gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
311 {
312 read_memory (addr, buf, len);
313 }
314
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
317 static void
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320 {
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
343 }
344
345 /* Virtual method table for execute_stack_op below. */
346
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348 {
349 read_reg,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 uint64_t utmp, reg;
420 int64_t offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
549
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
641
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
651 int size = register_size (gdbarch, 0);
652
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
671
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
685 }
686 }
687 }
688
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
697 }
698 \f
699
700 /* Architecture-specific operations. */
701
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
704
705 struct dwarf2_frame_ops
706 {
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
710
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
713
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
717 };
718
719 /* Default architecture-specific register state initialization
720 function. */
721
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
726 {
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
752
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
757 }
758
759 /* Return a default for the architecture-specific operations. */
760
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
763 {
764 struct dwarf2_frame_ops *ops;
765
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769 }
770
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg = init_reg;
783 }
784
785 /* Pre-initialize the register state REG for register REGNUM. */
786
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
791 {
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
795 }
796
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808 }
809
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
812
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
816 {
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
822 }
823
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
826
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
831 {
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
834 ops->adjust_regnum = adjust_regnum;
835 }
836
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
839
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
843 {
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
849 }
850
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854 {
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
858 if (s == NULL)
859 return;
860
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
882 }
883 \f
884
885 void
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890 {
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
894 CORE_ADDR text_offset;
895 struct dwarf2_frame_state fs;
896 int addr_size;
897
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
899
900 fs.pc = pc;
901
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
904 if (fde == NULL)
905 error (_("Could not compute CFA; needed to translate this expression"));
906
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
912
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
915
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
919
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
923
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
926
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
929 {
930 case CFA_REG_OFFSET:
931 {
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
933
934 if (regnum == -1)
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
938
939 if (fs.regs.cfa_offset != 0)
940 {
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
943 else
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
946 }
947 }
948 break;
949
950 case CFA_EXP:
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
953 fs.regs.cfa_exp,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
955 data);
956 break;
957
958 default:
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
960 }
961 }
962
963 \f
964 struct dwarf2_frame_cache
965 {
966 /* DWARF Call Frame Address. */
967 CORE_ADDR cfa;
968
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
972
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
975
976 /* Saved registers, indexed by GDB register number, not by DWARF
977 register number. */
978 struct dwarf2_frame_state_reg *reg;
979
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
982
983 /* Target address size in bytes. */
984 int addr_size;
985
986 /* The .text offset. */
987 CORE_ADDR text_offset;
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
995 };
996
997 /* A cleanup that sets a pointer to NULL. */
998
999 static void
1000 clear_pointer_cleanup (void *arg)
1001 {
1002 void **ptr = arg;
1003
1004 *ptr = NULL;
1005 }
1006
1007 static struct dwarf2_frame_cache *
1008 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1009 {
1010 struct cleanup *reset_cache_cleanup, *old_chain;
1011 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1012 const int num_regs = gdbarch_num_regs (gdbarch)
1013 + gdbarch_num_pseudo_regs (gdbarch);
1014 struct dwarf2_frame_cache *cache;
1015 struct dwarf2_frame_state *fs;
1016 struct dwarf2_fde *fde;
1017 volatile struct gdb_exception ex;
1018 CORE_ADDR entry_pc;
1019 LONGEST entry_cfa_sp_offset;
1020 int entry_cfa_sp_offset_p = 0;
1021 const gdb_byte *instr;
1022
1023 if (*this_cache)
1024 return *this_cache;
1025
1026 /* Allocate a new cache. */
1027 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1028 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1029 *this_cache = cache;
1030 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1031
1032 /* Allocate and initialize the frame state. */
1033 fs = XZALLOC (struct dwarf2_frame_state);
1034 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1035
1036 /* Unwind the PC.
1037
1038 Note that if the next frame is never supposed to return (i.e. a call
1039 to abort), the compiler might optimize away the instruction at
1040 its return address. As a result the return address will
1041 point at some random instruction, and the CFI for that
1042 instruction is probably worthless to us. GCC's unwinder solves
1043 this problem by substracting 1 from the return address to get an
1044 address in the middle of a presumed call instruction (or the
1045 instruction in the associated delay slot). This should only be
1046 done for "normal" frames and not for resume-type frames (signal
1047 handlers, sentinel frames, dummy frames). The function
1048 get_frame_address_in_block does just this. It's not clear how
1049 reliable the method is though; there is the potential for the
1050 register state pre-call being different to that on return. */
1051 fs->pc = get_frame_address_in_block (this_frame);
1052
1053 /* Find the correct FDE. */
1054 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1055 gdb_assert (fde != NULL);
1056
1057 /* Extract any interesting information from the CIE. */
1058 fs->data_align = fde->cie->data_alignment_factor;
1059 fs->code_align = fde->cie->code_alignment_factor;
1060 fs->retaddr_column = fde->cie->return_address_register;
1061 cache->addr_size = fde->cie->addr_size;
1062
1063 /* Check for "quirks" - known bugs in producers. */
1064 dwarf2_frame_find_quirks (fs, fde);
1065
1066 /* First decode all the insns in the CIE. */
1067 execute_cfa_program (fde, fde->cie->initial_instructions,
1068 fde->cie->end, gdbarch,
1069 get_frame_address_in_block (this_frame), fs);
1070
1071 /* Save the initialized register set. */
1072 fs->initial = fs->regs;
1073 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1074
1075 if (get_frame_func_if_available (this_frame, &entry_pc))
1076 {
1077 /* Decode the insns in the FDE up to the entry PC. */
1078 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1079 entry_pc, fs);
1080
1081 if (fs->regs.cfa_how == CFA_REG_OFFSET
1082 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1083 == gdbarch_sp_regnum (gdbarch)))
1084 {
1085 entry_cfa_sp_offset = fs->regs.cfa_offset;
1086 entry_cfa_sp_offset_p = 1;
1087 }
1088 }
1089 else
1090 instr = fde->instructions;
1091
1092 /* Then decode the insns in the FDE up to our target PC. */
1093 execute_cfa_program (fde, instr, fde->end, gdbarch,
1094 get_frame_address_in_block (this_frame), fs);
1095
1096 TRY_CATCH (ex, RETURN_MASK_ERROR)
1097 {
1098 /* Calculate the CFA. */
1099 switch (fs->regs.cfa_how)
1100 {
1101 case CFA_REG_OFFSET:
1102 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1103 if (fs->armcc_cfa_offsets_reversed)
1104 cache->cfa -= fs->regs.cfa_offset;
1105 else
1106 cache->cfa += fs->regs.cfa_offset;
1107 break;
1108
1109 case CFA_EXP:
1110 cache->cfa =
1111 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1112 cache->addr_size, cache->text_offset,
1113 this_frame, 0, 0);
1114 break;
1115
1116 default:
1117 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1118 }
1119 }
1120 if (ex.reason < 0)
1121 {
1122 if (ex.error == NOT_AVAILABLE_ERROR)
1123 {
1124 cache->unavailable_retaddr = 1;
1125 do_cleanups (old_chain);
1126 discard_cleanups (reset_cache_cleanup);
1127 return cache;
1128 }
1129
1130 throw_exception (ex);
1131 }
1132
1133 /* Initialize the register state. */
1134 {
1135 int regnum;
1136
1137 for (regnum = 0; regnum < num_regs; regnum++)
1138 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1139 }
1140
1141 /* Go through the DWARF2 CFI generated table and save its register
1142 location information in the cache. Note that we don't skip the
1143 return address column; it's perfectly all right for it to
1144 correspond to a real register. If it doesn't correspond to a
1145 real register, or if we shouldn't treat it as such,
1146 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1147 the range [0, gdbarch_num_regs). */
1148 {
1149 int column; /* CFI speak for "register number". */
1150
1151 for (column = 0; column < fs->regs.num_regs; column++)
1152 {
1153 /* Use the GDB register number as the destination index. */
1154 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1155
1156 /* If there's no corresponding GDB register, ignore it. */
1157 if (regnum < 0 || regnum >= num_regs)
1158 continue;
1159
1160 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1161 of all debug info registers. If it doesn't, complain (but
1162 not too loudly). It turns out that GCC assumes that an
1163 unspecified register implies "same value" when CFI (draft
1164 7) specifies nothing at all. Such a register could equally
1165 be interpreted as "undefined". Also note that this check
1166 isn't sufficient; it only checks that all registers in the
1167 range [0 .. max column] are specified, and won't detect
1168 problems when a debug info register falls outside of the
1169 table. We need a way of iterating through all the valid
1170 DWARF2 register numbers. */
1171 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1172 {
1173 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1174 complaint (&symfile_complaints, _("\
1175 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1176 gdbarch_register_name (gdbarch, regnum),
1177 paddress (gdbarch, fs->pc));
1178 }
1179 else
1180 cache->reg[regnum] = fs->regs.reg[column];
1181 }
1182 }
1183
1184 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1185 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1186 {
1187 int regnum;
1188
1189 for (regnum = 0; regnum < num_regs; regnum++)
1190 {
1191 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1192 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1193 {
1194 struct dwarf2_frame_state_reg *retaddr_reg =
1195 &fs->regs.reg[fs->retaddr_column];
1196
1197 /* It seems rather bizarre to specify an "empty" column as
1198 the return adress column. However, this is exactly
1199 what GCC does on some targets. It turns out that GCC
1200 assumes that the return address can be found in the
1201 register corresponding to the return address column.
1202 Incidentally, that's how we should treat a return
1203 address column specifying "same value" too. */
1204 if (fs->retaddr_column < fs->regs.num_regs
1205 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1206 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1207 {
1208 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1209 cache->reg[regnum] = *retaddr_reg;
1210 else
1211 cache->retaddr_reg = *retaddr_reg;
1212 }
1213 else
1214 {
1215 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1216 {
1217 cache->reg[regnum].loc.reg = fs->retaddr_column;
1218 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1219 }
1220 else
1221 {
1222 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1223 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1224 }
1225 }
1226 }
1227 }
1228 }
1229
1230 if (fs->retaddr_column < fs->regs.num_regs
1231 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1232 cache->undefined_retaddr = 1;
1233
1234 do_cleanups (old_chain);
1235
1236 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1237 starting at THIS_FRAME. */
1238 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1239 (entry_cfa_sp_offset_p
1240 ? &entry_cfa_sp_offset : NULL));
1241
1242 discard_cleanups (reset_cache_cleanup);
1243 return cache;
1244 }
1245
1246 static enum unwind_stop_reason
1247 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1248 void **this_cache)
1249 {
1250 struct dwarf2_frame_cache *cache
1251 = dwarf2_frame_cache (this_frame, this_cache);
1252
1253 if (cache->unavailable_retaddr)
1254 return UNWIND_UNAVAILABLE;
1255
1256 if (cache->undefined_retaddr)
1257 return UNWIND_OUTERMOST;
1258
1259 return UNWIND_NO_REASON;
1260 }
1261
1262 static void
1263 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1264 struct frame_id *this_id)
1265 {
1266 struct dwarf2_frame_cache *cache =
1267 dwarf2_frame_cache (this_frame, this_cache);
1268
1269 if (cache->unavailable_retaddr)
1270 return;
1271
1272 if (cache->undefined_retaddr)
1273 return;
1274
1275 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1276 }
1277
1278 static struct value *
1279 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1280 int regnum)
1281 {
1282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1283 struct dwarf2_frame_cache *cache =
1284 dwarf2_frame_cache (this_frame, this_cache);
1285 CORE_ADDR addr;
1286 int realnum;
1287
1288 /* Non-bottom frames of a virtual tail call frames chain use
1289 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1290 them. If dwarf2_tailcall_prev_register_first does not have specific value
1291 unwind the register, tail call frames are assumed to have the register set
1292 of the top caller. */
1293 if (cache->tailcall_cache)
1294 {
1295 struct value *val;
1296
1297 val = dwarf2_tailcall_prev_register_first (this_frame,
1298 &cache->tailcall_cache,
1299 regnum);
1300 if (val)
1301 return val;
1302 }
1303
1304 switch (cache->reg[regnum].how)
1305 {
1306 case DWARF2_FRAME_REG_UNDEFINED:
1307 /* If CFI explicitly specified that the value isn't defined,
1308 mark it as optimized away; the value isn't available. */
1309 return frame_unwind_got_optimized (this_frame, regnum);
1310
1311 case DWARF2_FRAME_REG_SAVED_OFFSET:
1312 addr = cache->cfa + cache->reg[regnum].loc.offset;
1313 return frame_unwind_got_memory (this_frame, regnum, addr);
1314
1315 case DWARF2_FRAME_REG_SAVED_REG:
1316 realnum
1317 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1318 return frame_unwind_got_register (this_frame, regnum, realnum);
1319
1320 case DWARF2_FRAME_REG_SAVED_EXP:
1321 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1322 cache->reg[regnum].exp_len,
1323 cache->addr_size, cache->text_offset,
1324 this_frame, cache->cfa, 1);
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
1326
1327 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1328 addr = cache->cfa + cache->reg[regnum].loc.offset;
1329 return frame_unwind_got_constant (this_frame, regnum, addr);
1330
1331 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
1336 return frame_unwind_got_constant (this_frame, regnum, addr);
1337
1338 case DWARF2_FRAME_REG_UNSPECIFIED:
1339 /* GCC, in its infinite wisdom decided to not provide unwind
1340 information for registers that are "same value". Since
1341 DWARF2 (3 draft 7) doesn't define such behavior, said
1342 registers are actually undefined (which is different to CFI
1343 "undefined"). Code above issues a complaint about this.
1344 Here just fudge the books, assume GCC, and that the value is
1345 more inner on the stack. */
1346 return frame_unwind_got_register (this_frame, regnum, regnum);
1347
1348 case DWARF2_FRAME_REG_SAME_VALUE:
1349 return frame_unwind_got_register (this_frame, regnum, regnum);
1350
1351 case DWARF2_FRAME_REG_CFA:
1352 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1353
1354 case DWARF2_FRAME_REG_CFA_OFFSET:
1355 addr = cache->cfa + cache->reg[regnum].loc.offset;
1356 return frame_unwind_got_address (this_frame, regnum, addr);
1357
1358 case DWARF2_FRAME_REG_RA_OFFSET:
1359 addr = cache->reg[regnum].loc.offset;
1360 regnum = gdbarch_dwarf2_reg_to_regnum
1361 (gdbarch, cache->retaddr_reg.loc.reg);
1362 addr += get_frame_register_unsigned (this_frame, regnum);
1363 return frame_unwind_got_address (this_frame, regnum, addr);
1364
1365 case DWARF2_FRAME_REG_FN:
1366 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1367
1368 default:
1369 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1370 }
1371 }
1372
1373 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1374 call frames chain. */
1375
1376 static void
1377 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1378 {
1379 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1380
1381 if (cache->tailcall_cache)
1382 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1383 }
1384
1385 static int
1386 dwarf2_frame_sniffer (const struct frame_unwind *self,
1387 struct frame_info *this_frame, void **this_cache)
1388 {
1389 /* Grab an address that is guarenteed to reside somewhere within the
1390 function. get_frame_pc(), with a no-return next function, can
1391 end up returning something past the end of this function's body.
1392 If the frame we're sniffing for is a signal frame whose start
1393 address is placed on the stack by the OS, its FDE must
1394 extend one byte before its start address or we could potentially
1395 select the FDE of the previous function. */
1396 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1397 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1398
1399 if (!fde)
1400 return 0;
1401
1402 /* On some targets, signal trampolines may have unwind information.
1403 We need to recognize them so that we set the frame type
1404 correctly. */
1405
1406 if (fde->cie->signal_frame
1407 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1408 this_frame))
1409 return self->type == SIGTRAMP_FRAME;
1410
1411 if (self->type != NORMAL_FRAME)
1412 return 0;
1413
1414 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1415 dwarf2_tailcall_sniffer_first. */
1416 dwarf2_frame_cache (this_frame, this_cache);
1417
1418 return 1;
1419 }
1420
1421 static const struct frame_unwind dwarf2_frame_unwind =
1422 {
1423 NORMAL_FRAME,
1424 dwarf2_frame_unwind_stop_reason,
1425 dwarf2_frame_this_id,
1426 dwarf2_frame_prev_register,
1427 NULL,
1428 dwarf2_frame_sniffer,
1429 dwarf2_frame_dealloc_cache
1430 };
1431
1432 static const struct frame_unwind dwarf2_signal_frame_unwind =
1433 {
1434 SIGTRAMP_FRAME,
1435 dwarf2_frame_unwind_stop_reason,
1436 dwarf2_frame_this_id,
1437 dwarf2_frame_prev_register,
1438 NULL,
1439 dwarf2_frame_sniffer,
1440
1441 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1442 NULL
1443 };
1444
1445 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1446
1447 void
1448 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1449 {
1450 /* TAILCALL_FRAME must be first to find the record by
1451 dwarf2_tailcall_sniffer_first. */
1452 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1453
1454 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1455 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1456 }
1457 \f
1458
1459 /* There is no explicitly defined relationship between the CFA and the
1460 location of frame's local variables and arguments/parameters.
1461 Therefore, frame base methods on this page should probably only be
1462 used as a last resort, just to avoid printing total garbage as a
1463 response to the "info frame" command. */
1464
1465 static CORE_ADDR
1466 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1467 {
1468 struct dwarf2_frame_cache *cache =
1469 dwarf2_frame_cache (this_frame, this_cache);
1470
1471 return cache->cfa;
1472 }
1473
1474 static const struct frame_base dwarf2_frame_base =
1475 {
1476 &dwarf2_frame_unwind,
1477 dwarf2_frame_base_address,
1478 dwarf2_frame_base_address,
1479 dwarf2_frame_base_address
1480 };
1481
1482 const struct frame_base *
1483 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1484 {
1485 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1486
1487 if (dwarf2_frame_find_fde (&block_addr, NULL))
1488 return &dwarf2_frame_base;
1489
1490 return NULL;
1491 }
1492
1493 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1494 the DWARF unwinder. This is used to implement
1495 DW_OP_call_frame_cfa. */
1496
1497 CORE_ADDR
1498 dwarf2_frame_cfa (struct frame_info *this_frame)
1499 {
1500 while (get_frame_type (this_frame) == INLINE_FRAME)
1501 this_frame = get_prev_frame (this_frame);
1502 /* This restriction could be lifted if other unwinders are known to
1503 compute the frame base in a way compatible with the DWARF
1504 unwinder. */
1505 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1506 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1507 error (_("can't compute CFA for this frame"));
1508 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1509 throw_error (NOT_AVAILABLE_ERROR,
1510 _("can't compute CFA for this frame: "
1511 "required registers or memory are unavailable"));
1512 return get_frame_base (this_frame);
1513 }
1514 \f
1515 const struct objfile_data *dwarf2_frame_objfile_data;
1516
1517 static unsigned int
1518 read_1_byte (bfd *abfd, const gdb_byte *buf)
1519 {
1520 return bfd_get_8 (abfd, buf);
1521 }
1522
1523 static unsigned int
1524 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1525 {
1526 return bfd_get_32 (abfd, buf);
1527 }
1528
1529 static ULONGEST
1530 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1531 {
1532 return bfd_get_64 (abfd, buf);
1533 }
1534
1535 static ULONGEST
1536 read_initial_length (bfd *abfd, const gdb_byte *buf,
1537 unsigned int *bytes_read_ptr)
1538 {
1539 LONGEST result;
1540
1541 result = bfd_get_32 (abfd, buf);
1542 if (result == 0xffffffff)
1543 {
1544 result = bfd_get_64 (abfd, buf + 4);
1545 *bytes_read_ptr = 12;
1546 }
1547 else
1548 *bytes_read_ptr = 4;
1549
1550 return result;
1551 }
1552 \f
1553
1554 /* Pointer encoding helper functions. */
1555
1556 /* GCC supports exception handling based on DWARF2 CFI. However, for
1557 technical reasons, it encodes addresses in its FDE's in a different
1558 way. Several "pointer encodings" are supported. The encoding
1559 that's used for a particular FDE is determined by the 'R'
1560 augmentation in the associated CIE. The argument of this
1561 augmentation is a single byte.
1562
1563 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1564 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1565 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1566 address should be interpreted (absolute, relative to the current
1567 position in the FDE, ...). Bit 7, indicates that the address
1568 should be dereferenced. */
1569
1570 static gdb_byte
1571 encoding_for_size (unsigned int size)
1572 {
1573 switch (size)
1574 {
1575 case 2:
1576 return DW_EH_PE_udata2;
1577 case 4:
1578 return DW_EH_PE_udata4;
1579 case 8:
1580 return DW_EH_PE_udata8;
1581 default:
1582 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1583 }
1584 }
1585
1586 static CORE_ADDR
1587 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1588 int ptr_len, const gdb_byte *buf,
1589 unsigned int *bytes_read_ptr,
1590 CORE_ADDR func_base)
1591 {
1592 ptrdiff_t offset;
1593 CORE_ADDR base;
1594
1595 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1596 FDE's. */
1597 if (encoding & DW_EH_PE_indirect)
1598 internal_error (__FILE__, __LINE__,
1599 _("Unsupported encoding: DW_EH_PE_indirect"));
1600
1601 *bytes_read_ptr = 0;
1602
1603 switch (encoding & 0x70)
1604 {
1605 case DW_EH_PE_absptr:
1606 base = 0;
1607 break;
1608 case DW_EH_PE_pcrel:
1609 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1610 base += (buf - unit->dwarf_frame_buffer);
1611 break;
1612 case DW_EH_PE_datarel:
1613 base = unit->dbase;
1614 break;
1615 case DW_EH_PE_textrel:
1616 base = unit->tbase;
1617 break;
1618 case DW_EH_PE_funcrel:
1619 base = func_base;
1620 break;
1621 case DW_EH_PE_aligned:
1622 base = 0;
1623 offset = buf - unit->dwarf_frame_buffer;
1624 if ((offset % ptr_len) != 0)
1625 {
1626 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1627 buf += *bytes_read_ptr;
1628 }
1629 break;
1630 default:
1631 internal_error (__FILE__, __LINE__,
1632 _("Invalid or unsupported encoding"));
1633 }
1634
1635 if ((encoding & 0x07) == 0x00)
1636 {
1637 encoding |= encoding_for_size (ptr_len);
1638 if (bfd_get_sign_extend_vma (unit->abfd))
1639 encoding |= DW_EH_PE_signed;
1640 }
1641
1642 switch (encoding & 0x0f)
1643 {
1644 case DW_EH_PE_uleb128:
1645 {
1646 uint64_t value;
1647 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1648
1649 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1650 return base + value;
1651 }
1652 case DW_EH_PE_udata2:
1653 *bytes_read_ptr += 2;
1654 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1655 case DW_EH_PE_udata4:
1656 *bytes_read_ptr += 4;
1657 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1658 case DW_EH_PE_udata8:
1659 *bytes_read_ptr += 8;
1660 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1661 case DW_EH_PE_sleb128:
1662 {
1663 int64_t value;
1664 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1665
1666 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1667 return base + value;
1668 }
1669 case DW_EH_PE_sdata2:
1670 *bytes_read_ptr += 2;
1671 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1672 case DW_EH_PE_sdata4:
1673 *bytes_read_ptr += 4;
1674 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1675 case DW_EH_PE_sdata8:
1676 *bytes_read_ptr += 8;
1677 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1678 default:
1679 internal_error (__FILE__, __LINE__,
1680 _("Invalid or unsupported encoding"));
1681 }
1682 }
1683 \f
1684
1685 static int
1686 bsearch_cie_cmp (const void *key, const void *element)
1687 {
1688 ULONGEST cie_pointer = *(ULONGEST *) key;
1689 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1690
1691 if (cie_pointer == cie->cie_pointer)
1692 return 0;
1693
1694 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1695 }
1696
1697 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1698 static struct dwarf2_cie *
1699 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1700 {
1701 struct dwarf2_cie **p_cie;
1702
1703 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1704 bsearch be non-NULL. */
1705 if (cie_table->entries == NULL)
1706 {
1707 gdb_assert (cie_table->num_entries == 0);
1708 return NULL;
1709 }
1710
1711 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1712 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1713 if (p_cie != NULL)
1714 return *p_cie;
1715 return NULL;
1716 }
1717
1718 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1719 static void
1720 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1721 {
1722 const int n = cie_table->num_entries;
1723
1724 gdb_assert (n < 1
1725 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1726
1727 cie_table->entries =
1728 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1729 cie_table->entries[n] = cie;
1730 cie_table->num_entries = n + 1;
1731 }
1732
1733 static int
1734 bsearch_fde_cmp (const void *key, const void *element)
1735 {
1736 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1737 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1738
1739 if (seek_pc < fde->initial_location)
1740 return -1;
1741 if (seek_pc < fde->initial_location + fde->address_range)
1742 return 0;
1743 return 1;
1744 }
1745
1746 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1747 inital location associated with it into *PC. */
1748
1749 static struct dwarf2_fde *
1750 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1751 {
1752 struct objfile *objfile;
1753
1754 ALL_OBJFILES (objfile)
1755 {
1756 struct dwarf2_fde_table *fde_table;
1757 struct dwarf2_fde **p_fde;
1758 CORE_ADDR offset;
1759 CORE_ADDR seek_pc;
1760
1761 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1762 if (fde_table == NULL)
1763 {
1764 dwarf2_build_frame_info (objfile);
1765 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1766 }
1767 gdb_assert (fde_table != NULL);
1768
1769 if (fde_table->num_entries == 0)
1770 continue;
1771
1772 gdb_assert (objfile->section_offsets);
1773 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1774
1775 gdb_assert (fde_table->num_entries > 0);
1776 if (*pc < offset + fde_table->entries[0]->initial_location)
1777 continue;
1778
1779 seek_pc = *pc - offset;
1780 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1781 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1782 if (p_fde != NULL)
1783 {
1784 *pc = (*p_fde)->initial_location + offset;
1785 if (out_offset)
1786 *out_offset = offset;
1787 return *p_fde;
1788 }
1789 }
1790 return NULL;
1791 }
1792
1793 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1794 static void
1795 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1796 {
1797 if (fde->address_range == 0)
1798 /* Discard useless FDEs. */
1799 return;
1800
1801 fde_table->num_entries += 1;
1802 fde_table->entries =
1803 xrealloc (fde_table->entries,
1804 fde_table->num_entries * sizeof (fde_table->entries[0]));
1805 fde_table->entries[fde_table->num_entries - 1] = fde;
1806 }
1807
1808 #define DW64_CIE_ID 0xffffffffffffffffULL
1809
1810 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1811 or any of them. */
1812
1813 enum eh_frame_type
1814 {
1815 EH_CIE_TYPE_ID = 1 << 0,
1816 EH_FDE_TYPE_ID = 1 << 1,
1817 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1818 };
1819
1820 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1821 const gdb_byte *start,
1822 int eh_frame_p,
1823 struct dwarf2_cie_table *cie_table,
1824 struct dwarf2_fde_table *fde_table,
1825 enum eh_frame_type entry_type);
1826
1827 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1828 Return NULL if invalid input, otherwise the next byte to be processed. */
1829
1830 static const gdb_byte *
1831 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1832 int eh_frame_p,
1833 struct dwarf2_cie_table *cie_table,
1834 struct dwarf2_fde_table *fde_table,
1835 enum eh_frame_type entry_type)
1836 {
1837 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1838 const gdb_byte *buf, *end;
1839 LONGEST length;
1840 unsigned int bytes_read;
1841 int dwarf64_p;
1842 ULONGEST cie_id;
1843 ULONGEST cie_pointer;
1844 int64_t sleb128;
1845 uint64_t uleb128;
1846
1847 buf = start;
1848 length = read_initial_length (unit->abfd, buf, &bytes_read);
1849 buf += bytes_read;
1850 end = buf + length;
1851
1852 /* Are we still within the section? */
1853 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1854 return NULL;
1855
1856 if (length == 0)
1857 return end;
1858
1859 /* Distinguish between 32 and 64-bit encoded frame info. */
1860 dwarf64_p = (bytes_read == 12);
1861
1862 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1863 if (eh_frame_p)
1864 cie_id = 0;
1865 else if (dwarf64_p)
1866 cie_id = DW64_CIE_ID;
1867 else
1868 cie_id = DW_CIE_ID;
1869
1870 if (dwarf64_p)
1871 {
1872 cie_pointer = read_8_bytes (unit->abfd, buf);
1873 buf += 8;
1874 }
1875 else
1876 {
1877 cie_pointer = read_4_bytes (unit->abfd, buf);
1878 buf += 4;
1879 }
1880
1881 if (cie_pointer == cie_id)
1882 {
1883 /* This is a CIE. */
1884 struct dwarf2_cie *cie;
1885 char *augmentation;
1886 unsigned int cie_version;
1887
1888 /* Check that a CIE was expected. */
1889 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1890 error (_("Found a CIE when not expecting it."));
1891
1892 /* Record the offset into the .debug_frame section of this CIE. */
1893 cie_pointer = start - unit->dwarf_frame_buffer;
1894
1895 /* Check whether we've already read it. */
1896 if (find_cie (cie_table, cie_pointer))
1897 return end;
1898
1899 cie = (struct dwarf2_cie *)
1900 obstack_alloc (&unit->objfile->objfile_obstack,
1901 sizeof (struct dwarf2_cie));
1902 cie->initial_instructions = NULL;
1903 cie->cie_pointer = cie_pointer;
1904
1905 /* The encoding for FDE's in a normal .debug_frame section
1906 depends on the target address size. */
1907 cie->encoding = DW_EH_PE_absptr;
1908
1909 /* We'll determine the final value later, but we need to
1910 initialize it conservatively. */
1911 cie->signal_frame = 0;
1912
1913 /* Check version number. */
1914 cie_version = read_1_byte (unit->abfd, buf);
1915 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1916 return NULL;
1917 cie->version = cie_version;
1918 buf += 1;
1919
1920 /* Interpret the interesting bits of the augmentation. */
1921 cie->augmentation = augmentation = (char *) buf;
1922 buf += (strlen (augmentation) + 1);
1923
1924 /* Ignore armcc augmentations. We only use them for quirks,
1925 and that doesn't happen until later. */
1926 if (strncmp (augmentation, "armcc", 5) == 0)
1927 augmentation += strlen (augmentation);
1928
1929 /* The GCC 2.x "eh" augmentation has a pointer immediately
1930 following the augmentation string, so it must be handled
1931 first. */
1932 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1933 {
1934 /* Skip. */
1935 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1936 augmentation += 2;
1937 }
1938
1939 if (cie->version >= 4)
1940 {
1941 /* FIXME: check that this is the same as from the CU header. */
1942 cie->addr_size = read_1_byte (unit->abfd, buf);
1943 ++buf;
1944 cie->segment_size = read_1_byte (unit->abfd, buf);
1945 ++buf;
1946 }
1947 else
1948 {
1949 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1950 cie->segment_size = 0;
1951 }
1952 /* Address values in .eh_frame sections are defined to have the
1953 target's pointer size. Watchout: This breaks frame info for
1954 targets with pointer size < address size, unless a .debug_frame
1955 section exists as well. */
1956 if (eh_frame_p)
1957 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1958 else
1959 cie->ptr_size = cie->addr_size;
1960
1961 buf = gdb_read_uleb128 (buf, end, &uleb128);
1962 if (buf == NULL)
1963 return NULL;
1964 cie->code_alignment_factor = uleb128;
1965
1966 buf = gdb_read_sleb128 (buf, end, &sleb128);
1967 if (buf == NULL)
1968 return NULL;
1969 cie->data_alignment_factor = sleb128;
1970
1971 if (cie_version == 1)
1972 {
1973 cie->return_address_register = read_1_byte (unit->abfd, buf);
1974 ++buf;
1975 }
1976 else
1977 {
1978 buf = gdb_read_uleb128 (buf, end, &uleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->return_address_register = uleb128;
1982 }
1983
1984 cie->return_address_register
1985 = dwarf2_frame_adjust_regnum (gdbarch,
1986 cie->return_address_register,
1987 eh_frame_p);
1988
1989 cie->saw_z_augmentation = (*augmentation == 'z');
1990 if (cie->saw_z_augmentation)
1991 {
1992 uint64_t length;
1993
1994 buf = gdb_read_uleb128 (buf, end, &length);
1995 if (buf == NULL)
1996 return NULL;
1997 cie->initial_instructions = buf + length;
1998 augmentation++;
1999 }
2000
2001 while (*augmentation)
2002 {
2003 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2004 if (*augmentation == 'L')
2005 {
2006 /* Skip. */
2007 buf++;
2008 augmentation++;
2009 }
2010
2011 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2012 else if (*augmentation == 'R')
2013 {
2014 cie->encoding = *buf++;
2015 augmentation++;
2016 }
2017
2018 /* "P" indicates a personality routine in the CIE augmentation. */
2019 else if (*augmentation == 'P')
2020 {
2021 /* Skip. Avoid indirection since we throw away the result. */
2022 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2023 read_encoded_value (unit, encoding, cie->ptr_size,
2024 buf, &bytes_read, 0);
2025 buf += bytes_read;
2026 augmentation++;
2027 }
2028
2029 /* "S" indicates a signal frame, such that the return
2030 address must not be decremented to locate the call frame
2031 info for the previous frame; it might even be the first
2032 instruction of a function, so decrementing it would take
2033 us to a different function. */
2034 else if (*augmentation == 'S')
2035 {
2036 cie->signal_frame = 1;
2037 augmentation++;
2038 }
2039
2040 /* Otherwise we have an unknown augmentation. Assume that either
2041 there is no augmentation data, or we saw a 'z' prefix. */
2042 else
2043 {
2044 if (cie->initial_instructions)
2045 buf = cie->initial_instructions;
2046 break;
2047 }
2048 }
2049
2050 cie->initial_instructions = buf;
2051 cie->end = end;
2052 cie->unit = unit;
2053
2054 add_cie (cie_table, cie);
2055 }
2056 else
2057 {
2058 /* This is a FDE. */
2059 struct dwarf2_fde *fde;
2060
2061 /* Check that an FDE was expected. */
2062 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2063 error (_("Found an FDE when not expecting it."));
2064
2065 /* In an .eh_frame section, the CIE pointer is the delta between the
2066 address within the FDE where the CIE pointer is stored and the
2067 address of the CIE. Convert it to an offset into the .eh_frame
2068 section. */
2069 if (eh_frame_p)
2070 {
2071 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2072 cie_pointer -= (dwarf64_p ? 8 : 4);
2073 }
2074
2075 /* In either case, validate the result is still within the section. */
2076 if (cie_pointer >= unit->dwarf_frame_size)
2077 return NULL;
2078
2079 fde = (struct dwarf2_fde *)
2080 obstack_alloc (&unit->objfile->objfile_obstack,
2081 sizeof (struct dwarf2_fde));
2082 fde->cie = find_cie (cie_table, cie_pointer);
2083 if (fde->cie == NULL)
2084 {
2085 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2086 eh_frame_p, cie_table, fde_table,
2087 EH_CIE_TYPE_ID);
2088 fde->cie = find_cie (cie_table, cie_pointer);
2089 }
2090
2091 gdb_assert (fde->cie != NULL);
2092
2093 fde->initial_location =
2094 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2095 buf, &bytes_read, 0);
2096 buf += bytes_read;
2097
2098 fde->address_range =
2099 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2100 fde->cie->ptr_size, buf, &bytes_read, 0);
2101 buf += bytes_read;
2102
2103 /* A 'z' augmentation in the CIE implies the presence of an
2104 augmentation field in the FDE as well. The only thing known
2105 to be in here at present is the LSDA entry for EH. So we
2106 can skip the whole thing. */
2107 if (fde->cie->saw_z_augmentation)
2108 {
2109 uint64_t length;
2110
2111 buf = gdb_read_uleb128 (buf, end, &length);
2112 if (buf == NULL)
2113 return NULL;
2114 buf += length;
2115 if (buf > end)
2116 return NULL;
2117 }
2118
2119 fde->instructions = buf;
2120 fde->end = end;
2121
2122 fde->eh_frame_p = eh_frame_p;
2123
2124 add_fde (fde_table, fde);
2125 }
2126
2127 return end;
2128 }
2129
2130 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2131 expect an FDE or a CIE. */
2132
2133 static const gdb_byte *
2134 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2135 int eh_frame_p,
2136 struct dwarf2_cie_table *cie_table,
2137 struct dwarf2_fde_table *fde_table,
2138 enum eh_frame_type entry_type)
2139 {
2140 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2141 const gdb_byte *ret;
2142 ptrdiff_t start_offset;
2143
2144 while (1)
2145 {
2146 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2147 cie_table, fde_table, entry_type);
2148 if (ret != NULL)
2149 break;
2150
2151 /* We have corrupt input data of some form. */
2152
2153 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2154 and mismatches wrt padding and alignment of debug sections. */
2155 /* Note that there is no requirement in the standard for any
2156 alignment at all in the frame unwind sections. Testing for
2157 alignment before trying to interpret data would be incorrect.
2158
2159 However, GCC traditionally arranged for frame sections to be
2160 sized such that the FDE length and CIE fields happen to be
2161 aligned (in theory, for performance). This, unfortunately,
2162 was done with .align directives, which had the side effect of
2163 forcing the section to be aligned by the linker.
2164
2165 This becomes a problem when you have some other producer that
2166 creates frame sections that are not as strictly aligned. That
2167 produces a hole in the frame info that gets filled by the
2168 linker with zeros.
2169
2170 The GCC behaviour is arguably a bug, but it's effectively now
2171 part of the ABI, so we're now stuck with it, at least at the
2172 object file level. A smart linker may decide, in the process
2173 of compressing duplicate CIE information, that it can rewrite
2174 the entire output section without this extra padding. */
2175
2176 start_offset = start - unit->dwarf_frame_buffer;
2177 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2178 {
2179 start += 4 - (start_offset & 3);
2180 workaround = ALIGN4;
2181 continue;
2182 }
2183 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2184 {
2185 start += 8 - (start_offset & 7);
2186 workaround = ALIGN8;
2187 continue;
2188 }
2189
2190 /* Nothing left to try. Arrange to return as if we've consumed
2191 the entire input section. Hopefully we'll get valid info from
2192 the other of .debug_frame/.eh_frame. */
2193 workaround = FAIL;
2194 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2195 break;
2196 }
2197
2198 switch (workaround)
2199 {
2200 case NONE:
2201 break;
2202
2203 case ALIGN4:
2204 complaint (&symfile_complaints, _("\
2205 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2206 unit->dwarf_frame_section->owner->filename,
2207 unit->dwarf_frame_section->name);
2208 break;
2209
2210 case ALIGN8:
2211 complaint (&symfile_complaints, _("\
2212 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2213 unit->dwarf_frame_section->owner->filename,
2214 unit->dwarf_frame_section->name);
2215 break;
2216
2217 default:
2218 complaint (&symfile_complaints,
2219 _("Corrupt data in %s:%s"),
2220 unit->dwarf_frame_section->owner->filename,
2221 unit->dwarf_frame_section->name);
2222 break;
2223 }
2224
2225 return ret;
2226 }
2227 \f
2228 static int
2229 qsort_fde_cmp (const void *a, const void *b)
2230 {
2231 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2232 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2233
2234 if (aa->initial_location == bb->initial_location)
2235 {
2236 if (aa->address_range != bb->address_range
2237 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2238 /* Linker bug, e.g. gold/10400.
2239 Work around it by keeping stable sort order. */
2240 return (a < b) ? -1 : 1;
2241 else
2242 /* Put eh_frame entries after debug_frame ones. */
2243 return aa->eh_frame_p - bb->eh_frame_p;
2244 }
2245
2246 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2247 }
2248
2249 void
2250 dwarf2_build_frame_info (struct objfile *objfile)
2251 {
2252 struct comp_unit *unit;
2253 const gdb_byte *frame_ptr;
2254 struct dwarf2_cie_table cie_table;
2255 struct dwarf2_fde_table fde_table;
2256 struct dwarf2_fde_table *fde_table2;
2257 volatile struct gdb_exception e;
2258
2259 cie_table.num_entries = 0;
2260 cie_table.entries = NULL;
2261
2262 fde_table.num_entries = 0;
2263 fde_table.entries = NULL;
2264
2265 /* Build a minimal decoding of the DWARF2 compilation unit. */
2266 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2267 sizeof (struct comp_unit));
2268 unit->abfd = objfile->obfd;
2269 unit->objfile = objfile;
2270 unit->dbase = 0;
2271 unit->tbase = 0;
2272
2273 if (objfile->separate_debug_objfile_backlink == NULL)
2274 {
2275 /* Do not read .eh_frame from separate file as they must be also
2276 present in the main file. */
2277 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2278 &unit->dwarf_frame_section,
2279 &unit->dwarf_frame_buffer,
2280 &unit->dwarf_frame_size);
2281 if (unit->dwarf_frame_size)
2282 {
2283 asection *got, *txt;
2284
2285 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2286 that is used for the i386/amd64 target, which currently is
2287 the only target in GCC that supports/uses the
2288 DW_EH_PE_datarel encoding. */
2289 got = bfd_get_section_by_name (unit->abfd, ".got");
2290 if (got)
2291 unit->dbase = got->vma;
2292
2293 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2294 so far. */
2295 txt = bfd_get_section_by_name (unit->abfd, ".text");
2296 if (txt)
2297 unit->tbase = txt->vma;
2298
2299 TRY_CATCH (e, RETURN_MASK_ERROR)
2300 {
2301 frame_ptr = unit->dwarf_frame_buffer;
2302 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2303 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2304 &cie_table, &fde_table,
2305 EH_CIE_OR_FDE_TYPE_ID);
2306 }
2307
2308 if (e.reason < 0)
2309 {
2310 warning (_("skipping .eh_frame info of %s: %s"),
2311 objfile->name, e.message);
2312
2313 if (fde_table.num_entries != 0)
2314 {
2315 xfree (fde_table.entries);
2316 fde_table.entries = NULL;
2317 fde_table.num_entries = 0;
2318 }
2319 /* The cie_table is discarded by the next if. */
2320 }
2321
2322 if (cie_table.num_entries != 0)
2323 {
2324 /* Reinit cie_table: debug_frame has different CIEs. */
2325 xfree (cie_table.entries);
2326 cie_table.num_entries = 0;
2327 cie_table.entries = NULL;
2328 }
2329 }
2330 }
2331
2332 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2333 &unit->dwarf_frame_section,
2334 &unit->dwarf_frame_buffer,
2335 &unit->dwarf_frame_size);
2336 if (unit->dwarf_frame_size)
2337 {
2338 int num_old_fde_entries = fde_table.num_entries;
2339
2340 TRY_CATCH (e, RETURN_MASK_ERROR)
2341 {
2342 frame_ptr = unit->dwarf_frame_buffer;
2343 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2344 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2345 &cie_table, &fde_table,
2346 EH_CIE_OR_FDE_TYPE_ID);
2347 }
2348 if (e.reason < 0)
2349 {
2350 warning (_("skipping .debug_frame info of %s: %s"),
2351 objfile->name, e.message);
2352
2353 if (fde_table.num_entries != 0)
2354 {
2355 fde_table.num_entries = num_old_fde_entries;
2356 if (num_old_fde_entries == 0)
2357 {
2358 xfree (fde_table.entries);
2359 fde_table.entries = NULL;
2360 }
2361 else
2362 {
2363 fde_table.entries = xrealloc (fde_table.entries,
2364 fde_table.num_entries *
2365 sizeof (fde_table.entries[0]));
2366 }
2367 }
2368 fde_table.num_entries = num_old_fde_entries;
2369 /* The cie_table is discarded by the next if. */
2370 }
2371 }
2372
2373 /* Discard the cie_table, it is no longer needed. */
2374 if (cie_table.num_entries != 0)
2375 {
2376 xfree (cie_table.entries);
2377 cie_table.entries = NULL; /* Paranoia. */
2378 cie_table.num_entries = 0; /* Paranoia. */
2379 }
2380
2381 /* Copy fde_table to obstack: it is needed at runtime. */
2382 fde_table2 = (struct dwarf2_fde_table *)
2383 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2384
2385 if (fde_table.num_entries == 0)
2386 {
2387 fde_table2->entries = NULL;
2388 fde_table2->num_entries = 0;
2389 }
2390 else
2391 {
2392 struct dwarf2_fde *fde_prev = NULL;
2393 struct dwarf2_fde *first_non_zero_fde = NULL;
2394 int i;
2395
2396 /* Prepare FDE table for lookups. */
2397 qsort (fde_table.entries, fde_table.num_entries,
2398 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2399
2400 /* Check for leftovers from --gc-sections. The GNU linker sets
2401 the relevant symbols to zero, but doesn't zero the FDE *end*
2402 ranges because there's no relocation there. It's (offset,
2403 length), not (start, end). On targets where address zero is
2404 just another valid address this can be a problem, since the
2405 FDEs appear to be non-empty in the output --- we could pick
2406 out the wrong FDE. To work around this, when overlaps are
2407 detected, we prefer FDEs that do not start at zero.
2408
2409 Start by finding the first FDE with non-zero start. Below
2410 we'll discard all FDEs that start at zero and overlap this
2411 one. */
2412 for (i = 0; i < fde_table.num_entries; i++)
2413 {
2414 struct dwarf2_fde *fde = fde_table.entries[i];
2415
2416 if (fde->initial_location != 0)
2417 {
2418 first_non_zero_fde = fde;
2419 break;
2420 }
2421 }
2422
2423 /* Since we'll be doing bsearch, squeeze out identical (except
2424 for eh_frame_p) fde entries so bsearch result is predictable.
2425 Also discard leftovers from --gc-sections. */
2426 fde_table2->num_entries = 0;
2427 for (i = 0; i < fde_table.num_entries; i++)
2428 {
2429 struct dwarf2_fde *fde = fde_table.entries[i];
2430
2431 if (fde->initial_location == 0
2432 && first_non_zero_fde != NULL
2433 && (first_non_zero_fde->initial_location
2434 < fde->initial_location + fde->address_range))
2435 continue;
2436
2437 if (fde_prev != NULL
2438 && fde_prev->initial_location == fde->initial_location)
2439 continue;
2440
2441 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2442 sizeof (fde_table.entries[0]));
2443 ++fde_table2->num_entries;
2444 fde_prev = fde;
2445 }
2446 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2447
2448 /* Discard the original fde_table. */
2449 xfree (fde_table.entries);
2450 }
2451
2452 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2453 }
2454
2455 /* Provide a prototype to silence -Wmissing-prototypes. */
2456 void _initialize_dwarf2_frame (void);
2457
2458 void
2459 _initialize_dwarf2_frame (void)
2460 {
2461 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2462 dwarf2_frame_objfile_data = register_objfile_data ();
2463 }
This page took 0.10861 seconds and 5 git commands to generate.