* dwarf2-frame.c (execute_cfa_program): Complain if we encounter a
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96 \f
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201 \f
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = (char *) alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
227 no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231 }
232
233 static CORE_ADDR
234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238 }
239
240 static CORE_ADDR
241 execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265 \f
266
267 static void
268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, "\
378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
406 case DW_CFA_nop:
407 break;
408
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
423 insn_ptr += utmp;
424 break;
425
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
429 offset += fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
446 break;
447
448 case DW_CFA_GNU_args_size:
449 /* Ignored. */
450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
451 break;
452
453 default:
454 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
455 }
456 }
457 }
458
459 /* Don't allow remember/restore between CIE and FDE programs. */
460 dwarf2_frame_state_free_regs (fs->regs.prev);
461 fs->regs.prev = NULL;
462 }
463 \f
464
465 /* Architecture-specific operations. */
466
467 /* Per-architecture data key. */
468 static struct gdbarch_data *dwarf2_frame_data;
469
470 struct dwarf2_frame_ops
471 {
472 /* Pre-initialize the register state REG for register REGNUM. */
473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
474 };
475
476 /* Default architecture-specific register state initialization
477 function. */
478
479 static void
480 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
481 struct dwarf2_frame_state_reg *reg)
482 {
483 /* If we have a register that acts as a program counter, mark it as
484 a destination for the return address. If we have a register that
485 serves as the stack pointer, arrange for it to be filled with the
486 call frame address (CFA). The other registers are marked as
487 unspecified.
488
489 We copy the return address to the program counter, since many
490 parts in GDB assume that it is possible to get the return address
491 by unwinding the program counter register. However, on ISA's
492 with a dedicated return address register, the CFI usually only
493 contains information to unwind that return address register.
494
495 The reason we're treating the stack pointer special here is
496 because in many cases GCC doesn't emit CFI for the stack pointer
497 and implicitly assumes that it is equal to the CFA. This makes
498 some sense since the DWARF specification (version 3, draft 8,
499 p. 102) says that:
500
501 "Typically, the CFA is defined to be the value of the stack
502 pointer at the call site in the previous frame (which may be
503 different from its value on entry to the current frame)."
504
505 However, this isn't true for all platforms supported by GCC
506 (e.g. IBM S/390 and zSeries). Those architectures should provide
507 their own architecture-specific initialization function. */
508
509 if (regnum == PC_REGNUM)
510 reg->how = DWARF2_FRAME_REG_RA;
511 else if (regnum == SP_REGNUM)
512 reg->how = DWARF2_FRAME_REG_CFA;
513 }
514
515 /* Return a default for the architecture-specific operations. */
516
517 static void *
518 dwarf2_frame_init (struct obstack *obstack)
519 {
520 struct dwarf2_frame_ops *ops;
521
522 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
523 ops->init_reg = dwarf2_frame_default_init_reg;
524 return ops;
525 }
526
527 /* Set the architecture-specific register state initialization
528 function for GDBARCH to INIT_REG. */
529
530 void
531 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
532 void (*init_reg) (struct gdbarch *, int,
533 struct dwarf2_frame_state_reg *))
534 {
535 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
536
537 ops->init_reg = init_reg;
538 }
539
540 /* Pre-initialize the register state REG for register REGNUM. */
541
542 static void
543 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
544 struct dwarf2_frame_state_reg *reg)
545 {
546 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
547
548 ops->init_reg (gdbarch, regnum, reg);
549 }
550 \f
551
552 struct dwarf2_frame_cache
553 {
554 /* DWARF Call Frame Address. */
555 CORE_ADDR cfa;
556
557 /* Saved registers, indexed by GDB register number, not by DWARF
558 register number. */
559 struct dwarf2_frame_state_reg *reg;
560 };
561
562 static struct dwarf2_frame_cache *
563 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
564 {
565 struct cleanup *old_chain;
566 struct gdbarch *gdbarch = get_frame_arch (next_frame);
567 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
568 struct dwarf2_frame_cache *cache;
569 struct dwarf2_frame_state *fs;
570 struct dwarf2_fde *fde;
571
572 if (*this_cache)
573 return *this_cache;
574
575 /* Allocate a new cache. */
576 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
577 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
578
579 /* Allocate and initialize the frame state. */
580 fs = XMALLOC (struct dwarf2_frame_state);
581 memset (fs, 0, sizeof (struct dwarf2_frame_state));
582 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
583
584 /* Unwind the PC.
585
586 Note that if NEXT_FRAME is never supposed to return (i.e. a call
587 to abort), the compiler might optimize away the instruction at
588 NEXT_FRAME's return address. As a result the return address will
589 point at some random instruction, and the CFI for that
590 instruction is probably worthless to us. GCC's unwinder solves
591 this problem by substracting 1 from the return address to get an
592 address in the middle of a presumed call instruction (or the
593 instruction in the associated delay slot). This should only be
594 done for "normal" frames and not for resume-type frames (signal
595 handlers, sentinel frames, dummy frames). The function
596 frame_unwind_address_in_block does just this. It's not clear how
597 reliable the method is though; there is the potential for the
598 register state pre-call being different to that on return. */
599 fs->pc = frame_unwind_address_in_block (next_frame);
600
601 /* Find the correct FDE. */
602 fde = dwarf2_frame_find_fde (&fs->pc);
603 gdb_assert (fde != NULL);
604
605 /* Extract any interesting information from the CIE. */
606 fs->data_align = fde->cie->data_alignment_factor;
607 fs->code_align = fde->cie->code_alignment_factor;
608 fs->retaddr_column = fde->cie->return_address_register;
609
610 /* First decode all the insns in the CIE. */
611 execute_cfa_program (fde->cie->initial_instructions,
612 fde->cie->end, next_frame, fs);
613
614 /* Save the initialized register set. */
615 fs->initial = fs->regs;
616 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
617
618 /* Then decode the insns in the FDE up to our target PC. */
619 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
620
621 /* Caclulate the CFA. */
622 switch (fs->cfa_how)
623 {
624 case CFA_REG_OFFSET:
625 cache->cfa = read_reg (next_frame, fs->cfa_reg);
626 cache->cfa += fs->cfa_offset;
627 break;
628
629 case CFA_EXP:
630 cache->cfa =
631 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
632 break;
633
634 default:
635 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
636 }
637
638 /* Initialize the register state. */
639 {
640 int regnum;
641
642 for (regnum = 0; regnum < num_regs; regnum++)
643 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
644 }
645
646 /* Go through the DWARF2 CFI generated table and save its register
647 location information in the cache. Note that we don't skip the
648 return address column; it's perfectly all right for it to
649 correspond to a real register. If it doesn't correspond to a
650 real register, or if we shouldn't treat it as such,
651 DWARF2_REG_TO_REGNUM should be defined to return a number outside
652 the range [0, NUM_REGS). */
653 {
654 int column; /* CFI speak for "register number". */
655
656 for (column = 0; column < fs->regs.num_regs; column++)
657 {
658 /* Use the GDB register number as the destination index. */
659 int regnum = DWARF2_REG_TO_REGNUM (column);
660
661 /* If there's no corresponding GDB register, ignore it. */
662 if (regnum < 0 || regnum >= num_regs)
663 continue;
664
665 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
666 of all debug info registers. If it doesn't, complain (but
667 not too loudly). It turns out that GCC assumes that an
668 unspecified register implies "same value" when CFI (draft
669 7) specifies nothing at all. Such a register could equally
670 be interpreted as "undefined". Also note that this check
671 isn't sufficient; it only checks that all registers in the
672 range [0 .. max column] are specified, and won't detect
673 problems when a debug info register falls outside of the
674 table. We need a way of iterating through all the valid
675 DWARF2 register numbers. */
676 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
677 complaint (&symfile_complaints,
678 "Incomplete CFI data; unspecified registers at 0x%s",
679 paddr (fs->pc));
680 else
681 cache->reg[regnum] = fs->regs.reg[column];
682 }
683 }
684
685 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
686 {
687 int regnum;
688
689 for (regnum = 0; regnum < num_regs; regnum++)
690 {
691 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
692 {
693 struct dwarf2_frame_state_reg *retaddr_reg =
694 &fs->regs.reg[fs->retaddr_column];
695
696 /* It seems rather bizarre to specify an "empty" column as
697 the return adress column. However, this is exactly
698 what GCC does on some targets. It turns out that GCC
699 assumes that the return address can be found in the
700 register corresponding to the return address column.
701 Incidentally, that's how should treat a return address
702 column specifying "same value" too. */
703 if (fs->retaddr_column < fs->regs.num_regs
704 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
705 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
706 cache->reg[regnum] = *retaddr_reg;
707 else
708 {
709 cache->reg[regnum].loc.reg = fs->retaddr_column;
710 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
711 }
712 }
713 }
714 }
715
716 do_cleanups (old_chain);
717
718 *this_cache = cache;
719 return cache;
720 }
721
722 static void
723 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
724 struct frame_id *this_id)
725 {
726 struct dwarf2_frame_cache *cache =
727 dwarf2_frame_cache (next_frame, this_cache);
728
729 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
730 }
731
732 static void
733 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
734 int regnum, int *optimizedp,
735 enum lval_type *lvalp, CORE_ADDR *addrp,
736 int *realnump, void *valuep)
737 {
738 struct gdbarch *gdbarch = get_frame_arch (next_frame);
739 struct dwarf2_frame_cache *cache =
740 dwarf2_frame_cache (next_frame, this_cache);
741
742 switch (cache->reg[regnum].how)
743 {
744 case DWARF2_FRAME_REG_UNDEFINED:
745 /* If CFI explicitly specified that the value isn't defined,
746 mark it as optimized away; the value isn't available. */
747 *optimizedp = 1;
748 *lvalp = not_lval;
749 *addrp = 0;
750 *realnump = -1;
751 if (valuep)
752 {
753 /* In some cases, for example %eflags on the i386, we have
754 to provide a sane value, even though this register wasn't
755 saved. Assume we can get it from NEXT_FRAME. */
756 frame_unwind_register (next_frame, regnum, valuep);
757 }
758 break;
759
760 case DWARF2_FRAME_REG_SAVED_OFFSET:
761 *optimizedp = 0;
762 *lvalp = lval_memory;
763 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
764 *realnump = -1;
765 if (valuep)
766 {
767 /* Read the value in from memory. */
768 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
769 }
770 break;
771
772 case DWARF2_FRAME_REG_SAVED_REG:
773 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
774 frame_register_unwind (next_frame, regnum,
775 optimizedp, lvalp, addrp, realnump, valuep);
776 break;
777
778 case DWARF2_FRAME_REG_SAVED_EXP:
779 *optimizedp = 0;
780 *lvalp = lval_memory;
781 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
782 cache->reg[regnum].exp_len,
783 next_frame, cache->cfa);
784 *realnump = -1;
785 if (valuep)
786 {
787 /* Read the value in from memory. */
788 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
789 }
790 break;
791
792 case DWARF2_FRAME_REG_UNSPECIFIED:
793 /* GCC, in its infinite wisdom decided to not provide unwind
794 information for registers that are "same value". Since
795 DWARF2 (3 draft 7) doesn't define such behavior, said
796 registers are actually undefined (which is different to CFI
797 "undefined"). Code above issues a complaint about this.
798 Here just fudge the books, assume GCC, and that the value is
799 more inner on the stack. */
800 frame_register_unwind (next_frame, regnum,
801 optimizedp, lvalp, addrp, realnump, valuep);
802 break;
803
804 case DWARF2_FRAME_REG_SAME_VALUE:
805 frame_register_unwind (next_frame, regnum,
806 optimizedp, lvalp, addrp, realnump, valuep);
807 break;
808
809 case DWARF2_FRAME_REG_CFA:
810 *optimizedp = 0;
811 *lvalp = not_lval;
812 *addrp = 0;
813 *realnump = -1;
814 if (valuep)
815 {
816 /* Store the value. */
817 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
818 }
819 break;
820
821 default:
822 internal_error (__FILE__, __LINE__, "Unknown register rule.");
823 }
824 }
825
826 static const struct frame_unwind dwarf2_frame_unwind =
827 {
828 NORMAL_FRAME,
829 dwarf2_frame_this_id,
830 dwarf2_frame_prev_register
831 };
832
833 const struct frame_unwind *
834 dwarf2_frame_sniffer (struct frame_info *next_frame)
835 {
836 /* Grab an address that is guarenteed to reside somewhere within the
837 function. frame_pc_unwind(), for a no-return next function, can
838 end up returning something past the end of this function's body. */
839 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
840 if (dwarf2_frame_find_fde (&block_addr))
841 return &dwarf2_frame_unwind;
842
843 return NULL;
844 }
845 \f
846
847 /* There is no explicitly defined relationship between the CFA and the
848 location of frame's local variables and arguments/parameters.
849 Therefore, frame base methods on this page should probably only be
850 used as a last resort, just to avoid printing total garbage as a
851 response to the "info frame" command. */
852
853 static CORE_ADDR
854 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
855 {
856 struct dwarf2_frame_cache *cache =
857 dwarf2_frame_cache (next_frame, this_cache);
858
859 return cache->cfa;
860 }
861
862 static const struct frame_base dwarf2_frame_base =
863 {
864 &dwarf2_frame_unwind,
865 dwarf2_frame_base_address,
866 dwarf2_frame_base_address,
867 dwarf2_frame_base_address
868 };
869
870 const struct frame_base *
871 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
872 {
873 CORE_ADDR pc = frame_pc_unwind (next_frame);
874 if (dwarf2_frame_find_fde (&pc))
875 return &dwarf2_frame_base;
876
877 return NULL;
878 }
879 \f
880 /* A minimal decoding of DWARF2 compilation units. We only decode
881 what's needed to get to the call frame information. */
882
883 struct comp_unit
884 {
885 /* Keep the bfd convenient. */
886 bfd *abfd;
887
888 struct objfile *objfile;
889
890 /* Linked list of CIEs for this object. */
891 struct dwarf2_cie *cie;
892
893 /* Address size for this unit - from unit header. */
894 unsigned char addr_size;
895
896 /* Pointer to the .debug_frame section loaded into memory. */
897 char *dwarf_frame_buffer;
898
899 /* Length of the loaded .debug_frame section. */
900 unsigned long dwarf_frame_size;
901
902 /* Pointer to the .debug_frame section. */
903 asection *dwarf_frame_section;
904
905 /* Base for DW_EH_PE_datarel encodings. */
906 bfd_vma dbase;
907
908 /* Base for DW_EH_PE_textrel encodings. */
909 bfd_vma tbase;
910 };
911
912 const struct objfile_data *dwarf2_frame_objfile_data;
913
914 static unsigned int
915 read_1_byte (bfd *bfd, char *buf)
916 {
917 return bfd_get_8 (abfd, (bfd_byte *) buf);
918 }
919
920 static unsigned int
921 read_4_bytes (bfd *abfd, char *buf)
922 {
923 return bfd_get_32 (abfd, (bfd_byte *) buf);
924 }
925
926 static ULONGEST
927 read_8_bytes (bfd *abfd, char *buf)
928 {
929 return bfd_get_64 (abfd, (bfd_byte *) buf);
930 }
931
932 static ULONGEST
933 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
934 {
935 ULONGEST result;
936 unsigned int num_read;
937 int shift;
938 unsigned char byte;
939
940 result = 0;
941 shift = 0;
942 num_read = 0;
943
944 do
945 {
946 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
947 buf++;
948 num_read++;
949 result |= ((byte & 0x7f) << shift);
950 shift += 7;
951 }
952 while (byte & 0x80);
953
954 *bytes_read_ptr = num_read;
955
956 return result;
957 }
958
959 static LONGEST
960 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
961 {
962 LONGEST result;
963 int shift;
964 unsigned int num_read;
965 unsigned char byte;
966
967 result = 0;
968 shift = 0;
969 num_read = 0;
970
971 do
972 {
973 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
974 buf++;
975 num_read++;
976 result |= ((byte & 0x7f) << shift);
977 shift += 7;
978 }
979 while (byte & 0x80);
980
981 if ((shift < 32) && (byte & 0x40))
982 result |= -(1 << shift);
983
984 *bytes_read_ptr = num_read;
985
986 return result;
987 }
988
989 static ULONGEST
990 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
991 {
992 LONGEST result;
993
994 result = bfd_get_32 (abfd, (bfd_byte *) buf);
995 if (result == 0xffffffff)
996 {
997 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
998 *bytes_read_ptr = 12;
999 }
1000 else
1001 *bytes_read_ptr = 4;
1002
1003 return result;
1004 }
1005 \f
1006
1007 /* Pointer encoding helper functions. */
1008
1009 /* GCC supports exception handling based on DWARF2 CFI. However, for
1010 technical reasons, it encodes addresses in its FDE's in a different
1011 way. Several "pointer encodings" are supported. The encoding
1012 that's used for a particular FDE is determined by the 'R'
1013 augmentation in the associated CIE. The argument of this
1014 augmentation is a single byte.
1015
1016 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1017 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1018 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1019 address should be interpreted (absolute, relative to the current
1020 position in the FDE, ...). Bit 7, indicates that the address
1021 should be dereferenced. */
1022
1023 static unsigned char
1024 encoding_for_size (unsigned int size)
1025 {
1026 switch (size)
1027 {
1028 case 2:
1029 return DW_EH_PE_udata2;
1030 case 4:
1031 return DW_EH_PE_udata4;
1032 case 8:
1033 return DW_EH_PE_udata8;
1034 default:
1035 internal_error (__FILE__, __LINE__, "Unsupported address size");
1036 }
1037 }
1038
1039 static unsigned int
1040 size_of_encoded_value (unsigned char encoding)
1041 {
1042 if (encoding == DW_EH_PE_omit)
1043 return 0;
1044
1045 switch (encoding & 0x07)
1046 {
1047 case DW_EH_PE_absptr:
1048 return TYPE_LENGTH (builtin_type_void_data_ptr);
1049 case DW_EH_PE_udata2:
1050 return 2;
1051 case DW_EH_PE_udata4:
1052 return 4;
1053 case DW_EH_PE_udata8:
1054 return 8;
1055 default:
1056 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1057 }
1058 }
1059
1060 static CORE_ADDR
1061 read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1062 char *buf, unsigned int *bytes_read_ptr)
1063 {
1064 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1065 ptrdiff_t offset;
1066 CORE_ADDR base;
1067
1068 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1069 FDE's. */
1070 if (encoding & DW_EH_PE_indirect)
1071 internal_error (__FILE__, __LINE__,
1072 "Unsupported encoding: DW_EH_PE_indirect");
1073
1074 *bytes_read_ptr = 0;
1075
1076 switch (encoding & 0x70)
1077 {
1078 case DW_EH_PE_absptr:
1079 base = 0;
1080 break;
1081 case DW_EH_PE_pcrel:
1082 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1083 base += (buf - unit->dwarf_frame_buffer);
1084 break;
1085 case DW_EH_PE_datarel:
1086 base = unit->dbase;
1087 break;
1088 case DW_EH_PE_textrel:
1089 base = unit->tbase;
1090 break;
1091 case DW_EH_PE_aligned:
1092 base = 0;
1093 offset = buf - unit->dwarf_frame_buffer;
1094 if ((offset % ptr_len) != 0)
1095 {
1096 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1097 buf += *bytes_read_ptr;
1098 }
1099 break;
1100 default:
1101 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1102 }
1103
1104 if ((encoding & 0x0f) == 0x00)
1105 encoding |= encoding_for_size (ptr_len);
1106
1107 switch (encoding & 0x0f)
1108 {
1109 case DW_EH_PE_udata2:
1110 *bytes_read_ptr += 2;
1111 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1112 case DW_EH_PE_udata4:
1113 *bytes_read_ptr += 4;
1114 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1115 case DW_EH_PE_udata8:
1116 *bytes_read_ptr += 8;
1117 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1118 case DW_EH_PE_sdata2:
1119 *bytes_read_ptr += 2;
1120 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1121 case DW_EH_PE_sdata4:
1122 *bytes_read_ptr += 4;
1123 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1124 case DW_EH_PE_sdata8:
1125 *bytes_read_ptr += 8;
1126 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1127 default:
1128 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1129 }
1130 }
1131 \f
1132
1133 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1134 That's why we use a simple linked list here. */
1135
1136 static struct dwarf2_cie *
1137 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1138 {
1139 struct dwarf2_cie *cie = unit->cie;
1140
1141 while (cie)
1142 {
1143 if (cie->cie_pointer == cie_pointer)
1144 return cie;
1145
1146 cie = cie->next;
1147 }
1148
1149 return NULL;
1150 }
1151
1152 static void
1153 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1154 {
1155 cie->next = unit->cie;
1156 unit->cie = cie;
1157 }
1158
1159 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1160 inital location associated with it into *PC. */
1161
1162 static struct dwarf2_fde *
1163 dwarf2_frame_find_fde (CORE_ADDR *pc)
1164 {
1165 struct objfile *objfile;
1166
1167 ALL_OBJFILES (objfile)
1168 {
1169 struct dwarf2_fde *fde;
1170 CORE_ADDR offset;
1171
1172 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1173 if (fde == NULL)
1174 continue;
1175
1176 gdb_assert (objfile->section_offsets);
1177 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1178
1179 while (fde)
1180 {
1181 if (*pc >= fde->initial_location + offset
1182 && *pc < fde->initial_location + offset + fde->address_range)
1183 {
1184 *pc = fde->initial_location + offset;
1185 return fde;
1186 }
1187
1188 fde = fde->next;
1189 }
1190 }
1191
1192 return NULL;
1193 }
1194
1195 static void
1196 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1197 {
1198 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1199 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1200 }
1201
1202 #ifdef CC_HAS_LONG_LONG
1203 #define DW64_CIE_ID 0xffffffffffffffffULL
1204 #else
1205 #define DW64_CIE_ID ~0
1206 #endif
1207
1208 static char *decode_frame_entry (struct comp_unit *unit, char *start,
1209 int eh_frame_p);
1210
1211 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1212 the next byte to be processed. */
1213 static char *
1214 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1215 {
1216 char *buf;
1217 LONGEST length;
1218 unsigned int bytes_read;
1219 int dwarf64_p;
1220 ULONGEST cie_id;
1221 ULONGEST cie_pointer;
1222 char *end;
1223
1224 buf = start;
1225 length = read_initial_length (unit->abfd, buf, &bytes_read);
1226 buf += bytes_read;
1227 end = buf + length;
1228
1229 /* Are we still within the section? */
1230 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1231 return NULL;
1232
1233 if (length == 0)
1234 return end;
1235
1236 /* Distinguish between 32 and 64-bit encoded frame info. */
1237 dwarf64_p = (bytes_read == 12);
1238
1239 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1240 if (eh_frame_p)
1241 cie_id = 0;
1242 else if (dwarf64_p)
1243 cie_id = DW64_CIE_ID;
1244 else
1245 cie_id = DW_CIE_ID;
1246
1247 if (dwarf64_p)
1248 {
1249 cie_pointer = read_8_bytes (unit->abfd, buf);
1250 buf += 8;
1251 }
1252 else
1253 {
1254 cie_pointer = read_4_bytes (unit->abfd, buf);
1255 buf += 4;
1256 }
1257
1258 if (cie_pointer == cie_id)
1259 {
1260 /* This is a CIE. */
1261 struct dwarf2_cie *cie;
1262 char *augmentation;
1263
1264 /* Record the offset into the .debug_frame section of this CIE. */
1265 cie_pointer = start - unit->dwarf_frame_buffer;
1266
1267 /* Check whether we've already read it. */
1268 if (find_cie (unit, cie_pointer))
1269 return end;
1270
1271 cie = (struct dwarf2_cie *)
1272 obstack_alloc (&unit->objfile->objfile_obstack,
1273 sizeof (struct dwarf2_cie));
1274 cie->initial_instructions = NULL;
1275 cie->cie_pointer = cie_pointer;
1276
1277 /* The encoding for FDE's in a normal .debug_frame section
1278 depends on the target address size as specified in the
1279 Compilation Unit Header. */
1280 cie->encoding = encoding_for_size (unit->addr_size);
1281
1282 /* Check version number. */
1283 if (read_1_byte (unit->abfd, buf) != DW_CIE_VERSION)
1284 return NULL;
1285 buf += 1;
1286
1287 /* Interpret the interesting bits of the augmentation. */
1288 augmentation = buf;
1289 buf = augmentation + strlen (augmentation) + 1;
1290
1291 /* The GCC 2.x "eh" augmentation has a pointer immediately
1292 following the augmentation string, so it must be handled
1293 first. */
1294 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1295 {
1296 /* Skip. */
1297 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1298 augmentation += 2;
1299 }
1300
1301 cie->code_alignment_factor =
1302 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1303 buf += bytes_read;
1304
1305 cie->data_alignment_factor =
1306 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1307 buf += bytes_read;
1308
1309 cie->return_address_register = read_1_byte (unit->abfd, buf);
1310 buf += 1;
1311
1312 cie->saw_z_augmentation = (*augmentation == 'z');
1313 if (cie->saw_z_augmentation)
1314 {
1315 ULONGEST length;
1316
1317 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1318 buf += bytes_read;
1319 if (buf > end)
1320 return NULL;
1321 cie->initial_instructions = buf + length;
1322 augmentation++;
1323 }
1324
1325 while (*augmentation)
1326 {
1327 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1328 if (*augmentation == 'L')
1329 {
1330 /* Skip. */
1331 buf++;
1332 augmentation++;
1333 }
1334
1335 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1336 else if (*augmentation == 'R')
1337 {
1338 cie->encoding = *buf++;
1339 augmentation++;
1340 }
1341
1342 /* "P" indicates a personality routine in the CIE augmentation. */
1343 else if (*augmentation == 'P')
1344 {
1345 /* Skip. */
1346 buf += size_of_encoded_value (*buf++);
1347 augmentation++;
1348 }
1349
1350 /* Otherwise we have an unknown augmentation.
1351 Bail out unless we saw a 'z' prefix. */
1352 else
1353 {
1354 if (cie->initial_instructions == NULL)
1355 return end;
1356
1357 /* Skip unknown augmentations. */
1358 buf = cie->initial_instructions;
1359 break;
1360 }
1361 }
1362
1363 cie->initial_instructions = buf;
1364 cie->end = end;
1365
1366 add_cie (unit, cie);
1367 }
1368 else
1369 {
1370 /* This is a FDE. */
1371 struct dwarf2_fde *fde;
1372
1373 /* In an .eh_frame section, the CIE pointer is the delta between the
1374 address within the FDE where the CIE pointer is stored and the
1375 address of the CIE. Convert it to an offset into the .eh_frame
1376 section. */
1377 if (eh_frame_p)
1378 {
1379 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1380 cie_pointer -= (dwarf64_p ? 8 : 4);
1381 }
1382
1383 /* In either case, validate the result is still within the section. */
1384 if (cie_pointer >= unit->dwarf_frame_size)
1385 return NULL;
1386
1387 fde = (struct dwarf2_fde *)
1388 obstack_alloc (&unit->objfile->objfile_obstack,
1389 sizeof (struct dwarf2_fde));
1390 fde->cie = find_cie (unit, cie_pointer);
1391 if (fde->cie == NULL)
1392 {
1393 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1394 eh_frame_p);
1395 fde->cie = find_cie (unit, cie_pointer);
1396 }
1397
1398 gdb_assert (fde->cie != NULL);
1399
1400 fde->initial_location =
1401 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1402 buf += bytes_read;
1403
1404 fde->address_range =
1405 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1406 buf += bytes_read;
1407
1408 /* A 'z' augmentation in the CIE implies the presence of an
1409 augmentation field in the FDE as well. The only thing known
1410 to be in here at present is the LSDA entry for EH. So we
1411 can skip the whole thing. */
1412 if (fde->cie->saw_z_augmentation)
1413 {
1414 ULONGEST length;
1415
1416 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1417 buf += bytes_read + length;
1418 if (buf > end)
1419 return NULL;
1420 }
1421
1422 fde->instructions = buf;
1423 fde->end = end;
1424
1425 add_fde (unit, fde);
1426 }
1427
1428 return end;
1429 }
1430
1431 /* Read a CIE or FDE in BUF and decode it. */
1432 static char *
1433 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1434 {
1435 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1436 char *ret;
1437 const char *msg;
1438 ptrdiff_t start_offset;
1439
1440 while (1)
1441 {
1442 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1443 if (ret != NULL)
1444 break;
1445
1446 /* We have corrupt input data of some form. */
1447
1448 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1449 and mismatches wrt padding and alignment of debug sections. */
1450 /* Note that there is no requirement in the standard for any
1451 alignment at all in the frame unwind sections. Testing for
1452 alignment before trying to interpret data would be incorrect.
1453
1454 However, GCC traditionally arranged for frame sections to be
1455 sized such that the FDE length and CIE fields happen to be
1456 aligned (in theory, for performance). This, unfortunately,
1457 was done with .align directives, which had the side effect of
1458 forcing the section to be aligned by the linker.
1459
1460 This becomes a problem when you have some other producer that
1461 creates frame sections that are not as strictly aligned. That
1462 produces a hole in the frame info that gets filled by the
1463 linker with zeros.
1464
1465 The GCC behaviour is arguably a bug, but it's effectively now
1466 part of the ABI, so we're now stuck with it, at least at the
1467 object file level. A smart linker may decide, in the process
1468 of compressing duplicate CIE information, that it can rewrite
1469 the entire output section without this extra padding. */
1470
1471 start_offset = start - unit->dwarf_frame_buffer;
1472 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1473 {
1474 start += 4 - (start_offset & 3);
1475 workaround = ALIGN4;
1476 continue;
1477 }
1478 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1479 {
1480 start += 8 - (start_offset & 7);
1481 workaround = ALIGN8;
1482 continue;
1483 }
1484
1485 /* Nothing left to try. Arrange to return as if we've consumed
1486 the entire input section. Hopefully we'll get valid info from
1487 the other of .debug_frame/.eh_frame. */
1488 workaround = FAIL;
1489 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1490 break;
1491 }
1492
1493 switch (workaround)
1494 {
1495 case NONE:
1496 break;
1497
1498 case ALIGN4:
1499 complaint (&symfile_complaints,
1500 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1501 unit->dwarf_frame_section->owner->filename,
1502 unit->dwarf_frame_section->name);
1503 break;
1504
1505 case ALIGN8:
1506 complaint (&symfile_complaints,
1507 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1508 unit->dwarf_frame_section->owner->filename,
1509 unit->dwarf_frame_section->name);
1510 break;
1511
1512 default:
1513 complaint (&symfile_complaints,
1514 "Corrupt data in %s:%s",
1515 unit->dwarf_frame_section->owner->filename,
1516 unit->dwarf_frame_section->name);
1517 break;
1518 }
1519
1520 return ret;
1521 }
1522 \f
1523
1524 /* FIXME: kettenis/20030504: This still needs to be integrated with
1525 dwarf2read.c in a better way. */
1526
1527 /* Imported from dwarf2read.c. */
1528 extern asection *dwarf_frame_section;
1529 extern asection *dwarf_eh_frame_section;
1530
1531 /* Imported from dwarf2read.c. */
1532 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1533
1534 void
1535 dwarf2_build_frame_info (struct objfile *objfile)
1536 {
1537 struct comp_unit unit;
1538 char *frame_ptr;
1539
1540 /* Build a minimal decoding of the DWARF2 compilation unit. */
1541 unit.abfd = objfile->obfd;
1542 unit.objfile = objfile;
1543 unit.addr_size = objfile->obfd->arch_info->bits_per_address / 8;
1544 unit.dbase = 0;
1545 unit.tbase = 0;
1546
1547 /* First add the information from the .eh_frame section. That way,
1548 the FDEs from that section are searched last. */
1549 if (dwarf_eh_frame_section)
1550 {
1551 asection *got, *txt;
1552
1553 unit.cie = NULL;
1554 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1555 dwarf_eh_frame_section);
1556
1557 unit.dwarf_frame_size
1558 = bfd_get_section_size_before_reloc (dwarf_eh_frame_section);
1559 unit.dwarf_frame_section = dwarf_eh_frame_section;
1560
1561 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1562 that is used for the i386/amd64 target, which currently is
1563 the only target in GCC that supports/uses the
1564 DW_EH_PE_datarel encoding. */
1565 got = bfd_get_section_by_name (unit.abfd, ".got");
1566 if (got)
1567 unit.dbase = got->vma;
1568
1569 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1570 so far. */
1571 txt = bfd_get_section_by_name (unit.abfd, ".text");
1572 if (txt)
1573 unit.tbase = txt->vma;
1574
1575 frame_ptr = unit.dwarf_frame_buffer;
1576 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1577 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1578 }
1579
1580 if (dwarf_frame_section)
1581 {
1582 unit.cie = NULL;
1583 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1584 dwarf_frame_section);
1585 unit.dwarf_frame_size
1586 = bfd_get_section_size_before_reloc (dwarf_frame_section);
1587 unit.dwarf_frame_section = dwarf_frame_section;
1588
1589 frame_ptr = unit.dwarf_frame_buffer;
1590 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1591 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1592 }
1593 }
1594
1595 /* Provide a prototype to silence -Wmissing-prototypes. */
1596 void _initialize_dwarf2_frame (void);
1597
1598 void
1599 _initialize_dwarf2_frame (void)
1600 {
1601 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1602 dwarf2_frame_objfile_data = register_objfile_data ();
1603 }
This page took 0.070079 seconds and 5 git commands to generate.