gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41 #include "ax.h"
42 #include "dwarf2loc.h"
43 #include "exceptions.h"
44 #include "dwarf2-frame-tailcall.h"
45
46 struct comp_unit;
47
48 /* Call Frame Information (CFI). */
49
50 /* Common Information Entry (CIE). */
51
52 struct dwarf2_cie
53 {
54 /* Computation Unit for this CIE. */
55 struct comp_unit *unit;
56
57 /* Offset into the .debug_frame section where this CIE was found.
58 Used to identify this CIE. */
59 ULONGEST cie_pointer;
60
61 /* Constant that is factored out of all advance location
62 instructions. */
63 ULONGEST code_alignment_factor;
64
65 /* Constants that is factored out of all offset instructions. */
66 LONGEST data_alignment_factor;
67
68 /* Return address column. */
69 ULONGEST return_address_register;
70
71 /* Instruction sequence to initialize a register set. */
72 gdb_byte *initial_instructions;
73 gdb_byte *end;
74
75 /* Saved augmentation, in case it's needed later. */
76 char *augmentation;
77
78 /* Encoding of addresses. */
79 gdb_byte encoding;
80
81 /* Target address size in bytes. */
82 int addr_size;
83
84 /* Target pointer size in bytes. */
85 int ptr_size;
86
87 /* True if a 'z' augmentation existed. */
88 unsigned char saw_z_augmentation;
89
90 /* True if an 'S' augmentation existed. */
91 unsigned char signal_frame;
92
93 /* The version recorded in the CIE. */
94 unsigned char version;
95
96 /* The segment size. */
97 unsigned char segment_size;
98 };
99
100 struct dwarf2_cie_table
101 {
102 int num_entries;
103 struct dwarf2_cie **entries;
104 };
105
106 /* Frame Description Entry (FDE). */
107
108 struct dwarf2_fde
109 {
110 /* CIE for this FDE. */
111 struct dwarf2_cie *cie;
112
113 /* First location associated with this FDE. */
114 CORE_ADDR initial_location;
115
116 /* Number of bytes of program instructions described by this FDE. */
117 CORE_ADDR address_range;
118
119 /* Instruction sequence. */
120 gdb_byte *instructions;
121 gdb_byte *end;
122
123 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
124 section. */
125 unsigned char eh_frame_p;
126 };
127
128 struct dwarf2_fde_table
129 {
130 int num_entries;
131 struct dwarf2_fde **entries;
132 };
133
134 /* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
136
137 struct comp_unit
138 {
139 /* Keep the bfd convenient. */
140 bfd *abfd;
141
142 struct objfile *objfile;
143
144 /* Pointer to the .debug_frame section loaded into memory. */
145 gdb_byte *dwarf_frame_buffer;
146
147 /* Length of the loaded .debug_frame section. */
148 bfd_size_type dwarf_frame_size;
149
150 /* Pointer to the .debug_frame section. */
151 asection *dwarf_frame_section;
152
153 /* Base for DW_EH_PE_datarel encodings. */
154 bfd_vma dbase;
155
156 /* Base for DW_EH_PE_textrel encodings. */
157 bfd_vma tbase;
158 };
159
160 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
161 CORE_ADDR *out_offset);
162
163 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
164 int eh_frame_p);
165
166 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
167 int ptr_len, const gdb_byte *buf,
168 unsigned int *bytes_read_ptr,
169 CORE_ADDR func_base);
170 \f
171
172 /* Structure describing a frame state. */
173
174 struct dwarf2_frame_state
175 {
176 /* Each register save state can be described in terms of a CFA slot,
177 another register, or a location expression. */
178 struct dwarf2_frame_state_reg_info
179 {
180 struct dwarf2_frame_state_reg *reg;
181 int num_regs;
182
183 LONGEST cfa_offset;
184 ULONGEST cfa_reg;
185 enum {
186 CFA_UNSET,
187 CFA_REG_OFFSET,
188 CFA_EXP
189 } cfa_how;
190 const gdb_byte *cfa_exp;
191
192 /* Used to implement DW_CFA_remember_state. */
193 struct dwarf2_frame_state_reg_info *prev;
194 } regs;
195
196 /* The PC described by the current frame state. */
197 CORE_ADDR pc;
198
199 /* Initial register set from the CIE.
200 Used to implement DW_CFA_restore. */
201 struct dwarf2_frame_state_reg_info initial;
202
203 /* The information we care about from the CIE. */
204 LONGEST data_align;
205 ULONGEST code_align;
206 ULONGEST retaddr_column;
207
208 /* Flags for known producer quirks. */
209
210 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
211 and DW_CFA_def_cfa_offset takes a factored offset. */
212 int armcc_cfa_offsets_sf;
213
214 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
215 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
216 int armcc_cfa_offsets_reversed;
217 };
218
219 /* Store the length the expression for the CFA in the `cfa_reg' field,
220 which is unused in that case. */
221 #define cfa_exp_len cfa_reg
222
223 /* Assert that the register set RS is large enough to store gdbarch_num_regs
224 columns. If necessary, enlarge the register set. */
225
226 static void
227 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
228 int num_regs)
229 {
230 size_t size = sizeof (struct dwarf2_frame_state_reg);
231
232 if (num_regs <= rs->num_regs)
233 return;
234
235 rs->reg = (struct dwarf2_frame_state_reg *)
236 xrealloc (rs->reg, num_regs * size);
237
238 /* Initialize newly allocated registers. */
239 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
240 rs->num_regs = num_regs;
241 }
242
243 /* Copy the register columns in register set RS into newly allocated
244 memory and return a pointer to this newly created copy. */
245
246 static struct dwarf2_frame_state_reg *
247 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
248 {
249 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
250 struct dwarf2_frame_state_reg *reg;
251
252 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
253 memcpy (reg, rs->reg, size);
254
255 return reg;
256 }
257
258 /* Release the memory allocated to register set RS. */
259
260 static void
261 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
262 {
263 if (rs)
264 {
265 dwarf2_frame_state_free_regs (rs->prev);
266
267 xfree (rs->reg);
268 xfree (rs);
269 }
270 }
271
272 /* Release the memory allocated to the frame state FS. */
273
274 static void
275 dwarf2_frame_state_free (void *p)
276 {
277 struct dwarf2_frame_state *fs = p;
278
279 dwarf2_frame_state_free_regs (fs->initial.prev);
280 dwarf2_frame_state_free_regs (fs->regs.prev);
281 xfree (fs->initial.reg);
282 xfree (fs->regs.reg);
283 xfree (fs);
284 }
285 \f
286
287 /* Helper functions for execute_stack_op. */
288
289 static CORE_ADDR
290 read_reg (void *baton, int reg)
291 {
292 struct frame_info *this_frame = (struct frame_info *) baton;
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 int regnum;
295 gdb_byte *buf;
296
297 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
298
299 buf = alloca (register_size (gdbarch, regnum));
300 get_frame_register (this_frame, regnum, buf);
301
302 /* Convert the register to an integer. This returns a LONGEST
303 rather than a CORE_ADDR, but unpack_pointer does the same thing
304 under the covers, and this makes more sense for non-pointer
305 registers. Maybe read_reg and the associated interfaces should
306 deal with "struct value" instead of CORE_ADDR. */
307 return unpack_long (register_type (gdbarch, regnum), buf);
308 }
309
310 static void
311 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
312 {
313 read_memory (addr, buf, len);
314 }
315
316 /* Execute the required actions for both the DW_CFA_restore and
317 DW_CFA_restore_extended instructions. */
318 static void
319 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
320 struct dwarf2_frame_state *fs, int eh_frame_p)
321 {
322 ULONGEST reg;
323
324 gdb_assert (fs->initial.reg);
325 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
326 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
327
328 /* Check if this register was explicitly initialized in the
329 CIE initial instructions. If not, default the rule to
330 UNSPECIFIED. */
331 if (reg < fs->initial.num_regs)
332 fs->regs.reg[reg] = fs->initial.reg[reg];
333 else
334 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335
336 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
337 complaint (&symfile_complaints, _("\
338 incomplete CFI data; DW_CFA_restore unspecified\n\
339 register %s (#%d) at %s"),
340 gdbarch_register_name
341 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
342 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
343 paddress (gdbarch, fs->pc));
344 }
345
346 /* Virtual method table for execute_stack_op below. */
347
348 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
349 {
350 read_reg,
351 read_mem,
352 ctx_no_get_frame_base,
353 ctx_no_get_frame_cfa,
354 ctx_no_get_frame_pc,
355 ctx_no_get_tls_address,
356 ctx_no_dwarf_call,
357 ctx_no_get_base_type,
358 ctx_no_push_dwarf_reg_entry_value
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 ULONGEST utmp, reg;
420 LONGEST offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
540 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
541
542 if (fs->armcc_cfa_offsets_sf)
543 utmp *= fs->data_align;
544
545 fs->regs.cfa_offset = utmp;
546 fs->regs.cfa_how = CFA_REG_OFFSET;
547 break;
548
549 case DW_CFA_def_cfa_register:
550 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
551 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
552 fs->regs.cfa_reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = read_uleb128 (insn_ptr, insn_end,
572 &fs->regs.cfa_exp_len);
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
630 fs->regs.cfa_reg,
631 eh_frame_p);
632 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
633 fs->regs.cfa_offset = offset * fs->data_align;
634 fs->regs.cfa_how = CFA_REG_OFFSET;
635 break;
636
637 case DW_CFA_def_cfa_offset_sf:
638 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
639 fs->regs.cfa_offset = offset * fs->data_align;
640 /* cfa_how deliberately not set. */
641 break;
642
643 case DW_CFA_GNU_window_save:
644 /* This is SPARC-specific code, and contains hard-coded
645 constants for the register numbering scheme used by
646 GCC. Rather than having a architecture-specific
647 operation that's only ever used by a single
648 architecture, we provide the implementation here.
649 Incidentally that's what GCC does too in its
650 unwinder. */
651 {
652 int size = register_size (gdbarch, 0);
653
654 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
655 for (reg = 8; reg < 16; reg++)
656 {
657 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
658 fs->regs.reg[reg].loc.reg = reg + 16;
659 }
660 for (reg = 16; reg < 32; reg++)
661 {
662 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
663 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
664 }
665 }
666 break;
667
668 case DW_CFA_GNU_args_size:
669 /* Ignored. */
670 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
671 break;
672
673 case DW_CFA_GNU_negative_offset_extended:
674 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
675 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
676 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
677 offset *= fs->data_align;
678 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
679 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
680 fs->regs.reg[reg].loc.offset = -offset;
681 break;
682
683 default:
684 internal_error (__FILE__, __LINE__,
685 _("Unknown CFI encountered."));
686 }
687 }
688 }
689
690 if (fs->initial.reg == NULL)
691 {
692 /* Don't allow remember/restore between CIE and FDE programs. */
693 dwarf2_frame_state_free_regs (fs->regs.prev);
694 fs->regs.prev = NULL;
695 }
696
697 return insn_ptr;
698 }
699 \f
700
701 /* Architecture-specific operations. */
702
703 /* Per-architecture data key. */
704 static struct gdbarch_data *dwarf2_frame_data;
705
706 struct dwarf2_frame_ops
707 {
708 /* Pre-initialize the register state REG for register REGNUM. */
709 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
710 struct frame_info *);
711
712 /* Check whether the THIS_FRAME is a signal trampoline. */
713 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
714
715 /* Convert .eh_frame register number to DWARF register number, or
716 adjust .debug_frame register number. */
717 int (*adjust_regnum) (struct gdbarch *, int, int);
718 };
719
720 /* Default architecture-specific register state initialization
721 function. */
722
723 static void
724 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
725 struct dwarf2_frame_state_reg *reg,
726 struct frame_info *this_frame)
727 {
728 /* If we have a register that acts as a program counter, mark it as
729 a destination for the return address. If we have a register that
730 serves as the stack pointer, arrange for it to be filled with the
731 call frame address (CFA). The other registers are marked as
732 unspecified.
733
734 We copy the return address to the program counter, since many
735 parts in GDB assume that it is possible to get the return address
736 by unwinding the program counter register. However, on ISA's
737 with a dedicated return address register, the CFI usually only
738 contains information to unwind that return address register.
739
740 The reason we're treating the stack pointer special here is
741 because in many cases GCC doesn't emit CFI for the stack pointer
742 and implicitly assumes that it is equal to the CFA. This makes
743 some sense since the DWARF specification (version 3, draft 8,
744 p. 102) says that:
745
746 "Typically, the CFA is defined to be the value of the stack
747 pointer at the call site in the previous frame (which may be
748 different from its value on entry to the current frame)."
749
750 However, this isn't true for all platforms supported by GCC
751 (e.g. IBM S/390 and zSeries). Those architectures should provide
752 their own architecture-specific initialization function. */
753
754 if (regnum == gdbarch_pc_regnum (gdbarch))
755 reg->how = DWARF2_FRAME_REG_RA;
756 else if (regnum == gdbarch_sp_regnum (gdbarch))
757 reg->how = DWARF2_FRAME_REG_CFA;
758 }
759
760 /* Return a default for the architecture-specific operations. */
761
762 static void *
763 dwarf2_frame_init (struct obstack *obstack)
764 {
765 struct dwarf2_frame_ops *ops;
766
767 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
768 ops->init_reg = dwarf2_frame_default_init_reg;
769 return ops;
770 }
771
772 /* Set the architecture-specific register state initialization
773 function for GDBARCH to INIT_REG. */
774
775 void
776 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
777 void (*init_reg) (struct gdbarch *, int,
778 struct dwarf2_frame_state_reg *,
779 struct frame_info *))
780 {
781 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
782
783 ops->init_reg = init_reg;
784 }
785
786 /* Pre-initialize the register state REG for register REGNUM. */
787
788 static void
789 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
790 struct dwarf2_frame_state_reg *reg,
791 struct frame_info *this_frame)
792 {
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->init_reg (gdbarch, regnum, reg, this_frame);
796 }
797
798 /* Set the architecture-specific signal trampoline recognition
799 function for GDBARCH to SIGNAL_FRAME_P. */
800
801 void
802 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
803 int (*signal_frame_p) (struct gdbarch *,
804 struct frame_info *))
805 {
806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807
808 ops->signal_frame_p = signal_frame_p;
809 }
810
811 /* Query the architecture-specific signal frame recognizer for
812 THIS_FRAME. */
813
814 static int
815 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
816 struct frame_info *this_frame)
817 {
818 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819
820 if (ops->signal_frame_p == NULL)
821 return 0;
822 return ops->signal_frame_p (gdbarch, this_frame);
823 }
824
825 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
826 register numbers. */
827
828 void
829 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
830 int (*adjust_regnum) (struct gdbarch *,
831 int, int))
832 {
833 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834
835 ops->adjust_regnum = adjust_regnum;
836 }
837
838 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
839 register. */
840
841 static int
842 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
843 int regnum, int eh_frame_p)
844 {
845 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846
847 if (ops->adjust_regnum == NULL)
848 return regnum;
849 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
850 }
851
852 static void
853 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
854 struct dwarf2_fde *fde)
855 {
856 struct symtab *s;
857
858 s = find_pc_symtab (fs->pc);
859 if (s == NULL)
860 return;
861
862 if (producer_is_realview (s->producer))
863 {
864 if (fde->cie->version == 1)
865 fs->armcc_cfa_offsets_sf = 1;
866
867 if (fde->cie->version == 1)
868 fs->armcc_cfa_offsets_reversed = 1;
869
870 /* The reversed offset problem is present in some compilers
871 using DWARF3, but it was eventually fixed. Check the ARM
872 defined augmentations, which are in the format "armcc" followed
873 by a list of one-character options. The "+" option means
874 this problem is fixed (no quirk needed). If the armcc
875 augmentation is missing, the quirk is needed. */
876 if (fde->cie->version == 3
877 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
878 || strchr (fde->cie->augmentation + 5, '+') == NULL))
879 fs->armcc_cfa_offsets_reversed = 1;
880
881 return;
882 }
883 }
884 \f
885
886 void
887 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
888 struct gdbarch *gdbarch,
889 CORE_ADDR pc,
890 struct dwarf2_per_cu_data *data)
891 {
892 const int num_regs = gdbarch_num_regs (gdbarch)
893 + gdbarch_num_pseudo_regs (gdbarch);
894 struct dwarf2_fde *fde;
895 CORE_ADDR text_offset, cfa;
896 struct dwarf2_frame_state fs;
897 int addr_size;
898
899 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
900
901 fs.pc = pc;
902
903 /* Find the correct FDE. */
904 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
905 if (fde == NULL)
906 error (_("Could not compute CFA; needed to translate this expression"));
907
908 /* Extract any interesting information from the CIE. */
909 fs.data_align = fde->cie->data_alignment_factor;
910 fs.code_align = fde->cie->code_alignment_factor;
911 fs.retaddr_column = fde->cie->return_address_register;
912 addr_size = fde->cie->addr_size;
913
914 /* Check for "quirks" - known bugs in producers. */
915 dwarf2_frame_find_quirks (&fs, fde);
916
917 /* First decode all the insns in the CIE. */
918 execute_cfa_program (fde, fde->cie->initial_instructions,
919 fde->cie->end, gdbarch, pc, &fs);
920
921 /* Save the initialized register set. */
922 fs.initial = fs.regs;
923 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
924
925 /* Then decode the insns in the FDE up to our target PC. */
926 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
927
928 /* Calculate the CFA. */
929 switch (fs.regs.cfa_how)
930 {
931 case CFA_REG_OFFSET:
932 {
933 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
934
935 if (regnum == -1)
936 error (_("Unable to access DWARF register number %d"),
937 (int) fs.regs.cfa_reg); /* FIXME */
938 ax_reg (expr, regnum);
939
940 if (fs.regs.cfa_offset != 0)
941 {
942 if (fs.armcc_cfa_offsets_reversed)
943 ax_const_l (expr, -fs.regs.cfa_offset);
944 else
945 ax_const_l (expr, fs.regs.cfa_offset);
946 ax_simple (expr, aop_add);
947 }
948 }
949 break;
950
951 case CFA_EXP:
952 ax_const_l (expr, text_offset);
953 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
954 fs.regs.cfa_exp,
955 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
956 data);
957 break;
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962 }
963
964 \f
965 struct dwarf2_frame_cache
966 {
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
983
984 /* Target address size in bytes. */
985 int addr_size;
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
989
990 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
991 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
992 involved. Non-bottom frames of a virtual tail call frames chain use
993 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
994 them. */
995 void *tailcall_cache;
996 };
997
998 static struct dwarf2_frame_cache *
999 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1000 {
1001 struct cleanup *old_chain;
1002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1003 const int num_regs = gdbarch_num_regs (gdbarch)
1004 + gdbarch_num_pseudo_regs (gdbarch);
1005 struct dwarf2_frame_cache *cache;
1006 struct dwarf2_frame_state *fs;
1007 struct dwarf2_fde *fde;
1008 volatile struct gdb_exception ex;
1009 CORE_ADDR entry_pc;
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p = 0;
1012 const gdb_byte *instr;
1013
1014 if (*this_cache)
1015 return *this_cache;
1016
1017 /* Allocate a new cache. */
1018 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1019 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1020 *this_cache = cache;
1021
1022 /* Allocate and initialize the frame state. */
1023 fs = XZALLOC (struct dwarf2_frame_state);
1024 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1025
1026 /* Unwind the PC.
1027
1028 Note that if the next frame is never supposed to return (i.e. a call
1029 to abort), the compiler might optimize away the instruction at
1030 its return address. As a result the return address will
1031 point at some random instruction, and the CFI for that
1032 instruction is probably worthless to us. GCC's unwinder solves
1033 this problem by substracting 1 from the return address to get an
1034 address in the middle of a presumed call instruction (or the
1035 instruction in the associated delay slot). This should only be
1036 done for "normal" frames and not for resume-type frames (signal
1037 handlers, sentinel frames, dummy frames). The function
1038 get_frame_address_in_block does just this. It's not clear how
1039 reliable the method is though; there is the potential for the
1040 register state pre-call being different to that on return. */
1041 fs->pc = get_frame_address_in_block (this_frame);
1042
1043 /* Find the correct FDE. */
1044 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1045 gdb_assert (fde != NULL);
1046
1047 /* Extract any interesting information from the CIE. */
1048 fs->data_align = fde->cie->data_alignment_factor;
1049 fs->code_align = fde->cie->code_alignment_factor;
1050 fs->retaddr_column = fde->cie->return_address_register;
1051 cache->addr_size = fde->cie->addr_size;
1052
1053 /* Check for "quirks" - known bugs in producers. */
1054 dwarf2_frame_find_quirks (fs, fde);
1055
1056 /* First decode all the insns in the CIE. */
1057 execute_cfa_program (fde, fde->cie->initial_instructions,
1058 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
1059
1060 /* Save the initialized register set. */
1061 fs->initial = fs->regs;
1062 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1063
1064 if (get_frame_func_if_available (this_frame, &entry_pc))
1065 {
1066 /* Decode the insns in the FDE up to the entry PC. */
1067 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1068 entry_pc, fs);
1069
1070 if (fs->regs.cfa_how == CFA_REG_OFFSET
1071 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1072 == gdbarch_sp_regnum (gdbarch)))
1073 {
1074 entry_cfa_sp_offset = fs->regs.cfa_offset;
1075 entry_cfa_sp_offset_p = 1;
1076 }
1077 }
1078 else
1079 instr = fde->instructions;
1080
1081 /* Then decode the insns in the FDE up to our target PC. */
1082 execute_cfa_program (fde, instr, fde->end, gdbarch,
1083 get_frame_pc (this_frame), fs);
1084
1085 TRY_CATCH (ex, RETURN_MASK_ERROR)
1086 {
1087 /* Calculate the CFA. */
1088 switch (fs->regs.cfa_how)
1089 {
1090 case CFA_REG_OFFSET:
1091 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1092 if (fs->armcc_cfa_offsets_reversed)
1093 cache->cfa -= fs->regs.cfa_offset;
1094 else
1095 cache->cfa += fs->regs.cfa_offset;
1096 break;
1097
1098 case CFA_EXP:
1099 cache->cfa =
1100 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1101 cache->addr_size, cache->text_offset,
1102 this_frame, 0, 0);
1103 break;
1104
1105 default:
1106 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1107 }
1108 }
1109 if (ex.reason < 0)
1110 {
1111 if (ex.error == NOT_AVAILABLE_ERROR)
1112 {
1113 cache->unavailable_retaddr = 1;
1114 return cache;
1115 }
1116
1117 throw_exception (ex);
1118 }
1119
1120 /* Initialize the register state. */
1121 {
1122 int regnum;
1123
1124 for (regnum = 0; regnum < num_regs; regnum++)
1125 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1126 }
1127
1128 /* Go through the DWARF2 CFI generated table and save its register
1129 location information in the cache. Note that we don't skip the
1130 return address column; it's perfectly all right for it to
1131 correspond to a real register. If it doesn't correspond to a
1132 real register, or if we shouldn't treat it as such,
1133 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1134 the range [0, gdbarch_num_regs). */
1135 {
1136 int column; /* CFI speak for "register number". */
1137
1138 for (column = 0; column < fs->regs.num_regs; column++)
1139 {
1140 /* Use the GDB register number as the destination index. */
1141 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1142
1143 /* If there's no corresponding GDB register, ignore it. */
1144 if (regnum < 0 || regnum >= num_regs)
1145 continue;
1146
1147 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1148 of all debug info registers. If it doesn't, complain (but
1149 not too loudly). It turns out that GCC assumes that an
1150 unspecified register implies "same value" when CFI (draft
1151 7) specifies nothing at all. Such a register could equally
1152 be interpreted as "undefined". Also note that this check
1153 isn't sufficient; it only checks that all registers in the
1154 range [0 .. max column] are specified, and won't detect
1155 problems when a debug info register falls outside of the
1156 table. We need a way of iterating through all the valid
1157 DWARF2 register numbers. */
1158 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1159 {
1160 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1161 complaint (&symfile_complaints, _("\
1162 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1163 gdbarch_register_name (gdbarch, regnum),
1164 paddress (gdbarch, fs->pc));
1165 }
1166 else
1167 cache->reg[regnum] = fs->regs.reg[column];
1168 }
1169 }
1170
1171 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1172 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1173 {
1174 int regnum;
1175
1176 for (regnum = 0; regnum < num_regs; regnum++)
1177 {
1178 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1179 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1180 {
1181 struct dwarf2_frame_state_reg *retaddr_reg =
1182 &fs->regs.reg[fs->retaddr_column];
1183
1184 /* It seems rather bizarre to specify an "empty" column as
1185 the return adress column. However, this is exactly
1186 what GCC does on some targets. It turns out that GCC
1187 assumes that the return address can be found in the
1188 register corresponding to the return address column.
1189 Incidentally, that's how we should treat a return
1190 address column specifying "same value" too. */
1191 if (fs->retaddr_column < fs->regs.num_regs
1192 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1193 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1194 {
1195 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1196 cache->reg[regnum] = *retaddr_reg;
1197 else
1198 cache->retaddr_reg = *retaddr_reg;
1199 }
1200 else
1201 {
1202 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1203 {
1204 cache->reg[regnum].loc.reg = fs->retaddr_column;
1205 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1206 }
1207 else
1208 {
1209 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1210 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1211 }
1212 }
1213 }
1214 }
1215 }
1216
1217 if (fs->retaddr_column < fs->regs.num_regs
1218 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1219 cache->undefined_retaddr = 1;
1220
1221 do_cleanups (old_chain);
1222
1223 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1224 starting at THIS_FRAME. */
1225 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1226 (entry_cfa_sp_offset_p
1227 ? &entry_cfa_sp_offset : NULL));
1228
1229 return cache;
1230 }
1231
1232 static enum unwind_stop_reason
1233 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1234 void **this_cache)
1235 {
1236 struct dwarf2_frame_cache *cache
1237 = dwarf2_frame_cache (this_frame, this_cache);
1238
1239 if (cache->unavailable_retaddr)
1240 return UNWIND_UNAVAILABLE;
1241
1242 if (cache->undefined_retaddr)
1243 return UNWIND_OUTERMOST;
1244
1245 return UNWIND_NO_REASON;
1246 }
1247
1248 static void
1249 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1250 struct frame_id *this_id)
1251 {
1252 struct dwarf2_frame_cache *cache =
1253 dwarf2_frame_cache (this_frame, this_cache);
1254
1255 if (cache->unavailable_retaddr)
1256 return;
1257
1258 if (cache->undefined_retaddr)
1259 return;
1260
1261 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1262 }
1263
1264 static struct value *
1265 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1266 int regnum)
1267 {
1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1269 struct dwarf2_frame_cache *cache =
1270 dwarf2_frame_cache (this_frame, this_cache);
1271 CORE_ADDR addr;
1272 int realnum;
1273
1274 /* Non-bottom frames of a virtual tail call frames chain use
1275 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1276 them. If dwarf2_tailcall_prev_register_first does not have specific value
1277 unwind the register, tail call frames are assumed to have the register set
1278 of the top caller. */
1279 if (cache->tailcall_cache)
1280 {
1281 struct value *val;
1282
1283 val = dwarf2_tailcall_prev_register_first (this_frame,
1284 &cache->tailcall_cache,
1285 regnum);
1286 if (val)
1287 return val;
1288 }
1289
1290 switch (cache->reg[regnum].how)
1291 {
1292 case DWARF2_FRAME_REG_UNDEFINED:
1293 /* If CFI explicitly specified that the value isn't defined,
1294 mark it as optimized away; the value isn't available. */
1295 return frame_unwind_got_optimized (this_frame, regnum);
1296
1297 case DWARF2_FRAME_REG_SAVED_OFFSET:
1298 addr = cache->cfa + cache->reg[regnum].loc.offset;
1299 return frame_unwind_got_memory (this_frame, regnum, addr);
1300
1301 case DWARF2_FRAME_REG_SAVED_REG:
1302 realnum
1303 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1304 return frame_unwind_got_register (this_frame, regnum, realnum);
1305
1306 case DWARF2_FRAME_REG_SAVED_EXP:
1307 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1308 cache->reg[regnum].exp_len,
1309 cache->addr_size, cache->text_offset,
1310 this_frame, cache->cfa, 1);
1311 return frame_unwind_got_memory (this_frame, regnum, addr);
1312
1313 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1314 addr = cache->cfa + cache->reg[regnum].loc.offset;
1315 return frame_unwind_got_constant (this_frame, regnum, addr);
1316
1317 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1318 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1319 cache->reg[regnum].exp_len,
1320 cache->addr_size, cache->text_offset,
1321 this_frame, cache->cfa, 1);
1322 return frame_unwind_got_constant (this_frame, regnum, addr);
1323
1324 case DWARF2_FRAME_REG_UNSPECIFIED:
1325 /* GCC, in its infinite wisdom decided to not provide unwind
1326 information for registers that are "same value". Since
1327 DWARF2 (3 draft 7) doesn't define such behavior, said
1328 registers are actually undefined (which is different to CFI
1329 "undefined"). Code above issues a complaint about this.
1330 Here just fudge the books, assume GCC, and that the value is
1331 more inner on the stack. */
1332 return frame_unwind_got_register (this_frame, regnum, regnum);
1333
1334 case DWARF2_FRAME_REG_SAME_VALUE:
1335 return frame_unwind_got_register (this_frame, regnum, regnum);
1336
1337 case DWARF2_FRAME_REG_CFA:
1338 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1339
1340 case DWARF2_FRAME_REG_CFA_OFFSET:
1341 addr = cache->cfa + cache->reg[regnum].loc.offset;
1342 return frame_unwind_got_address (this_frame, regnum, addr);
1343
1344 case DWARF2_FRAME_REG_RA_OFFSET:
1345 addr = cache->reg[regnum].loc.offset;
1346 regnum = gdbarch_dwarf2_reg_to_regnum
1347 (gdbarch, cache->retaddr_reg.loc.reg);
1348 addr += get_frame_register_unsigned (this_frame, regnum);
1349 return frame_unwind_got_address (this_frame, regnum, addr);
1350
1351 case DWARF2_FRAME_REG_FN:
1352 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1353
1354 default:
1355 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1356 }
1357 }
1358
1359 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1360 call frames chain. */
1361
1362 static void
1363 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1364 {
1365 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1366
1367 if (cache->tailcall_cache)
1368 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1369 }
1370
1371 static int
1372 dwarf2_frame_sniffer (const struct frame_unwind *self,
1373 struct frame_info *this_frame, void **this_cache)
1374 {
1375 /* Grab an address that is guarenteed to reside somewhere within the
1376 function. get_frame_pc(), with a no-return next function, can
1377 end up returning something past the end of this function's body.
1378 If the frame we're sniffing for is a signal frame whose start
1379 address is placed on the stack by the OS, its FDE must
1380 extend one byte before its start address or we could potentially
1381 select the FDE of the previous function. */
1382 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1383 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1384
1385 if (!fde)
1386 return 0;
1387
1388 /* On some targets, signal trampolines may have unwind information.
1389 We need to recognize them so that we set the frame type
1390 correctly. */
1391
1392 if (fde->cie->signal_frame
1393 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1394 this_frame))
1395 return self->type == SIGTRAMP_FRAME;
1396
1397 if (self->type != NORMAL_FRAME)
1398 return 0;
1399
1400 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1401 dwarf2_tailcall_sniffer_first. */
1402 dwarf2_frame_cache (this_frame, this_cache);
1403
1404 return 1;
1405 }
1406
1407 static const struct frame_unwind dwarf2_frame_unwind =
1408 {
1409 NORMAL_FRAME,
1410 dwarf2_frame_unwind_stop_reason,
1411 dwarf2_frame_this_id,
1412 dwarf2_frame_prev_register,
1413 NULL,
1414 dwarf2_frame_sniffer,
1415 dwarf2_frame_dealloc_cache
1416 };
1417
1418 static const struct frame_unwind dwarf2_signal_frame_unwind =
1419 {
1420 SIGTRAMP_FRAME,
1421 dwarf2_frame_unwind_stop_reason,
1422 dwarf2_frame_this_id,
1423 dwarf2_frame_prev_register,
1424 NULL,
1425 dwarf2_frame_sniffer,
1426
1427 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1428 NULL
1429 };
1430
1431 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1432
1433 void
1434 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1435 {
1436 /* TAILCALL_FRAME must be first to find the record by
1437 dwarf2_tailcall_sniffer_first. */
1438 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1439
1440 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1441 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1442 }
1443 \f
1444
1445 /* There is no explicitly defined relationship between the CFA and the
1446 location of frame's local variables and arguments/parameters.
1447 Therefore, frame base methods on this page should probably only be
1448 used as a last resort, just to avoid printing total garbage as a
1449 response to the "info frame" command. */
1450
1451 static CORE_ADDR
1452 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1453 {
1454 struct dwarf2_frame_cache *cache =
1455 dwarf2_frame_cache (this_frame, this_cache);
1456
1457 return cache->cfa;
1458 }
1459
1460 static const struct frame_base dwarf2_frame_base =
1461 {
1462 &dwarf2_frame_unwind,
1463 dwarf2_frame_base_address,
1464 dwarf2_frame_base_address,
1465 dwarf2_frame_base_address
1466 };
1467
1468 const struct frame_base *
1469 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1470 {
1471 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1472
1473 if (dwarf2_frame_find_fde (&block_addr, NULL))
1474 return &dwarf2_frame_base;
1475
1476 return NULL;
1477 }
1478
1479 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1480 the DWARF unwinder. This is used to implement
1481 DW_OP_call_frame_cfa. */
1482
1483 CORE_ADDR
1484 dwarf2_frame_cfa (struct frame_info *this_frame)
1485 {
1486 while (get_frame_type (this_frame) == INLINE_FRAME)
1487 this_frame = get_prev_frame (this_frame);
1488 /* This restriction could be lifted if other unwinders are known to
1489 compute the frame base in a way compatible with the DWARF
1490 unwinder. */
1491 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1492 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1493 error (_("can't compute CFA for this frame"));
1494 return get_frame_base (this_frame);
1495 }
1496 \f
1497 const struct objfile_data *dwarf2_frame_objfile_data;
1498
1499 static unsigned int
1500 read_1_byte (bfd *abfd, gdb_byte *buf)
1501 {
1502 return bfd_get_8 (abfd, buf);
1503 }
1504
1505 static unsigned int
1506 read_4_bytes (bfd *abfd, gdb_byte *buf)
1507 {
1508 return bfd_get_32 (abfd, buf);
1509 }
1510
1511 static ULONGEST
1512 read_8_bytes (bfd *abfd, gdb_byte *buf)
1513 {
1514 return bfd_get_64 (abfd, buf);
1515 }
1516
1517 static ULONGEST
1518 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1519 {
1520 ULONGEST result;
1521 unsigned int num_read;
1522 int shift;
1523 gdb_byte byte;
1524
1525 result = 0;
1526 shift = 0;
1527 num_read = 0;
1528
1529 do
1530 {
1531 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1532 buf++;
1533 num_read++;
1534 result |= ((byte & 0x7f) << shift);
1535 shift += 7;
1536 }
1537 while (byte & 0x80);
1538
1539 *bytes_read_ptr = num_read;
1540
1541 return result;
1542 }
1543
1544 static LONGEST
1545 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1546 {
1547 LONGEST result;
1548 int shift;
1549 unsigned int num_read;
1550 gdb_byte byte;
1551
1552 result = 0;
1553 shift = 0;
1554 num_read = 0;
1555
1556 do
1557 {
1558 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1559 buf++;
1560 num_read++;
1561 result |= ((byte & 0x7f) << shift);
1562 shift += 7;
1563 }
1564 while (byte & 0x80);
1565
1566 if (shift < 8 * sizeof (result) && (byte & 0x40))
1567 result |= -(((LONGEST)1) << shift);
1568
1569 *bytes_read_ptr = num_read;
1570
1571 return result;
1572 }
1573
1574 static ULONGEST
1575 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1576 {
1577 LONGEST result;
1578
1579 result = bfd_get_32 (abfd, buf);
1580 if (result == 0xffffffff)
1581 {
1582 result = bfd_get_64 (abfd, buf + 4);
1583 *bytes_read_ptr = 12;
1584 }
1585 else
1586 *bytes_read_ptr = 4;
1587
1588 return result;
1589 }
1590 \f
1591
1592 /* Pointer encoding helper functions. */
1593
1594 /* GCC supports exception handling based on DWARF2 CFI. However, for
1595 technical reasons, it encodes addresses in its FDE's in a different
1596 way. Several "pointer encodings" are supported. The encoding
1597 that's used for a particular FDE is determined by the 'R'
1598 augmentation in the associated CIE. The argument of this
1599 augmentation is a single byte.
1600
1601 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1602 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1603 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1604 address should be interpreted (absolute, relative to the current
1605 position in the FDE, ...). Bit 7, indicates that the address
1606 should be dereferenced. */
1607
1608 static gdb_byte
1609 encoding_for_size (unsigned int size)
1610 {
1611 switch (size)
1612 {
1613 case 2:
1614 return DW_EH_PE_udata2;
1615 case 4:
1616 return DW_EH_PE_udata4;
1617 case 8:
1618 return DW_EH_PE_udata8;
1619 default:
1620 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1621 }
1622 }
1623
1624 static CORE_ADDR
1625 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1626 int ptr_len, const gdb_byte *buf,
1627 unsigned int *bytes_read_ptr,
1628 CORE_ADDR func_base)
1629 {
1630 ptrdiff_t offset;
1631 CORE_ADDR base;
1632
1633 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1634 FDE's. */
1635 if (encoding & DW_EH_PE_indirect)
1636 internal_error (__FILE__, __LINE__,
1637 _("Unsupported encoding: DW_EH_PE_indirect"));
1638
1639 *bytes_read_ptr = 0;
1640
1641 switch (encoding & 0x70)
1642 {
1643 case DW_EH_PE_absptr:
1644 base = 0;
1645 break;
1646 case DW_EH_PE_pcrel:
1647 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1648 base += (buf - unit->dwarf_frame_buffer);
1649 break;
1650 case DW_EH_PE_datarel:
1651 base = unit->dbase;
1652 break;
1653 case DW_EH_PE_textrel:
1654 base = unit->tbase;
1655 break;
1656 case DW_EH_PE_funcrel:
1657 base = func_base;
1658 break;
1659 case DW_EH_PE_aligned:
1660 base = 0;
1661 offset = buf - unit->dwarf_frame_buffer;
1662 if ((offset % ptr_len) != 0)
1663 {
1664 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1665 buf += *bytes_read_ptr;
1666 }
1667 break;
1668 default:
1669 internal_error (__FILE__, __LINE__,
1670 _("Invalid or unsupported encoding"));
1671 }
1672
1673 if ((encoding & 0x07) == 0x00)
1674 {
1675 encoding |= encoding_for_size (ptr_len);
1676 if (bfd_get_sign_extend_vma (unit->abfd))
1677 encoding |= DW_EH_PE_signed;
1678 }
1679
1680 switch (encoding & 0x0f)
1681 {
1682 case DW_EH_PE_uleb128:
1683 {
1684 ULONGEST value;
1685 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1686
1687 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1688 return base + value;
1689 }
1690 case DW_EH_PE_udata2:
1691 *bytes_read_ptr += 2;
1692 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1693 case DW_EH_PE_udata4:
1694 *bytes_read_ptr += 4;
1695 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1696 case DW_EH_PE_udata8:
1697 *bytes_read_ptr += 8;
1698 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1699 case DW_EH_PE_sleb128:
1700 {
1701 LONGEST value;
1702 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1703
1704 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1705 return base + value;
1706 }
1707 case DW_EH_PE_sdata2:
1708 *bytes_read_ptr += 2;
1709 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1710 case DW_EH_PE_sdata4:
1711 *bytes_read_ptr += 4;
1712 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1713 case DW_EH_PE_sdata8:
1714 *bytes_read_ptr += 8;
1715 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1716 default:
1717 internal_error (__FILE__, __LINE__,
1718 _("Invalid or unsupported encoding"));
1719 }
1720 }
1721 \f
1722
1723 static int
1724 bsearch_cie_cmp (const void *key, const void *element)
1725 {
1726 ULONGEST cie_pointer = *(ULONGEST *) key;
1727 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1728
1729 if (cie_pointer == cie->cie_pointer)
1730 return 0;
1731
1732 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1733 }
1734
1735 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1736 static struct dwarf2_cie *
1737 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1738 {
1739 struct dwarf2_cie **p_cie;
1740
1741 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1742 bsearch be non-NULL. */
1743 if (cie_table->entries == NULL)
1744 {
1745 gdb_assert (cie_table->num_entries == 0);
1746 return NULL;
1747 }
1748
1749 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1750 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1751 if (p_cie != NULL)
1752 return *p_cie;
1753 return NULL;
1754 }
1755
1756 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1757 static void
1758 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1759 {
1760 const int n = cie_table->num_entries;
1761
1762 gdb_assert (n < 1
1763 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1764
1765 cie_table->entries =
1766 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1767 cie_table->entries[n] = cie;
1768 cie_table->num_entries = n + 1;
1769 }
1770
1771 static int
1772 bsearch_fde_cmp (const void *key, const void *element)
1773 {
1774 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1775 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1776
1777 if (seek_pc < fde->initial_location)
1778 return -1;
1779 if (seek_pc < fde->initial_location + fde->address_range)
1780 return 0;
1781 return 1;
1782 }
1783
1784 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1785 inital location associated with it into *PC. */
1786
1787 static struct dwarf2_fde *
1788 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1789 {
1790 struct objfile *objfile;
1791
1792 ALL_OBJFILES (objfile)
1793 {
1794 struct dwarf2_fde_table *fde_table;
1795 struct dwarf2_fde **p_fde;
1796 CORE_ADDR offset;
1797 CORE_ADDR seek_pc;
1798
1799 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1800 if (fde_table == NULL)
1801 {
1802 dwarf2_build_frame_info (objfile);
1803 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1804 }
1805 gdb_assert (fde_table != NULL);
1806
1807 if (fde_table->num_entries == 0)
1808 continue;
1809
1810 gdb_assert (objfile->section_offsets);
1811 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1812
1813 gdb_assert (fde_table->num_entries > 0);
1814 if (*pc < offset + fde_table->entries[0]->initial_location)
1815 continue;
1816
1817 seek_pc = *pc - offset;
1818 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1819 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1820 if (p_fde != NULL)
1821 {
1822 *pc = (*p_fde)->initial_location + offset;
1823 if (out_offset)
1824 *out_offset = offset;
1825 return *p_fde;
1826 }
1827 }
1828 return NULL;
1829 }
1830
1831 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1832 static void
1833 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1834 {
1835 if (fde->address_range == 0)
1836 /* Discard useless FDEs. */
1837 return;
1838
1839 fde_table->num_entries += 1;
1840 fde_table->entries =
1841 xrealloc (fde_table->entries,
1842 fde_table->num_entries * sizeof (fde_table->entries[0]));
1843 fde_table->entries[fde_table->num_entries - 1] = fde;
1844 }
1845
1846 #ifdef CC_HAS_LONG_LONG
1847 #define DW64_CIE_ID 0xffffffffffffffffULL
1848 #else
1849 #define DW64_CIE_ID ~0
1850 #endif
1851
1852 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1853 or any of them. */
1854
1855 enum eh_frame_type
1856 {
1857 EH_CIE_TYPE_ID = 1 << 0,
1858 EH_FDE_TYPE_ID = 1 << 1,
1859 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1860 };
1861
1862 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1863 int eh_frame_p,
1864 struct dwarf2_cie_table *cie_table,
1865 struct dwarf2_fde_table *fde_table,
1866 enum eh_frame_type entry_type);
1867
1868 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1869 Return NULL if invalid input, otherwise the next byte to be processed. */
1870
1871 static gdb_byte *
1872 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1873 struct dwarf2_cie_table *cie_table,
1874 struct dwarf2_fde_table *fde_table,
1875 enum eh_frame_type entry_type)
1876 {
1877 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1878 gdb_byte *buf, *end;
1879 LONGEST length;
1880 unsigned int bytes_read;
1881 int dwarf64_p;
1882 ULONGEST cie_id;
1883 ULONGEST cie_pointer;
1884
1885 buf = start;
1886 length = read_initial_length (unit->abfd, buf, &bytes_read);
1887 buf += bytes_read;
1888 end = buf + length;
1889
1890 /* Are we still within the section? */
1891 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1892 return NULL;
1893
1894 if (length == 0)
1895 return end;
1896
1897 /* Distinguish between 32 and 64-bit encoded frame info. */
1898 dwarf64_p = (bytes_read == 12);
1899
1900 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1901 if (eh_frame_p)
1902 cie_id = 0;
1903 else if (dwarf64_p)
1904 cie_id = DW64_CIE_ID;
1905 else
1906 cie_id = DW_CIE_ID;
1907
1908 if (dwarf64_p)
1909 {
1910 cie_pointer = read_8_bytes (unit->abfd, buf);
1911 buf += 8;
1912 }
1913 else
1914 {
1915 cie_pointer = read_4_bytes (unit->abfd, buf);
1916 buf += 4;
1917 }
1918
1919 if (cie_pointer == cie_id)
1920 {
1921 /* This is a CIE. */
1922 struct dwarf2_cie *cie;
1923 char *augmentation;
1924 unsigned int cie_version;
1925
1926 /* Check that a CIE was expected. */
1927 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1928 error (_("Found a CIE when not expecting it."));
1929
1930 /* Record the offset into the .debug_frame section of this CIE. */
1931 cie_pointer = start - unit->dwarf_frame_buffer;
1932
1933 /* Check whether we've already read it. */
1934 if (find_cie (cie_table, cie_pointer))
1935 return end;
1936
1937 cie = (struct dwarf2_cie *)
1938 obstack_alloc (&unit->objfile->objfile_obstack,
1939 sizeof (struct dwarf2_cie));
1940 cie->initial_instructions = NULL;
1941 cie->cie_pointer = cie_pointer;
1942
1943 /* The encoding for FDE's in a normal .debug_frame section
1944 depends on the target address size. */
1945 cie->encoding = DW_EH_PE_absptr;
1946
1947 /* We'll determine the final value later, but we need to
1948 initialize it conservatively. */
1949 cie->signal_frame = 0;
1950
1951 /* Check version number. */
1952 cie_version = read_1_byte (unit->abfd, buf);
1953 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1954 return NULL;
1955 cie->version = cie_version;
1956 buf += 1;
1957
1958 /* Interpret the interesting bits of the augmentation. */
1959 cie->augmentation = augmentation = (char *) buf;
1960 buf += (strlen (augmentation) + 1);
1961
1962 /* Ignore armcc augmentations. We only use them for quirks,
1963 and that doesn't happen until later. */
1964 if (strncmp (augmentation, "armcc", 5) == 0)
1965 augmentation += strlen (augmentation);
1966
1967 /* The GCC 2.x "eh" augmentation has a pointer immediately
1968 following the augmentation string, so it must be handled
1969 first. */
1970 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1971 {
1972 /* Skip. */
1973 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1974 augmentation += 2;
1975 }
1976
1977 if (cie->version >= 4)
1978 {
1979 /* FIXME: check that this is the same as from the CU header. */
1980 cie->addr_size = read_1_byte (unit->abfd, buf);
1981 ++buf;
1982 cie->segment_size = read_1_byte (unit->abfd, buf);
1983 ++buf;
1984 }
1985 else
1986 {
1987 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1988 cie->segment_size = 0;
1989 }
1990 /* Address values in .eh_frame sections are defined to have the
1991 target's pointer size. Watchout: This breaks frame info for
1992 targets with pointer size < address size, unless a .debug_frame
1993 section exists as well. */
1994 if (eh_frame_p)
1995 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1996 else
1997 cie->ptr_size = cie->addr_size;
1998
1999 cie->code_alignment_factor =
2000 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2001 buf += bytes_read;
2002
2003 cie->data_alignment_factor =
2004 read_signed_leb128 (unit->abfd, buf, &bytes_read);
2005 buf += bytes_read;
2006
2007 if (cie_version == 1)
2008 {
2009 cie->return_address_register = read_1_byte (unit->abfd, buf);
2010 bytes_read = 1;
2011 }
2012 else
2013 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
2014 &bytes_read);
2015 cie->return_address_register
2016 = dwarf2_frame_adjust_regnum (gdbarch,
2017 cie->return_address_register,
2018 eh_frame_p);
2019
2020 buf += bytes_read;
2021
2022 cie->saw_z_augmentation = (*augmentation == 'z');
2023 if (cie->saw_z_augmentation)
2024 {
2025 ULONGEST length;
2026
2027 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2028 buf += bytes_read;
2029 if (buf > end)
2030 return NULL;
2031 cie->initial_instructions = buf + length;
2032 augmentation++;
2033 }
2034
2035 while (*augmentation)
2036 {
2037 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2038 if (*augmentation == 'L')
2039 {
2040 /* Skip. */
2041 buf++;
2042 augmentation++;
2043 }
2044
2045 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2046 else if (*augmentation == 'R')
2047 {
2048 cie->encoding = *buf++;
2049 augmentation++;
2050 }
2051
2052 /* "P" indicates a personality routine in the CIE augmentation. */
2053 else if (*augmentation == 'P')
2054 {
2055 /* Skip. Avoid indirection since we throw away the result. */
2056 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2057 read_encoded_value (unit, encoding, cie->ptr_size,
2058 buf, &bytes_read, 0);
2059 buf += bytes_read;
2060 augmentation++;
2061 }
2062
2063 /* "S" indicates a signal frame, such that the return
2064 address must not be decremented to locate the call frame
2065 info for the previous frame; it might even be the first
2066 instruction of a function, so decrementing it would take
2067 us to a different function. */
2068 else if (*augmentation == 'S')
2069 {
2070 cie->signal_frame = 1;
2071 augmentation++;
2072 }
2073
2074 /* Otherwise we have an unknown augmentation. Assume that either
2075 there is no augmentation data, or we saw a 'z' prefix. */
2076 else
2077 {
2078 if (cie->initial_instructions)
2079 buf = cie->initial_instructions;
2080 break;
2081 }
2082 }
2083
2084 cie->initial_instructions = buf;
2085 cie->end = end;
2086 cie->unit = unit;
2087
2088 add_cie (cie_table, cie);
2089 }
2090 else
2091 {
2092 /* This is a FDE. */
2093 struct dwarf2_fde *fde;
2094
2095 /* Check that an FDE was expected. */
2096 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2097 error (_("Found an FDE when not expecting it."));
2098
2099 /* In an .eh_frame section, the CIE pointer is the delta between the
2100 address within the FDE where the CIE pointer is stored and the
2101 address of the CIE. Convert it to an offset into the .eh_frame
2102 section. */
2103 if (eh_frame_p)
2104 {
2105 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2106 cie_pointer -= (dwarf64_p ? 8 : 4);
2107 }
2108
2109 /* In either case, validate the result is still within the section. */
2110 if (cie_pointer >= unit->dwarf_frame_size)
2111 return NULL;
2112
2113 fde = (struct dwarf2_fde *)
2114 obstack_alloc (&unit->objfile->objfile_obstack,
2115 sizeof (struct dwarf2_fde));
2116 fde->cie = find_cie (cie_table, cie_pointer);
2117 if (fde->cie == NULL)
2118 {
2119 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2120 eh_frame_p, cie_table, fde_table,
2121 EH_CIE_TYPE_ID);
2122 fde->cie = find_cie (cie_table, cie_pointer);
2123 }
2124
2125 gdb_assert (fde->cie != NULL);
2126
2127 fde->initial_location =
2128 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2129 buf, &bytes_read, 0);
2130 buf += bytes_read;
2131
2132 fde->address_range =
2133 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2134 fde->cie->ptr_size, buf, &bytes_read, 0);
2135 buf += bytes_read;
2136
2137 /* A 'z' augmentation in the CIE implies the presence of an
2138 augmentation field in the FDE as well. The only thing known
2139 to be in here at present is the LSDA entry for EH. So we
2140 can skip the whole thing. */
2141 if (fde->cie->saw_z_augmentation)
2142 {
2143 ULONGEST length;
2144
2145 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2146 buf += bytes_read + length;
2147 if (buf > end)
2148 return NULL;
2149 }
2150
2151 fde->instructions = buf;
2152 fde->end = end;
2153
2154 fde->eh_frame_p = eh_frame_p;
2155
2156 add_fde (fde_table, fde);
2157 }
2158
2159 return end;
2160 }
2161
2162 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2163 expect an FDE or a CIE. */
2164
2165 static gdb_byte *
2166 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2167 struct dwarf2_cie_table *cie_table,
2168 struct dwarf2_fde_table *fde_table,
2169 enum eh_frame_type entry_type)
2170 {
2171 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2172 gdb_byte *ret;
2173 ptrdiff_t start_offset;
2174
2175 while (1)
2176 {
2177 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2178 cie_table, fde_table, entry_type);
2179 if (ret != NULL)
2180 break;
2181
2182 /* We have corrupt input data of some form. */
2183
2184 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2185 and mismatches wrt padding and alignment of debug sections. */
2186 /* Note that there is no requirement in the standard for any
2187 alignment at all in the frame unwind sections. Testing for
2188 alignment before trying to interpret data would be incorrect.
2189
2190 However, GCC traditionally arranged for frame sections to be
2191 sized such that the FDE length and CIE fields happen to be
2192 aligned (in theory, for performance). This, unfortunately,
2193 was done with .align directives, which had the side effect of
2194 forcing the section to be aligned by the linker.
2195
2196 This becomes a problem when you have some other producer that
2197 creates frame sections that are not as strictly aligned. That
2198 produces a hole in the frame info that gets filled by the
2199 linker with zeros.
2200
2201 The GCC behaviour is arguably a bug, but it's effectively now
2202 part of the ABI, so we're now stuck with it, at least at the
2203 object file level. A smart linker may decide, in the process
2204 of compressing duplicate CIE information, that it can rewrite
2205 the entire output section without this extra padding. */
2206
2207 start_offset = start - unit->dwarf_frame_buffer;
2208 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2209 {
2210 start += 4 - (start_offset & 3);
2211 workaround = ALIGN4;
2212 continue;
2213 }
2214 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2215 {
2216 start += 8 - (start_offset & 7);
2217 workaround = ALIGN8;
2218 continue;
2219 }
2220
2221 /* Nothing left to try. Arrange to return as if we've consumed
2222 the entire input section. Hopefully we'll get valid info from
2223 the other of .debug_frame/.eh_frame. */
2224 workaround = FAIL;
2225 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2226 break;
2227 }
2228
2229 switch (workaround)
2230 {
2231 case NONE:
2232 break;
2233
2234 case ALIGN4:
2235 complaint (&symfile_complaints, _("\
2236 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2237 unit->dwarf_frame_section->owner->filename,
2238 unit->dwarf_frame_section->name);
2239 break;
2240
2241 case ALIGN8:
2242 complaint (&symfile_complaints, _("\
2243 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2244 unit->dwarf_frame_section->owner->filename,
2245 unit->dwarf_frame_section->name);
2246 break;
2247
2248 default:
2249 complaint (&symfile_complaints,
2250 _("Corrupt data in %s:%s"),
2251 unit->dwarf_frame_section->owner->filename,
2252 unit->dwarf_frame_section->name);
2253 break;
2254 }
2255
2256 return ret;
2257 }
2258 \f
2259 static int
2260 qsort_fde_cmp (const void *a, const void *b)
2261 {
2262 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2263 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2264
2265 if (aa->initial_location == bb->initial_location)
2266 {
2267 if (aa->address_range != bb->address_range
2268 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2269 /* Linker bug, e.g. gold/10400.
2270 Work around it by keeping stable sort order. */
2271 return (a < b) ? -1 : 1;
2272 else
2273 /* Put eh_frame entries after debug_frame ones. */
2274 return aa->eh_frame_p - bb->eh_frame_p;
2275 }
2276
2277 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2278 }
2279
2280 void
2281 dwarf2_build_frame_info (struct objfile *objfile)
2282 {
2283 struct comp_unit *unit;
2284 gdb_byte *frame_ptr;
2285 struct dwarf2_cie_table cie_table;
2286 struct dwarf2_fde_table fde_table;
2287 struct dwarf2_fde_table *fde_table2;
2288 volatile struct gdb_exception e;
2289
2290 cie_table.num_entries = 0;
2291 cie_table.entries = NULL;
2292
2293 fde_table.num_entries = 0;
2294 fde_table.entries = NULL;
2295
2296 /* Build a minimal decoding of the DWARF2 compilation unit. */
2297 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2298 sizeof (struct comp_unit));
2299 unit->abfd = objfile->obfd;
2300 unit->objfile = objfile;
2301 unit->dbase = 0;
2302 unit->tbase = 0;
2303
2304 if (objfile->separate_debug_objfile_backlink == NULL)
2305 {
2306 /* Do not read .eh_frame from separate file as they must be also
2307 present in the main file. */
2308 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2309 &unit->dwarf_frame_section,
2310 &unit->dwarf_frame_buffer,
2311 &unit->dwarf_frame_size);
2312 if (unit->dwarf_frame_size)
2313 {
2314 asection *got, *txt;
2315
2316 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2317 that is used for the i386/amd64 target, which currently is
2318 the only target in GCC that supports/uses the
2319 DW_EH_PE_datarel encoding. */
2320 got = bfd_get_section_by_name (unit->abfd, ".got");
2321 if (got)
2322 unit->dbase = got->vma;
2323
2324 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2325 so far. */
2326 txt = bfd_get_section_by_name (unit->abfd, ".text");
2327 if (txt)
2328 unit->tbase = txt->vma;
2329
2330 TRY_CATCH (e, RETURN_MASK_ERROR)
2331 {
2332 frame_ptr = unit->dwarf_frame_buffer;
2333 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2334 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2335 &cie_table, &fde_table,
2336 EH_CIE_OR_FDE_TYPE_ID);
2337 }
2338
2339 if (e.reason < 0)
2340 {
2341 warning (_("skipping .eh_frame info of %s: %s"),
2342 objfile->name, e.message);
2343
2344 if (fde_table.num_entries != 0)
2345 {
2346 xfree (fde_table.entries);
2347 fde_table.entries = NULL;
2348 fde_table.num_entries = 0;
2349 }
2350 /* The cie_table is discarded by the next if. */
2351 }
2352
2353 if (cie_table.num_entries != 0)
2354 {
2355 /* Reinit cie_table: debug_frame has different CIEs. */
2356 xfree (cie_table.entries);
2357 cie_table.num_entries = 0;
2358 cie_table.entries = NULL;
2359 }
2360 }
2361 }
2362
2363 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2364 &unit->dwarf_frame_section,
2365 &unit->dwarf_frame_buffer,
2366 &unit->dwarf_frame_size);
2367 if (unit->dwarf_frame_size)
2368 {
2369 int num_old_fde_entries = fde_table.num_entries;
2370
2371 TRY_CATCH (e, RETURN_MASK_ERROR)
2372 {
2373 frame_ptr = unit->dwarf_frame_buffer;
2374 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2375 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2376 &cie_table, &fde_table,
2377 EH_CIE_OR_FDE_TYPE_ID);
2378 }
2379 if (e.reason < 0)
2380 {
2381 warning (_("skipping .debug_frame info of %s: %s"),
2382 objfile->name, e.message);
2383
2384 if (fde_table.num_entries != 0)
2385 {
2386 fde_table.num_entries = num_old_fde_entries;
2387 if (num_old_fde_entries == 0)
2388 {
2389 xfree (fde_table.entries);
2390 fde_table.entries = NULL;
2391 }
2392 else
2393 {
2394 fde_table.entries = xrealloc (fde_table.entries,
2395 fde_table.num_entries *
2396 sizeof (fde_table.entries[0]));
2397 }
2398 }
2399 fde_table.num_entries = num_old_fde_entries;
2400 /* The cie_table is discarded by the next if. */
2401 }
2402 }
2403
2404 /* Discard the cie_table, it is no longer needed. */
2405 if (cie_table.num_entries != 0)
2406 {
2407 xfree (cie_table.entries);
2408 cie_table.entries = NULL; /* Paranoia. */
2409 cie_table.num_entries = 0; /* Paranoia. */
2410 }
2411
2412 /* Copy fde_table to obstack: it is needed at runtime. */
2413 fde_table2 = (struct dwarf2_fde_table *)
2414 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2415
2416 if (fde_table.num_entries == 0)
2417 {
2418 fde_table2->entries = NULL;
2419 fde_table2->num_entries = 0;
2420 }
2421 else
2422 {
2423 struct dwarf2_fde *fde_prev = NULL;
2424 struct dwarf2_fde *first_non_zero_fde = NULL;
2425 int i;
2426
2427 /* Prepare FDE table for lookups. */
2428 qsort (fde_table.entries, fde_table.num_entries,
2429 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2430
2431 /* Check for leftovers from --gc-sections. The GNU linker sets
2432 the relevant symbols to zero, but doesn't zero the FDE *end*
2433 ranges because there's no relocation there. It's (offset,
2434 length), not (start, end). On targets where address zero is
2435 just another valid address this can be a problem, since the
2436 FDEs appear to be non-empty in the output --- we could pick
2437 out the wrong FDE. To work around this, when overlaps are
2438 detected, we prefer FDEs that do not start at zero.
2439
2440 Start by finding the first FDE with non-zero start. Below
2441 we'll discard all FDEs that start at zero and overlap this
2442 one. */
2443 for (i = 0; i < fde_table.num_entries; i++)
2444 {
2445 struct dwarf2_fde *fde = fde_table.entries[i];
2446
2447 if (fde->initial_location != 0)
2448 {
2449 first_non_zero_fde = fde;
2450 break;
2451 }
2452 }
2453
2454 /* Since we'll be doing bsearch, squeeze out identical (except
2455 for eh_frame_p) fde entries so bsearch result is predictable.
2456 Also discard leftovers from --gc-sections. */
2457 fde_table2->num_entries = 0;
2458 for (i = 0; i < fde_table.num_entries; i++)
2459 {
2460 struct dwarf2_fde *fde = fde_table.entries[i];
2461
2462 if (fde->initial_location == 0
2463 && first_non_zero_fde != NULL
2464 && (first_non_zero_fde->initial_location
2465 < fde->initial_location + fde->address_range))
2466 continue;
2467
2468 if (fde_prev != NULL
2469 && fde_prev->initial_location == fde->initial_location)
2470 continue;
2471
2472 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2473 sizeof (fde_table.entries[0]));
2474 ++fde_table2->num_entries;
2475 fde_prev = fde;
2476 }
2477 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2478
2479 /* Discard the original fde_table. */
2480 xfree (fde_table.entries);
2481 }
2482
2483 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2484 }
2485
2486 /* Provide a prototype to silence -Wmissing-prototypes. */
2487 void _initialize_dwarf2_frame (void);
2488
2489 void
2490 _initialize_dwarf2_frame (void)
2491 {
2492 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2493 dwarf2_frame_objfile_data = register_objfile_data ();
2494 }
This page took 0.13008 seconds and 5 git commands to generate.