2009-08-06 Paul Pluzhnikov <ppluzhnikov@google.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Mark Kettenis.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 gdb_byte *initial_instructions;
69 gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* True if a 'z' augmentation existed. */
81 unsigned char saw_z_augmentation;
82
83 /* True if an 'S' augmentation existed. */
84 unsigned char signal_frame;
85
86 /* The version recorded in the CIE. */
87 unsigned char version;
88 };
89
90 struct dwarf2_cie_table
91 {
92 int num_entries;
93 struct dwarf2_cie **entries;
94 };
95
96 /* Frame Description Entry (FDE). */
97
98 struct dwarf2_fde
99 {
100 /* CIE for this FDE. */
101 struct dwarf2_cie *cie;
102
103 /* First location associated with this FDE. */
104 CORE_ADDR initial_location;
105
106 /* Number of bytes of program instructions described by this FDE. */
107 CORE_ADDR address_range;
108
109 /* Instruction sequence. */
110 gdb_byte *instructions;
111 gdb_byte *end;
112
113 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
114 section. */
115 unsigned char eh_frame_p;
116 };
117
118 struct dwarf2_fde_table
119 {
120 int num_entries;
121 struct dwarf2_fde **entries;
122 };
123
124 /* A minimal decoding of DWARF2 compilation units. We only decode
125 what's needed to get to the call frame information. */
126
127 struct comp_unit
128 {
129 /* Keep the bfd convenient. */
130 bfd *abfd;
131
132 struct objfile *objfile;
133
134 /* Pointer to the .debug_frame section loaded into memory. */
135 gdb_byte *dwarf_frame_buffer;
136
137 /* Length of the loaded .debug_frame section. */
138 bfd_size_type dwarf_frame_size;
139
140 /* Pointer to the .debug_frame section. */
141 asection *dwarf_frame_section;
142
143 /* Base for DW_EH_PE_datarel encodings. */
144 bfd_vma dbase;
145
146 /* Base for DW_EH_PE_textrel encodings. */
147 bfd_vma tbase;
148 };
149
150 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
151
152 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
153 int eh_frame_p);
154
155 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
156 int ptr_len, gdb_byte *buf,
157 unsigned int *bytes_read_ptr,
158 CORE_ADDR func_base);
159 \f
160
161 /* Structure describing a frame state. */
162
163 struct dwarf2_frame_state
164 {
165 /* Each register save state can be described in terms of a CFA slot,
166 another register, or a location expression. */
167 struct dwarf2_frame_state_reg_info
168 {
169 struct dwarf2_frame_state_reg *reg;
170 int num_regs;
171
172 LONGEST cfa_offset;
173 ULONGEST cfa_reg;
174 enum {
175 CFA_UNSET,
176 CFA_REG_OFFSET,
177 CFA_EXP
178 } cfa_how;
179 gdb_byte *cfa_exp;
180
181 /* Used to implement DW_CFA_remember_state. */
182 struct dwarf2_frame_state_reg_info *prev;
183 } regs;
184
185 /* The PC described by the current frame state. */
186 CORE_ADDR pc;
187
188 /* Initial register set from the CIE.
189 Used to implement DW_CFA_restore. */
190 struct dwarf2_frame_state_reg_info initial;
191
192 /* The information we care about from the CIE. */
193 LONGEST data_align;
194 ULONGEST code_align;
195 ULONGEST retaddr_column;
196
197 /* Flags for known producer quirks. */
198
199 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
200 and DW_CFA_def_cfa_offset takes a factored offset. */
201 int armcc_cfa_offsets_sf;
202
203 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
204 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
205 int armcc_cfa_offsets_reversed;
206 };
207
208 /* Store the length the expression for the CFA in the `cfa_reg' field,
209 which is unused in that case. */
210 #define cfa_exp_len cfa_reg
211
212 /* Assert that the register set RS is large enough to store gdbarch_num_regs
213 columns. If necessary, enlarge the register set. */
214
215 static void
216 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
217 int num_regs)
218 {
219 size_t size = sizeof (struct dwarf2_frame_state_reg);
220
221 if (num_regs <= rs->num_regs)
222 return;
223
224 rs->reg = (struct dwarf2_frame_state_reg *)
225 xrealloc (rs->reg, num_regs * size);
226
227 /* Initialize newly allocated registers. */
228 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
229 rs->num_regs = num_regs;
230 }
231
232 /* Copy the register columns in register set RS into newly allocated
233 memory and return a pointer to this newly created copy. */
234
235 static struct dwarf2_frame_state_reg *
236 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
237 {
238 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
239 struct dwarf2_frame_state_reg *reg;
240
241 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
242 memcpy (reg, rs->reg, size);
243
244 return reg;
245 }
246
247 /* Release the memory allocated to register set RS. */
248
249 static void
250 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
251 {
252 if (rs)
253 {
254 dwarf2_frame_state_free_regs (rs->prev);
255
256 xfree (rs->reg);
257 xfree (rs);
258 }
259 }
260
261 /* Release the memory allocated to the frame state FS. */
262
263 static void
264 dwarf2_frame_state_free (void *p)
265 {
266 struct dwarf2_frame_state *fs = p;
267
268 dwarf2_frame_state_free_regs (fs->initial.prev);
269 dwarf2_frame_state_free_regs (fs->regs.prev);
270 xfree (fs->initial.reg);
271 xfree (fs->regs.reg);
272 xfree (fs);
273 }
274 \f
275
276 /* Helper functions for execute_stack_op. */
277
278 static CORE_ADDR
279 read_reg (void *baton, int reg)
280 {
281 struct frame_info *this_frame = (struct frame_info *) baton;
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
283 int regnum;
284 gdb_byte *buf;
285
286 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
287
288 buf = alloca (register_size (gdbarch, regnum));
289 get_frame_register (this_frame, regnum, buf);
290
291 /* Convert the register to an integer. This returns a LONGEST
292 rather than a CORE_ADDR, but unpack_pointer does the same thing
293 under the covers, and this makes more sense for non-pointer
294 registers. Maybe read_reg and the associated interfaces should
295 deal with "struct value" instead of CORE_ADDR. */
296 return unpack_long (register_type (gdbarch, regnum), buf);
297 }
298
299 static void
300 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
301 {
302 read_memory (addr, buf, len);
303 }
304
305 static void
306 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
307 {
308 internal_error (__FILE__, __LINE__,
309 _("Support for DW_OP_fbreg is unimplemented"));
310 }
311
312 static CORE_ADDR
313 no_get_tls_address (void *baton, CORE_ADDR offset)
314 {
315 internal_error (__FILE__, __LINE__,
316 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
317 }
318
319 /* Execute the required actions for both the DW_CFA_restore and
320 DW_CFA_restore_extended instructions. */
321 static void
322 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
323 struct dwarf2_frame_state *fs, int eh_frame_p)
324 {
325 ULONGEST reg;
326
327 gdb_assert (fs->initial.reg);
328 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
329 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
330
331 /* Check if this register was explicitly initialized in the
332 CIE initial instructions. If not, default the rule to
333 UNSPECIFIED. */
334 if (reg < fs->initial.num_regs)
335 fs->regs.reg[reg] = fs->initial.reg[reg];
336 else
337 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
338
339 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
340 complaint (&symfile_complaints, _("\
341 incomplete CFI data; DW_CFA_restore unspecified\n\
342 register %s (#%d) at %s"),
343 gdbarch_register_name
344 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
345 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
346 paddress (gdbarch, fs->pc));
347 }
348
349 static CORE_ADDR
350 execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
351 struct frame_info *this_frame, CORE_ADDR initial)
352 {
353 struct dwarf_expr_context *ctx;
354 CORE_ADDR result;
355
356 ctx = new_dwarf_expr_context ();
357 ctx->gdbarch = get_frame_arch (this_frame);
358 ctx->addr_size = addr_size;
359 ctx->baton = this_frame;
360 ctx->read_reg = read_reg;
361 ctx->read_mem = read_mem;
362 ctx->get_frame_base = no_get_frame_base;
363 ctx->get_tls_address = no_get_tls_address;
364
365 dwarf_expr_push (ctx, initial);
366 dwarf_expr_eval (ctx, exp, len);
367 result = dwarf_expr_fetch (ctx, 0);
368
369 if (ctx->in_reg)
370 result = read_reg (this_frame, result);
371
372 free_dwarf_expr_context (ctx);
373
374 return result;
375 }
376 \f
377
378 static void
379 execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
380 gdb_byte *insn_end, struct frame_info *this_frame,
381 struct dwarf2_frame_state *fs)
382 {
383 int eh_frame_p = fde->eh_frame_p;
384 CORE_ADDR pc = get_frame_pc (this_frame);
385 int bytes_read;
386 struct gdbarch *gdbarch = get_frame_arch (this_frame);
387 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
388
389 while (insn_ptr < insn_end && fs->pc <= pc)
390 {
391 gdb_byte insn = *insn_ptr++;
392 ULONGEST utmp, reg;
393 LONGEST offset;
394
395 if ((insn & 0xc0) == DW_CFA_advance_loc)
396 fs->pc += (insn & 0x3f) * fs->code_align;
397 else if ((insn & 0xc0) == DW_CFA_offset)
398 {
399 reg = insn & 0x3f;
400 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
401 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
402 offset = utmp * fs->data_align;
403 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
404 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
405 fs->regs.reg[reg].loc.offset = offset;
406 }
407 else if ((insn & 0xc0) == DW_CFA_restore)
408 {
409 reg = insn & 0x3f;
410 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
411 }
412 else
413 {
414 switch (insn)
415 {
416 case DW_CFA_set_loc:
417 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
418 fde->cie->addr_size, insn_ptr,
419 &bytes_read, fde->initial_location);
420 /* Apply the objfile offset for relocatable objects. */
421 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
422 SECT_OFF_TEXT (fde->cie->unit->objfile));
423 insn_ptr += bytes_read;
424 break;
425
426 case DW_CFA_advance_loc1:
427 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
428 fs->pc += utmp * fs->code_align;
429 insn_ptr++;
430 break;
431 case DW_CFA_advance_loc2:
432 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
433 fs->pc += utmp * fs->code_align;
434 insn_ptr += 2;
435 break;
436 case DW_CFA_advance_loc4:
437 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
438 fs->pc += utmp * fs->code_align;
439 insn_ptr += 4;
440 break;
441
442 case DW_CFA_offset_extended:
443 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
444 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
445 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
446 offset = utmp * fs->data_align;
447 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
448 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
449 fs->regs.reg[reg].loc.offset = offset;
450 break;
451
452 case DW_CFA_restore_extended:
453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
454 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
455 break;
456
457 case DW_CFA_undefined:
458 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
459 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
460 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
461 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
462 break;
463
464 case DW_CFA_same_value:
465 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
466 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
467 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
468 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
469 break;
470
471 case DW_CFA_register:
472 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
473 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
474 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
475 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
476 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
477 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
478 fs->regs.reg[reg].loc.reg = utmp;
479 break;
480
481 case DW_CFA_remember_state:
482 {
483 struct dwarf2_frame_state_reg_info *new_rs;
484
485 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
486 *new_rs = fs->regs;
487 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
488 fs->regs.prev = new_rs;
489 }
490 break;
491
492 case DW_CFA_restore_state:
493 {
494 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
495
496 if (old_rs == NULL)
497 {
498 complaint (&symfile_complaints, _("\
499 bad CFI data; mismatched DW_CFA_restore_state at %s"),
500 paddress (gdbarch, fs->pc));
501 }
502 else
503 {
504 xfree (fs->regs.reg);
505 fs->regs = *old_rs;
506 xfree (old_rs);
507 }
508 }
509 break;
510
511 case DW_CFA_def_cfa:
512 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
513 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
514
515 if (fs->armcc_cfa_offsets_sf)
516 utmp *= fs->data_align;
517
518 fs->regs.cfa_offset = utmp;
519 fs->regs.cfa_how = CFA_REG_OFFSET;
520 break;
521
522 case DW_CFA_def_cfa_register:
523 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
524 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
525 fs->regs.cfa_reg,
526 eh_frame_p);
527 fs->regs.cfa_how = CFA_REG_OFFSET;
528 break;
529
530 case DW_CFA_def_cfa_offset:
531 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
532
533 if (fs->armcc_cfa_offsets_sf)
534 utmp *= fs->data_align;
535
536 fs->regs.cfa_offset = utmp;
537 /* cfa_how deliberately not set. */
538 break;
539
540 case DW_CFA_nop:
541 break;
542
543 case DW_CFA_def_cfa_expression:
544 insn_ptr = read_uleb128 (insn_ptr, insn_end,
545 &fs->regs.cfa_exp_len);
546 fs->regs.cfa_exp = insn_ptr;
547 fs->regs.cfa_how = CFA_EXP;
548 insn_ptr += fs->regs.cfa_exp_len;
549 break;
550
551 case DW_CFA_expression:
552 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
553 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
554 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
555 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
556 fs->regs.reg[reg].loc.exp = insn_ptr;
557 fs->regs.reg[reg].exp_len = utmp;
558 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
559 insn_ptr += utmp;
560 break;
561
562 case DW_CFA_offset_extended_sf:
563 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
564 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
565 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
566 offset *= fs->data_align;
567 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
568 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
569 fs->regs.reg[reg].loc.offset = offset;
570 break;
571
572 case DW_CFA_val_offset:
573 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
574 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
576 offset = utmp * fs->data_align;
577 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
578 fs->regs.reg[reg].loc.offset = offset;
579 break;
580
581 case DW_CFA_val_offset_sf:
582 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
583 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
584 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
585 offset *= fs->data_align;
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
587 fs->regs.reg[reg].loc.offset = offset;
588 break;
589
590 case DW_CFA_val_expression:
591 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
592 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
593 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
594 fs->regs.reg[reg].loc.exp = insn_ptr;
595 fs->regs.reg[reg].exp_len = utmp;
596 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
597 insn_ptr += utmp;
598 break;
599
600 case DW_CFA_def_cfa_sf:
601 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
602 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
603 fs->regs.cfa_reg,
604 eh_frame_p);
605 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
606 fs->regs.cfa_offset = offset * fs->data_align;
607 fs->regs.cfa_how = CFA_REG_OFFSET;
608 break;
609
610 case DW_CFA_def_cfa_offset_sf:
611 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
612 fs->regs.cfa_offset = offset * fs->data_align;
613 /* cfa_how deliberately not set. */
614 break;
615
616 case DW_CFA_GNU_window_save:
617 /* This is SPARC-specific code, and contains hard-coded
618 constants for the register numbering scheme used by
619 GCC. Rather than having a architecture-specific
620 operation that's only ever used by a single
621 architecture, we provide the implementation here.
622 Incidentally that's what GCC does too in its
623 unwinder. */
624 {
625 int size = register_size (gdbarch, 0);
626 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
627 for (reg = 8; reg < 16; reg++)
628 {
629 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
630 fs->regs.reg[reg].loc.reg = reg + 16;
631 }
632 for (reg = 16; reg < 32; reg++)
633 {
634 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
635 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
636 }
637 }
638 break;
639
640 case DW_CFA_GNU_args_size:
641 /* Ignored. */
642 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
643 break;
644
645 case DW_CFA_GNU_negative_offset_extended:
646 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
647 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
648 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
649 offset *= fs->data_align;
650 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
651 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
652 fs->regs.reg[reg].loc.offset = -offset;
653 break;
654
655 default:
656 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
657 }
658 }
659 }
660
661 /* Don't allow remember/restore between CIE and FDE programs. */
662 dwarf2_frame_state_free_regs (fs->regs.prev);
663 fs->regs.prev = NULL;
664 }
665 \f
666
667 /* Architecture-specific operations. */
668
669 /* Per-architecture data key. */
670 static struct gdbarch_data *dwarf2_frame_data;
671
672 struct dwarf2_frame_ops
673 {
674 /* Pre-initialize the register state REG for register REGNUM. */
675 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
676 struct frame_info *);
677
678 /* Check whether the THIS_FRAME is a signal trampoline. */
679 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
680
681 /* Convert .eh_frame register number to DWARF register number, or
682 adjust .debug_frame register number. */
683 int (*adjust_regnum) (struct gdbarch *, int, int);
684 };
685
686 /* Default architecture-specific register state initialization
687 function. */
688
689 static void
690 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
691 struct dwarf2_frame_state_reg *reg,
692 struct frame_info *this_frame)
693 {
694 /* If we have a register that acts as a program counter, mark it as
695 a destination for the return address. If we have a register that
696 serves as the stack pointer, arrange for it to be filled with the
697 call frame address (CFA). The other registers are marked as
698 unspecified.
699
700 We copy the return address to the program counter, since many
701 parts in GDB assume that it is possible to get the return address
702 by unwinding the program counter register. However, on ISA's
703 with a dedicated return address register, the CFI usually only
704 contains information to unwind that return address register.
705
706 The reason we're treating the stack pointer special here is
707 because in many cases GCC doesn't emit CFI for the stack pointer
708 and implicitly assumes that it is equal to the CFA. This makes
709 some sense since the DWARF specification (version 3, draft 8,
710 p. 102) says that:
711
712 "Typically, the CFA is defined to be the value of the stack
713 pointer at the call site in the previous frame (which may be
714 different from its value on entry to the current frame)."
715
716 However, this isn't true for all platforms supported by GCC
717 (e.g. IBM S/390 and zSeries). Those architectures should provide
718 their own architecture-specific initialization function. */
719
720 if (regnum == gdbarch_pc_regnum (gdbarch))
721 reg->how = DWARF2_FRAME_REG_RA;
722 else if (regnum == gdbarch_sp_regnum (gdbarch))
723 reg->how = DWARF2_FRAME_REG_CFA;
724 }
725
726 /* Return a default for the architecture-specific operations. */
727
728 static void *
729 dwarf2_frame_init (struct obstack *obstack)
730 {
731 struct dwarf2_frame_ops *ops;
732
733 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
734 ops->init_reg = dwarf2_frame_default_init_reg;
735 return ops;
736 }
737
738 /* Set the architecture-specific register state initialization
739 function for GDBARCH to INIT_REG. */
740
741 void
742 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
743 void (*init_reg) (struct gdbarch *, int,
744 struct dwarf2_frame_state_reg *,
745 struct frame_info *))
746 {
747 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
748
749 ops->init_reg = init_reg;
750 }
751
752 /* Pre-initialize the register state REG for register REGNUM. */
753
754 static void
755 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
756 struct dwarf2_frame_state_reg *reg,
757 struct frame_info *this_frame)
758 {
759 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
760
761 ops->init_reg (gdbarch, regnum, reg, this_frame);
762 }
763
764 /* Set the architecture-specific signal trampoline recognition
765 function for GDBARCH to SIGNAL_FRAME_P. */
766
767 void
768 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
769 int (*signal_frame_p) (struct gdbarch *,
770 struct frame_info *))
771 {
772 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
773
774 ops->signal_frame_p = signal_frame_p;
775 }
776
777 /* Query the architecture-specific signal frame recognizer for
778 THIS_FRAME. */
779
780 static int
781 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
782 struct frame_info *this_frame)
783 {
784 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
785
786 if (ops->signal_frame_p == NULL)
787 return 0;
788 return ops->signal_frame_p (gdbarch, this_frame);
789 }
790
791 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
792 register numbers. */
793
794 void
795 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
796 int (*adjust_regnum) (struct gdbarch *,
797 int, int))
798 {
799 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
800
801 ops->adjust_regnum = adjust_regnum;
802 }
803
804 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
805 register. */
806
807 static int
808 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
809 {
810 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
811
812 if (ops->adjust_regnum == NULL)
813 return regnum;
814 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
815 }
816
817 static void
818 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
819 struct dwarf2_fde *fde)
820 {
821 static const char *arm_idents[] = {
822 "ARM C Compiler, ADS",
823 "Thumb C Compiler, ADS",
824 "ARM C++ Compiler, ADS",
825 "Thumb C++ Compiler, ADS",
826 "ARM/Thumb C/C++ Compiler, RVCT"
827 };
828 int i;
829
830 struct symtab *s;
831
832 s = find_pc_symtab (fs->pc);
833 if (s == NULL || s->producer == NULL)
834 return;
835
836 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
837 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
838 {
839 if (fde->cie->version == 1)
840 fs->armcc_cfa_offsets_sf = 1;
841
842 if (fde->cie->version == 1)
843 fs->armcc_cfa_offsets_reversed = 1;
844
845 /* The reversed offset problem is present in some compilers
846 using DWARF3, but it was eventually fixed. Check the ARM
847 defined augmentations, which are in the format "armcc" followed
848 by a list of one-character options. The "+" option means
849 this problem is fixed (no quirk needed). If the armcc
850 augmentation is missing, the quirk is needed. */
851 if (fde->cie->version == 3
852 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
853 || strchr (fde->cie->augmentation + 5, '+') == NULL))
854 fs->armcc_cfa_offsets_reversed = 1;
855
856 return;
857 }
858 }
859 \f
860
861 struct dwarf2_frame_cache
862 {
863 /* DWARF Call Frame Address. */
864 CORE_ADDR cfa;
865
866 /* Set if the return address column was marked as undefined. */
867 int undefined_retaddr;
868
869 /* Saved registers, indexed by GDB register number, not by DWARF
870 register number. */
871 struct dwarf2_frame_state_reg *reg;
872
873 /* Return address register. */
874 struct dwarf2_frame_state_reg retaddr_reg;
875
876 /* Target address size in bytes. */
877 int addr_size;
878 };
879
880 static struct dwarf2_frame_cache *
881 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
882 {
883 struct cleanup *old_chain;
884 struct gdbarch *gdbarch = get_frame_arch (this_frame);
885 const int num_regs = gdbarch_num_regs (gdbarch)
886 + gdbarch_num_pseudo_regs (gdbarch);
887 struct dwarf2_frame_cache *cache;
888 struct dwarf2_frame_state *fs;
889 struct dwarf2_fde *fde;
890
891 if (*this_cache)
892 return *this_cache;
893
894 /* Allocate a new cache. */
895 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
896 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
897
898 /* Allocate and initialize the frame state. */
899 fs = XMALLOC (struct dwarf2_frame_state);
900 memset (fs, 0, sizeof (struct dwarf2_frame_state));
901 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
902
903 /* Unwind the PC.
904
905 Note that if the next frame is never supposed to return (i.e. a call
906 to abort), the compiler might optimize away the instruction at
907 its return address. As a result the return address will
908 point at some random instruction, and the CFI for that
909 instruction is probably worthless to us. GCC's unwinder solves
910 this problem by substracting 1 from the return address to get an
911 address in the middle of a presumed call instruction (or the
912 instruction in the associated delay slot). This should only be
913 done for "normal" frames and not for resume-type frames (signal
914 handlers, sentinel frames, dummy frames). The function
915 get_frame_address_in_block does just this. It's not clear how
916 reliable the method is though; there is the potential for the
917 register state pre-call being different to that on return. */
918 fs->pc = get_frame_address_in_block (this_frame);
919
920 /* Find the correct FDE. */
921 fde = dwarf2_frame_find_fde (&fs->pc);
922 gdb_assert (fde != NULL);
923
924 /* Extract any interesting information from the CIE. */
925 fs->data_align = fde->cie->data_alignment_factor;
926 fs->code_align = fde->cie->code_alignment_factor;
927 fs->retaddr_column = fde->cie->return_address_register;
928 cache->addr_size = fde->cie->addr_size;
929
930 /* Check for "quirks" - known bugs in producers. */
931 dwarf2_frame_find_quirks (fs, fde);
932
933 /* First decode all the insns in the CIE. */
934 execute_cfa_program (fde, fde->cie->initial_instructions,
935 fde->cie->end, this_frame, fs);
936
937 /* Save the initialized register set. */
938 fs->initial = fs->regs;
939 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
940
941 /* Then decode the insns in the FDE up to our target PC. */
942 execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
943
944 /* Calculate the CFA. */
945 switch (fs->regs.cfa_how)
946 {
947 case CFA_REG_OFFSET:
948 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
949 if (fs->armcc_cfa_offsets_reversed)
950 cache->cfa -= fs->regs.cfa_offset;
951 else
952 cache->cfa += fs->regs.cfa_offset;
953 break;
954
955 case CFA_EXP:
956 cache->cfa =
957 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
958 cache->addr_size, this_frame, 0);
959 break;
960
961 default:
962 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
963 }
964
965 /* Initialize the register state. */
966 {
967 int regnum;
968
969 for (regnum = 0; regnum < num_regs; regnum++)
970 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
971 }
972
973 /* Go through the DWARF2 CFI generated table and save its register
974 location information in the cache. Note that we don't skip the
975 return address column; it's perfectly all right for it to
976 correspond to a real register. If it doesn't correspond to a
977 real register, or if we shouldn't treat it as such,
978 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
979 the range [0, gdbarch_num_regs). */
980 {
981 int column; /* CFI speak for "register number". */
982
983 for (column = 0; column < fs->regs.num_regs; column++)
984 {
985 /* Use the GDB register number as the destination index. */
986 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
987
988 /* If there's no corresponding GDB register, ignore it. */
989 if (regnum < 0 || regnum >= num_regs)
990 continue;
991
992 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
993 of all debug info registers. If it doesn't, complain (but
994 not too loudly). It turns out that GCC assumes that an
995 unspecified register implies "same value" when CFI (draft
996 7) specifies nothing at all. Such a register could equally
997 be interpreted as "undefined". Also note that this check
998 isn't sufficient; it only checks that all registers in the
999 range [0 .. max column] are specified, and won't detect
1000 problems when a debug info register falls outside of the
1001 table. We need a way of iterating through all the valid
1002 DWARF2 register numbers. */
1003 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1004 {
1005 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1006 complaint (&symfile_complaints, _("\
1007 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1008 gdbarch_register_name (gdbarch, regnum),
1009 paddress (gdbarch, fs->pc));
1010 }
1011 else
1012 cache->reg[regnum] = fs->regs.reg[column];
1013 }
1014 }
1015
1016 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1017 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1018 {
1019 int regnum;
1020
1021 for (regnum = 0; regnum < num_regs; regnum++)
1022 {
1023 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1024 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1025 {
1026 struct dwarf2_frame_state_reg *retaddr_reg =
1027 &fs->regs.reg[fs->retaddr_column];
1028
1029 /* It seems rather bizarre to specify an "empty" column as
1030 the return adress column. However, this is exactly
1031 what GCC does on some targets. It turns out that GCC
1032 assumes that the return address can be found in the
1033 register corresponding to the return address column.
1034 Incidentally, that's how we should treat a return
1035 address column specifying "same value" too. */
1036 if (fs->retaddr_column < fs->regs.num_regs
1037 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1038 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1039 {
1040 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1041 cache->reg[regnum] = *retaddr_reg;
1042 else
1043 cache->retaddr_reg = *retaddr_reg;
1044 }
1045 else
1046 {
1047 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1048 {
1049 cache->reg[regnum].loc.reg = fs->retaddr_column;
1050 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1051 }
1052 else
1053 {
1054 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1055 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1056 }
1057 }
1058 }
1059 }
1060 }
1061
1062 if (fs->retaddr_column < fs->regs.num_regs
1063 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1064 cache->undefined_retaddr = 1;
1065
1066 do_cleanups (old_chain);
1067
1068 *this_cache = cache;
1069 return cache;
1070 }
1071
1072 static void
1073 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1074 struct frame_id *this_id)
1075 {
1076 struct dwarf2_frame_cache *cache =
1077 dwarf2_frame_cache (this_frame, this_cache);
1078
1079 if (cache->undefined_retaddr)
1080 return;
1081
1082 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1083 }
1084
1085 static struct value *
1086 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1087 int regnum)
1088 {
1089 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1090 struct dwarf2_frame_cache *cache =
1091 dwarf2_frame_cache (this_frame, this_cache);
1092 CORE_ADDR addr;
1093 int realnum;
1094
1095 switch (cache->reg[regnum].how)
1096 {
1097 case DWARF2_FRAME_REG_UNDEFINED:
1098 /* If CFI explicitly specified that the value isn't defined,
1099 mark it as optimized away; the value isn't available. */
1100 return frame_unwind_got_optimized (this_frame, regnum);
1101
1102 case DWARF2_FRAME_REG_SAVED_OFFSET:
1103 addr = cache->cfa + cache->reg[regnum].loc.offset;
1104 return frame_unwind_got_memory (this_frame, regnum, addr);
1105
1106 case DWARF2_FRAME_REG_SAVED_REG:
1107 realnum
1108 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1109 return frame_unwind_got_register (this_frame, regnum, realnum);
1110
1111 case DWARF2_FRAME_REG_SAVED_EXP:
1112 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1113 cache->reg[regnum].exp_len,
1114 cache->addr_size, this_frame, cache->cfa);
1115 return frame_unwind_got_memory (this_frame, regnum, addr);
1116
1117 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1118 addr = cache->cfa + cache->reg[regnum].loc.offset;
1119 return frame_unwind_got_constant (this_frame, regnum, addr);
1120
1121 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1122 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1123 cache->reg[regnum].exp_len,
1124 cache->addr_size, this_frame, cache->cfa);
1125 return frame_unwind_got_constant (this_frame, regnum, addr);
1126
1127 case DWARF2_FRAME_REG_UNSPECIFIED:
1128 /* GCC, in its infinite wisdom decided to not provide unwind
1129 information for registers that are "same value". Since
1130 DWARF2 (3 draft 7) doesn't define such behavior, said
1131 registers are actually undefined (which is different to CFI
1132 "undefined"). Code above issues a complaint about this.
1133 Here just fudge the books, assume GCC, and that the value is
1134 more inner on the stack. */
1135 return frame_unwind_got_register (this_frame, regnum, regnum);
1136
1137 case DWARF2_FRAME_REG_SAME_VALUE:
1138 return frame_unwind_got_register (this_frame, regnum, regnum);
1139
1140 case DWARF2_FRAME_REG_CFA:
1141 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1142
1143 case DWARF2_FRAME_REG_CFA_OFFSET:
1144 addr = cache->cfa + cache->reg[regnum].loc.offset;
1145 return frame_unwind_got_address (this_frame, regnum, addr);
1146
1147 case DWARF2_FRAME_REG_RA_OFFSET:
1148 addr = cache->reg[regnum].loc.offset;
1149 regnum = gdbarch_dwarf2_reg_to_regnum
1150 (gdbarch, cache->retaddr_reg.loc.reg);
1151 addr += get_frame_register_unsigned (this_frame, regnum);
1152 return frame_unwind_got_address (this_frame, regnum, addr);
1153
1154 case DWARF2_FRAME_REG_FN:
1155 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1156
1157 default:
1158 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1159 }
1160 }
1161
1162 static int
1163 dwarf2_frame_sniffer (const struct frame_unwind *self,
1164 struct frame_info *this_frame, void **this_cache)
1165 {
1166 /* Grab an address that is guarenteed to reside somewhere within the
1167 function. get_frame_pc(), with a no-return next function, can
1168 end up returning something past the end of this function's body.
1169 If the frame we're sniffing for is a signal frame whose start
1170 address is placed on the stack by the OS, its FDE must
1171 extend one byte before its start address or we could potentially
1172 select the FDE of the previous function. */
1173 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1174 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1175 if (!fde)
1176 return 0;
1177
1178 /* On some targets, signal trampolines may have unwind information.
1179 We need to recognize them so that we set the frame type
1180 correctly. */
1181
1182 if (fde->cie->signal_frame
1183 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1184 this_frame))
1185 return self->type == SIGTRAMP_FRAME;
1186
1187 return self->type != SIGTRAMP_FRAME;
1188 }
1189
1190 static const struct frame_unwind dwarf2_frame_unwind =
1191 {
1192 NORMAL_FRAME,
1193 dwarf2_frame_this_id,
1194 dwarf2_frame_prev_register,
1195 NULL,
1196 dwarf2_frame_sniffer
1197 };
1198
1199 static const struct frame_unwind dwarf2_signal_frame_unwind =
1200 {
1201 SIGTRAMP_FRAME,
1202 dwarf2_frame_this_id,
1203 dwarf2_frame_prev_register,
1204 NULL,
1205 dwarf2_frame_sniffer
1206 };
1207
1208 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1209
1210 void
1211 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1212 {
1213 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1214 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1215 }
1216 \f
1217
1218 /* There is no explicitly defined relationship between the CFA and the
1219 location of frame's local variables and arguments/parameters.
1220 Therefore, frame base methods on this page should probably only be
1221 used as a last resort, just to avoid printing total garbage as a
1222 response to the "info frame" command. */
1223
1224 static CORE_ADDR
1225 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1226 {
1227 struct dwarf2_frame_cache *cache =
1228 dwarf2_frame_cache (this_frame, this_cache);
1229
1230 return cache->cfa;
1231 }
1232
1233 static const struct frame_base dwarf2_frame_base =
1234 {
1235 &dwarf2_frame_unwind,
1236 dwarf2_frame_base_address,
1237 dwarf2_frame_base_address,
1238 dwarf2_frame_base_address
1239 };
1240
1241 const struct frame_base *
1242 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1243 {
1244 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1245 if (dwarf2_frame_find_fde (&block_addr))
1246 return &dwarf2_frame_base;
1247
1248 return NULL;
1249 }
1250 \f
1251 const struct objfile_data *dwarf2_frame_objfile_data;
1252
1253 static unsigned int
1254 read_1_byte (bfd *abfd, gdb_byte *buf)
1255 {
1256 return bfd_get_8 (abfd, buf);
1257 }
1258
1259 static unsigned int
1260 read_4_bytes (bfd *abfd, gdb_byte *buf)
1261 {
1262 return bfd_get_32 (abfd, buf);
1263 }
1264
1265 static ULONGEST
1266 read_8_bytes (bfd *abfd, gdb_byte *buf)
1267 {
1268 return bfd_get_64 (abfd, buf);
1269 }
1270
1271 static ULONGEST
1272 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1273 {
1274 ULONGEST result;
1275 unsigned int num_read;
1276 int shift;
1277 gdb_byte byte;
1278
1279 result = 0;
1280 shift = 0;
1281 num_read = 0;
1282
1283 do
1284 {
1285 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1286 buf++;
1287 num_read++;
1288 result |= ((byte & 0x7f) << shift);
1289 shift += 7;
1290 }
1291 while (byte & 0x80);
1292
1293 *bytes_read_ptr = num_read;
1294
1295 return result;
1296 }
1297
1298 static LONGEST
1299 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1300 {
1301 LONGEST result;
1302 int shift;
1303 unsigned int num_read;
1304 gdb_byte byte;
1305
1306 result = 0;
1307 shift = 0;
1308 num_read = 0;
1309
1310 do
1311 {
1312 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1313 buf++;
1314 num_read++;
1315 result |= ((byte & 0x7f) << shift);
1316 shift += 7;
1317 }
1318 while (byte & 0x80);
1319
1320 if (shift < 8 * sizeof (result) && (byte & 0x40))
1321 result |= -(((LONGEST)1) << shift);
1322
1323 *bytes_read_ptr = num_read;
1324
1325 return result;
1326 }
1327
1328 static ULONGEST
1329 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1330 {
1331 LONGEST result;
1332
1333 result = bfd_get_32 (abfd, buf);
1334 if (result == 0xffffffff)
1335 {
1336 result = bfd_get_64 (abfd, buf + 4);
1337 *bytes_read_ptr = 12;
1338 }
1339 else
1340 *bytes_read_ptr = 4;
1341
1342 return result;
1343 }
1344 \f
1345
1346 /* Pointer encoding helper functions. */
1347
1348 /* GCC supports exception handling based on DWARF2 CFI. However, for
1349 technical reasons, it encodes addresses in its FDE's in a different
1350 way. Several "pointer encodings" are supported. The encoding
1351 that's used for a particular FDE is determined by the 'R'
1352 augmentation in the associated CIE. The argument of this
1353 augmentation is a single byte.
1354
1355 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1356 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1357 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1358 address should be interpreted (absolute, relative to the current
1359 position in the FDE, ...). Bit 7, indicates that the address
1360 should be dereferenced. */
1361
1362 static gdb_byte
1363 encoding_for_size (unsigned int size)
1364 {
1365 switch (size)
1366 {
1367 case 2:
1368 return DW_EH_PE_udata2;
1369 case 4:
1370 return DW_EH_PE_udata4;
1371 case 8:
1372 return DW_EH_PE_udata8;
1373 default:
1374 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1375 }
1376 }
1377
1378 static CORE_ADDR
1379 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1380 int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1381 CORE_ADDR func_base)
1382 {
1383 ptrdiff_t offset;
1384 CORE_ADDR base;
1385
1386 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1387 FDE's. */
1388 if (encoding & DW_EH_PE_indirect)
1389 internal_error (__FILE__, __LINE__,
1390 _("Unsupported encoding: DW_EH_PE_indirect"));
1391
1392 *bytes_read_ptr = 0;
1393
1394 switch (encoding & 0x70)
1395 {
1396 case DW_EH_PE_absptr:
1397 base = 0;
1398 break;
1399 case DW_EH_PE_pcrel:
1400 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1401 base += (buf - unit->dwarf_frame_buffer);
1402 break;
1403 case DW_EH_PE_datarel:
1404 base = unit->dbase;
1405 break;
1406 case DW_EH_PE_textrel:
1407 base = unit->tbase;
1408 break;
1409 case DW_EH_PE_funcrel:
1410 base = func_base;
1411 break;
1412 case DW_EH_PE_aligned:
1413 base = 0;
1414 offset = buf - unit->dwarf_frame_buffer;
1415 if ((offset % ptr_len) != 0)
1416 {
1417 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1418 buf += *bytes_read_ptr;
1419 }
1420 break;
1421 default:
1422 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1423 }
1424
1425 if ((encoding & 0x07) == 0x00)
1426 {
1427 encoding |= encoding_for_size (ptr_len);
1428 if (bfd_get_sign_extend_vma (unit->abfd))
1429 encoding |= DW_EH_PE_signed;
1430 }
1431
1432 switch (encoding & 0x0f)
1433 {
1434 case DW_EH_PE_uleb128:
1435 {
1436 ULONGEST value;
1437 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1438 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1439 return base + value;
1440 }
1441 case DW_EH_PE_udata2:
1442 *bytes_read_ptr += 2;
1443 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1444 case DW_EH_PE_udata4:
1445 *bytes_read_ptr += 4;
1446 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1447 case DW_EH_PE_udata8:
1448 *bytes_read_ptr += 8;
1449 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1450 case DW_EH_PE_sleb128:
1451 {
1452 LONGEST value;
1453 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1454 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1455 return base + value;
1456 }
1457 case DW_EH_PE_sdata2:
1458 *bytes_read_ptr += 2;
1459 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1460 case DW_EH_PE_sdata4:
1461 *bytes_read_ptr += 4;
1462 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1463 case DW_EH_PE_sdata8:
1464 *bytes_read_ptr += 8;
1465 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1466 default:
1467 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1468 }
1469 }
1470 \f
1471
1472 static int
1473 bsearch_cie_cmp (const void *key, const void *element)
1474 {
1475 ULONGEST cie_pointer = *(ULONGEST *) key;
1476 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1477
1478 if (cie_pointer == cie->cie_pointer)
1479 return 0;
1480
1481 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1482 }
1483
1484 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1485 static struct dwarf2_cie *
1486 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1487 {
1488 struct dwarf2_cie **p_cie;
1489
1490 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1491 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1492 if (p_cie != NULL)
1493 return *p_cie;
1494 return NULL;
1495 }
1496
1497 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1498 static void
1499 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1500 {
1501 const int n = cie_table->num_entries;
1502
1503 gdb_assert (n < 1
1504 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1505
1506 cie_table->entries =
1507 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1508 cie_table->entries[n] = cie;
1509 cie_table->num_entries = n + 1;
1510 }
1511
1512 static int
1513 bsearch_fde_cmp (const void *key, const void *element)
1514 {
1515 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1516 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1517 if (seek_pc < fde->initial_location)
1518 return -1;
1519 if (seek_pc < fde->initial_location + fde->address_range)
1520 return 0;
1521 return 1;
1522 }
1523
1524 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1525 inital location associated with it into *PC. */
1526
1527 static struct dwarf2_fde *
1528 dwarf2_frame_find_fde (CORE_ADDR *pc)
1529 {
1530 struct objfile *objfile;
1531
1532 ALL_OBJFILES (objfile)
1533 {
1534 struct dwarf2_fde_table *fde_table;
1535 struct dwarf2_fde **p_fde;
1536 CORE_ADDR offset;
1537 CORE_ADDR seek_pc;
1538
1539 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1540 if (fde_table == NULL)
1541 continue;
1542
1543 gdb_assert (objfile->section_offsets);
1544 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1545
1546 gdb_assert (fde_table->num_entries > 0);
1547 if (*pc < offset + fde_table->entries[0]->initial_location)
1548 continue;
1549
1550 seek_pc = *pc - offset;
1551 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1552 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1553 if (p_fde != NULL)
1554 {
1555 *pc = (*p_fde)->initial_location + offset;
1556 return *p_fde;
1557 }
1558 }
1559 return NULL;
1560 }
1561
1562 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1563 static void
1564 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1565 {
1566 if (fde->address_range == 0)
1567 /* Discard useless FDEs. */
1568 return;
1569
1570 fde_table->num_entries += 1;
1571 fde_table->entries =
1572 xrealloc (fde_table->entries,
1573 fde_table->num_entries * sizeof (fde_table->entries[0]));
1574 fde_table->entries[fde_table->num_entries - 1] = fde;
1575 }
1576
1577 #ifdef CC_HAS_LONG_LONG
1578 #define DW64_CIE_ID 0xffffffffffffffffULL
1579 #else
1580 #define DW64_CIE_ID ~0
1581 #endif
1582
1583 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1584 int eh_frame_p,
1585 struct dwarf2_cie_table *cie_table,
1586 struct dwarf2_fde_table *fde_table);
1587
1588 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1589 the next byte to be processed. */
1590 static gdb_byte *
1591 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1592 struct dwarf2_cie_table *cie_table,
1593 struct dwarf2_fde_table *fde_table)
1594 {
1595 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1596 gdb_byte *buf, *end;
1597 LONGEST length;
1598 unsigned int bytes_read;
1599 int dwarf64_p;
1600 ULONGEST cie_id;
1601 ULONGEST cie_pointer;
1602
1603 buf = start;
1604 length = read_initial_length (unit->abfd, buf, &bytes_read);
1605 buf += bytes_read;
1606 end = buf + length;
1607
1608 /* Are we still within the section? */
1609 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1610 return NULL;
1611
1612 if (length == 0)
1613 return end;
1614
1615 /* Distinguish between 32 and 64-bit encoded frame info. */
1616 dwarf64_p = (bytes_read == 12);
1617
1618 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1619 if (eh_frame_p)
1620 cie_id = 0;
1621 else if (dwarf64_p)
1622 cie_id = DW64_CIE_ID;
1623 else
1624 cie_id = DW_CIE_ID;
1625
1626 if (dwarf64_p)
1627 {
1628 cie_pointer = read_8_bytes (unit->abfd, buf);
1629 buf += 8;
1630 }
1631 else
1632 {
1633 cie_pointer = read_4_bytes (unit->abfd, buf);
1634 buf += 4;
1635 }
1636
1637 if (cie_pointer == cie_id)
1638 {
1639 /* This is a CIE. */
1640 struct dwarf2_cie *cie;
1641 char *augmentation;
1642 unsigned int cie_version;
1643
1644 /* Record the offset into the .debug_frame section of this CIE. */
1645 cie_pointer = start - unit->dwarf_frame_buffer;
1646
1647 /* Check whether we've already read it. */
1648 if (find_cie (cie_table, cie_pointer))
1649 return end;
1650
1651 cie = (struct dwarf2_cie *)
1652 obstack_alloc (&unit->objfile->objfile_obstack,
1653 sizeof (struct dwarf2_cie));
1654 cie->initial_instructions = NULL;
1655 cie->cie_pointer = cie_pointer;
1656
1657 /* The encoding for FDE's in a normal .debug_frame section
1658 depends on the target address size. */
1659 cie->encoding = DW_EH_PE_absptr;
1660
1661 /* The target address size. For .eh_frame FDEs this is considered
1662 equal to the size of a target pointer. For .dwarf_frame FDEs,
1663 this is supposed to be the target address size from the associated
1664 CU header. FIXME: We do not have a good way to determine the
1665 latter. Always use the target pointer size for now. */
1666 cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1667
1668 /* We'll determine the final value later, but we need to
1669 initialize it conservatively. */
1670 cie->signal_frame = 0;
1671
1672 /* Check version number. */
1673 cie_version = read_1_byte (unit->abfd, buf);
1674 if (cie_version != 1 && cie_version != 3)
1675 return NULL;
1676 cie->version = cie_version;
1677 buf += 1;
1678
1679 /* Interpret the interesting bits of the augmentation. */
1680 cie->augmentation = augmentation = (char *) buf;
1681 buf += (strlen (augmentation) + 1);
1682
1683 /* Ignore armcc augmentations. We only use them for quirks,
1684 and that doesn't happen until later. */
1685 if (strncmp (augmentation, "armcc", 5) == 0)
1686 augmentation += strlen (augmentation);
1687
1688 /* The GCC 2.x "eh" augmentation has a pointer immediately
1689 following the augmentation string, so it must be handled
1690 first. */
1691 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1692 {
1693 /* Skip. */
1694 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1695 augmentation += 2;
1696 }
1697
1698 cie->code_alignment_factor =
1699 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1700 buf += bytes_read;
1701
1702 cie->data_alignment_factor =
1703 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1704 buf += bytes_read;
1705
1706 if (cie_version == 1)
1707 {
1708 cie->return_address_register = read_1_byte (unit->abfd, buf);
1709 bytes_read = 1;
1710 }
1711 else
1712 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1713 &bytes_read);
1714 cie->return_address_register
1715 = dwarf2_frame_adjust_regnum (gdbarch,
1716 cie->return_address_register,
1717 eh_frame_p);
1718
1719 buf += bytes_read;
1720
1721 cie->saw_z_augmentation = (*augmentation == 'z');
1722 if (cie->saw_z_augmentation)
1723 {
1724 ULONGEST length;
1725
1726 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1727 buf += bytes_read;
1728 if (buf > end)
1729 return NULL;
1730 cie->initial_instructions = buf + length;
1731 augmentation++;
1732 }
1733
1734 while (*augmentation)
1735 {
1736 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1737 if (*augmentation == 'L')
1738 {
1739 /* Skip. */
1740 buf++;
1741 augmentation++;
1742 }
1743
1744 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1745 else if (*augmentation == 'R')
1746 {
1747 cie->encoding = *buf++;
1748 augmentation++;
1749 }
1750
1751 /* "P" indicates a personality routine in the CIE augmentation. */
1752 else if (*augmentation == 'P')
1753 {
1754 /* Skip. Avoid indirection since we throw away the result. */
1755 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1756 read_encoded_value (unit, encoding, cie->addr_size,
1757 buf, &bytes_read, 0);
1758 buf += bytes_read;
1759 augmentation++;
1760 }
1761
1762 /* "S" indicates a signal frame, such that the return
1763 address must not be decremented to locate the call frame
1764 info for the previous frame; it might even be the first
1765 instruction of a function, so decrementing it would take
1766 us to a different function. */
1767 else if (*augmentation == 'S')
1768 {
1769 cie->signal_frame = 1;
1770 augmentation++;
1771 }
1772
1773 /* Otherwise we have an unknown augmentation. Assume that either
1774 there is no augmentation data, or we saw a 'z' prefix. */
1775 else
1776 {
1777 if (cie->initial_instructions)
1778 buf = cie->initial_instructions;
1779 break;
1780 }
1781 }
1782
1783 cie->initial_instructions = buf;
1784 cie->end = end;
1785 cie->unit = unit;
1786
1787 add_cie (cie_table, cie);
1788 }
1789 else
1790 {
1791 /* This is a FDE. */
1792 struct dwarf2_fde *fde;
1793
1794 /* In an .eh_frame section, the CIE pointer is the delta between the
1795 address within the FDE where the CIE pointer is stored and the
1796 address of the CIE. Convert it to an offset into the .eh_frame
1797 section. */
1798 if (eh_frame_p)
1799 {
1800 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1801 cie_pointer -= (dwarf64_p ? 8 : 4);
1802 }
1803
1804 /* In either case, validate the result is still within the section. */
1805 if (cie_pointer >= unit->dwarf_frame_size)
1806 return NULL;
1807
1808 fde = (struct dwarf2_fde *)
1809 obstack_alloc (&unit->objfile->objfile_obstack,
1810 sizeof (struct dwarf2_fde));
1811 fde->cie = find_cie (cie_table, cie_pointer);
1812 if (fde->cie == NULL)
1813 {
1814 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1815 eh_frame_p, cie_table, fde_table);
1816 fde->cie = find_cie (cie_table, cie_pointer);
1817 }
1818
1819 gdb_assert (fde->cie != NULL);
1820
1821 fde->initial_location =
1822 read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1823 buf, &bytes_read, 0);
1824 buf += bytes_read;
1825
1826 fde->address_range =
1827 read_encoded_value (unit, fde->cie->encoding & 0x0f,
1828 fde->cie->addr_size, buf, &bytes_read, 0);
1829 buf += bytes_read;
1830
1831 /* A 'z' augmentation in the CIE implies the presence of an
1832 augmentation field in the FDE as well. The only thing known
1833 to be in here at present is the LSDA entry for EH. So we
1834 can skip the whole thing. */
1835 if (fde->cie->saw_z_augmentation)
1836 {
1837 ULONGEST length;
1838
1839 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1840 buf += bytes_read + length;
1841 if (buf > end)
1842 return NULL;
1843 }
1844
1845 fde->instructions = buf;
1846 fde->end = end;
1847
1848 fde->eh_frame_p = eh_frame_p;
1849
1850 add_fde (fde_table, fde);
1851 }
1852
1853 return end;
1854 }
1855
1856 /* Read a CIE or FDE in BUF and decode it. */
1857 static gdb_byte *
1858 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1859 struct dwarf2_cie_table *cie_table,
1860 struct dwarf2_fde_table *fde_table)
1861 {
1862 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1863 gdb_byte *ret;
1864 const char *msg;
1865 ptrdiff_t start_offset;
1866
1867 while (1)
1868 {
1869 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1870 cie_table, fde_table);
1871 if (ret != NULL)
1872 break;
1873
1874 /* We have corrupt input data of some form. */
1875
1876 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1877 and mismatches wrt padding and alignment of debug sections. */
1878 /* Note that there is no requirement in the standard for any
1879 alignment at all in the frame unwind sections. Testing for
1880 alignment before trying to interpret data would be incorrect.
1881
1882 However, GCC traditionally arranged for frame sections to be
1883 sized such that the FDE length and CIE fields happen to be
1884 aligned (in theory, for performance). This, unfortunately,
1885 was done with .align directives, which had the side effect of
1886 forcing the section to be aligned by the linker.
1887
1888 This becomes a problem when you have some other producer that
1889 creates frame sections that are not as strictly aligned. That
1890 produces a hole in the frame info that gets filled by the
1891 linker with zeros.
1892
1893 The GCC behaviour is arguably a bug, but it's effectively now
1894 part of the ABI, so we're now stuck with it, at least at the
1895 object file level. A smart linker may decide, in the process
1896 of compressing duplicate CIE information, that it can rewrite
1897 the entire output section without this extra padding. */
1898
1899 start_offset = start - unit->dwarf_frame_buffer;
1900 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1901 {
1902 start += 4 - (start_offset & 3);
1903 workaround = ALIGN4;
1904 continue;
1905 }
1906 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1907 {
1908 start += 8 - (start_offset & 7);
1909 workaround = ALIGN8;
1910 continue;
1911 }
1912
1913 /* Nothing left to try. Arrange to return as if we've consumed
1914 the entire input section. Hopefully we'll get valid info from
1915 the other of .debug_frame/.eh_frame. */
1916 workaround = FAIL;
1917 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1918 break;
1919 }
1920
1921 switch (workaround)
1922 {
1923 case NONE:
1924 break;
1925
1926 case ALIGN4:
1927 complaint (&symfile_complaints,
1928 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1929 unit->dwarf_frame_section->owner->filename,
1930 unit->dwarf_frame_section->name);
1931 break;
1932
1933 case ALIGN8:
1934 complaint (&symfile_complaints,
1935 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1936 unit->dwarf_frame_section->owner->filename,
1937 unit->dwarf_frame_section->name);
1938 break;
1939
1940 default:
1941 complaint (&symfile_complaints,
1942 _("Corrupt data in %s:%s"),
1943 unit->dwarf_frame_section->owner->filename,
1944 unit->dwarf_frame_section->name);
1945 break;
1946 }
1947
1948 return ret;
1949 }
1950 \f
1951
1952 /* Imported from dwarf2read.c. */
1953 extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1954 gdb_byte **, bfd_size_type *);
1955
1956 static int
1957 qsort_fde_cmp (const void *a, const void *b)
1958 {
1959 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
1960 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
1961 if (aa->initial_location == bb->initial_location)
1962 /* Put eh_frame entries after debug_frame ones. */
1963 return aa->eh_frame_p - bb->eh_frame_p;
1964
1965 return (aa->initial_location < bb->initial_location) ? -1 : 1;
1966 }
1967
1968 void
1969 dwarf2_build_frame_info (struct objfile *objfile)
1970 {
1971 struct comp_unit *unit;
1972 gdb_byte *frame_ptr;
1973 struct dwarf2_cie_table cie_table;
1974 struct dwarf2_fde_table fde_table;
1975
1976 cie_table.num_entries = 0;
1977 cie_table.entries = NULL;
1978
1979 fde_table.num_entries = 0;
1980 fde_table.entries = NULL;
1981
1982 /* Build a minimal decoding of the DWARF2 compilation unit. */
1983 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
1984 sizeof (struct comp_unit));
1985 unit->abfd = objfile->obfd;
1986 unit->objfile = objfile;
1987 unit->dbase = 0;
1988 unit->tbase = 0;
1989
1990 dwarf2_get_section_info (objfile, ".eh_frame",
1991 &unit->dwarf_frame_section,
1992 &unit->dwarf_frame_buffer,
1993 &unit->dwarf_frame_size);
1994 if (unit->dwarf_frame_size)
1995 {
1996 asection *got, *txt;
1997
1998 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1999 that is used for the i386/amd64 target, which currently is
2000 the only target in GCC that supports/uses the
2001 DW_EH_PE_datarel encoding. */
2002 got = bfd_get_section_by_name (unit->abfd, ".got");
2003 if (got)
2004 unit->dbase = got->vma;
2005
2006 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2007 so far. */
2008 txt = bfd_get_section_by_name (unit->abfd, ".text");
2009 if (txt)
2010 unit->tbase = txt->vma;
2011
2012 frame_ptr = unit->dwarf_frame_buffer;
2013 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2014 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2015 &cie_table, &fde_table);
2016
2017 if (cie_table.num_entries != 0)
2018 {
2019 /* Reinit cie_table: debug_frame has different CIEs. */
2020 xfree (cie_table.entries);
2021 cie_table.num_entries = 0;
2022 cie_table.entries = NULL;
2023 }
2024 }
2025
2026 dwarf2_get_section_info (objfile, ".debug_frame",
2027 &unit->dwarf_frame_section,
2028 &unit->dwarf_frame_buffer,
2029 &unit->dwarf_frame_size);
2030 if (unit->dwarf_frame_size)
2031 {
2032 frame_ptr = unit->dwarf_frame_buffer;
2033 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2034 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2035 &cie_table, &fde_table);
2036 }
2037
2038 /* Discard the cie_table, it is no longer needed. */
2039 if (cie_table.num_entries != 0)
2040 {
2041 xfree (cie_table.entries);
2042 cie_table.entries = NULL; /* Paranoia. */
2043 cie_table.num_entries = 0; /* Paranoia. */
2044 }
2045
2046 if (fde_table.num_entries != 0)
2047 {
2048 struct dwarf2_fde_table *fde_table2;
2049 int i, j;
2050
2051 /* Prepare FDE table for lookups. */
2052 qsort (fde_table.entries, fde_table.num_entries,
2053 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2054
2055 /* Copy fde_table to obstack: it is needed at runtime. */
2056 fde_table2 = (struct dwarf2_fde_table *)
2057 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2058
2059 /* Since we'll be doing bsearch, squeeze out identical (except for
2060 eh_frame_p) fde entries so bsearch result is predictable. */
2061 for (i = 0, j = 0; j < fde_table.num_entries; ++i)
2062 {
2063 const int k = j;
2064
2065 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[j],
2066 sizeof (fde_table.entries[0]));
2067 while (++j < fde_table.num_entries
2068 && (fde_table.entries[k]->initial_location ==
2069 fde_table.entries[j]->initial_location))
2070 /* Skip. */;
2071 }
2072 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2073 fde_table2->num_entries = i;
2074 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2075
2076 /* Discard the original fde_table. */
2077 xfree (fde_table.entries);
2078 }
2079 }
2080
2081 /* Provide a prototype to silence -Wmissing-prototypes. */
2082 void _initialize_dwarf2_frame (void);
2083
2084 void
2085 _initialize_dwarf2_frame (void)
2086 {
2087 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2088 dwarf2_frame_objfile_data = register_objfile_data ();
2089 }
This page took 0.069018 seconds and 5 git commands to generate.