* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "elf/dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
86 /* The version recorded in the CIE. */
87 unsigned char version;
88
89 struct dwarf2_cie *next;
90 };
91
92 /* Frame Description Entry (FDE). */
93
94 struct dwarf2_fde
95 {
96 /* CIE for this FDE. */
97 struct dwarf2_cie *cie;
98
99 /* First location associated with this FDE. */
100 CORE_ADDR initial_location;
101
102 /* Number of bytes of program instructions described by this FDE. */
103 CORE_ADDR address_range;
104
105 /* Instruction sequence. */
106 gdb_byte *instructions;
107 gdb_byte *end;
108
109 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
110 section. */
111 unsigned char eh_frame_p;
112
113 struct dwarf2_fde *next;
114 };
115
116 /* A minimal decoding of DWARF2 compilation units. We only decode
117 what's needed to get to the call frame information. */
118
119 struct comp_unit
120 {
121 /* Keep the bfd convenient. */
122 bfd *abfd;
123
124 struct objfile *objfile;
125
126 /* Linked list of CIEs for this object. */
127 struct dwarf2_cie *cie;
128
129 /* Pointer to the .debug_frame section loaded into memory. */
130 gdb_byte *dwarf_frame_buffer;
131
132 /* Length of the loaded .debug_frame section. */
133 bfd_size_type dwarf_frame_size;
134
135 /* Pointer to the .debug_frame section. */
136 asection *dwarf_frame_section;
137
138 /* Base for DW_EH_PE_datarel encodings. */
139 bfd_vma dbase;
140
141 /* Base for DW_EH_PE_textrel encodings. */
142 bfd_vma tbase;
143 };
144
145 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
146
147 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
148 int eh_frame_p);
149
150 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
151 int ptr_len, gdb_byte *buf,
152 unsigned int *bytes_read_ptr,
153 CORE_ADDR func_base);
154 \f
155
156 /* Structure describing a frame state. */
157
158 struct dwarf2_frame_state
159 {
160 /* Each register save state can be described in terms of a CFA slot,
161 another register, or a location expression. */
162 struct dwarf2_frame_state_reg_info
163 {
164 struct dwarf2_frame_state_reg *reg;
165 int num_regs;
166
167 LONGEST cfa_offset;
168 ULONGEST cfa_reg;
169 enum {
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173 } cfa_how;
174 gdb_byte *cfa_exp;
175
176 /* Used to implement DW_CFA_remember_state. */
177 struct dwarf2_frame_state_reg_info *prev;
178 } regs;
179
180 /* The PC described by the current frame state. */
181 CORE_ADDR pc;
182
183 /* Initial register set from the CIE.
184 Used to implement DW_CFA_restore. */
185 struct dwarf2_frame_state_reg_info initial;
186
187 /* The information we care about from the CIE. */
188 LONGEST data_align;
189 ULONGEST code_align;
190 ULONGEST retaddr_column;
191
192 /* Flags for known producer quirks. */
193
194 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
195 and DW_CFA_def_cfa_offset takes a factored offset. */
196 int armcc_cfa_offsets_sf;
197
198 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
199 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
200 int armcc_cfa_offsets_reversed;
201 };
202
203 /* Store the length the expression for the CFA in the `cfa_reg' field,
204 which is unused in that case. */
205 #define cfa_exp_len cfa_reg
206
207 /* Assert that the register set RS is large enough to store gdbarch_num_regs
208 columns. If necessary, enlarge the register set. */
209
210 static void
211 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
212 int num_regs)
213 {
214 size_t size = sizeof (struct dwarf2_frame_state_reg);
215
216 if (num_regs <= rs->num_regs)
217 return;
218
219 rs->reg = (struct dwarf2_frame_state_reg *)
220 xrealloc (rs->reg, num_regs * size);
221
222 /* Initialize newly allocated registers. */
223 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
224 rs->num_regs = num_regs;
225 }
226
227 /* Copy the register columns in register set RS into newly allocated
228 memory and return a pointer to this newly created copy. */
229
230 static struct dwarf2_frame_state_reg *
231 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
232 {
233 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
234 struct dwarf2_frame_state_reg *reg;
235
236 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
237 memcpy (reg, rs->reg, size);
238
239 return reg;
240 }
241
242 /* Release the memory allocated to register set RS. */
243
244 static void
245 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
246 {
247 if (rs)
248 {
249 dwarf2_frame_state_free_regs (rs->prev);
250
251 xfree (rs->reg);
252 xfree (rs);
253 }
254 }
255
256 /* Release the memory allocated to the frame state FS. */
257
258 static void
259 dwarf2_frame_state_free (void *p)
260 {
261 struct dwarf2_frame_state *fs = p;
262
263 dwarf2_frame_state_free_regs (fs->initial.prev);
264 dwarf2_frame_state_free_regs (fs->regs.prev);
265 xfree (fs->initial.reg);
266 xfree (fs->regs.reg);
267 xfree (fs);
268 }
269 \f
270
271 /* Helper functions for execute_stack_op. */
272
273 static CORE_ADDR
274 read_reg (void *baton, int reg)
275 {
276 struct frame_info *this_frame = (struct frame_info *) baton;
277 struct gdbarch *gdbarch = get_frame_arch (this_frame);
278 int regnum;
279 gdb_byte *buf;
280
281 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
282
283 buf = alloca (register_size (gdbarch, regnum));
284 get_frame_register (this_frame, regnum, buf);
285
286 /* Convert the register to an integer. This returns a LONGEST
287 rather than a CORE_ADDR, but unpack_pointer does the same thing
288 under the covers, and this makes more sense for non-pointer
289 registers. Maybe read_reg and the associated interfaces should
290 deal with "struct value" instead of CORE_ADDR. */
291 return unpack_long (register_type (gdbarch, regnum), buf);
292 }
293
294 static void
295 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
296 {
297 read_memory (addr, buf, len);
298 }
299
300 static void
301 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
302 {
303 internal_error (__FILE__, __LINE__,
304 _("Support for DW_OP_fbreg is unimplemented"));
305 }
306
307 static CORE_ADDR
308 no_get_tls_address (void *baton, CORE_ADDR offset)
309 {
310 internal_error (__FILE__, __LINE__,
311 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
312 }
313
314 /* Execute the required actions for both the DW_CFA_restore and
315 DW_CFA_restore_extended instructions. */
316 static void
317 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
318 struct dwarf2_frame_state *fs, int eh_frame_p)
319 {
320 ULONGEST reg;
321
322 gdb_assert (fs->initial.reg);
323 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
324 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
325
326 /* Check if this register was explicitly initialized in the
327 CIE initial instructions. If not, default the rule to
328 UNSPECIFIED. */
329 if (reg < fs->initial.num_regs)
330 fs->regs.reg[reg] = fs->initial.reg[reg];
331 else
332 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
333
334 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
335 complaint (&symfile_complaints, _("\
336 incomplete CFI data; DW_CFA_restore unspecified\n\
337 register %s (#%d) at %s"),
338 gdbarch_register_name
339 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
340 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
341 paddress (gdbarch, fs->pc));
342 }
343
344 static CORE_ADDR
345 execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
346 struct frame_info *this_frame, CORE_ADDR initial)
347 {
348 struct dwarf_expr_context *ctx;
349 CORE_ADDR result;
350
351 ctx = new_dwarf_expr_context ();
352 ctx->gdbarch = get_frame_arch (this_frame);
353 ctx->addr_size = addr_size;
354 ctx->baton = this_frame;
355 ctx->read_reg = read_reg;
356 ctx->read_mem = read_mem;
357 ctx->get_frame_base = no_get_frame_base;
358 ctx->get_tls_address = no_get_tls_address;
359
360 dwarf_expr_push (ctx, initial);
361 dwarf_expr_eval (ctx, exp, len);
362 result = dwarf_expr_fetch (ctx, 0);
363
364 if (ctx->in_reg)
365 result = read_reg (this_frame, result);
366
367 free_dwarf_expr_context (ctx);
368
369 return result;
370 }
371 \f
372
373 static void
374 execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
375 gdb_byte *insn_end, struct frame_info *this_frame,
376 struct dwarf2_frame_state *fs)
377 {
378 int eh_frame_p = fde->eh_frame_p;
379 CORE_ADDR pc = get_frame_pc (this_frame);
380 int bytes_read;
381 struct gdbarch *gdbarch = get_frame_arch (this_frame);
382
383 while (insn_ptr < insn_end && fs->pc <= pc)
384 {
385 gdb_byte insn = *insn_ptr++;
386 ULONGEST utmp, reg;
387 LONGEST offset;
388
389 if ((insn & 0xc0) == DW_CFA_advance_loc)
390 fs->pc += (insn & 0x3f) * fs->code_align;
391 else if ((insn & 0xc0) == DW_CFA_offset)
392 {
393 reg = insn & 0x3f;
394 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
395 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
396 offset = utmp * fs->data_align;
397 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
398 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
399 fs->regs.reg[reg].loc.offset = offset;
400 }
401 else if ((insn & 0xc0) == DW_CFA_restore)
402 {
403 reg = insn & 0x3f;
404 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
405 }
406 else
407 {
408 switch (insn)
409 {
410 case DW_CFA_set_loc:
411 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
412 fde->cie->addr_size, insn_ptr,
413 &bytes_read, fde->initial_location);
414 /* Apply the objfile offset for relocatable objects. */
415 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
416 SECT_OFF_TEXT (fde->cie->unit->objfile));
417 insn_ptr += bytes_read;
418 break;
419
420 case DW_CFA_advance_loc1:
421 utmp = extract_unsigned_integer (insn_ptr, 1);
422 fs->pc += utmp * fs->code_align;
423 insn_ptr++;
424 break;
425 case DW_CFA_advance_loc2:
426 utmp = extract_unsigned_integer (insn_ptr, 2);
427 fs->pc += utmp * fs->code_align;
428 insn_ptr += 2;
429 break;
430 case DW_CFA_advance_loc4:
431 utmp = extract_unsigned_integer (insn_ptr, 4);
432 fs->pc += utmp * fs->code_align;
433 insn_ptr += 4;
434 break;
435
436 case DW_CFA_offset_extended:
437 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
438 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
439 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
440 offset = utmp * fs->data_align;
441 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
442 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
443 fs->regs.reg[reg].loc.offset = offset;
444 break;
445
446 case DW_CFA_restore_extended:
447 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
448 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
449 break;
450
451 case DW_CFA_undefined:
452 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
453 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
454 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
455 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
456 break;
457
458 case DW_CFA_same_value:
459 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
460 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
461 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
462 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
463 break;
464
465 case DW_CFA_register:
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
467 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
468 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
469 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
470 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
471 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
472 fs->regs.reg[reg].loc.reg = utmp;
473 break;
474
475 case DW_CFA_remember_state:
476 {
477 struct dwarf2_frame_state_reg_info *new_rs;
478
479 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
480 *new_rs = fs->regs;
481 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
482 fs->regs.prev = new_rs;
483 }
484 break;
485
486 case DW_CFA_restore_state:
487 {
488 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
489
490 if (old_rs == NULL)
491 {
492 complaint (&symfile_complaints, _("\
493 bad CFI data; mismatched DW_CFA_restore_state at %s"),
494 paddress (gdbarch, fs->pc));
495 }
496 else
497 {
498 xfree (fs->regs.reg);
499 fs->regs = *old_rs;
500 xfree (old_rs);
501 }
502 }
503 break;
504
505 case DW_CFA_def_cfa:
506 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
507 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
508
509 if (fs->armcc_cfa_offsets_sf)
510 utmp *= fs->data_align;
511
512 fs->regs.cfa_offset = utmp;
513 fs->regs.cfa_how = CFA_REG_OFFSET;
514 break;
515
516 case DW_CFA_def_cfa_register:
517 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
518 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
519 fs->regs.cfa_reg,
520 eh_frame_p);
521 fs->regs.cfa_how = CFA_REG_OFFSET;
522 break;
523
524 case DW_CFA_def_cfa_offset:
525 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
526
527 if (fs->armcc_cfa_offsets_sf)
528 utmp *= fs->data_align;
529
530 fs->regs.cfa_offset = utmp;
531 /* cfa_how deliberately not set. */
532 break;
533
534 case DW_CFA_nop:
535 break;
536
537 case DW_CFA_def_cfa_expression:
538 insn_ptr = read_uleb128 (insn_ptr, insn_end,
539 &fs->regs.cfa_exp_len);
540 fs->regs.cfa_exp = insn_ptr;
541 fs->regs.cfa_how = CFA_EXP;
542 insn_ptr += fs->regs.cfa_exp_len;
543 break;
544
545 case DW_CFA_expression:
546 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
547 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
548 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
549 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
550 fs->regs.reg[reg].loc.exp = insn_ptr;
551 fs->regs.reg[reg].exp_len = utmp;
552 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
553 insn_ptr += utmp;
554 break;
555
556 case DW_CFA_offset_extended_sf:
557 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
558 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
559 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
560 offset *= fs->data_align;
561 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
562 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
563 fs->regs.reg[reg].loc.offset = offset;
564 break;
565
566 case DW_CFA_val_offset:
567 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
568 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
569 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
570 offset = utmp * fs->data_align;
571 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
572 fs->regs.reg[reg].loc.offset = offset;
573 break;
574
575 case DW_CFA_val_offset_sf:
576 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
577 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
578 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
579 offset *= fs->data_align;
580 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
581 fs->regs.reg[reg].loc.offset = offset;
582 break;
583
584 case DW_CFA_val_expression:
585 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
587 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
591 insn_ptr += utmp;
592 break;
593
594 case DW_CFA_def_cfa_sf:
595 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
596 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
597 fs->regs.cfa_reg,
598 eh_frame_p);
599 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
600 fs->regs.cfa_offset = offset * fs->data_align;
601 fs->regs.cfa_how = CFA_REG_OFFSET;
602 break;
603
604 case DW_CFA_def_cfa_offset_sf:
605 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
606 fs->regs.cfa_offset = offset * fs->data_align;
607 /* cfa_how deliberately not set. */
608 break;
609
610 case DW_CFA_GNU_window_save:
611 /* This is SPARC-specific code, and contains hard-coded
612 constants for the register numbering scheme used by
613 GCC. Rather than having a architecture-specific
614 operation that's only ever used by a single
615 architecture, we provide the implementation here.
616 Incidentally that's what GCC does too in its
617 unwinder. */
618 {
619 int size = register_size (gdbarch, 0);
620 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
621 for (reg = 8; reg < 16; reg++)
622 {
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
624 fs->regs.reg[reg].loc.reg = reg + 16;
625 }
626 for (reg = 16; reg < 32; reg++)
627 {
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
629 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
630 }
631 }
632 break;
633
634 case DW_CFA_GNU_args_size:
635 /* Ignored. */
636 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
637 break;
638
639 case DW_CFA_GNU_negative_offset_extended:
640 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
641 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
642 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
643 offset *= fs->data_align;
644 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
645 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
646 fs->regs.reg[reg].loc.offset = -offset;
647 break;
648
649 default:
650 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
651 }
652 }
653 }
654
655 /* Don't allow remember/restore between CIE and FDE programs. */
656 dwarf2_frame_state_free_regs (fs->regs.prev);
657 fs->regs.prev = NULL;
658 }
659 \f
660
661 /* Architecture-specific operations. */
662
663 /* Per-architecture data key. */
664 static struct gdbarch_data *dwarf2_frame_data;
665
666 struct dwarf2_frame_ops
667 {
668 /* Pre-initialize the register state REG for register REGNUM. */
669 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
670 struct frame_info *);
671
672 /* Check whether the THIS_FRAME is a signal trampoline. */
673 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
674
675 /* Convert .eh_frame register number to DWARF register number, or
676 adjust .debug_frame register number. */
677 int (*adjust_regnum) (struct gdbarch *, int, int);
678 };
679
680 /* Default architecture-specific register state initialization
681 function. */
682
683 static void
684 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
685 struct dwarf2_frame_state_reg *reg,
686 struct frame_info *this_frame)
687 {
688 /* If we have a register that acts as a program counter, mark it as
689 a destination for the return address. If we have a register that
690 serves as the stack pointer, arrange for it to be filled with the
691 call frame address (CFA). The other registers are marked as
692 unspecified.
693
694 We copy the return address to the program counter, since many
695 parts in GDB assume that it is possible to get the return address
696 by unwinding the program counter register. However, on ISA's
697 with a dedicated return address register, the CFI usually only
698 contains information to unwind that return address register.
699
700 The reason we're treating the stack pointer special here is
701 because in many cases GCC doesn't emit CFI for the stack pointer
702 and implicitly assumes that it is equal to the CFA. This makes
703 some sense since the DWARF specification (version 3, draft 8,
704 p. 102) says that:
705
706 "Typically, the CFA is defined to be the value of the stack
707 pointer at the call site in the previous frame (which may be
708 different from its value on entry to the current frame)."
709
710 However, this isn't true for all platforms supported by GCC
711 (e.g. IBM S/390 and zSeries). Those architectures should provide
712 their own architecture-specific initialization function. */
713
714 if (regnum == gdbarch_pc_regnum (gdbarch))
715 reg->how = DWARF2_FRAME_REG_RA;
716 else if (regnum == gdbarch_sp_regnum (gdbarch))
717 reg->how = DWARF2_FRAME_REG_CFA;
718 }
719
720 /* Return a default for the architecture-specific operations. */
721
722 static void *
723 dwarf2_frame_init (struct obstack *obstack)
724 {
725 struct dwarf2_frame_ops *ops;
726
727 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
728 ops->init_reg = dwarf2_frame_default_init_reg;
729 return ops;
730 }
731
732 /* Set the architecture-specific register state initialization
733 function for GDBARCH to INIT_REG. */
734
735 void
736 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
737 void (*init_reg) (struct gdbarch *, int,
738 struct dwarf2_frame_state_reg *,
739 struct frame_info *))
740 {
741 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
742
743 ops->init_reg = init_reg;
744 }
745
746 /* Pre-initialize the register state REG for register REGNUM. */
747
748 static void
749 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
750 struct dwarf2_frame_state_reg *reg,
751 struct frame_info *this_frame)
752 {
753 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
754
755 ops->init_reg (gdbarch, regnum, reg, this_frame);
756 }
757
758 /* Set the architecture-specific signal trampoline recognition
759 function for GDBARCH to SIGNAL_FRAME_P. */
760
761 void
762 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
763 int (*signal_frame_p) (struct gdbarch *,
764 struct frame_info *))
765 {
766 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
767
768 ops->signal_frame_p = signal_frame_p;
769 }
770
771 /* Query the architecture-specific signal frame recognizer for
772 THIS_FRAME. */
773
774 static int
775 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
776 struct frame_info *this_frame)
777 {
778 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
779
780 if (ops->signal_frame_p == NULL)
781 return 0;
782 return ops->signal_frame_p (gdbarch, this_frame);
783 }
784
785 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
786 register numbers. */
787
788 void
789 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
790 int (*adjust_regnum) (struct gdbarch *,
791 int, int))
792 {
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->adjust_regnum = adjust_regnum;
796 }
797
798 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
799 register. */
800
801 static int
802 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
803 {
804 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
805
806 if (ops->adjust_regnum == NULL)
807 return regnum;
808 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
809 }
810
811 static void
812 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
813 struct dwarf2_fde *fde)
814 {
815 static const char *arm_idents[] = {
816 "ARM C Compiler, ADS",
817 "Thumb C Compiler, ADS",
818 "ARM C++ Compiler, ADS",
819 "Thumb C++ Compiler, ADS",
820 "ARM/Thumb C/C++ Compiler, RVCT"
821 };
822 int i;
823
824 struct symtab *s;
825
826 s = find_pc_symtab (fs->pc);
827 if (s == NULL || s->producer == NULL)
828 return;
829
830 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
831 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
832 {
833 if (fde->cie->version == 1)
834 fs->armcc_cfa_offsets_sf = 1;
835
836 if (fde->cie->version == 1)
837 fs->armcc_cfa_offsets_reversed = 1;
838
839 /* The reversed offset problem is present in some compilers
840 using DWARF3, but it was eventually fixed. Check the ARM
841 defined augmentations, which are in the format "armcc" followed
842 by a list of one-character options. The "+" option means
843 this problem is fixed (no quirk needed). If the armcc
844 augmentation is missing, the quirk is needed. */
845 if (fde->cie->version == 3
846 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
847 || strchr (fde->cie->augmentation + 5, '+') == NULL))
848 fs->armcc_cfa_offsets_reversed = 1;
849
850 return;
851 }
852 }
853 \f
854
855 struct dwarf2_frame_cache
856 {
857 /* DWARF Call Frame Address. */
858 CORE_ADDR cfa;
859
860 /* Set if the return address column was marked as undefined. */
861 int undefined_retaddr;
862
863 /* Saved registers, indexed by GDB register number, not by DWARF
864 register number. */
865 struct dwarf2_frame_state_reg *reg;
866
867 /* Return address register. */
868 struct dwarf2_frame_state_reg retaddr_reg;
869
870 /* Target address size in bytes. */
871 int addr_size;
872 };
873
874 static struct dwarf2_frame_cache *
875 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
876 {
877 struct cleanup *old_chain;
878 struct gdbarch *gdbarch = get_frame_arch (this_frame);
879 const int num_regs = gdbarch_num_regs (gdbarch)
880 + gdbarch_num_pseudo_regs (gdbarch);
881 struct dwarf2_frame_cache *cache;
882 struct dwarf2_frame_state *fs;
883 struct dwarf2_fde *fde;
884
885 if (*this_cache)
886 return *this_cache;
887
888 /* Allocate a new cache. */
889 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
890 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
891
892 /* Allocate and initialize the frame state. */
893 fs = XMALLOC (struct dwarf2_frame_state);
894 memset (fs, 0, sizeof (struct dwarf2_frame_state));
895 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
896
897 /* Unwind the PC.
898
899 Note that if the next frame is never supposed to return (i.e. a call
900 to abort), the compiler might optimize away the instruction at
901 its return address. As a result the return address will
902 point at some random instruction, and the CFI for that
903 instruction is probably worthless to us. GCC's unwinder solves
904 this problem by substracting 1 from the return address to get an
905 address in the middle of a presumed call instruction (or the
906 instruction in the associated delay slot). This should only be
907 done for "normal" frames and not for resume-type frames (signal
908 handlers, sentinel frames, dummy frames). The function
909 get_frame_address_in_block does just this. It's not clear how
910 reliable the method is though; there is the potential for the
911 register state pre-call being different to that on return. */
912 fs->pc = get_frame_address_in_block (this_frame);
913
914 /* Find the correct FDE. */
915 fde = dwarf2_frame_find_fde (&fs->pc);
916 gdb_assert (fde != NULL);
917
918 /* Extract any interesting information from the CIE. */
919 fs->data_align = fde->cie->data_alignment_factor;
920 fs->code_align = fde->cie->code_alignment_factor;
921 fs->retaddr_column = fde->cie->return_address_register;
922 cache->addr_size = fde->cie->addr_size;
923
924 /* Check for "quirks" - known bugs in producers. */
925 dwarf2_frame_find_quirks (fs, fde);
926
927 /* First decode all the insns in the CIE. */
928 execute_cfa_program (fde, fde->cie->initial_instructions,
929 fde->cie->end, this_frame, fs);
930
931 /* Save the initialized register set. */
932 fs->initial = fs->regs;
933 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
934
935 /* Then decode the insns in the FDE up to our target PC. */
936 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
937
938 /* Calculate the CFA. */
939 switch (fs->regs.cfa_how)
940 {
941 case CFA_REG_OFFSET:
942 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
943 if (fs->armcc_cfa_offsets_reversed)
944 cache->cfa -= fs->regs.cfa_offset;
945 else
946 cache->cfa += fs->regs.cfa_offset;
947 break;
948
949 case CFA_EXP:
950 cache->cfa =
951 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
952 cache->addr_size, this_frame, 0);
953 break;
954
955 default:
956 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
957 }
958
959 /* Initialize the register state. */
960 {
961 int regnum;
962
963 for (regnum = 0; regnum < num_regs; regnum++)
964 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
965 }
966
967 /* Go through the DWARF2 CFI generated table and save its register
968 location information in the cache. Note that we don't skip the
969 return address column; it's perfectly all right for it to
970 correspond to a real register. If it doesn't correspond to a
971 real register, or if we shouldn't treat it as such,
972 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
973 the range [0, gdbarch_num_regs). */
974 {
975 int column; /* CFI speak for "register number". */
976
977 for (column = 0; column < fs->regs.num_regs; column++)
978 {
979 /* Use the GDB register number as the destination index. */
980 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
981
982 /* If there's no corresponding GDB register, ignore it. */
983 if (regnum < 0 || regnum >= num_regs)
984 continue;
985
986 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
987 of all debug info registers. If it doesn't, complain (but
988 not too loudly). It turns out that GCC assumes that an
989 unspecified register implies "same value" when CFI (draft
990 7) specifies nothing at all. Such a register could equally
991 be interpreted as "undefined". Also note that this check
992 isn't sufficient; it only checks that all registers in the
993 range [0 .. max column] are specified, and won't detect
994 problems when a debug info register falls outside of the
995 table. We need a way of iterating through all the valid
996 DWARF2 register numbers. */
997 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
998 {
999 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1000 complaint (&symfile_complaints, _("\
1001 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1002 gdbarch_register_name (gdbarch, regnum),
1003 paddress (gdbarch, fs->pc));
1004 }
1005 else
1006 cache->reg[regnum] = fs->regs.reg[column];
1007 }
1008 }
1009
1010 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1011 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1012 {
1013 int regnum;
1014
1015 for (regnum = 0; regnum < num_regs; regnum++)
1016 {
1017 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1018 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1019 {
1020 struct dwarf2_frame_state_reg *retaddr_reg =
1021 &fs->regs.reg[fs->retaddr_column];
1022
1023 /* It seems rather bizarre to specify an "empty" column as
1024 the return adress column. However, this is exactly
1025 what GCC does on some targets. It turns out that GCC
1026 assumes that the return address can be found in the
1027 register corresponding to the return address column.
1028 Incidentally, that's how we should treat a return
1029 address column specifying "same value" too. */
1030 if (fs->retaddr_column < fs->regs.num_regs
1031 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1032 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1033 {
1034 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1035 cache->reg[regnum] = *retaddr_reg;
1036 else
1037 cache->retaddr_reg = *retaddr_reg;
1038 }
1039 else
1040 {
1041 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1042 {
1043 cache->reg[regnum].loc.reg = fs->retaddr_column;
1044 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1045 }
1046 else
1047 {
1048 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1049 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1050 }
1051 }
1052 }
1053 }
1054 }
1055
1056 if (fs->retaddr_column < fs->regs.num_regs
1057 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1058 cache->undefined_retaddr = 1;
1059
1060 do_cleanups (old_chain);
1061
1062 *this_cache = cache;
1063 return cache;
1064 }
1065
1066 static void
1067 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1068 struct frame_id *this_id)
1069 {
1070 struct dwarf2_frame_cache *cache =
1071 dwarf2_frame_cache (this_frame, this_cache);
1072
1073 if (cache->undefined_retaddr)
1074 return;
1075
1076 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1077 }
1078
1079 static struct value *
1080 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1081 int regnum)
1082 {
1083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1084 struct dwarf2_frame_cache *cache =
1085 dwarf2_frame_cache (this_frame, this_cache);
1086 CORE_ADDR addr;
1087 int realnum;
1088
1089 switch (cache->reg[regnum].how)
1090 {
1091 case DWARF2_FRAME_REG_UNDEFINED:
1092 /* If CFI explicitly specified that the value isn't defined,
1093 mark it as optimized away; the value isn't available. */
1094 return frame_unwind_got_optimized (this_frame, regnum);
1095
1096 case DWARF2_FRAME_REG_SAVED_OFFSET:
1097 addr = cache->cfa + cache->reg[regnum].loc.offset;
1098 return frame_unwind_got_memory (this_frame, regnum, addr);
1099
1100 case DWARF2_FRAME_REG_SAVED_REG:
1101 realnum
1102 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1103 return frame_unwind_got_register (this_frame, regnum, realnum);
1104
1105 case DWARF2_FRAME_REG_SAVED_EXP:
1106 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1107 cache->reg[regnum].exp_len,
1108 cache->addr_size, this_frame, cache->cfa);
1109 return frame_unwind_got_memory (this_frame, regnum, addr);
1110
1111 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1112 addr = cache->cfa + cache->reg[regnum].loc.offset;
1113 return frame_unwind_got_constant (this_frame, regnum, addr);
1114
1115 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1116 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1117 cache->reg[regnum].exp_len,
1118 cache->addr_size, this_frame, cache->cfa);
1119 return frame_unwind_got_constant (this_frame, regnum, addr);
1120
1121 case DWARF2_FRAME_REG_UNSPECIFIED:
1122 /* GCC, in its infinite wisdom decided to not provide unwind
1123 information for registers that are "same value". Since
1124 DWARF2 (3 draft 7) doesn't define such behavior, said
1125 registers are actually undefined (which is different to CFI
1126 "undefined"). Code above issues a complaint about this.
1127 Here just fudge the books, assume GCC, and that the value is
1128 more inner on the stack. */
1129 return frame_unwind_got_register (this_frame, regnum, regnum);
1130
1131 case DWARF2_FRAME_REG_SAME_VALUE:
1132 return frame_unwind_got_register (this_frame, regnum, regnum);
1133
1134 case DWARF2_FRAME_REG_CFA:
1135 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1136
1137 case DWARF2_FRAME_REG_CFA_OFFSET:
1138 addr = cache->cfa + cache->reg[regnum].loc.offset;
1139 return frame_unwind_got_address (this_frame, regnum, addr);
1140
1141 case DWARF2_FRAME_REG_RA_OFFSET:
1142 addr = cache->reg[regnum].loc.offset;
1143 regnum = gdbarch_dwarf2_reg_to_regnum
1144 (gdbarch, cache->retaddr_reg.loc.reg);
1145 addr += get_frame_register_unsigned (this_frame, regnum);
1146 return frame_unwind_got_address (this_frame, regnum, addr);
1147
1148 case DWARF2_FRAME_REG_FN:
1149 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1150
1151 default:
1152 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1153 }
1154 }
1155
1156 static int
1157 dwarf2_frame_sniffer (const struct frame_unwind *self,
1158 struct frame_info *this_frame, void **this_cache)
1159 {
1160 /* Grab an address that is guarenteed to reside somewhere within the
1161 function. get_frame_pc(), with a no-return next function, can
1162 end up returning something past the end of this function's body.
1163 If the frame we're sniffing for is a signal frame whose start
1164 address is placed on the stack by the OS, its FDE must
1165 extend one byte before its start address or we could potentially
1166 select the FDE of the previous function. */
1167 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1168 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1169 if (!fde)
1170 return 0;
1171
1172 /* On some targets, signal trampolines may have unwind information.
1173 We need to recognize them so that we set the frame type
1174 correctly. */
1175
1176 if (fde->cie->signal_frame
1177 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1178 this_frame))
1179 return self->type == SIGTRAMP_FRAME;
1180
1181 return self->type != SIGTRAMP_FRAME;
1182 }
1183
1184 static const struct frame_unwind dwarf2_frame_unwind =
1185 {
1186 NORMAL_FRAME,
1187 dwarf2_frame_this_id,
1188 dwarf2_frame_prev_register,
1189 NULL,
1190 dwarf2_frame_sniffer
1191 };
1192
1193 static const struct frame_unwind dwarf2_signal_frame_unwind =
1194 {
1195 SIGTRAMP_FRAME,
1196 dwarf2_frame_this_id,
1197 dwarf2_frame_prev_register,
1198 NULL,
1199 dwarf2_frame_sniffer
1200 };
1201
1202 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1203
1204 void
1205 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1206 {
1207 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1208 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1209 }
1210 \f
1211
1212 /* There is no explicitly defined relationship between the CFA and the
1213 location of frame's local variables and arguments/parameters.
1214 Therefore, frame base methods on this page should probably only be
1215 used as a last resort, just to avoid printing total garbage as a
1216 response to the "info frame" command. */
1217
1218 static CORE_ADDR
1219 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1220 {
1221 struct dwarf2_frame_cache *cache =
1222 dwarf2_frame_cache (this_frame, this_cache);
1223
1224 return cache->cfa;
1225 }
1226
1227 static const struct frame_base dwarf2_frame_base =
1228 {
1229 &dwarf2_frame_unwind,
1230 dwarf2_frame_base_address,
1231 dwarf2_frame_base_address,
1232 dwarf2_frame_base_address
1233 };
1234
1235 const struct frame_base *
1236 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1237 {
1238 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1239 if (dwarf2_frame_find_fde (&block_addr))
1240 return &dwarf2_frame_base;
1241
1242 return NULL;
1243 }
1244 \f
1245 const struct objfile_data *dwarf2_frame_objfile_data;
1246
1247 static unsigned int
1248 read_1_byte (bfd *abfd, gdb_byte *buf)
1249 {
1250 return bfd_get_8 (abfd, buf);
1251 }
1252
1253 static unsigned int
1254 read_4_bytes (bfd *abfd, gdb_byte *buf)
1255 {
1256 return bfd_get_32 (abfd, buf);
1257 }
1258
1259 static ULONGEST
1260 read_8_bytes (bfd *abfd, gdb_byte *buf)
1261 {
1262 return bfd_get_64 (abfd, buf);
1263 }
1264
1265 static ULONGEST
1266 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1267 {
1268 ULONGEST result;
1269 unsigned int num_read;
1270 int shift;
1271 gdb_byte byte;
1272
1273 result = 0;
1274 shift = 0;
1275 num_read = 0;
1276
1277 do
1278 {
1279 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1280 buf++;
1281 num_read++;
1282 result |= ((byte & 0x7f) << shift);
1283 shift += 7;
1284 }
1285 while (byte & 0x80);
1286
1287 *bytes_read_ptr = num_read;
1288
1289 return result;
1290 }
1291
1292 static LONGEST
1293 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1294 {
1295 LONGEST result;
1296 int shift;
1297 unsigned int num_read;
1298 gdb_byte byte;
1299
1300 result = 0;
1301 shift = 0;
1302 num_read = 0;
1303
1304 do
1305 {
1306 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1307 buf++;
1308 num_read++;
1309 result |= ((byte & 0x7f) << shift);
1310 shift += 7;
1311 }
1312 while (byte & 0x80);
1313
1314 if (shift < 8 * sizeof (result) && (byte & 0x40))
1315 result |= -(((LONGEST)1) << shift);
1316
1317 *bytes_read_ptr = num_read;
1318
1319 return result;
1320 }
1321
1322 static ULONGEST
1323 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1324 {
1325 LONGEST result;
1326
1327 result = bfd_get_32 (abfd, buf);
1328 if (result == 0xffffffff)
1329 {
1330 result = bfd_get_64 (abfd, buf + 4);
1331 *bytes_read_ptr = 12;
1332 }
1333 else
1334 *bytes_read_ptr = 4;
1335
1336 return result;
1337 }
1338 \f
1339
1340 /* Pointer encoding helper functions. */
1341
1342 /* GCC supports exception handling based on DWARF2 CFI. However, for
1343 technical reasons, it encodes addresses in its FDE's in a different
1344 way. Several "pointer encodings" are supported. The encoding
1345 that's used for a particular FDE is determined by the 'R'
1346 augmentation in the associated CIE. The argument of this
1347 augmentation is a single byte.
1348
1349 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1350 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1351 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1352 address should be interpreted (absolute, relative to the current
1353 position in the FDE, ...). Bit 7, indicates that the address
1354 should be dereferenced. */
1355
1356 static gdb_byte
1357 encoding_for_size (unsigned int size)
1358 {
1359 switch (size)
1360 {
1361 case 2:
1362 return DW_EH_PE_udata2;
1363 case 4:
1364 return DW_EH_PE_udata4;
1365 case 8:
1366 return DW_EH_PE_udata8;
1367 default:
1368 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1369 }
1370 }
1371
1372 static CORE_ADDR
1373 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1374 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1375 CORE_ADDR func_base)
1376 {
1377 ptrdiff_t offset;
1378 CORE_ADDR base;
1379
1380 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1381 FDE's. */
1382 if (encoding & DW_EH_PE_indirect)
1383 internal_error (__FILE__, __LINE__,
1384 _("Unsupported encoding: DW_EH_PE_indirect"));
1385
1386 *bytes_read_ptr = 0;
1387
1388 switch (encoding & 0x70)
1389 {
1390 case DW_EH_PE_absptr:
1391 base = 0;
1392 break;
1393 case DW_EH_PE_pcrel:
1394 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1395 base += (buf - unit->dwarf_frame_buffer);
1396 break;
1397 case DW_EH_PE_datarel:
1398 base = unit->dbase;
1399 break;
1400 case DW_EH_PE_textrel:
1401 base = unit->tbase;
1402 break;
1403 case DW_EH_PE_funcrel:
1404 base = func_base;
1405 break;
1406 case DW_EH_PE_aligned:
1407 base = 0;
1408 offset = buf - unit->dwarf_frame_buffer;
1409 if ((offset % ptr_len) != 0)
1410 {
1411 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1412 buf += *bytes_read_ptr;
1413 }
1414 break;
1415 default:
1416 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1417 }
1418
1419 if ((encoding & 0x07) == 0x00)
1420 {
1421 encoding |= encoding_for_size (ptr_len);
1422 if (bfd_get_sign_extend_vma (unit->abfd))
1423 encoding |= DW_EH_PE_signed;
1424 }
1425
1426 switch (encoding & 0x0f)
1427 {
1428 case DW_EH_PE_uleb128:
1429 {
1430 ULONGEST value;
1431 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1432 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1433 return base + value;
1434 }
1435 case DW_EH_PE_udata2:
1436 *bytes_read_ptr += 2;
1437 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1438 case DW_EH_PE_udata4:
1439 *bytes_read_ptr += 4;
1440 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1441 case DW_EH_PE_udata8:
1442 *bytes_read_ptr += 8;
1443 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1444 case DW_EH_PE_sleb128:
1445 {
1446 LONGEST value;
1447 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1448 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1449 return base + value;
1450 }
1451 case DW_EH_PE_sdata2:
1452 *bytes_read_ptr += 2;
1453 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1454 case DW_EH_PE_sdata4:
1455 *bytes_read_ptr += 4;
1456 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1457 case DW_EH_PE_sdata8:
1458 *bytes_read_ptr += 8;
1459 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1460 default:
1461 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1462 }
1463 }
1464 \f
1465
1466 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1467 That's why we use a simple linked list here. */
1468
1469 static struct dwarf2_cie *
1470 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1471 {
1472 struct dwarf2_cie *cie = unit->cie;
1473
1474 while (cie)
1475 {
1476 if (cie->cie_pointer == cie_pointer)
1477 return cie;
1478
1479 cie = cie->next;
1480 }
1481
1482 return NULL;
1483 }
1484
1485 static void
1486 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1487 {
1488 cie->next = unit->cie;
1489 unit->cie = cie;
1490 cie->unit = unit;
1491 }
1492
1493 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1494 inital location associated with it into *PC. */
1495
1496 static struct dwarf2_fde *
1497 dwarf2_frame_find_fde (CORE_ADDR *pc)
1498 {
1499 struct objfile *objfile;
1500
1501 ALL_OBJFILES (objfile)
1502 {
1503 struct dwarf2_fde *fde;
1504 CORE_ADDR offset;
1505
1506 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1507 if (fde == NULL)
1508 continue;
1509
1510 gdb_assert (objfile->section_offsets);
1511 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1512
1513 while (fde)
1514 {
1515 if (*pc >= fde->initial_location + offset
1516 && *pc < fde->initial_location + offset + fde->address_range)
1517 {
1518 *pc = fde->initial_location + offset;
1519 return fde;
1520 }
1521
1522 fde = fde->next;
1523 }
1524 }
1525
1526 return NULL;
1527 }
1528
1529 static void
1530 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1531 {
1532 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1533 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1534 }
1535
1536 #ifdef CC_HAS_LONG_LONG
1537 #define DW64_CIE_ID 0xffffffffffffffffULL
1538 #else
1539 #define DW64_CIE_ID ~0
1540 #endif
1541
1542 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1543 int eh_frame_p);
1544
1545 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1546 the next byte to be processed. */
1547 static gdb_byte *
1548 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1549 {
1550 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1551 gdb_byte *buf, *end;
1552 LONGEST length;
1553 unsigned int bytes_read;
1554 int dwarf64_p;
1555 ULONGEST cie_id;
1556 ULONGEST cie_pointer;
1557
1558 buf = start;
1559 length = read_initial_length (unit->abfd, buf, &bytes_read);
1560 buf += bytes_read;
1561 end = buf + length;
1562
1563 /* Are we still within the section? */
1564 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1565 return NULL;
1566
1567 if (length == 0)
1568 return end;
1569
1570 /* Distinguish between 32 and 64-bit encoded frame info. */
1571 dwarf64_p = (bytes_read == 12);
1572
1573 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1574 if (eh_frame_p)
1575 cie_id = 0;
1576 else if (dwarf64_p)
1577 cie_id = DW64_CIE_ID;
1578 else
1579 cie_id = DW_CIE_ID;
1580
1581 if (dwarf64_p)
1582 {
1583 cie_pointer = read_8_bytes (unit->abfd, buf);
1584 buf += 8;
1585 }
1586 else
1587 {
1588 cie_pointer = read_4_bytes (unit->abfd, buf);
1589 buf += 4;
1590 }
1591
1592 if (cie_pointer == cie_id)
1593 {
1594 /* This is a CIE. */
1595 struct dwarf2_cie *cie;
1596 char *augmentation;
1597 unsigned int cie_version;
1598
1599 /* Record the offset into the .debug_frame section of this CIE. */
1600 cie_pointer = start - unit->dwarf_frame_buffer;
1601
1602 /* Check whether we've already read it. */
1603 if (find_cie (unit, cie_pointer))
1604 return end;
1605
1606 cie = (struct dwarf2_cie *)
1607 obstack_alloc (&unit->objfile->objfile_obstack,
1608 sizeof (struct dwarf2_cie));
1609 cie->initial_instructions = NULL;
1610 cie->cie_pointer = cie_pointer;
1611
1612 /* The encoding for FDE's in a normal .debug_frame section
1613 depends on the target address size. */
1614 cie->encoding = DW_EH_PE_absptr;
1615
1616 /* The target address size. For .eh_frame FDEs this is considered
1617 equal to the size of a target pointer. For .dwarf_frame FDEs,
1618 this is supposed to be the target address size from the associated
1619 CU header. FIXME: We do not have a good way to determine the
1620 latter. Always use the target pointer size for now. */
1621 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1622
1623 /* We'll determine the final value later, but we need to
1624 initialize it conservatively. */
1625 cie->signal_frame = 0;
1626
1627 /* Check version number. */
1628 cie_version = read_1_byte (unit->abfd, buf);
1629 if (cie_version != 1 && cie_version != 3)
1630 return NULL;
1631 cie->version = cie_version;
1632 buf += 1;
1633
1634 /* Interpret the interesting bits of the augmentation. */
1635 cie->augmentation = augmentation = (char *) buf;
1636 buf += (strlen (augmentation) + 1);
1637
1638 /* Ignore armcc augmentations. We only use them for quirks,
1639 and that doesn't happen until later. */
1640 if (strncmp (augmentation, "armcc", 5) == 0)
1641 augmentation += strlen (augmentation);
1642
1643 /* The GCC 2.x "eh" augmentation has a pointer immediately
1644 following the augmentation string, so it must be handled
1645 first. */
1646 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1647 {
1648 /* Skip. */
1649 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1650 augmentation += 2;
1651 }
1652
1653 cie->code_alignment_factor =
1654 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1655 buf += bytes_read;
1656
1657 cie->data_alignment_factor =
1658 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1659 buf += bytes_read;
1660
1661 if (cie_version == 1)
1662 {
1663 cie->return_address_register = read_1_byte (unit->abfd, buf);
1664 bytes_read = 1;
1665 }
1666 else
1667 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1668 &bytes_read);
1669 cie->return_address_register
1670 = dwarf2_frame_adjust_regnum (gdbarch,
1671 cie->return_address_register,
1672 eh_frame_p);
1673
1674 buf += bytes_read;
1675
1676 cie->saw_z_augmentation = (*augmentation == 'z');
1677 if (cie->saw_z_augmentation)
1678 {
1679 ULONGEST length;
1680
1681 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1682 buf += bytes_read;
1683 if (buf > end)
1684 return NULL;
1685 cie->initial_instructions = buf + length;
1686 augmentation++;
1687 }
1688
1689 while (*augmentation)
1690 {
1691 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1692 if (*augmentation == 'L')
1693 {
1694 /* Skip. */
1695 buf++;
1696 augmentation++;
1697 }
1698
1699 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1700 else if (*augmentation == 'R')
1701 {
1702 cie->encoding = *buf++;
1703 augmentation++;
1704 }
1705
1706 /* "P" indicates a personality routine in the CIE augmentation. */
1707 else if (*augmentation == 'P')
1708 {
1709 /* Skip. Avoid indirection since we throw away the result. */
1710 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1711 read_encoded_value (unit, encoding, cie->addr_size,
1712 buf, &bytes_read, 0);
1713 buf += bytes_read;
1714 augmentation++;
1715 }
1716
1717 /* "S" indicates a signal frame, such that the return
1718 address must not be decremented to locate the call frame
1719 info for the previous frame; it might even be the first
1720 instruction of a function, so decrementing it would take
1721 us to a different function. */
1722 else if (*augmentation == 'S')
1723 {
1724 cie->signal_frame = 1;
1725 augmentation++;
1726 }
1727
1728 /* Otherwise we have an unknown augmentation. Assume that either
1729 there is no augmentation data, or we saw a 'z' prefix. */
1730 else
1731 {
1732 if (cie->initial_instructions)
1733 buf = cie->initial_instructions;
1734 break;
1735 }
1736 }
1737
1738 cie->initial_instructions = buf;
1739 cie->end = end;
1740
1741 add_cie (unit, cie);
1742 }
1743 else
1744 {
1745 /* This is a FDE. */
1746 struct dwarf2_fde *fde;
1747
1748 /* In an .eh_frame section, the CIE pointer is the delta between the
1749 address within the FDE where the CIE pointer is stored and the
1750 address of the CIE. Convert it to an offset into the .eh_frame
1751 section. */
1752 if (eh_frame_p)
1753 {
1754 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1755 cie_pointer -= (dwarf64_p ? 8 : 4);
1756 }
1757
1758 /* In either case, validate the result is still within the section. */
1759 if (cie_pointer >= unit->dwarf_frame_size)
1760 return NULL;
1761
1762 fde = (struct dwarf2_fde *)
1763 obstack_alloc (&unit->objfile->objfile_obstack,
1764 sizeof (struct dwarf2_fde));
1765 fde->cie = find_cie (unit, cie_pointer);
1766 if (fde->cie == NULL)
1767 {
1768 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1769 eh_frame_p);
1770 fde->cie = find_cie (unit, cie_pointer);
1771 }
1772
1773 gdb_assert (fde->cie != NULL);
1774
1775 fde->initial_location =
1776 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1777 buf, &bytes_read, 0);
1778 buf += bytes_read;
1779
1780 fde->address_range =
1781 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1782 fde->cie->addr_size, buf, &bytes_read, 0);
1783 buf += bytes_read;
1784
1785 /* A 'z' augmentation in the CIE implies the presence of an
1786 augmentation field in the FDE as well. The only thing known
1787 to be in here at present is the LSDA entry for EH. So we
1788 can skip the whole thing. */
1789 if (fde->cie->saw_z_augmentation)
1790 {
1791 ULONGEST length;
1792
1793 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1794 buf += bytes_read + length;
1795 if (buf > end)
1796 return NULL;
1797 }
1798
1799 fde->instructions = buf;
1800 fde->end = end;
1801
1802 fde->eh_frame_p = eh_frame_p;
1803
1804 add_fde (unit, fde);
1805 }
1806
1807 return end;
1808 }
1809
1810 /* Read a CIE or FDE in BUF and decode it. */
1811 static gdb_byte *
1812 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1813 {
1814 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1815 gdb_byte *ret;
1816 const char *msg;
1817 ptrdiff_t start_offset;
1818
1819 while (1)
1820 {
1821 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1822 if (ret != NULL)
1823 break;
1824
1825 /* We have corrupt input data of some form. */
1826
1827 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1828 and mismatches wrt padding and alignment of debug sections. */
1829 /* Note that there is no requirement in the standard for any
1830 alignment at all in the frame unwind sections. Testing for
1831 alignment before trying to interpret data would be incorrect.
1832
1833 However, GCC traditionally arranged for frame sections to be
1834 sized such that the FDE length and CIE fields happen to be
1835 aligned (in theory, for performance). This, unfortunately,
1836 was done with .align directives, which had the side effect of
1837 forcing the section to be aligned by the linker.
1838
1839 This becomes a problem when you have some other producer that
1840 creates frame sections that are not as strictly aligned. That
1841 produces a hole in the frame info that gets filled by the
1842 linker with zeros.
1843
1844 The GCC behaviour is arguably a bug, but it's effectively now
1845 part of the ABI, so we're now stuck with it, at least at the
1846 object file level. A smart linker may decide, in the process
1847 of compressing duplicate CIE information, that it can rewrite
1848 the entire output section without this extra padding. */
1849
1850 start_offset = start - unit->dwarf_frame_buffer;
1851 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1852 {
1853 start += 4 - (start_offset & 3);
1854 workaround = ALIGN4;
1855 continue;
1856 }
1857 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1858 {
1859 start += 8 - (start_offset & 7);
1860 workaround = ALIGN8;
1861 continue;
1862 }
1863
1864 /* Nothing left to try. Arrange to return as if we've consumed
1865 the entire input section. Hopefully we'll get valid info from
1866 the other of .debug_frame/.eh_frame. */
1867 workaround = FAIL;
1868 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1869 break;
1870 }
1871
1872 switch (workaround)
1873 {
1874 case NONE:
1875 break;
1876
1877 case ALIGN4:
1878 complaint (&symfile_complaints,
1879 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1880 unit->dwarf_frame_section->owner->filename,
1881 unit->dwarf_frame_section->name);
1882 break;
1883
1884 case ALIGN8:
1885 complaint (&symfile_complaints,
1886 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1887 unit->dwarf_frame_section->owner->filename,
1888 unit->dwarf_frame_section->name);
1889 break;
1890
1891 default:
1892 complaint (&symfile_complaints,
1893 _("Corrupt data in %s:%s"),
1894 unit->dwarf_frame_section->owner->filename,
1895 unit->dwarf_frame_section->name);
1896 break;
1897 }
1898
1899 return ret;
1900 }
1901 \f
1902
1903 /* Imported from dwarf2read.c. */
1904 extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1905 gdb_byte **, bfd_size_type *);
1906
1907 void
1908 dwarf2_build_frame_info (struct objfile *objfile)
1909 {
1910 struct comp_unit *unit;
1911 gdb_byte *frame_ptr;
1912
1913 /* Build a minimal decoding of the DWARF2 compilation unit. */
1914 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
1915 sizeof (struct comp_unit));
1916 unit->abfd = objfile->obfd;
1917 unit->objfile = objfile;
1918 unit->dbase = 0;
1919 unit->tbase = 0;
1920
1921 /* First add the information from the .eh_frame section. That way,
1922 the FDEs from that section are searched last. */
1923 dwarf2_get_section_info (objfile, ".eh_frame",
1924 &unit->dwarf_frame_section,
1925 &unit->dwarf_frame_buffer,
1926 &unit->dwarf_frame_size);
1927 if (unit->dwarf_frame_size)
1928 {
1929 asection *got, *txt;
1930
1931 unit->cie = NULL;
1932 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1933 that is used for the i386/amd64 target, which currently is
1934 the only target in GCC that supports/uses the
1935 DW_EH_PE_datarel encoding. */
1936 got = bfd_get_section_by_name (unit->abfd, ".got");
1937 if (got)
1938 unit->dbase = got->vma;
1939
1940 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1941 so far. */
1942 txt = bfd_get_section_by_name (unit->abfd, ".text");
1943 if (txt)
1944 unit->tbase = txt->vma;
1945
1946 frame_ptr = unit->dwarf_frame_buffer;
1947 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1948 frame_ptr = decode_frame_entry (unit, frame_ptr, 1);
1949 }
1950
1951 dwarf2_get_section_info (objfile, ".debug_frame",
1952 &unit->dwarf_frame_section,
1953 &unit->dwarf_frame_buffer,
1954 &unit->dwarf_frame_size);
1955 if (unit->dwarf_frame_size)
1956 {
1957 unit->cie = NULL;
1958
1959 frame_ptr = unit->dwarf_frame_buffer;
1960 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1961 frame_ptr = decode_frame_entry (unit, frame_ptr, 0);
1962 }
1963 }
1964
1965 /* Provide a prototype to silence -Wmissing-prototypes. */
1966 void _initialize_dwarf2_frame (void);
1967
1968 void
1969 _initialize_dwarf2_frame (void)
1970 {
1971 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1972 dwarf2_frame_objfile_data = register_objfile_data ();
1973 }
This page took 0.098442 seconds and 4 git commands to generate.