*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "value.h"
36
37 #include "gdb_assert.h"
38 #include "gdb_string.h"
39
40 #include "complaints.h"
41 #include "dwarf2-frame.h"
42
43 /* Call Frame Information (CFI). */
44
45 /* Common Information Entry (CIE). */
46
47 struct dwarf2_cie
48 {
49 /* Offset into the .debug_frame section where this CIE was found.
50 Used to identify this CIE. */
51 ULONGEST cie_pointer;
52
53 /* Constant that is factored out of all advance location
54 instructions. */
55 ULONGEST code_alignment_factor;
56
57 /* Constants that is factored out of all offset instructions. */
58 LONGEST data_alignment_factor;
59
60 /* Return address column. */
61 ULONGEST return_address_register;
62
63 /* Instruction sequence to initialize a register set. */
64 gdb_byte *initial_instructions;
65 gdb_byte *end;
66
67 /* Encoding of addresses. */
68 gdb_byte encoding;
69
70 /* True if a 'z' augmentation existed. */
71 unsigned char saw_z_augmentation;
72
73 /* True if an 'S' augmentation existed. */
74 unsigned char signal_frame;
75
76 struct dwarf2_cie *next;
77 };
78
79 /* Frame Description Entry (FDE). */
80
81 struct dwarf2_fde
82 {
83 /* CIE for this FDE. */
84 struct dwarf2_cie *cie;
85
86 /* First location associated with this FDE. */
87 CORE_ADDR initial_location;
88
89 /* Number of bytes of program instructions described by this FDE. */
90 CORE_ADDR address_range;
91
92 /* Instruction sequence. */
93 gdb_byte *instructions;
94 gdb_byte *end;
95
96 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
97 section. */
98 unsigned char eh_frame_p;
99
100 struct dwarf2_fde *next;
101 };
102
103 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
104 \f
105
106 /* Structure describing a frame state. */
107
108 struct dwarf2_frame_state
109 {
110 /* Each register save state can be described in terms of a CFA slot,
111 another register, or a location expression. */
112 struct dwarf2_frame_state_reg_info
113 {
114 struct dwarf2_frame_state_reg *reg;
115 int num_regs;
116
117 /* Used to implement DW_CFA_remember_state. */
118 struct dwarf2_frame_state_reg_info *prev;
119 } regs;
120
121 LONGEST cfa_offset;
122 ULONGEST cfa_reg;
123 gdb_byte *cfa_exp;
124 enum {
125 CFA_UNSET,
126 CFA_REG_OFFSET,
127 CFA_EXP
128 } cfa_how;
129
130 /* The PC described by the current frame state. */
131 CORE_ADDR pc;
132
133 /* Initial register set from the CIE.
134 Used to implement DW_CFA_restore. */
135 struct dwarf2_frame_state_reg_info initial;
136
137 /* The information we care about from the CIE. */
138 LONGEST data_align;
139 ULONGEST code_align;
140 ULONGEST retaddr_column;
141 };
142
143 /* Store the length the expression for the CFA in the `cfa_reg' field,
144 which is unused in that case. */
145 #define cfa_exp_len cfa_reg
146
147 /* Assert that the register set RS is large enough to store NUM_REGS
148 columns. If necessary, enlarge the register set. */
149
150 static void
151 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
152 int num_regs)
153 {
154 size_t size = sizeof (struct dwarf2_frame_state_reg);
155
156 if (num_regs <= rs->num_regs)
157 return;
158
159 rs->reg = (struct dwarf2_frame_state_reg *)
160 xrealloc (rs->reg, num_regs * size);
161
162 /* Initialize newly allocated registers. */
163 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
164 rs->num_regs = num_regs;
165 }
166
167 /* Copy the register columns in register set RS into newly allocated
168 memory and return a pointer to this newly created copy. */
169
170 static struct dwarf2_frame_state_reg *
171 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
172 {
173 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
174 struct dwarf2_frame_state_reg *reg;
175
176 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
177 memcpy (reg, rs->reg, size);
178
179 return reg;
180 }
181
182 /* Release the memory allocated to register set RS. */
183
184 static void
185 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
186 {
187 if (rs)
188 {
189 dwarf2_frame_state_free_regs (rs->prev);
190
191 xfree (rs->reg);
192 xfree (rs);
193 }
194 }
195
196 /* Release the memory allocated to the frame state FS. */
197
198 static void
199 dwarf2_frame_state_free (void *p)
200 {
201 struct dwarf2_frame_state *fs = p;
202
203 dwarf2_frame_state_free_regs (fs->initial.prev);
204 dwarf2_frame_state_free_regs (fs->regs.prev);
205 xfree (fs->initial.reg);
206 xfree (fs->regs.reg);
207 xfree (fs);
208 }
209 \f
210
211 /* Helper functions for execute_stack_op. */
212
213 static CORE_ADDR
214 read_reg (void *baton, int reg)
215 {
216 struct frame_info *next_frame = (struct frame_info *) baton;
217 struct gdbarch *gdbarch = get_frame_arch (next_frame);
218 int regnum;
219 gdb_byte *buf;
220
221 regnum = DWARF2_REG_TO_REGNUM (reg);
222
223 buf = alloca (register_size (gdbarch, regnum));
224 frame_unwind_register (next_frame, regnum, buf);
225
226 /* Convert the register to an integer. This returns a LONGEST
227 rather than a CORE_ADDR, but unpack_pointer does the same thing
228 under the covers, and this makes more sense for non-pointer
229 registers. Maybe read_reg and the associated interfaces should
230 deal with "struct value" instead of CORE_ADDR. */
231 return unpack_long (register_type (gdbarch, regnum), buf);
232 }
233
234 static void
235 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
236 {
237 read_memory (addr, buf, len);
238 }
239
240 static void
241 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
242 {
243 internal_error (__FILE__, __LINE__,
244 _("Support for DW_OP_fbreg is unimplemented"));
245 }
246
247 static CORE_ADDR
248 no_get_tls_address (void *baton, CORE_ADDR offset)
249 {
250 internal_error (__FILE__, __LINE__,
251 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
252 }
253
254 static CORE_ADDR
255 execute_stack_op (gdb_byte *exp, ULONGEST len,
256 struct frame_info *next_frame, CORE_ADDR initial)
257 {
258 struct dwarf_expr_context *ctx;
259 CORE_ADDR result;
260
261 ctx = new_dwarf_expr_context ();
262 ctx->baton = next_frame;
263 ctx->read_reg = read_reg;
264 ctx->read_mem = read_mem;
265 ctx->get_frame_base = no_get_frame_base;
266 ctx->get_tls_address = no_get_tls_address;
267
268 dwarf_expr_push (ctx, initial);
269 dwarf_expr_eval (ctx, exp, len);
270 result = dwarf_expr_fetch (ctx, 0);
271
272 if (ctx->in_reg)
273 result = read_reg (next_frame, result);
274
275 free_dwarf_expr_context (ctx);
276
277 return result;
278 }
279 \f
280
281 static void
282 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
283 struct frame_info *next_frame,
284 struct dwarf2_frame_state *fs, int eh_frame_p)
285 {
286 CORE_ADDR pc = frame_pc_unwind (next_frame);
287 int bytes_read;
288 struct gdbarch *gdbarch = get_frame_arch (next_frame);
289
290 while (insn_ptr < insn_end && fs->pc <= pc)
291 {
292 gdb_byte insn = *insn_ptr++;
293 ULONGEST utmp, reg;
294 LONGEST offset;
295
296 if ((insn & 0xc0) == DW_CFA_advance_loc)
297 fs->pc += (insn & 0x3f) * fs->code_align;
298 else if ((insn & 0xc0) == DW_CFA_offset)
299 {
300 reg = insn & 0x3f;
301 if (eh_frame_p)
302 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
303 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
304 offset = utmp * fs->data_align;
305 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
306 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
307 fs->regs.reg[reg].loc.offset = offset;
308 }
309 else if ((insn & 0xc0) == DW_CFA_restore)
310 {
311 gdb_assert (fs->initial.reg);
312 reg = insn & 0x3f;
313 if (eh_frame_p)
314 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
315 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
316 if (reg < fs->initial.num_regs)
317 fs->regs.reg[reg] = fs->initial.reg[reg];
318 else
319 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
320
321 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
322 complaint (&symfile_complaints, _("\
323 incomplete CFI data; DW_CFA_restore unspecified\n\
324 register %s (#%d) at 0x%s"),
325 REGISTER_NAME(DWARF2_REG_TO_REGNUM(reg)),
326 DWARF2_REG_TO_REGNUM(reg), paddr (fs->pc));
327 }
328 else
329 {
330 switch (insn)
331 {
332 case DW_CFA_set_loc:
333 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
334 insn_ptr += bytes_read;
335 break;
336
337 case DW_CFA_advance_loc1:
338 utmp = extract_unsigned_integer (insn_ptr, 1);
339 fs->pc += utmp * fs->code_align;
340 insn_ptr++;
341 break;
342 case DW_CFA_advance_loc2:
343 utmp = extract_unsigned_integer (insn_ptr, 2);
344 fs->pc += utmp * fs->code_align;
345 insn_ptr += 2;
346 break;
347 case DW_CFA_advance_loc4:
348 utmp = extract_unsigned_integer (insn_ptr, 4);
349 fs->pc += utmp * fs->code_align;
350 insn_ptr += 4;
351 break;
352
353 case DW_CFA_offset_extended:
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
355 if (eh_frame_p)
356 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
357 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
358 offset = utmp * fs->data_align;
359 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
360 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
361 fs->regs.reg[reg].loc.offset = offset;
362 break;
363
364 case DW_CFA_restore_extended:
365 gdb_assert (fs->initial.reg);
366 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
367 if (eh_frame_p)
368 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
369 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
370 fs->regs.reg[reg] = fs->initial.reg[reg];
371 break;
372
373 case DW_CFA_undefined:
374 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
375 if (eh_frame_p)
376 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
377 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
378 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
379 break;
380
381 case DW_CFA_same_value:
382 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
383 if (eh_frame_p)
384 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
385 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
386 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
387 break;
388
389 case DW_CFA_register:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
391 if (eh_frame_p)
392 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
393 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
394 if (eh_frame_p)
395 utmp = dwarf2_frame_eh_frame_regnum (gdbarch, utmp);
396 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
397 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
398 fs->regs.reg[reg].loc.reg = utmp;
399 break;
400
401 case DW_CFA_remember_state:
402 {
403 struct dwarf2_frame_state_reg_info *new_rs;
404
405 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
406 *new_rs = fs->regs;
407 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
408 fs->regs.prev = new_rs;
409 }
410 break;
411
412 case DW_CFA_restore_state:
413 {
414 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
415
416 if (old_rs == NULL)
417 {
418 complaint (&symfile_complaints, _("\
419 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
420 }
421 else
422 {
423 xfree (fs->regs.reg);
424 fs->regs = *old_rs;
425 xfree (old_rs);
426 }
427 }
428 break;
429
430 case DW_CFA_def_cfa:
431 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
432 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
433 fs->cfa_offset = utmp;
434 fs->cfa_how = CFA_REG_OFFSET;
435 break;
436
437 case DW_CFA_def_cfa_register:
438 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
439 if (eh_frame_p)
440 fs->cfa_reg = dwarf2_frame_eh_frame_regnum (gdbarch,
441 fs->cfa_reg);
442 fs->cfa_how = CFA_REG_OFFSET;
443 break;
444
445 case DW_CFA_def_cfa_offset:
446 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
447 fs->cfa_offset = utmp;
448 /* cfa_how deliberately not set. */
449 break;
450
451 case DW_CFA_nop:
452 break;
453
454 case DW_CFA_def_cfa_expression:
455 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
456 fs->cfa_exp = insn_ptr;
457 fs->cfa_how = CFA_EXP;
458 insn_ptr += fs->cfa_exp_len;
459 break;
460
461 case DW_CFA_expression:
462 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
463 if (eh_frame_p)
464 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
465 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
467 fs->regs.reg[reg].loc.exp = insn_ptr;
468 fs->regs.reg[reg].exp_len = utmp;
469 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
470 insn_ptr += utmp;
471 break;
472
473 case DW_CFA_offset_extended_sf:
474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
475 if (eh_frame_p)
476 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
477 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
478 offset *= fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
483
484 case DW_CFA_val_offset:
485 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
486 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
487 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
488 offset = utmp * fs->data_align;
489 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
490 fs->regs.reg[reg].loc.offset = offset;
491 break;
492
493 case DW_CFA_val_offset_sf:
494 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
495 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
496 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
497 offset *= fs->data_align;
498 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
499 fs->regs.reg[reg].loc.offset = offset;
500 break;
501
502 case DW_CFA_val_expression:
503 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
504 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
505 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
506 fs->regs.reg[reg].loc.exp = insn_ptr;
507 fs->regs.reg[reg].exp_len = utmp;
508 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
509 insn_ptr += utmp;
510 break;
511
512 case DW_CFA_def_cfa_sf:
513 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
514 if (eh_frame_p)
515 fs->cfa_reg = dwarf2_frame_eh_frame_regnum (gdbarch,
516 fs->cfa_reg);
517 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
518 fs->cfa_offset = offset * fs->data_align;
519 fs->cfa_how = CFA_REG_OFFSET;
520 break;
521
522 case DW_CFA_def_cfa_offset_sf:
523 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
524 fs->cfa_offset = offset * fs->data_align;
525 /* cfa_how deliberately not set. */
526 break;
527
528 case DW_CFA_GNU_window_save:
529 /* This is SPARC-specific code, and contains hard-coded
530 constants for the register numbering scheme used by
531 GCC. Rather than having a architecture-specific
532 operation that's only ever used by a single
533 architecture, we provide the implementation here.
534 Incidentally that's what GCC does too in its
535 unwinder. */
536 {
537 struct gdbarch *gdbarch = get_frame_arch (next_frame);
538 int size = register_size(gdbarch, 0);
539 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
540 for (reg = 8; reg < 16; reg++)
541 {
542 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
543 fs->regs.reg[reg].loc.reg = reg + 16;
544 }
545 for (reg = 16; reg < 32; reg++)
546 {
547 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
548 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
549 }
550 }
551 break;
552
553 case DW_CFA_GNU_args_size:
554 /* Ignored. */
555 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
556 break;
557
558 default:
559 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
560 }
561 }
562 }
563
564 /* Don't allow remember/restore between CIE and FDE programs. */
565 dwarf2_frame_state_free_regs (fs->regs.prev);
566 fs->regs.prev = NULL;
567 }
568 \f
569
570 /* Architecture-specific operations. */
571
572 /* Per-architecture data key. */
573 static struct gdbarch_data *dwarf2_frame_data;
574
575 struct dwarf2_frame_ops
576 {
577 /* Pre-initialize the register state REG for register REGNUM. */
578 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
579 struct frame_info *);
580
581 /* Check whether the frame preceding NEXT_FRAME will be a signal
582 trampoline. */
583 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
584
585 /* Convert .eh_frame register number to DWARF register number. */
586 int (*eh_frame_regnum) (struct gdbarch *, int);
587 };
588
589 /* Default architecture-specific register state initialization
590 function. */
591
592 static void
593 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
594 struct dwarf2_frame_state_reg *reg,
595 struct frame_info *next_frame)
596 {
597 /* If we have a register that acts as a program counter, mark it as
598 a destination for the return address. If we have a register that
599 serves as the stack pointer, arrange for it to be filled with the
600 call frame address (CFA). The other registers are marked as
601 unspecified.
602
603 We copy the return address to the program counter, since many
604 parts in GDB assume that it is possible to get the return address
605 by unwinding the program counter register. However, on ISA's
606 with a dedicated return address register, the CFI usually only
607 contains information to unwind that return address register.
608
609 The reason we're treating the stack pointer special here is
610 because in many cases GCC doesn't emit CFI for the stack pointer
611 and implicitly assumes that it is equal to the CFA. This makes
612 some sense since the DWARF specification (version 3, draft 8,
613 p. 102) says that:
614
615 "Typically, the CFA is defined to be the value of the stack
616 pointer at the call site in the previous frame (which may be
617 different from its value on entry to the current frame)."
618
619 However, this isn't true for all platforms supported by GCC
620 (e.g. IBM S/390 and zSeries). Those architectures should provide
621 their own architecture-specific initialization function. */
622
623 if (regnum == PC_REGNUM)
624 reg->how = DWARF2_FRAME_REG_RA;
625 else if (regnum == SP_REGNUM)
626 reg->how = DWARF2_FRAME_REG_CFA;
627 }
628
629 /* Return a default for the architecture-specific operations. */
630
631 static void *
632 dwarf2_frame_init (struct obstack *obstack)
633 {
634 struct dwarf2_frame_ops *ops;
635
636 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
637 ops->init_reg = dwarf2_frame_default_init_reg;
638 return ops;
639 }
640
641 /* Set the architecture-specific register state initialization
642 function for GDBARCH to INIT_REG. */
643
644 void
645 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
646 void (*init_reg) (struct gdbarch *, int,
647 struct dwarf2_frame_state_reg *,
648 struct frame_info *))
649 {
650 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
651
652 ops->init_reg = init_reg;
653 }
654
655 /* Pre-initialize the register state REG for register REGNUM. */
656
657 static void
658 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
659 struct dwarf2_frame_state_reg *reg,
660 struct frame_info *next_frame)
661 {
662 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
663
664 ops->init_reg (gdbarch, regnum, reg, next_frame);
665 }
666
667 /* Set the architecture-specific signal trampoline recognition
668 function for GDBARCH to SIGNAL_FRAME_P. */
669
670 void
671 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
672 int (*signal_frame_p) (struct gdbarch *,
673 struct frame_info *))
674 {
675 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
676
677 ops->signal_frame_p = signal_frame_p;
678 }
679
680 /* Query the architecture-specific signal frame recognizer for
681 NEXT_FRAME. */
682
683 static int
684 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
685 struct frame_info *next_frame)
686 {
687 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
688
689 if (ops->signal_frame_p == NULL)
690 return 0;
691 return ops->signal_frame_p (gdbarch, next_frame);
692 }
693
694 /* Set the architecture-specific mapping of .eh_frame register numbers to
695 DWARF register numbers. */
696
697 void
698 dwarf2_frame_set_eh_frame_regnum (struct gdbarch *gdbarch,
699 int (*eh_frame_regnum) (struct gdbarch *,
700 int))
701 {
702 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
703
704 ops->eh_frame_regnum = eh_frame_regnum;
705 }
706
707 /* Translate a .eh_frame register to DWARF register. */
708
709 int
710 dwarf2_frame_eh_frame_regnum (struct gdbarch *gdbarch, int regnum)
711 {
712 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
713
714 if (ops->eh_frame_regnum == NULL)
715 return regnum;
716 return ops->eh_frame_regnum (gdbarch, regnum);
717 }
718 \f
719
720 struct dwarf2_frame_cache
721 {
722 /* DWARF Call Frame Address. */
723 CORE_ADDR cfa;
724
725 /* Set if the return address column was marked as undefined. */
726 int undefined_retaddr;
727
728 /* Saved registers, indexed by GDB register number, not by DWARF
729 register number. */
730 struct dwarf2_frame_state_reg *reg;
731
732 /* Return address register. */
733 struct dwarf2_frame_state_reg retaddr_reg;
734 };
735
736 static struct dwarf2_frame_cache *
737 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
738 {
739 struct cleanup *old_chain;
740 struct gdbarch *gdbarch = get_frame_arch (next_frame);
741 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
742 struct dwarf2_frame_cache *cache;
743 struct dwarf2_frame_state *fs;
744 struct dwarf2_fde *fde;
745
746 if (*this_cache)
747 return *this_cache;
748
749 /* Allocate a new cache. */
750 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
751 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
752
753 /* Allocate and initialize the frame state. */
754 fs = XMALLOC (struct dwarf2_frame_state);
755 memset (fs, 0, sizeof (struct dwarf2_frame_state));
756 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
757
758 /* Unwind the PC.
759
760 Note that if NEXT_FRAME is never supposed to return (i.e. a call
761 to abort), the compiler might optimize away the instruction at
762 NEXT_FRAME's return address. As a result the return address will
763 point at some random instruction, and the CFI for that
764 instruction is probably worthless to us. GCC's unwinder solves
765 this problem by substracting 1 from the return address to get an
766 address in the middle of a presumed call instruction (or the
767 instruction in the associated delay slot). This should only be
768 done for "normal" frames and not for resume-type frames (signal
769 handlers, sentinel frames, dummy frames). The function
770 frame_unwind_address_in_block does just this. It's not clear how
771 reliable the method is though; there is the potential for the
772 register state pre-call being different to that on return. */
773 fs->pc = frame_unwind_address_in_block (next_frame);
774
775 /* Find the correct FDE. */
776 fde = dwarf2_frame_find_fde (&fs->pc);
777 gdb_assert (fde != NULL);
778
779 /* Extract any interesting information from the CIE. */
780 fs->data_align = fde->cie->data_alignment_factor;
781 fs->code_align = fde->cie->code_alignment_factor;
782 fs->retaddr_column = fde->cie->return_address_register;
783
784 /* First decode all the insns in the CIE. */
785 execute_cfa_program (fde->cie->initial_instructions,
786 fde->cie->end, next_frame, fs, fde->eh_frame_p);
787
788 /* Save the initialized register set. */
789 fs->initial = fs->regs;
790 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
791
792 /* Then decode the insns in the FDE up to our target PC. */
793 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
794 fde->eh_frame_p);
795
796 /* Caclulate the CFA. */
797 switch (fs->cfa_how)
798 {
799 case CFA_REG_OFFSET:
800 cache->cfa = read_reg (next_frame, fs->cfa_reg);
801 cache->cfa += fs->cfa_offset;
802 break;
803
804 case CFA_EXP:
805 cache->cfa =
806 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
807 break;
808
809 default:
810 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
811 }
812
813 /* Initialize the register state. */
814 {
815 int regnum;
816
817 for (regnum = 0; regnum < num_regs; regnum++)
818 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
819 }
820
821 /* Go through the DWARF2 CFI generated table and save its register
822 location information in the cache. Note that we don't skip the
823 return address column; it's perfectly all right for it to
824 correspond to a real register. If it doesn't correspond to a
825 real register, or if we shouldn't treat it as such,
826 DWARF2_REG_TO_REGNUM should be defined to return a number outside
827 the range [0, NUM_REGS). */
828 {
829 int column; /* CFI speak for "register number". */
830
831 for (column = 0; column < fs->regs.num_regs; column++)
832 {
833 /* Use the GDB register number as the destination index. */
834 int regnum = DWARF2_REG_TO_REGNUM (column);
835
836 /* If there's no corresponding GDB register, ignore it. */
837 if (regnum < 0 || regnum >= num_regs)
838 continue;
839
840 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
841 of all debug info registers. If it doesn't, complain (but
842 not too loudly). It turns out that GCC assumes that an
843 unspecified register implies "same value" when CFI (draft
844 7) specifies nothing at all. Such a register could equally
845 be interpreted as "undefined". Also note that this check
846 isn't sufficient; it only checks that all registers in the
847 range [0 .. max column] are specified, and won't detect
848 problems when a debug info register falls outside of the
849 table. We need a way of iterating through all the valid
850 DWARF2 register numbers. */
851 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
852 {
853 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
854 complaint (&symfile_complaints, _("\
855 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
856 gdbarch_register_name (gdbarch, regnum),
857 paddr_nz (fs->pc));
858 }
859 else
860 cache->reg[regnum] = fs->regs.reg[column];
861 }
862 }
863
864 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
865 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
866 {
867 int regnum;
868
869 for (regnum = 0; regnum < num_regs; regnum++)
870 {
871 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
872 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
873 {
874 struct dwarf2_frame_state_reg *retaddr_reg =
875 &fs->regs.reg[fs->retaddr_column];
876
877 /* It seems rather bizarre to specify an "empty" column as
878 the return adress column. However, this is exactly
879 what GCC does on some targets. It turns out that GCC
880 assumes that the return address can be found in the
881 register corresponding to the return address column.
882 Incidentally, that's how we should treat a return
883 address column specifying "same value" too. */
884 if (fs->retaddr_column < fs->regs.num_regs
885 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
886 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
887 {
888 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
889 cache->reg[regnum] = *retaddr_reg;
890 else
891 cache->retaddr_reg = *retaddr_reg;
892 }
893 else
894 {
895 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
896 {
897 cache->reg[regnum].loc.reg = fs->retaddr_column;
898 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
899 }
900 else
901 {
902 cache->retaddr_reg.loc.reg = fs->retaddr_column;
903 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
904 }
905 }
906 }
907 }
908 }
909
910 if (fs->retaddr_column < fs->regs.num_regs
911 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
912 cache->undefined_retaddr = 1;
913
914 do_cleanups (old_chain);
915
916 *this_cache = cache;
917 return cache;
918 }
919
920 static void
921 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
922 struct frame_id *this_id)
923 {
924 struct dwarf2_frame_cache *cache =
925 dwarf2_frame_cache (next_frame, this_cache);
926
927 if (cache->undefined_retaddr)
928 return;
929
930 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
931 }
932
933 static void
934 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
935 int regnum, int *optimizedp,
936 enum lval_type *lvalp, CORE_ADDR *addrp,
937 int *realnump, gdb_byte *valuep)
938 {
939 struct gdbarch *gdbarch = get_frame_arch (next_frame);
940 struct dwarf2_frame_cache *cache =
941 dwarf2_frame_cache (next_frame, this_cache);
942
943 switch (cache->reg[regnum].how)
944 {
945 case DWARF2_FRAME_REG_UNDEFINED:
946 /* If CFI explicitly specified that the value isn't defined,
947 mark it as optimized away; the value isn't available. */
948 *optimizedp = 1;
949 *lvalp = not_lval;
950 *addrp = 0;
951 *realnump = -1;
952 if (valuep)
953 {
954 /* In some cases, for example %eflags on the i386, we have
955 to provide a sane value, even though this register wasn't
956 saved. Assume we can get it from NEXT_FRAME. */
957 frame_unwind_register (next_frame, regnum, valuep);
958 }
959 break;
960
961 case DWARF2_FRAME_REG_SAVED_OFFSET:
962 *optimizedp = 0;
963 *lvalp = lval_memory;
964 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
965 *realnump = -1;
966 if (valuep)
967 {
968 /* Read the value in from memory. */
969 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
970 }
971 break;
972
973 case DWARF2_FRAME_REG_SAVED_REG:
974 *optimizedp = 0;
975 *lvalp = lval_register;
976 *addrp = 0;
977 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
978 if (valuep)
979 frame_unwind_register (next_frame, (*realnump), valuep);
980 break;
981
982 case DWARF2_FRAME_REG_SAVED_EXP:
983 *optimizedp = 0;
984 *lvalp = lval_memory;
985 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
986 cache->reg[regnum].exp_len,
987 next_frame, cache->cfa);
988 *realnump = -1;
989 if (valuep)
990 {
991 /* Read the value in from memory. */
992 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
993 }
994 break;
995
996 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
997 *optimizedp = 0;
998 *lvalp = not_lval;
999 *addrp = 0;
1000 *realnump = -1;
1001 if (valuep)
1002 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1003 cache->cfa + cache->reg[regnum].loc.offset);
1004 break;
1005
1006 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1007 *optimizedp = 0;
1008 *lvalp = not_lval;
1009 *addrp = 0;
1010 *realnump = -1;
1011 if (valuep)
1012 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1013 execute_stack_op (cache->reg[regnum].loc.exp,
1014 cache->reg[regnum].exp_len,
1015 next_frame, cache->cfa));
1016 break;
1017
1018 case DWARF2_FRAME_REG_UNSPECIFIED:
1019 /* GCC, in its infinite wisdom decided to not provide unwind
1020 information for registers that are "same value". Since
1021 DWARF2 (3 draft 7) doesn't define such behavior, said
1022 registers are actually undefined (which is different to CFI
1023 "undefined"). Code above issues a complaint about this.
1024 Here just fudge the books, assume GCC, and that the value is
1025 more inner on the stack. */
1026 *optimizedp = 0;
1027 *lvalp = lval_register;
1028 *addrp = 0;
1029 *realnump = regnum;
1030 if (valuep)
1031 frame_unwind_register (next_frame, (*realnump), valuep);
1032 break;
1033
1034 case DWARF2_FRAME_REG_SAME_VALUE:
1035 *optimizedp = 0;
1036 *lvalp = lval_register;
1037 *addrp = 0;
1038 *realnump = regnum;
1039 if (valuep)
1040 frame_unwind_register (next_frame, (*realnump), valuep);
1041 break;
1042
1043 case DWARF2_FRAME_REG_CFA:
1044 *optimizedp = 0;
1045 *lvalp = not_lval;
1046 *addrp = 0;
1047 *realnump = -1;
1048 if (valuep)
1049 {
1050 /* Store the value. */
1051 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
1052 }
1053 break;
1054
1055 case DWARF2_FRAME_REG_CFA_OFFSET:
1056 *optimizedp = 0;
1057 *lvalp = not_lval;
1058 *addrp = 0;
1059 *realnump = -1;
1060 if (valuep)
1061 {
1062 /* Store the value. */
1063 store_typed_address (valuep, builtin_type_void_data_ptr,
1064 cache->cfa + cache->reg[regnum].loc.offset);
1065 }
1066 break;
1067
1068 case DWARF2_FRAME_REG_RA_OFFSET:
1069 *optimizedp = 0;
1070 *lvalp = not_lval;
1071 *addrp = 0;
1072 *realnump = -1;
1073 if (valuep)
1074 {
1075 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1076
1077 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
1078 pc += frame_unwind_register_unsigned (next_frame, regnum);
1079 store_typed_address (valuep, builtin_type_void_func_ptr, pc);
1080 }
1081 break;
1082
1083 default:
1084 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1085 }
1086 }
1087
1088 static const struct frame_unwind dwarf2_frame_unwind =
1089 {
1090 NORMAL_FRAME,
1091 dwarf2_frame_this_id,
1092 dwarf2_frame_prev_register
1093 };
1094
1095 static const struct frame_unwind dwarf2_signal_frame_unwind =
1096 {
1097 SIGTRAMP_FRAME,
1098 dwarf2_frame_this_id,
1099 dwarf2_frame_prev_register
1100 };
1101
1102 const struct frame_unwind *
1103 dwarf2_frame_sniffer (struct frame_info *next_frame)
1104 {
1105 /* Grab an address that is guarenteed to reside somewhere within the
1106 function. frame_pc_unwind(), for a no-return next function, can
1107 end up returning something past the end of this function's body. */
1108 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
1109 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1110 if (!fde)
1111 return NULL;
1112
1113 /* On some targets, signal trampolines may have unwind information.
1114 We need to recognize them so that we set the frame type
1115 correctly. */
1116
1117 if (fde->cie->signal_frame
1118 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1119 next_frame))
1120 return &dwarf2_signal_frame_unwind;
1121
1122 return &dwarf2_frame_unwind;
1123 }
1124 \f
1125
1126 /* There is no explicitly defined relationship between the CFA and the
1127 location of frame's local variables and arguments/parameters.
1128 Therefore, frame base methods on this page should probably only be
1129 used as a last resort, just to avoid printing total garbage as a
1130 response to the "info frame" command. */
1131
1132 static CORE_ADDR
1133 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1134 {
1135 struct dwarf2_frame_cache *cache =
1136 dwarf2_frame_cache (next_frame, this_cache);
1137
1138 return cache->cfa;
1139 }
1140
1141 static const struct frame_base dwarf2_frame_base =
1142 {
1143 &dwarf2_frame_unwind,
1144 dwarf2_frame_base_address,
1145 dwarf2_frame_base_address,
1146 dwarf2_frame_base_address
1147 };
1148
1149 const struct frame_base *
1150 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1151 {
1152 CORE_ADDR pc = frame_pc_unwind (next_frame);
1153 if (dwarf2_frame_find_fde (&pc))
1154 return &dwarf2_frame_base;
1155
1156 return NULL;
1157 }
1158 \f
1159 /* A minimal decoding of DWARF2 compilation units. We only decode
1160 what's needed to get to the call frame information. */
1161
1162 struct comp_unit
1163 {
1164 /* Keep the bfd convenient. */
1165 bfd *abfd;
1166
1167 struct objfile *objfile;
1168
1169 /* Linked list of CIEs for this object. */
1170 struct dwarf2_cie *cie;
1171
1172 /* Pointer to the .debug_frame section loaded into memory. */
1173 gdb_byte *dwarf_frame_buffer;
1174
1175 /* Length of the loaded .debug_frame section. */
1176 unsigned long dwarf_frame_size;
1177
1178 /* Pointer to the .debug_frame section. */
1179 asection *dwarf_frame_section;
1180
1181 /* Base for DW_EH_PE_datarel encodings. */
1182 bfd_vma dbase;
1183
1184 /* Base for DW_EH_PE_textrel encodings. */
1185 bfd_vma tbase;
1186 };
1187
1188 const struct objfile_data *dwarf2_frame_objfile_data;
1189
1190 static unsigned int
1191 read_1_byte (bfd *abfd, gdb_byte *buf)
1192 {
1193 return bfd_get_8 (abfd, buf);
1194 }
1195
1196 static unsigned int
1197 read_4_bytes (bfd *abfd, gdb_byte *buf)
1198 {
1199 return bfd_get_32 (abfd, buf);
1200 }
1201
1202 static ULONGEST
1203 read_8_bytes (bfd *abfd, gdb_byte *buf)
1204 {
1205 return bfd_get_64 (abfd, buf);
1206 }
1207
1208 static ULONGEST
1209 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1210 {
1211 ULONGEST result;
1212 unsigned int num_read;
1213 int shift;
1214 gdb_byte byte;
1215
1216 result = 0;
1217 shift = 0;
1218 num_read = 0;
1219
1220 do
1221 {
1222 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1223 buf++;
1224 num_read++;
1225 result |= ((byte & 0x7f) << shift);
1226 shift += 7;
1227 }
1228 while (byte & 0x80);
1229
1230 *bytes_read_ptr = num_read;
1231
1232 return result;
1233 }
1234
1235 static LONGEST
1236 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1237 {
1238 LONGEST result;
1239 int shift;
1240 unsigned int num_read;
1241 gdb_byte byte;
1242
1243 result = 0;
1244 shift = 0;
1245 num_read = 0;
1246
1247 do
1248 {
1249 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1250 buf++;
1251 num_read++;
1252 result |= ((byte & 0x7f) << shift);
1253 shift += 7;
1254 }
1255 while (byte & 0x80);
1256
1257 if (shift < 8 * sizeof (result) && (byte & 0x40))
1258 result |= -(((LONGEST)1) << shift);
1259
1260 *bytes_read_ptr = num_read;
1261
1262 return result;
1263 }
1264
1265 static ULONGEST
1266 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1267 {
1268 LONGEST result;
1269
1270 result = bfd_get_32 (abfd, buf);
1271 if (result == 0xffffffff)
1272 {
1273 result = bfd_get_64 (abfd, buf + 4);
1274 *bytes_read_ptr = 12;
1275 }
1276 else
1277 *bytes_read_ptr = 4;
1278
1279 return result;
1280 }
1281 \f
1282
1283 /* Pointer encoding helper functions. */
1284
1285 /* GCC supports exception handling based on DWARF2 CFI. However, for
1286 technical reasons, it encodes addresses in its FDE's in a different
1287 way. Several "pointer encodings" are supported. The encoding
1288 that's used for a particular FDE is determined by the 'R'
1289 augmentation in the associated CIE. The argument of this
1290 augmentation is a single byte.
1291
1292 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1293 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1294 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1295 address should be interpreted (absolute, relative to the current
1296 position in the FDE, ...). Bit 7, indicates that the address
1297 should be dereferenced. */
1298
1299 static gdb_byte
1300 encoding_for_size (unsigned int size)
1301 {
1302 switch (size)
1303 {
1304 case 2:
1305 return DW_EH_PE_udata2;
1306 case 4:
1307 return DW_EH_PE_udata4;
1308 case 8:
1309 return DW_EH_PE_udata8;
1310 default:
1311 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1312 }
1313 }
1314
1315 static unsigned int
1316 size_of_encoded_value (gdb_byte encoding)
1317 {
1318 if (encoding == DW_EH_PE_omit)
1319 return 0;
1320
1321 switch (encoding & 0x07)
1322 {
1323 case DW_EH_PE_absptr:
1324 return TYPE_LENGTH (builtin_type_void_data_ptr);
1325 case DW_EH_PE_udata2:
1326 return 2;
1327 case DW_EH_PE_udata4:
1328 return 4;
1329 case DW_EH_PE_udata8:
1330 return 8;
1331 default:
1332 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1333 }
1334 }
1335
1336 static CORE_ADDR
1337 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1338 gdb_byte *buf, unsigned int *bytes_read_ptr)
1339 {
1340 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1341 ptrdiff_t offset;
1342 CORE_ADDR base;
1343
1344 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1345 FDE's. */
1346 if (encoding & DW_EH_PE_indirect)
1347 internal_error (__FILE__, __LINE__,
1348 _("Unsupported encoding: DW_EH_PE_indirect"));
1349
1350 *bytes_read_ptr = 0;
1351
1352 switch (encoding & 0x70)
1353 {
1354 case DW_EH_PE_absptr:
1355 base = 0;
1356 break;
1357 case DW_EH_PE_pcrel:
1358 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1359 base += (buf - unit->dwarf_frame_buffer);
1360 break;
1361 case DW_EH_PE_datarel:
1362 base = unit->dbase;
1363 break;
1364 case DW_EH_PE_textrel:
1365 base = unit->tbase;
1366 break;
1367 case DW_EH_PE_funcrel:
1368 /* FIXME: kettenis/20040501: For now just pretend
1369 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1370 reading the initial location of an FDE it should be treated
1371 as such, and currently that's the only place where this code
1372 is used. */
1373 base = 0;
1374 break;
1375 case DW_EH_PE_aligned:
1376 base = 0;
1377 offset = buf - unit->dwarf_frame_buffer;
1378 if ((offset % ptr_len) != 0)
1379 {
1380 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1381 buf += *bytes_read_ptr;
1382 }
1383 break;
1384 default:
1385 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1386 }
1387
1388 if ((encoding & 0x07) == 0x00)
1389 encoding |= encoding_for_size (ptr_len);
1390
1391 switch (encoding & 0x0f)
1392 {
1393 case DW_EH_PE_uleb128:
1394 {
1395 ULONGEST value;
1396 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1397 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1398 return base + value;
1399 }
1400 case DW_EH_PE_udata2:
1401 *bytes_read_ptr += 2;
1402 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1403 case DW_EH_PE_udata4:
1404 *bytes_read_ptr += 4;
1405 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1406 case DW_EH_PE_udata8:
1407 *bytes_read_ptr += 8;
1408 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1409 case DW_EH_PE_sleb128:
1410 {
1411 LONGEST value;
1412 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1413 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1414 return base + value;
1415 }
1416 case DW_EH_PE_sdata2:
1417 *bytes_read_ptr += 2;
1418 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1419 case DW_EH_PE_sdata4:
1420 *bytes_read_ptr += 4;
1421 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1422 case DW_EH_PE_sdata8:
1423 *bytes_read_ptr += 8;
1424 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1425 default:
1426 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1427 }
1428 }
1429 \f
1430
1431 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1432 That's why we use a simple linked list here. */
1433
1434 static struct dwarf2_cie *
1435 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1436 {
1437 struct dwarf2_cie *cie = unit->cie;
1438
1439 while (cie)
1440 {
1441 if (cie->cie_pointer == cie_pointer)
1442 return cie;
1443
1444 cie = cie->next;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 static void
1451 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1452 {
1453 cie->next = unit->cie;
1454 unit->cie = cie;
1455 }
1456
1457 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1458 inital location associated with it into *PC. */
1459
1460 static struct dwarf2_fde *
1461 dwarf2_frame_find_fde (CORE_ADDR *pc)
1462 {
1463 struct objfile *objfile;
1464
1465 ALL_OBJFILES (objfile)
1466 {
1467 struct dwarf2_fde *fde;
1468 CORE_ADDR offset;
1469
1470 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1471 if (fde == NULL)
1472 continue;
1473
1474 gdb_assert (objfile->section_offsets);
1475 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1476
1477 while (fde)
1478 {
1479 if (*pc >= fde->initial_location + offset
1480 && *pc < fde->initial_location + offset + fde->address_range)
1481 {
1482 *pc = fde->initial_location + offset;
1483 return fde;
1484 }
1485
1486 fde = fde->next;
1487 }
1488 }
1489
1490 return NULL;
1491 }
1492
1493 static void
1494 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1495 {
1496 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1497 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1498 }
1499
1500 #ifdef CC_HAS_LONG_LONG
1501 #define DW64_CIE_ID 0xffffffffffffffffULL
1502 #else
1503 #define DW64_CIE_ID ~0
1504 #endif
1505
1506 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1507 int eh_frame_p);
1508
1509 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1510 the next byte to be processed. */
1511 static gdb_byte *
1512 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1513 {
1514 gdb_byte *buf, *end;
1515 LONGEST length;
1516 unsigned int bytes_read;
1517 int dwarf64_p;
1518 ULONGEST cie_id;
1519 ULONGEST cie_pointer;
1520
1521 buf = start;
1522 length = read_initial_length (unit->abfd, buf, &bytes_read);
1523 buf += bytes_read;
1524 end = buf + length;
1525
1526 /* Are we still within the section? */
1527 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1528 return NULL;
1529
1530 if (length == 0)
1531 return end;
1532
1533 /* Distinguish between 32 and 64-bit encoded frame info. */
1534 dwarf64_p = (bytes_read == 12);
1535
1536 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1537 if (eh_frame_p)
1538 cie_id = 0;
1539 else if (dwarf64_p)
1540 cie_id = DW64_CIE_ID;
1541 else
1542 cie_id = DW_CIE_ID;
1543
1544 if (dwarf64_p)
1545 {
1546 cie_pointer = read_8_bytes (unit->abfd, buf);
1547 buf += 8;
1548 }
1549 else
1550 {
1551 cie_pointer = read_4_bytes (unit->abfd, buf);
1552 buf += 4;
1553 }
1554
1555 if (cie_pointer == cie_id)
1556 {
1557 /* This is a CIE. */
1558 struct dwarf2_cie *cie;
1559 char *augmentation;
1560 unsigned int cie_version;
1561
1562 /* Record the offset into the .debug_frame section of this CIE. */
1563 cie_pointer = start - unit->dwarf_frame_buffer;
1564
1565 /* Check whether we've already read it. */
1566 if (find_cie (unit, cie_pointer))
1567 return end;
1568
1569 cie = (struct dwarf2_cie *)
1570 obstack_alloc (&unit->objfile->objfile_obstack,
1571 sizeof (struct dwarf2_cie));
1572 cie->initial_instructions = NULL;
1573 cie->cie_pointer = cie_pointer;
1574
1575 /* The encoding for FDE's in a normal .debug_frame section
1576 depends on the target address size. */
1577 cie->encoding = DW_EH_PE_absptr;
1578
1579 /* We'll determine the final value later, but we need to
1580 initialize it conservatively. */
1581 cie->signal_frame = 0;
1582
1583 /* Check version number. */
1584 cie_version = read_1_byte (unit->abfd, buf);
1585 if (cie_version != 1 && cie_version != 3)
1586 return NULL;
1587 buf += 1;
1588
1589 /* Interpret the interesting bits of the augmentation. */
1590 augmentation = (char *) buf;
1591 buf += (strlen (augmentation) + 1);
1592
1593 /* The GCC 2.x "eh" augmentation has a pointer immediately
1594 following the augmentation string, so it must be handled
1595 first. */
1596 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1597 {
1598 /* Skip. */
1599 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1600 augmentation += 2;
1601 }
1602
1603 cie->code_alignment_factor =
1604 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1605 buf += bytes_read;
1606
1607 cie->data_alignment_factor =
1608 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1609 buf += bytes_read;
1610
1611 if (cie_version == 1)
1612 {
1613 cie->return_address_register = read_1_byte (unit->abfd, buf);
1614 bytes_read = 1;
1615 }
1616 else
1617 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1618 &bytes_read);
1619 if (eh_frame_p)
1620 cie->return_address_register
1621 = dwarf2_frame_eh_frame_regnum (current_gdbarch,
1622 cie->return_address_register);
1623
1624 buf += bytes_read;
1625
1626 cie->saw_z_augmentation = (*augmentation == 'z');
1627 if (cie->saw_z_augmentation)
1628 {
1629 ULONGEST length;
1630
1631 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1632 buf += bytes_read;
1633 if (buf > end)
1634 return NULL;
1635 cie->initial_instructions = buf + length;
1636 augmentation++;
1637 }
1638
1639 while (*augmentation)
1640 {
1641 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1642 if (*augmentation == 'L')
1643 {
1644 /* Skip. */
1645 buf++;
1646 augmentation++;
1647 }
1648
1649 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1650 else if (*augmentation == 'R')
1651 {
1652 cie->encoding = *buf++;
1653 augmentation++;
1654 }
1655
1656 /* "P" indicates a personality routine in the CIE augmentation. */
1657 else if (*augmentation == 'P')
1658 {
1659 /* Skip. Avoid indirection since we throw away the result. */
1660 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1661 read_encoded_value (unit, encoding, buf, &bytes_read);
1662 buf += bytes_read;
1663 augmentation++;
1664 }
1665
1666 /* "S" indicates a signal frame, such that the return
1667 address must not be decremented to locate the call frame
1668 info for the previous frame; it might even be the first
1669 instruction of a function, so decrementing it would take
1670 us to a different function. */
1671 else if (*augmentation == 'S')
1672 {
1673 cie->signal_frame = 1;
1674 augmentation++;
1675 }
1676
1677 /* Otherwise we have an unknown augmentation.
1678 Bail out unless we saw a 'z' prefix. */
1679 else
1680 {
1681 if (cie->initial_instructions == NULL)
1682 return end;
1683
1684 /* Skip unknown augmentations. */
1685 buf = cie->initial_instructions;
1686 break;
1687 }
1688 }
1689
1690 cie->initial_instructions = buf;
1691 cie->end = end;
1692
1693 add_cie (unit, cie);
1694 }
1695 else
1696 {
1697 /* This is a FDE. */
1698 struct dwarf2_fde *fde;
1699
1700 /* In an .eh_frame section, the CIE pointer is the delta between the
1701 address within the FDE where the CIE pointer is stored and the
1702 address of the CIE. Convert it to an offset into the .eh_frame
1703 section. */
1704 if (eh_frame_p)
1705 {
1706 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1707 cie_pointer -= (dwarf64_p ? 8 : 4);
1708 }
1709
1710 /* In either case, validate the result is still within the section. */
1711 if (cie_pointer >= unit->dwarf_frame_size)
1712 return NULL;
1713
1714 fde = (struct dwarf2_fde *)
1715 obstack_alloc (&unit->objfile->objfile_obstack,
1716 sizeof (struct dwarf2_fde));
1717 fde->cie = find_cie (unit, cie_pointer);
1718 if (fde->cie == NULL)
1719 {
1720 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1721 eh_frame_p);
1722 fde->cie = find_cie (unit, cie_pointer);
1723 }
1724
1725 gdb_assert (fde->cie != NULL);
1726
1727 fde->initial_location =
1728 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1729 buf += bytes_read;
1730
1731 fde->address_range =
1732 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1733 buf += bytes_read;
1734
1735 /* A 'z' augmentation in the CIE implies the presence of an
1736 augmentation field in the FDE as well. The only thing known
1737 to be in here at present is the LSDA entry for EH. So we
1738 can skip the whole thing. */
1739 if (fde->cie->saw_z_augmentation)
1740 {
1741 ULONGEST length;
1742
1743 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1744 buf += bytes_read + length;
1745 if (buf > end)
1746 return NULL;
1747 }
1748
1749 fde->instructions = buf;
1750 fde->end = end;
1751
1752 fde->eh_frame_p = eh_frame_p;
1753
1754 add_fde (unit, fde);
1755 }
1756
1757 return end;
1758 }
1759
1760 /* Read a CIE or FDE in BUF and decode it. */
1761 static gdb_byte *
1762 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1763 {
1764 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1765 gdb_byte *ret;
1766 const char *msg;
1767 ptrdiff_t start_offset;
1768
1769 while (1)
1770 {
1771 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1772 if (ret != NULL)
1773 break;
1774
1775 /* We have corrupt input data of some form. */
1776
1777 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1778 and mismatches wrt padding and alignment of debug sections. */
1779 /* Note that there is no requirement in the standard for any
1780 alignment at all in the frame unwind sections. Testing for
1781 alignment before trying to interpret data would be incorrect.
1782
1783 However, GCC traditionally arranged for frame sections to be
1784 sized such that the FDE length and CIE fields happen to be
1785 aligned (in theory, for performance). This, unfortunately,
1786 was done with .align directives, which had the side effect of
1787 forcing the section to be aligned by the linker.
1788
1789 This becomes a problem when you have some other producer that
1790 creates frame sections that are not as strictly aligned. That
1791 produces a hole in the frame info that gets filled by the
1792 linker with zeros.
1793
1794 The GCC behaviour is arguably a bug, but it's effectively now
1795 part of the ABI, so we're now stuck with it, at least at the
1796 object file level. A smart linker may decide, in the process
1797 of compressing duplicate CIE information, that it can rewrite
1798 the entire output section without this extra padding. */
1799
1800 start_offset = start - unit->dwarf_frame_buffer;
1801 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1802 {
1803 start += 4 - (start_offset & 3);
1804 workaround = ALIGN4;
1805 continue;
1806 }
1807 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1808 {
1809 start += 8 - (start_offset & 7);
1810 workaround = ALIGN8;
1811 continue;
1812 }
1813
1814 /* Nothing left to try. Arrange to return as if we've consumed
1815 the entire input section. Hopefully we'll get valid info from
1816 the other of .debug_frame/.eh_frame. */
1817 workaround = FAIL;
1818 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1819 break;
1820 }
1821
1822 switch (workaround)
1823 {
1824 case NONE:
1825 break;
1826
1827 case ALIGN4:
1828 complaint (&symfile_complaints,
1829 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1830 unit->dwarf_frame_section->owner->filename,
1831 unit->dwarf_frame_section->name);
1832 break;
1833
1834 case ALIGN8:
1835 complaint (&symfile_complaints,
1836 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1837 unit->dwarf_frame_section->owner->filename,
1838 unit->dwarf_frame_section->name);
1839 break;
1840
1841 default:
1842 complaint (&symfile_complaints,
1843 _("Corrupt data in %s:%s"),
1844 unit->dwarf_frame_section->owner->filename,
1845 unit->dwarf_frame_section->name);
1846 break;
1847 }
1848
1849 return ret;
1850 }
1851 \f
1852
1853 /* FIXME: kettenis/20030504: This still needs to be integrated with
1854 dwarf2read.c in a better way. */
1855
1856 /* Imported from dwarf2read.c. */
1857 extern asection *dwarf_frame_section;
1858 extern asection *dwarf_eh_frame_section;
1859
1860 /* Imported from dwarf2read.c. */
1861 extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1862
1863 void
1864 dwarf2_build_frame_info (struct objfile *objfile)
1865 {
1866 struct comp_unit unit;
1867 gdb_byte *frame_ptr;
1868
1869 /* Build a minimal decoding of the DWARF2 compilation unit. */
1870 unit.abfd = objfile->obfd;
1871 unit.objfile = objfile;
1872 unit.dbase = 0;
1873 unit.tbase = 0;
1874
1875 /* First add the information from the .eh_frame section. That way,
1876 the FDEs from that section are searched last. */
1877 if (dwarf_eh_frame_section)
1878 {
1879 asection *got, *txt;
1880
1881 unit.cie = NULL;
1882 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1883 dwarf_eh_frame_section);
1884
1885 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1886 unit.dwarf_frame_section = dwarf_eh_frame_section;
1887
1888 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1889 that is used for the i386/amd64 target, which currently is
1890 the only target in GCC that supports/uses the
1891 DW_EH_PE_datarel encoding. */
1892 got = bfd_get_section_by_name (unit.abfd, ".got");
1893 if (got)
1894 unit.dbase = got->vma;
1895
1896 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1897 so far. */
1898 txt = bfd_get_section_by_name (unit.abfd, ".text");
1899 if (txt)
1900 unit.tbase = txt->vma;
1901
1902 frame_ptr = unit.dwarf_frame_buffer;
1903 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1904 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1905 }
1906
1907 if (dwarf_frame_section)
1908 {
1909 unit.cie = NULL;
1910 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1911 dwarf_frame_section);
1912 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
1913 unit.dwarf_frame_section = dwarf_frame_section;
1914
1915 frame_ptr = unit.dwarf_frame_buffer;
1916 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1917 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1918 }
1919 }
1920
1921 /* Provide a prototype to silence -Wmissing-prototypes. */
1922 void _initialize_dwarf2_frame (void);
1923
1924 void
1925 _initialize_dwarf2_frame (void)
1926 {
1927 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1928 dwarf2_frame_objfile_data = register_objfile_data ();
1929 }
This page took 0.128096 seconds and 4 git commands to generate.