ed21edfaf94b9d7c27f9c23d087b090021fb1014
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
1 /* DWARF 2 Expression Evaluator.
2
3 Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Contributed by Daniel Berlin (dan@dberlin.org)
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "dwarf2.h"
29 #include "dwarf2expr.h"
30 #include "gdb_assert.h"
31
32 /* Local prototypes. */
33
34 static void execute_stack_op (struct dwarf_expr_context *,
35 gdb_byte *, gdb_byte *);
36 static struct type *unsigned_address_type (struct gdbarch *, int);
37
38 /* Create a new context for the expression evaluator. */
39
40 struct dwarf_expr_context *
41 new_dwarf_expr_context (void)
42 {
43 struct dwarf_expr_context *retval;
44 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
45 retval->stack_len = 0;
46 retval->stack_allocated = 10;
47 retval->stack = xmalloc (retval->stack_allocated
48 * sizeof (struct dwarf_stack_value));
49 retval->num_pieces = 0;
50 retval->pieces = 0;
51 retval->max_recursion_depth = 0x100;
52 return retval;
53 }
54
55 /* Release the memory allocated to CTX. */
56
57 void
58 free_dwarf_expr_context (struct dwarf_expr_context *ctx)
59 {
60 xfree (ctx->stack);
61 xfree (ctx->pieces);
62 xfree (ctx);
63 }
64
65 /* Helper for make_cleanup_free_dwarf_expr_context. */
66
67 static void
68 free_dwarf_expr_context_cleanup (void *arg)
69 {
70 free_dwarf_expr_context (arg);
71 }
72
73 /* Return a cleanup that calls free_dwarf_expr_context. */
74
75 struct cleanup *
76 make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
77 {
78 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
79 }
80
81 /* Expand the memory allocated to CTX's stack to contain at least
82 NEED more elements than are currently used. */
83
84 static void
85 dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
86 {
87 if (ctx->stack_len + need > ctx->stack_allocated)
88 {
89 size_t newlen = ctx->stack_len + need + 10;
90 ctx->stack = xrealloc (ctx->stack,
91 newlen * sizeof (struct dwarf_stack_value));
92 ctx->stack_allocated = newlen;
93 }
94 }
95
96 /* Push VALUE onto CTX's stack. */
97
98 void
99 dwarf_expr_push (struct dwarf_expr_context *ctx, CORE_ADDR value,
100 int in_stack_memory)
101 {
102 struct dwarf_stack_value *v;
103
104 dwarf_expr_grow_stack (ctx, 1);
105 v = &ctx->stack[ctx->stack_len++];
106 v->value = value;
107 v->in_stack_memory = in_stack_memory;
108 }
109
110 /* Pop the top item off of CTX's stack. */
111
112 void
113 dwarf_expr_pop (struct dwarf_expr_context *ctx)
114 {
115 if (ctx->stack_len <= 0)
116 error (_("dwarf expression stack underflow"));
117 ctx->stack_len--;
118 }
119
120 /* Retrieve the N'th item on CTX's stack. */
121
122 CORE_ADDR
123 dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
124 {
125 if (ctx->stack_len <= n)
126 error (_("Asked for position %d of stack, stack only has %d elements on it."),
127 n, ctx->stack_len);
128 return ctx->stack[ctx->stack_len - (1 + n)].value;
129
130 }
131
132 /* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
133
134 int
135 dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
136 {
137 if (ctx->stack_len <= n)
138 error (_("Asked for position %d of stack, stack only has %d elements on it."),
139 n, ctx->stack_len);
140 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
141
142 }
143
144 /* Add a new piece to CTX's piece list. */
145 static void
146 add_piece (struct dwarf_expr_context *ctx, ULONGEST size)
147 {
148 struct dwarf_expr_piece *p;
149
150 ctx->num_pieces++;
151
152 if (ctx->pieces)
153 ctx->pieces = xrealloc (ctx->pieces,
154 (ctx->num_pieces
155 * sizeof (struct dwarf_expr_piece)));
156 else
157 ctx->pieces = xmalloc (ctx->num_pieces
158 * sizeof (struct dwarf_expr_piece));
159
160 p = &ctx->pieces[ctx->num_pieces - 1];
161 p->location = ctx->location;
162 p->size = size;
163 if (p->location == DWARF_VALUE_LITERAL)
164 {
165 p->v.literal.data = ctx->data;
166 p->v.literal.length = ctx->len;
167 }
168 else
169 {
170 p->v.expr.value = dwarf_expr_fetch (ctx, 0);
171 p->v.expr.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
172 }
173 }
174
175 /* Evaluate the expression at ADDR (LEN bytes long) using the context
176 CTX. */
177
178 void
179 dwarf_expr_eval (struct dwarf_expr_context *ctx, gdb_byte *addr, size_t len)
180 {
181 int old_recursion_depth = ctx->recursion_depth;
182
183 execute_stack_op (ctx, addr, addr + len);
184
185 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
186
187 gdb_assert (ctx->recursion_depth == old_recursion_depth);
188 }
189
190 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
191 by R, and return the new value of BUF. Verify that it doesn't extend
192 past BUF_END. */
193
194 gdb_byte *
195 read_uleb128 (gdb_byte *buf, gdb_byte *buf_end, ULONGEST * r)
196 {
197 unsigned shift = 0;
198 ULONGEST result = 0;
199 gdb_byte byte;
200
201 while (1)
202 {
203 if (buf >= buf_end)
204 error (_("read_uleb128: Corrupted DWARF expression."));
205
206 byte = *buf++;
207 result |= (byte & 0x7f) << shift;
208 if ((byte & 0x80) == 0)
209 break;
210 shift += 7;
211 }
212 *r = result;
213 return buf;
214 }
215
216 /* Decode the signed LEB128 constant at BUF into the variable pointed to
217 by R, and return the new value of BUF. Verify that it doesn't extend
218 past BUF_END. */
219
220 gdb_byte *
221 read_sleb128 (gdb_byte *buf, gdb_byte *buf_end, LONGEST * r)
222 {
223 unsigned shift = 0;
224 LONGEST result = 0;
225 gdb_byte byte;
226
227 while (1)
228 {
229 if (buf >= buf_end)
230 error (_("read_sleb128: Corrupted DWARF expression."));
231
232 byte = *buf++;
233 result |= (byte & 0x7f) << shift;
234 shift += 7;
235 if ((byte & 0x80) == 0)
236 break;
237 }
238 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
239 result |= -(1 << shift);
240
241 *r = result;
242 return buf;
243 }
244
245 /* Read an address of size ADDR_SIZE from BUF, and verify that it
246 doesn't extend past BUF_END. */
247
248 CORE_ADDR
249 dwarf2_read_address (struct gdbarch *gdbarch, gdb_byte *buf,
250 gdb_byte *buf_end, int addr_size)
251 {
252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
253 CORE_ADDR result;
254
255 if (buf_end - buf < addr_size)
256 error (_("dwarf2_read_address: Corrupted DWARF expression."));
257
258 /* For most architectures, calling extract_unsigned_integer() alone
259 is sufficient for extracting an address. However, some
260 architectures (e.g. MIPS) use signed addresses and using
261 extract_unsigned_integer() will not produce a correct
262 result. Make sure we invoke gdbarch_integer_to_address()
263 for those architectures which require it.
264
265 The use of `unsigned_address_type' in the code below refers to
266 the type of buf and has no bearing on the signedness of the
267 address being returned. */
268
269 if (gdbarch_integer_to_address_p (gdbarch))
270 return gdbarch_integer_to_address
271 (gdbarch, unsigned_address_type (gdbarch, addr_size), buf);
272
273 return extract_unsigned_integer (buf, addr_size, byte_order);
274 }
275
276 /* Return the type of an address of size ADDR_SIZE,
277 for unsigned arithmetic. */
278
279 static struct type *
280 unsigned_address_type (struct gdbarch *gdbarch, int addr_size)
281 {
282 switch (addr_size)
283 {
284 case 2:
285 return builtin_type (gdbarch)->builtin_uint16;
286 case 4:
287 return builtin_type (gdbarch)->builtin_uint32;
288 case 8:
289 return builtin_type (gdbarch)->builtin_uint64;
290 default:
291 internal_error (__FILE__, __LINE__,
292 _("Unsupported address size.\n"));
293 }
294 }
295
296 /* Return the type of an address of size ADDR_SIZE,
297 for signed arithmetic. */
298
299 static struct type *
300 signed_address_type (struct gdbarch *gdbarch, int addr_size)
301 {
302 switch (addr_size)
303 {
304 case 2:
305 return builtin_type (gdbarch)->builtin_int16;
306 case 4:
307 return builtin_type (gdbarch)->builtin_int32;
308 case 8:
309 return builtin_type (gdbarch)->builtin_int64;
310 default:
311 internal_error (__FILE__, __LINE__,
312 _("Unsupported address size.\n"));
313 }
314 }
315 \f
316
317 /* Check that the current operator is either at the end of an
318 expression, or that it is followed by a composition operator. */
319
320 static void
321 require_composition (gdb_byte *op_ptr, gdb_byte *op_end, const char *op_name)
322 {
323 /* It seems like DW_OP_GNU_uninit should be handled here. However,
324 it doesn't seem to make sense for DW_OP_*_value, and it was not
325 checked at the other place that this function is called. */
326 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
327 error (_("DWARF-2 expression error: `%s' operations must be "
328 "used either alone or in conjuction with DW_OP_piece "
329 "or DW_OP_bit_piece."),
330 op_name);
331 }
332
333 /* The engine for the expression evaluator. Using the context in CTX,
334 evaluate the expression between OP_PTR and OP_END. */
335
336 static void
337 execute_stack_op (struct dwarf_expr_context *ctx,
338 gdb_byte *op_ptr, gdb_byte *op_end)
339 {
340 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
341 ctx->location = DWARF_VALUE_MEMORY;
342 ctx->initialized = 1; /* Default is initialized. */
343
344 if (ctx->recursion_depth > ctx->max_recursion_depth)
345 error (_("DWARF-2 expression error: Loop detected (%d)."),
346 ctx->recursion_depth);
347 ctx->recursion_depth++;
348
349 while (op_ptr < op_end)
350 {
351 enum dwarf_location_atom op = *op_ptr++;
352 CORE_ADDR result;
353 /* Assume the value is not in stack memory.
354 Code that knows otherwise sets this to 1.
355 Some arithmetic on stack addresses can probably be assumed to still
356 be a stack address, but we skip this complication for now.
357 This is just an optimization, so it's always ok to punt
358 and leave this as 0. */
359 int in_stack_memory = 0;
360 ULONGEST uoffset, reg;
361 LONGEST offset;
362
363 switch (op)
364 {
365 case DW_OP_lit0:
366 case DW_OP_lit1:
367 case DW_OP_lit2:
368 case DW_OP_lit3:
369 case DW_OP_lit4:
370 case DW_OP_lit5:
371 case DW_OP_lit6:
372 case DW_OP_lit7:
373 case DW_OP_lit8:
374 case DW_OP_lit9:
375 case DW_OP_lit10:
376 case DW_OP_lit11:
377 case DW_OP_lit12:
378 case DW_OP_lit13:
379 case DW_OP_lit14:
380 case DW_OP_lit15:
381 case DW_OP_lit16:
382 case DW_OP_lit17:
383 case DW_OP_lit18:
384 case DW_OP_lit19:
385 case DW_OP_lit20:
386 case DW_OP_lit21:
387 case DW_OP_lit22:
388 case DW_OP_lit23:
389 case DW_OP_lit24:
390 case DW_OP_lit25:
391 case DW_OP_lit26:
392 case DW_OP_lit27:
393 case DW_OP_lit28:
394 case DW_OP_lit29:
395 case DW_OP_lit30:
396 case DW_OP_lit31:
397 result = op - DW_OP_lit0;
398 break;
399
400 case DW_OP_addr:
401 result = dwarf2_read_address (ctx->gdbarch,
402 op_ptr, op_end, ctx->addr_size);
403 op_ptr += ctx->addr_size;
404 break;
405
406 case DW_OP_const1u:
407 result = extract_unsigned_integer (op_ptr, 1, byte_order);
408 op_ptr += 1;
409 break;
410 case DW_OP_const1s:
411 result = extract_signed_integer (op_ptr, 1, byte_order);
412 op_ptr += 1;
413 break;
414 case DW_OP_const2u:
415 result = extract_unsigned_integer (op_ptr, 2, byte_order);
416 op_ptr += 2;
417 break;
418 case DW_OP_const2s:
419 result = extract_signed_integer (op_ptr, 2, byte_order);
420 op_ptr += 2;
421 break;
422 case DW_OP_const4u:
423 result = extract_unsigned_integer (op_ptr, 4, byte_order);
424 op_ptr += 4;
425 break;
426 case DW_OP_const4s:
427 result = extract_signed_integer (op_ptr, 4, byte_order);
428 op_ptr += 4;
429 break;
430 case DW_OP_const8u:
431 result = extract_unsigned_integer (op_ptr, 8, byte_order);
432 op_ptr += 8;
433 break;
434 case DW_OP_const8s:
435 result = extract_signed_integer (op_ptr, 8, byte_order);
436 op_ptr += 8;
437 break;
438 case DW_OP_constu:
439 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
440 result = uoffset;
441 break;
442 case DW_OP_consts:
443 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
444 result = offset;
445 break;
446
447 /* The DW_OP_reg operations are required to occur alone in
448 location expressions. */
449 case DW_OP_reg0:
450 case DW_OP_reg1:
451 case DW_OP_reg2:
452 case DW_OP_reg3:
453 case DW_OP_reg4:
454 case DW_OP_reg5:
455 case DW_OP_reg6:
456 case DW_OP_reg7:
457 case DW_OP_reg8:
458 case DW_OP_reg9:
459 case DW_OP_reg10:
460 case DW_OP_reg11:
461 case DW_OP_reg12:
462 case DW_OP_reg13:
463 case DW_OP_reg14:
464 case DW_OP_reg15:
465 case DW_OP_reg16:
466 case DW_OP_reg17:
467 case DW_OP_reg18:
468 case DW_OP_reg19:
469 case DW_OP_reg20:
470 case DW_OP_reg21:
471 case DW_OP_reg22:
472 case DW_OP_reg23:
473 case DW_OP_reg24:
474 case DW_OP_reg25:
475 case DW_OP_reg26:
476 case DW_OP_reg27:
477 case DW_OP_reg28:
478 case DW_OP_reg29:
479 case DW_OP_reg30:
480 case DW_OP_reg31:
481 if (op_ptr != op_end
482 && *op_ptr != DW_OP_piece
483 && *op_ptr != DW_OP_GNU_uninit)
484 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
485 "used either alone or in conjuction with DW_OP_piece."));
486
487 result = op - DW_OP_reg0;
488 ctx->location = DWARF_VALUE_REGISTER;
489 break;
490
491 case DW_OP_regx:
492 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
493 require_composition (op_ptr, op_end, "DW_OP_regx");
494
495 result = reg;
496 ctx->location = DWARF_VALUE_REGISTER;
497 break;
498
499 case DW_OP_implicit_value:
500 {
501 ULONGEST len;
502 op_ptr = read_uleb128 (op_ptr, op_end, &len);
503 if (op_ptr + len > op_end)
504 error (_("DW_OP_implicit_value: too few bytes available."));
505 ctx->len = len;
506 ctx->data = op_ptr;
507 ctx->location = DWARF_VALUE_LITERAL;
508 op_ptr += len;
509 require_composition (op_ptr, op_end, "DW_OP_implicit_value");
510 }
511 goto no_push;
512
513 case DW_OP_stack_value:
514 ctx->location = DWARF_VALUE_STACK;
515 require_composition (op_ptr, op_end, "DW_OP_stack_value");
516 goto no_push;
517
518 case DW_OP_breg0:
519 case DW_OP_breg1:
520 case DW_OP_breg2:
521 case DW_OP_breg3:
522 case DW_OP_breg4:
523 case DW_OP_breg5:
524 case DW_OP_breg6:
525 case DW_OP_breg7:
526 case DW_OP_breg8:
527 case DW_OP_breg9:
528 case DW_OP_breg10:
529 case DW_OP_breg11:
530 case DW_OP_breg12:
531 case DW_OP_breg13:
532 case DW_OP_breg14:
533 case DW_OP_breg15:
534 case DW_OP_breg16:
535 case DW_OP_breg17:
536 case DW_OP_breg18:
537 case DW_OP_breg19:
538 case DW_OP_breg20:
539 case DW_OP_breg21:
540 case DW_OP_breg22:
541 case DW_OP_breg23:
542 case DW_OP_breg24:
543 case DW_OP_breg25:
544 case DW_OP_breg26:
545 case DW_OP_breg27:
546 case DW_OP_breg28:
547 case DW_OP_breg29:
548 case DW_OP_breg30:
549 case DW_OP_breg31:
550 {
551 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
552 result = (ctx->read_reg) (ctx->baton, op - DW_OP_breg0);
553 result += offset;
554 }
555 break;
556 case DW_OP_bregx:
557 {
558 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
559 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
560 result = (ctx->read_reg) (ctx->baton, reg);
561 result += offset;
562 }
563 break;
564 case DW_OP_fbreg:
565 {
566 gdb_byte *datastart;
567 size_t datalen;
568 unsigned int before_stack_len;
569
570 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
571 /* Rather than create a whole new context, we simply
572 record the stack length before execution, then reset it
573 afterwards, effectively erasing whatever the recursive
574 call put there. */
575 before_stack_len = ctx->stack_len;
576 /* FIXME: cagney/2003-03-26: This code should be using
577 get_frame_base_address(), and then implement a dwarf2
578 specific this_base method. */
579 (ctx->get_frame_base) (ctx->baton, &datastart, &datalen);
580 dwarf_expr_eval (ctx, datastart, datalen);
581 if (ctx->location == DWARF_VALUE_LITERAL
582 || ctx->location == DWARF_VALUE_STACK)
583 error (_("Not implemented: computing frame base using explicit value operator"));
584 result = dwarf_expr_fetch (ctx, 0);
585 if (ctx->location == DWARF_VALUE_REGISTER)
586 result = (ctx->read_reg) (ctx->baton, result);
587 result = result + offset;
588 in_stack_memory = 1;
589 ctx->stack_len = before_stack_len;
590 ctx->location = DWARF_VALUE_MEMORY;
591 }
592 break;
593
594 case DW_OP_dup:
595 result = dwarf_expr_fetch (ctx, 0);
596 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
597 break;
598
599 case DW_OP_drop:
600 dwarf_expr_pop (ctx);
601 goto no_push;
602
603 case DW_OP_pick:
604 offset = *op_ptr++;
605 result = dwarf_expr_fetch (ctx, offset);
606 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
607 break;
608
609 case DW_OP_swap:
610 {
611 struct dwarf_stack_value t1, t2;
612
613 if (ctx->stack_len < 2)
614 error (_("Not enough elements for DW_OP_swap. Need 2, have %d."),
615 ctx->stack_len);
616 t1 = ctx->stack[ctx->stack_len - 1];
617 t2 = ctx->stack[ctx->stack_len - 2];
618 ctx->stack[ctx->stack_len - 1] = t2;
619 ctx->stack[ctx->stack_len - 2] = t1;
620 goto no_push;
621 }
622
623 case DW_OP_over:
624 result = dwarf_expr_fetch (ctx, 1);
625 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
626 break;
627
628 case DW_OP_rot:
629 {
630 struct dwarf_stack_value t1, t2, t3;
631
632 if (ctx->stack_len < 3)
633 error (_("Not enough elements for DW_OP_rot. Need 3, have %d."),
634 ctx->stack_len);
635 t1 = ctx->stack[ctx->stack_len - 1];
636 t2 = ctx->stack[ctx->stack_len - 2];
637 t3 = ctx->stack[ctx->stack_len - 3];
638 ctx->stack[ctx->stack_len - 1] = t2;
639 ctx->stack[ctx->stack_len - 2] = t3;
640 ctx->stack[ctx->stack_len - 3] = t1;
641 goto no_push;
642 }
643
644 case DW_OP_deref:
645 case DW_OP_deref_size:
646 case DW_OP_abs:
647 case DW_OP_neg:
648 case DW_OP_not:
649 case DW_OP_plus_uconst:
650 /* Unary operations. */
651 result = dwarf_expr_fetch (ctx, 0);
652 dwarf_expr_pop (ctx);
653
654 switch (op)
655 {
656 case DW_OP_deref:
657 {
658 gdb_byte *buf = alloca (ctx->addr_size);
659 (ctx->read_mem) (ctx->baton, buf, result, ctx->addr_size);
660 result = dwarf2_read_address (ctx->gdbarch,
661 buf, buf + ctx->addr_size,
662 ctx->addr_size);
663 }
664 break;
665
666 case DW_OP_deref_size:
667 {
668 int addr_size = *op_ptr++;
669 gdb_byte *buf = alloca (addr_size);
670 (ctx->read_mem) (ctx->baton, buf, result, addr_size);
671 result = dwarf2_read_address (ctx->gdbarch,
672 buf, buf + addr_size,
673 addr_size);
674 }
675 break;
676
677 case DW_OP_abs:
678 if ((signed int) result < 0)
679 result = -result;
680 break;
681 case DW_OP_neg:
682 result = -result;
683 break;
684 case DW_OP_not:
685 result = ~result;
686 break;
687 case DW_OP_plus_uconst:
688 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
689 result += reg;
690 break;
691 }
692 break;
693
694 case DW_OP_and:
695 case DW_OP_div:
696 case DW_OP_minus:
697 case DW_OP_mod:
698 case DW_OP_mul:
699 case DW_OP_or:
700 case DW_OP_plus:
701 case DW_OP_shl:
702 case DW_OP_shr:
703 case DW_OP_shra:
704 case DW_OP_xor:
705 case DW_OP_le:
706 case DW_OP_ge:
707 case DW_OP_eq:
708 case DW_OP_lt:
709 case DW_OP_gt:
710 case DW_OP_ne:
711 {
712 /* Binary operations. Use the value engine to do computations in
713 the right width. */
714 CORE_ADDR first, second;
715 enum exp_opcode binop;
716 struct value *val1 = NULL, *val2 = NULL;
717 struct type *stype, *utype;
718
719 second = dwarf_expr_fetch (ctx, 0);
720 dwarf_expr_pop (ctx);
721
722 first = dwarf_expr_fetch (ctx, 0);
723 dwarf_expr_pop (ctx);
724
725 utype = unsigned_address_type (ctx->gdbarch, ctx->addr_size);
726 stype = signed_address_type (ctx->gdbarch, ctx->addr_size);
727
728 switch (op)
729 {
730 case DW_OP_and:
731 binop = BINOP_BITWISE_AND;
732 break;
733 case DW_OP_div:
734 binop = BINOP_DIV;
735 val1 = value_from_longest (stype, first);
736 val2 = value_from_longest (stype, second);
737 break;
738 case DW_OP_minus:
739 binop = BINOP_SUB;
740 break;
741 case DW_OP_mod:
742 binop = BINOP_MOD;
743 break;
744 case DW_OP_mul:
745 binop = BINOP_MUL;
746 break;
747 case DW_OP_or:
748 binop = BINOP_BITWISE_IOR;
749 break;
750 case DW_OP_plus:
751 binop = BINOP_ADD;
752 break;
753 case DW_OP_shl:
754 binop = BINOP_LSH;
755 break;
756 case DW_OP_shr:
757 binop = BINOP_RSH;
758 break;
759 case DW_OP_shra:
760 binop = BINOP_RSH;
761 val1 = value_from_longest (stype, first);
762 break;
763 case DW_OP_xor:
764 binop = BINOP_BITWISE_XOR;
765 break;
766 case DW_OP_le:
767 binop = BINOP_LEQ;
768 val1 = value_from_longest (stype, first);
769 val2 = value_from_longest (stype, second);
770 break;
771 case DW_OP_ge:
772 binop = BINOP_GEQ;
773 val1 = value_from_longest (stype, first);
774 val2 = value_from_longest (stype, second);
775 break;
776 case DW_OP_eq:
777 binop = BINOP_EQUAL;
778 val1 = value_from_longest (stype, first);
779 val2 = value_from_longest (stype, second);
780 break;
781 case DW_OP_lt:
782 binop = BINOP_LESS;
783 val1 = value_from_longest (stype, first);
784 val2 = value_from_longest (stype, second);
785 break;
786 case DW_OP_gt:
787 binop = BINOP_GTR;
788 val1 = value_from_longest (stype, first);
789 val2 = value_from_longest (stype, second);
790 break;
791 case DW_OP_ne:
792 binop = BINOP_NOTEQUAL;
793 val1 = value_from_longest (stype, first);
794 val2 = value_from_longest (stype, second);
795 break;
796 default:
797 internal_error (__FILE__, __LINE__,
798 _("Can't be reached."));
799 }
800
801 /* We use unsigned operands by default. */
802 if (val1 == NULL)
803 val1 = value_from_longest (utype, first);
804 if (val2 == NULL)
805 val2 = value_from_longest (utype, second);
806
807 result = value_as_long (value_binop (val1, val2, binop));
808 }
809 break;
810
811 case DW_OP_call_frame_cfa:
812 result = (ctx->get_frame_cfa) (ctx->baton);
813 in_stack_memory = 1;
814 break;
815
816 case DW_OP_GNU_push_tls_address:
817 /* Variable is at a constant offset in the thread-local
818 storage block into the objfile for the current thread and
819 the dynamic linker module containing this expression. Here
820 we return returns the offset from that base. The top of the
821 stack has the offset from the beginning of the thread
822 control block at which the variable is located. Nothing
823 should follow this operator, so the top of stack would be
824 returned. */
825 result = dwarf_expr_fetch (ctx, 0);
826 dwarf_expr_pop (ctx);
827 result = (ctx->get_tls_address) (ctx->baton, result);
828 break;
829
830 case DW_OP_skip:
831 offset = extract_signed_integer (op_ptr, 2, byte_order);
832 op_ptr += 2;
833 op_ptr += offset;
834 goto no_push;
835
836 case DW_OP_bra:
837 offset = extract_signed_integer (op_ptr, 2, byte_order);
838 op_ptr += 2;
839 if (dwarf_expr_fetch (ctx, 0) != 0)
840 op_ptr += offset;
841 dwarf_expr_pop (ctx);
842 goto no_push;
843
844 case DW_OP_nop:
845 goto no_push;
846
847 case DW_OP_piece:
848 {
849 ULONGEST size;
850
851 /* Record the piece. */
852 op_ptr = read_uleb128 (op_ptr, op_end, &size);
853 add_piece (ctx, size);
854
855 /* Pop off the address/regnum, and reset the location
856 type. */
857 if (ctx->location != DWARF_VALUE_LITERAL)
858 dwarf_expr_pop (ctx);
859 ctx->location = DWARF_VALUE_MEMORY;
860 }
861 goto no_push;
862
863 case DW_OP_GNU_uninit:
864 if (op_ptr != op_end)
865 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
866 "be the very last op."));
867
868 ctx->initialized = 0;
869 goto no_push;
870
871 default:
872 error (_("Unhandled dwarf expression opcode 0x%x"), op);
873 }
874
875 /* Most things push a result value. */
876 dwarf_expr_push (ctx, result, in_stack_memory);
877 no_push:;
878 }
879
880 ctx->recursion_depth--;
881 gdb_assert (ctx->recursion_depth >= 0);
882 }
This page took 0.091001 seconds and 3 git commands to generate.