.reg
[reg
].loc
.offset
= offset
;
292 else if ((insn
& 0xc0) == DW_CFA_restore
)
294 gdb_assert (fs
->initial
.reg
);
296 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
297 fs
->regs
.reg
[reg
] = fs
->initial
.reg
[reg
];
304 fs
->pc
= dwarf2_read_address (insn_ptr
, insn_end
, &bytes_read
);
305 insn_ptr
+= bytes_read
;
308 case DW_CFA_advance_loc1
:
309 utmp
= extract_unsigned_integer (insn_ptr
, 1);
310 fs
->pc
+= utmp
* fs
->code_align
;
313 case DW_CFA_advance_loc2
:
314 utmp
= extract_unsigned_integer (insn_ptr
, 2);
315 fs
->pc
+= utmp
* fs
->code_align
;
318 case DW_CFA_advance_loc4
:
319 utmp
= extract_unsigned_integer (insn_ptr
, 4);
320 fs
->pc
+= utmp
* fs
->code_align
;
324 case DW_CFA_offset_extended
:
325 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
326 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
327 offset
= utmp
* fs
->data_align
;
328 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
329 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_OFFSET
;
330 fs
->regs
.reg
[reg
].loc
.offset
= offset
;
333 case DW_CFA_restore_extended
:
334 gdb_assert (fs
->initial
.reg
);
335 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
336 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
337 fs
->regs
.reg
[reg
] = fs
->initial
.reg
[reg
];
340 case DW_CFA_undefined
:
341 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
342 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
343 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_UNDEFINED
;
346 case DW_CFA_same_value
:
347 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
348 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
349 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAME_VALUE
;
352 case DW_CFA_register
:
353 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
354 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
355 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
356 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_REG
;
357 fs
->regs
.reg
[reg
].loc
.reg
= utmp
;
360 case DW_CFA_remember_state
:
362 struct dwarf2_frame_state_reg_info
*new_rs
;
364 new_rs
= XMALLOC (struct dwarf2_frame_state_reg_info
);
366 fs
->regs
.reg
= dwarf2_frame_state_copy_regs (&fs
->regs
);
367 fs
->regs
.prev
= new_rs
;
371 case DW_CFA_restore_state
:
373 struct dwarf2_frame_state_reg_info
*old_rs
= fs
->regs
.prev
;
377 complaint (&symfile_complaints
, _("\
378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs
->pc
));
382 xfree (fs
->regs
.reg
);
390 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &fs
->cfa_reg
);
391 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
392 fs
->cfa_offset
= utmp
;
393 fs
->cfa_how
= CFA_REG_OFFSET
;
396 case DW_CFA_def_cfa_register
:
397 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &fs
->cfa_reg
);
398 fs
->cfa_how
= CFA_REG_OFFSET
;
401 case DW_CFA_def_cfa_offset
:
402 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
403 fs
->cfa_offset
= utmp
;
404 /* cfa_how deliberately not set. */
410 case DW_CFA_def_cfa_expression
:
411 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &fs
->cfa_exp_len
);
412 fs
->cfa_exp
= insn_ptr
;
413 fs
->cfa_how
= CFA_EXP
;
414 insn_ptr
+= fs
->cfa_exp_len
;
417 case DW_CFA_expression
:
418 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
419 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
420 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
421 fs
->regs
.reg
[reg
].loc
.exp
= insn_ptr
;
422 fs
->regs
.reg
[reg
].exp_len
= utmp
;
423 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_EXP
;
427 case DW_CFA_offset_extended_sf
:
428 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, ®
);
429 insn_ptr
= read_sleb128 (insn_ptr
, insn_end
, &offset
);
430 offset
*= fs
->data_align
;
431 dwarf2_frame_state_alloc_regs (&fs
->regs
, reg
+ 1);
432 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_OFFSET
;
433 fs
->regs
.reg
[reg
].loc
.offset
= offset
;
436 case DW_CFA_def_cfa_sf
:
437 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &fs
->cfa_reg
);
438 insn_ptr
= read_sleb128 (insn_ptr
, insn_end
, &offset
);
439 fs
->cfa_offset
= offset
* fs
->data_align
;
440 fs
->cfa_how
= CFA_REG_OFFSET
;
443 case DW_CFA_def_cfa_offset_sf
:
444 insn_ptr
= read_sleb128 (insn_ptr
, insn_end
, &offset
);
445 fs
->cfa_offset
= offset
* fs
->data_align
;
446 /* cfa_how deliberately not set. */
449 case DW_CFA_GNU_window_save
:
450 /* This is SPARC-specific code, and contains hard-coded
451 constants for the register numbering scheme used by
452 GCC. Rather than having a architecture-specific
453 operation that's only ever used by a single
454 architecture, we provide the implementation here.
455 Incidentally that's what GCC does too in its
458 struct gdbarch
*gdbarch
= get_frame_arch (next_frame
);
459 int size
= register_size(gdbarch
, 0);
460 dwarf2_frame_state_alloc_regs (&fs
->regs
, 32);
461 for (reg
= 8; reg
< 16; reg
++)
463 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_REG
;
464 fs
->regs
.reg
[reg
].loc
.reg
= reg
+ 16;
466 for (reg
= 16; reg
< 32; reg
++)
468 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_OFFSET
;
469 fs
->regs
.reg
[reg
].loc
.offset
= (reg
- 16) * size
;
474 case DW_CFA_GNU_args_size
:
476 insn_ptr
= read_uleb128 (insn_ptr
, insn_end
, &utmp
);
480 internal_error (__FILE__
, __LINE__
, _("Unknown CFI encountered."));
485 /* Don't allow remember/restore between CIE and FDE programs. */
486 dwarf2_frame_state_free_regs (fs
->regs
.prev
);
487 fs
->regs
.prev
= NULL
;
491 /* Architecture-specific operations. */
493 /* Per-architecture data key. */
494 static struct gdbarch_data
*dwarf2_frame_data
;
496 struct dwarf2_frame_ops
498 /* Pre-initialize the register state REG for register REGNUM. */
499 void (*init_reg
) (struct gdbarch
*, int, struct dwarf2_frame_state_reg
*);
501 /* Check whether the frame preceding NEXT_FRAME will be a signal
503 int (*signal_frame_p
) (struct gdbarch
*, struct frame_info
*);
506 /* Default architecture-specific register state initialization
510 dwarf2_frame_default_init_reg (struct gdbarch
*gdbarch
, int regnum
,
511 struct dwarf2_frame_state_reg
*reg
)
513 /* If we have a register that acts as a program counter, mark it as
514 a destination for the return address. If we have a register that
515 serves as the stack pointer, arrange for it to be filled with the
516 call frame address (CFA). The other registers are marked as
519 We copy the return address to the program counter, since many
520 parts in GDB assume that it is possible to get the return address
521 by unwinding the program counter register. However, on ISA's
522 with a dedicated return address register, the CFI usually only
523 contains information to unwind that return address register.
525 The reason we're treating the stack pointer special here is
526 because in many cases GCC doesn't emit CFI for the stack pointer
527 and implicitly assumes that it is equal to the CFA. This makes
528 some sense since the DWARF specification (version 3, draft 8,
531 "Typically, the CFA is defined to be the value of the stack
532 pointer at the call site in the previous frame (which may be
533 different from its value on entry to the current frame)."
535 However, this isn't true for all platforms supported by GCC
536 (e.g. IBM S/390 and zSeries). Those architectures should provide
537 their own architecture-specific initialization function. */
539 if (regnum
== PC_REGNUM
)
540 reg
->how
= DWARF2_FRAME_REG_RA
;
541 else if (regnum
== SP_REGNUM
)
542 reg
->how
= DWARF2_FRAME_REG_CFA
;
545 /* Return a default for the architecture-specific operations. */
548 dwarf2_frame_init (struct obstack
*obstack
)
550 struct dwarf2_frame_ops
*ops
;
552 ops
= OBSTACK_ZALLOC (obstack
, struct dwarf2_frame_ops
);
553 ops
->init_reg
= dwarf2_frame_default_init_reg
;
557 /* Set the architecture-specific register state initialization
558 function for GDBARCH to INIT_REG. */
561 dwarf2_frame_set_init_reg (struct gdbarch
*gdbarch
,
562 void (*init_reg
) (struct gdbarch
*, int,
563 struct dwarf2_frame_state_reg
*))
565 struct dwarf2_frame_ops
*ops
= gdbarch_data (gdbarch
, dwarf2_frame_data
);
567 ops
->init_reg
= init_reg
;
570 /* Pre-initialize the register state REG for register REGNUM. */
573 dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
574 struct dwarf2_frame_state_reg
*reg
)
576 struct dwarf2_frame_ops
*ops
= gdbarch_data (gdbarch
, dwarf2_frame_data
);
578 ops
->init_reg (gdbarch
, regnum
, reg
);
581 /* Set the architecture-specific signal trampoline recognition
582 function for GDBARCH to SIGNAL_FRAME_P. */
585 dwarf2_frame_set_signal_frame_p (struct gdbarch
*gdbarch
,
586 int (*signal_frame_p
) (struct gdbarch
*,
587 struct frame_info
*))
589 struct dwarf2_frame_ops
*ops
= gdbarch_data (gdbarch
, dwarf2_frame_data
);
591 ops
->signal_frame_p
= signal_frame_p
;
594 /* Query the architecture-specific signal frame recognizer for
598 dwarf2_frame_signal_frame_p (struct gdbarch
*gdbarch
,
599 struct frame_info
*next_frame
)
601 struct dwarf2_frame_ops
*ops
= gdbarch_data (gdbarch
, dwarf2_frame_data
);
603 if (ops
->signal_frame_p
== NULL
)
605 return ops
->signal_frame_p (gdbarch
, next_frame
);
609 struct dwarf2_frame_cache
611 /* DWARF Call Frame Address. */
614 /* Set if the return address column was marked as undefined. */
615 int undefined_retaddr
;
617 /* Saved registers, indexed by GDB register number, not by DWARF
619 struct dwarf2_frame_state_reg
*reg
;
621 /* Return address register. */
622 struct dwarf2_frame_state_reg retaddr_reg
;
625 static struct dwarf2_frame_cache
*
626 dwarf2_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
628 struct cleanup
*old_chain
;
629 struct gdbarch
*gdbarch
= get_frame_arch (next_frame
);
630 const int num_regs
= NUM_REGS
+ NUM_PSEUDO_REGS
;
631 struct dwarf2_frame_cache
*cache
;
632 struct dwarf2_frame_state
*fs
;
633 struct dwarf2_fde
*fde
;
638 /* Allocate a new cache. */
639 cache
= FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache
);
640 cache
->reg
= FRAME_OBSTACK_CALLOC (num_regs
, struct dwarf2_frame_state_reg
);
642 /* Allocate and initialize the frame state. */
643 fs
= XMALLOC (struct dwarf2_frame_state
);
644 memset (fs
, 0, sizeof (struct dwarf2_frame_state
));
645 old_chain
= make_cleanup (dwarf2_frame_state_free
, fs
);
649 Note that if NEXT_FRAME is never supposed to return (i.e. a call
650 to abort), the compiler might optimize away the instruction at
651 NEXT_FRAME's return address. As a result the return address will
652 point at some random instruction, and the CFI for that
653 instruction is probably worthless to us. GCC's unwinder solves
654 this problem by substracting 1 from the return address to get an
655 address in the middle of a presumed call instruction (or the
656 instruction in the associated delay slot). This should only be
657 done for "normal" frames and not for resume-type frames (signal
658 handlers, sentinel frames, dummy frames). The function
659 frame_unwind_address_in_block does just this. It's not clear how
660 reliable the method is though; there is the potential for the
661 register state pre-call being different to that on return. */
662 fs
->pc
= frame_unwind_address_in_block (next_frame
);
664 /* Find the correct FDE. */
665 fde
= dwarf2_frame_find_fde (&fs
->pc
);
666 gdb_assert (fde
!= NULL
);
668 /* Extract any interesting information from the CIE. */
669 fs
->data_align
= fde
->cie
->data_alignment_factor
;
670 fs
->code_align
= fde
->cie
->code_alignment_factor
;
671 fs
->retaddr_column
= fde
->cie
->return_address_register
;
673 /* First decode all the insns in the CIE. */
674 execute_cfa_program (fde
->cie
->initial_instructions
,
675 fde
->cie
->end
, next_frame
, fs
);
677 /* Save the initialized register set. */
678 fs
->initial
= fs
->regs
;
679 fs
->initial
.reg
= dwarf2_frame_state_copy_regs (&fs
->regs
);
681 /* Then decode the insns in the FDE up to our target PC. */
682 execute_cfa_program (fde
->instructions
, fde
->end
, next_frame
, fs
);
684 /* Caclulate the CFA. */
688 cache
->cfa
= read_reg (next_frame
, fs
->cfa_reg
);
689 cache
->cfa
+= fs
->cfa_offset
;
694 execute_stack_op (fs
->cfa_exp
, fs
->cfa_exp_len
, next_frame
, 0);
698 internal_error (__FILE__
, __LINE__
, _("Unknown CFA rule."));
701 /* Initialize the register state. */
705 for (regnum
= 0; regnum
< num_regs
; regnum
++)
706 dwarf2_frame_init_reg (gdbarch
, regnum
, &cache
->reg
[regnum
]);
709 /* Go through the DWARF2 CFI generated table and save its register
710 location information in the cache. Note that we don't skip the
711 return address column; it's perfectly all right for it to
712 correspond to a real register. If it doesn't correspond to a
713 real register, or if we shouldn't treat it as such,
714 DWARF2_REG_TO_REGNUM should be defined to return a number outside
715 the range [0, NUM_REGS). */
717 int column
; /* CFI speak for "register number". */
719 for (column
= 0; column
< fs
->regs
.num_regs
; column
++)
721 /* Use the GDB register number as the destination index. */
722 int regnum
= DWARF2_REG_TO_REGNUM (column
);
724 /* If there's no corresponding GDB register, ignore it. */
725 if (regnum
< 0 || regnum
>= num_regs
)
728 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
729 of all debug info registers. If it doesn't, complain (but
730 not too loudly). It turns out that GCC assumes that an
731 unspecified register implies "same value" when CFI (draft
732 7) specifies nothing at all. Such a register could equally
733 be interpreted as "undefined". Also note that this check
734 isn't sufficient; it only checks that all registers in the
735 range [0 .. max column] are specified, and won't detect
736 problems when a debug info register falls outside of the
737 table. We need a way of iterating through all the valid
738 DWARF2 register numbers. */
739 if (fs
->regs
.reg
[column
].how
== DWARF2_FRAME_REG_UNSPECIFIED
)
741 if (cache
->reg
[regnum
].how
== DWARF2_FRAME_REG_UNSPECIFIED
)
742 complaint (&symfile_complaints
, _("\
743 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
744 gdbarch_register_name (gdbarch
, regnum
),
748 cache
->reg
[regnum
] = fs
->regs
.reg
[column
];
752 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
753 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
757 for (regnum
= 0; regnum
< num_regs
; regnum
++)
759 if (cache
->reg
[regnum
].how
== DWARF2_FRAME_REG_RA
760 || cache
->reg
[regnum
].how
== DWARF2_FRAME_REG_RA_OFFSET
)
762 struct dwarf2_frame_state_reg
*retaddr_reg
=
763 &fs
->regs
.reg
[fs
->retaddr_column
];
765 /* It seems rather bizarre to specify an "empty" column as
766 the return adress column. However, this is exactly
767 what GCC does on some targets. It turns out that GCC
768 assumes that the return address can be found in the
769 register corresponding to the return address column.
770 Incidentally, that's how we should treat a return
771 address column specifying "same value" too. */
772 if (fs
->retaddr_column
< fs
->regs
.num_regs
773 && retaddr_reg
->how
!= DWARF2_FRAME_REG_UNSPECIFIED
774 && retaddr_reg
->how
!= DWARF2_FRAME_REG_SAME_VALUE
)
776 if (cache
->reg
[regnum
].how
== DWARF2_FRAME_REG_RA
)
777 cache
->reg
[regnum
] = *retaddr_reg
;
779 cache
->retaddr_reg
= *retaddr_reg
;
783 if (cache
->reg
[regnum
].how
== DWARF2_FRAME_REG_RA
)
785 cache
->reg
[regnum
].loc
.reg
= fs
->retaddr_column
;
786 cache
->reg
[regnum
].how
= DWARF2_FRAME_REG_SAVED_REG
;
790 cache
->retaddr_reg
.loc
.reg
= fs
->retaddr_column
;
791 cache
->retaddr_reg
.how
= DWARF2_FRAME_REG_SAVED_REG
;
798 if (fs
->retaddr_column
< fs
->regs
.num_regs
799 && fs
->regs
.reg
[fs
->retaddr_column
].how
== DWARF2_FRAME_REG_UNDEFINED
)
800 cache
->undefined_retaddr
= 1;
802 do_cleanups (old_chain
);
809 dwarf2_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
810 struct frame_id
*this_id
)
812 struct dwarf2_frame_cache
*cache
=
813 dwarf2_frame_cache (next_frame
, this_cache
);
815 if (cache
->undefined_retaddr
)
818 (*this_id
) = frame_id_build (cache
->cfa
, frame_func_unwind (next_frame
));
822 dwarf2_frame_prev_register (struct frame_info
*next_frame
, void **this_cache
,
823 int regnum
, int *optimizedp
,
824 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
825 int *realnump
, gdb_byte
*valuep
)
827 struct gdbarch
*gdbarch
= get_frame_arch (next_frame
);
828 struct dwarf2_frame_cache
*cache
=
829 dwarf2_frame_cache (next_frame
, this_cache
);
831 switch (cache
->reg
[regnum
].how
)
833 case DWARF2_FRAME_REG_UNDEFINED
:
834 /* If CFI explicitly specified that the value isn't defined,
835 mark it as optimized away; the value isn't available. */
842 /* In some cases, for example %eflags on the i386, we have
843 to provide a sane value, even though this register wasn't
844 saved. Assume we can get it from NEXT_FRAME. */
845 frame_unwind_register (next_frame
, regnum
, valuep
);
849 case DWARF2_FRAME_REG_SAVED_OFFSET
:
851 *lvalp
= lval_memory
;
852 *addrp
= cache
->cfa
+ cache
->reg
[regnum
].loc
.offset
;
856 /* Read the value in from memory. */
857 read_memory (*addrp
, valuep
, register_size (gdbarch
, regnum
));
861 case DWARF2_FRAME_REG_SAVED_REG
:
863 *lvalp
= lval_register
;
865 *realnump
= DWARF2_REG_TO_REGNUM (cache
->reg
[regnum
].loc
.reg
);
867 frame_unwind_register (next_frame
, (*realnump
), valuep
);
870 case DWARF2_FRAME_REG_SAVED_EXP
:
872 *lvalp
= lval_memory
;
873 *addrp
= execute_stack_op (cache
->reg
[regnum
].loc
.exp
,
874 cache
->reg
[regnum
].exp_len
,
875 next_frame
, cache
->cfa
);
879 /* Read the value in from memory. */
880 read_memory (*addrp
, valuep
, register_size (gdbarch
, regnum
));
884 case DWARF2_FRAME_REG_UNSPECIFIED
:
885 /* GCC, in its infinite wisdom decided to not provide unwind
886 information for registers that are "same value". Since
887 DWARF2 (3 draft 7) doesn't define such behavior, said
888 registers are actually undefined (which is different to CFI
889 "undefined"). Code above issues a complaint about this.
890 Here just fudge the books, assume GCC, and that the value is
891 more inner on the stack. */
893 *lvalp
= lval_register
;
897 frame_unwind_register (next_frame
, (*realnump
), valuep
);
900 case DWARF2_FRAME_REG_SAME_VALUE
:
902 *lvalp
= lval_register
;
906 frame_unwind_register (next_frame
, (*realnump
), valuep
);
909 case DWARF2_FRAME_REG_CFA
:
916 /* Store the value. */
917 store_typed_address (valuep
, builtin_type_void_data_ptr
, cache
->cfa
);
921 case DWARF2_FRAME_REG_RA_OFFSET
:
928 CORE_ADDR pc
= cache
->reg
[regnum
].loc
.offset
;
930 regnum
= DWARF2_REG_TO_REGNUM (cache
->retaddr_reg
.loc
.reg
);
931 pc
+= frame_unwind_register_unsigned (next_frame
, regnum
);
932 store_typed_address (valuep
, builtin_type_void_func_ptr
, pc
);
937 internal_error (__FILE__
, __LINE__
, _("Unknown register rule."));
941 static const struct frame_unwind dwarf2_frame_unwind
=
944 dwarf2_frame_this_id
,
945 dwarf2_frame_prev_register
948 static const struct frame_unwind dwarf2_signal_frame_unwind
=
951 dwarf2_frame_this_id
,
952 dwarf2_frame_prev_register
955 const struct frame_unwind
*
956 dwarf2_frame_sniffer (struct frame_info
*next_frame
)
958 /* Grab an address that is guarenteed to reside somewhere within the
959 function. frame_pc_unwind(), for a no-return next function, can
960 end up returning something past the end of this function's body. */
961 CORE_ADDR block_addr
= frame_unwind_address_in_block (next_frame
);
962 if (!dwarf2_frame_find_fde (&block_addr
))
965 /* On some targets, signal trampolines may have unwind information.
966 We need to recognize them so that we set the frame type
969 if (dwarf2_frame_signal_frame_p (get_frame_arch (next_frame
),
971 return &dwarf2_signal_frame_unwind
;
973 return &dwarf2_frame_unwind
;
977 /* There is no explicitly defined relationship between the CFA and the
978 location of frame's local variables and arguments/parameters.
979 Therefore, frame base methods on this page should probably only be
980 used as a last resort, just to avoid printing total garbage as a
981 response to the "info frame" command. */
984 dwarf2_frame_base_address (struct frame_info
*next_frame
, void **this_cache
)
986 struct dwarf2_frame_cache
*cache
=
987 dwarf2_frame_cache (next_frame
, this_cache
);
992 static const struct frame_base dwarf2_frame_base
=
994 &dwarf2_frame_unwind
,
995 dwarf2_frame_base_address
,
996 dwarf2_frame_base_address
,
997 dwarf2_frame_base_address
1000 const struct frame_base
*
1001 dwarf2_frame_base_sniffer (struct frame_info
*next_frame
)
1003 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
1004 if (dwarf2_frame_find_fde (&pc
))
1005 return &dwarf2_frame_base
;
1010 /* A minimal decoding of DWARF2 compilation units. We only decode
1011 what's needed to get to the call frame information. */
1015 /* Keep the bfd convenient. */
1018 struct objfile
*objfile
;
1020 /* Linked list of CIEs for this object. */
1021 struct dwarf2_cie
*cie
;
1023 /* Pointer to the .debug_frame section loaded into memory. */
1024 gdb_byte
*dwarf_frame_buffer
;
1026 /* Length of the loaded .debug_frame section. */
1027 unsigned long dwarf_frame_size
;
1029 /* Pointer to the .debug_frame section. */
1030 asection
*dwarf_frame_section
;
1032 /* Base for DW_EH_PE_datarel encodings. */
1035 /* Base for DW_EH_PE_textrel encodings. */
1039 const struct objfile_data
*dwarf2_frame_objfile_data
;
1042 read_1_byte (bfd
*abfd
, gdb_byte
*buf
)
1044 return bfd_get_8 (abfd
, buf
);
1048 read_4_bytes (bfd
*abfd
, gdb_byte
*buf
)
1050 return bfd_get_32 (abfd
, buf
);
1054 read_8_bytes (bfd
*abfd
, gdb_byte
*buf
)
1056 return bfd_get_64 (abfd
, buf
);
1060 read_unsigned_leb128 (bfd
*abfd
, gdb_byte
*buf
, unsigned int *bytes_read_ptr
)
1063 unsigned int num_read
;
1073 byte
= bfd_get_8 (abfd
, (bfd_byte
*) buf
);
1076 result
|= ((byte
& 0x7f) << shift
);
1079 while (byte
& 0x80);
1081 *bytes_read_ptr
= num_read
;
1087 read_signed_leb128 (bfd
*abfd
, gdb_byte
*buf
, unsigned int *bytes_read_ptr
)
1091 unsigned int num_read
;
1100 byte
= bfd_get_8 (abfd
, (bfd_byte
*) buf
);
1103 result
|= ((byte
& 0x7f) << shift
);
1106 while (byte
& 0x80);
1108 if ((shift
< 32) && (byte
& 0x40))
1109 result
|= -(1 << shift
);
1111 *bytes_read_ptr
= num_read
;
1117 read_initial_length (bfd
*abfd
, gdb_byte
*buf
, unsigned int *bytes_read_ptr
)
1121 result
= bfd_get_32 (abfd
, buf
);
1122 if (result
== 0xffffffff)
1124 result
= bfd_get_64 (abfd
, buf
+ 4);
1125 *bytes_read_ptr
= 12;
1128 *bytes_read_ptr
= 4;
1134 /* Pointer encoding helper functions. */
1136 /* GCC supports exception handling based on DWARF2 CFI. However, for
1137 technical reasons, it encodes addresses in its FDE's in a different
1138 way. Several "pointer encodings" are supported. The encoding
1139 that's used for a particular FDE is determined by the 'R'
1140 augmentation in the associated CIE. The argument of this
1141 augmentation is a single byte.
1143 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1144 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1145 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1146 address should be interpreted (absolute, relative to the current
1147 position in the FDE, ...). Bit 7, indicates that the address
1148 should be dereferenced. */
1151 encoding_for_size (unsigned int size
)
1156 return DW_EH_PE_udata2
;
1158 return DW_EH_PE_udata4
;
1160 return DW_EH_PE_udata8
;
1162 internal_error (__FILE__
, __LINE__
, _("Unsupported address size"));
1167 size_of_encoded_value (gdb_byte encoding
)
1169 if (encoding
== DW_EH_PE_omit
)
1172 switch (encoding
& 0x07)
1174 case DW_EH_PE_absptr
:
1175 return TYPE_LENGTH (builtin_type_void_data_ptr
);
1176 case DW_EH_PE_udata2
:
1178 case DW_EH_PE_udata4
:
1180 case DW_EH_PE_udata8
:
1183 internal_error (__FILE__
, __LINE__
, _("Invalid or unsupported encoding"));
1188 read_encoded_value (struct comp_unit
*unit
, gdb_byte encoding
,
1189 gdb_byte
*buf
, unsigned int *bytes_read_ptr
)
1191 int ptr_len
= size_of_encoded_value (DW_EH_PE_absptr
);
1195 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1197 if (encoding
& DW_EH_PE_indirect
)
1198 internal_error (__FILE__
, __LINE__
,
1199 _("Unsupported encoding: DW_EH_PE_indirect"));
1201 *bytes_read_ptr
= 0;
1203 switch (encoding
& 0x70)
1205 case DW_EH_PE_absptr
:
1208 case DW_EH_PE_pcrel
:
1209 base
= bfd_get_section_vma (unit
->bfd
, unit
->dwarf_frame_section
);
1210 base
+= (buf
- unit
->dwarf_frame_buffer
);
1212 case DW_EH_PE_datarel
:
1215 case DW_EH_PE_textrel
:
1218 case DW_EH_PE_funcrel
:
1219 /* FIXME: kettenis/20040501: For now just pretend
1220 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1221 reading the initial location of an FDE it should be treated
1222 as such, and currently that's the only place where this code
1226 case DW_EH_PE_aligned
:
1228 offset
= buf
- unit
->dwarf_frame_buffer
;
1229 if ((offset
% ptr_len
) != 0)
1231 *bytes_read_ptr
= ptr_len
- (offset
% ptr_len
);
1232 buf
+= *bytes_read_ptr
;
1236 internal_error (__FILE__
, __LINE__
, _("Invalid or unsupported encoding"));
1239 if ((encoding
& 0x07) == 0x00)
1240 encoding
|= encoding_for_size (ptr_len
);
1242 switch (encoding
& 0x0f)
1244 case DW_EH_PE_uleb128
:
1247 gdb_byte
*end_buf
= buf
+ (sizeof (value
) + 1) * 8 / 7;
1248 *bytes_read_ptr
+= read_uleb128 (buf
, end_buf
, &value
) - buf
;
1249 return base
+ value
;
1251 case DW_EH_PE_udata2
:
1252 *bytes_read_ptr
+= 2;
1253 return (base
+ bfd_get_16 (unit
->abfd
, (bfd_byte
*) buf
));
1254 case DW_EH_PE_udata4
:
1255 *bytes_read_ptr
+= 4;
1256 return (base
+ bfd_get_32 (unit
->abfd
, (bfd_byte
*) buf
));
1257 case DW_EH_PE_udata8
:
1258 *bytes_read_ptr
+= 8;
1259 return (base
+ bfd_get_64 (unit
->abfd
, (bfd_byte
*) buf
));
1260 case DW_EH_PE_sleb128
:
1263 gdb_byte
*end_buf
= buf
+ (sizeof (value
) + 1) * 8 / 7;
1264 *bytes_read_ptr
+= read_sleb128 (buf
, end_buf
, &value
) - buf
;
1265 return base
+ value
;
1267 case DW_EH_PE_sdata2
:
1268 *bytes_read_ptr
+= 2;
1269 return (base
+ bfd_get_signed_16 (unit
->abfd
, (bfd_byte
*) buf
));
1270 case DW_EH_PE_sdata4
:
1271 *bytes_read_ptr
+= 4;
1272 return (base
+ bfd_get_signed_32 (unit
->abfd
, (bfd_byte
*) buf
));
1273 case DW_EH_PE_sdata8
:
1274 *bytes_read_ptr
+= 8;
1275 return (base
+ bfd_get_signed_64 (unit
->abfd
, (bfd_byte
*) buf
));
1277 internal_error (__FILE__
, __LINE__
, _("Invalid or unsupported encoding"));
1282 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1283 That's why we use a simple linked list here. */
1285 static struct dwarf2_cie
*
1286 find_cie (struct comp_unit
*unit
, ULONGEST cie_pointer
)
1288 struct dwarf2_cie
*cie
= unit
->cie
;
1292 if (cie
->cie_pointer
== cie_pointer
)
1302 add_cie (struct comp_unit
*unit
, struct dwarf2_cie
*cie
)
1304 cie
->next
= unit
->cie
;
1308 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1309 inital location associated with it into *PC. */
1311 static struct dwarf2_fde
*
1312 dwarf2_frame_find_fde (CORE_ADDR
*pc
)
1314 struct objfile
*objfile
;
1316 ALL_OBJFILES (objfile
)
1318 struct dwarf2_fde
*fde
;
1321 fde
= objfile_data (objfile
, dwarf2_frame_objfile_data
);
1325 gdb_assert (objfile
->section_offsets
);
1326 offset
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
1330 if (*pc
>= fde
->initial_location
+ offset
1331 && *pc
< fde
->initial_location
+ offset
+ fde
->address_range
)
1333 *pc
= fde
->initial_location
+ offset
;
1345 add_fde (struct comp_unit
*unit
, struct dwarf2_fde
*fde
)
1347 fde
->next
= objfile_data (unit
->objfile
, dwarf2_frame_objfile_data
);
1348 set_objfile_data (unit
->objfile
, dwarf2_frame_objfile_data
, fde
);
1351 #ifdef CC_HAS_LONG_LONG
1352 #define DW64_CIE_ID 0xffffffffffffffffULL
1354 #define DW64_CIE_ID ~0
1357 static gdb_byte
*decode_frame_entry (struct comp_unit
*unit
, gdb_byte
*start
,
1360 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1361 the next byte to be processed. */
1363 decode_frame_entry_1 (struct comp_unit
*unit
, gdb_byte
*start
, int eh_frame_p
)
1365 gdb_byte
*buf
, *end
;
1367 unsigned int bytes_read
;
1370 ULONGEST cie_pointer
;
1373 length
= read_initial_length (unit
->abfd
, buf
, &bytes_read
);
1377 /* Are we still within the section? */
1378 if (end
> unit
->dwarf_frame_buffer
+ unit
->dwarf_frame_size
)
1384 /* Distinguish between 32 and 64-bit encoded frame info. */
1385 dwarf64_p
= (bytes_read
== 12);
1387 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1391 cie_id
= DW64_CIE_ID
;
1397 cie_pointer
= read_8_bytes (unit
->abfd
, buf
);
1402 cie_pointer
= read_4_bytes (unit
->abfd
, buf
);
1406 if (cie_pointer
== cie_id
)
1408 /* This is a CIE. */
1409 struct dwarf2_cie
*cie
;
1411 unsigned int cie_version
;
1413 /* Record the offset into the .debug_frame section of this CIE. */
1414 cie_pointer
= start
- unit
->dwarf_frame_buffer
;
1416 /* Check whether we've already read it. */
1417 if (find_cie (unit
, cie_pointer
))
1420 cie
= (struct dwarf2_cie
*)
1421 obstack_alloc (&unit
->objfile
->objfile_obstack
,
1422 sizeof (struct dwarf2_cie
));
1423 cie
->initial_instructions
= NULL
;
1424 cie
->cie_pointer
= cie_pointer
;
1426 /* The encoding for FDE's in a normal .debug_frame section
1427 depends on the target address size. */
1428 cie
->encoding
= DW_EH_PE_absptr
;
1430 /* Check version number. */
1431 cie_version
= read_1_byte (unit
->abfd
, buf
);
1432 if (cie_version
!= 1 && cie_version
!= 3)
1436 /* Interpret the interesting bits of the augmentation. */
1437 augmentation
= (char *) buf
;
1438 buf
+= (strlen (augmentation
) + 1);
1440 /* The GCC 2.x "eh" augmentation has a pointer immediately
1441 following the augmentation string, so it must be handled
1443 if (augmentation
[0] == 'e' && augmentation
[1] == 'h')
1446 buf
+= TYPE_LENGTH (builtin_type_void_data_ptr
);
1450 cie
->code_alignment_factor
=
1451 read_unsigned_leb128 (unit
->abfd
, buf
, &bytes_read
);
1454 cie
->data_alignment_factor
=
1455 read_signed_leb128 (unit
->abfd
, buf
, &bytes_read
);
1458 if (cie_version
== 1)
1460 cie
->return_address_register
= read_1_byte (unit
->abfd
, buf
);
1464 cie
->return_address_register
= read_unsigned_leb128 (unit
->abfd
, buf
,
1468 cie
->saw_z_augmentation
= (*augmentation
== 'z');
1469 if (cie
->saw_z_augmentation
)
1473 length
= read_unsigned_leb128 (unit
->abfd
, buf
, &bytes_read
);
1477 cie
->initial_instructions
= buf
+ length
;
1481 while (*augmentation
)
1483 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1484 if (*augmentation
== 'L')
1491 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1492 else if (*augmentation
== 'R')
1494 cie
->encoding
= *buf
++;
1498 /* "P" indicates a personality routine in the CIE augmentation. */
1499 else if (*augmentation
== 'P')
1501 /* Skip. Avoid indirection since we throw away the result. */
1502 gdb_byte encoding
= (*buf
++) & ~DW_EH_PE_indirect
;
1503 read_encoded_value (unit
, encoding
, buf
, &bytes_read
);
1508 /* Otherwise we have an unknown augmentation.
1509 Bail out unless we saw a 'z' prefix. */
1512 if (cie
->initial_instructions
== NULL
)
1515 /* Skip unknown augmentations. */
1516 buf
= cie
->initial_instructions
;
1521 cie
->initial_instructions
= buf
;
1524 add_cie (unit
, cie
);
1528 /* This is a FDE. */
1529 struct dwarf2_fde
*fde
;
1531 /* In an .eh_frame section, the CIE pointer is the delta between the
1532 address within the FDE where the CIE pointer is stored and the
1533 address of the CIE. Convert it to an offset into the .eh_frame
1537 cie_pointer
= buf
- unit
->dwarf_frame_buffer
- cie_pointer
;
1538 cie_pointer
-= (dwarf64_p
? 8 : 4);
1541 /* In either case, validate the result is still within the section. */
1542 if (cie_pointer
>= unit
->dwarf_frame_size
)
1545 fde
= (struct dwarf2_fde
*)
1546 obstack_alloc (&unit
->objfile
->objfile_obstack
,
1547 sizeof (struct dwarf2_fde
));
1548 fde
->cie
= find_cie (unit
, cie_pointer
);
1549 if (fde
->cie
== NULL
)
1551 decode_frame_entry (unit
, unit
->dwarf_frame_buffer
+ cie_pointer
,
1553 fde
->cie
= find_cie (unit
, cie_pointer
);
1556 gdb_assert (fde
->cie
!= NULL
);
1558 fde
->initial_location
=
1559 read_encoded_value (unit
, fde
->cie
->encoding
, buf
, &bytes_read
);
1562 fde
->address_range
=
1563 read_encoded_value (unit
, fde
->cie
->encoding
& 0x0f, buf
, &bytes_read
);
1566 /* A 'z' augmentation in the CIE implies the presence of an
1567 augmentation field in the FDE as well. The only thing known
1568 to be in here at present is the LSDA entry for EH. So we
1569 can skip the whole thing. */
1570 if (fde
->cie
->saw_z_augmentation
)
1574 length
= read_unsigned_leb128 (unit
->abfd
, buf
, &bytes_read
);
1575 buf
+= bytes_read
+ length
;
1580 fde
->instructions
= buf
;
1583 add_fde (unit
, fde
);
1589 /* Read a CIE or FDE in BUF and decode it. */
1591 decode_frame_entry (struct comp_unit
*unit
, gdb_byte
*start
, int eh_frame_p
)
1593 enum { NONE
, ALIGN4
, ALIGN8
, FAIL
} workaround
= NONE
;
1596 ptrdiff_t start_offset
;
1600 ret
= decode_frame_entry_1 (unit
, start
, eh_frame_p
);
1604 /* We have corrupt input data of some form. */
1606 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1607 and mismatches wrt padding and alignment of debug sections. */
1608 /* Note that there is no requirement in the standard for any
1609 alignment at all in the frame unwind sections. Testing for
1610 alignment before trying to interpret data would be incorrect.
1612 However, GCC traditionally arranged for frame sections to be
1613 sized such that the FDE length and CIE fields happen to be
1614 aligned (in theory, for performance). This, unfortunately,
1615 was done with .align directives, which had the side effect of
1616 forcing the section to be aligned by the linker.
1618 This becomes a problem when you have some other producer that
1619 creates frame sections that are not as strictly aligned. That
1620 produces a hole in the frame info that gets filled by the
1623 The GCC behaviour is arguably a bug, but it's effectively now
1624 part of the ABI, so we're now stuck with it, at least at the
1625 object file level. A smart linker may decide, in the process
1626 of compressing duplicate CIE information, that it can rewrite
1627 the entire output section without this extra padding. */
1629 start_offset
= start
- unit
->dwarf_frame_buffer
;
1630 if (workaround
< ALIGN4
&& (start_offset
& 3) != 0)
1632 start
+= 4 - (start_offset
& 3);
1633 workaround
= ALIGN4
;
1636 if (workaround
< ALIGN8
&& (start_offset
& 7) != 0)
1638 start
+= 8 - (start_offset
& 7);
1639 workaround
= ALIGN8
;
1643 /* Nothing left to try. Arrange to return as if we've consumed
1644 the entire input section. Hopefully we'll get valid info from
1645 the other of .debug_frame/.eh_frame. */
1647 ret
= unit
->dwarf_frame_buffer
+ unit
->dwarf_frame_size
;
1657 complaint (&symfile_complaints
,
1658 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1659 unit
->dwarf_frame_section
->owner
->filename
,
1660 unit
->dwarf_frame_section
->name
);
1664 complaint (&symfile_complaints
,
1665 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1666 unit
->dwarf_frame_section
->owner
->filename
,
1667 unit
->dwarf_frame_section
->name
);
1671 complaint (&symfile_complaints
,
1672 _("Corrupt data in %s:%s"),
1673 unit
->dwarf_frame_section
->owner
->filename
,
1674 unit
->dwarf_frame_section
->name
);
1682 /* FIXME: kettenis/20030504: This still needs to be integrated with
1683 dwarf2read.c in a better way. */
1685 /* Imported from dwarf2read.c. */
1686 extern asection
*dwarf_frame_section
;
1687 extern asection
*dwarf_eh_frame_section
;
1689 /* Imported from dwarf2read.c. */
1690 extern char *dwarf2_read_section (struct objfile
*objfile
, asection
*sectp
);
1693 dwarf2_build_frame_info (struct objfile
*objfile
)
1695 struct comp_unit unit
;
1696 gdb_byte
*frame_ptr
;
1698 /* Build a minimal decoding of the DWARF2 compilation unit. */
1699 unit
.abfd
= objfile
->obfd
;
1700 unit
.objfile
= objfile
;
1704 /* First add the information from the .eh_frame section. That way,
1705 the FDEs from that section are searched last. */
1706 if (dwarf_eh_frame_section
)
1708 asection
*got
, *txt
;
1711 unit
.dwarf_frame_buffer
= dwarf2_read_section (objfile
,
1712 dwarf_eh_frame_section
);
1714 unit
.dwarf_frame_size
= bfd_get_section_size (dwarf_eh_frame_section
);
1715 unit
.dwarf_frame_section
= dwarf_eh_frame_section
;
1717 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1718 that is used for the i386/amd64 target, which currently is
1719 the only target in GCC that supports/uses the
1720 DW_EH_PE_datarel encoding. */
1721 got
= bfd_get_section_by_name (unit
.abfd
, ".got");
1723 unit
.dbase
= got
->vma
;
1725 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1727 txt
= bfd_get_section_by_name (unit
.abfd
, ".text");
1729 unit
.tbase
= txt
->vma
;
1731 frame_ptr
= unit
.dwarf_frame_buffer
;
1732 while (frame_ptr
< unit
.dwarf_frame_buffer
+ unit
.dwarf_frame_size
)
1733 frame_ptr
= decode_frame_entry (&unit
, frame_ptr
, 1);
1736 if (dwarf_frame_section
)
1739 unit
.dwarf_frame_buffer
= dwarf2_read_section (objfile
,
1740 dwarf_frame_section
);
1741 unit
.dwarf_frame_size
= bfd_get_section_size (dwarf_frame_section
);
1742 unit
.dwarf_frame_section
= dwarf_frame_section
;
1744 frame_ptr
= unit
.dwarf_frame_buffer
;
1745 while (frame_ptr
< unit
.dwarf_frame_buffer
+ unit
.dwarf_frame_size
)
1746 frame_ptr
= decode_frame_entry (&unit
, frame_ptr
, 0);
1750 /* Provide a prototype to silence -Wmissing-prototypes. */
1751 void _initialize_dwarf2_frame (void);
1754 _initialize_dwarf2_frame (void)
1756 dwarf2_frame_data
= gdbarch_data_register_pre_init (dwarf2_frame_init
);
1757 dwarf2_frame_objfile_data
= register_objfile_data ();