Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 /* Local non-gdb includes. */
25 #include "ax.h"
26 #include "complaints.h"
27 #include "dwarf2-frame-tailcall.h"
28 #include "dwarf2-frame.h"
29 #include "dwarf2.h"
30 #include "dwarf2expr.h"
31 #include "dwarf2loc.h"
32 #include "dwarf2read.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35 #include "frame.h"
36 #include "gdbcore.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "record.h"
40 #include "regcache.h"
41 #include "symtab.h"
42 #include "value.h"
43
44 #if GDB_SELF_TEST
45 #include "common/selftest.h"
46 #include "selftest-arch.h"
47 #endif
48
49 struct comp_unit;
50
51 /* Call Frame Information (CFI). */
52
53 /* Common Information Entry (CIE). */
54
55 struct dwarf2_cie
56 {
57 /* Computation Unit for this CIE. */
58 struct comp_unit *unit;
59
60 /* Offset into the .debug_frame section where this CIE was found.
61 Used to identify this CIE. */
62 ULONGEST cie_pointer;
63
64 /* Constant that is factored out of all advance location
65 instructions. */
66 ULONGEST code_alignment_factor;
67
68 /* Constants that is factored out of all offset instructions. */
69 LONGEST data_alignment_factor;
70
71 /* Return address column. */
72 ULONGEST return_address_register;
73
74 /* Instruction sequence to initialize a register set. */
75 const gdb_byte *initial_instructions;
76 const gdb_byte *end;
77
78 /* Saved augmentation, in case it's needed later. */
79 char *augmentation;
80
81 /* Encoding of addresses. */
82 gdb_byte encoding;
83
84 /* Target address size in bytes. */
85 int addr_size;
86
87 /* Target pointer size in bytes. */
88 int ptr_size;
89
90 /* True if a 'z' augmentation existed. */
91 unsigned char saw_z_augmentation;
92
93 /* True if an 'S' augmentation existed. */
94 unsigned char signal_frame;
95
96 /* The version recorded in the CIE. */
97 unsigned char version;
98
99 /* The segment size. */
100 unsigned char segment_size;
101 };
102
103 struct dwarf2_cie_table
104 {
105 int num_entries;
106 struct dwarf2_cie **entries;
107 };
108
109 /* Frame Description Entry (FDE). */
110
111 struct dwarf2_fde
112 {
113 /* CIE for this FDE. */
114 struct dwarf2_cie *cie;
115
116 /* First location associated with this FDE. */
117 CORE_ADDR initial_location;
118
119 /* Number of bytes of program instructions described by this FDE. */
120 CORE_ADDR address_range;
121
122 /* Instruction sequence. */
123 const gdb_byte *instructions;
124 const gdb_byte *end;
125
126 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
127 section. */
128 unsigned char eh_frame_p;
129 };
130
131 struct dwarf2_fde_table
132 {
133 int num_entries;
134 struct dwarf2_fde **entries;
135 };
136
137 /* A minimal decoding of DWARF2 compilation units. We only decode
138 what's needed to get to the call frame information. */
139
140 struct comp_unit
141 {
142 /* Keep the bfd convenient. */
143 bfd *abfd;
144
145 struct objfile *objfile;
146
147 /* Pointer to the .debug_frame section loaded into memory. */
148 const gdb_byte *dwarf_frame_buffer;
149
150 /* Length of the loaded .debug_frame section. */
151 bfd_size_type dwarf_frame_size;
152
153 /* Pointer to the .debug_frame section. */
154 asection *dwarf_frame_section;
155
156 /* Base for DW_EH_PE_datarel encodings. */
157 bfd_vma dbase;
158
159 /* Base for DW_EH_PE_textrel encodings. */
160 bfd_vma tbase;
161 };
162
163 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
164 CORE_ADDR *out_offset);
165
166 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
167 int eh_frame_p);
168
169 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
170 int ptr_len, const gdb_byte *buf,
171 unsigned int *bytes_read_ptr,
172 CORE_ADDR func_base);
173 \f
174
175 /* See dwarf2-frame.h. */
176 int dwarf2_frame_unwinders_enabled_p = 1;
177
178 /* Store the length the expression for the CFA in the `cfa_reg' field,
179 which is unused in that case. */
180 #define cfa_exp_len cfa_reg
181
182 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
183 : pc (pc_), data_align (cie->data_alignment_factor),
184 code_align (cie->code_alignment_factor),
185 retaddr_column (cie->return_address_register)
186 {
187 }
188 \f
189
190 /* Helper functions for execute_stack_op. */
191
192 static CORE_ADDR
193 read_addr_from_reg (struct frame_info *this_frame, int reg)
194 {
195 struct gdbarch *gdbarch = get_frame_arch (this_frame);
196 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
197
198 return address_from_register (regnum, this_frame);
199 }
200
201 /* Execute the required actions for both the DW_CFA_restore and
202 DW_CFA_restore_extended instructions. */
203 static void
204 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
205 struct dwarf2_frame_state *fs, int eh_frame_p)
206 {
207 ULONGEST reg;
208
209 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
210 fs->regs.alloc_regs (reg + 1);
211
212 /* Check if this register was explicitly initialized in the
213 CIE initial instructions. If not, default the rule to
214 UNSPECIFIED. */
215 if (reg < fs->initial.reg.size ())
216 fs->regs.reg[reg] = fs->initial.reg[reg];
217 else
218 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
219
220 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
221 {
222 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
223
224 complaint (_("\
225 incomplete CFI data; DW_CFA_restore unspecified\n\
226 register %s (#%d) at %s"),
227 gdbarch_register_name (gdbarch, regnum), regnum,
228 paddress (gdbarch, fs->pc));
229 }
230 }
231
232 class dwarf_expr_executor : public dwarf_expr_context
233 {
234 public:
235
236 struct frame_info *this_frame;
237
238 CORE_ADDR read_addr_from_reg (int reg) override
239 {
240 return ::read_addr_from_reg (this_frame, reg);
241 }
242
243 struct value *get_reg_value (struct type *type, int reg) override
244 {
245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
246 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
247
248 return value_from_register (type, regnum, this_frame);
249 }
250
251 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
252 {
253 read_memory (addr, buf, len);
254 }
255
256 void get_frame_base (const gdb_byte **start, size_t *length) override
257 {
258 invalid ("DW_OP_fbreg");
259 }
260
261 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
262 union call_site_parameter_u kind_u,
263 int deref_size) override
264 {
265 invalid ("DW_OP_entry_value");
266 }
267
268 CORE_ADDR get_object_address () override
269 {
270 invalid ("DW_OP_push_object_address");
271 }
272
273 CORE_ADDR get_frame_cfa () override
274 {
275 invalid ("DW_OP_call_frame_cfa");
276 }
277
278 CORE_ADDR get_tls_address (CORE_ADDR offset) override
279 {
280 invalid ("DW_OP_form_tls_address");
281 }
282
283 void dwarf_call (cu_offset die_offset) override
284 {
285 invalid ("DW_OP_call*");
286 }
287
288 struct value *dwarf_variable_value (sect_offset sect_off) override
289 {
290 invalid ("DW_OP_GNU_variable_value");
291 }
292
293 CORE_ADDR get_addr_index (unsigned int index) override
294 {
295 invalid ("DW_OP_GNU_addr_index");
296 }
297
298 private:
299
300 void invalid (const char *op) ATTRIBUTE_NORETURN
301 {
302 error (_("%s is invalid in this context"), op);
303 }
304 };
305
306 static CORE_ADDR
307 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
308 CORE_ADDR offset, struct frame_info *this_frame,
309 CORE_ADDR initial, int initial_in_stack_memory)
310 {
311 CORE_ADDR result;
312
313 dwarf_expr_executor ctx;
314 scoped_value_mark free_values;
315
316 ctx.this_frame = this_frame;
317 ctx.gdbarch = get_frame_arch (this_frame);
318 ctx.addr_size = addr_size;
319 ctx.ref_addr_size = -1;
320 ctx.offset = offset;
321
322 ctx.push_address (initial, initial_in_stack_memory);
323 ctx.eval (exp, len);
324
325 if (ctx.location == DWARF_VALUE_MEMORY)
326 result = ctx.fetch_address (0);
327 else if (ctx.location == DWARF_VALUE_REGISTER)
328 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
329 else
330 {
331 /* This is actually invalid DWARF, but if we ever do run across
332 it somehow, we might as well support it. So, instead, report
333 it as unimplemented. */
334 error (_("\
335 Not implemented: computing unwound register using explicit value operator"));
336 }
337
338 return result;
339 }
340 \f
341
342 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
343 PC. Modify FS state accordingly. Return current INSN_PTR where the
344 execution has stopped, one can resume it on the next call. */
345
346 static const gdb_byte *
347 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
348 const gdb_byte *insn_end, struct gdbarch *gdbarch,
349 CORE_ADDR pc, struct dwarf2_frame_state *fs)
350 {
351 int eh_frame_p = fde->eh_frame_p;
352 unsigned int bytes_read;
353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
354
355 while (insn_ptr < insn_end && fs->pc <= pc)
356 {
357 gdb_byte insn = *insn_ptr++;
358 uint64_t utmp, reg;
359 int64_t offset;
360
361 if ((insn & 0xc0) == DW_CFA_advance_loc)
362 fs->pc += (insn & 0x3f) * fs->code_align;
363 else if ((insn & 0xc0) == DW_CFA_offset)
364 {
365 reg = insn & 0x3f;
366 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
367 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
368 offset = utmp * fs->data_align;
369 fs->regs.alloc_regs (reg + 1);
370 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
371 fs->regs.reg[reg].loc.offset = offset;
372 }
373 else if ((insn & 0xc0) == DW_CFA_restore)
374 {
375 reg = insn & 0x3f;
376 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
377 }
378 else
379 {
380 switch (insn)
381 {
382 case DW_CFA_set_loc:
383 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
384 fde->cie->ptr_size, insn_ptr,
385 &bytes_read, fde->initial_location);
386 /* Apply the objfile offset for relocatable objects. */
387 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
388 SECT_OFF_TEXT (fde->cie->unit->objfile));
389 insn_ptr += bytes_read;
390 break;
391
392 case DW_CFA_advance_loc1:
393 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
394 fs->pc += utmp * fs->code_align;
395 insn_ptr++;
396 break;
397 case DW_CFA_advance_loc2:
398 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
399 fs->pc += utmp * fs->code_align;
400 insn_ptr += 2;
401 break;
402 case DW_CFA_advance_loc4:
403 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
404 fs->pc += utmp * fs->code_align;
405 insn_ptr += 4;
406 break;
407
408 case DW_CFA_offset_extended:
409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
410 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
411 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
412 offset = utmp * fs->data_align;
413 fs->regs.alloc_regs (reg + 1);
414 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
415 fs->regs.reg[reg].loc.offset = offset;
416 break;
417
418 case DW_CFA_restore_extended:
419 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
420 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
421 break;
422
423 case DW_CFA_undefined:
424 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
425 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
426 fs->regs.alloc_regs (reg + 1);
427 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
428 break;
429
430 case DW_CFA_same_value:
431 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
433 fs->regs.alloc_regs (reg + 1);
434 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
435 break;
436
437 case DW_CFA_register:
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
439 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
440 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
441 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
442 fs->regs.alloc_regs (reg + 1);
443 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
444 fs->regs.reg[reg].loc.reg = utmp;
445 break;
446
447 case DW_CFA_remember_state:
448 {
449 struct dwarf2_frame_state_reg_info *new_rs;
450
451 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
452 fs->regs.prev = new_rs;
453 }
454 break;
455
456 case DW_CFA_restore_state:
457 {
458 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
459
460 if (old_rs == NULL)
461 {
462 complaint (_("\
463 bad CFI data; mismatched DW_CFA_restore_state at %s"),
464 paddress (gdbarch, fs->pc));
465 }
466 else
467 fs->regs = std::move (*old_rs);
468 }
469 break;
470
471 case DW_CFA_def_cfa:
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
473 fs->regs.cfa_reg = reg;
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
475
476 if (fs->armcc_cfa_offsets_sf)
477 utmp *= fs->data_align;
478
479 fs->regs.cfa_offset = utmp;
480 fs->regs.cfa_how = CFA_REG_OFFSET;
481 break;
482
483 case DW_CFA_def_cfa_register:
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
485 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
486 eh_frame_p);
487 fs->regs.cfa_how = CFA_REG_OFFSET;
488 break;
489
490 case DW_CFA_def_cfa_offset:
491 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
492
493 if (fs->armcc_cfa_offsets_sf)
494 utmp *= fs->data_align;
495
496 fs->regs.cfa_offset = utmp;
497 /* cfa_how deliberately not set. */
498 break;
499
500 case DW_CFA_nop:
501 break;
502
503 case DW_CFA_def_cfa_expression:
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
505 fs->regs.cfa_exp_len = utmp;
506 fs->regs.cfa_exp = insn_ptr;
507 fs->regs.cfa_how = CFA_EXP;
508 insn_ptr += fs->regs.cfa_exp_len;
509 break;
510
511 case DW_CFA_expression:
512 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
513 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
514 fs->regs.alloc_regs (reg + 1);
515 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
516 fs->regs.reg[reg].loc.exp.start = insn_ptr;
517 fs->regs.reg[reg].loc.exp.len = utmp;
518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
519 insn_ptr += utmp;
520 break;
521
522 case DW_CFA_offset_extended_sf:
523 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
524 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
525 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
526 offset *= fs->data_align;
527 fs->regs.alloc_regs (reg + 1);
528 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
529 fs->regs.reg[reg].loc.offset = offset;
530 break;
531
532 case DW_CFA_val_offset:
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
534 fs->regs.alloc_regs (reg + 1);
535 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
536 offset = utmp * fs->data_align;
537 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
538 fs->regs.reg[reg].loc.offset = offset;
539 break;
540
541 case DW_CFA_val_offset_sf:
542 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
543 fs->regs.alloc_regs (reg + 1);
544 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
545 offset *= fs->data_align;
546 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
547 fs->regs.reg[reg].loc.offset = offset;
548 break;
549
550 case DW_CFA_val_expression:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.alloc_regs (reg + 1);
553 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
554 fs->regs.reg[reg].loc.exp.start = insn_ptr;
555 fs->regs.reg[reg].loc.exp.len = utmp;
556 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
557 insn_ptr += utmp;
558 break;
559
560 case DW_CFA_def_cfa_sf:
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
562 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
563 eh_frame_p);
564 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
565 fs->regs.cfa_offset = offset * fs->data_align;
566 fs->regs.cfa_how = CFA_REG_OFFSET;
567 break;
568
569 case DW_CFA_def_cfa_offset_sf:
570 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
571 fs->regs.cfa_offset = offset * fs->data_align;
572 /* cfa_how deliberately not set. */
573 break;
574
575 case DW_CFA_GNU_args_size:
576 /* Ignored. */
577 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
578 break;
579
580 case DW_CFA_GNU_negative_offset_extended:
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
582 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
584 offset = utmp * fs->data_align;
585 fs->regs.alloc_regs (reg + 1);
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
587 fs->regs.reg[reg].loc.offset = -offset;
588 break;
589
590 default:
591 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
592 {
593 /* Handle vendor-specific CFI for different architectures. */
594 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
595 error (_("Call Frame Instruction op %d in vendor extension "
596 "space is not handled on this architecture."),
597 insn);
598 }
599 else
600 internal_error (__FILE__, __LINE__,
601 _("Unknown CFI encountered."));
602 }
603 }
604 }
605
606 if (fs->initial.reg.empty ())
607 {
608 /* Don't allow remember/restore between CIE and FDE programs. */
609 delete fs->regs.prev;
610 fs->regs.prev = NULL;
611 }
612
613 return insn_ptr;
614 }
615
616 #if GDB_SELF_TEST
617
618 namespace selftests {
619
620 /* Unit test to function execute_cfa_program. */
621
622 static void
623 execute_cfa_program_test (struct gdbarch *gdbarch)
624 {
625 struct dwarf2_fde fde;
626 struct dwarf2_cie cie;
627
628 memset (&fde, 0, sizeof fde);
629 memset (&cie, 0, sizeof cie);
630
631 cie.data_alignment_factor = -4;
632 cie.code_alignment_factor = 2;
633 fde.cie = &cie;
634
635 dwarf2_frame_state fs (0, fde.cie);
636
637 gdb_byte insns[] =
638 {
639 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
640 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
641 DW_CFA_remember_state,
642 DW_CFA_restore_state,
643 };
644
645 const gdb_byte *insn_end = insns + sizeof (insns);
646 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
647 0, &fs);
648
649 SELF_CHECK (out == insn_end);
650 SELF_CHECK (fs.pc == 0);
651
652 /* The instructions above only use r1 and r2, but the register numbers
653 used are adjusted by dwarf2_frame_adjust_regnum. */
654 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
655 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
656
657 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
658
659 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
660 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
661
662 for (auto i = 0; i < fs.regs.reg.size (); i++)
663 if (i != r2)
664 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
665
666 SELF_CHECK (fs.regs.cfa_reg == 1);
667 SELF_CHECK (fs.regs.cfa_offset == 4);
668 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
669 SELF_CHECK (fs.regs.cfa_exp == NULL);
670 SELF_CHECK (fs.regs.prev == NULL);
671 }
672
673 } // namespace selftests
674 #endif /* GDB_SELF_TEST */
675
676 \f
677
678 /* Architecture-specific operations. */
679
680 /* Per-architecture data key. */
681 static struct gdbarch_data *dwarf2_frame_data;
682
683 struct dwarf2_frame_ops
684 {
685 /* Pre-initialize the register state REG for register REGNUM. */
686 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
687 struct frame_info *);
688
689 /* Check whether the THIS_FRAME is a signal trampoline. */
690 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
691
692 /* Convert .eh_frame register number to DWARF register number, or
693 adjust .debug_frame register number. */
694 int (*adjust_regnum) (struct gdbarch *, int, int);
695 };
696
697 /* Default architecture-specific register state initialization
698 function. */
699
700 static void
701 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
702 struct dwarf2_frame_state_reg *reg,
703 struct frame_info *this_frame)
704 {
705 /* If we have a register that acts as a program counter, mark it as
706 a destination for the return address. If we have a register that
707 serves as the stack pointer, arrange for it to be filled with the
708 call frame address (CFA). The other registers are marked as
709 unspecified.
710
711 We copy the return address to the program counter, since many
712 parts in GDB assume that it is possible to get the return address
713 by unwinding the program counter register. However, on ISA's
714 with a dedicated return address register, the CFI usually only
715 contains information to unwind that return address register.
716
717 The reason we're treating the stack pointer special here is
718 because in many cases GCC doesn't emit CFI for the stack pointer
719 and implicitly assumes that it is equal to the CFA. This makes
720 some sense since the DWARF specification (version 3, draft 8,
721 p. 102) says that:
722
723 "Typically, the CFA is defined to be the value of the stack
724 pointer at the call site in the previous frame (which may be
725 different from its value on entry to the current frame)."
726
727 However, this isn't true for all platforms supported by GCC
728 (e.g. IBM S/390 and zSeries). Those architectures should provide
729 their own architecture-specific initialization function. */
730
731 if (regnum == gdbarch_pc_regnum (gdbarch))
732 reg->how = DWARF2_FRAME_REG_RA;
733 else if (regnum == gdbarch_sp_regnum (gdbarch))
734 reg->how = DWARF2_FRAME_REG_CFA;
735 }
736
737 /* Return a default for the architecture-specific operations. */
738
739 static void *
740 dwarf2_frame_init (struct obstack *obstack)
741 {
742 struct dwarf2_frame_ops *ops;
743
744 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
745 ops->init_reg = dwarf2_frame_default_init_reg;
746 return ops;
747 }
748
749 /* Set the architecture-specific register state initialization
750 function for GDBARCH to INIT_REG. */
751
752 void
753 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
754 void (*init_reg) (struct gdbarch *, int,
755 struct dwarf2_frame_state_reg *,
756 struct frame_info *))
757 {
758 struct dwarf2_frame_ops *ops
759 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
760
761 ops->init_reg = init_reg;
762 }
763
764 /* Pre-initialize the register state REG for register REGNUM. */
765
766 static void
767 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
768 struct dwarf2_frame_state_reg *reg,
769 struct frame_info *this_frame)
770 {
771 struct dwarf2_frame_ops *ops
772 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
773
774 ops->init_reg (gdbarch, regnum, reg, this_frame);
775 }
776
777 /* Set the architecture-specific signal trampoline recognition
778 function for GDBARCH to SIGNAL_FRAME_P. */
779
780 void
781 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
782 int (*signal_frame_p) (struct gdbarch *,
783 struct frame_info *))
784 {
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
787
788 ops->signal_frame_p = signal_frame_p;
789 }
790
791 /* Query the architecture-specific signal frame recognizer for
792 THIS_FRAME. */
793
794 static int
795 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
796 struct frame_info *this_frame)
797 {
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
800
801 if (ops->signal_frame_p == NULL)
802 return 0;
803 return ops->signal_frame_p (gdbarch, this_frame);
804 }
805
806 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
807 register numbers. */
808
809 void
810 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
811 int (*adjust_regnum) (struct gdbarch *,
812 int, int))
813 {
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
816
817 ops->adjust_regnum = adjust_regnum;
818 }
819
820 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
821 register. */
822
823 static int
824 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
825 int regnum, int eh_frame_p)
826 {
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
829
830 if (ops->adjust_regnum == NULL)
831 return regnum;
832 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
833 }
834
835 static void
836 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
837 struct dwarf2_fde *fde)
838 {
839 struct compunit_symtab *cust;
840
841 cust = find_pc_compunit_symtab (fs->pc);
842 if (cust == NULL)
843 return;
844
845 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
846 {
847 if (fde->cie->version == 1)
848 fs->armcc_cfa_offsets_sf = 1;
849
850 if (fde->cie->version == 1)
851 fs->armcc_cfa_offsets_reversed = 1;
852
853 /* The reversed offset problem is present in some compilers
854 using DWARF3, but it was eventually fixed. Check the ARM
855 defined augmentations, which are in the format "armcc" followed
856 by a list of one-character options. The "+" option means
857 this problem is fixed (no quirk needed). If the armcc
858 augmentation is missing, the quirk is needed. */
859 if (fde->cie->version == 3
860 && (!startswith (fde->cie->augmentation, "armcc")
861 || strchr (fde->cie->augmentation + 5, '+') == NULL))
862 fs->armcc_cfa_offsets_reversed = 1;
863
864 return;
865 }
866 }
867 \f
868
869 /* See dwarf2-frame.h. */
870
871 int
872 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
873 struct dwarf2_per_cu_data *data,
874 int *regnum_out, LONGEST *offset_out,
875 CORE_ADDR *text_offset_out,
876 const gdb_byte **cfa_start_out,
877 const gdb_byte **cfa_end_out)
878 {
879 struct dwarf2_fde *fde;
880 CORE_ADDR text_offset;
881 CORE_ADDR pc1 = pc;
882
883 /* Find the correct FDE. */
884 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
885 if (fde == NULL)
886 error (_("Could not compute CFA; needed to translate this expression"));
887
888 dwarf2_frame_state fs (pc1, fde->cie);
889
890 /* Check for "quirks" - known bugs in producers. */
891 dwarf2_frame_find_quirks (&fs, fde);
892
893 /* First decode all the insns in the CIE. */
894 execute_cfa_program (fde, fde->cie->initial_instructions,
895 fde->cie->end, gdbarch, pc, &fs);
896
897 /* Save the initialized register set. */
898 fs.initial = fs.regs;
899
900 /* Then decode the insns in the FDE up to our target PC. */
901 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
902
903 /* Calculate the CFA. */
904 switch (fs.regs.cfa_how)
905 {
906 case CFA_REG_OFFSET:
907 {
908 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
909
910 *regnum_out = regnum;
911 if (fs.armcc_cfa_offsets_reversed)
912 *offset_out = -fs.regs.cfa_offset;
913 else
914 *offset_out = fs.regs.cfa_offset;
915 return 1;
916 }
917
918 case CFA_EXP:
919 *text_offset_out = text_offset;
920 *cfa_start_out = fs.regs.cfa_exp;
921 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
922 return 0;
923
924 default:
925 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
926 }
927 }
928
929 \f
930 struct dwarf2_frame_cache
931 {
932 /* DWARF Call Frame Address. */
933 CORE_ADDR cfa;
934
935 /* Set if the return address column was marked as unavailable
936 (required non-collected memory or registers to compute). */
937 int unavailable_retaddr;
938
939 /* Set if the return address column was marked as undefined. */
940 int undefined_retaddr;
941
942 /* Saved registers, indexed by GDB register number, not by DWARF
943 register number. */
944 struct dwarf2_frame_state_reg *reg;
945
946 /* Return address register. */
947 struct dwarf2_frame_state_reg retaddr_reg;
948
949 /* Target address size in bytes. */
950 int addr_size;
951
952 /* The .text offset. */
953 CORE_ADDR text_offset;
954
955 /* True if we already checked whether this frame is the bottom frame
956 of a virtual tail call frame chain. */
957 int checked_tailcall_bottom;
958
959 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
960 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
961 involved. Non-bottom frames of a virtual tail call frames chain use
962 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
963 them. */
964 void *tailcall_cache;
965
966 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
967 base to get the SP, to simulate the return address pushed on the
968 stack. */
969 LONGEST entry_cfa_sp_offset;
970 int entry_cfa_sp_offset_p;
971 };
972
973 static struct dwarf2_frame_cache *
974 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
975 {
976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
977 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
978 struct dwarf2_frame_cache *cache;
979 struct dwarf2_fde *fde;
980 CORE_ADDR entry_pc;
981 const gdb_byte *instr;
982
983 if (*this_cache)
984 return (struct dwarf2_frame_cache *) *this_cache;
985
986 /* Allocate a new cache. */
987 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
988 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
989 *this_cache = cache;
990
991 /* Unwind the PC.
992
993 Note that if the next frame is never supposed to return (i.e. a call
994 to abort), the compiler might optimize away the instruction at
995 its return address. As a result the return address will
996 point at some random instruction, and the CFI for that
997 instruction is probably worthless to us. GCC's unwinder solves
998 this problem by substracting 1 from the return address to get an
999 address in the middle of a presumed call instruction (or the
1000 instruction in the associated delay slot). This should only be
1001 done for "normal" frames and not for resume-type frames (signal
1002 handlers, sentinel frames, dummy frames). The function
1003 get_frame_address_in_block does just this. It's not clear how
1004 reliable the method is though; there is the potential for the
1005 register state pre-call being different to that on return. */
1006 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1007
1008 /* Find the correct FDE. */
1009 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1010 gdb_assert (fde != NULL);
1011
1012 /* Allocate and initialize the frame state. */
1013 struct dwarf2_frame_state fs (pc1, fde->cie);
1014
1015 cache->addr_size = fde->cie->addr_size;
1016
1017 /* Check for "quirks" - known bugs in producers. */
1018 dwarf2_frame_find_quirks (&fs, fde);
1019
1020 /* First decode all the insns in the CIE. */
1021 execute_cfa_program (fde, fde->cie->initial_instructions,
1022 fde->cie->end, gdbarch,
1023 get_frame_address_in_block (this_frame), &fs);
1024
1025 /* Save the initialized register set. */
1026 fs.initial = fs.regs;
1027
1028 if (get_frame_func_if_available (this_frame, &entry_pc))
1029 {
1030 /* Decode the insns in the FDE up to the entry PC. */
1031 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1032 entry_pc, &fs);
1033
1034 if (fs.regs.cfa_how == CFA_REG_OFFSET
1035 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1036 == gdbarch_sp_regnum (gdbarch)))
1037 {
1038 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1039 cache->entry_cfa_sp_offset_p = 1;
1040 }
1041 }
1042 else
1043 instr = fde->instructions;
1044
1045 /* Then decode the insns in the FDE up to our target PC. */
1046 execute_cfa_program (fde, instr, fde->end, gdbarch,
1047 get_frame_address_in_block (this_frame), &fs);
1048
1049 TRY
1050 {
1051 /* Calculate the CFA. */
1052 switch (fs.regs.cfa_how)
1053 {
1054 case CFA_REG_OFFSET:
1055 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1056 if (fs.armcc_cfa_offsets_reversed)
1057 cache->cfa -= fs.regs.cfa_offset;
1058 else
1059 cache->cfa += fs.regs.cfa_offset;
1060 break;
1061
1062 case CFA_EXP:
1063 cache->cfa =
1064 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1065 cache->addr_size, cache->text_offset,
1066 this_frame, 0, 0);
1067 break;
1068
1069 default:
1070 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1071 }
1072 }
1073 CATCH (ex, RETURN_MASK_ERROR)
1074 {
1075 if (ex.error == NOT_AVAILABLE_ERROR)
1076 {
1077 cache->unavailable_retaddr = 1;
1078 return cache;
1079 }
1080
1081 throw_exception (ex);
1082 }
1083 END_CATCH
1084
1085 /* Initialize the register state. */
1086 {
1087 int regnum;
1088
1089 for (regnum = 0; regnum < num_regs; regnum++)
1090 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1091 }
1092
1093 /* Go through the DWARF2 CFI generated table and save its register
1094 location information in the cache. Note that we don't skip the
1095 return address column; it's perfectly all right for it to
1096 correspond to a real register. */
1097 {
1098 int column; /* CFI speak for "register number". */
1099
1100 for (column = 0; column < fs.regs.reg.size (); column++)
1101 {
1102 /* Use the GDB register number as the destination index. */
1103 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1104
1105 /* Protect against a target returning a bad register. */
1106 if (regnum < 0 || regnum >= num_regs)
1107 continue;
1108
1109 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1110 of all debug info registers. If it doesn't, complain (but
1111 not too loudly). It turns out that GCC assumes that an
1112 unspecified register implies "same value" when CFI (draft
1113 7) specifies nothing at all. Such a register could equally
1114 be interpreted as "undefined". Also note that this check
1115 isn't sufficient; it only checks that all registers in the
1116 range [0 .. max column] are specified, and won't detect
1117 problems when a debug info register falls outside of the
1118 table. We need a way of iterating through all the valid
1119 DWARF2 register numbers. */
1120 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1121 {
1122 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1123 complaint (_("\
1124 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1125 gdbarch_register_name (gdbarch, regnum),
1126 paddress (gdbarch, fs.pc));
1127 }
1128 else
1129 cache->reg[regnum] = fs.regs.reg[column];
1130 }
1131 }
1132
1133 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1134 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1135 {
1136 int regnum;
1137
1138 for (regnum = 0; regnum < num_regs; regnum++)
1139 {
1140 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1141 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1142 {
1143 const std::vector<struct dwarf2_frame_state_reg> &regs
1144 = fs.regs.reg;
1145 ULONGEST retaddr_column = fs.retaddr_column;
1146
1147 /* It seems rather bizarre to specify an "empty" column as
1148 the return adress column. However, this is exactly
1149 what GCC does on some targets. It turns out that GCC
1150 assumes that the return address can be found in the
1151 register corresponding to the return address column.
1152 Incidentally, that's how we should treat a return
1153 address column specifying "same value" too. */
1154 if (fs.retaddr_column < fs.regs.reg.size ()
1155 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1156 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1157 {
1158 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1159 cache->reg[regnum] = regs[retaddr_column];
1160 else
1161 cache->retaddr_reg = regs[retaddr_column];
1162 }
1163 else
1164 {
1165 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1166 {
1167 cache->reg[regnum].loc.reg = fs.retaddr_column;
1168 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1169 }
1170 else
1171 {
1172 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1173 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1174 }
1175 }
1176 }
1177 }
1178 }
1179
1180 if (fs.retaddr_column < fs.regs.reg.size ()
1181 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1182 cache->undefined_retaddr = 1;
1183
1184 return cache;
1185 }
1186
1187 static enum unwind_stop_reason
1188 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1189 void **this_cache)
1190 {
1191 struct dwarf2_frame_cache *cache
1192 = dwarf2_frame_cache (this_frame, this_cache);
1193
1194 if (cache->unavailable_retaddr)
1195 return UNWIND_UNAVAILABLE;
1196
1197 if (cache->undefined_retaddr)
1198 return UNWIND_OUTERMOST;
1199
1200 return UNWIND_NO_REASON;
1201 }
1202
1203 static void
1204 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1205 struct frame_id *this_id)
1206 {
1207 struct dwarf2_frame_cache *cache =
1208 dwarf2_frame_cache (this_frame, this_cache);
1209
1210 if (cache->unavailable_retaddr)
1211 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1212 else if (cache->undefined_retaddr)
1213 return;
1214 else
1215 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1216 }
1217
1218 static struct value *
1219 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1220 int regnum)
1221 {
1222 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1223 struct dwarf2_frame_cache *cache =
1224 dwarf2_frame_cache (this_frame, this_cache);
1225 CORE_ADDR addr;
1226 int realnum;
1227
1228 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1229 call frame chain. */
1230 if (!cache->checked_tailcall_bottom)
1231 {
1232 cache->checked_tailcall_bottom = 1;
1233 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1234 (cache->entry_cfa_sp_offset_p
1235 ? &cache->entry_cfa_sp_offset : NULL));
1236 }
1237
1238 /* Non-bottom frames of a virtual tail call frames chain use
1239 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1240 them. If dwarf2_tailcall_prev_register_first does not have specific value
1241 unwind the register, tail call frames are assumed to have the register set
1242 of the top caller. */
1243 if (cache->tailcall_cache)
1244 {
1245 struct value *val;
1246
1247 val = dwarf2_tailcall_prev_register_first (this_frame,
1248 &cache->tailcall_cache,
1249 regnum);
1250 if (val)
1251 return val;
1252 }
1253
1254 switch (cache->reg[regnum].how)
1255 {
1256 case DWARF2_FRAME_REG_UNDEFINED:
1257 /* If CFI explicitly specified that the value isn't defined,
1258 mark it as optimized away; the value isn't available. */
1259 return frame_unwind_got_optimized (this_frame, regnum);
1260
1261 case DWARF2_FRAME_REG_SAVED_OFFSET:
1262 addr = cache->cfa + cache->reg[regnum].loc.offset;
1263 return frame_unwind_got_memory (this_frame, regnum, addr);
1264
1265 case DWARF2_FRAME_REG_SAVED_REG:
1266 realnum = dwarf_reg_to_regnum_or_error
1267 (gdbarch, cache->reg[regnum].loc.reg);
1268 return frame_unwind_got_register (this_frame, regnum, realnum);
1269
1270 case DWARF2_FRAME_REG_SAVED_EXP:
1271 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1272 cache->reg[regnum].loc.exp.len,
1273 cache->addr_size, cache->text_offset,
1274 this_frame, cache->cfa, 1);
1275 return frame_unwind_got_memory (this_frame, regnum, addr);
1276
1277 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1278 addr = cache->cfa + cache->reg[regnum].loc.offset;
1279 return frame_unwind_got_constant (this_frame, regnum, addr);
1280
1281 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1282 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1283 cache->reg[regnum].loc.exp.len,
1284 cache->addr_size, cache->text_offset,
1285 this_frame, cache->cfa, 1);
1286 return frame_unwind_got_constant (this_frame, regnum, addr);
1287
1288 case DWARF2_FRAME_REG_UNSPECIFIED:
1289 /* GCC, in its infinite wisdom decided to not provide unwind
1290 information for registers that are "same value". Since
1291 DWARF2 (3 draft 7) doesn't define such behavior, said
1292 registers are actually undefined (which is different to CFI
1293 "undefined"). Code above issues a complaint about this.
1294 Here just fudge the books, assume GCC, and that the value is
1295 more inner on the stack. */
1296 return frame_unwind_got_register (this_frame, regnum, regnum);
1297
1298 case DWARF2_FRAME_REG_SAME_VALUE:
1299 return frame_unwind_got_register (this_frame, regnum, regnum);
1300
1301 case DWARF2_FRAME_REG_CFA:
1302 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1303
1304 case DWARF2_FRAME_REG_CFA_OFFSET:
1305 addr = cache->cfa + cache->reg[regnum].loc.offset;
1306 return frame_unwind_got_address (this_frame, regnum, addr);
1307
1308 case DWARF2_FRAME_REG_RA_OFFSET:
1309 addr = cache->reg[regnum].loc.offset;
1310 regnum = dwarf_reg_to_regnum_or_error
1311 (gdbarch, cache->retaddr_reg.loc.reg);
1312 addr += get_frame_register_unsigned (this_frame, regnum);
1313 return frame_unwind_got_address (this_frame, regnum, addr);
1314
1315 case DWARF2_FRAME_REG_FN:
1316 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1317
1318 default:
1319 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1320 }
1321 }
1322
1323 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1324 call frames chain. */
1325
1326 static void
1327 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1328 {
1329 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1330
1331 if (cache->tailcall_cache)
1332 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1333 }
1334
1335 static int
1336 dwarf2_frame_sniffer (const struct frame_unwind *self,
1337 struct frame_info *this_frame, void **this_cache)
1338 {
1339 if (!dwarf2_frame_unwinders_enabled_p)
1340 return 0;
1341
1342 /* Grab an address that is guarenteed to reside somewhere within the
1343 function. get_frame_pc(), with a no-return next function, can
1344 end up returning something past the end of this function's body.
1345 If the frame we're sniffing for is a signal frame whose start
1346 address is placed on the stack by the OS, its FDE must
1347 extend one byte before its start address or we could potentially
1348 select the FDE of the previous function. */
1349 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1350 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1351
1352 if (!fde)
1353 return 0;
1354
1355 /* On some targets, signal trampolines may have unwind information.
1356 We need to recognize them so that we set the frame type
1357 correctly. */
1358
1359 if (fde->cie->signal_frame
1360 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1361 this_frame))
1362 return self->type == SIGTRAMP_FRAME;
1363
1364 if (self->type != NORMAL_FRAME)
1365 return 0;
1366
1367 return 1;
1368 }
1369
1370 static const struct frame_unwind dwarf2_frame_unwind =
1371 {
1372 NORMAL_FRAME,
1373 dwarf2_frame_unwind_stop_reason,
1374 dwarf2_frame_this_id,
1375 dwarf2_frame_prev_register,
1376 NULL,
1377 dwarf2_frame_sniffer,
1378 dwarf2_frame_dealloc_cache
1379 };
1380
1381 static const struct frame_unwind dwarf2_signal_frame_unwind =
1382 {
1383 SIGTRAMP_FRAME,
1384 dwarf2_frame_unwind_stop_reason,
1385 dwarf2_frame_this_id,
1386 dwarf2_frame_prev_register,
1387 NULL,
1388 dwarf2_frame_sniffer,
1389
1390 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1391 NULL
1392 };
1393
1394 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1395
1396 void
1397 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1398 {
1399 /* TAILCALL_FRAME must be first to find the record by
1400 dwarf2_tailcall_sniffer_first. */
1401 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1402
1403 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1404 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1405 }
1406 \f
1407
1408 /* There is no explicitly defined relationship between the CFA and the
1409 location of frame's local variables and arguments/parameters.
1410 Therefore, frame base methods on this page should probably only be
1411 used as a last resort, just to avoid printing total garbage as a
1412 response to the "info frame" command. */
1413
1414 static CORE_ADDR
1415 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1416 {
1417 struct dwarf2_frame_cache *cache =
1418 dwarf2_frame_cache (this_frame, this_cache);
1419
1420 return cache->cfa;
1421 }
1422
1423 static const struct frame_base dwarf2_frame_base =
1424 {
1425 &dwarf2_frame_unwind,
1426 dwarf2_frame_base_address,
1427 dwarf2_frame_base_address,
1428 dwarf2_frame_base_address
1429 };
1430
1431 const struct frame_base *
1432 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1433 {
1434 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1435
1436 if (dwarf2_frame_find_fde (&block_addr, NULL))
1437 return &dwarf2_frame_base;
1438
1439 return NULL;
1440 }
1441
1442 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1443 the DWARF unwinder. This is used to implement
1444 DW_OP_call_frame_cfa. */
1445
1446 CORE_ADDR
1447 dwarf2_frame_cfa (struct frame_info *this_frame)
1448 {
1449 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1450 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1451 throw_error (NOT_AVAILABLE_ERROR,
1452 _("cfa not available for record btrace target"));
1453
1454 while (get_frame_type (this_frame) == INLINE_FRAME)
1455 this_frame = get_prev_frame (this_frame);
1456 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1457 throw_error (NOT_AVAILABLE_ERROR,
1458 _("can't compute CFA for this frame: "
1459 "required registers or memory are unavailable"));
1460
1461 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1462 throw_error (NOT_AVAILABLE_ERROR,
1463 _("can't compute CFA for this frame: "
1464 "frame base not available"));
1465
1466 return get_frame_base (this_frame);
1467 }
1468 \f
1469 const struct objfile_data *dwarf2_frame_objfile_data;
1470
1471 static unsigned int
1472 read_1_byte (bfd *abfd, const gdb_byte *buf)
1473 {
1474 return bfd_get_8 (abfd, buf);
1475 }
1476
1477 static unsigned int
1478 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1479 {
1480 return bfd_get_32 (abfd, buf);
1481 }
1482
1483 static ULONGEST
1484 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1485 {
1486 return bfd_get_64 (abfd, buf);
1487 }
1488
1489 static ULONGEST
1490 read_initial_length (bfd *abfd, const gdb_byte *buf,
1491 unsigned int *bytes_read_ptr)
1492 {
1493 LONGEST result;
1494
1495 result = bfd_get_32 (abfd, buf);
1496 if (result == 0xffffffff)
1497 {
1498 result = bfd_get_64 (abfd, buf + 4);
1499 *bytes_read_ptr = 12;
1500 }
1501 else
1502 *bytes_read_ptr = 4;
1503
1504 return result;
1505 }
1506 \f
1507
1508 /* Pointer encoding helper functions. */
1509
1510 /* GCC supports exception handling based on DWARF2 CFI. However, for
1511 technical reasons, it encodes addresses in its FDE's in a different
1512 way. Several "pointer encodings" are supported. The encoding
1513 that's used for a particular FDE is determined by the 'R'
1514 augmentation in the associated CIE. The argument of this
1515 augmentation is a single byte.
1516
1517 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1518 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1519 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1520 address should be interpreted (absolute, relative to the current
1521 position in the FDE, ...). Bit 7, indicates that the address
1522 should be dereferenced. */
1523
1524 static gdb_byte
1525 encoding_for_size (unsigned int size)
1526 {
1527 switch (size)
1528 {
1529 case 2:
1530 return DW_EH_PE_udata2;
1531 case 4:
1532 return DW_EH_PE_udata4;
1533 case 8:
1534 return DW_EH_PE_udata8;
1535 default:
1536 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1537 }
1538 }
1539
1540 static CORE_ADDR
1541 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1542 int ptr_len, const gdb_byte *buf,
1543 unsigned int *bytes_read_ptr,
1544 CORE_ADDR func_base)
1545 {
1546 ptrdiff_t offset;
1547 CORE_ADDR base;
1548
1549 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1550 FDE's. */
1551 if (encoding & DW_EH_PE_indirect)
1552 internal_error (__FILE__, __LINE__,
1553 _("Unsupported encoding: DW_EH_PE_indirect"));
1554
1555 *bytes_read_ptr = 0;
1556
1557 switch (encoding & 0x70)
1558 {
1559 case DW_EH_PE_absptr:
1560 base = 0;
1561 break;
1562 case DW_EH_PE_pcrel:
1563 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1564 base += (buf - unit->dwarf_frame_buffer);
1565 break;
1566 case DW_EH_PE_datarel:
1567 base = unit->dbase;
1568 break;
1569 case DW_EH_PE_textrel:
1570 base = unit->tbase;
1571 break;
1572 case DW_EH_PE_funcrel:
1573 base = func_base;
1574 break;
1575 case DW_EH_PE_aligned:
1576 base = 0;
1577 offset = buf - unit->dwarf_frame_buffer;
1578 if ((offset % ptr_len) != 0)
1579 {
1580 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1581 buf += *bytes_read_ptr;
1582 }
1583 break;
1584 default:
1585 internal_error (__FILE__, __LINE__,
1586 _("Invalid or unsupported encoding"));
1587 }
1588
1589 if ((encoding & 0x07) == 0x00)
1590 {
1591 encoding |= encoding_for_size (ptr_len);
1592 if (bfd_get_sign_extend_vma (unit->abfd))
1593 encoding |= DW_EH_PE_signed;
1594 }
1595
1596 switch (encoding & 0x0f)
1597 {
1598 case DW_EH_PE_uleb128:
1599 {
1600 uint64_t value;
1601 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1602
1603 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1604 return base + value;
1605 }
1606 case DW_EH_PE_udata2:
1607 *bytes_read_ptr += 2;
1608 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1609 case DW_EH_PE_udata4:
1610 *bytes_read_ptr += 4;
1611 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1612 case DW_EH_PE_udata8:
1613 *bytes_read_ptr += 8;
1614 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1615 case DW_EH_PE_sleb128:
1616 {
1617 int64_t value;
1618 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1619
1620 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1621 return base + value;
1622 }
1623 case DW_EH_PE_sdata2:
1624 *bytes_read_ptr += 2;
1625 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1626 case DW_EH_PE_sdata4:
1627 *bytes_read_ptr += 4;
1628 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1629 case DW_EH_PE_sdata8:
1630 *bytes_read_ptr += 8;
1631 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1632 default:
1633 internal_error (__FILE__, __LINE__,
1634 _("Invalid or unsupported encoding"));
1635 }
1636 }
1637 \f
1638
1639 static int
1640 bsearch_cie_cmp (const void *key, const void *element)
1641 {
1642 ULONGEST cie_pointer = *(ULONGEST *) key;
1643 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1644
1645 if (cie_pointer == cie->cie_pointer)
1646 return 0;
1647
1648 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1649 }
1650
1651 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1652 static struct dwarf2_cie *
1653 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1654 {
1655 struct dwarf2_cie **p_cie;
1656
1657 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1658 bsearch be non-NULL. */
1659 if (cie_table->entries == NULL)
1660 {
1661 gdb_assert (cie_table->num_entries == 0);
1662 return NULL;
1663 }
1664
1665 p_cie = ((struct dwarf2_cie **)
1666 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1667 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1668 if (p_cie != NULL)
1669 return *p_cie;
1670 return NULL;
1671 }
1672
1673 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1674 static void
1675 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1676 {
1677 const int n = cie_table->num_entries;
1678
1679 gdb_assert (n < 1
1680 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1681
1682 cie_table->entries
1683 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1684 cie_table->entries[n] = cie;
1685 cie_table->num_entries = n + 1;
1686 }
1687
1688 static int
1689 bsearch_fde_cmp (const void *key, const void *element)
1690 {
1691 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1692 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1693
1694 if (seek_pc < fde->initial_location)
1695 return -1;
1696 if (seek_pc < fde->initial_location + fde->address_range)
1697 return 0;
1698 return 1;
1699 }
1700
1701 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1702 inital location associated with it into *PC. */
1703
1704 static struct dwarf2_fde *
1705 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1706 {
1707 for (objfile *objfile : current_program_space->objfiles ())
1708 {
1709 struct dwarf2_fde_table *fde_table;
1710 struct dwarf2_fde **p_fde;
1711 CORE_ADDR offset;
1712 CORE_ADDR seek_pc;
1713
1714 fde_table = ((struct dwarf2_fde_table *)
1715 objfile_data (objfile, dwarf2_frame_objfile_data));
1716 if (fde_table == NULL)
1717 {
1718 dwarf2_build_frame_info (objfile);
1719 fde_table = ((struct dwarf2_fde_table *)
1720 objfile_data (objfile, dwarf2_frame_objfile_data));
1721 }
1722 gdb_assert (fde_table != NULL);
1723
1724 if (fde_table->num_entries == 0)
1725 continue;
1726
1727 gdb_assert (objfile->section_offsets);
1728 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1729
1730 gdb_assert (fde_table->num_entries > 0);
1731 if (*pc < offset + fde_table->entries[0]->initial_location)
1732 continue;
1733
1734 seek_pc = *pc - offset;
1735 p_fde = ((struct dwarf2_fde **)
1736 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1737 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1738 if (p_fde != NULL)
1739 {
1740 *pc = (*p_fde)->initial_location + offset;
1741 if (out_offset)
1742 *out_offset = offset;
1743 return *p_fde;
1744 }
1745 }
1746 return NULL;
1747 }
1748
1749 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1750 static void
1751 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1752 {
1753 if (fde->address_range == 0)
1754 /* Discard useless FDEs. */
1755 return;
1756
1757 fde_table->num_entries += 1;
1758 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1759 fde_table->num_entries);
1760 fde_table->entries[fde_table->num_entries - 1] = fde;
1761 }
1762
1763 #define DW64_CIE_ID 0xffffffffffffffffULL
1764
1765 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1766 or any of them. */
1767
1768 enum eh_frame_type
1769 {
1770 EH_CIE_TYPE_ID = 1 << 0,
1771 EH_FDE_TYPE_ID = 1 << 1,
1772 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1773 };
1774
1775 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1776 const gdb_byte *start,
1777 int eh_frame_p,
1778 struct dwarf2_cie_table *cie_table,
1779 struct dwarf2_fde_table *fde_table,
1780 enum eh_frame_type entry_type);
1781
1782 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1783 Return NULL if invalid input, otherwise the next byte to be processed. */
1784
1785 static const gdb_byte *
1786 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1787 int eh_frame_p,
1788 struct dwarf2_cie_table *cie_table,
1789 struct dwarf2_fde_table *fde_table,
1790 enum eh_frame_type entry_type)
1791 {
1792 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1793 const gdb_byte *buf, *end;
1794 LONGEST length;
1795 unsigned int bytes_read;
1796 int dwarf64_p;
1797 ULONGEST cie_id;
1798 ULONGEST cie_pointer;
1799 int64_t sleb128;
1800 uint64_t uleb128;
1801
1802 buf = start;
1803 length = read_initial_length (unit->abfd, buf, &bytes_read);
1804 buf += bytes_read;
1805 end = buf + length;
1806
1807 /* Are we still within the section? */
1808 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1809 return NULL;
1810
1811 if (length == 0)
1812 return end;
1813
1814 /* Distinguish between 32 and 64-bit encoded frame info. */
1815 dwarf64_p = (bytes_read == 12);
1816
1817 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1818 if (eh_frame_p)
1819 cie_id = 0;
1820 else if (dwarf64_p)
1821 cie_id = DW64_CIE_ID;
1822 else
1823 cie_id = DW_CIE_ID;
1824
1825 if (dwarf64_p)
1826 {
1827 cie_pointer = read_8_bytes (unit->abfd, buf);
1828 buf += 8;
1829 }
1830 else
1831 {
1832 cie_pointer = read_4_bytes (unit->abfd, buf);
1833 buf += 4;
1834 }
1835
1836 if (cie_pointer == cie_id)
1837 {
1838 /* This is a CIE. */
1839 struct dwarf2_cie *cie;
1840 char *augmentation;
1841 unsigned int cie_version;
1842
1843 /* Check that a CIE was expected. */
1844 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1845 error (_("Found a CIE when not expecting it."));
1846
1847 /* Record the offset into the .debug_frame section of this CIE. */
1848 cie_pointer = start - unit->dwarf_frame_buffer;
1849
1850 /* Check whether we've already read it. */
1851 if (find_cie (cie_table, cie_pointer))
1852 return end;
1853
1854 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1855 cie->initial_instructions = NULL;
1856 cie->cie_pointer = cie_pointer;
1857
1858 /* The encoding for FDE's in a normal .debug_frame section
1859 depends on the target address size. */
1860 cie->encoding = DW_EH_PE_absptr;
1861
1862 /* We'll determine the final value later, but we need to
1863 initialize it conservatively. */
1864 cie->signal_frame = 0;
1865
1866 /* Check version number. */
1867 cie_version = read_1_byte (unit->abfd, buf);
1868 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1869 return NULL;
1870 cie->version = cie_version;
1871 buf += 1;
1872
1873 /* Interpret the interesting bits of the augmentation. */
1874 cie->augmentation = augmentation = (char *) buf;
1875 buf += (strlen (augmentation) + 1);
1876
1877 /* Ignore armcc augmentations. We only use them for quirks,
1878 and that doesn't happen until later. */
1879 if (startswith (augmentation, "armcc"))
1880 augmentation += strlen (augmentation);
1881
1882 /* The GCC 2.x "eh" augmentation has a pointer immediately
1883 following the augmentation string, so it must be handled
1884 first. */
1885 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1886 {
1887 /* Skip. */
1888 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1889 augmentation += 2;
1890 }
1891
1892 if (cie->version >= 4)
1893 {
1894 /* FIXME: check that this is the same as from the CU header. */
1895 cie->addr_size = read_1_byte (unit->abfd, buf);
1896 ++buf;
1897 cie->segment_size = read_1_byte (unit->abfd, buf);
1898 ++buf;
1899 }
1900 else
1901 {
1902 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1903 cie->segment_size = 0;
1904 }
1905 /* Address values in .eh_frame sections are defined to have the
1906 target's pointer size. Watchout: This breaks frame info for
1907 targets with pointer size < address size, unless a .debug_frame
1908 section exists as well. */
1909 if (eh_frame_p)
1910 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1911 else
1912 cie->ptr_size = cie->addr_size;
1913
1914 buf = gdb_read_uleb128 (buf, end, &uleb128);
1915 if (buf == NULL)
1916 return NULL;
1917 cie->code_alignment_factor = uleb128;
1918
1919 buf = gdb_read_sleb128 (buf, end, &sleb128);
1920 if (buf == NULL)
1921 return NULL;
1922 cie->data_alignment_factor = sleb128;
1923
1924 if (cie_version == 1)
1925 {
1926 cie->return_address_register = read_1_byte (unit->abfd, buf);
1927 ++buf;
1928 }
1929 else
1930 {
1931 buf = gdb_read_uleb128 (buf, end, &uleb128);
1932 if (buf == NULL)
1933 return NULL;
1934 cie->return_address_register = uleb128;
1935 }
1936
1937 cie->return_address_register
1938 = dwarf2_frame_adjust_regnum (gdbarch,
1939 cie->return_address_register,
1940 eh_frame_p);
1941
1942 cie->saw_z_augmentation = (*augmentation == 'z');
1943 if (cie->saw_z_augmentation)
1944 {
1945 uint64_t uleb_length;
1946
1947 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1948 if (buf == NULL)
1949 return NULL;
1950 cie->initial_instructions = buf + uleb_length;
1951 augmentation++;
1952 }
1953
1954 while (*augmentation)
1955 {
1956 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1957 if (*augmentation == 'L')
1958 {
1959 /* Skip. */
1960 buf++;
1961 augmentation++;
1962 }
1963
1964 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1965 else if (*augmentation == 'R')
1966 {
1967 cie->encoding = *buf++;
1968 augmentation++;
1969 }
1970
1971 /* "P" indicates a personality routine in the CIE augmentation. */
1972 else if (*augmentation == 'P')
1973 {
1974 /* Skip. Avoid indirection since we throw away the result. */
1975 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1976 read_encoded_value (unit, encoding, cie->ptr_size,
1977 buf, &bytes_read, 0);
1978 buf += bytes_read;
1979 augmentation++;
1980 }
1981
1982 /* "S" indicates a signal frame, such that the return
1983 address must not be decremented to locate the call frame
1984 info for the previous frame; it might even be the first
1985 instruction of a function, so decrementing it would take
1986 us to a different function. */
1987 else if (*augmentation == 'S')
1988 {
1989 cie->signal_frame = 1;
1990 augmentation++;
1991 }
1992
1993 /* Otherwise we have an unknown augmentation. Assume that either
1994 there is no augmentation data, or we saw a 'z' prefix. */
1995 else
1996 {
1997 if (cie->initial_instructions)
1998 buf = cie->initial_instructions;
1999 break;
2000 }
2001 }
2002
2003 cie->initial_instructions = buf;
2004 cie->end = end;
2005 cie->unit = unit;
2006
2007 add_cie (cie_table, cie);
2008 }
2009 else
2010 {
2011 /* This is a FDE. */
2012 struct dwarf2_fde *fde;
2013 CORE_ADDR addr;
2014
2015 /* Check that an FDE was expected. */
2016 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2017 error (_("Found an FDE when not expecting it."));
2018
2019 /* In an .eh_frame section, the CIE pointer is the delta between the
2020 address within the FDE where the CIE pointer is stored and the
2021 address of the CIE. Convert it to an offset into the .eh_frame
2022 section. */
2023 if (eh_frame_p)
2024 {
2025 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2026 cie_pointer -= (dwarf64_p ? 8 : 4);
2027 }
2028
2029 /* In either case, validate the result is still within the section. */
2030 if (cie_pointer >= unit->dwarf_frame_size)
2031 return NULL;
2032
2033 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2034 fde->cie = find_cie (cie_table, cie_pointer);
2035 if (fde->cie == NULL)
2036 {
2037 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2038 eh_frame_p, cie_table, fde_table,
2039 EH_CIE_TYPE_ID);
2040 fde->cie = find_cie (cie_table, cie_pointer);
2041 }
2042
2043 gdb_assert (fde->cie != NULL);
2044
2045 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2046 buf, &bytes_read, 0);
2047 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2048 buf += bytes_read;
2049
2050 fde->address_range =
2051 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2052 fde->cie->ptr_size, buf, &bytes_read, 0);
2053 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2054 fde->address_range = addr - fde->initial_location;
2055 buf += bytes_read;
2056
2057 /* A 'z' augmentation in the CIE implies the presence of an
2058 augmentation field in the FDE as well. The only thing known
2059 to be in here at present is the LSDA entry for EH. So we
2060 can skip the whole thing. */
2061 if (fde->cie->saw_z_augmentation)
2062 {
2063 uint64_t uleb_length;
2064
2065 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2066 if (buf == NULL)
2067 return NULL;
2068 buf += uleb_length;
2069 if (buf > end)
2070 return NULL;
2071 }
2072
2073 fde->instructions = buf;
2074 fde->end = end;
2075
2076 fde->eh_frame_p = eh_frame_p;
2077
2078 add_fde (fde_table, fde);
2079 }
2080
2081 return end;
2082 }
2083
2084 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2085 expect an FDE or a CIE. */
2086
2087 static const gdb_byte *
2088 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2089 int eh_frame_p,
2090 struct dwarf2_cie_table *cie_table,
2091 struct dwarf2_fde_table *fde_table,
2092 enum eh_frame_type entry_type)
2093 {
2094 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2095 const gdb_byte *ret;
2096 ptrdiff_t start_offset;
2097
2098 while (1)
2099 {
2100 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2101 cie_table, fde_table, entry_type);
2102 if (ret != NULL)
2103 break;
2104
2105 /* We have corrupt input data of some form. */
2106
2107 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2108 and mismatches wrt padding and alignment of debug sections. */
2109 /* Note that there is no requirement in the standard for any
2110 alignment at all in the frame unwind sections. Testing for
2111 alignment before trying to interpret data would be incorrect.
2112
2113 However, GCC traditionally arranged for frame sections to be
2114 sized such that the FDE length and CIE fields happen to be
2115 aligned (in theory, for performance). This, unfortunately,
2116 was done with .align directives, which had the side effect of
2117 forcing the section to be aligned by the linker.
2118
2119 This becomes a problem when you have some other producer that
2120 creates frame sections that are not as strictly aligned. That
2121 produces a hole in the frame info that gets filled by the
2122 linker with zeros.
2123
2124 The GCC behaviour is arguably a bug, but it's effectively now
2125 part of the ABI, so we're now stuck with it, at least at the
2126 object file level. A smart linker may decide, in the process
2127 of compressing duplicate CIE information, that it can rewrite
2128 the entire output section without this extra padding. */
2129
2130 start_offset = start - unit->dwarf_frame_buffer;
2131 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2132 {
2133 start += 4 - (start_offset & 3);
2134 workaround = ALIGN4;
2135 continue;
2136 }
2137 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2138 {
2139 start += 8 - (start_offset & 7);
2140 workaround = ALIGN8;
2141 continue;
2142 }
2143
2144 /* Nothing left to try. Arrange to return as if we've consumed
2145 the entire input section. Hopefully we'll get valid info from
2146 the other of .debug_frame/.eh_frame. */
2147 workaround = FAIL;
2148 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2149 break;
2150 }
2151
2152 switch (workaround)
2153 {
2154 case NONE:
2155 break;
2156
2157 case ALIGN4:
2158 complaint (_("\
2159 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2160 unit->dwarf_frame_section->owner->filename,
2161 unit->dwarf_frame_section->name);
2162 break;
2163
2164 case ALIGN8:
2165 complaint (_("\
2166 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2167 unit->dwarf_frame_section->owner->filename,
2168 unit->dwarf_frame_section->name);
2169 break;
2170
2171 default:
2172 complaint (_("Corrupt data in %s:%s"),
2173 unit->dwarf_frame_section->owner->filename,
2174 unit->dwarf_frame_section->name);
2175 break;
2176 }
2177
2178 return ret;
2179 }
2180 \f
2181 static int
2182 qsort_fde_cmp (const void *a, const void *b)
2183 {
2184 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2185 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2186
2187 if (aa->initial_location == bb->initial_location)
2188 {
2189 if (aa->address_range != bb->address_range
2190 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2191 /* Linker bug, e.g. gold/10400.
2192 Work around it by keeping stable sort order. */
2193 return (a < b) ? -1 : 1;
2194 else
2195 /* Put eh_frame entries after debug_frame ones. */
2196 return aa->eh_frame_p - bb->eh_frame_p;
2197 }
2198
2199 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2200 }
2201
2202 void
2203 dwarf2_build_frame_info (struct objfile *objfile)
2204 {
2205 struct comp_unit *unit;
2206 const gdb_byte *frame_ptr;
2207 struct dwarf2_cie_table cie_table;
2208 struct dwarf2_fde_table fde_table;
2209 struct dwarf2_fde_table *fde_table2;
2210
2211 cie_table.num_entries = 0;
2212 cie_table.entries = NULL;
2213
2214 fde_table.num_entries = 0;
2215 fde_table.entries = NULL;
2216
2217 /* Build a minimal decoding of the DWARF2 compilation unit. */
2218 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2219 unit->abfd = objfile->obfd;
2220 unit->objfile = objfile;
2221 unit->dbase = 0;
2222 unit->tbase = 0;
2223
2224 if (objfile->separate_debug_objfile_backlink == NULL)
2225 {
2226 /* Do not read .eh_frame from separate file as they must be also
2227 present in the main file. */
2228 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2229 &unit->dwarf_frame_section,
2230 &unit->dwarf_frame_buffer,
2231 &unit->dwarf_frame_size);
2232 if (unit->dwarf_frame_size)
2233 {
2234 asection *got, *txt;
2235
2236 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2237 that is used for the i386/amd64 target, which currently is
2238 the only target in GCC that supports/uses the
2239 DW_EH_PE_datarel encoding. */
2240 got = bfd_get_section_by_name (unit->abfd, ".got");
2241 if (got)
2242 unit->dbase = got->vma;
2243
2244 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2245 so far. */
2246 txt = bfd_get_section_by_name (unit->abfd, ".text");
2247 if (txt)
2248 unit->tbase = txt->vma;
2249
2250 TRY
2251 {
2252 frame_ptr = unit->dwarf_frame_buffer;
2253 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2254 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2255 &cie_table, &fde_table,
2256 EH_CIE_OR_FDE_TYPE_ID);
2257 }
2258
2259 CATCH (e, RETURN_MASK_ERROR)
2260 {
2261 warning (_("skipping .eh_frame info of %s: %s"),
2262 objfile_name (objfile), e.message);
2263
2264 if (fde_table.num_entries != 0)
2265 {
2266 xfree (fde_table.entries);
2267 fde_table.entries = NULL;
2268 fde_table.num_entries = 0;
2269 }
2270 /* The cie_table is discarded by the next if. */
2271 }
2272 END_CATCH
2273
2274 if (cie_table.num_entries != 0)
2275 {
2276 /* Reinit cie_table: debug_frame has different CIEs. */
2277 xfree (cie_table.entries);
2278 cie_table.num_entries = 0;
2279 cie_table.entries = NULL;
2280 }
2281 }
2282 }
2283
2284 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2285 &unit->dwarf_frame_section,
2286 &unit->dwarf_frame_buffer,
2287 &unit->dwarf_frame_size);
2288 if (unit->dwarf_frame_size)
2289 {
2290 int num_old_fde_entries = fde_table.num_entries;
2291
2292 TRY
2293 {
2294 frame_ptr = unit->dwarf_frame_buffer;
2295 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2296 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2297 &cie_table, &fde_table,
2298 EH_CIE_OR_FDE_TYPE_ID);
2299 }
2300 CATCH (e, RETURN_MASK_ERROR)
2301 {
2302 warning (_("skipping .debug_frame info of %s: %s"),
2303 objfile_name (objfile), e.message);
2304
2305 if (fde_table.num_entries != 0)
2306 {
2307 fde_table.num_entries = num_old_fde_entries;
2308 if (num_old_fde_entries == 0)
2309 {
2310 xfree (fde_table.entries);
2311 fde_table.entries = NULL;
2312 }
2313 else
2314 {
2315 fde_table.entries
2316 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2317 fde_table.num_entries);
2318 }
2319 }
2320 fde_table.num_entries = num_old_fde_entries;
2321 /* The cie_table is discarded by the next if. */
2322 }
2323 END_CATCH
2324 }
2325
2326 /* Discard the cie_table, it is no longer needed. */
2327 if (cie_table.num_entries != 0)
2328 {
2329 xfree (cie_table.entries);
2330 cie_table.entries = NULL; /* Paranoia. */
2331 cie_table.num_entries = 0; /* Paranoia. */
2332 }
2333
2334 /* Copy fde_table to obstack: it is needed at runtime. */
2335 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2336
2337 if (fde_table.num_entries == 0)
2338 {
2339 fde_table2->entries = NULL;
2340 fde_table2->num_entries = 0;
2341 }
2342 else
2343 {
2344 struct dwarf2_fde *fde_prev = NULL;
2345 struct dwarf2_fde *first_non_zero_fde = NULL;
2346 int i;
2347
2348 /* Prepare FDE table for lookups. */
2349 qsort (fde_table.entries, fde_table.num_entries,
2350 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2351
2352 /* Check for leftovers from --gc-sections. The GNU linker sets
2353 the relevant symbols to zero, but doesn't zero the FDE *end*
2354 ranges because there's no relocation there. It's (offset,
2355 length), not (start, end). On targets where address zero is
2356 just another valid address this can be a problem, since the
2357 FDEs appear to be non-empty in the output --- we could pick
2358 out the wrong FDE. To work around this, when overlaps are
2359 detected, we prefer FDEs that do not start at zero.
2360
2361 Start by finding the first FDE with non-zero start. Below
2362 we'll discard all FDEs that start at zero and overlap this
2363 one. */
2364 for (i = 0; i < fde_table.num_entries; i++)
2365 {
2366 struct dwarf2_fde *fde = fde_table.entries[i];
2367
2368 if (fde->initial_location != 0)
2369 {
2370 first_non_zero_fde = fde;
2371 break;
2372 }
2373 }
2374
2375 /* Since we'll be doing bsearch, squeeze out identical (except
2376 for eh_frame_p) fde entries so bsearch result is predictable.
2377 Also discard leftovers from --gc-sections. */
2378 fde_table2->num_entries = 0;
2379 for (i = 0; i < fde_table.num_entries; i++)
2380 {
2381 struct dwarf2_fde *fde = fde_table.entries[i];
2382
2383 if (fde->initial_location == 0
2384 && first_non_zero_fde != NULL
2385 && (first_non_zero_fde->initial_location
2386 < fde->initial_location + fde->address_range))
2387 continue;
2388
2389 if (fde_prev != NULL
2390 && fde_prev->initial_location == fde->initial_location)
2391 continue;
2392
2393 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2394 sizeof (fde_table.entries[0]));
2395 ++fde_table2->num_entries;
2396 fde_prev = fde;
2397 }
2398 fde_table2->entries
2399 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2400
2401 /* Discard the original fde_table. */
2402 xfree (fde_table.entries);
2403 }
2404
2405 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2406 }
2407
2408 /* Handle 'maintenance show dwarf unwinders'. */
2409
2410 static void
2411 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2412 struct cmd_list_element *c,
2413 const char *value)
2414 {
2415 fprintf_filtered (file,
2416 _("The DWARF stack unwinders are currently %s.\n"),
2417 value);
2418 }
2419
2420 void
2421 _initialize_dwarf2_frame (void)
2422 {
2423 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2424 dwarf2_frame_objfile_data = register_objfile_data ();
2425
2426 add_setshow_boolean_cmd ("unwinders", class_obscure,
2427 &dwarf2_frame_unwinders_enabled_p , _("\
2428 Set whether the DWARF stack frame unwinders are used."), _("\
2429 Show whether the DWARF stack frame unwinders are used."), _("\
2430 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2431 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2432 architecture that doesn't support them will have no effect."),
2433 NULL,
2434 show_dwarf_unwinders_enabled_p,
2435 &set_dwarf_cmdlist,
2436 &show_dwarf_cmdlist);
2437
2438 #if GDB_SELF_TEST
2439 selftests::register_test_foreach_arch ("execute_cfa_program",
2440 selftests::execute_cfa_program_test);
2441 #endif
2442 }
This page took 0.107712 seconds and 5 git commands to generate.