2012-04-20 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
1 /* DWARF 2 Expression Evaluator.
2
3 Copyright (C) 2001-2003, 2005, 2007-2012 Free Software Foundation,
4 Inc.
5
6 Contributed by Daniel Berlin (dan@dberlin.org)
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "dwarf2.h"
29 #include "dwarf2expr.h"
30 #include "gdb_assert.h"
31
32 /* Local prototypes. */
33
34 static void execute_stack_op (struct dwarf_expr_context *,
35 const gdb_byte *, const gdb_byte *);
36
37 /* Cookie for gdbarch data. */
38
39 static struct gdbarch_data *dwarf_arch_cookie;
40
41 /* This holds gdbarch-specific types used by the DWARF expression
42 evaluator. See comments in execute_stack_op. */
43
44 struct dwarf_gdbarch_types
45 {
46 struct type *dw_types[3];
47 };
48
49 /* Allocate and fill in dwarf_gdbarch_types for an arch. */
50
51 static void *
52 dwarf_gdbarch_types_init (struct gdbarch *gdbarch)
53 {
54 struct dwarf_gdbarch_types *types
55 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf_gdbarch_types);
56
57 /* The types themselves are lazily initialized. */
58
59 return types;
60 }
61
62 /* Return the type used for DWARF operations where the type is
63 unspecified in the DWARF spec. Only certain sizes are
64 supported. */
65
66 static struct type *
67 dwarf_expr_address_type (struct dwarf_expr_context *ctx)
68 {
69 struct dwarf_gdbarch_types *types = gdbarch_data (ctx->gdbarch,
70 dwarf_arch_cookie);
71 int ndx;
72
73 if (ctx->addr_size == 2)
74 ndx = 0;
75 else if (ctx->addr_size == 4)
76 ndx = 1;
77 else if (ctx->addr_size == 8)
78 ndx = 2;
79 else
80 error (_("Unsupported address size in DWARF expressions: %d bits"),
81 8 * ctx->addr_size);
82
83 if (types->dw_types[ndx] == NULL)
84 types->dw_types[ndx]
85 = arch_integer_type (ctx->gdbarch,
86 8 * ctx->addr_size,
87 0, "<signed DWARF address type>");
88
89 return types->dw_types[ndx];
90 }
91
92 /* Create a new context for the expression evaluator. */
93
94 struct dwarf_expr_context *
95 new_dwarf_expr_context (void)
96 {
97 struct dwarf_expr_context *retval;
98
99 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
100 retval->stack_len = 0;
101 retval->stack_allocated = 10;
102 retval->stack = xmalloc (retval->stack_allocated
103 * sizeof (struct dwarf_stack_value));
104 retval->num_pieces = 0;
105 retval->pieces = 0;
106 retval->max_recursion_depth = 0x100;
107 return retval;
108 }
109
110 /* Release the memory allocated to CTX. */
111
112 void
113 free_dwarf_expr_context (struct dwarf_expr_context *ctx)
114 {
115 xfree (ctx->stack);
116 xfree (ctx->pieces);
117 xfree (ctx);
118 }
119
120 /* Helper for make_cleanup_free_dwarf_expr_context. */
121
122 static void
123 free_dwarf_expr_context_cleanup (void *arg)
124 {
125 free_dwarf_expr_context (arg);
126 }
127
128 /* Return a cleanup that calls free_dwarf_expr_context. */
129
130 struct cleanup *
131 make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
132 {
133 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
134 }
135
136 /* Expand the memory allocated to CTX's stack to contain at least
137 NEED more elements than are currently used. */
138
139 static void
140 dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
141 {
142 if (ctx->stack_len + need > ctx->stack_allocated)
143 {
144 size_t newlen = ctx->stack_len + need + 10;
145
146 ctx->stack = xrealloc (ctx->stack,
147 newlen * sizeof (struct dwarf_stack_value));
148 ctx->stack_allocated = newlen;
149 }
150 }
151
152 /* Push VALUE onto CTX's stack. */
153
154 static void
155 dwarf_expr_push (struct dwarf_expr_context *ctx, struct value *value,
156 int in_stack_memory)
157 {
158 struct dwarf_stack_value *v;
159
160 dwarf_expr_grow_stack (ctx, 1);
161 v = &ctx->stack[ctx->stack_len++];
162 v->value = value;
163 v->in_stack_memory = in_stack_memory;
164 }
165
166 /* Push VALUE onto CTX's stack. */
167
168 void
169 dwarf_expr_push_address (struct dwarf_expr_context *ctx, CORE_ADDR value,
170 int in_stack_memory)
171 {
172 dwarf_expr_push (ctx,
173 value_from_ulongest (dwarf_expr_address_type (ctx), value),
174 in_stack_memory);
175 }
176
177 /* Pop the top item off of CTX's stack. */
178
179 static void
180 dwarf_expr_pop (struct dwarf_expr_context *ctx)
181 {
182 if (ctx->stack_len <= 0)
183 error (_("dwarf expression stack underflow"));
184 ctx->stack_len--;
185 }
186
187 /* Retrieve the N'th item on CTX's stack. */
188
189 struct value *
190 dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
191 {
192 if (ctx->stack_len <= n)
193 error (_("Asked for position %d of stack, "
194 "stack only has %d elements on it."),
195 n, ctx->stack_len);
196 return ctx->stack[ctx->stack_len - (1 + n)].value;
197 }
198
199 /* Require that TYPE be an integral type; throw an exception if not. */
200
201 static void
202 dwarf_require_integral (struct type *type)
203 {
204 if (TYPE_CODE (type) != TYPE_CODE_INT
205 && TYPE_CODE (type) != TYPE_CODE_CHAR
206 && TYPE_CODE (type) != TYPE_CODE_BOOL)
207 error (_("integral type expected in DWARF expression"));
208 }
209
210 /* Return the unsigned form of TYPE. TYPE is necessarily an integral
211 type. */
212
213 static struct type *
214 get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
215 {
216 switch (TYPE_LENGTH (type))
217 {
218 case 1:
219 return builtin_type (gdbarch)->builtin_uint8;
220 case 2:
221 return builtin_type (gdbarch)->builtin_uint16;
222 case 4:
223 return builtin_type (gdbarch)->builtin_uint32;
224 case 8:
225 return builtin_type (gdbarch)->builtin_uint64;
226 default:
227 error (_("no unsigned variant found for type, while evaluating "
228 "DWARF expression"));
229 }
230 }
231
232 /* Return the signed form of TYPE. TYPE is necessarily an integral
233 type. */
234
235 static struct type *
236 get_signed_type (struct gdbarch *gdbarch, struct type *type)
237 {
238 switch (TYPE_LENGTH (type))
239 {
240 case 1:
241 return builtin_type (gdbarch)->builtin_int8;
242 case 2:
243 return builtin_type (gdbarch)->builtin_int16;
244 case 4:
245 return builtin_type (gdbarch)->builtin_int32;
246 case 8:
247 return builtin_type (gdbarch)->builtin_int64;
248 default:
249 error (_("no signed variant found for type, while evaluating "
250 "DWARF expression"));
251 }
252 }
253
254 /* Retrieve the N'th item on CTX's stack, converted to an address. */
255
256 CORE_ADDR
257 dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n)
258 {
259 struct value *result_val = dwarf_expr_fetch (ctx, n);
260 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
261 ULONGEST result;
262
263 dwarf_require_integral (value_type (result_val));
264 result = extract_unsigned_integer (value_contents (result_val),
265 TYPE_LENGTH (value_type (result_val)),
266 byte_order);
267
268 /* For most architectures, calling extract_unsigned_integer() alone
269 is sufficient for extracting an address. However, some
270 architectures (e.g. MIPS) use signed addresses and using
271 extract_unsigned_integer() will not produce a correct
272 result. Make sure we invoke gdbarch_integer_to_address()
273 for those architectures which require it. */
274 if (gdbarch_integer_to_address_p (ctx->gdbarch))
275 {
276 gdb_byte *buf = alloca (ctx->addr_size);
277 struct type *int_type = get_unsigned_type (ctx->gdbarch,
278 value_type (result_val));
279
280 store_unsigned_integer (buf, ctx->addr_size, byte_order, result);
281 return gdbarch_integer_to_address (ctx->gdbarch, int_type, buf);
282 }
283
284 return (CORE_ADDR) result;
285 }
286
287 /* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
288
289 int
290 dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
291 {
292 if (ctx->stack_len <= n)
293 error (_("Asked for position %d of stack, "
294 "stack only has %d elements on it."),
295 n, ctx->stack_len);
296 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
297 }
298
299 /* Return true if the expression stack is empty. */
300
301 static int
302 dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
303 {
304 return ctx->stack_len == 0;
305 }
306
307 /* Add a new piece to CTX's piece list. */
308 static void
309 add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
310 {
311 struct dwarf_expr_piece *p;
312
313 ctx->num_pieces++;
314
315 ctx->pieces = xrealloc (ctx->pieces,
316 (ctx->num_pieces
317 * sizeof (struct dwarf_expr_piece)));
318
319 p = &ctx->pieces[ctx->num_pieces - 1];
320 p->location = ctx->location;
321 p->size = size;
322 p->offset = offset;
323
324 if (p->location == DWARF_VALUE_LITERAL)
325 {
326 p->v.literal.data = ctx->data;
327 p->v.literal.length = ctx->len;
328 }
329 else if (dwarf_expr_stack_empty_p (ctx))
330 {
331 p->location = DWARF_VALUE_OPTIMIZED_OUT;
332 /* Also reset the context's location, for our callers. This is
333 a somewhat strange approach, but this lets us avoid setting
334 the location to DWARF_VALUE_MEMORY in all the individual
335 cases in the evaluator. */
336 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
337 }
338 else if (p->location == DWARF_VALUE_MEMORY)
339 {
340 p->v.mem.addr = dwarf_expr_fetch_address (ctx, 0);
341 p->v.mem.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
342 }
343 else if (p->location == DWARF_VALUE_IMPLICIT_POINTER)
344 {
345 p->v.ptr.die.cu_off = ctx->len;
346 p->v.ptr.offset = value_as_long (dwarf_expr_fetch (ctx, 0));
347 }
348 else if (p->location == DWARF_VALUE_REGISTER)
349 p->v.regno = value_as_long (dwarf_expr_fetch (ctx, 0));
350 else
351 {
352 p->v.value = dwarf_expr_fetch (ctx, 0);
353 }
354 }
355
356 /* Evaluate the expression at ADDR (LEN bytes long) using the context
357 CTX. */
358
359 void
360 dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
361 size_t len)
362 {
363 int old_recursion_depth = ctx->recursion_depth;
364
365 execute_stack_op (ctx, addr, addr + len);
366
367 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
368
369 gdb_assert (ctx->recursion_depth == old_recursion_depth);
370 }
371
372 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
373 by R, and return the new value of BUF. Verify that it doesn't extend
374 past BUF_END. R can be NULL, the constant is then only skipped. */
375
376 const gdb_byte *
377 read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, ULONGEST * r)
378 {
379 unsigned shift = 0;
380 ULONGEST result = 0;
381 gdb_byte byte;
382
383 while (1)
384 {
385 if (buf >= buf_end)
386 error (_("read_uleb128: Corrupted DWARF expression."));
387
388 byte = *buf++;
389 result |= ((ULONGEST) (byte & 0x7f)) << shift;
390 if ((byte & 0x80) == 0)
391 break;
392 shift += 7;
393 }
394 if (r)
395 *r = result;
396 return buf;
397 }
398
399 /* Decode the signed LEB128 constant at BUF into the variable pointed to
400 by R, and return the new value of BUF. Verify that it doesn't extend
401 past BUF_END. R can be NULL, the constant is then only skipped. */
402
403 const gdb_byte *
404 read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, LONGEST * r)
405 {
406 unsigned shift = 0;
407 LONGEST result = 0;
408 gdb_byte byte;
409
410 while (1)
411 {
412 if (buf >= buf_end)
413 error (_("read_sleb128: Corrupted DWARF expression."));
414
415 byte = *buf++;
416 result |= ((ULONGEST) (byte & 0x7f)) << shift;
417 shift += 7;
418 if ((byte & 0x80) == 0)
419 break;
420 }
421 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
422 result |= -(((LONGEST) 1) << shift);
423
424 if (r)
425 *r = result;
426 return buf;
427 }
428 \f
429
430 /* Check that the current operator is either at the end of an
431 expression, or that it is followed by a composition operator. */
432
433 void
434 dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
435 const char *op_name)
436 {
437 /* It seems like DW_OP_GNU_uninit should be handled here. However,
438 it doesn't seem to make sense for DW_OP_*_value, and it was not
439 checked at the other place that this function is called. */
440 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
441 error (_("DWARF-2 expression error: `%s' operations must be "
442 "used either alone or in conjunction with DW_OP_piece "
443 "or DW_OP_bit_piece."),
444 op_name);
445 }
446
447 /* Return true iff the types T1 and T2 are "the same". This only does
448 checks that might reasonably be needed to compare DWARF base
449 types. */
450
451 static int
452 base_types_equal_p (struct type *t1, struct type *t2)
453 {
454 if (TYPE_CODE (t1) != TYPE_CODE (t2))
455 return 0;
456 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
457 return 0;
458 return TYPE_LENGTH (t1) == TYPE_LENGTH (t2);
459 }
460
461 /* A convenience function to call get_base_type on CTX and return the
462 result. DIE is the DIE whose type we need. SIZE is non-zero if
463 this function should verify that the resulting type has the correct
464 size. */
465
466 static struct type *
467 dwarf_get_base_type (struct dwarf_expr_context *ctx, cu_offset die, int size)
468 {
469 struct type *result;
470
471 if (ctx->funcs->get_base_type)
472 {
473 result = ctx->funcs->get_base_type (ctx, die);
474 if (result == NULL)
475 error (_("Could not find type for DW_OP_GNU_const_type"));
476 if (size != 0 && TYPE_LENGTH (result) != size)
477 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
478 }
479 else
480 /* Anything will do. */
481 result = builtin_type (ctx->gdbarch)->builtin_int;
482
483 return result;
484 }
485
486 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_reg* return the
487 DWARF register number. Otherwise return -1. */
488
489 int
490 dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end)
491 {
492 ULONGEST dwarf_reg;
493
494 if (buf_end <= buf)
495 return -1;
496 if (*buf >= DW_OP_reg0 && *buf <= DW_OP_reg31)
497 {
498 if (buf_end - buf != 1)
499 return -1;
500 return *buf - DW_OP_reg0;
501 }
502
503 if (*buf == DW_OP_GNU_regval_type)
504 {
505 buf++;
506 buf = read_uleb128 (buf, buf_end, &dwarf_reg);
507 buf = read_uleb128 (buf, buf_end, NULL);
508 }
509 else if (*buf == DW_OP_regx)
510 {
511 buf++;
512 buf = read_uleb128 (buf, buf_end, &dwarf_reg);
513 }
514 else
515 return -1;
516 if (buf != buf_end || (int) dwarf_reg != dwarf_reg)
517 return -1;
518 return dwarf_reg;
519 }
520
521 /* If <BUF..BUF_END] contains DW_FORM_block* with just DW_OP_breg*(0) and
522 DW_OP_deref* return the DWARF register number. Otherwise return -1.
523 DEREF_SIZE_RETURN contains -1 for DW_OP_deref; otherwise it contains the
524 size from DW_OP_deref_size. */
525
526 int
527 dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf, const gdb_byte *buf_end,
528 CORE_ADDR *deref_size_return)
529 {
530 ULONGEST dwarf_reg;
531 LONGEST offset;
532
533 if (buf_end <= buf)
534 return -1;
535 if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
536 {
537 dwarf_reg = *buf - DW_OP_breg0;
538 buf++;
539 }
540 else if (*buf == DW_OP_bregx)
541 {
542 buf++;
543 buf = read_uleb128 (buf, buf_end, &dwarf_reg);
544 if ((int) dwarf_reg != dwarf_reg)
545 return -1;
546 }
547 else
548 return -1;
549
550 buf = read_sleb128 (buf, buf_end, &offset);
551 if (offset != 0)
552 return -1;
553
554 if (buf >= buf_end)
555 return -1;
556
557 if (*buf == DW_OP_deref)
558 {
559 buf++;
560 *deref_size_return = -1;
561 }
562 else if (*buf == DW_OP_deref_size)
563 {
564 buf++;
565 if (buf >= buf_end)
566 return -1;
567 *deref_size_return = *buf++;
568 }
569 else
570 return -1;
571
572 if (buf != buf_end)
573 return -1;
574
575 return dwarf_reg;
576 }
577
578 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_fbreg(X) fill
579 in FB_OFFSET_RETURN with the X offset and return 1. Otherwise return 0. */
580
581 int
582 dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
583 CORE_ADDR *fb_offset_return)
584 {
585 LONGEST fb_offset;
586
587 if (buf_end <= buf)
588 return 0;
589
590 if (*buf != DW_OP_fbreg)
591 return 0;
592 buf++;
593
594 buf = read_sleb128 (buf, buf_end, &fb_offset);
595 *fb_offset_return = fb_offset;
596 if (buf != buf_end || fb_offset != (LONGEST) *fb_offset_return)
597 return 0;
598
599 return 1;
600 }
601
602 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_bregSP(X) fill
603 in SP_OFFSET_RETURN with the X offset and return 1. Otherwise return 0.
604 The matched SP register number depends on GDBARCH. */
605
606 int
607 dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
608 const gdb_byte *buf_end, CORE_ADDR *sp_offset_return)
609 {
610 ULONGEST dwarf_reg;
611 LONGEST sp_offset;
612
613 if (buf_end <= buf)
614 return 0;
615 if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
616 {
617 dwarf_reg = *buf - DW_OP_breg0;
618 buf++;
619 }
620 else
621 {
622 if (*buf != DW_OP_bregx)
623 return 0;
624 buf++;
625 buf = read_uleb128 (buf, buf_end, &dwarf_reg);
626 }
627
628 if (gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_reg)
629 != gdbarch_sp_regnum (gdbarch))
630 return 0;
631
632 buf = read_sleb128 (buf, buf_end, &sp_offset);
633 *sp_offset_return = sp_offset;
634 if (buf != buf_end || sp_offset != (LONGEST) *sp_offset_return)
635 return 0;
636
637 return 1;
638 }
639
640 /* The engine for the expression evaluator. Using the context in CTX,
641 evaluate the expression between OP_PTR and OP_END. */
642
643 static void
644 execute_stack_op (struct dwarf_expr_context *ctx,
645 const gdb_byte *op_ptr, const gdb_byte *op_end)
646 {
647 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
648 /* Old-style "untyped" DWARF values need special treatment in a
649 couple of places, specifically DW_OP_mod and DW_OP_shr. We need
650 a special type for these values so we can distinguish them from
651 values that have an explicit type, because explicitly-typed
652 values do not need special treatment. This special type must be
653 different (in the `==' sense) from any base type coming from the
654 CU. */
655 struct type *address_type = dwarf_expr_address_type (ctx);
656
657 ctx->location = DWARF_VALUE_MEMORY;
658 ctx->initialized = 1; /* Default is initialized. */
659
660 if (ctx->recursion_depth > ctx->max_recursion_depth)
661 error (_("DWARF-2 expression error: Loop detected (%d)."),
662 ctx->recursion_depth);
663 ctx->recursion_depth++;
664
665 while (op_ptr < op_end)
666 {
667 enum dwarf_location_atom op = *op_ptr++;
668 ULONGEST result;
669 /* Assume the value is not in stack memory.
670 Code that knows otherwise sets this to 1.
671 Some arithmetic on stack addresses can probably be assumed to still
672 be a stack address, but we skip this complication for now.
673 This is just an optimization, so it's always ok to punt
674 and leave this as 0. */
675 int in_stack_memory = 0;
676 ULONGEST uoffset, reg;
677 LONGEST offset;
678 struct value *result_val = NULL;
679
680 /* The DWARF expression might have a bug causing an infinite
681 loop. In that case, quitting is the only way out. */
682 QUIT;
683
684 switch (op)
685 {
686 case DW_OP_lit0:
687 case DW_OP_lit1:
688 case DW_OP_lit2:
689 case DW_OP_lit3:
690 case DW_OP_lit4:
691 case DW_OP_lit5:
692 case DW_OP_lit6:
693 case DW_OP_lit7:
694 case DW_OP_lit8:
695 case DW_OP_lit9:
696 case DW_OP_lit10:
697 case DW_OP_lit11:
698 case DW_OP_lit12:
699 case DW_OP_lit13:
700 case DW_OP_lit14:
701 case DW_OP_lit15:
702 case DW_OP_lit16:
703 case DW_OP_lit17:
704 case DW_OP_lit18:
705 case DW_OP_lit19:
706 case DW_OP_lit20:
707 case DW_OP_lit21:
708 case DW_OP_lit22:
709 case DW_OP_lit23:
710 case DW_OP_lit24:
711 case DW_OP_lit25:
712 case DW_OP_lit26:
713 case DW_OP_lit27:
714 case DW_OP_lit28:
715 case DW_OP_lit29:
716 case DW_OP_lit30:
717 case DW_OP_lit31:
718 result = op - DW_OP_lit0;
719 result_val = value_from_ulongest (address_type, result);
720 break;
721
722 case DW_OP_addr:
723 result = extract_unsigned_integer (op_ptr,
724 ctx->addr_size, byte_order);
725 op_ptr += ctx->addr_size;
726 /* Some versions of GCC emit DW_OP_addr before
727 DW_OP_GNU_push_tls_address. In this case the value is an
728 index, not an address. We don't support things like
729 branching between the address and the TLS op. */
730 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
731 result += ctx->offset;
732 result_val = value_from_ulongest (address_type, result);
733 break;
734
735 case DW_OP_const1u:
736 result = extract_unsigned_integer (op_ptr, 1, byte_order);
737 result_val = value_from_ulongest (address_type, result);
738 op_ptr += 1;
739 break;
740 case DW_OP_const1s:
741 result = extract_signed_integer (op_ptr, 1, byte_order);
742 result_val = value_from_ulongest (address_type, result);
743 op_ptr += 1;
744 break;
745 case DW_OP_const2u:
746 result = extract_unsigned_integer (op_ptr, 2, byte_order);
747 result_val = value_from_ulongest (address_type, result);
748 op_ptr += 2;
749 break;
750 case DW_OP_const2s:
751 result = extract_signed_integer (op_ptr, 2, byte_order);
752 result_val = value_from_ulongest (address_type, result);
753 op_ptr += 2;
754 break;
755 case DW_OP_const4u:
756 result = extract_unsigned_integer (op_ptr, 4, byte_order);
757 result_val = value_from_ulongest (address_type, result);
758 op_ptr += 4;
759 break;
760 case DW_OP_const4s:
761 result = extract_signed_integer (op_ptr, 4, byte_order);
762 result_val = value_from_ulongest (address_type, result);
763 op_ptr += 4;
764 break;
765 case DW_OP_const8u:
766 result = extract_unsigned_integer (op_ptr, 8, byte_order);
767 result_val = value_from_ulongest (address_type, result);
768 op_ptr += 8;
769 break;
770 case DW_OP_const8s:
771 result = extract_signed_integer (op_ptr, 8, byte_order);
772 result_val = value_from_ulongest (address_type, result);
773 op_ptr += 8;
774 break;
775 case DW_OP_constu:
776 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
777 result = uoffset;
778 result_val = value_from_ulongest (address_type, result);
779 break;
780 case DW_OP_consts:
781 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
782 result = offset;
783 result_val = value_from_ulongest (address_type, result);
784 break;
785
786 /* The DW_OP_reg operations are required to occur alone in
787 location expressions. */
788 case DW_OP_reg0:
789 case DW_OP_reg1:
790 case DW_OP_reg2:
791 case DW_OP_reg3:
792 case DW_OP_reg4:
793 case DW_OP_reg5:
794 case DW_OP_reg6:
795 case DW_OP_reg7:
796 case DW_OP_reg8:
797 case DW_OP_reg9:
798 case DW_OP_reg10:
799 case DW_OP_reg11:
800 case DW_OP_reg12:
801 case DW_OP_reg13:
802 case DW_OP_reg14:
803 case DW_OP_reg15:
804 case DW_OP_reg16:
805 case DW_OP_reg17:
806 case DW_OP_reg18:
807 case DW_OP_reg19:
808 case DW_OP_reg20:
809 case DW_OP_reg21:
810 case DW_OP_reg22:
811 case DW_OP_reg23:
812 case DW_OP_reg24:
813 case DW_OP_reg25:
814 case DW_OP_reg26:
815 case DW_OP_reg27:
816 case DW_OP_reg28:
817 case DW_OP_reg29:
818 case DW_OP_reg30:
819 case DW_OP_reg31:
820 if (op_ptr != op_end
821 && *op_ptr != DW_OP_piece
822 && *op_ptr != DW_OP_bit_piece
823 && *op_ptr != DW_OP_GNU_uninit)
824 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
825 "used either alone or in conjunction with DW_OP_piece "
826 "or DW_OP_bit_piece."));
827
828 result = op - DW_OP_reg0;
829 result_val = value_from_ulongest (address_type, result);
830 ctx->location = DWARF_VALUE_REGISTER;
831 break;
832
833 case DW_OP_regx:
834 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
835 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
836
837 result = reg;
838 result_val = value_from_ulongest (address_type, result);
839 ctx->location = DWARF_VALUE_REGISTER;
840 break;
841
842 case DW_OP_implicit_value:
843 {
844 ULONGEST len;
845
846 op_ptr = read_uleb128 (op_ptr, op_end, &len);
847 if (op_ptr + len > op_end)
848 error (_("DW_OP_implicit_value: too few bytes available."));
849 ctx->len = len;
850 ctx->data = op_ptr;
851 ctx->location = DWARF_VALUE_LITERAL;
852 op_ptr += len;
853 dwarf_expr_require_composition (op_ptr, op_end,
854 "DW_OP_implicit_value");
855 }
856 goto no_push;
857
858 case DW_OP_stack_value:
859 ctx->location = DWARF_VALUE_STACK;
860 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
861 goto no_push;
862
863 case DW_OP_GNU_implicit_pointer:
864 {
865 ULONGEST die;
866 LONGEST len;
867
868 if (ctx->ref_addr_size == -1)
869 error (_("DWARF-2 expression error: DW_OP_GNU_implicit_pointer "
870 "is not allowed in frame context"));
871
872 /* The referred-to DIE of cu_offset kind. */
873 ctx->len = extract_unsigned_integer (op_ptr, ctx->ref_addr_size,
874 byte_order);
875 op_ptr += ctx->ref_addr_size;
876
877 /* The byte offset into the data. */
878 op_ptr = read_sleb128 (op_ptr, op_end, &len);
879 result = (ULONGEST) len;
880 result_val = value_from_ulongest (address_type, result);
881
882 ctx->location = DWARF_VALUE_IMPLICIT_POINTER;
883 dwarf_expr_require_composition (op_ptr, op_end,
884 "DW_OP_GNU_implicit_pointer");
885 }
886 break;
887
888 case DW_OP_breg0:
889 case DW_OP_breg1:
890 case DW_OP_breg2:
891 case DW_OP_breg3:
892 case DW_OP_breg4:
893 case DW_OP_breg5:
894 case DW_OP_breg6:
895 case DW_OP_breg7:
896 case DW_OP_breg8:
897 case DW_OP_breg9:
898 case DW_OP_breg10:
899 case DW_OP_breg11:
900 case DW_OP_breg12:
901 case DW_OP_breg13:
902 case DW_OP_breg14:
903 case DW_OP_breg15:
904 case DW_OP_breg16:
905 case DW_OP_breg17:
906 case DW_OP_breg18:
907 case DW_OP_breg19:
908 case DW_OP_breg20:
909 case DW_OP_breg21:
910 case DW_OP_breg22:
911 case DW_OP_breg23:
912 case DW_OP_breg24:
913 case DW_OP_breg25:
914 case DW_OP_breg26:
915 case DW_OP_breg27:
916 case DW_OP_breg28:
917 case DW_OP_breg29:
918 case DW_OP_breg30:
919 case DW_OP_breg31:
920 {
921 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
922 result = (ctx->funcs->read_reg) (ctx->baton, op - DW_OP_breg0);
923 result += offset;
924 result_val = value_from_ulongest (address_type, result);
925 }
926 break;
927 case DW_OP_bregx:
928 {
929 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
930 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
931 result = (ctx->funcs->read_reg) (ctx->baton, reg);
932 result += offset;
933 result_val = value_from_ulongest (address_type, result);
934 }
935 break;
936 case DW_OP_fbreg:
937 {
938 const gdb_byte *datastart;
939 size_t datalen;
940 unsigned int before_stack_len;
941
942 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
943 /* Rather than create a whole new context, we simply
944 record the stack length before execution, then reset it
945 afterwards, effectively erasing whatever the recursive
946 call put there. */
947 before_stack_len = ctx->stack_len;
948 /* FIXME: cagney/2003-03-26: This code should be using
949 get_frame_base_address(), and then implement a dwarf2
950 specific this_base method. */
951 (ctx->funcs->get_frame_base) (ctx->baton, &datastart, &datalen);
952 dwarf_expr_eval (ctx, datastart, datalen);
953 if (ctx->location == DWARF_VALUE_MEMORY)
954 result = dwarf_expr_fetch_address (ctx, 0);
955 else if (ctx->location == DWARF_VALUE_REGISTER)
956 result = (ctx->funcs->read_reg) (ctx->baton,
957 value_as_long (dwarf_expr_fetch (ctx, 0)));
958 else
959 error (_("Not implemented: computing frame "
960 "base using explicit value operator"));
961 result = result + offset;
962 result_val = value_from_ulongest (address_type, result);
963 in_stack_memory = 1;
964 ctx->stack_len = before_stack_len;
965 ctx->location = DWARF_VALUE_MEMORY;
966 }
967 break;
968
969 case DW_OP_dup:
970 result_val = dwarf_expr_fetch (ctx, 0);
971 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
972 break;
973
974 case DW_OP_drop:
975 dwarf_expr_pop (ctx);
976 goto no_push;
977
978 case DW_OP_pick:
979 offset = *op_ptr++;
980 result_val = dwarf_expr_fetch (ctx, offset);
981 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
982 break;
983
984 case DW_OP_swap:
985 {
986 struct dwarf_stack_value t1, t2;
987
988 if (ctx->stack_len < 2)
989 error (_("Not enough elements for "
990 "DW_OP_swap. Need 2, have %d."),
991 ctx->stack_len);
992 t1 = ctx->stack[ctx->stack_len - 1];
993 t2 = ctx->stack[ctx->stack_len - 2];
994 ctx->stack[ctx->stack_len - 1] = t2;
995 ctx->stack[ctx->stack_len - 2] = t1;
996 goto no_push;
997 }
998
999 case DW_OP_over:
1000 result_val = dwarf_expr_fetch (ctx, 1);
1001 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
1002 break;
1003
1004 case DW_OP_rot:
1005 {
1006 struct dwarf_stack_value t1, t2, t3;
1007
1008 if (ctx->stack_len < 3)
1009 error (_("Not enough elements for "
1010 "DW_OP_rot. Need 3, have %d."),
1011 ctx->stack_len);
1012 t1 = ctx->stack[ctx->stack_len - 1];
1013 t2 = ctx->stack[ctx->stack_len - 2];
1014 t3 = ctx->stack[ctx->stack_len - 3];
1015 ctx->stack[ctx->stack_len - 1] = t2;
1016 ctx->stack[ctx->stack_len - 2] = t3;
1017 ctx->stack[ctx->stack_len - 3] = t1;
1018 goto no_push;
1019 }
1020
1021 case DW_OP_deref:
1022 case DW_OP_deref_size:
1023 case DW_OP_GNU_deref_type:
1024 {
1025 int addr_size = (op == DW_OP_deref ? ctx->addr_size : *op_ptr++);
1026 gdb_byte *buf = alloca (addr_size);
1027 CORE_ADDR addr = dwarf_expr_fetch_address (ctx, 0);
1028 struct type *type;
1029
1030 dwarf_expr_pop (ctx);
1031
1032 if (op == DW_OP_GNU_deref_type)
1033 {
1034 cu_offset type_die;
1035
1036 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1037 type_die.cu_off = uoffset;
1038 type = dwarf_get_base_type (ctx, type_die, 0);
1039 }
1040 else
1041 type = address_type;
1042
1043 (ctx->funcs->read_mem) (ctx->baton, buf, addr, addr_size);
1044
1045 /* If the size of the object read from memory is different
1046 from the type length, we need to zero-extend it. */
1047 if (TYPE_LENGTH (type) != addr_size)
1048 {
1049 ULONGEST result =
1050 extract_unsigned_integer (buf, addr_size, byte_order);
1051
1052 buf = alloca (TYPE_LENGTH (type));
1053 store_unsigned_integer (buf, TYPE_LENGTH (type),
1054 byte_order, result);
1055 }
1056
1057 result_val = value_from_contents_and_address (type, buf, addr);
1058 break;
1059 }
1060
1061 case DW_OP_abs:
1062 case DW_OP_neg:
1063 case DW_OP_not:
1064 case DW_OP_plus_uconst:
1065 {
1066 /* Unary operations. */
1067 result_val = dwarf_expr_fetch (ctx, 0);
1068 dwarf_expr_pop (ctx);
1069
1070 switch (op)
1071 {
1072 case DW_OP_abs:
1073 if (value_less (result_val,
1074 value_zero (value_type (result_val), not_lval)))
1075 result_val = value_neg (result_val);
1076 break;
1077 case DW_OP_neg:
1078 result_val = value_neg (result_val);
1079 break;
1080 case DW_OP_not:
1081 dwarf_require_integral (value_type (result_val));
1082 result_val = value_complement (result_val);
1083 break;
1084 case DW_OP_plus_uconst:
1085 dwarf_require_integral (value_type (result_val));
1086 result = value_as_long (result_val);
1087 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1088 result += reg;
1089 result_val = value_from_ulongest (address_type, result);
1090 break;
1091 }
1092 }
1093 break;
1094
1095 case DW_OP_and:
1096 case DW_OP_div:
1097 case DW_OP_minus:
1098 case DW_OP_mod:
1099 case DW_OP_mul:
1100 case DW_OP_or:
1101 case DW_OP_plus:
1102 case DW_OP_shl:
1103 case DW_OP_shr:
1104 case DW_OP_shra:
1105 case DW_OP_xor:
1106 case DW_OP_le:
1107 case DW_OP_ge:
1108 case DW_OP_eq:
1109 case DW_OP_lt:
1110 case DW_OP_gt:
1111 case DW_OP_ne:
1112 {
1113 /* Binary operations. */
1114 struct value *first, *second;
1115
1116 second = dwarf_expr_fetch (ctx, 0);
1117 dwarf_expr_pop (ctx);
1118
1119 first = dwarf_expr_fetch (ctx, 0);
1120 dwarf_expr_pop (ctx);
1121
1122 if (! base_types_equal_p (value_type (first), value_type (second)))
1123 error (_("Incompatible types on DWARF stack"));
1124
1125 switch (op)
1126 {
1127 case DW_OP_and:
1128 dwarf_require_integral (value_type (first));
1129 dwarf_require_integral (value_type (second));
1130 result_val = value_binop (first, second, BINOP_BITWISE_AND);
1131 break;
1132 case DW_OP_div:
1133 result_val = value_binop (first, second, BINOP_DIV);
1134 break;
1135 case DW_OP_minus:
1136 result_val = value_binop (first, second, BINOP_SUB);
1137 break;
1138 case DW_OP_mod:
1139 {
1140 int cast_back = 0;
1141 struct type *orig_type = value_type (first);
1142
1143 /* We have to special-case "old-style" untyped values
1144 -- these must have mod computed using unsigned
1145 math. */
1146 if (orig_type == address_type)
1147 {
1148 struct type *utype
1149 = get_unsigned_type (ctx->gdbarch, orig_type);
1150
1151 cast_back = 1;
1152 first = value_cast (utype, first);
1153 second = value_cast (utype, second);
1154 }
1155 /* Note that value_binop doesn't handle float or
1156 decimal float here. This seems unimportant. */
1157 result_val = value_binop (first, second, BINOP_MOD);
1158 if (cast_back)
1159 result_val = value_cast (orig_type, result_val);
1160 }
1161 break;
1162 case DW_OP_mul:
1163 result_val = value_binop (first, second, BINOP_MUL);
1164 break;
1165 case DW_OP_or:
1166 dwarf_require_integral (value_type (first));
1167 dwarf_require_integral (value_type (second));
1168 result_val = value_binop (first, second, BINOP_BITWISE_IOR);
1169 break;
1170 case DW_OP_plus:
1171 result_val = value_binop (first, second, BINOP_ADD);
1172 break;
1173 case DW_OP_shl:
1174 dwarf_require_integral (value_type (first));
1175 dwarf_require_integral (value_type (second));
1176 result_val = value_binop (first, second, BINOP_LSH);
1177 break;
1178 case DW_OP_shr:
1179 dwarf_require_integral (value_type (first));
1180 dwarf_require_integral (value_type (second));
1181 if (!TYPE_UNSIGNED (value_type (first)))
1182 {
1183 struct type *utype
1184 = get_unsigned_type (ctx->gdbarch, value_type (first));
1185
1186 first = value_cast (utype, first);
1187 }
1188
1189 result_val = value_binop (first, second, BINOP_RSH);
1190 /* Make sure we wind up with the same type we started
1191 with. */
1192 if (value_type (result_val) != value_type (second))
1193 result_val = value_cast (value_type (second), result_val);
1194 break;
1195 case DW_OP_shra:
1196 dwarf_require_integral (value_type (first));
1197 dwarf_require_integral (value_type (second));
1198 if (TYPE_UNSIGNED (value_type (first)))
1199 {
1200 struct type *stype
1201 = get_signed_type (ctx->gdbarch, value_type (first));
1202
1203 first = value_cast (stype, first);
1204 }
1205
1206 result_val = value_binop (first, second, BINOP_RSH);
1207 /* Make sure we wind up with the same type we started
1208 with. */
1209 if (value_type (result_val) != value_type (second))
1210 result_val = value_cast (value_type (second), result_val);
1211 break;
1212 case DW_OP_xor:
1213 dwarf_require_integral (value_type (first));
1214 dwarf_require_integral (value_type (second));
1215 result_val = value_binop (first, second, BINOP_BITWISE_XOR);
1216 break;
1217 case DW_OP_le:
1218 /* A <= B is !(B < A). */
1219 result = ! value_less (second, first);
1220 result_val = value_from_ulongest (address_type, result);
1221 break;
1222 case DW_OP_ge:
1223 /* A >= B is !(A < B). */
1224 result = ! value_less (first, second);
1225 result_val = value_from_ulongest (address_type, result);
1226 break;
1227 case DW_OP_eq:
1228 result = value_equal (first, second);
1229 result_val = value_from_ulongest (address_type, result);
1230 break;
1231 case DW_OP_lt:
1232 result = value_less (first, second);
1233 result_val = value_from_ulongest (address_type, result);
1234 break;
1235 case DW_OP_gt:
1236 /* A > B is B < A. */
1237 result = value_less (second, first);
1238 result_val = value_from_ulongest (address_type, result);
1239 break;
1240 case DW_OP_ne:
1241 result = ! value_equal (first, second);
1242 result_val = value_from_ulongest (address_type, result);
1243 break;
1244 default:
1245 internal_error (__FILE__, __LINE__,
1246 _("Can't be reached."));
1247 }
1248 }
1249 break;
1250
1251 case DW_OP_call_frame_cfa:
1252 result = (ctx->funcs->get_frame_cfa) (ctx->baton);
1253 result_val = value_from_ulongest (address_type, result);
1254 in_stack_memory = 1;
1255 break;
1256
1257 case DW_OP_GNU_push_tls_address:
1258 /* Variable is at a constant offset in the thread-local
1259 storage block into the objfile for the current thread and
1260 the dynamic linker module containing this expression. Here
1261 we return returns the offset from that base. The top of the
1262 stack has the offset from the beginning of the thread
1263 control block at which the variable is located. Nothing
1264 should follow this operator, so the top of stack would be
1265 returned. */
1266 result = value_as_long (dwarf_expr_fetch (ctx, 0));
1267 dwarf_expr_pop (ctx);
1268 result = (ctx->funcs->get_tls_address) (ctx->baton, result);
1269 result_val = value_from_ulongest (address_type, result);
1270 break;
1271
1272 case DW_OP_skip:
1273 offset = extract_signed_integer (op_ptr, 2, byte_order);
1274 op_ptr += 2;
1275 op_ptr += offset;
1276 goto no_push;
1277
1278 case DW_OP_bra:
1279 {
1280 struct value *val;
1281
1282 offset = extract_signed_integer (op_ptr, 2, byte_order);
1283 op_ptr += 2;
1284 val = dwarf_expr_fetch (ctx, 0);
1285 dwarf_require_integral (value_type (val));
1286 if (value_as_long (val) != 0)
1287 op_ptr += offset;
1288 dwarf_expr_pop (ctx);
1289 }
1290 goto no_push;
1291
1292 case DW_OP_nop:
1293 goto no_push;
1294
1295 case DW_OP_piece:
1296 {
1297 ULONGEST size;
1298
1299 /* Record the piece. */
1300 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1301 add_piece (ctx, 8 * size, 0);
1302
1303 /* Pop off the address/regnum, and reset the location
1304 type. */
1305 if (ctx->location != DWARF_VALUE_LITERAL
1306 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1307 dwarf_expr_pop (ctx);
1308 ctx->location = DWARF_VALUE_MEMORY;
1309 }
1310 goto no_push;
1311
1312 case DW_OP_bit_piece:
1313 {
1314 ULONGEST size, offset;
1315
1316 /* Record the piece. */
1317 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1318 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
1319 add_piece (ctx, size, offset);
1320
1321 /* Pop off the address/regnum, and reset the location
1322 type. */
1323 if (ctx->location != DWARF_VALUE_LITERAL
1324 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1325 dwarf_expr_pop (ctx);
1326 ctx->location = DWARF_VALUE_MEMORY;
1327 }
1328 goto no_push;
1329
1330 case DW_OP_GNU_uninit:
1331 if (op_ptr != op_end)
1332 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
1333 "be the very last op."));
1334
1335 ctx->initialized = 0;
1336 goto no_push;
1337
1338 case DW_OP_call2:
1339 {
1340 cu_offset offset;
1341
1342 offset.cu_off = extract_unsigned_integer (op_ptr, 2, byte_order);
1343 op_ptr += 2;
1344 ctx->funcs->dwarf_call (ctx, offset);
1345 }
1346 goto no_push;
1347
1348 case DW_OP_call4:
1349 {
1350 cu_offset offset;
1351
1352 offset.cu_off = extract_unsigned_integer (op_ptr, 4, byte_order);
1353 op_ptr += 4;
1354 ctx->funcs->dwarf_call (ctx, offset);
1355 }
1356 goto no_push;
1357
1358 case DW_OP_GNU_entry_value:
1359 {
1360 ULONGEST len;
1361 int dwarf_reg;
1362 CORE_ADDR deref_size;
1363
1364 op_ptr = read_uleb128 (op_ptr, op_end, &len);
1365 if (op_ptr + len > op_end)
1366 error (_("DW_OP_GNU_entry_value: too few bytes available."));
1367
1368 dwarf_reg = dwarf_block_to_dwarf_reg (op_ptr, op_ptr + len);
1369 if (dwarf_reg != -1)
1370 {
1371 op_ptr += len;
1372 ctx->funcs->push_dwarf_reg_entry_value (ctx, dwarf_reg,
1373 0 /* unused */,
1374 -1 /* deref_size */);
1375 goto no_push;
1376 }
1377
1378 dwarf_reg = dwarf_block_to_dwarf_reg_deref (op_ptr, op_ptr + len,
1379 &deref_size);
1380 if (dwarf_reg != -1)
1381 {
1382 if (deref_size == -1)
1383 deref_size = ctx->addr_size;
1384 op_ptr += len;
1385 ctx->funcs->push_dwarf_reg_entry_value (ctx, dwarf_reg,
1386 0 /* unused */,
1387 deref_size);
1388 goto no_push;
1389 }
1390
1391 error (_("DWARF-2 expression error: DW_OP_GNU_entry_value is "
1392 "supported only for single DW_OP_reg* "
1393 "or for DW_OP_breg*(0)+DW_OP_deref*"));
1394 }
1395
1396 case DW_OP_GNU_const_type:
1397 {
1398 cu_offset type_die;
1399 int n;
1400 const gdb_byte *data;
1401 struct type *type;
1402
1403 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1404 type_die.cu_off = uoffset;
1405 n = *op_ptr++;
1406 data = op_ptr;
1407 op_ptr += n;
1408
1409 type = dwarf_get_base_type (ctx, type_die, n);
1410 result_val = value_from_contents (type, data);
1411 }
1412 break;
1413
1414 case DW_OP_GNU_regval_type:
1415 {
1416 cu_offset type_die;
1417 struct type *type;
1418
1419 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1420 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1421 type_die.cu_off = uoffset;
1422
1423 type = dwarf_get_base_type (ctx, type_die, 0);
1424 result = (ctx->funcs->read_reg) (ctx->baton, reg);
1425 result_val = value_from_ulongest (address_type, result);
1426 result_val = value_from_contents (type,
1427 value_contents_all (result_val));
1428 }
1429 break;
1430
1431 case DW_OP_GNU_convert:
1432 case DW_OP_GNU_reinterpret:
1433 {
1434 cu_offset type_die;
1435 struct type *type;
1436
1437 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1438 type_die.cu_off = uoffset;
1439
1440 if (type_die.cu_off == 0)
1441 type = address_type;
1442 else
1443 type = dwarf_get_base_type (ctx, type_die, 0);
1444
1445 result_val = dwarf_expr_fetch (ctx, 0);
1446 dwarf_expr_pop (ctx);
1447
1448 if (op == DW_OP_GNU_convert)
1449 result_val = value_cast (type, result_val);
1450 else if (type == value_type (result_val))
1451 {
1452 /* Nothing. */
1453 }
1454 else if (TYPE_LENGTH (type)
1455 != TYPE_LENGTH (value_type (result_val)))
1456 error (_("DW_OP_GNU_reinterpret has wrong size"));
1457 else
1458 result_val
1459 = value_from_contents (type,
1460 value_contents_all (result_val));
1461 }
1462 break;
1463
1464 default:
1465 error (_("Unhandled dwarf expression opcode 0x%x"), op);
1466 }
1467
1468 /* Most things push a result value. */
1469 gdb_assert (result_val != NULL);
1470 dwarf_expr_push (ctx, result_val, in_stack_memory);
1471 no_push:
1472 ;
1473 }
1474
1475 /* To simplify our main caller, if the result is an implicit
1476 pointer, then make a pieced value. This is ok because we can't
1477 have implicit pointers in contexts where pieces are invalid. */
1478 if (ctx->location == DWARF_VALUE_IMPLICIT_POINTER)
1479 add_piece (ctx, 8 * ctx->addr_size, 0);
1480
1481 abort_expression:
1482 ctx->recursion_depth--;
1483 gdb_assert (ctx->recursion_depth >= 0);
1484 }
1485
1486 /* Stub dwarf_expr_context_funcs.get_frame_base implementation. */
1487
1488 void
1489 ctx_no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
1490 {
1491 error (_("%s is invalid in this context"), "DW_OP_fbreg");
1492 }
1493
1494 /* Stub dwarf_expr_context_funcs.get_frame_cfa implementation. */
1495
1496 CORE_ADDR
1497 ctx_no_get_frame_cfa (void *baton)
1498 {
1499 error (_("%s is invalid in this context"), "DW_OP_call_frame_cfa");
1500 }
1501
1502 /* Stub dwarf_expr_context_funcs.get_frame_pc implementation. */
1503
1504 CORE_ADDR
1505 ctx_no_get_frame_pc (void *baton)
1506 {
1507 error (_("%s is invalid in this context"), "DW_OP_GNU_implicit_pointer");
1508 }
1509
1510 /* Stub dwarf_expr_context_funcs.get_tls_address implementation. */
1511
1512 CORE_ADDR
1513 ctx_no_get_tls_address (void *baton, CORE_ADDR offset)
1514 {
1515 error (_("%s is invalid in this context"), "DW_OP_GNU_push_tls_address");
1516 }
1517
1518 /* Stub dwarf_expr_context_funcs.dwarf_call implementation. */
1519
1520 void
1521 ctx_no_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
1522 {
1523 error (_("%s is invalid in this context"), "DW_OP_call*");
1524 }
1525
1526 /* Stub dwarf_expr_context_funcs.get_base_type implementation. */
1527
1528 struct type *
1529 ctx_no_get_base_type (struct dwarf_expr_context *ctx, cu_offset die)
1530 {
1531 error (_("Support for typed DWARF is not supported in this context"));
1532 }
1533
1534 /* Stub dwarf_expr_context_funcs.push_dwarf_block_entry_value
1535 implementation. */
1536
1537 void
1538 ctx_no_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1539 int dwarf_reg, CORE_ADDR fb_offset,
1540 int deref_size)
1541 {
1542 internal_error (__FILE__, __LINE__,
1543 _("Support for DW_OP_GNU_entry_value is unimplemented"));
1544 }
1545
1546 /* Provide a prototype to silence -Wmissing-prototypes. */
1547 extern initialize_file_ftype _initialize_dwarf2expr;
1548
1549 void
1550 _initialize_dwarf2expr (void)
1551 {
1552 dwarf_arch_cookie
1553 = gdbarch_data_register_post_init (dwarf_gdbarch_types_init);
1554 }
This page took 0.062336 seconds and 4 git commands to generate.