DWARF-5: call sites
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* Target pointer size in bytes. */
81 int ptr_size;
82
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
89 /* The version recorded in the CIE. */
90 unsigned char version;
91
92 /* The segment size. */
93 unsigned char segment_size;
94 };
95
96 struct dwarf2_cie_table
97 {
98 int num_entries;
99 struct dwarf2_cie **entries;
100 };
101
102 /* Frame Description Entry (FDE). */
103
104 struct dwarf2_fde
105 {
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
118
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
122 };
123
124 struct dwarf2_fde_table
125 {
126 int num_entries;
127 struct dwarf2_fde **entries;
128 };
129
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133 struct comp_unit
134 {
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
142
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154 };
155
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
158
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
161
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
166 \f
167
168 enum cfa_how_kind
169 {
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173 };
174
175 struct dwarf2_frame_state_reg_info
176 {
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187 };
188
189 /* Structure describing a frame state. */
190
191 struct dwarf2_frame_state
192 {
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
195 struct dwarf2_frame_state_reg_info regs;
196
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
218 };
219
220 /* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222 #define cfa_exp_len cfa_reg
223
224 /* Assert that the register set RS is large enough to store gdbarch_num_regs
225 columns. If necessary, enlarge the register set. */
226
227 static void
228 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230 {
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
241 rs->num_regs = num_regs;
242 }
243
244 /* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247 static struct dwarf2_frame_state_reg *
248 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249 {
250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257 }
258
259 /* Release the memory allocated to register set RS. */
260
261 static void
262 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263 {
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271 }
272
273 /* Release the memory allocated to the frame state FS. */
274
275 static void
276 dwarf2_frame_state_free (void *p)
277 {
278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285 }
286 \f
287
288 /* Helper functions for execute_stack_op. */
289
290 static CORE_ADDR
291 read_addr_from_reg (struct frame_info *this_frame, int reg)
292 {
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
295
296 return address_from_register (regnum, this_frame);
297 }
298
299 /* Execute the required actions for both the DW_CFA_restore and
300 DW_CFA_restore_extended instructions. */
301 static void
302 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
303 struct dwarf2_frame_state *fs, int eh_frame_p)
304 {
305 ULONGEST reg;
306
307 gdb_assert (fs->initial.reg);
308 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
309 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
310
311 /* Check if this register was explicitly initialized in the
312 CIE initial instructions. If not, default the rule to
313 UNSPECIFIED. */
314 if (reg < fs->initial.num_regs)
315 fs->regs.reg[reg] = fs->initial.reg[reg];
316 else
317 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
318
319 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
320 {
321 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
322
323 complaint (&symfile_complaints, _("\
324 incomplete CFI data; DW_CFA_restore unspecified\n\
325 register %s (#%d) at %s"),
326 gdbarch_register_name (gdbarch, regnum), regnum,
327 paddress (gdbarch, fs->pc));
328 }
329 }
330
331 class dwarf_expr_executor : public dwarf_expr_context
332 {
333 public:
334
335 struct frame_info *this_frame;
336
337 CORE_ADDR read_addr_from_reg (int reg) OVERRIDE
338 {
339 return ::read_addr_from_reg (this_frame, reg);
340 }
341
342 struct value *get_reg_value (struct type *type, int reg) OVERRIDE
343 {
344 struct gdbarch *gdbarch = get_frame_arch (this_frame);
345 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
346
347 return value_from_register (type, regnum, this_frame);
348 }
349
350 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
351 {
352 read_memory (addr, buf, len);
353 }
354
355 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
356 {
357 invalid ("DW_OP_fbreg");
358 }
359
360 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
361 union call_site_parameter_u kind_u,
362 int deref_size) OVERRIDE
363 {
364 invalid ("DW_OP_entry_value");
365 }
366
367 CORE_ADDR get_object_address () OVERRIDE
368 {
369 invalid ("DW_OP_push_object_address");
370 }
371
372 CORE_ADDR get_frame_cfa () OVERRIDE
373 {
374 invalid ("DW_OP_call_frame_cfa");
375 }
376
377 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
378 {
379 invalid ("DW_OP_form_tls_address");
380 }
381
382 void dwarf_call (cu_offset die_offset) OVERRIDE
383 {
384 invalid ("DW_OP_call*");
385 }
386
387 CORE_ADDR get_addr_index (unsigned int index)
388 {
389 invalid ("DW_OP_GNU_addr_index");
390 }
391
392 private:
393
394 void invalid (const char *op) ATTRIBUTE_NORETURN
395 {
396 error (_("%s is invalid in this context"), op);
397 }
398 };
399
400 static CORE_ADDR
401 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
402 CORE_ADDR offset, struct frame_info *this_frame,
403 CORE_ADDR initial, int initial_in_stack_memory)
404 {
405 CORE_ADDR result;
406
407 dwarf_expr_executor ctx;
408 scoped_value_mark free_values;
409
410 ctx.this_frame = this_frame;
411 ctx.gdbarch = get_frame_arch (this_frame);
412 ctx.addr_size = addr_size;
413 ctx.ref_addr_size = -1;
414 ctx.offset = offset;
415
416 ctx.push_address (initial, initial_in_stack_memory);
417 ctx.eval (exp, len);
418
419 if (ctx.location == DWARF_VALUE_MEMORY)
420 result = ctx.fetch_address (0);
421 else if (ctx.location == DWARF_VALUE_REGISTER)
422 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
423 else
424 {
425 /* This is actually invalid DWARF, but if we ever do run across
426 it somehow, we might as well support it. So, instead, report
427 it as unimplemented. */
428 error (_("\
429 Not implemented: computing unwound register using explicit value operator"));
430 }
431
432 return result;
433 }
434 \f
435
436 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
437 PC. Modify FS state accordingly. Return current INSN_PTR where the
438 execution has stopped, one can resume it on the next call. */
439
440 static const gdb_byte *
441 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
442 const gdb_byte *insn_end, struct gdbarch *gdbarch,
443 CORE_ADDR pc, struct dwarf2_frame_state *fs)
444 {
445 int eh_frame_p = fde->eh_frame_p;
446 unsigned int bytes_read;
447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
448
449 while (insn_ptr < insn_end && fs->pc <= pc)
450 {
451 gdb_byte insn = *insn_ptr++;
452 uint64_t utmp, reg;
453 int64_t offset;
454
455 if ((insn & 0xc0) == DW_CFA_advance_loc)
456 fs->pc += (insn & 0x3f) * fs->code_align;
457 else if ((insn & 0xc0) == DW_CFA_offset)
458 {
459 reg = insn & 0x3f;
460 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
461 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
462 offset = utmp * fs->data_align;
463 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
464 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
465 fs->regs.reg[reg].loc.offset = offset;
466 }
467 else if ((insn & 0xc0) == DW_CFA_restore)
468 {
469 reg = insn & 0x3f;
470 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
471 }
472 else
473 {
474 switch (insn)
475 {
476 case DW_CFA_set_loc:
477 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
478 fde->cie->ptr_size, insn_ptr,
479 &bytes_read, fde->initial_location);
480 /* Apply the objfile offset for relocatable objects. */
481 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
482 SECT_OFF_TEXT (fde->cie->unit->objfile));
483 insn_ptr += bytes_read;
484 break;
485
486 case DW_CFA_advance_loc1:
487 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
488 fs->pc += utmp * fs->code_align;
489 insn_ptr++;
490 break;
491 case DW_CFA_advance_loc2:
492 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
493 fs->pc += utmp * fs->code_align;
494 insn_ptr += 2;
495 break;
496 case DW_CFA_advance_loc4:
497 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
498 fs->pc += utmp * fs->code_align;
499 insn_ptr += 4;
500 break;
501
502 case DW_CFA_offset_extended:
503 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
504 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
505 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
506 offset = utmp * fs->data_align;
507 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
508 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
509 fs->regs.reg[reg].loc.offset = offset;
510 break;
511
512 case DW_CFA_restore_extended:
513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
514 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
515 break;
516
517 case DW_CFA_undefined:
518 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
519 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
520 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
521 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
522 break;
523
524 case DW_CFA_same_value:
525 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
526 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
527 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
528 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
529 break;
530
531 case DW_CFA_register:
532 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
533 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
534 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
535 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
536 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
537 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
538 fs->regs.reg[reg].loc.reg = utmp;
539 break;
540
541 case DW_CFA_remember_state:
542 {
543 struct dwarf2_frame_state_reg_info *new_rs;
544
545 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
546 *new_rs = fs->regs;
547 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
548 fs->regs.prev = new_rs;
549 }
550 break;
551
552 case DW_CFA_restore_state:
553 {
554 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
555
556 if (old_rs == NULL)
557 {
558 complaint (&symfile_complaints, _("\
559 bad CFI data; mismatched DW_CFA_restore_state at %s"),
560 paddress (gdbarch, fs->pc));
561 }
562 else
563 {
564 xfree (fs->regs.reg);
565 fs->regs = *old_rs;
566 xfree (old_rs);
567 }
568 }
569 break;
570
571 case DW_CFA_def_cfa:
572 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
573 fs->regs.cfa_reg = reg;
574 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
575
576 if (fs->armcc_cfa_offsets_sf)
577 utmp *= fs->data_align;
578
579 fs->regs.cfa_offset = utmp;
580 fs->regs.cfa_how = CFA_REG_OFFSET;
581 break;
582
583 case DW_CFA_def_cfa_register:
584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
585 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
586 eh_frame_p);
587 fs->regs.cfa_how = CFA_REG_OFFSET;
588 break;
589
590 case DW_CFA_def_cfa_offset:
591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
592
593 if (fs->armcc_cfa_offsets_sf)
594 utmp *= fs->data_align;
595
596 fs->regs.cfa_offset = utmp;
597 /* cfa_how deliberately not set. */
598 break;
599
600 case DW_CFA_nop:
601 break;
602
603 case DW_CFA_def_cfa_expression:
604 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
605 fs->regs.cfa_exp_len = utmp;
606 fs->regs.cfa_exp = insn_ptr;
607 fs->regs.cfa_how = CFA_EXP;
608 insn_ptr += fs->regs.cfa_exp_len;
609 break;
610
611 case DW_CFA_expression:
612 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
613 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
614 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
615 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
616 fs->regs.reg[reg].loc.exp = insn_ptr;
617 fs->regs.reg[reg].exp_len = utmp;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
619 insn_ptr += utmp;
620 break;
621
622 case DW_CFA_offset_extended_sf:
623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
624 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
625 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
626 offset *= fs->data_align;
627 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
629 fs->regs.reg[reg].loc.offset = offset;
630 break;
631
632 case DW_CFA_val_offset:
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
635 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
636 offset = utmp * fs->data_align;
637 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
638 fs->regs.reg[reg].loc.offset = offset;
639 break;
640
641 case DW_CFA_val_offset_sf:
642 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
643 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
644 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
645 offset *= fs->data_align;
646 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
647 fs->regs.reg[reg].loc.offset = offset;
648 break;
649
650 case DW_CFA_val_expression:
651 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
652 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
653 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
654 fs->regs.reg[reg].loc.exp = insn_ptr;
655 fs->regs.reg[reg].exp_len = utmp;
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
657 insn_ptr += utmp;
658 break;
659
660 case DW_CFA_def_cfa_sf:
661 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
662 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
663 eh_frame_p);
664 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
665 fs->regs.cfa_offset = offset * fs->data_align;
666 fs->regs.cfa_how = CFA_REG_OFFSET;
667 break;
668
669 case DW_CFA_def_cfa_offset_sf:
670 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
671 fs->regs.cfa_offset = offset * fs->data_align;
672 /* cfa_how deliberately not set. */
673 break;
674
675 case DW_CFA_GNU_window_save:
676 /* This is SPARC-specific code, and contains hard-coded
677 constants for the register numbering scheme used by
678 GCC. Rather than having a architecture-specific
679 operation that's only ever used by a single
680 architecture, we provide the implementation here.
681 Incidentally that's what GCC does too in its
682 unwinder. */
683 {
684 int size = register_size (gdbarch, 0);
685
686 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
687 for (reg = 8; reg < 16; reg++)
688 {
689 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
690 fs->regs.reg[reg].loc.reg = reg + 16;
691 }
692 for (reg = 16; reg < 32; reg++)
693 {
694 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
695 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
696 }
697 }
698 break;
699
700 case DW_CFA_GNU_args_size:
701 /* Ignored. */
702 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
703 break;
704
705 case DW_CFA_GNU_negative_offset_extended:
706 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
707 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
708 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
709 offset = utmp * fs->data_align;
710 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
711 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
712 fs->regs.reg[reg].loc.offset = -offset;
713 break;
714
715 default:
716 internal_error (__FILE__, __LINE__,
717 _("Unknown CFI encountered."));
718 }
719 }
720 }
721
722 if (fs->initial.reg == NULL)
723 {
724 /* Don't allow remember/restore between CIE and FDE programs. */
725 dwarf2_frame_state_free_regs (fs->regs.prev);
726 fs->regs.prev = NULL;
727 }
728
729 return insn_ptr;
730 }
731 \f
732
733 /* Architecture-specific operations. */
734
735 /* Per-architecture data key. */
736 static struct gdbarch_data *dwarf2_frame_data;
737
738 struct dwarf2_frame_ops
739 {
740 /* Pre-initialize the register state REG for register REGNUM. */
741 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
742 struct frame_info *);
743
744 /* Check whether the THIS_FRAME is a signal trampoline. */
745 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
746
747 /* Convert .eh_frame register number to DWARF register number, or
748 adjust .debug_frame register number. */
749 int (*adjust_regnum) (struct gdbarch *, int, int);
750 };
751
752 /* Default architecture-specific register state initialization
753 function. */
754
755 static void
756 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
757 struct dwarf2_frame_state_reg *reg,
758 struct frame_info *this_frame)
759 {
760 /* If we have a register that acts as a program counter, mark it as
761 a destination for the return address. If we have a register that
762 serves as the stack pointer, arrange for it to be filled with the
763 call frame address (CFA). The other registers are marked as
764 unspecified.
765
766 We copy the return address to the program counter, since many
767 parts in GDB assume that it is possible to get the return address
768 by unwinding the program counter register. However, on ISA's
769 with a dedicated return address register, the CFI usually only
770 contains information to unwind that return address register.
771
772 The reason we're treating the stack pointer special here is
773 because in many cases GCC doesn't emit CFI for the stack pointer
774 and implicitly assumes that it is equal to the CFA. This makes
775 some sense since the DWARF specification (version 3, draft 8,
776 p. 102) says that:
777
778 "Typically, the CFA is defined to be the value of the stack
779 pointer at the call site in the previous frame (which may be
780 different from its value on entry to the current frame)."
781
782 However, this isn't true for all platforms supported by GCC
783 (e.g. IBM S/390 and zSeries). Those architectures should provide
784 their own architecture-specific initialization function. */
785
786 if (regnum == gdbarch_pc_regnum (gdbarch))
787 reg->how = DWARF2_FRAME_REG_RA;
788 else if (regnum == gdbarch_sp_regnum (gdbarch))
789 reg->how = DWARF2_FRAME_REG_CFA;
790 }
791
792 /* Return a default for the architecture-specific operations. */
793
794 static void *
795 dwarf2_frame_init (struct obstack *obstack)
796 {
797 struct dwarf2_frame_ops *ops;
798
799 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
800 ops->init_reg = dwarf2_frame_default_init_reg;
801 return ops;
802 }
803
804 /* Set the architecture-specific register state initialization
805 function for GDBARCH to INIT_REG. */
806
807 void
808 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
809 void (*init_reg) (struct gdbarch *, int,
810 struct dwarf2_frame_state_reg *,
811 struct frame_info *))
812 {
813 struct dwarf2_frame_ops *ops
814 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->init_reg = init_reg;
817 }
818
819 /* Pre-initialize the register state REG for register REGNUM. */
820
821 static void
822 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
823 struct dwarf2_frame_state_reg *reg,
824 struct frame_info *this_frame)
825 {
826 struct dwarf2_frame_ops *ops
827 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
828
829 ops->init_reg (gdbarch, regnum, reg, this_frame);
830 }
831
832 /* Set the architecture-specific signal trampoline recognition
833 function for GDBARCH to SIGNAL_FRAME_P. */
834
835 void
836 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
837 int (*signal_frame_p) (struct gdbarch *,
838 struct frame_info *))
839 {
840 struct dwarf2_frame_ops *ops
841 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
842
843 ops->signal_frame_p = signal_frame_p;
844 }
845
846 /* Query the architecture-specific signal frame recognizer for
847 THIS_FRAME. */
848
849 static int
850 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
851 struct frame_info *this_frame)
852 {
853 struct dwarf2_frame_ops *ops
854 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
855
856 if (ops->signal_frame_p == NULL)
857 return 0;
858 return ops->signal_frame_p (gdbarch, this_frame);
859 }
860
861 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
862 register numbers. */
863
864 void
865 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
866 int (*adjust_regnum) (struct gdbarch *,
867 int, int))
868 {
869 struct dwarf2_frame_ops *ops
870 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
871
872 ops->adjust_regnum = adjust_regnum;
873 }
874
875 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
876 register. */
877
878 static int
879 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
880 int regnum, int eh_frame_p)
881 {
882 struct dwarf2_frame_ops *ops
883 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
884
885 if (ops->adjust_regnum == NULL)
886 return regnum;
887 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
888 }
889
890 static void
891 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
892 struct dwarf2_fde *fde)
893 {
894 struct compunit_symtab *cust;
895
896 cust = find_pc_compunit_symtab (fs->pc);
897 if (cust == NULL)
898 return;
899
900 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
901 {
902 if (fde->cie->version == 1)
903 fs->armcc_cfa_offsets_sf = 1;
904
905 if (fde->cie->version == 1)
906 fs->armcc_cfa_offsets_reversed = 1;
907
908 /* The reversed offset problem is present in some compilers
909 using DWARF3, but it was eventually fixed. Check the ARM
910 defined augmentations, which are in the format "armcc" followed
911 by a list of one-character options. The "+" option means
912 this problem is fixed (no quirk needed). If the armcc
913 augmentation is missing, the quirk is needed. */
914 if (fde->cie->version == 3
915 && (!startswith (fde->cie->augmentation, "armcc")
916 || strchr (fde->cie->augmentation + 5, '+') == NULL))
917 fs->armcc_cfa_offsets_reversed = 1;
918
919 return;
920 }
921 }
922 \f
923
924 /* See dwarf2-frame.h. */
925
926 int
927 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
928 struct dwarf2_per_cu_data *data,
929 int *regnum_out, LONGEST *offset_out,
930 CORE_ADDR *text_offset_out,
931 const gdb_byte **cfa_start_out,
932 const gdb_byte **cfa_end_out)
933 {
934 struct dwarf2_fde *fde;
935 CORE_ADDR text_offset;
936 struct dwarf2_frame_state fs;
937
938 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
939
940 fs.pc = pc;
941
942 /* Find the correct FDE. */
943 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
944 if (fde == NULL)
945 error (_("Could not compute CFA; needed to translate this expression"));
946
947 /* Extract any interesting information from the CIE. */
948 fs.data_align = fde->cie->data_alignment_factor;
949 fs.code_align = fde->cie->code_alignment_factor;
950 fs.retaddr_column = fde->cie->return_address_register;
951
952 /* Check for "quirks" - known bugs in producers. */
953 dwarf2_frame_find_quirks (&fs, fde);
954
955 /* First decode all the insns in the CIE. */
956 execute_cfa_program (fde, fde->cie->initial_instructions,
957 fde->cie->end, gdbarch, pc, &fs);
958
959 /* Save the initialized register set. */
960 fs.initial = fs.regs;
961 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
962
963 /* Then decode the insns in the FDE up to our target PC. */
964 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
965
966 /* Calculate the CFA. */
967 switch (fs.regs.cfa_how)
968 {
969 case CFA_REG_OFFSET:
970 {
971 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
972
973 *regnum_out = regnum;
974 if (fs.armcc_cfa_offsets_reversed)
975 *offset_out = -fs.regs.cfa_offset;
976 else
977 *offset_out = fs.regs.cfa_offset;
978 return 1;
979 }
980
981 case CFA_EXP:
982 *text_offset_out = text_offset;
983 *cfa_start_out = fs.regs.cfa_exp;
984 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
985 return 0;
986
987 default:
988 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
989 }
990 }
991
992 \f
993 struct dwarf2_frame_cache
994 {
995 /* DWARF Call Frame Address. */
996 CORE_ADDR cfa;
997
998 /* Set if the return address column was marked as unavailable
999 (required non-collected memory or registers to compute). */
1000 int unavailable_retaddr;
1001
1002 /* Set if the return address column was marked as undefined. */
1003 int undefined_retaddr;
1004
1005 /* Saved registers, indexed by GDB register number, not by DWARF
1006 register number. */
1007 struct dwarf2_frame_state_reg *reg;
1008
1009 /* Return address register. */
1010 struct dwarf2_frame_state_reg retaddr_reg;
1011
1012 /* Target address size in bytes. */
1013 int addr_size;
1014
1015 /* The .text offset. */
1016 CORE_ADDR text_offset;
1017
1018 /* True if we already checked whether this frame is the bottom frame
1019 of a virtual tail call frame chain. */
1020 int checked_tailcall_bottom;
1021
1022 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1023 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1024 involved. Non-bottom frames of a virtual tail call frames chain use
1025 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1026 them. */
1027 void *tailcall_cache;
1028
1029 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1030 base to get the SP, to simulate the return address pushed on the
1031 stack. */
1032 LONGEST entry_cfa_sp_offset;
1033 int entry_cfa_sp_offset_p;
1034 };
1035
1036 /* A cleanup that sets a pointer to NULL. */
1037
1038 static void
1039 clear_pointer_cleanup (void *arg)
1040 {
1041 void **ptr = (void **) arg;
1042
1043 *ptr = NULL;
1044 }
1045
1046 static struct dwarf2_frame_cache *
1047 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1048 {
1049 struct cleanup *reset_cache_cleanup, *old_chain;
1050 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1051 const int num_regs = gdbarch_num_regs (gdbarch)
1052 + gdbarch_num_pseudo_regs (gdbarch);
1053 struct dwarf2_frame_cache *cache;
1054 struct dwarf2_frame_state *fs;
1055 struct dwarf2_fde *fde;
1056 CORE_ADDR entry_pc;
1057 const gdb_byte *instr;
1058
1059 if (*this_cache)
1060 return (struct dwarf2_frame_cache *) *this_cache;
1061
1062 /* Allocate a new cache. */
1063 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1064 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1065 *this_cache = cache;
1066 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1067
1068 /* Allocate and initialize the frame state. */
1069 fs = XCNEW (struct dwarf2_frame_state);
1070 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1071
1072 /* Unwind the PC.
1073
1074 Note that if the next frame is never supposed to return (i.e. a call
1075 to abort), the compiler might optimize away the instruction at
1076 its return address. As a result the return address will
1077 point at some random instruction, and the CFI for that
1078 instruction is probably worthless to us. GCC's unwinder solves
1079 this problem by substracting 1 from the return address to get an
1080 address in the middle of a presumed call instruction (or the
1081 instruction in the associated delay slot). This should only be
1082 done for "normal" frames and not for resume-type frames (signal
1083 handlers, sentinel frames, dummy frames). The function
1084 get_frame_address_in_block does just this. It's not clear how
1085 reliable the method is though; there is the potential for the
1086 register state pre-call being different to that on return. */
1087 fs->pc = get_frame_address_in_block (this_frame);
1088
1089 /* Find the correct FDE. */
1090 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1091 gdb_assert (fde != NULL);
1092
1093 /* Extract any interesting information from the CIE. */
1094 fs->data_align = fde->cie->data_alignment_factor;
1095 fs->code_align = fde->cie->code_alignment_factor;
1096 fs->retaddr_column = fde->cie->return_address_register;
1097 cache->addr_size = fde->cie->addr_size;
1098
1099 /* Check for "quirks" - known bugs in producers. */
1100 dwarf2_frame_find_quirks (fs, fde);
1101
1102 /* First decode all the insns in the CIE. */
1103 execute_cfa_program (fde, fde->cie->initial_instructions,
1104 fde->cie->end, gdbarch,
1105 get_frame_address_in_block (this_frame), fs);
1106
1107 /* Save the initialized register set. */
1108 fs->initial = fs->regs;
1109 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1110
1111 if (get_frame_func_if_available (this_frame, &entry_pc))
1112 {
1113 /* Decode the insns in the FDE up to the entry PC. */
1114 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1115 entry_pc, fs);
1116
1117 if (fs->regs.cfa_how == CFA_REG_OFFSET
1118 && (dwarf_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1119 == gdbarch_sp_regnum (gdbarch)))
1120 {
1121 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1122 cache->entry_cfa_sp_offset_p = 1;
1123 }
1124 }
1125 else
1126 instr = fde->instructions;
1127
1128 /* Then decode the insns in the FDE up to our target PC. */
1129 execute_cfa_program (fde, instr, fde->end, gdbarch,
1130 get_frame_address_in_block (this_frame), fs);
1131
1132 TRY
1133 {
1134 /* Calculate the CFA. */
1135 switch (fs->regs.cfa_how)
1136 {
1137 case CFA_REG_OFFSET:
1138 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1139 if (fs->armcc_cfa_offsets_reversed)
1140 cache->cfa -= fs->regs.cfa_offset;
1141 else
1142 cache->cfa += fs->regs.cfa_offset;
1143 break;
1144
1145 case CFA_EXP:
1146 cache->cfa =
1147 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1148 cache->addr_size, cache->text_offset,
1149 this_frame, 0, 0);
1150 break;
1151
1152 default:
1153 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1154 }
1155 }
1156 CATCH (ex, RETURN_MASK_ERROR)
1157 {
1158 if (ex.error == NOT_AVAILABLE_ERROR)
1159 {
1160 cache->unavailable_retaddr = 1;
1161 do_cleanups (old_chain);
1162 discard_cleanups (reset_cache_cleanup);
1163 return cache;
1164 }
1165
1166 throw_exception (ex);
1167 }
1168 END_CATCH
1169
1170 /* Initialize the register state. */
1171 {
1172 int regnum;
1173
1174 for (regnum = 0; regnum < num_regs; regnum++)
1175 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1176 }
1177
1178 /* Go through the DWARF2 CFI generated table and save its register
1179 location information in the cache. Note that we don't skip the
1180 return address column; it's perfectly all right for it to
1181 correspond to a real register. */
1182 {
1183 int column; /* CFI speak for "register number". */
1184
1185 for (column = 0; column < fs->regs.num_regs; column++)
1186 {
1187 /* Use the GDB register number as the destination index. */
1188 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1189
1190 /* Protect against a target returning a bad register. */
1191 if (regnum < 0 || regnum >= num_regs)
1192 continue;
1193
1194 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1195 of all debug info registers. If it doesn't, complain (but
1196 not too loudly). It turns out that GCC assumes that an
1197 unspecified register implies "same value" when CFI (draft
1198 7) specifies nothing at all. Such a register could equally
1199 be interpreted as "undefined". Also note that this check
1200 isn't sufficient; it only checks that all registers in the
1201 range [0 .. max column] are specified, and won't detect
1202 problems when a debug info register falls outside of the
1203 table. We need a way of iterating through all the valid
1204 DWARF2 register numbers. */
1205 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1206 {
1207 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1208 complaint (&symfile_complaints, _("\
1209 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1210 gdbarch_register_name (gdbarch, regnum),
1211 paddress (gdbarch, fs->pc));
1212 }
1213 else
1214 cache->reg[regnum] = fs->regs.reg[column];
1215 }
1216 }
1217
1218 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1219 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1220 {
1221 int regnum;
1222
1223 for (regnum = 0; regnum < num_regs; regnum++)
1224 {
1225 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1226 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1227 {
1228 struct dwarf2_frame_state_reg *retaddr_reg =
1229 &fs->regs.reg[fs->retaddr_column];
1230
1231 /* It seems rather bizarre to specify an "empty" column as
1232 the return adress column. However, this is exactly
1233 what GCC does on some targets. It turns out that GCC
1234 assumes that the return address can be found in the
1235 register corresponding to the return address column.
1236 Incidentally, that's how we should treat a return
1237 address column specifying "same value" too. */
1238 if (fs->retaddr_column < fs->regs.num_regs
1239 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1240 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1241 {
1242 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1243 cache->reg[regnum] = *retaddr_reg;
1244 else
1245 cache->retaddr_reg = *retaddr_reg;
1246 }
1247 else
1248 {
1249 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1250 {
1251 cache->reg[regnum].loc.reg = fs->retaddr_column;
1252 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1253 }
1254 else
1255 {
1256 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1257 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1258 }
1259 }
1260 }
1261 }
1262 }
1263
1264 if (fs->retaddr_column < fs->regs.num_regs
1265 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1266 cache->undefined_retaddr = 1;
1267
1268 do_cleanups (old_chain);
1269 discard_cleanups (reset_cache_cleanup);
1270 return cache;
1271 }
1272
1273 static enum unwind_stop_reason
1274 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1275 void **this_cache)
1276 {
1277 struct dwarf2_frame_cache *cache
1278 = dwarf2_frame_cache (this_frame, this_cache);
1279
1280 if (cache->unavailable_retaddr)
1281 return UNWIND_UNAVAILABLE;
1282
1283 if (cache->undefined_retaddr)
1284 return UNWIND_OUTERMOST;
1285
1286 return UNWIND_NO_REASON;
1287 }
1288
1289 static void
1290 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1291 struct frame_id *this_id)
1292 {
1293 struct dwarf2_frame_cache *cache =
1294 dwarf2_frame_cache (this_frame, this_cache);
1295
1296 if (cache->unavailable_retaddr)
1297 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1298 else if (cache->undefined_retaddr)
1299 return;
1300 else
1301 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1302 }
1303
1304 static struct value *
1305 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1306 int regnum)
1307 {
1308 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1309 struct dwarf2_frame_cache *cache =
1310 dwarf2_frame_cache (this_frame, this_cache);
1311 CORE_ADDR addr;
1312 int realnum;
1313
1314 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1315 call frame chain. */
1316 if (!cache->checked_tailcall_bottom)
1317 {
1318 cache->checked_tailcall_bottom = 1;
1319 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1320 (cache->entry_cfa_sp_offset_p
1321 ? &cache->entry_cfa_sp_offset : NULL));
1322 }
1323
1324 /* Non-bottom frames of a virtual tail call frames chain use
1325 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1326 them. If dwarf2_tailcall_prev_register_first does not have specific value
1327 unwind the register, tail call frames are assumed to have the register set
1328 of the top caller. */
1329 if (cache->tailcall_cache)
1330 {
1331 struct value *val;
1332
1333 val = dwarf2_tailcall_prev_register_first (this_frame,
1334 &cache->tailcall_cache,
1335 regnum);
1336 if (val)
1337 return val;
1338 }
1339
1340 switch (cache->reg[regnum].how)
1341 {
1342 case DWARF2_FRAME_REG_UNDEFINED:
1343 /* If CFI explicitly specified that the value isn't defined,
1344 mark it as optimized away; the value isn't available. */
1345 return frame_unwind_got_optimized (this_frame, regnum);
1346
1347 case DWARF2_FRAME_REG_SAVED_OFFSET:
1348 addr = cache->cfa + cache->reg[regnum].loc.offset;
1349 return frame_unwind_got_memory (this_frame, regnum, addr);
1350
1351 case DWARF2_FRAME_REG_SAVED_REG:
1352 realnum = dwarf_reg_to_regnum_or_error
1353 (gdbarch, cache->reg[regnum].loc.reg);
1354 return frame_unwind_got_register (this_frame, regnum, realnum);
1355
1356 case DWARF2_FRAME_REG_SAVED_EXP:
1357 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1358 cache->reg[regnum].exp_len,
1359 cache->addr_size, cache->text_offset,
1360 this_frame, cache->cfa, 1);
1361 return frame_unwind_got_memory (this_frame, regnum, addr);
1362
1363 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1364 addr = cache->cfa + cache->reg[regnum].loc.offset;
1365 return frame_unwind_got_constant (this_frame, regnum, addr);
1366
1367 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1368 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1369 cache->reg[regnum].exp_len,
1370 cache->addr_size, cache->text_offset,
1371 this_frame, cache->cfa, 1);
1372 return frame_unwind_got_constant (this_frame, regnum, addr);
1373
1374 case DWARF2_FRAME_REG_UNSPECIFIED:
1375 /* GCC, in its infinite wisdom decided to not provide unwind
1376 information for registers that are "same value". Since
1377 DWARF2 (3 draft 7) doesn't define such behavior, said
1378 registers are actually undefined (which is different to CFI
1379 "undefined"). Code above issues a complaint about this.
1380 Here just fudge the books, assume GCC, and that the value is
1381 more inner on the stack. */
1382 return frame_unwind_got_register (this_frame, regnum, regnum);
1383
1384 case DWARF2_FRAME_REG_SAME_VALUE:
1385 return frame_unwind_got_register (this_frame, regnum, regnum);
1386
1387 case DWARF2_FRAME_REG_CFA:
1388 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1389
1390 case DWARF2_FRAME_REG_CFA_OFFSET:
1391 addr = cache->cfa + cache->reg[regnum].loc.offset;
1392 return frame_unwind_got_address (this_frame, regnum, addr);
1393
1394 case DWARF2_FRAME_REG_RA_OFFSET:
1395 addr = cache->reg[regnum].loc.offset;
1396 regnum = dwarf_reg_to_regnum_or_error
1397 (gdbarch, cache->retaddr_reg.loc.reg);
1398 addr += get_frame_register_unsigned (this_frame, regnum);
1399 return frame_unwind_got_address (this_frame, regnum, addr);
1400
1401 case DWARF2_FRAME_REG_FN:
1402 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1403
1404 default:
1405 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1406 }
1407 }
1408
1409 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1410 call frames chain. */
1411
1412 static void
1413 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1414 {
1415 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1416
1417 if (cache->tailcall_cache)
1418 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1419 }
1420
1421 static int
1422 dwarf2_frame_sniffer (const struct frame_unwind *self,
1423 struct frame_info *this_frame, void **this_cache)
1424 {
1425 /* Grab an address that is guarenteed to reside somewhere within the
1426 function. get_frame_pc(), with a no-return next function, can
1427 end up returning something past the end of this function's body.
1428 If the frame we're sniffing for is a signal frame whose start
1429 address is placed on the stack by the OS, its FDE must
1430 extend one byte before its start address or we could potentially
1431 select the FDE of the previous function. */
1432 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1433 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1434
1435 if (!fde)
1436 return 0;
1437
1438 /* On some targets, signal trampolines may have unwind information.
1439 We need to recognize them so that we set the frame type
1440 correctly. */
1441
1442 if (fde->cie->signal_frame
1443 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1444 this_frame))
1445 return self->type == SIGTRAMP_FRAME;
1446
1447 if (self->type != NORMAL_FRAME)
1448 return 0;
1449
1450 return 1;
1451 }
1452
1453 static const struct frame_unwind dwarf2_frame_unwind =
1454 {
1455 NORMAL_FRAME,
1456 dwarf2_frame_unwind_stop_reason,
1457 dwarf2_frame_this_id,
1458 dwarf2_frame_prev_register,
1459 NULL,
1460 dwarf2_frame_sniffer,
1461 dwarf2_frame_dealloc_cache
1462 };
1463
1464 static const struct frame_unwind dwarf2_signal_frame_unwind =
1465 {
1466 SIGTRAMP_FRAME,
1467 dwarf2_frame_unwind_stop_reason,
1468 dwarf2_frame_this_id,
1469 dwarf2_frame_prev_register,
1470 NULL,
1471 dwarf2_frame_sniffer,
1472
1473 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1474 NULL
1475 };
1476
1477 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1478
1479 void
1480 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1481 {
1482 /* TAILCALL_FRAME must be first to find the record by
1483 dwarf2_tailcall_sniffer_first. */
1484 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1485
1486 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1487 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1488 }
1489 \f
1490
1491 /* There is no explicitly defined relationship between the CFA and the
1492 location of frame's local variables and arguments/parameters.
1493 Therefore, frame base methods on this page should probably only be
1494 used as a last resort, just to avoid printing total garbage as a
1495 response to the "info frame" command. */
1496
1497 static CORE_ADDR
1498 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1499 {
1500 struct dwarf2_frame_cache *cache =
1501 dwarf2_frame_cache (this_frame, this_cache);
1502
1503 return cache->cfa;
1504 }
1505
1506 static const struct frame_base dwarf2_frame_base =
1507 {
1508 &dwarf2_frame_unwind,
1509 dwarf2_frame_base_address,
1510 dwarf2_frame_base_address,
1511 dwarf2_frame_base_address
1512 };
1513
1514 const struct frame_base *
1515 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1516 {
1517 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1518
1519 if (dwarf2_frame_find_fde (&block_addr, NULL))
1520 return &dwarf2_frame_base;
1521
1522 return NULL;
1523 }
1524
1525 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1526 the DWARF unwinder. This is used to implement
1527 DW_OP_call_frame_cfa. */
1528
1529 CORE_ADDR
1530 dwarf2_frame_cfa (struct frame_info *this_frame)
1531 {
1532 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1533 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1534 throw_error (NOT_AVAILABLE_ERROR,
1535 _("cfa not available for record btrace target"));
1536
1537 while (get_frame_type (this_frame) == INLINE_FRAME)
1538 this_frame = get_prev_frame (this_frame);
1539 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1540 throw_error (NOT_AVAILABLE_ERROR,
1541 _("can't compute CFA for this frame: "
1542 "required registers or memory are unavailable"));
1543
1544 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1545 throw_error (NOT_AVAILABLE_ERROR,
1546 _("can't compute CFA for this frame: "
1547 "frame base not available"));
1548
1549 return get_frame_base (this_frame);
1550 }
1551 \f
1552 const struct objfile_data *dwarf2_frame_objfile_data;
1553
1554 static unsigned int
1555 read_1_byte (bfd *abfd, const gdb_byte *buf)
1556 {
1557 return bfd_get_8 (abfd, buf);
1558 }
1559
1560 static unsigned int
1561 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1562 {
1563 return bfd_get_32 (abfd, buf);
1564 }
1565
1566 static ULONGEST
1567 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1568 {
1569 return bfd_get_64 (abfd, buf);
1570 }
1571
1572 static ULONGEST
1573 read_initial_length (bfd *abfd, const gdb_byte *buf,
1574 unsigned int *bytes_read_ptr)
1575 {
1576 LONGEST result;
1577
1578 result = bfd_get_32 (abfd, buf);
1579 if (result == 0xffffffff)
1580 {
1581 result = bfd_get_64 (abfd, buf + 4);
1582 *bytes_read_ptr = 12;
1583 }
1584 else
1585 *bytes_read_ptr = 4;
1586
1587 return result;
1588 }
1589 \f
1590
1591 /* Pointer encoding helper functions. */
1592
1593 /* GCC supports exception handling based on DWARF2 CFI. However, for
1594 technical reasons, it encodes addresses in its FDE's in a different
1595 way. Several "pointer encodings" are supported. The encoding
1596 that's used for a particular FDE is determined by the 'R'
1597 augmentation in the associated CIE. The argument of this
1598 augmentation is a single byte.
1599
1600 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1601 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1602 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1603 address should be interpreted (absolute, relative to the current
1604 position in the FDE, ...). Bit 7, indicates that the address
1605 should be dereferenced. */
1606
1607 static gdb_byte
1608 encoding_for_size (unsigned int size)
1609 {
1610 switch (size)
1611 {
1612 case 2:
1613 return DW_EH_PE_udata2;
1614 case 4:
1615 return DW_EH_PE_udata4;
1616 case 8:
1617 return DW_EH_PE_udata8;
1618 default:
1619 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1620 }
1621 }
1622
1623 static CORE_ADDR
1624 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1625 int ptr_len, const gdb_byte *buf,
1626 unsigned int *bytes_read_ptr,
1627 CORE_ADDR func_base)
1628 {
1629 ptrdiff_t offset;
1630 CORE_ADDR base;
1631
1632 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1633 FDE's. */
1634 if (encoding & DW_EH_PE_indirect)
1635 internal_error (__FILE__, __LINE__,
1636 _("Unsupported encoding: DW_EH_PE_indirect"));
1637
1638 *bytes_read_ptr = 0;
1639
1640 switch (encoding & 0x70)
1641 {
1642 case DW_EH_PE_absptr:
1643 base = 0;
1644 break;
1645 case DW_EH_PE_pcrel:
1646 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1647 base += (buf - unit->dwarf_frame_buffer);
1648 break;
1649 case DW_EH_PE_datarel:
1650 base = unit->dbase;
1651 break;
1652 case DW_EH_PE_textrel:
1653 base = unit->tbase;
1654 break;
1655 case DW_EH_PE_funcrel:
1656 base = func_base;
1657 break;
1658 case DW_EH_PE_aligned:
1659 base = 0;
1660 offset = buf - unit->dwarf_frame_buffer;
1661 if ((offset % ptr_len) != 0)
1662 {
1663 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1664 buf += *bytes_read_ptr;
1665 }
1666 break;
1667 default:
1668 internal_error (__FILE__, __LINE__,
1669 _("Invalid or unsupported encoding"));
1670 }
1671
1672 if ((encoding & 0x07) == 0x00)
1673 {
1674 encoding |= encoding_for_size (ptr_len);
1675 if (bfd_get_sign_extend_vma (unit->abfd))
1676 encoding |= DW_EH_PE_signed;
1677 }
1678
1679 switch (encoding & 0x0f)
1680 {
1681 case DW_EH_PE_uleb128:
1682 {
1683 uint64_t value;
1684 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1685
1686 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1687 return base + value;
1688 }
1689 case DW_EH_PE_udata2:
1690 *bytes_read_ptr += 2;
1691 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1692 case DW_EH_PE_udata4:
1693 *bytes_read_ptr += 4;
1694 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1695 case DW_EH_PE_udata8:
1696 *bytes_read_ptr += 8;
1697 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1698 case DW_EH_PE_sleb128:
1699 {
1700 int64_t value;
1701 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1702
1703 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1704 return base + value;
1705 }
1706 case DW_EH_PE_sdata2:
1707 *bytes_read_ptr += 2;
1708 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1709 case DW_EH_PE_sdata4:
1710 *bytes_read_ptr += 4;
1711 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1712 case DW_EH_PE_sdata8:
1713 *bytes_read_ptr += 8;
1714 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1715 default:
1716 internal_error (__FILE__, __LINE__,
1717 _("Invalid or unsupported encoding"));
1718 }
1719 }
1720 \f
1721
1722 static int
1723 bsearch_cie_cmp (const void *key, const void *element)
1724 {
1725 ULONGEST cie_pointer = *(ULONGEST *) key;
1726 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1727
1728 if (cie_pointer == cie->cie_pointer)
1729 return 0;
1730
1731 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1732 }
1733
1734 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1735 static struct dwarf2_cie *
1736 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1737 {
1738 struct dwarf2_cie **p_cie;
1739
1740 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1741 bsearch be non-NULL. */
1742 if (cie_table->entries == NULL)
1743 {
1744 gdb_assert (cie_table->num_entries == 0);
1745 return NULL;
1746 }
1747
1748 p_cie = ((struct dwarf2_cie **)
1749 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1750 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1751 if (p_cie != NULL)
1752 return *p_cie;
1753 return NULL;
1754 }
1755
1756 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1757 static void
1758 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1759 {
1760 const int n = cie_table->num_entries;
1761
1762 gdb_assert (n < 1
1763 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1764
1765 cie_table->entries
1766 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1767 cie_table->entries[n] = cie;
1768 cie_table->num_entries = n + 1;
1769 }
1770
1771 static int
1772 bsearch_fde_cmp (const void *key, const void *element)
1773 {
1774 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1775 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1776
1777 if (seek_pc < fde->initial_location)
1778 return -1;
1779 if (seek_pc < fde->initial_location + fde->address_range)
1780 return 0;
1781 return 1;
1782 }
1783
1784 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1785 inital location associated with it into *PC. */
1786
1787 static struct dwarf2_fde *
1788 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1789 {
1790 struct objfile *objfile;
1791
1792 ALL_OBJFILES (objfile)
1793 {
1794 struct dwarf2_fde_table *fde_table;
1795 struct dwarf2_fde **p_fde;
1796 CORE_ADDR offset;
1797 CORE_ADDR seek_pc;
1798
1799 fde_table = ((struct dwarf2_fde_table *)
1800 objfile_data (objfile, dwarf2_frame_objfile_data));
1801 if (fde_table == NULL)
1802 {
1803 dwarf2_build_frame_info (objfile);
1804 fde_table = ((struct dwarf2_fde_table *)
1805 objfile_data (objfile, dwarf2_frame_objfile_data));
1806 }
1807 gdb_assert (fde_table != NULL);
1808
1809 if (fde_table->num_entries == 0)
1810 continue;
1811
1812 gdb_assert (objfile->section_offsets);
1813 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1814
1815 gdb_assert (fde_table->num_entries > 0);
1816 if (*pc < offset + fde_table->entries[0]->initial_location)
1817 continue;
1818
1819 seek_pc = *pc - offset;
1820 p_fde = ((struct dwarf2_fde **)
1821 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1822 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1823 if (p_fde != NULL)
1824 {
1825 *pc = (*p_fde)->initial_location + offset;
1826 if (out_offset)
1827 *out_offset = offset;
1828 return *p_fde;
1829 }
1830 }
1831 return NULL;
1832 }
1833
1834 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1835 static void
1836 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1837 {
1838 if (fde->address_range == 0)
1839 /* Discard useless FDEs. */
1840 return;
1841
1842 fde_table->num_entries += 1;
1843 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1844 fde_table->num_entries);
1845 fde_table->entries[fde_table->num_entries - 1] = fde;
1846 }
1847
1848 #define DW64_CIE_ID 0xffffffffffffffffULL
1849
1850 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1851 or any of them. */
1852
1853 enum eh_frame_type
1854 {
1855 EH_CIE_TYPE_ID = 1 << 0,
1856 EH_FDE_TYPE_ID = 1 << 1,
1857 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1858 };
1859
1860 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1861 const gdb_byte *start,
1862 int eh_frame_p,
1863 struct dwarf2_cie_table *cie_table,
1864 struct dwarf2_fde_table *fde_table,
1865 enum eh_frame_type entry_type);
1866
1867 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1868 Return NULL if invalid input, otherwise the next byte to be processed. */
1869
1870 static const gdb_byte *
1871 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1872 int eh_frame_p,
1873 struct dwarf2_cie_table *cie_table,
1874 struct dwarf2_fde_table *fde_table,
1875 enum eh_frame_type entry_type)
1876 {
1877 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1878 const gdb_byte *buf, *end;
1879 LONGEST length;
1880 unsigned int bytes_read;
1881 int dwarf64_p;
1882 ULONGEST cie_id;
1883 ULONGEST cie_pointer;
1884 int64_t sleb128;
1885 uint64_t uleb128;
1886
1887 buf = start;
1888 length = read_initial_length (unit->abfd, buf, &bytes_read);
1889 buf += bytes_read;
1890 end = buf + length;
1891
1892 /* Are we still within the section? */
1893 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1894 return NULL;
1895
1896 if (length == 0)
1897 return end;
1898
1899 /* Distinguish between 32 and 64-bit encoded frame info. */
1900 dwarf64_p = (bytes_read == 12);
1901
1902 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1903 if (eh_frame_p)
1904 cie_id = 0;
1905 else if (dwarf64_p)
1906 cie_id = DW64_CIE_ID;
1907 else
1908 cie_id = DW_CIE_ID;
1909
1910 if (dwarf64_p)
1911 {
1912 cie_pointer = read_8_bytes (unit->abfd, buf);
1913 buf += 8;
1914 }
1915 else
1916 {
1917 cie_pointer = read_4_bytes (unit->abfd, buf);
1918 buf += 4;
1919 }
1920
1921 if (cie_pointer == cie_id)
1922 {
1923 /* This is a CIE. */
1924 struct dwarf2_cie *cie;
1925 char *augmentation;
1926 unsigned int cie_version;
1927
1928 /* Check that a CIE was expected. */
1929 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1930 error (_("Found a CIE when not expecting it."));
1931
1932 /* Record the offset into the .debug_frame section of this CIE. */
1933 cie_pointer = start - unit->dwarf_frame_buffer;
1934
1935 /* Check whether we've already read it. */
1936 if (find_cie (cie_table, cie_pointer))
1937 return end;
1938
1939 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1940 cie->initial_instructions = NULL;
1941 cie->cie_pointer = cie_pointer;
1942
1943 /* The encoding for FDE's in a normal .debug_frame section
1944 depends on the target address size. */
1945 cie->encoding = DW_EH_PE_absptr;
1946
1947 /* We'll determine the final value later, but we need to
1948 initialize it conservatively. */
1949 cie->signal_frame = 0;
1950
1951 /* Check version number. */
1952 cie_version = read_1_byte (unit->abfd, buf);
1953 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1954 return NULL;
1955 cie->version = cie_version;
1956 buf += 1;
1957
1958 /* Interpret the interesting bits of the augmentation. */
1959 cie->augmentation = augmentation = (char *) buf;
1960 buf += (strlen (augmentation) + 1);
1961
1962 /* Ignore armcc augmentations. We only use them for quirks,
1963 and that doesn't happen until later. */
1964 if (startswith (augmentation, "armcc"))
1965 augmentation += strlen (augmentation);
1966
1967 /* The GCC 2.x "eh" augmentation has a pointer immediately
1968 following the augmentation string, so it must be handled
1969 first. */
1970 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1971 {
1972 /* Skip. */
1973 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1974 augmentation += 2;
1975 }
1976
1977 if (cie->version >= 4)
1978 {
1979 /* FIXME: check that this is the same as from the CU header. */
1980 cie->addr_size = read_1_byte (unit->abfd, buf);
1981 ++buf;
1982 cie->segment_size = read_1_byte (unit->abfd, buf);
1983 ++buf;
1984 }
1985 else
1986 {
1987 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1988 cie->segment_size = 0;
1989 }
1990 /* Address values in .eh_frame sections are defined to have the
1991 target's pointer size. Watchout: This breaks frame info for
1992 targets with pointer size < address size, unless a .debug_frame
1993 section exists as well. */
1994 if (eh_frame_p)
1995 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1996 else
1997 cie->ptr_size = cie->addr_size;
1998
1999 buf = gdb_read_uleb128 (buf, end, &uleb128);
2000 if (buf == NULL)
2001 return NULL;
2002 cie->code_alignment_factor = uleb128;
2003
2004 buf = gdb_read_sleb128 (buf, end, &sleb128);
2005 if (buf == NULL)
2006 return NULL;
2007 cie->data_alignment_factor = sleb128;
2008
2009 if (cie_version == 1)
2010 {
2011 cie->return_address_register = read_1_byte (unit->abfd, buf);
2012 ++buf;
2013 }
2014 else
2015 {
2016 buf = gdb_read_uleb128 (buf, end, &uleb128);
2017 if (buf == NULL)
2018 return NULL;
2019 cie->return_address_register = uleb128;
2020 }
2021
2022 cie->return_address_register
2023 = dwarf2_frame_adjust_regnum (gdbarch,
2024 cie->return_address_register,
2025 eh_frame_p);
2026
2027 cie->saw_z_augmentation = (*augmentation == 'z');
2028 if (cie->saw_z_augmentation)
2029 {
2030 uint64_t length;
2031
2032 buf = gdb_read_uleb128 (buf, end, &length);
2033 if (buf == NULL)
2034 return NULL;
2035 cie->initial_instructions = buf + length;
2036 augmentation++;
2037 }
2038
2039 while (*augmentation)
2040 {
2041 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2042 if (*augmentation == 'L')
2043 {
2044 /* Skip. */
2045 buf++;
2046 augmentation++;
2047 }
2048
2049 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2050 else if (*augmentation == 'R')
2051 {
2052 cie->encoding = *buf++;
2053 augmentation++;
2054 }
2055
2056 /* "P" indicates a personality routine in the CIE augmentation. */
2057 else if (*augmentation == 'P')
2058 {
2059 /* Skip. Avoid indirection since we throw away the result. */
2060 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2061 read_encoded_value (unit, encoding, cie->ptr_size,
2062 buf, &bytes_read, 0);
2063 buf += bytes_read;
2064 augmentation++;
2065 }
2066
2067 /* "S" indicates a signal frame, such that the return
2068 address must not be decremented to locate the call frame
2069 info for the previous frame; it might even be the first
2070 instruction of a function, so decrementing it would take
2071 us to a different function. */
2072 else if (*augmentation == 'S')
2073 {
2074 cie->signal_frame = 1;
2075 augmentation++;
2076 }
2077
2078 /* Otherwise we have an unknown augmentation. Assume that either
2079 there is no augmentation data, or we saw a 'z' prefix. */
2080 else
2081 {
2082 if (cie->initial_instructions)
2083 buf = cie->initial_instructions;
2084 break;
2085 }
2086 }
2087
2088 cie->initial_instructions = buf;
2089 cie->end = end;
2090 cie->unit = unit;
2091
2092 add_cie (cie_table, cie);
2093 }
2094 else
2095 {
2096 /* This is a FDE. */
2097 struct dwarf2_fde *fde;
2098 CORE_ADDR addr;
2099
2100 /* Check that an FDE was expected. */
2101 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2102 error (_("Found an FDE when not expecting it."));
2103
2104 /* In an .eh_frame section, the CIE pointer is the delta between the
2105 address within the FDE where the CIE pointer is stored and the
2106 address of the CIE. Convert it to an offset into the .eh_frame
2107 section. */
2108 if (eh_frame_p)
2109 {
2110 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2111 cie_pointer -= (dwarf64_p ? 8 : 4);
2112 }
2113
2114 /* In either case, validate the result is still within the section. */
2115 if (cie_pointer >= unit->dwarf_frame_size)
2116 return NULL;
2117
2118 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2119 fde->cie = find_cie (cie_table, cie_pointer);
2120 if (fde->cie == NULL)
2121 {
2122 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2123 eh_frame_p, cie_table, fde_table,
2124 EH_CIE_TYPE_ID);
2125 fde->cie = find_cie (cie_table, cie_pointer);
2126 }
2127
2128 gdb_assert (fde->cie != NULL);
2129
2130 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2131 buf, &bytes_read, 0);
2132 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2133 buf += bytes_read;
2134
2135 fde->address_range =
2136 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2137 fde->cie->ptr_size, buf, &bytes_read, 0);
2138 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2139 fde->address_range = addr - fde->initial_location;
2140 buf += bytes_read;
2141
2142 /* A 'z' augmentation in the CIE implies the presence of an
2143 augmentation field in the FDE as well. The only thing known
2144 to be in here at present is the LSDA entry for EH. So we
2145 can skip the whole thing. */
2146 if (fde->cie->saw_z_augmentation)
2147 {
2148 uint64_t length;
2149
2150 buf = gdb_read_uleb128 (buf, end, &length);
2151 if (buf == NULL)
2152 return NULL;
2153 buf += length;
2154 if (buf > end)
2155 return NULL;
2156 }
2157
2158 fde->instructions = buf;
2159 fde->end = end;
2160
2161 fde->eh_frame_p = eh_frame_p;
2162
2163 add_fde (fde_table, fde);
2164 }
2165
2166 return end;
2167 }
2168
2169 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2170 expect an FDE or a CIE. */
2171
2172 static const gdb_byte *
2173 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2174 int eh_frame_p,
2175 struct dwarf2_cie_table *cie_table,
2176 struct dwarf2_fde_table *fde_table,
2177 enum eh_frame_type entry_type)
2178 {
2179 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2180 const gdb_byte *ret;
2181 ptrdiff_t start_offset;
2182
2183 while (1)
2184 {
2185 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2186 cie_table, fde_table, entry_type);
2187 if (ret != NULL)
2188 break;
2189
2190 /* We have corrupt input data of some form. */
2191
2192 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2193 and mismatches wrt padding and alignment of debug sections. */
2194 /* Note that there is no requirement in the standard for any
2195 alignment at all in the frame unwind sections. Testing for
2196 alignment before trying to interpret data would be incorrect.
2197
2198 However, GCC traditionally arranged for frame sections to be
2199 sized such that the FDE length and CIE fields happen to be
2200 aligned (in theory, for performance). This, unfortunately,
2201 was done with .align directives, which had the side effect of
2202 forcing the section to be aligned by the linker.
2203
2204 This becomes a problem when you have some other producer that
2205 creates frame sections that are not as strictly aligned. That
2206 produces a hole in the frame info that gets filled by the
2207 linker with zeros.
2208
2209 The GCC behaviour is arguably a bug, but it's effectively now
2210 part of the ABI, so we're now stuck with it, at least at the
2211 object file level. A smart linker may decide, in the process
2212 of compressing duplicate CIE information, that it can rewrite
2213 the entire output section without this extra padding. */
2214
2215 start_offset = start - unit->dwarf_frame_buffer;
2216 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2217 {
2218 start += 4 - (start_offset & 3);
2219 workaround = ALIGN4;
2220 continue;
2221 }
2222 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2223 {
2224 start += 8 - (start_offset & 7);
2225 workaround = ALIGN8;
2226 continue;
2227 }
2228
2229 /* Nothing left to try. Arrange to return as if we've consumed
2230 the entire input section. Hopefully we'll get valid info from
2231 the other of .debug_frame/.eh_frame. */
2232 workaround = FAIL;
2233 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2234 break;
2235 }
2236
2237 switch (workaround)
2238 {
2239 case NONE:
2240 break;
2241
2242 case ALIGN4:
2243 complaint (&symfile_complaints, _("\
2244 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2245 unit->dwarf_frame_section->owner->filename,
2246 unit->dwarf_frame_section->name);
2247 break;
2248
2249 case ALIGN8:
2250 complaint (&symfile_complaints, _("\
2251 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2252 unit->dwarf_frame_section->owner->filename,
2253 unit->dwarf_frame_section->name);
2254 break;
2255
2256 default:
2257 complaint (&symfile_complaints,
2258 _("Corrupt data in %s:%s"),
2259 unit->dwarf_frame_section->owner->filename,
2260 unit->dwarf_frame_section->name);
2261 break;
2262 }
2263
2264 return ret;
2265 }
2266 \f
2267 static int
2268 qsort_fde_cmp (const void *a, const void *b)
2269 {
2270 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2271 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2272
2273 if (aa->initial_location == bb->initial_location)
2274 {
2275 if (aa->address_range != bb->address_range
2276 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2277 /* Linker bug, e.g. gold/10400.
2278 Work around it by keeping stable sort order. */
2279 return (a < b) ? -1 : 1;
2280 else
2281 /* Put eh_frame entries after debug_frame ones. */
2282 return aa->eh_frame_p - bb->eh_frame_p;
2283 }
2284
2285 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2286 }
2287
2288 void
2289 dwarf2_build_frame_info (struct objfile *objfile)
2290 {
2291 struct comp_unit *unit;
2292 const gdb_byte *frame_ptr;
2293 struct dwarf2_cie_table cie_table;
2294 struct dwarf2_fde_table fde_table;
2295 struct dwarf2_fde_table *fde_table2;
2296
2297 cie_table.num_entries = 0;
2298 cie_table.entries = NULL;
2299
2300 fde_table.num_entries = 0;
2301 fde_table.entries = NULL;
2302
2303 /* Build a minimal decoding of the DWARF2 compilation unit. */
2304 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2305 sizeof (struct comp_unit));
2306 unit->abfd = objfile->obfd;
2307 unit->objfile = objfile;
2308 unit->dbase = 0;
2309 unit->tbase = 0;
2310
2311 if (objfile->separate_debug_objfile_backlink == NULL)
2312 {
2313 /* Do not read .eh_frame from separate file as they must be also
2314 present in the main file. */
2315 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2316 &unit->dwarf_frame_section,
2317 &unit->dwarf_frame_buffer,
2318 &unit->dwarf_frame_size);
2319 if (unit->dwarf_frame_size)
2320 {
2321 asection *got, *txt;
2322
2323 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2324 that is used for the i386/amd64 target, which currently is
2325 the only target in GCC that supports/uses the
2326 DW_EH_PE_datarel encoding. */
2327 got = bfd_get_section_by_name (unit->abfd, ".got");
2328 if (got)
2329 unit->dbase = got->vma;
2330
2331 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2332 so far. */
2333 txt = bfd_get_section_by_name (unit->abfd, ".text");
2334 if (txt)
2335 unit->tbase = txt->vma;
2336
2337 TRY
2338 {
2339 frame_ptr = unit->dwarf_frame_buffer;
2340 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2341 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2342 &cie_table, &fde_table,
2343 EH_CIE_OR_FDE_TYPE_ID);
2344 }
2345
2346 CATCH (e, RETURN_MASK_ERROR)
2347 {
2348 warning (_("skipping .eh_frame info of %s: %s"),
2349 objfile_name (objfile), e.message);
2350
2351 if (fde_table.num_entries != 0)
2352 {
2353 xfree (fde_table.entries);
2354 fde_table.entries = NULL;
2355 fde_table.num_entries = 0;
2356 }
2357 /* The cie_table is discarded by the next if. */
2358 }
2359 END_CATCH
2360
2361 if (cie_table.num_entries != 0)
2362 {
2363 /* Reinit cie_table: debug_frame has different CIEs. */
2364 xfree (cie_table.entries);
2365 cie_table.num_entries = 0;
2366 cie_table.entries = NULL;
2367 }
2368 }
2369 }
2370
2371 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2372 &unit->dwarf_frame_section,
2373 &unit->dwarf_frame_buffer,
2374 &unit->dwarf_frame_size);
2375 if (unit->dwarf_frame_size)
2376 {
2377 int num_old_fde_entries = fde_table.num_entries;
2378
2379 TRY
2380 {
2381 frame_ptr = unit->dwarf_frame_buffer;
2382 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2383 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2384 &cie_table, &fde_table,
2385 EH_CIE_OR_FDE_TYPE_ID);
2386 }
2387 CATCH (e, RETURN_MASK_ERROR)
2388 {
2389 warning (_("skipping .debug_frame info of %s: %s"),
2390 objfile_name (objfile), e.message);
2391
2392 if (fde_table.num_entries != 0)
2393 {
2394 fde_table.num_entries = num_old_fde_entries;
2395 if (num_old_fde_entries == 0)
2396 {
2397 xfree (fde_table.entries);
2398 fde_table.entries = NULL;
2399 }
2400 else
2401 {
2402 fde_table.entries
2403 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2404 fde_table.num_entries);
2405 }
2406 }
2407 fde_table.num_entries = num_old_fde_entries;
2408 /* The cie_table is discarded by the next if. */
2409 }
2410 END_CATCH
2411 }
2412
2413 /* Discard the cie_table, it is no longer needed. */
2414 if (cie_table.num_entries != 0)
2415 {
2416 xfree (cie_table.entries);
2417 cie_table.entries = NULL; /* Paranoia. */
2418 cie_table.num_entries = 0; /* Paranoia. */
2419 }
2420
2421 /* Copy fde_table to obstack: it is needed at runtime. */
2422 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2423
2424 if (fde_table.num_entries == 0)
2425 {
2426 fde_table2->entries = NULL;
2427 fde_table2->num_entries = 0;
2428 }
2429 else
2430 {
2431 struct dwarf2_fde *fde_prev = NULL;
2432 struct dwarf2_fde *first_non_zero_fde = NULL;
2433 int i;
2434
2435 /* Prepare FDE table for lookups. */
2436 qsort (fde_table.entries, fde_table.num_entries,
2437 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2438
2439 /* Check for leftovers from --gc-sections. The GNU linker sets
2440 the relevant symbols to zero, but doesn't zero the FDE *end*
2441 ranges because there's no relocation there. It's (offset,
2442 length), not (start, end). On targets where address zero is
2443 just another valid address this can be a problem, since the
2444 FDEs appear to be non-empty in the output --- we could pick
2445 out the wrong FDE. To work around this, when overlaps are
2446 detected, we prefer FDEs that do not start at zero.
2447
2448 Start by finding the first FDE with non-zero start. Below
2449 we'll discard all FDEs that start at zero and overlap this
2450 one. */
2451 for (i = 0; i < fde_table.num_entries; i++)
2452 {
2453 struct dwarf2_fde *fde = fde_table.entries[i];
2454
2455 if (fde->initial_location != 0)
2456 {
2457 first_non_zero_fde = fde;
2458 break;
2459 }
2460 }
2461
2462 /* Since we'll be doing bsearch, squeeze out identical (except
2463 for eh_frame_p) fde entries so bsearch result is predictable.
2464 Also discard leftovers from --gc-sections. */
2465 fde_table2->num_entries = 0;
2466 for (i = 0; i < fde_table.num_entries; i++)
2467 {
2468 struct dwarf2_fde *fde = fde_table.entries[i];
2469
2470 if (fde->initial_location == 0
2471 && first_non_zero_fde != NULL
2472 && (first_non_zero_fde->initial_location
2473 < fde->initial_location + fde->address_range))
2474 continue;
2475
2476 if (fde_prev != NULL
2477 && fde_prev->initial_location == fde->initial_location)
2478 continue;
2479
2480 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2481 sizeof (fde_table.entries[0]));
2482 ++fde_table2->num_entries;
2483 fde_prev = fde;
2484 }
2485 fde_table2->entries
2486 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2487
2488 /* Discard the original fde_table. */
2489 xfree (fde_table.entries);
2490 }
2491
2492 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2493 }
2494
2495 /* Provide a prototype to silence -Wmissing-prototypes. */
2496 void _initialize_dwarf2_frame (void);
2497
2498 void
2499 _initialize_dwarf2_frame (void)
2500 {
2501 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2502 dwarf2_frame_objfile_data = register_objfile_data ();
2503 }
This page took 0.106686 seconds and 5 git commands to generate.