Change dwarf2_frame_state_reg_info::reg to be std::vector
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2read.h"
39 #include "ax.h"
40 #include "dwarf2loc.h"
41 #include "dwarf2-frame-tailcall.h"
42 #if GDB_SELF_TEST
43 #include "selftest.h"
44 #include "selftest-arch.h"
45 #endif
46
47 struct comp_unit;
48
49 /* Call Frame Information (CFI). */
50
51 /* Common Information Entry (CIE). */
52
53 struct dwarf2_cie
54 {
55 /* Computation Unit for this CIE. */
56 struct comp_unit *unit;
57
58 /* Offset into the .debug_frame section where this CIE was found.
59 Used to identify this CIE. */
60 ULONGEST cie_pointer;
61
62 /* Constant that is factored out of all advance location
63 instructions. */
64 ULONGEST code_alignment_factor;
65
66 /* Constants that is factored out of all offset instructions. */
67 LONGEST data_alignment_factor;
68
69 /* Return address column. */
70 ULONGEST return_address_register;
71
72 /* Instruction sequence to initialize a register set. */
73 const gdb_byte *initial_instructions;
74 const gdb_byte *end;
75
76 /* Saved augmentation, in case it's needed later. */
77 char *augmentation;
78
79 /* Encoding of addresses. */
80 gdb_byte encoding;
81
82 /* Target address size in bytes. */
83 int addr_size;
84
85 /* Target pointer size in bytes. */
86 int ptr_size;
87
88 /* True if a 'z' augmentation existed. */
89 unsigned char saw_z_augmentation;
90
91 /* True if an 'S' augmentation existed. */
92 unsigned char signal_frame;
93
94 /* The version recorded in the CIE. */
95 unsigned char version;
96
97 /* The segment size. */
98 unsigned char segment_size;
99 };
100
101 struct dwarf2_cie_table
102 {
103 int num_entries;
104 struct dwarf2_cie **entries;
105 };
106
107 /* Frame Description Entry (FDE). */
108
109 struct dwarf2_fde
110 {
111 /* CIE for this FDE. */
112 struct dwarf2_cie *cie;
113
114 /* First location associated with this FDE. */
115 CORE_ADDR initial_location;
116
117 /* Number of bytes of program instructions described by this FDE. */
118 CORE_ADDR address_range;
119
120 /* Instruction sequence. */
121 const gdb_byte *instructions;
122 const gdb_byte *end;
123
124 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
125 section. */
126 unsigned char eh_frame_p;
127 };
128
129 struct dwarf2_fde_table
130 {
131 int num_entries;
132 struct dwarf2_fde **entries;
133 };
134
135 /* A minimal decoding of DWARF2 compilation units. We only decode
136 what's needed to get to the call frame information. */
137
138 struct comp_unit
139 {
140 /* Keep the bfd convenient. */
141 bfd *abfd;
142
143 struct objfile *objfile;
144
145 /* Pointer to the .debug_frame section loaded into memory. */
146 const gdb_byte *dwarf_frame_buffer;
147
148 /* Length of the loaded .debug_frame section. */
149 bfd_size_type dwarf_frame_size;
150
151 /* Pointer to the .debug_frame section. */
152 asection *dwarf_frame_section;
153
154 /* Base for DW_EH_PE_datarel encodings. */
155 bfd_vma dbase;
156
157 /* Base for DW_EH_PE_textrel encodings. */
158 bfd_vma tbase;
159 };
160
161 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
162 CORE_ADDR *out_offset);
163
164 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
165 int eh_frame_p);
166
167 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
168 int ptr_len, const gdb_byte *buf,
169 unsigned int *bytes_read_ptr,
170 CORE_ADDR func_base);
171 \f
172
173 /* See dwarf2-frame.h. */
174 int dwarf2_frame_unwinders_enabled_p = 1;
175
176 /* Store the length the expression for the CFA in the `cfa_reg' field,
177 which is unused in that case. */
178 #define cfa_exp_len cfa_reg
179
180 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
181 : pc (pc_), data_align (cie->data_alignment_factor),
182 code_align (cie->code_alignment_factor),
183 retaddr_column (cie->return_address_register)
184 {
185 }
186 \f
187
188 /* Helper functions for execute_stack_op. */
189
190 static CORE_ADDR
191 read_addr_from_reg (struct frame_info *this_frame, int reg)
192 {
193 struct gdbarch *gdbarch = get_frame_arch (this_frame);
194 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
195
196 return address_from_register (regnum, this_frame);
197 }
198
199 /* Execute the required actions for both the DW_CFA_restore and
200 DW_CFA_restore_extended instructions. */
201 static void
202 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
203 struct dwarf2_frame_state *fs, int eh_frame_p)
204 {
205 ULONGEST reg;
206
207 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
208 fs->regs.alloc_regs (reg + 1);
209
210 /* Check if this register was explicitly initialized in the
211 CIE initial instructions. If not, default the rule to
212 UNSPECIFIED. */
213 if (reg < fs->initial.reg.size ())
214 fs->regs.reg[reg] = fs->initial.reg[reg];
215 else
216 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
217
218 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
219 {
220 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
221
222 complaint (_("\
223 incomplete CFI data; DW_CFA_restore unspecified\n\
224 register %s (#%d) at %s"),
225 gdbarch_register_name (gdbarch, regnum), regnum,
226 paddress (gdbarch, fs->pc));
227 }
228 }
229
230 class dwarf_expr_executor : public dwarf_expr_context
231 {
232 public:
233
234 struct frame_info *this_frame;
235
236 CORE_ADDR read_addr_from_reg (int reg) override
237 {
238 return ::read_addr_from_reg (this_frame, reg);
239 }
240
241 struct value *get_reg_value (struct type *type, int reg) override
242 {
243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
244 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
245
246 return value_from_register (type, regnum, this_frame);
247 }
248
249 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
250 {
251 read_memory (addr, buf, len);
252 }
253
254 void get_frame_base (const gdb_byte **start, size_t *length) override
255 {
256 invalid ("DW_OP_fbreg");
257 }
258
259 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
260 union call_site_parameter_u kind_u,
261 int deref_size) override
262 {
263 invalid ("DW_OP_entry_value");
264 }
265
266 CORE_ADDR get_object_address () override
267 {
268 invalid ("DW_OP_push_object_address");
269 }
270
271 CORE_ADDR get_frame_cfa () override
272 {
273 invalid ("DW_OP_call_frame_cfa");
274 }
275
276 CORE_ADDR get_tls_address (CORE_ADDR offset) override
277 {
278 invalid ("DW_OP_form_tls_address");
279 }
280
281 void dwarf_call (cu_offset die_offset) override
282 {
283 invalid ("DW_OP_call*");
284 }
285
286 struct value *dwarf_variable_value (sect_offset sect_off) override
287 {
288 invalid ("DW_OP_GNU_variable_value");
289 }
290
291 CORE_ADDR get_addr_index (unsigned int index) override
292 {
293 invalid ("DW_OP_GNU_addr_index");
294 }
295
296 private:
297
298 void invalid (const char *op) ATTRIBUTE_NORETURN
299 {
300 error (_("%s is invalid in this context"), op);
301 }
302 };
303
304 static CORE_ADDR
305 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
306 CORE_ADDR offset, struct frame_info *this_frame,
307 CORE_ADDR initial, int initial_in_stack_memory)
308 {
309 CORE_ADDR result;
310
311 dwarf_expr_executor ctx;
312 scoped_value_mark free_values;
313
314 ctx.this_frame = this_frame;
315 ctx.gdbarch = get_frame_arch (this_frame);
316 ctx.addr_size = addr_size;
317 ctx.ref_addr_size = -1;
318 ctx.offset = offset;
319
320 ctx.push_address (initial, initial_in_stack_memory);
321 ctx.eval (exp, len);
322
323 if (ctx.location == DWARF_VALUE_MEMORY)
324 result = ctx.fetch_address (0);
325 else if (ctx.location == DWARF_VALUE_REGISTER)
326 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
327 else
328 {
329 /* This is actually invalid DWARF, but if we ever do run across
330 it somehow, we might as well support it. So, instead, report
331 it as unimplemented. */
332 error (_("\
333 Not implemented: computing unwound register using explicit value operator"));
334 }
335
336 return result;
337 }
338 \f
339
340 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
341 PC. Modify FS state accordingly. Return current INSN_PTR where the
342 execution has stopped, one can resume it on the next call. */
343
344 static const gdb_byte *
345 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
346 const gdb_byte *insn_end, struct gdbarch *gdbarch,
347 CORE_ADDR pc, struct dwarf2_frame_state *fs)
348 {
349 int eh_frame_p = fde->eh_frame_p;
350 unsigned int bytes_read;
351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
352
353 while (insn_ptr < insn_end && fs->pc <= pc)
354 {
355 gdb_byte insn = *insn_ptr++;
356 uint64_t utmp, reg;
357 int64_t offset;
358
359 if ((insn & 0xc0) == DW_CFA_advance_loc)
360 fs->pc += (insn & 0x3f) * fs->code_align;
361 else if ((insn & 0xc0) == DW_CFA_offset)
362 {
363 reg = insn & 0x3f;
364 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
365 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
366 offset = utmp * fs->data_align;
367 fs->regs.alloc_regs (reg + 1);
368 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
369 fs->regs.reg[reg].loc.offset = offset;
370 }
371 else if ((insn & 0xc0) == DW_CFA_restore)
372 {
373 reg = insn & 0x3f;
374 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
375 }
376 else
377 {
378 switch (insn)
379 {
380 case DW_CFA_set_loc:
381 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
382 fde->cie->ptr_size, insn_ptr,
383 &bytes_read, fde->initial_location);
384 /* Apply the objfile offset for relocatable objects. */
385 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
386 SECT_OFF_TEXT (fde->cie->unit->objfile));
387 insn_ptr += bytes_read;
388 break;
389
390 case DW_CFA_advance_loc1:
391 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
392 fs->pc += utmp * fs->code_align;
393 insn_ptr++;
394 break;
395 case DW_CFA_advance_loc2:
396 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
397 fs->pc += utmp * fs->code_align;
398 insn_ptr += 2;
399 break;
400 case DW_CFA_advance_loc4:
401 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
402 fs->pc += utmp * fs->code_align;
403 insn_ptr += 4;
404 break;
405
406 case DW_CFA_offset_extended:
407 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
408 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
410 offset = utmp * fs->data_align;
411 fs->regs.alloc_regs (reg + 1);
412 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
413 fs->regs.reg[reg].loc.offset = offset;
414 break;
415
416 case DW_CFA_restore_extended:
417 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
419 break;
420
421 case DW_CFA_undefined:
422 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
423 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
424 fs->regs.alloc_regs (reg + 1);
425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
426 break;
427
428 case DW_CFA_same_value:
429 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
430 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
431 fs->regs.alloc_regs (reg + 1);
432 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
433 break;
434
435 case DW_CFA_register:
436 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
437 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
439 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
440 fs->regs.alloc_regs (reg + 1);
441 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
442 fs->regs.reg[reg].loc.reg = utmp;
443 break;
444
445 case DW_CFA_remember_state:
446 {
447 struct dwarf2_frame_state_reg_info *new_rs;
448
449 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
450 fs->regs.prev = new_rs;
451 }
452 break;
453
454 case DW_CFA_restore_state:
455 {
456 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
457
458 if (old_rs == NULL)
459 {
460 complaint (_("\
461 bad CFI data; mismatched DW_CFA_restore_state at %s"),
462 paddress (gdbarch, fs->pc));
463 }
464 else
465 fs->regs = std::move (*old_rs);
466 }
467 break;
468
469 case DW_CFA_def_cfa:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 fs->regs.cfa_reg = reg;
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473
474 if (fs->armcc_cfa_offsets_sf)
475 utmp *= fs->data_align;
476
477 fs->regs.cfa_offset = utmp;
478 fs->regs.cfa_how = CFA_REG_OFFSET;
479 break;
480
481 case DW_CFA_def_cfa_register:
482 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
483 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
484 eh_frame_p);
485 fs->regs.cfa_how = CFA_REG_OFFSET;
486 break;
487
488 case DW_CFA_def_cfa_offset:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
490
491 if (fs->armcc_cfa_offsets_sf)
492 utmp *= fs->data_align;
493
494 fs->regs.cfa_offset = utmp;
495 /* cfa_how deliberately not set. */
496 break;
497
498 case DW_CFA_nop:
499 break;
500
501 case DW_CFA_def_cfa_expression:
502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
503 fs->regs.cfa_exp_len = utmp;
504 fs->regs.cfa_exp = insn_ptr;
505 fs->regs.cfa_how = CFA_EXP;
506 insn_ptr += fs->regs.cfa_exp_len;
507 break;
508
509 case DW_CFA_expression:
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
511 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
512 fs->regs.alloc_regs (reg + 1);
513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
514 fs->regs.reg[reg].loc.exp.start = insn_ptr;
515 fs->regs.reg[reg].loc.exp.len = utmp;
516 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
517 insn_ptr += utmp;
518 break;
519
520 case DW_CFA_offset_extended_sf:
521 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
522 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
523 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
524 offset *= fs->data_align;
525 fs->regs.alloc_regs (reg + 1);
526 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
527 fs->regs.reg[reg].loc.offset = offset;
528 break;
529
530 case DW_CFA_val_offset:
531 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
532 fs->regs.alloc_regs (reg + 1);
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
534 offset = utmp * fs->data_align;
535 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
536 fs->regs.reg[reg].loc.offset = offset;
537 break;
538
539 case DW_CFA_val_offset_sf:
540 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
541 fs->regs.alloc_regs (reg + 1);
542 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
543 offset *= fs->data_align;
544 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
545 fs->regs.reg[reg].loc.offset = offset;
546 break;
547
548 case DW_CFA_val_expression:
549 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
550 fs->regs.alloc_regs (reg + 1);
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
552 fs->regs.reg[reg].loc.exp.start = insn_ptr;
553 fs->regs.reg[reg].loc.exp.len = utmp;
554 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
555 insn_ptr += utmp;
556 break;
557
558 case DW_CFA_def_cfa_sf:
559 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
560 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
561 eh_frame_p);
562 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
563 fs->regs.cfa_offset = offset * fs->data_align;
564 fs->regs.cfa_how = CFA_REG_OFFSET;
565 break;
566
567 case DW_CFA_def_cfa_offset_sf:
568 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
569 fs->regs.cfa_offset = offset * fs->data_align;
570 /* cfa_how deliberately not set. */
571 break;
572
573 case DW_CFA_GNU_args_size:
574 /* Ignored. */
575 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
576 break;
577
578 case DW_CFA_GNU_negative_offset_extended:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
582 offset = utmp * fs->data_align;
583 fs->regs.alloc_regs (reg + 1);
584 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
585 fs->regs.reg[reg].loc.offset = -offset;
586 break;
587
588 default:
589 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
590 {
591 /* Handle vendor-specific CFI for different architectures. */
592 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
593 error (_("Call Frame Instruction op %d in vendor extension "
594 "space is not handled on this architecture."),
595 insn);
596 }
597 else
598 internal_error (__FILE__, __LINE__,
599 _("Unknown CFI encountered."));
600 }
601 }
602 }
603
604 if (fs->initial.reg.empty ())
605 {
606 /* Don't allow remember/restore between CIE and FDE programs. */
607 delete fs->regs.prev;
608 fs->regs.prev = NULL;
609 }
610
611 return insn_ptr;
612 }
613
614 #if GDB_SELF_TEST
615
616 namespace selftests {
617
618 /* Unit test to function execute_cfa_program. */
619
620 static void
621 execute_cfa_program_test (struct gdbarch *gdbarch)
622 {
623 struct dwarf2_fde fde;
624 struct dwarf2_cie cie;
625
626 memset (&fde, 0, sizeof fde);
627 memset (&cie, 0, sizeof cie);
628
629 cie.data_alignment_factor = -4;
630 cie.code_alignment_factor = 2;
631 fde.cie = &cie;
632
633 dwarf2_frame_state fs (0, fde.cie);
634
635 gdb_byte insns[] =
636 {
637 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
638 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
639 DW_CFA_remember_state,
640 DW_CFA_restore_state,
641 };
642
643 const gdb_byte *insn_end = insns + sizeof (insns);
644 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
645 0, &fs);
646
647 SELF_CHECK (out == insn_end);
648 SELF_CHECK (fs.pc == 0);
649
650 /* The instructions above only use r1 and r2, but the register numbers
651 used are adjusted by dwarf2_frame_adjust_regnum. */
652 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
653 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
654
655 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
656
657 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
658 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
659
660 for (auto i = 0; i < fs.regs.reg.size (); i++)
661 if (i != r2)
662 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
663
664 SELF_CHECK (fs.regs.cfa_reg == 1);
665 SELF_CHECK (fs.regs.cfa_offset == 4);
666 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
667 SELF_CHECK (fs.regs.cfa_exp == NULL);
668 SELF_CHECK (fs.regs.prev == NULL);
669 }
670
671 } // namespace selftests
672 #endif /* GDB_SELF_TEST */
673
674 \f
675
676 /* Architecture-specific operations. */
677
678 /* Per-architecture data key. */
679 static struct gdbarch_data *dwarf2_frame_data;
680
681 struct dwarf2_frame_ops
682 {
683 /* Pre-initialize the register state REG for register REGNUM. */
684 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
685 struct frame_info *);
686
687 /* Check whether the THIS_FRAME is a signal trampoline. */
688 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
689
690 /* Convert .eh_frame register number to DWARF register number, or
691 adjust .debug_frame register number. */
692 int (*adjust_regnum) (struct gdbarch *, int, int);
693 };
694
695 /* Default architecture-specific register state initialization
696 function. */
697
698 static void
699 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
700 struct dwarf2_frame_state_reg *reg,
701 struct frame_info *this_frame)
702 {
703 /* If we have a register that acts as a program counter, mark it as
704 a destination for the return address. If we have a register that
705 serves as the stack pointer, arrange for it to be filled with the
706 call frame address (CFA). The other registers are marked as
707 unspecified.
708
709 We copy the return address to the program counter, since many
710 parts in GDB assume that it is possible to get the return address
711 by unwinding the program counter register. However, on ISA's
712 with a dedicated return address register, the CFI usually only
713 contains information to unwind that return address register.
714
715 The reason we're treating the stack pointer special here is
716 because in many cases GCC doesn't emit CFI for the stack pointer
717 and implicitly assumes that it is equal to the CFA. This makes
718 some sense since the DWARF specification (version 3, draft 8,
719 p. 102) says that:
720
721 "Typically, the CFA is defined to be the value of the stack
722 pointer at the call site in the previous frame (which may be
723 different from its value on entry to the current frame)."
724
725 However, this isn't true for all platforms supported by GCC
726 (e.g. IBM S/390 and zSeries). Those architectures should provide
727 their own architecture-specific initialization function. */
728
729 if (regnum == gdbarch_pc_regnum (gdbarch))
730 reg->how = DWARF2_FRAME_REG_RA;
731 else if (regnum == gdbarch_sp_regnum (gdbarch))
732 reg->how = DWARF2_FRAME_REG_CFA;
733 }
734
735 /* Return a default for the architecture-specific operations. */
736
737 static void *
738 dwarf2_frame_init (struct obstack *obstack)
739 {
740 struct dwarf2_frame_ops *ops;
741
742 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
743 ops->init_reg = dwarf2_frame_default_init_reg;
744 return ops;
745 }
746
747 /* Set the architecture-specific register state initialization
748 function for GDBARCH to INIT_REG. */
749
750 void
751 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
752 void (*init_reg) (struct gdbarch *, int,
753 struct dwarf2_frame_state_reg *,
754 struct frame_info *))
755 {
756 struct dwarf2_frame_ops *ops
757 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
758
759 ops->init_reg = init_reg;
760 }
761
762 /* Pre-initialize the register state REG for register REGNUM. */
763
764 static void
765 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
766 struct dwarf2_frame_state_reg *reg,
767 struct frame_info *this_frame)
768 {
769 struct dwarf2_frame_ops *ops
770 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
771
772 ops->init_reg (gdbarch, regnum, reg, this_frame);
773 }
774
775 /* Set the architecture-specific signal trampoline recognition
776 function for GDBARCH to SIGNAL_FRAME_P. */
777
778 void
779 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
780 int (*signal_frame_p) (struct gdbarch *,
781 struct frame_info *))
782 {
783 struct dwarf2_frame_ops *ops
784 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
785
786 ops->signal_frame_p = signal_frame_p;
787 }
788
789 /* Query the architecture-specific signal frame recognizer for
790 THIS_FRAME. */
791
792 static int
793 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
794 struct frame_info *this_frame)
795 {
796 struct dwarf2_frame_ops *ops
797 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
798
799 if (ops->signal_frame_p == NULL)
800 return 0;
801 return ops->signal_frame_p (gdbarch, this_frame);
802 }
803
804 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
805 register numbers. */
806
807 void
808 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
809 int (*adjust_regnum) (struct gdbarch *,
810 int, int))
811 {
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
814
815 ops->adjust_regnum = adjust_regnum;
816 }
817
818 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
819 register. */
820
821 static int
822 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
823 int regnum, int eh_frame_p)
824 {
825 struct dwarf2_frame_ops *ops
826 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->adjust_regnum == NULL)
829 return regnum;
830 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
831 }
832
833 static void
834 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
835 struct dwarf2_fde *fde)
836 {
837 struct compunit_symtab *cust;
838
839 cust = find_pc_compunit_symtab (fs->pc);
840 if (cust == NULL)
841 return;
842
843 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
844 {
845 if (fde->cie->version == 1)
846 fs->armcc_cfa_offsets_sf = 1;
847
848 if (fde->cie->version == 1)
849 fs->armcc_cfa_offsets_reversed = 1;
850
851 /* The reversed offset problem is present in some compilers
852 using DWARF3, but it was eventually fixed. Check the ARM
853 defined augmentations, which are in the format "armcc" followed
854 by a list of one-character options. The "+" option means
855 this problem is fixed (no quirk needed). If the armcc
856 augmentation is missing, the quirk is needed. */
857 if (fde->cie->version == 3
858 && (!startswith (fde->cie->augmentation, "armcc")
859 || strchr (fde->cie->augmentation + 5, '+') == NULL))
860 fs->armcc_cfa_offsets_reversed = 1;
861
862 return;
863 }
864 }
865 \f
866
867 /* See dwarf2-frame.h. */
868
869 int
870 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
871 struct dwarf2_per_cu_data *data,
872 int *regnum_out, LONGEST *offset_out,
873 CORE_ADDR *text_offset_out,
874 const gdb_byte **cfa_start_out,
875 const gdb_byte **cfa_end_out)
876 {
877 struct dwarf2_fde *fde;
878 CORE_ADDR text_offset;
879 CORE_ADDR pc1 = pc;
880
881 /* Find the correct FDE. */
882 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
883 if (fde == NULL)
884 error (_("Could not compute CFA; needed to translate this expression"));
885
886 dwarf2_frame_state fs (pc1, fde->cie);
887
888 /* Check for "quirks" - known bugs in producers. */
889 dwarf2_frame_find_quirks (&fs, fde);
890
891 /* First decode all the insns in the CIE. */
892 execute_cfa_program (fde, fde->cie->initial_instructions,
893 fde->cie->end, gdbarch, pc, &fs);
894
895 /* Save the initialized register set. */
896 fs.initial = fs.regs;
897
898 /* Then decode the insns in the FDE up to our target PC. */
899 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
900
901 /* Calculate the CFA. */
902 switch (fs.regs.cfa_how)
903 {
904 case CFA_REG_OFFSET:
905 {
906 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
907
908 *regnum_out = regnum;
909 if (fs.armcc_cfa_offsets_reversed)
910 *offset_out = -fs.regs.cfa_offset;
911 else
912 *offset_out = fs.regs.cfa_offset;
913 return 1;
914 }
915
916 case CFA_EXP:
917 *text_offset_out = text_offset;
918 *cfa_start_out = fs.regs.cfa_exp;
919 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
920 return 0;
921
922 default:
923 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
924 }
925 }
926
927 \f
928 struct dwarf2_frame_cache
929 {
930 /* DWARF Call Frame Address. */
931 CORE_ADDR cfa;
932
933 /* Set if the return address column was marked as unavailable
934 (required non-collected memory or registers to compute). */
935 int unavailable_retaddr;
936
937 /* Set if the return address column was marked as undefined. */
938 int undefined_retaddr;
939
940 /* Saved registers, indexed by GDB register number, not by DWARF
941 register number. */
942 struct dwarf2_frame_state_reg *reg;
943
944 /* Return address register. */
945 struct dwarf2_frame_state_reg retaddr_reg;
946
947 /* Target address size in bytes. */
948 int addr_size;
949
950 /* The .text offset. */
951 CORE_ADDR text_offset;
952
953 /* True if we already checked whether this frame is the bottom frame
954 of a virtual tail call frame chain. */
955 int checked_tailcall_bottom;
956
957 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
958 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
959 involved. Non-bottom frames of a virtual tail call frames chain use
960 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
961 them. */
962 void *tailcall_cache;
963
964 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
965 base to get the SP, to simulate the return address pushed on the
966 stack. */
967 LONGEST entry_cfa_sp_offset;
968 int entry_cfa_sp_offset_p;
969 };
970
971 static struct dwarf2_frame_cache *
972 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
973 {
974 struct gdbarch *gdbarch = get_frame_arch (this_frame);
975 const int num_regs = gdbarch_num_regs (gdbarch)
976 + gdbarch_num_pseudo_regs (gdbarch);
977 struct dwarf2_frame_cache *cache;
978 struct dwarf2_fde *fde;
979 CORE_ADDR entry_pc;
980 const gdb_byte *instr;
981
982 if (*this_cache)
983 return (struct dwarf2_frame_cache *) *this_cache;
984
985 /* Allocate a new cache. */
986 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
987 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
988 *this_cache = cache;
989
990 /* Unwind the PC.
991
992 Note that if the next frame is never supposed to return (i.e. a call
993 to abort), the compiler might optimize away the instruction at
994 its return address. As a result the return address will
995 point at some random instruction, and the CFI for that
996 instruction is probably worthless to us. GCC's unwinder solves
997 this problem by substracting 1 from the return address to get an
998 address in the middle of a presumed call instruction (or the
999 instruction in the associated delay slot). This should only be
1000 done for "normal" frames and not for resume-type frames (signal
1001 handlers, sentinel frames, dummy frames). The function
1002 get_frame_address_in_block does just this. It's not clear how
1003 reliable the method is though; there is the potential for the
1004 register state pre-call being different to that on return. */
1005 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1006
1007 /* Find the correct FDE. */
1008 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1009 gdb_assert (fde != NULL);
1010
1011 /* Allocate and initialize the frame state. */
1012 struct dwarf2_frame_state fs (pc1, fde->cie);
1013
1014 cache->addr_size = fde->cie->addr_size;
1015
1016 /* Check for "quirks" - known bugs in producers. */
1017 dwarf2_frame_find_quirks (&fs, fde);
1018
1019 /* First decode all the insns in the CIE. */
1020 execute_cfa_program (fde, fde->cie->initial_instructions,
1021 fde->cie->end, gdbarch,
1022 get_frame_address_in_block (this_frame), &fs);
1023
1024 /* Save the initialized register set. */
1025 fs.initial = fs.regs;
1026
1027 if (get_frame_func_if_available (this_frame, &entry_pc))
1028 {
1029 /* Decode the insns in the FDE up to the entry PC. */
1030 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1031 entry_pc, &fs);
1032
1033 if (fs.regs.cfa_how == CFA_REG_OFFSET
1034 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1035 == gdbarch_sp_regnum (gdbarch)))
1036 {
1037 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1038 cache->entry_cfa_sp_offset_p = 1;
1039 }
1040 }
1041 else
1042 instr = fde->instructions;
1043
1044 /* Then decode the insns in the FDE up to our target PC. */
1045 execute_cfa_program (fde, instr, fde->end, gdbarch,
1046 get_frame_address_in_block (this_frame), &fs);
1047
1048 TRY
1049 {
1050 /* Calculate the CFA. */
1051 switch (fs.regs.cfa_how)
1052 {
1053 case CFA_REG_OFFSET:
1054 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1055 if (fs.armcc_cfa_offsets_reversed)
1056 cache->cfa -= fs.regs.cfa_offset;
1057 else
1058 cache->cfa += fs.regs.cfa_offset;
1059 break;
1060
1061 case CFA_EXP:
1062 cache->cfa =
1063 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1064 cache->addr_size, cache->text_offset,
1065 this_frame, 0, 0);
1066 break;
1067
1068 default:
1069 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1070 }
1071 }
1072 CATCH (ex, RETURN_MASK_ERROR)
1073 {
1074 if (ex.error == NOT_AVAILABLE_ERROR)
1075 {
1076 cache->unavailable_retaddr = 1;
1077 return cache;
1078 }
1079
1080 throw_exception (ex);
1081 }
1082 END_CATCH
1083
1084 /* Initialize the register state. */
1085 {
1086 int regnum;
1087
1088 for (regnum = 0; regnum < num_regs; regnum++)
1089 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1090 }
1091
1092 /* Go through the DWARF2 CFI generated table and save its register
1093 location information in the cache. Note that we don't skip the
1094 return address column; it's perfectly all right for it to
1095 correspond to a real register. */
1096 {
1097 int column; /* CFI speak for "register number". */
1098
1099 for (column = 0; column < fs.regs.reg.size (); column++)
1100 {
1101 /* Use the GDB register number as the destination index. */
1102 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1103
1104 /* Protect against a target returning a bad register. */
1105 if (regnum < 0 || regnum >= num_regs)
1106 continue;
1107
1108 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1109 of all debug info registers. If it doesn't, complain (but
1110 not too loudly). It turns out that GCC assumes that an
1111 unspecified register implies "same value" when CFI (draft
1112 7) specifies nothing at all. Such a register could equally
1113 be interpreted as "undefined". Also note that this check
1114 isn't sufficient; it only checks that all registers in the
1115 range [0 .. max column] are specified, and won't detect
1116 problems when a debug info register falls outside of the
1117 table. We need a way of iterating through all the valid
1118 DWARF2 register numbers. */
1119 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1120 {
1121 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1122 complaint (_("\
1123 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1124 gdbarch_register_name (gdbarch, regnum),
1125 paddress (gdbarch, fs.pc));
1126 }
1127 else
1128 cache->reg[regnum] = fs.regs.reg[column];
1129 }
1130 }
1131
1132 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1133 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1134 {
1135 int regnum;
1136
1137 for (regnum = 0; regnum < num_regs; regnum++)
1138 {
1139 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1140 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1141 {
1142 const std::vector<struct dwarf2_frame_state_reg> &regs
1143 = fs.regs.reg;
1144 ULONGEST retaddr_column = fs.retaddr_column;
1145
1146 /* It seems rather bizarre to specify an "empty" column as
1147 the return adress column. However, this is exactly
1148 what GCC does on some targets. It turns out that GCC
1149 assumes that the return address can be found in the
1150 register corresponding to the return address column.
1151 Incidentally, that's how we should treat a return
1152 address column specifying "same value" too. */
1153 if (fs.retaddr_column < fs.regs.reg.size ()
1154 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1155 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1156 {
1157 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1158 cache->reg[regnum] = regs[retaddr_column];
1159 else
1160 cache->retaddr_reg = regs[retaddr_column];
1161 }
1162 else
1163 {
1164 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1165 {
1166 cache->reg[regnum].loc.reg = fs.retaddr_column;
1167 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1168 }
1169 else
1170 {
1171 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1172 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1173 }
1174 }
1175 }
1176 }
1177 }
1178
1179 if (fs.retaddr_column < fs.regs.reg.size ()
1180 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1181 cache->undefined_retaddr = 1;
1182
1183 return cache;
1184 }
1185
1186 static enum unwind_stop_reason
1187 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1188 void **this_cache)
1189 {
1190 struct dwarf2_frame_cache *cache
1191 = dwarf2_frame_cache (this_frame, this_cache);
1192
1193 if (cache->unavailable_retaddr)
1194 return UNWIND_UNAVAILABLE;
1195
1196 if (cache->undefined_retaddr)
1197 return UNWIND_OUTERMOST;
1198
1199 return UNWIND_NO_REASON;
1200 }
1201
1202 static void
1203 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1204 struct frame_id *this_id)
1205 {
1206 struct dwarf2_frame_cache *cache =
1207 dwarf2_frame_cache (this_frame, this_cache);
1208
1209 if (cache->unavailable_retaddr)
1210 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1211 else if (cache->undefined_retaddr)
1212 return;
1213 else
1214 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1215 }
1216
1217 static struct value *
1218 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1219 int regnum)
1220 {
1221 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1222 struct dwarf2_frame_cache *cache =
1223 dwarf2_frame_cache (this_frame, this_cache);
1224 CORE_ADDR addr;
1225 int realnum;
1226
1227 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1228 call frame chain. */
1229 if (!cache->checked_tailcall_bottom)
1230 {
1231 cache->checked_tailcall_bottom = 1;
1232 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1233 (cache->entry_cfa_sp_offset_p
1234 ? &cache->entry_cfa_sp_offset : NULL));
1235 }
1236
1237 /* Non-bottom frames of a virtual tail call frames chain use
1238 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1239 them. If dwarf2_tailcall_prev_register_first does not have specific value
1240 unwind the register, tail call frames are assumed to have the register set
1241 of the top caller. */
1242 if (cache->tailcall_cache)
1243 {
1244 struct value *val;
1245
1246 val = dwarf2_tailcall_prev_register_first (this_frame,
1247 &cache->tailcall_cache,
1248 regnum);
1249 if (val)
1250 return val;
1251 }
1252
1253 switch (cache->reg[regnum].how)
1254 {
1255 case DWARF2_FRAME_REG_UNDEFINED:
1256 /* If CFI explicitly specified that the value isn't defined,
1257 mark it as optimized away; the value isn't available. */
1258 return frame_unwind_got_optimized (this_frame, regnum);
1259
1260 case DWARF2_FRAME_REG_SAVED_OFFSET:
1261 addr = cache->cfa + cache->reg[regnum].loc.offset;
1262 return frame_unwind_got_memory (this_frame, regnum, addr);
1263
1264 case DWARF2_FRAME_REG_SAVED_REG:
1265 realnum = dwarf_reg_to_regnum_or_error
1266 (gdbarch, cache->reg[regnum].loc.reg);
1267 return frame_unwind_got_register (this_frame, regnum, realnum);
1268
1269 case DWARF2_FRAME_REG_SAVED_EXP:
1270 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1271 cache->reg[regnum].loc.exp.len,
1272 cache->addr_size, cache->text_offset,
1273 this_frame, cache->cfa, 1);
1274 return frame_unwind_got_memory (this_frame, regnum, addr);
1275
1276 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1277 addr = cache->cfa + cache->reg[regnum].loc.offset;
1278 return frame_unwind_got_constant (this_frame, regnum, addr);
1279
1280 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1281 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1282 cache->reg[regnum].loc.exp.len,
1283 cache->addr_size, cache->text_offset,
1284 this_frame, cache->cfa, 1);
1285 return frame_unwind_got_constant (this_frame, regnum, addr);
1286
1287 case DWARF2_FRAME_REG_UNSPECIFIED:
1288 /* GCC, in its infinite wisdom decided to not provide unwind
1289 information for registers that are "same value". Since
1290 DWARF2 (3 draft 7) doesn't define such behavior, said
1291 registers are actually undefined (which is different to CFI
1292 "undefined"). Code above issues a complaint about this.
1293 Here just fudge the books, assume GCC, and that the value is
1294 more inner on the stack. */
1295 return frame_unwind_got_register (this_frame, regnum, regnum);
1296
1297 case DWARF2_FRAME_REG_SAME_VALUE:
1298 return frame_unwind_got_register (this_frame, regnum, regnum);
1299
1300 case DWARF2_FRAME_REG_CFA:
1301 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1302
1303 case DWARF2_FRAME_REG_CFA_OFFSET:
1304 addr = cache->cfa + cache->reg[regnum].loc.offset;
1305 return frame_unwind_got_address (this_frame, regnum, addr);
1306
1307 case DWARF2_FRAME_REG_RA_OFFSET:
1308 addr = cache->reg[regnum].loc.offset;
1309 regnum = dwarf_reg_to_regnum_or_error
1310 (gdbarch, cache->retaddr_reg.loc.reg);
1311 addr += get_frame_register_unsigned (this_frame, regnum);
1312 return frame_unwind_got_address (this_frame, regnum, addr);
1313
1314 case DWARF2_FRAME_REG_FN:
1315 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1316
1317 default:
1318 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1319 }
1320 }
1321
1322 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1323 call frames chain. */
1324
1325 static void
1326 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1327 {
1328 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1329
1330 if (cache->tailcall_cache)
1331 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1332 }
1333
1334 static int
1335 dwarf2_frame_sniffer (const struct frame_unwind *self,
1336 struct frame_info *this_frame, void **this_cache)
1337 {
1338 if (!dwarf2_frame_unwinders_enabled_p)
1339 return 0;
1340
1341 /* Grab an address that is guarenteed to reside somewhere within the
1342 function. get_frame_pc(), with a no-return next function, can
1343 end up returning something past the end of this function's body.
1344 If the frame we're sniffing for is a signal frame whose start
1345 address is placed on the stack by the OS, its FDE must
1346 extend one byte before its start address or we could potentially
1347 select the FDE of the previous function. */
1348 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1349 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1350
1351 if (!fde)
1352 return 0;
1353
1354 /* On some targets, signal trampolines may have unwind information.
1355 We need to recognize them so that we set the frame type
1356 correctly. */
1357
1358 if (fde->cie->signal_frame
1359 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1360 this_frame))
1361 return self->type == SIGTRAMP_FRAME;
1362
1363 if (self->type != NORMAL_FRAME)
1364 return 0;
1365
1366 return 1;
1367 }
1368
1369 static const struct frame_unwind dwarf2_frame_unwind =
1370 {
1371 NORMAL_FRAME,
1372 dwarf2_frame_unwind_stop_reason,
1373 dwarf2_frame_this_id,
1374 dwarf2_frame_prev_register,
1375 NULL,
1376 dwarf2_frame_sniffer,
1377 dwarf2_frame_dealloc_cache
1378 };
1379
1380 static const struct frame_unwind dwarf2_signal_frame_unwind =
1381 {
1382 SIGTRAMP_FRAME,
1383 dwarf2_frame_unwind_stop_reason,
1384 dwarf2_frame_this_id,
1385 dwarf2_frame_prev_register,
1386 NULL,
1387 dwarf2_frame_sniffer,
1388
1389 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1390 NULL
1391 };
1392
1393 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1394
1395 void
1396 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1397 {
1398 /* TAILCALL_FRAME must be first to find the record by
1399 dwarf2_tailcall_sniffer_first. */
1400 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1401
1402 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1403 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1404 }
1405 \f
1406
1407 /* There is no explicitly defined relationship between the CFA and the
1408 location of frame's local variables and arguments/parameters.
1409 Therefore, frame base methods on this page should probably only be
1410 used as a last resort, just to avoid printing total garbage as a
1411 response to the "info frame" command. */
1412
1413 static CORE_ADDR
1414 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1415 {
1416 struct dwarf2_frame_cache *cache =
1417 dwarf2_frame_cache (this_frame, this_cache);
1418
1419 return cache->cfa;
1420 }
1421
1422 static const struct frame_base dwarf2_frame_base =
1423 {
1424 &dwarf2_frame_unwind,
1425 dwarf2_frame_base_address,
1426 dwarf2_frame_base_address,
1427 dwarf2_frame_base_address
1428 };
1429
1430 const struct frame_base *
1431 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1432 {
1433 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1434
1435 if (dwarf2_frame_find_fde (&block_addr, NULL))
1436 return &dwarf2_frame_base;
1437
1438 return NULL;
1439 }
1440
1441 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1442 the DWARF unwinder. This is used to implement
1443 DW_OP_call_frame_cfa. */
1444
1445 CORE_ADDR
1446 dwarf2_frame_cfa (struct frame_info *this_frame)
1447 {
1448 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1449 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1450 throw_error (NOT_AVAILABLE_ERROR,
1451 _("cfa not available for record btrace target"));
1452
1453 while (get_frame_type (this_frame) == INLINE_FRAME)
1454 this_frame = get_prev_frame (this_frame);
1455 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1456 throw_error (NOT_AVAILABLE_ERROR,
1457 _("can't compute CFA for this frame: "
1458 "required registers or memory are unavailable"));
1459
1460 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1461 throw_error (NOT_AVAILABLE_ERROR,
1462 _("can't compute CFA for this frame: "
1463 "frame base not available"));
1464
1465 return get_frame_base (this_frame);
1466 }
1467 \f
1468 const struct objfile_data *dwarf2_frame_objfile_data;
1469
1470 static unsigned int
1471 read_1_byte (bfd *abfd, const gdb_byte *buf)
1472 {
1473 return bfd_get_8 (abfd, buf);
1474 }
1475
1476 static unsigned int
1477 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1478 {
1479 return bfd_get_32 (abfd, buf);
1480 }
1481
1482 static ULONGEST
1483 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1484 {
1485 return bfd_get_64 (abfd, buf);
1486 }
1487
1488 static ULONGEST
1489 read_initial_length (bfd *abfd, const gdb_byte *buf,
1490 unsigned int *bytes_read_ptr)
1491 {
1492 LONGEST result;
1493
1494 result = bfd_get_32 (abfd, buf);
1495 if (result == 0xffffffff)
1496 {
1497 result = bfd_get_64 (abfd, buf + 4);
1498 *bytes_read_ptr = 12;
1499 }
1500 else
1501 *bytes_read_ptr = 4;
1502
1503 return result;
1504 }
1505 \f
1506
1507 /* Pointer encoding helper functions. */
1508
1509 /* GCC supports exception handling based on DWARF2 CFI. However, for
1510 technical reasons, it encodes addresses in its FDE's in a different
1511 way. Several "pointer encodings" are supported. The encoding
1512 that's used for a particular FDE is determined by the 'R'
1513 augmentation in the associated CIE. The argument of this
1514 augmentation is a single byte.
1515
1516 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1517 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1518 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1519 address should be interpreted (absolute, relative to the current
1520 position in the FDE, ...). Bit 7, indicates that the address
1521 should be dereferenced. */
1522
1523 static gdb_byte
1524 encoding_for_size (unsigned int size)
1525 {
1526 switch (size)
1527 {
1528 case 2:
1529 return DW_EH_PE_udata2;
1530 case 4:
1531 return DW_EH_PE_udata4;
1532 case 8:
1533 return DW_EH_PE_udata8;
1534 default:
1535 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1536 }
1537 }
1538
1539 static CORE_ADDR
1540 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1541 int ptr_len, const gdb_byte *buf,
1542 unsigned int *bytes_read_ptr,
1543 CORE_ADDR func_base)
1544 {
1545 ptrdiff_t offset;
1546 CORE_ADDR base;
1547
1548 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1549 FDE's. */
1550 if (encoding & DW_EH_PE_indirect)
1551 internal_error (__FILE__, __LINE__,
1552 _("Unsupported encoding: DW_EH_PE_indirect"));
1553
1554 *bytes_read_ptr = 0;
1555
1556 switch (encoding & 0x70)
1557 {
1558 case DW_EH_PE_absptr:
1559 base = 0;
1560 break;
1561 case DW_EH_PE_pcrel:
1562 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1563 base += (buf - unit->dwarf_frame_buffer);
1564 break;
1565 case DW_EH_PE_datarel:
1566 base = unit->dbase;
1567 break;
1568 case DW_EH_PE_textrel:
1569 base = unit->tbase;
1570 break;
1571 case DW_EH_PE_funcrel:
1572 base = func_base;
1573 break;
1574 case DW_EH_PE_aligned:
1575 base = 0;
1576 offset = buf - unit->dwarf_frame_buffer;
1577 if ((offset % ptr_len) != 0)
1578 {
1579 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1580 buf += *bytes_read_ptr;
1581 }
1582 break;
1583 default:
1584 internal_error (__FILE__, __LINE__,
1585 _("Invalid or unsupported encoding"));
1586 }
1587
1588 if ((encoding & 0x07) == 0x00)
1589 {
1590 encoding |= encoding_for_size (ptr_len);
1591 if (bfd_get_sign_extend_vma (unit->abfd))
1592 encoding |= DW_EH_PE_signed;
1593 }
1594
1595 switch (encoding & 0x0f)
1596 {
1597 case DW_EH_PE_uleb128:
1598 {
1599 uint64_t value;
1600 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1601
1602 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1603 return base + value;
1604 }
1605 case DW_EH_PE_udata2:
1606 *bytes_read_ptr += 2;
1607 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1608 case DW_EH_PE_udata4:
1609 *bytes_read_ptr += 4;
1610 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1611 case DW_EH_PE_udata8:
1612 *bytes_read_ptr += 8;
1613 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1614 case DW_EH_PE_sleb128:
1615 {
1616 int64_t value;
1617 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1618
1619 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1620 return base + value;
1621 }
1622 case DW_EH_PE_sdata2:
1623 *bytes_read_ptr += 2;
1624 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1625 case DW_EH_PE_sdata4:
1626 *bytes_read_ptr += 4;
1627 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1628 case DW_EH_PE_sdata8:
1629 *bytes_read_ptr += 8;
1630 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1631 default:
1632 internal_error (__FILE__, __LINE__,
1633 _("Invalid or unsupported encoding"));
1634 }
1635 }
1636 \f
1637
1638 static int
1639 bsearch_cie_cmp (const void *key, const void *element)
1640 {
1641 ULONGEST cie_pointer = *(ULONGEST *) key;
1642 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1643
1644 if (cie_pointer == cie->cie_pointer)
1645 return 0;
1646
1647 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1648 }
1649
1650 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1651 static struct dwarf2_cie *
1652 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1653 {
1654 struct dwarf2_cie **p_cie;
1655
1656 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1657 bsearch be non-NULL. */
1658 if (cie_table->entries == NULL)
1659 {
1660 gdb_assert (cie_table->num_entries == 0);
1661 return NULL;
1662 }
1663
1664 p_cie = ((struct dwarf2_cie **)
1665 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1666 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1667 if (p_cie != NULL)
1668 return *p_cie;
1669 return NULL;
1670 }
1671
1672 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1673 static void
1674 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1675 {
1676 const int n = cie_table->num_entries;
1677
1678 gdb_assert (n < 1
1679 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1680
1681 cie_table->entries
1682 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1683 cie_table->entries[n] = cie;
1684 cie_table->num_entries = n + 1;
1685 }
1686
1687 static int
1688 bsearch_fde_cmp (const void *key, const void *element)
1689 {
1690 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1691 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1692
1693 if (seek_pc < fde->initial_location)
1694 return -1;
1695 if (seek_pc < fde->initial_location + fde->address_range)
1696 return 0;
1697 return 1;
1698 }
1699
1700 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1701 inital location associated with it into *PC. */
1702
1703 static struct dwarf2_fde *
1704 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1705 {
1706 struct objfile *objfile;
1707
1708 ALL_OBJFILES (objfile)
1709 {
1710 struct dwarf2_fde_table *fde_table;
1711 struct dwarf2_fde **p_fde;
1712 CORE_ADDR offset;
1713 CORE_ADDR seek_pc;
1714
1715 fde_table = ((struct dwarf2_fde_table *)
1716 objfile_data (objfile, dwarf2_frame_objfile_data));
1717 if (fde_table == NULL)
1718 {
1719 dwarf2_build_frame_info (objfile);
1720 fde_table = ((struct dwarf2_fde_table *)
1721 objfile_data (objfile, dwarf2_frame_objfile_data));
1722 }
1723 gdb_assert (fde_table != NULL);
1724
1725 if (fde_table->num_entries == 0)
1726 continue;
1727
1728 gdb_assert (objfile->section_offsets);
1729 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1730
1731 gdb_assert (fde_table->num_entries > 0);
1732 if (*pc < offset + fde_table->entries[0]->initial_location)
1733 continue;
1734
1735 seek_pc = *pc - offset;
1736 p_fde = ((struct dwarf2_fde **)
1737 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1738 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1739 if (p_fde != NULL)
1740 {
1741 *pc = (*p_fde)->initial_location + offset;
1742 if (out_offset)
1743 *out_offset = offset;
1744 return *p_fde;
1745 }
1746 }
1747 return NULL;
1748 }
1749
1750 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1751 static void
1752 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1753 {
1754 if (fde->address_range == 0)
1755 /* Discard useless FDEs. */
1756 return;
1757
1758 fde_table->num_entries += 1;
1759 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1760 fde_table->num_entries);
1761 fde_table->entries[fde_table->num_entries - 1] = fde;
1762 }
1763
1764 #define DW64_CIE_ID 0xffffffffffffffffULL
1765
1766 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1767 or any of them. */
1768
1769 enum eh_frame_type
1770 {
1771 EH_CIE_TYPE_ID = 1 << 0,
1772 EH_FDE_TYPE_ID = 1 << 1,
1773 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1774 };
1775
1776 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1777 const gdb_byte *start,
1778 int eh_frame_p,
1779 struct dwarf2_cie_table *cie_table,
1780 struct dwarf2_fde_table *fde_table,
1781 enum eh_frame_type entry_type);
1782
1783 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1784 Return NULL if invalid input, otherwise the next byte to be processed. */
1785
1786 static const gdb_byte *
1787 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1788 int eh_frame_p,
1789 struct dwarf2_cie_table *cie_table,
1790 struct dwarf2_fde_table *fde_table,
1791 enum eh_frame_type entry_type)
1792 {
1793 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1794 const gdb_byte *buf, *end;
1795 LONGEST length;
1796 unsigned int bytes_read;
1797 int dwarf64_p;
1798 ULONGEST cie_id;
1799 ULONGEST cie_pointer;
1800 int64_t sleb128;
1801 uint64_t uleb128;
1802
1803 buf = start;
1804 length = read_initial_length (unit->abfd, buf, &bytes_read);
1805 buf += bytes_read;
1806 end = buf + length;
1807
1808 /* Are we still within the section? */
1809 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1810 return NULL;
1811
1812 if (length == 0)
1813 return end;
1814
1815 /* Distinguish between 32 and 64-bit encoded frame info. */
1816 dwarf64_p = (bytes_read == 12);
1817
1818 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1819 if (eh_frame_p)
1820 cie_id = 0;
1821 else if (dwarf64_p)
1822 cie_id = DW64_CIE_ID;
1823 else
1824 cie_id = DW_CIE_ID;
1825
1826 if (dwarf64_p)
1827 {
1828 cie_pointer = read_8_bytes (unit->abfd, buf);
1829 buf += 8;
1830 }
1831 else
1832 {
1833 cie_pointer = read_4_bytes (unit->abfd, buf);
1834 buf += 4;
1835 }
1836
1837 if (cie_pointer == cie_id)
1838 {
1839 /* This is a CIE. */
1840 struct dwarf2_cie *cie;
1841 char *augmentation;
1842 unsigned int cie_version;
1843
1844 /* Check that a CIE was expected. */
1845 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1846 error (_("Found a CIE when not expecting it."));
1847
1848 /* Record the offset into the .debug_frame section of this CIE. */
1849 cie_pointer = start - unit->dwarf_frame_buffer;
1850
1851 /* Check whether we've already read it. */
1852 if (find_cie (cie_table, cie_pointer))
1853 return end;
1854
1855 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1856 cie->initial_instructions = NULL;
1857 cie->cie_pointer = cie_pointer;
1858
1859 /* The encoding for FDE's in a normal .debug_frame section
1860 depends on the target address size. */
1861 cie->encoding = DW_EH_PE_absptr;
1862
1863 /* We'll determine the final value later, but we need to
1864 initialize it conservatively. */
1865 cie->signal_frame = 0;
1866
1867 /* Check version number. */
1868 cie_version = read_1_byte (unit->abfd, buf);
1869 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1870 return NULL;
1871 cie->version = cie_version;
1872 buf += 1;
1873
1874 /* Interpret the interesting bits of the augmentation. */
1875 cie->augmentation = augmentation = (char *) buf;
1876 buf += (strlen (augmentation) + 1);
1877
1878 /* Ignore armcc augmentations. We only use them for quirks,
1879 and that doesn't happen until later. */
1880 if (startswith (augmentation, "armcc"))
1881 augmentation += strlen (augmentation);
1882
1883 /* The GCC 2.x "eh" augmentation has a pointer immediately
1884 following the augmentation string, so it must be handled
1885 first. */
1886 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1887 {
1888 /* Skip. */
1889 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1890 augmentation += 2;
1891 }
1892
1893 if (cie->version >= 4)
1894 {
1895 /* FIXME: check that this is the same as from the CU header. */
1896 cie->addr_size = read_1_byte (unit->abfd, buf);
1897 ++buf;
1898 cie->segment_size = read_1_byte (unit->abfd, buf);
1899 ++buf;
1900 }
1901 else
1902 {
1903 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1904 cie->segment_size = 0;
1905 }
1906 /* Address values in .eh_frame sections are defined to have the
1907 target's pointer size. Watchout: This breaks frame info for
1908 targets with pointer size < address size, unless a .debug_frame
1909 section exists as well. */
1910 if (eh_frame_p)
1911 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1912 else
1913 cie->ptr_size = cie->addr_size;
1914
1915 buf = gdb_read_uleb128 (buf, end, &uleb128);
1916 if (buf == NULL)
1917 return NULL;
1918 cie->code_alignment_factor = uleb128;
1919
1920 buf = gdb_read_sleb128 (buf, end, &sleb128);
1921 if (buf == NULL)
1922 return NULL;
1923 cie->data_alignment_factor = sleb128;
1924
1925 if (cie_version == 1)
1926 {
1927 cie->return_address_register = read_1_byte (unit->abfd, buf);
1928 ++buf;
1929 }
1930 else
1931 {
1932 buf = gdb_read_uleb128 (buf, end, &uleb128);
1933 if (buf == NULL)
1934 return NULL;
1935 cie->return_address_register = uleb128;
1936 }
1937
1938 cie->return_address_register
1939 = dwarf2_frame_adjust_regnum (gdbarch,
1940 cie->return_address_register,
1941 eh_frame_p);
1942
1943 cie->saw_z_augmentation = (*augmentation == 'z');
1944 if (cie->saw_z_augmentation)
1945 {
1946 uint64_t length;
1947
1948 buf = gdb_read_uleb128 (buf, end, &length);
1949 if (buf == NULL)
1950 return NULL;
1951 cie->initial_instructions = buf + length;
1952 augmentation++;
1953 }
1954
1955 while (*augmentation)
1956 {
1957 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1958 if (*augmentation == 'L')
1959 {
1960 /* Skip. */
1961 buf++;
1962 augmentation++;
1963 }
1964
1965 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1966 else if (*augmentation == 'R')
1967 {
1968 cie->encoding = *buf++;
1969 augmentation++;
1970 }
1971
1972 /* "P" indicates a personality routine in the CIE augmentation. */
1973 else if (*augmentation == 'P')
1974 {
1975 /* Skip. Avoid indirection since we throw away the result. */
1976 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1977 read_encoded_value (unit, encoding, cie->ptr_size,
1978 buf, &bytes_read, 0);
1979 buf += bytes_read;
1980 augmentation++;
1981 }
1982
1983 /* "S" indicates a signal frame, such that the return
1984 address must not be decremented to locate the call frame
1985 info for the previous frame; it might even be the first
1986 instruction of a function, so decrementing it would take
1987 us to a different function. */
1988 else if (*augmentation == 'S')
1989 {
1990 cie->signal_frame = 1;
1991 augmentation++;
1992 }
1993
1994 /* Otherwise we have an unknown augmentation. Assume that either
1995 there is no augmentation data, or we saw a 'z' prefix. */
1996 else
1997 {
1998 if (cie->initial_instructions)
1999 buf = cie->initial_instructions;
2000 break;
2001 }
2002 }
2003
2004 cie->initial_instructions = buf;
2005 cie->end = end;
2006 cie->unit = unit;
2007
2008 add_cie (cie_table, cie);
2009 }
2010 else
2011 {
2012 /* This is a FDE. */
2013 struct dwarf2_fde *fde;
2014 CORE_ADDR addr;
2015
2016 /* Check that an FDE was expected. */
2017 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2018 error (_("Found an FDE when not expecting it."));
2019
2020 /* In an .eh_frame section, the CIE pointer is the delta between the
2021 address within the FDE where the CIE pointer is stored and the
2022 address of the CIE. Convert it to an offset into the .eh_frame
2023 section. */
2024 if (eh_frame_p)
2025 {
2026 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2027 cie_pointer -= (dwarf64_p ? 8 : 4);
2028 }
2029
2030 /* In either case, validate the result is still within the section. */
2031 if (cie_pointer >= unit->dwarf_frame_size)
2032 return NULL;
2033
2034 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2035 fde->cie = find_cie (cie_table, cie_pointer);
2036 if (fde->cie == NULL)
2037 {
2038 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2039 eh_frame_p, cie_table, fde_table,
2040 EH_CIE_TYPE_ID);
2041 fde->cie = find_cie (cie_table, cie_pointer);
2042 }
2043
2044 gdb_assert (fde->cie != NULL);
2045
2046 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2047 buf, &bytes_read, 0);
2048 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2049 buf += bytes_read;
2050
2051 fde->address_range =
2052 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2053 fde->cie->ptr_size, buf, &bytes_read, 0);
2054 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2055 fde->address_range = addr - fde->initial_location;
2056 buf += bytes_read;
2057
2058 /* A 'z' augmentation in the CIE implies the presence of an
2059 augmentation field in the FDE as well. The only thing known
2060 to be in here at present is the LSDA entry for EH. So we
2061 can skip the whole thing. */
2062 if (fde->cie->saw_z_augmentation)
2063 {
2064 uint64_t length;
2065
2066 buf = gdb_read_uleb128 (buf, end, &length);
2067 if (buf == NULL)
2068 return NULL;
2069 buf += length;
2070 if (buf > end)
2071 return NULL;
2072 }
2073
2074 fde->instructions = buf;
2075 fde->end = end;
2076
2077 fde->eh_frame_p = eh_frame_p;
2078
2079 add_fde (fde_table, fde);
2080 }
2081
2082 return end;
2083 }
2084
2085 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2086 expect an FDE or a CIE. */
2087
2088 static const gdb_byte *
2089 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2090 int eh_frame_p,
2091 struct dwarf2_cie_table *cie_table,
2092 struct dwarf2_fde_table *fde_table,
2093 enum eh_frame_type entry_type)
2094 {
2095 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2096 const gdb_byte *ret;
2097 ptrdiff_t start_offset;
2098
2099 while (1)
2100 {
2101 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2102 cie_table, fde_table, entry_type);
2103 if (ret != NULL)
2104 break;
2105
2106 /* We have corrupt input data of some form. */
2107
2108 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2109 and mismatches wrt padding and alignment of debug sections. */
2110 /* Note that there is no requirement in the standard for any
2111 alignment at all in the frame unwind sections. Testing for
2112 alignment before trying to interpret data would be incorrect.
2113
2114 However, GCC traditionally arranged for frame sections to be
2115 sized such that the FDE length and CIE fields happen to be
2116 aligned (in theory, for performance). This, unfortunately,
2117 was done with .align directives, which had the side effect of
2118 forcing the section to be aligned by the linker.
2119
2120 This becomes a problem when you have some other producer that
2121 creates frame sections that are not as strictly aligned. That
2122 produces a hole in the frame info that gets filled by the
2123 linker with zeros.
2124
2125 The GCC behaviour is arguably a bug, but it's effectively now
2126 part of the ABI, so we're now stuck with it, at least at the
2127 object file level. A smart linker may decide, in the process
2128 of compressing duplicate CIE information, that it can rewrite
2129 the entire output section without this extra padding. */
2130
2131 start_offset = start - unit->dwarf_frame_buffer;
2132 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2133 {
2134 start += 4 - (start_offset & 3);
2135 workaround = ALIGN4;
2136 continue;
2137 }
2138 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2139 {
2140 start += 8 - (start_offset & 7);
2141 workaround = ALIGN8;
2142 continue;
2143 }
2144
2145 /* Nothing left to try. Arrange to return as if we've consumed
2146 the entire input section. Hopefully we'll get valid info from
2147 the other of .debug_frame/.eh_frame. */
2148 workaround = FAIL;
2149 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2150 break;
2151 }
2152
2153 switch (workaround)
2154 {
2155 case NONE:
2156 break;
2157
2158 case ALIGN4:
2159 complaint (_("\
2160 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2161 unit->dwarf_frame_section->owner->filename,
2162 unit->dwarf_frame_section->name);
2163 break;
2164
2165 case ALIGN8:
2166 complaint (_("\
2167 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2168 unit->dwarf_frame_section->owner->filename,
2169 unit->dwarf_frame_section->name);
2170 break;
2171
2172 default:
2173 complaint (_("Corrupt data in %s:%s"),
2174 unit->dwarf_frame_section->owner->filename,
2175 unit->dwarf_frame_section->name);
2176 break;
2177 }
2178
2179 return ret;
2180 }
2181 \f
2182 static int
2183 qsort_fde_cmp (const void *a, const void *b)
2184 {
2185 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2186 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2187
2188 if (aa->initial_location == bb->initial_location)
2189 {
2190 if (aa->address_range != bb->address_range
2191 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2192 /* Linker bug, e.g. gold/10400.
2193 Work around it by keeping stable sort order. */
2194 return (a < b) ? -1 : 1;
2195 else
2196 /* Put eh_frame entries after debug_frame ones. */
2197 return aa->eh_frame_p - bb->eh_frame_p;
2198 }
2199
2200 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2201 }
2202
2203 void
2204 dwarf2_build_frame_info (struct objfile *objfile)
2205 {
2206 struct comp_unit *unit;
2207 const gdb_byte *frame_ptr;
2208 struct dwarf2_cie_table cie_table;
2209 struct dwarf2_fde_table fde_table;
2210 struct dwarf2_fde_table *fde_table2;
2211
2212 cie_table.num_entries = 0;
2213 cie_table.entries = NULL;
2214
2215 fde_table.num_entries = 0;
2216 fde_table.entries = NULL;
2217
2218 /* Build a minimal decoding of the DWARF2 compilation unit. */
2219 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2220 unit->abfd = objfile->obfd;
2221 unit->objfile = objfile;
2222 unit->dbase = 0;
2223 unit->tbase = 0;
2224
2225 if (objfile->separate_debug_objfile_backlink == NULL)
2226 {
2227 /* Do not read .eh_frame from separate file as they must be also
2228 present in the main file. */
2229 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2230 &unit->dwarf_frame_section,
2231 &unit->dwarf_frame_buffer,
2232 &unit->dwarf_frame_size);
2233 if (unit->dwarf_frame_size)
2234 {
2235 asection *got, *txt;
2236
2237 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2238 that is used for the i386/amd64 target, which currently is
2239 the only target in GCC that supports/uses the
2240 DW_EH_PE_datarel encoding. */
2241 got = bfd_get_section_by_name (unit->abfd, ".got");
2242 if (got)
2243 unit->dbase = got->vma;
2244
2245 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2246 so far. */
2247 txt = bfd_get_section_by_name (unit->abfd, ".text");
2248 if (txt)
2249 unit->tbase = txt->vma;
2250
2251 TRY
2252 {
2253 frame_ptr = unit->dwarf_frame_buffer;
2254 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2255 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2256 &cie_table, &fde_table,
2257 EH_CIE_OR_FDE_TYPE_ID);
2258 }
2259
2260 CATCH (e, RETURN_MASK_ERROR)
2261 {
2262 warning (_("skipping .eh_frame info of %s: %s"),
2263 objfile_name (objfile), e.message);
2264
2265 if (fde_table.num_entries != 0)
2266 {
2267 xfree (fde_table.entries);
2268 fde_table.entries = NULL;
2269 fde_table.num_entries = 0;
2270 }
2271 /* The cie_table is discarded by the next if. */
2272 }
2273 END_CATCH
2274
2275 if (cie_table.num_entries != 0)
2276 {
2277 /* Reinit cie_table: debug_frame has different CIEs. */
2278 xfree (cie_table.entries);
2279 cie_table.num_entries = 0;
2280 cie_table.entries = NULL;
2281 }
2282 }
2283 }
2284
2285 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2286 &unit->dwarf_frame_section,
2287 &unit->dwarf_frame_buffer,
2288 &unit->dwarf_frame_size);
2289 if (unit->dwarf_frame_size)
2290 {
2291 int num_old_fde_entries = fde_table.num_entries;
2292
2293 TRY
2294 {
2295 frame_ptr = unit->dwarf_frame_buffer;
2296 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2297 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2298 &cie_table, &fde_table,
2299 EH_CIE_OR_FDE_TYPE_ID);
2300 }
2301 CATCH (e, RETURN_MASK_ERROR)
2302 {
2303 warning (_("skipping .debug_frame info of %s: %s"),
2304 objfile_name (objfile), e.message);
2305
2306 if (fde_table.num_entries != 0)
2307 {
2308 fde_table.num_entries = num_old_fde_entries;
2309 if (num_old_fde_entries == 0)
2310 {
2311 xfree (fde_table.entries);
2312 fde_table.entries = NULL;
2313 }
2314 else
2315 {
2316 fde_table.entries
2317 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2318 fde_table.num_entries);
2319 }
2320 }
2321 fde_table.num_entries = num_old_fde_entries;
2322 /* The cie_table is discarded by the next if. */
2323 }
2324 END_CATCH
2325 }
2326
2327 /* Discard the cie_table, it is no longer needed. */
2328 if (cie_table.num_entries != 0)
2329 {
2330 xfree (cie_table.entries);
2331 cie_table.entries = NULL; /* Paranoia. */
2332 cie_table.num_entries = 0; /* Paranoia. */
2333 }
2334
2335 /* Copy fde_table to obstack: it is needed at runtime. */
2336 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2337
2338 if (fde_table.num_entries == 0)
2339 {
2340 fde_table2->entries = NULL;
2341 fde_table2->num_entries = 0;
2342 }
2343 else
2344 {
2345 struct dwarf2_fde *fde_prev = NULL;
2346 struct dwarf2_fde *first_non_zero_fde = NULL;
2347 int i;
2348
2349 /* Prepare FDE table for lookups. */
2350 qsort (fde_table.entries, fde_table.num_entries,
2351 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2352
2353 /* Check for leftovers from --gc-sections. The GNU linker sets
2354 the relevant symbols to zero, but doesn't zero the FDE *end*
2355 ranges because there's no relocation there. It's (offset,
2356 length), not (start, end). On targets where address zero is
2357 just another valid address this can be a problem, since the
2358 FDEs appear to be non-empty in the output --- we could pick
2359 out the wrong FDE. To work around this, when overlaps are
2360 detected, we prefer FDEs that do not start at zero.
2361
2362 Start by finding the first FDE with non-zero start. Below
2363 we'll discard all FDEs that start at zero and overlap this
2364 one. */
2365 for (i = 0; i < fde_table.num_entries; i++)
2366 {
2367 struct dwarf2_fde *fde = fde_table.entries[i];
2368
2369 if (fde->initial_location != 0)
2370 {
2371 first_non_zero_fde = fde;
2372 break;
2373 }
2374 }
2375
2376 /* Since we'll be doing bsearch, squeeze out identical (except
2377 for eh_frame_p) fde entries so bsearch result is predictable.
2378 Also discard leftovers from --gc-sections. */
2379 fde_table2->num_entries = 0;
2380 for (i = 0; i < fde_table.num_entries; i++)
2381 {
2382 struct dwarf2_fde *fde = fde_table.entries[i];
2383
2384 if (fde->initial_location == 0
2385 && first_non_zero_fde != NULL
2386 && (first_non_zero_fde->initial_location
2387 < fde->initial_location + fde->address_range))
2388 continue;
2389
2390 if (fde_prev != NULL
2391 && fde_prev->initial_location == fde->initial_location)
2392 continue;
2393
2394 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2395 sizeof (fde_table.entries[0]));
2396 ++fde_table2->num_entries;
2397 fde_prev = fde;
2398 }
2399 fde_table2->entries
2400 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2401
2402 /* Discard the original fde_table. */
2403 xfree (fde_table.entries);
2404 }
2405
2406 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2407 }
2408
2409 /* Handle 'maintenance show dwarf unwinders'. */
2410
2411 static void
2412 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2413 struct cmd_list_element *c,
2414 const char *value)
2415 {
2416 fprintf_filtered (file,
2417 _("The DWARF stack unwinders are currently %s.\n"),
2418 value);
2419 }
2420
2421 void
2422 _initialize_dwarf2_frame (void)
2423 {
2424 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2425 dwarf2_frame_objfile_data = register_objfile_data ();
2426
2427 add_setshow_boolean_cmd ("unwinders", class_obscure,
2428 &dwarf2_frame_unwinders_enabled_p , _("\
2429 Set whether the DWARF stack frame unwinders are used."), _("\
2430 Show whether the DWARF stack frame unwinders are used."), _("\
2431 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2432 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2433 architecture that doesn't support them will have no effect."),
2434 NULL,
2435 show_dwarf_unwinders_enabled_p,
2436 &set_dwarf_cmdlist,
2437 &show_dwarf_cmdlist);
2438
2439 #if GDB_SELF_TEST
2440 selftests::register_test_foreach_arch ("execute_cfa_program",
2441 selftests::execute_cfa_program_test);
2442 #endif
2443 }
This page took 0.085943 seconds and 5 git commands to generate.