* mn10300-tdep.c (mn10300_dwarf2_reg_to_regnum): New function.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 gdb_byte *initial_instructions;
64 gdb_byte *end;
65
66 /* Encoding of addresses. */
67 gdb_byte encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 gdb_byte *instructions;
90 gdb_byte *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96 \f
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 gdb_byte *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201 \f
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 gdb_byte *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
221 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
227 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 _("Support for DW_OP_fbreg is unimplemented"));
231 }
232
233 static CORE_ADDR
234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
238 }
239
240 static CORE_ADDR
241 execute_stack_op (gdb_byte *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265 \f
266
267 static void
268 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 gdb_byte insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, _("\
378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
403 fs->cfa_offset = utmp;
404 /* cfa_how deliberately not set. */
405 break;
406
407 case DW_CFA_nop:
408 break;
409
410 case DW_CFA_def_cfa_expression:
411 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
412 fs->cfa_exp = insn_ptr;
413 fs->cfa_how = CFA_EXP;
414 insn_ptr += fs->cfa_exp_len;
415 break;
416
417 case DW_CFA_expression:
418 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
419 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
420 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
421 fs->regs.reg[reg].loc.exp = insn_ptr;
422 fs->regs.reg[reg].exp_len = utmp;
423 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
424 insn_ptr += utmp;
425 break;
426
427 case DW_CFA_offset_extended_sf:
428 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
429 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
430 offset *= fs->data_align;
431 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
432 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
433 fs->regs.reg[reg].loc.offset = offset;
434 break;
435
436 case DW_CFA_def_cfa_sf:
437 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
438 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
439 fs->cfa_offset = offset * fs->data_align;
440 fs->cfa_how = CFA_REG_OFFSET;
441 break;
442
443 case DW_CFA_def_cfa_offset_sf:
444 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
445 fs->cfa_offset = offset * fs->data_align;
446 /* cfa_how deliberately not set. */
447 break;
448
449 case DW_CFA_GNU_window_save:
450 /* This is SPARC-specific code, and contains hard-coded
451 constants for the register numbering scheme used by
452 GCC. Rather than having a architecture-specific
453 operation that's only ever used by a single
454 architecture, we provide the implementation here.
455 Incidentally that's what GCC does too in its
456 unwinder. */
457 {
458 struct gdbarch *gdbarch = get_frame_arch (next_frame);
459 int size = register_size(gdbarch, 0);
460 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
461 for (reg = 8; reg < 16; reg++)
462 {
463 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
464 fs->regs.reg[reg].loc.reg = reg + 16;
465 }
466 for (reg = 16; reg < 32; reg++)
467 {
468 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
469 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
470 }
471 }
472 break;
473
474 case DW_CFA_GNU_args_size:
475 /* Ignored. */
476 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
477 break;
478
479 default:
480 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
481 }
482 }
483 }
484
485 /* Don't allow remember/restore between CIE and FDE programs. */
486 dwarf2_frame_state_free_regs (fs->regs.prev);
487 fs->regs.prev = NULL;
488 }
489 \f
490
491 /* Architecture-specific operations. */
492
493 /* Per-architecture data key. */
494 static struct gdbarch_data *dwarf2_frame_data;
495
496 struct dwarf2_frame_ops
497 {
498 /* Pre-initialize the register state REG for register REGNUM. */
499 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
500
501 /* Check whether the frame preceding NEXT_FRAME will be a signal
502 trampoline. */
503 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
504 };
505
506 /* Default architecture-specific register state initialization
507 function. */
508
509 static void
510 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
511 struct dwarf2_frame_state_reg *reg)
512 {
513 /* If we have a register that acts as a program counter, mark it as
514 a destination for the return address. If we have a register that
515 serves as the stack pointer, arrange for it to be filled with the
516 call frame address (CFA). The other registers are marked as
517 unspecified.
518
519 We copy the return address to the program counter, since many
520 parts in GDB assume that it is possible to get the return address
521 by unwinding the program counter register. However, on ISA's
522 with a dedicated return address register, the CFI usually only
523 contains information to unwind that return address register.
524
525 The reason we're treating the stack pointer special here is
526 because in many cases GCC doesn't emit CFI for the stack pointer
527 and implicitly assumes that it is equal to the CFA. This makes
528 some sense since the DWARF specification (version 3, draft 8,
529 p. 102) says that:
530
531 "Typically, the CFA is defined to be the value of the stack
532 pointer at the call site in the previous frame (which may be
533 different from its value on entry to the current frame)."
534
535 However, this isn't true for all platforms supported by GCC
536 (e.g. IBM S/390 and zSeries). Those architectures should provide
537 their own architecture-specific initialization function. */
538
539 if (regnum == PC_REGNUM)
540 reg->how = DWARF2_FRAME_REG_RA;
541 else if (regnum == SP_REGNUM)
542 reg->how = DWARF2_FRAME_REG_CFA;
543 }
544
545 /* Return a default for the architecture-specific operations. */
546
547 static void *
548 dwarf2_frame_init (struct obstack *obstack)
549 {
550 struct dwarf2_frame_ops *ops;
551
552 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
553 ops->init_reg = dwarf2_frame_default_init_reg;
554 return ops;
555 }
556
557 /* Set the architecture-specific register state initialization
558 function for GDBARCH to INIT_REG. */
559
560 void
561 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
562 void (*init_reg) (struct gdbarch *, int,
563 struct dwarf2_frame_state_reg *))
564 {
565 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
566
567 ops->init_reg = init_reg;
568 }
569
570 /* Pre-initialize the register state REG for register REGNUM. */
571
572 static void
573 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
574 struct dwarf2_frame_state_reg *reg)
575 {
576 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
577
578 ops->init_reg (gdbarch, regnum, reg);
579 }
580
581 /* Set the architecture-specific signal trampoline recognition
582 function for GDBARCH to SIGNAL_FRAME_P. */
583
584 void
585 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
586 int (*signal_frame_p) (struct gdbarch *,
587 struct frame_info *))
588 {
589 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
590
591 ops->signal_frame_p = signal_frame_p;
592 }
593
594 /* Query the architecture-specific signal frame recognizer for
595 NEXT_FRAME. */
596
597 static int
598 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
599 struct frame_info *next_frame)
600 {
601 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
602
603 if (ops->signal_frame_p == NULL)
604 return 0;
605 return ops->signal_frame_p (gdbarch, next_frame);
606 }
607 \f
608
609 struct dwarf2_frame_cache
610 {
611 /* DWARF Call Frame Address. */
612 CORE_ADDR cfa;
613
614 /* Set if the return address column was marked as undefined. */
615 int undefined_retaddr;
616
617 /* Saved registers, indexed by GDB register number, not by DWARF
618 register number. */
619 struct dwarf2_frame_state_reg *reg;
620
621 /* Return address register. */
622 struct dwarf2_frame_state_reg retaddr_reg;
623 };
624
625 static struct dwarf2_frame_cache *
626 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
627 {
628 struct cleanup *old_chain;
629 struct gdbarch *gdbarch = get_frame_arch (next_frame);
630 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
631 struct dwarf2_frame_cache *cache;
632 struct dwarf2_frame_state *fs;
633 struct dwarf2_fde *fde;
634
635 if (*this_cache)
636 return *this_cache;
637
638 /* Allocate a new cache. */
639 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
640 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
641
642 /* Allocate and initialize the frame state. */
643 fs = XMALLOC (struct dwarf2_frame_state);
644 memset (fs, 0, sizeof (struct dwarf2_frame_state));
645 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
646
647 /* Unwind the PC.
648
649 Note that if NEXT_FRAME is never supposed to return (i.e. a call
650 to abort), the compiler might optimize away the instruction at
651 NEXT_FRAME's return address. As a result the return address will
652 point at some random instruction, and the CFI for that
653 instruction is probably worthless to us. GCC's unwinder solves
654 this problem by substracting 1 from the return address to get an
655 address in the middle of a presumed call instruction (or the
656 instruction in the associated delay slot). This should only be
657 done for "normal" frames and not for resume-type frames (signal
658 handlers, sentinel frames, dummy frames). The function
659 frame_unwind_address_in_block does just this. It's not clear how
660 reliable the method is though; there is the potential for the
661 register state pre-call being different to that on return. */
662 fs->pc = frame_unwind_address_in_block (next_frame);
663
664 /* Find the correct FDE. */
665 fde = dwarf2_frame_find_fde (&fs->pc);
666 gdb_assert (fde != NULL);
667
668 /* Extract any interesting information from the CIE. */
669 fs->data_align = fde->cie->data_alignment_factor;
670 fs->code_align = fde->cie->code_alignment_factor;
671 fs->retaddr_column = fde->cie->return_address_register;
672
673 /* First decode all the insns in the CIE. */
674 execute_cfa_program (fde->cie->initial_instructions,
675 fde->cie->end, next_frame, fs);
676
677 /* Save the initialized register set. */
678 fs->initial = fs->regs;
679 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
680
681 /* Then decode the insns in the FDE up to our target PC. */
682 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
683
684 /* Caclulate the CFA. */
685 switch (fs->cfa_how)
686 {
687 case CFA_REG_OFFSET:
688 cache->cfa = read_reg (next_frame, fs->cfa_reg);
689 cache->cfa += fs->cfa_offset;
690 break;
691
692 case CFA_EXP:
693 cache->cfa =
694 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
695 break;
696
697 default:
698 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
699 }
700
701 /* Initialize the register state. */
702 {
703 int regnum;
704
705 for (regnum = 0; regnum < num_regs; regnum++)
706 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
707 }
708
709 /* Go through the DWARF2 CFI generated table and save its register
710 location information in the cache. Note that we don't skip the
711 return address column; it's perfectly all right for it to
712 correspond to a real register. If it doesn't correspond to a
713 real register, or if we shouldn't treat it as such,
714 DWARF2_REG_TO_REGNUM should be defined to return a number outside
715 the range [0, NUM_REGS). */
716 {
717 int column; /* CFI speak for "register number". */
718
719 for (column = 0; column < fs->regs.num_regs; column++)
720 {
721 /* Use the GDB register number as the destination index. */
722 int regnum = DWARF2_REG_TO_REGNUM (column);
723
724 /* If there's no corresponding GDB register, ignore it. */
725 if (regnum < 0 || regnum >= num_regs)
726 continue;
727
728 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
729 of all debug info registers. If it doesn't, complain (but
730 not too loudly). It turns out that GCC assumes that an
731 unspecified register implies "same value" when CFI (draft
732 7) specifies nothing at all. Such a register could equally
733 be interpreted as "undefined". Also note that this check
734 isn't sufficient; it only checks that all registers in the
735 range [0 .. max column] are specified, and won't detect
736 problems when a debug info register falls outside of the
737 table. We need a way of iterating through all the valid
738 DWARF2 register numbers. */
739 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
740 {
741 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
742 complaint (&symfile_complaints, _("\
743 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
744 gdbarch_register_name (gdbarch, regnum),
745 paddr_nz (fs->pc));
746 }
747 else
748 cache->reg[regnum] = fs->regs.reg[column];
749 }
750 }
751
752 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
753 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
754 {
755 int regnum;
756
757 for (regnum = 0; regnum < num_regs; regnum++)
758 {
759 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
760 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
761 {
762 struct dwarf2_frame_state_reg *retaddr_reg =
763 &fs->regs.reg[fs->retaddr_column];
764
765 /* It seems rather bizarre to specify an "empty" column as
766 the return adress column. However, this is exactly
767 what GCC does on some targets. It turns out that GCC
768 assumes that the return address can be found in the
769 register corresponding to the return address column.
770 Incidentally, that's how we should treat a return
771 address column specifying "same value" too. */
772 if (fs->retaddr_column < fs->regs.num_regs
773 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
774 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
775 {
776 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
777 cache->reg[regnum] = *retaddr_reg;
778 else
779 cache->retaddr_reg = *retaddr_reg;
780 }
781 else
782 {
783 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
784 {
785 cache->reg[regnum].loc.reg = fs->retaddr_column;
786 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
787 }
788 else
789 {
790 cache->retaddr_reg.loc.reg = fs->retaddr_column;
791 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
792 }
793 }
794 }
795 }
796 }
797
798 if (fs->retaddr_column < fs->regs.num_regs
799 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
800 cache->undefined_retaddr = 1;
801
802 do_cleanups (old_chain);
803
804 *this_cache = cache;
805 return cache;
806 }
807
808 static void
809 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
810 struct frame_id *this_id)
811 {
812 struct dwarf2_frame_cache *cache =
813 dwarf2_frame_cache (next_frame, this_cache);
814
815 if (cache->undefined_retaddr)
816 return;
817
818 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
819 }
820
821 static void
822 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
823 int regnum, int *optimizedp,
824 enum lval_type *lvalp, CORE_ADDR *addrp,
825 int *realnump, gdb_byte *valuep)
826 {
827 struct gdbarch *gdbarch = get_frame_arch (next_frame);
828 struct dwarf2_frame_cache *cache =
829 dwarf2_frame_cache (next_frame, this_cache);
830
831 switch (cache->reg[regnum].how)
832 {
833 case DWARF2_FRAME_REG_UNDEFINED:
834 /* If CFI explicitly specified that the value isn't defined,
835 mark it as optimized away; the value isn't available. */
836 *optimizedp = 1;
837 *lvalp = not_lval;
838 *addrp = 0;
839 *realnump = -1;
840 if (valuep)
841 {
842 /* In some cases, for example %eflags on the i386, we have
843 to provide a sane value, even though this register wasn't
844 saved. Assume we can get it from NEXT_FRAME. */
845 frame_unwind_register (next_frame, regnum, valuep);
846 }
847 break;
848
849 case DWARF2_FRAME_REG_SAVED_OFFSET:
850 *optimizedp = 0;
851 *lvalp = lval_memory;
852 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
853 *realnump = -1;
854 if (valuep)
855 {
856 /* Read the value in from memory. */
857 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
858 }
859 break;
860
861 case DWARF2_FRAME_REG_SAVED_REG:
862 *optimizedp = 0;
863 *lvalp = lval_register;
864 *addrp = 0;
865 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
866 if (valuep)
867 frame_unwind_register (next_frame, (*realnump), valuep);
868 break;
869
870 case DWARF2_FRAME_REG_SAVED_EXP:
871 *optimizedp = 0;
872 *lvalp = lval_memory;
873 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
874 cache->reg[regnum].exp_len,
875 next_frame, cache->cfa);
876 *realnump = -1;
877 if (valuep)
878 {
879 /* Read the value in from memory. */
880 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
881 }
882 break;
883
884 case DWARF2_FRAME_REG_UNSPECIFIED:
885 /* GCC, in its infinite wisdom decided to not provide unwind
886 information for registers that are "same value". Since
887 DWARF2 (3 draft 7) doesn't define such behavior, said
888 registers are actually undefined (which is different to CFI
889 "undefined"). Code above issues a complaint about this.
890 Here just fudge the books, assume GCC, and that the value is
891 more inner on the stack. */
892 *optimizedp = 0;
893 *lvalp = lval_register;
894 *addrp = 0;
895 *realnump = regnum;
896 if (valuep)
897 frame_unwind_register (next_frame, (*realnump), valuep);
898 break;
899
900 case DWARF2_FRAME_REG_SAME_VALUE:
901 *optimizedp = 0;
902 *lvalp = lval_register;
903 *addrp = 0;
904 *realnump = regnum;
905 if (valuep)
906 frame_unwind_register (next_frame, (*realnump), valuep);
907 break;
908
909 case DWARF2_FRAME_REG_CFA:
910 *optimizedp = 0;
911 *lvalp = not_lval;
912 *addrp = 0;
913 *realnump = -1;
914 if (valuep)
915 {
916 /* Store the value. */
917 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
918 }
919 break;
920
921 case DWARF2_FRAME_REG_RA_OFFSET:
922 *optimizedp = 0;
923 *lvalp = not_lval;
924 *addrp = 0;
925 *realnump = -1;
926 if (valuep)
927 {
928 CORE_ADDR pc = cache->reg[regnum].loc.offset;
929
930 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
931 pc += frame_unwind_register_unsigned (next_frame, regnum);
932 store_typed_address (valuep, builtin_type_void_func_ptr, pc);
933 }
934 break;
935
936 default:
937 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
938 }
939 }
940
941 static const struct frame_unwind dwarf2_frame_unwind =
942 {
943 NORMAL_FRAME,
944 dwarf2_frame_this_id,
945 dwarf2_frame_prev_register
946 };
947
948 static const struct frame_unwind dwarf2_signal_frame_unwind =
949 {
950 SIGTRAMP_FRAME,
951 dwarf2_frame_this_id,
952 dwarf2_frame_prev_register
953 };
954
955 const struct frame_unwind *
956 dwarf2_frame_sniffer (struct frame_info *next_frame)
957 {
958 /* Grab an address that is guarenteed to reside somewhere within the
959 function. frame_pc_unwind(), for a no-return next function, can
960 end up returning something past the end of this function's body. */
961 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
962 if (!dwarf2_frame_find_fde (&block_addr))
963 return NULL;
964
965 /* On some targets, signal trampolines may have unwind information.
966 We need to recognize them so that we set the frame type
967 correctly. */
968
969 if (dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
970 next_frame))
971 return &dwarf2_signal_frame_unwind;
972
973 return &dwarf2_frame_unwind;
974 }
975 \f
976
977 /* There is no explicitly defined relationship between the CFA and the
978 location of frame's local variables and arguments/parameters.
979 Therefore, frame base methods on this page should probably only be
980 used as a last resort, just to avoid printing total garbage as a
981 response to the "info frame" command. */
982
983 static CORE_ADDR
984 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
985 {
986 struct dwarf2_frame_cache *cache =
987 dwarf2_frame_cache (next_frame, this_cache);
988
989 return cache->cfa;
990 }
991
992 static const struct frame_base dwarf2_frame_base =
993 {
994 &dwarf2_frame_unwind,
995 dwarf2_frame_base_address,
996 dwarf2_frame_base_address,
997 dwarf2_frame_base_address
998 };
999
1000 const struct frame_base *
1001 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1002 {
1003 CORE_ADDR pc = frame_pc_unwind (next_frame);
1004 if (dwarf2_frame_find_fde (&pc))
1005 return &dwarf2_frame_base;
1006
1007 return NULL;
1008 }
1009 \f
1010 /* A minimal decoding of DWARF2 compilation units. We only decode
1011 what's needed to get to the call frame information. */
1012
1013 struct comp_unit
1014 {
1015 /* Keep the bfd convenient. */
1016 bfd *abfd;
1017
1018 struct objfile *objfile;
1019
1020 /* Linked list of CIEs for this object. */
1021 struct dwarf2_cie *cie;
1022
1023 /* Pointer to the .debug_frame section loaded into memory. */
1024 gdb_byte *dwarf_frame_buffer;
1025
1026 /* Length of the loaded .debug_frame section. */
1027 unsigned long dwarf_frame_size;
1028
1029 /* Pointer to the .debug_frame section. */
1030 asection *dwarf_frame_section;
1031
1032 /* Base for DW_EH_PE_datarel encodings. */
1033 bfd_vma dbase;
1034
1035 /* Base for DW_EH_PE_textrel encodings. */
1036 bfd_vma tbase;
1037 };
1038
1039 const struct objfile_data *dwarf2_frame_objfile_data;
1040
1041 static unsigned int
1042 read_1_byte (bfd *abfd, gdb_byte *buf)
1043 {
1044 return bfd_get_8 (abfd, buf);
1045 }
1046
1047 static unsigned int
1048 read_4_bytes (bfd *abfd, gdb_byte *buf)
1049 {
1050 return bfd_get_32 (abfd, buf);
1051 }
1052
1053 static ULONGEST
1054 read_8_bytes (bfd *abfd, gdb_byte *buf)
1055 {
1056 return bfd_get_64 (abfd, buf);
1057 }
1058
1059 static ULONGEST
1060 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1061 {
1062 ULONGEST result;
1063 unsigned int num_read;
1064 int shift;
1065 gdb_byte byte;
1066
1067 result = 0;
1068 shift = 0;
1069 num_read = 0;
1070
1071 do
1072 {
1073 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1074 buf++;
1075 num_read++;
1076 result |= ((byte & 0x7f) << shift);
1077 shift += 7;
1078 }
1079 while (byte & 0x80);
1080
1081 *bytes_read_ptr = num_read;
1082
1083 return result;
1084 }
1085
1086 static LONGEST
1087 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1088 {
1089 LONGEST result;
1090 int shift;
1091 unsigned int num_read;
1092 gdb_byte byte;
1093
1094 result = 0;
1095 shift = 0;
1096 num_read = 0;
1097
1098 do
1099 {
1100 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1101 buf++;
1102 num_read++;
1103 result |= ((byte & 0x7f) << shift);
1104 shift += 7;
1105 }
1106 while (byte & 0x80);
1107
1108 if (shift < 8 * sizeof (result) && (byte & 0x40))
1109 result |= -(((LONGEST)1) << shift);
1110
1111 *bytes_read_ptr = num_read;
1112
1113 return result;
1114 }
1115
1116 static ULONGEST
1117 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1118 {
1119 LONGEST result;
1120
1121 result = bfd_get_32 (abfd, buf);
1122 if (result == 0xffffffff)
1123 {
1124 result = bfd_get_64 (abfd, buf + 4);
1125 *bytes_read_ptr = 12;
1126 }
1127 else
1128 *bytes_read_ptr = 4;
1129
1130 return result;
1131 }
1132 \f
1133
1134 /* Pointer encoding helper functions. */
1135
1136 /* GCC supports exception handling based on DWARF2 CFI. However, for
1137 technical reasons, it encodes addresses in its FDE's in a different
1138 way. Several "pointer encodings" are supported. The encoding
1139 that's used for a particular FDE is determined by the 'R'
1140 augmentation in the associated CIE. The argument of this
1141 augmentation is a single byte.
1142
1143 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1144 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1145 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1146 address should be interpreted (absolute, relative to the current
1147 position in the FDE, ...). Bit 7, indicates that the address
1148 should be dereferenced. */
1149
1150 static gdb_byte
1151 encoding_for_size (unsigned int size)
1152 {
1153 switch (size)
1154 {
1155 case 2:
1156 return DW_EH_PE_udata2;
1157 case 4:
1158 return DW_EH_PE_udata4;
1159 case 8:
1160 return DW_EH_PE_udata8;
1161 default:
1162 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1163 }
1164 }
1165
1166 static unsigned int
1167 size_of_encoded_value (gdb_byte encoding)
1168 {
1169 if (encoding == DW_EH_PE_omit)
1170 return 0;
1171
1172 switch (encoding & 0x07)
1173 {
1174 case DW_EH_PE_absptr:
1175 return TYPE_LENGTH (builtin_type_void_data_ptr);
1176 case DW_EH_PE_udata2:
1177 return 2;
1178 case DW_EH_PE_udata4:
1179 return 4;
1180 case DW_EH_PE_udata8:
1181 return 8;
1182 default:
1183 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1184 }
1185 }
1186
1187 static CORE_ADDR
1188 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1189 gdb_byte *buf, unsigned int *bytes_read_ptr)
1190 {
1191 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1192 ptrdiff_t offset;
1193 CORE_ADDR base;
1194
1195 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1196 FDE's. */
1197 if (encoding & DW_EH_PE_indirect)
1198 internal_error (__FILE__, __LINE__,
1199 _("Unsupported encoding: DW_EH_PE_indirect"));
1200
1201 *bytes_read_ptr = 0;
1202
1203 switch (encoding & 0x70)
1204 {
1205 case DW_EH_PE_absptr:
1206 base = 0;
1207 break;
1208 case DW_EH_PE_pcrel:
1209 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1210 base += (buf - unit->dwarf_frame_buffer);
1211 break;
1212 case DW_EH_PE_datarel:
1213 base = unit->dbase;
1214 break;
1215 case DW_EH_PE_textrel:
1216 base = unit->tbase;
1217 break;
1218 case DW_EH_PE_funcrel:
1219 /* FIXME: kettenis/20040501: For now just pretend
1220 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1221 reading the initial location of an FDE it should be treated
1222 as such, and currently that's the only place where this code
1223 is used. */
1224 base = 0;
1225 break;
1226 case DW_EH_PE_aligned:
1227 base = 0;
1228 offset = buf - unit->dwarf_frame_buffer;
1229 if ((offset % ptr_len) != 0)
1230 {
1231 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1232 buf += *bytes_read_ptr;
1233 }
1234 break;
1235 default:
1236 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1237 }
1238
1239 if ((encoding & 0x07) == 0x00)
1240 encoding |= encoding_for_size (ptr_len);
1241
1242 switch (encoding & 0x0f)
1243 {
1244 case DW_EH_PE_uleb128:
1245 {
1246 ULONGEST value;
1247 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1248 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1249 return base + value;
1250 }
1251 case DW_EH_PE_udata2:
1252 *bytes_read_ptr += 2;
1253 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1254 case DW_EH_PE_udata4:
1255 *bytes_read_ptr += 4;
1256 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1257 case DW_EH_PE_udata8:
1258 *bytes_read_ptr += 8;
1259 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1260 case DW_EH_PE_sleb128:
1261 {
1262 LONGEST value;
1263 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1264 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1265 return base + value;
1266 }
1267 case DW_EH_PE_sdata2:
1268 *bytes_read_ptr += 2;
1269 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1270 case DW_EH_PE_sdata4:
1271 *bytes_read_ptr += 4;
1272 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1273 case DW_EH_PE_sdata8:
1274 *bytes_read_ptr += 8;
1275 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1276 default:
1277 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1278 }
1279 }
1280 \f
1281
1282 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1283 That's why we use a simple linked list here. */
1284
1285 static struct dwarf2_cie *
1286 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1287 {
1288 struct dwarf2_cie *cie = unit->cie;
1289
1290 while (cie)
1291 {
1292 if (cie->cie_pointer == cie_pointer)
1293 return cie;
1294
1295 cie = cie->next;
1296 }
1297
1298 return NULL;
1299 }
1300
1301 static void
1302 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1303 {
1304 cie->next = unit->cie;
1305 unit->cie = cie;
1306 }
1307
1308 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1309 inital location associated with it into *PC. */
1310
1311 static struct dwarf2_fde *
1312 dwarf2_frame_find_fde (CORE_ADDR *pc)
1313 {
1314 struct objfile *objfile;
1315
1316 ALL_OBJFILES (objfile)
1317 {
1318 struct dwarf2_fde *fde;
1319 CORE_ADDR offset;
1320
1321 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1322 if (fde == NULL)
1323 continue;
1324
1325 gdb_assert (objfile->section_offsets);
1326 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1327
1328 while (fde)
1329 {
1330 if (*pc >= fde->initial_location + offset
1331 && *pc < fde->initial_location + offset + fde->address_range)
1332 {
1333 *pc = fde->initial_location + offset;
1334 return fde;
1335 }
1336
1337 fde = fde->next;
1338 }
1339 }
1340
1341 return NULL;
1342 }
1343
1344 static void
1345 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1346 {
1347 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1348 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1349 }
1350
1351 #ifdef CC_HAS_LONG_LONG
1352 #define DW64_CIE_ID 0xffffffffffffffffULL
1353 #else
1354 #define DW64_CIE_ID ~0
1355 #endif
1356
1357 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1358 int eh_frame_p);
1359
1360 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1361 the next byte to be processed. */
1362 static gdb_byte *
1363 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1364 {
1365 gdb_byte *buf, *end;
1366 LONGEST length;
1367 unsigned int bytes_read;
1368 int dwarf64_p;
1369 ULONGEST cie_id;
1370 ULONGEST cie_pointer;
1371
1372 buf = start;
1373 length = read_initial_length (unit->abfd, buf, &bytes_read);
1374 buf += bytes_read;
1375 end = buf + length;
1376
1377 /* Are we still within the section? */
1378 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1379 return NULL;
1380
1381 if (length == 0)
1382 return end;
1383
1384 /* Distinguish between 32 and 64-bit encoded frame info. */
1385 dwarf64_p = (bytes_read == 12);
1386
1387 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1388 if (eh_frame_p)
1389 cie_id = 0;
1390 else if (dwarf64_p)
1391 cie_id = DW64_CIE_ID;
1392 else
1393 cie_id = DW_CIE_ID;
1394
1395 if (dwarf64_p)
1396 {
1397 cie_pointer = read_8_bytes (unit->abfd, buf);
1398 buf += 8;
1399 }
1400 else
1401 {
1402 cie_pointer = read_4_bytes (unit->abfd, buf);
1403 buf += 4;
1404 }
1405
1406 if (cie_pointer == cie_id)
1407 {
1408 /* This is a CIE. */
1409 struct dwarf2_cie *cie;
1410 char *augmentation;
1411 unsigned int cie_version;
1412
1413 /* Record the offset into the .debug_frame section of this CIE. */
1414 cie_pointer = start - unit->dwarf_frame_buffer;
1415
1416 /* Check whether we've already read it. */
1417 if (find_cie (unit, cie_pointer))
1418 return end;
1419
1420 cie = (struct dwarf2_cie *)
1421 obstack_alloc (&unit->objfile->objfile_obstack,
1422 sizeof (struct dwarf2_cie));
1423 cie->initial_instructions = NULL;
1424 cie->cie_pointer = cie_pointer;
1425
1426 /* The encoding for FDE's in a normal .debug_frame section
1427 depends on the target address size. */
1428 cie->encoding = DW_EH_PE_absptr;
1429
1430 /* Check version number. */
1431 cie_version = read_1_byte (unit->abfd, buf);
1432 if (cie_version != 1 && cie_version != 3)
1433 return NULL;
1434 buf += 1;
1435
1436 /* Interpret the interesting bits of the augmentation. */
1437 augmentation = (char *) buf;
1438 buf += (strlen (augmentation) + 1);
1439
1440 /* The GCC 2.x "eh" augmentation has a pointer immediately
1441 following the augmentation string, so it must be handled
1442 first. */
1443 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1444 {
1445 /* Skip. */
1446 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1447 augmentation += 2;
1448 }
1449
1450 cie->code_alignment_factor =
1451 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1452 buf += bytes_read;
1453
1454 cie->data_alignment_factor =
1455 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1456 buf += bytes_read;
1457
1458 if (cie_version == 1)
1459 {
1460 cie->return_address_register = read_1_byte (unit->abfd, buf);
1461 bytes_read = 1;
1462 }
1463 else
1464 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1465 &bytes_read);
1466 buf += bytes_read;
1467
1468 cie->saw_z_augmentation = (*augmentation == 'z');
1469 if (cie->saw_z_augmentation)
1470 {
1471 ULONGEST length;
1472
1473 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1474 buf += bytes_read;
1475 if (buf > end)
1476 return NULL;
1477 cie->initial_instructions = buf + length;
1478 augmentation++;
1479 }
1480
1481 while (*augmentation)
1482 {
1483 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1484 if (*augmentation == 'L')
1485 {
1486 /* Skip. */
1487 buf++;
1488 augmentation++;
1489 }
1490
1491 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1492 else if (*augmentation == 'R')
1493 {
1494 cie->encoding = *buf++;
1495 augmentation++;
1496 }
1497
1498 /* "P" indicates a personality routine in the CIE augmentation. */
1499 else if (*augmentation == 'P')
1500 {
1501 /* Skip. Avoid indirection since we throw away the result. */
1502 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1503 read_encoded_value (unit, encoding, buf, &bytes_read);
1504 buf += bytes_read;
1505 augmentation++;
1506 }
1507
1508 /* Otherwise we have an unknown augmentation.
1509 Bail out unless we saw a 'z' prefix. */
1510 else
1511 {
1512 if (cie->initial_instructions == NULL)
1513 return end;
1514
1515 /* Skip unknown augmentations. */
1516 buf = cie->initial_instructions;
1517 break;
1518 }
1519 }
1520
1521 cie->initial_instructions = buf;
1522 cie->end = end;
1523
1524 add_cie (unit, cie);
1525 }
1526 else
1527 {
1528 /* This is a FDE. */
1529 struct dwarf2_fde *fde;
1530
1531 /* In an .eh_frame section, the CIE pointer is the delta between the
1532 address within the FDE where the CIE pointer is stored and the
1533 address of the CIE. Convert it to an offset into the .eh_frame
1534 section. */
1535 if (eh_frame_p)
1536 {
1537 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1538 cie_pointer -= (dwarf64_p ? 8 : 4);
1539 }
1540
1541 /* In either case, validate the result is still within the section. */
1542 if (cie_pointer >= unit->dwarf_frame_size)
1543 return NULL;
1544
1545 fde = (struct dwarf2_fde *)
1546 obstack_alloc (&unit->objfile->objfile_obstack,
1547 sizeof (struct dwarf2_fde));
1548 fde->cie = find_cie (unit, cie_pointer);
1549 if (fde->cie == NULL)
1550 {
1551 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1552 eh_frame_p);
1553 fde->cie = find_cie (unit, cie_pointer);
1554 }
1555
1556 gdb_assert (fde->cie != NULL);
1557
1558 fde->initial_location =
1559 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1560 buf += bytes_read;
1561
1562 fde->address_range =
1563 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1564 buf += bytes_read;
1565
1566 /* A 'z' augmentation in the CIE implies the presence of an
1567 augmentation field in the FDE as well. The only thing known
1568 to be in here at present is the LSDA entry for EH. So we
1569 can skip the whole thing. */
1570 if (fde->cie->saw_z_augmentation)
1571 {
1572 ULONGEST length;
1573
1574 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1575 buf += bytes_read + length;
1576 if (buf > end)
1577 return NULL;
1578 }
1579
1580 fde->instructions = buf;
1581 fde->end = end;
1582
1583 add_fde (unit, fde);
1584 }
1585
1586 return end;
1587 }
1588
1589 /* Read a CIE or FDE in BUF and decode it. */
1590 static gdb_byte *
1591 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1592 {
1593 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1594 gdb_byte *ret;
1595 const char *msg;
1596 ptrdiff_t start_offset;
1597
1598 while (1)
1599 {
1600 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1601 if (ret != NULL)
1602 break;
1603
1604 /* We have corrupt input data of some form. */
1605
1606 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1607 and mismatches wrt padding and alignment of debug sections. */
1608 /* Note that there is no requirement in the standard for any
1609 alignment at all in the frame unwind sections. Testing for
1610 alignment before trying to interpret data would be incorrect.
1611
1612 However, GCC traditionally arranged for frame sections to be
1613 sized such that the FDE length and CIE fields happen to be
1614 aligned (in theory, for performance). This, unfortunately,
1615 was done with .align directives, which had the side effect of
1616 forcing the section to be aligned by the linker.
1617
1618 This becomes a problem when you have some other producer that
1619 creates frame sections that are not as strictly aligned. That
1620 produces a hole in the frame info that gets filled by the
1621 linker with zeros.
1622
1623 The GCC behaviour is arguably a bug, but it's effectively now
1624 part of the ABI, so we're now stuck with it, at least at the
1625 object file level. A smart linker may decide, in the process
1626 of compressing duplicate CIE information, that it can rewrite
1627 the entire output section without this extra padding. */
1628
1629 start_offset = start - unit->dwarf_frame_buffer;
1630 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1631 {
1632 start += 4 - (start_offset & 3);
1633 workaround = ALIGN4;
1634 continue;
1635 }
1636 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1637 {
1638 start += 8 - (start_offset & 7);
1639 workaround = ALIGN8;
1640 continue;
1641 }
1642
1643 /* Nothing left to try. Arrange to return as if we've consumed
1644 the entire input section. Hopefully we'll get valid info from
1645 the other of .debug_frame/.eh_frame. */
1646 workaround = FAIL;
1647 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1648 break;
1649 }
1650
1651 switch (workaround)
1652 {
1653 case NONE:
1654 break;
1655
1656 case ALIGN4:
1657 complaint (&symfile_complaints,
1658 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1659 unit->dwarf_frame_section->owner->filename,
1660 unit->dwarf_frame_section->name);
1661 break;
1662
1663 case ALIGN8:
1664 complaint (&symfile_complaints,
1665 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1666 unit->dwarf_frame_section->owner->filename,
1667 unit->dwarf_frame_section->name);
1668 break;
1669
1670 default:
1671 complaint (&symfile_complaints,
1672 _("Corrupt data in %s:%s"),
1673 unit->dwarf_frame_section->owner->filename,
1674 unit->dwarf_frame_section->name);
1675 break;
1676 }
1677
1678 return ret;
1679 }
1680 \f
1681
1682 /* FIXME: kettenis/20030504: This still needs to be integrated with
1683 dwarf2read.c in a better way. */
1684
1685 /* Imported from dwarf2read.c. */
1686 extern asection *dwarf_frame_section;
1687 extern asection *dwarf_eh_frame_section;
1688
1689 /* Imported from dwarf2read.c. */
1690 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1691
1692 void
1693 dwarf2_build_frame_info (struct objfile *objfile)
1694 {
1695 struct comp_unit unit;
1696 gdb_byte *frame_ptr;
1697
1698 /* Build a minimal decoding of the DWARF2 compilation unit. */
1699 unit.abfd = objfile->obfd;
1700 unit.objfile = objfile;
1701 unit.dbase = 0;
1702 unit.tbase = 0;
1703
1704 /* First add the information from the .eh_frame section. That way,
1705 the FDEs from that section are searched last. */
1706 if (dwarf_eh_frame_section)
1707 {
1708 asection *got, *txt;
1709
1710 unit.cie = NULL;
1711 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1712 dwarf_eh_frame_section);
1713
1714 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1715 unit.dwarf_frame_section = dwarf_eh_frame_section;
1716
1717 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1718 that is used for the i386/amd64 target, which currently is
1719 the only target in GCC that supports/uses the
1720 DW_EH_PE_datarel encoding. */
1721 got = bfd_get_section_by_name (unit.abfd, ".got");
1722 if (got)
1723 unit.dbase = got->vma;
1724
1725 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1726 so far. */
1727 txt = bfd_get_section_by_name (unit.abfd, ".text");
1728 if (txt)
1729 unit.tbase = txt->vma;
1730
1731 frame_ptr = unit.dwarf_frame_buffer;
1732 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1733 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1734 }
1735
1736 if (dwarf_frame_section)
1737 {
1738 unit.cie = NULL;
1739 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1740 dwarf_frame_section);
1741 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
1742 unit.dwarf_frame_section = dwarf_frame_section;
1743
1744 frame_ptr = unit.dwarf_frame_buffer;
1745 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1746 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1747 }
1748 }
1749
1750 /* Provide a prototype to silence -Wmissing-prototypes. */
1751 void _initialize_dwarf2_frame (void);
1752
1753 void
1754 _initialize_dwarf2_frame (void)
1755 {
1756 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1757 dwarf2_frame_objfile_data = register_objfile_data ();
1758 }
This page took 0.066271 seconds and 4 git commands to generate.