gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
1 /* DWARF 2 Expression Evaluator.
2
3 Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Daniel Berlin (dan@dberlin.org)
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "dwarf2.h"
29 #include "dwarf2expr.h"
30 #include "gdb_assert.h"
31
32 /* Local prototypes. */
33
34 static void execute_stack_op (struct dwarf_expr_context *,
35 const gdb_byte *, const gdb_byte *);
36
37 /* Cookie for gdbarch data. */
38
39 static struct gdbarch_data *dwarf_arch_cookie;
40
41 /* This holds gdbarch-specific types used by the DWARF expression
42 evaluator. See comments in execute_stack_op. */
43
44 struct dwarf_gdbarch_types
45 {
46 struct type *dw_types[3];
47 };
48
49 /* Allocate and fill in dwarf_gdbarch_types for an arch. */
50
51 static void *
52 dwarf_gdbarch_types_init (struct gdbarch *gdbarch)
53 {
54 struct dwarf_gdbarch_types *types
55 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf_gdbarch_types);
56
57 /* The types themselves are lazily initialized. */
58
59 return types;
60 }
61
62 /* Return the type used for DWARF operations where the type is
63 unspecified in the DWARF spec. Only certain sizes are
64 supported. */
65
66 static struct type *
67 dwarf_expr_address_type (struct dwarf_expr_context *ctx)
68 {
69 struct dwarf_gdbarch_types *types = gdbarch_data (ctx->gdbarch,
70 dwarf_arch_cookie);
71 int ndx;
72
73 if (ctx->addr_size == 2)
74 ndx = 0;
75 else if (ctx->addr_size == 4)
76 ndx = 1;
77 else if (ctx->addr_size == 8)
78 ndx = 2;
79 else
80 error (_("Unsupported address size in DWARF expressions: %d bits"),
81 8 * ctx->addr_size);
82
83 if (types->dw_types[ndx] == NULL)
84 types->dw_types[ndx]
85 = arch_integer_type (ctx->gdbarch,
86 8 * ctx->addr_size,
87 0, "<signed DWARF address type>");
88
89 return types->dw_types[ndx];
90 }
91
92 /* Create a new context for the expression evaluator. */
93
94 struct dwarf_expr_context *
95 new_dwarf_expr_context (void)
96 {
97 struct dwarf_expr_context *retval;
98
99 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
100 retval->stack_len = 0;
101 retval->stack_allocated = 10;
102 retval->stack = xmalloc (retval->stack_allocated
103 * sizeof (struct dwarf_stack_value));
104 retval->num_pieces = 0;
105 retval->pieces = 0;
106 retval->max_recursion_depth = 0x100;
107 return retval;
108 }
109
110 /* Release the memory allocated to CTX. */
111
112 void
113 free_dwarf_expr_context (struct dwarf_expr_context *ctx)
114 {
115 xfree (ctx->stack);
116 xfree (ctx->pieces);
117 xfree (ctx);
118 }
119
120 /* Helper for make_cleanup_free_dwarf_expr_context. */
121
122 static void
123 free_dwarf_expr_context_cleanup (void *arg)
124 {
125 free_dwarf_expr_context (arg);
126 }
127
128 /* Return a cleanup that calls free_dwarf_expr_context. */
129
130 struct cleanup *
131 make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
132 {
133 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
134 }
135
136 /* Expand the memory allocated to CTX's stack to contain at least
137 NEED more elements than are currently used. */
138
139 static void
140 dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
141 {
142 if (ctx->stack_len + need > ctx->stack_allocated)
143 {
144 size_t newlen = ctx->stack_len + need + 10;
145
146 ctx->stack = xrealloc (ctx->stack,
147 newlen * sizeof (struct dwarf_stack_value));
148 ctx->stack_allocated = newlen;
149 }
150 }
151
152 /* Push VALUE onto CTX's stack. */
153
154 static void
155 dwarf_expr_push (struct dwarf_expr_context *ctx, struct value *value,
156 int in_stack_memory)
157 {
158 struct dwarf_stack_value *v;
159
160 dwarf_expr_grow_stack (ctx, 1);
161 v = &ctx->stack[ctx->stack_len++];
162 v->value = value;
163 v->in_stack_memory = in_stack_memory;
164 }
165
166 /* Push VALUE onto CTX's stack. */
167
168 void
169 dwarf_expr_push_address (struct dwarf_expr_context *ctx, CORE_ADDR value,
170 int in_stack_memory)
171 {
172 dwarf_expr_push (ctx,
173 value_from_ulongest (dwarf_expr_address_type (ctx), value),
174 in_stack_memory);
175 }
176
177 /* Pop the top item off of CTX's stack. */
178
179 static void
180 dwarf_expr_pop (struct dwarf_expr_context *ctx)
181 {
182 if (ctx->stack_len <= 0)
183 error (_("dwarf expression stack underflow"));
184 ctx->stack_len--;
185 }
186
187 /* Retrieve the N'th item on CTX's stack. */
188
189 struct value *
190 dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
191 {
192 if (ctx->stack_len <= n)
193 error (_("Asked for position %d of stack, "
194 "stack only has %d elements on it."),
195 n, ctx->stack_len);
196 return ctx->stack[ctx->stack_len - (1 + n)].value;
197 }
198
199 /* Require that TYPE be an integral type; throw an exception if not. */
200
201 static void
202 dwarf_require_integral (struct type *type)
203 {
204 if (TYPE_CODE (type) != TYPE_CODE_INT
205 && TYPE_CODE (type) != TYPE_CODE_CHAR
206 && TYPE_CODE (type) != TYPE_CODE_BOOL)
207 error (_("integral type expected in DWARF expression"));
208 }
209
210 /* Return the unsigned form of TYPE. TYPE is necessarily an integral
211 type. */
212
213 static struct type *
214 get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
215 {
216 switch (TYPE_LENGTH (type))
217 {
218 case 1:
219 return builtin_type (gdbarch)->builtin_uint8;
220 case 2:
221 return builtin_type (gdbarch)->builtin_uint16;
222 case 4:
223 return builtin_type (gdbarch)->builtin_uint32;
224 case 8:
225 return builtin_type (gdbarch)->builtin_uint64;
226 default:
227 error (_("no unsigned variant found for type, while evaluating "
228 "DWARF expression"));
229 }
230 }
231
232 /* Return the signed form of TYPE. TYPE is necessarily an integral
233 type. */
234
235 static struct type *
236 get_signed_type (struct gdbarch *gdbarch, struct type *type)
237 {
238 switch (TYPE_LENGTH (type))
239 {
240 case 1:
241 return builtin_type (gdbarch)->builtin_int8;
242 case 2:
243 return builtin_type (gdbarch)->builtin_int16;
244 case 4:
245 return builtin_type (gdbarch)->builtin_int32;
246 case 8:
247 return builtin_type (gdbarch)->builtin_int64;
248 default:
249 error (_("no signed variant found for type, while evaluating "
250 "DWARF expression"));
251 }
252 }
253
254 /* Retrieve the N'th item on CTX's stack, converted to an address. */
255
256 CORE_ADDR
257 dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n)
258 {
259 struct value *result_val = dwarf_expr_fetch (ctx, n);
260 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
261 ULONGEST result;
262
263 dwarf_require_integral (value_type (result_val));
264 result = extract_unsigned_integer (value_contents (result_val),
265 TYPE_LENGTH (value_type (result_val)),
266 byte_order);
267
268 /* For most architectures, calling extract_unsigned_integer() alone
269 is sufficient for extracting an address. However, some
270 architectures (e.g. MIPS) use signed addresses and using
271 extract_unsigned_integer() will not produce a correct
272 result. Make sure we invoke gdbarch_integer_to_address()
273 for those architectures which require it. */
274 if (gdbarch_integer_to_address_p (ctx->gdbarch))
275 {
276 gdb_byte *buf = alloca (ctx->addr_size);
277 struct type *int_type = get_unsigned_type (ctx->gdbarch,
278 value_type (result_val));
279
280 store_unsigned_integer (buf, ctx->addr_size, byte_order, result);
281 return gdbarch_integer_to_address (ctx->gdbarch, int_type, buf);
282 }
283
284 return (CORE_ADDR) result;
285 }
286
287 /* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
288
289 int
290 dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
291 {
292 if (ctx->stack_len <= n)
293 error (_("Asked for position %d of stack, "
294 "stack only has %d elements on it."),
295 n, ctx->stack_len);
296 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
297 }
298
299 /* Return true if the expression stack is empty. */
300
301 static int
302 dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
303 {
304 return ctx->stack_len == 0;
305 }
306
307 /* Add a new piece to CTX's piece list. */
308 static void
309 add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
310 {
311 struct dwarf_expr_piece *p;
312
313 ctx->num_pieces++;
314
315 ctx->pieces = xrealloc (ctx->pieces,
316 (ctx->num_pieces
317 * sizeof (struct dwarf_expr_piece)));
318
319 p = &ctx->pieces[ctx->num_pieces - 1];
320 p->location = ctx->location;
321 p->size = size;
322 p->offset = offset;
323
324 if (p->location == DWARF_VALUE_LITERAL)
325 {
326 p->v.literal.data = ctx->data;
327 p->v.literal.length = ctx->len;
328 }
329 else if (dwarf_expr_stack_empty_p (ctx))
330 {
331 p->location = DWARF_VALUE_OPTIMIZED_OUT;
332 /* Also reset the context's location, for our callers. This is
333 a somewhat strange approach, but this lets us avoid setting
334 the location to DWARF_VALUE_MEMORY in all the individual
335 cases in the evaluator. */
336 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
337 }
338 else if (p->location == DWARF_VALUE_MEMORY)
339 {
340 p->v.mem.addr = dwarf_expr_fetch_address (ctx, 0);
341 p->v.mem.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
342 }
343 else if (p->location == DWARF_VALUE_IMPLICIT_POINTER)
344 {
345 p->v.ptr.die = ctx->len;
346 p->v.ptr.offset = value_as_long (dwarf_expr_fetch (ctx, 0));
347 }
348 else if (p->location == DWARF_VALUE_REGISTER)
349 p->v.regno = value_as_long (dwarf_expr_fetch (ctx, 0));
350 else
351 {
352 p->v.value = dwarf_expr_fetch (ctx, 0);
353 }
354 }
355
356 /* Evaluate the expression at ADDR (LEN bytes long) using the context
357 CTX. */
358
359 void
360 dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
361 size_t len)
362 {
363 int old_recursion_depth = ctx->recursion_depth;
364
365 execute_stack_op (ctx, addr, addr + len);
366
367 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
368
369 gdb_assert (ctx->recursion_depth == old_recursion_depth);
370 }
371
372 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
373 by R, and return the new value of BUF. Verify that it doesn't extend
374 past BUF_END. */
375
376 const gdb_byte *
377 read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, ULONGEST * r)
378 {
379 unsigned shift = 0;
380 ULONGEST result = 0;
381 gdb_byte byte;
382
383 while (1)
384 {
385 if (buf >= buf_end)
386 error (_("read_uleb128: Corrupted DWARF expression."));
387
388 byte = *buf++;
389 result |= ((ULONGEST) (byte & 0x7f)) << shift;
390 if ((byte & 0x80) == 0)
391 break;
392 shift += 7;
393 }
394 *r = result;
395 return buf;
396 }
397
398 /* Decode the signed LEB128 constant at BUF into the variable pointed to
399 by R, and return the new value of BUF. Verify that it doesn't extend
400 past BUF_END. */
401
402 const gdb_byte *
403 read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, LONGEST * r)
404 {
405 unsigned shift = 0;
406 LONGEST result = 0;
407 gdb_byte byte;
408
409 while (1)
410 {
411 if (buf >= buf_end)
412 error (_("read_sleb128: Corrupted DWARF expression."));
413
414 byte = *buf++;
415 result |= ((ULONGEST) (byte & 0x7f)) << shift;
416 shift += 7;
417 if ((byte & 0x80) == 0)
418 break;
419 }
420 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
421 result |= -(((LONGEST) 1) << shift);
422
423 *r = result;
424 return buf;
425 }
426 \f
427
428 /* Check that the current operator is either at the end of an
429 expression, or that it is followed by a composition operator. */
430
431 void
432 dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
433 const char *op_name)
434 {
435 /* It seems like DW_OP_GNU_uninit should be handled here. However,
436 it doesn't seem to make sense for DW_OP_*_value, and it was not
437 checked at the other place that this function is called. */
438 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
439 error (_("DWARF-2 expression error: `%s' operations must be "
440 "used either alone or in conjunction with DW_OP_piece "
441 "or DW_OP_bit_piece."),
442 op_name);
443 }
444
445 /* Return true iff the types T1 and T2 are "the same". This only does
446 checks that might reasonably be needed to compare DWARF base
447 types. */
448
449 static int
450 base_types_equal_p (struct type *t1, struct type *t2)
451 {
452 if (TYPE_CODE (t1) != TYPE_CODE (t2))
453 return 0;
454 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
455 return 0;
456 return TYPE_LENGTH (t1) == TYPE_LENGTH (t2);
457 }
458
459 /* A convenience function to call get_base_type on CTX and return the
460 result. DIE is the DIE whose type we need. SIZE is non-zero if
461 this function should verify that the resulting type has the correct
462 size. */
463
464 static struct type *
465 dwarf_get_base_type (struct dwarf_expr_context *ctx, ULONGEST die, int size)
466 {
467 struct type *result;
468
469 if (ctx->funcs->get_base_type)
470 {
471 result = ctx->funcs->get_base_type (ctx, die);
472 if (result == NULL)
473 error (_("Could not find type for DW_OP_GNU_const_type"));
474 if (size != 0 && TYPE_LENGTH (result) != size)
475 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
476 }
477 else
478 /* Anything will do. */
479 result = builtin_type (ctx->gdbarch)->builtin_int;
480
481 return result;
482 }
483
484 /* The engine for the expression evaluator. Using the context in CTX,
485 evaluate the expression between OP_PTR and OP_END. */
486
487 static void
488 execute_stack_op (struct dwarf_expr_context *ctx,
489 const gdb_byte *op_ptr, const gdb_byte *op_end)
490 {
491 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
492 /* Old-style "untyped" DWARF values need special treatment in a
493 couple of places, specifically DW_OP_mod and DW_OP_shr. We need
494 a special type for these values so we can distinguish them from
495 values that have an explicit type, because explicitly-typed
496 values do not need special treatment. This special type must be
497 different (in the `==' sense) from any base type coming from the
498 CU. */
499 struct type *address_type = dwarf_expr_address_type (ctx);
500
501 ctx->location = DWARF_VALUE_MEMORY;
502 ctx->initialized = 1; /* Default is initialized. */
503
504 if (ctx->recursion_depth > ctx->max_recursion_depth)
505 error (_("DWARF-2 expression error: Loop detected (%d)."),
506 ctx->recursion_depth);
507 ctx->recursion_depth++;
508
509 while (op_ptr < op_end)
510 {
511 enum dwarf_location_atom op = *op_ptr++;
512 ULONGEST result;
513 /* Assume the value is not in stack memory.
514 Code that knows otherwise sets this to 1.
515 Some arithmetic on stack addresses can probably be assumed to still
516 be a stack address, but we skip this complication for now.
517 This is just an optimization, so it's always ok to punt
518 and leave this as 0. */
519 int in_stack_memory = 0;
520 ULONGEST uoffset, reg;
521 LONGEST offset;
522 struct value *result_val = NULL;
523
524 /* The DWARF expression might have a bug causing an infinite
525 loop. In that case, quitting is the only way out. */
526 QUIT;
527
528 switch (op)
529 {
530 case DW_OP_lit0:
531 case DW_OP_lit1:
532 case DW_OP_lit2:
533 case DW_OP_lit3:
534 case DW_OP_lit4:
535 case DW_OP_lit5:
536 case DW_OP_lit6:
537 case DW_OP_lit7:
538 case DW_OP_lit8:
539 case DW_OP_lit9:
540 case DW_OP_lit10:
541 case DW_OP_lit11:
542 case DW_OP_lit12:
543 case DW_OP_lit13:
544 case DW_OP_lit14:
545 case DW_OP_lit15:
546 case DW_OP_lit16:
547 case DW_OP_lit17:
548 case DW_OP_lit18:
549 case DW_OP_lit19:
550 case DW_OP_lit20:
551 case DW_OP_lit21:
552 case DW_OP_lit22:
553 case DW_OP_lit23:
554 case DW_OP_lit24:
555 case DW_OP_lit25:
556 case DW_OP_lit26:
557 case DW_OP_lit27:
558 case DW_OP_lit28:
559 case DW_OP_lit29:
560 case DW_OP_lit30:
561 case DW_OP_lit31:
562 result = op - DW_OP_lit0;
563 result_val = value_from_ulongest (address_type, result);
564 break;
565
566 case DW_OP_addr:
567 result = extract_unsigned_integer (op_ptr,
568 ctx->addr_size, byte_order);
569 op_ptr += ctx->addr_size;
570 /* Some versions of GCC emit DW_OP_addr before
571 DW_OP_GNU_push_tls_address. In this case the value is an
572 index, not an address. We don't support things like
573 branching between the address and the TLS op. */
574 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
575 result += ctx->offset;
576 result_val = value_from_ulongest (address_type, result);
577 break;
578
579 case DW_OP_const1u:
580 result = extract_unsigned_integer (op_ptr, 1, byte_order);
581 result_val = value_from_ulongest (address_type, result);
582 op_ptr += 1;
583 break;
584 case DW_OP_const1s:
585 result = extract_signed_integer (op_ptr, 1, byte_order);
586 result_val = value_from_ulongest (address_type, result);
587 op_ptr += 1;
588 break;
589 case DW_OP_const2u:
590 result = extract_unsigned_integer (op_ptr, 2, byte_order);
591 result_val = value_from_ulongest (address_type, result);
592 op_ptr += 2;
593 break;
594 case DW_OP_const2s:
595 result = extract_signed_integer (op_ptr, 2, byte_order);
596 result_val = value_from_ulongest (address_type, result);
597 op_ptr += 2;
598 break;
599 case DW_OP_const4u:
600 result = extract_unsigned_integer (op_ptr, 4, byte_order);
601 result_val = value_from_ulongest (address_type, result);
602 op_ptr += 4;
603 break;
604 case DW_OP_const4s:
605 result = extract_signed_integer (op_ptr, 4, byte_order);
606 result_val = value_from_ulongest (address_type, result);
607 op_ptr += 4;
608 break;
609 case DW_OP_const8u:
610 result = extract_unsigned_integer (op_ptr, 8, byte_order);
611 result_val = value_from_ulongest (address_type, result);
612 op_ptr += 8;
613 break;
614 case DW_OP_const8s:
615 result = extract_signed_integer (op_ptr, 8, byte_order);
616 result_val = value_from_ulongest (address_type, result);
617 op_ptr += 8;
618 break;
619 case DW_OP_constu:
620 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
621 result = uoffset;
622 result_val = value_from_ulongest (address_type, result);
623 break;
624 case DW_OP_consts:
625 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
626 result = offset;
627 result_val = value_from_ulongest (address_type, result);
628 break;
629
630 /* The DW_OP_reg operations are required to occur alone in
631 location expressions. */
632 case DW_OP_reg0:
633 case DW_OP_reg1:
634 case DW_OP_reg2:
635 case DW_OP_reg3:
636 case DW_OP_reg4:
637 case DW_OP_reg5:
638 case DW_OP_reg6:
639 case DW_OP_reg7:
640 case DW_OP_reg8:
641 case DW_OP_reg9:
642 case DW_OP_reg10:
643 case DW_OP_reg11:
644 case DW_OP_reg12:
645 case DW_OP_reg13:
646 case DW_OP_reg14:
647 case DW_OP_reg15:
648 case DW_OP_reg16:
649 case DW_OP_reg17:
650 case DW_OP_reg18:
651 case DW_OP_reg19:
652 case DW_OP_reg20:
653 case DW_OP_reg21:
654 case DW_OP_reg22:
655 case DW_OP_reg23:
656 case DW_OP_reg24:
657 case DW_OP_reg25:
658 case DW_OP_reg26:
659 case DW_OP_reg27:
660 case DW_OP_reg28:
661 case DW_OP_reg29:
662 case DW_OP_reg30:
663 case DW_OP_reg31:
664 if (op_ptr != op_end
665 && *op_ptr != DW_OP_piece
666 && *op_ptr != DW_OP_bit_piece
667 && *op_ptr != DW_OP_GNU_uninit)
668 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
669 "used either alone or in conjunction with DW_OP_piece "
670 "or DW_OP_bit_piece."));
671
672 result = op - DW_OP_reg0;
673 result_val = value_from_ulongest (address_type, result);
674 ctx->location = DWARF_VALUE_REGISTER;
675 break;
676
677 case DW_OP_regx:
678 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
679 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
680
681 result = reg;
682 result_val = value_from_ulongest (address_type, result);
683 ctx->location = DWARF_VALUE_REGISTER;
684 break;
685
686 case DW_OP_implicit_value:
687 {
688 ULONGEST len;
689
690 op_ptr = read_uleb128 (op_ptr, op_end, &len);
691 if (op_ptr + len > op_end)
692 error (_("DW_OP_implicit_value: too few bytes available."));
693 ctx->len = len;
694 ctx->data = op_ptr;
695 ctx->location = DWARF_VALUE_LITERAL;
696 op_ptr += len;
697 dwarf_expr_require_composition (op_ptr, op_end,
698 "DW_OP_implicit_value");
699 }
700 goto no_push;
701
702 case DW_OP_stack_value:
703 ctx->location = DWARF_VALUE_STACK;
704 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
705 goto no_push;
706
707 case DW_OP_GNU_implicit_pointer:
708 {
709 ULONGEST die;
710 LONGEST len;
711
712 if (ctx->ref_addr_size == -1)
713 error (_("DWARF-2 expression error: DW_OP_GNU_implicit_pointer "
714 "is not allowed in frame context"));
715
716 /* The referred-to DIE. */
717 ctx->len = extract_unsigned_integer (op_ptr, ctx->ref_addr_size,
718 byte_order);
719 op_ptr += ctx->ref_addr_size;
720
721 /* The byte offset into the data. */
722 op_ptr = read_sleb128 (op_ptr, op_end, &len);
723 result = (ULONGEST) len;
724 result_val = value_from_ulongest (address_type, result);
725
726 ctx->location = DWARF_VALUE_IMPLICIT_POINTER;
727 dwarf_expr_require_composition (op_ptr, op_end,
728 "DW_OP_GNU_implicit_pointer");
729 }
730 break;
731
732 case DW_OP_breg0:
733 case DW_OP_breg1:
734 case DW_OP_breg2:
735 case DW_OP_breg3:
736 case DW_OP_breg4:
737 case DW_OP_breg5:
738 case DW_OP_breg6:
739 case DW_OP_breg7:
740 case DW_OP_breg8:
741 case DW_OP_breg9:
742 case DW_OP_breg10:
743 case DW_OP_breg11:
744 case DW_OP_breg12:
745 case DW_OP_breg13:
746 case DW_OP_breg14:
747 case DW_OP_breg15:
748 case DW_OP_breg16:
749 case DW_OP_breg17:
750 case DW_OP_breg18:
751 case DW_OP_breg19:
752 case DW_OP_breg20:
753 case DW_OP_breg21:
754 case DW_OP_breg22:
755 case DW_OP_breg23:
756 case DW_OP_breg24:
757 case DW_OP_breg25:
758 case DW_OP_breg26:
759 case DW_OP_breg27:
760 case DW_OP_breg28:
761 case DW_OP_breg29:
762 case DW_OP_breg30:
763 case DW_OP_breg31:
764 {
765 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
766 result = (ctx->funcs->read_reg) (ctx->baton, op - DW_OP_breg0);
767 result += offset;
768 result_val = value_from_ulongest (address_type, result);
769 }
770 break;
771 case DW_OP_bregx:
772 {
773 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
774 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
775 result = (ctx->funcs->read_reg) (ctx->baton, reg);
776 result += offset;
777 result_val = value_from_ulongest (address_type, result);
778 }
779 break;
780 case DW_OP_fbreg:
781 {
782 const gdb_byte *datastart;
783 size_t datalen;
784 unsigned int before_stack_len;
785
786 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
787 /* Rather than create a whole new context, we simply
788 record the stack length before execution, then reset it
789 afterwards, effectively erasing whatever the recursive
790 call put there. */
791 before_stack_len = ctx->stack_len;
792 /* FIXME: cagney/2003-03-26: This code should be using
793 get_frame_base_address(), and then implement a dwarf2
794 specific this_base method. */
795 (ctx->funcs->get_frame_base) (ctx->baton, &datastart, &datalen);
796 dwarf_expr_eval (ctx, datastart, datalen);
797 if (ctx->location == DWARF_VALUE_MEMORY)
798 result = dwarf_expr_fetch_address (ctx, 0);
799 else if (ctx->location == DWARF_VALUE_REGISTER)
800 result = (ctx->funcs->read_reg) (ctx->baton,
801 value_as_long (dwarf_expr_fetch (ctx, 0)));
802 else
803 error (_("Not implemented: computing frame "
804 "base using explicit value operator"));
805 result = result + offset;
806 result_val = value_from_ulongest (address_type, result);
807 in_stack_memory = 1;
808 ctx->stack_len = before_stack_len;
809 ctx->location = DWARF_VALUE_MEMORY;
810 }
811 break;
812
813 case DW_OP_dup:
814 result_val = dwarf_expr_fetch (ctx, 0);
815 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
816 break;
817
818 case DW_OP_drop:
819 dwarf_expr_pop (ctx);
820 goto no_push;
821
822 case DW_OP_pick:
823 offset = *op_ptr++;
824 result_val = dwarf_expr_fetch (ctx, offset);
825 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
826 break;
827
828 case DW_OP_swap:
829 {
830 struct dwarf_stack_value t1, t2;
831
832 if (ctx->stack_len < 2)
833 error (_("Not enough elements for "
834 "DW_OP_swap. Need 2, have %d."),
835 ctx->stack_len);
836 t1 = ctx->stack[ctx->stack_len - 1];
837 t2 = ctx->stack[ctx->stack_len - 2];
838 ctx->stack[ctx->stack_len - 1] = t2;
839 ctx->stack[ctx->stack_len - 2] = t1;
840 goto no_push;
841 }
842
843 case DW_OP_over:
844 result_val = dwarf_expr_fetch (ctx, 1);
845 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
846 break;
847
848 case DW_OP_rot:
849 {
850 struct dwarf_stack_value t1, t2, t3;
851
852 if (ctx->stack_len < 3)
853 error (_("Not enough elements for "
854 "DW_OP_rot. Need 3, have %d."),
855 ctx->stack_len);
856 t1 = ctx->stack[ctx->stack_len - 1];
857 t2 = ctx->stack[ctx->stack_len - 2];
858 t3 = ctx->stack[ctx->stack_len - 3];
859 ctx->stack[ctx->stack_len - 1] = t2;
860 ctx->stack[ctx->stack_len - 2] = t3;
861 ctx->stack[ctx->stack_len - 3] = t1;
862 goto no_push;
863 }
864
865 case DW_OP_deref:
866 case DW_OP_deref_size:
867 case DW_OP_GNU_deref_type:
868 {
869 int addr_size = (op == DW_OP_deref ? ctx->addr_size : *op_ptr++);
870 gdb_byte *buf = alloca (addr_size);
871 CORE_ADDR addr = dwarf_expr_fetch_address (ctx, 0);
872 struct type *type;
873
874 dwarf_expr_pop (ctx);
875
876 if (op == DW_OP_GNU_deref_type)
877 {
878 ULONGEST type_die;
879
880 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
881 type = dwarf_get_base_type (ctx, type_die, 0);
882 }
883 else
884 type = address_type;
885
886 (ctx->funcs->read_mem) (ctx->baton, buf, addr, addr_size);
887
888 /* If the size of the object read from memory is different
889 from the type length, we need to zero-extend it. */
890 if (TYPE_LENGTH (type) != addr_size)
891 {
892 ULONGEST result =
893 extract_unsigned_integer (buf, addr_size, byte_order);
894
895 buf = alloca (TYPE_LENGTH (type));
896 store_unsigned_integer (buf, TYPE_LENGTH (type),
897 byte_order, result);
898 }
899
900 result_val = value_from_contents_and_address (type, buf, addr);
901 break;
902 }
903
904 case DW_OP_abs:
905 case DW_OP_neg:
906 case DW_OP_not:
907 case DW_OP_plus_uconst:
908 {
909 /* Unary operations. */
910 result_val = dwarf_expr_fetch (ctx, 0);
911 dwarf_expr_pop (ctx);
912
913 switch (op)
914 {
915 case DW_OP_abs:
916 if (value_less (result_val,
917 value_zero (value_type (result_val), not_lval)))
918 result_val = value_neg (result_val);
919 break;
920 case DW_OP_neg:
921 result_val = value_neg (result_val);
922 break;
923 case DW_OP_not:
924 dwarf_require_integral (value_type (result_val));
925 result_val = value_complement (result_val);
926 break;
927 case DW_OP_plus_uconst:
928 dwarf_require_integral (value_type (result_val));
929 result = value_as_long (result_val);
930 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
931 result += reg;
932 result_val = value_from_ulongest (address_type, result);
933 break;
934 }
935 }
936 break;
937
938 case DW_OP_and:
939 case DW_OP_div:
940 case DW_OP_minus:
941 case DW_OP_mod:
942 case DW_OP_mul:
943 case DW_OP_or:
944 case DW_OP_plus:
945 case DW_OP_shl:
946 case DW_OP_shr:
947 case DW_OP_shra:
948 case DW_OP_xor:
949 case DW_OP_le:
950 case DW_OP_ge:
951 case DW_OP_eq:
952 case DW_OP_lt:
953 case DW_OP_gt:
954 case DW_OP_ne:
955 {
956 /* Binary operations. */
957 struct value *first, *second;
958
959 second = dwarf_expr_fetch (ctx, 0);
960 dwarf_expr_pop (ctx);
961
962 first = dwarf_expr_fetch (ctx, 0);
963 dwarf_expr_pop (ctx);
964
965 if (! base_types_equal_p (value_type (first), value_type (second)))
966 error (_("Incompatible types on DWARF stack"));
967
968 switch (op)
969 {
970 case DW_OP_and:
971 dwarf_require_integral (value_type (first));
972 dwarf_require_integral (value_type (second));
973 result_val = value_binop (first, second, BINOP_BITWISE_AND);
974 break;
975 case DW_OP_div:
976 result_val = value_binop (first, second, BINOP_DIV);
977 break;
978 case DW_OP_minus:
979 result_val = value_binop (first, second, BINOP_SUB);
980 break;
981 case DW_OP_mod:
982 {
983 int cast_back = 0;
984 struct type *orig_type = value_type (first);
985
986 /* We have to special-case "old-style" untyped values
987 -- these must have mod computed using unsigned
988 math. */
989 if (orig_type == address_type)
990 {
991 struct type *utype
992 = get_unsigned_type (ctx->gdbarch, orig_type);
993
994 cast_back = 1;
995 first = value_cast (utype, first);
996 second = value_cast (utype, second);
997 }
998 /* Note that value_binop doesn't handle float or
999 decimal float here. This seems unimportant. */
1000 result_val = value_binop (first, second, BINOP_MOD);
1001 if (cast_back)
1002 result_val = value_cast (orig_type, result_val);
1003 }
1004 break;
1005 case DW_OP_mul:
1006 result_val = value_binop (first, second, BINOP_MUL);
1007 break;
1008 case DW_OP_or:
1009 dwarf_require_integral (value_type (first));
1010 dwarf_require_integral (value_type (second));
1011 result_val = value_binop (first, second, BINOP_BITWISE_IOR);
1012 break;
1013 case DW_OP_plus:
1014 result_val = value_binop (first, second, BINOP_ADD);
1015 break;
1016 case DW_OP_shl:
1017 dwarf_require_integral (value_type (first));
1018 dwarf_require_integral (value_type (second));
1019 result_val = value_binop (first, second, BINOP_LSH);
1020 break;
1021 case DW_OP_shr:
1022 dwarf_require_integral (value_type (first));
1023 dwarf_require_integral (value_type (second));
1024 if (!TYPE_UNSIGNED (value_type (first)))
1025 {
1026 struct type *utype
1027 = get_unsigned_type (ctx->gdbarch, value_type (first));
1028
1029 first = value_cast (utype, first);
1030 }
1031
1032 result_val = value_binop (first, second, BINOP_RSH);
1033 /* Make sure we wind up with the same type we started
1034 with. */
1035 if (value_type (result_val) != value_type (second))
1036 result_val = value_cast (value_type (second), result_val);
1037 break;
1038 case DW_OP_shra:
1039 dwarf_require_integral (value_type (first));
1040 dwarf_require_integral (value_type (second));
1041 if (TYPE_UNSIGNED (value_type (first)))
1042 {
1043 struct type *stype
1044 = get_signed_type (ctx->gdbarch, value_type (first));
1045
1046 first = value_cast (stype, first);
1047 }
1048
1049 result_val = value_binop (first, second, BINOP_RSH);
1050 /* Make sure we wind up with the same type we started
1051 with. */
1052 if (value_type (result_val) != value_type (second))
1053 result_val = value_cast (value_type (second), result_val);
1054 break;
1055 case DW_OP_xor:
1056 dwarf_require_integral (value_type (first));
1057 dwarf_require_integral (value_type (second));
1058 result_val = value_binop (first, second, BINOP_BITWISE_XOR);
1059 break;
1060 case DW_OP_le:
1061 /* A <= B is !(B < A). */
1062 result = ! value_less (second, first);
1063 result_val = value_from_ulongest (address_type, result);
1064 break;
1065 case DW_OP_ge:
1066 /* A >= B is !(A < B). */
1067 result = ! value_less (first, second);
1068 result_val = value_from_ulongest (address_type, result);
1069 break;
1070 case DW_OP_eq:
1071 result = value_equal (first, second);
1072 result_val = value_from_ulongest (address_type, result);
1073 break;
1074 case DW_OP_lt:
1075 result = value_less (first, second);
1076 result_val = value_from_ulongest (address_type, result);
1077 break;
1078 case DW_OP_gt:
1079 /* A > B is B < A. */
1080 result = value_less (second, first);
1081 result_val = value_from_ulongest (address_type, result);
1082 break;
1083 case DW_OP_ne:
1084 result = ! value_equal (first, second);
1085 result_val = value_from_ulongest (address_type, result);
1086 break;
1087 default:
1088 internal_error (__FILE__, __LINE__,
1089 _("Can't be reached."));
1090 }
1091 }
1092 break;
1093
1094 case DW_OP_call_frame_cfa:
1095 result = (ctx->funcs->get_frame_cfa) (ctx->baton);
1096 result_val = value_from_ulongest (address_type, result);
1097 in_stack_memory = 1;
1098 break;
1099
1100 case DW_OP_GNU_push_tls_address:
1101 /* Variable is at a constant offset in the thread-local
1102 storage block into the objfile for the current thread and
1103 the dynamic linker module containing this expression. Here
1104 we return returns the offset from that base. The top of the
1105 stack has the offset from the beginning of the thread
1106 control block at which the variable is located. Nothing
1107 should follow this operator, so the top of stack would be
1108 returned. */
1109 result = value_as_long (dwarf_expr_fetch (ctx, 0));
1110 dwarf_expr_pop (ctx);
1111 result = (ctx->funcs->get_tls_address) (ctx->baton, result);
1112 result_val = value_from_ulongest (address_type, result);
1113 break;
1114
1115 case DW_OP_skip:
1116 offset = extract_signed_integer (op_ptr, 2, byte_order);
1117 op_ptr += 2;
1118 op_ptr += offset;
1119 goto no_push;
1120
1121 case DW_OP_bra:
1122 {
1123 struct value *val;
1124
1125 offset = extract_signed_integer (op_ptr, 2, byte_order);
1126 op_ptr += 2;
1127 val = dwarf_expr_fetch (ctx, 0);
1128 dwarf_require_integral (value_type (val));
1129 if (value_as_long (val) != 0)
1130 op_ptr += offset;
1131 dwarf_expr_pop (ctx);
1132 }
1133 goto no_push;
1134
1135 case DW_OP_nop:
1136 goto no_push;
1137
1138 case DW_OP_piece:
1139 {
1140 ULONGEST size;
1141
1142 /* Record the piece. */
1143 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1144 add_piece (ctx, 8 * size, 0);
1145
1146 /* Pop off the address/regnum, and reset the location
1147 type. */
1148 if (ctx->location != DWARF_VALUE_LITERAL
1149 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1150 dwarf_expr_pop (ctx);
1151 ctx->location = DWARF_VALUE_MEMORY;
1152 }
1153 goto no_push;
1154
1155 case DW_OP_bit_piece:
1156 {
1157 ULONGEST size, offset;
1158
1159 /* Record the piece. */
1160 op_ptr = read_uleb128 (op_ptr, op_end, &size);
1161 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
1162 add_piece (ctx, size, offset);
1163
1164 /* Pop off the address/regnum, and reset the location
1165 type. */
1166 if (ctx->location != DWARF_VALUE_LITERAL
1167 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1168 dwarf_expr_pop (ctx);
1169 ctx->location = DWARF_VALUE_MEMORY;
1170 }
1171 goto no_push;
1172
1173 case DW_OP_GNU_uninit:
1174 if (op_ptr != op_end)
1175 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
1176 "be the very last op."));
1177
1178 ctx->initialized = 0;
1179 goto no_push;
1180
1181 case DW_OP_call2:
1182 result = extract_unsigned_integer (op_ptr, 2, byte_order);
1183 op_ptr += 2;
1184 ctx->funcs->dwarf_call (ctx, result);
1185 goto no_push;
1186
1187 case DW_OP_call4:
1188 result = extract_unsigned_integer (op_ptr, 4, byte_order);
1189 op_ptr += 4;
1190 ctx->funcs->dwarf_call (ctx, result);
1191 goto no_push;
1192
1193 case DW_OP_GNU_entry_value:
1194 /* This operation is not yet supported by GDB. */
1195 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
1196 ctx->stack_len = 0;
1197 ctx->num_pieces = 0;
1198 goto abort_expression;
1199
1200 case DW_OP_GNU_const_type:
1201 {
1202 ULONGEST type_die;
1203 int n;
1204 const gdb_byte *data;
1205 struct type *type;
1206
1207 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1208 n = *op_ptr++;
1209 data = op_ptr;
1210 op_ptr += n;
1211
1212 type = dwarf_get_base_type (ctx, type_die, n);
1213 result_val = value_from_contents (type, data);
1214 }
1215 break;
1216
1217 case DW_OP_GNU_regval_type:
1218 {
1219 ULONGEST type_die;
1220 struct type *type;
1221
1222 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1223 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1224
1225 type = dwarf_get_base_type (ctx, type_die, 0);
1226 result = (ctx->funcs->read_reg) (ctx->baton, reg);
1227 result_val = value_from_ulongest (address_type, result);
1228 result_val = value_from_contents (type,
1229 value_contents_all (result_val));
1230 }
1231 break;
1232
1233 case DW_OP_GNU_convert:
1234 case DW_OP_GNU_reinterpret:
1235 {
1236 ULONGEST type_die;
1237 struct type *type;
1238
1239 op_ptr = read_uleb128 (op_ptr, op_end, &type_die);
1240
1241 if (type_die == 0)
1242 type = address_type;
1243 else
1244 type = dwarf_get_base_type (ctx, type_die, 0);
1245
1246 result_val = dwarf_expr_fetch (ctx, 0);
1247 dwarf_expr_pop (ctx);
1248
1249 if (op == DW_OP_GNU_convert)
1250 result_val = value_cast (type, result_val);
1251 else if (type == value_type (result_val))
1252 {
1253 /* Nothing. */
1254 }
1255 else if (TYPE_LENGTH (type)
1256 != TYPE_LENGTH (value_type (result_val)))
1257 error (_("DW_OP_GNU_reinterpret has wrong size"));
1258 else
1259 result_val
1260 = value_from_contents (type,
1261 value_contents_all (result_val));
1262 }
1263 break;
1264
1265 default:
1266 error (_("Unhandled dwarf expression opcode 0x%x"), op);
1267 }
1268
1269 /* Most things push a result value. */
1270 gdb_assert (result_val != NULL);
1271 dwarf_expr_push (ctx, result_val, in_stack_memory);
1272 no_push:
1273 ;
1274 }
1275
1276 /* To simplify our main caller, if the result is an implicit
1277 pointer, then make a pieced value. This is ok because we can't
1278 have implicit pointers in contexts where pieces are invalid. */
1279 if (ctx->location == DWARF_VALUE_IMPLICIT_POINTER)
1280 add_piece (ctx, 8 * ctx->addr_size, 0);
1281
1282 abort_expression:
1283 ctx->recursion_depth--;
1284 gdb_assert (ctx->recursion_depth >= 0);
1285 }
1286
1287 /* Stub dwarf_expr_context_funcs.read_reg implementation. */
1288
1289 CORE_ADDR
1290 ctx_no_read_reg (void *baton, int regnum)
1291 {
1292 error (_("Registers access is invalid in this context"));
1293 }
1294
1295 /* Stub dwarf_expr_context_funcs.get_frame_base implementation. */
1296
1297 void
1298 ctx_no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
1299 {
1300 error (_("%s is invalid in this context"), "DW_OP_fbreg");
1301 }
1302
1303 /* Stub dwarf_expr_context_funcs.get_frame_cfa implementation. */
1304
1305 CORE_ADDR
1306 ctx_no_get_frame_cfa (void *baton)
1307 {
1308 error (_("%s is invalid in this context"), "DW_OP_call_frame_cfa");
1309 }
1310
1311 /* Stub dwarf_expr_context_funcs.get_frame_pc implementation. */
1312
1313 CORE_ADDR
1314 ctx_no_get_frame_pc (void *baton)
1315 {
1316 error (_("%s is invalid in this context"), "DW_OP_GNU_implicit_pointer");
1317 }
1318
1319 /* Stub dwarf_expr_context_funcs.get_tls_address implementation. */
1320
1321 CORE_ADDR
1322 ctx_no_get_tls_address (void *baton, CORE_ADDR offset)
1323 {
1324 error (_("%s is invalid in this context"), "DW_OP_GNU_push_tls_address");
1325 }
1326
1327 /* Stub dwarf_expr_context_funcs.dwarf_call implementation. */
1328
1329 void
1330 ctx_no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
1331 {
1332 error (_("%s is invalid in this context"), "DW_OP_call*");
1333 }
1334
1335 /* Stub dwarf_expr_context_funcs.get_base_type implementation. */
1336
1337 struct type *
1338 ctx_no_get_base_type (struct dwarf_expr_context *ctx, size_t die)
1339 {
1340 error (_("Support for typed DWARF is not supported in this context"));
1341 }
1342
1343 void
1344 _initialize_dwarf2expr (void)
1345 {
1346 dwarf_arch_cookie
1347 = gdbarch_data_register_post_init (dwarf_gdbarch_types_init);
1348 }
This page took 0.056485 seconds and 5 git commands to generate.