* Makefile.in (dwarf2loc.o): Update dependencies.
[deliverable/binutils-gdb.git] / gdb / dwarf2expr.c
1 /* Dwarf2 Expression Evaluator
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@dberlin.org)
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "elf/dwarf2.h"
28 #include "dwarf2expr.h"
29
30 /* Local prototypes. */
31
32 static void execute_stack_op (struct dwarf_expr_context *,
33 unsigned char *, unsigned char *);
34
35 /* Create a new context for the expression evaluator. */
36
37 struct dwarf_expr_context *
38 new_dwarf_expr_context ()
39 {
40 struct dwarf_expr_context *retval;
41 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
42 retval->stack_len = 10;
43 retval->stack = xmalloc (10 * sizeof (CORE_ADDR));
44 return retval;
45 }
46
47 /* Release the memory allocated to CTX. */
48
49 void
50 free_dwarf_expr_context (struct dwarf_expr_context *ctx)
51 {
52 xfree (ctx->stack);
53 xfree (ctx);
54 }
55
56 /* Expand the memory allocated to CTX's stack to contain at least
57 NEED more elements than are currently used. */
58
59 static void
60 dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
61 {
62 if (ctx->stack_len + need > ctx->stack_allocated)
63 {
64 size_t templen = ctx->stack_len * 2;
65 while (templen < (ctx->stack_len + need))
66 templen *= 2;
67 ctx->stack = xrealloc (ctx->stack,
68 templen * sizeof (CORE_ADDR));
69 ctx->stack_allocated = templen;
70 }
71 }
72
73 /* Push VALUE onto CTX's stack. */
74
75 void
76 dwarf_expr_push (struct dwarf_expr_context *ctx, CORE_ADDR value)
77 {
78 dwarf_expr_grow_stack (ctx, 1);
79 ctx->stack[ctx->stack_len++] = value;
80 }
81
82 /* Pop the top item off of CTX's stack. */
83
84 void
85 dwarf_expr_pop (struct dwarf_expr_context *ctx)
86 {
87 if (ctx->stack_len <= 0)
88 error ("dwarf expression stack underflow");
89 ctx->stack_len--;
90 }
91
92 /* Retrieve the N'th item on CTX's stack. */
93
94 CORE_ADDR
95 dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
96 {
97 if (ctx->stack_len < n)
98 error ("Asked for position %d of stack, stack only has %d elements on it\n",
99 n, ctx->stack_len);
100 return ctx->stack[ctx->stack_len - (1 + n)];
101
102 }
103
104 /* Evaluate the expression at ADDR (LEN bytes long) using the context
105 CTX. */
106
107 void
108 dwarf_expr_eval (struct dwarf_expr_context *ctx, unsigned char *addr,
109 size_t len)
110 {
111 execute_stack_op (ctx, addr, addr + len);
112 }
113
114 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
115 by R, and return the new value of BUF. Verify that it doesn't extend
116 past BUF_END. */
117
118 unsigned char *
119 read_uleb128 (unsigned char *buf, unsigned char *buf_end, ULONGEST * r)
120 {
121 unsigned shift = 0;
122 ULONGEST result = 0;
123 unsigned char byte;
124
125 while (1)
126 {
127 if (buf >= buf_end)
128 error ("read_uleb128: Corrupted DWARF expression.");
129
130 byte = *buf++;
131 result |= (byte & 0x7f) << shift;
132 if ((byte & 0x80) == 0)
133 break;
134 shift += 7;
135 }
136 *r = result;
137 return buf;
138 }
139
140 /* Decode the signed LEB128 constant at BUF into the variable pointed to
141 by R, and return the new value of BUF. Verify that it doesn't extend
142 past BUF_END. */
143
144 unsigned char *
145 read_sleb128 (unsigned char *buf, unsigned char *buf_end, LONGEST * r)
146 {
147 unsigned shift = 0;
148 LONGEST result = 0;
149 unsigned char byte;
150
151 while (1)
152 {
153 if (buf >= buf_end)
154 error ("read_sleb128: Corrupted DWARF expression.");
155
156 byte = *buf++;
157 result |= (byte & 0x7f) << shift;
158 shift += 7;
159 if ((byte & 0x80) == 0)
160 break;
161 }
162 if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
163 result |= -(1 << shift);
164
165 *r = result;
166 return buf;
167 }
168
169 /* Read an address from BUF, and verify that it doesn't extend past
170 BUF_END. The address is returned, and *BYTES_READ is set to the
171 number of bytes read from BUF. */
172
173 static CORE_ADDR
174 read_address (unsigned char *buf, unsigned char *buf_end, int *bytes_read)
175 {
176 CORE_ADDR result;
177
178 if (buf_end - buf < TARGET_ADDR_BIT / TARGET_CHAR_BIT)
179 error ("read_address: Corrupted DWARF expression.");
180
181 *bytes_read = TARGET_ADDR_BIT / TARGET_CHAR_BIT;
182 result = extract_address (buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
183 return result;
184 }
185
186 /* Return the type of an address, for unsigned arithmetic. */
187
188 static struct type *
189 unsigned_address_type (void)
190 {
191 switch (TARGET_ADDR_BIT / TARGET_CHAR_BIT)
192 {
193 case 2:
194 return builtin_type_uint16;
195 case 4:
196 return builtin_type_uint32;
197 case 8:
198 return builtin_type_uint64;
199 default:
200 internal_error (__FILE__, __LINE__,
201 "Unsupported address size.\n");
202 }
203 }
204
205 /* Return the type of an address, for signed arithmetic. */
206
207 static struct type *
208 signed_address_type (void)
209 {
210 switch (TARGET_ADDR_BIT / TARGET_CHAR_BIT)
211 {
212 case 2:
213 return builtin_type_int16;
214 case 4:
215 return builtin_type_int32;
216 case 8:
217 return builtin_type_int64;
218 default:
219 internal_error (__FILE__, __LINE__,
220 "Unsupported address size.\n");
221 }
222 }
223 \f
224 /* The engine for the expression evaluator. Using the context in CTX,
225 evaluate the expression between OP_PTR and OP_END. */
226
227 static void
228 execute_stack_op (struct dwarf_expr_context *ctx, unsigned char *op_ptr,
229 unsigned char *op_end)
230 {
231 while (op_ptr < op_end)
232 {
233 enum dwarf_location_atom op = *op_ptr++;
234 CORE_ADDR result, memaddr;
235 ULONGEST uoffset, reg;
236 LONGEST offset;
237 int bytes_read;
238 enum lval_type expr_lval;
239
240 ctx->in_reg = 0;
241
242 switch (op)
243 {
244 case DW_OP_lit0:
245 case DW_OP_lit1:
246 case DW_OP_lit2:
247 case DW_OP_lit3:
248 case DW_OP_lit4:
249 case DW_OP_lit5:
250 case DW_OP_lit6:
251 case DW_OP_lit7:
252 case DW_OP_lit8:
253 case DW_OP_lit9:
254 case DW_OP_lit10:
255 case DW_OP_lit11:
256 case DW_OP_lit12:
257 case DW_OP_lit13:
258 case DW_OP_lit14:
259 case DW_OP_lit15:
260 case DW_OP_lit16:
261 case DW_OP_lit17:
262 case DW_OP_lit18:
263 case DW_OP_lit19:
264 case DW_OP_lit20:
265 case DW_OP_lit21:
266 case DW_OP_lit22:
267 case DW_OP_lit23:
268 case DW_OP_lit24:
269 case DW_OP_lit25:
270 case DW_OP_lit26:
271 case DW_OP_lit27:
272 case DW_OP_lit28:
273 case DW_OP_lit29:
274 case DW_OP_lit30:
275 case DW_OP_lit31:
276 result = op - DW_OP_lit0;
277 break;
278
279 case DW_OP_addr:
280 result = read_address (op_ptr, op_end, &bytes_read);
281 op_ptr += bytes_read;
282 break;
283
284 case DW_OP_const1u:
285 result = extract_unsigned_integer (op_ptr, 1);
286 op_ptr += 1;
287 break;
288 case DW_OP_const1s:
289 result = extract_signed_integer (op_ptr, 1);
290 op_ptr += 1;
291 break;
292 case DW_OP_const2u:
293 result = extract_unsigned_integer (op_ptr, 2);
294 op_ptr += 2;
295 break;
296 case DW_OP_const2s:
297 result = extract_signed_integer (op_ptr, 2);
298 op_ptr += 2;
299 break;
300 case DW_OP_const4u:
301 result = extract_unsigned_integer (op_ptr, 4);
302 op_ptr += 4;
303 break;
304 case DW_OP_const4s:
305 result = extract_signed_integer (op_ptr, 4);
306 op_ptr += 4;
307 break;
308 case DW_OP_const8u:
309 result = extract_unsigned_integer (op_ptr, 8);
310 op_ptr += 8;
311 break;
312 case DW_OP_const8s:
313 result = extract_signed_integer (op_ptr, 8);
314 op_ptr += 8;
315 break;
316 case DW_OP_constu:
317 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
318 result = uoffset;
319 break;
320 case DW_OP_consts:
321 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
322 result = offset;
323 break;
324
325 /* The DW_OP_reg operations are required to occur alone in
326 location expressions. */
327 case DW_OP_reg0:
328 case DW_OP_reg1:
329 case DW_OP_reg2:
330 case DW_OP_reg3:
331 case DW_OP_reg4:
332 case DW_OP_reg5:
333 case DW_OP_reg6:
334 case DW_OP_reg7:
335 case DW_OP_reg8:
336 case DW_OP_reg9:
337 case DW_OP_reg10:
338 case DW_OP_reg11:
339 case DW_OP_reg12:
340 case DW_OP_reg13:
341 case DW_OP_reg14:
342 case DW_OP_reg15:
343 case DW_OP_reg16:
344 case DW_OP_reg17:
345 case DW_OP_reg18:
346 case DW_OP_reg19:
347 case DW_OP_reg20:
348 case DW_OP_reg21:
349 case DW_OP_reg22:
350 case DW_OP_reg23:
351 case DW_OP_reg24:
352 case DW_OP_reg25:
353 case DW_OP_reg26:
354 case DW_OP_reg27:
355 case DW_OP_reg28:
356 case DW_OP_reg29:
357 case DW_OP_reg30:
358 case DW_OP_reg31:
359 /* NOTE: in the presence of DW_OP_piece this check is incorrect. */
360 if (op_ptr != op_end)
361 error ("DWARF-2 expression error: DW_OP_reg operations must be "
362 "used alone.");
363
364 /* FIXME drow/2003-02-21: This call to read_reg could be pushed
365 into the evaluator's caller by changing the semantics for in_reg.
366 Then we wouldn't need to return an lval_type and a memaddr. */
367 result = (ctx->read_reg) (ctx->baton, op - DW_OP_reg0, &expr_lval,
368 &memaddr);
369
370 if (expr_lval == lval_register)
371 {
372 ctx->regnum = op - DW_OP_reg0;
373 ctx->in_reg = 1;
374 }
375 else
376 result = memaddr;
377
378 break;
379
380 case DW_OP_regx:
381 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
382 if (op_ptr != op_end)
383 error ("DWARF-2 expression error: DW_OP_reg operations must be "
384 "used alone.");
385
386 result = (ctx->read_reg) (ctx->baton, reg, &expr_lval, &memaddr);
387
388 if (expr_lval == lval_register)
389 {
390 ctx->regnum = reg;
391 ctx->in_reg = 1;
392 }
393 else
394 result = memaddr;
395
396 break;
397
398 case DW_OP_breg0:
399 case DW_OP_breg1:
400 case DW_OP_breg2:
401 case DW_OP_breg3:
402 case DW_OP_breg4:
403 case DW_OP_breg5:
404 case DW_OP_breg6:
405 case DW_OP_breg7:
406 case DW_OP_breg8:
407 case DW_OP_breg9:
408 case DW_OP_breg10:
409 case DW_OP_breg11:
410 case DW_OP_breg12:
411 case DW_OP_breg13:
412 case DW_OP_breg14:
413 case DW_OP_breg15:
414 case DW_OP_breg16:
415 case DW_OP_breg17:
416 case DW_OP_breg18:
417 case DW_OP_breg19:
418 case DW_OP_breg20:
419 case DW_OP_breg21:
420 case DW_OP_breg22:
421 case DW_OP_breg23:
422 case DW_OP_breg24:
423 case DW_OP_breg25:
424 case DW_OP_breg26:
425 case DW_OP_breg27:
426 case DW_OP_breg28:
427 case DW_OP_breg29:
428 case DW_OP_breg30:
429 case DW_OP_breg31:
430 {
431 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
432 result = (ctx->read_reg) (ctx->baton, op - DW_OP_breg0,
433 &expr_lval, &memaddr);
434 result += offset;
435 }
436 break;
437 case DW_OP_bregx:
438 {
439 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
440 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
441 result = (ctx->read_reg) (ctx->baton, reg, &expr_lval, &memaddr);
442 result += offset;
443 }
444 break;
445 case DW_OP_fbreg:
446 {
447 unsigned char *datastart;
448 size_t datalen;
449 unsigned int before_stack_len;
450
451 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
452 /* Rather than create a whole new context, we simply
453 record the stack length before execution, then reset it
454 afterwards, effectively erasing whatever the recursive
455 call put there. */
456 before_stack_len = ctx->stack_len;
457 (ctx->get_frame_base) (ctx->baton, &datastart, &datalen);
458 dwarf_expr_eval (ctx, datastart, datalen);
459 result = dwarf_expr_fetch (ctx, 0);
460 if (! ctx->in_reg)
461 {
462 char *buf = alloca (TARGET_ADDR_BIT / TARGET_CHAR_BIT);
463 int bytes_read;
464
465 (ctx->read_mem) (ctx->baton, buf, result,
466 TARGET_ADDR_BIT / TARGET_CHAR_BIT);
467 result = read_address (buf,
468 buf + TARGET_ADDR_BIT / TARGET_CHAR_BIT,
469 &bytes_read);
470 }
471 result = result + offset;
472 ctx->stack_len = before_stack_len;
473 ctx->in_reg = 0;
474 }
475 break;
476 case DW_OP_dup:
477 result = dwarf_expr_fetch (ctx, 0);
478 break;
479
480 case DW_OP_drop:
481 dwarf_expr_pop (ctx);
482 goto no_push;
483
484 case DW_OP_pick:
485 offset = *op_ptr++;
486 result = dwarf_expr_fetch (ctx, offset);
487 break;
488
489 case DW_OP_over:
490 result = dwarf_expr_fetch (ctx, 1);
491 break;
492
493 case DW_OP_rot:
494 {
495 CORE_ADDR t1, t2, t3;
496
497 if (ctx->stack_len < 3)
498 error ("Not enough elements for DW_OP_rot. Need 3, have %d\n",
499 ctx->stack_len);
500 t1 = ctx->stack[ctx->stack_len - 1];
501 t2 = ctx->stack[ctx->stack_len - 2];
502 t3 = ctx->stack[ctx->stack_len - 3];
503 ctx->stack[ctx->stack_len - 1] = t2;
504 ctx->stack[ctx->stack_len - 2] = t3;
505 ctx->stack[ctx->stack_len - 3] = t1;
506 goto no_push;
507 }
508
509 case DW_OP_deref:
510 case DW_OP_deref_size:
511 case DW_OP_abs:
512 case DW_OP_neg:
513 case DW_OP_not:
514 case DW_OP_plus_uconst:
515 /* Unary operations. */
516 result = dwarf_expr_fetch (ctx, 0);
517 dwarf_expr_pop (ctx);
518
519 switch (op)
520 {
521 case DW_OP_deref:
522 {
523 char *buf = alloca (TARGET_ADDR_BIT / TARGET_CHAR_BIT);
524 int bytes_read;
525
526 (ctx->read_mem) (ctx->baton, buf, result,
527 TARGET_ADDR_BIT / TARGET_CHAR_BIT);
528 result = read_address (buf,
529 buf + TARGET_ADDR_BIT / TARGET_CHAR_BIT,
530 &bytes_read);
531 }
532 break;
533
534 case DW_OP_deref_size:
535 {
536 char *buf = alloca (TARGET_ADDR_BIT / TARGET_CHAR_BIT);
537 int bytes_read;
538
539 (ctx->read_mem) (ctx->baton, buf, result, *op_ptr++);
540 result = read_address (buf,
541 buf + TARGET_ADDR_BIT / TARGET_CHAR_BIT,
542 &bytes_read);
543 }
544 break;
545
546 case DW_OP_abs:
547 if ((signed int) result < 0)
548 result = -result;
549 break;
550 case DW_OP_neg:
551 result = -result;
552 break;
553 case DW_OP_not:
554 result = ~result;
555 break;
556 case DW_OP_plus_uconst:
557 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
558 result += reg;
559 break;
560 }
561 break;
562
563 case DW_OP_and:
564 case DW_OP_div:
565 case DW_OP_minus:
566 case DW_OP_mod:
567 case DW_OP_mul:
568 case DW_OP_or:
569 case DW_OP_plus:
570 case DW_OP_shl:
571 case DW_OP_shr:
572 case DW_OP_shra:
573 case DW_OP_xor:
574 case DW_OP_le:
575 case DW_OP_ge:
576 case DW_OP_eq:
577 case DW_OP_lt:
578 case DW_OP_gt:
579 case DW_OP_ne:
580 {
581 /* Binary operations. Use the value engine to do computations in
582 the right width. */
583 CORE_ADDR first, second;
584 enum exp_opcode binop;
585 struct value *val1, *val2;
586
587 second = dwarf_expr_fetch (ctx, 0);
588 dwarf_expr_pop (ctx);
589
590 first = dwarf_expr_fetch (ctx, 1);
591 dwarf_expr_pop (ctx);
592
593 val1 = value_from_longest (unsigned_address_type (), first);
594 val2 = value_from_longest (unsigned_address_type (), second);
595
596 switch (op)
597 {
598 case DW_OP_and:
599 binop = BINOP_BITWISE_AND;
600 break;
601 case DW_OP_div:
602 binop = BINOP_DIV;
603 case DW_OP_minus:
604 binop = BINOP_SUB;
605 break;
606 case DW_OP_mod:
607 binop = BINOP_MOD;
608 break;
609 case DW_OP_mul:
610 binop = BINOP_MUL;
611 break;
612 case DW_OP_or:
613 binop = BINOP_BITWISE_IOR;
614 break;
615 case DW_OP_plus:
616 binop = BINOP_ADD;
617 break;
618 case DW_OP_shl:
619 binop = BINOP_LSH;
620 break;
621 case DW_OP_shr:
622 binop = BINOP_RSH;
623 case DW_OP_shra:
624 binop = BINOP_RSH;
625 val1 = value_from_longest (signed_address_type (), first);
626 break;
627 case DW_OP_xor:
628 binop = BINOP_BITWISE_XOR;
629 break;
630 case DW_OP_le:
631 binop = BINOP_LEQ;
632 break;
633 case DW_OP_ge:
634 binop = BINOP_GEQ;
635 break;
636 case DW_OP_eq:
637 binop = BINOP_EQUAL;
638 break;
639 case DW_OP_lt:
640 binop = BINOP_LESS;
641 break;
642 case DW_OP_gt:
643 binop = BINOP_GTR;
644 break;
645 case DW_OP_ne:
646 binop = BINOP_NOTEQUAL;
647 break;
648 default:
649 internal_error (__FILE__, __LINE__,
650 "Can't be reached.");
651 }
652 result = value_as_long (value_binop (val1, val2, binop));
653 }
654 break;
655
656 case DW_OP_GNU_push_tls_address:
657 result = dwarf_expr_fetch (ctx, 0);
658 dwarf_expr_pop (ctx);
659 result = (ctx->get_tls_address) (ctx->baton, result);
660 break;
661
662 case DW_OP_skip:
663 offset = extract_signed_integer (op_ptr, 2);
664 op_ptr += 2;
665 op_ptr += offset;
666 goto no_push;
667
668 case DW_OP_bra:
669 offset = extract_signed_integer (op_ptr, 2);
670 op_ptr += 2;
671 if (dwarf_expr_fetch (ctx, 0) != 0)
672 op_ptr += offset;
673 dwarf_expr_pop (ctx);
674 goto no_push;
675
676 case DW_OP_nop:
677 goto no_push;
678
679 default:
680 error ("Unhandled dwarf expression opcode");
681 }
682
683 /* Most things push a result value. */
684 dwarf_expr_push (ctx, result);
685 no_push:;
686 }
687 }
This page took 0.046796 seconds and 5 git commands to generate.