configury changes to make ld plugin support controlled by --enable-plugins
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 extern int dwarf2_always_disassemble;
43
44 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
45 const gdb_byte **start, size_t *length);
46
47 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 LONGEST byte_offset);
55
56 /* Until these have formal names, we define these here.
57 ref: http://gcc.gnu.org/wiki/DebugFission
58 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
59 and is then followed by data specific to that entry. */
60
61 enum debug_loc_kind
62 {
63 /* Indicates the end of the list of entries. */
64 DEBUG_LOC_END_OF_LIST = 0,
65
66 /* This is followed by an unsigned LEB128 number that is an index into
67 .debug_addr and specifies the base address for all following entries. */
68 DEBUG_LOC_BASE_ADDRESS = 1,
69
70 /* This is followed by two unsigned LEB128 numbers that are indices into
71 .debug_addr and specify the beginning and ending addresses, and then
72 a normal location expression as in .debug_loc. */
73 DEBUG_LOC_START_END = 2,
74
75 /* This is followed by an unsigned LEB128 number that is an index into
76 .debug_addr and specifies the beginning address, and a 4 byte unsigned
77 number that specifies the length, and then a normal location expression
78 as in .debug_loc. */
79 DEBUG_LOC_START_LENGTH = 3,
80
81 /* An internal value indicating there is insufficient data. */
82 DEBUG_LOC_BUFFER_OVERFLOW = -1,
83
84 /* An internal value indicating an invalid kind of entry was found. */
85 DEBUG_LOC_INVALID_ENTRY = -2
86 };
87
88 /* Helper function which throws an error if a synthetic pointer is
89 invalid. */
90
91 static void
92 invalid_synthetic_pointer (void)
93 {
94 error (_("access outside bounds of object "
95 "referenced via synthetic pointer"));
96 }
97
98 /* Decode the addresses in a non-dwo .debug_loc entry.
99 A pointer to the next byte to examine is returned in *NEW_PTR.
100 The encoded low,high addresses are return in *LOW,*HIGH.
101 The result indicates the kind of entry found. */
102
103 static enum debug_loc_kind
104 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
105 const gdb_byte **new_ptr,
106 CORE_ADDR *low, CORE_ADDR *high,
107 enum bfd_endian byte_order,
108 unsigned int addr_size,
109 int signed_addr_p)
110 {
111 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
112
113 if (buf_end - loc_ptr < 2 * addr_size)
114 return DEBUG_LOC_BUFFER_OVERFLOW;
115
116 if (signed_addr_p)
117 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
118 else
119 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
120 loc_ptr += addr_size;
121
122 if (signed_addr_p)
123 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
124 else
125 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
126 loc_ptr += addr_size;
127
128 *new_ptr = loc_ptr;
129
130 /* A base-address-selection entry. */
131 if ((*low & base_mask) == base_mask)
132 return DEBUG_LOC_BASE_ADDRESS;
133
134 /* An end-of-list entry. */
135 if (*low == 0 && *high == 0)
136 return DEBUG_LOC_END_OF_LIST;
137
138 return DEBUG_LOC_START_END;
139 }
140
141 /* Decode the addresses in .debug_loc.dwo entry.
142 A pointer to the next byte to examine is returned in *NEW_PTR.
143 The encoded low,high addresses are return in *LOW,*HIGH.
144 The result indicates the kind of entry found. */
145
146 static enum debug_loc_kind
147 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
148 const gdb_byte *loc_ptr,
149 const gdb_byte *buf_end,
150 const gdb_byte **new_ptr,
151 CORE_ADDR *low, CORE_ADDR *high,
152 enum bfd_endian byte_order)
153 {
154 uint64_t low_index, high_index;
155
156 if (loc_ptr == buf_end)
157 return DEBUG_LOC_BUFFER_OVERFLOW;
158
159 switch (*loc_ptr++)
160 {
161 case DEBUG_LOC_END_OF_LIST:
162 *new_ptr = loc_ptr;
163 return DEBUG_LOC_END_OF_LIST;
164 case DEBUG_LOC_BASE_ADDRESS:
165 *low = 0;
166 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
167 if (loc_ptr == NULL)
168 return DEBUG_LOC_BUFFER_OVERFLOW;
169 *high = dwarf2_read_addr_index (per_cu, high_index);
170 *new_ptr = loc_ptr;
171 return DEBUG_LOC_BASE_ADDRESS;
172 case DEBUG_LOC_START_END:
173 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
174 if (loc_ptr == NULL)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 *low = dwarf2_read_addr_index (per_cu, low_index);
177 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
178 if (loc_ptr == NULL)
179 return DEBUG_LOC_BUFFER_OVERFLOW;
180 *high = dwarf2_read_addr_index (per_cu, high_index);
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_START_END;
183 case DEBUG_LOC_START_LENGTH:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = dwarf2_read_addr_index (per_cu, low_index);
188 if (loc_ptr + 4 > buf_end)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *high = *low;
191 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
192 *new_ptr = loc_ptr + 4;
193 return DEBUG_LOC_START_LENGTH;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* A function for dealing with location lists. Given a
200 symbol baton (BATON) and a pc value (PC), find the appropriate
201 location expression, set *LOCEXPR_LENGTH, and return a pointer
202 to the beginning of the expression. Returns NULL on failure.
203
204 For now, only return the first matching location expression; there
205 can be more than one in the list. */
206
207 const gdb_byte *
208 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
209 size_t *locexpr_length, CORE_ADDR pc)
210 {
211 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
214 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
215 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
216 /* Adjust base_address for relocatable objects. */
217 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
218 CORE_ADDR base_address = baton->base_address + base_offset;
219 const gdb_byte *loc_ptr, *buf_end;
220
221 loc_ptr = baton->data;
222 buf_end = baton->data + baton->size;
223
224 while (1)
225 {
226 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
227 int length;
228 enum debug_loc_kind kind;
229 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
230
231 if (baton->from_dwo)
232 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
233 loc_ptr, buf_end, &new_ptr,
234 &low, &high, byte_order);
235 else
236 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
237 &low, &high,
238 byte_order, addr_size,
239 signed_addr_p);
240 loc_ptr = new_ptr;
241 switch (kind)
242 {
243 case DEBUG_LOC_END_OF_LIST:
244 *locexpr_length = 0;
245 return NULL;
246 case DEBUG_LOC_BASE_ADDRESS:
247 base_address = high + base_offset;
248 continue;
249 case DEBUG_LOC_START_END:
250 case DEBUG_LOC_START_LENGTH:
251 break;
252 case DEBUG_LOC_BUFFER_OVERFLOW:
253 case DEBUG_LOC_INVALID_ENTRY:
254 error (_("dwarf2_find_location_expression: "
255 "Corrupted DWARF expression."));
256 default:
257 gdb_assert_not_reached ("bad debug_loc_kind");
258 }
259
260 /* Otherwise, a location expression entry.
261 If the entry is from a DWO, don't add base address: the entry is
262 from .debug_addr which has absolute addresses. */
263 if (! baton->from_dwo)
264 {
265 low += base_address;
266 high += base_address;
267 }
268
269 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
270 loc_ptr += 2;
271
272 if (low == high && pc == low)
273 {
274 /* This is entry PC record present only at entry point
275 of a function. Verify it is really the function entry point. */
276
277 const struct block *pc_block = block_for_pc (pc);
278 struct symbol *pc_func = NULL;
279
280 if (pc_block)
281 pc_func = block_linkage_function (pc_block);
282
283 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
284 {
285 *locexpr_length = length;
286 return loc_ptr;
287 }
288 }
289
290 if (pc >= low && pc < high)
291 {
292 *locexpr_length = length;
293 return loc_ptr;
294 }
295
296 loc_ptr += length;
297 }
298 }
299
300 /* This is the baton used when performing dwarf2 expression
301 evaluation. */
302 struct dwarf_expr_baton
303 {
304 struct frame_info *frame;
305 struct dwarf2_per_cu_data *per_cu;
306 };
307
308 /* Helper functions for dwarf2_evaluate_loc_desc. */
309
310 /* Using the frame specified in BATON, return the value of register
311 REGNUM, treated as a pointer. */
312 static CORE_ADDR
313 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
314 {
315 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
316 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
317 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
318
319 return address_from_register (regnum, debaton->frame);
320 }
321
322 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
323
324 static struct value *
325 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
326 {
327 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
328 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
329 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
330
331 return value_from_register (type, regnum, debaton->frame);
332 }
333
334 /* Read memory at ADDR (length LEN) into BUF. */
335
336 static void
337 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
338 {
339 read_memory (addr, buf, len);
340 }
341
342 /* Using the frame specified in BATON, find the location expression
343 describing the frame base. Return a pointer to it in START and
344 its length in LENGTH. */
345 static void
346 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
347 {
348 /* FIXME: cagney/2003-03-26: This code should be using
349 get_frame_base_address(), and then implement a dwarf2 specific
350 this_base method. */
351 struct symbol *framefunc;
352 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
353 const struct block *bl = get_frame_block (debaton->frame, NULL);
354
355 if (bl == NULL)
356 error (_("frame address is not available."));
357
358 /* Use block_linkage_function, which returns a real (not inlined)
359 function, instead of get_frame_function, which may return an
360 inlined function. */
361 framefunc = block_linkage_function (bl);
362
363 /* If we found a frame-relative symbol then it was certainly within
364 some function associated with a frame. If we can't find the frame,
365 something has gone wrong. */
366 gdb_assert (framefunc != NULL);
367
368 dwarf_expr_frame_base_1 (framefunc,
369 get_frame_address_in_block (debaton->frame),
370 start, length);
371 }
372
373 /* Implement find_frame_base_location method for LOC_BLOCK functions using
374 DWARF expression for its DW_AT_frame_base. */
375
376 static void
377 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
378 const gdb_byte **start, size_t *length)
379 {
380 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
381
382 *length = symbaton->size;
383 *start = symbaton->data;
384 }
385
386 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
387 function uses DWARF expression for its DW_AT_frame_base. */
388
389 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
390 {
391 locexpr_find_frame_base_location
392 };
393
394 /* Implement find_frame_base_location method for LOC_BLOCK functions using
395 DWARF location list for its DW_AT_frame_base. */
396
397 static void
398 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
399 const gdb_byte **start, size_t *length)
400 {
401 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
402
403 *start = dwarf2_find_location_expression (symbaton, length, pc);
404 }
405
406 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
407 function uses DWARF location list for its DW_AT_frame_base. */
408
409 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
410 {
411 loclist_find_frame_base_location
412 };
413
414 static void
415 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
417 {
418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
419 {
420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
421
422 ops_block->find_frame_base_location (framefunc, pc, start, length);
423 }
424 else
425 *length = 0;
426
427 if (*length == 0)
428 error (_("Could not find the frame base for \"%s\"."),
429 SYMBOL_NATURAL_NAME (framefunc));
430 }
431
432 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435 static CORE_ADDR
436 dwarf_expr_frame_cfa (void *baton)
437 {
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
439
440 return dwarf2_frame_cfa (debaton->frame);
441 }
442
443 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446 static CORE_ADDR
447 dwarf_expr_frame_pc (void *baton)
448 {
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452 }
453
454 /* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456 static CORE_ADDR
457 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458 {
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
461
462 return target_translate_tls_address (objfile, offset);
463 }
464
465 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
468
469 static void
470 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
474 {
475 struct dwarf2_locexpr_baton block;
476
477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483 }
484
485 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487 static void
488 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
489 {
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
493 ctx->funcs->get_frame_pc, ctx->baton);
494 }
495
496 /* Callback function for dwarf2_evaluate_loc_desc. */
497
498 static struct type *
499 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
501 {
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505 }
506
507 /* See dwarf2loc.h. */
508
509 unsigned int entry_values_debug = 0;
510
511 /* Helper to set entry_values_debug. */
512
513 static void
514 show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516 {
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520 }
521
522 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526 static CORE_ADDR
527 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530 {
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
543 struct bound_minimal_symbol msym;
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
550 (msym.minsym == NULL ? "???"
551 : MSYMBOL_PRINT_NAME (msym.minsym)));
552
553 }
554 if (caller_frame == NULL)
555 {
556 struct bound_minimal_symbol msym;
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
564 (msym.minsym == NULL ? "???"
565 : MSYMBOL_PRINT_NAME (msym.minsym)));
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
584 struct bound_minimal_symbol msym;
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
590 if (msym.minsym == NULL)
591 {
592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
599
600 }
601 return BMSYMBOL_VALUE_ADDRESS (msym);
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610 }
611
612 /* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616 static struct symbol *
617 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618 {
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633 }
634
635 /* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644 static void
645 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646 {
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)),
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712 }
713
714 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717 static void
718 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719 {
720 CORE_ADDR addr = call_site->pc;
721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
724 (msym.minsym == NULL ? "???"
725 : MSYMBOL_PRINT_NAME (msym.minsym)));
726
727 }
728
729 /* vec.h needs single word type name, typedef it. */
730 typedef struct call_site *call_sitep;
731
732 /* Define VEC (call_sitep) functions. */
733 DEF_VEC_P (call_sitep);
734
735 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742 static void
743 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745 {
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831 }
832
833 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840 static struct call_site_chain *
841 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843 {
844 CORE_ADDR save_callee_pc = callee_pc;
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
863 paddress (gdbarch, save_callee_pc));
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
956 struct bound_minimal_symbol msym_caller, msym_callee;
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
964 (msym_caller.minsym == NULL
965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
966 paddress (gdbarch, caller_pc),
967 (msym_callee.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975 }
976
977 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982 struct call_site_chain *
983 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985 {
986 volatile struct gdb_exception e;
987 struct call_site_chain *retval = NULL;
988
989 TRY_CATCH (e, RETURN_MASK_ERROR)
990 {
991 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
992 }
993 if (e.reason < 0)
994 {
995 if (e.error == NO_ENTRY_VALUE_ERROR)
996 {
997 if (entry_values_debug)
998 exception_print (gdb_stdout, e);
999
1000 return NULL;
1001 }
1002 else
1003 throw_exception (e);
1004 }
1005 return retval;
1006 }
1007
1008 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010 static int
1011 call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014 {
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1024 }
1025 return 0;
1026 }
1027
1028 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034 static struct call_site_parameter *
1035 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
1038 struct dwarf2_per_cu_data **per_cu_return)
1039 {
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
1043 struct call_site *call_site;
1044 int iparams;
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
1047 CORE_ADDR target_addr;
1048
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
1069 (msym.minsym == NULL ? "???"
1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
1082 (msym.minsym == NULL ? "???"
1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
1099 : MSYMBOL_PRINT_NAME (target_msym)),
1100 paddress (gdbarch, target_addr),
1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1102 paddress (gdbarch, func_addr));
1103 }
1104
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
1112 if (call_site_parameter_matches (parameter, kind, kind_u))
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130 }
1131
1132 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142 static struct value *
1143 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1144 CORE_ADDR deref_size, struct type *type,
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147 {
1148 const gdb_byte *data_src;
1149 gdb_byte *data;
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
1166
1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1168 }
1169
1170 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177 static void
1178 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
1181 int deref_size)
1182 {
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1198 &caller_per_cu);
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
1209
1210 saved_ctx.gdbarch = ctx->gdbarch;
1211 saved_ctx.addr_size = ctx->addr_size;
1212 saved_ctx.offset = ctx->offset;
1213 saved_ctx.baton = ctx->baton;
1214 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1215 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1216 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1217 ctx->baton = &baton_local;
1218
1219 dwarf_expr_eval (ctx, data_src, size);
1220
1221 ctx->gdbarch = saved_ctx.gdbarch;
1222 ctx->addr_size = saved_ctx.addr_size;
1223 ctx->offset = saved_ctx.offset;
1224 ctx->baton = saved_ctx.baton;
1225 }
1226
1227 /* Callback function for dwarf2_evaluate_loc_desc.
1228 Fetch the address indexed by DW_OP_GNU_addr_index. */
1229
1230 static CORE_ADDR
1231 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1232 {
1233 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1234
1235 return dwarf2_read_addr_index (debaton->per_cu, index);
1236 }
1237
1238 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1239 the indirect method on it, that is use its stored target value, the sole
1240 purpose of entry_data_value_funcs.. */
1241
1242 static struct value *
1243 entry_data_value_coerce_ref (const struct value *value)
1244 {
1245 struct type *checked_type = check_typedef (value_type (value));
1246 struct value *target_val;
1247
1248 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1249 return NULL;
1250
1251 target_val = value_computed_closure (value);
1252 value_incref (target_val);
1253 return target_val;
1254 }
1255
1256 /* Implement copy_closure. */
1257
1258 static void *
1259 entry_data_value_copy_closure (const struct value *v)
1260 {
1261 struct value *target_val = value_computed_closure (v);
1262
1263 value_incref (target_val);
1264 return target_val;
1265 }
1266
1267 /* Implement free_closure. */
1268
1269 static void
1270 entry_data_value_free_closure (struct value *v)
1271 {
1272 struct value *target_val = value_computed_closure (v);
1273
1274 value_free (target_val);
1275 }
1276
1277 /* Vector for methods for an entry value reference where the referenced value
1278 is stored in the caller. On the first dereference use
1279 DW_AT_GNU_call_site_data_value in the caller. */
1280
1281 static const struct lval_funcs entry_data_value_funcs =
1282 {
1283 NULL, /* read */
1284 NULL, /* write */
1285 NULL, /* check_validity */
1286 NULL, /* check_any_valid */
1287 NULL, /* indirect */
1288 entry_data_value_coerce_ref,
1289 NULL, /* check_synthetic_pointer */
1290 entry_data_value_copy_closure,
1291 entry_data_value_free_closure
1292 };
1293
1294 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1295 are used to match DW_AT_location at the caller's
1296 DW_TAG_GNU_call_site_parameter.
1297
1298 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1299 cannot resolve the parameter for any reason. */
1300
1301 static struct value *
1302 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1303 enum call_site_parameter_kind kind,
1304 union call_site_parameter_u kind_u)
1305 {
1306 struct type *checked_type = check_typedef (type);
1307 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1308 struct frame_info *caller_frame = get_prev_frame (frame);
1309 struct value *outer_val, *target_val, *val;
1310 struct call_site_parameter *parameter;
1311 struct dwarf2_per_cu_data *caller_per_cu;
1312
1313 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1314 &caller_per_cu);
1315
1316 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1317 type, caller_frame,
1318 caller_per_cu);
1319
1320 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1321 used and it is not available do not fall back to OUTER_VAL - dereferencing
1322 TYPE_CODE_REF with non-entry data value would give current value - not the
1323 entry value. */
1324
1325 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1326 || TYPE_TARGET_TYPE (checked_type) == NULL)
1327 return outer_val;
1328
1329 target_val = dwarf_entry_parameter_to_value (parameter,
1330 TYPE_LENGTH (target_type),
1331 target_type, caller_frame,
1332 caller_per_cu);
1333
1334 release_value (target_val);
1335 val = allocate_computed_value (type, &entry_data_value_funcs,
1336 target_val /* closure */);
1337
1338 /* Copy the referencing pointer to the new computed value. */
1339 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1340 TYPE_LENGTH (checked_type));
1341 set_value_lazy (val, 0);
1342
1343 return val;
1344 }
1345
1346 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1347 SIZE are DWARF block used to match DW_AT_location at the caller's
1348 DW_TAG_GNU_call_site_parameter.
1349
1350 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1351 cannot resolve the parameter for any reason. */
1352
1353 static struct value *
1354 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1355 const gdb_byte *block, size_t block_len)
1356 {
1357 union call_site_parameter_u kind_u;
1358
1359 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1360 if (kind_u.dwarf_reg != -1)
1361 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1362 kind_u);
1363
1364 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1365 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1366 kind_u);
1367
1368 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1369 suppressed during normal operation. The expression can be arbitrary if
1370 there is no caller-callee entry value binding expected. */
1371 throw_error (NO_ENTRY_VALUE_ERROR,
1372 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1373 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1374 }
1375
1376 struct piece_closure
1377 {
1378 /* Reference count. */
1379 int refc;
1380
1381 /* The CU from which this closure's expression came. */
1382 struct dwarf2_per_cu_data *per_cu;
1383
1384 /* The number of pieces used to describe this variable. */
1385 int n_pieces;
1386
1387 /* The target address size, used only for DWARF_VALUE_STACK. */
1388 int addr_size;
1389
1390 /* The pieces themselves. */
1391 struct dwarf_expr_piece *pieces;
1392 };
1393
1394 /* Allocate a closure for a value formed from separately-described
1395 PIECES. */
1396
1397 static struct piece_closure *
1398 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1399 int n_pieces, struct dwarf_expr_piece *pieces,
1400 int addr_size)
1401 {
1402 struct piece_closure *c = XCNEW (struct piece_closure);
1403 int i;
1404
1405 c->refc = 1;
1406 c->per_cu = per_cu;
1407 c->n_pieces = n_pieces;
1408 c->addr_size = addr_size;
1409 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1410
1411 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1412 for (i = 0; i < n_pieces; ++i)
1413 if (c->pieces[i].location == DWARF_VALUE_STACK)
1414 value_incref (c->pieces[i].v.value);
1415
1416 return c;
1417 }
1418
1419 /* The lowest-level function to extract bits from a byte buffer.
1420 SOURCE is the buffer. It is updated if we read to the end of a
1421 byte.
1422 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1423 updated to reflect the number of bits actually read.
1424 NBITS is the number of bits we want to read. It is updated to
1425 reflect the number of bits actually read. This function may read
1426 fewer bits.
1427 BITS_BIG_ENDIAN is taken directly from gdbarch.
1428 This function returns the extracted bits. */
1429
1430 static unsigned int
1431 extract_bits_primitive (const gdb_byte **source,
1432 unsigned int *source_offset_bits,
1433 int *nbits, int bits_big_endian)
1434 {
1435 unsigned int avail, mask, datum;
1436
1437 gdb_assert (*source_offset_bits < 8);
1438
1439 avail = 8 - *source_offset_bits;
1440 if (avail > *nbits)
1441 avail = *nbits;
1442
1443 mask = (1 << avail) - 1;
1444 datum = **source;
1445 if (bits_big_endian)
1446 datum >>= 8 - (*source_offset_bits + *nbits);
1447 else
1448 datum >>= *source_offset_bits;
1449 datum &= mask;
1450
1451 *nbits -= avail;
1452 *source_offset_bits += avail;
1453 if (*source_offset_bits >= 8)
1454 {
1455 *source_offset_bits -= 8;
1456 ++*source;
1457 }
1458
1459 return datum;
1460 }
1461
1462 /* Extract some bits from a source buffer and move forward in the
1463 buffer.
1464
1465 SOURCE is the source buffer. It is updated as bytes are read.
1466 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1467 bits are read.
1468 NBITS is the number of bits to read.
1469 BITS_BIG_ENDIAN is taken directly from gdbarch.
1470
1471 This function returns the bits that were read. */
1472
1473 static unsigned int
1474 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1475 int nbits, int bits_big_endian)
1476 {
1477 unsigned int datum;
1478
1479 gdb_assert (nbits > 0 && nbits <= 8);
1480
1481 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1482 bits_big_endian);
1483 if (nbits > 0)
1484 {
1485 unsigned int more;
1486
1487 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1488 bits_big_endian);
1489 if (bits_big_endian)
1490 datum <<= nbits;
1491 else
1492 more <<= nbits;
1493 datum |= more;
1494 }
1495
1496 return datum;
1497 }
1498
1499 /* Write some bits into a buffer and move forward in the buffer.
1500
1501 DATUM is the bits to write. The low-order bits of DATUM are used.
1502 DEST is the destination buffer. It is updated as bytes are
1503 written.
1504 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1505 done.
1506 NBITS is the number of valid bits in DATUM.
1507 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1508
1509 static void
1510 insert_bits (unsigned int datum,
1511 gdb_byte *dest, unsigned int dest_offset_bits,
1512 int nbits, int bits_big_endian)
1513 {
1514 unsigned int mask;
1515
1516 gdb_assert (dest_offset_bits + nbits <= 8);
1517
1518 mask = (1 << nbits) - 1;
1519 if (bits_big_endian)
1520 {
1521 datum <<= 8 - (dest_offset_bits + nbits);
1522 mask <<= 8 - (dest_offset_bits + nbits);
1523 }
1524 else
1525 {
1526 datum <<= dest_offset_bits;
1527 mask <<= dest_offset_bits;
1528 }
1529
1530 gdb_assert ((datum & ~mask) == 0);
1531
1532 *dest = (*dest & ~mask) | datum;
1533 }
1534
1535 /* Copy bits from a source to a destination.
1536
1537 DEST is where the bits should be written.
1538 DEST_OFFSET_BITS is the bit offset into DEST.
1539 SOURCE is the source of bits.
1540 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1541 BIT_COUNT is the number of bits to copy.
1542 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1543
1544 static void
1545 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1546 const gdb_byte *source, unsigned int source_offset_bits,
1547 unsigned int bit_count,
1548 int bits_big_endian)
1549 {
1550 unsigned int dest_avail;
1551 int datum;
1552
1553 /* Reduce everything to byte-size pieces. */
1554 dest += dest_offset_bits / 8;
1555 dest_offset_bits %= 8;
1556 source += source_offset_bits / 8;
1557 source_offset_bits %= 8;
1558
1559 dest_avail = 8 - dest_offset_bits % 8;
1560
1561 /* See if we can fill the first destination byte. */
1562 if (dest_avail < bit_count)
1563 {
1564 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1565 bits_big_endian);
1566 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1567 ++dest;
1568 dest_offset_bits = 0;
1569 bit_count -= dest_avail;
1570 }
1571
1572 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1573 than 8 bits remaining. */
1574 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1575 for (; bit_count >= 8; bit_count -= 8)
1576 {
1577 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1578 *dest++ = (gdb_byte) datum;
1579 }
1580
1581 /* Finally, we may have a few leftover bits. */
1582 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1583 if (bit_count > 0)
1584 {
1585 datum = extract_bits (&source, &source_offset_bits, bit_count,
1586 bits_big_endian);
1587 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1588 }
1589 }
1590
1591 static void
1592 read_pieced_value (struct value *v)
1593 {
1594 int i;
1595 long offset = 0;
1596 ULONGEST bits_to_skip;
1597 gdb_byte *contents;
1598 struct piece_closure *c
1599 = (struct piece_closure *) value_computed_closure (v);
1600 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1601 size_t type_len;
1602 size_t buffer_size = 0;
1603 gdb_byte *buffer = NULL;
1604 struct cleanup *cleanup;
1605 int bits_big_endian
1606 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1607
1608 if (value_type (v) != value_enclosing_type (v))
1609 internal_error (__FILE__, __LINE__,
1610 _("Should not be able to create a lazy value with "
1611 "an enclosing type"));
1612
1613 cleanup = make_cleanup (free_current_contents, &buffer);
1614
1615 contents = value_contents_raw (v);
1616 bits_to_skip = 8 * value_offset (v);
1617 if (value_bitsize (v))
1618 {
1619 bits_to_skip += value_bitpos (v);
1620 type_len = value_bitsize (v);
1621 }
1622 else
1623 type_len = 8 * TYPE_LENGTH (value_type (v));
1624
1625 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1626 {
1627 struct dwarf_expr_piece *p = &c->pieces[i];
1628 size_t this_size, this_size_bits;
1629 long dest_offset_bits, source_offset_bits, source_offset;
1630 const gdb_byte *intermediate_buffer;
1631
1632 /* Compute size, source, and destination offsets for copying, in
1633 bits. */
1634 this_size_bits = p->size;
1635 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1636 {
1637 bits_to_skip -= this_size_bits;
1638 continue;
1639 }
1640 if (bits_to_skip > 0)
1641 {
1642 dest_offset_bits = 0;
1643 source_offset_bits = bits_to_skip;
1644 this_size_bits -= bits_to_skip;
1645 bits_to_skip = 0;
1646 }
1647 else
1648 {
1649 dest_offset_bits = offset;
1650 source_offset_bits = 0;
1651 }
1652 if (this_size_bits > type_len - offset)
1653 this_size_bits = type_len - offset;
1654
1655 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1656 source_offset = source_offset_bits / 8;
1657 if (buffer_size < this_size)
1658 {
1659 buffer_size = this_size;
1660 buffer = xrealloc (buffer, buffer_size);
1661 }
1662 intermediate_buffer = buffer;
1663
1664 /* Copy from the source to DEST_BUFFER. */
1665 switch (p->location)
1666 {
1667 case DWARF_VALUE_REGISTER:
1668 {
1669 struct gdbarch *arch = get_frame_arch (frame);
1670 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1671 int reg_offset = source_offset;
1672
1673 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1674 && this_size < register_size (arch, gdb_regnum))
1675 {
1676 /* Big-endian, and we want less than full size. */
1677 reg_offset = register_size (arch, gdb_regnum) - this_size;
1678 /* We want the lower-order THIS_SIZE_BITS of the bytes
1679 we extract from the register. */
1680 source_offset_bits += 8 * this_size - this_size_bits;
1681 }
1682
1683 if (gdb_regnum != -1)
1684 {
1685 int optim, unavail;
1686
1687 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1688 this_size, buffer,
1689 &optim, &unavail))
1690 {
1691 /* Just so garbage doesn't ever shine through. */
1692 memset (buffer, 0, this_size);
1693
1694 if (optim)
1695 set_value_optimized_out (v, 1);
1696 if (unavail)
1697 mark_value_bits_unavailable (v, offset, this_size_bits);
1698 }
1699 }
1700 else
1701 {
1702 error (_("Unable to access DWARF register number %s"),
1703 paddress (arch, p->v.regno));
1704 }
1705 }
1706 break;
1707
1708 case DWARF_VALUE_MEMORY:
1709 read_value_memory (v, offset,
1710 p->v.mem.in_stack_memory,
1711 p->v.mem.addr + source_offset,
1712 buffer, this_size);
1713 break;
1714
1715 case DWARF_VALUE_STACK:
1716 {
1717 size_t n = this_size;
1718
1719 if (n > c->addr_size - source_offset)
1720 n = (c->addr_size >= source_offset
1721 ? c->addr_size - source_offset
1722 : 0);
1723 if (n == 0)
1724 {
1725 /* Nothing. */
1726 }
1727 else
1728 {
1729 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1730
1731 intermediate_buffer = val_bytes + source_offset;
1732 }
1733 }
1734 break;
1735
1736 case DWARF_VALUE_LITERAL:
1737 {
1738 size_t n = this_size;
1739
1740 if (n > p->v.literal.length - source_offset)
1741 n = (p->v.literal.length >= source_offset
1742 ? p->v.literal.length - source_offset
1743 : 0);
1744 if (n != 0)
1745 intermediate_buffer = p->v.literal.data + source_offset;
1746 }
1747 break;
1748
1749 /* These bits show up as zeros -- but do not cause the value
1750 to be considered optimized-out. */
1751 case DWARF_VALUE_IMPLICIT_POINTER:
1752 break;
1753
1754 case DWARF_VALUE_OPTIMIZED_OUT:
1755 set_value_optimized_out (v, 1);
1756 break;
1757
1758 default:
1759 internal_error (__FILE__, __LINE__, _("invalid location type"));
1760 }
1761
1762 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1763 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1764 copy_bitwise (contents, dest_offset_bits,
1765 intermediate_buffer, source_offset_bits % 8,
1766 this_size_bits, bits_big_endian);
1767
1768 offset += this_size_bits;
1769 }
1770
1771 do_cleanups (cleanup);
1772 }
1773
1774 static void
1775 write_pieced_value (struct value *to, struct value *from)
1776 {
1777 int i;
1778 long offset = 0;
1779 ULONGEST bits_to_skip;
1780 const gdb_byte *contents;
1781 struct piece_closure *c
1782 = (struct piece_closure *) value_computed_closure (to);
1783 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1784 size_t type_len;
1785 size_t buffer_size = 0;
1786 gdb_byte *buffer = NULL;
1787 struct cleanup *cleanup;
1788 int bits_big_endian
1789 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1790
1791 if (frame == NULL)
1792 {
1793 set_value_optimized_out (to, 1);
1794 return;
1795 }
1796
1797 cleanup = make_cleanup (free_current_contents, &buffer);
1798
1799 contents = value_contents (from);
1800 bits_to_skip = 8 * value_offset (to);
1801 if (value_bitsize (to))
1802 {
1803 bits_to_skip += value_bitpos (to);
1804 type_len = value_bitsize (to);
1805 }
1806 else
1807 type_len = 8 * TYPE_LENGTH (value_type (to));
1808
1809 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1810 {
1811 struct dwarf_expr_piece *p = &c->pieces[i];
1812 size_t this_size_bits, this_size;
1813 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1814 int need_bitwise;
1815 const gdb_byte *source_buffer;
1816
1817 this_size_bits = p->size;
1818 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1819 {
1820 bits_to_skip -= this_size_bits;
1821 continue;
1822 }
1823 if (this_size_bits > type_len - offset)
1824 this_size_bits = type_len - offset;
1825 if (bits_to_skip > 0)
1826 {
1827 dest_offset_bits = bits_to_skip;
1828 source_offset_bits = 0;
1829 this_size_bits -= bits_to_skip;
1830 bits_to_skip = 0;
1831 }
1832 else
1833 {
1834 dest_offset_bits = 0;
1835 source_offset_bits = offset;
1836 }
1837
1838 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1839 source_offset = source_offset_bits / 8;
1840 dest_offset = dest_offset_bits / 8;
1841 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1842 {
1843 source_buffer = contents + source_offset;
1844 need_bitwise = 0;
1845 }
1846 else
1847 {
1848 if (buffer_size < this_size)
1849 {
1850 buffer_size = this_size;
1851 buffer = xrealloc (buffer, buffer_size);
1852 }
1853 source_buffer = buffer;
1854 need_bitwise = 1;
1855 }
1856
1857 switch (p->location)
1858 {
1859 case DWARF_VALUE_REGISTER:
1860 {
1861 struct gdbarch *arch = get_frame_arch (frame);
1862 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1863 int reg_offset = dest_offset;
1864
1865 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1866 && this_size <= register_size (arch, gdb_regnum))
1867 /* Big-endian, and we want less than full size. */
1868 reg_offset = register_size (arch, gdb_regnum) - this_size;
1869
1870 if (gdb_regnum != -1)
1871 {
1872 if (need_bitwise)
1873 {
1874 int optim, unavail;
1875
1876 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1877 this_size, buffer,
1878 &optim, &unavail))
1879 {
1880 if (optim)
1881 throw_error (OPTIMIZED_OUT_ERROR,
1882 _("Can't do read-modify-write to "
1883 "update bitfield; containing word "
1884 "has been optimized out"));
1885 if (unavail)
1886 throw_error (NOT_AVAILABLE_ERROR,
1887 _("Can't do read-modify-write to update "
1888 "bitfield; containing word "
1889 "is unavailable"));
1890 }
1891 copy_bitwise (buffer, dest_offset_bits,
1892 contents, source_offset_bits,
1893 this_size_bits,
1894 bits_big_endian);
1895 }
1896
1897 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1898 this_size, source_buffer);
1899 }
1900 else
1901 {
1902 error (_("Unable to write to DWARF register number %s"),
1903 paddress (arch, p->v.regno));
1904 }
1905 }
1906 break;
1907 case DWARF_VALUE_MEMORY:
1908 if (need_bitwise)
1909 {
1910 /* Only the first and last bytes can possibly have any
1911 bits reused. */
1912 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1913 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1914 buffer + this_size - 1, 1);
1915 copy_bitwise (buffer, dest_offset_bits,
1916 contents, source_offset_bits,
1917 this_size_bits,
1918 bits_big_endian);
1919 }
1920
1921 write_memory (p->v.mem.addr + dest_offset,
1922 source_buffer, this_size);
1923 break;
1924 default:
1925 set_value_optimized_out (to, 1);
1926 break;
1927 }
1928 offset += this_size_bits;
1929 }
1930
1931 do_cleanups (cleanup);
1932 }
1933
1934 /* A helper function that checks bit validity in a pieced value.
1935 CHECK_FOR indicates the kind of validity checking.
1936 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1937 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1938 optimized out.
1939 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1940 implicit pointer. */
1941
1942 static int
1943 check_pieced_value_bits (const struct value *value, int bit_offset,
1944 int bit_length,
1945 enum dwarf_value_location check_for)
1946 {
1947 struct piece_closure *c
1948 = (struct piece_closure *) value_computed_closure (value);
1949 int i;
1950 int validity = (check_for == DWARF_VALUE_MEMORY
1951 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1952
1953 bit_offset += 8 * value_offset (value);
1954 if (value_bitsize (value))
1955 bit_offset += value_bitpos (value);
1956
1957 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1958 {
1959 struct dwarf_expr_piece *p = &c->pieces[i];
1960 size_t this_size_bits = p->size;
1961
1962 if (bit_offset > 0)
1963 {
1964 if (bit_offset >= this_size_bits)
1965 {
1966 bit_offset -= this_size_bits;
1967 continue;
1968 }
1969
1970 bit_length -= this_size_bits - bit_offset;
1971 bit_offset = 0;
1972 }
1973 else
1974 bit_length -= this_size_bits;
1975
1976 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1977 {
1978 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1979 return 0;
1980 }
1981 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1982 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1983 {
1984 if (validity)
1985 return 0;
1986 }
1987 else
1988 {
1989 if (!validity)
1990 return 1;
1991 }
1992 }
1993
1994 return validity;
1995 }
1996
1997 static int
1998 check_pieced_value_validity (const struct value *value, int bit_offset,
1999 int bit_length)
2000 {
2001 return check_pieced_value_bits (value, bit_offset, bit_length,
2002 DWARF_VALUE_MEMORY);
2003 }
2004
2005 static int
2006 check_pieced_value_invalid (const struct value *value)
2007 {
2008 return check_pieced_value_bits (value, 0,
2009 8 * TYPE_LENGTH (value_type (value)),
2010 DWARF_VALUE_OPTIMIZED_OUT);
2011 }
2012
2013 /* An implementation of an lval_funcs method to see whether a value is
2014 a synthetic pointer. */
2015
2016 static int
2017 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2018 int bit_length)
2019 {
2020 return check_pieced_value_bits (value, bit_offset, bit_length,
2021 DWARF_VALUE_IMPLICIT_POINTER);
2022 }
2023
2024 /* A wrapper function for get_frame_address_in_block. */
2025
2026 static CORE_ADDR
2027 get_frame_address_in_block_wrapper (void *baton)
2028 {
2029 return get_frame_address_in_block (baton);
2030 }
2031
2032 /* An implementation of an lval_funcs method to indirect through a
2033 pointer. This handles the synthetic pointer case when needed. */
2034
2035 static struct value *
2036 indirect_pieced_value (struct value *value)
2037 {
2038 struct piece_closure *c
2039 = (struct piece_closure *) value_computed_closure (value);
2040 struct type *type;
2041 struct frame_info *frame;
2042 struct dwarf2_locexpr_baton baton;
2043 int i, bit_offset, bit_length;
2044 struct dwarf_expr_piece *piece = NULL;
2045 LONGEST byte_offset;
2046
2047 type = check_typedef (value_type (value));
2048 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2049 return NULL;
2050
2051 bit_length = 8 * TYPE_LENGTH (type);
2052 bit_offset = 8 * value_offset (value);
2053 if (value_bitsize (value))
2054 bit_offset += value_bitpos (value);
2055
2056 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2057 {
2058 struct dwarf_expr_piece *p = &c->pieces[i];
2059 size_t this_size_bits = p->size;
2060
2061 if (bit_offset > 0)
2062 {
2063 if (bit_offset >= this_size_bits)
2064 {
2065 bit_offset -= this_size_bits;
2066 continue;
2067 }
2068
2069 bit_length -= this_size_bits - bit_offset;
2070 bit_offset = 0;
2071 }
2072 else
2073 bit_length -= this_size_bits;
2074
2075 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2076 return NULL;
2077
2078 if (bit_length != 0)
2079 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2080
2081 piece = p;
2082 break;
2083 }
2084
2085 frame = get_selected_frame (_("No frame selected."));
2086
2087 /* This is an offset requested by GDB, such as value subscripts.
2088 However, due to how synthetic pointers are implemented, this is
2089 always presented to us as a pointer type. This means we have to
2090 sign-extend it manually as appropriate. */
2091 byte_offset = value_as_address (value);
2092 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2093 byte_offset = gdb_sign_extend (byte_offset,
2094 8 * TYPE_LENGTH (value_type (value)));
2095 byte_offset += piece->v.ptr.offset;
2096
2097 gdb_assert (piece);
2098 baton
2099 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2100 get_frame_address_in_block_wrapper,
2101 frame);
2102
2103 if (baton.data != NULL)
2104 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2105 baton.data, baton.size, baton.per_cu,
2106 byte_offset);
2107
2108 {
2109 struct obstack temp_obstack;
2110 struct cleanup *cleanup;
2111 const gdb_byte *bytes;
2112 LONGEST len;
2113 struct value *result;
2114
2115 obstack_init (&temp_obstack);
2116 cleanup = make_cleanup_obstack_free (&temp_obstack);
2117
2118 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2119 &temp_obstack, &len);
2120 if (bytes == NULL)
2121 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2122 else
2123 {
2124 if (byte_offset < 0
2125 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2126 invalid_synthetic_pointer ();
2127 bytes += byte_offset;
2128 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2129 }
2130
2131 do_cleanups (cleanup);
2132 return result;
2133 }
2134 }
2135
2136 static void *
2137 copy_pieced_value_closure (const struct value *v)
2138 {
2139 struct piece_closure *c
2140 = (struct piece_closure *) value_computed_closure (v);
2141
2142 ++c->refc;
2143 return c;
2144 }
2145
2146 static void
2147 free_pieced_value_closure (struct value *v)
2148 {
2149 struct piece_closure *c
2150 = (struct piece_closure *) value_computed_closure (v);
2151
2152 --c->refc;
2153 if (c->refc == 0)
2154 {
2155 int i;
2156
2157 for (i = 0; i < c->n_pieces; ++i)
2158 if (c->pieces[i].location == DWARF_VALUE_STACK)
2159 value_free (c->pieces[i].v.value);
2160
2161 xfree (c->pieces);
2162 xfree (c);
2163 }
2164 }
2165
2166 /* Functions for accessing a variable described by DW_OP_piece. */
2167 static const struct lval_funcs pieced_value_funcs = {
2168 read_pieced_value,
2169 write_pieced_value,
2170 check_pieced_value_validity,
2171 check_pieced_value_invalid,
2172 indirect_pieced_value,
2173 NULL, /* coerce_ref */
2174 check_pieced_synthetic_pointer,
2175 copy_pieced_value_closure,
2176 free_pieced_value_closure
2177 };
2178
2179 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2180
2181 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2182 {
2183 dwarf_expr_read_addr_from_reg,
2184 dwarf_expr_get_reg_value,
2185 dwarf_expr_read_mem,
2186 dwarf_expr_frame_base,
2187 dwarf_expr_frame_cfa,
2188 dwarf_expr_frame_pc,
2189 dwarf_expr_tls_address,
2190 dwarf_expr_dwarf_call,
2191 dwarf_expr_get_base_type,
2192 dwarf_expr_push_dwarf_reg_entry_value,
2193 dwarf_expr_get_addr_index
2194 };
2195
2196 /* Evaluate a location description, starting at DATA and with length
2197 SIZE, to find the current location of variable of TYPE in the
2198 context of FRAME. BYTE_OFFSET is applied after the contents are
2199 computed. */
2200
2201 static struct value *
2202 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2203 const gdb_byte *data, size_t size,
2204 struct dwarf2_per_cu_data *per_cu,
2205 LONGEST byte_offset)
2206 {
2207 struct value *retval;
2208 struct dwarf_expr_baton baton;
2209 struct dwarf_expr_context *ctx;
2210 struct cleanup *old_chain, *value_chain;
2211 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2212 volatile struct gdb_exception ex;
2213
2214 if (byte_offset < 0)
2215 invalid_synthetic_pointer ();
2216
2217 if (size == 0)
2218 return allocate_optimized_out_value (type);
2219
2220 baton.frame = frame;
2221 baton.per_cu = per_cu;
2222
2223 ctx = new_dwarf_expr_context ();
2224 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2225 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2226
2227 ctx->gdbarch = get_objfile_arch (objfile);
2228 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2229 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2230 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2231 ctx->baton = &baton;
2232 ctx->funcs = &dwarf_expr_ctx_funcs;
2233
2234 TRY_CATCH (ex, RETURN_MASK_ERROR)
2235 {
2236 dwarf_expr_eval (ctx, data, size);
2237 }
2238 if (ex.reason < 0)
2239 {
2240 if (ex.error == NOT_AVAILABLE_ERROR)
2241 {
2242 do_cleanups (old_chain);
2243 retval = allocate_value (type);
2244 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2245 return retval;
2246 }
2247 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2248 {
2249 if (entry_values_debug)
2250 exception_print (gdb_stdout, ex);
2251 do_cleanups (old_chain);
2252 return allocate_optimized_out_value (type);
2253 }
2254 else
2255 throw_exception (ex);
2256 }
2257
2258 if (ctx->num_pieces > 0)
2259 {
2260 struct piece_closure *c;
2261 struct frame_id frame_id = get_frame_id (frame);
2262 ULONGEST bit_size = 0;
2263 int i;
2264
2265 for (i = 0; i < ctx->num_pieces; ++i)
2266 bit_size += ctx->pieces[i].size;
2267 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2268 invalid_synthetic_pointer ();
2269
2270 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2271 ctx->addr_size);
2272 /* We must clean up the value chain after creating the piece
2273 closure but before allocating the result. */
2274 do_cleanups (value_chain);
2275 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2276 VALUE_FRAME_ID (retval) = frame_id;
2277 set_value_offset (retval, byte_offset);
2278 }
2279 else
2280 {
2281 switch (ctx->location)
2282 {
2283 case DWARF_VALUE_REGISTER:
2284 {
2285 struct gdbarch *arch = get_frame_arch (frame);
2286 int dwarf_regnum
2287 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2288 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2289
2290 if (byte_offset != 0)
2291 error (_("cannot use offset on synthetic pointer to register"));
2292 do_cleanups (value_chain);
2293 if (gdb_regnum == -1)
2294 error (_("Unable to access DWARF register number %d"),
2295 dwarf_regnum);
2296 retval = value_from_register (type, gdb_regnum, frame);
2297 if (value_optimized_out (retval))
2298 {
2299 /* This means the register has undefined value / was
2300 not saved. As we're computing the location of some
2301 variable etc. in the program, not a value for
2302 inspecting a register ($pc, $sp, etc.), return a
2303 generic optimized out value instead, so that we show
2304 <optimized out> instead of <not saved>. */
2305 do_cleanups (value_chain);
2306 retval = allocate_optimized_out_value (type);
2307 }
2308 }
2309 break;
2310
2311 case DWARF_VALUE_MEMORY:
2312 {
2313 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2314 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2315
2316 do_cleanups (value_chain);
2317 retval = value_at_lazy (type, address + byte_offset);
2318 if (in_stack_memory)
2319 set_value_stack (retval, 1);
2320 }
2321 break;
2322
2323 case DWARF_VALUE_STACK:
2324 {
2325 struct value *value = dwarf_expr_fetch (ctx, 0);
2326 gdb_byte *contents;
2327 const gdb_byte *val_bytes;
2328 size_t n = TYPE_LENGTH (value_type (value));
2329
2330 if (byte_offset + TYPE_LENGTH (type) > n)
2331 invalid_synthetic_pointer ();
2332
2333 val_bytes = value_contents_all (value);
2334 val_bytes += byte_offset;
2335 n -= byte_offset;
2336
2337 /* Preserve VALUE because we are going to free values back
2338 to the mark, but we still need the value contents
2339 below. */
2340 value_incref (value);
2341 do_cleanups (value_chain);
2342 make_cleanup_value_free (value);
2343
2344 retval = allocate_value (type);
2345 contents = value_contents_raw (retval);
2346 if (n > TYPE_LENGTH (type))
2347 {
2348 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2349
2350 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2351 val_bytes += n - TYPE_LENGTH (type);
2352 n = TYPE_LENGTH (type);
2353 }
2354 memcpy (contents, val_bytes, n);
2355 }
2356 break;
2357
2358 case DWARF_VALUE_LITERAL:
2359 {
2360 bfd_byte *contents;
2361 const bfd_byte *ldata;
2362 size_t n = ctx->len;
2363
2364 if (byte_offset + TYPE_LENGTH (type) > n)
2365 invalid_synthetic_pointer ();
2366
2367 do_cleanups (value_chain);
2368 retval = allocate_value (type);
2369 contents = value_contents_raw (retval);
2370
2371 ldata = ctx->data + byte_offset;
2372 n -= byte_offset;
2373
2374 if (n > TYPE_LENGTH (type))
2375 {
2376 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2377
2378 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2379 ldata += n - TYPE_LENGTH (type);
2380 n = TYPE_LENGTH (type);
2381 }
2382 memcpy (contents, ldata, n);
2383 }
2384 break;
2385
2386 case DWARF_VALUE_OPTIMIZED_OUT:
2387 do_cleanups (value_chain);
2388 retval = allocate_optimized_out_value (type);
2389 break;
2390
2391 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2392 operation by execute_stack_op. */
2393 case DWARF_VALUE_IMPLICIT_POINTER:
2394 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2395 it can only be encountered when making a piece. */
2396 default:
2397 internal_error (__FILE__, __LINE__, _("invalid location type"));
2398 }
2399 }
2400
2401 set_value_initialized (retval, ctx->initialized);
2402
2403 do_cleanups (old_chain);
2404
2405 return retval;
2406 }
2407
2408 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2409 passes 0 as the byte_offset. */
2410
2411 struct value *
2412 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2413 const gdb_byte *data, size_t size,
2414 struct dwarf2_per_cu_data *per_cu)
2415 {
2416 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2417 }
2418
2419 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2420 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2421 context (location of a variable) and might be needed to evaluate the
2422 location expression.
2423 Returns 1 on success, 0 otherwise. */
2424
2425 static int
2426 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2427 CORE_ADDR *valp)
2428 {
2429 struct dwarf_expr_context *ctx;
2430 struct dwarf_expr_baton baton;
2431 struct objfile *objfile;
2432 struct cleanup *cleanup;
2433
2434 if (dlbaton == NULL || dlbaton->size == 0)
2435 return 0;
2436
2437 ctx = new_dwarf_expr_context ();
2438 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2439
2440 baton.frame = get_selected_frame (NULL);
2441 baton.per_cu = dlbaton->per_cu;
2442
2443 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2444
2445 ctx->gdbarch = get_objfile_arch (objfile);
2446 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2447 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2448 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2449 ctx->funcs = &dwarf_expr_ctx_funcs;
2450 ctx->baton = &baton;
2451
2452 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2453
2454 switch (ctx->location)
2455 {
2456 case DWARF_VALUE_REGISTER:
2457 case DWARF_VALUE_MEMORY:
2458 case DWARF_VALUE_STACK:
2459 *valp = dwarf_expr_fetch_address (ctx, 0);
2460 if (ctx->location == DWARF_VALUE_REGISTER)
2461 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2462 do_cleanups (cleanup);
2463 return 1;
2464 case DWARF_VALUE_LITERAL:
2465 *valp = extract_signed_integer (ctx->data, ctx->len,
2466 gdbarch_byte_order (ctx->gdbarch));
2467 do_cleanups (cleanup);
2468 return 1;
2469 /* Unsupported dwarf values. */
2470 case DWARF_VALUE_OPTIMIZED_OUT:
2471 case DWARF_VALUE_IMPLICIT_POINTER:
2472 break;
2473 }
2474
2475 do_cleanups (cleanup);
2476 return 0;
2477 }
2478
2479 /* See dwarf2loc.h. */
2480
2481 int
2482 dwarf2_evaluate_property (const struct dynamic_prop *prop, CORE_ADDR *value)
2483 {
2484 if (prop == NULL)
2485 return 0;
2486
2487 switch (prop->kind)
2488 {
2489 case PROP_LOCEXPR:
2490 {
2491 const struct dwarf2_property_baton *baton = prop->data.baton;
2492
2493 if (dwarf2_locexpr_baton_eval (&baton->locexpr, value))
2494 {
2495 if (baton->referenced_type)
2496 {
2497 struct value *val = value_at (baton->referenced_type, *value);
2498
2499 *value = value_as_address (val);
2500 }
2501 return 1;
2502 }
2503 }
2504 break;
2505
2506 case PROP_LOCLIST:
2507 {
2508 struct dwarf2_property_baton *baton = prop->data.baton;
2509 struct frame_info *frame = get_selected_frame (NULL);
2510 CORE_ADDR pc = get_frame_address_in_block (frame);
2511 const gdb_byte *data;
2512 struct value *val;
2513 size_t size;
2514
2515 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2516 if (data != NULL)
2517 {
2518 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2519 size, baton->loclist.per_cu);
2520 if (!value_optimized_out (val))
2521 {
2522 *value = value_as_address (val);
2523 return 1;
2524 }
2525 }
2526 }
2527 break;
2528
2529 case PROP_CONST:
2530 *value = prop->data.const_val;
2531 return 1;
2532 }
2533
2534 return 0;
2535 }
2536
2537 \f
2538 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2539
2540 struct needs_frame_baton
2541 {
2542 int needs_frame;
2543 struct dwarf2_per_cu_data *per_cu;
2544 };
2545
2546 /* Reads from registers do require a frame. */
2547 static CORE_ADDR
2548 needs_frame_read_addr_from_reg (void *baton, int regnum)
2549 {
2550 struct needs_frame_baton *nf_baton = baton;
2551
2552 nf_baton->needs_frame = 1;
2553 return 1;
2554 }
2555
2556 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2557 Reads from registers do require a frame. */
2558
2559 static struct value *
2560 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2561 {
2562 struct needs_frame_baton *nf_baton = baton;
2563
2564 nf_baton->needs_frame = 1;
2565 return value_zero (type, not_lval);
2566 }
2567
2568 /* Reads from memory do not require a frame. */
2569 static void
2570 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2571 {
2572 memset (buf, 0, len);
2573 }
2574
2575 /* Frame-relative accesses do require a frame. */
2576 static void
2577 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2578 {
2579 static gdb_byte lit0 = DW_OP_lit0;
2580 struct needs_frame_baton *nf_baton = baton;
2581
2582 *start = &lit0;
2583 *length = 1;
2584
2585 nf_baton->needs_frame = 1;
2586 }
2587
2588 /* CFA accesses require a frame. */
2589
2590 static CORE_ADDR
2591 needs_frame_frame_cfa (void *baton)
2592 {
2593 struct needs_frame_baton *nf_baton = baton;
2594
2595 nf_baton->needs_frame = 1;
2596 return 1;
2597 }
2598
2599 /* Thread-local accesses do require a frame. */
2600 static CORE_ADDR
2601 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2602 {
2603 struct needs_frame_baton *nf_baton = baton;
2604
2605 nf_baton->needs_frame = 1;
2606 return 1;
2607 }
2608
2609 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2610
2611 static void
2612 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2613 {
2614 struct needs_frame_baton *nf_baton = ctx->baton;
2615
2616 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2617 ctx->funcs->get_frame_pc, ctx->baton);
2618 }
2619
2620 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2621
2622 static void
2623 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2624 enum call_site_parameter_kind kind,
2625 union call_site_parameter_u kind_u, int deref_size)
2626 {
2627 struct needs_frame_baton *nf_baton = ctx->baton;
2628
2629 nf_baton->needs_frame = 1;
2630
2631 /* The expression may require some stub values on DWARF stack. */
2632 dwarf_expr_push_address (ctx, 0, 0);
2633 }
2634
2635 /* DW_OP_GNU_addr_index doesn't require a frame. */
2636
2637 static CORE_ADDR
2638 needs_get_addr_index (void *baton, unsigned int index)
2639 {
2640 /* Nothing to do. */
2641 return 1;
2642 }
2643
2644 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2645
2646 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2647 {
2648 needs_frame_read_addr_from_reg,
2649 needs_frame_get_reg_value,
2650 needs_frame_read_mem,
2651 needs_frame_frame_base,
2652 needs_frame_frame_cfa,
2653 needs_frame_frame_cfa, /* get_frame_pc */
2654 needs_frame_tls_address,
2655 needs_frame_dwarf_call,
2656 NULL, /* get_base_type */
2657 needs_dwarf_reg_entry_value,
2658 needs_get_addr_index
2659 };
2660
2661 /* Return non-zero iff the location expression at DATA (length SIZE)
2662 requires a frame to evaluate. */
2663
2664 static int
2665 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2666 struct dwarf2_per_cu_data *per_cu)
2667 {
2668 struct needs_frame_baton baton;
2669 struct dwarf_expr_context *ctx;
2670 int in_reg;
2671 struct cleanup *old_chain;
2672 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2673
2674 baton.needs_frame = 0;
2675 baton.per_cu = per_cu;
2676
2677 ctx = new_dwarf_expr_context ();
2678 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2679 make_cleanup_value_free_to_mark (value_mark ());
2680
2681 ctx->gdbarch = get_objfile_arch (objfile);
2682 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2683 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2684 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2685 ctx->baton = &baton;
2686 ctx->funcs = &needs_frame_ctx_funcs;
2687
2688 dwarf_expr_eval (ctx, data, size);
2689
2690 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2691
2692 if (ctx->num_pieces > 0)
2693 {
2694 int i;
2695
2696 /* If the location has several pieces, and any of them are in
2697 registers, then we will need a frame to fetch them from. */
2698 for (i = 0; i < ctx->num_pieces; i++)
2699 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2700 in_reg = 1;
2701 }
2702
2703 do_cleanups (old_chain);
2704
2705 return baton.needs_frame || in_reg;
2706 }
2707
2708 /* A helper function that throws an unimplemented error mentioning a
2709 given DWARF operator. */
2710
2711 static void
2712 unimplemented (unsigned int op)
2713 {
2714 const char *name = get_DW_OP_name (op);
2715
2716 if (name)
2717 error (_("DWARF operator %s cannot be translated to an agent expression"),
2718 name);
2719 else
2720 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2721 "to an agent expression"),
2722 op);
2723 }
2724
2725 /* A helper function to convert a DWARF register to an arch register.
2726 ARCH is the architecture.
2727 DWARF_REG is the register.
2728 This will throw an exception if the DWARF register cannot be
2729 translated to an architecture register. */
2730
2731 static int
2732 translate_register (struct gdbarch *arch, int dwarf_reg)
2733 {
2734 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2735 if (reg == -1)
2736 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2737 return reg;
2738 }
2739
2740 /* A helper function that emits an access to memory. ARCH is the
2741 target architecture. EXPR is the expression which we are building.
2742 NBITS is the number of bits we want to read. This emits the
2743 opcodes needed to read the memory and then extract the desired
2744 bits. */
2745
2746 static void
2747 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2748 {
2749 ULONGEST nbytes = (nbits + 7) / 8;
2750
2751 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2752
2753 if (expr->tracing)
2754 ax_trace_quick (expr, nbytes);
2755
2756 if (nbits <= 8)
2757 ax_simple (expr, aop_ref8);
2758 else if (nbits <= 16)
2759 ax_simple (expr, aop_ref16);
2760 else if (nbits <= 32)
2761 ax_simple (expr, aop_ref32);
2762 else
2763 ax_simple (expr, aop_ref64);
2764
2765 /* If we read exactly the number of bytes we wanted, we're done. */
2766 if (8 * nbytes == nbits)
2767 return;
2768
2769 if (gdbarch_bits_big_endian (arch))
2770 {
2771 /* On a bits-big-endian machine, we want the high-order
2772 NBITS. */
2773 ax_const_l (expr, 8 * nbytes - nbits);
2774 ax_simple (expr, aop_rsh_unsigned);
2775 }
2776 else
2777 {
2778 /* On a bits-little-endian box, we want the low-order NBITS. */
2779 ax_zero_ext (expr, nbits);
2780 }
2781 }
2782
2783 /* A helper function to return the frame's PC. */
2784
2785 static CORE_ADDR
2786 get_ax_pc (void *baton)
2787 {
2788 struct agent_expr *expr = baton;
2789
2790 return expr->scope;
2791 }
2792
2793 /* Compile a DWARF location expression to an agent expression.
2794
2795 EXPR is the agent expression we are building.
2796 LOC is the agent value we modify.
2797 ARCH is the architecture.
2798 ADDR_SIZE is the size of addresses, in bytes.
2799 OP_PTR is the start of the location expression.
2800 OP_END is one past the last byte of the location expression.
2801
2802 This will throw an exception for various kinds of errors -- for
2803 example, if the expression cannot be compiled, or if the expression
2804 is invalid. */
2805
2806 void
2807 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2808 struct gdbarch *arch, unsigned int addr_size,
2809 const gdb_byte *op_ptr, const gdb_byte *op_end,
2810 struct dwarf2_per_cu_data *per_cu)
2811 {
2812 struct cleanup *cleanups;
2813 int i, *offsets;
2814 VEC(int) *dw_labels = NULL, *patches = NULL;
2815 const gdb_byte * const base = op_ptr;
2816 const gdb_byte *previous_piece = op_ptr;
2817 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2818 ULONGEST bits_collected = 0;
2819 unsigned int addr_size_bits = 8 * addr_size;
2820 int bits_big_endian = gdbarch_bits_big_endian (arch);
2821
2822 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2823 cleanups = make_cleanup (xfree, offsets);
2824
2825 for (i = 0; i < op_end - op_ptr; ++i)
2826 offsets[i] = -1;
2827
2828 make_cleanup (VEC_cleanup (int), &dw_labels);
2829 make_cleanup (VEC_cleanup (int), &patches);
2830
2831 /* By default we are making an address. */
2832 loc->kind = axs_lvalue_memory;
2833
2834 while (op_ptr < op_end)
2835 {
2836 enum dwarf_location_atom op = *op_ptr;
2837 uint64_t uoffset, reg;
2838 int64_t offset;
2839 int i;
2840
2841 offsets[op_ptr - base] = expr->len;
2842 ++op_ptr;
2843
2844 /* Our basic approach to code generation is to map DWARF
2845 operations directly to AX operations. However, there are
2846 some differences.
2847
2848 First, DWARF works on address-sized units, but AX always uses
2849 LONGEST. For most operations we simply ignore this
2850 difference; instead we generate sign extensions as needed
2851 before division and comparison operations. It would be nice
2852 to omit the sign extensions, but there is no way to determine
2853 the size of the target's LONGEST. (This code uses the size
2854 of the host LONGEST in some cases -- that is a bug but it is
2855 difficult to fix.)
2856
2857 Second, some DWARF operations cannot be translated to AX.
2858 For these we simply fail. See
2859 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2860 switch (op)
2861 {
2862 case DW_OP_lit0:
2863 case DW_OP_lit1:
2864 case DW_OP_lit2:
2865 case DW_OP_lit3:
2866 case DW_OP_lit4:
2867 case DW_OP_lit5:
2868 case DW_OP_lit6:
2869 case DW_OP_lit7:
2870 case DW_OP_lit8:
2871 case DW_OP_lit9:
2872 case DW_OP_lit10:
2873 case DW_OP_lit11:
2874 case DW_OP_lit12:
2875 case DW_OP_lit13:
2876 case DW_OP_lit14:
2877 case DW_OP_lit15:
2878 case DW_OP_lit16:
2879 case DW_OP_lit17:
2880 case DW_OP_lit18:
2881 case DW_OP_lit19:
2882 case DW_OP_lit20:
2883 case DW_OP_lit21:
2884 case DW_OP_lit22:
2885 case DW_OP_lit23:
2886 case DW_OP_lit24:
2887 case DW_OP_lit25:
2888 case DW_OP_lit26:
2889 case DW_OP_lit27:
2890 case DW_OP_lit28:
2891 case DW_OP_lit29:
2892 case DW_OP_lit30:
2893 case DW_OP_lit31:
2894 ax_const_l (expr, op - DW_OP_lit0);
2895 break;
2896
2897 case DW_OP_addr:
2898 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2899 op_ptr += addr_size;
2900 /* Some versions of GCC emit DW_OP_addr before
2901 DW_OP_GNU_push_tls_address. In this case the value is an
2902 index, not an address. We don't support things like
2903 branching between the address and the TLS op. */
2904 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2905 uoffset += dwarf2_per_cu_text_offset (per_cu);
2906 ax_const_l (expr, uoffset);
2907 break;
2908
2909 case DW_OP_const1u:
2910 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2911 op_ptr += 1;
2912 break;
2913 case DW_OP_const1s:
2914 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2915 op_ptr += 1;
2916 break;
2917 case DW_OP_const2u:
2918 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2919 op_ptr += 2;
2920 break;
2921 case DW_OP_const2s:
2922 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2923 op_ptr += 2;
2924 break;
2925 case DW_OP_const4u:
2926 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2927 op_ptr += 4;
2928 break;
2929 case DW_OP_const4s:
2930 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2931 op_ptr += 4;
2932 break;
2933 case DW_OP_const8u:
2934 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2935 op_ptr += 8;
2936 break;
2937 case DW_OP_const8s:
2938 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2939 op_ptr += 8;
2940 break;
2941 case DW_OP_constu:
2942 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2943 ax_const_l (expr, uoffset);
2944 break;
2945 case DW_OP_consts:
2946 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2947 ax_const_l (expr, offset);
2948 break;
2949
2950 case DW_OP_reg0:
2951 case DW_OP_reg1:
2952 case DW_OP_reg2:
2953 case DW_OP_reg3:
2954 case DW_OP_reg4:
2955 case DW_OP_reg5:
2956 case DW_OP_reg6:
2957 case DW_OP_reg7:
2958 case DW_OP_reg8:
2959 case DW_OP_reg9:
2960 case DW_OP_reg10:
2961 case DW_OP_reg11:
2962 case DW_OP_reg12:
2963 case DW_OP_reg13:
2964 case DW_OP_reg14:
2965 case DW_OP_reg15:
2966 case DW_OP_reg16:
2967 case DW_OP_reg17:
2968 case DW_OP_reg18:
2969 case DW_OP_reg19:
2970 case DW_OP_reg20:
2971 case DW_OP_reg21:
2972 case DW_OP_reg22:
2973 case DW_OP_reg23:
2974 case DW_OP_reg24:
2975 case DW_OP_reg25:
2976 case DW_OP_reg26:
2977 case DW_OP_reg27:
2978 case DW_OP_reg28:
2979 case DW_OP_reg29:
2980 case DW_OP_reg30:
2981 case DW_OP_reg31:
2982 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2983 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2984 loc->kind = axs_lvalue_register;
2985 break;
2986
2987 case DW_OP_regx:
2988 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2989 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2990 loc->u.reg = translate_register (arch, reg);
2991 loc->kind = axs_lvalue_register;
2992 break;
2993
2994 case DW_OP_implicit_value:
2995 {
2996 uint64_t len;
2997
2998 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2999 if (op_ptr + len > op_end)
3000 error (_("DW_OP_implicit_value: too few bytes available."));
3001 if (len > sizeof (ULONGEST))
3002 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3003 (int) len);
3004
3005 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3006 byte_order));
3007 op_ptr += len;
3008 dwarf_expr_require_composition (op_ptr, op_end,
3009 "DW_OP_implicit_value");
3010
3011 loc->kind = axs_rvalue;
3012 }
3013 break;
3014
3015 case DW_OP_stack_value:
3016 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3017 loc->kind = axs_rvalue;
3018 break;
3019
3020 case DW_OP_breg0:
3021 case DW_OP_breg1:
3022 case DW_OP_breg2:
3023 case DW_OP_breg3:
3024 case DW_OP_breg4:
3025 case DW_OP_breg5:
3026 case DW_OP_breg6:
3027 case DW_OP_breg7:
3028 case DW_OP_breg8:
3029 case DW_OP_breg9:
3030 case DW_OP_breg10:
3031 case DW_OP_breg11:
3032 case DW_OP_breg12:
3033 case DW_OP_breg13:
3034 case DW_OP_breg14:
3035 case DW_OP_breg15:
3036 case DW_OP_breg16:
3037 case DW_OP_breg17:
3038 case DW_OP_breg18:
3039 case DW_OP_breg19:
3040 case DW_OP_breg20:
3041 case DW_OP_breg21:
3042 case DW_OP_breg22:
3043 case DW_OP_breg23:
3044 case DW_OP_breg24:
3045 case DW_OP_breg25:
3046 case DW_OP_breg26:
3047 case DW_OP_breg27:
3048 case DW_OP_breg28:
3049 case DW_OP_breg29:
3050 case DW_OP_breg30:
3051 case DW_OP_breg31:
3052 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3053 i = translate_register (arch, op - DW_OP_breg0);
3054 ax_reg (expr, i);
3055 if (offset != 0)
3056 {
3057 ax_const_l (expr, offset);
3058 ax_simple (expr, aop_add);
3059 }
3060 break;
3061 case DW_OP_bregx:
3062 {
3063 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3064 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3065 i = translate_register (arch, reg);
3066 ax_reg (expr, i);
3067 if (offset != 0)
3068 {
3069 ax_const_l (expr, offset);
3070 ax_simple (expr, aop_add);
3071 }
3072 }
3073 break;
3074 case DW_OP_fbreg:
3075 {
3076 const gdb_byte *datastart;
3077 size_t datalen;
3078 const struct block *b;
3079 struct symbol *framefunc;
3080
3081 b = block_for_pc (expr->scope);
3082
3083 if (!b)
3084 error (_("No block found for address"));
3085
3086 framefunc = block_linkage_function (b);
3087
3088 if (!framefunc)
3089 error (_("No function found for block"));
3090
3091 dwarf_expr_frame_base_1 (framefunc, expr->scope,
3092 &datastart, &datalen);
3093
3094 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3095 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3096 datastart + datalen, per_cu);
3097 if (loc->kind == axs_lvalue_register)
3098 require_rvalue (expr, loc);
3099
3100 if (offset != 0)
3101 {
3102 ax_const_l (expr, offset);
3103 ax_simple (expr, aop_add);
3104 }
3105
3106 loc->kind = axs_lvalue_memory;
3107 }
3108 break;
3109
3110 case DW_OP_dup:
3111 ax_simple (expr, aop_dup);
3112 break;
3113
3114 case DW_OP_drop:
3115 ax_simple (expr, aop_pop);
3116 break;
3117
3118 case DW_OP_pick:
3119 offset = *op_ptr++;
3120 ax_pick (expr, offset);
3121 break;
3122
3123 case DW_OP_swap:
3124 ax_simple (expr, aop_swap);
3125 break;
3126
3127 case DW_OP_over:
3128 ax_pick (expr, 1);
3129 break;
3130
3131 case DW_OP_rot:
3132 ax_simple (expr, aop_rot);
3133 break;
3134
3135 case DW_OP_deref:
3136 case DW_OP_deref_size:
3137 {
3138 int size;
3139
3140 if (op == DW_OP_deref_size)
3141 size = *op_ptr++;
3142 else
3143 size = addr_size;
3144
3145 if (size != 1 && size != 2 && size != 4 && size != 8)
3146 error (_("Unsupported size %d in %s"),
3147 size, get_DW_OP_name (op));
3148 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3149 }
3150 break;
3151
3152 case DW_OP_abs:
3153 /* Sign extend the operand. */
3154 ax_ext (expr, addr_size_bits);
3155 ax_simple (expr, aop_dup);
3156 ax_const_l (expr, 0);
3157 ax_simple (expr, aop_less_signed);
3158 ax_simple (expr, aop_log_not);
3159 i = ax_goto (expr, aop_if_goto);
3160 /* We have to emit 0 - X. */
3161 ax_const_l (expr, 0);
3162 ax_simple (expr, aop_swap);
3163 ax_simple (expr, aop_sub);
3164 ax_label (expr, i, expr->len);
3165 break;
3166
3167 case DW_OP_neg:
3168 /* No need to sign extend here. */
3169 ax_const_l (expr, 0);
3170 ax_simple (expr, aop_swap);
3171 ax_simple (expr, aop_sub);
3172 break;
3173
3174 case DW_OP_not:
3175 /* Sign extend the operand. */
3176 ax_ext (expr, addr_size_bits);
3177 ax_simple (expr, aop_bit_not);
3178 break;
3179
3180 case DW_OP_plus_uconst:
3181 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3182 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3183 but we micro-optimize anyhow. */
3184 if (reg != 0)
3185 {
3186 ax_const_l (expr, reg);
3187 ax_simple (expr, aop_add);
3188 }
3189 break;
3190
3191 case DW_OP_and:
3192 ax_simple (expr, aop_bit_and);
3193 break;
3194
3195 case DW_OP_div:
3196 /* Sign extend the operands. */
3197 ax_ext (expr, addr_size_bits);
3198 ax_simple (expr, aop_swap);
3199 ax_ext (expr, addr_size_bits);
3200 ax_simple (expr, aop_swap);
3201 ax_simple (expr, aop_div_signed);
3202 break;
3203
3204 case DW_OP_minus:
3205 ax_simple (expr, aop_sub);
3206 break;
3207
3208 case DW_OP_mod:
3209 ax_simple (expr, aop_rem_unsigned);
3210 break;
3211
3212 case DW_OP_mul:
3213 ax_simple (expr, aop_mul);
3214 break;
3215
3216 case DW_OP_or:
3217 ax_simple (expr, aop_bit_or);
3218 break;
3219
3220 case DW_OP_plus:
3221 ax_simple (expr, aop_add);
3222 break;
3223
3224 case DW_OP_shl:
3225 ax_simple (expr, aop_lsh);
3226 break;
3227
3228 case DW_OP_shr:
3229 ax_simple (expr, aop_rsh_unsigned);
3230 break;
3231
3232 case DW_OP_shra:
3233 ax_simple (expr, aop_rsh_signed);
3234 break;
3235
3236 case DW_OP_xor:
3237 ax_simple (expr, aop_bit_xor);
3238 break;
3239
3240 case DW_OP_le:
3241 /* Sign extend the operands. */
3242 ax_ext (expr, addr_size_bits);
3243 ax_simple (expr, aop_swap);
3244 ax_ext (expr, addr_size_bits);
3245 /* Note no swap here: A <= B is !(B < A). */
3246 ax_simple (expr, aop_less_signed);
3247 ax_simple (expr, aop_log_not);
3248 break;
3249
3250 case DW_OP_ge:
3251 /* Sign extend the operands. */
3252 ax_ext (expr, addr_size_bits);
3253 ax_simple (expr, aop_swap);
3254 ax_ext (expr, addr_size_bits);
3255 ax_simple (expr, aop_swap);
3256 /* A >= B is !(A < B). */
3257 ax_simple (expr, aop_less_signed);
3258 ax_simple (expr, aop_log_not);
3259 break;
3260
3261 case DW_OP_eq:
3262 /* Sign extend the operands. */
3263 ax_ext (expr, addr_size_bits);
3264 ax_simple (expr, aop_swap);
3265 ax_ext (expr, addr_size_bits);
3266 /* No need for a second swap here. */
3267 ax_simple (expr, aop_equal);
3268 break;
3269
3270 case DW_OP_lt:
3271 /* Sign extend the operands. */
3272 ax_ext (expr, addr_size_bits);
3273 ax_simple (expr, aop_swap);
3274 ax_ext (expr, addr_size_bits);
3275 ax_simple (expr, aop_swap);
3276 ax_simple (expr, aop_less_signed);
3277 break;
3278
3279 case DW_OP_gt:
3280 /* Sign extend the operands. */
3281 ax_ext (expr, addr_size_bits);
3282 ax_simple (expr, aop_swap);
3283 ax_ext (expr, addr_size_bits);
3284 /* Note no swap here: A > B is B < A. */
3285 ax_simple (expr, aop_less_signed);
3286 break;
3287
3288 case DW_OP_ne:
3289 /* Sign extend the operands. */
3290 ax_ext (expr, addr_size_bits);
3291 ax_simple (expr, aop_swap);
3292 ax_ext (expr, addr_size_bits);
3293 /* No need for a swap here. */
3294 ax_simple (expr, aop_equal);
3295 ax_simple (expr, aop_log_not);
3296 break;
3297
3298 case DW_OP_call_frame_cfa:
3299 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3300 loc->kind = axs_lvalue_memory;
3301 break;
3302
3303 case DW_OP_GNU_push_tls_address:
3304 unimplemented (op);
3305 break;
3306
3307 case DW_OP_skip:
3308 offset = extract_signed_integer (op_ptr, 2, byte_order);
3309 op_ptr += 2;
3310 i = ax_goto (expr, aop_goto);
3311 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3312 VEC_safe_push (int, patches, i);
3313 break;
3314
3315 case DW_OP_bra:
3316 offset = extract_signed_integer (op_ptr, 2, byte_order);
3317 op_ptr += 2;
3318 /* Zero extend the operand. */
3319 ax_zero_ext (expr, addr_size_bits);
3320 i = ax_goto (expr, aop_if_goto);
3321 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3322 VEC_safe_push (int, patches, i);
3323 break;
3324
3325 case DW_OP_nop:
3326 break;
3327
3328 case DW_OP_piece:
3329 case DW_OP_bit_piece:
3330 {
3331 uint64_t size, offset;
3332
3333 if (op_ptr - 1 == previous_piece)
3334 error (_("Cannot translate empty pieces to agent expressions"));
3335 previous_piece = op_ptr - 1;
3336
3337 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3338 if (op == DW_OP_piece)
3339 {
3340 size *= 8;
3341 offset = 0;
3342 }
3343 else
3344 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3345
3346 if (bits_collected + size > 8 * sizeof (LONGEST))
3347 error (_("Expression pieces exceed word size"));
3348
3349 /* Access the bits. */
3350 switch (loc->kind)
3351 {
3352 case axs_lvalue_register:
3353 ax_reg (expr, loc->u.reg);
3354 break;
3355
3356 case axs_lvalue_memory:
3357 /* Offset the pointer, if needed. */
3358 if (offset > 8)
3359 {
3360 ax_const_l (expr, offset / 8);
3361 ax_simple (expr, aop_add);
3362 offset %= 8;
3363 }
3364 access_memory (arch, expr, size);
3365 break;
3366 }
3367
3368 /* For a bits-big-endian target, shift up what we already
3369 have. For a bits-little-endian target, shift up the
3370 new data. Note that there is a potential bug here if
3371 the DWARF expression leaves multiple values on the
3372 stack. */
3373 if (bits_collected > 0)
3374 {
3375 if (bits_big_endian)
3376 {
3377 ax_simple (expr, aop_swap);
3378 ax_const_l (expr, size);
3379 ax_simple (expr, aop_lsh);
3380 /* We don't need a second swap here, because
3381 aop_bit_or is symmetric. */
3382 }
3383 else
3384 {
3385 ax_const_l (expr, size);
3386 ax_simple (expr, aop_lsh);
3387 }
3388 ax_simple (expr, aop_bit_or);
3389 }
3390
3391 bits_collected += size;
3392 loc->kind = axs_rvalue;
3393 }
3394 break;
3395
3396 case DW_OP_GNU_uninit:
3397 unimplemented (op);
3398
3399 case DW_OP_call2:
3400 case DW_OP_call4:
3401 {
3402 struct dwarf2_locexpr_baton block;
3403 int size = (op == DW_OP_call2 ? 2 : 4);
3404 cu_offset offset;
3405
3406 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3407 op_ptr += size;
3408
3409 offset.cu_off = uoffset;
3410 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3411 get_ax_pc, expr);
3412
3413 /* DW_OP_call_ref is currently not supported. */
3414 gdb_assert (block.per_cu == per_cu);
3415
3416 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3417 block.data, block.data + block.size,
3418 per_cu);
3419 }
3420 break;
3421
3422 case DW_OP_call_ref:
3423 unimplemented (op);
3424
3425 default:
3426 unimplemented (op);
3427 }
3428 }
3429
3430 /* Patch all the branches we emitted. */
3431 for (i = 0; i < VEC_length (int, patches); ++i)
3432 {
3433 int targ = offsets[VEC_index (int, dw_labels, i)];
3434 if (targ == -1)
3435 internal_error (__FILE__, __LINE__, _("invalid label"));
3436 ax_label (expr, VEC_index (int, patches, i), targ);
3437 }
3438
3439 do_cleanups (cleanups);
3440 }
3441
3442 \f
3443 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3444 evaluator to calculate the location. */
3445 static struct value *
3446 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3447 {
3448 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3449 struct value *val;
3450
3451 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3452 dlbaton->size, dlbaton->per_cu);
3453
3454 return val;
3455 }
3456
3457 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3458 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3459 will be thrown. */
3460
3461 static struct value *
3462 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3463 {
3464 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3465
3466 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3467 dlbaton->size);
3468 }
3469
3470 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3471 static int
3472 locexpr_read_needs_frame (struct symbol *symbol)
3473 {
3474 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3475
3476 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3477 dlbaton->per_cu);
3478 }
3479
3480 /* Return true if DATA points to the end of a piece. END is one past
3481 the last byte in the expression. */
3482
3483 static int
3484 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3485 {
3486 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3487 }
3488
3489 /* Helper for locexpr_describe_location_piece that finds the name of a
3490 DWARF register. */
3491
3492 static const char *
3493 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3494 {
3495 int regnum;
3496
3497 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3498 return gdbarch_register_name (gdbarch, regnum);
3499 }
3500
3501 /* Nicely describe a single piece of a location, returning an updated
3502 position in the bytecode sequence. This function cannot recognize
3503 all locations; if a location is not recognized, it simply returns
3504 DATA. If there is an error during reading, e.g. we run off the end
3505 of the buffer, an error is thrown. */
3506
3507 static const gdb_byte *
3508 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3509 CORE_ADDR addr, struct objfile *objfile,
3510 struct dwarf2_per_cu_data *per_cu,
3511 const gdb_byte *data, const gdb_byte *end,
3512 unsigned int addr_size)
3513 {
3514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3515 size_t leb128_size;
3516
3517 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3518 {
3519 fprintf_filtered (stream, _("a variable in $%s"),
3520 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3521 data += 1;
3522 }
3523 else if (data[0] == DW_OP_regx)
3524 {
3525 uint64_t reg;
3526
3527 data = safe_read_uleb128 (data + 1, end, &reg);
3528 fprintf_filtered (stream, _("a variable in $%s"),
3529 locexpr_regname (gdbarch, reg));
3530 }
3531 else if (data[0] == DW_OP_fbreg)
3532 {
3533 const struct block *b;
3534 struct symbol *framefunc;
3535 int frame_reg = 0;
3536 int64_t frame_offset;
3537 const gdb_byte *base_data, *new_data, *save_data = data;
3538 size_t base_size;
3539 int64_t base_offset = 0;
3540
3541 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3542 if (!piece_end_p (new_data, end))
3543 return data;
3544 data = new_data;
3545
3546 b = block_for_pc (addr);
3547
3548 if (!b)
3549 error (_("No block found for address for symbol \"%s\"."),
3550 SYMBOL_PRINT_NAME (symbol));
3551
3552 framefunc = block_linkage_function (b);
3553
3554 if (!framefunc)
3555 error (_("No function found for block for symbol \"%s\"."),
3556 SYMBOL_PRINT_NAME (symbol));
3557
3558 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3559
3560 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3561 {
3562 const gdb_byte *buf_end;
3563
3564 frame_reg = base_data[0] - DW_OP_breg0;
3565 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3566 &base_offset);
3567 if (buf_end != base_data + base_size)
3568 error (_("Unexpected opcode after "
3569 "DW_OP_breg%u for symbol \"%s\"."),
3570 frame_reg, SYMBOL_PRINT_NAME (symbol));
3571 }
3572 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3573 {
3574 /* The frame base is just the register, with no offset. */
3575 frame_reg = base_data[0] - DW_OP_reg0;
3576 base_offset = 0;
3577 }
3578 else
3579 {
3580 /* We don't know what to do with the frame base expression,
3581 so we can't trace this variable; give up. */
3582 return save_data;
3583 }
3584
3585 fprintf_filtered (stream,
3586 _("a variable at frame base reg $%s offset %s+%s"),
3587 locexpr_regname (gdbarch, frame_reg),
3588 plongest (base_offset), plongest (frame_offset));
3589 }
3590 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3591 && piece_end_p (data, end))
3592 {
3593 int64_t offset;
3594
3595 data = safe_read_sleb128 (data + 1, end, &offset);
3596
3597 fprintf_filtered (stream,
3598 _("a variable at offset %s from base reg $%s"),
3599 plongest (offset),
3600 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3601 }
3602
3603 /* The location expression for a TLS variable looks like this (on a
3604 64-bit LE machine):
3605
3606 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3607 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3608
3609 0x3 is the encoding for DW_OP_addr, which has an operand as long
3610 as the size of an address on the target machine (here is 8
3611 bytes). Note that more recent version of GCC emit DW_OP_const4u
3612 or DW_OP_const8u, depending on address size, rather than
3613 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3614 The operand represents the offset at which the variable is within
3615 the thread local storage. */
3616
3617 else if (data + 1 + addr_size < end
3618 && (data[0] == DW_OP_addr
3619 || (addr_size == 4 && data[0] == DW_OP_const4u)
3620 || (addr_size == 8 && data[0] == DW_OP_const8u))
3621 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3622 && piece_end_p (data + 2 + addr_size, end))
3623 {
3624 ULONGEST offset;
3625 offset = extract_unsigned_integer (data + 1, addr_size,
3626 gdbarch_byte_order (gdbarch));
3627
3628 fprintf_filtered (stream,
3629 _("a thread-local variable at offset 0x%s "
3630 "in the thread-local storage for `%s'"),
3631 phex_nz (offset, addr_size), objfile_name (objfile));
3632
3633 data += 1 + addr_size + 1;
3634 }
3635
3636 /* With -gsplit-dwarf a TLS variable can also look like this:
3637 DW_AT_location : 3 byte block: fc 4 e0
3638 (DW_OP_GNU_const_index: 4;
3639 DW_OP_GNU_push_tls_address) */
3640 else if (data + 3 <= end
3641 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3642 && data[0] == DW_OP_GNU_const_index
3643 && leb128_size > 0
3644 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3645 && piece_end_p (data + 2 + leb128_size, end))
3646 {
3647 uint64_t offset;
3648
3649 data = safe_read_uleb128 (data + 1, end, &offset);
3650 offset = dwarf2_read_addr_index (per_cu, offset);
3651 fprintf_filtered (stream,
3652 _("a thread-local variable at offset 0x%s "
3653 "in the thread-local storage for `%s'"),
3654 phex_nz (offset, addr_size), objfile_name (objfile));
3655 ++data;
3656 }
3657
3658 else if (data[0] >= DW_OP_lit0
3659 && data[0] <= DW_OP_lit31
3660 && data + 1 < end
3661 && data[1] == DW_OP_stack_value)
3662 {
3663 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3664 data += 2;
3665 }
3666
3667 return data;
3668 }
3669
3670 /* Disassemble an expression, stopping at the end of a piece or at the
3671 end of the expression. Returns a pointer to the next unread byte
3672 in the input expression. If ALL is nonzero, then this function
3673 will keep going until it reaches the end of the expression.
3674 If there is an error during reading, e.g. we run off the end
3675 of the buffer, an error is thrown. */
3676
3677 static const gdb_byte *
3678 disassemble_dwarf_expression (struct ui_file *stream,
3679 struct gdbarch *arch, unsigned int addr_size,
3680 int offset_size, const gdb_byte *start,
3681 const gdb_byte *data, const gdb_byte *end,
3682 int indent, int all,
3683 struct dwarf2_per_cu_data *per_cu)
3684 {
3685 while (data < end
3686 && (all
3687 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3688 {
3689 enum dwarf_location_atom op = *data++;
3690 uint64_t ul;
3691 int64_t l;
3692 const char *name;
3693
3694 name = get_DW_OP_name (op);
3695
3696 if (!name)
3697 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3698 op, (long) (data - 1 - start));
3699 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3700 (long) (data - 1 - start), name);
3701
3702 switch (op)
3703 {
3704 case DW_OP_addr:
3705 ul = extract_unsigned_integer (data, addr_size,
3706 gdbarch_byte_order (arch));
3707 data += addr_size;
3708 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3709 break;
3710
3711 case DW_OP_const1u:
3712 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3713 data += 1;
3714 fprintf_filtered (stream, " %s", pulongest (ul));
3715 break;
3716 case DW_OP_const1s:
3717 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3718 data += 1;
3719 fprintf_filtered (stream, " %s", plongest (l));
3720 break;
3721 case DW_OP_const2u:
3722 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3723 data += 2;
3724 fprintf_filtered (stream, " %s", pulongest (ul));
3725 break;
3726 case DW_OP_const2s:
3727 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3728 data += 2;
3729 fprintf_filtered (stream, " %s", plongest (l));
3730 break;
3731 case DW_OP_const4u:
3732 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3733 data += 4;
3734 fprintf_filtered (stream, " %s", pulongest (ul));
3735 break;
3736 case DW_OP_const4s:
3737 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3738 data += 4;
3739 fprintf_filtered (stream, " %s", plongest (l));
3740 break;
3741 case DW_OP_const8u:
3742 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3743 data += 8;
3744 fprintf_filtered (stream, " %s", pulongest (ul));
3745 break;
3746 case DW_OP_const8s:
3747 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3748 data += 8;
3749 fprintf_filtered (stream, " %s", plongest (l));
3750 break;
3751 case DW_OP_constu:
3752 data = safe_read_uleb128 (data, end, &ul);
3753 fprintf_filtered (stream, " %s", pulongest (ul));
3754 break;
3755 case DW_OP_consts:
3756 data = safe_read_sleb128 (data, end, &l);
3757 fprintf_filtered (stream, " %s", plongest (l));
3758 break;
3759
3760 case DW_OP_reg0:
3761 case DW_OP_reg1:
3762 case DW_OP_reg2:
3763 case DW_OP_reg3:
3764 case DW_OP_reg4:
3765 case DW_OP_reg5:
3766 case DW_OP_reg6:
3767 case DW_OP_reg7:
3768 case DW_OP_reg8:
3769 case DW_OP_reg9:
3770 case DW_OP_reg10:
3771 case DW_OP_reg11:
3772 case DW_OP_reg12:
3773 case DW_OP_reg13:
3774 case DW_OP_reg14:
3775 case DW_OP_reg15:
3776 case DW_OP_reg16:
3777 case DW_OP_reg17:
3778 case DW_OP_reg18:
3779 case DW_OP_reg19:
3780 case DW_OP_reg20:
3781 case DW_OP_reg21:
3782 case DW_OP_reg22:
3783 case DW_OP_reg23:
3784 case DW_OP_reg24:
3785 case DW_OP_reg25:
3786 case DW_OP_reg26:
3787 case DW_OP_reg27:
3788 case DW_OP_reg28:
3789 case DW_OP_reg29:
3790 case DW_OP_reg30:
3791 case DW_OP_reg31:
3792 fprintf_filtered (stream, " [$%s]",
3793 locexpr_regname (arch, op - DW_OP_reg0));
3794 break;
3795
3796 case DW_OP_regx:
3797 data = safe_read_uleb128 (data, end, &ul);
3798 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3799 locexpr_regname (arch, (int) ul));
3800 break;
3801
3802 case DW_OP_implicit_value:
3803 data = safe_read_uleb128 (data, end, &ul);
3804 data += ul;
3805 fprintf_filtered (stream, " %s", pulongest (ul));
3806 break;
3807
3808 case DW_OP_breg0:
3809 case DW_OP_breg1:
3810 case DW_OP_breg2:
3811 case DW_OP_breg3:
3812 case DW_OP_breg4:
3813 case DW_OP_breg5:
3814 case DW_OP_breg6:
3815 case DW_OP_breg7:
3816 case DW_OP_breg8:
3817 case DW_OP_breg9:
3818 case DW_OP_breg10:
3819 case DW_OP_breg11:
3820 case DW_OP_breg12:
3821 case DW_OP_breg13:
3822 case DW_OP_breg14:
3823 case DW_OP_breg15:
3824 case DW_OP_breg16:
3825 case DW_OP_breg17:
3826 case DW_OP_breg18:
3827 case DW_OP_breg19:
3828 case DW_OP_breg20:
3829 case DW_OP_breg21:
3830 case DW_OP_breg22:
3831 case DW_OP_breg23:
3832 case DW_OP_breg24:
3833 case DW_OP_breg25:
3834 case DW_OP_breg26:
3835 case DW_OP_breg27:
3836 case DW_OP_breg28:
3837 case DW_OP_breg29:
3838 case DW_OP_breg30:
3839 case DW_OP_breg31:
3840 data = safe_read_sleb128 (data, end, &l);
3841 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3842 locexpr_regname (arch, op - DW_OP_breg0));
3843 break;
3844
3845 case DW_OP_bregx:
3846 data = safe_read_uleb128 (data, end, &ul);
3847 data = safe_read_sleb128 (data, end, &l);
3848 fprintf_filtered (stream, " register %s [$%s] offset %s",
3849 pulongest (ul),
3850 locexpr_regname (arch, (int) ul),
3851 plongest (l));
3852 break;
3853
3854 case DW_OP_fbreg:
3855 data = safe_read_sleb128 (data, end, &l);
3856 fprintf_filtered (stream, " %s", plongest (l));
3857 break;
3858
3859 case DW_OP_xderef_size:
3860 case DW_OP_deref_size:
3861 case DW_OP_pick:
3862 fprintf_filtered (stream, " %d", *data);
3863 ++data;
3864 break;
3865
3866 case DW_OP_plus_uconst:
3867 data = safe_read_uleb128 (data, end, &ul);
3868 fprintf_filtered (stream, " %s", pulongest (ul));
3869 break;
3870
3871 case DW_OP_skip:
3872 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3873 data += 2;
3874 fprintf_filtered (stream, " to %ld",
3875 (long) (data + l - start));
3876 break;
3877
3878 case DW_OP_bra:
3879 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3880 data += 2;
3881 fprintf_filtered (stream, " %ld",
3882 (long) (data + l - start));
3883 break;
3884
3885 case DW_OP_call2:
3886 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3887 data += 2;
3888 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3889 break;
3890
3891 case DW_OP_call4:
3892 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3893 data += 4;
3894 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3895 break;
3896
3897 case DW_OP_call_ref:
3898 ul = extract_unsigned_integer (data, offset_size,
3899 gdbarch_byte_order (arch));
3900 data += offset_size;
3901 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3902 break;
3903
3904 case DW_OP_piece:
3905 data = safe_read_uleb128 (data, end, &ul);
3906 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3907 break;
3908
3909 case DW_OP_bit_piece:
3910 {
3911 uint64_t offset;
3912
3913 data = safe_read_uleb128 (data, end, &ul);
3914 data = safe_read_uleb128 (data, end, &offset);
3915 fprintf_filtered (stream, " size %s offset %s (bits)",
3916 pulongest (ul), pulongest (offset));
3917 }
3918 break;
3919
3920 case DW_OP_GNU_implicit_pointer:
3921 {
3922 ul = extract_unsigned_integer (data, offset_size,
3923 gdbarch_byte_order (arch));
3924 data += offset_size;
3925
3926 data = safe_read_sleb128 (data, end, &l);
3927
3928 fprintf_filtered (stream, " DIE %s offset %s",
3929 phex_nz (ul, offset_size),
3930 plongest (l));
3931 }
3932 break;
3933
3934 case DW_OP_GNU_deref_type:
3935 {
3936 int addr_size = *data++;
3937 cu_offset offset;
3938 struct type *type;
3939
3940 data = safe_read_uleb128 (data, end, &ul);
3941 offset.cu_off = ul;
3942 type = dwarf2_get_die_type (offset, per_cu);
3943 fprintf_filtered (stream, "<");
3944 type_print (type, "", stream, -1);
3945 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3946 addr_size);
3947 }
3948 break;
3949
3950 case DW_OP_GNU_const_type:
3951 {
3952 cu_offset type_die;
3953 struct type *type;
3954
3955 data = safe_read_uleb128 (data, end, &ul);
3956 type_die.cu_off = ul;
3957 type = dwarf2_get_die_type (type_die, per_cu);
3958 fprintf_filtered (stream, "<");
3959 type_print (type, "", stream, -1);
3960 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3961 }
3962 break;
3963
3964 case DW_OP_GNU_regval_type:
3965 {
3966 uint64_t reg;
3967 cu_offset type_die;
3968 struct type *type;
3969
3970 data = safe_read_uleb128 (data, end, &reg);
3971 data = safe_read_uleb128 (data, end, &ul);
3972 type_die.cu_off = ul;
3973
3974 type = dwarf2_get_die_type (type_die, per_cu);
3975 fprintf_filtered (stream, "<");
3976 type_print (type, "", stream, -1);
3977 fprintf_filtered (stream, " [0x%s]> [$%s]",
3978 phex_nz (type_die.cu_off, 0),
3979 locexpr_regname (arch, reg));
3980 }
3981 break;
3982
3983 case DW_OP_GNU_convert:
3984 case DW_OP_GNU_reinterpret:
3985 {
3986 cu_offset type_die;
3987
3988 data = safe_read_uleb128 (data, end, &ul);
3989 type_die.cu_off = ul;
3990
3991 if (type_die.cu_off == 0)
3992 fprintf_filtered (stream, "<0>");
3993 else
3994 {
3995 struct type *type;
3996
3997 type = dwarf2_get_die_type (type_die, per_cu);
3998 fprintf_filtered (stream, "<");
3999 type_print (type, "", stream, -1);
4000 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4001 }
4002 }
4003 break;
4004
4005 case DW_OP_GNU_entry_value:
4006 data = safe_read_uleb128 (data, end, &ul);
4007 fputc_filtered ('\n', stream);
4008 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4009 start, data, data + ul, indent + 2,
4010 all, per_cu);
4011 data += ul;
4012 continue;
4013
4014 case DW_OP_GNU_parameter_ref:
4015 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4016 data += 4;
4017 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4018 break;
4019
4020 case DW_OP_GNU_addr_index:
4021 data = safe_read_uleb128 (data, end, &ul);
4022 ul = dwarf2_read_addr_index (per_cu, ul);
4023 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4024 break;
4025 case DW_OP_GNU_const_index:
4026 data = safe_read_uleb128 (data, end, &ul);
4027 ul = dwarf2_read_addr_index (per_cu, ul);
4028 fprintf_filtered (stream, " %s", pulongest (ul));
4029 break;
4030 }
4031
4032 fprintf_filtered (stream, "\n");
4033 }
4034
4035 return data;
4036 }
4037
4038 /* Describe a single location, which may in turn consist of multiple
4039 pieces. */
4040
4041 static void
4042 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4043 struct ui_file *stream,
4044 const gdb_byte *data, size_t size,
4045 struct objfile *objfile, unsigned int addr_size,
4046 int offset_size, struct dwarf2_per_cu_data *per_cu)
4047 {
4048 const gdb_byte *end = data + size;
4049 int first_piece = 1, bad = 0;
4050
4051 while (data < end)
4052 {
4053 const gdb_byte *here = data;
4054 int disassemble = 1;
4055
4056 if (first_piece)
4057 first_piece = 0;
4058 else
4059 fprintf_filtered (stream, _(", and "));
4060
4061 if (!dwarf2_always_disassemble)
4062 {
4063 data = locexpr_describe_location_piece (symbol, stream,
4064 addr, objfile, per_cu,
4065 data, end, addr_size);
4066 /* If we printed anything, or if we have an empty piece,
4067 then don't disassemble. */
4068 if (data != here
4069 || data[0] == DW_OP_piece
4070 || data[0] == DW_OP_bit_piece)
4071 disassemble = 0;
4072 }
4073 if (disassemble)
4074 {
4075 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4076 data = disassemble_dwarf_expression (stream,
4077 get_objfile_arch (objfile),
4078 addr_size, offset_size, data,
4079 data, end, 0,
4080 dwarf2_always_disassemble,
4081 per_cu);
4082 }
4083
4084 if (data < end)
4085 {
4086 int empty = data == here;
4087
4088 if (disassemble)
4089 fprintf_filtered (stream, " ");
4090 if (data[0] == DW_OP_piece)
4091 {
4092 uint64_t bytes;
4093
4094 data = safe_read_uleb128 (data + 1, end, &bytes);
4095
4096 if (empty)
4097 fprintf_filtered (stream, _("an empty %s-byte piece"),
4098 pulongest (bytes));
4099 else
4100 fprintf_filtered (stream, _(" [%s-byte piece]"),
4101 pulongest (bytes));
4102 }
4103 else if (data[0] == DW_OP_bit_piece)
4104 {
4105 uint64_t bits, offset;
4106
4107 data = safe_read_uleb128 (data + 1, end, &bits);
4108 data = safe_read_uleb128 (data, end, &offset);
4109
4110 if (empty)
4111 fprintf_filtered (stream,
4112 _("an empty %s-bit piece"),
4113 pulongest (bits));
4114 else
4115 fprintf_filtered (stream,
4116 _(" [%s-bit piece, offset %s bits]"),
4117 pulongest (bits), pulongest (offset));
4118 }
4119 else
4120 {
4121 bad = 1;
4122 break;
4123 }
4124 }
4125 }
4126
4127 if (bad || data > end)
4128 error (_("Corrupted DWARF2 expression for \"%s\"."),
4129 SYMBOL_PRINT_NAME (symbol));
4130 }
4131
4132 /* Print a natural-language description of SYMBOL to STREAM. This
4133 version is for a symbol with a single location. */
4134
4135 static void
4136 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4137 struct ui_file *stream)
4138 {
4139 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4140 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4141 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4142 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4143
4144 locexpr_describe_location_1 (symbol, addr, stream,
4145 dlbaton->data, dlbaton->size,
4146 objfile, addr_size, offset_size,
4147 dlbaton->per_cu);
4148 }
4149
4150 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4151 any necessary bytecode in AX. */
4152
4153 static void
4154 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4155 struct agent_expr *ax, struct axs_value *value)
4156 {
4157 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4158 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4159
4160 if (dlbaton->size == 0)
4161 value->optimized_out = 1;
4162 else
4163 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4164 dlbaton->data, dlbaton->data + dlbaton->size,
4165 dlbaton->per_cu);
4166 }
4167
4168 /* The set of location functions used with the DWARF-2 expression
4169 evaluator. */
4170 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4171 locexpr_read_variable,
4172 locexpr_read_variable_at_entry,
4173 locexpr_read_needs_frame,
4174 locexpr_describe_location,
4175 0, /* location_has_loclist */
4176 locexpr_tracepoint_var_ref
4177 };
4178
4179
4180 /* Wrapper functions for location lists. These generally find
4181 the appropriate location expression and call something above. */
4182
4183 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4184 evaluator to calculate the location. */
4185 static struct value *
4186 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4187 {
4188 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4189 struct value *val;
4190 const gdb_byte *data;
4191 size_t size;
4192 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4193
4194 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4195 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4196 dlbaton->per_cu);
4197
4198 return val;
4199 }
4200
4201 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4202 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4203 will be thrown.
4204
4205 Function always returns non-NULL value, it may be marked optimized out if
4206 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4207 if it cannot resolve the parameter for any reason. */
4208
4209 static struct value *
4210 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4211 {
4212 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4213 const gdb_byte *data;
4214 size_t size;
4215 CORE_ADDR pc;
4216
4217 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4218 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4219
4220 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4221 if (data == NULL)
4222 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4223
4224 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4225 }
4226
4227 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4228 static int
4229 loclist_read_needs_frame (struct symbol *symbol)
4230 {
4231 /* If there's a location list, then assume we need to have a frame
4232 to choose the appropriate location expression. With tracking of
4233 global variables this is not necessarily true, but such tracking
4234 is disabled in GCC at the moment until we figure out how to
4235 represent it. */
4236
4237 return 1;
4238 }
4239
4240 /* Print a natural-language description of SYMBOL to STREAM. This
4241 version applies when there is a list of different locations, each
4242 with a specified address range. */
4243
4244 static void
4245 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4246 struct ui_file *stream)
4247 {
4248 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4249 const gdb_byte *loc_ptr, *buf_end;
4250 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4253 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4254 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4255 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4256 /* Adjust base_address for relocatable objects. */
4257 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4258 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4259 int done = 0;
4260
4261 loc_ptr = dlbaton->data;
4262 buf_end = dlbaton->data + dlbaton->size;
4263
4264 fprintf_filtered (stream, _("multi-location:\n"));
4265
4266 /* Iterate through locations until we run out. */
4267 while (!done)
4268 {
4269 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4270 int length;
4271 enum debug_loc_kind kind;
4272 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4273
4274 if (dlbaton->from_dwo)
4275 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4276 loc_ptr, buf_end, &new_ptr,
4277 &low, &high, byte_order);
4278 else
4279 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4280 &low, &high,
4281 byte_order, addr_size,
4282 signed_addr_p);
4283 loc_ptr = new_ptr;
4284 switch (kind)
4285 {
4286 case DEBUG_LOC_END_OF_LIST:
4287 done = 1;
4288 continue;
4289 case DEBUG_LOC_BASE_ADDRESS:
4290 base_address = high + base_offset;
4291 fprintf_filtered (stream, _(" Base address %s"),
4292 paddress (gdbarch, base_address));
4293 continue;
4294 case DEBUG_LOC_START_END:
4295 case DEBUG_LOC_START_LENGTH:
4296 break;
4297 case DEBUG_LOC_BUFFER_OVERFLOW:
4298 case DEBUG_LOC_INVALID_ENTRY:
4299 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4300 SYMBOL_PRINT_NAME (symbol));
4301 default:
4302 gdb_assert_not_reached ("bad debug_loc_kind");
4303 }
4304
4305 /* Otherwise, a location expression entry. */
4306 low += base_address;
4307 high += base_address;
4308
4309 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4310 loc_ptr += 2;
4311
4312 /* (It would improve readability to print only the minimum
4313 necessary digits of the second number of the range.) */
4314 fprintf_filtered (stream, _(" Range %s-%s: "),
4315 paddress (gdbarch, low), paddress (gdbarch, high));
4316
4317 /* Now describe this particular location. */
4318 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4319 objfile, addr_size, offset_size,
4320 dlbaton->per_cu);
4321
4322 fprintf_filtered (stream, "\n");
4323
4324 loc_ptr += length;
4325 }
4326 }
4327
4328 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4329 any necessary bytecode in AX. */
4330 static void
4331 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4332 struct agent_expr *ax, struct axs_value *value)
4333 {
4334 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4335 const gdb_byte *data;
4336 size_t size;
4337 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4338
4339 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4340 if (size == 0)
4341 value->optimized_out = 1;
4342 else
4343 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4344 dlbaton->per_cu);
4345 }
4346
4347 /* The set of location functions used with the DWARF-2 expression
4348 evaluator and location lists. */
4349 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4350 loclist_read_variable,
4351 loclist_read_variable_at_entry,
4352 loclist_read_needs_frame,
4353 loclist_describe_location,
4354 1, /* location_has_loclist */
4355 loclist_tracepoint_var_ref
4356 };
4357
4358 /* Provide a prototype to silence -Wmissing-prototypes. */
4359 extern initialize_file_ftype _initialize_dwarf2loc;
4360
4361 void
4362 _initialize_dwarf2loc (void)
4363 {
4364 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4365 &entry_values_debug,
4366 _("Set entry values and tail call frames "
4367 "debugging."),
4368 _("Show entry values and tail call frames "
4369 "debugging."),
4370 _("When non-zero, the process of determining "
4371 "parameter values from function entry point "
4372 "and tail call frames will be printed."),
4373 NULL,
4374 show_entry_values_debug,
4375 &setdebuglist, &showdebuglist);
4376 }
This page took 0.180202 seconds and 4 git commands to generate.